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Abstract

When implementing communication protocols in the real world, the idealized conditions
assumed at the theoretical level often do not hold. At the practical level, one is inter-
ested in controlling aspects of the communication that might be considered "negligible”
in the mathematical modeling of the given protocol. This effect often renders a large
class of protocols with such assumptions unreliable in practice. In this thesis, we attempt
to address practical questions that undermine known communication protocols, by either
re-modeling the protocols in such a way that they would be robust against practical un-
certainties, or demonstrating that they face logical or feasibility problems prior to their
implementation. There are two categories of such questions that are addressed here. The
first one concerns the uncertainty in the communication system parameters, in particular
the communicating channel. This affects security as well as reliability measures. Reliable
transmission of messages in protocols that assume the state of the channel to be perfectly
known relies fundamentally on this assumption. On the other hand, secure transmission
of messages, depends on the powers ascribed to the eavesdropping and jamming parties.
In the realm of quantum information theory, these powers are significantly higher. We
start by giving results that have destructive implications for some established protocols in
quantum key distribution in presence of a quantum jammer. We then offer a remodeling
of communication protocols, that makes them robust to attacks at physical layer, as well
as robust to system parameter uncertainties. Of particular interest are integrated ser-
vices that are possible in quantum communication. Time-sharing between known coding
strategies to perform multiple tasks is often sub-optimal. We derive universal codes that
achieve full capacity regions of the quantum channel for communicating quantum, public
and private messages. The notion of privacy or security in this work is an information
theoretic one, that is different from its cryptographic counterpart. Here, we consider
strategies that are implemented at the physical layer and are therefore only limited by
the physical properties of the system!. Given that our coding strategies are as mentioned,
robust to uncertainties of the physical properties of the system, they offer a significant ad-
vantage to cryptographic methods in practice. The second category of practical questions
concerns computability of the known protocols. Here, we specifically address the algo-
rithmic computability of capacity functions. When capacity theorems are theoretically
derived, a legitimate practical question is whether or not these functions can be fed to a

machine via an algorithm. Asked differently, are optimal protocols that achieve capacities

'In contrast, known cryptographic methods, rely on computational infeasiblity of eavesdropping.



of channels for different communication tasks, implementable through algorithms? The
value of these functions is derived from achievability and converse theorems that ideally
establish converging computable sequences from below and above the capacity at any
given point. A more relaxed requirement is the question of decidability of such problems.
We end this thesis by giving examples of protocols that cannot in general be turned into
algorithms that can be computed by Turing machines. We further show that the bounds

for capacities achieved by these protocols are in general undecidable.
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1. Introduction

The ever strengthening belief in the future of quantum technologies that accompanies
their commercial advent, has brought about increasing interest in implementability of
the proposed quantum information and computation protocols. Algorithms by Shor and
Grover [Grover(1996)] to perform computations that are extremely hard and provably im-
possible on any classical computer could be considered as some of the first protocols that
demonstrated use cases for quantum information processing. The advantages of this new
model of information were also demonstrated in realization of communication tasks such as
quantum teleportation and dense coding [Bennett et al.(1993)Bennett, Brassard, Crépeau,
Jozsa, Peres, and Wootters|. Determining the asymptotic capacities of quantum channels
has been studied in the past decades as one of the most prominent subjects in quantum
Shannon theory [Wilde(2017)]. There, quite like the classical Shannon theory, informa-
tion transmission ability of a sender and a receiver, connected via a stochastic channel
is examined, while both may use the channel infinitely many times. These protocols in
their inception are normally based on theoretical idealizations that provide prototypes
for further developments in quantum software, but at implementation, face statistical
uncertainties introduced by system parameters. This thesis considers reducing such ide-
alizations in modeling of integrated services that involve simultaneous accomplishment of
more than one information processing task, in favor of their real-world implementation.

We present this introduction in the following order. We start by giving an introduction to
the main content of the thesis, including the studied channel models, information process-
ing tasks and indeed what brings them together to form the theme of this thesis. We do
this, bearing in mind that every chapter has a more detailed introduction on its own. We
proceed by introducing the statistical model used in this work. This model falls within
the boundaries of Quantum Statistics. This is done with the intention of expanding the
audience of the present work, by getting across the idea that for all intents and pur-
poses here, a basic understanding of probability theory and linear algebra is sufficient for
comprehending the results. Finally, we end this introduction by fixing the mathematical

notation used in this work.

1.1. Introduction to the topics of the present work

This thesis studies optimal coding strategies for performing integrated services that are

possible using quantum channels under real-world assumptions. Here, we briefly intro-



1. Introduction

duce these services and their integration into parent protocols that are implemented on
the physical layer of the communication system. Given the dependence of these protocols
on the physical properties of the system, we then motivate the main area of contribution
of this thesis, by introducing channel models that include physical-parameter uncertain-
ties that communicating parties inevitably face in practice.

The quantum channel should be understood as the most general way in which noisy
evolution and transmission of information is modeled in information theory. Two quan-
tum systems can have a very useful correlation with each other known as entangle-
ment [Wilde(2017)]. This correlation is a valuable resource for public as well as private
communication. Given that a quantum channel preserves all correlations of a system
with other systems, it has the capacity to transmit and generate entanglement, allowing
the use of this resource for communication in the first place. In addition to transmitting
messages between senders and receivers of different permissions and priorities therefore,
quantum channels have the capacity for tasks that go beyond those possible by classi-
cal (today’s commercial) communication systems. One may consider the capacity of the
channel for public ( [Holevo(1998)], [Schumacher and Westmoreland(1997)]) or private
( [Devetak(2005)], [Cai et al.(2004)Cai, Winter, and Yeung]) message transmission, en-
tanglement transmission or entanglement generation ( [Devetak(2005)]) to name a few.
Simultaneous (integrated) transmission of different types of messages can take place be-
tween two parties. The body of research in physical layer integrated services is only in-
teresting where capacity regions beyond those achievable by simple time-sharing between
the tasks (Figure 1.1) are achieved. As more tasks are possible using quantum systems,
the importance such optimal strategies and their advantage over separate performance
of individual tasks becomes clearer. Such integrated (or simultaneous) coding has been
considered in the classical realm and for perfectly known channels in quantum information
theory. For instance, simultaneous transmission of classical and quantum messages, the
subject of Chapter 3, has been of interest( [Devetak and Shor(2005)]) for the case where
the parameters of the communicating channel are perfectly known to the sender and re-
ceiver. This includes scenarios where the communication parties would like to enhance
their classical message transmission when having quantum information primarily at their
disposal or vice versa( [Bennett et al.(1999)Bennett, Shor, Smolin, and Thapliyal], [Hsieh
and Wilde(2010a)], [Hsieh and Wilde(2010b)]). In communication systems, the physical
layer is determined by the stochastic channel that connects the communicating parties.
This approach however could also be considered in quantum computers, where the de-
sign of the processor is given by the separate implementation of different layers that are
placed on top of the physical layer ( [Jones et al.(2012)Jones, Van Meter, Fowler, McMa-
hon, Kim, Ladd, and Yamamoto|). The physical layer consists of hardware apparatus
including qubits and control operations. The data storage will then be subject to error
correction and logical programming to perform the desired algorithms at the interface on

the higher levels. Integrating error correction at the physical layer would require simulta-
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Figure 1.2.: Left: Capacity regions for classically enhanced entanglement transmission.
Right: going beyond time-sharing with dephasing qubit channel [Wilde
et al.(2012)Wilde, Hayden, and Guha]

neous implementation of these services that possibly improve time-sharing (Figure 1.2).

In today’s communication systems, issues such as authentication and privacy of mes-
sage identification and transmission protocols are handled in system’s upper layers using
variations of private or public key cryptographic methods (RSA, AES). These meth-
ods rely on computational limitations of illegal parties and hence, are becoming increas-
ingly unreliable [Schaefer and Boche(2014a)]. This concern has motivated much of the
research on the alternative concept of physical layer integration and more specifically,
information theoretic security [Liang et al.(2009)Liang, Poor, and Shamai], [Jorswieck
et al.(2010)Jorswieck, Wolf, and Gerbracht|, [Liu and Trappe(2010)], [Bloch and Bar-
ros(2011)]. Information theoretic security is modelled by the wiretap channel (Figure
1.1) that connects the sender to two receivers, one legal and the other wiretapper. The
secrecy from the wiretapper is then achieved via a stochastic encoding procedure. The
encoder first uses random codes designed for message transmission and then uses part
of these codes to confuse the wiretapper. This procedure known as equivocation, makes
sure that the outcome of the channel at the wiretapper’s end is arbitrarily close to a
fixed state, independent of the encoding. This gives a positive rate of secure messages
transmitted to the legal receiver, in case the channel connecting the legal parties is better
(less noisy) than the one between the sender and the wiretapper. Wyner [Wyner(1975)]

introduced the classical wiretap channel, and considered a subclass of channels known
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Figure 1.3.: Wiretap channel
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Figure 1.4.: Multi-user channel models

as the degraded wiretap channels, before Csiszar and Korner [Csiszar and Korner(1978)]
addressed the general case. The model can be described by two channels from the sender
(" Alice”) to the legal receiver ("Bob”) and to the eavesdropper ("Eve”), respectively. In
transmission theory the goal is to send messages to the legal receiver, while the wiretapper
is to be kept ignorant. The wiretap channel was generalized to the setting of quantum
information theory in [Cai et al.(2004)Cai, Winter, and Yeung, Devetak(2005)].
Real-world communication usually involves more communication parties than just one
sender and one receiver (Figure 1.4). A very basic situation is when two or more sending
parties are connected to a receiver via a multiple-access channel (MAC). A sample use
case of this model is when two senders share the same fiber transmission line to a receiver,
while both independently aim to achieve individual transmission goals. Developing coding
schemes for such situations is of technological importance, since presuming availability of
a "dark fibre” for performing a transmission protocol is rarely feasible. This fact already
became apparent as a limiting factor in recent attempts to use commercial fibre lines
for quantum key distribution ( [Dynes et al.(2016)Dynes, Tam, Plews, Frohlich, Sharpe,
Lucamarini, et al.], [Jacak et al.(2016)Jacak, Melniczuk, Jacak, Janutka, Jozwiak, Gru-
ber, and Jézwiak])-commercial fibre lines are usually a valuable resource being shared by
many users. Consequently, the rate as well as the performance each of the sending parties
can achieve is in general strongly connected to the signal characteristics of other parties.
Finding code constructions that asymptotically achieve the optimal rate regions in the
Shannon-theoretic sense is a highly nontrivial task ( [Boche et al.(2019a)Boche, Janfen,
and Saeedinaeeni]). Another important channel model that allows access to more than
two parties is the broadcast channel (Figure 1.1), in which one sender is connected to two
receivers. Here, the sender might wish to communicate one public message received by
both, and another private message that is only meant for one receiver and kept secret from
the other. Similar to the wiretap channel, the notion of secrecy here is that assured by
upper-bounding the mutual information between the sender and the receiver from whom
the message is to be kept secret. This results in information theoretic security that only
depends on the physical properties of the communicating channel, in contrast with crypto-
graphic security, that depends on the computational limitations of illegal parties [Schaefer
and Boche(2014a)]. As outlined in Chapter 4, sophisticated coding strategies are needed
to achieve the optimal capacity of the channel for the integrated task in which a message
by a sender contains public and private information.

As the coding strategies outlined above all depend on intrinsic and physical properties of
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the system, a challenge facing their practical implementation is when the physical parame-
ters of the communication system in question are unknown to the communicating parties.
In fact, assuming these parameters to be known is unrealistic. In the example of the
wiretap channel for instance, the channel to the eavesdropping party is rarely perfectly
known. Therefore, taking a step closer to real-world implementation of the mentioned
tasks, one needs to consider channel uncertainty. In real world communication using
quantum or classical systems, the parameter determining the channel in use may belong
to an uncertainty set, rendering the protocols that assume the channel to be perfectly
known practically obsolete. Given such uncertainty, when using the channel many times,
as done in Shannon theoretic information processing tasks, assuming the channel to be
memoryless or fully stationary is not realistic. In this thesis we consider three models
that include channel uncertainty without attempting to reduce it via techniques such as
channel identification or tomography. We refer to these models as the compound, arbi-
trarily varying and fully quantum arbitrarily varying channel models.

Informally, the first two channel models consist of a set of quantum channels {N}ss
known to the communicating parties. In the compound model, communication is done
under the assumption that asymptotically, one of the channels from this set (unknown to
the parties) is used in a memoryless fashion (Figure 1.6). The codes used in this model
therefore have to be reliable for the whole family {N®} .5 of memoryless channels for
large enough values of [ € N.

In the arbitrarily varying model, given a number of channel uses [, an adversarial party
(jammer) chooses the sequence s' = (s1,...,5) € S', unknown to the communication
parties, to yield the channel Ny := ®li:1 = N,. The adversary may choose this sequence
knowing the encoding procedure used by the sender. The code in use therefore has to be
reliable for the whole family { N}, cq of memoryless channels (Figure 1.7). Finally, in the
third channel model, namely that of the fully quantum arbitrarily varying, the assumption
of memoryless communication is dropped. Here, the adversary may choose channel states
that are not necessarily of the product form mentioned in the previous model (Figure
1.8). The size of this uncertainty set S, depends on the strategy and physical resources
used for channel estimation, and under real-life physical communication conditions, will
in general be infinite.

In the two arbitrarily varying channel models, we refer to the state chose by the adver-
sary as a jamming attack. We consider attacks that are performed directly at the physical
layer with the aim of disrupting the physical transmission itself. Such attacks can tar-
get a specific single user within the system, but also the overall system itself. Reliable
communication between legitimate users is the indispensable basis for any information
processing. In the worst case, the jammer is able to perform a denial-of-service (DoS)
attack which means that no communication is possible at all. In [H. Boche(2020a)] it was
shown that it is impossible to algorithmically detect such fundamental physical jamming

attacks. The undetectability of DoS attacks has crucial implications and consequences
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Figure 1.5.: Broadcast channel model with one public and one confidential message
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Figure 1.6.: Compound channel model.

on higher layers of communication systems. It was discussed in [H. Boche(2020a)] that
it is possible to obtain resilience by design, by invoking additional resources to stabilize
the communication directly at the physical layer. Techniques to achieve resilience by
design have been analyzed in [Ahlswede et al.(2013)Ahlswede, Bjelakovic, Boche, and
No6tzel, H. Boche(2014), H. Boche(2019), H. Boche(2020b)].
Relaxing the assumption of the perfectly known channel, requires coding strategies that
work for all channels belonging to a set of possibly infinite cardinality and are hence, sig-
nificantly more sophisticated. A case in point is the coding strategy established in [Boche
et al.(2019b)Boche, Janflen, and Saeedinaeeni] to derive capacity results for simultaneous
transmission of classical (public) messages and quantum information over the quantum
channel, given that those developed for the perfectly known channel in [Devetak and
Shor(2005)] did not provide the structure needed to deal with channel uncertainty. Opti-
mal codes derived for the compound model, can be used to derive optimal codes for the
arbitrarily varying models [Ahlswede(1978)]. This fact further emphasizes the theoretic
importance of the compound model.

We finish this thesis by analyzing the achievability and converse bounds (comprising
a coding theorem) from a fundamental, algorithmic point of view by studying whether
or not such bounds can be computed algorithmically in principle (without putting any
constraints on the computational complexity of such algorithms). For this purpose, the
concept of Turing machines is used which provides the fundamental performance limits
of digital computers. A Turing machine is a mathematical model of an abstract machine
that manipulates symbols on a strip of tape according to certain given rules. It can sim-
ulate any given algorithm and therewith provides a simple but very powerful model of
computation. Turing machines have no limitations on computational complexity, unlim-
ited computing capacity and storage, and execute programs completely error-free. They

are further equivalent to the von Neumann-architecture without hardware limitations
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Figure 1.7.: Arbitrarily varying channel model.

in the theory of recursive functions, cf. also [Avigad and Brattka(2014), Gédel(1930),
G6del(1934), Kleene(1952), Minsky(1961)]. Accordingly, Turing machines provide funda-
mental performance limits for today’s digital computers. Since bounds on the capacity are
usually evaluated and often plotted on digital computers, Turing machines are the ideal
concept to study whether or not such upper and lower bounds can be found algorithmically
in principle. Subsequently, these findings are applied to two different open problems. The
first one is the e-capacity of compound channels which is unknown to date. It is shown
that either the achievability or converse must yield a non-computable bound. This is
demonstrated for the capacity as a function of the error input. We also consider the less
restrictive condition of decidability. The crucial consequence is that the e-capacity cannot
be characterized by a finite-letter entropic expression and is not in general a decidable
problem. The second application are asymptotic bounds for tasks involving pre-shared
resources such as common randomness and entanglement. We demonstrate using our
computability results that such resources can offer advantages in the asymptotic regime.
In Chapter 2 following this introduction, we motivate the main idea of this thesis fur-
ther by giving an example where dealing with general attacks (fully quantum jammer Fig
1.8) calls for more sophisticated coding strategies than those suggested by cryptographic
methods. We demonstrate this by showing that a quantum jammer’s power cannot be
approximated by a classical one. This is shown in the case of the well-known quantum
secret key distribution protocol. We do this by demonstrating that the protocols that try
to approximate the fully quantum jammer by a classical one using the known de Finetti
approximation, must use more information theoretic resource in form of common ran-
domness that they yield. This observation is an example showing the non-trivial nature
of quantum generalization of the arbitrary varying channel model.

In Chapter 3, based on results from [Boche et al.(2019b)Boche, Janfien, and Saeedinaeeni],
we consider an integrated task in which the communicating parties wish to transmit clas-
sical messages and entanglement under the channel uncertainty models mentioned above.
Precise definitions of the protocols will be given therein. Clearly, the resulting capacity-
region achieving codes here will reduce to those appropriate for each of these two tasks,
when only one dimension of the region is considered. In Chapter 4, based on results
from [Boche et al.(2019c)Boche, Janfien, and Saeedinaeeni|, we consider an integrated

task where the communicating parties wish to establish secure and public communica-
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tion. Here, our channel may be appropriately named a compound classical-quantum
broadcast channel. Again our codes will achieve the channel’s two dimensional capac-
ity region that also contains the capacity of the channel for each task. In this chapter,
we leave out the capacity under assumptions of the arbitrarily varying model, and in-
stead delve deeper into the compound model. Information theoretically, the compound
model has yielded intriguing properties. One of the interesting information theoretic
properties of the compound channel is that in general, a strong converse cannot be estab-
lished on the capacity of the compound channel for message transmission when upper-
bounding of the average decoding error is considered. This holds even for finite uncertainty
sets [Ahlswede(1967a), Ahlswede and Wolfowitz(1969), Bjelakovi¢ et al.(2013)Bjelakovié,
Boche, Janflen, and Notzel]. This observation implies that a second order capacity the-
orem cannot be developed in this case. Further, calculation of the so-called e-capacity
of the compound channel under the average error criterion is still an open question. We
note however, that determining a second order e-capacity for the compound channel is
not possible, due to the observation that there are examples of the compound chan-
nel where the optimistic e-capacity is strictly larger than its pessimistic one (see [Boche
et al.(2018a)Boche, Schaefer, and Poor] Remark 13).

