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Abstract

When implementing communication protocols in the real world, the idealized conditions

assumed at the theoretical level often do not hold. At the practical level, one is inter-

ested in controlling aspects of the communication that might be considered ”negligible”

in the mathematical modeling of the given protocol. This effect often renders a large

class of protocols with such assumptions unreliable in practice. In this thesis, we attempt

to address practical questions that undermine known communication protocols, by either

re-modeling the protocols in such a way that they would be robust against practical un-

certainties, or demonstrating that they face logical or feasibility problems prior to their

implementation. There are two categories of such questions that are addressed here. The

first one concerns the uncertainty in the communication system parameters, in particular

the communicating channel. This affects security as well as reliability measures. Reliable

transmission of messages in protocols that assume the state of the channel to be perfectly

known relies fundamentally on this assumption. On the other hand, secure transmission

of messages, depends on the powers ascribed to the eavesdropping and jamming parties.

In the realm of quantum information theory, these powers are significantly higher. We

start by giving results that have destructive implications for some established protocols in

quantum key distribution in presence of a quantum jammer. We then offer a remodeling

of communication protocols, that makes them robust to attacks at physical layer, as well

as robust to system parameter uncertainties. Of particular interest are integrated ser-

vices that are possible in quantum communication. Time-sharing between known coding

strategies to perform multiple tasks is often sub-optimal. We derive universal codes that

achieve full capacity regions of the quantum channel for communicating quantum, public

and private messages. The notion of privacy or security in this work is an information

theoretic one, that is different from its cryptographic counterpart. Here, we consider

strategies that are implemented at the physical layer and are therefore only limited by

the physical properties of the system1. Given that our coding strategies are as mentioned,

robust to uncertainties of the physical properties of the system, they offer a significant ad-

vantage to cryptographic methods in practice. The second category of practical questions

concerns computability of the known protocols. Here, we specifically address the algo-

rithmic computability of capacity functions. When capacity theorems are theoretically

derived, a legitimate practical question is whether or not these functions can be fed to a

machine via an algorithm. Asked differently, are optimal protocols that achieve capacities

1In contrast, known cryptographic methods, rely on computational infeasiblity of eavesdropping.
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of channels for different communication tasks, implementable through algorithms? The

value of these functions is derived from achievability and converse theorems that ideally

establish converging computable sequences from below and above the capacity at any

given point. A more relaxed requirement is the question of decidability of such problems.

We end this thesis by giving examples of protocols that cannot in general be turned into

algorithms that can be computed by Turing machines. We further show that the bounds

for capacities achieved by these protocols are in general undecidable.
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1. Introduction

The ever strengthening belief in the future of quantum technologies that accompanies

their commercial advent, has brought about increasing interest in implementability of

the proposed quantum information and computation protocols. Algorithms by Shor and

Grover [Grover(1996)] to perform computations that are extremely hard and provably im-

possible on any classical computer could be considered as some of the first protocols that

demonstrated use cases for quantum information processing. The advantages of this new

model of information were also demonstrated in realization of communication tasks such as

quantum teleportation and dense coding [Bennett et al.(1993)Bennett, Brassard, Crépeau,

Jozsa, Peres, and Wootters]. Determining the asymptotic capacities of quantum channels

has been studied in the past decades as one of the most prominent subjects in quantum

Shannon theory [Wilde(2017)]. There, quite like the classical Shannon theory, informa-

tion transmission ability of a sender and a receiver, connected via a stochastic channel

is examined, while both may use the channel infinitely many times. These protocols in

their inception are normally based on theoretical idealizations that provide prototypes

for further developments in quantum software, but at implementation, face statistical

uncertainties introduced by system parameters. This thesis considers reducing such ide-

alizations in modeling of integrated services that involve simultaneous accomplishment of

more than one information processing task, in favor of their real-world implementation.

We present this introduction in the following order. We start by giving an introduction to

the main content of the thesis, including the studied channel models, information process-

ing tasks and indeed what brings them together to form the theme of this thesis. We do

this, bearing in mind that every chapter has a more detailed introduction on its own. We

proceed by introducing the statistical model used in this work. This model falls within

the boundaries of Quantum Statistics. This is done with the intention of expanding the

audience of the present work, by getting across the idea that for all intents and pur-

poses here, a basic understanding of probability theory and linear algebra is sufficient for

comprehending the results. Finally, we end this introduction by fixing the mathematical

notation used in this work.

1.1. Introduction to the topics of the present work

This thesis studies optimal coding strategies for performing integrated services that are

possible using quantum channels under real-world assumptions. Here, we briefly intro-
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1. Introduction

duce these services and their integration into parent protocols that are implemented on

the physical layer of the communication system. Given the dependence of these protocols

on the physical properties of the system, we then motivate the main area of contribution

of this thesis, by introducing channel models that include physical-parameter uncertain-

ties that communicating parties inevitably face in practice.

The quantum channel should be understood as the most general way in which noisy

evolution and transmission of information is modeled in information theory. Two quan-

tum systems can have a very useful correlation with each other known as entangle-

ment [Wilde(2017)]. This correlation is a valuable resource for public as well as private

communication. Given that a quantum channel preserves all correlations of a system

with other systems, it has the capacity to transmit and generate entanglement, allowing

the use of this resource for communication in the first place. In addition to transmitting

messages between senders and receivers of different permissions and priorities therefore,

quantum channels have the capacity for tasks that go beyond those possible by classi-

cal (today’s commercial) communication systems. One may consider the capacity of the

channel for public ( [Holevo(1998)], [Schumacher and Westmoreland(1997)]) or private

( [Devetak(2005)], [Cai et al.(2004)Cai, Winter, and Yeung]) message transmission, en-

tanglement transmission or entanglement generation ( [Devetak(2005)]) to name a few.

Simultaneous (integrated) transmission of different types of messages can take place be-

tween two parties. The body of research in physical layer integrated services is only in-

teresting where capacity regions beyond those achievable by simple time-sharing between

the tasks (Figure 1.1) are achieved. As more tasks are possible using quantum systems,

the importance such optimal strategies and their advantage over separate performance

of individual tasks becomes clearer. Such integrated (or simultaneous) coding has been

considered in the classical realm and for perfectly known channels in quantum information

theory. For instance, simultaneous transmission of classical and quantum messages, the

subject of Chapter 3, has been of interest( [Devetak and Shor(2005)]) for the case where

the parameters of the communicating channel are perfectly known to the sender and re-

ceiver. This includes scenarios where the communication parties would like to enhance

their classical message transmission when having quantum information primarily at their

disposal or vice versa( [Bennett et al.(1999)Bennett, Shor, Smolin, and Thapliyal], [Hsieh

and Wilde(2010a)], [Hsieh and Wilde(2010b)]). In communication systems, the physical

layer is determined by the stochastic channel that connects the communicating parties.

This approach however could also be considered in quantum computers, where the de-

sign of the processor is given by the separate implementation of different layers that are

placed on top of the physical layer ( [Jones et al.(2012)Jones, Van Meter, Fowler, McMa-

hon, Kim, Ladd, and Yamamoto]). The physical layer consists of hardware apparatus

including qubits and control operations. The data storage will then be subject to error

correction and logical programming to perform the desired algorithms at the interface on

the higher levels. Integrating error correction at the physical layer would require simulta-

2



1.1. Introduction to the topics of the present work

Figure 1.1.: Time sharing between two tasks

Figure 1.2.: Left: Capacity regions for classically enhanced entanglement transmission.
Right: going beyond time-sharing with dephasing qubit channel [Wilde
et al.(2012)Wilde, Hayden, and Guha]

neous implementation of these services that possibly improve time-sharing (Figure 1.2).

In today’s communication systems, issues such as authentication and privacy of mes-

sage identification and transmission protocols are handled in system’s upper layers using

variations of private or public key cryptographic methods (RSA, AES). These meth-

ods rely on computational limitations of illegal parties and hence, are becoming increas-

ingly unreliable [Schaefer and Boche(2014a)]. This concern has motivated much of the

research on the alternative concept of physical layer integration and more specifically,

information theoretic security [Liang et al.(2009)Liang, Poor, and Shamai], [Jorswieck

et al.(2010)Jorswieck, Wolf, and Gerbracht], [Liu and Trappe(2010)], [Bloch and Bar-

ros(2011)]. Information theoretic security is modelled by the wiretap channel (Figure

1.1) that connects the sender to two receivers, one legal and the other wiretapper. The

secrecy from the wiretapper is then achieved via a stochastic encoding procedure. The

encoder first uses random codes designed for message transmission and then uses part

of these codes to confuse the wiretapper. This procedure known as equivocation, makes

sure that the outcome of the channel at the wiretapper’s end is arbitrarily close to a

fixed state, independent of the encoding. This gives a positive rate of secure messages

transmitted to the legal receiver, in case the channel connecting the legal parties is better

(less noisy) than the one between the sender and the wiretapper. Wyner [Wyner(1975)]

introduced the classical wiretap channel, and considered a subclass of channels known

m PM Encoder T

U

Decoder m̂ PM

m{z

a y

z

Figure 1.3.: Wiretap channel
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1. Introduction

Figure 1.4.: Multi-user channel models

as the degraded wiretap channels, before Csiszár and Körner [Csiszár and Körner(1978)]

addressed the general case. The model can be described by two channels from the sender

(”Alice”) to the legal receiver (”Bob”) and to the eavesdropper (”Eve”), respectively. In

transmission theory the goal is to send messages to the legal receiver, while the wiretapper

is to be kept ignorant. The wiretap channel was generalized to the setting of quantum

information theory in [Cai et al.(2004)Cai, Winter, and Yeung,Devetak(2005)].

Real-world communication usually involves more communication parties than just one

sender and one receiver (Figure 1.4). A very basic situation is when two or more sending

parties are connected to a receiver via a multiple-access channel (MAC). A sample use

case of this model is when two senders share the same fiber transmission line to a receiver,

while both independently aim to achieve individual transmission goals. Developing coding

schemes for such situations is of technological importance, since presuming availability of

a ”dark fibre” for performing a transmission protocol is rarely feasible. This fact already

became apparent as a limiting factor in recent attempts to use commercial fibre lines

for quantum key distribution ( [Dynes et al.(2016)Dynes, Tam, Plews, Fröhlich, Sharpe,

Lucamarini, et al.], [Jacak et al.(2016)Jacak, Melniczuk, Jacak, Janutka, Jóźwiak, Gru-

ber, and Jóźwiak])-commercial fibre lines are usually a valuable resource being shared by

many users. Consequently, the rate as well as the performance each of the sending parties

can achieve is in general strongly connected to the signal characteristics of other parties.

Finding code constructions that asymptotically achieve the optimal rate regions in the

Shannon-theoretic sense is a highly nontrivial task ( [Boche et al.(2019a)Boche, Janßen,

and Saeedinaeeni]). Another important channel model that allows access to more than

two parties is the broadcast channel (Figure 1.1), in which one sender is connected to two

receivers. Here, the sender might wish to communicate one public message received by

both, and another private message that is only meant for one receiver and kept secret from

the other. Similar to the wiretap channel, the notion of secrecy here is that assured by

upper-bounding the mutual information between the sender and the receiver from whom

the message is to be kept secret. This results in information theoretic security that only

depends on the physical properties of the communicating channel, in contrast with crypto-

graphic security, that depends on the computational limitations of illegal parties [Schaefer

and Boche(2014a)]. As outlined in Chapter 4, sophisticated coding strategies are needed

to achieve the optimal capacity of the channel for the integrated task in which a message

by a sender contains public and private information.

As the coding strategies outlined above all depend on intrinsic and physical properties of
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1.1. Introduction to the topics of the present work

the system, a challenge facing their practical implementation is when the physical parame-

ters of the communication system in question are unknown to the communicating parties.

In fact, assuming these parameters to be known is unrealistic. In the example of the

wiretap channel for instance, the channel to the eavesdropping party is rarely perfectly

known. Therefore, taking a step closer to real-world implementation of the mentioned

tasks, one needs to consider channel uncertainty. In real world communication using

quantum or classical systems, the parameter determining the channel in use may belong

to an uncertainty set, rendering the protocols that assume the channel to be perfectly

known practically obsolete. Given such uncertainty, when using the channel many times,

as done in Shannon theoretic information processing tasks, assuming the channel to be

memoryless or fully stationary is not realistic. In this thesis we consider three models

that include channel uncertainty without attempting to reduce it via techniques such as

channel identification or tomography. We refer to these models as the compound, arbi-

trarily varying and fully quantum arbitrarily varying channel models.

Informally, the first two channel models consist of a set of quantum channels tNsusPS
known to the communicating parties. In the compound model, communication is done

under the assumption that asymptotically, one of the channels from this set (unknown to

the parties) is used in a memoryless fashion (Figure 1.6). The codes used in this model

therefore have to be reliable for the whole family tNbl
s usPS of memoryless channels for

large enough values of l P N.

In the arbitrarily varying model, given a number of channel uses l, an adversarial party

(jammer) chooses the sequence sl “ ps1, . . . , slq P S
l, unknown to the communication

parties, to yield the channel Nsl :“
Âl

i“1 “ Nsi . The adversary may choose this sequence

knowing the encoding procedure used by the sender. The code in use therefore has to be

reliable for the whole family tNsluslPSl of memoryless channels (Figure 1.7). Finally, in the

third channel model, namely that of the fully quantum arbitrarily varying, the assumption

of memoryless communication is dropped. Here, the adversary may choose channel states

that are not necessarily of the product form mentioned in the previous model (Figure

1.8). The size of this uncertainty set S, depends on the strategy and physical resources

used for channel estimation, and under real-life physical communication conditions, will

in general be infinite.

In the two arbitrarily varying channel models, we refer to the state chose by the adver-

sary as a jamming attack. We consider attacks that are performed directly at the physical

layer with the aim of disrupting the physical transmission itself. Such attacks can tar-

get a specific single user within the system, but also the overall system itself. Reliable

communication between legitimate users is the indispensable basis for any information

processing. In the worst case, the jammer is able to perform a denial-of-service (DoS)

attack which means that no communication is possible at all. In [H. Boche(2020a)] it was

shown that it is impossible to algorithmically detect such fundamental physical jamming

attacks. The undetectability of DoS attacks has crucial implications and consequences

5



1. Introduction

m :“ pm0,mcq P M
Epx|mq
P PpX nq

Stochastic encoder

W n
Bpxq

W n
Epxq Eve

Bob
m0,mc

m0,mc{z

Figure 1.5.: Broadcast channel model with one public and one confidential message

N1

N2

N3

N...

Channel states

N1 bN1 bN1 bN1 b . . .
N2 bN2 bN2 bN2 b . . .
N3 bN3 bN3 bN3 b . . .. . .

Channel sequences

Figure 1.6.: Compound channel model.

on higher layers of communication systems. It was discussed in [H. Boche(2020a)] that

it is possible to obtain resilience by design, by invoking additional resources to stabilize

the communication directly at the physical layer. Techniques to achieve resilience by

design have been analyzed in [Ahlswede et al.(2013)Ahlswede, Bjelakovic, Boche, and

Nötzel,H. Boche(2014),H. Boche(2019),H. Boche(2020b)].

Relaxing the assumption of the perfectly known channel, requires coding strategies that

work for all channels belonging to a set of possibly infinite cardinality and are hence, sig-

nificantly more sophisticated. A case in point is the coding strategy established in [Boche

et al.(2019b)Boche, Janßen, and Saeedinaeeni] to derive capacity results for simultaneous

transmission of classical (public) messages and quantum information over the quantum

channel, given that those developed for the perfectly known channel in [Devetak and

Shor(2005)] did not provide the structure needed to deal with channel uncertainty. Opti-

mal codes derived for the compound model, can be used to derive optimal codes for the

arbitrarily varying models [Ahlswede(1978)]. This fact further emphasizes the theoretic

importance of the compound model.

We finish this thesis by analyzing the achievability and converse bounds (comprising

a coding theorem) from a fundamental, algorithmic point of view by studying whether

or not such bounds can be computed algorithmically in principle (without putting any

constraints on the computational complexity of such algorithms). For this purpose, the

concept of Turing machines is used which provides the fundamental performance limits

of digital computers. A Turing machine is a mathematical model of an abstract machine

that manipulates symbols on a strip of tape according to certain given rules. It can sim-

ulate any given algorithm and therewith provides a simple but very powerful model of

computation. Turing machines have no limitations on computational complexity, unlim-

ited computing capacity and storage, and execute programs completely error-free. They

are further equivalent to the von Neumann-architecture without hardware limitations

6



1.1. Introduction to the topics of the present work

N1

N2

N3

N...

Channel states

s “ s1s2s3s... ¨ ¨ ¨ “ 313 . . .

Ns “ Ns1 bNs2 bNs3 bNs... b . . .
“ N3 bN1 bN3 bN... b . . .

Any channel sequences

Figure 1.7.: Arbitrarily varying channel model.

in the theory of recursive functions, cf. also [Avigad and Brattka(2014), Gödel(1930),

Gödel(1934), Kleene(1952), Minsky(1961)]. Accordingly, Turing machines provide funda-

mental performance limits for today’s digital computers. Since bounds on the capacity are

usually evaluated and often plotted on digital computers, Turing machines are the ideal

concept to study whether or not such upper and lower bounds can be found algorithmically

in principle. Subsequently, these findings are applied to two different open problems. The

first one is the ε-capacity of compound channels which is unknown to date. It is shown

that either the achievability or converse must yield a non-computable bound. This is

demonstrated for the capacity as a function of the error input. We also consider the less

restrictive condition of decidability. The crucial consequence is that the ε-capacity cannot

be characterized by a finite-letter entropic expression and is not in general a decidable

problem. The second application are asymptotic bounds for tasks involving pre-shared

resources such as common randomness and entanglement. We demonstrate using our

computability results that such resources can offer advantages in the asymptotic regime.

In Chapter 2 following this introduction, we motivate the main idea of this thesis fur-

ther by giving an example where dealing with general attacks (fully quantum jammer Fig

1.8) calls for more sophisticated coding strategies than those suggested by cryptographic

methods. We demonstrate this by showing that a quantum jammer’s power cannot be

approximated by a classical one. This is shown in the case of the well-known quantum

secret key distribution protocol. We do this by demonstrating that the protocols that try

to approximate the fully quantum jammer by a classical one using the known de Finetti

approximation, must use more information theoretic resource in form of common ran-

domness that they yield. This observation is an example showing the non-trivial nature

of quantum generalization of the arbitrary varying channel model.

In Chapter 3, based on results from [Boche et al.(2019b)Boche, Janßen, and Saeedinaeeni],

we consider an integrated task in which the communicating parties wish to transmit clas-

sical messages and entanglement under the channel uncertainty models mentioned above.

Precise definitions of the protocols will be given therein. Clearly, the resulting capacity-

region achieving codes here will reduce to those appropriate for each of these two tasks,

when only one dimension of the region is considered. In Chapter 4, based on results

from [Boche et al.(2019c)Boche, Janßen, and Saeedinaeeni], we consider an integrated

task where the communicating parties wish to establish secure and public communica-

7



1. Introduction

ρAlice

N
N
...

N
N

σ
Jammer

Nbnpρb σqBob

Figure 1.8.: Fully quantum arbitrarily varying channel model.

tion. Here, our channel may be appropriately named a compound classical-quantum

broadcast channel. Again our codes will achieve the channel’s two dimensional capac-

ity region that also contains the capacity of the channel for each task. In this chapter,

we leave out the capacity under assumptions of the arbitrarily varying model, and in-

stead delve deeper into the compound model. Information theoretically, the compound

model has yielded intriguing properties. One of the interesting information theoretic

properties of the compound channel is that in general, a strong converse cannot be estab-

lished on the capacity of the compound channel for message transmission when upper-

bounding of the average decoding error is considered. This holds even for finite uncertainty

sets [Ahlswede(1967a), Ahlswede and Wolfowitz(1969), Bjelaković et al.(2013)Bjelaković,

Boche, Janßen, and Nötzel]. This observation implies that a second order capacity the-

orem cannot be developed in this case. Further, calculation of the so-called ε-capacity

of the compound channel under the average error criterion is still an open question. We

note however, that determining a second order ε-capacity for the compound channel is

not possible, due to the observation that there are examples of the compound chan-

nel where the optimistic ε-capacity is strictly larger than its pessimistic one (see [Boche

et al.(2018a)Boche, Schaefer, and Poor] Remark 13).

We consider the computational properties of the ε-capacity of the compound channel

in Chapter 5 and based on results from [Boche et al.(2022)Boche, S. Saeedinaeeni, and

Poor]. Therein, we consider examples where the ε-capacity of the compound channel

is not Turing computable or less restrictively, decidable. Since classical channels are a

specific example of classical-quantum and quantum channels, in this chapter we consider

classical channels that give rise to non-computable capacities. Therein we also consider

assisted scenarios where communicating parties have at their disposal, pre-shared en-

tanglement and correlation. In the following two sections, we introduce the underlying

statistical theory appropriate for the information processing tasks and the mathematical

notion considered in this thesis.
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1.2. Introduction to the statistical model

1.2. Introduction to the statistical model

The prevalence of quantum information and computation in performing tasks that are not

possible in the classical realm both at the software and hardware levels, can be attributed

to the often counter-intuitive behaviour of the fundamental particles of the universe, using

which quantum protocols and algorithms are performed. The intersection of this thesis

with the strange picture of quantum mechanics, is however the very well understood sta-

tistical model that was born out of the theoretical needs, and later, axiomatic treatment

of the physical theory. A practical model of statistics, provides the scientist with the

necessary mathematical tools to record accounts of a given experiment. This includes a

set of states, possible transformations and measurements that the system can take, un-

dergo and be observed with, respectively. There are natural requirements on any such

model ( [Holevo(2012)], [Ludwig(1983)]). For instance, one requires the set of states to

be statistically convex. This means that a statistical mixture of possible configurations

(preparations) must be a configuration permitted by the set of states. A measurement

with finitely many outcomes, is then a device or more mathematically put, an affine map

that takes in a state from the state space, and outputs a probability distribution, on the

set of its outcomes. Given the structure that such natural requirements impose on the

set of states, here we intend to give an explanation as to why a new statistical model was

called into necessity by discoveries in physics.

The need for a more general model of statistics presented itself in the 1920s, as physicists

were trying to explain phenomena such as Bose-Einstein condensation and stability of

atoms with even numbers of electrons (Fermions). These observations resulted in a theo-

retical departure from what is now referred to as classical physics. The problem with the

existing statistical models was their insufficiency to account for indistinguishable particles.

Here, we must specify that by two indistinguishable systems, we mean two that cannot

be told apart by any statistical test (measurement). More specifically and in the context

of statistical mechanics, two particles in the position-momentum phase-space are indis-

tinguishable if their position and momentum cannot be observed simultaneously or via a

joint measurement. The usefulness of treating constituting particles of a system as indis-

tinguishable originates in a paper by S.N Bose published 1924 [Bose(1924)]. In an attempt

to describe electromagnetic radiation in the framework of statistical mechanics, the author

suggested that the number of distinct phase-space micro-states of an ideal gas made up of

photons, was significantly lower than the one predicted by Maxwell-Boltzmann statistics.

This new model that predicted the experimental results more accurately, treated micro-

states that were obtained by exchange of the particles and yielded the same macro-state

as indistinguishable. This notion was later reinforced by Heisenberg’s uncertainty princi-

ple [Compton and Heisenberg(1984)]. In classical mechanics, identical particles, namely

those that share their intrinsic properties such as mass, electric charge or size, can always

be told apart given their position. This possibility is overruled by the wave-like behaviour

9



1. Introduction

of quantum particles. According to Heisenberg’s uncertainty principle, one cannot deter-

mine the position of a particle with arbitrary precision, resulting in indistinguishability

of identical particles in close enough proximity. In the following we show that in the

formalism of classical statistics, every pair of observables are jointly measurable, resulting

in turn in distinguishability of classical systems. We argue that this is due to the simplex

structure of the convex set of states in classical statistics, represented by probability dis-

tributions 1.

Definition 1 Let S be the convex set of states of a given system. A finite-valued mea-

surement with outcomes in X , |X | ă 8, is an affine map M : SÑ PpX q from the set of

states to the set of all probability distributions on X . For ρ P S, we denote the map by

ρ ÞÑ µMρ .

The affinity condition on measurement is an axiomatic one. As such, for states ρ1, ρ2 P S

and constant 0 ď λ ď 1, there exists some state ρ P S such that µMρ “ λµMρ1 ` p1´ λqµ
M
ρ2

for all M PM. If S is indeed a simplex, it is uniquely given by the convex hull of some

fixed set of (pure) states B “ tρ1 . . . , ρdu with d :“ dimpSq. B is the set of extremal

points of the simplex (see [Heinosaari et al.(2016)Heinosaari, Miyadera, and Ziman] for a

more detailed account of the terms used). We will see that this condition dictates that all

observables in classical statistics should be jointly measurable or equivalently compatible.

Definition 2 Let M : S Ñ PpX1 ˆ X2q be a measurement defined by ρ ÞÑ µMρ , ρ P S.

Then M1 : SÑ PpX1q, ρ ÞÑ µM1
ρ is a marginal measurement of M , if for all ρ P S, x P X1

we have
ÿ

yPX2

µMρ px, yq “ µM1
ρ pxq. (1.1)

We can now define joint measurablity.

Definition 3 Two measurements M1 : S Ñ PpX1q and M2 : S Ñ PpX2q are called

jointly measurable if there exists measurement M : S Ñ PpX1 ˆ X2q such that M1 and

M2 are marginal measurements of M .

M1 and M2 are called compatible, if there exists a transition probability Π : X1 Ñ PpX2q

such that for all ρ P S, y P X2

µM2
ρ pyq “

ÿ

xPX1

Πpy|xqµM1
ρ pxq.

Joint measurablity and compatibility are equivalent (see e.g. [Filippov et al.(2017)Filippov,

Heinosaari, and Leppäjärvi]).

1Here, we define the classical statistical model as one where the set of states is given by a simplex,
and deduct compatibility of observables as the implication of this definition. An equivalent approach
(taken e.g. by [Holevo(2012)]), is to define the classical statistical model as one where all measurements
are compatible, and then prove a one to one affine map between the phase-space and the set of all
probability distributions on a finite set.
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1.2. Introduction to the statistical model

The following statement exhibits the necessity for a statistical model with a broader

class of states.

Proposition 4 [Plávala(2016)] Let S be a simplex and let B :“ tρ1, . . . , ρdu be the set

of its extremal points. Then every measurement on S is jointly measurable with every

other measurement on S.

Any statistical and information theoretic model that allows incompatible measurements,

will have the following list of impossible machines (see e.g [Werner(2001)] Chapter 2

or [Wold(2012)]). Let Sclassical be the set of classical states and Snon´classical be the set

of states of a non-classical statistical model that allows incompatible measurements.

• Classical teleportation, whereby an unknown state ρ0 P Snon´classical is mapped to

some ρ1 P Sclassical and then converted to some ρ2 P Snon´classical such that no

statistical test could distinguish between ρ0 and ρ2.

• Cloning, whereby an unknown state ρ0 P Snon´classical is taken as input, and two

indistinguishable copies of ρ0 are put out.

• Measurement without disturbing the system, whereby generally measurements leave

the state of the system unchanged.

The above gives a hierarchy of machines, in the sense that existence of one enables the

next. Existence of incompatible measurements implies existence of measurements that

disturb the state of the system. In fact it can be shown that commutativity of mea-

surements imply that they are jointly measurable ( [Heinosaari et al.(2016)Heinosaari,

Miyadera, and Ziman]). In turn, the fact that there are measurements that disturb the

state of the system, imply that in general cloning is not possible. It is also evident that

if classical teleportation were possible, one could clone unknown states by repeating the

process. A natural requirement on an acceptable non-classical statistical model is that

it reduces to the classical model when the set of states is reduced to a simplex. Quan-

tum statistics is an example of a non-classical model where incompatible measurements

are permitted. In fact in this sense, quantum statistics is a fairly general model ( [Wolf

et al.(2009)Wolf, Perez-Garcia, and Fernandez]). A state is described by a density oper-

ator, which can be represented by a Hermitian square matrix whose eigenvalues form a

probability distribution (all positive semi-definite and adding up to unity). The convex set

of states in quantum statistics is not a simplex. There are infinitely many decompositions

into pure states for any given mixed state and after the state is prepared, there is no way of

finding out which of the pure state ensembles were used in preparation ( [Werner(2001)])2.

These non-commutative statistics, as is readily obvious, call for a new information the-

oretic analysis by offering new possibilities. One of the first information-theoretic tasks

2This is based on the assumption that the statistical model is a non-signaling one. As such, another
impossible machine is the mixed state analyzer whereby one determines the actual or refined pure
state ensemble of a given mixed state.
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that were considered using quantum statistics was hypothesis testing (see [Holevo(1973)].

We intend to use this statistical model in its elementary form (discrete and finite dimen-

sional) to generalize and replace certain classical tasks, in the spirit of Quantum Shannon

Theory.

1.3. Notations and conventions

All Hilbert spaces are assumed to have finite dimensions and are over the field C. All

alphabets are also assumed to have finite dimensions. We denote the set of states by

SpHq :“ tρ P LpHq : ρ ě 0, trpρq “ 1u. Pure states are given by projections onto one-

dimensional subspaces. To each subspace F Ă H, we can associate a unique projection

qF whose range is the subspace F , and we write πF for the maximally mixed state on F ,

i.e.

πF :“
qF

trpqF q
. (1.2)

CÓpHA,HBq stands for the set of completely positive trace non-increasing maps between

LpHAq and LpHBq. In what follows, UpHq will denote the group of unitary operators

acting on H. For a Hilbert space G Ă H, we will always identify UpGq with a subgroup

of UpHq. For any projection q P LpHq we set qK :“ 1H ´ q.

Each projection q P LpHq defines a completely positive trace non-increasing map Q

given by Qpaq :“ qaq for all a P LpHq. In a similar fashion, any U P UpHq defines a U P
CpH,Hq by Upaq :“ UaU : for a P LpHq. The coherent information for N P CpHA,HBq

and ρ P SpHAq is defined by

Icpρ,N q :“ SpN pρqq ´ SppidHA
bN qp|ψy xψ|qq, (1.3)

where ψ P HA b HA is an arbitrary purification of the state ρ. A short-hand notation

Sepρ,N q :“ SppidHA
b N qp|ψy xψ|qq to denote entropy exchange is also used in the lit-

erature. A useful equivalent definition of Icpρ,N q is given in terms of N P CpHA,HBq

and any complementary channel N̂ P CpHA,Heq where He denotes the Hilbert space of

the environment. Due to Stinespring’s dilation theorem (see [Hsieh and Wilde(2009)]),

N can be represented as

N pρq “ trHepvρv
˚
q (1.4)

for ρ P SpHAq, where v : HA Ñ HBbHe is a linear isometry. The complementary channel

N̂ P CpHA,Heq of N is given by

N̂ pρq :“ trHB
pvρv˚q. (1.5)
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The coherent information can then be written as

Icpρ,N q “ SpN pρqq ´ SpN̂ pρqq. (1.6)

This quantity can also be defined in terms of the bipartite state σ P SpHA bHBq with

σ :“ idHA
bN p|ψy xψ|q (1.7)

as

IpAyB, σq :“ SpσBq ´ Spσq, (1.8)

where σB is the marginal state given by σB :“ trApσq and we have the identity

Icpρ,N q “ IpAyB, σq. (1.9)

For the approximation of arbitrary compound channels (introduced in the next section)

by finite ones, we use the diamond norm ‖ ¨ ‖˛, given for any N : LpHAq Ñ LpHBq by

‖ N ‖˛:“ sup
nPN

max
aPLpCnbHq,‖a‖1“1

‖ pidn bN qpaq ‖1, (1.10)

where idn : LpCnq Ñ LpCnq is the identity channel. We state the following facts about

|| ¨ ||˛ (see e.g [Kitaev et al.(2002)Kitaev, Shen, and Vyalyi]). First, ||N ||˛ “ 1 for all

N P CpHA,HBq. Thus, CpHA,HBq Ă S˛, where S˛ denotes the unit sphere of the normed

space pLpHAq,LpHBq, || ¨ ||˛q. Moreover, ||N1 bN2||˛ “ ||N1||˛||N2||˛ for arbitrary linear

maps N1,N2 : LpHAq Ñ LpHBq. Throughout this section we have made use of the

idea of nets to approximate arbitrary compound quantum channels using ones with finite

uncertainty sets. This idea is presented in Appendix B.

The set of probability distributions on the finite alphabet X of cardinality |X | will be

denoted by PpX q. For n P N, we define X n :“ px1, . . . , xnq : xi P X , @i P t1, . . . , nu
(

.

The sequence x will denote elements of X n. Also, we use bold letters to denote vectors

(sequences with more that one element). The probability distribution pbn P PpX nq

will be given by the n-fold product of p P PpX q, namely pbnpxq “ ppx1q . . . ppxnq with

x “ px1, . . . , xnq. For any number M P N, we use rM s :“ t1, . . . ,Mu.

The classical quantum (cq) channel W : X Ñ SpHq is a completely positive trace

preserving map from alphabet X to the set of states on Hilbert space H. We denote the

set of all such maps by CQpX ,Hq. This set is equipped with the norm ‖ ¨ ‖CQ defined for

W P CQpX ,Hq by

‖ W ‖CQ:“ max
xPX
‖ W pxq ‖1, (1.11)

where ‖ ¨ ‖1 is the trace norm on LpHq. We use the term cqq channel for map V P

CQpX ,H1 bH2q with two outcomes in two sets of states on two Hilbert spaces. With a

slight abuse of notation, we write ac :“ 1H ´ a for a P LpHq.
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We use εn Ñ 0 exponentially as nÑ 8 or we say εn approaches (goes to) zero exponen-

tially, if ´ 1
n

log εn is a strictly positive constant. For ε1,n and ε2,n both approaching zero

exponentially, we use ε1,n ě ε2,n if ´ 1
n

log ε1,n ď ´
1
n

log ε2,n. We use clpAq to denote the

closure of set A and finally, we use Sn to denote the group of permutations on n elements

such that αpsnq “ psαp1q, . . . , sαpnqq for each α P Sn and sn “ ps1, . . . , snq P S
n.

A measurement or a positive operator valued measure (POVM) with M P N outcomes

on Hilbert space H, is given by an M -tuple pD1, . . . , DMq : Di ě 0, @i P rM s and
ř

iPrMsDi “ 1H. With slight abuse of notation, we write ac :“ 1H ´ a for a P LpHq.

Given the state ωAB P SpHA bHBq, a closely related quantity to coherent information

is the mutual information that is given by

IpA;B,ωq :“ SpA, ωq ` SpB,ωq ´ SpAB,ωq,

where Spγ, ωq, indicates the von Neumann entropy of the state ωγ, the marginal state

of ω. Consider the ensemble tppxq, ωxABu with ωxAB P SpHA b HBq and p P PpX q. We

can define a classical-quantum (cq) state ωXAB P SpC|X | bHA bHBq, given some ONB

texuxPX P C|X | as

ωXAB :“
ÿ

xPX
ppxq |exy xex|

X
b ωxAB (1.12)

Note that we have used the suffix X to label the Hilbert space corresponding to alphabet

X . The conditional mutual information is then defined by

IpA;B|X,ωXBq :“
ÿ

xPX
IpA;B,ωxABq. (1.13)
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twirling

In this chapter, we study random unitary channels which reproduce the action of the

twirling channel corresponding to the representation of the symmetric group on an n-fold

tensor product. We derive upper and lower bounds on the randomness cost of implement-

ing such a map which depend exponentially on the number of systems. Consequently,

symmetric twirling can be regarded as a reasonable Shannon-theoretic protocol. On the

other hand, such protocols are disqualified by their resource-inefficiency in situations

where randomness is a costly resource.

2.1. Introduction

When designing communication protocols, the quantum information theorist has a vast

and steadily growing toolbox of approved protocol parts at hand. Especially useful are

universal protocols, which perform a certain task regardless of the preparation of the sys-

tem.

As a prominent example of this class we mention the quantum teleportation protocol

which allows noiseless transmission of an unknown qubit state by using a pure maximally

entangled qubit pair and two bits of noiseless forward communication. The fact that the

teleportation protocol perfectly accomplishes this goal is completely independent of the

state to be transmitted, motivates modular use in larger protocols without further adjust-

ment of the protocol. In this chapter, we address symmetric twirling, which perfectly and

universally transforms each state on a given n-party system to a permutation invariant

one. This is accomplished by applying a unitary Uπ which exchanges the subsystems

according to a permutation π which is chosen randomly according to the equidistribution

on the group Sn of permutations on n elements, i.e. the quantum channel

Up¨q :“
1

|Sn|

ÿ

πPSn

Uπ
p¨qUπ:.

is applied.

This protocol is very useful in in situations where the system is demanded to be permu-

tationally invariant for further processing. An example of such a situation is, where U is
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performed to make a system ready for applying an instance of the quantum de Finetti The-

orem (see for example [Christandl et al.(2009)Christandl, König, and Renner].) While ap-

plication of U makes all states on the underlying systems perfectly permutation-invariant, 
the protocol is highly demanding regarding its randomness cost. Since n! grows super-

exponentially with the number n of systems, the randomness cost of the protocol is not 
bounded by any rate. This fact prevents U from being a reasonable protocol in situations 
where randomness is at all counted as a resource. However, the equidistributed choice 
out of all permutations obviously bares some redundancies, such that a less randomness 
consuming way of choosing permutations to emulate U seems possible.

In Section 2.2 of this chapter, we derive upper and lower bounds on the randomness 
needed to perform the symmetric twirling channel U , both of which lie on the exponential 
scale. We also show, that the lower bound essentially remains valid under the weakened 
condition, that the action of the twirling is simulated only approximately well.

In Section 2.3, we discuss the consequences of our findings for communication theory. The 
upper bounds derived show that the action of symmetric twirling indeed can be accom-

plished universally by a protocol with rate-bounded randomness demands. This fact is 
important in situations where randomness is not a free resource (e.g. when the random 
permutations have to be applied by two or more parties in a coordinated way.) On the 
other hand, the lower bounds derived show, that the randomness needed is close to the 
maximum randomness which can be generated from that system. Therefore, symmetric 
twirling is too expensive in some situations. Such situations arise especially, when the 
random choice of permutations has to be kept private from additional adversarial com-

munication parties.                                                                                                                               
The twirling and determination of randomness needed to perform such was extensively 
studied in the work [Gross et al.(2007)Gross, Audenaert, and Eisert] in case of the group of 
unitary transformations on a given Hilbert space. Therein, the notion of a unitary design 
was introduced, a terminology which we extend to the symmetric group in this work. 
Recently, Wakakuwa [Wakakuwa(2017)] determined the asymptotic randomness cost of 
symmetrizing a given quantum state in case of tensor product representations of an 
arbitrary given group. We point out, that the focus set in [Wakakuwa(2017)] is different 
from this work. Namely, the twirling we consider does not arise from a tensor product 
representation and is therefore out of the scope of [Wakakuwa(2017)]. Moreover, we are 
focused on protocols which emulate the twirling operation universally, while the mentioned 
work rather asks for the randomness cost of simulating the action of a twirling for a fixed 
state.
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2.2. Bounds for symmetric designs

Considerations briefly explained in the introduction, have brought up the question of

whether it is possible to render the average over a group using only a subset of its elements.

In particular, Sn, the group of all permutations on n elements (or equivalently all bijections

over t1, ..., nu), will be of interest in the remainder of our work. We consider the unitary

representation tUπuπPSn of this group acting on pCdqbn, defined by the action:

Uπx1 b ...b xn “ xπp1q b ...b xπpnq (2.1)

for each π P Sn and x1, . . . , xn P Cd. We prove bounds for all weighted subsets of Sn, the

unitary representations of which produce the group’s average. We refer to such subsets

as symmetric weighted designs, as they are the analogous objects to spherical or unitary

designs ( [Gross et al.(2007)Gross, Audenaert, and Eisert]).

Definition 5 Let X Ă Sn and ω : X Ñ R` be a weight function (i.e. ω ą 0 and
ř

πPX ωpπq “ 1). The pair pX,ωq is a symmetric weighted design (or a weighted design

for Sn), if:
1

n!

ÿ

πPSn

UπηUπ:
“

ÿ

πPX

ωpπqUπηUπ: (2.2)

for all η P LpHbnq, where H :“ Cd.

To prove the upper bound on the cardinality of the designs we use the following theorem

from convex analysis. A proof can be found in e.g. [Barvinok(2003)], Theorem 2.3.

Theorem 6 (Carathéodory’s Theorem) Let S Ă R
d be a set. Then every point x P

convpSq can be represented as a convex combination of d ` 1 points from S, i.e. there

exist α1, . . . , αd`1 ě 0,
řd`1
i“1 αi “ 1, and y1, . . . , yn P S such that

x “ α1y1 ` ¨ ¨ ¨ ` αd`1yd`1 (2.3)

holds.