We consider the computational properties of the e-capacity of the compound channel
in Chapter 5 and based on results from [Boche et al.(2022)Boche, S. Saeedinaeeni, and
Poor|. Therein, we consider examples where the e-capacity of the compound channel
is not Turing computable or less restrictively, decidable. Since classical channels are a
specific example of classical-quantum and quantum channels, in this chapter we consider
classical channels that give rise to non-computable capacities. Therein we also consider
assisted scenarios where communicating parties have at their disposal, pre-shared en-
tanglement and correlation. In the following two sections, we introduce the underlying
statistical theory appropriate for the information processing tasks and the mathematical

notion considered in this thesis.
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1.2. Introduction to the statistical model

The prevalence of quantum information and computation in performing tasks that are not
possible in the classical realm both at the software and hardware levels, can be attributed
to the often counter-intuitive behaviour of the fundamental particles of the universe, using
which quantum protocols and algorithms are performed. The intersection of this thesis
with the strange picture of quantum mechanics, is however the very well understood sta-
tistical model that was born out of the theoretical needs, and later, axiomatic treatment
of the physical theory. A practical model of statistics, provides the scientist with the
necessary mathematical tools to record accounts of a given experiment. This includes a
set of states, possible transformations and measurements that the system can take, un-
dergo and be observed with, respectively. There are natural requirements on any such
model ( [Holevo(2012)], [Ludwig(1983)]). For instance, one requires the set of states to
be statistically convex. This means that a statistical mixture of possible configurations
(preparations) must be a configuration permitted by the set of states. A measurement
with finitely many outcomes, is then a device or more mathematically put, an affine map
that takes in a state from the state space, and outputs a probability distribution, on the
set of its outcomes. Given the structure that such natural requirements impose on the
set of states, here we intend to give an explanation as to why a new statistical model was
called into necessity by discoveries in physics.

The need for a more general model of statistics presented itself in the 1920s, as physicists
were trying to explain phenomena such as Bose-Einstein condensation and stability of
atoms with even numbers of electrons (Fermions). These observations resulted in a theo-
retical departure from what is now referred to as classical physics. The problem with the
existing statistical models was their insufficiency to account for indistinguishable particles.
Here, we must specify that by two indistinguishable systems, we mean two that cannot
be told apart by any statistical test (measurement). More specifically and in the context
of statistical mechanics, two particles in the position-momentum phase-space are indis-
tinguishable if their position and momentum cannot be observed simultaneously or via a
joint measurement. The usefulness of treating constituting particles of a system as indis-
tinguishable originates in a paper by S.N Bose published 1924 [Bose(1924)]. In an attempt
to describe electromagnetic radiation in the framework of statistical mechanics, the author
suggested that the number of distinct phase-space micro-states of an ideal gas made up of
photons, was significantly lower than the one predicted by Maxwell-Boltzmann statistics.
This new model that predicted the experimental results more accurately, treated micro-
states that were obtained by exchange of the particles and yielded the same macro-state
as indistinguishable. This notion was later reinforced by Heisenberg’s uncertainty princi-
ple [Compton and Heisenberg(1984)]. In classical mechanics, identical particles, namely
those that share their intrinsic properties such as mass, electric charge or size, can always

be told apart given their position. This possibility is overruled by the wave-like behaviour
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of quantum particles. According to Heisenberg’s uncertainty principle, one cannot deter-
mine the position of a particle with arbitrary precision, resulting in indistinguishability
of identical particles in close enough proximity. In the following we show that in the
formalism of classical statistics, every pair of observables are jointly measurable, resulting
in turn in distinguishability of classical systems. We argue that this is due to the simplex
structure of the convex set of states in classical statistics, represented by probability dis-

tributions !.

Definition 1 Let & be the convex set of states of a given system. A finite-valued mea-
surement with outcomes in X, |X| < o0, is an affine map M : & — P(X) from the set of

states to the set of all probability distributions on X. For p € &, we denote the map by
M
P My

The affinity condition on measurement is an axiomatic one. As such, for states p;, p; € &
and constant 0 < A < 1, there exists some state p € & such that ué” = )\u% +(1— )\)u%
for all M e M. If G is indeed a simplex, it is uniquely given by the convex hull of some
fixed set of (pure) states B = {p;...,ps} with d := dim(&). B is the set of extremal
points of the simplex (see [Heinosaari et al.(2016)Heinosaari, Miyadera, and Ziman] for a
more detailed account of the terms used). We will see that this condition dictates that all

observables in classical statistics should be jointly measurable or equivalently compatible.

Definition 2 Let M : & — P(X; x Xy) be a measurement defined by p — ,ui‘f,p e 6.
Then My : & — P(&}), p— ué”l is a marginal measurement of M, if for all p e &, x € X,

we have
DT b (a,y) = pdh (x). (1.1)

yeXo
We can now define joint measurablity.

Definition 3 Two measurements My, : & — P(Xy) and My : & — P(X,) are called
jointly measurable if there exists measurement M : & — P(X) x Xy) such that M; and
M, are marginal measurements of M.

M, and My are called compatible, if there ezists a transition probability IT : X; — P(X,)
such that for all pe &,y € X,

pa (y) = - H(ylw)p)" ().

:CEXl

Joint measurablity and compatibility are equivalent (see e.g. [Filippov et al.(2017)F'ilippov,

Heinosaari, and Leppdjdrvi)).

'Here, we define the classical statistical model as one where the set of states is given by a simplex,
and deduct compatibility of observables as the implication of this definition. An equivalent approach
(taken e.g. by [Holevo(2012)]), is to define the classical statistical model as one where all measurements
are compatible, and then prove a one to one affine map between the phase-space and the set of all
probability distributions on a finite set.

10



1.2. Introduction to the statistical model

The following statement exhibits the necessity for a statistical model with a broader

class of states.

Proposition 4 [Pldvala(2016)] Let S be a simplex and let B := {py, ..., pa} be the set
of its extremal points. Then every measurement on & is jointly measurable with every

other measurement on S.

Any statistical and information theoretic model that allows incompatible measurements,
will have the following list of impossible machines (see e.g [Werner(2001)] Chapter 2
or [Wold(2012)]). Let Gassical he the set of classical states and @non—cassical he the set

of states of a non-classical statistical model that allows incompatible measurements.

6nonfclassical is mapped to

e (lassical teleportation, whereby an unknown state pg €
some p; € Gassical and then converted to some py, € Gnon—cassical gych that no

statistical test could distinguish between py and p,.

e Cloning, whereby an unknown state p, € Gnon—cassical jg taken as input, and two

indistinguishable copies of pg are put out.

e Measurement without disturbing the system, whereby generally measurements leave

the state of the system unchanged.

The above gives a hierarchy of machines, in the sense that existence of one enables the
next. Existence of incompatible measurements implies existence of measurements that
disturb the state of the system. In fact it can be shown that commutativity of mea-
surements imply that they are jointly measurable ( [Heinosaari et al.(2016)Heinosaari,
Miyadera, and Ziman]). In turn, the fact that there are measurements that disturb the
state of the system, imply that in general cloning is not possible. It is also evident that
if classical teleportation were possible, one could clone unknown states by repeating the
process. A natural requirement on an acceptable non-classical statistical model is that
it reduces to the classical model when the set of states is reduced to a simplex. Quan-
tum statistics is an example of a non-classical model where incompatible measurements
are permitted. In fact in this sense, quantum statistics is a fairly general model ( [Wolf
et al.(2009)Wolf, Perez-Garcia, and Fernandez]). A state is described by a density oper-
ator, which can be represented by a Hermitian square matrix whose eigenvalues form a
probability distribution (all positive semi-definite and adding up to unity). The convex set
of states in quantum statistics is not a simplex. There are infinitely many decompositions
into pure states for any given mixed state and after the state is prepared, there is no way of
finding out which of the pure state ensembles were used in preparation ( [Werner(2001)])?2.
These non-commutative statistics, as is readily obvious, call for a new information the-

oretic analysis by offering new possibilities. One of the first information-theoretic tasks

2This is based on the assumption that the statistical model is a non-signaling one. As such, another
impossible machine is the mixed state analyzer whereby one determines the actual or refined pure
state ensemble of a given mixed state.

11
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that were considered using quantum statistics was hypothesis testing (see [Holevo(1973)].
We intend to use this statistical model in its elementary form (discrete and finite dimen-
sional) to generalize and replace certain classical tasks, in the spirit of Quantum Shannon

Theory.

1.3. Notations and conventions

All Hilbert spaces are assumed to have finite dimensions and are over the field C. All
alphabets are also assumed to have finite dimensions. We denote the set of states by
SH):={pe L(H):p=0,tr(p) = 1}. Pure states are given by projections onto one-
dimensional subspaces. To each subspace F < H, we can associate a unique projection
qgr whose range is the subspace F, and we write 7 for the maximally mixed state on F,
ie.

. 4r
TF = tr(qF) (12)

C*(Ha, Hp) stands for the set of completely positive trace non-increasing maps between
L(Ha) and L(Hp). In what follows, U(H) will denote the group of unitary operators
acting on H. For a Hilbert space G ¢ H, we will always identify U4(G) with a subgroup

of U(H). For any projection q € L(H) we set ¢t 1= 1 — q.

Each projection ¢ € L£(H) defines a completely positive trace non-increasing map
given by Q(a) := qaq for all a € L(H). In a similar fashion, any U € U(H) defines a U €
C(H,H) by U(a) := UaU" for a € L(H). The coherent information for N' € C(Ha, Hp)
and p € S(Ha) is defined by

Le(p, N) := SN (p)) = S((ida, @ N)([9) (¥])), (1.3)

where 1) € H4 ® H 4 is an arbitrary purification of the state p. A short-hand notation
Se(p, N) := S((idy, @ N)(|¢){¥|)) to denote entropy exchange is also used in the lit-
erature. A useful equivalent definition of I.(p, N) is given in terms of N € C(Ha, Hp)
and any complementary channel N € C (Ha, H.) where H. denotes the Hilbert space of
the environment. Due to Stinespring’s dilation theorem (see [Hsieh and Wilde(2009)]),

N can be represented as
N(p) = tra, (vpv™) (1.4)

for pe S(Ha), where v : Hy — Hp®H., is a linear isometry. The complementary channel
N € C(Ha, H.) of N is given by

N(p) := try, (vpv*). (1.5)

12



1.3. Notations and conventions

The coherent information can then be written as

~

Le(p,N) = S(N(p)) = SN (p)). (1.6)
This quantity can also be defined in terms of the bipartite state o € S(H4 ® Hp) with

0 = idy, @ N (|9 (¥)) (1.7)

I(AYB, o) := S(c?) — S(0), (1.8)

where o8 is the marginal state given by o := tr,(c) and we have the identity
L(p, N) = I(A)B, 0). (1.9)

For the approximation of arbitrary compound channels (introduced in the next section)

by finite ones, we use the diamond norm || - ||, given for any N : £L(H ) — L(Hg) by

| N ffor= SUp o ax | (id, ® N)(a) |1, (1.10)
where id,, : £(C") — L(C") is the identity channel. We state the following facts about
| - |]o (see e.g [Kitaev et al.(2002)Kitaev, Shen, and Vyalyi]). First, ||V, = 1 for all
N eC(Ha,Hp). Thus, C(Ha, Hp) < S,, where S, denotes the unit sphere of the normed
space (L(Ha), L(HB), || - |]s). Moreover, [|N7 @ Na||s = ||[M]|o]|N2||o for arbitrary linear
maps N, Ny : L(Ha) — L(Hp). Throughout this section we have made use of the
idea of nets to approximate arbitrary compound quantum channels using ones with finite

uncertainty sets. This idea is presented in Appendix B.

The set of probability distributions on the finite alphabet X" of cardinality |X'| will be
denoted by P(X). For n € N, we define X" := (zy,...,2,) : 7; € X, Vi € {1,...,n}}.
The sequence x will denote elements of X™. Also, we use bold letters to denote vectors
(sequences with more that one element). The probability distribution p®* € P(X™)
will be given by the n-fold product of p € P(X), namely p®"(x) = p(z;)...p(z,) with
x = (z1,...,2,). For any number M € N, we use [M] := {1,..., M}.

The classical quantum (cq) channel W : X — S(H) is a completely positive trace
preserving map from alphabet X to the set of states on Hilbert space H. We denote the
set of all such maps by CQ(X, ). This set is equipped with the norm || - ||¢¢ defined for
WeCQ(X,H) by

W lleq:= max || W(z) 1, (1.11)
where || - ||; is the trace norm on L(#H). We use the term cqq channel for map V' e

CQ(X,H1 ® Hy) with two outcomes in two sets of states on two Hilbert spaces. With a

slight abuse of notation, we write a® := 1y — a for a € L(H).

13



1. Introduction

We use €, — 0 exponentially as n — oo or we say €, approaches (goes to) zero exponen-
tially, if —% loge, is a strictly positive constant. For €, and €, both approaching zero
exponentially, we use €, > €3, if —% loge;, < —% log €2,,. We use cl(A) to denote the
closure of set A and finally, we use &,, to denote the group of permutations on n elements

such that a(s") = (sa@1),---,Sam)) for each a € &,, and 5" = (s1,...,5,) € S™.

A measurement or a positive operator valued measure (POVM) with M € N outcomes
on Hilbert space H, is given by an M-tuple (Dy,...,Dy) : D; = 0, Vi € [M] and
ey Di = 13 With slight abuse of notation, we write a® := 1y — a for a € L(H).

Given the state wap € S(Ha ® Hp), a closely related quantity to coherent information

is the mutual information that is given by
I(A; B,w) := S(A,w) + S(B,w) — S(AB,w),

where S(v,w), indicates the von Neumann entropy of the state w., the marginal state
of w. Consider the ensemble {p(z),w%z} with w%z € S(Ha ® Hp) and p € P(X). We
can define a classical-quantum (cq) state wxap € S(C‘X‘ ® Ha® Hp), given some ONB
{ez}wex € CI? as

WXAB ‘= Z p(z) lex) <6m|X ®wip (1.12)

zeX
Note that we have used the suffix X to label the Hilbert space corresponding to alphabet

X. The conditional mutual information is then defined by

I(A; BIX,wxp) == Y, I(A; B,w}p). (1.13)

reX

14



2. Randomness cost of symmetric

twirling

In this chapter, we study random unitary channels which reproduce the action of the
twirling channel corresponding to the representation of the symmetric group on an n-fold
tensor product. We derive upper and lower bounds on the randomness cost of implement-
ing such a map which depend exponentially on the number of systems. Consequently,
symmetric twirling can be regarded as a reasonable Shannon-theoretic protocol. On the
other hand, such protocols are disqualified by their resource-inefficiency in situations

where randomness is a costly resource.

2.1. Introduction

When designing communication protocols, the quantum information theorist has a vast
and steadily growing toolbox of approved protocol parts at hand. Especially useful are
universal protocols, which perform a certain task regardless of the preparation of the sys-
tem.

As a prominent example of this class we mention the quantum teleportation protocol
which allows noiseless transmission of an unknown qubit state by using a pure maximally
entangled qubit pair and two bits of noiseless forward communication. The fact that the
teleportation protocol perfectly accomplishes this goal is completely independent of the
state to be transmitted, motivates modular use in larger protocols without further adjust-
ment of the protocol. In this chapter, we address symmetric twirling, which perfectly and
universally transforms each state on a given n-party system to a permutation invariant
one. This is accomplished by applying a unitary U™ which exchanges the subsystems
according to a permutation 7 which is chosen randomly according to the equidistribution

on the group .S, of permutations on n elements, i.e. the quantum channel

1 s ™
UC) = o S Ut
| n| TESH
is applied.
This protocol is very useful in in situations where the system is demanded to be permu-

tationally invariant for further processing. An example of such a situation is, where U is

15



2. Randomness cost of symmetric twirling

performed to make a system ready for applying an instance of the quantum de Finetti The-
orem (see for example [Christandl et al.(2009)Christandl, Kénig, and Renner].) While ap-
plication of U makes all states on the underlying systems perfectly permutation-invariant,
the protocol is highly demanding regarding its randomness cost. Since n! grows super-
exponentially with the number n of systems, the randomness cost of the protocol is not
bounded by any rate. This fact prevents U from being a reasonable protocol in situations
where randomness is at all counted as a resource. However, the equidistributed choice
out of all permutations obviously bares some redundancies, such that a less randomness
consuming way of choosing permutations to emulate U seems possible.

In Section 2.2 of this chapter, we derive upper and lower bounds on the randomness
needed to perform the symmetric twirling channel &, both of which lie on the exponential
scale. We also show, that the lower bound essentially remains valid under the weakened
condition, that the action of the twirling is simulated only approximately well.

In Section 2.3, we discuss the consequences of our findings for communication theory. The
upper bounds derived show that the action of symmetric twirling indeed can be accom-
plished universally by a protocol with rate-bounded randomness demands. This fact is
important in situations where randomness is not a free resource (e.g. when the random
permutations have to be applied by two or more parties in a coordinated way.) On the
other hand, the lower bounds derived show, that the randomness needed is close to the
maximum randomness which can be generated from that system. Therefore, symmetric
twirling is too expensive in some situations. Such situations arise especially, when the
random choice of permutations has to be kept private from additional adversarial com-
munication parties.

The twirling and determination of randomness needed to perform such was extensively
studied in the work [Gross et al.(2007)Gross, Audenaert, and Eisert] in case of the group of
unitary transformations on a given Hilbert space. Therein, the notion of a unitary design
was introduced, a terminology which we extend to the symmetric group in this work.
Recently, Wakakuwa [Wakakuwa(2017)] determined the asymptotic randomness cost of
symmetrizing a given quantum state in case of tensor product representations of an
arbitrary given group. We point out, that the focus set in [Wakakuwa(2017)] is different
from this work. Namely, the twirling we consider does not arise from a tensor product
representation and is therefore out of the scope of [Wakakuwa(2017)]. Moreover, we are
focused on protocols which emulate the twirling operation universally, while the mentioned
work rather asks for the randomness cost of simulating the action of a twirling for a fixed

state.
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2.2. Bounds for symmetric designs

2.2. Bounds for symmetric designs

Considerations briefly explained in the introduction, have brought up the question of
whether it is possible to render the average over a group using only a subset of its elements.
In particular, S, the group of all permutations on n elements (or equivalently all bijections
over {1,...,n}), will be of interest in the remainder of our work. We consider the unitary

representation {U™}.cg, of this group acting on (C%)®" defined by the action:
U”x1®...®xn =$W(1)®...®1‘ﬁ(n) (2.1)

for each m € S,, and x4, ..., x, € C?. We prove bounds for all weighted subsets of S,, the
unitary representations of which produce the group’s average. We refer to such subsets
as symmetric weighted designs, as they are the analogous objects to spherical or unitary
designs ( [Gross et al.(2007)Gross, Audenaert, and Eisert]).

Definition 5 Let X < S, and w : X — Rt be a weight function (i.e. w > 0 and
Dexw(m) =1). The pair (X,w) is a symmetric weighted design (or a weighted design
for S,), if:

1 s K0 ™ s

o > UTUT = w(m)UTU! (2.2)

" weSh meX

for all p e LIH®), where H := C?.

To prove the upper bound on the cardinality of the designs we use the following theorem

from convex analysis. A proof can be found in e.g. [Barvinok(2003)], Theorem 2.3.

Theorem 6 (Carathéodory’s Theorem) Let S « R? be a set. Then every point x €

conv(S) can be represented as a convexr combination of d + 1 points from S, i.e. there

;1;1 a; =1, and yy,...,y, €S such that

exist g, ..., g1 =0, Y]
T =01y + -+ Qge1Yd+1 (2.3)

holds.

Theorem 7 There exists a symmetric weighted design (X, w) with cardinality of X upper-
bounded as:
X <d™+1 (2.4)

Proof 8 Let B := {|e,) : x € [d]} be the standard basis for C¢. We will use the notation
lex) = [€2,) @ - ® |ew,) (2.5)

for each x := (1,...,x,) € X™. Writing the left and right hand sides of (2.2) in terms
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2. Randomness cost of symmetric twirling

of matriz entries of U™ and U™ (u”Zj e U™ lej),uf; (e U™ |ej)) we obtain:

Z UtnU™" =

! TES)

nl Z D1 Oyt ew) (el (2.6)

TSy w,X,y,z€[d"]

and

R := Z w(m) Z axyu@xuﬂl,z lew ) {eq] (2.7)

meX w,X,y,z€[d"]

where axy = {ex|n|ey). Since axy only depends on n, it can be observed that R = L (and

hence (X,w) is a symmetric weighted design) if we have:

Z Uy U Z w(ﬂ)uaxu”;z (2.8)

' WESn meX

for allw,x,y,z € [d"] := {1,...,d}". Define the vector v, := (ul,u™), : w,x,y,z € [d"]).

We observe that v, € Rd4n, as the entries of U™ are either equal to zero or one:

UT lex) = lex(x))

and hence:
(ey| U |lex) = 1 if m(x) =y and 0 otherwise

Define the set 24 := {v, : m € A} for some A < S,,. The point p := %Znesn v, is in the
convex hull of 2g, :
pe conv (§2g,) (2.9)

where

conv (§2,) —{Z Qo |V Vaﬂ/O,Zaﬂzl

TESy TeSh

At this point, we can apply the Carathéodory’s theorem stated above, to complete our
proof. We observe that 2g < Rd4n, and hence by Carathéodory’s theorem, there exists a
subset X < S,, such that p € conv(2x) and | X| < d*™ + 1. Therefore there exists a weight

function w on X such that:

2 w(m)vy =p (2.10)

which fulfills (2.8).

The above stated bound can be also formulated in terms of entropies. Let H(p) denote
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the Shannon entropy of the probability distribution p on an alphabet X, i.e.

H(p) := — Z p(z)logp(z),

where we use the convention that log denotes base 2 logarithms. The cardinality bound

in Theorem 7 implies, that we find a weighted symmetric design (X, w) with

1
—H(w) < 4log(d + 1) (2.11)
n
Next, we will prove a lower bound on the Shannon entropy of symmetric designs which

complements the upper bound from Eq. (2.11).

Remark 9 The weight function w over X as defined in Def.5 is a special case of a
probability distribution over S,. This can be observed by setting w(mw) = 0 for all m ¢ X.
When dealing with entropies, we consider w to be a probability distribution over S,, and
hence derive a lower bound on entropy of any convex combination of permutation unitaries

that produces the desired average over the group.

In what follows, we set Uy () := U,(-)Ul (7 € S,).

™

Theorem 10 Let (X,w) be a symmetric weighted design. Then:

log(n + 1)
n

%H(m > log(d) — 2d (2.12)

where H(w) is the Shannon entropy of the weight function.

Proposition 11 (Almost-convexity of the von Neumann entropy) Letp be a prob-
ability distribution on X, |X| < ©, p, be a density matriz on H where dim(H) = d, for
each x € X, and set p, = D o p(x)py. It holds

S@) < Y p(@)S(p.) + Hp). (2.13)

zeX

Proof 12 See e.g. [Nielsen and Chuang(2010)], Theorem 11.10.

Proof 13 (Proof of Theorem10) Fiz n € N, and set X := {1,...,d} and let pu be a

type of sequences in X" with

1 1
H(p) > logd — 22" 1. (2.14)
n
Notice that existence of such a type is gquaranteed by Lemma 191 (see Appendiz A, where

more definitions and statements on frequency typical sets can also be found). Define the
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projection p,, by

= Z |e><><ex, .

n
xeTM

First, we notice, that for each p-typical word x,

D tnllex) o) = (2.15)
: TSy, |T |

holds (on the r.h.s. of the above equality, we find the maximally mized state on the subspace
of HE™ belonging to the type class T)}). We fir a p-typical word x and set E : |ex) (ex]|.
We can bound the Shannon entropy of w by

-5 (% > uﬂ(E)>
" weSn

1
+(n)
T ™
= log|T}/|.
The inequality above is by Proposition 11. The first equality is by the fact, that U.(E) is

a pure state for each m € S, combined with the hypothesis of the lemma that (X, w) is a
weighted design defined by (2.2). The second equality is by (2.15). We conclude

H(w)=n-H(u) —log(n+1)*=n-H(u) —2-log(n + 1)%
The left inequality above is by the standard type bound

_ . onH (p)
(n+1)¢ ’

T | =

while the second is by choice of u, i.e. by the bound from (2.14). We are done.

The above reasoning can be extended to derive a bound for averages of permutations
which approximately simulate the action of the uniform average over S,,. To formulate
such an assertion, we use the diamond norm | - |, on the set of quantum channels on a
Hilbert space K. We define

|NV|e = sup Emax lidgn @ N (a)||y (2.16)

nelN a€
HaHl 1
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for each c.p.t.p. map on K. We define c.p.t.p. maps

T(b) % S U (v) (be L(HE™), (2.17)
and
Uy(b) = > q(m)Us(b) (be L(H®)) (2.18)

for each probability distribution ¢ on S,,. We prove

Theorem 14 It holds

log(n + 1)

1
—H(q) = log(d) — 2d
—H(q) > log(d) .

— 2l =Ug.) (2.19)

for each probability distribution q¢ on S,, where %f(m) — 0, (x — 0). More specifically,
f(z) :=2xlog(d — 1) + 2Hy(x) where Hy(x) is the binary entropy and d is the dimension
of the underlying Hilbert space.

Proof 15 The proof is by minor extension of the argument given to prove Theorem 10.
Note, that with E := |ex){ex| as in the proof of Theorem 10

€=U = Uyl = (U = U)(E)x (2.20)

holds. By a sharp version of Fannes’ inequality due to Audenaert ( [Audenaert(2007)]),

we have
SU,) = SU) — f(e) (2.21)

with a function fulfilling %f(e) — 0 (e > 0). We repeat the line of reasoning from the
proof of Theorem 10 including the above tradeoff to the inequalities and get

H(q) = S(U,(E)) (2.22)
> SU(E)) - f(e) (2.23)
= nlogd —2d(n + 1) — f(e). (2.24)

The bounds obtained so far directly imply corresponding bounds for completely positive

and trace preserving (c.p.t.p.) matrices.

Theorem 16 Let dimK = di, dimH = dy, and U,(-) = UT(-)(U™)*, Vi(-) =
VT()(V™)* be the c.p.t.p. maps permuting the tensor factors on L(H)®™ resp. L(K)®"
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according to w for each we S,. If

% Z U, oN oV, = Z w(ﬂ')uﬂ oN oV, (2'25)

" wESh mESy
for each c.p.t.p. map N : L(H®™) — L(K®"), then

log(n + 1)

1
EH(W) = log(d;gdy) — 2dycdy (2.26)

Proof 17 The proof of the above assertion almost immediately follows from Theorem 10
combined with the Jamiotkowski isomorphism (see e.g. [Wilde(2017)])

N > oy = N ® idyen (|8 (D)), (2.27)

where | @) is defined by

@) := % D7 e ® lex) (2.28)

xXeX™

Indeed, for each c.p.t.p. map N : L(H)®" — L(K)®", it holds

OtpoNov,—y = Uz 0N 0 Vi1 @ idyen (|2) (D)) (2.29)
— Uy, @ V(o). (2.30)

A lower bound on the cardinality of designs (and 2-designs by a straightforward exten-
sion) can be readily established from Theorem 10. We finish this section, however, by
remarking a relation between vectors belonging to the symmetric subspace and permuta-
tion invariant states, that in turn enables us to derive a lower bound on the cardinality

of designs.

It can be observed that permutation invariant matrices are not in general supported on
sym(™ (), the subspace defined by:

sym® (H) i= span(|v) : U |v) = [v) ¥r € S,

An example to the point is M = |eg1) {eo1|+|e10) {€10| where |e;;) = |e;)®]e;). The follow-
ing lemma from [Renner(2005)] can be used to establish a relation between permutation

invariant states and vectors on sym™ (H):

Lemma 18 ( [Renner(2005)], Lemma 4.2.2) Let the state p, € S(H®") be permuta-

tion invariant and have the following spectral decomposition.:

P = Z)\i vy {vil
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2.2. Bounds for symmetric designs

where we have included the zero eigenvalues. Then |1y := Y. /A [vi) ® |vi) € sym™ (H).

Using this lemma, we prove a lower bound on the cardinality of symmetric weighted

designs:

Theorem 19 Let (X,w) be a weighted design for S,. Then we have:

X| = d" - ( (2.31)

d+n—1
)
Proof 20 Consider |v) € sym™ (H)*, where the superscript indicates the orthogonal com-
pliment. It can be observed that U™ |v) € sym™ (H)*Vr € S,. To see this, we notice that
V[ € sym™ (H) we have (Y| U™ |v) = (Y|lv) = 0. The second equality is due to the fact
that |10) is permutation invariant and absorbs U™. Consider the set V := {U™ |v)}rex for
some X < S,. If |X| < dim(sym™ (H)"),we can orthonormalize this set via Gram-
Schmidt process and obtain V' := {|[v")}zex. V' would then be an ONB for a sub-
space of sym™ (H)*. Finally, define V = {|v™) ® [V V}rex. It can be observed that
@ |y € sym™(H@H)*. There are two possibilities for any linear combination with

non-zero multiples of elements in V': for any set {A\™ £ 0,7 e X} either:

LY X @[y =0
meX

or

2. Z N ™™ # 0 and € sym™ (H @ H)*

TeX

But the first case cannot be, as {|[v™) ® |V )}rex is linearly independent for

| X| < dim(sym™(H)'). The second case, by Lemma 18 implies that the state o :=
D ax A2 ™ (U™ cannot be permutation invariant. Since A" is any non-zero number,
this is true for all linear combinations of states |[v™ ) (V™| as long as | X | < dim(sym™ (H)").
But what does this imply for linear combinations of states U™ |v){v|U™" for m € X. For

any such state
W= Z WU vy (w| U™

reX
we have:
p= >, VT
rireX
In the ONB given by V', the right hand side can be decomposed into a diagonal matriz
@ and an off-diagonal matrix R. The diagonal matriz is a linear combination of states
|v™ (V™| and hence cannot be permutation invariant by arguments given above. But for
1= + R to be permutation invariant, both Q) and R have to be permutation invariant,
as application of any unitary on p will produce a diagonal matrix and an off-diagonal one,

cancelling out Q and R respectively when considering p — U™ pU™".
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2. Randomness cost of symmetric twirling

Figure 2.1.: (i) Implementation of U by equidistributed and correlated random choice of

permutations. (i) Simulation of & by correlated choice of a random permu-
tation from a smaller set X according to probability distribution ¢

2.3. Communication-theoretic implications of the results

In this section, we discuss some consequences of the technical results from the the last
section. From the upper and lower bounds derived there, some remarkable conceptual
implications in communication theory can be drawn.

Assuming H as the underlying Hilbert space of the system under consideration, the quan-

tum channel

U= 3 Ul), Upl) = 0T U (re5.)

" meSy

is usually regarded as the standard protocol applied to universally map each state on H&"
to a permutation invariant one. !
To zest the discussion, we consider H := H 4 ® Hp the space of a bipartite system shared

by distant communication parties A and B. The corresponding map I on H has the form

U = % D Unx @Up (), (2.32)

" weSnh

where Uy and Up , are the channels exchanging the subsystems of ’H%n respectively ”H%n
according to permutation 7. To implement U as a communication protocol, A and B have
to agree on a permutation which is chosen randomly from the symmetric group .S,, on n
letters (see Figure 2.1).

Applying U as a communication protocol (or as a part of a greater protocol) conse-
quently amounts in consuming shared equidistributed randomness (common randomness

as it is called usually in the information theory literature) at rate

1
R, = —logn! (2.33)
n

'Tn this section, we restrict ourselves to discussion of the consequences of the derived bounds for quantum
states. Similar observation regarding quantum channels easily follow from our bounds regarding
quantum channels.
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2.3. Communication-theoretic implications of the results

bits per block length. The observation, that the rates R,, grow unbounded in the asymp-
totic limit n — oo disqualifies U as a protocol in situations, where shared randomness is
not a free resource, but instead does count to the resource trade-off.

In this context, Theorem 7 proven in the preceding section provides an uplifting message.
A weighted symmetric design (on H®") as introduced in Definition 5 exactly simulates
the action of Y. Theorem 7 therefore shows, that we always can equivalently replace U

by a protocol which demands (not necessarily equidistributed randomness) at a rate
R, <4 -logdim(Hs® Hp). (2.34)

We have shown, that the brute-force evenly distributed random selection out of all per-
mutations can be replaced by random selection from a much smaller set of permutations
(which amounts to rate-bounded coordinated randomness demands.)

Opposite to the consequences discussed so far, our results also enforce some conclusions
of the more disillusioning type. Having established protocols for enforcing permutation-
invariance which are reasonable regarding their randomness consumption, they may be
too expensive in randomness consumption sometimes.

As a consequence of the well-known Holevo bound, we obtain the inequality
I(Xan;Ygn) < n-logdimHa ® Hp (2.35)

which provides a principal bound for the mutual information of a bipartite random variable
(X an, Ypn) produced by local measurements on the A and B subsystems of any bipartite
quantum system with underlying Hilbert space (H4 ® Hp)®". When regarding resource
trade-offs, comparing the bounds in (2.35) and the one given by

H(p) = nlogdimHA®HB (236)

for Shannon entropy of any probability distribution producing a symmetric design given
by

U(I = 2 Q(ﬂ->'uA,7r ®UB,W (237)

TESH

we notice that permutation-symmetrization, costs at least as much shared randomness as
could be produced at all (in a perfect situation) by local measurements on a system.
While the preceding observation may have no consequences in communication situations
where shared randomness is a cheap resource, there are other situations, where the com-
munication demands are critical to an extent, that the introduced protocol class is dis-
qualified.

A special instance of such a situation is faced, when in addition to A and B (which we call

henceforth legitimate users) a third, malicious party E takes part in the communication.
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2. Randomness cost of symmetric twirling

Alice

5
3

Eve

Figure 2.2.: Choice of random permutation 7 for implementation of & has to be coordi-
nated between legitimate parties A and B but protected from knowledge by
adversarial party E.

Let the underlying space of the system be Hy ® Hp ® Hg. In this case, it is usually
not enough to perform the random choice in a way that it is coordinated between the
legitimate parties A and B. Moreover, it has to be secure in the sense, that the malicious
party E has no knowledge of the permutation 7 chosen (see Figure 2.2.)

An example where the correlation shared not just by the legitimate but also the ad-
versarial communication parties is useless, is given in [Bjelakovié¢ et al.(2009)Bjelakovié,
Boche, and No6tzel]. Therein it is proven, that the secrecy capacity of an arbitrarily
varying wiretap classical quantum channel (AVWQC) under assistance of common ran-
domness which is secure against the jamming adversarial party sometimes strictly exceeds
the corresponding capacity of the AVWC under assistance of public (non-private) com-
mon randomness. Additionally, in the case where the randomness is also accessible to the
jamming adversary, the corresponding capacity equals the capacity without any common
randomness assistance. Common randomness is useless for secret message transmission if

it is also known to the (active) adversary.
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3. Simultaneous transmission of
classical and quantum information

under channel uncertainty

In this chapter we derive universal codes for simultaneous transmission of classical mes-
sages and entanglement through quantum channels, possibly under attack of a malignant
third party. These codes are robust to different kinds of channel uncertainty. To construct
such universal codes, we invoke and generalize properties of random codes for classical
and quantum message transmission through quantum channels. We show these codes
to be optimal by giving a multi-letter characterization of regions corresponding to ca-
pacity of compound quantum channels for simultaneously transmitting and generating
entanglement with classical messages. Also, we give dichotomy statements in which we
characterize the capacity of arbitrarily varying quantum channels for simultaneous trans-
mission of classical messages and entanglement. These include cases where the malignant
jammer present in the arbitrarily varying channel model is classical (chooses channel
states of product form) and fully quantum (is capable of general attacks not necessarily

of product form).

3.1. Introduction

Simultaneous transmission of classical messages and entanglement is a nontrivial problem
even if capacity achieving codes for the corresponding univariate transmission goals are at
hand. It was already observed in [Devetak and Shor(2005)] for perfectly known quantum
channels that the naive time sharing strategy is generally insufficient to achieve the full
capacity region. Examples of channels where coding beyond time-sharing is indispensable
does not depend on constructing pathologies. They are readily found even within the
standard arsenal of qubit quantum channels, e.g. the dephasing qubit channels [Devetak
and Shor(2005)].

We derive codes for simultaneous transmission of classical messages and entanglement
that are robust to the three types of uncertainty mentioned above. The codes used here
for the compound model, are different from those used for the point to point communica-
tion in [Devetak and Shor(2005)] when considering the special case of |S| = 1. Given that

the input state approximation techniques used therein prove insufficient in presence of
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3. Simultaneous transmission of classical and quantum information under channel uncertainty

channel state uncertainty, in this thesis we use the decoupling approach first established
in [Klesse(2007)]. We combine robust random codes for classical message transmission
from [Mosonyi(2015)] and a generalization of (decoupling based) entanglement transmis-
sion codes from [Bjelakovi¢ et al.(2009)Bjelakovi¢, Boche, and Nétzel] to construct ap-
propriate simultaneous codes for compound quantum channels under the maximal error
criterion. We show that these codes are optimal by giving a multi-letter characteriza-
tion of the capacity of compound quantum channels with no assumption on, the size of
the underlying uncertainty set. We use the asymptotic equivalence of the two tasks of
entanglement transmission and entanglement generation to include the capacity region
corresponding to simultaneous transmission of classical messages and generation of en-
tanglement between the two parties.