Theorem 7 There exists a symmetric weighted design pX,ωq with cardinality of X upper-

bounded as:

|X| ď d4n
` 1 (2.4)

Proof 8 Let B :“ t|exy : x P rdsu be the standard basis for Cd. We will use the notation

|exy :“ |ex1y b ¨ ¨ ¨ b |exny (2.5)

for each x :“ px1, . . . , xnq P X n. Writing the left and right hand sides of (2.2) in terms
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of matrix entries of Uπ and Uπ: (uπ:ij : xei|U
π: |ejy , u

π
ij : xei|U

π |ejy) we obtain:

L :“
1

n!

ÿ

πPSn

UπηUπ:
“

1

n!

ÿ

πPSn

ÿ

w,x,y,zPrdns

axyu
π
wxu

π:
yz |ewy xez| (2.6)

and

R :“
ÿ

πPX

ωpπq
ÿ

w,x,y,zPrdns

axyu
π
wxu

π:
yz |ewy xez| (2.7)

where axy :“ xex| η |eyy. Since axy only depends on η, it can be observed that R “ L (and

hence pX,ωq is a symmetric weighted design) if we have:

1

n!

ÿ

πPSn

uπwxu
π:
yz “

ÿ

πPX

ωpπquπwxu
π:
yz (2.8)

for all w,x,y, z P rdns :“ t1, ..., dun. Define the vector νπ :“ puπwxu
π:
yz : w,x,y, z P rdnsq.

We observe that νπ P Rd4n
, as the entries of Uπ are either equal to zero or one:

Uπ
|exy “ |eπpxqy

and hence:

xey|U
π
|exy “ 1 if πpxq “ y and 0 otherwise

Define the set ΩA :“ tνπ : π P Au for some A Ă Sn. The point p :“ 1
n!

ř

πPSn
νπ is in the

convex hull of ΩSn:

p P conv pΩSnq (2.9)

where

conv pΩSnq :“ t
ÿ

πPSn

απ |νπy : @απ ě 0,
ÿ

πPSn

απ “ 1u

At this point, we can apply the Carathéodory’s theorem stated above, to complete our

proof. We observe that ΩSn Ă Rd4n
, and hence by Carathéodory’s theorem, there exists a

subset X Ă Sn such that p P convpΩXq and |X| ď d4n` 1. Therefore there exists a weight

function ω on X such that:
ÿ

πPX

ωpπqνπ “ p (2.10)

which fulfills (2.8).

The above stated bound can be also formulated in terms of entropies. Let Hppq denote
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the Shannon entropy of the probability distribution p on an alphabet X , i.e.

Hppq :“ ´
ÿ

xPX
ppxq log ppxq,

where we use the convention that log denotes base 2 logarithms. The cardinality bound

in Theorem 7 implies, that we find a weighted symmetric design pX,ωq with

1

n
Hpωq ď 4 logpd` 1q (2.11)

Next, we will prove a lower bound on the Shannon entropy of symmetric designs which

complements the upper bound from Eq. (2.11).

Remark 9 The weight function ω over X as defined in Def.5 is a special case of a

probability distribution over Sn. This can be observed by setting ωpπq “ 0 for all π R X.

When dealing with entropies, we consider ω to be a probability distribution over Sn, and

hence derive a lower bound on entropy of any convex combination of permutation unitaries

that produces the desired average over the group.

In what follows, we set Uπp¨q :“ Uπp¨qU
:
π pπ P Snq.

Theorem 10 Let pX,ωq be a symmetric weighted design. Then:

1

n
Hpωq ě logpdq ´ 2d

logpn` 1q

n
(2.12)

where Hpωq is the Shannon entropy of the weight function.

Proposition 11 (Almost-convexity of the von Neumann entropy) Let p be a prob-

ability distribution on X , |X | ă 8, ρx be a density matrix on H where dimpHq “ d, for

each x P X , and set ρp :“
ř

xPX ppxqρx. It holds

Spρq ď
ÿ

xPX
ppxqSpρxq `Hppq. (2.13)

Proof 12 See e.g. [Nielsen and Chuang(2010)], Theorem 11.10.

Proof 13 (Proof of Theorem10) Fix n P N, and set X :“ t1, . . . , du and let µ be a

type of sequences in X n with

Hpµq ě log d´ d
logpn` 1q

n
. (2.14)

Notice that existence of such a type is guaranteed by Lemma 191(see Appendix A, where

more definitions and statements on frequency typical sets can also be found). Define the
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2. Randomness cost of symmetric twirling

projection pµ by

pµ :“
ÿ

xPTnµ

|exy xex| .

First, we notice, that for each µ-typical word x,

1

n!

ÿ

πPSn

Uπp|exy xex|q “
1

|T nµ |
pµ (2.15)

holds (on the r.h.s. of the above equality, we find the maximally mixed state on the subspace

of Hbn belonging to the type class T nµ ). We fix a µ-typical word x and set E : |exy xex|.

We can bound the Shannon entropy of ω by

Hpωq ě S

˜

ÿ

πPSn

ωpπqUπpEq

¸

´
ÿ

πPSn

ωpπqSpUπpEqq

“ S

˜

1

n!

ÿ

πPSn

UπpEq

¸

“ S

ˆ

1

|T nµ |
pµ

˙

“ log |T nµ |.

The inequality above is by Proposition 11. The first equality is by the fact, that UπpEq is

a pure state for each π P Sn combined with the hypothesis of the lemma that pX,ωq is a

weighted design defined by (2.2). The second equality is by (2.15). We conclude

Hpωq ě n ¨Hpµq ´ logpn` 1qd ě n ¨Hpµq ´ 2 ¨ logpn` 1qd.

The left inequality above is by the standard type bound

|T nµ | ě
1

pn` 1qd
¨ 2nHpµq,

while the second is by choice of µ, i.e. by the bound from (2.14). We are done.

The above reasoning can be extended to derive a bound for averages of permutations

which approximately simulate the action of the uniform average over Sn. To formulate

such an assertion, we use the diamond norm } ¨ }˛ on the set of quantum channels on a

Hilbert space K. We define

}N }˛ “ sup
nPN

max
aPLpCnbKq
}a}1“1

}idCn bN paq}1 (2.16)
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2.2. Bounds for symmetric designs

for each c.p.t.p. map on K. We define c.p.t.p. maps

Upbq :“
1

n!

ÿ

πPSn

Uπpbq pb P LpHbnqq, (2.17)

and

U qpbq :“
ÿ

πPSn

qpπqUπpbq pb P LpHbnqq (2.18)

for each probability distribution q on Sn. We prove

Theorem 14 It holds

1

n
Hpqq ě logpdq ´ 2d

logpn` 1q

n
´ 1

n
fp}U ´ U q}˛q (2.19)

for each probability distribution q on Sn, where 1
n
fpxq Ñ 0, px Ñ 0q. More specifically,

fpxq :“ 2x logpd´ 1q ` 2H2pxq where H2pxq is the binary entropy and d is the dimension

of the underlying Hilbert space.

Proof 15 The proof is by minor extension of the argument given to prove Theorem 10.

Note, that with E :“ |exy xex| as in the proof of Theorem 10

ε :“ }U ´ U q}˛ ě }pU ´ U qqpEq}1 (2.20)

holds. By a sharp version of Fannes’ inequality due to Audenaert ( [Audenaert(2007)]),

we have

SpU qq ě SpUq ´ fpεq (2.21)

with a function fulfilling 1
n
fpεq Ñ 0 (ε Ñ 0). We repeat the line of reasoning from the

proof of Theorem 10 including the above tradeoff to the inequalities and get

Hpqq ě SpU qpEqq (2.22)

ě SpUpEqq ´ fpεq (2.23)

ě n log d´ 2dpn` 1q ´ fpεq. (2.24)

The bounds obtained so far directly imply corresponding bounds for completely positive

and trace preserving (c.p.t.p.) matrices.

Theorem 16 Let dimK :“ dK, dimH :“ dH, and Uπp¨q :“ Uπp¨qpUπq˚, Vπp¨q :“

V πp¨qpV πq˚ be the c.p.t.p. maps permuting the tensor factors on LpHqbn resp. LpKqbn
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2. Randomness cost of symmetric twirling

according to π for each π P Sn. If

1

n!

ÿ

πPSn

Uπ ˝N ˝ Vπ´1 “
ÿ

πPSn

ωpπqUπ ˝N ˝ Vπ´1 (2.25)

for each c.p.t.p. map N : LpHbnq Ñ LpKbnq, then

1

n
Hpωq ě logpdKdHq ´ 2dKdH

logpn` 1q

n
(2.26)

Proof 17 The proof of the above assertion almost immediately follows from Theorem 10

combined with the Jamio lkowski isomorphism (see e.g. [Wilde(2017)])

N ÞÑ σN :“ N b idHbnp|Φy xΦ|q, (2.27)

where |Φy is defined by

|Φy :“
1

dn

ÿ

xPXn

|exy b |exy (2.28)

Indeed, for each c.p.t.p. map N : LpHqbn Ñ LpKqbn, it holds

σUπ˝N˝Vπ´1 “ Uπ ˝N ˝ Vπ´1 b idHbnp|Φy xΦ|q (2.29)

“ Uπ b VπpσN q. (2.30)

A lower bound on the cardinality of designs (and 2-designs by a straightforward exten-

sion) can be readily established from Theorem 10. We finish this section, however, by

remarking a relation between vectors belonging to the symmetric subspace and permuta-

tion invariant states, that in turn enables us to derive a lower bound on the cardinality

of designs.

It can be observed that permutation invariant matrices are not in general supported on

sympnqpHq, the subspace defined by:

sympnq
pHq :“ spanp|νy : Uπ

|νy “ |νy @π P Snq

An example to the point is M “ |e01y xe01|`|e10y xe10| where |eijy “ |eiyb|ejy. The follow-

ing lemma from [Renner(2005)] can be used to establish a relation between permutation

invariant states and vectors on sympnqpHq:

Lemma 18 ( [Renner(2005)], Lemma 4.2.2) Let the state ρn P SpHbnq be permuta-

tion invariant and have the following spectral decomposition:

ρn :“
ÿ

i

λi |νiy xνi|
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2.2. Bounds for symmetric designs

where we have included the zero eigenvalues. Then |ψy :“
ř

i

?
λi |νiy b |νiy P sympnqpHq.

Using this lemma, we prove a lower bound on the cardinality of symmetric weighted

designs:

Theorem 19 Let pX,ωq be a weighted design for Sn. Then we have:

|X| ě dn ´

ˆ

d` n´ 1

d´ 1

˙

(2.31)

Proof 20 Consider |νy P sympnqpHqK, where the superscript indicates the orthogonal com-

pliment. It can be observed that Uπ |νy P sympnqpHqK@π P Sn. To see this, we notice that

@ |ψy P sympnqpHq we have xψ|Uπ |νy “ xψ|νy “ 0. The second equality is due to the fact

that |ψy is permutation invariant and absorbs Uπ. Consider the set V :“ tUπ |νyuπPX for

some X Ă Sn. If |X| ă dimpsympnqpHqKq,we can orthonormalize this set via Gram-

Schmidt process and obtain V 1 :“ t|νπyuπPX . V 1 would then be an ONB for a sub-

space of sympnqpHqK. Finally, define Ṽ :“ t|νπy b |νπyuπPX . It can be observed that

|νπyb |νπy P sympnqpHbHqK. There are two possibilities for any linear combination with

non-zero multiples of elements in Ṽ : for any set tλπ ‰ 0, π P Xu either:

1.
ÿ

πPX

λπ |νπy b |νπy “ 0

or

2.
ÿ

πPX

λπ |νπy b |νπy ‰ 0 and P sympnq
pH bHqK

But the first case cannot be, as t|νπy b |νπyuπPX is linearly independent for

|X| ă dimpsympnqpHqKq. The second case, by Lemma 18 implies that the state σ :“
ř

πPXpλ
πq2 |νπy xνπ| cannot be permutation invariant. Since λπ is any non-zero number,

this is true for all linear combinations of states |νπy xνπ| as long as |X| ă dimpsympnqpHqKq.
But what does this imply for linear combinations of states Uπ |νy xν|Uπ: for π P X. For

any such state

µ :“
ÿ

πPX

ωπUπ
|νy xν|Uπ:

we have:

µ “
ÿ

ππ̃PX

γππ̃ |νπy xν π̃|

In the ONB given by V 1, the right hand side can be decomposed into a diagonal matrix

Q and an off-diagonal matrix R. The diagonal matrix is a linear combination of states

|νπy xνπ| and hence cannot be permutation invariant by arguments given above. But for

µ “ Q` R to be permutation invariant, both Q and R have to be permutation invariant,

as application of any unitary on µ will produce a diagonal matrix and an off-diagonal one,

cancelling out Q and R respectively when considering µ´ UπµUπ:.
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2. Randomness cost of symmetric twirling

Figure 2.1.: (i) Implementation of U by equidistributed and correlated random choice of

permutations. (ii) Simulation of U by correlated choice of a random permu-
tation from a smaller set X according to probability distribution q

2.3. Communication-theoretic implications of the results

In this section, we discuss some consequences of the technical results from the the last

section. From the upper and lower bounds derived there, some remarkable conceptual

implications in communication theory can be drawn.

Assuming H as the underlying Hilbert space of the system under consideration, the quan-

tum channel

Up¨q :“
1

n!

ÿ

πPSn

Uπp¨q, Uπp¨q :“ Uπ
p¨qUπ:

pπ P Snq

is usually regarded as the standard protocol applied to universally map each state on Hbn

to a permutation invariant one. 1

To zest the discussion, we consider H :“ HAbHB the space of a bipartite system shared

by distant communication parties A and B. The corresponding map U on H has the form

Up¨q “ 1

n!

ÿ

πPSn

UA,π b UB,πp¨q, (2.32)

where UA,π and UB,π are the channels exchanging the subsystems of HbnA respectively HbnB
according to permutation π. To implement U as a communication protocol, A and B have

to agree on a permutation which is chosen randomly from the symmetric group Sn on n

letters (see Figure 2.1).

Applying U as a communication protocol (or as a part of a greater protocol) conse-

quently amounts in consuming shared equidistributed randomness (common randomness

as it is called usually in the information theory literature) at rate

Rn “
1

n
log n! (2.33)

1In this section, we restrict ourselves to discussion of the consequences of the derived bounds for quantum
states. Similar observation regarding quantum channels easily follow from our bounds regarding
quantum channels.
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2.3. Communication-theoretic implications of the results

bits per block length. The observation, that the rates Rn grow unbounded in the asymp-

totic limit n Ñ 8 disqualifies U as a protocol in situations, where shared randomness is

not a free resource, but instead does count to the resource trade-off.

In this context, Theorem 7 proven in the preceding section provides an uplifting message.

A weighted symmetric design (on Hbn) as introduced in Definition 5 exactly simulates

the action of U . Theorem 7 therefore shows, that we always can equivalently replace U
by a protocol which demands (not necessarily equidistributed randomness) at a rate

R1n ď 4 ¨ log dimpHA bHBq. (2.34)

We have shown, that the brute-force evenly distributed random selection out of all per-

mutations can be replaced by random selection from a much smaller set of permutations

(which amounts to rate-bounded coordinated randomness demands.)

Opposite to the consequences discussed so far, our results also enforce some conclusions

of the more disillusioning type. Having established protocols for enforcing permutation-

invariance which are reasonable regarding their randomness consumption, they may be

too expensive in randomness consumption sometimes.

As a consequence of the well-known Holevo bound, we obtain the inequality

IpXAn ;YBnq ď n ¨ log dimHA bHB (2.35)

which provides a principal bound for the mutual information of a bipartite random variable

pXAn , YBnq produced by local measurements on the A and B subsystems of any bipartite

quantum system with underlying Hilbert space pHA bHBq
bn. When regarding resource

trade-offs, comparing the bounds in (2.35) and the one given by

Hppq ě n log dimHA bHB (2.36)

for Shannon entropy of any probability distribution producing a symmetric design given

by

U q :“
ÿ

πPSn

qpπq ¨ UA,π b UB,π (2.37)

we notice that permutation-symmetrization, costs at least as much shared randomness as

could be produced at all (in a perfect situation) by local measurements on a system.

While the preceding observation may have no consequences in communication situations

where shared randomness is a cheap resource, there are other situations, where the com-

munication demands are critical to an extent, that the introduced protocol class is dis-

qualified.

A special instance of such a situation is faced, when in addition to A and B (which we call

henceforth legitimate users) a third, malicious party E takes part in the communication.
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2. Randomness cost of symmetric twirling

Figure 2.2.: Choice of random permutation π for implementation of U has to be coordi-
nated between legitimate parties A and B but protected from knowledge by
adversarial party E.

Let the underlying space of the system be HA b HB b HE. In this case, it is usually

not enough to perform the random choice in a way that it is coordinated between the

legitimate parties A and B. Moreover, it has to be secure in the sense, that the malicious

party E has no knowledge of the permutation π chosen (see Figure 2.2.)

An example where the correlation shared not just by the legitimate but also the ad-

versarial communication parties is useless, is given in [Bjelaković et al.(2009)Bjelaković,

Boche, and Nötzel]. Therein it is proven, that the secrecy capacity of an arbitrarily

varying wiretap classical quantum channel (AVWQC) under assistance of common ran-

domness which is secure against the jamming adversarial party sometimes strictly exceeds

the corresponding capacity of the AVWC under assistance of public (non-private) com-

mon randomness. Additionally, in the case where the randomness is also accessible to the

jamming adversary, the corresponding capacity equals the capacity without any common

randomness assistance. Common randomness is useless for secret message transmission if

it is also known to the (active) adversary.
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3. Simultaneous transmission of

classical and quantum information

under channel uncertainty

In this chapter we derive universal codes for simultaneous transmission of classical mes-

sages and entanglement through quantum channels, possibly under attack of a malignant

third party. These codes are robust to different kinds of channel uncertainty. To construct

such universal codes, we invoke and generalize properties of random codes for classical

and quantum message transmission through quantum channels. We show these codes

to be optimal by giving a multi-letter characterization of regions corresponding to ca-

pacity of compound quantum channels for simultaneously transmitting and generating

entanglement with classical messages. Also, we give dichotomy statements in which we

characterize the capacity of arbitrarily varying quantum channels for simultaneous trans-

mission of classical messages and entanglement. These include cases where the malignant

jammer present in the arbitrarily varying channel model is classical (chooses channel

states of product form) and fully quantum (is capable of general attacks not necessarily

of product form).

3.1. Introduction

Simultaneous transmission of classical messages and entanglement is a nontrivial problem

even if capacity achieving codes for the corresponding univariate transmission goals are at

hand. It was already observed in [Devetak and Shor(2005)] for perfectly known quantum

channels that the naive time sharing strategy is generally insufficient to achieve the full

capacity region. Examples of channels where coding beyond time-sharing is indispensable

does not depend on constructing pathologies. They are readily found even within the

standard arsenal of qubit quantum channels, e.g. the dephasing qubit channels [Devetak

and Shor(2005)].

We derive codes for simultaneous transmission of classical messages and entanglement

that are robust to the three types of uncertainty mentioned above. The codes used here

for the compound model, are different from those used for the point to point communica-

tion in [Devetak and Shor(2005)] when considering the special case of |S| “ 1. Given that

the input state approximation techniques used therein prove insufficient in presence of
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3. Simultaneous transmission of classical and quantum information under channel uncertainty

channel state uncertainty, in this thesis we use the decoupling approach first established

in [Klesse(2007)]. We combine robust random codes for classical message transmission

from [Mosonyi(2015)] and a generalization of (decoupling based) entanglement transmis-

sion codes from [Bjelaković et al.(2009)Bjelaković, Boche, and Nötzel] to construct ap-

propriate simultaneous codes for compound quantum channels under the maximal error

criterion. We show that these codes are optimal by giving a multi-letter characteriza-

tion of the capacity of compound quantum channels with no assumption on, the size of

the underlying uncertainty set. We use the asymptotic equivalence of the two tasks of

entanglement transmission and entanglement generation to include the capacity region

corresponding to simultaneous transmission of classical messages and generation of en-

tanglement between the two parties.

Next, we convert the codes derived for the compound channel, using Ahlswede’s robus-

tification and elimination techniques ( [Ahlswede(1978)]) to derive suitable codes for

arbitrarily varying quantum channels. This is possible given that the error functions

associated with codes corresponding to the compound model decay to zero exponen-

tially. We derive a dichotomy statement ( [Ahlswede(1978)]), for the simultaneous clas-

sical message and entanglement transmission through AVQCs under the average error

criterion. This dichotomy is observed when considering two scenarios where the commu-

nicating parties do and do not have access to unlimited common randomness, yielding

the common-randomness and deterministic capacity regions of the channel model respec-

tively. Therefore, we show that firstly, the common-randomness capacity region of the

arbitrarily varying channel is equal to that of the compound channel convpJ q, namely

the compound channel generated by the convex hull of the uncertainty set of channels J .

Secondly, if the deterministic capacity of the arbitrarily varying channel is not the point

p0, 0q, it is equal to the common-randomness capacity of the channel.

We give a necessary and sufficient condition for the deterministic capacity region to be be

the point p0, 0q. This condition is known as symmetrizablity of the channel (see [Ahlswede

et al.(2012)Ahlswede, Bjelaković, Boche, and Nötzel] and [Boche and Nötzel(2014)]). Fi-

nally, we show that the codes derived here, can be used for fully quantum AVCs where

the jammer is not restricted to product states, but can use general quantum states to

parametrize the channel used many times. This model has been introduced in Section 3.6

along with the main result and related work for fully quantum AVCs and hence here, we

avoid further explanation of the techniques used there.

The task of simultaneous transmission of classical messages and entanglement was first

considered by Devetak and Shor in [Devetak and Shor(2005)] in case of a memoryless

quantum channel under assumption that the channels state is perfectly known to its

users. The authors derived a multi-letter characterization of the capacity region in this

setting which also classified the näıve time-sharing approach as being suboptimal for si-

multaneous transmission. A code construction sufficient to achieve also the rate pairs

lying outside the time-sharing region was derived using a ”piggy-backing” technique. A
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specialized construction introduced in [Devetak(2005)] allows to encode the identity of 
the classical message into the coding states of an underlying entanglement transmission 
code. The mentioned strategy to optimally combine different communication tasks in 
quantum channel coding was afterwards used and further developed in different direc-

tions. We explicitly mention subsequent research activity by Hsieh and Wilde [Hsieh 
and Wilde(2010a), Hsieh and Wilde(2010b)] where the idea of ”piggy backing” classical 
messages onto quantum codes was extended to include entanglement assistance. The re-

sulting code construction being sufficient to achieve each point in the three-dimensional 
rate region for entanglement-assisted classical/quantum simultaneous transmission leads 
to a full (multi-letter) characterization of the ”Quantum dynamic capacity” of a (perfectly 
known) quantum channel [Wilde and Hsieh(2011a)] (see the textbook [Wilde(2017)] for 
an up-to-date pedagocial presentation of the mentioned results).

In order to derive classically enhanced quantum codes being robust against channel uncer-

tainty, we refine the construction entanglement transmission codes for compound quantum 
channels from [Bjelaković et al.(2009)Bjelaković, Boche, and Nötzel,Boche et al.(2018b)

Boche, Deppe, Nötzel, and Winter] instead of elaborating on the usual approach 
building up on codes from [Devetak(2005)]. In fact, it was noticed earlier that deriving 
entanglement generation codes from secure classical message transmission codes (the 
strategy which the arguments in [Devetak(2005)] follow) seems to be not suitable when 
the channel is a compound quantum channel.

In the first section following this introduction, we introduce the notation used in this 
work. Precise definitions of the channel models, codes used in different scenarios along 
with capacity regions and finally the main results in form of Theorem 25 and Theorem 32, 
are given in Section 3.2. In Section 3.3, we present preliminary coding results for entan-

glement transmission (Section 3.3.1) and classical message transmission (Section 3.3.2). 
The entanglement transmission codes introduced in this section are a generalization of 
the random codes in [Bjelaković et al.(2009)Bjelaković, Boche, and Nötzel] and [Boche 
et al.(2018b)Boche, Deppe, Nötzel, and Winter] to accommodate conditional typicality of 
the input on words from many copies of an alphabet. The classical message transmission 
codes are those from [Mosonyi(2015)] that prove sufficient for our simultaneous coding 
purposes.

Equipped with these results, we move on to Section 3.4, to prove the coding results for the 
compound channel model. In this section, after proving a converse for the capacity region 
in Theorem 25, we prove the direct part in two steps. In the first step, we show that 
capacity regions that correspond to the case where the sender is restricted to inputting 
maximally entangled pure states are achieved. In the second step, we prove achievablity

of capacity regions corresponding to general inputs, using elementary methods that are 
less involved that the usual BSST type results used for this generalization in [Bjelaković 
et al.(2009)Bjelaković, Boche, and Nötzel] and [Boche et al.(2018b)Boche, Deppe, Nötzel, 
and Winter].
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3. Simultaneous transmission of classical and quantum information under channel uncertainty

In Section 3.5, after proving a converse for the capacity region under the arbitrarily vary-

ing channel model, we prove coding results in this model by converting the compound

channel model codes using Ahlswede’s robustification method. This, assumes unlimited

common randomness available to the legal parties. We then use an instance of elimination

to show that if the deterministic capacity region is not the point p0, 0q, negligible amount

of common randomness per use of the channel is sufficient to achieve the same capacity

region. Also in this section, we prove necessity and sufficiency of symmetrizablity condi-

tion for the case where the deterministic capacity region is the point p0, 0q. Finally, in

Section 3.6, m these results to the case of quantum jammer by proving Theorem 65.

3.2. Basic definitions and main results

We consider two channel models of compound and arbitrarily varying quantum channels.

They are both generated by an uncertainty set of CPTP maps. For the purposes of

the present work, when considering the arbitrarily varying channel model, we assume

finiteness of the generating uncertainty set. This assumption is absent in the case of the

compound channel model.

3.2.1. The compound quantum channel

Here, we consider quantum compound channels. Let J :“ tNsusPS Ă CpHA,HBq be a

set of CPTP maps. The compound quantum channel generated by J is given by family

tNbn : N P J u8n“1. In other words, using n instances of the compound channel is equiv-

alent to using n instances of one of the channels from the uncertainty set. The users of

this channel may or may not have access to the Channel State Information (CSI). We

will often use the set S to index members of J . A compound channel is used n P N
times by the sender Alice, to convey classical messages from a set rM1,ns :“ t1, ...,M1,nu

to a receiver Bob. At the same time, the parties would like to communicate quantum

information. Here, we consider two scenarios in which quantum information can be com-

municated between the parties.

Classically Enhanced Entanglement Transmission (CET): While transmitting

classical messages using n P N instances of the compound channel, the sender wishes

to transmit the maximally entangled state in her control to the receiver. The subspace

FA,n with FA,n Ă HbnA and M2,n :“ dimpFA,nq, quantifies the amount of quantum infor-

mation transmitted. More precisely:

Definition 21 An pn,M1,n,M2,nq CET code for J Ă CpHA,HBq, is a family CCET :“

pPm,RmqmPrM1,ns with

• Pm P CpFA,n,HbnA q,
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• Rm P CÓpHbnA ,FB,nq with FA,n Ă FB,n and

•
ř

mPrM1,ns
Rm P CpHbnB ,FB,nq.

Remark 22 We remark that as defined above, for each m P rM1,ns we have a pn,M2,nq

entanglement transmission code for J .

For every m P M1,n and s P S, we define the following performance function for this

communication scenario when n P N instances of the channel have been used,

P pCCET ,Nbn
s ,mq :“ F p|my xm| b ΦAB, idFA,n bR ˝Nbn

s ˝ PmpΦAAqq,

where ΦXY is a maximally entangled state on FX,n b FY,n and

R :“
ÿ

mPrM1,ns

|my xm| bRm.

Classically Enhanced Entanglement Generation (CEG): In this scenario, while

transmitting classical messages, Alice wishes to establish a pure state shared between her

and Bob. As the maximally entangled pure state shared between the parties is an instance

of such a pure state, it can be proven that the previous task achieved in CET, achieves

the task laid out by this one, but the opposite is not necessarily true. More precisely:

Definition 23 An pn,M1,n,M2,nq CEG code for J Ă CpHA,HBq, is a family CCEG :“

pΨm,Rmq
M1,n

m“1 , where Ψm is a pure state on FA,n bHbnA and

• Rm P CÓpHbnB ,FB,nq with FA,n Ă FB,n and

•
ř

mPrM1,ns
Rm P CpHbnB ,FB,nq.

The relevant performance functions for this task, for every m P rM1,ns and s P S, are

P pCCEG,Nbn
s ,mq :“ F p|my xm| b Φ, idFA,n bR ˝Nbn

s pΨmqq, (3.1)

with Φ maximally entangled on FA,n b FB,n.

Averaging over the message set rM1,ns, will give us the corresponding average performance

functions for each s P S,

P pCX ,Nbn
s q :“

1

M1,n

ÿ

mPrM1,ns

P pCX ,Nbn
s ,mq,

for X P tCET,CEGu. For each scenario, we define the achievable rates.

Definition 24 Let X P tCET,CEGu. A pair pR1, R2q of non-negative numbers is called

an achievable X rate for the compound channel J , if for each ε, δ ą 0 exists a number

n0 “ n0pε, δq, such that for each n ą n0 we find and pn,M1,n,M2,nq X code CX such that

1. 1
n

logMi,n ě Ri ´ δ for i P t1, 2u,
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3. Simultaneous transmission of classical and quantum information under channel uncertainty

2. infsPS minmPM1,n P pCX ,Nbn
s ,mq ě 1´ ε

are simultaneously fulfilled. We also define X ”average-error-rates” by averaging the per-

formance functions in the last condition over m P rM1,ns. We define the X capacity region

of J by

CXpJ q :“ tpR1, R2q P R`0 ˆ R`0 : pR1, R2q is achievable X rate for J u. (3.2)

Also the capacity region corresponding to average error criteria is defined as

CXpJ q :“ tpR1, R2q P R`0 ˆ R`0 : pR1, R2q is achievable X average-error-rate for J u.
(3.3)

Moreover, let X be an alphabet, M P CpHA,HBq @s P S, p P PpX q and Ψx be a pure

state for all x P X . Given the state

ωpM, p, Ψq :“
ÿ

xPX
ppxq |xy xx| b idHA

bMpΨxq, (3.4)

we introduce the following set,

ĈpNs, p, Ψq :“ tpR1, R2q P R`0 ˆR`0 : R1 ď IpX;B,ωpNs, p, Ψqq^R2 ď IpAyBX,ωpNs, p, Ψqqu

with Ψ denoting pΨx : x P X q collectively. We will also use

1

l
A :“ tp

1

l
x1,

1

l
x2q : px1, x2q P Au.

The following statement is the first main result of this chapter.

Theorem 25 Let J :“ tNsusPS Ă CpHA,HBq be any compound quantum channel. Then

CCET pJ q “ CCET pJ q “ CCEGpJ q “ CCEGpJ q “ cl

ˆ 8
ď

l“1

1

l

ď

p,Ψ

č

sPS

ĈpNbl
s , p, Ψq

˙

holds.

This theorem is proven in the following steps. In Section 3.4.1, we prove that CCEGpJ q is

a subset of the set on the rightmost set in the above equalities. In Section 3.4.2, we prove

that the rightmost set is a subset of CCET pJ q. Together with the operational inclusions

CCET pJ q Ă CCEGpJ q

and

CXpJ q Ă CXpJ q

for X P tCEG,CET u, we conclude the equalities in the statement of the theorem.
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3.2. Basic definitions and main results

3.2.2. The arbitrarily varying quantum channel

The arbitrarily varying quantum channel generated by a set J :“ tNsusPS of CPTP maps

with input Hilbert space HA and output Hilbert space HB, is given by family of CPTP

maps tNsl : LpHblA q Ñ LpHblB q, sl P Sl, l P Nu8l“1, where

Nsl :“ Ns1 b . . .Nsl psl P Slq.

We use J to denote the AVQC generated by J . To avoid further technicalities, we

always assume |S| ă 8 for the AVQC generating sets appearing in this chapter. Most

of the results in this chapter may be generalized to the case of general sets by clever

use of approximation techniques from convex analysis together with continuity properties

of the entropic quantities which appear in the capacity characterizations (see [Ahlswede

et al.(2012)Ahlswede, Bjelaković, Boche, and Nötzel]).

Definition 26 An pl,M1,l,M2,lq random CET code for J is a probability measure µl on

pCpFA,l,HblA qM1,l ˆΩl, σlq, where

• Ωl :“ tpRp1q, . . . ,RpM1,lqq,
ř

mPrM1,ls
Rpmq P CpHblB ,FB,lqu,

• dimpFA,lq “M2,l,FX,l Ă HblX , pX P tA,Buq.

• The sigma-algebra σl is chosen such that the function

gslpPpmq,Rpmqq :“ F p|my xm| b ΦAB, idHblA
bR ˝Nsl ˝ PpmqpΦAAqq (3.5)

is measurable with respect to µl, for all m P rM1,ls, s
l P Sl. In (3.5), ΦXY is a

maximally entangled state on FX,l b FY,l and R :“
ř

mPrM1,ls
|my xm| bRpmq.

• We further require that σl contains all the singleton sets. The case where µl is

deterministic, namely is equal to unity on a singleton set and zero otherwise, gives

us a deterministic pl,M1,l,M2,lq CET codes for J . Abusing the terminology, we also

refer to the singleton sets as deterministic codes.

Definition 27 A non-negative pair of real numbers pR1, R2q is called an achievable CET

rate pair for J :“ tNsusPS with random codes and average error criterion, if there exists a

random CET code µl for J with members of singleton sets notified by pPpmq,RpmqqmPrM1,ls

such that

1. lim inf lÑ8
1
l

logMi,l ě Ri pi P t1, 2uq,

2. limlÑ8 infslPSl
ş

1
M1,l

ř

mPrM1,ls
gslpPpmq,Rpmqq dµlpPpmq,Rpmqq

M1,l

m“1 “ 1.

The random CET capacity region with average error criterion of J is defined by

Ar,CET pJ q :“ tpR1, R2q : pR1, R2q is achievable CET rate pair for J

with random codes and average error criterionu.
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3. Simultaneous transmission of classical and quantum information under channel uncertainty

Definition 28 A non-negative pair of real numbers pR1, R2q is called an achievable de-

terministic CET rate for J with average error criterion, if there exists a deterministic

pl,M1,l,M2,lq CET code pPpmq,RpmqqmPrM1,ls for J with

1. lim inf lÑ8
1
l

logMi,l ě Ri pi P t1, 2uq,

2. limlÑ8 infslPSl
1

M1,l

ř

mPrM1,ls
gslpPpmq,Rpmqq “ 1

Correspondingly we define the following capacity region,

Ad,CET pJ q :“ tpR1, R2q : pR1, R2q is achievable deterministic

CET rate pair for J with average error criterionu.

The deterministic CET codes defined here, are entanglement transmission codes for each

m P rM1,ls. More precisely we have the following definition.

Definition 29 An pn,Mq, n,M P N, entanglement transmission code for AVQC J Ă

CpHA,HBq is a pair pP ,Rq with P P CpFA,n,HbnA q,R P CpHbnB ,FB,nq with FA,n Ă FB,n Ă
HbnA and dimpFA,nq “M . The corresponding performance function for this task is

F pΦAB, idHbnA
bR ˝Nsn ˝ PpΦAAqq, sn P Sn.

Essential to the statement of our results is the concept of symmetrizablity defined in the

following.

Definition 30 Let J :“ tNsusPS Ă CpHA,HBq with |S| ă 8 be an AVQC.

1. J is called l-symmetrizable for l P N, if for each finite set tρ1, . . . , ρKu Ă SpHblA q
with K P N, there is a map p : tρ1, . . . , ρKu Ñ PpSlq such that for all i, j P

t1, . . . , Ku
ÿ

slPSl

ppρiqps
l
qNslpρjq “

ÿ

slPSl

ppρjqps
l
qNslpρiq. (3.6)

2. We call J symmetrizable if it is l-symmetrizable for all l P N.

Remark 31 The above definition for symmetrizablity was first established in [Ahlswede

et al.(2012)Ahlswede, Bjelaković, Boche, and Nötzel], generalizing the concept of sym-

metrization for classical AVQCs from [Ericson(1985)]. This definition for symmetriz-

ablity was meaningfully simplified in [Boche and Nötzel(2014)], to require checking of the

condition (3.6) for two input states only (K=2).

We prove the following result to be the second main result of this chapter.

Theorem 32 Let J :“ tNsusPS Ă CpHA,HBq with |S| ă 8 be an AVQC. The following

hold.
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3.3. Universal random codes for quantum channels

1. Ad,CET pJ q ‰ tp0, 0qu implies

Ad,CET pJ q “ Ar,CET pJ q “ CCET pconvpJ qq, (3.7)

where CCET pMq is the CET capacity of compound channel M with average error

criterion defined in the previous section and

convpJ q :“ tNq : Nq :“
ÿ

sPS

qpsqNs, q P PpSqu.

2. Ad,CET pJ q “ tp0, 0qu if and only if J is symmetrizable.

3.3. Universal random codes for quantum channels

In this section we prove universal random coding results for entanglement transmission

and classical message transmission over quantum channels. Most of the statements below,

are implicitly contained in the literature. We state some properties of these codes that

stem from their random nature and prove useful when deriving CET codes stated in

Section 3.4.

Before proceeding with the following two sections in which we introduce appropriate

entanglement transmission and classical message transmission coding results and for the

reader’s convenience, we present briefly the concept of types used in the remainder of this

section. For more information on the concept of types, see e.g. [Wilde(2017)].

For l P N, the word xl P X l that is a string of letters x P X and the state ρ with

spectral decomposition ρ :“
ř

xPX ppxq |xy xx|, we define the δ-typical (frequency typical)

projection

qδ,lpρq :“
ÿ

xlPT lp,δ

|xly xxl| ,

where T lp,δ is the set of δ-typical sequences in X l, defined by

T lp,δ :“ txl : @x P X , |1
l
Npx|xlq ´ ppxq| ď δ ^ ppxq “ 0 ðñ Npx|xlq “ 0u (3.8)

where Npx|xlq is the number of occurrences of letter x in word xl.

For each l P N, we consider the set of types over alphabet X , T pX , lq defined as

T pX , lq :“ tλ : T lλ ‰ Hu,

where T lλ “ T lλ,0 (δ “ 0).
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3. Simultaneous transmission of classical and quantum information under channel uncertainty

3.3.1. Entanglement transmission codes

In this section, we prove universal entanglement transmission coding results that are

to be combined with suitable classical message transmission codes introduced in the

next section. The following lemma is a generalization of random entanglement transmis-

sion codes obtained in [Bjelaković et al.(2009)Bjelaković, Boche, and Nötzel] and [Boche

et al.(2018b)Boche, Deppe, Nötzel, and Winter], where a in turn generalization of the de-

coupling lemma from [Klesse(2007)] has been obtained. As stated in the following lemma,

there are two points to be remarked about these codes. First, the random nature of these

codes gives us an encoding state (outcome of the random encoding operation) with a

tensor product structure, that is of interest for the present work. Therefore at this stage,

we skip the de-randomization step that seemed natural in the original work. Secondly,

the integration over unitary groups with respect to the normalized Haar measure done in

the random encoding operation therein, is replaced here by an average over the elements

of discrete and finite subsets of representations of the unitary group known as unitary

designs (see e.g. [Gross et al.(2007)Gross, Audenaert, and Eisert]).

The product structure of the encoding state can be used for an instance of channel coding

stated later on. This becomes clear when the tensor product structure of the average

state is used to accommodate typicality. For p P PpX q where X is some finite alphabet,

δ ą 0 and xl P X l, we introduce the following notation. For the tuple xl :“ px1, . . . , xlq

where xi P X for i “ 1, . . . , l, we define

Gxl :“ Gx1 b ¨ ¨ ¨ b Gxl ,

where Gxi Ă HA and clearly, Gxl Ă HblA . Then πxl :“ πG
xl

denotes the maximally mixed

state on Gxl (correspondingly πx denotes the maximally mixed state on Gx for x P X ),

Φxl a purification of πG
xl

(correspondingly Φx denotes a purification of πx) and Xxl is a

unitary design (see Theorem 38) for UpGxlq. The following lemma reduces to Theorem 5

of [Bjelaković et al.(2009)Bjelaković, Boche, and Nötzel] when |X | “ 1.