Next, we convert the codes derived for the compound channel, using Ahlswede’s robus-
tification and elimination techniques ( [Ahlswede(1978)]) to derive suitable codes for
arbitrarily varying quantum channels. This is possible given that the error functions
associated with codes corresponding to the compound model decay to zero exponen-
tially. We derive a dichotomy statement ( [Ahlswede(1978)]), for the simultaneous clas-
sical message and entanglement transmission through AVQCs under the average error
criterion. This dichotomy is observed when considering two scenarios where the commu-
nicating parties do and do not have access to unlimited common randomness, yielding
the common-randomness and deterministic capacity regions of the channel model respec-
tively. Therefore, we show that firstly, the common-randomness capacity region of the
arbitrarily varying channel is equal to that of the compound channel conv(7), namely
the compound channel generated by the convex hull of the uncertainty set of channels 7.
Secondly, if the deterministic capacity of the arbitrarily varying channel is not the point
(0,0), it is equal to the common-randomness capacity of the channel.

We give a necessary and sufficient condition for the deterministic capacity region to be be
the point (0,0). This condition is known as symmetrizablity of the channel (see [Ahlswede
et al.(2012) Ahlswede, Bjelakovi¢, Boche, and Notzel] and [Boche and Nétzel(2014)]). Fi-
nally, we show that the codes derived here, can be used for fully quantum AVCs where
the jammer is not restricted to product states, but can use general quantum states to
parametrize the channel used many times. This model has been introduced in Section 3.6
along with the main result and related work for fully quantum AVCs and hence here, we
avoid further explanation of the techniques used there.

The task of simultaneous transmission of classical messages and entanglement was first
considered by Devetak and Shor in [Devetak and Shor(2005)] in case of a memoryless
quantum channel under assumption that the channels state is perfectly known to its
users. The authors derived a multi-letter characterization of the capacity region in this
setting which also classified the naive time-sharing approach as being suboptimal for si-
multaneous transmission. A code construction sufficient to achieve also the rate pairs

lying outside the time-sharing region was derived using a ”piggy-backing” technique. A
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3.1. Introduction

specialized construction introduced in [Devetak(2005)] allows to encode the identity of
the classical message into the coding states of an underlying entanglement transmission
code. The mentioned strategy to optimally combine different communication tasks in
quantum channel coding was afterwards used and further developed in different direc-
tions. We explicitly mention subsequent research activity by Hsieh and Wilde [Hsieh
and Wilde(2010a), Hsich and Wilde(2010b)] where the idea of ”piggy backing” classical
messages onto quantum codes was extended to include entanglement assistance. The re-
sulting code construction being sufficient to achieve each point in the three-dimensional
rate region for entanglement-assisted classical/quantum simultaneous transmission leads
to a full (multi-letter) characterization of the ” Quantum dynamic capacity” of a (perfectly
known) quantum channel [Wilde and Hsieh(2011a)] (see the textbook [Wilde(2017)] for
an up-to-date pedagocial presentation of the mentioned results).

In order to derive classically enhanced quantum codes being robust against channel uncer-
tainty, we refine the construction entanglement transmission codes for compound quantum
channels from [Bjelakovi¢ et al.(2009)Bjelakovié, Boche, and Nétzel,Boche et al.(2018b)
Boche, Deppe, Notzel, and Winter| instead of elaborating on the usual approach
building up on codes from [Devetak(2005)]. In fact, it was noticed earlier that deriving
entanglement generation codes from secure classical message transmission codes (the
strategy which the arguments in [Devetak(2005)] follow) seems to be not suitable when
the channel is a compound quantum channel.

In the first section following this introduction, we introduce the notation used in this
work. Precise definitions of the channel models, codes used in different scenarios along
with capacity regions and finally the main results in form of Theorem 25 and Theorem 32,
are given in Section 3.2. In Section 3.3, we present preliminary coding results for entan-
glement transmission (Section 3.3.1) and classical message transmission (Section 3.3.2).
The entanglement transmission codes introduced in this section are a generalization of
the random codes in [Bjelakovi¢ et al.(2009)Bjelakovi¢, Boche, and Nétzel] and [Boche
et al.(2018b)Boche, Deppe, Notzel, and Winter] to accommodate conditional typicality of
the input on words from many copies of an alphabet. The classical message transmission
codes are those from [Mosonyi(2015)] that prove sufficient for our simultaneous coding
purposes.

Equipped with these results, we move on to Section 3.4, to prove the coding results for the
compound channel model. In this section, after proving a converse for the capacity region
in Theorem 25, we prove the direct part in two steps. In the first step, we show that
capacity regions that correspond to the case where the sender is restricted to inputting
maximally entangled pure states are achieved. In the second step, we prove achievablity
of capacity regions corresponding to general inputs, using elementary methods that are
less involved that the usual BSST type results used for this generalization in [Bjelakovié
et al.(2009)Bjelakovié, Boche, and Notzel| and [Boche et al.(2018b)Boche, Deppe, Nétzel,
and Winter].
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3. Simultaneous transmission of classical and quantum information under channel uncertainty

In Section 3.5, after proving a converse for the capacity region under the arbitrarily vary-
ing channel model, we prove coding results in this model by converting the compound
channel model codes using Ahlswede’s robustification method. This, assumes unlimited
common randomness available to the legal parties. We then use an instance of elimination
to show that if the deterministic capacity region is not the point (0, 0), negligible amount
of common randomness per use of the channel is sufficient to achieve the same capacity
region. Also in this section, we prove necessity and sufficiency of symmetrizablity condi-
tion for the case where the deterministic capacity region is the point (0,0). Finally, in

Section 3.6, m these results to the case of quantum jammer by proving Theorem 65.

3.2. Basic definitions and main results

We consider two channel models of compound and arbitrarily varying quantum channels.
They are both generated by an uncertainty set of CPTP maps. For the purposes of
the present work, when considering the arbitrarily varying channel model, we assume
finiteness of the generating uncertainty set. This assumption is absent in the case of the

compound channel model.

3.2.1. The compound quantum channel

Here, we consider quantum compound channels. Let J := {N,}ses © C(Ha, Hp) be a
set of CPTP maps. The compound quantum channel generated by J is given by family
{N® : N e J}*_,. In other words, using n instances of the compound channel is equiv-
alent to using n instances of one of the channels from the uncertainty set. The users of
this channel may or may not have access to the Channel State Information (CSI). We
will often use the set S to index members of 7. A compound channel is used n € N
times by the sender Alice, to convey classical messages from a set [M;,] := {1,..., My,}
to a receiver Bob. At the same time, the parties would like to communicate quantum
information. Here, we consider two scenarios in which quantum information can be com-
municated between the parties.

Classically Enhanced Entanglement Transmission (CET): While transmitting
classical messages using n € N instances of the compound channel, the sender wishes
to transmit the maximally entangled state in her control to the receiver. The subspace
Fan with Fy, < ”H%" and M, := dim(F4,,), quantifies the amount of quantum infor-

mation transmitted. More precisely:

Definition 21 An (n, M, ,, My,) CET code for J < C(Ha,Hp), is a family Copr :=
(,PmaRm)me[Mlyn] ’LUZth

b Pm € C(fA,mH%n);
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3.2. Basic definitions and main results

o R, €C(HY", Fpn) with Fa, < Fp, and
i Zme[Ml,n] R € C(’H%nv 'FBJL)'

Remark 22 We remark that as defined above, for each m € [M;,] we have a (n, Ms,,)

entanglement transmission code for J .

For every m € M, and s € S, we define the following performance function for this

communication scenario when n € N instances of the channel have been used,

P(Copr, N&",m) := F(lm)(m| @ ®"" idr, , @ R o NZ" 0 P, (%)),

@XY

where is a maximally entangled state on Fx, ® Fy, and

Ri= > [m)y(m®Rn,.

me[Ml,n]

Classically Enhanced Entanglement Generation (CEG): In this scenario, while
transmitting classical messages, Alice wishes to establish a pure state shared between her
and Bob. As the maximally entangled pure state shared between the parties is an instance
of such a pure state, it can be proven that the previous task achieved in CET, achieves
the task laid out by this one, but the opposite is not necessarily true. More precisely:
Definition 23 An (n, M, ,, Ms,) CEG code for J < C(Ha,Hp), is a family Cope =
(@m,Rm)Ml’" where W, is a pure state on Fa, @ HE" and

m=1>

e R, €CHHE" Fpn) with Fan < Fpn and

o Scian g R € COHE™ Fi ).

The relevant performance functions for this task, for every m € [M;,] and s € S, are
P(CCEGa-/V;®n7 m) = F(|m> <m| ® 2, ide,n ®Ro -/V’s@n(wm))u (31)

with @ maximally entangled on Fy4, ® Fpp.
Averaging over the message set [ M ,,], will give us the corresponding average performance

functions for each s € S,

P(Cx N i=

1n

Z P(CXaA/;@nam)a

me[Ml,n]

for X € {CET,CEG}. For each scenario, we define the achievable rates.
Definition 24 Let X € {CET,CEG}. A pair (Ry, R2) of non-negative numbers is called

an achievable X rate for the compound channel [T, if for each €,0 > 0 exists a number
no = no(€, ), such that for each n > ny we find and (n, My ,,, M) X code Cx such that

1. Llog M;, = R; — 6 forie {1,2},
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3. Simultaneous transmission of classical and quantum information under channel uncertainty

2. infees mineps, , P(Cx, N2, m) > 1—¢

are simultaneously fulfilled. We also define X "average-error-rates” by averaging the per-

formance functions in the last condition over m € [M,,,]. We define the X capacity region

of J by
Cx(J) :={(R1,Ry) e R§ x R] : (Ry, Ry) is achievable X rate for J}. (3.2)
Also the capacity region corresponding to average error criteria is defined as
Cx(J) == {(R, Ry) e Rf x R} : (Ry, Ry) is achievable X average-error-rate for J}.
(3.3)
Moreover, let X be an alphabet, M € C(Ha,Hp) Vs € S, pe P(X) and ¥, be a pure

state for all z € X. Given the state

WM, p, W) = ) p(a) |2) (o] @ idy, ® M(¥), (3.4)

zeX

we introduce the following set,
O(Mapa ![/) = {<R17R2) € R(JJFXRE)F : Rl < [(X7va(~/\/;‘7pa ![/))/\RQ < [<A>BX7w(-/\/’Sap7 w))}

with ¥ denoting (¥, : x € X) collectively. We will also use

1
7A = {( Ty, — l x9) : (w1,x9) € A}.

The following statement is the first main result of this chapter.

Theorem 25 Let J := {N;}ses © C(Ha, Hp) be any compound quantum channel. Then

Copr(J) = Copr(J) = Copa(T) = Copa(T) = Cl(U U ﬂ CNZ,p,w) )

=1 pWseS

holds.

This theorem is proven in the following steps. In Section 3.4.1, we prove that Copg(J) is
a subset of the set on the rightmost set in the above equalities. In Section 3.4.2, we prove

that the rightmost set is a subset of Copr(J). Together with the operational inclusions

Copr(J) € Copa(T)

and

Cx(J) = Cx(J)

for X € {CEG,CET}, we conclude the equalities in the statement of the theorem.
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3.2.2. The arbitrarily varying quantum channel

The arbitrarily varying quantum channel generated by a set J := {N,}.cs of CPTP maps
with input Hilbert space H 4 and output Hilbert space Hp, is given by family of CPTP
maps {Ny : L(HS) — L(HT),s' € S', 1 e N}, where

Ny =N, ®...N,, (s'esh.

We use J to denote the AVQC generated by J. To avoid further technicalities, we
always assume |S| < o for the AVQC generating sets appearing in this chapter. Most
of the results in this chapter may be generalized to the case of general sets by clever
use of approximation techniques from convex analysis together with continuity properties

of the entropic quantities which appear in the capacity characterizations (see [Ahlswede
et al.(2012) Ahlswede, Bjelakovié¢, Boche, and Notzel]).

Definition 26 An (I, My, Ms;) random CET code for J is a probability measure jy; on
(C(}"AJ,HE?Z)MU x (2, 0,), where

o 2 :={(RW,. . . ROL) D me(My ] R e C(HS, Fri)},
o dim(Fay) = My, Fxs = HE, (X € {A, BY).

o The sigma-algebra o; is chosen such that the function
gs (P RM)Y .= F(|lm){(m| ® ¢15, idyst ® R o Ny 0 P (pA4Y) (3.5)

is measurable with respect to w;, for all m € [My,],s' € S'. In (3.5), XV is a
mazimally entangled state on Fx; ® Fyy and R := 3, pp g 1m)(m|® R,

o We further require that o, contains all the singleton sets. The case where ; 1is
deterministic, namely is equal to unity on a singleton set and zero otherwise, gives
us a deterministic (I, My, Ms;) CET codes for J. Abusing the terminology, we also

refer to the singleton sets as deterministic codes.

Definition 27 A non-negative pair of real numbers (Ry, Ry) is called an achievable CET
rate pair for J := {Ny}ses with random codes and average error criterion, if there exists a
random CET code ; for J with members of singleton sets notified by (P™), R(m))me[Mlyl]
such that

1. liminf; .o 7log M;; = R; (i € {1,2}),

My,
m=1 " L.

2. iy infiest § 57 Dneqan, ) 90 (PU, RU) dpug (P, RE)

The random CET capacity region with average error criterion of 7 is defined by

Arcer(T) == {(R1, Ry) : (Ry, Ry) is achievable CET rate pair for J

with random codes and average error criterion}.
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3. Simultaneous transmission of classical and quantum information under channel uncertainty

Definition 28 A non-negative pair of real numbers (Ry, Ry) is called an achievable de-
terministic CET rate for J with average error criterion, if there exists a deterministic
(I, My, My;) CET code (P(m),R(m))me[Mlyl] for J with

1. liminf,,o 1log My = R; (i € {1,2}),
2. lim;_, o infacq MLU Zme[Ml st ('P(m)7 ’R(m)) =1

Correspondingly we define the following capacity region,

Zd,CET(j) = {(Ry, R2) : (R1, Ry) is achievable deterministic

CET rate pair for J with average error criterion}.

The deterministic CET codes defined here, are entanglement transmission codes for each
m € [My,]. More precisely we have the following definition.

Definition 29 An (n, M), n, M € N, entanglement transmission code for AVQC J <
C(Ha, Hp) is a pair (P, R) with P € C(Fan, HE"),R € C(HE", Fp.n) with Fan © Fpn C
HE" and dim(Fa,,) = M. The corresponding performance function for this task is

F(@A37idH(§n ®Ro/\/'sn o P(@AA))7 e S

Essential to the statement of our results is the concept of symmetrizablity defined in the

following.

Definition 30 Let J := {N;}ses € C(Ha, Hp) with |S| < oo be an AVQC.

1. TJ is called l-symmetrizable for | € N, if for each finite set {p1,...,px} < S(H%l)
with K € N, there is a map p : {p1,...,px} — P(S') such that for all i,j €
{1,..., K}

3 PN () = X plos)(ON (o). (3.6

sleSt steS!

2. We call J symmetrizable if it is [-symmetrizable for all | € N.

Remark 31 The above definition for symmetrizablity was first established in [Ahlswede
et al.(2012)Ahlswede, Bjelakovié, Boche, and Nétzel, generalizing the concept of sym-
metrization for classical AVQCs from [Ericson(1985)]. This definition for symmetriz-
ablity was meaningfully simplified in [Boche and Nétzel(2014)], to require checking of the
condition (3.6) for two input states only (K=2).

We prove the following result to be the second main result of this chapter.

Theorem 32 Let J := {N,}ses © C(Ha, Hp) with |S| < oo be an AVQC. The following
hold.
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3.3. Universal random codes for quantum channels
1. Agcrr(J) # {(0,0)} implies
Agcer(T) = Arcpr(J) = Copr(conv(T)), (3.7)

where Copp(M) is the CET capacity of compound channel M with average error

criterion defined in the previous section and

conv(J) := {Ny : N := Zq(s)/\fs,q e P(9)}.

seS

2. Agcpr(T) ={(0,0)} if and only if J is symmetrizable.

3.3. Universal random codes for quantum channels

In this section we prove universal random coding results for entanglement transmission
and classical message transmission over quantum channels. Most of the statements below,
are implicitly contained in the literature. We state some properties of these codes that
stem from their random nature and prove useful when deriving CET codes stated in
Section 3.4.
Before proceeding with the following two sections in which we introduce appropriate
entanglement transmission and classical message transmission coding results and for the
reader’s convenience, we present briefly the concept of types used in the remainder of this
section. For more information on the concept of types, see e.g. [Wilde(2017)].
For [ € N, the word 2! € X! that is a string of letters x € X and the state p with
spectral decomposition p := Y . p(x) |z) (x|, we define the o-typical (frequency typical)
projection

wlp) = Y lahall,

! 1
x ETp,5

where Tzi, 5 is the set of §-typical sequences in X!, defined by
1
T.s:={a":Vzex, \7N(x|xl) —p(2)] <6 A plr) =0 = N(z[z') =0} (3.8)

where N (x|z!) is the number of occurrences of letter  in word z'.
For each [ € N, we consider the set of types over alphabet X, T(X,[) defined as

T(X,1) = {\: T # &},

where T} = T§, (6 = 0).
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3. Simultaneous transmission of classical and quantum information under channel uncertainty

3.3.1. Entanglement transmission codes

In this section, we prove universal entanglement transmission coding results that are
to be combined with suitable classical message transmission codes introduced in the
next section. The following lemma is a generalization of random entanglement transmis-
sion codes obtained in [Bjelakovié¢ et al.(2009)Bjelakovi¢, Boche, and Nétzel] and [Boche
et al.(2018b)Boche, Deppe, Notzel, and Winter|, where a in turn generalization of the de-
coupling lemma from [Klesse(2007)] has been obtained. As stated in the following lemma,
there are two points to be remarked about these codes. First, the random nature of these
codes gives us an encoding state (outcome of the random encoding operation) with a
tensor product structure, that is of interest for the present work. Therefore at this stage,
we skip the de-randomization step that seemed natural in the original work. Secondly,
the integration over unitary groups with respect to the normalized Haar measure done in
the random encoding operation therein, is replaced here by an average over the elements
of discrete and finite subsets of representations of the unitary group known as unitary
designs (see e.g. [Gross et al.(2007)Gross, Audenaert, and Eisert)).

The product structure of the encoding state can be used for an instance of channel coding
stated later on. This becomes clear when the tensor product structure of the average
state is used to accommodate typicality. For p € P(X) where X is some finite alphabet,
§ > 0 and 2! € X!, we introduce the following notation. For the tuple z! := (zy,..., 1))

where z; € X fort =1,...,[, we define

g;pl = gg:1®"'®g:p“

where G,, © H, and clearly, G, < H%l. Then 7, := mg , denotes the maximally mixed
state on G, (correspondingly 7, denotes the maximally mixed state on G, for z € X)),
P, a purification of g , (correspondingly @, denotes a purification of 7,) and X, is a
unitary design (see Theorem 38) for U(G,:). The following lemma reduces to Theorem 5
of [Bjelakovi¢ et al.(2009)Bjelakovié¢, Boche, and Notzel] when |X| = 1.