Lemma 33 Let J :“ tNsusPS Ă CpHA,HBq be any compound quantum channel and

alphabet X be given. For subspaces pGxqxPX with Gx Ă HA, x P X , probability distribution

p P PpX q and δ ą 0, there exists l0 P N, such that for all l ě l0, we find for each

xl P T lp,δ, a subspace FA,l Ă Gxl and a family pPi,Riq
|X
xl
|

i“1 of pl, dimpFA,lqq entanglement

transmission codes with |Xxl | ă 8 and

1. 1
l

log dimpFA,lq ě infsPS IpAyBX,ωpNs, p, Φqq´δ , with ωpNs, p, Φq defined in (3.4)

for Φ :“ pΦx : x P X q,

2. @s P S 1
|X
xl
|

ř|X
xl
|

i“1 FepπFA,l ,Ri ˝ Nbl
s ˝ Piq ě 1 ´ εl with εl Ñ 0 exponentially as

l Ñ 8,

3. 1
|X
xl
|

ř|X
xl
|

i“1 PipπFA,lq “ πxl.
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3.3. Universal random codes for quantum channels

The ingredients to prove this lemma are presented here in form of two lemmas prior to

the main proof. The following two lemmas reduce to Lemma 5 and 6 from [Bjelaković

et al.(2009)Bjelaković, Boche, and Nötzel]1 when |X | “ 1. Following these lemmas, we

state Theorem 38 based on which we replace the integration with respect to Haar measure,

with an average over a subset of the unitary groups called unitary designs. In short, the

entanglement transmission codes in [Bjelaković et al.(2009)Bjelaković, Boche, and Nötzel]

were derived given a number l P N and subspace Gbl Ă Hbl. Here, we derive codes for a

subspace Gxl , with a tensor product structure determined by word xl (see the description

above Lemma 33).

Lemma 34 Let pλxqxPA be a probability distribution with λx ą 0, @x P A on an alphabet

A. For ρxl :“
Â

xPA ρ
bNx
x , Nx :“ λx ¨ l P N, ρx P SpHq @x P A and δ P p0, 1{2q, there exist

a real number c̃ ą 0, functions h : N Ñ R`, φ : p0, 1{2q Ñ R` with limlÑ8 hplq “ 0 and

limδÑ0 φpδq “ 0 and an orthogonal projection qδ,l satisfying

1. trpρxlqδ,lq ě 1´ |A|2´lpc̃δ2´hplqq

2. qδ,lρxlqδ,l ď 2´pSpρxl q´lφpδqqqδ,l.

The last inequality implies

‖ qδ,lρxlqδ,l ‖2
2ď 2´pSpρxl q´lφpδqq.

Proof 35 Let for each x P A, q
pxq
δ,Nx

be the frequency typical projection associated with state

ρbNxx in terms of Lemma 201. We show that the projection operator qδ,l :“
Â

xPA q
pxq
δ,Nx

has the properties listed in the statement above. We have

trpρxlqδ,lq “ trp
â

xPA
ρbNxx q

pxq
δ,Nx
q “

ź

xPA
trpρbNxx q

pxq
δ,Nx
q

ě
ź

xPA
p1´ 2´Nxpc̄δ

2´h1pNxqqq

ě p1´ 2´c0lpc̄δ
2´h1pc0lqqq

|A|
ě 1´ |A|2´c0lpc̄δ2´h1pc0lqq,

where c0 :“ minxPA λx. Setting c̃ “ c0c̄ and hplq “ c0h
1pc0lq, we have the first claim. To

see the second claim, we observe that

qδ,lρxlqδ,l ď
â

xPA
q
pxq
δ,Nx

ρbNxx q
pxq
δ,Nx

ď
ź

xPA
2´pSpρ

bNx
x q´Nxφpδqq

â

xPA
q
pxq
δ,Nx

“ 2´pSpρxl q´lp
ř

xPA λxφpδqqqδ,l,

where in the last equality, we have used additivity of von Neumann entropy. We are done.
1see Lemmas 201 and 202 for the statements.
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3. Simultaneous transmission of classical and quantum information under channel uncertainty

Lemma 36 Let pλxqxPA be a probability distribution with λx ą 0, @x P A on an al-

phabet A. For each N P CpH,Kq, δ P p0, 1{2q, and maximally mixed state πxl :“
Â

xPA π
bNx
x , Nx “ λx ¨ l P N on some Gxl Ă Hbl, there are functions γ : p0, 1{2q Ñ R` and

h : NÑ R` satisfying limδÑ0 γpδq “ 0 and hplq Œ 0 and an operation Nδ,l P CÓpHbl,Kblq,
called the reduced operation with respect to N and πxl, such that

1. trpNδ,lpπxlqq ě 1´ |A|2´lpĉδ2´hplqq, with constant ĉ ą 0.

2. Nδ,l has a Kraus representation with at most nδ,l ď 2Sepπxl ,N
blq`lpγpδq`čhplqq Kraus

operators with constant č ą 0.

3. For every state ρ P SpHblq and every two channels M P CÓpHbl,Hblq and L P
CÓpKbl,Hblq, the inequality

Fepρ,L ˝Nδ,l ˝Mq ď Fepρ,L ˝Nbl
˝Mq

is fulfilled.

4. As the set of Kraus operators of Nδ,l is a subset of the set of Kraus operators of Nbl

for each l P N, we have

Nδ,lpσq ď Nbl
pσq @σ P SpHblq.

Proof 37 Let for x P A, N pxq
δ,Nx

be the reduced operation for πbNxx in terms of Lemma 202.

We show that Nδ,l “
Â

xPAN
pxq
δ,Nx

has the properties mentioned above. We have

trpNδ,lpπxlqq “
ź

xPA
trpNδ,NxpπbNxx qq ě

ź

xPA
p1´ 2´Nxpc

1δ2´h1pNxqqq

ě p1´ 2´c0lpc
1δ2´h1pc0lqqq

|A|
ě 1´ |A|2´c0lpc1δ2´h1pc0lqq,

where c0 :“ minxPA λx. Setting hplq “ c0h
1pc0lq and ĉ “ c0c

1 we conclude the first claim.

Also the following holds for nδ,l, the number of Kraus operators of Nδ,l.

nδ,l “
â

xPA
nδ,Nx ď

ź

xPA
2pSepπ

bNx
x ,NbNx q`Nxγpδq`Nxh1pNxqq

ď 2
pSepπxl ,N

blq`lp
ř

xPA λxγpδq`
λx
c0
hplqq

“ 2
pSepπxl ,N

blq`lpγpδq` 1
c0
hplqq

,

where in the second line we have used additivity of the entropy exchange Se. Finally, the

last property comes from multiplicativity of the trace and entanglement fidelity function

with respect to tensor products of its arguments.

We now have generalized statements of Lemmas 5 and 6 from [Bjelaković et al.(2009)Bjelaković,

Boche, and Nötzel]. In the statement of Lemma 33, we have used unitary designs to mimic
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3.3. Universal random codes for quantum channels

the average over the unitary group with respect to Haar measure. The following theorem

contains a definition of unitary designs.

Theorem 38 (See e.g. [Gross et al.(2007)Gross, Audenaert, and Eisert]) Let G be a

Hilbert space. For unitaries U P UpGq, there exists a finite set X Ă UpGq with |X| ď

dimpGq4 such that

ż

UPUpGq
pU b Uqp¨qpU b Uq:dU “

1

|X|

ÿ

UPX

pU b Uqp¨qpU b Uq: (3.9)

where the integration is with respect to the normalized Haar measure. From this definition

it is clear that for X we also have,

ż

UPUpGq
Up¨qU :dU “

1

|X|

ÿ

UPX

Up¨qU :. (3.10)

We refer to the set X as a unitary design. We proceed with the proof.

The expected fidelity function present in [Bjelaković et al.(2009)Bjelaković, Boche, and

Nötzel] and [Boche et al.(2018b)Boche, Deppe, Nötzel, and Winter] is achieved by aver-

aging the fidelity function over unitary group with respect to the Haar measure. Here

we show that we can replace this by an expected value achieved by taking the average

over the unitaries from the relevant unitary design. This brings us to the final statement

needed to prove Lemma 33, that is an implication of Lemma 204. We take the average

of both sides of (C.1) with respect to the unitary design introduced in Theorem 38, to

arrive at the desired expression for the expected fidelity lower-bounded. This result is

essentially stated in the proof of Theorem 3.2 [Boche et al.(2018b)Boche, Deppe, Nötzel,

and Winter], to which we refer for more information. In the statement, we will also use

the following notation.

Fc,epρ,N q :“ max
RPCpHB ,HAq

Fepρ,R ˝N q, (3.11)

where ρ P SpHAq and N P CÓpHA,HBq.

Lemma 39 Let X be a unitary design in G and F Ă G. With quantities defined as in

Lemma 204, we have

EFc,epUπFU :,N q :“
1

|X|

ÿ

UPX

Fc,epUπFU
:,N q

ě trpN pπGqq ´ 2

|S|
ÿ

j“1

a

knj ‖ NjpπGq ‖2 .

Proof 40 In the first and more straight forward step, we take the average of first term
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3. Simultaneous transmission of classical and quantum information under channel uncertainty

on the right hand side of (C.1), namely wU “ trpN pUπFU :qq;

1

|X|

ÿ

UPX

trpN pUπFU :qq “ trpN p 1

|X|

ÿ

UPX

UπFU
:
qq “ N pπGq. (3.12)

What remains is the expected value of ‖ DpkUπFU :q ‖1. To make the calculation easier we

consider averaging of an upper bound on this term in terms of the 2-norm. From [Boche

et al.(2018b)Boche, Deppe, Nötzel, and Winter] we know that

‖ DpkUπFU :q ‖1ď

|S|
ÿ

j,l“1

1

|S|

b

kmintnj, nlu ‖ Dj,lpkUπFU :q ‖2
2.

Using the concavity of square root function and Jensen’s inequality we have

Ep‖ DpkUπFU :q ‖1q ď

|S|
ÿ

j,l“1

1

|S|

b

kmintnj, nluEp‖ Dj,lpkUπFU :q ‖2
2q,

where the expectation is taken over the unitaries belonging to the design. To use Klesse’s

[Klesse(2007)] argument as done in proof of Theorem 3.2 of [Boche et al.(2018b)Boche,

Deppe, Nötzel, and Winter], we must invoke the unitary invariance of Ep‖ Dj,lpkUπFU
:q ‖2

2

q with respect to all U P UpGq. To see this unitary invariance, we observe that (see [Boche

et al.(2018b)Boche, Deppe, Nötzel, and Winter])

‖ Dj,lppq ‖2
2“

1

k2

nj ,nl
ÿ

i“1,r“1

trpppa:j,ial,rq
:pa:j,ial,rq ´ |trppa

:

j,ial,rq|
2. (3.13)

The unitary invariance of the expectation of the first summand is clear due to linearity of

the trace function. For the expectation of the second summand we have

1

|X|

ÿ

UPX

|trpUpU :a:j,ial,rq|
2
“

1

|X|

ÿ

UPX

trpUpU :a:j,ial,rqtrpUpU
:a:l,raj,iq

“
1

|X|

ÿ

UPX

trpUpU :a:j,ial,r b UpU
:a:l,raj,iq

“
1

|X|

ÿ

UPX

trpU b Uppb pqpU b Uq:pAjilr b A
:

jilrqq

“ trp
1

|X|

ÿ

UPX

U b Uppb pqpU b Uq:pAjilr b A
:

jilrqq,

where Ajilr :“ a:j,ial,r. From (3.9), we conclude the invariance of second summand in

(3.13). Therefore we can conclude that Ep‖ Dj,lpUπFU
:q ‖2

2q is indeed invariant with

respect to all U P UpGq. The rest of the proof is exactly the same as the proof of Theorem

3.2 of [Boche et al.(2018b)Boche, Deppe, Nötzel, and Winter], yet stated here for reader’s
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3.3. Universal random codes for quantum channels

convenience, as follows. We can use Klesse’s argument to conclude

Ep‖ Dj,lpkUπFU
:
q ‖2

2q ď trpNjpπGqNlpπGqq. (3.14)

Using (3.12), (C.1) and (3.14) we conclude

EpFc,epUπFU :,N qq ě trpN pπGqq ´
|S|
ÿ

j,l“1

1

|S|

a

LjlDjl, (3.15)

where for j, l P t1, ..., |S|u, we introduce abbreviations

Lj,l “ kmintnj, nlu

and

Dj,l “ trpNjpπGqNlpπGqq “ xNjpπGq,NlpπGqyHS ,

where x¨, ¨yHS denotes the Hilbert Schmidt product. It is obvious that

Ljl ď LjjandLlj ď Lll.

Moreover, the Cauchy-Schwartz inequality for the Hilbert-Schmidt inner product justifies

the following chain of inequalities.

Djl “ xNjpπGq,NlpπGqyHS ď‖ NjpπGq ‖2‖ NlpπGq ‖2ď maxt‖ NjpπGq ‖2
2, ‖ NlpπGq ‖2

2u

“ maxtDjj, Dllu.

Therefore, an application of Lemma 199 allows us to conclude from (3.15) that

EpFc,epUπFU :,N qq ě trpN pπGqq ´ 2

|S|
ÿ

j“1

a

knj ‖ NjpπGq ‖2 .

Let for δ ą 0, Nδ,l,j be the reduced operation associated with Nj, j P S, |S| ă 8 as

defined by Lemma 36. Let qδ,l,j P LpHq be the frequency-typical projection of Nδ,l,jpπxlq
in terms of Lemma 36. Define

N 1
δ,l,j :“ Qδ,l,j ˝Nδ,l,j (3.16)

where Qδ,l,jp¨q “ qδ,l,jp¨qqδ,l,j. Also define

N δ,l :“
1

|S|

|S|
ÿ

j“1

N 1
δ,l,j

Applying Lemma 39 on tN 1
δ,l,jujPS, with expectation taken over unitaries from a unitary
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3. Simultaneous transmission of classical and quantum information under channel uncertainty

design on UpGxlq we obtain

EFc,epUπFU :,N δ,lq ě trpN δ,lpπxlqq ´ 2

|S|
ÿ

j“1

a

knδ,l,j ‖ N 1
δ,l,jpπxlq ‖2 . (3.17)

We may now follow the steps taken in proof of Theorem 5 from [Bjelaković et al.(2009)Bjelaković,

Boche, and Nötzel] to give a lower bound on each of the terms on the right hand side of

(3.17) using Lemmas 34 and 36, to derive the following result.

Lemma 41 Let J :“ tNsusPS Ă CpH,Kq be a compound channel, δ ą 0 and λ P PpX q.
For subspaces pGxqxPX ,Gx Ă H, x P X , there exists l0 P N such that for each l ě l0 and

xl P T lλ, we find a subspace Fl Ă Gxl and pl, dimpFlqq entanglement transmission codes

pPi,Riq
|X|
i“1 with |X| ă 8 such that,

1. dimpFlq ě 2infsPS Icpπxl ,N
bl
s q´lδ and

2. infsPS
1
|X|

ř|X|
i“1 FepπFl ,Ri ˝Nbl

s ˝ Piq ě 1´ εl with εl Ñ 0 as l Ñ 8.

Proof 42 Let Jτ with index set Sτ be the net associated with J in terms of Lemma 195.

Choose δ1 P p0, 1{2q and l0 P N satisfying γpδ1q ` φpδ1q ` čhpl0q ď
δ
2

with functions γ, φ, h

and constant č from Lemmas 34 and 36. Now choose for every l ě l0, a subspace Fl Ă Gxl
such that

dimpFlq :“ kl “ t2minsPSτ Icpπxl ,N
bl
s q´lδu. (3.18)

This is always possible as SpπG
xl
q ě Icpπxl ,Nbl

s q. We have

min
sPSτ

Icpπxl ,Nbl
s q ´ lδ ´ opl0q ď log kl ď min

sPSτ
Icpπxl ,Nbl

s q ´ lδ. (3.19)

We assume for the moment that xl P T lλ is given by concatenation of homogeneous words

of size Nx :“ Npx|xlq. That is, for A :“ tx P X : Nx ‰ 0u Ă X , we have xl “ pxNxqxPA.

As such, the hypotheses of Lemma 34 and Lemma 36 apply to to product states indexed

by xl. This assumption however, does not prohibit generality of the proven results, since

each word of type λ results from a permutation of the letters of word xl. Namely, for any

word x̃l P T lλ, there exists a permutation mape γ with γpxlq “ x̃l. Therefore, given codes

pPi,RiqiPX for xl with the properties mentioned in the statement of the present lemma,

suitable codes for x̃l will be given by pUγ ˝Pi ˝U´1
γ ,U´1

γ ˝Ri ˝Uγq, with Uγ the CPTP map

permuting the tensor factors according to γ.
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3.3. Universal random codes for quantum channels

We now give lower bounds for the terms on the right hand side of (3.17).

trpN δ1,lpπxlqq “
1

|Sτ |

|Sτ |
ÿ

s“1

trpN 1
δ1,l,spπxlqq (3.20)

“
1

|Sτ |

|Sτ |
ÿ

s“1

“

trpQδ1,l,s ˝Nbl
s pπxlqq ´ trpQδ1,l,s ˝ rNbl

´Nδ1,l,sspπxlqq
‰

ě 1´ |X |p2´lpc̃δ12´hplqq ´ 2´lpcδ
12´hplqq

q. (3.21)

In the last inequality we have inserted the bounds from Lemmas 34 and 36, after using

0 ď trpQδ1,l,s ˝ rNbl ´Nδ1,l,sspπxlqq ď trprNbl ´Nδ1,l,sspπxlqq. Also,

‖ N 1
δ1,l,spπxlq ‖2

2 ď‖ Qδ1,l,s ˝Nδ1,l,spπxlq ‖2
2 ` ‖ Qδ1,l,s ˝ pN

bl
s ´Nδ1,l,sqpπxlq ‖2

2

ď‖ Qδ1,l,s ˝Nbl
s pπxlq ‖2

2ď 2´pSpπxl q´lφpδ
1qq. (3.22)

In the second inequality we have used ‖ A ‖2
2 ` ‖ B ‖2

2ď‖ A ` B ‖2
2 for non-negative

operators A,B P LpKblq (see [Klesse(2007)]), and inserted the lower bound from Lemma

34. Inserting the bounds from (3.20) and (3.22) into (3.17) we obtain

EFc,epUπFlU
:,N δ1,lq ě 1´ |X |

“

2´lpcδ
12´hplqq

´ 2´lpc̃δ
12´hplqq

‰

´ 2

|Sτ |
ÿ

s“1

b

2log kl´Spπxl q`lφpδ
1q`Sepπxl ,N

bl
s q`lpγpδ1q`čhplqq

ě 1´ |X |
“

2´lpcδ
12´hplqq

´ 2´lpc̃δ
12´hplqq

‰

´ 2|Sτ |
?

2´lpδ´φpδ1q´γpδ1q´čhplqq.

(3.23)

In the second inequality above we have inserted the upper bound for kl from (3.19). For

l ě l0, (3.23) gives us an exponential decay of error. Therefore we can write

EFc,epUπFlU
:,N δ1,lq ě 1´ ε1,l ´ |Sτ |ε2,l

with εi,l Ñ 0 with l Ñ 8 for i “ 1, 2. From this we conclude

min
sPSτ

EFc,epUπFlU
:, Qδ1,l,s ˝Nδ1,l,sq ě 1´ |Sτ |ε1,l ´ |Sτ |

2ε2,l.

From the third property under Lemma 36, the above inequality implies

min
sPSτ

EFc,epUπFlU
:, Qδ1,l,s ˝Nbl

s q ě 1´ |Sτ |ε1,l ´ |Sτ |
2ε2,l ě 1´ |Sτ |

2ε0,l, (3.24)

where ε0,l :“ maxi“1,2 εi,l. Setting shorthand notation βs,U :“ 1´Fc,epUπFlU
:, Qδ1,l,s˝Nbl

s q,

we obtain from Lemma 200, Fc,epUπFlU
:,Nbl

s q ě 1 ´ 3βs,U . Hence from (3.24) we
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3. Simultaneous transmission of classical and quantum information under channel uncertainty

conclude

min
sPSτ

EFc,epUπFlU
:,Nbl

s q ě 1´ 3|Sτ |
2ε0,l. (3.25)

By Lemma 195, we have

min
sPS

EFc,epUπFlU
:,Nbl

s q ě 1´ 3|Sτ |
2ε0,l ´ 2lτ. (3.26)

Given that we find |Sτ | ď p 6
τ
q2pd¨d

1q2, choosing τ “ ε
1

8pd¨d1q2

0,n , we have the desired expo-

nential decay of error. Also, as Jτ Ă J , we obtain the desirable lower bound on the

rate.

Proof 43 (Proof of Lemma 33) Assume xl P T lλ. Note that @λ P T pX , lq, either T lλ Ă

T lp,δ or T lλ
Ş

T lp,δ “ H. Since by assumption of the lemma xl P T lp,δ, we conclude T lλ Ă

T lp,δ. For each δ̃ ą 0, we have from Lemma 41 applied on the compound channel J Ă

CpHA,HBq, a subspace FA,l Ă HblA with

1

l
log dimpFA,lq ě

1

l
inf
sPS

Icpπxl ,N l
sq ´ δ̃ “ inf

sPS

ÿ

xPA

1

l
Icpπ

bNx
x ,NbNx

s q ´ δ̃

“ inf
sPS

ÿ

xPA
λpxqIcpπx,Nsq ´ δ̃

ě inf
sPS

ÿ

xPA
ppxqpIcpπx,Nsq

´ δ̃q ´ |λpxq ´ ppxq| ¨ pIcpπx,Nsq ´ δ̃q

ě inf
sPS

IpAyBX,ωpNs, p, Φqq ´ δ̃ ´ |X |cδ̃.

with c :“ 2 log dimpHAbHBq and ωs defined by (3.4). With this rate we obtain exponential

decay of error as explained above. Choosing δ̃ such that δ ą δ̃`|X |cδ̃, we obtain the desired

lower bound on the rate. The last property listed under Lemma 33 is clear by averaging

property of the Haar measure, reproduced here by the unitary design in UpGxlq.

3.3.2. Classical message transmission codes

The desired statement of universal codes for c-q channels can be extracted from [Mosonyi(2015)].

Therein, the authors have introduced universal random codes for transmission of classical

messages over c-q channels, using properties of Renyi entropies. Based on the same codes,

we have derived the following lemma to allow for a faster decay of error while considering

only ” typical ” inputs.

Lemma 44 Let J :“ tNsusPS Ă CpHA,HBq and V : X Ñ SpHAq be a c-q channel. For

each η ą 0 and p P PpX q, there exists a number n0, such that for n ě n0, there exists a

classical encoding map u : mÑ um P X n and decoding POVM pΛqmPrMns such that

1. @m P rMns : um P T
n
p,η,
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3.4. Proofs for the compound channel

2. infsPS minmPMn trppNs˝V qbnpumqΛmq ě 1´εn, with εn Ñ 0 exponentially as nÑ 8,

3. 1
n

logMn ě infsPS IpX;B,ωpNs, p, Ψqq ´ cη

with ωpNs, p, Ψq defined by (4.4) for Ψ :“ pΨx : x P X , trHpΨxq “ V pxqq and constant

c ą 0.

3.4. Proofs for the compound channel

In this section we proceed with the proof of Theorem 25 in two parts. In the following

section (converse part), it is also demonstrated that CSI at the decoder does not improve

channel’s classically enhanced entanglement generation capacity. In the more involved

direct part of the proof, we introduce classically enhanced entanglement transmission

codes by marrying classical message transmission codes from [Mosonyi(2015)] and a gen-

eralization of entanglement transmission codes from [Bjelaković et al.(2009)Bjelaković,

Boche, and Nötzel] and [Boche et al.(2018b)Boche, Deppe, Nötzel, and Winter] as stated

in Section 3.3.

3.4.1. Proof of the converse

In this section we prove the following lemma.

Lemma 45 Let J :“ tNsusPS Ă CpHA,HBq be any compound quantum channel. It holds

CCEGpJ q Ă cl

ˆ 8
ď

l“1

1

l

ď

p,Ψ

č

sPS

ĈpNbl
s , p, Ψq

˙

. (3.27)

To prove this result, we shall make use of the following lemma (see [Devetak(2005)]).

Lemma 46 For two states ρAB and σAB on some Hilbert space KAbKB of dimension r

and fidelity f :“ F pρAB, σABq, we have

|IpAyB, ρq ´ IpAyB, σq| ď
2

e
` 4 log r

a

1´ f.

Proof 47 (Proof of Lemma 45) We prove a more general claim than stated in Lemma

45, allowing the decoder to choose the processing according to the channel state (i.e.

the decoder has access to CSI). Let for each n P N, CCEG,s :“ pΨm,Rm,sqmPM1,n be an

pn,M1,n,M2,nq CEG code with informed decoder2, such that

inf
sPS

P pCCEG,s,Nbn
s q ě 1´ ε, (3.28)

2As clear from the notation, these codes are CEG codes for compound channel J , when the decoder
has access to CSI.
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3. Simultaneous transmission of classical and quantum information under channel uncertainty

with ε ă 1 holds. Fix n P N and let p˚ P PpX nq be the equidistribution on the message

set. Consider the pair pMs,M
1
sq of random variables with joint distribution:

PrpMs “ m,M 1
s “ m1

q “ p˚pmqtrpRm1,s ˝Nbn
s pV pmqqq

for pms,m
1
s P rM1,nsq and s P S with V pmq :“ trFA,nΨm for some c-q channel V : X n Ñ

SpHbnA q. Note that with these definitions, we have

PpMs ‰M 1
sq ď 1´ P pCCEG,s,Nbn

s q ď ε, (3.29)

for s P S. Fix s for the moment. Define the state

σ1s :“
ÿ

mPrM1,ns

p˚pmq |my xm|
X
b pidHbnA

bRs,m ˝Nbn
s qpΨmq

and the shorthand notation

σs :“ ωpNbn
s , p˚, Ψq “

ÿ

mPrM1,ns

p˚pmq |my xm|
X
b pidHbnA

bNbn
s qpΨmq.

We have

logM1,n “ Hpp˚q “ IpMs;M
1
sq `HpM

1
s|Msq ď IpMs;M

1
sq ` ε logM1,n ` 1

ď IpX;B, σsq ` ε logM1,n ` 1

ď IpX;B, σsq ` nε log |X | ` 1, (3.30)

where IpY ;Y 1q is the mutual information of random variables Y, Y 1. The first inequality

comes from (3.29) and the second is by Holevo bound (see [Wilde(2017)]). For s P S, We

have

ε ě 1´ P pCCEG,s,Nbn
s q “ 1´ F pΦ, σ1ABs q, (3.31)

where σ1ABs :“ trXpσ
1
sq. We have

IpAyBX : σsq ě IpAyBX, σ1sq

ě IpAyB, σ1ABs q

ě IpAyB,Φq ´
2

e
´ 8n log dimH

?
ε “ logM2,n ´

2

e
´ 8n log dimH

?
ε.

(3.32)

In (3.32), the first inequality comes from the quantum data processing inequality, the

second comes from the fact that conditioning does not decrease coherent information. The

third inequality comes from Lemma 46 together with (3.31) and finally, in the last line we
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3.4. Proofs for the compound channel

have used IpAyB,Φq “ logM2,n.

Choosing n such that δ ě 2
ne
` 8 log dimpHq

?
ε , from (3.32) and (3.30) we obtain

p
1

n
logM1,n ´ δ,

1

n
logM2,n ´ δq P

1

n
ĈpNbn

s , p˚, Ψq.

Since s P S was arbitrary, we have shown

p
1

n
logM1,n ´ δ,

1

n
logM2,n ´ δq P clr

8
ď

n“1

ď

p,Ψ

č

sPS

1

n
ĈpNbn

s , p, Ψqs. (3.33)

3.4.2. Proof of the direct part

In this section we prove the following lemma.

Lemma 48 Let J :“ tNsusPS Ă CpHA,HBq be any compound quantum channel. It holds

cl

ˆ 8
ď

l“1

1

l

ď

p,Ψ

č

sPS

ĈpNbl
s , p, Ψq

˙

Ă CCET pJ q. (3.34)

In the first step towards proving the above statement, we restrict the encoder to maximally

mixed state inputs. The final result will then be a generalization by way of which we lift

this restriction. We state the first instance of the classically enhanced codes, satisfying

classical and quantum error criteria in the following lemma.

Lemma 49 Let J :“ tNsusPS Ă CpHA,HBq be any quantum compound channel. For

finite alphabet X , subspaces pGxqxPX ,Gx Ă HA @x P X , p P PpX q, Vπ : X Ñ SpHAq with

Vπpxq “ πx, x P X , each δ ą 0 and large enough values of n, there exists an pn,M1,n,M2,nq

CET code with M2,n “ dimpFA,nq such that

1. 1
n

logM2,n ě infsPS IpAyBX,ωpNs, p, Φqq ´ δ,

2. 1
n

logM1,n ě infsPS IpX;B,ωpNs, p, Φqq´cδ with some constant c ą 0 and ωpNs, p, Φq
defined by (4.4) for Φ :“ pΦx : x P X q defined as in Section 3.3.1,

3. infsPS minmPrM1,ns P pCCET ,Nbn
s ,mq ě 1´ εn, with εn Ñ 0 exponentially as nÑ 8.

Proof 50 Let Jτ Ă J be as defined in Appendix B, Lemma 195 with index set Sτ .

According to Lemma 44, for δ ą 0 and large enough values of n P N, we find pairs

pum, ΛmqmPrM1,ns with 1
n

logM1,n ě minsPSτ IpX;B,ωpNs, p, Φqq´cδ, such that for channel

Vπ we have

min
sPSτ

min
mPrM1,ns

trpΛmpNs ˝ Vπqbnpumqq “ min
sPSτ

min
mPrM1,ns

trpΛm ˝Nbn
s pπumqq ě 1´ ε1,n, (3.35)

for um P T
n
p,δ and ε1,n going to zero exponentially. Given um P T

n
p,δ for each m, according

to Lemma 33, there exists a family of entanglement transmission codes pPpmqi , R̃i
pmq
q
|Xum |
i“1
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3. Simultaneous transmission of classical and quantum information under channel uncertainty

with rate 1
n

logM2,n ě

minsPSτ IpAyBX,ωpNs, p, Φqq ´ δ, such that πum is exactly the output of the average of

encoding operations (third statement of the lemma) and

min
sPSτ

min
mPrM1,ns

1

|Xum |

|Xum |
ÿ

i“1

FepπFA,n , R̃
pmq
i ˝Nbn

s ˝ Ppmqi q ě 1´ ε2,n (3.36)

with ε2,n Ñ 0 exponentially. Thus (3.35) yields

min
sPSτ

min
mPrM1,ns

1

|Xum |

|Xum |
ÿ

i“1

trpΛmNbn
s pPpmqi pπFA,nqq ě 1´ ε1,n. (3.37)

Following [Devetak and Shor(2005)], the encoding and decoding maps are given by

pPpmqi ,Rpmqi q
|Xum |
i“1 with

Rpmqi pρq “ R̃i
pmq
p
a

Λmρ
a

Λmq.

It can be observed that for each i we have
ř

mPrM1,ns
Rpmqi P CpHbnB ,FB,nq.

From (3.37) we obtain

min
sPSτ

min
mPrM1,ns

1

|Xum |

|Xum |
ÿ

i“1

trpRpmqi ˝Nbn
s pPpmqi pπFA,nqqq ě 1´ ε1,n. (3.38)

We define the following state

χ
pmq
i,s :“ ridb pNbn

s ˝ Ppmqi qspΦFA,nq,

where ΦFA,n is a maximally entangled state given by purification of πFA,n. From (3.37) we

obtain

min
sPSτ

min
mPrM1,ns

1

|Xum |

|Xum |
ÿ

i“1

trχ
pmq
i,s pidb Λmq ě 1´ ε1,n. (3.39)

Set γi,s,m :“ trχmi,spid b Λmq. It is clear that if γi,s,m “ 0, we have (3.41). To prove this

equation for the case where γi,s,m ą 0, we observe that by the gentle measurement lemma

(Lemma 203), we have for all i,m, s

‖
pidb

?
Λmqpχ

m
i,sqpidb

?
Λmq

γi,s,m
´ χ

pmq
i,s ‖1ď 2

a

1´ γi,s,m

and hence by monotonicity of trace distance under CPTP maps we obtain

‖ 1

γi,s,m
pidbRpmqi qpχ

pmq
i q ´ pidb R̃pmqi qpχ

pmq
i q ‖1ď 2

a

1´ γi,s,m. (3.40)
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3.4. Proofs for the compound channel

Applying Lemma 198 and averaging with respect to index i, the above inequality yields

1

|Xum |

|Xum |
ÿ

i“1

FepπFA,n ,R
pmq
i ˝Nbn

s ˝ Ppmqi q ě

1

|Xum |

|Xum |
ÿ

i“1

pFepπFA,n , R̃
pmq
i ˝Nbn

s ˝ Ppmqi q ´ 2
a

1´ γi,s,mqγi,s,m. (3.41)

To give a suitable lower bound for (3.41), we use Lemma 206. We observe that,

1

|Xum |

|Xum |
ÿ

i“1

FepπFA,n , R̃
pmq
i ˝Nbn

s ˝ Ppmqi q ´ 2
a

1´ γi,s,m ě

1

|Xum |

|Xum |
ÿ

i“1

FepπFA,n , R̃
pmq
i ˝Nbn

s ˝ Ppmqi q ´ 2

g

f

f

e1´
1

|Xum |

|Xum |
ÿ

i“1

γi,s,m

ě 1´ ε2,n ´ 2
?
ε1,n, (3.42)

where in the first inequality we have used concavity of the square function along with

Jensen’s inequality, and in the second one we have used the bounds from (3.36) and

(3.39). Setting ε3,n :“ maxtε2,n ´ 2
?
ε1,n, ε1,nu, by Lemma 206, (3.42), (3.39) and (3.41)

imply

1

|Xum |

|Xum |
ÿ

i“1

FepπFA,n ,R
pmq
i ˝Nbn

s ˝ Ppmqi q ě 1´ 2ε3,n. (3.43)

This means that for each m there exists a value ipmq such that:

1

|Sτ |

ÿ

sPSτ

FepπFA,n ,R
pmq
ipmq ˝N

bn
s ˝ Ppmqipmqq ě 1´ 2ε3,n.

Therefore setting R :“
ř

mPrM1,ns
|my xm| bRpmqipmq and Pm :“ Ppmqipmq for all m P rM1,ns for

all s P Sτ and m P rM1,ns, we have for CCET :“ pPm,RmqmPrM1,ns with

P pCCET ,Nbn
s ,mq “ F p|my xm| b ΦAB, idFA,n bR ˝Nbn

s ˝ Pmq

“ FepπFA,n ,R
pmq
ipmq ˝N

bn
s ˝ Ppmqipmqq ě 1´ 2|Sτ |ε3,n. (3.44)

By the third property of Jτ stated under Lemma 195, we have for all s P S and m P rM1,ns

P pCCET ,Nbn
s ,mq ě 1´ 2|Sτ |ε3,n ´ 2nτ,

Given that we find |Sτ | ď p
6
τ
q2pd¨d

1q2, choosing τ “ ε
1

4pd¨d1q2

3,n , we have the desired exponential

decay of error. Also we obtain the desirable rates as Jτ Ă J .

We now run an instance of concatenation upon codes from Lemma 49, to achieve suitable
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3. Simultaneous transmission of classical and quantum information under channel uncertainty

codes without the restriction imposed by Vπ. The method used here for lifting this re-

striction is rather elementary3 given that the input state can be decomposed as a convex

combination of maximally mixed states.

Lemma 51 For compound channel J :“ tNsusPS Ă CpHA,HBq, p P PpX q, V : X Ñ

SpHAq and large enough values of n, there exists a CET codes, CCET :“ pPpmq,RpmqqmPrM1,ns

such that

1. lim infnÑ8
1
n

logM2,n ě infsPS IpAyBX,ωspNs, p, Ψqq,

2. lim infnÑ8
1
n

logM1,n ě infsPS IpA;B,ωspNs, p, Ψqq hold with ωspNs, p, Ψq defined by

(4.4),

3. infsPS minmPrM1,ns P pCCET ,Nbn,mq ě 1´ εn,

with εn Ñ 0 exponentially as nÑ 8.

Proof 52 For x P X , let V pxq have the spectral decomposition

V pxq “
ÿ

yPY
qxpyq |φ

y
xy xφ

y
x| ,

with Y an alphabet with |Y | “ dimpHAq, t|φ
y
xyuyPY an ONB and qx P PpYq for each x P X .

It can be seen that for l P N and xl P X l we have

V blpxlq “
ÿ

ylPYl
qxlpy

l
q |φy

l

xl
y xφy

l

xl
| . (3.45)

For each xl P X l and λ P T pX ˆ Y , lq, define the following sets

Aλpxlq :“ tyl : pxl, ylq P T lλu. (3.46)

Given the properties of typical sets, it can be observed that Aλpxlq
Ş

Aλ1pxlq “ H for all

pairs pλ, λ1q with λ ‰ λ1. Also,
Ť

λPT pXˆY,lqAλpxlq “ Y l. Given these properties, from

(3.45) we obtain

V blpxlq “
ÿ

λPT pXˆY,lq

qxlpλq
ÿ

ylPAλpxlq

|φy
l

xl
y xφy

l

xl
| “

ÿ

λPT pXˆY,lq

qxlpλqπ
λ
xl , (3.47)

with πλ
xl

:“ 1
|Aλpxlq|

ř

ylPAλpxlq |φ
yl

xl
y xφy

l

xl
| and qxlpλq “ qxlpy

lq|Aλpxlq| for any yl P Aλpxlq.
The above decomposition therefore comes from the fact that for all yl P Aλpxlq, qxlpylq is

constant. Define probability distribution r P PpX l, T pXˆY , lqq with rpxl, λq “ plpxlqqxlpλq.

3Compare with BSST type lemmas used for instance in [Bjelaković et al.(2009)Bjelaković, Boche, and
Nötzel]
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Also define the state

σs :“
ÿ

pxl,λqPX lˆT pY,lq

rpxl, λq |exly xexl |
X
b |eλy xeλ|

T
b 1HblA

bNbl
s pΦ

λ
xlq,

where Φλ
xl

is a purification of πλ
xl

, a maximally entangled state on subspace Gλ
xl
Ă HblA .

According to Lemma 49, for Vπ : Vπpx
l, λq “ πλ

xl
, large enough values of a P N and δ ą 0,

we find a subspace FA,a¨l Ă Hba¨lA with dimpFA,a¨lq “M2,a¨l with

1

a
logM2,a¨l ě inf

sPS
IpAyBTX, σsq ´ δ (3.48)

ě inf
sPS

IpAT yBX, σsq ´ δ (3.49)

ě inf
sPS

IpAyBX, pσXABs q
bl
q ´ SpT qσ ´ δ

ě inf
sPS

IpAyBX, pσXABs q
bl
q ´ dimpHA bHBq logpl ` 1q ´ δ. (3.50)

The first inequality comes from an application of Lemma 49, second and third from well-

known inequalities (see e.g. [Wilde(2017)]) between joint and conditional entropies. We

have also used SpT qσ ď log |T pX ˆ Y , lq| ď dimpHA b HBq logpl ` 1q and the marginal

state

pσXABs q
bl :“

ÿ

xlPX l

plpxlq |exly xexl | b
ÿ

λ

qxlpλq1HblA
bNbl

s pΦ
λ
xlq

“
ÿ

xlPX l

plpxlq |exly xexl | b 1HblA
bNbl

s pΨxlq

“ ωbls pNs, p, Ψq,

where Ψxl is a purification of V blpxlq and ωspNs, p, Ψq is defined by (4.4). We use ωs to

denote this state. From (3.48) we have

1

l ¨ a
logM2,a¨l ě

1

l
inf
sPS

IpAyBX,ωbls q ´
dimpHA bHBq logpl ` 1q

l
´
δ

l

“ inf
sPS

IpAyBX,ωsq ´
dimpHA bHBq logpl ` 1q

l
´
δ

l
. (3.51)

Again from Lemma 49 we have for δ ą 0,

1

a
logM1,a¨l ě inf

sPS
IpA;B, σsq ´ δ

“ inf
sPS

Sp
ÿ

xl

ÿ

λ

plpxlqqxlpλqNbl
s pπ

λ
xlqq ´

ÿ

xl

ÿ

λ

plpxlqqxlpλqSpNbl
s pπ

λ
xlqq ´ δ

ě inf
s
Sp
ÿ

xl

ÿ

λ

plpxlqqxlpλqNbl
s pπ

λ
xlqq ´

ÿ

xl

plpxlqSpNbl
s p

ÿ

λ

qxlpλqπ
λ
xlqq ´ δ

“ inf
sPS

IpA;B,ωbls q ´ δ
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and hence

1

a ¨ l
logM1,a¨l ě inf

sPS
IpA;B,ωsq ´

δ

l
. (3.52)

For any block-length n P N, we can write n “ a ¨ l` r for a, l, r P N and 0 ď r ă l. For

all 0 ď r ă l, we use the above pa ¨ l,M1,a¨l,M2,a¨lq CET codes to achieve the desired rate,

observing that

lim inf
nÑ8

1

n
Mi,n ě lim inf

aÑ8

1

a ¨ l
Mi,a¨l, i “ 1, 2.

and that P pCCET ,Nbn,mq ě P pCCET ,Nba¨l,mq for all m P rMa¨ls.

Proof 53 (Proof of Lemma 48) According to Lemma 51,

pR1, R2q P
ď

p,Ψ

č

sPS

ĈpNs, p, Ψq

implies pR1, R2q P CCET pJ q. Using standard double-blocking arguments, for each l P N,

pR1, R2q P

8
ď

l“1

1

l

ď

p,Ψ

č

sPS

ĈpNbl
s , p, Ψq

implies pR1, R2q P CCET pJ q.

3.5. Proofs for the arbitrarily varying quantum channel

In this section we consider the task of simultaneous entanglement and classical message

transmission in the AVQC model. We derive results for the CET capacities of such chan-

nels, when the uncertainty set generating the AVQC is finite. After proving the converse

part in the following section, we have used Ahlswede’s robustification and elimination

techniques to derive suitable codes from compound codes developed so far to prove the

direct part of the capacity theorem. Also we will remark the relevant positivity conditions

based on results from [Ahlswede et al.(2012)Ahlswede, Bjelaković, Boche, and Nötzel].

3.5.1. Proof of converse

In this section, we prove the following lemma.

Lemma 54 Let J :“ tNsusPS Ă CpHA,HBq with |S| ă 8 be an AVQC. We have

Ar,CET pJ q Ă CCET pconvpJ qq.

Proof 55 Let pµlq
8
l“1 be a sequence of random codes for AVQC generated by J with

lim
lÑ8

inf
slPSl

ż

1

M1,l

ÿ

mPrM1,ls

gslpPpmq,Rpmqq dµlpPpmq,RpmqqmPrM1,ls “ 1 (3.53)
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3.5. Proofs for the arbitrarily varying quantum channel

with function gsl defined by (3.5) and pPpmq,RpmqqmPrM1,ls denoting the members of the

singleton sets from the respective sigma-algebra. On the other hand, for the compound

channel convpJ q and each Nq P convpJ q we have

ż

1

M1,l

ÿ

mPrM1,ls

F p|my xm| b ΦAB, idHblA
bR ˝Nbl

q ˝ PpmqpΦAAqq dµlpPpmq,RpmqqmPrM1,ls “

ÿ

slPSl

qlpslq

ż

1

M1,l

ÿ

mPrM1,ls

gslpPpmq,Rpmqq dµlpPpmq,RpmqqmPrM1,ls ě

inf
slPSl

ż

1

M1,l

ÿ

mPrM1,ls

gslpPpmq,Rpmqq dµlpPpmq,RpmqqmPrM1,ls ě 1´ εl,

with εl Œ 0. The last inequality comes from (3.53). This yields

inf
qPPpSq

ż

1

M1,l

ÿ

mPrM1,ls

F p|my xm| b ΦAB, idHblA
bR ˝Nbl

q ˝ PpmqpΦAAqqdµlpPpmq,RpmqqmPrM1,ls

ě 1´ εl.

This means

ż

1

M1,l

ÿ

mPrM1,ls

F p|my xm| b ΦAB, idHblA
bR˝

1

|PpSq|
ÿ

qPPpSq

Nbl
q ˝ PpmqpΦAAqqdµlpPpmq,RpmqqmPrM1,ls ě 1´ εl,

that in turn implies the existence of at least one CET code pPpmq,RpmqqmPrM1,ls for com-

pound channel convpJ q with average error lower-bounded by 1 ´ |PpSq|εl. We therefore

conclude

Ar,CET pJ q Ă CCET pconvpJ qq.

3.5.2. Proof of the direct part

In this section, we prove the following two lemmas, that along with the converse shown

in the previous section, prove the first part of Theorem 32.

Lemma 56 Let J :“ tNsusPS Ă CpHA,HBq with |S| ă 8 be an AVQC. We have

CCET pconvpJ qq Ă Ar,CET pJ q. (3.54)

Lemma 57 Let J :“ tNsusPS Ă CpHA,HBq with |S| ă 8 be an AVQC. Ad,CET pJ q ‰
tp0, 0qu implies Ad,CET pJ q “ Ar,CET pJ q.

To prove the second part of Theorem 32, we invoke the following result from [Ahlswede

et al.(2012)Ahlswede, Bjelaković, Boche, and Nötzel].
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3. Simultaneous transmission of classical and quantum information under channel uncertainty

Theorem 58 ( [Ahlswede et al.(2012)Ahlswede, Bjelaković, Boche, and Nötzel] Theorem

40) Let J “ tNsusPS Ă CpHA,HBq, |S| ă 8, be and AVQC. Then J is symmetrizable if

and only if for all tρ1, . . . , ρMu Ă SpHblA q, M, l P N, M ě 2, and POVMs tDmu
M
m“1 on

HblB ,

inf
slPSl

1

M

M
ÿ

m“1

p1´ trpNslpρmqDmqq ě 1{4

holds.

This result, along with the following lemma, prove the second part of Theorem 32.

Lemma 59 Let pP ,Rq be an pM, lq entanglement transmission code for AVQC J “

tNsusPS Ă CpHA,HBq with

F pΦAB, idHblA
bR ˝Nsl ˝ PpΦAAqq ě 1´ ε @sl P Sl. (3.55)

Then, there exist tρ1, . . . , ρMu Ă SpHblA q and POVM tDmumPrMs on HblB such that

1

M

M
ÿ

m“1

trpDmNslpρmqq ě 1´ ε @sl P Sl (3.56)

holds.

Proof 60 The proof follows directly from the convexity of entanglement fidelity in its first

input and that

F pΦAB, idHblA
bR ˝Nsl ˝ PpΦAAqq “ FepπFA,l ,R ˝Nsl ˝ Pq.

Defining for each m P rM s, Dm :“ R˚p|my xm|q and ρm :“ Pp|my xm|q with R˚ the

Hilbert-Schmidt adjoint of channelR and spectral decomposition πFA,l “
1
M

ř

mPrMs |my xm|,

we carry the lower bound on (3.55) to (3.56).

Lemma 59 and Theorem 58 show that J is symmetrizable if and only if there exist no CET

codes pPpmq,RpmqqmPM with M ě 2, such that we have infslPSl
1
M

ř

mPrMs gslpPpmq,Rpmqq ě
3
4
. This in turn implies the second part of Theorem 32.

Proof 61 (Proof of Lemma 56) In Section 3.4.2 (Lemma 48, Lemma 51), it was shown

that for large enough values of l P N there exists CET codes pP̃pmq, R̃pmqqmPrM1,s of

pl,M1,l,M2,lq for compound channel convpJ q that achieve the optimum capacity region

of this channel CCET pconvpJ qq with

inf
qPPpSq

1

M1,l

ÿ

mPrM1,ls

F p|my xm| b ΦAB, idHblA
b R̃ ˝Nbl

q ˝ PpmqpΦAAqq ě 1´ εl (3.57)

54



3.5. Proofs for the arbitrarily varying quantum channel

with εl Ñ 0 exponentially. Since

Nbl
q “ p

ÿ

sPS

qpsqNsqbl “
ÿ

slPSl

qlpslqNsl ,

from (3.57) we obtain,

inf
qPPpSq

ÿ

slPSl

qlpslq
1

M1,l

ÿ

mPrM1,ls

F p|my xm|bΦAB, idHblA
bR̃˝Nsl ˝PpmqpΦAAqq ě 1´εl. (3.58)

Defining the function f : Sl Ñ r0, 1s with

fpslq :“
1

M1,l

ÿ

mPrM1,ls

gslpP̃pmq, R̃pmqq,

from (3.58) we obtain

inf
qPPpSq

ÿ

slPSl

qlpslqfpslq ě 1´ εl. (3.59)

Therefore the hypothesis of Ahlswede’s robustification (Lemma 205) is satisfied and hence

1

l!

ÿ

αPSl

1

M1,l

ÿ

mPrM1,ls

gslpUA,α ˝ P̃pmq, R̃pmq ˝ U´1
B,αq ě 1´ pl ` 1q|S|εl, (3.60)

where UX,αp¨q “ UX,αp¨qU
:

X,α with UX,α is a unitary on HblA , permuting the tensor factors

on this Hilbert space according to α, i.e.

UX,αx1 b ¨ ¨ ¨ b xl “ xαp1q b . . . xαplq.

Therefore the uniform distribution over the set tpPpmqα ,Rpmqα qmPrM1,ls : α P Slu with

Ppmqα :“ UA,α ˝ P̃pmq

and

Rpmqα :“ R̃pmq ˝ U´1
B,α,

yield the desired random CET code for arbitrarily varying channel generated by J . Hence

we conclude that pR1, R2q P CCET pconvpJ qq implies pR1, R2q P Ar,CET pJ q.

To prove Lemma 57, we need the following statement.

Lemma 62 Let J :“ tNsusPS with |S| ă 8 be an AVQC, l P N, µl an pl,M1,l,M2,lq

random CET code for J with

inf
slPSl

ż

1

M1,l

ÿ

mPrM1,ls

gslpPpmq,RpmqqdµlpPpmq,RpmqqmPrM1,ls ě 1´ εl (3.61)
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for a sequence pεlqlPN such that εl Œ 0. Then, for ε P p0, 1q and sufficiently large l P N,

there exist l2 pl,M1,l,M2,lq CET codes tpPpmqi ,Rpmqi qmPrM1,lsu with

1

l2

l2
ÿ

i“1

1

M1,l

ÿ

mPrM1,ls

gslpP
pmq
i ,Rpmqi q ě 1´ ε p@sl P Slq.

Proof 63 Let for K P N, pΛ
pmq
i , Γ

pmq
i qmPrM1,ns for i “ 1, . . . , K be independent random

variables with values in CpFA,l,HblA qM1,l ˆ Ωl distributed according to µbKl . We use the

shorthand notation

hslpiq :“
1

M1,l

ÿ

mPrM1,ls

gslpΛ
pmq
i , Γ

pmq
i q.

For every sl P Sl, an application of Markov’s inequality for every ε P p0, 1q and γ ą 0

yields

Pr1´
1

K

K
ÿ

i“1

hslpiq ě ε{2s “ Pr2Kγ´γ
řK
i“1 hsl piq ě 2Kγpε{2qs ď 2´Kγpε{2qEr2γpK´

řK
i“1 hsl piqqs.

(3.62)

We now upper-bound the expectation in (3.62).

Er2γpK´
řK
i“1 hsl piqqs “ pEr2γp1´hsl p1qqsqK ď pErp1` 2γp1´ hslp1qqqsq

K
ď p1` 2γεlq

K .

(3.63)

The second inequality is due to the fact that pΛ
pmq
i , Γ

pmq
i qmPrM1,ns are i.i.d for i “ 1, . . . , K,

the first inequality comes from 2γt ď p1 ´ tq20¨γ ` t2γ ď 1 ` 2γt for t P r0, 1s and last

inequality comes from (3.61). For K “ l2 and γ “ 2 therefore, there exists l0pεq P N such

that for l ě l0pεq

p1` 2γεlq
l2
ď 2l

2pε{2q. (3.64)

Therefore we obtain from (3.62), (3.63) and (3.64),

Pr1´
1

l2

l2
ÿ

i“1

hslpiq ě ε{2s ď 2´l
2pε{2q.

Applying the union bound on the last inequality yields

Pr
1

l2

l2
ÿ

i“1

hslpiq ą 1´ ε{2, @sl P Sls

ě 1´ |S|l2´l
2pε{2q,
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which implies that there is a realization pPpmqi ,Rpmqi qmPrM1,ls, i “ 1, . . . l2 with

1

l2

l2
ÿ

i“1

1

M1,l

ÿ

mPrM1,l

gslpP
pmq
i ,Rpmqi q ą 1´ ε{2 @sl P Sl,

when |S|l2´l
2pε{2q ă 1 which is possible for sufficiently large values of l.

Proof 64 (Proof of Lemma 57) By assumption, for ε P p0, 1q there exists a prl, l
2, 1q

deterministic CET code pP̃pmq, R̃pmqql2m“1 with

1

l2

l2
ÿ

m“1

gsrl pP̃pmq, R̃pmqq ě 1´ ε @srl P Srl , (3.65)

with rl “ oplq. This is because if the capacity region is not equal to the point p0, 0q, R1

(intersection of the capacity region with the x-axis), is definitely larger than zero (see

Lemma 59). On the other hand, let pR1, R2q P Ar,CET . By Lemma 62, this implies the

existence of l2 pl,M1,l,M2,lq CET codes tP̂pmqi , R̂pmqi : i P rl2su of the same rate with

1

l2

l2
ÿ

i“1

1

M1,l

M1,l
ÿ

m“1

gslpP̂
pmq
i , R̂pmqi q ě 1´ ε @sl P Sl. (3.66)

Define CPTP maps

Ppmqpab bq :“
1

l2

l2
ÿ

i“1

P̃piqpaq b P̂pmqi pbq,

Rpmqpcb dq :“
l2
ÿ

i“1

R̃piqpcq b R̂pmqi pdq.

We have

1

M1,l

M1,l
ÿ

m“1

gsrl`lpPpmq,Rpmqq “

1

l2 ¨M1,l

M1,l
ÿ

m“1

F pΦAB, idHbrl`lA

b

l2
ÿ

i“1

R̃piq b R̂pmqi ˝Nsrl bNsl ˝
l2
ÿ

j“1

P̃pjq b P̂pmqi pΦAAqq

ě
1

l2

l2
ÿ

i“1

1

M1,l

M1,l
ÿ

m“1

F pΦ̃AB, idHbrlA
b R̃piq ˝Nsrl ˝ P̃pjqpΦ̃AAqq

ˆ F pΦ̂AB, idHblA
b R̂pmqi ˝ bNsl ˝ P̂

pmq
i pΦ̂AAqq, (3.67)

where Φ̃XY and Φ̂XY are maximally entangled states. The inequality above is due to the

fact that gsrl`lpPpmq,Rpmqq is non-negative for all m and sl`rl. Applying Lemma 206 on
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(3.67), given (3.65) and (3.66) we conclude

1

M1,l

M1,l
ÿ

m“1

gsrl`lpPpmq,Rpmqq ě 1´ 2ε.

As rl “ oplq, this implies pR1, R2q P Ad,CET pJ q. This in turn implies Ar,CET pJ q Ă
Ad,CET pJ q. As the inclusion Ad,CET pJ q Ă Ar,CET pJ q is obvious, we are done.

3.6. Simultaneous classical message and entanglement

transmission over fully quantum AVCs

In this section, we consider simultaneous transmission of classical messages and entan-

glement over an an arbitrarily varying quantum channel with a quantum jammer. Let

N P CpHA bHJ ,HBq be a quantum channel whose input space is a tensor product of a

Hilbert space HA (the legitimate sender’s space) and a Hilbert space HJ which is under

control of a quantum jammer. We consider a situation, where for each given block-length

n, the jammer may choose any state η on HbnJ as input in order to disturb the transmis-

sion of the legitimate parties.

The Arbitrarily Varying Quantum Channel (AVQC) generated byN is given by the family

Nn,σp¨q :“ Nbn
p¨ b σq : σ P SpHbnJ q, n P N

(

(3.68)

of CPTP maps4. The above channel model already has been under consideration in case

of univariate transmission goals. Karumanchi et al. [Karumanchi et al.(2016)Karumanchi,

Mancini, Winter, and Yang] utilized the postselection technique from [Christandl et al.(2009)

Christandl, König, and Renner] to derive correlated random codes for the AVQC from good 
codes for the compound channel generated by I :“ tNσ :“ N p¨, σq : σ P SpHJ qu. This ap-

proach turned out to be successful to determine the random entanglement transmission

capacity for the AVQC. In recent work [Boche et al.(2018b)Boche, Deppe, Nötzel, and

Winter], the above mentioned techniques were used to also characterize the random clas-

sical message transmission capacity of the AVQC. Going beyond, the authors of [Boche

et al.(2018b)Boche, Deppe, Nötzel, and Winter] introduced a derandomization technique

to derive a dichotomy for the entanglement and classical message transmission capacities

of the QAVC. The deterministic capacity is zero or it equals the random capacity. We

show, that the ideas of the mentioned works together with the results derived in this

chapter are sufficient to determine the random capacity and establish a partial character-

ization of the deterministic capacity in terms of a dichotomy also in case of simultaneous transmission 
of entanglement and classical messages.

4Although acronym ”AVQC” is also used for the somewhat more restrictive channel model introduced
in Section 3.2.2, it should be apparent from context, which of these models is considered.
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The definitions for the corresponding capacity regions can be easily extrapolated from the

corresponding definitions in Section 3.2.2 using the set of transmission maps in (3.68). We

denote the random CET capacity region of N by Ar,CET pN q and the deterministic CET

capacity by Ad,CET pN q. First, we give a characterization of the random CET capacity

Ar,CET pN q of the AVQC with fully quantum jammer.

Theorem 65 Let N P CpHA bHJ ,HBq, and I :“ tNσ : σ P SpHJqu. It holds

Ar,CET pN q “ CCET pIq (3.69)

The Ą inclusion in (65) is obvious. To show the reverse inclusion, we will invoke the

” robustification ” statement in Proposition 67 below. In the derivations, the following

representation of the permutation group Sn on n-fold tensor product spaces plays a key

role. Let for each π P Sn, Uπ be the unitary exchanging the factors in Hbn, i.e.

Uπ x1 b ¨ ¨ ¨ b xn “ xπp1q b ¨ ¨ ¨ b xπpnq

for each x1, . . . , xn P H. We set Uπp¨q :“ Uπp¨qU
˚
π . In UA,π, UB,π,UJ,π denote the cor-

responding maps performed on the subsystems under control of A,B, J accordingly. A

rather powerful result for states being invariant under permutations of the tensor factors

is the following.

Proposition 66 (de Finetti reduction [Christandl et al.(2009)Christandl, 
König, and Renner]) Let ρ P SpHbnq permutation invariant, i.e. Uπpρq “ ρ for each π P Sn. 

It holds
ρ ď pn` 1qpdimHq2

ż

σbndµpσq

with a probability measure µ.

Proposition 67 Let C :“ pPm,Rmq
M1
m“1 be an pn,M1,M2q-CET code such that with λ P

p0, 1q

inf
σPSpHJ q

PCET pC,Nbn
σ qq ě 1´ λ

holds. With Cπ :“ pUA,π ˝ Pm,Rm ˝ UB,π´1q for each π P Sn, it holds

inf
τPSpHbnJ q

1

n!

ÿ

πPSn

PCET pCπ,Nn,τ q ě 1´ pn` 1qpdimHJ q
2

¨ λ.

Proof 68 The proof closely follows the lines of [Karumanchi et al.(2016)Karumanchi,

Mancini, Winter, and Yang]. Set dJ :“ dimHJ . By permutation invariance of Nbn, the

equality

UB,π´1 ˝Nbn
˝ pUA,π b idbnHJ

q “ Nbn
˝ pidbnHA

b UJ,π´1q (3.70)
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holds for each permutation π P Sn. Using (3.70) together with the fact, that PCET is an

affine function of the channel, we obtain

1

n!

ÿ

πPSn

PCET pCπ,Nn,τ q “ PCET pC,Nn,τ q

for each τ P SpHbnJ q, where τ :“ 1{n!
ř

πPSn
Uπpτq. Define T˚ to be the Hilbert-Schmidt

adjoint of the map

σ ÞÑ
1

M1

M1
ÿ

m“1

idbRm ˝Nn,σ ˝ PmpΦq.

We write

1´ PCET pC,Nn,τ q “ trXτ, (3.71)

with the matrix X :“ 1 ´ T˚pΦq (note that 0 ď X ď 1 holds.) Using Proposition 66

together with linearity and monotonicity of the integral, we have

trXτ ď pn` 1qd
2
J

ż

trXσbn dµpσq

ď pn` 1qd
2
J sup
σPSpHq

trXσbn.

ď pn` 1qd
2
J ¨ λ.

Which is, by (3.71), the desired bound.

Proof 69 (Proof of Theorem 65 (Direct part)) The statement CCET pIq Ă Ar,CET pN q
directly follows from combining the results from Section 3.4.2 (Lemma 48 and Lemma 51)

with Proposition 67. Let pCnq8n“1 be a sequence of pn,M1,n,M2,nq-CET codes with

inf
σPSpHJ q

PCET pCn,Nbn
σ q ě 1´ 2´nc

with a constant c ą 0 for each large enough n. Let µ̃n be the uniform distribution on Sn,

and fpπq :“ Cn,π. Then µ̃n ˝ f
´1 is an pn,M1,n,M2,nq random CET code, such that

E

„

inf
σPSpHJ q

PCET p¨,Nn,σq


ě 1´ pn` 1qd
2
J ¨ 2´nc.

Since the right hand side of the above inequality tends to one for nÑ 8, every rate pair

pR1, R2q being achievable for the compound channel I, is also achievable by random codes

for the AVQC N .

Next we show, using a derandomization technique introduced in [Boche et al.(2018b)Boche,

Deppe, Nötzel, and Winter], the following statement.
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Theorem 70 (Dichotomy for Ad,CET ) Ad,CET pN q equals tp0, 0qu or Ar,CET pN q

Remark 71 The above statement quantifies the deterministic capacity region of the AVQC

up to a blind spot. It is an open question whether or not there are channels for which

Ad,CET pN q “ tp0, 0qu and tp0, 0qu Ĺ Ar,CET pN q does happen.

Remark 72 For a Hermitian matrix A P LpHq, and α ą 0, it holds A ď α1 if and only

if trσA ď α for all σ P SpHq.

Proposition 73 ( [Ahlswede and Winter(2002)], Theorem 19) Let X1, . . . , XT be

i.i.d. hermitian random matrices with 0 ď Xi ď 1 a.s. for all i P rT s, and EX1 ď m1 ď

a1 ď A. Then

P

˜

1

T

T
ÿ

t“1

Xt ě a1H

¸

ď dimH ¨ expp´T2pa´mq2q

Proof 74 (Proof of Theorem 70) We consider the non-trivial case Ad,CET ‰ tp0, 0qu.

Let pR1, R2q P Ar,CET pN qztp0, 0qu. We aim to show that pR1, R2q is also achievable with

deterministic codes. Since Ad,CET ‰ tp0, 0qu, we find, for each large enough blocklength

n an pn, M̃1, M̃2q-CET code Cp1q :“ pPp1qm ,Rp1qm qM̃1
m“1 with M̃1 ě 2lR̃, where R̃ ą 0 is a

constant, and

inf
σPSpHblJ q

PCET pCp1q,Nn,σq ě 1´ εl (3.72)

with εn Ñ 0 for n Ñ 8. Set for each n, an :“ r2 log n{R̃s, and bn :“ n ´ an, i.e.

n “ an` bn. If n is large enough, we have a random pn,M1,M2q-CET code µbn such that
1
bn

logMi ě Ri ´ δ, for i “ 1, 2, and

Eµbn
inf

σPSpHbbnJ q

PCET p¨,Nn,σq ě 1´ 2´bnc. (3.73)

For simplicity, we assume µbn to be finitely supported on tC1, . . . , CT 1u (which is possible

by the explicit construction of a finite random code in Proposition 67). Note, that we can

write

1´ PCET pCt,Nbn,σq “ trEtσ (3.74)

with a matrix 0 ď Et ď 1 for each t P rT 1s. By (3.73) and (3.74), together with linearity

of expectation, it holds

inf
σPHbbnJ

trEσ “ Eµbn

«

1´ inf
σPHbbnJ

PCET p¨,Nn,σq

ff

ď 2´bnc, (3.75)

where we defined E :“ Eµbn
Et. By Fact 72, combined with the bound in (3.75), E ď
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2´nc1. Let Xp1q, . . . XpM̃1q be i.i.d. random matrices, each distributed according to µbn.

By Proposition 73, It holds

P

¨

˝

1

M̃1

M̃1
ÿ

t“1

Et ě

ˆ

2´nc `
1

n

˙

1

˛

‚ ď dbnJ exp
´

´M̃1{n
2
¯

. (3.76)

By our choice of an, the RHS of (3.76) is strictly smaller than one for each large enough

n. Therefore, we find C1, . . . , CM̃1
such that

1´
1

M̃1

M̃1
ÿ

t“1

PCET pCt,Nn,σq ď 2´bnc `
1

n
:“ γn

holds. Let Ct “ pPp2qt,m,R
p2q
t,mq

M1
m“1. We define an pn,M1,M2q deterministic CET code

C “ pPm,Rmq
M1
m“1 with

Pm :“
1

M̃1

M̃1
ÿ

t“1

Pp1qt pπ1q b Pp2qt,m, and Rm :“ trHban ˝
M̃1
ÿ

t“1

Rp1qt bRp2qt,m

To evaluate the fidelity of the above code, we notice, that for each σ P SpHbnJ q, t P
rM̃1s,m P rM1s

F pΦ1 b Φ2, idb ˝Rp1qt bRp2qt,m ˝Nn,σ ˝ P
p1q
t b Pp2qt,mpΦ1 b Φ2qq “ trF

p1q
t b F

p2q
t,mσ (3.77)

holds with effects F
p1q
t , F

p2q
t,m. This is advantageous, since

1

M̃1

M̃1
ÿ

t“1

trF
p1q
t τ “ PCET pCp1q,Nan,τ q ě 1´ εn,

and

1

M1

1

M̃1

M̃1
ÿ

t“1

M1
ÿ

m“1

trF
p2q
t,mτ “ PCET pCp2qt ,Nbn,τ q ě 1´ γn.
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We have for each σ P SpHbnJ q

PCET pC,Nn,σq

“
1

M1M̃1

M̃1
ÿ

t,t1“1

M1
ÿ

m“1

F
´

Φ2, idHbbnJ
b trHbanJ

˝Rp1qt1 bR
p2q
t1,m ˝Nn,σ ˝ P

p1q
t pπ1q b Pp2qt,mpΦ2q

¯

ě
1

M1M̃1

M̃1
ÿ

t,t1“1

M1
ÿ

m“1

F
´

Φ1 b Φ2, idHbbnJ
bRp1qt1 bR

p2q
t1,m ˝Nn,σ ˝ P

p1q
t b Pp2qt,mpΦ1 b Φ2q

¯

ě
1

M1M̃1

M̃1
ÿ

t“1

M1
ÿ

m“1

F
´

Φ1 b Φ2, idHbbnJ
bRp1qt bRp2qt,m ˝Nn,σ ˝ P

p1q
t b Pp2qt,mpΦ1 b Φ2q

¯

“
1

M1M̃1

M̃1
ÿ

t“1

M1
ÿ

m“1

trF
p1q
t b F

p2q
t,mσ. (3.78)

The first inequality above is by monotonicity of the fidelity under CPTP maps. The last

equality is from (3.77). Now, let σ1 be the marginal of σ on the first an tensor factors of

HbnJ , and σ2 the marginal on the last bn tensor factors.

AbB ě 1b 1´ 1b p1´Bq ´ p1´ Aq b 1

which holds for any two matrices 0 ď A,B ď 1. We have

trF
p1q
t b F

p2q
t,mσ ě 1´ trp1´ F

p1q
t qσ1 ´ trp1´ F

p2q
t,mqσ2 (3.79)

Combining (3.78), and (3.79), we can bound

P SET pC,Nn,σq ě P pCp1q,Nan,σ1q `
1

M̃1

M̃1
ÿ

t“1

P pCp2qt ,Nbn,σ2q ´ 1

Minimizing over all states on HbnJ , we obtain

inf
σPSpHbnJ q

P SET pC,Nn,σq ě 1´ εn ´ γn.

The right hand side approaches one for n Ñ 8. Since also an
n
Ñ 0 and bn

n
Ñ 1 for

nÑ 8, it is clear, that we achieve pR1, R2q with the codes defined.
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4. Universal superposition

codes:capacity regions for quantum

broadcast channel

In this chapter we derive universal codes for transmission of broadcast and confidential

messages over classical-quantum-quantum and fully quantum channels. These codes are

robust to channel uncertainties considered in the compound model. To construct these

codes we generalize random codes for transmission of public messages, to derive a universal

superposition coding for the compound quantum broadcast channel. As an application,

we give a multi-letter characterization of regions corresponding to capacity of the com-

pound quantum broadcast channel for transmitting broadcast and confidential messages

simultaneously. This is done for two types of broadcast messages, one called public and

the other common.

4.1. Introduction

In this chapter we consider the compound quantum broadcast channel, connecting one

sender to two receivers of different permissions or priorities. The channel is used to per-

form an integrated task, in which a confidential message, kept secret from the third party,

is communicated simultaneously with a broadcast message available to both receivers.

The requirements on the broadcast message, determine two communication scenarios. In

the first scenario, we consider the case where both receivers are required to decode the

broadcast message. We refer to this message as the common message. In the second sce-

nario the decoding condition is relaxed on one of the receivers. That is, the third party,

namely the receiver from whom the confidential message is kept secret, may or may not

decode the broadcast message, to which, in this scenario, we refer as the public message.

The capacity of the channel for performing such tasks, will include trade-off regions, de-

termining the resourcefulness of the public/common message transmission capacity, for

enhancement of confidential message transmission. Information theoretic analysis of these

tasks, will naturally be significant when regions beyond those achieved by simple time-

sharing between the two tasks are achieved. We first consider the case where the sender

is restricted to classical inputs, namely the classical-quantum-quantum (cqq) broadcast
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4. Universal superposition codes:capacity regions for quantum broadcast channel

model. This model proves useful for obtaining capacity results for the fully quantum

broadcast model, where this restriction is lifted.

The classical counterparts of our results were given in [Schaefer and Boche(2014b)].

Therein, the authors first derive robust codes for the bidirectional channel, in which both

receivers are meant to decode the message. This common message will then piggyback

a public message decoded by Bob. The privacy amplification strategies are then applied

on part of the public codes to obtain information theoretic security via equivocation. We

follow a similar approach in the context of quantum information theory. We obtain codes

for the bidirectional channel (broadcast channel with no security requirement) by gener-

alizing the random codes from [Mosonyi(2015)]. Our generalization of these results (see

Appendix D), yields a universal superposition coding for cq channels. Our input structure

allows us to use privacy amplification arguments ( [Boche et al.(2014)Boche, Cai, Cai,

and Deppe]) on part of the codebook to achieve the desired secrecy rates.

The quantum broadcast model in which the channel is assumed to perfectly known by com-

municating parties was considered in [Hsieh and Wilde(2009), Wilde and Hsieh(2011b)],

with and without a pre-shared secret key respectively. Therein, the authors have es-

tablished a dynamic capacity trade off region using a coding strategy that is channel-

dependent. We use a different strategy in which establish universal superposition codes

for the compound bidirectional channel, exploiting properties of Renyi entropies.

Another regime in which the quantum broadcast model with confidential messages has

been studied, is the one-shot (single serving) model. A one-shot dynamic capacity theo-

rem was derived for regions corresponding to tasks of common, public and private message

transmission over the quantum channel in [Salek et al.(2020)Salek, Anshu, Hsieh, Jain,

and Fonollosa]. It would be interesting to see if the coding strategies used therein, derived

from position based decoding (see [Anshu et al.(2017)Anshu, Devabathini, and Jain,AN-

SHU(2018),Anshu et al.(2019a)Anshu, Jain, and Warsi]), can be used to design codes for

the compound channel model.

Precise definitions of channel models, codes and rate regions along with our main results

for the cqq model are given in Section 4.2. We prove the direct part of our capacity results

for the cqq model in Section 4.3, that is followed by the proof of converse in Section 4.4.

The security criterion that we impose on the confidential message, is the mutual informa-

tion between Alice and Eve to be arbitrarily small for large numbers of channel uses. As

the common or indeed the public messages are available to Eve, we require the mentioned

mutual information to be conditioned on the broadcast message. Proving the existence

of capacity achieving codes is done in two steps. First we consider the case where there is

no security criterion placed on the messages sent to Bob and Eve. In this case, we have a

bidirectional channel, where Alice, is sending a message to be decoded by Bob and poten-

tially by Eve (weather Eve decodes this message depends on which scenario is considered,

determining in turn our labeling of it as common or public). Conditioned on this mes-

sage (the corresponding codewords are distributed according to a certain structure), Alice

66



4.2. Basic definitions and main results

is simultaneously transmitting a second type of message, that is decoded by Bob. The

random coding that makes precisely this task possible, is given by Lemma 84, which is

our universal superposition coding result. Application of this lemma gives us the desired

bidirectional codes in forms of Lemma 90 (where the conditioning message is common)

and 96 (where the conditioning message is public). In the second step, the second type of

message described above, is used for privacy amplification. We give the code definitions

and capacity results for the fully quantum channel independently in Section 4.5.

4.2. Basic definitions and main results

In this section we state the main results and definitions for the compound classical-

quantum-quantum (cqq) broadcast channel. The results and definitions related to the fully

quantum broadcast channel are stated in Section 4.5. For finite alphabet X and Hilbert

spaces HB,HE, let W :“ tWsusPS Ă CQpX ,HB b HEq be a set of cqq channels. The

compound cqq broadcast channel generated by this set is given by family tWbn
s , s P Su8n“1.

In other words, using n instances of the compound channel is equivalent to using n

instances of one of the channels from the uncertainty set. The users of this channel may

or may not have access to the Channel State Information (CSI). In this document, we

consider the case where both users only know the uncertainty set, to which the actual

channel belongs. We consider two closely related communication scenarios of significance,

having both appeared in the literature hitherto.

• Broadcasting Common and Confidential messages (BCC), where the com-

pound channel is used n P N times by the sender Alice in control of the input of the

channel, to send two types of messages pm0,mcq simultaneously over the channel.

– m0 P rM0,ns, called the common message, that has to be reliably decoded by

receiver Bob in control of Hilbert space HB and Eve in control of Hilbert space

HE.

– mc P rMc,ns, called the confidential message, that has to be decoded reliably

by Bob while Eve, the wiretapper, is kept ignorant.

• Transmitting Public and Confidential messages (TPC), where along with

the confidential message mc P rM0,ns and instead of the common message, Alice

wishes to send a ”public” message m1 P rM1,ns, that is reliably decoded by Bob

while it may or may not be decoded by Eve.

We consider the main concepts and results related to each task in the following. We start

with the BCC scenario. The precise definition of the BCC codes is given by the following.
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4. Universal superposition codes:capacity regions for quantum broadcast channel

Definition 75 ( BCC codes) An pn,M0,n,Mc,nq BCC code for W, is a family C “
pEp¨|mq, DB,m, DE,m0qmPM with M :“ rM0,ns ˆ rMc,ns, stochastic encoder E : M Ñ

PpX nq, POVMs pDB,mqmPM on HbnB and pDE,m0qm0PrM0,ns on HbnE .

We define the transmission error functions, for any cqq broadcast channel W : X Ñ

SpHB bHEq and n P N by

• eBpC,Wbnq :“ 1
|M|

ř

mPM

ř

xPXn Epx|mqtrpDc
B,mW

bn
B pxqq and

• eEpC,Wbnq :“ 1
|M|

ř

mPM

ř

xPXn Epx|mqtrpDc
E,m0

Wbn
E pxqq,

where, Wγ, γ P tB,Eu are the marginal channels of W . Moreover, we use the security

criterion given by

IpMc;E|M0, σs,nq, (4.1)

where σs,n is the code state defined by

σs,n :“
1

|M|

ÿ

mPM

|my xm| b
ÿ

xPXn

Epx|mqWbn
s pxq, ps P S, n P Nq. (4.2)

The conditional mutual information should be understood given (1.13) and considering

ONBs t|miyumiPrMis P CMi for i P t0, cu and |my :“ |m0y b |mcy. Based on this, we define

the following achievable rate pairs.

Definition 76 (Achievable BCC rate pair) A pair pR0, Rcq of non-negative numbers is

called an achievable BCC rate pair for W, if for each ε, δ ą 0, exists an n0pε, δq P N, such

that for all n ą n0, we find an pn,M0,n,Mc,nq BCC code C “ pEp¨|mq, DB,m, DE,m0qmPM

such that

1. 1
n

logMi,n ě Ri ´ δ (i P t0, cu),

2. supsPS eγpC,Wbn
s q ď ε (γ P tB,Eu),

3. supsPS IpMc;E|M0, σs,nq ď ε,

are simultaneously fulfilled.

We define the BCC capacity region of W by

CBCCrWs :“ tpR0, Rcq P R`0 ˆ R`0 : pR0, Rcq is achievable BCC rate pair for Wu. (4.3)

To state our theorem, we define the following regions, given finite alphabets U ,Y and

probability distribution p “ pUY X P PpU ˆ Y ˆ X nq, with the random variables U, Y,X

distributed accordingly.

Ĉp1q
`

W , p, n
˘

:“ pR0, Rcq P R`0 ˆ R`0 : R0 ď inf
sPS

min tIpU ;B,ωsq, IpU ;E,ωsqu^

Rc ď inf
sPS

IpY ;B|U, ωsq ´ sup
sPS

IpY ;E|U, ωsq
(

.
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with

ωs :“
ÿ

pu,y,xqPUˆYˆXn

ppu, y,xq |uy xu| b |yy xy| bWbn
s pxq. (4.4)

We state the following theorem.

Theorem 77 Let W :“ tWsusPS Ă CQpX ,HB b HEq be any compound cqq broadcast

channel. It holds

CBCCrWs “ cl

ˆ 8
ď

l“1

ď

p

1

l
Ĉp1q

`

W , p, l
˘

˙

, (4.5)

where we have used 1
l
A :“ tp1

l
x1,

1
l
x2q : px1, x2q P Au. The second union is taken over all

pUY X P PpU ˆ Y ˆ X lq such that random variable U ´ Y ´X form a Markov chain and

alphabets U and Y are finite.

Remark 78 The set given on the right hand side of (4.5) is convex and hence we do

not need further convexification here. This results from time sharing arguments applied

on the entropic quantities appearing in (4.5). For a short proof of a similar statement,

see [Boche et al.(2019b)Boche, Janßen, and Saeedinaeeni].

We proceed with the TPC scenario. The precise definition of the TPC codes is given in

the following.

Definition 79 ( TPC codes) An pn,M1,n,Mc,nq TPC code for W, is a family C “
pEp¨|mq, DB,mqmPM with M :“ rM1,ns ˆ rMc,ns, stochastic encoder E : M Ñ PpX nq and

a POVM pDB,mqmPM on HbnB .

We define the relevant transmission error function, for any cqq broadcast channel W :

X Ñ SpHB bHEq and n P N by

eBpC,Wbn
q :“

1

|M|

ÿ

mPM

ÿ

xPXn

Epx|mqtrpDc
B,mW

bn
B pxqq.

Moreover, we use the security criterion given by

IpMc;E|M1, σs,nq, (4.6)

where σs,n is the code state defined by

σs,n :“
1

|M|

ÿ

mPM

|my xm| b
ÿ

xPXn

Epx|mqWbn
s pxq. (4.7)

Again, we not that the conditional mutual information should be understood given (1.13)

and considering ONBs t|miyumiPrMis P CMi for i P t1, cu and |my :“ |m1y b |mcy. Based

on this, we define the following achievable rate pairs.

Definition 80 (Achievable TPC rate pair) A pair pR1, Rcq of non-negative numbers is
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called an achievable TPC rate pair for W, if for each ε, δ ą 0, exists an n0pε, δq P N, such

that for all n ą n0, we find an pn,M1,n,Mc,nq TPC code C “ pEp¨|mq, DB,mqmPM such

that

1. 1
n

logMi,n ě Ri ´ δ ( i P t1, cu),

2. supsPS eBpC,Wbn
s q ď ε,

3. supsPS IpMc;E|M1, σs,nq ď ε

are simultaneously fulfilled.

We define the TPC capacity region of W by

CTPCrWs :“ tpR1, Rcq P R`0 ˆ R`0 : pR1, Rcq is achievable TPC rate for Wu. (4.8)

To state our theorem, we define the following sub-regions, given finite alphabets V ,Y and

probability distribution p “ pV Y X P PpV ˆ Y ˆ X nq, with the random variables V, Y,X

distributed accordingly.

Cp1q
`

W , p, n
˘

:“
 

pR1, Rcq P R`0 ˆ R`0 : R1 ď inf
sPS

IpV ;B,ωsq^

Rc ď inf
sPS

IpY ;B|V, ωsq ´ sup
sPS

IpY ;E|V, ωsq
(

.

with

ωs :“
ÿ

pv,y,xqPVˆXˆX

ppv, y,xq |vy xv| b |yy xy| bWbn
s pxq. (4.9)

We can state the following theorem.

Theorem 81 Let W :“ tWsusPS Ă CQpX ,HB b HEq be any compound cqq broadcast

channel. It holds

CTPCrWs “ cl

ˆ 8
ď

l“1

ď

p

1

l
Cp1q

`

W , p, l
˘

˙

. (4.10)

The second union is taken over all pV Y X P PpV ˆ Y ˆ X lq such that random variable

V ´ Y ´X form a Markov chain and alphabets V and Y are finite.

Again, we note Remark 78, regarding convexity of the set on the right hand side of (4.10).