Lemma 33 Let J = {N;}lwes © C(Ha, Hp) be any compound quantum channel and
alphabet X be given. For subspaces (G )pex with G, € Ha,x € X, probability distribution
p € P(X) and 6 > 0, there exists ly € N, such that for all | = ly, we find for each
at e T! 5, a subspace Fay < G and a family (Pi,Ri)L)z(“{ll of (I,dim(Fa,)) entanglement

transmission codes with | X 1| < 0 and

1. 1logdim(Fay) = infees I(A)BX, w(Ny, p, @) —0 , withw(N,p, D) defined in (3.4)
for & :=(®, :xe X),

2. Vse S \X_IHZL):(T” Fo(Tr,,, R oN& oP) =1—¢ withe — 0 exponentially as

[ — o0,

[ X1l
3. @ Zz’:ll Pi<7TfA,z) = Tigl-
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3.3. Universal random codes for quantum channels

The ingredients to prove this lemma are presented here in form of two lemmas prior to
the main proof. The following two lemmas reduce to Lemma 5 and 6 from [Bjelakovié
et al.(2009)Bjelakovi¢, Boche, and Nétzel]! when |X| = 1. Following these lemmas, we
state Theorem 38 based on which we replace the integration with respect to Haar measure,
with an average over a subset of the unitary groups called unitary designs. In short, the
entanglement transmission codes in [Bjelakovié et al.(2009)Bjelakovi¢, Boche, and Nétzel
were derived given a number [ € N and subspace G® < H®. Here, we derive codes for a
subspace G,:, with a tensor product structure determined by word z! (see the description

above Lemma 33).

Lemma 34 Let (A\;)zea be a probability distribution with A\, > 0,Yx € A on an alphabet
A. For py =@, P& Ny =X, 1N, p, € S(H) Yz e Aandd e (0,1/2), there exist
a real number ¢ > 0, functions h : N — R*, ¢ :(0,1/2) — R with lim;_ h(l) = 0 and

lims_0 ¢(d) = 0 and an orthogonal projection qs; satisfying
1. tr(paigsr) = 1 — | AJ271E°-h(0)
2. Qsiparqsr < 27 SC)TI00N gy,

The last inequality implies

| Gs0paiqsy ||I2< 27 (SPa)=1000),
Proof 35 Let for cachx & A, qgmlzfx be the frequency typical projection associated with state
PN in terms of Lemma 201. We show that the projection operator qs; = Q)4 q((sszfz

has the properties listed in the statement above. We have

r(pargs1) = tr(X) P®NI Qs NT H tr(p®N=q
zeA zeA
> 1—[(1 . 2—NZ(652—h’(Nz)))
e A

> (1 o 2—00[(552—h/(col)))|./4| > 1— |./4|2—00[(552—h’(col))7

where ¢y = Mingey \,. Setting ¢ = co¢ and h(l) = coh'(col), we have the first claim. To

see the second claim, we observe that

45,1P21951 < @ q(; N, P®NI q5 N

reA
(S ®N’I‘ Nz
<[]z D Qg
reA zeA

= 9~ (o)~ USeea A9 (@) g

where in the last equality, we have used additivity of von Neumann entropy. We are done.

Isee Lemmas 201 and 202 for the statements.
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3. Simultaneous transmission of classical and quantum information under channel uncertainty

Lemma 36 Let (A\;)zea be a probability distribution with A\, > 0,Yz € A on an al-
phabet A.  For each N € C(H,K), § € (0,1/2), and mazimally mized state m, =
Xpen TN N, = Ay -1 € N on some G < H®', there are functions v : (0,1/2) — R* and
h: N — R satisfying lims_oy(0) = 0 and h(l) \, 0 and an operation Ni; € C*(H®', K&'),

called the reduced operation with respect to N' and m,, such that
1. tr(Nsg(mp)) = 1 — |A|27He* =2 0) " ayith constant ¢ > 0.

2. Ns; has a Kraus representation with at most ns; < 95e(m NENH(V(E)+eh (D) Krpgys

operators with constant ¢ > 0.

3. For every state p € S(H®) and every two channels M € C*H(H® , H®) and L €
CHK®, HEY), the inequality

F.(p,LoNsjoM) < F.(p,LoN® o M)

18 fulfilled.

4. As the set of Kraus operators of N, is a subset of the set of Kraus operators of N®

for each l € N, we have

Nsi(0) < N® (o) Yo e S(H®.

Proof 37 Let for x € A, ./\/(;(f\), be the reduced operation for M= in terms of Lemma 202.
We show that Ns; = ), 4 N (x) has the properties mentioned above. We have

NM H tr(N N ®Nz > H 27Nz(c’527h’(Nz)))
zeA zeA
> (1 _ 2—Col(c/§2_h/(col)))|A| >1— |A‘2—Col(c’62—h’(col))

where ¢y 1= mingeq A,. Setting h(l) = coh/(col) and ¢ = coc’ we conclude the first claim.

Also the following holds for ns;, the number of Kraus operators of Nj,.

ns; = ® Nns.N < H Q(SE(FQ@NI 7N®NI)+Nw'Y(5)+Nxh/(Nx))
I AV T
zeA zeA

< 2T NEN (T e Aa7(O)+ 52 R 0)

— o(Se(m NE)+U(4(8)+ (1)

Y

where in the second line we have used additivity of the entropy exchange S.. Finally, the
last property comes from multiplicativity of the trace and entanglement fidelity function

with respect to tensor products of its arguments.

We now have generalized statements of Lemmas 5 and 6 from [Bjelakovi¢ et al.(2009)Bjelakovié,

Boche, and Notzel|. In the statement of Lemma 33, we have used unitary designs to mimic
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3.3. Universal random codes for quantum channels

the average over the unitary group with respect to Haar measure. The following theorem

contains a definition of unitary designs.

Theorem 38 (See e.g. [Gross et al.(2007)Gross, Audenaert, and Eisert]) Let G be a
Hilbert space. For unitaries U € U(G), there exists a finite set X < U(G) with |X| <
dim(G)* such that

1

. i -
Leu(g)(U@) DOW )l = =

DUU)()URU) (3.9)
UeX
where the integration is with respect to the normalized Haar measure. From this definition

it 1s clear that for X we also have,

WU = —— Nt
JUEU(Q)U( )utau X YUt (3.10)

We refer to the set X as a unitary design. We proceed with the proof.

The expected fidelity function present in [Bjelakovi¢ et al.(2009)Bjelakovié, Boche, and
Notzel] and [Boche et al.(2018b)Boche, Deppe, Notzel, and Winter| is achieved by aver-
aging the fidelity function over unitary group with respect to the Haar measure. Here
we show that we can replace this by an expected value achieved by taking the average
over the unitaries from the relevant unitary design. This brings us to the final statement
needed to prove Lemma 33, that is an implication of Lemma 204. We take the average
of both sides of (C.1) with respect to the unitary design introduced in Theorem 38, to
arrive at the desired expression for the expected fidelity lower-bounded. This result is
essentially stated in the proof of Theorem 3.2 [Boche et al.(2018b)Boche, Deppe, Nétzel,
and Winter|, to which we refer for more information. In the statement, we will also use

the following notation.

Fe..(p, = F.(p,R : 3.11
e(p,N) e (P, RoN) (3.11)

where p e S(Ha) and N € C*(Ha, Hp).

Lemma 39 Let X be a unitary design in G and F < G. With quantities defined as in

Lemma 204, we have

1
EF, . (UrsU", N) =‘—Z (UnrUT, N)
UeX
5]

N(mg)) =2 ) v/knj || Nj(mg) Il>

Proof 40 In the first and more straight forward step, we take the average of first term

39



3. Simultaneous transmission of classical and quantum information under channel uncertainty

on the right hand side of (C.1), namely wy = tr(N(UrzU"));

s O (N UmAU) = 2 UnzU")) = N(rg). (3.12)

| | UeX ’ UeX

What remains is the expected value of || D(kUnzUT) ||1. To make the calculation easier we

consider averaging of an upper bound on this term in terms of the 2-norm. From [Boche

et al.(2018b)Boche, Deppe, Nétzel, and Winter] we know that

|sw
| D(kU£U") ”1\ |\/k:m1n{nj,nl} | D;u(kUTUY) |12

Using the concavity of square root function and Jensen’s inequality we have

ISI
B(| D(kURU") 1) < ) Smmm{n],m}wu Dy (kUTUT) |12,

,l=1

where the expectation is taken over the unitaries belonging to the design. To use Klesse’s
[Klesse(2007)] argument as done in proof of Theorem 3.2 of [Boche et al.(2018b)Boche,
Deppe, Ndétzel, and Winter], we must invoke the unitary invariance of E(|| D;(kUrzU") ||3
) with respect to allU € U(G). To see this unitary invariance, we observe that (see [Boche
et al.(2018b)Boche, Deppe, Nétzel, and Winter])

1 nj,ng
I Dja(p) 3= = >, trplal ) Tpal ai,) — |tr(pal jar,) . (3.13)
i=1,r=1

The unitary invariance of the expectation of the first summand is clear due to linearity of

the trace function. For the expectation of the second summand we have

1
|X| Z | tr( UpUTa;ial,r)]2 ~ X Z W’(UPUTG alr)tT(UpUTazran)
UeX UeX
1
= — Z tr(UpUTa alT®UpUTalra“)
’X| UeX
1
= m[;(trww(p@p)w@ 0) (Ajur ® Aly,)
€
5 ;(U@U (p@p)(U V) (Ajur ® Aly,)),
€
where Ajyy = a;iam. From (3.9), we conclude the invariance of second summand in

(3.13). Therefore we can conclude that E(|| D, (UrzU") ||3) is indeed invariant with
respect to all U € U(G). The rest of the proof is exactly the same as the proof of Theorem
3.2 of [Boche et al.(2018b)Boche, Deppe, Nitzel, and Winter], yet stated here for reader’s
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3.3. Universal random codes for quantum channels

convenience, as follows. We can use Klesse’s argument to conclude
E(|| Dy (kUnzU") |13) < tr(N(mg)Ni(mg)). (3.14)

Using (3.12), (C.1) and (3.14) we conclude

|5|

E(F. . (UrrU', N)) > t - >

j,l=1

\S| JlD]l, (3.15)

where for 3,1 € {1,...,|S|}, we introduce abbreviations
L;; = kmin{n;,n;}

and

Dju = tr(N;(mg)Ni(mg)) = (Nj(mg), Ni(mg)) s »

where (-, )¢ denotes the Hilbert Schmidt product. It is obvious that
le < ijandLlj < L”.

Moreover, the Cauchy-Schwartz inequality for the Hilbert-Schmidt inner product justifies

the following chain of inequalities.

Dy = Nj(7g), Ni(mg)) s <Il Nj(mg) [loll Nilg) ll< max{|| Nj(g) |[5. | Ni(g) |15}
= max{Djj,D”}.

Therefore, an application of Lemma 199 allows us to conclude from (3.15) that

S|

E(Feo(UnrU' N)) = tr(N(mg)) — 2 Z Vkn; || Ni(mg) ||z -

Let for 6 > 0, Ns;; be the reduced operation associated with Nj,j € S,[S| < oo as
defined by Lemma 36. Let g5;; € £(H) be the frequency-typical projection of N ;(m,:)

in terms of Lemma 36. Define
515 7= Qatg o N (3.16)

where Qs,(-) = ¢s54.5(-)¢s,1,5- Also define

|5

5,l: |S|ZN(;IJ

Applying Lemma 39 on {Nj, }jcs, with expectation taken over unitaries from a unitary
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3. Simultaneous transmission of classical and quantum information under channel uncertainty

design on U(G,:) we obtain

|S|

EF, . (UrrU, Ns;) = tr(Nsy(mp)) — 2 Z VEnsg | NS () Il - (3.17)
j=1

We may now follow the steps taken in proof of Theorem 5 from [Bjelakovi¢ et al.(2009)Bjelakovi¢,
Boche, and Noétzel] to give a lower bound on each of the terms on the right hand side of

(3.17) using Lemmas 34 and 36, to derive the following result.

Lemma 41 Let J := {N}es < C(H,K) be a compound channel, 6 > 0 and X € P(X).
For subspaces (Gp)zex,Ge < H,x € X, there exists lg € N such that for each | = ly and
7t e T, we find a subspace F; = Gy and (I,dim(F;)) entanglement transmission codes

(PZ,RZ)lﬂ with | X| < oo such that,

1. dlm(]:l) > 2infses IC(ﬂ'ml,Ns®l)—l5 and

2. infeg |71| Z‘Zi_ql Fmr, RioN& oP) = 1—¢ withe — 0 asl — oo.

Proof 42 Let J, with index set S, be the net associated with J in terms of Lemma 195.
Choose §' € (0,1/2) and ly € N satisfying v(6') + ¢(8') + ¢h(ly) < S with functions 7, ¢, h
and constant ¢ from Lemmas 34 and 36. Now choose for every l = ly, a subspace F; < G
such that

dim(F}) 1= ky = |2mimsesr Telr A 16 (3.18)

This is always possible as S(mg ;) = I.(m, N&). We have

min I (7, N&) — 16 — o(ly) < log ky < min I (7, N&) — 16. (3.19)

seSr SEST
We assume for the moment that 2! € T} is given by concatenation of homogeneous words
of size N, := N(z|2'). That is, for A:={x e X : N, # 0} € X, we have 2* = (™) 4.
As such, the hypotheses of Lemma 34 and Lemma 36 apply to to product states indexed

l

by x'. This assumption however, does not prohibit generality of the proven results, since

each word of type X results from a permutation of the letters of word z'. Namely, for any

l

word T' € TY, there exists a permutation mape v with y(x') = #'. Therefore, given codes

(Pi, Ri)iex for ' with the properties mentioned in the statement of the present lemma,
suitable codes for T will be given by (U, o P; ou;l,u;l oR;olU,), withU, the CPTP map

permuting the tensor factors according to 7.
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3.3. Universal random codes for quantum channels

We now give lower bounds for the terms on the right hand side of (3.17).

|57
1
tr(N oy (ma)) = 5] tr(Ny o (m51)) (3.20)
Tl s=1
1 1%
- |S | [tr(Q(S/ l,s ON ( )) - tr(Qé/,l,s O [N®l - ./\/’5/7175] (sz))]
Tl s=1
>1— |X|(2—l(é§’2_h(l)) _ 2—l(c5’2—h(l))). (3.21)

In the last inequality we have inserted the bounds from Lemmas 34 and 36, after using

0< tr(Q(;%S @) [N®l — N(S’,l,s] (7'('1,1)) < tr([./\/®l - ./\/’5/7[75] (le)). AZSO,

I NG 1 (o) 113 < Qs © N () 113 + [ Qoras © (N = Niyao) () 12
<I| Qo o N () |3 270710000, (3.22)

In the second inequality we have used || A |3 + || B |35<|| A + B ||3 for non-negative
operators A, B € LIK®) (see [Klesse(2007)]), and inserted the lower bound from Lemma
34. Inserting the bounds from (3.20) and (3.22) into (3.17) we obtain

]Eche(UW]:l UT7N5,7 ) 1— ‘X’[ 1(cd—h(l)) 2_1(55/2_}1(”)]

15|
_9 Z \/ olog k=S (1) H(8')+Se (w1 NE ) +U((8)+Eh(D))

1—\X|[ (2 =h(1) _ 9=l =hI)] _ 9|8, |v/2-U—(3)—(8)—2h(1),
(3.23)

In the second inequality above we have inserted the upper bound for k; from (3.19). For

[ =1y, (3.23) gives us an exponential decay of error. Therefore we can write
EF, (UrrU'\ Nyy) 21— e, — |S:|ey
with €;; — 0 with | — o fori=1,2. From this we conclude

mlnEFce(UWﬂU Qs1soNy 1) =1—|S e — ‘57‘26271.

seSr

From the third property under Lemma 36, the above inequality implies

mgnEFce(UﬂflUT Qo1 oNBY =1 —|S;ery — [S: P2y = 1 — |- Peoy, (3.24)
SE

where €9 = max;_; 5 €. Setting shorthand notation Byy = 1—F,. . (Unr U, Qs soNE),
we obtain from Lemma 200, F..(UrnrUNN®) = 1 —38,1. Hence from (3.24) we
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3. Simultaneous transmission of classical and quantum information under channel uncertainty

conclude

min EF, . (UrrUT, N = 1 — 3]S[2eoy. (3.25)

SES,

By Lemma 195, we have

min EF, (Urz UM NEY) =1 - 3|5, |%e, — 217 (3.26)
ElS

1
Given that we find |S;| < (2)2((1.(1’)27 choosing T = ESfZ'd')Q, we have the desired expo-
nential decay of error. Also, as J, < J, we obtain the desirable lower bound on the

rate.

Proof 43 (Proof of Lemma 33) Assume x' € T}. Note that Y\ € T(X,1), either T} =
Tl s or TN T, 5 = &. Since by assumption of the lemma «' € T} 5, we conclude T} <
Té’g. For each 6 > 0, we have from Lemma 41 applied on the compound channel J <
C(Ha,Hg), a subspace Fa,; < H%l with

1 1 ~ 1 -
“logdim(Fay) = 5 inf I(m, N) — § =inf Y —I(a®Ne, N®Ne) —§
l ’ | ses seS = l

= ing M) (7p, Ny) — 0
€ zeA

> inf p('r>(]c<7Tm7'/\/‘S>
sesS oy}

= 0) = [A&) = p(@)] - (Le(m, ) = )
> inf I(A)BX, w(N, p, D)) — o — |X[ed.

with ¢ := 2logdim(HAQ@H ) and ws defined by (3.4). With this rate we obtain exponential
decay of error as explained above. Choosmgg such that § > 6+ |X|E§~, we obtain the desired
lower bound on the rate. The last property listed under Lemma 33 is clear by averaging

property of the Haar measure, reproduced here by the unitary design in U(Gy).

3.3.2. Classical message transmission codes

The desired statement of universal codes for c¢-q channels can be extracted from [Mosonyi(2015)].
Therein, the authors have introduced universal random codes for transmission of classical
messages over c-( channels, using properties of Renyi entropies. Based on the same codes,

we have derived the following lemma to allow for a faster decay of error while considering

only ” typical ” inputs.

Lemma 44 Let J := {N}ses € C(Ha,Hp) and V : X — S(Ha) be a c-q channel. For
each n > 0 and p € P(X), there exists a number ng, such that for n = nyg, there exists a

classical encoding map u : m — u,, € X" and decoding POVM (/l)me[Mn] such that

1. VYme [M,] : up, € T

p’n;
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3.4. Proofs for the compound channel
2. infyesg mingepr, tr((N,oV)®(uy,)A) = 1—¢,, with e, — 0 exponentially as n — o0,
3. %log M, = inf,es [(X;B,w(N;,p,¥)) —cn

with w(Ny, p, W) defined by (4.4) for ¥ := (¥, : x € X, try(¥,) = V(z)) and constant
c>0.