4.3. Coding for broadcast channel

In this section we present coding strategies for BCC and TPC communication scenarios

sufficient to achieve each point in the capacity region. We prove appropriate inner bounds

on the capacity regions, namely the direct parts of the main theorems presented in the

previous section. Here, we begin by some preliminary results, in the statements of which,
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we make use of typical sets and projections. The use of these objects are standard in

classical as well as quantum information theory. The reader will find detailed explanations

in [Csiszár and Körner(2011a)]. We begin this section nevertheless, by introducing these

objects. Given two probability distributions p P PpX̄ q and @x P X̄ , tp¨|xq P PpȲq, n P N,

δ ą 0, we define the following sets. The set of δ-typical sequences in X̄ n, is defined by

T np,δ :“ tx : @x P X̄ , | 1
n
Npx|xq ´ ppxq| ď δ ^ qpxq “ 0 ðñ Npx|xq “ 0u (4.11)

with Npx|xq, the number of occurrences of letter x in word x. Also, the set of conditionally

typical sequences in Ȳn, is given by

Tt,δpxq : “ ty P Ȳn : @x P X̄ , y P Ȳ : |
1

n
Npx, y|x,yq ´

1

n
tpy|xqNpx|xq| ď δ and

tpy|xq “ 0 ðñ Npx, y|x,yq “ 0 for x P X̄ , y P Ȳu.

The pruned distributions associated with p and tp¨|xq are given by the following respec-

tively.

p1n,δpxq :“

$

&

%

pbnpxq
pbnpTnp,δq

, if x P T np,δ

0, otherwise,
(4.12)

and

t1n,δpy|xq :“

$

&

%

tbnpy|xq
tbnpTt,δpxq|xq

, if y P Tt,δpxq

0, otherwise.
(4.13)

For the remainder of this section, pruned distributions defined above, will be denoted by

primed letters indicating the probability distribution, indexed by the number of available

copies of the system. For instance the pruned probability distribution related to r P PpX q,
over T nr,δ will be denoted by r1n,δ. In (4.11), when δ “ 0, we have the exact type notified

by T np . We also define the set of types by

T pX̄ , nq :“ tλ P PpX̄ q : T nλ ‰ Hu. (4.14)

The following lemma contains the properties typical projections, that projection oper-

ators assigned to typical sets.

Lemma 82 Let λ P PpAq with λpxq ą 0 for all x P A Ă X , tρxuxPX Ă SpKAq and δ ą 0.

For x P T nλ,δ with x :“ px1, . . . , xnq and ρx :“
Ân

i“1 ρxi. Define

θ :“
ÿ

xPX
λpxq |xy xx|X b ρx.

There exist positive constants Υ pδq, Γ pδq and ∆pδq depending on δ and an orthogonal

projector Πρx,δ such that

1. trpρxΠρx,δq ě 1´ 2´nΥ pδq,
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2. trpΠρx,δq ď 2npSpA|X,θq`∆pδqq,

3. Πρx,δρxΠρx,δ ď 2´npSpA|X,θq`Γ pδqqΠρx,δ,

Also, let W : Y Ñ SpKBq be a cq channel and rp¨|xq P PpYq, for all x P X . Define

the state

θ1 :“
ÿ

px,yqPXˆY

λpxq |xy xx| b rpy|xq |yy xy| bW pyq.

For y P Tr,δpxq, there exist positive constants Υ 1pδq, ∆1pδq, Γ 1pδq and an orthogonal

projector ΠW,x,δpyq, commuting with Wbnpyq, satisfying

4. trrWbnpyqΠW,x,δpyqs ě 1´ 2´nΥ
1pδq,

5. trrΠW,x,δpyqs ď 2npSpB|XY,θq`∆
1pδqq,

6. ΠW,x,δpyqW
bnpyqΠW,x,δpyq ď 2´npSpB|XY,θ

1q`Γ 1pδqqΠW,x,δpyq.

Finally, we have the following total conditional subspace projection. For ρx “
ř

yPY rpy|xqW pyq,

the projection ΠW,x,δ :“ Πρx,δ with properties 1-3, for y P Tr,δpxq also has the following

property.

trpΠW,x,δW
bn
pyqq ě 1´ 2´nΥ”pδq, (4.15)

for some constant Υ”pδq ą 0 depending on δ.

Proof 83 Properties 1-3 result directly from Lemma 14 [Boche et al.(2019b)Boche, Janßen,

and Saeedinaeeni]. Properties 4-6 and (4.15), result from applying the same concatena-

tion arguments as in the proof of Lemma 14 [Boche et al.(2019b)Boche, Janßen, and

Saeedinaeeni], on inequalities (4)-(7) from [Cai(2018)].

A crucial ingredient for the achievablity proofs in this chapter is Lemma 84 below. It

states existence of certain universal random codes for cq channels given a ”typical word”.

Lemma 84 Let tWsusPS Ă CQpY ,KBq be any set of cq channels, q P PpX q and rp¨|xq P

PpYq for each x P X . For δ ą 0, there exists n0 P N, such that for n ą n0, for each x P

T nq,δ, there exists a map y : py1, . . . , yMq ÞÑ pΛ1pyq . . . , ΛMpyqq, such that pΛmpyqqmPrMs Ă

LpKbnB q is a POVM and for any family Y :“ pY1, . . . , YMq of random variables, distributed

i.i.d according to r1n,δp¨|xq, namely the pruned distribution of rp¨|xq (see (4.13)), we have

EY
“

sup
sPS

1

M

ÿ

mPrMs

trpWbn
s pYmqΛ

c
mpY qq

‰

ď εn

with εn Ñ 0 exponentially and

1

n
logM ě inf

sPS
IpY ;B|X, σsq ´ cδ,
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with some constant c ą 0 and

σs :“
ÿ

xPX
qpxq |xy xx| b

ÿ

yPY
rpy|xq |yy xy| bWspyq.

Proof 85 We present a full argument in Appendix D.

The following statement is an immediate consequence of the above, for the case |X | “ 1.

We include this statement for clarity of reference later on.

Lemma 86 Let tWsusPS Ă CQpY ,KBq be any set of cq channels and r P PpYq. For

δ ą 0, there exists n0, such that for n ą n0, there exists a map y : py1, . . . , yMq ÞÑ

pΛ1pyq, . . . , ΛMpyqq, such that pΛmpyqqmPrMs is a POVM and for any family Y :“ pY1, . . . , YMq

of random variables, distributed i.i.d according to r1n,δ, namely the pruned distribution of

r (see (4.12)), we have

EY
“

sup
sPS

1

M

ÿ

mPrMs

trpWbn
s pYmqΛ

c
mpY qq

‰

ď εn,

with εn Ñ 0 exponentially and

1

n
logM ě inf

sPS
IpY ;B, σsq ´ cδ

for some constant c ą 0 and

σs :“
ÿ

yPY
rpyq |yy xy| bWspyq.

In Section 4.3.1 and Section 4.3.2, we show that the above statements give us the desired

codes for transmission of public and common messages. These statements generalize the

coding results from [Mosonyi(2015)] to include pruned input distributions rather than

distributions of n-fold product form.

Finally, to obtain codes for transmission of confidential messages, we perform privacy

amplification arguments on the public part of the codebook achieved from Lemma 84

(cf. [Boche et al.(2014)Boche, Cai, Cai, and Deppe]). To do so, we need the following

inequality.

Theorem 87 ( [Ahlswede and Winter(2002)], Theorem 19) Let µ ą 0, ε P p0, 1
2
q

be positive numbers and X1, . . . , XL an independent and identically distributed family

of positive semi-definite random matrices on C
d such that the bounds X ď µ1Cd and

EX ě ε1Cd apply. It holds

Pr

˜
›

›

›

›

›

1

L

L
ÿ

i“1

Xi ´EX

›

›

›

›

›

1

ą ε

¸

ď 2 ¨ d ¨ exp

ˆ

´L
ε3

2dµ ln 2

˙

Equipped with these preliminary results, we prove the direct parts of the capacity
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theorems for BCC and TPC in the following two subsections.

4.3.1. BCC codes

In this section, we prove the following lemma.

Lemma 88 Let W :“ tWsusPS Ă CQpX ,HB b HEq be any compound cqq broadcast

channel. It holds

CBCCrWs Ą cl

˜

8
ď

l“1

ď

p

1

l
Ĉp1q

`

W , p, l
˘

¸

,

where the second union is taken over all pUY X P PpUˆYˆX lq such that random variable

U ´ Y ´X form a Markov chain and alphabets U and Y are finite.

The main step towards proving Lemma 88, is the following statement.

Lemma 89 (Broadcast channel with confidential messages ) LetW :“ tWsusPS Ă

CQpX ,HBbHEq be any compound cqq broadcast channel. For pUY X P PpUˆYˆX q where

U ´ Y ´X form a Markov chain and δ, ε ą 0, there exists n0 P N, such that for n ą n0,

we find an pn,M0,n,Mc,nq BCC code C “ pEp¨|mq, DB,m, DE,m0qm“pm0,mcqPrM0,nsˆrMc,ns with

1. 1
n

logM0,n ě infsPS min tIpU ;B,ωs, IpU ;E,ωsu ´ cδ,

2. 1
n

logMc,n ě infsPS IpY ;B|U, ωsq ´ supsPS IpY ;E|U, ωsq ´ cδ

with some constant c ą 0 and ωs defined by (4.4).

3. infsPS
1
|M|

ř

mPM

ř

xPXn Epx|mqtrrW
bn
B,spxqDB,ms ě 1´ ε

4. infsPS
1
|M|

ř

mPM

ř

xPXn Epx|mqtrrW
bn
E,spxqDE,m0s ě 1´ ε

5. supsPS IpMc;E|M0, σs,nq ď ε

with state σs,n defined by (4.2).

Applying standard double-blocking arguments on Lemma 89, will prove Lemma 88. In

the same vein as the coding steps taken in [Schaefer and Boche(2014b)], we prove Lemma

89 in two steps. At first, we prove the following random coding result, that guarantees

reliable decoding of common messages by Bob and Eve, and reliable decoding of public

messages by Bob. Here, we do not concern ourselves with the security condition. In the

next step, we apply privacy amplification arguments on the public part of the codebook,

to achieve the desired confidential message transmission rate.
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Lemma 90 Let W :“ tWsusPS Ă CQpY ,HB b HEq be any compound cqq broadcast

channel and U be a finite alphabet. For any δ ą 0, q P PpUq, rp¨|uq P PpYq, u P U and

large enough values of n, the following exist.

• A family pum, DE,mqmPrM0,ns of codes with um P T
n
q,δ and pDE,mqmPrM0,ns Ă LpHbnE q a

POVM.

• A map y : pyijqpi,jqPrM0,nsˆrM1,ns ÞÑ pDB,ijpyqqpi,jqPrM0,nsˆrM1,ns, such that

1
n

pDB,ij pyqqpi,jqPrM0,nsˆrM1,ns P LpHB
bn
q is a POVM and for any family Y “ pYij qpi,jqPrM0,nsˆrM1,ns 

of random variables such that for each m P rM0,ns, Y m “ pYmjqjPrM1,ns is distributed

i.i.d according to r p¨|umq, namely the pruned distribution of rp¨|uq (see (4.13)), we

have
1

n
logM0,n ě inf

sPS
min tIpU ;B,ωsq, IpU ;E,ωsqu ´ cδ,

1

n
logM1,n ě inf

sPS
IpY ;B|U, ωsq ´ cδ,

EY
„

inf
sPS

1

M0,nM1,n

ÿ

pm,iqPrM0,nsˆrM1,ns

trrWbn
B,spYmiqDB,mipY qs



ě 1´ εn,

EY
„

inf
sPS

1

M0,nM1,n

ÿ

pm,iqPrM0,nsˆrM1,ns

trrWbn
E,spYmiqDE,ms



ě 1´ εn

with εn Ñ 0 exponentially, constant c ą 0 and ωs “
ř

uPU qpuq |uy xu|brpy|uq |yy xy|b

Wspyq.

Proof 91 We approximate tWsusPS by a finite τn-net tWsusPSn Ă tWsusPS with τn :“

2´
nν
2 with a constant positive number ν to be determined later. We choose the net small

enough to have log |Sn| ď 2 ¨ |X | ¨ dimpHB b HEq
2plog 6 ` nν{2q which is possible by

Lemma 197. For γ P tB,Eu and s P Sn, consider the effective channel Ŵγ,s,n : Un Ñ
SpHbnγ q defined by Ŵγ,sp¨q :“

ř

yPY rpy|¨qWγ,spyq. Applying Lemma 86 on the channel set

tŴγ,susPSn and probability distribution q, yields the existence of the random pn,M0,nq code

CpUq with U “ pU1, . . . , UM0,nq, a sequence of i.i.d random variables distributed according

to q1n,δ and POVMs pDγ,mpUqqmPrM0,ns Ă LpHbnγ q such that

EU
“

min
sPSn

1

M0,n

ÿ

mPrM0,ns

trpDγ,mpUqŴ
bn
γ,s pUmqq

‰

ě 1´ ε0,n. (4.16)

with ε0,n Ñ 0 exponentially and

1

n
logM0,n ě min

sPSn
IpU ; γ, ωsq ´ c0δ.

Hence we have

1

n
logM0,n ě min

sPSn
min tIpU ;B,ωsq, IpU ;E,ωsqu ´ c0δ.
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4. Universal superposition codes:capacity regions for quantum broadcast channel

Given (4.16), we can conclude the existence of one realization pu1, . . . , uM0,nq of random

variable U , and POVMs pDγ,mqmPrM0,ms P LpHbnγ q, suitable for transmission of common

messages, namely

min
sPSn

1

M0,n

ÿ

mPrM0,ns

trpDγ,mŴ
bn
γ,s pumqq ě 1´ ε0,n. (4.17)

Before moving on to the private message, notice that for each u P T nq,δ, using the abbrevi-

ation Tδ :“ rbnpTr,δpuqq, we have

}Ŵbn
γ,s puq ´

ÿ

yPYn
r1npy|uqW

bn
γ,s pyq}1 ď

ÿ

yPTr,δpuq

rbnpy|uqp
1

Tδ
´ 1q}Wbn

γ,s pyq}1

`
ÿ

yPT cr,δpuq

rbnpy|uq}Wbn
γ,s pyq}1 ď 2p1´ Tδq ď 2 ¨ 2´nδ.

(4.18)

The upper bound above comes from the fact that Tδ approaches unity exponentially with n

(cf. [Csiszár and Körner(2011a)]). Now we pursue with the private message, namely the

one Bob has to decode while Eve may or may not. For each um̂, m̂ P rM0,ns obtained above,

apply Lemma 84 on tWsuSn and probability distribution rp¨|uq, u P U . on Lemma 84, we

obtain the existence of a random code CpY um̂q with Y um̂ “ pYm̂,1, . . . , Ym̂,M1,nq and decoding

operation pΛmpY
um̂qqmPrM1,ns, such that Y um̂ is distributed according to r1n,δp¨|um̂q

bM1,n with

EY um̂
“

inf
sPSn

1

M1,n

ÿ

mPrM1,ns

trpΛmpY
um̂qWbn

B,spYm̂,mqq
‰

ě 1´ ε1,n, (4.19)

and
1

n
logM1,n ě IpY ;B|U, ωsq ´ c1δ.

We have

min
sPSn

1

M0,n

ÿ

m̂PrM0,ns

EY um̂
“ 1

M1,n

ÿ

mPrM1,ns

trpDγ,m̂W
bn
s,γ pYm̂,mqq

‰

“ min
sPSn

1

M0,n

ÿ

m̂PrM0,ns

ptrpDγ,m̂

ÿ

yPYn
r1n,δpy|um̂qW

bn
s,γ pyqqq

“ min
sPSn

1

M0,n

ÿ

m̂PrM0,ns

trpDγ,m̂Ŵ
bn
γ,s pum̂qq ´ 2 ¨ 2´nδ ě 1´ ε2,n. (4.20)

where in the first equality, we have calculated the expectation value given that for each

m̂ P rM0,ns, PrpYm̂,m “ yq “ r1npy|um̂q, @m P rM0,ns, and in the last line, we have observed

(4.18) and inserted (4.17), setting ε2,n :“ ε0,n ` 2 ¨ 2´nδ. Consider the random decoding

operation pDB,m̂,mpY qqpm̂,mqPrM0,nsˆrM1,ns defined for each message pair by DB,m̂,mpY q :“
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4.3. Coding for broadcast channel

a

DB,m̂ΛmpY
um̂q

a

DB,m̂. We have

EY
“ 1

|Sn|

ÿ

sPSn

1

M0,n

ÿ

m̂PrM0,ns

1

M1,n

ÿ

mPrM1,ns

trpDB,m̂,mpY qW
bn
B,spYm̂,mqq

‰

“

1

|Sn|

ÿ

sPSn

1

M0,n

ÿ

m̂PrM0,ns

EY um̂
“ 1

M1,n

ÿ

mPrM1,ns

trp
a

DB,m̂ΛmpY
um̂q

a

DB,m̂W
bn
B,spYm̂,mqq

‰

ě

1

|Sn|

ÿ

sPSn

1

M0,n

ÿ

m̂PrM0,ns

`

EY um̂
“ 1

M1,n

ÿ

mPrM1,ns

trpΛmpY
um̂qWbn

B,spYm̂,mqq
‰

´

2

d

1´ E
“ 1

M1,n

ÿ

mPrM1,ns

trpDB,m̂W
bn
B,spYm̂,mqq

‰˘

ě 1´ ε1,n ´ 2
?
ε2,n, (4.21)

where in the first inequality, we have used Lemma 208, and in the last line, we have

inserted the lower bounds from (4.20) and (4.19) and used concavity of the square root

function. Applying standard net approximation techniques used for example in proof of

Lemma 84, we obtain the claim of the lemma.

At this point we can prove Lemma 89, by applying privacy amplification arguments (c.f

[Boche et al.(2014)Boche, Cai, Cai, and Deppe]) on the M1 part of the messages obtained

in Lemma 90. This is done by using equidistribution when inputting part of these messages

to confuse the eavesdropper. The other part of M1 will then be secure.

Proof 92 (Proof of Lemma 89) Let pUY Xpu, y, xq “ pUY pu, yqpX|Y px|yq and pUY pu, yq “

qpuqrpy|uq @pu, y, xq P U ˆ Y ˆ X . We approximate tWsusPS by a finite τn-net tWsuSn Ă

tWsusPS with τn :“ 2´
nν
2 with a constant positive number ν to be determined later. We

choose the net small enough to fulfill the cardinality bound log |Sn| ď 2 ¨ |X | ¨ dimpHB b

HEq
2plog 6 ` nν{2q which is possible by Lemma 197. Let δ ą 0, n P N and pruned

probability distributions q1n,δ, r
1
np¨|uq over T nq,δ and Tr,δpuq, pu P Unq be given. Set

M0,n “ t2n
`

minsPSn mintIpU ;B,ωsq,IpU ;E,ωsqu´cδ
˘

u, (4.22)

Jn “ t2n
`

minsPSn IpY ;B|U,ωsq´maxsPSn IpY ;E|U,ωsq´2∆pδq´cδ
˘

u (4.23)

and

Ln “ r2nmaxsPSn IpY ;E|U,ωsq`n∆pδqs. (4.24)

For the effective channel W̃s : Y Ñ SpHBbHEq defined by W̃sp¨q :“
ř

xPX pX|Y px|¨qWspxq, @s P

S, according to Lemma 90, there exists a family pum, DE,mqmPrM0,ns and a random family

CpY q “ pYmjl, DB,mjlpY qqpm,j,lqPrM0,nsˆrJnsˆrLns, such that for events

A :“ max
sPSn

1

M0,nJnLn

ÿ

m,j,l

trpW̃bn
B,spYmjlqD

c
B,mjipY qq ě

?
εn
(
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and

B :“ max
sPSn

1

M0,nJnLn

ÿ

m,j,l

trpW̃bn
E,spYmjlqD

c
E,mq ě

?
εn
(

, (4.25)

we have

PrrAYBs ď 2
?
εn, (4.26)

where we have used the Markov inequality to obtain the above probability from the ex-

pectation value of the same event, and applied the union bound to get the probability of

the complementary events (one with respect to W̃B,s and the other with respect to W̃E,s).

Here, εn goes to zero exponentially, given the appropriate choice of τn, as evident in the

proof of Lemma 84. We define the following quantities for each s P Sn and u P T nq,δ.

Qu
s pyq :“ ΠW̃E,s,u,δ

ΠW̃E,s,u,δ
pyqW̃bn

E,spyqΠW̃E,s,u,δ
pyqΠW̃E,s,u,δ

(4.27)

with quantities defied in Lemma 82 and

Θu
s :“

ÿ

ynPYn

r1n,δpy|uqQ
u
s pyq. (4.28)

Given property 4 of Lemma 82, (4.15) and Lemma 203, we have @u P Un,y P Tr,δpuq and

s P Sn

‖ W̃bn
E,spyq ´Q

u
s pyq ‖1ď

b

2´nΥ pδq`1 `
?

2´nΥ 2pδq`2 :“ ε1,n. (4.29)

Clearly ε1,n Ñ 0 exponentially. Applying Theorem 87 with Cd the range space of projection

ΠW̃E,s,u,δ
, by property 2 of Lemma 82 we have

d ď 2SpE|U,ω
bn
s q`n∆pδq (4.30)

Furthermore, from the property 6 of the projections introduced in Lemma82, we have for

all u P T nq,δ

Qu
s pYmjlq ď 2´SpE|Y U,ω

bn
s q`nΓ 1pδq

1Cd . (4.31)

Let n ą 2. The hypotheses of Theorem 87 are therefore satisfied with ε “ ε0,n :“ 2´nΓ
1pδq{6

and µ “ 2´SpE|Y U,ω
bn
s q`nΓ 1pδq. Since um P T

n
q,δ, @m P rM0,ns, for the event

Cs,m,j :“

#
›

›

›

›

›

1

Ln

Ln
ÿ

l“1

Qum
s pYmjlq ´Θ

um
s

›

›

›

›

›

1

ą ε0,n

+

,
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we have

Pr
“

Cs,m,j

‰

ď 2SpE|U,ω
bn
s q`n∆pδq

ˆ exp
`

´ Ln
ε30,n

2 ln 2 ¨ 2SpE|U,ω
bn
s q´SpE|Y U,ωbns q`np∆pδq´Γ 1pδqq

˘

ď 2nplog dimHE`∆pδqq ˆ exp
`

´ Ln
ε30,n

2 ln 2 ¨ 2IpY ;E|U,ωbns q`np∆pδq´Γ 1pδqq

˘

.

Applying the union bound, for all s P Sn, j P Jn,m P rM0,ns we have

Pr
“

C :“
ď

s,j,m

Cs,m,j

‰

(4.32)

ď JnM0,n|Sn|2
nplog dimHE`∆pδqq ˆ exp

`

´ Ln
ε30,n

2 ln 2 ¨ 2IpY ;E|U,ωbns q`np∆pδq´Γ 1pδqq

˘

.

(4.33)

From (4.26) and (4.32), we have

Pr
“

CYBYA
‰

ď 2
?
εn ` JnM0,n ˆ |Sn|2

nplog dimHE`∆pδqq

ˆ exp
`

´ Ln
ε30,n

2 ln 2 ¨ 2IpY ;E|U,ωbns q`np∆pδq´Γ 1pδqq

˘

. (4.34)

Finally, given (4.24), we have

exp
`

´ Ln
ε30,n

2 ln 2 ¨ 2IpY ;E|U,ωbns q`np∆pδq´Γ 1pδqq

˘

ď exp
`

´
ε30,n2nΓ

1pδq

2 ln 2¨

˘

, (4.35)

which gives us a double exponential decay given that ε0,n “ 2´nΓ
1pδq{6. Inserting (4.35) in

(4.34), we conclude that we can find one realization tymjlupm,j,lqPrM0,nsˆrJnsˆrLns of Y , such

that

min
sPSn

1

M0,nJnLn

ÿ

m,j,l

trpW̃bn
B,spymjlqDB,mjlq ě 1´

?
εn, (4.36)

min
sPSn

1

M0,nJnLn

ÿ

m,j,l

trpW̃bn
E,spymjlqDE,mq ě 1´

?
εn (4.37)

and

max
sPSn

max
m,j

›

›

›

›

›

1

Ln

Ln
ÿ

l“1

Qum
s pymjlq ´Θ

um
s

›

›

›

›

›

1

ď ε0,n. (4.38)

Consider the stochastic encoder Ep¨|m, jq :“ 1
Ln

ř

lPrLns
pnX|Y p¨|ymjlq and POVM pDB,mj :“
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ř

lPrLns
Dmjlqm,j. Therefore with Mc,n “ Jn, we have

inf
sPS

1

M0,nMc,n

ÿ

m0PrM0s,mcPrMc,ns

trp
ÿ

xPXn

Epx|m0,mcqW
bn
B,spxqDB,m0,mcq

“
1

M0,nMc,n

ÿ

m0,mc

trp
1

Ln

ÿ

xPXn

ÿ

lPrLns

pnX|Y p¨|ym0mclqW
bn
B,spxq

ÿ

l1PrLns

DB,m0mcl1q

ě 1´
?
εn ´ 2nτn, (4.39)

where in the last line we have inserted the bound from (4.36) and observed that the error

due to tWsusPSn can only be 2nτn less than the error due to W. By the same line of

reasoning we have

inf
sPS

1

M0,nMc,n

ÿ

m0PrM0s,mcPrMc,ns

trp
ÿ

xPXn

Epx|m0,mcqW
bn
E,spxqDE,m0q

“
1

M0,nMc,n

ÿ

m0,mc

trp
1

Ln

ÿ

xPXn

ÿ

lPrLns

pnX|Y p¨|ym0mclqW
bn
E,spxq

ÿ

l1PrLns

DE,m0q

ě 1´
?
εn ´ 2nτn. (4.40)

The 5th claim in the statement of the lemma related to the security criterion requires

upper bounding supsPS IpMc;E|M0, σs,nq for all s P Sn, that is done in the following. First

we observe that for all s P S

IpMc;E|M0, σs,nq “
1

M0,n

ÿ

m0PrM0,ns

IpMc;E, σ
m0
s,nq, (4.41)

with

σm0
s,n :“

1

Mc,n

ÿ

mcPrMc,ns

b
ÿ

xPXn

Epx|m0,mcqW
bn
pxq.

We continue upper-bounding the mutual information on the right hands side of (4.41) for

each m0 P rM0,ns. We note that for all s P Sn

IpMc;E, σ
m0
s,nq “ S

ˆ

1

Mc,n

ÿ

mcPrMc,ns

ÿ

xPXn

Epx|m0,mcqW
bn
E,spxq

˙

´
1

Mc,n

ÿ

mcPrMc,ns

S

ˆ

ÿ

xPXn

Epx|m0,mcqW
bn
E,spxq

˙

“ S

ˆ

1

Mc,nLn

ÿ

jPrMc,ns,lPrLns

W̃bn
E,spym0jlq

˙

´
1

Mc,n

ÿ

mcPrMc,ns

S

ˆ

ÿ

lPrLns

W̃bn
E,spym0jlq

˙

(4.42)
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4.3. Coding for broadcast channel

Notice that, given (4.29) and (4.38) and the triangle inequality we have for all s P Sn

‖
ÿ

lPrLns

W̃bn
E,spym0jlq ´Θ

um0
s ‖1ď ε0,n ` ε1,n. (4.43)

Applying Lemma 209 with δ “ ε0,n ` ε1,n, given (4.43) and (4.42) we obtain

IpMc;E, σ
m0
s,nq ď 2 pnpε0,n ` ε1,nq log dimpHEq ` hpε0,n ` ε1,nqq . (4.44)

Inserting this into (4.41), we obtain the same upper bound on the conditional mutual

information quantity on the left hand side for all s P Sn. Given properties of the τ -net

(Lemma 197), applying Lemma 210 with δ “ 2nτn we obtain

sup
sPS

IpMc;E|M0, σs,nq ď max
sPSn

IpMc;E|M0, σs,nq

` 2
`

2n2τn log dimpHBq ` p1` 2nτnqhp2nτn{1` 2nτnq
˘

ď 2 pnpε0,n ` ε1,nq log dimpHEq ` hpε0,n ` ε1,nqq

` 2
`

2n2τn log dimpHBq ` p1` 2nτnqhp2nτn{1` 2nτnq
˘

. (4.45)

Given the upper bound on Sn, choosing ν “ 1
8n|X | dimpHBbHEq

log εn, we obtain exponential

decay of the right hand sides of (4.39) and (4.40). Also, with this value of τn and choosing

large enough values of n, (4.45) gives us the 5th claim of the statement.

Proof 93 (Proof of Lemma 88) According to Lemma 89,

pR0, Rcq P
ď

p

Ĉp1q
`

J , p, 1
˘

implies pR1, Rcq P CBCCpJ q. Using standard double-blocking and time sharing arguments,

for each l P N,

pR0, Rcq P cl

˜

8
ď

l“1

ď

p

1

l
Ĉp1q

`

J , p, l
˘

¸

,

implies pR0, Rcq P CBCCpJ q.

Here, in order to construct private codes for the broadcast channel, we first generated

suitable random message transmission codes for the broadcast channel without imposing

privacy constraints (Lemma 90). This was done by establishing suitable bounds for ran-

dom universal ”superposition codes”. Subsequent application of a covering principle these

codes where transformed to fulfill the security criterion in Lemma 89. Beside technical

obstacles to construct superposition codes for cq broadcast channels which are robust re-

garding uncertainty of the channel state, the approach is rather traditional and even dates

back to classical information theory (see e.g. [Csiszár and Körner(2011a)] for a general

discussion, the classical counterpart to our considerations can be found in [Schaefer and
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4. Universal superposition codes:capacity regions for quantum broadcast channel

Boche(2014b)]).

4.3.2. TPC codes

In this section, we prove the following lemma.

Lemma 94 Let W :“ tWsusPS Ă CQpX ,HB b HEq be any compound cqq broadcast

channel. It holds

CTPCrWs Ą cl

˜

8
ď

l“1

ď

p

1

l
Cp1q

`

W , p, l
˘

¸

,

where the second union is taken over all pV Y X P PpVˆYˆX lq such that random variable

V ´ Y ´X form a Markov chain and alphabets V and Y are finite.

The main step towards proving Lemma 94, is the following statement.

Lemma 95 (Broadcast channel with confidential messages ) LetW :“ tWsusPS Ă

CQpX ,HB b HEq be any compound cqq broadcast channel. For pV Y X P PpV ˆ Y ˆ X q
where V ´ Y ´ X form a Markov chain and δ, ε ą 0, there exists n0 P N, such that for

n ą n0, we find an pn,M1,n,Mc,nq TPC code tEp¨|mq, DB,m, DE,m1um“pm1,mcqPrM1,nsˆrMc,ns

with

1. 1
n

logM1,n ě infsPS IpV ;B,ωsq ´ cδ,

2. 1
n

logMc,n ě infsPS IpY ;B|V, ωsq ´ supsPS IpY ;E|V, ωsq ´ cδ

with some constants c ą 0 and ωs defined by (4.4).

3. infsPS
1
|M|

ř

mPM

ř

xPXn Epx|mqtrrW
bn
B,spxqDB,ms ě 1´ ε

4. supsPS IpMc;E|M1, σs,nq ď ε

with state σs,n defined by (4.2).

Applying standard double-blocking arguments on Lemma 95, will prove Lemma 94. We

prove Lemma 95 in two steps. At first, we prove the following random coding result, that

guarantees reliable decoding of public messages by Bob and Eve, and reliable decoding of

public messages by Bob. In the next step, we apply privacy amplification arguments on

the public part of the codebook, to achieve the desired confidential message transmission

rate.

Lemma 96 Let W :“ tWsusPS Ă CQpY ,HB b HEq be any compound cqq broadcast

channel and V be a finite alphabet. For any δ ą 0, q P PpVq, rp¨|vq P PpYq, v P V and

large enough values of n, the following exist.

• A family pvmqmPrM2,ns of words with vm P T
n
q,δ.
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4.4. Outer bounds for the capacity regions

• A map y : pyijqpi,jqPrM1,nsˆrM2,ns ÞÑ pDB,ijpyqqpi,jqPrM1,nsˆrM2,ns, such that pDB,ijpyqqpi,jqPrM1,nsˆrM2,ns
P

LpHbnB q is a POVM and for any family Y “ pYijqpi,jqPrM1,nsˆrM2,ns of random vari-

ables such that for each m P rM1,ns, Y
m “ pYmjqjPrM2,ns is distributed i.i.d according

to r1p¨|vmq we have
1

n
logM1,n ě inf

sPS
IpV ;B,ωsq ´ cδ,

1

n
logM2,n ě inf

sPS
IpY ;B|V, ωsq ´ cδ,

EY
„

inf
sPS

1

M1,nM2,n

ÿ

pm,iqPrM1,nsˆrM2,ns

trpWbn
B,spYmiqDB,mipY q



ě 1´ εn,

with εn Ñ 0 exponentially, constant c ą 0 and ωs “
ř

vPV qpuq |vy xv|brpy|vq |yy xy|b

Wspyq.

Proof 97 The proof is done by following exactly the lines in proof of Lemma90, except

that here γ “ tBu.

Proof 98 (Proof of Lemma 95) The proof follows by applying the privacy amplifica-

tion arguments in the proof of Lemma 89, on rM2,ns part of the messages in Lemma 96. It

is clear that here, we only consider upper bounding the probability of events corresponding

to events A and C in the proof of that Lemma 89, and drop (4.25).

Proof 99 (Proof of Lemma 94) According to Lemma 95,

pR1, Rcq P
ď

p

Cp1q
`

J , p, 1
˘

implies pR1, Rcq P CTPCpJ q. Using standard double-blocking and time sharing arguments,

for each l P N,

pR1, Rcq P cl

˜

8
ď

l“1

ď

p

1

l
Cp1q

`

J , p, l
˘

¸

,

implies pR1, Rcq P CTPCpJ q.

4.4. Outer bounds for the capacity regions

In this section, we consider the ”converse” bounds stated in Theorem 77 and Theorem 81.

The arguments of proof turn out to be fairly standard. Therefore, we restrict ourselves

to providing proof details regarding the outer bound to the BCC capacity regions from

Theorem 77.

Proposition 100 Let W :“ tWsusPS, Ws : X Ñ SpHB b HEq, ps P Sq be a set of cqq

channels. It holds

CBCCrWs Ă cl

˜

8
ď

l“1

ď

p

1

l
Ĉp1qpW , p, lq

¸

.
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4. Universal superposition codes:capacity regions for quantum broadcast channel

The second union is taken over all pUY X P PpU ˆ Y ˆ X lq such that random variable

U ´ Y ´X form a Markov chain and alphabets U and Y are finite.

Proof 101 Let pCnqnPN be a sequence of pn,M1,n,Mc,nq BCC codes forW such that with a

sequence en Ñ 0, pnÑ 8q for all s P S eBpCn,Wbn
s q, eEpCn,Wbn

s q and IpMc,n;En|M0,n, σs,nq

are simultaneously upper-bounded by en. While we fix the blocklength for a moment (and

suppress the index n), we consider for each s P S the quadruple pM0,Mc,M
psq
0 ,M

psq
c q of

random variables, where M
psq
0 ,M

psq
c belong to the common and confidential messages de-

coded by B after transmission with Wbn
s . Note, that PrppM0,Mcq ‰ pM

psq
0 ,M

psq
c qq ď εn is

true by assumption. It holds

logM0 “ HpM0q “ IpM0;M
psq
0 q `HpM0|M

psq
0 q ď IpM0;Bn, σs,nq ` εn ¨ logM0.

(4.46)

The second of the above equalities is the chain rule for the mutual information. The

last inequality stems from application of Fano’s lemma and the Holevo bound. A similar

calculation for the second receiver leads us to the inequality

logM0 ď IpM0;En, σs,nq ` εn ¨ logM0. (4.47)

Maximizing over all s P S in (4.46) and (4.47) and combining the resulting inequalities

gives the bound

logM0 ď min

"

sup
sPS

IpM0;Bn, σs,nq, sup
sPS

IpM0;En, σs,nq

*

` εn logM0.

In order to derive a bound on Mc, we notice the inequality

logM0 ¨Mc ď IpM0Mc;B
n, σs,nq ` εn ¨ logM0Mc. (4.48)

The chain rule for the quantum mutual information implies

IpM0Mc;B
n, σs,nq ´ logM0 ď IpM0Mc;B

n, σs,nq ´ IpM0;Bn, σs,nq “ IpMc;B
n
|M0, σs,nq.

Combining the above inequality with (4.48) and rearranging terms give us the inequality

logMc ď IpMc;B
n
|M0, σs,nq ` εn ¨ logM0Mc.

Maximizing both sides of the inequality and adding the nonnegative term εn´supsPS IpMc;E
n|M0, σs,nq

to the right hand side of the result, we obtain

logMc ď sup
sPS

IpMc;B
n
|M0, σs,nq ´ sup

sPS
IpMc;E

n
|M0, σs,nq ` εnplogM0 ¨Mc ` 1q.

(4.49)
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4.5. BCC and TPC capacities of compound quantum broadcast channels

Let δ ą 0 be arbitrary and n0 large enough for εnplogM0 ¨Mcq ď δ to hold. It is clear, for

each n ą n0, p 1
n

logM0,n,
1
n

logMc,nq is contained in

ď

ląn0

1

n

ď

p

Ĉp1qpW , p, nqδ Ă

«

8
ď

l“1

ď

p

1

l
Ĉp1qpW , p, lq

ff

δ

, (4.50)

where Aδ is the δ-blowup of A for each δ ą 0 and A P R`0 ˆ R`0 , i.e

Aδ :“ ty P R`0 ˆ R`0 : Dx P A :‖ x´ y ‖ď δu.

Since δ was an arbitrary positive number, we are done.

Proposition 102 Let W :“ tWsusPS, Ws : X Ñ SpHB b HEq, ps P Sq be a set of cqq

channels. It holds

CTPCrWs Ă cl

˜

8
ď

l“1

ď

p

1

l
Cp1qpW , p, lq

¸

.

The second union is taken over all pV Y X P PpV ˆ Y ˆ X lq such that random variable

V ´ Y ´X form a Markov chain and alphabets V and Y are finite.

Proof 103 The proof can be conducted following exactly the same strategy as in the proof

of Proposition 100, and therefore is left to the reader. The only modification is, that there

is no need for E to decode the message M1 (opposed to the case of M0 in the proof of

Proposition 100). This leads to the bound

logM1 ď sup
sPS

IpM0;Bn, σs,nq ` εn logM1.

on the number public messages in the code.

4.5. BCC and TPC capacities of compound quantum

broadcast channels

In this section we extend our results to the ”full quantum” setting where the receivers

input quantum systems to the channels, i.e. the transition maps of the channels are c.p.t.p.

maps instead of cq channels. Since the message transmission tasks we aim to perform are

after all of a classical nature, the corresponding coding theorems can be proven applying

the results from earlier chapters.

Explicitely we apply the results of the preceding sections to derive codes for full quantum

broadcast channels. For the remainder of this section, we fix an arbitrary set J :“
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4. Universal superposition codes:capacity regions for quantum broadcast channel

tNsusPS, where

Ns : LpHAq Ñ LpHB bHEq

is a c.p.t.p. map for each s P S. Traditionally, the c.p.t.p. map Ns is assumed to be an

isometric channel, namely a Stinespring isometry to a given channel connecting A and

B. This way of defining the channel is fairly justified, since it naturally equips E with

the strongest abilities when attacking the confidential transmission goals of the remaining

parties. However, dropping this assumption on the channel does not complicate any

subsequent arguments.

In what follows, we consider the BCC scenario. Corresponding considerations regarding

the TPC scenario are easily extrapolated and are hence left to the reader.

Definition 104 (BCC codes) An pn,M0,Mcq BCC code for J for channels in CpHA,HBb

HEq is a family C “ pV pmq, DB,m, DE,m0qmPM with M :“ rM0s ˆ rMcs, where pDB,mqmPM

and pDE,m0qm0PrM0s are POVMs on HbnB resp. HbnE and V pmq is a state on HbnA for each

m.

The average transmission errors for the receivers B, and E with channel N : LpHAq Ñ

LpHB bHEq and pn,M0,Mcq-code C are defined by

eBpC,Nbn
q :“

1

|M|

ÿ

mPM

trDc
B,mNbn

pV pmqq,

and

eEpC,Nbn
q :“

1

|M|

ÿ

mPM

trDc
E,m0
Nbn

pV pmqq.

By replacing the code and errors the definitions of achievable rate pairs can be directly

guessed from Definition 76 (the notational ambiguity should cause no misunderstandings

since the set J determines whether the classical-quantum or quantum broadcast channel

scenario are considered.) We denote the corresponding BCC capacity region by CBCCrJ s
. We moreover define Ĉp1qpJ , p, l, pρyqyPYq the set of all points in R

2 which fulfill the

inequalities

0 ď R0 ď inf
sPS

min tIpU ;B,ωsq, IpU ;E,ωsqu and

0 ď Rc ď inf
sPS

IpY ;B|U, ωsq ´ inf
sPS

IpY ;E|U, ωsq

where we understand the entropic quantities above as being evaluated on the ccq state

ωs :“ ωpNs, p, lq :“
ÿ

uPU ,yPY
PUY pu, yq ¨ |u, yy xu, y| bNbl

s pρyq
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4.5. BCC and TPC capacities of compound quantum broadcast channels

for each s P S.

Theorem 105 It holds

CBCCrJ s “ cl

˜

8
ď

l“1

ď

p

1

l
Ĉp1qpJ , p, lq

¸

The second union is taken over all pUY X P PpU ˆ Y ˆ X lq such that random variable

U´Y ´X distributed accordingly, form a Markov chain and alphabets U and Y are finite.

Proof 106 The proof of achievability is easily performed by referring to the corresponding

result for ccq broadcast channels. Namely, if we fix l P N, probability distributions PU and

PY |U and a family pρyqyPY of quantum states on HbnA we have

ωpNs, p, l, pρyqyPYq “
ÿ

uPU

ÿ

yPY
PUpuq ¨ PY |Upy|uq |u, yy xu, y| bNbl

s pρyq “ ωpṼs, p, 1q

with an effective cqq channel with signals rVspyq :“ Nbl
s pρyq, py P Yq. As a consequence,

1
l
Ĉp1qpJ , p, l, pρyqyPYq “ 1

l
Ĉp1qptrVsusPS, p, 1q. We know from Theorem 77, that each point

on the r.h.s. of the preceding inequality is achievable. To prove the converse, we assume,

that Cn :“ pDB,m, DE,m0 , V pmqqmPM is an pn,M0,Mcq-code with

eBpCn,Nbn
s q, , eEpCn,N n

s q, and IpMc;E|M0, σs,nq

are simultaneously bounded by εn P p0, 1q. Note, that the mutual information quantity

above is evaluated on the code state

σs,n :“
1

M

ÿ

mPM

|my xm| bNbn
s pV pmqq.

Using the above bounds and repeating the corresponding steps from the proof of Proposition

100, we obtain the inequalities

logM0 ď min

"

sup
sPS

IpM0;Bn, σs,nq, sup
sPS

IpM0;En, σs,nq

*

` εn logM0.

and logMc ď IpMc;B
n|M0, σs,nq ` εn ¨ logM0Mc The remaining steps directly carry over

from the cqq converse.
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We analyze general achievability (lower-) and converse (upper-) bounds on the ε-capacity

function from a fundamental point of view by studying whether or not such bounds can

be computed by any algorithms in principle (without putting any constraints on the

computational complexity of such algorithms). For this purpose, the concept of Turing

machines is used, which provides the fundamental performance limits of digital computers.

To this end, computable continuous functions are studied and properties of computable

sequences of such functions are identified. Subsequently, these findings are exemplary

applied to the ε-capacity of the two-state compound channel. It is shown that there

are examples for which this function (derived here under two capacity notions) is a non-

computable function of its error input. As a result, it is stated that either the achievability

or converse yields a non-computable bound. The crucial consequence is that the ε-capacity

cannot be characterized by a finite-letter entropic expression. We also consider a less

restrictive conditions of decidability for the derived capacity functions and obtain negative

results. The channel examples that give us the general non-computability of the capacity

functions, are those that prove communicating parties can have asymptotic gains by pre-

shared entanglement or randomness. This gain cannot necessarily be harnessed by a

digital computer due to general non-computability of the capacity functions.

5.1. Introduction

For the ε-capacity of compound channels [Blackwell et al.(1959)Blackwell, Breiman, and

Thomasian, Wolfowitz(1960), Ahlswede(2015)], it is shown and argued that either the

achievability or converse (or both) must result in a non-computable lower or upper bound,

respectively. Accordingly, it is impossible that both achievability and converse are effec-

tively computable at the same time and, as a consequence, we cannot find a finite-letter

entropic characterization for the ε-capacity. This has important implications on the ques-

tion of the existence of a strong conserve and the second order coding rate. Both questions

cannot be answered algorithmically as we will demonstrate.

The asymptotic bound for error-correcting codes is a fundamental and open prob-

lem in coding theory [Tsfasman et al.(2007)Tsfasman, Vladut, and Nogin, Joyner and

Kim(2011)]. Despite tremendous effort, attempts to characterize this function have failed.

Except for some trivial points, not much is known about this function and its behavior. It

is conjectured that this function is indeed a non-computable function. With the previous
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findings, this explains the difficulties as either the lower or upper bound on the asymptotic

bound must be non-computable. Thus, it is impossible to derive computable lower and

upper bounds that are asymptotically tight.

The underlying computability framework is introduced in Section 5.2. A Turing ma-

chine is a mathematical model of an abstract machine that manipulates symbols on

a strip of tape according to certain given rules. It can simulate any given algorithm

and therewith provides a simple but very powerful model of computation. Turing ma-

chines have no limitations on computational complexity, unlimited computing capacity

and storage, and execute programs completely error-free. They are further equivalent to

the von Neumann-architecture without hardware limitations cf. also [Avigad and Brat-

tka(2014), Gödel(1930), Gödel(1934), Kleene(1952), Minsky(1961)]. Accordingly, Turing

machines provide fundamental performance limits for today’s digital computers. Since

bounds on the capacity are usually evaluated and often plotted on digital computers,

Turing machines are the ideal concept to study whether or not such upper and lower

bounds can be found algorithmically in principle (without putting any constraints on the

computational complexity of such an algorithm).

The underlying computability framework is introduced in Section 5.2. Of particular in-

terest here are computable continuous functions [Pour-El and Richards(2017)] since such

functions can be effectively approximated by computable polynomial sequences. To this

end, Section 5.2 also studies further properties and insights of computable sequences of

such computable continuous functions. In Section 5.3 we derive our capacity results for

the ε-capacity of the compound channel with two channels present in the uncertainty set,

that give us significant examples of channels that are fundamental to our computability

results in later sections. In Section 5.4, the findings of Section 5.2 are applied to these

examples. In Section 5.5, we use the results from previous sections to prove that either

the converse (upper-bound) or achievability (lower-bound) is not algorithmically com-

putable as a function of the error input. We refute computability already at compound

channels with two channel states, that is the smallest possible uncertainty by assuming

the not-so-realistic tolerated error of 1{2. As mentioned before however, practical coding

strategies must be robust to compound channels of infinite cardinality, that which carries

our negative results to arbitrarily small values of tolerated error (see [Ahlswede(2015)] for

examples of compound channels with more than two channel states).

In Section 5.6, we consider the less restrictive conditions of decidability and semi-decidability,

and demonstrate that even this conditions are not necessarily satisfied by ε-capacity as a

function of the error input. In Section 5.7 similar statements are made on computability

of the capacities of assisted scenarios where the communicating parties have access to

pre-shared entanglement or common randomness. We show the existence of examples

where such resources improve the ε-capacity of compound channels. These examples are

therefore significant as they refute the generality of statements that deny the use of en-
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tanglement when it pertains to classical communication. This improvement of capacity

should be looked at with skepticism however, as at least in the case of common-randomness

assistance, the resulting function is in general non-computable. The gain in capacity re-

sulting from pre-shared resources, is in other words, cannot necessarily be harnessed by

a digital computer.

5.2. Introduction to Turing Machines and computability

framework

The formalization of computability was established by [Turing(1936), Turing(1937)] and

[Church(1936)] by two different approaches. In a mathematical sense, both frameworks

are fully equivalent. For brevity, we restrict ourselves to Turing’s method: he introduced

the idea of what is known today as Turing machine.

A Turing machine is a hypothetical machine that manipulates strings of symbols on an

infinite work tape. The symbols on the tape emanate from a finite machine alphabet

S “ ts1, s2, . . . , sku Y t\u, where 2\2 is the distinguished symbol that marks a blank

space. Only a finite number of symbols on the tape may differ from the blank space

symbol.

Given an initial tape configuration s “: s0, the machine sequentially manipulates one sym-

bol on the tape at a time, creating a new tape configuration in each step. Simultaneously,

the Turing machine passes trough a sequence of internal states. The succeeding pair of

tape configuration and internal state depend exclusively on the current tape configuration

and the current internal state. This way, we obtain a chain of pairs

ps0, q0
q ÞÑ ps1, q1

q ÞÑ ps2, q2
q ÞÑ . . . , (5.1)

where q0, q1, q2, . . . P Q denotes the current internal state.

The set Q :“ tq1, q2, . . . , qlu Y tqSu Y tqH,1, qH,2, . . . , qH,mu of internal states contains a

distinguished initial state qS such that q0 “ qS in (5.1), as well as a set of distinguished

halting states qH,1, qH,2, . . . , qH,m. Whenever the Turing machine reaches one of the halting

states, the computation ends. In this case, we obtain a sequence

ps0, qSq ÞÑ ps1, q1
q ÞÑ ps2, q2

q ÞÑ . . . ÞÑ psn, qnq (5.2)

with qn P tqH,1, qH,2, . . . , qH,mu for some n P N. The Turing machine is said to halt with

output psn, qn, nq for input s0. On the other hand, given an input s0, there may not exist

an n P N such that qn P Q, in wich case the Turing machine continues it’s computation

infinitely.

For a Turing machine TM, let T be the set of tape configurations. We denote DpTMq Ď
T the set of inputs for which the Turing machine halts with some output. In this sense,
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a Turing machine is a mapping

TM : DpTMq Ñ T ˆ tqH,1, qH,2, . . . , qH,mu ˆ N, s ÞÑ TMpsq, (5.3)

where TMpsq P T ˆ tqH,1, qH,2, . . . , qH,mu ˆN is the output corresponding to input s. We

denote rTMpsqsT the first component, rTMpsqsQ the second component and rTMpsqsN

the third component of the triple TMpsq. With some abuse of notation, we may never

the less write TMpsq instead of rTMpsqsT , rTMpsqsQ or rTMpsqsN, if it is clear from the

context which of the three we are referring.

5.2.1. Arithmetic Computations

By encoding the set of n-tuples of natural numbers into the set of tape configurations, we

can perform arithmetic calculations on a Turing machine. The simplest sufficient encoding

is the unary numeral system, with successive components of a given n-tuple x P Nn being

separated by a blank space. Let pgnqnPN with gn : Nn Ñ T for all n P N be a family of

suitable encodings. A function f : Dpfq Ñ N with Dpfq Ď Nn is called computable, if

there exists a Turing machine TM that satisfies the following properties:

a) If x P Dpfq for some x P Nn, then gnpxq P DpTMq.

b) If x P NnzDpfq for some x P Nn, then gnpxq P T zDpTMq.

c) We have rTMpgnpxqqsQ “ g1pfpxqq for all x P Dpfq.

The set of computable functions, which we denote by C˚, is a true subset of the set F :“
Ť8

n“0tf : Nn Ñ Nu (here, the set tf : N0 Ñ Nu “ N denotes constant natural numbers).

Other than by the use of Turing machines, the set C˚ is characterized through the axioms

of µ-recursive functions, in the following simply referred to as recursive functions. That

is, a function f : Dpfq Ñ N with Dpfq Ď Nn is computable if and only if it is a recursive

function. A recursive function f : Dpfq Ñ N with Dpfq Ď Nn is called partial if Dpfq ‰
Nn; it is called total if Dpfq “ Nn.

5.2.2. Recursively enumerable sets and the halting problem

Given a recursive function f : Dpfq Ñ N with Dpfq Ď Nn, the indicator function

1Dpfq : Nn
Ñ t0, 1u,x ÞÑ

$

&

%

1 if x P Dpfq

0 otherwise
(5.4)

of Dpfq is in general not a recursive function. This insight is known as the halting

problem, since it is equivalent to determining whether a Turing machine halts for a certain

input or not. Strongly related is the concept of recursively enumerable and recursive
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sets [Soare(1987)], which, in many cases, is is essentail for deriving the noncomputability

of certain mathematical problems.

Definition 107 A set A Ď N is called recursively enumerable if there exists a recursive

bijection ϕA : NÑ A. The mapping ϕ enumerates the set A.

Remark 108 A set A Ď N is recursively enumerable if and only if there exists a recursive

function f : Dpfq Ñ N that satisfies Dpfq “ A. Furthermore, A is recursively enumerable

if and only if there exists a recursive function f : Dpfq Ñ N that satisfies tn : Dx P Dpfq :

fpxq “ nu “ A.

Definition 109 A set A Ď N is called recursive if the indicator function 1A : NÑ t0, 1u

of A is a recursive function.

Remark 110 A set A Ď N is recursive if and only if both of the sets A and Ac :“ NzA
are recursively enumerable.

From Remark 108 we know that the domain Dpfq of any recursive function f : Dpfq Ñ N
is recursively enumerable. On the other hand, we have previously stated that 1Dpfq

is not a recursive function in general. Hence, Dpfq may be a non-recursive set. The

halting problem thus ensures the existence of sets that are recursively enumerable but not

recursive.

5.2.3. Computable real numbers and functions

The basic techniques from Computable Analysis are essential to our work, and will thus

be reviewed in the following.

A sequence of rational numbers prnqnPN is called a computable sequence of rational numbers

if there exist recursive functions a, b, s : NÑ N that satisfy

rn “ p´1qspnq
apnq

bpnq
(5.5)

for all n P N. Note that this definition implies bpnq ‰ 0 for all n P N.

A real number x is said to be computable if there exists a computable sequence of rational

numbers prnqnPN such that

|x´ rn| ă 2´n (5.6)

holds true for all n P N. If the latter is satisfied, we have limnÑ8 rn “ x. We denote the

set of computable real numbers by Rc.

Remark 111 Let prrnqnPN be a computable sequence of rational numbers that satisfies

limnÑ8 rrn “ x. Assume there exists a recursive function ζ : NÑ N such that

|x´ rrn| ă 2´M (5.7)
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is satisfied for all n,M P N with n ě ζpMq. Then, the sequence prrnqnPN is said to converge

effectively to x. By setting

rn :“ rrζpnq, (5.8)

the computable sequence prnqnPN of rational numbers satisfies |x ´ rn| ă 2´n for all n P

N. Consequently, a real number x is a computable number if and only if there exists a

computable sequence prrnqnPN of rational numbers that converges effectively to x.

Remark 112 A computable number x can be represented by a triple pa, b, sq of recursive

functions such that the corresponding computable sequence prnqnPN of rational numbers

satisfies |x´ rn| ă 2´n for all n P N. On the other hand, the number x can be represented

by a quadruple pra,rb, rs, ζq, such that the corresponding computable sequence prrnqnPN of

rational numbers satisfies |x´ rrn| ă 2´n for all n P N.

In practical applications, it is common to encounter sequences of real numbers, which,

in general, may be irrational. For example, an information theoretic channel model may

yield a recursive function f : N Ñ N that specifies the number of messages fpnq that

can be transmitted trough n successive uses of the channel with respect to some error

criterion. As done in previous chapters of this work, this number is turned into a channel

capacity by setting xn :“ 1
n

log2 fpnq and C :“ limnÑ8 xn (if the limit exists). The number

xn is not necessarily rational, and the sequence pxnqnPN is not necessarily a computable

sequence of computable numbers. In order to investigate such sequences with respect

to their computability properties, we introduce the concept of computable sequences of

computable numbers.

A sequence pxnqnPN of real numbers is called computable sequence of computable numbers

if there exists a computable double sequence prn,mqn,mPN of rational numbers such that

|xn ´ rn,m| ă 2´m (5.9)

holds true for all n,m P N.

Remark 113 Let pxnqnPN be a sequence of real numbers such that there exists a com-

putable double sequence prrn,mqn,mPN of rational numbers as well as a recursive function

ζ : Nˆ NÑ N that satisfy

|xn ´ rrn,m| ă 2´M (5.10)

for all n,m,M with m ě ζpn,Mq. Setting rn,m :“ rrn,ζpn,mq, we obtain a computable double

sequence prn,mqn,mPN of rational numbers such that |xn ´ rn,m| ă 2´m holds true for all

n,m P N. Thus, pxnqnPN is a computable sequence of computable numbers that is fully

specified by the pair pprn,mqn,mPN, ζq.

The set of computable functions C˚ is recursively enumerable. In particular, there exist
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recursive functions A,B, S : N ˆ N Ñ N, such that for all triples a, b, s : N Ñ N of

computable functions, there exists n P N such that

Apn,mq “ apmq ^ Bpn,mq “ bpmq ^ Spn,mq “ spmq (5.11)

is satisfied for all m P N (including undefined values). Consequently, given a computable

enumeration pA,B, Sq of all triples a, b, s P C˚, we can specify each computable real

number x by a single integer n P N, leading to the concept of Borel-Turing computable

functions.

Definition 114 A function f : Rc Ñ Rc is called Borel-Turing computable function if

there exists a computable enumeration pA,B, Sq of all triples a, b, s P C˚ as well as a

computable function g : N Ñ N such that for all n P N, gpnq is a representation of fpxq

with respect to pA,B, Sq whenever n is a representation of x with respect to pA,B, Sq.

Remark 115 In other words, a function f : Rc Ñ Rc is called Borel-Turing computable

function if there exists a Turing machine that transforms representations of a computable

number x into representations of the computable number fpxq.

The assumptions made in Definition 114 can be weakened to obtain a computability

concept without the requirement of a computable enumeration.

Definition 116 A function f : Rc Ñ Rc is called Banach-Mazur computable function

if the sequence pfpxnqqnPN is a computable sequence of computable numbers whenever the

sequence pxnqnPN is a computable sequence of computable numbers.

Remark 117 If f : Rc Ñ Rc is Borel-Turing computable, it is also Banach-Mazur com-

putable. The converse does not hold true in general. For an overview on the relations

between different notions of computability, the reader is referred to [Avigad and Brat-

tka(2014)] and the introductory textbook [Weihrauch(2000)].

The concept of Banach-Mazur computability may be extended to allow the investigation

of computable continuity properties of real-valued functions. A rectangle Ic Ă Rd
c , d P N,

is called a computable rectangle if the boundary values are computable numbers.

Definition 118 Let Ic Ă Rd
c , d P N, be a computable rectangle. A Banach-Mazur com-

putable function f : Ic Ñ RC is called computably continuous if it is effectively uniformly

continuous, i.e., there exists a recursive function g : NÑ N such that |fpxq ´ fpyq| ď 1
2M

holds true for all x, y P Ic and all M P N that satisfy

}x´ y} ď 1
gpMq

.

Remark 119 Per definition, every function that is computably continuous is also Banach-

Mazur computable. However, there exist infinitely many Banach-Mazur computable func-

tions that are not computably continuous (see [Avigad and Brattka(2014)] for a detailed

discussion.) Accordingly, it is not possible to compute the local variations for functions of

this kind.
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5.2.4. General results for computable sequences of numbers and

functions

In the following we establish some properties of computable sequences which will be

needed subsequently.

Lemma 120 Let tr4n unPN and trOnunPN be computable sequences of rational numbers that

satisfy

r4n ď r4n`1 ^ rOn ě rOn`1 ^ lim
mÑ8

r4m “ lim
mÑ8

rOm (5.12)

for all n P N. Then, x :“ limmÑ8 r
4
m “ limmÑ8 r

O
m is a computable number.

Proof 121 See e.g. [Pour-El and Richards(2017)].

Lemma 122 Let trr4n unPN and trrOnunPN be computable sequences of rational numbers that

satisfy

rr4n ď lim
mÑ8

rr4m ^ rrOn ě lim
mÑ8

rrOm ^ lim
mÑ8

rr4m “ lim
mÑ8

rrOm

for all n P N. Then, rx :“ limmÑ8 rr4m “ limmÑ8 rrOm is a computable number.

Proof 123 Define the sequences tr4n unPN and trOnunPN by setting r4n :“ maxtrr4m : m ď nu

and rOn :“ mintrrOm : m ď nu for all n P N. Then, the sequences tr4n unPN and trOnunPN

satisfy (5.12) with rx “ limmÑ8 r
4
m “ limmÑ8 r

O
m. Furthermore, since minimization and

maximization are recursive operations, the sequences tr4n unPN and trOnunPN are computable

sequences of rational numbers. Thus, by Lemma 120, we have rx P Rc.

Theorem 124 Let tx4n unPN and txOnunPN be computable sequences of computable numbers

that satisfy

x4n ď lim
mÑ8

x4m ^ xOn ě lim
mÑ8

xOm ^ lim
mÑ8

x4m “ lim
mÑ8

xOm

for all n P N. Then, x˚ :“ limmÑ8 x
4
m “ limmÑ8 x

O
m is a computable number.

Proof 125 By assumption, there exists a computable double sequence prr4n,mqn,mPN of ra-

tional numbers such that |x4n ´ rr4n,m| ă 2´m holds true for all n,m P N. Define the

sequence prr4n qnPN by setting rr4n :“ rr4n,n ´ 2´n for all n P N. By construction, prr4n qnPN

is a computable sequence of rational numbers which satisfies limnÑ8 rr4n “ x˚ as well as

rr4n ď x˚ for all n P N. Likewise, we can find a computable sequence prrOn qnPN of rational

numbers that satisfies limnÑ8 rrOn “ x˚ as well as rrOn ě x˚ for all n P N. Thus, by Lem.

122, x˚ is a computable number.

Lemma 120, 122 and Theorem 124 are based on the representation of computable numbers

through interval arithmetics. The same concept can be used to prove an effectivity result

for monotonic sequences of computable numbers.
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Theorem 126 Let pxnqnPN be a monotonically increasing computable sequence of com-

putable numbers that satisfies limnÑ8 xn “ x˚ for some (computable) real number x˚ P Rc.

Then, there exists a recursive function ζ : NÑ N such that

ˇ

ˇx˚ ´ xn
ˇ

ˇ ă
1

2N
.

holds true for all n,N P N that satisfy n ě ζpNq. That is, the sequence pxnqnPN converges

effectively to x˚.

Proof 127 The requirement of x˚ being a computable number ensures the existence of

a computable sequence prnqnPN of rational numbers that satisfies |x˚ ´ rn| ă 2´n for all

n P N. By setting

rOn :“ mintrm ` 2´m : m ď nu (5.13)

for all n P N, we obtain a monotonically decreasing computable sequence prOn qnPN of ra-

tional numbers with limnÑ8 r
O
n “ x˚. On the other hand, we can find a representation

of the sequence pxnqnPN in terms of a computable double sequence pqn,mqn,mPN of rational

numbers that satisfies |xn ´ qn,m| ă 2´m for all n,m P N. We have qn,n ´ 2´n ă xn ď xm

for all n,m P N that satisfy n ď m. Consequently, the computable sequence pr4n qnPN of

rational numbers defined by setting

r4n :“ maxtqm,m ´ 2´m : m ď nu (5.14)

for all n P N is monotonically increasing and satisfies r4n ă xm for all n,m P N with

n ď m as well as limnÑ8 r
4
n “ x˚ . We arrive at the inequality r4n ă xm ď x˚ ă rOn ,

which holds true for all n,m P N that satisfy n ď m. Therefore, we have |x˚ ´ xm| ă

rOn ´ r
4
n for all n,m P N that satisfy n ď m. Following the previously established equality

limnÑ8 r
O
n “ limnÑ8 r

4
n “ x˚, we also have limnÑ8pr

O
n ´ r

4
n q “ 0. Setting

ζpNq :“ mintn : rOn ´ r
4
n ď 2´Nu (5.15)

yields the required recursive function.

Remark 128 Given x˚ P Rc, Theorem 126 proves the effective convergence of any mono-

tonically increasing computable sequence pxnqnPN of computable numbers that satisfies

limnÑ8 xn “ x˚. The monotonicity of pxnqnPN is a necessary requirement in this context.

That is, there exist computable sequences of computable numbers that converge to a com-

putable number, but the convergence is non-effective. Consider any recursively enumerable

but non-recursive set A Ă N with recursive bijection ϕ : NÑ A and define the computable

sequence of rational numbers prnqnPN by settin rn :“ 2´ϕpnq. Then, limnÑ8 rn “ 0, which

is a computable number. On the other hand, prnqnPN does not converge effectively to 0,

since this would contradict the non-recursivity of A.
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Remark 129 Note that it is possible to find a computable sequence txnunPN of ratio-

nal numbers that converges to a computable real number x˚ P Rc (which can further be

rational), i.e.,

lim
nÑ8

ˇ

ˇx˚ ´ xn
ˇ

ˇ “ 0,

but the convergence is not effective. Then this sequence is not monotonically increasing

or decreasing.

Next, we establish similar results for computable sequences of computable continuous

functions.

Theorem 130 Let F : r0, 1s Ñ R be a computable continuous function and tFNuNPN be

a computable sequence thereof with FNpxq ď FN`1pxq, x P r0, 1s, and

lim
NÑ8

FNpxq “ F pxq.

Then there exists a recursive function ϕ : NÑ N such that for all M P N we have for all

N ě ϕpMq
ˇ

ˇF pxq ´ FNpxq
ˇ

ˇ ă
1

2M
.

Proof 131 Let QNpxq “ F pxq ´ FNpxq, x P r0, 1s. We have 0 ď QN`1pxq ď QNpxq and

limNÑ8QNpxq “ 0, x P r0, 1s. Let M P N be arbitrary. There exists an N0 “ N0pM,xq

with

QNpxq ă
1

2M
for all N ě N0pM,xq.

We define the set

SN,M “

!

x P r0, 1s : QNpxq ă
1

2M

)

and observe that SN,M Ă SN`1,M . Now, tSN,Mu is a family of open sets with r0, 1s Ă
Ť8

N“1 SN,M . Since r0, 1s is a compact set [Rudin(1987)], there exists an N0pMq with

r0, 1s Ă SN0,M and therewith QN0pxq ă
1

2M
for N0 and also all N ě N0. Let

max
xPr0,1s

QNpxq “ CN .

Since QN is a computable continuous function, we always have CN P Rc. Further, since

tQNuNPN is a computable sequence of computable real numbers, the sequence tCNuNPN

is also a computable sequence of computable real numbers. For all N P N it holds that

CN ě CN`1 and

lim
NÑ8

CN “ 0.

Accordingly, there exists a recursive function ϕ : NÑ N such that for all M P N we have

for all N ě ϕpMq
ˇ

ˇF pxq ´ FNpxq
ˇ

ˇ “
ˇ

ˇQNpxq
ˇ

ˇ ă
1

2M

which proves the desired result.
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Some remarks are in order:

1. The result extends to functions on compact spaces.

2. The result remains true for monotonically decreasing functions.

3. It is important that F is a computable continuous function. Already for computable

sequences of rational numbers with xn ď xn`1 that converge to a x˚ R Rc, we do

not have effective convergence, see e.g. [Specker(1949)].

4. A part of the proof is not effective as we required compactness which is needed to

show uniform convergence. This is subsequently used to show the effective conver-

gence of the computable continuous function F .

We can use Theorem 130 to show the following result.

Corollary 132 Let tFNuNPN and tGNuNPN be computable sequences of computable con-

tinuous functions on r0, 1s with

FNpxq ď FN`1pxq ď GN`1pxq ď GNpxq

and

lim
NÑ8

FNpxq “ lim
NÑ8

GNpxq “: Φpxq, x P r0, 1s.

Then Φ : r0, 1s Ñ R is also a computable continuous function and tFNuNPN and tGNuNPN

converge effectively to Φ.

Proof 133 We set

QNpxq “ GNpxq ´ FNpxq, x P r0, 1s,

and tQNuNPN is a computable sequence of computable continuous functions. For x P r0, 1s

we have

QNpxq ě GN`1pxq ´ FNpxq

ě GN`1pxq ´ FN`1pxq “ QNM pxq

and

lim
NÑ8

QNpxq “ 0, x P r0, 1s.

Now, from Theorem 130 follows that the computable sequence tQNuNPN of computable

continuous functions converges effectively to 0 proving the desired result.

Similar results for computable sequences of Banach-Mazur computable functions can be

derived. We will use the following theorem in analyzing computability of upper and lower

bounds for capacity functions introduced in the next section. We consider sequences
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of functions over computable real numbers as well as those over computable compound

channels.

Theorem 134 Let tFNunPN and tGNunPN be computable sequences of functions FN :

r0, 1s X Rc Ñ Rc and GN : r0, 1s X Rc Ñ Rc, N P N, with

FNpxq ď FN`1pxq, x P r0, 1s X Rc,

GNpxq ě GN`1pxq, x P r0, 1s X Rc,

and

lim
NÑ8

FNpxq “ lim
NÑ8

GNpxq “: Φpxq, x P r0, 1s X Rc.

Then Φ : r0, 1s X Rc Ñ R is also a Banach-Mazur computable function.

This result allows us to consider the computability of lower and upper bounds on the

ε-capacity as a function of the error input, i.e. ε.

5.3. Basic concepts and capacity results

We first introduce the concept of classical compound channels, and apply the findings

thus far to its ε-capacity afterwards.

Let X and Y be finite input and output alphabets and S be a finite state (uncertainty)

set. Then for a fixed channel state s P S, the channel is given by a stochastic matrix

Ws : X Ñ PpYq which we interchangeably also write as Ws P CHpX ;Yq, where the latter

denotes the set of all channels from X to Y . The channel state s P S is assumed to remain

constant throughout the whole transmission so that the discrete memoryless channel is

given by Wspy
n|xnq :“

śn
i“1 Wspyi|xiq for all xn P X n and yn P Yn.

Definition 135 The compound channel generated by uncertainty setW :“ tWs P CHpX ;Yq :

s P Su is given by the sequence of channels tW n
s ,Ws P Wu8n“1. The set of all such com-

pound channels is denoted by CCpX ,S;Yq.

Further, let CHcpX ;Yq be the set of all computable channels, i.e. for a channel W P

CHcpX ;Yq we have W p¨|xq P PcpYq for every x P X . Finally, computable compound

channels are defined as follows.

Definition 136 A compound channel generated W “ tWs P CHcpX ;Yq : s P Su is said

to be computable if there is a recursive function ϕ : S Ñ CHcpX ,S;Yq with ϕpsq “ Ws

for all s P S. The set of all computable compound channels is denoted by CCcpX ,S;Yq.

We require namely, that the compound set W P CCcpX ,S;Yq is algorithmically con-

structable i.e., for every state s P S the channel Ws can be constructed by an algorithm

(or Turing machine) with input s. We further need a concept of distance. For two chan-

nels W1,W2 P CHpX ;Yq we define the d-distance between W1 and W2 based on the total

100



5.3. Basic concepts and capacity results

variation distance as

dpW1,W2q “ max
xPX

ÿ

yPY

ˇ

ˇW1py|xq ´W2py|xq
ˇ

ˇ.

To extend this concept to compound channels, we consider the worst case distance between

W1 P CCpX ,S1;Yq and W2 P CCpX ,S2;Yq as

DpW1,W2q “ max max
s1PS1

min
s2PS2

dpWs1 ,Ws2q,

max
s2PS2

min
s1PS1

dpWs2 ,Ws1q
(

. (5.16)

Further, on the interval I “ r0, 1s we define the distance DIpε1, ε2q “ |ε1 ´ ε2|.

We define the set W “ CCpX ,S;Yq ˆ I and the distance

DWppW1, ε1q, pW2, ε2qq “ max DpW1,W2q, DIpε1, ε2q
(

for pWi, εiq PW, i “ 1, 2. Then, pW, DWq is a compact Hausdorff space [Rudin(1987)].

We further set

Wc “ pW , εq :W P CCcpX ,S;Yq, ε P Ic
(

with Ic “ IX Rc the computable interval. We have the following properties:

1. Dp¨, ¨q is a computable continuous function on CCcpX ,S;Yq which follows from its

definition.

2. DIp¨, ¨q is a computable continuous function on Ic which follows similarly.

3. DWp¨, ¨q is a computable continuous function on Wc, since it is the maximum of two

computable continuous functions.

Since the actual channel state is unknown to transmitter and receiver, universal encoder

and decoder are needed that are independent of the channel state.

Definition 137 An pn,Mnq-code is a set of doublets tpxm, Dmq,m P rMnsu with

• xm P X n,m P rMns and

• Dm Ă Yn,m P rMns such that Dm

Ş

Dm1 “ H for m ‰ m1 and
Ť

mPrMns
Dm “ Yn.

As the receiver needs to decode the transmitted message for all possible channel real-

izations, we define the average probability of error for the compound channel W as

ēnpWq “ max
sPS

1

Mn

ÿ

mPrMns

em,s,n

with

em,s,n :“
ÿ

ynPDcm

W n
s py

n
|xmq. (5.17)
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This leads to two definitions for achievable rate of communication, when some ε ě 0

amount of error is allowed. We refer to the first one as the traditional definition (c.f

[Ahlswede(2015)]) and the second one as the alternative (optimistic) definition (c.f [Yagi

and Nomura(2014)]). In the following, we consider these two definitions and derive capac-

ity results for each. Before stating the capacity results, we need the following notation.

The mutual information IpX;Y q, between two random variables pX, Y q, is defined by

IpX;Y q :“ HpXq ´HpY |Xq. (5.18)

Also, given W P CHpX ,Yq and random variables pX, Y q distributed according to PX “ P

and PY |Xp¨|¨q “ W p¨|¨q on X and Y respectively, we define

IpP,W q :“ IpX;Y q. (5.19)

This quantity is called mutual information of the channel W . For properties of this

quantity see [Csiszár and Körner(1981)]. To state our results related to the zero-error

capacity of the channel, we need the concept of a simple graph G “ pV pGq, EpGqq,

characterized by the set of vertices V pGq and the set of edges EpGq. Again given W P

CHpX ,Yq and any x P X , define sets Yx :“ ty P Y : W py|xq ą 0u and the graph

GpW q “ pX , EW pGqq with

EW pGq :“ tpx, x1q : Yx
č

Yx1 “ Hu. (5.20)

Also, for P P PpX q, δ ą 0, let T nP,δ be the set of all δ-typical sequences in X n (see

Appendix A for properties of δ-typical sequences). Let GnrP, δs be the graph induced by

GpW nq on the set T nP,δ. We define

C0pW,P q :“ lim
δÑ0

lim sup
nÑ8

1

n
logωpGn

rP, δsq,

where ωpGnrP, δsq is the clique number of the graph GnrP, δs, namely

ωpGn
rP, δsq :“ maxt|Ω| : Ω Ă V pGn

rP, δsq : x, x1 P Ω Ñ Yx
č

Yx1 “ Hu. (5.21)

5.3.1. Traditional definition of ε-capacity

We define the following numbers for n P N and 0 ď ε ă 1, one corresponding to the average

error criterion and the next to the maximum error criterion. The following definitions

lead to the traditional definitions of ε-capacity of the compound channel.

1. NpW , ε, nq :“ maxtN P N : Dpn,Nq ´ code for W with enpWq ď εu,

2. NmaxpW , ε, nq :“ maxtN P N : Dpn,Nq´code for W with maxsPS maxmPrNs es,npmq ď

εu.
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We consider two notations of capacity corresponding to these numbers that are defined

in the following.

Definition 138

Let W P CCpX ,S;Yq and 0 ď ε ă 1. Then

• CpW , εq :“ lim supnÑ8
1

nlogNpW , ε, nq and CmaxpW , εq :“ lim supnÑ8
1
n logNmaxpW , ε, nq

are the optimistic ε-capacities of W under average and maximal error criteria re-

spectively.

• Also CpW , εq :“ lim infnÑ8
1
n

logNpW , ε, nq and CmaxpW , εq :“ lim infnÑ8
1

n
logNmaxpW , ε, nq

are the pessimistic ε-capacities of W under average and maximal error criteria re-

spectively.

• Finally, CpW , εq and CmaxpW , εq are the ε-capacities of W under average and max-

imal error criteria, if

lim supnÑ8 
1 

n

logNpW , ε, nq “ lim infnÑ8
1
n

log NpW , ε, nq and lim supnÑ8 
1
n

log NmaxpW , ε, nq 

=lim infnÑ8 
1
n

log NmaxpW , ε, nq respectively.

The asymptotic behavior of NmaxpW , ε, nq, ε P r0, 1q of the compound channel has
already been established in the literature and is stated in the following.

Theorem 139 ( [Blackwell et al.(1959)Blackwell, Breiman, and 
Thomasian,Wolfowitz(1960)]) For W P CCpX , S; Yq it holds for ε P p0, 1q

Cmax
pW , εq “ max

PXPPpX q
min
sPS

IpPX ,Wsq “: CpWq, (5.22)

and for ε “ 0,

Cmax
pW , εq “ max

PPPpX q
min
sPS

C0pWs, P q “: C0pWq. (5.23)

Proof 140 See [Blackwell et al.(1959)Blackwell, Breiman, and Thomasian,Wolfowitz(1960)]

for proof of (5.22) and [Csiszár and Körner(1981)] for (5.23).

We refer to CpWq and C0pWq as the compound capacity and zero-error compound capacity

of W .

This result is in fact a generalization of similar results for the case of perfectly known

channel state (|S| “ 1). In other words, defining NpW, ε, nq :“ NpW , ε, nq for W “ tW u,

the following holds.

Theorem 141 For W P CHpX ;Yq it holds for ε P p0, 1q

lim
nÑ8

1

n
logNmax

pW, ε, nq “ max
PXPPpX q

IpPX ,Wsq “: CpW q, (5.24)

and for ε “ 0,

lim
nÑ8

1

n
logNpW, ε, nq “ lim

nÑ8

1

n
logNmax

pW, ε, nq “ max
PPPpX q

C0pW,P q “: C0pW q. (5.25)
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This gives a complete characterization of the asymptotic behavior of NmaxpW , ε, nq, ε P

r0, 1q. Such a characterization is missing for NpW , ε, nq, ε P p0, 1q, because there is in

general no strong converse for this number (see [Ahlswede(1967b)]). It is of course clear

that for ε “ 0, NpW , ε, nq “ NmaxpW , ε, nq. This characterization does not exist even

for compound channels with two channel states (|S| “ 2). In what follows we state

two results, one already existing from [Ahlswede(2015)] and another, the achievablity for

ε “ 1
2
. A converse for this point is still missing.

Lemma 142 ( [Ahlswede(2015)]) For W :“ tW1,W2u Ă CCpX , t1, 2u;Yq, it holds

CpW , εq “

$

&

%

CpWq for 0 ă ε ă 1{2

mins“1,2CpWsq for 1{2 ă ε ă 1
. (5.26)

The following is the achievability statement for ε “ 1{2.

Lemma 143 For W Ă CCpX , t1, 2u;Yq with C0pWq ą 0, it holds

• lim infnÑ8
1
n

logNpW , 1
2
, nq ě maxtCpWq,mins“1,2 C0pWsqu.

Proof 144 If CpWq ě mins“1,2 C0pWsq, the assertion is clear, as CpWq ď CpW , 1
2
q.

Assume otherwise. Since by assumption of the lemma C0pWq ą 0, from Theorem 141,

there exists a k P N, for which there exists a p2, kq-code consisting at the encoder of

x1, x2 P X k and at the decoder of D1, D2 Ă Yk, with D1

Ş

D2 “ H, D1

Ť

D2 “ Yn,

such that mins“1,2 mini“1,2

ř

ykPDi
Wspy

k|xiq “ 1. By Theorem 141, for δ ą 0, there exists

l0 P N such that for l ą l0, there exist pl,Mlq-codes tpu
psq
j , Λ

psq
j q, i P rMnsu for s “ 1, 2,

with 1
l

logMl ě mins“1,2 C0pWsq ´ δ and maxs“1,2 maxmPrMls el,spmq “ 0. Construct the

pk ` l, 2Mlq-code tp̊um, D̊mq,m P r2Mls as

• ům :“ x1 ‘ u
p1q
m , for m P rMls,

• ům :“ x2 ‘ u
p2q
m´Ml

, for m P tMl ` 1, . . . , 2Mlu.

and decoding operations defined by

• D̊m :“ D1 ˆ Λ
p1q
m , for m P rMls,

• D̊m :“ D2 ˆ Λ
p2q
m´Ml

, for m P tMl ` 1, . . . , 2Mlu.

We calculate the error due to this code. We have thee following average probability of

success for W1:
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1

2Ml

`

ÿ

mPr2Mls

1´ ek`l,1pmq
˘

“
1

2Ml

ÿ

yk`lPD1ˆΛ
p1q
m

W k`l
1 pyk`l|x1 ‘ u

p1q
m q

`
1

2Ml

ÿ

yk`lPD2ˆΛ
p2q
m

W k`l
1 pyk`l|x2 ‘ u

p2q
m q

ě
1

2Ml

ÿ

yk`lPD1ˆΛ
p1q
m

W k`l
1 pyk`l|x1 ‘ u

p1q
m q

“
1

2Ml

ÿ

ykPD1

W k
1 py

k
|x1q

ÿ

ylPΛ
p1q
m

W l
1py

l
|up1qm q “ 1{2. (5.27)

Similar calculation yields the same lower bound on 1
2Ml

`
ř

mPr2Mls
1´ek`l,2pmq

˘

and hence

we conclude epWq ď 1
2
. Hence, for n :“ k ` l we have

lim inf
nÑ8

1

n
NpW ,

1

2
, nq ě lim inf

lÑ8

1

l ` k
log 2Ml

ě lim inf
lÑ8

l

l ` k

1

l
log 2Ml

ě min
s“1,2

C0pVsq ´ δ. (5.28)

As δ ą 0 was arbitrary, we are done.

5.3.2. Alternative definition of ε-capacity

Alternatively, we can consider a definition of ε-capacity with a more relaxed requirement

on error. Much like the previous case, we start by defining the following numbers for

n P N and 0 ď ε ă 1, one corresponding to the average error criterion and the next to the

maximum error criterion.