3.4. Proofs for the compound channel

In this section we proceed with the proof of Theorem 25 in two parts. In the following
section (converse part), it is also demonstrated that CSI at the decoder does not improve
channel’s classically enhanced entanglement generation capacity. In the more involved
direct part of the proof, we introduce classically enhanced entanglement transmission
codes by marrying classical message transmission codes from [Mosonyi(2015)] and a gen-
eralization of entanglement transmission codes from [Bjelakovi¢ et al.(2009)Bjelakovié,
Boche, and Notzel] and [Boche et al.(2018b)Boche, Deppe, Notzel, and Winter| as stated

in Section 3.3.

3.4.1. Proof of the converse

In this section we prove the following lemma.

Lemma 45 Let J = {Ns}ses € C(Ha, Hp) be any compound quantum channel. It holds

Cepa(J) © Cl(U%UﬂC’(./\fS@l,p, LP)). (3.27)

=1 pW seS

To prove this result, we shall make use of the following lemma (see [Devetak(2005)]).

Lemma 46 For two states p*P and o4P on some Hilbert space K4 ® Kp of dimension r
and fidelity f := F(p*B, 0B), we have

II(AVB, p) — I(A)B,0)| < Z +4logr/1— f.

Proof 47 (Proof of Lemma 45) We prove a more general claim than stated in Lemma
45, allowing the decoder to choose the processing according to the channel state (i.e.
the decoder has access to CSI). Let for each n € N, Copa,s := (Ym, Rm,s)men,,, be an
(n, My, Ms,,) CEG code with informed decoder®, such that

ingﬁ(ccms,/\@@”) >1—c¢, (3.28)
se

2As clear from the notation, these codes are CEG codes for compound channel 7, when the decoder
has access to CSI.
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3. Simultaneous transmission of classical and quantum information under channel uncertainty

with € < 1 holds. Fix n € N and let p, € P(X™) be the equidistribution on the message

set. Consider the pair (Mg, ML) of random variables with joint distribution:
Pr(M, = m, M{ = m') = pu(m) (R« o NF"(V(m)))

for (mg,m € [My,]) and s € S with V(m) := trg, ¥, for some c-q channel V : X" —
S(HE™). Note that with these definitions, we have

P(M, # M) <1 — P(Ccra.s, N®") <, (3.29)
for se S. Fix s for the moment. Define the state

o= Y, pulm) [m)(mf* ® (idyygn @ Rug o NE") (W)

mG[Ml’n]

and the shorthand notation

0y = WNE" W) = Y palm) m) (ml™ @ (idyyen @ NE™) (W),

mE[Ml,n]
We have
log My, = H(ps) = I(Ms; M{) + H(M|M,) < I(Mg; M) + elog My, + 1

1
I(X;B,os) + elogM;, +1
I(X;B,o,) + nelog |X| +1,  (3.30)

A

N

where 1(Y;Y') is the mutual information of random variables Y,Y'. The first inequality
comes from (3.29) and the second is by Holevo bound (see [Wilde(2017)]). For s€ S, We

have

e>1—P(Copas, N =1 — F(D,0'P), (3.31)

rYs

where 0’48 := trx(0’). We have

I(A)BX :05) = I(A)BX,0)
> I(A)B, 0'P)

S

2 2
> [(A)B,®) — = — 8nlogdim Hy/e = log My, — = — 8nlog dim H+/e.
e e
(3.32)

In (3.32), the first inequality comes from the quantum data processing inequality, the
second comes from the fact that conditioning does not decrease coherent information. The

third inequality comes from Lemma 46 together with (3.31) and finally, in the last line we
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3.4. Proofs for the compound channel

have used 1(A)B,®) = log Ms,,.
Choosing n such that § = 2 + 8log dim(H)v/e , from (3.32) and (3.30) we obtain

1 1 1 4
(=log My, — 6, —log My,, — 0) € —C(N&" p,, V).
n n n

Since s € S was arbitrary, we have shown

3.4.2. Proof of the direct part

In this section we prove the following lemma.

Lemma 48 Let J := {N;}ses © C(Ha, Hp) be any compound quantum channel. It holds

cl ( g % UNeWe,p, m) c Copr(J). (3.34)

=1 pWseS

In the first step towards proving the above statement, we restrict the encoder to maximally
mixed state inputs. The final result will then be a generalization by way of which we lift
this restriction. We state the first instance of the classically enhanced codes, satisfying

classical and quantum error criteria in the following lemma.

Lemma 49 Let J = {N,}ses © C(Ha, Hp) be any quantum compound channel. For
finite alphabet X, subspaces (Gy)pexsGe € Ha V€ X, pe P(X), Vi : X — S(Ha) with
Va(z) = mpyx € X, each 6 > 0 and large enough values of n, there exists an (n, My ,,, Ma )
CET code with My, = dim(Fa,,) such that

1. %log Ms,, = infes I(A)BX,w(N5, p,P)) — 9,

2. Llog My, = infes I(X; B,w(N;, p, ®))—cd with some constant ¢ > 0 and w(N, p, D)
defined by (4.4) for @ .= (P, : x € X) defined as in Section 3.3.1,

3. inf s mingepny, ] P(Ccrpr, N® m) = 1 —¢,, with ¢, — 0 exponentially as n — .

Proof 50 Let J, < J be as defined in Appendiz B, Lemma 195 with index set S;.
According to Lemma 44, for 6 > 0 and large enough values of n € N, we find pairs
(U, A meay ] with %log M, = mingeg, I(X; B,w(Ns,p, @) —cd, such that for channel
V. we have

i in (A, (N o Vi)®"(uy,)) = mi in tr(A, o N (m,,,)) = 1— €1, (3.35
min min tr( (N 0 Va)®" (um)) min min #r( o N (T, ) €1, (3.35)

Jor um € T and €1, going to zero exponentially. Given un, € T)'s for each m, according

to Lemma 33, there exists a family of entanglement transmission codes (Pi(m), ﬁi(m))ﬁqm'
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3. Simultaneous transmission of classical and quantum information under channel uncertainty

with rate %log M, =
minges, [(A)BX, w(Ny, p,®)) — 0, such that 7, is exactly the output of the average of

encoding operations (third statement of the lemma) and

1
. . Z ®n Pm)
ge%lrlmgﬁwull,n] |‘;<’U¢m| im1 Fe (WFA R N © ) > 1 €2,n (3'36>

with €3, — 0 exponentially. Thus (3.35) yields

‘X’Mm|
1
: : ®n (p(m) .
mip Wi ey 2 RN P () 2 1 e (3.37)

Following [Devetak and Shor(2005)], the encoding and decoding maps are given by

(P RN Xl itn
m = (m)
R (p) = Ri ™ (W Ap/ Am).

It can be observed that for each i we have 3}, ]R(m) € C(HY", Fpn).

(2

From (3.37) we obtain

min min
s€Sr me[Mji n]

X
Z R o NE (P (15, ) = 1 — €1 (3.38)

Um

We define the following state
iy = [id® (WE o P (@),

where g, | is a mazimally entangled state given by purification of mx, .. From (3.37) we

obtain
|Xum‘

(i ® Am) = 1 — €1, (3.39)

min min

s€Sr me[Mi n] |Xum| i=1

Set Yiom = XL (iId @ Ay,). 1t is clear that if vism = 0, we have (3.41). To prove this
equation for the case where v; s, > 0, we observe that by the gentle measurement lemma
(Lemma 203), we have for all i,m, s

(id @ v/ Am) (xi%) (id @ v/ A)

[ X" i< 20/T = iom
Vi,s,m

and hence by monotonicity of trace distance under CPTP maps we obtain

[ (id@R™) (™) — (id@RY™) (™) < 24/T — Yiom- (3.40)

Yi,s,m
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3.4. Proofs for the compound channel

Applying Lemma 198 and averaging with respect to index i, the above inequality yields

Z Fe(ﬂ-]——A,na

m| i=1

1

X R™ o N2 o PI™) =

‘Xum|
Z (Fe (ﬂ-fA,nv Rz(m) © '/\/’s®n © Pi(m)) —24/1- 'Vi,s,m)%,s,m- (341)

i=1

1

‘ Um

To give a suitable lower bound for (3.41), we use Lemma 206. We observe that,

]. = (m m
‘X Z Fe(ﬂ]‘—A,n’Rz(' ) OM®nOPi( )) _2\/ 1 — Yi,s,m =

Z F(ﬂ']:An, N®nOP ) 1-—

=>1-— €an — 2«/61’7” (342)

where in the first inequality we have used concavity of the square function along with
Jensen’s inequality, and in the second one we have used the bounds from (3.36) and
(3.39). Setting €3, := max{ea, — 2,/€1n, €10}, by Lemma 2006, (3.42), (3.39) and (5.41)

imply o
Z (T R O NE 0 PIMY 21— 2¢y.,. (3.43)

=1

IXu

This means that for each m there exists a value i(m) such that:

m) ,/\/'®”o73m))>1—263,n.

(m

seS

Therefore setting R := 3}, iy, . Im)<(m| @ RZ(Z”) and P, 1= Pi(i’;)) for all m € [M, ] for
all s € S; and m € [My,,], we have Jor Copr := (Pm, Rin)mela, ] with

P(Copr, N&",m) = F(Im)(m| ® @AB Jidz,, ® R o NE" 0 Py,)
= F.(nr,,, R oN®” o 7? ) >1— 2|5, |€e3n- (3.44)

By the third property of J. stated under Lemma 195, we have for all s € S and m € [ M, ]

P(CCET,/V;®n, m) 2 1 - 2|S7-|€37n - 2”7-7

Given that we find |S,| < (& )2@d) " choosing T = 63(dd) , we have the desired exponential

decay of error. Also we obtain the desirable rates as J, < J.

We now run an instance of concatenation upon codes from Lemma 49, to achieve suitable
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3. Simultaneous transmission of classical and quantum information under channel uncertainty

codes without the restriction imposed by V,.. The method used here for lifting this re-
striction is rather elementary® given that the input state can be decomposed as a convex

combination of maximally mixed states.

Lemma 51 For compound channel J := {Ns}ses € C(Ha,Hp), p € P(X),V : X —
S(H4) and large enough values of n, there exists a CET codes, Copr := (P™, R"™) eian 1
such that

1. liminf,,_, % log My, = infees [(A)BX, ws(Ng, p,¥)),

2. liminf,, o +log My, = infes I(A; B, ws(N;, p, %)) hold with w,(N, p,¥) defined by
(4-4),

8. infyes minpenr, ) P(Copr, N®",m) = 1 —¢,,

with €, — 0 exponentially as n — o0.

Proof 52 For x € X, let V(x) have the spectral decomposition

= > @) 8% (el

yey

with Y an alphabet with |Y| = dim(Ha), {|¢%)},ey an ONB and g, € P(Y) for each z € X.

It can be seen that for l € N and 2! € X' we have

V() = D7 quly’) 6% (%] . (3.45)

yleyl

For each x' € X' and \ € T(X x Y,1), define the following sets
) = (o (@) € T, (3.46)

Given the properties of typical sets, it can be observed that Ax(z') (Ax(z!) = & for all
pairs (A, X') with A # X. Also, U/\ET(Xxy,l) Ax(z!) = Y'. Given these properties, from
(3.45) we obtain

VI = T qu() Y el = Y qum, (3.47)

AET (X xY\0) yte Ay (x!) AT (X xY\0)

. l
with 7 = o S 606 and ga(3) = qu()AN@)] for any o € Ay(a).
The above decomposition therefore comes from the fact that for all y' € Ax(z!), qu(y') is
constant. Define probability distributionr € P(X!, T(XxY,1)) withr(x, \) = p'(x')gu(N).

3Compare with BSST type lemmas used for instance in [Bjelakovié et al.(2009)Bjelakovié¢, Boche, and
Notzel]
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3.4. Proofs for the compound channel

Also define the state

s 1= > r(@, A) lea) (x| @ lex) (el ® Ly @ NE(@)),
(L, N)eXtx T (V1)

where @il s a purification of 77;\1, a mazximally entangled state on subspace Qi‘l c HE.
According to Lemma 49, for Vy : V(2! \) = 7r;\l, large enough values of a € N and § > 0,
we find a subspace Fa o1 < HE with dim(Fa i) = Mo with

- log My 1 > inf I(A)BTX, 0,) = (3.48)
irelg I(ATYBX,0,) — 6 (3.49)
> inf I(A)BX, (cXABYY — S(T), — 6
> inf I(A)BX, (oX4B)E) — dim(Ha @ Hp) log(l + 1) — 0. (3.50)

The first inequality comes from an application of Lemma 49, second and third from well-
known inequalities (see e.g. [Wilde(2017)]) between joint and conditional entropies. We
have also used S(T'), < log|T (X x V,1)| < dim(Ha ® Hp)log(l + 1) and the marginal

state

(0F4P)2 = 3 P (') few) (eat] @ 3 (V) Ty @ NE (@)
A

rleXx!
= D P! lew) len] ® Lyar @ N2 (Fy1)
zlex!

= W?(My% W),

where W, is a purification of VO (') and ws(Ny,p,¥) is defined by (4.4). We use ws to
denote this state. From (3.48) we have

1 1 di log(l+1) &
l log My 41 = finéf [(AYBX, w®) lm(HA®7'§B) og(l+1) ’
-a sSE
= iné[(A>BX, wy) — dim(H 4 ®7—§B)log(l +1) B ?

(3.51)

Again from Lemma 49 we have for § > 0,

—longal mfI(A B,os) —0

=i161£5 ZZp N®l ZZP )t (A N®l( 1)) — 6

D zl A
1nfSZZp MNE (7 Zp /\/@qux M)
xb A

=inf I(A; B,w®) -6
seS
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3. Simultaneous transmission of classical and quantum information under channel uncertainty

and hence

(3.52)

~| >

1 )
1 log My . = il;f](& B, ws) —

For any block-length n € N, we can writen =a-l+1r fora,l,r e N and 0 <r <. For
all 0 < r <1, we use the above (a -1, My 4., Ms4) CET codes to achieve the desired rate,
observing that

lim inf Mm > lim inf %Mi,a.l, 1 =1,2.

n—ow 1 a—0 @ -
and that P(Ccpr, N®",m) = P(Ccpr, N®*',m) for all m € [M,,].
Proof 53 (Proof of Lemma 48) According to Lemma 51,
R17 RQ U ﬂ C -/\/stpa

p,¥ seS

implies (Ry, Ry) € Copr(J). Using standard double-blocking arguments, for eachl € N,

(Ri, R,) € G%Uﬂé(/\@@,p,w

=1 pWseS

implies (Ry, R2) € Copr(J).

3.5. Proofs for the arbitrarily varying quantum channel

In this section we consider the task of simultaneous entanglement and classical message
transmission in the AVQC model. We derive results for the CET capacities of such chan-
nels, when the uncertainty set generating the AVQC is finite. After proving the converse
part in the following section, we have used Ahlswede’s robustification and elimination
techniques to derive suitable codes from compound codes developed so far to prove the
direct part of the capacity theorem. Also we will remark the relevant positivity conditions
based on results from [Ahlswede et al.(2012) Ahlswede, Bjelakovi¢, Boche, and Nétzel].

3.5.1. Proof of converse

In this section, we prove the following lemma.

Lemma 54 Let J := {Ns}ses € C(Ha, Hp) with |S| < oo be an AVQC. We have

A,cer(J) € Copr(conv(T)).

Proof 55 Let (1;)72, be a sequence of random codes for AVQC generated by J with

1
lim inf [ — (m) Ry ¢q (m) Rm)y =1 3.53
P slz?sl M, mE[ZMl 1] P At ) e ( |
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3.5. Proofs for the arbitrarily varying quantum channel

with function gy defined by (3.5) and (P, R™ )mE (v, denoting the members of the
singleton sets from the respective sigma-algebra. On the other hand, for the compound

channel conv(J) and each N, € conv(J) we have

J My, F(|m) (m| ® 27, idyye0 @ R o N2 o PU(S44)) dpuy(P™ R ) neasy ) =
’ me Mll
1
20 | 5 2 9 (PRI dpn(PU R e, ) =
sles! Li me[Mj ;]
4] A 2 92 (P RI) (PO R ) e, g 21— e
me[My ]

with €, \, 0. The last inequality comes from (3.53). This yields

|5 2 Flmnl@ 2%, dsgg @ R o NP o PO @ )P, R et
=>1—¢.
This means
f— F(lm) (m| ® 7, id, e ® Ro
* me M”
|P(S)\ QG;S) NE o P (@) dpy (P, RU™) epar, g = 1 — €,

that in turn implies the existence of at least one CET code (P, R"™),ciar, ) for com-
pound channel conv(J) with average error lower-bounded by 1 — |P(S)|e;. We therefore

conclude

A, cer(T) = Copr(conv(T)).

3.5.2. Proof of the direct part

In this section, we prove the following two lemmas, that along with the converse shown

in the previous section, prove the first part of Theorem 32.

Lemma 56 Let J := {N;}ses € C(Ha, Hp) with |S]| < w0 be an AVQC. We have
Cepr(conv(T)) A cpr(T). (3.54)

Lemma 57 Let J = {Ni}ies © C(Ha, Hp) with |S| < 0 be an AVQC. Aycpr(T) #
{(0, O)} implies Zd,CET(J) = ZT,CET(j)-

To prove the second part of Theorem 32, we invoke the following result from [Ahlswede
et al.(2012) Ahlswede, Bjelakovi¢, Boche, and Notzel].
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3. Simultaneous transmission of classical and quantum information under channel uncertainty

Theorem 58 ( [Ahlswede et al.(2012)Ahlswede, Bjelakovié, Boche, and Nétzel] Theorem
40) Let J = {Ns}tses € C(Ha,Hp), |S| < o0, be and AVQC. Then J is symmetrizable if
and only if for all {p1,...,pu} = S(HE), M,1 e N, M > 2, and POVMs {D,,}_, on
Hg

Ms

inf —
stest M

(1 — tr(Nga(pm)Dm)) = 1/4

m=1

holds.

This result, along with the following lemma, prove the second part of Theorem 32.

Lemma 59 Let (P,R) be an (M,l) entanglement transmission code for AVQC J =
{Ms}ses = C(HA,%B) with

F(@AB,idrH(?l ®RO-/\/:;Z o P(@AA>) 2 ]_ — € Vsl S Sl. (355)

Then, there exist {p1,...,pu} = S(HS) and POVM {Dy,}imepan) on HE' such that

1 M
i D tr(DnN(pm)) =1 —€ Vs' e S (3.56)

m=1

holds.

Proof 60 The proof follows directly from the convexity of entanglement fidelity in its first
mput and that

F(P48, idy@ @R o Ny o P(@*) = Fu(rz,,,RoNyoP).

Defining for each m € [M], D,, := Ri(|m){m|) and p,, := P(|m){m|) with R the
Hilbert-Schmidt adjoint of channel R and spectral decomposition Tz, , = 17 > e A Imp <ml,
we carry the lower bound on (3.55) to (3.56).