1. NAltpW , ε, nq :“ maxtNn P N : D a sequence of pk,Nkq ´ codes for W
with lim supkÑ8 ekpWq ď εu,

2. Nmax
Alt pW , ε, nq :“ maxtNn P N : D a sequence of pk,Nkq ´ codes for W

with

lim supkÑ8 maxsPS maxmPrNs es,kpmq ď εu.

Again, given these numbers we can define two notions of capacity.

Definition 145 Let W P CCpX ,S;Yq and 0 ď ε ă 1. Then

• CAltpW , εq :“ lim supnÑ8
1
n

logNAltpW , ε, nq and Cmax
Alt pW , εq :“ lim supnÑ8

1
n

log NAl
max
t pW , ε, nq

are the optimistic ε-capacities of W under average and maximal error criteria re-

spectively.
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• Also CAltpW , εq :“ lim infnÑ8
1
n

logNAltpW , ε, nq and Cmax
Alt pW , εq :“ lim infnÑ8

1

n

log NAl
max
t pW , ε, nq

are the pessimistic ε-capacities of W under average and maximal error criteria re-

spectively.

• Finally, CAltpW , εq and Cmax
Alt pW , εq are the ε-capacities of W under average and

maximal error criteria, if CAltpW , εq “ CAltpW , εq and Cmax
Alt pW , εq “ Cmax

Alt pW , εq

respectively.

To a large part the alternative definition coincides asymptotically with the previ-

ous definition. For instance, Theorem 139, can be stated as follows (see [Blackwell

et al.(1959)Blackwell, Breiman, and Thomasian,Wolfowitz(1960)]).

Theorem 146 For W P CpX ,S;Yq it holds for ε P r0, 1q

lim
nÑ8

Cmax
Alt pW , εq “ CpWq. (5.29)

Notice that here, ε “ 0 does not correspond to the zero-error capacity of the channel

defined previously. We give a characterization of NAltpW , ε, nq, for 0 ď ε ă 1 and W P

CpX , t1, 2u;Yq. We also state similar results for the case of perfectly known channel state

(|S| “ 1).

Theorem 147 For W P CHpX ;Yq it holds for ε P r0, 1q

lim
nÑ8

1

n
logNmax

Alt pW, ε, nq “ CpW q. (5.30)

We prove the following.

Theorem 148 For W P CpX , t1, 2u;Yq it holds,

CAltpW , εq “

$

&

%

CpWq for 0 ď ε ă 1{2

mins“1,2 CpWsq for 1{2 ď ε ă 1
. (5.31)

We prove this theorem in two steps. The first step is proof of achievability that is formu-

lated in the following lemma.

Lemma 149 For W P CCpX , t1, 2u;Yq it holds

lim inf
nÑ8

1

n
logNAltpW ,

1

2
, nq ě min

s“1,2
CpWsq.

To prove the statement of achievability, we need the following result and in particular, a

corollary of it that is stated afterwards.

Lemma 150 ForW P CCpX , t1, 2u;Yq with CpWq “ 0 it holds lim supnÑ8
1
n

logNAltpW , ε, nq “

0 for 0 ă ε ă 1.

Corollary 151 For W P CCpX , t1, 2u;Yq with CpWq “ 0, it holds, mins“1,2 CpWsq “ 0.
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Proof 152 From Lemma 142 we have lim supnÑ8
1
n

logNpW , ε, nq “ mins“1,2 CpWsq for

ε P p1{2, 1q. Combining this with Lemma 150 we obtain the result.

Proof 153 (Proof of Lemma 150) For ε P p0, 1q, n P N let CID :“ tpum, D
s
mq

M
m“1 : s “

1, 2u be an pn,Mq-code with informed decoder (see Section 5.3.3 for precise definition),

namely

max
s“1,2

1

M

ÿ

mPrMs

ÿ

ynPDsm

W n
s py

n
|umq ď ε. (5.32)

Let p˚ be an equidistribution on the message set. Consider the pair of random variables

pXs, X
1
sq with joint distribution

PpXs “ m,X 1
s “ m1

q “ p˚pmq
ÿ

ynPDs
m1

W n
s py

n
|umq. (5.33)

Therefore from (5.32) we have

PpXs ‰ X 1
sq ď ε. (5.34)

We have

logM “ Hpp˚q “ IpXs;X
1
sq `HpXs|X

1
sq ď IpXs;X

1
sq ` ε logM ` 1, (5.35)

where IpXs;X
1
sq is the mutual information of random variables Xs, X

1
s and the first in-

equality comes from (5.34) and Fano’s inequality. Rearranging the above inequality and

observing that it holds for s “ 1, 2 yields

p1´ εq logM ď min
s“1,2

IpXs, X
1
sq ` 1 ď max

PXPPpXnq
min
s“1,2

IpPX ,W
n
s q ` 1. (5.36)

Notice that by definition of NAltpW , ε, nq, the error is upper-bounded by a fixed number

independent of n. Therefore we have p1 ´ εq lim supnÑ8
1
n

logM ď CpWq “ 0. We are

done.

Proof 154 (Proof of Theorem 149 ) Let CpWq ą 0, otherwise from Lemma 150 we

conclude mins“1,2 CpWsq “ 0 and there is nothing to prove. Therefore, according to

Theorem 147, there exists k0 P N such that for k ą k0, we have two doublets pui, Diq, i “

1, 2 with ui P X k and D1

Ş

D2 “ H, D1

Ť

D2 “ Yk such that

min
s“1,2

min
i“1,2

ÿ

ykPDi

Wspy
k
|uiq ě 1´ εk. (5.37)

with εk Ñ 0 as k Ñ 8. These doublets are what we use for channel state estimation.

By Theorem 147, for δ0 ą 0, there exists l0, such that for l ą l0 we find pl,Mlq-codes
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tpv
psq
m , Λ

psq
m q : m P rMlsu for s “ 1, 2 with

1

l
logMl ě min

s“1,2
CpWsq ´ δ0 (5.38)

such that

min
s“1,2

1

Ml

ÿ

mPrMls

ÿ

ylPΛ
psq
m

W l
spy

l
|vpsqm q ě 1´ ε̂l, (5.39)

with ε̂l Ñ 0 as l Ñ 8. Define the p2Ml, k ` lq-code tp̊um, D̊mq : m P 2Mlu with encoding

sequences defined by:

• ům :“ u1 ‘ v
p1q
m , for m P rMls,

• ům :“ u2 ‘ v
p2q
m´Ml

, for m P tMl ` 1, . . . , 2Mlu,

and decoding operations defined by sets

• D̊m :“ D1 ˆ Λ
psq
m , for m P rMls,

• D̊m :“ D2 ˆ Λ
p2q
m´Ml

, for m P tMl ` 1, . . . , 2Mlu.

Calculating the success probability due to this code, we obtain for W1:

1

2Ml

`

ÿ

mPr2Mls

1´ ek`l,1pmq
˘

“
1

2Ml

m“Ml
ÿ

m“1

ÿ

yk`lPD1ˆΛ
p1q
m

W k`l
1 pyk`l|u1 ‘ v

p1q
m q

`
1

2Ml

m“Ml
ÿ

m“1

ÿ

yk`lPD2ˆΛ
p2q
m

W k`l
1 pyk`l|u2 ‘ v

p2q
m q

ě
1

2Ml

m“Ml
ÿ

m“1

ÿ

yk`lPD1ˆΛ
p1q
m

W k`l
1 pyk`l|u1 ‘ v

p1q
m q

“
1

2Ml

m“Ml
ÿ

m“1

ÿ

ykPD1

W k
1 py

k
|u1q

ÿ

ylPΛ
p1q
m

W l
1py

l
|vp1qm q

ě
1

2
p1´ εkqp1´ ε̂lq. (5.40)

Similar calculation yields the same lower bound on 1
2Ml

`
ř

mPr2Mls
1´ek`l,2pmq

˘

and hence

we conclude epWq ď 1´ 1
2
p1´ εkqp1´ ε̂lq. Set k “

?
l and n :“ l`

?
l. We therefore have

lim inf
nÑ8

1

n
logNAltpW ,

1

2
, nq

ě lim inf
lÑ8

1

l `
?
l

log 2Ml

“ lim inf
lÑ8

l

l `
?
l

1

l
plog 2` log M̂lq ě min

s“1,2
CpWsq ´ δ0. (5.41)

Since δ0 was arbitrary, we are done.
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To prove Theorem 148, it remains to show the following statement of converse.

Lemma 155 For W P CCpX , t1, 2u;Yq it holds

lim sup
nÑ8

1

n
logNAltpW ,

1

2
, nq ď min

s“1,2
CpWsq.

Proof 156 Let Cn be a sequence of pn,Mnq-codes for W with lim supnÑ8 ēnpWq “ 1
2
. In

other words we have ēnpWq “ 1
2
` δn with δn Ñ 0 as n Ñ 8. Choosing n large enough

such that δn ă
1
2
, we obtain ēnpWq ă 1. Hence for large enough values of n we have

NAltpW , 1
2
, nq ď NpW , ε, nq with ε ă 1. The proof then follows from Lemma 142.

Proof 157 (Proof of Theorem 148) For ε “ 1{2, given Lemma 149 and Lemma 155

we have

limnÑ8
1
n

logNAltpW , 1
2
, nq “ mins“1,2 CpWsq. For ε P p0, 1

2
q
Ť

p1
2
, 1q, the operational in-

equality NAltpW , ε, nq ě NpW , ε, nq for n P N is clear. We prove the inequality

NAltpW , ε, nq ď NpW , ε, nq. Let there be a sequence of pn,Mnq-codes with lim supnÑ8 enpWq ď
ε. Hence we have

enpWq ď ε` δn, (5.42)

with δn Ñ 0 as nÑ 8.

• For ε P p0, 1
2
q, let ε “ 1

2
´ δ for some δ ą 0. This implies

enpWq ď
1

2
´ δ ` δn. (5.43)

Choosing n large enough such that δn ă δ, we conclude enpWq ă 1
2

and hence

NAltpW , ε, nq ď NpW , ε, nq.

• For ε P p1
2
, 1q, let ε “ 1´ δ1 for some δ1 ą 0. Here (5.42) implies

enpWq ď 1´ δ ` δn. (5.44)

Choosing n large enough such that δn ă δ, we conclude enpWq ă 1 and hence

NAltpW , ε, nq ď NpW , ε, nq.

We are done.

5.3.3. The case with informed decoder

In this section, a variation of our results are derived for the case where the decoder knows

the state s P S of the channel in use. As such, the decoding sets depend on s P S, yielding

Dm,s Ă Yn, m P rMns such that Dm,s

Ş

Dm1,s “ H for m ‰ m1 and
Ť

mPrMns
Dm,s “ Yn

for s P S. In the following definitions, ID stands for informed decoder. We show that

in this case, we do not need to require that the compound zero-error capacity C0pWq is
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strictly positive for our coding. After all this assumption was required to communicate

channel state information to the decoder. We define the average probability of error with

informed decoder for the compound channel W as

ēnpW , IDq “ max
sPS

1

Mn

ÿ

mPrMns

eIDm,s,n

with

eIDm,s,n :“
ÿ

ynPDcm,s

W n
s py

n
|xmq, s “ 1, 2. (5.45)

We define the following numbers for n P N and 0 ď ε ă 1, one corresponding to the average

error criterion and the next to the maximum error criterion. The following definitions

lead to the traditional definitions of ε-capacity of the compound channel with informed

decoder.

1. NpW , ε, n, IDq :“ maxtN P N : Dpn,Nq ´ code for W with enpW , IDq ď εu,

2. NmaxpW , ε, n, IDq :“ maxtN P N : Dpn,Nq´code for W with maxsPS maxmPrNs e
ID
s,npmq ď

εu.

The capacity functions CpW , ε, IDq, CmaxpW , ε, IDq are defined accordingly (see Defi-

nition 138). The following three statements are essential to our computability analysis of

compound broadcast channel.

Lemma 158 ( [Ahlswede(2015)]) For W :“ tW1,W2u Ă CCpX , t1, 2u;Yq, it holds

CpW , ε, IDq “

$

&

%

CpWq for 0 ă ε ă 1{2

mins“1,2 CpWsq for 1{2 ă ε ă 1
. (5.46)

We prove an achievability statement for ε “ 1{2. Here, given the fact that the decoder is

informed, we do not need the assumption of C0pWq ą 0.

Lemma 159 For W P CCpX , t1, 2u;Yq, it holds

lim inf
nÑ8

1

n
logNpW ,

1

2
, n, IDq ě maxtCpWq, min

s“1,2
C0pWsqu. (5.47)

Proof 160 If CpWq ě mins“1,2 C0pWsq, the assertion is clear, as by [Ahlswede(2015)],

CpWq “ CpW , ε ă 1
2
q ď CpW , 1

2
, IDq. Assume otherwise. By Theorem 141, for δ ą 0,

there exists l0 P N such that for l ą l0, there exist pl,Mlq-codes tpu
psq
j , Λ

psq
j q, i P rMlsu

for s “ 1, 2, with 1
l

logMl ě mins“1,2 C0pWsq ´ δ and maxs“1,2 maxmPrMls el,spmq “ 0.

Choose Ml to be an even number. Construct the pl,Mlq-code with informed decoder

tp̊um, Λ
psq
m q,m P rMls, s “ 1, 2u as

• ům :“ u
p1q
m , for m P t1, . . . , Ml

2
u,
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• ům :“ u
p2q
m , for m P t

Ml

2
` 1, . . . ,Mlu.

We calculate the error due to this code. We have the following average probability of

success for W1:

1

Ml

`

ÿ

mPrMls

1´ eIDl,1 pmq
˘

“
1

Ml

Ml
2
ÿ

m“1

ÿ

ylPΛ
p1q
m

W l
1py

l
|up1qm q

`
1

M1

Ml
ÿ

m“
Ml
2
`1

ÿ

ylPΛ
p1q
m

W l
1py

l
|up2qm q

ě
1

Ml

Ml
2
ÿ

m“1

ÿ

ylPΛ
p1q
m

W l
1py

l
|up1qm q “ 1{2. (5.48)

Similar calculation yields the same lower bound on 1
Ml

`
ř

mPrMls
1´eIDl,2 pmq

˘

and hence we

conclude epW , IDq ď 1
2
. Hence, we have

lim inf
lÑ8

1

l
logNpW ,

1

2
, l, IDq ě lim inf

lÑ8

1

l
logMl

ě min
s“1,2

C0pWsq ´ δ. (5.49)

As δ ą 0 was arbitrary, we are done.

The case with informed encoder can also be considered when the decoder has channel

state information. We derive similar results.

Theorem 161 For W P CpX , t1, 2u;Yq it holds,

CAltpW , ε, IDq “

$

&

%

CpWq for 0 ď ε ă 1{2

mins“1,2 CpWsq for 1{2 ď ε ă 1
. (5.50)

Proof 162 First we show the statement for ε “ 1{2. In this case, from Lemma 149 we

have

lim infnÑ8
1
n

logNAltpW , 1
2
, n, IDq ě lim infnÑ8

1
n

logNAltpW , 1
2
, nq ě mins“1,2 CpWsq, where

the last inequality is from Lemma 149. To see the converse, let Cn,ID be a sequence of

pn,Mnq-codes with informed decoder for W with lim supnÑ8 ēnpW , IDq “ 1
2
. In other

words we have ēnpW , IDq “ 1
2
` δn with δn Ñ 0 as n Ñ 8. Choosing n large enough

such that δn ă
1
2
, we obtain ēnpW , IDq ă 1. Hence for large enough values of n we have

NAltpW , 1
2
, n, IDq ď NpW , ε, n, IDq with ε ă 1. The proof then follows from Lemma 5.46.

Therefore we have

limnÑ8
1
n

logNAltpW , 1
2
, n, IDq “ mins“1,2 CpWsq.

For ε P p0, 1
2
q
Ť

p1
2
, 1q, the operational inequality NAltpW , ε, n, IDq ě NpW , ε, n, IDq for
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n P N is clear. We prove the inequality

NAltpW , ε, n, IDq ď NpW , ε, n, IDq. 
Let there be a sequence of pn, Mnq-codes with lim supnÑ8 enpW , IDq ď ε. Hence we have

enpW , IDq ď ε` δn, (5.51)

with δn Ñ 0 as nÑ 8.

• For ε P p0, 1
2
q, let ε “ 1

2
´ δ for some δ ą 0. This implies

enpW , IDq ď
1

2
´ δ ` δn. (5.52)

Choosing n large enough such that δn ă δ, we conclude enpW , IDq ă 1
2

and hence

NAltpW , ε, n, IDq ď NpW , ε, n, IDq.

• For ε P p1
2
, 1q, let ε “ 1´ δ1 for some δ1 ą 0. Here (5.51) implies

enpW , IDq ď 1´ δ ` δn. (5.53)

Choosing n large enough such that δn ă δ, we conclude enpW , IDq ă 1 and hence

NAltpW , ε, n, IDq ď NpW , ε, n, IDq.

The proof follows from Lemma 5.46.

Example 163 An example of two-state compound channel (|S| “ 2), with two

dimensional input-output alphabets (|X | “ |Y | “ 2), where CpWq ă mins“1,2 CpWsq

Consider the compound channel generated by W :“ tW1,W2u Ă CHpX ,S;Yq,X “ Y “
t1, 2u, defined by the following stochastic matrices:

W1 :“

˜

1 0

1{2 1{2

¸

W2 :“

˜

1{2 1{2

1 0

¸

. (5.54)

We have

max
pPPpX q

Ipp,Wsq “ logp5{4q, s “ 1, 2, (5.55)

with maximum taking place at p “ p3{5, 2{5q and p1 “ p2{5, 3{5q for W1 and W2 respec-

tively.Therefore we have

maxpPPpX q mins“1,2 Ipp,Wsq ă mins“1,2 maxpPPpX q Ipp,Wsq. We also note that C0pWsq “

0, s “ 1, 2. From the capacity results of this section, we conclude for this example,

CAltpW , ε ă 1{2q “ CAltpW , ε ă 1{2, IDq ă CAltpW , ε ě 1{2q. (5.56)

The following example is from [Ahlswede(2015)]. We state this example here for later

references.
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5.4. Banach-Mazur computability of ε-capacity

Example 164 An example where CpW , Pă 1
2
q ă CpW , Pě 1{2q

Consider the compound channel generated by W :“ tW1,W2u Ă CHpX , t1, 2u;Yq,X “

Y “ t1, . . . , 5u, defined by the following stochastic matrices:

W1 :“

¨

˚

˚

˚

˚

˚

˚

˝

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 1 0 0

0 0 1 0 0

˛

‹

‹

‹

‹

‹

‹

‚

W2,δ :“

¨

˚

˚

˚

˚

˚

˚

˝

0 0 1 0 0

0 0 1 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‚

. (5.57)

It was show in [Ahlswede(2015)] that for this example, we have

CpW , ε ă 1{2q ă min
s“1,2

CpWsq “ CpW , ε ě 1{2q “ log 3. (5.58)

5.4. Banach-Mazur computability of ε-capacity

As explained in the previous section, in general the strong converse for compound channels

under the average error criterion does not hold, i.e. there exist channel W˚ and error

ε˚ P p0, 1q with

CpW˚, ε˚q ą CpW˚q.

This is also true about CAltpW , εq. This can be contrasted with the complete characteri-

zation that exists for CmaxpW , εq and Cmax
Alt pW , εq given by Theorems 139 and 146. Trying

to address this problem, Ahlswede raised the following question [Ahlswede(2015), Secion

3]:

Ahlswede’s Question: Does a (simple) recursive formula exist for the ε-capacity

CpW , εq of the compound channel W?

From a practical point of view, this is an important question. It is relevant to compute

the ε-capacity of compound channels, since practical systems will always be designed

such that they tolerate a certain fixed decoding error ε. However, in what follows, we

will obtain a negative answer to Ahlswede’s question. As a consequence, there exists no

formula for the ε-capacity CpW , εq which is in contrast to the maximal error criterion

capacity CmaxpW , εq. The negative answer is provided to computability of CAltpW , ¨q,

namely, the function is not computable in its error input. This is the subject of the

following theorem.

Theorem 165 The following statements hold.

• Given W P CpX ,S;Yq and ε̂ ą 0, the capacity functions CpW , ¨q : pε̂, 1q X Rc Ñ R
and CAltpW , ¨q : pε̂, 1q X Rc Ñ R, are not in general Banach-Mazur computable.
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Proof 166 We first prove the statement for CAlt, for all |X | ě 2, |Y | ě 2 and |S| ě 2.

Consider the compound channel W given by Example 163, given by (5.54). First consider

the error ε˚ “ 1{2. As shown in the example, we have CpW , ε˚q “ logp5{4q. Also, for

k P N, consider εk :“ 1
2
´ 1

2k
, k ě 2. As such we have

|ε˚ ´ εk| “
1

2k
, lim

kÑ8
|ε˚ ´ εk| “ 0.

Given the calculation done for (5.54) , we have @k P N, k ě 2, CpW , εkq “ logp5{4q ´ b,

for some constant b ą 0. The remainder of the proof follows by contradiction. For this

purpose, assume CpW , ¨q is Banach-Mazur computable. This implies that the computable

sequence tεkukPN Ă Ikc is mapped into a computable sequence tCpW , εkqukPN of real num-

bers.

Let A Ă N be an arbitrary recursively enumerable set such that A is not recursive, i.e.

Ac is not recursively enumerable. This means (see Definition 107), we can construct a

total function g, i.e. domainpgq “ N, such that gprNsq “ A and g is recursive and there-

with a computable function. Furthermore, without loss of generality, we can require that

g : NÑ A is a one-to-one mapping from N to A.

To show that the ε-capacity is not Banach-Mazur computable, we present the following con-

struction, originally conceived in [Pour-El and Richards(2017)]. For every pk, lq P NˆN
we define the computable function q : Nˆ NÑ N as

qpk, lq :“

$

&

%

2l`2 k R tgp0q, . . . , gp2l`2qu

r k P tgp0q, . . . , gp2l`2q and gprq “ k
. (5.59)

Note that r above is unique. Since A is recursively enumerable, the function q is indeed

recursive and therewith computable.

Next we consider the double sequence tεqpk,lqupk,lqPNˆN of errors, that is effectively com-

putable, given that q is a recursive function. The idea is, that for each k P N, tεqpk,lqulPN,

converges effectively to some ε̂k P Ic. Furthermore, the sequence tε̂kukPN is a sequence in

Ic. Now we construct for every k P N, a computable function φk such that for all k P N,

it holds

|εqpk,lq ´ ε̂k| ă
1

2m
,

for all l ě φkpmq. We particularly note that the function φpk,mq “ φkpmq with φ :

Nˆ NÑ N is a computable function in both arguments.

For k P A let l0 be the smallest natural number such that k P tgp0q, . . . , gp2l0`2qu is

satisfied. Now, for all l ě l0 we have qpk, lq “ r and therewith also

|εqpk,lq ´ εr| “ 0 ă
1

2l
. (5.60)

On the other hand, for l ă l0 we have k R tgp0q, . . . , gp2l`2qu so that εqpk,lq “ ε2l`2.
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Accordingly,

|εqpk,lq ´ εr| “ |ε2l`2 ´ εr|

“ |ε2l`2 ´ ε˚ ` ε˚ ´ εr|

ď |ε2l`2 ´ ε˚| ` |ε˚ ´ ε2l`2 | (5.61)

“
1

22l`2 `
1

2r

ă
2

22l`2 ă
1

2l
, (5.62)

since for l ă l0 we have gprq “ k and it must hold r ą 2l`2, and 2l`2 ą l.

Now we consider the case k P Ac. Here we have qpk, lq “ 2l`2 so that

|εqpk,lq ´ ε˚| “
1

22l`2 ă
1

2l
. (5.63)

We consider the sequence tε̂kukPN with

ε̂k “

$

&

%

ε˚ if k P Ac

εr if k P A and gprq “ k.
(5.64)

From (5.60),(5.61) and (5.63), we therefore have for arbitrary k P N and arbitrary l P N,

|εqpk,lq ´ ε̂k| ď
1

2l
,

i.e. we have for sequence tεqpk,lqulPN Ă Ic, computable convergence to ε̂k for every k P N.

With this we have φkpmq “ m, since for all l ě φkpmq, we obtain

|εqpk,lq ´ ε̂k| ď
1

2l
ď

1

2m
, (5.65)

i.e. we have effective convergence and the function φk is further, independent of k. This

immediately implies that ε̂k P Ic. Furthermore, we observe that the sequence tε̂kukPN is

computable as well and that the effective convergence speed can be bounded universally,

i.e. independent of k.

Accordingly,Φ : N Ñ t0, 1u, with Φpkq “ 1
b
rCpW , ε̂kq ´ logp5{4q ` bs, k P N, is a recursive

function. This comes from the fact that multiplication and addition of a recursive function,

namely here by assumption CAltpW , ¨q, is recursive. For arbitrary k P N, we have

Φpkq “ 1 ðñ k P Ac (5.66)

Φpkq “ 0 ðñ k P A. (5.67)

This means, that the characteristic function of the set Ac, and hence that of A are recur-

sive, which is a contradiction, as we started with the assumption that A was recursively
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enumerable and not recursive. This proves the desired result for |X | “ |Y | “ 2. The proof

immediately extends to general case |X |, |Y | ě 2 by zero adding to the channel.

For function Cp¨,Wq, we follow the same strategy, only using Example 164 instead.

5.5. Computable upper and lower bound for ε-capacity

From a practical point of view, it is of course interesting and relevant to obtain com-

putable lower bounds (e.g. based on improved coding schemes) and computable upper

bounds on the ε-capacity.

Since pW, DWq is a compact Hausdorff space [Rudin(1987)], we can apply our previous

findings in Section 5.2.4 to the compound channel. In what follows, we consider com-

putability of upper and lower bounds on the capacity function, for a fixed compound

channel input and as a function of ε We will see that for the ε-capacity of the compound

channel, there is either no computable achievability or no computable converse.

Here, the functions tFNu can be interpreted as lower bounds for achievable rates and

the ε-capacity respectively. Of course, such bounds should be effectively computable so

that they can be evaluated on a digital computer. These bounds should improve with

increasing N P N, i.e., FNpW , εq ď FN`1pW , εq, pW , εq P Wc, and further should be

asymptotically tight, i.e., for N Ñ 8 the sequence tFNuNPN should converge point-wise

to CpW , εq.

Accordingly, the functions tGNu can be interpreted as upper bounds on the achievable

rates and the ε-capacity, respectively. Similarly, one would like to have these bounds to

be effectively computable and further CpW , εq ď GN`1pW , εq ď GNpW , εq, pW , εq P Wc,

i.e., the bounds should improve with increasing N P N.

Let ε̂ P p0, 1q be an arbitrary computable real number and we will study the behavior of

CpW , εq for ε P Icpε̂q “ rε̂, 1s. We set

Wcpε̂q “ pW , εq :W P CCcpX ,S;Yq, ε P Icpε̂q
(

.

Clearly if the desirable bounds cannot be computable as a function of ε, they cannot be

computable as a function of pε,Wq.

Theorem 167 Let ε̂ P p0, 1{2q be a computable number. There exists a computable

compound channel W P CCcpX , S;Yq, such that for all sequences tGNuNPN, tFNuNPN of

Banach-Mazur computable functions with

• GN : rε̂, 1s Ñ Rc, FN : rε̂, 1s Ñ Rc, N P N and

• FN ď CpW , εq ď GNpεq, ε P rε̂, 1s, N P N,

we have

inf
NPN

`

GNp1{2q ´ FNp1{2q
˘

ą 0.
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Proof 168 ConsiderW from Example 164. Let tGNuNPN, tFNuNPN be arbitrary BM com-

putable sequences as described in the statement. We have for ε ą 1{2

FNpεq ď CpW , εq “ CpW , 1{2q “ log 3. (5.68)

Since FN is BM computable on rε̂, 1sXRc, we have for all N P N, for sequence pεkq
8
k“1, εk :“

1{2´ p1{2kq:

FNp1{2q “ lim
kÑ8

FNpεkq ď lim
kÑ8

CpW , εkq “ log 3´ b, b ą 0. (5.69)

We also have for all N P N

GNp1{2q ě CpW , 1{2q “ log 3. (5.70)

From (5.69) and (5.70) we conclude @N P N,

GNp1{2q ´ FNp1{2q “ b ą 0. (5.71)

Remark 169 In the proof of Theorem 167, we can use 163 to prove the same statement

about CAltp¨,Wq.

Theorem 170 Let |X | ě 2, |Y | ě 2 and |S| ě 2. Let ε̂ P p0, 1{2q be a computable

number. There exists a computable compound channel W P CCcpX , S;Yq, such that for

all sequences tGNuNPN, tFNuNPN of Banach-Mazur computable functions with

• GN : rε̂, 1s Ñ Rc, FN : rε̂, 1s Ñ Rc, N P N and

• FN ď CAltpW , εq ď GNpεq, ε P rε̂, 1s, N P N,

we have

inf
NPN

`

GNp1{2q ´ FNp1{2q
˘

ą 0.

As a consequence, we cannot have a capacity theorem, where the computable achievability

bound could be equal to that of the converse. This in turn makes the entropic charac-

terization of the capacity function impossible. However, Theorem 167, does not rule out

the possibility, that at least one of the bounds (either achievability or converse) would

converge to the ε-capacity of the compound channel.

5.6. Decision problem

Algorithmic computability of the ε-capacity, as considered so far in this work, is a strong

condition that may be more that what is required to be satisfied in many applications.

Relaxing this condition, we might only want to know if it is possible to algorithmically
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decide, if the ε-capacity of the channel is below or above a certain threshold λ ą 0. More

precisely, we ask

Question 1: Is there an algorithm (or Turing machine) TM , that for all ε P p0, 1qXRc,

takes the compound channelW and the threshold requirement λ ą 0 as inputs and outputs

yes, if the channel satisfies the threshold requirement, i.e. whenever CpW , εq ą λ, and

outputs no, if the channel does not satisfy the threshold requirement, i.e. whenever

CpW , εq ă λ?

Similarly, we can ask the question, about the ε input:

Question 1’: Is there an algorithm (or Turing machine) TM , that for all W P

CCpX , S;Yq, takes 0 ă ε ă 1 and the threshold requirement λ ą 0 as inputs and out-

puts yes, if the channel satisfies the threshold requirement, i.e. whenever CpW , εq ą λ,

and outputs no, if the channel does not satisfy the threshold requirement, i.e. whenever

CpW , εq ă λ?

This is a decision problem where we look for a Turing machine that decides whether or

not a compound channel, or an average error upper-bound, satisfy a certain requirement.

As such the question of decidability has important implications for resource-allocation.
1 Here, the Turing machine needs to stop for every channel-error pair, outputting the

correct answer. However, such a Turing machine may not always exist and the question

above may then be undecidable. In this case, one may be inclined to modify the question

by weakening the assumptions. We only ask the weaker question for the channel input

here, noticing that as before, similar question can be asked about the error input.

Question 2a: Is there an algorithm (or Turing machine) TM that forW P CCpX ,S;Yq,
takes error input 0 ă ε ă 1 and the threshold requirement λ ą 0 as inputs, and stops if

CpW , εq ą λ?

While Question 1 (equivalently Question 1’) asks whether or not the problem is decid-

able, the modified Question 2a asks whether or not the problem is semi-decidable. This

means the Turing machine is only required to stop and to provide the correct answer

whenever the capacity does satisfy the requirement, i.e. whenever CpW , εq ą λ. In the

other case, the Turing machine does not stop at all. Obviously, this is not the only way

to pose the semi-decidability. One can also modify the initial question in the opposite

way by requiring the Turing machine to stop only whenever the channel (or equivalently

the error input) does not satisfy the requirement CpW , εq ă λ. Accordingly, in the other

1Note that in Question 1 and Question 1’, all pairs pW, εq with CpW, εq “ λ are excluded on purpose,
as input to the Turing machine TM . The problem of deciding whether or not an expression is equal
to a given real number is undecidable in general [Pour-El and Richards(2017)].
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case, the Turing machine does not stop.

Question 2b: Is there an algorithm (or Turing machine) TM that forW P CCpX ,S;Yq,
takes error input 0 ă ε ă 1 and the threshold requirement λ ą 0 as inputs and stops if

the channel does not support the requirement CpW , εq ă λ?

Remark 171 Note that if both Questions 2a and 2b have a positive answer, i.e. both

problems are semi-decidable, it immediately implies that the initial problem is decidable

and Question 1(a,b) has a positive answer as well.

Again, in much the same way that Question 1’ related to Question 1, we might ask

Questions 2a’ and 2b’, that ask the same as in Questions 2a and 2b about the channel

input. We answer the question of semi-decidability, when asked about the error input,

negatively.

Theorem 172 There exists a compound channelW P CCcpX , S;Yq and λ P Rc, such that

Epλq :“ tε : CpW , εq ą λu and E 1pλq :“ tε : CAltpW , εq ą λu are not semi-decidable.

Proof 173 We will prove the above theorem for infinitely many λ P Rc. We prove the

statement for CpW , εq using the compound channel from Example 164. We remark that

using the same construction, given Example 163, the same statement can be shown for

CAltpW , εq. Let λ P Rc be such that

CpW , ε ă 1{2q ă λ ă CpW , 1{2q “ logp3q. (5.72)

Assume that Epλq is semi-decidable. For ε P r1{2, 1q, we construct a Turing machine TM˚

that runs the following Turing machines in parallel.

1. TM1, that stops exactly when ε ă 1{2. This machine exists and runs the following

algorithm. Since λ is a computable real, there exists a computable sequence of ratio-

nal numbers trpnqunPN such that |λ´ rpnq| ă 2´n for all n P N. Furthermore, there

exist recursive functions a, b : NÑ N with bpnq ‰ 0 for all n P N and

rpnq “
apnq

bpnq
, n P N. (5.73)

We now specify an algorithm that stops at ε ă 1{2. It holds that λ´CpW , ε ă 1
2
q P

Rc, as both arguments of the subtraction are computable reals. We set

∆pnq :“
apnq

bpnq
´ CpW , εq.

The algorithm run by TM1 computes ∆p1q. If ∆p1q ą 1{2, then it stops. Otherwise

the algorithm computes ∆p2q. If ∆p2q ą 1
22

, it stops. Assuming the algorithm has

not stopped in l steps, it computes ∆pl`1q. If ∆pl`1q ą 1
2l`1 , then it stops. With this
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description, the following holds. The algorithm stops if and only if λ´CpW , εq ą 0

because:

ñ: if algorithm stops, we have found n0 such that

1

2n0
ă ∆pn0q “

apn0q

bpn0q
´ CpW , εq

“ ´λ` λ`
apn0q

bpn0q
´ CpW , εq

ă λ` |
apn0q

bpn0q
´ λ| ´ CpW , εq

ă λ´ CpW , εq `
1

2n0
,

where in the last line, we have inserted |λ´ apn0q

bpn0q
| ă 1

2n0
. Therefore λ´CpW , εq ą 0.

Ð: if λ´ CpW , εq ą 0, then there is an n0 such that

λ´ CpW , εq ą
2

2n0
.

Therefore,

2

2n0
ă λ´ CpW , εq “

apn0q

bpn0q
´
apn0q

bpn0q
` λ´ CpW , εq

ď
apn0q

bpn0q
` |λ´

apn0q

bpn0q
| ´ CpW , εq

ă
apn0q

bpn0q
´ CpW , εq `

1

2n0
.

Therefore apn0q

bpn0q
´ CpW , εq ą 1

2n0
, which stops the algorithm.

2. TM2, that stops when ε “ 1{2. This Turing machine exists because by assumption,

Epλq is semi-decidable. This means there exists a Turning machine that stops, when

CpW , εq ą λ and hence by our choice of λ and W, ε “ 1{2.

We define for ε P r1{2, 1q

TM˚ :“

$

&

%

yes if TM1 stops

no if TM2 stops .
(5.74)

Therefore we have

TM˚pεq “

$

&

%

yes if ε ă 1{2

no if ε “ 1{2.
(5.75)
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Taking the recursively enumerable set A and ε̂k from Theorem 165, we obtain

TM˚pε̂kq “

$

&

%

yes if k P A

no if k P Ac,
(5.76)

which is only the case if A is recursive, that runs contrary to our assumption. Therefore

TM˚ cannot exist. This can be extended to |X | ě 5, |Y | ě 5, |S| ě 2.

is not semi-decidable.

5.7. Common randomness and entanglement assisted

ε-capacities

In this section, we prove some important implications of our results for assisted scenarios.

Here, we consider the ε-capacity of the channel, when the communicating parties have at

their disposals pre-shared common randomness and entanglement. In both scenarios, we

make use of the equivalence between a maximal and average error bound requirement.

Definition 174 An pn,Mnq randomness assisted code for compound channelW P CCpX , S;Yq,
is a probability measure µn on pσn ˆΩn, σnq, where

• σn :“ tE : rMns Ñ PpX nqu,

• Ωn :“ tφ : Yn Ñ PprMnsqu,

• and the sigma-algebra σn is chosen such that the function

em,s,npE, φq :“ 1´
ÿ

yn,xn

W n
n py

n
|xnqEpxn|mqφpm|ynq (5.77)

is measurable with respect to µn for all s P S and m P rMns.
2

• We further require that the sigma-algebra contains all the singleton sets. The deter-

ministic codes defined in Section 5.3 are then a specification of µn to a probability

distribution that is equal to unity at a singleton element and zero otherwise.

Let each singleton member be notified by pE, φq. The following is our average performance

(error) function for the common randomness assisted task

ecr,npWq :“ max
sPS

ż

1

Mn

ÿ

mPrMns

em,s,npE, φqdµpE, φq. (5.78)

We also consider the maximal error function defined for each s P S and m P rMns by

2Notice that em,s,npE, φq “ em,s,n where the right hand side is defined by (5.17) with Epxn|mq “ 1 iff
xn “ xm and φpm|ynq ą 0 iff yn P Dm.
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em,s,cr,n :“

ż

em,s,npE, φqdµpE, φq. (5.79)

We define the following numbers for n P N and 0 ď ε ă 1, corresponding to the common

randomness assisted (CR) ε-capacity under average and maximal error criteria.

1. NpW , ε, cr, nq :“ maxtN P N : Dpn,Nq CR code for W with ecr,npWq ď εu,

2. NmaxpW , ε, nq :“ maxtN P N : Dpn,Nq CR code for W with

maxsPS maxmPrNs em,s,cr,n ď εu.

There could be two notions of capacity corresponding to these numbers that are defined

in the following.

Definition 175 Let W P CCpX ,S;Yq and 0 ď ε ă 1. Then

• CpW , ε, crq :“ lim supnÑ8
1
n

logNpW , ε, cr, nq and CmaxpW , ε, crq :“ lim supnÑ8
1
n

logNmaxpW , ε, cr,nq

are the optimistic CR ε-capacities of W under average and maximal error criteria 
respectively. cr, nq

• Finally, CpW , ε, crq and CmaxpW , ε, crq are the CR ε-capacities of W under average

and maximal error criteria, if

lim sup
nÑ8

1

n
logNpW , ε, cr, nq “ lim inf

nÑ8

1

n
logNpW , ε, cr, nq “ CpW , ε, crq

and

lim sup
nÑ8

1

n
logNmax

pW , ε, cr, nq “ lim inf
nÑ8

1

n
logNmax

pW , ε, cr, nq “ Cmax
pW , ε, crq

respectively.

The definitions for zero-error CR capacity C0pW , crq are given by setting ε “ 0 in the

above given definitions.

Definition 176 An entanglement-assisted pn,Mq-Code for compound channelW P CCpX , S;Yq
is a triple pE ,D, Ψq with E “ pEm

x qxPXn,mPrMs being a family of M POVMs on Hilbert space

KA with outcomes in X n, pDy
mqmPrMs,yPYn being a family of |Yn| POVMs on Hilbert space

KB with outcomes in rM s and Ψ being a quantum state on Hilbert space KA bKB.

Remark 177 Since we do not assume any restrictions on the dimension of KA b KB
other than being finite, we can without loss of generality assume Ψ to be a pure state.
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Otherwise, the communicating parties may resort to a purification of Ψ on a Hilbert space

of larger dimension.

Similar to the previously discussed communication scenarios, we can assign a probability

to the occurrence of an erroneous decoding. Given a compound channelW P CCpX , S;Yq
with corresponding pn,Mq-Code pE ,D, Ψq, define

e : “ max
sPS

1

M

ÿ

mPrMs

ÿ

xPXn

ÿ

yPYn
tr ppEm

x bD
y
mqΨqWspy|xq (5.80)

e : “ max
sPS

max
mPrMs

ÿ

xPXn

ÿ

yPYn
tr ppEm

x bD
y
mqΨqWspy|xq (5.81)

We define the following numbers for n P N and 0 ď ε ă 1, one corresponding to the

average-error criterion and one corresponding to the maximum-error criterion:

NpW , ε, n, EAq : “ maxtM P N : Dpn,Mq-Code for W satisfying e ď εu, (5.82)

Nmax
pW , ε, n, EAq : “ maxtM P N : Dpn,Mq-Code for W satisfying e ď εu. (5.83)

In Definition 138, we have introduced the optimistic and the pessimistic ε-capacity for

the standard non-assisted compound channel. The definition of optimistic and pessimistic

ε-capacities for the entanglement-assisted communication scheme follows the same line of

reasoning.

Definition 178 Let W P CCpX ,S,Yq be a compound channel and 0 ď ε ă 1 a real

number. Then,

• CpW , ε, EAq :“ lim supnÑ8
1
n

logNpW , ε, EAq and

CmaxpW , ε, EAq :“ lim supnÑ8
1
n

logNmaxpW , ε, EAq are called the optimistic ε-

capacity of W with respect to the average- and the maximum-error criterion, re-

spectively;

• CpW , ε, EAq :“ lim infnÑ8
1
n

logNpW , ε, EAq and

CmaxpW , ε, EAq :“ lim infnÑ8
1
n

logNmaxpW , ε, EAq are called the pessimistic ε-

capacity of W with respect to the average- and the maximum-error criterion, re-

spectively;

• if the corresponding limit exists, CpW , ε, EAq :“ limnÑ8
1
n

logNpW , ε, EAq and

CmaxpW , ε, EAq :“

limnÑ8
1
n

logNmaxpW , ε, EAq are called the ε-capacity of W with respect to the

average- and the maximum-error criterion, respectively.

Remark 179 The capacities CpW , ε, EAq and

CmaxpW , ε, EAq exist if and only if CpW , ε, EAq “ CpW , ε, EAq, CmaxpW , ε, EAq “

CmaxpW , ε, EAq, respectively, holds true.
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Setting ε to equal zero, we obtain the entanglement-assisted zero-error compound capac-

ity

C0pW , EAq :“ CpW , 0, EAq “ CmaxpW , 0, EAq. This capacity exists in the sense of

Remark 179, following from Fekete’s lemma.

Based on these definitions, we prove the following results.

Lemma 180 For W P CCpX , S;Yq it holds

CpW , ε, crq “ CpW , εq, ε P r0, 1q. (5.84)

Proof 181 The inequality CpW , ε, crq ě CpW , εq is operationally clear for all ε P r0, 1q.

This is because the communicating parties can choose to ignore the common randomness

resource available to them. To see the other inequality, we notice that for all ε P r0, 1q, if

there exists a randomness assisted code µn, such that (5.78) is satisfied, then there must

exist one singleton pE, φq that fulfills the same upper bound.

Theorem 182 For W P CCpX , S;Yq it holds

Cmax
pW , ε, crq “ CpW , εq, ε P r0, 1q. (5.85)

Proof 183 Let pE, φq be an pn,Mq-code for W with the average error upper bounded as

enpWq “ max
sPS

1

M

ÿ

mPrMs

em,s,npE, φq ď ε. (5.86)

We define the CR code µ̃ on pσ̃ ˆ Ω̃, σ̃q with σ̃ :“ tEpmq : m P rM su ,Ω :“ tφpm
1q : m1 P

rM su, defined by

• Epiqp¨|jq “ Ep¨|iq,

• φpiqpj|¨q “ φpi|¨q and

• µ̃pEpiq, φpjqq “ δi,j
M

,

for all i, j P rM s and δi,j the Kronecker delta function. Calculating the error due to this
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code, for each m P rM s we obtain

max
sPS

em,s,cr,n “ max
sPS

ż

em,s,npE
piq, φpjqqdµ̃i,j

“ max
sPS

ÿ

i,j

em,s,npE
piq, φpjqqµ̃pEpiq, φpjqq

“ 1´min
sPS

ÿ

i,j

ÿ

xn,yn

W n
pyn|xnqEpiqpxn|mqφpjqpm|ynqµ̃pEpiq, φpjqq

“ 1´min
sPS

1

M

ÿ

iPrMs

ÿ

xn,yn

W n
s py

n
|xnqEpiqpxn|iqφpiqpj|ynq

“ 1´min
sPS

1

M

ÿ

iPrMs

ÿ

xn,yn

W n
s py

n
|xnqEpxn|iqφpi|ynq “ enpWq ď ε. (5.87)

The first line is the definition of the error function given by (5.79), the second line follows

because of the discrete nature of the probability space, the second last line comes from

the definition of µ̃ and the last line comes from the defining property of our code with

respect to pE, φq. Therefore, we have concluded that for every code for the compound

channel that satisfies the upper bound on the average error criterion, we find a CR code

that satisfies the upper bound on maximal error criterion. This shows the statement

CpW , εq ď CmaxpW , ε, crq. Given that the inequality CmaxpW , ε, crq ď CpW , ε, crq is

operationally clear, the statement follows from Lemma 180.

The following statement, results from Theorem 182 and our results on the computability

of the ε-capacity in Section 5.4.

Corollary 184 The capacity function Cmaxp¨, ¨, crq : CCpX , S;Yq ˆ p0, 1q Ñ R is not in

general Turing computable.

Remark 185 We note that for the compound channel W and ε P p0, 1q, the capacity

function CmaxpW , εq “ CpWq (see [Ahlswede(2015)]). Theorem 182 and Examples 163

and 164, show that pr-shared randomness improves the ε-capacity of the compound channel

under maximal error criterion.

We continue this section by deriving analogous results for entanglement assisted ε-capacity

of the channel. The next lemma states that average and maximal error criteria yield the

same EA assisted ε capacities.

Lemma 186 Let W P CCpX , S;Yq and ε P p0, 1q. It holds

Cmax
pW , ε, EAq “ CpW , ε, EAq. (5.88)

Proof 187 See [H. Boche(2017)] Lemma 4. for a proof.

Remark 188 We note that for the compound channelW and ε P p0, 1q, the capacity func-

tion CmaxpW , εq “ CpWq (see [Ahlswede(2015)]). Given Lemma 186 and Examples 164

or 163, entanglement can indeed improve the ε-capacity under maximal error criterion.
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6.1. Chapter 2: Randomness cost of symmetric twirling

In this chapter, we derived upper and lower bounds of randomness consumption of uni-

versal symmetrization of states by applying averaged permutations. Our bounds lead to

positive and negative conclusions when applied to information-theoretic modelling. First,

the encouraging implication of our upper bound on the support of weighted designs shows,

that there are always protocols which universally symmetrize quantum states on a given

n-partite quantum system, consuming reasonable common randomness resource. Specifi-

cally, the number of coordinated random choices of permutations used for symmetrizing

arbitrary quantum states on that system can be always restricted to being exponentially

growing (with number of systems). The lower bounds on the common randomness needed

for permutation-based symmetrization of arbitrary quantum states proven in this chapter,

enforce a rather disillusioning conclusion. To universally symmetrize quantum states on

the n-fold tensor extension of a given system with Hilbert space dimension d, one asymp-

totically needs at least a common randomness rate of log d. Since this number marks the

trivial upper bound for common randomness rates generated from repetitions of an ideal

system of that dimensionality, the common randomness consumption seems exorbitant in

some situations.

Since universal symmetrization of communication attacks is a vital ingredient of a broad

class of security proofs for quantum key distribution protocols, our findings strongly moti-

vate further research for finding more efficient protocols for symmetrizing quantum states

and channels.

6.2. Chapter 3: Simultaneous transmission of classical

and quantum information under channel uncertainty

We have developed universal codes for simultaneous transmission of classical information

and entanglement under possible jamming attacks by a third malignant party. In the

compound channel model, the quantum part of information transmission was done under

two important scenarios of entanglement transmission and entanglement generation. The

present random codes differ from those used for the perfectly known channel in [Deve-

tak(2005)]. We therefore did not need to approximate our input random codes by an
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i.i.d state (one with tensor product structure). Also, we evaded BSST type lemmas used

in [Bjelaković et al.(2009)Bjelaković, Boche, and Nötzel] by using basic concavity proper-

ties of von Neumann entropy. Future work will hopefully include another important sce-

nario under which quantum information is transmitted, namely subspace transmission.

An equivalence statement between the strong subspace transmission and entanglement

transmission has been proven in [Ahlswede et al.(2012)Ahlswede, Bjelaković, Boche, and

Nötzel]. Recently in [Boche et al.(2019d)Boche, Janßen, and Saeedinaeeni], an instance

of the present classically enhanced codes was used for universal coding of multiple access

quantum channels, where one of the senders shares classical messages with the receiver

while the other sends quantum information.

Theorem 32 does not make a positive statement about the structure of Ar,CET in the

case where Ad,CET “ tp0, 0qu. In [Boche and Nötzel(2014)], the authors have constructed

an example of a channel where the intersection of Ar,CET with the x-axis is positive and

Ad,CET “ tp0, 0qu. Future work will consider the structure of the non-zero region in this

case along both axes.

The capacity region characterized in Theorem 25 is of a multi-letter nature (requiring a

limit over many uses of the channel) but might reduce to a single-letter formula for specific

cases of compound channels, which is in itself an interesting question to be considered in

future work. Ensuing this question, one might suggest formulas for these capacity regions

that offer a more useful characterization. This means that the alternative characterization

could entail larger one-shot regions compared to our ĈpNs, p, Ψq. An instance of such a

characterization in the case of perfectly known quantum channels exists in [Hsieh and

Wilde(2010a)] Theorem 5. Therein however, the authors note that their one-shot trape-

zoids is the same as rectangular regions offered in [Devetak and Shor(2005)], when one

considers the union over all the one-shot, one-state regions. The converse statement for

compound channels implies that other such characterizations, must also reduce to ours.

Reduction to single-letter formulas is nevertheless an important criterion when comparing

different characterizations.

Today, in classical systems, secure communication is obtained by applying cryptographic

methods upon available reliable- communication schemes. Security of the resulting pro-

tocol, that can hence be separated into two protocols (one responsible for reliability and

the other for security), relies on assumptions such as non-feasibility of certain tasks or the

limited computational capabilities of illegal receivers. For the next generation of classi-

cal communication systems, it is expected that different applications (e.g. secure message

transmission, broadcasting of common messages and message transmission), are all imple-

mented by physical coding or ” physical layer service integration ” schemes (see [Schaefer

and Boche(2014c)]). For quantum systems that offer a larger variety of services, [Devetak

and Shor(2005), Hsieh and Wilde(2010a), Hsieh and Wilde(2010b)] were the first papers

in this line of research. The present chapter develops solutions for different models of

channel uncertainty that are unavoidable when implementing such integrated services in
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real-world communication. Following up on the results of [Boche et al.(2019d)Boche,

Janßen, and Saeedinaeeni], an interesting direction for future work is towards finding the

solution to the arbitrarily varying model for multiple access and broadcast channels as a

key step in development of quantum networks.

6.3. Chapter 4: Universal superposition codes: capacity

regions for quantum broadcast channel

To construct private codes for the broadcast channel, we first generated suitable ran-

dom message transmission codes for the broadcast channel without imposing privacy

constraints (Lemma 90). This was done by establishing suitable bounds for random uni-

versal ”superposition codes”. With subsequent application of a covering principle, these

codes were transformed to fulfill the security criterion in Lemma 89.

As a possible alternative technique to generate such codes, we mention the rather re-

cent ”position decoding” and ”convex split” techniques [Anshu et al.(2017)Anshu, Dev-

abathini, and Jain,Anshu et al.(2019a)Anshu, Jain, and Warsi]. This approach proved to

be powerful yet elegant and was successfully applied to determine ”one-shot capacities”

or ”second order rates” in several scenarios. However, these techniques need still to be

further developed, to also be suitable when dealing with channel uncertainties as in the

scenarios considered in the present chapter. A partial result in that directions is [Anshu

et al.(2019b)Anshu, Jain, and Warsi], where near-optimal universal codes for entangle-

ment assisted message transmission over compound quantum channels with finitely many

channel states are constructed. Recently, convex split and position-decoding have been

applied in [Wilde et al.(2019)Wilde, Khatri, Kaur, and Guha] to determine the second-

order capacity of a cqq compound wiretap channel under the restriction, that the channel

state does not vary for the legitimate receiver. For establishing this result, only the ”con-

vex split” part has to be universal, while ”position- decoding” is applied on a channel

with fixed state. As a future research goal, it is desirable to close the gap and establish a

fully universal version of these protocol steps.

As mentioned in the introduction, a strong converse cannot be established for the mes-

sage transmission capacity of the compound cq channel under average error criterion, even

when considering |S| “ 2. When considering a fixed non-vanishing upper bound on the

average of decoding error, calculation of capacity for the compound channel is further

problematic as there are examples where the optimistic definition of the ε-capacity yields

a strictly larger number than the one yielded by its pessimistic definition (see [Boche

et al.(2018a)Boche, Schaefer, and Poor] Remark 13). This implies that in general there is

no second rate capacity theorem possible. The implications of these negative statements

are highly interesting in practice, as channel coding in all existing communication systems

(such as wireless cellular and WiMax systems), is done given a fixed error probability. It is
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therefore important to design channel codes corresponding to ε-capacity of the compound

channel, that is in general larger than its message transmission capacity.

When considering the one-shot approach ( [Anshu et al.(2017)Anshu, Devabathini, and

Jain, Anshu et al.(2019a)Anshu, Jain, and Warsi, Salek et al.(2020)Salek, Anshu, Hsieh,

Jain, and Fonollosa]) as an alternative to proving capacity results derived here, one must

take certain consequences into account. In this approach, one tries to obtain lower and

upper-bounds for the ε-capacity, and then consider the limit ε Ñ 0 of these bounds. For

the compound channel however, the capacity is in general strictly smaller than the ε-

capacity and hence, it is not clear how these bounds will help, as a lower bound on the

ε-capacity is not a priori a lower bound on the capacity of the channel. Furthermore,

there are some additional highly interesting properties of the ε-capacity and the capacity,

even when one considers finite compound channels (|S| ă 8):

• The capacity of the finite compound channel is, as a function of the computable

compound channel, a Turing computable function. This is no longer true about

infinite compound channels (see [Boche et al.(2020a)Boche, Schaefer, and Poor]).

• The ε-capacity of the finite compound channel, as a function of ε, is not Banach-

Mazur computable, which in turn means that it is not Turing computable either, as

the latter condition is a stronger one on computability than former.

These results have of course an impact on the effectiveness of the one-shot approach to

achieving capacity results in classical and quantum information theories [Boche et al.(2020a)Boche,

Schaefer, and Poor].

A direction for future work given the results derived here, is considering a three di-

mensional capacity region, establishing a trade-off between the ability of the quantum

channel in transmitting common, public and confidential messages under assumptions of

the compound channel model. One must pay attention to the operational difference be-

tween public messages (belonging to the set rM1,ns) and those used for equivocation by

Alice (belonging to the set rLns).

Another direction for future work given the results derived here, is considering the arbi-

trarily varying quantum channel (AVQC) model for the broadcast channel with confiden-

tial messages. Given that in all instances, our error and security requirements, achieve

exponential rates of decay, it is perceivable that using the well known robustification

and elimination techniques developed in [Ahlswede(1978)], capacity results including di-

chotomy statements can be made for the AVQC model.

6.4. Chapter 5: Computability aspects

Using channel examples where the ε-capacity of the channel exhibits discontinuity as a

function of the error input, we were able to show that the function is not in general com-
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putable. Further, we showed that in general, there could not be matching computable

lower and upper-bound sequences converging to the capacity function, that in turn refutes

the existence of a single letter formula and effectiveness of second order rate theorems that

intend to achieve the asymptotically optimal rates from those available in the one-shot

regime (see [Boche et al.(2020b)Boche, Janßen, and Saeedinaeeni] for more discussions).

The statements proven here have concerned the ε-capacity of the channel as a function of

the error input. An interesting direction for future work would be to consider this number

as a function of the channel input. Our statement of achievability given by Lemma 143,

suggests that zero-error codes might play a role in the traditional definition of ε-capacity

at the discontinuity point of ε “ 1
2
. This could be promising as there are examples of

compound channels where CpWq ă mins“1,2 C0pWsq ă mins“1,2 C0pWsq. Such an example

can be readily perceived by appropriate perturbation of the channel given by Example

164. To see this consider the following channel. For δ P r0, 1q, consider the compound

channel generated by

Wδ :“ tW1,δ,W2,δu Ă CHpX , t1, 2u;Yq,X “ Y “ t1, . . . , 5u,
defined by the following stochastic matrices:

W1 :“

¨

˚

˚

˚

˚

˚

˚

˝

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 1´ δ δ 0

0 0 1´ δ 0 δ

˛

‹

‹

‹

‹

‹

‹

‚

W2,δ :“

¨

˚

˚

˚

˚

˚

˚

˝

δ 0 1´ δ 0 0

0 δ 1´ δ 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

˛

‹

‹

‹

‹

‹

‹

‚

. (6.1)

It is clear that C0pW1q “ C0pW2q. We show that for this example, we have C0pWδq ą 0 for

δ P r0, 1q, and hence the hypothesis of Lemma 143 is satisfied. For this purpose, consider

the p2, 2q-code (blocklength 2 and 2 messages), with input strings m1 :“ p3, 3q,m2 :“ p1, 5q

and decoder sets D :“ tp3, 3qu and Dc respectively. Calculation of error for the W1,δ yields:

em1,s“1 “
ÿ

yPDc

Wb2
1,δ py|p3, 3qq “ 0, (6.2)

em2,s“1 “
ÿ

yPD

Wb2
1,δ py|p1, 5qq “ 0. (6.3)

Similarly for the second channel we obtain em1,s“2 “ em2,s“2 “ 0 and hence we have

C0pWδq ą 0.

We observe for δ P p0, 1q.

C0pW2,δq “ CpW1, δq “ log 3. (6.4)
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It is also clear that

CpW2,δq ą CpWsq “ log 3, ps “ 1, 2q. (6.5)

Also, given Theorem 211, we have

|CpW0q ´ CpWδq| ď fpδq, (6.6)

with some fpδq such that fpδq Ñ 0 as δ Ñ 0. Let mins“1,2 CpWs,0q ´ CpW0q “ λ.

From [Ahlswede(2015)], we know that λ ą 0. Choose δ such that fpδq ă λ. From (6.6)

we have

CpWδq ă log 3. (6.7)

With this choice of δ ą 0, we have from (6.4) and (6.5),

CpWδq ă log 3 “ min
s“1,2

C0pWs,δq ă min
s“1,2

CpWs,δq. (6.8)

Our capacity results for the case with informed decoder in Section 5.3.3 can be used to

derive similar results for the ε-capacity of the Broadcast Channel. In this channel model,

a sender transmit messages that will be received by two receivers, each in control of the

output of a different channel. A specific scenario is when the transmitter wishes to send

public messages (decoded by both receivers) and two individual messages. The rates

corresponding to the public message transmission are then exactly those achieved in the

compound model with two channel states. The negative computability analysis for this

specific model would then extend to the general case.
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In this appendix we give the basic definitions regarding types and frequency typical sets.

For a broad as well as concise introduction to the concept of types the reader is referred

to [Csiszár and Körner(2011b)], where the bounds stated in this appendix can be found

without exception.

Let X be a finite set, p a probability distribution on X . We define the set of p-typical

words in X n by

T np :“ tx : @a P X : 1
n
Npa|xq “ ppaqu.

If this set in nonempty, we call p a type of sequences in X n (or n-type for short). The

concept of types is a powerful tool in classical as well as quantum Shannon theory. In

this chapter, use some cardinality bounds on the entities introduced which are stated in

the next two lemmas. If we denote, for n P N the set of n-types by Tpn,X q, the following

statement is true.

Lemma 189 (cf. [Csiszár and Körner(2011b)], Lemma 2.2) For each n P N, it

holds

|Tpn,X q| ď pn` 1q|X |.

Lemma 190 (cf. [Csiszár and Körner(2011b)], Lemma 2.3) For each n P N, and

each n-type λ P Tpn,X q, it holds

pn` 1q´|X | ¨ 2nHpλq ď |T nλ | ď 2nHpλq.

Lemma 191 For each n P N, there exists a type µ˚ of sequences in X n, such that

Hpµ˚q ě log |X | ´ |X | logpn` 1q

n
(A.1)

holds.

Proof 192 Let µ˚ be a type of sequences in X n, which maximizes the Shannon entropy,

i.e.

Hpµ˚q ě Hpλq

133



A. Frequency typical sets

holds for each type λ. Then, by standard bounds for the frequency typical sets [Csiszár

and Körner(2011b)]

|T nλ | ď 2nHpλq ď 2nHpµ˚q.

holds for each type λ. Since there are not more than pn`1q|X | different types of sequences

in X n, the bound

|X n
| ď pn` 1qd ¨ 2nHpµ˚q

is valid, which with some rearrangements proves the lemma.
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compound channels using nets

Definition 193 A τ -net in CpH,Kq is a finite set tNiuTi“1 with the property that for each

N P CpH,Kq there is at least one i P t1, ..., T u with ‖ N ´Ni ‖˛ă τ .

Existence of τ -nets in CpH,Kq is guaranteed by the compactness of CpH,Kq. The next

lemma contains an upper bound on the minimal cardinality of τ -nets.

Lemma 194 (see e.g. [Boche et al.(2018b)Boche, Deppe, Nötzel, and Winter] Lemma

7) For any τ P p0, 1s, there is a τ -net tNiuTi“1 in CpH,Kq with T ď p 3
τ
q2pd¨d

1q2, where

d “ dimH and d1 “ dimK.

Given a net in CpH,Kq, any compound channel generated by J Ă CpH,Kq can be ap-

proximated by one of its finite subsets. This is the subject of the following lemma.

Lemma 195 (see e.g Lemma 13 [Bjelaković et al.(2009)Bjelaković, Boche, and Nötzel])

Given any compound channel generated by J Ă CpH,Kq, one can construct a finite set

Jτ with the following properties:

1. Jτ Ă J ,

2. |Jτ | ď p 6
τ
q2pd¨d

1q2 with d, d1 the dimensions of H,K respectively and

3. for all N P J , DN 1 P Jτ such that ‖ N ´N 1 ‖˛ď 2τ .

The net approximation can also be performed for arbitrary sets of classical-quantum

channels.

Definition 196 For W Ă CQpX ,Hq and τ ą 0, a τ -net is a finite set Wτ :“ tWiuiPSτ Ă

CQpX ,Hq, with property that for every W PW, there exists and index i P rSns such that

‖ W ´Wi ‖CQă τ. (B.1)

The existence of such τ -net does not readily guarantee that Wτ Ă W . The following

lemma gives the existence of a good τ -net contained in the given channel set.

Lemma 197 (cf. [Bjelaković et al.(2013)Bjelaković, Boche, Janßen, and Nötzel] Lemma

6) Let W :“ tWiuiPS Ă CQpX ,Hq and τ P p0, 1{eq. There exists a set Wτ :“ tWiuiPSτ Ă

W with such that
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B. Approximation of quantum compound channels using nets

1. |Sτ | ă p
6
τ
q2|X |dimpHq2,

2. given any n P N, for every i P S, there exists i1 P Sn such that

‖ Wbn
i pxq ´Wbn

i1 pxq ‖1ď 2nτ, p@x P X n
q. (B.2)
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C. Auxiliary results

In this section we state some results for reader’s convenience.

Lemma 198 ( [Yard et al.(2005)Yard, Devetak, and Hayden]) Let Ψ, ρ, σ P SpKq and let

Ψ be pure. Then

F pΨ, ρq ě F pΨ, σq ´
1

2
‖ ρ´ σ ‖1

Lemma 199 ( [Boche et al.(2018b)Boche, Deppe, Nötzel, and Winter]) Let L and D be

N ˆN matrices with non-negative entries which satisfy

Ljl ď Ljj, Ljl ď Lll

and

Djl ď maxtDjj, Dllu

for all j, l P t1, ..., Nu. Then

N
ÿ

j,l“1

1

N

a

LjlDjl ď 2
N
ÿ

j“1

a

LjjDjj.

Lemma 200 ( [Bjelaković et al.(2009)Bjelaković, Boche, and Nötzel] Lemma 3) Let ρ P

SpHq for some Hilbert space H. Let, for some other Hilbert space K, A P CpH,Kq, D P
CpK,Hq, q P LpKq be an orthogonal projection. If for some ε ą 0, Fepρ,D ˝Q˝Aq ě 1´ ε

holds, then we have

Fepρ,D ˝Aq ě 1´ 3ε.

Lemma 201 (see e.g. [Bjelaković et al.(2009)Bjelaković, Boche, and Nötzel] Lemma 5)

There is a real number c̄ ą 0 such that for every Hilbert space H, there exist functions

h1 : N Ñ R`, φ : p0, 1{2q Ñ R` with limlÑ8 h
1plq “ 0 and limδÑ0 φpδq “ 0, such that for

ρ P SpHq, δ P p0, 1{2q, l P N, there is an orthogonal projection qδ,l called the frequency

typical projection satisfying

1. trpρblqδ,lq ě 1´ 2´lpc̄δ
2´h1plqq

2. qδ,lρ
blqδ,l ď 2´pSpρ

blq´lφpδqqqδ,l.

Lemma 202 (see e.g. [Bjelaković et al.(2009)Bjelaković, Boche, and Nötzel] Lemma 6)

Let H and K be finite dimensional Hilbert spaces. There are functions γ : p0, 1{2q Ñ R`

and h1 : NÑ R` satisfying limδÑ0 γpδq “ 0 and h1plq Œ 0, such that for each N P CpH,Kq,
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C. Auxiliary results

δ P p0, 1{2q, l P N and maximally mixed state πG on some G Ă H, there is an operation

Nδ,l P CÓpHbl,Kblq, called the reduced operation with respect to N and πG, satisfying

1. trpNδ,lpπblG qq ě 1´ 2´lpc
1δ2´h1plqq, with universal constant c1 ą 0.

2. Nδ,l has a Kraus representation with at most nδ,l ď 2Sepπ
bl
G ,Nblq`lpγpδq`h1plqq Kraus

operators.

3. For every state ρ P SpHblq and every two channels M P CÓpHbl,Hblq and L P
CÓpKbl,Hblq, the inequality

Fepρ,L ˝Nδ,l ˝Mq ď Fepρ,L ˝Nbl
˝Mq

is fulfilled.

Lemma 203 (Gentle measurement) (see e.g. [Wilde(2017)]) Let ρ P SpHq and 0 ď

Λ ď I with

trpΛρq ě 1´ ε

for some 0 ď ε ă 1. Then for ρ1 :“
?
Λρ
?
Λ

trpΛρq
we have

‖ ρ´ ρ1 ‖1ď 2
?
ε.

Lemma 204 ( [Boche et al.(2018b)Boche, Deppe, Nötzel, and Winter] proof of Theorem

3.2 equation (16) ) Let F Ă G Ă H with dimpFq “ k be given. Also let any member

of the set tN1, . . . ,N|S|u Ă CÓpH,Kq have a Kraus representation with nj operators for

j P t1, . . . , Su and set

N :“
1

|S|

|S|
ÿ

j“1

Nj.

Then there exists a recovery operation R P CpK,Hq such that

FepπF ,R ˝N q ě w´ ‖ Dppq ‖1, (C.1)

where w :“ trpN pπFqq, p :“ kπF and

Dppq :“

|S|
ÿ

j,l“1

1

|S|

nj ,nl
ÿ

i,r“1

Dpijqprlqppq b |eiy xer| b |fjy xfl| .

In the above

Dpijqprlqppq :“
1

k
ppaj,ia

:

l,rp´
1

k
trppa:j,ial,rpqpq.

where t|f1y , ..., |f|S|yu and t|e1y , ..., |en|S|yu are arbitrary orthonormal bases for C|S| and

Cn|S|, and where taj,iu
nj
i“1 is the set of Kraus operators for Nj.
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Lemma 205 (see [Ahlswede(1978)]) If a function f : Sl Ñ r0, 1s, satisfies

ÿ

slPSl

fpslqqlpslq ě 1´ γ (C.2)

with qlpslq :“
śl

i“1 qpsiq, for all q P T pl, Sq and some γ P r0, 1s, then

1

l!

ÿ

σPSl

fpσpslqq ě 1´ pl ` 1q|S| ¨ γ @sl P Sl. (C.3)

Lemma 206 (see [Ahlswede(1978)]) Let K P N and numbers a1, . . . , aK , b1, . . . , bK P

r0, 1s be given. Assume that

1

K

K
ÿ

i“1

ai ě 1´ ε

and
1

K

K
ÿ

i“1

bi ě 1´ ε

hold. Then
1

K

K
ÿ

i“1

aibi ě 1´ 2ε. (C.4)

Lemma 207 Let tWs : X Ñ SpHqusPS be a set of cq channels and let p P PpX q. Then

lim
αÑ1

inf
sPS

χαpWs, pq “ inf
sPS

χpp,Wsq.

Lemma 208 Let p, q P LpHq, 0 ď p, q ď 1H and τ P SpHq. It holds

trpτpqpq ě trpτqq ´ 2
a

trpτp1´ pqq.

Lemma 209 (cf. [Audenaert(2007)]) For any two states ρ and σ on Hilbert space H,

let δ “‖ ρ´ σ ‖1 and dimpHq “ d. Then

|Spρq ´ Spσq| ď δ logpd´ 1q ` hpδq (C.5)

hold, with hpxq “ ´p1 ´ xq logp1 ´ xq ´ x log x, for x P p0, 1s and hp0q “ 0, the binary

entropy.

Lemma 210 [cf. [Shirokov(2017)], Corollary 2] Let ρ, σ P SpHA b HB b HCq, with ‖
ρ´ σ ‖1“ δ and dimpHBq “ d. It holds

|IpA;B|C, ρq ´ IpA;B|C, σq| ď 2

ˆ

δ log d` p1` δqhp
δ

1` δ
q

˙

,

wit h, the binary entropy, as defined in the previous lemma.

We also state a continuity theorem for the compound capacity of the classical channel.
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Heuristically, this theorem states, that when two compound channels are close to each

other in terms of their distance defined by (5.16), then their compound capacities are also

close to each other.

Theorem 211 ( [A. Grigorescu and Poor(2015)]) Let µ P p0, 1q andW , W̃ P CCpX , S;Yq
with DpW , W̃q ď µ. It holds |CpWq ´ CpW̃q| ď fpµ, |Y |q, with

fpµ, |Y |q :“ 12h2pµq ` 8µ log |Y |,

where h2pxq is the binary entropy of x.

140



D. Universal classical-quantum

superposition coding

In this appendix, we establish a random coding construction of superposition codes for

classical-quantum channels which are a major ingredient for the achievability proofs in

Section 4.3. In particular a detailed proof of Lemma 84 is provided.

Over the years several code constructions for message transmission over compound cq

channels have been established (see [Bjelakovic and Boche(2007), Hayashi(2009), Datta

and Hsieh(2010), Mosonyi(2015)]). The arguments we invoke below for proving Lemma

84 rely heavily on the techniques Mosonyi’s work [Mosonyi(2015)]. Therein properties of

the quantum Renyi Divergences and the closely related ”sandwich Renyi divergences” are

used to derive universal random coding results for classical-quantum channels. Below we

further elaborate on that approach and extend it by suitable superposition codes.

To facilitate connecting the discussion below with the arguments in [Mosonyi(2015)] we

introduce some notation from there. For a probability distribution p P PpYq and a cq

channel W : Y Ñ SpHq, we define quantum states

W ppq :“
ÿ

yPX
ppyq ¨W pyq, Wppq :“

ÿ

yPX
ppyq |yy xy| bW pyq, and p̂ :“

ÿ

yPX
ppyq |yy xy| .

For each pair of non-zero positive semi-definite operators ρ, σ and every α P p0, 1q we

define

Qαpρ||σq :“ trpρασ1´α
q, and Dαpρ||σq :“

1

1´ α
log trpρασ1´α

q

from

χαpp,W q :“ inf
σPSpHq

DαpWppq||p̂b σq (D.1)

derives. It is known, that the limit α Ñ 1 of the above quantity exists and equals the

Holevo quantity χpp,W q. Translating to the notation in the statement of Lemma 8, we

notice, that χpp,W q “ IpY ;Bq holds.

Lemma 212 Let W be a set of cq channels each mapping Y to SpKq, q a probability
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D. Universal classical-quantum superposition coding

distribution on X and rx a probability distribution on Y for each x P X . It holds

lim
αNearrow1

inf
V PW

ÿ

xPX
qpxq ¨ χαprx, V q “ inf

V PW

ÿ

xPX
qpxq ¨ χprx, V q

The above statement slightly generalizes that of Lemma 3.13 in [Mosonyi(2015)] (regard-

ing the limit from below). The proof is by a similar argument. We include a proof for the

readers convenience.

Proof 213 Set fpα, V q :“
ř

xPX qpxq ¨χαprx, V q for each α P p0, 1q and cq channel V . It

holds

lim
αNearrow1

inf
V PW

fpα, V q
(a)
“ lim

αNearrow1
min
V PW

fpα, V q

(b)
“ sup

αPp0,1q

min
V PW

fpα, V q

(c)
“ min

V PW
sup
αPp0,1q

fpα, V q

(d)
“ min

V PW
lim

αNearrow1
fpα, V q

“ inf
V PW

ÿ

xPX
qpxq ¨ χpV, rxq

The equality in (a) holds by continuity of fpα, ¨q for each α P p0, 1q (the closure might be

performed in any norm, for example the }¨}CQ), (b) is justified, because the argument of the

limit is monotonously increasing on (0,1). The min-max exchange in (c) is an application

of Lemma 2.3 from [Mosonyi(2015)], (d) by monotonicity of f in α, and in (e) the limit

αNearrow1 is performed according to Lemma B.3 in [Mosonyi and Hiai(2011)].

The starting point for our proof of Lemma 84 is the generic random coding bound from

Hayashi and Nagaoka [Hayashi and Nagaoka(2003)] we state below.

Lemma 214 ( [Hayashi and Nagaoka(2003)], cf. [Mosonyi(2015)], Lemma 4.15)

Let V : Y Ñ SpKq be a cq channel, M P N and p P PpYq. There exists a map

py1, . . . , yMq ÞÑ pΛ1pyq, . . . , ΛMpyqq, such that pΛmpyqqmPrMs Ă LpKq is a POVM, and,

given Y M :“ pY1, . . . , YMq of independent random variables each with distribution p, for

each @α P p0, 1q, the bound

EYM
“ 1

M

ÿ

mPrMs

trpW pYmqΛmpY
M
q
c
q
‰

ď 8 ¨M1´α
¨Qα

`

Wppq||p̂bW pqq
˘

holds.

Proof 215 (Proof of Lemma 84) Fix n P N and an n-word x P T nq,δ which we assume

to be of type λ (i.e. x P T nλ ). We approximate tWsusPS by a finite τn-net tWsusPSn Ă

tWsusPS with τn :“ 2´
nNu

2 with a constant positive number Nu to be determined later. We

choose the net small enough to fulfill the cardinality bound log |Sn| ď 2 ¨ |X | ¨ d2plog 6`
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nNu{2q which is possible by Lemma 197. We introduce abbreviations d :“ dimKB, rxp¨q :“

rbnp¨|xq and r1xp¨q :“ r1n,δp¨|xq for each x P X n. Applying Lemma 214 on the cq channel

W n :“ 1
|Sn|

ř

sPSn
Wbn
s with p :“ r1x, and

M :“ texppnpinf
sPS

IpY ;B|X, σsq ´ δ ¨ |X | log d´ Nuqqu, (D.2)

we know that choosing a codewords Y1, . . . , YM i.i.d. according to r1x each, allows us to

bound the expectation by

EYM

»

–

1

M

ÿ

mPrMs

trpW npYmqΛmpY
M
q
c
q

fi

fl ď

8 ¨M1´α
¨Qα

˜

1

|Sn|

ÿ

sPSn

Wbn
s pr

1
xq||r̂

1
x bW npr

1
xq

¸

(D.3)

for each α P p0, 1q. By linearity of the trace and the expectation, the above inequality

implies

EYM

»

–min
sPSn

1

M

ÿ

mPrMs

trpWbn
s pYmqΛmpY

M
q
c
q

fi

fl ď

8 ¨ |Sn| ¨M
1´α

¨Qα

˜

1

|Sn|

ÿ

sPSn

Wbn
s pr

1
xq||r̂

1
x bW npr

1
xq

¸

. (D.4)

The left hand side of the above inequality can be identified as the expected average error

of a random code. We proceed to further bound the Function Qα on the right hand side.

We have

Qα

ˆ

1

|Sn|

ÿ

sPSn

Wbn
s pr

1
xq||r̂

1
x bWnpr

1
xq

˙

ď
1

rxpTr,δpxqq2´α
Qα

ˆ

1

|Sn|

ÿ

sPSn

Wbn
s prxq||r̂x bWnprxq

˙

.

(D.5)

In (D.5) we have used definition of the pruned distribution, and observed operator mono-

tonicity of the function fpxq “ xα for α P r0, 1s (cf. [Bhatia(1996)], Theorem 5.1.9).

Following the arguments in proof of Lemma 4.16 [Mosonyi(2015)] we obtain

Qα

` 1

|Sn|

ÿ

sPSn

Wbn
s prxq||r̂x bWnpq

bn
q
˘

ď
1

|Sn|α

ÿ

sPSn

exp
`

pα ´ 1q ¨ α ¨ χαprx,W
bn
s q

˘

¨ dnpα´1q2

ď exp

ˆ

pα ´ 1q ¨ α ¨min
sPSn

χαprx,W
bn
s q ` npα ´ 1q2 log d` log |Sn|

˙

(D.6)
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D. Universal classical-quantum superposition coding

In order to further estimate the error exponent above, we note that for each s P S

χαpW
bn
s , rxq “

ÿ

xPX
λpxq ¨ χαpWs, rp¨|xqq ě

ÿ

xPX
qpxq ¨ χαpWs, rp¨|xqq ´ δ ¨ |X | log d.

In the above, we have used |λpxq ´ qpxq| ď δ and χαpWs, rp¨|xqq ď log d. By Lemma 212,

choosing α close enough to one allows us to bound

α inf
sPS

ÿ

xPX
qpxq ¨ χαprp¨|xq,Wsq ě inf

sPS

ÿ

xPX
qpxq ¨ χprp¨|xq,Wsq ´ δ ¨ |X | log d (D.7)

“ inf
sPS

IpY ;B|X, σsq ´ δ ¨ |X | log d. (D.8)

where we introduced the notation from the statement of Lemma 8 in the second line. Note,

that with our choice of M , we have

α inf
sPS

ÿ

xPX
qpxq ¨ χαprp¨|xq,Wsq ´

1

n
logM ě Nu ą 0 (D.9)

Combining the estimates from (D.4) - (D.9) and subsequent upper-bounding the right hand

side of (D.3), we achieve the bound

EYM

»

–min
sPSn

1

M

ÿ

mPrMs

trpWbn
s pYmqΛmpY

M
q
c
q

fi

fl

ď 16 ¨ exp

ˆ

pα ´ 1q ¨ npNu` pα ´ 1q log d` 2|X |d2
r
log 6

n
`

Nu
2
sq

˙

ď 2´nNu{4

Where the last inequality above holds for a fixed choice of α close enough to one and large

enough n. By the property of the τn net and linearity of trace and expectation, we can

conclude

EYM

»

–inf
sPS

1

M

ÿ

mPrMs

trpWbn
s pYmqΛmpY

M
q
c
q

fi

fl ď 2´nNu{4 ` n ¨ 2´nNu. (D.10)

We are done.
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lakovic, H. Boche, and J. Nötzel, “Quantum capacity under adversarial quantum

noise: Arbitrarily varying quantum channels,” Communications in Mathematical

Physics, vol. 317, no. 1, pp. 103–156, Jan. 2013.

[H. Boche(2014)] J. N. H. Boche, “Positivity, discontinuity, finite resources, nonzero error

for arbitrarily varying quantum channels,” in IEEE International Symposium on

Information Theory, Jul. 2014, pp. 541–545.

[H. Boche(2019)] N. C. H. Boche, M. Cai, “Message transmission over classical quantum

channels with a jammer with side information, correlation as resource and common

randomness generating,” in 2019 IEEE International Symposium on Information

Theory. IEEE, Jul. 2019.

[H. Boche(2020b)] ——, “Message transmission over classical quantum channels with a

jammer with side information: Correlation as resource, common randomness gen-

eration,” Journal of Mathematical Physics, vol. 61, p. 062201 Online, 2020.

[Boche et al.(2019b)Boche, Janßen, and Saeedinaeeni] H. Boche, G. Janßen, and S. Saee-

dinaeeni, “Simultaneous transmission of classical and quantum information

under channel uncertainty and jamming attacks,” Journal of Mathemati-

cal Physics, vol. 60, no. 2, p. 022204, Feb. 2019. [Online]. Available:

http://dx.doi.org/10.1063/1.5078430

[Ahlswede(1978)] R. Ahlswede, “Elimination of correlation in random codes for arbi-

trarily varying channels,” Zeitschrift für Wahrscheinlichkeitstheorie und verwandte

Gebiete, vol. 44, no. 2, 1978.

147

http://dx.doi.org/10.1063/1.5078430


Bibliography

[Avigad and Brattka(2014)] J. Avigad and V. Brattka, “Computability and analysis: The

legacy of Alan Turing,” in Turing’s Legacy: Developments from Turing’s Ideas in

Logic, R. Downey, Ed. Cambridge, UK: Cambridge University Press, 2014.
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