Lemma 59 and Theorem 58 show that 7 is symmetrizable if and only if there exist no CET
codes (P, R™) s with M > 2, such that we have infcq 77 >, ) s (P RMY >

3. This in turn implies the second part of Theorem 32.

Proof 61 (Proof of Lemma 56) In Section 3.4.2 (Lemma 48, Lemma 51), it was shown
that for large enough values of | € N there exists CET codes (75(’”),7%( )mE 1 of

(I, My, Msy) for compound channel conv(J) that achieve the optimum capacity region

of this channel Copr(conv(J)) with

. 1 . =
inf —— > F(m){m @ '% idym @ Ro NP o P (@) 21— (3.57)
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3.5. Proofs for the arbitrarily varying quantum channel

with €, — 0 exponentially. Since

NE = QL asIN)® = ) ¢ (sWNG,

seS slesSt
from (3.57) we obtain,

1 -
inf ql(sl)M— > F(jm) (m|@®"?,id, e ® RoNy o P (#44)) > 1-¢. (3.58)

eP(S
a<P( )SZGSZ L me[M; ;]

Defining the function f : S' — [0,1] with

1 . .
f(sl) = 375 Z gst (P(m)a R(m))7
Mt g
from (3.58) we obtain
inf s f(sh =1 —e. 3.59
iy 2 A6 > 1 (3.59)

Therefore the hypothesis of Ahlswede’s robustification (Lemma 205) is satisfied and hence

1 1 = ~
050 2 eUaae PR eUsl) 1= (14 1) e, (3.60)
: 1

aed; ’ mE[MlJ]

where Ux o () = UX,a(-)U)T(’a with Ux o is a unitary on HE', permuting the tensor factors

on this Hilbert space according to «, i.e.

UX,axl X ® T = Z‘a(1) X... xa(l).

(m)

Therefore the uniform distribution over the set {(Pc(ym), Ra' Jmelpr,) * @ € &} with
PO o Uy 0 P

and
RIW .= RM™ oL

yield the desired random CET code for arbitrarily varying channel generated by J. Hence
we conclude that (Ry, Ry) € Copr(conv(7)) implies (Ry, Ry) € A,.cpr(J).

To prove Lemma 57, we need the following statement.

Lemma 62 Let J := {N}ses with |S| < © be an AVQC, 1 € N, py an (I, My, May)
random CET code for J with

inf JM_l Z gst (P( )7 R( ))dﬂl(P( )7 R( ))me[MU] = L - €l (361)
17

sles!
me[My ]
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3. Simultaneous transmission of classical and quantum information under channel uncertainty

for a sequence (€;)en such that ¢ \, 0. Then, for € € (0,1) and sufficiently large | € N,
there exist I* (I, My, Ma;) CET codes {(Pi(m),R(m))me[Mlil]} with

(2

181
l—QZM— Z 95(73( R ))>1—6(V8 ESZ)
=1

L melMy ]

m))me My, Jor i =1,..., K be independent random

Proof 63 Let for K € N, (Az(m)afi(

variables with values in C(Fay, HE)Mt x dzstmbuted accordz'ng to % . We use the

shorthand notation

1
ha(i) == — sl A(m),f’-(m) .
0= me[%u]g (A7, 1)

For every st € S', an application of Markov’s inequality for every e € (0,1) and v > 0

yields

1 _ Z hy 6/2 [2K7—72£1 h (4) > QK’Y(E/Q)] < Q—KV(E/Q)E[QW(K—Z£1 hsz(i))].

(3.62)
We now upper-bound the expectation in (3.62).

E[2/(0<E5 haO)] = (BRI < (B(1+2(1 — ha(D)])S < (1 + 27e)<
(3.63)
The second inequality is due to the fact that (AM™, 1™
the first inequality comes from 278 < (1 — )2°7 + 127 < 1+ 27 for t € [0,1] and last
inequality comes from (3.61). For K = [? and vy = 2 therefore, there exists ly(¢) € N such
that for 1 = ly(e)

Jme[My,] are d.i.d fori=1,... K,

(1+27¢)" < 282, (3.64)

Therefore we obtain from (3.62), (3.63) and (3.64),
P[1— = Zh > ¢/2] < 2702,

Applying the union bound on the last inequality yields

l2
Pl D ihgli) > 1—¢€/2,Vs € 5]
=1

1 — ‘S’l27l2(6/2)’
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3.5. Proofs for the arbitrarily varying quantum channel

which implies that there is a realization ('Pi(m),Rgm))me[Ml’l],i =1,...1% with

12 < Z 2 (Pi(m)7R£m)) >1—¢/2 Vst e Sl,

mE[Ml 1

when ]S|l2_l2(€/2) < 1 which is possible for sufficiently large values of I.

Proof 64 (Proof of Lemma 57) By assumption, for € € (0,1) there exists a (r;,1%,1)
deterministic CET code (P, RN _ with

1 o
i 2 (P RV =1 — e WsTt e 57, (3.65)
m=1

with . = o(l). This is because if the capacity region is not equal to the point (0,0), Ry
(intersection of the capacity region with the x-axis), is definitely larger than zero (see
Lemma 59). On the other hand, let (Ry, Ry) € A,.cpr. By Lemma 62, this implies the
existence of 12 (I, My, My,) CET codes {P™ R™ :i e [I2]} of the same rate with

S —— 3 g (PRI =1 — e Vsl e S (3.66)

Define CPTP maps

We have
1 My,
b (m) (m)y _
Ml’lmngr,H(P SR =
M l2
M 2 F(#7 id @W@ZR ®R™ o N @ Ny o D PU @ PI™ (944))
ll =1 J=1
1 & 1 &
= _22 VR Z QSAB’idHEDTl @ﬁ(i) o Nyr o P (QSAA))
x F(d4 ,ld@l@m ™ o QN o PI™($44)), (3.67)

where &Y and XY are maximally entangled states. The inequality above is due to the

fact that g1 (P7, RM™) is non-negative for all m and ™. Applying Lemma 206 on
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3. Simultaneous transmission of classical and quantum information under channel uncertainty

(3.67), given (3.65) and (3.66) we conclude

My,

1
_— E . (m) RMY > 1 _ 9¢.
MLI mzlgs 1+ (P ’R ) €
As rp = o(l), this implies (R, Ry) € Agcpr(J). This in turn implies A, cpr(J) <

Agcer(T). As the inclusion Aqcpr(J) < Ancpr(T) is obvious, we are done.

3.6. Simultaneous classical message and entanglement

transmission over fully quantum AVCs

In this section, we consider simultaneous transmission of classical messages and entan-
glement over an an arbitrarily varying quantum channel with a quantum jammer. Let
N e C(Hs®Hy,Hp) be a quantum channel whose input space is a tensor product of a
Hilbert space H,4 (the legitimate sender’s space) and a Hilbert space H; which is under
control of a quantum jammer. We consider a situation, where for each given block-length
n, the jammer may choose any state n on ’H?” as input in order to disturb the transmis-
sion of the legitimate parties.

The Arbitrarily Varying Quantum Channel (AVQC) generated by N is given by the family

Noo(5) = N®(-®0): 0 e S(HF"),ne N} (3.68)

of CPTP maps*. The above channel model already has been under consideration in case

of univariate transmission goals. Karumanchi et al. [Karumanchi et al.(2016)Karumanchi,
Mancini, Winter, and Yang] utilized the postselection technique from [Christandl et al.(2009)
Christandl, Kénig, and Renner]| to derive correlated random codes for the AVQC from good
codes for the compound channel generated by J := {N,:= N (-, 0) : 0 € S(H;)}. This ap-

proach turned out to be successful to determine the random entanglement transmission
capacity for the AVQC. In recent work [Boche et al.(2018b)Boche, Deppe, Noétzel, and
Winter|, the above mentioned techniques were used to also characterize the random clas-
sical message transmission capacity of the AVQC. Going beyond, the authors of [Boche

et al.(2018b)Boche, Deppe, Nétzel, and Winter| introduced a derandomization technique

to derive a dichotomy for the entanglement and classical message transmission capacities

of the QAVC. The deterministic capacity is zero or it equals the random capacity. We
show, that the ideas of the mentioned works together with the results derived in this
chapter are sufficient to determine the random capacity and establish a partial character-
ization of the deterministic capacity in terms of a dichotomy also in case of simultaneous transmission

of entanglement and classical messages.

4Although acronym "AVQC” is also used for the somewhat more restrictive channel model introduced
in Section 3.2.2, it should be apparent from context, which of these models is considered.
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3.6. Simultaneous classical message and entanglement transmission over fully quantum AVCs

The definitions for the corresponding capacity regions can be easily extrapolated from the
corresponding definitions in Section 3.2.2 using the set of transmission maps in (3.68). We
denote the random CET capacity region of N by A, cpr(N) and the deterministic CET
capacity by Agqcpr(N). First, we give a characterization of the random CET capacity

A,.cpr(N) of the AVQC with fully quantum jammer.
Theorem 65 Let N € C(HA®Hy, Hp), and T :={N, : o€ S(H,)}. It holds

Arcor(N) = Copr(3J) (3.69)

The o inclusion in (65) is obvious. To show the reverse inclusion, we will invoke the

W Y

robustification 7 statement in Proposition 67 below. In the derivations, the following

representation of the permutation group &,, on n-fold tensor product spaces plays a key

role. Let for each m € &,,, U, be the unitary exchanging the factors in H®" i.e.
U7r 11 ® - Qr, = Iﬂ'(l)®®xﬂ'(n)

for each xq,..., 2, € H. We set Uy () := Uz(-)UE. In Usr, Upr U denote the cor-
responding maps performed on the subsystems under control of A, B, J accordingly. A
rather powerful result for states being invariant under permutations of the tensor factors

is the following.

Proposition 66 (de Finetti reduction [Christandl et al.(2009)Christandl,

Konig, and Renner)) Let p € S(H®") permutation invariant, i.e. U (p) = p for eachm € &,,.
It holds o
p < (n+1)@m J @ (o)

with a probability measure .
Proposition 67 Let C := (P, Rpm)ML, be an (n, My, My)-CET code such that with \ €
(0,1)

inf FCET(C,N(?n)) = 1—A
O'ES(HJ)

holds. With Cr := (Uax © Pm, Ry 0 Up 1) for each m € &, it holds

' ! P im 2
lIlf m Z PCET(Cﬂ'uNn,T) = 1-— (n + 1)(d Hi)? . .

Rn
TeS(HT") ey,

Proof 68 The proof closely follows the lines of [Karumanchi et al.(2016)Karumanchi,
Mancini, Winter, and Yang]. Set dy := dimH ;. By permutation invariance of N®", the
equality

Up 1 o N®" o (Unr ®1d5") = N®" 0 (id5)" @ Uy 1) (3.70)
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3. Simultaneous transmission of classical and quantum information under channel uncertainty

holds for each permutation © € &,. Using (3.70) together with the fact, that Pogr is an

affine function of the channel, we obtain

1 — _
H Z PCET<C7T7NTZ,T) = PCET(CaNn,?)

" 1e6,

for each T € S(HF"), where T := 1/n! Y, _« Un(T). Define T, to be the Hilbert-Schmidt
adjoint of the map

1 &
o - — id® Ry o Nyg © Prn(D).
Mlmz—l ’ @)

We write
1_FCET(Can,T) = trXT; (371)

with the matriz X := 1 — T.(®) (note that 0 < X < 1 holds.) Using Proposition 66

together with linearity and monotonicity of the integral, we have

trX7 < (n+1)% JtrXa®” du(o)
< (n+1)% sup trXo®".
oeS(H)

<(n+1)% .\

Which s, by (3.71), the desired bound.

Proof 69 (Proof of Theorem 65 (Direct part)) The statement Copr(3) < A.cpr(N)
directly follows from combining the results from Section 3.4.2 (Lemma 48 and Lemma 51)
with Proposition 67. Let (C,)y_; be a sequence of (n, My, Ms,,)-CET codes with

il’lf ?C’ET (Cn, N®

@ n) >1_9"n
ceS(Hy)

with a constant ¢ > 0 for each large enough n. Let [i, be the uniform distribution on &,
and f(7) := Cpr. Then fi, o f~* is an (n, My ,, My,,) random CET code, such that

E| inf Pepr(-Noo)| =1— 145 . g—ne,
L Peertuh] 21

Since the right hand side of the above inequality tends to one for n — oo, every rate pair
(R1, Rs) being achievable for the compound channel J, is also achievable by random codes

for the AVQC N

Next we show, using a derandomization technique introduced in [Boche et al.(2018b)Boche,

Deppe, Notzel, and Winter|, the following statement.
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3.6. Simultaneous classical message and entanglement transmission over fully quantum AVCs

Theorem 70 (Dichotomy for Ay cer) Aacer(N) equals {(0,0)} or A, cpr(N)

Remark 71 The above statement quantifies the deterministic capacity region of the AVQC
up to a blind spot. It is an open question whether or not there are channels for which
Agcer(N) = {(0,0)} and {(0,0)} € A, cpr(N) does happen.

Remark 72 For a Hermitian matric A€ L(H), and a > 0, it holds A < al if and only
iftrcA <« foralloe S(H).

Proposition 73 ( [Ahlswede and Winter(2002)], Theorem 19) Let Xi,..., X7 be
i.i.d. hermitian random matrices with 0 < X; < 1 a.s. for allie [T], and EX; < ml <
al < A. Then

1 I
P (?;Xt > a]lH> < dimH - exp(—T2(a — m)?)

Proof 74 (Proof of Theorem 70) We consider the non-trivial case Aqcpr # {(0,0)}.
Let (Ry, Ry) € Ar.cer(N)\{(0,0)}. We aim to show that (Ry, Ry) is also achievable with
deterministic codes. Since deET # {(0,0)}, we find, for each large enough blocklength
n an (n, My, M,)-CET code CV) := (777%),73%))%1:1 with My = 2%, where R > 0 is a

constant, and

inf ﬁCET(C(l),NnJ) = 1-— €] (372)
oeS(HE)
with €, — 0 for n — oo. Set for each n, a, := [ZIOgn/R], and b, == n — a,, i.e.

n = a,+by. If n is large enough, we have a random (n, My, My)-CET code p,, such that
binlogMZ- >R, — 9, fori=1,2, and

E,, inf Pepr(Nn,) =1—27" (3.73)
" oeS(HE™)

For simplicity, we assume py,, to be finitely supported on {Cy,...,Cp} (which is possible
by the explicit construction of a finite random code in Proposition 67). Note, that we can

write
1 — Popr(Ci,N,.o) = trEw0 (3.74)

with a matriz 0 < By < 1 for each t € [T']. By (3.73) and (3.74), together with linearity
of expectation, it holds

inf trEo = E,, |1— inf Pepr(,Noo)| <277 (3.75)

UEH?b" o'e’}-[?b”

where we defined E := E,, E;. By Fact 72, combined with the bound in (3.75), E <
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3. Simultaneous transmission of classical and quantum information under channel uncertainty

2-"¢]. Let X .. XOD) e jd.d. random matrices, each distributed according to py,, .

By Proposition 73, It holds

1 M 1 §
Pl —NE>(2m+=)1] < ¢ ex (—M n2>. 3.76
Ml,:; i ( n) 7 exp 1/ (3.76)

By our choice of a,, the RHS of (3.76) is strictly smaller than one for each large enough
n. Therefore, we find Cy,...,Cy, such that

1 i 1
1 — —= ﬁCET(Ctan,G) < 2ibnc + — = Tn
T 2 .

holds. Let C; = (73,5(27,)1,72,5231)%1:1 We define an (n, My, Ms) deterministic CET code
C = (P, Rm) ML, with

Ml Ml
1
P = — 2 Pt(l)(m) ® Pt(,?u and Ry = try@an 0 Z Rgl) ® 72?731
t=1 t=1

To evaluate the fidelity of the above code, we notice, that for each o € S(H$"),t €
[M1]7 me [Ml]

F(®, ® 5, id ® R @ R, 0 Ny 0 PN @ PN (0 @ Dy)) = trF) @ Flo (3.77)

holds with effects Ft(l), Ft(?% This 1s advantageous, since

1 4 _
TZtrFt(l)T = PCET(C(I),./\/;”,T) > 1—¢,,

1¢=1

and
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3.6. Simultaneous classical message and entanglement transmission over fully quantum AVCs
We have for each o € S(H%")

?CET(Ca Nn,a)

1 My M, .
- _ 2 Z F <@271d7_[®bn ® trysen 0 RY @ Ri), 0 Ny 0 PP (1) ®Pt(,2rr)z(¢2)>
My M, tt'=1m=1 ! ! 7
1 My M
> 33 F (31 @ iy @RV @R, 0 Ny o PV @ P @)
M1M1 t,t'=1m=1 !
> ! 3 S £ (0 @ id RYQR o N,y o PN @PE (0, @ D
= ZZ 1 ® Py, 1 H®b"® . ® tmo n,o © ¢ ® t,m( 1® 2)
MlMl t=1m=1
- Z Z N @ Fa. (3.78)
1t 1m=1

The first inequality above is by monotonicity of the fidelity under CPTP maps. The last
equality is from (3.77). Now, let o1 be the marginal of o on the first a, tensor factors of

HE", and oy the marginal on the last b, tensor factors.
A®B > 1®1-1®(1-B)-(1-4)®1
which holds for any two matrices 0 < A, B < 1. We have
trFV @ Fae =1 tr(1— FM)oy —tr(1 — F2)oy (3.79)

Combining (3.78), and (3.79), we can bound

1 M1
5 2
PSET(CyNn,o) = P<C(1)7Nan,01) + MTI ZP(Ct( )7Mn,02> -1

t=1

Minimizing over all states on HY", we obtain

inf PSET(C Nn o‘) =>1—¢€, — Tn-
oeS(HE™)

The right hand side approaches one for n — oo. Since also %= — 0 and %” — 1 for

n — o0, it is clear, that we achieve (Ry, Ry) with the codes defined.
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4. Universal superposition
codes:capacity regions for quantum

broadcast channel

In this chapter we derive universal codes for transmission of broadcast and confidential
messages over classical-quantum-quantum and fully quantum channels. These codes are
robust to channel uncertainties considered in the compound model. To construct these
codes we generalize random codes for transmission of public messages, to derive a universal
superposition coding for the compound quantum broadcast channel. As an application,
we give a multi-letter characterization of regions corresponding to capacity of the com-
pound quantum broadcast channel for transmitting broadcast and confidential messages
simultaneously. This is done for two types of broadcast messages, one called public and

the other common.

4.1. Introduction

In this chapter we consider the compound quantum broadcast channel, connecting one
sender to two receivers of different permissions or priorities. The channel is used to per-
form an integrated task, in which a confidential message, kept secret from the third party,
is communicated simultaneously with a broadcast message available to both receivers.
The requirements on the broadcast message, determine two communication scenarios. In
the first scenario, we consider the case where both receivers are required to decode the
broadcast message. We refer to this message as the common message. In the second sce-
nario the decoding condition is relaxed on one of the receivers. That is, the third party,
namely the receiver from whom the confidential message is kept secret, may or may not
decode the broadcast message, to which, in this scenario, we refer as the public message.
The capacity of the channel for performing such tasks, will include trade-off regions, de-
termining the resourcefulness of the public/common message transmission capacity, for
enhancement of confidential message transmission. Information theoretic analysis of these
tasks, will naturally be significant when regions beyond those achieved by simple time-
sharing between the two tasks are achieved. We first consider the case where the sender

is restricted to classical inputs, namely the classical-quantum-quantum (cqq) broadcast
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4. Universal superposition codes:capacity regions for quantum broadcast channel

model. This model proves useful for obtaining capacity results for the fully quantum
broadcast model, where this restriction is lifted.

The classical counterparts of our results were given in [Schaefer and Boche(2014Db)].
Therein, the authors first derive robust codes for the bidirectional channel, in which both
receivers are meant to decode the message. This common message will then piggyback
a public message decoded by Bob. The privacy amplification strategies are then applied
on part of the public codes to obtain information theoretic security via equivocation. We
follow a similar approach in the context of quantum information theory. We obtain codes
for the bidirectional channel (broadcast channel with no security requirement) by gener-
alizing the random codes from [Mosonyi(2015)]. Our generalization of these results (see
Appendix D), yields a universal superposition coding for cq channels. Our input structure
allows us to use privacy amplification arguments ( [Boche et al.(2014)Boche, Cai, Cai,
and Deppe]) on part of the codebook to achieve the desired secrecy rates.

The quantum broadcast model in which the channel is assumed to perfectly known by com-
municating parties was considered in [Hsich and Wilde(2009), Wilde and Hsieh(2011b)],
with and without a pre-shared secret key respectively. Therein, the authors have es-
tablished a dynamic capacity trade off region using a coding strategy that is channel-
dependent. We use a different strategy in which establish universal superposition codes
for the compound bidirectional channel, exploiting properties of Renyi entropies.
Another regime in which the quantum broadcast model with confidential messages has
been studied, is the one-shot (single serving) model. A one-shot dynamic capacity theo-
rem was derived for regions corresponding to tasks of common, public and private message
transmission over the quantum channel in [Salek et al.(2020)Salek, Anshu, Hsieh, Jain,
and Fonollosa]. It would be interesting to see if the coding strategies used therein, derived
from position based decoding (see [Anshu et al.(2017)Anshu, Devabathini, and Jain, AN-
SHU(2018), Anshu et al.(2019a)Anshu, Jain, and Warsi]), can be used to design codes for
the compound channel model.

Precise definitions of channel models, codes and rate regions along with our main results
for the cqq model are given in Section 4.2. We prove the direct part of our capacity results
for the cqq model in Section 4.3, that is followed by the proof of converse in Section 4.4.
The security criterion that we impose on the confidential message, is the mutual informa-
tion between Alice and Eve to be arbitrarily small for large numbers of channel uses. As
the common or indeed the public messages are available to Eve, we require the mentioned
mutual information to be conditioned on the broadcast message. Proving the existence
of capacity achieving codes is done in two steps. First we consider the case where there is
no security criterion placed on the messages sent to Bob and Eve. In this case, we have a
bidirectional channel, where Alice, is sending a message to be decoded by Bob and poten-
tially by Eve (weather Eve decodes this message depends on which scenario is considered,
determining in turn our labeling of it as common or public). Conditioned on this mes-

sage (the corresponding codewords are distributed according to a certain structure), Alice
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4.2. Basic definitions and main results

is simultaneously transmitting a second type of message, that is decoded by Bob. The
random coding that makes precisely this task possible, is given by Lemma 84, which is
our universal superposition coding result. Application of this lemma gives us the desired
bidirectional codes in forms of Lemma 90 (where the conditioning message is common)
and 96 (where the conditioning message is public). In the second step, the second type of
message described above, is used for privacy amplification. We give the code definitions

and capacity results for the fully quantum channel independently in Section 4.5.

4.2. Basic definitions and main results

In this section we state the main results and definitions for the compound classical-
quantum-quantum (cqq) broadcast channel. The results and definitions related to the fully
quantum broadcast channel are stated in Section 4.5. For finite alphabet A and Hilbert
spaces Hp, Hg, let W = {Wi}lees € CQ(X, Hp ® Hr) be a set of cqq channels. The
compound cqq broadcast channel generated by this set is given by family {W®" s € S}*_,.
In other words, using n instances of the compound channel is equivalent to using n
instances of one of the channels from the uncertainty set. The users of this channel may
or may not have access to the Channel State Information (CSI). In this document, we
consider the case where both users only know the uncertainty set, to which the actual
channel belongs. We consider two closely related communication scenarios of significance,

having both appeared in the literature hitherto.

e Broadcasting Common and Confidential messages (BCC), where the com-
pound channel is used n € N times by the sender Alice in control of the input of the

channel, to send two types of messages (mg, m.) simultaneously over the channel.

— mg € [My,], called the common message, that has to be reliably decoded by
receiver Bob in control of Hilbert space Hp and Eve in control of Hilbert space
HE.

— me € [M.,], called the confidential message, that has to be decoded reliably
by Bob while Eve, the wiretapper, is kept ignorant.

e Transmitting Public and Confidential messages (TPC), where along with
the confidential message m. € [M,,] and instead of the common message, Alice
wishes to send a ”public” message my € [M;,], that is reliably decoded by Bob
while it may or may not be decoded by Eve.

We consider the main concepts and results related to each task in the following. We start

with the BCC scenario. The precise definition of the BCC codes is given by the following.
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4. Universal superposition codes:capacity regions for quantum broadcast channel

Definition 75 ( BCC codes) An (n, My, M.,) BCC code for W, is a family C =
(E(-/m), Dpm; DEmg)mem with M := [My,,] x [M..], stochastic encoder E : M —
P(X™), POVMs (Dpm)mem on HE" and (Dgmy)moe[no ] 01 HE".

We define the transmission error functions, for any cqq broadcast channel W : X —

S(Hp ® Hg) and n € N by
i 63(67 W®n> = |_1\1/[| ZmeM er)(” E(X|m)tr(DcB,mWB@n(X)) and

o 25(C,WE") = g Diment Dxern B(x[m)tr(Df ., WE" (x)),

where, W.,,v € {B, E} are the marginal channels of W. Moreover, we use the security
criterion given by
I(M; E|Mo, 05,5), (4.1)

where o, ,, is the code state defined by

1
Osm 1=

Y mym|®@ Y| Exm)We'(x), (seSneN). (4.2)

| | meM xXeX™

The conditional mutual information should be understood given (1.13) and considering
ONBs {|m;)}miepm € CMi for i € {0, ¢} and |m) := |my) ® |m.). Based on this, we define

the following achievable rate pairs.

Definition 76 (Achievable BCC rate pair) A pair (Ro, R.) of non-negative numbers is
called an achievable BCC rate pair for W, if for each €,0 > 0, exists an ng(e,0) € N, such
that for all n > ny, we find an (n, My, M.,) BCC code C = (E(-\m), Dp m, Dg.m)mem
such that

1. %logMz,n = Rz - 5 (Z € {076})7
2. sup,.g &, (C,W&") < ¢ (ye {B,E}),
3. supyeg I (Me; E|Mo, 055) <€,

are simultaneously fulfilled.

We define the BCC capacity region of W by
Cgoc[W] := {(Ro, R.) € R{ x RJ : (Ry, R.) is achievable BCC rate pair for W}. (4.3)

To state our theorem, we define the following regions, given finite alphabets /,) and
probability distribution p = pyyx € P(U x Y x X™), with the random variables U, Y, X
distributed accordingly.
COW,p,n) = (Ro,R.) e RS x Rf : Ry < inf min {I(U; B, w,), 1(U; ,w,)} A
SE

R. <inf I(Y; B|U,w,) — sup I(Y; E|U, w;)}.
seS seS
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with
Wy 1= > p(u,y, %) [u) (ul @ |y) y| @ W (x). (4.4)

(u,y,X)EU XY X X
We state the following theorem.

Theorem 77 Let W := {Wi}ses € CQ(X, Hp ® HE) be any compound cqq broadcast
channel. It holds

Caee¥) = JUTE0 %)) (15)

where we have used 1A := {(721, 722) : (21,32) € A}. The second union is taken over all
puyx € PU x Y x XY such that random variable U —Y — X form a Markov chain and
alphabets U and Y are finite.

Remark 78 The set given on the right hand side of (4.5) is convexr and hence we do
not need further convexification here. This results from time sharing arguments applied
on the entropic quantities appearing in (4.5). For a short proof of a similar statement,
see [Boche et al.(2019b)Boche, Janfen, and Saeedinaeeni).

We proceed with the TPC scenario. The precise definition of the TPC codes is given in
the following.

Definition 79 ( TPC codes) An (n, M, M.,) TPC code for W, is a family C =
(E(-/m), Dpm)mem with M := [M;,,] x [M,,], stochastic encoder E : M — P(X™) and
a POVM (Dgm)mem on HS™.

We define the relevant transmission error function, for any cqq broadcast channel W :
X - S(Hp®Hg) and n e N by

ep(C,We) .= |M| > ) Exm)te(Dg ,, WE" (x)).

meM xeX"

Moreover, we use the security criterion given by
[(Me; E|My, 04,), (4.6)

where o, ,, is the code state defined by

Z m)(m[® > E(x/m)WE"(x). (4.7)

meM xXeX™

Again, we not that the conditional mutual information should be understood given (1.13)
and considering ONBs {|m;)}m.ear) € Ci for i € {1,¢} and |m) := |my) ® |m,). Based

on this, we define the following achievable rate pairs.

Definition 80 (Achievable TPC rate pair) A pair (Ri, R.) of non-negative numbers is
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4. Universal superposition codes:capacity regions for quantum broadcast channel

called an achievable TPC rate pair for W, if for each €,6 > 0, exists an ng(e,0) € N, such
that for all n > ny, we find an (n, My, M.,,) TPC code C = (E(-|m), Dgm)mem Such
that

1. LlogM;,, = R, —6 (i€ {l,c}),
2. sup,eg€p(C,W&") <,
3. supyeg [(M; E|My,05,) <€

are simultaneously fulfilled.

We define the TPC capacity region of W by
Crpc|W] := {(R1, R.) e R x R : (Ry, R.) is achievable TPC rate for W}.  (4.8)

To state our theorem, we define the following sub-regions, given finite alphabets V, ) and
probability distribution p = pyyx € P(V x Y x X"), with the random variables V)Y, X
distributed accordingly.

o) (W,p, n) = {(Rl,RC) eRy xRy : Ry < ingl(V;B,ws)A
Se

R. < inf I(Y; B|V,w,) —sup I(Y; E|V,wy)}.
ses ses

with
W 1= >y x) [0) 0@y Yl @ WE(x). (4.9)

(v,y,X)EVX XXX
We can state the following theorem.

Theorem 81 Let W := {Wi}les € CQ(X, Hp ® HE) be any compound cqq broadcast
channel. It holds

Crpc[W] = cl < JuU %0(1) (W, p, l)) . (4.10)

The second union is taken over all pyyx € P(V x Y x XY) such that random variable
V —Y — X form a Markov chain and alphabets V and ) are finite.

Again, we note Remark 78, regarding convexity of the set on the right hand side of (4.10).

4.3. Coding for broadcast channel

In this section we present coding strategies for BCC and TPC communication scenarios
sufficient to achieve each point in the capacity region. We prove appropriate inner bounds
on the capacity regions, namely the direct parts of the main theorems presented in the

previous section. Here, we begin by some preliminary results, in the statements of which,
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4.3. Coding for broadcast channel

we make use of typical sets and projections. The use of these objects are standard in
classical as well as quantum information theory. The reader will find detailed explanations
in [Csiszar and Korner(2011a)]. We begin this section nevertheless, by introducing these
objects. Given two probability distributions p € P(X) and Vo € X, t(-|z) € P(Y), n € N,
§ > 0, we define the following sets. The set of d-typical sequences in X", is defined by

Ty = {x:Vre X, |%N(az‘]x) —px)| <d A ¢(x) =0 < N(z|x) =0} (4.11)

with N (z|x), the number of occurrences of letter z in word x. Also, the set of conditionally

typical sequences in Y, is given by

_ _ 1 1
Ts(x): = fy € V" Vo e X,y e Vi |- N(zylx,y) — ~(yla)N(a}x)| < 5 and

tiylr) =0 <= N(z,ylx,y) =0 for z e X,ye V}.

The pruned distributions associated with p and ¢(-|x) are given by the following respec-

tively.
Pro(x) = i xe T (4.12)
0, otherwise,
and .
t s(y|x) = g 1Y € Tia(x) (4.13)

0, otherwise.

For the remainder of this section, pruned distributions defined above, will be denoted by
primed letters indicating the probability distribution, indexed by the number of available
copies of the system. For instance the pruned probability distribution related to r € P(X),
over Ts will be denoted by 7/, 5. In (4.11), when § = 0, we have the exact type notified
by T)}. We also define the set of types by

T(X,n):={ eP(X): Ty # I} (4.14)

The following lemma contains the properties typical projections, that projection oper-

ators assigned to typical sets.

Lemma 82 Let A\ € P(A) with \(xz) > 0 for allz e Ac X, {ps}rex = S(K4) and § > 0.
For x € Ty s with x := (x1,...,2,) and px := Q)i px,- Define

0 := Z Az |z x)* ® pa.

zeX

There ezist positive constants 1T(5),'(d) and A(S) depending on 6 and an orthogonal
projector 11, 5 such that

1. tr(pxdl,, 5) = 1 — 27770
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)

2. tr(Il,, ) < 20(SAXH+AE®)

8. I, spxll, s < 27 SAXOLL@O) T o
AZSO, let W:Y — S(ICB) be a cq channel and 7"(’1’) = ’])(y)) fO’f’ alre X Deﬁne
the state

0= > @) |l @ryle) ly) Y @ W (y).

(z,y)eX xY

Fory € T, 5(x), there exist positive constants 1'(6), A'(9),I"(5) and an orthogonal
projector Iy s(y), commuting with W& (y), satisfying

4. (WO (y) My s(y)] = 1= 277770,
5. tr[ Iy s(y)] < 2MSBIXY0+24°0))
6. Iy xs(y) WO (y) wxs(y) < 27 "SBEXYOTTOD [Ty, 5(y).

Finally, we have the following total conditional subspace projection. For p, = Zyey r(y|lz)W (y),
the projection Ilyxs = I, s with properties 1-3, for 'y € T, 5(x) also has the following
property.

tr( Iy s W (y)) = 1 - 27770 (4.15)

for some constant T (§) > 0 depending on 0.

Proof 83 Properties 1-3 result directly from Lemma 14 [Boche et al.(2019b)Boche, JanjSen,
and Saeedinaeeni/. Properties 4-6 and (4.15), result from applying the same concatena-
tion arquments as in the proof of Lemma 14 [Boche et al.(2019b)Boche, Janfen, and
Saeedinaeenif, on inequalities (4)-(7) from [Cai(2018)].

A crucial ingredient for the achievablity proofs in this chapter is Lemma 84 below. It

states existence of certain universal random codes for cq channels given a "typical word”.
Lemma 84 Let {W}es € CQ(Y,Kp) be any set of cq channels, g € P(X) and r(-|x) €
P(Y) for each x € X. For d > 0, there exists ng € N, such that for n > ng, for each x €
175, there exists a map y @ (y1, .-, ym) = (Ai(y) ..., Au(y)), such that (A (Y))meiar) <
L(KE") is a POVM and for any family Y := (Y1, ...,Yy) of random variables, distributed

i.i.d according to r, 5(-|x), namely the pruned distribution of v(-|x) (see (4.13)), we have

Ey[spr Y a(WE)4,()] <e

€8 e[M]

with €, — 0 exponentially and
1 .
log M > 111£ I(Y; B|X,0,) — ¢,
se

n

72



4.3. Coding for broadcast channel

with some constant ¢ > 0 and

0y i= Y a(@) |2y (x| @ Y r(yle) [y) yl @ Wi(y).

TEX yey

Proof 85 We present a full argument in Appendiz D.

The following statement is an immediate consequence of the above, for the case |X'| = 1.

We include this statement for clarity of reference later on.

Lemma 86 Let {Wles < CQ(V,Kp) be any set of cq channels and r € P()). For

0 > 0, there exists ng, such that for n > ng, there exists a map y = (y1,...,ym) —
(A (y), .-, Am(y)), such that (Ap(y))me[ @ a POVM and for any family Y := (Yi,...,Yun)
of random variables, distributed i.i.d according to r, 5, namely the pruned distribution of

r (see (4.12)), we have

Ey [ sup L

upr D (W (V)45 (V)] <

me[M]

with €, — 0 exponentially and

1
log M > ingf(Y; B,ogs) —co
se

n
for some constant ¢ > 0 and

05 = Y r(y) [y Yl @ Wily).

yey

In Section 4.3.1 and Section 4.3.2, we show that the above statements give us the desired
codes for transmission of public and common messages. These statements generalize the
coding results from [Mosonyi(2015)] to include pruned input distributions rather than
distributions of n-fold product form.

Finally, to obtain codes for transmission of confidential messages, we perform privacy
amplification arguments on the public part of the codebook achieved from Lemma 84
(cf. [Boche et al.(2014)Boche, Cai, Cai, and Deppe]). To do so, we need the following
inequality.

Theorem 87 ( [Ahlswede and Winter(2002)], Theorem 19) Let > 0, € € (0, 1)
be positive numbers and Xi,..., Xy an independent and identically distributed family

of positive semi-definite random matrices on C? such that the bounds X < plga and
EX > elga apply. It holds

3
P < 2-d- —L
r( 1 > e) exp( 2du1n2>

Equipped with these preliminary results, we prove the direct parts of the capacity

1 L
ZZXZ-—IEX

i=1
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4. Universal superposition codes:capacity regions for quantum broadcast channel

theorems for BCC and TPC in the following two subsections.

4.3.1. BCC codes

In this section, we prove the following lemma.

Lemma 88 Let W = {Wles € CQ(X, Hp @ HE) be any compound cqq broadcast

channel. It holds
J-¢MwW,p,1 ) ,
p

where the second union is taken over all pyyx € P(U x Y x XY) such that random variable
U-Y — X form a Markov chain and alphabets U and Y are finite.

NI}—\

||C8

CBCC Dl (

The main step towards proving Lemma 88, is the following statement.

Lemma 89 (Broadcast channel with confidential messages ) Let W := {W,}s ©
CQ(X, Hp®HE) be any compound cqq broadcast channel. For pyyx € P(UxY x X) where
U-Y — X form a Markov chain and d,€ > 0, there exists ng € N, such that for n > ng,
we find an (n, My, M) BCC code C = (E(:|m), Dm; DEmo)m=(mome)e[Mon]x[Men] With

1. %log My, = infses min {I(U; B,ws, [(U; E,ws} — c0,

2. %log M., = infees I(Y; B|U,ws) — sup,eg I(Y; E|U,ws) — cd
with some constant ¢ > 0 and ws defined by (4.4).

3. it it Yoment Sheesn EOKIm)r[IVE(x) D] = 1 ¢
4' infSES M1| ZmeM er/\f" E(X‘m)tr[WSZ(X)DE,mO] =1—c¢
5. Supyeg [(M.; E| My, 05,) <€

with state o, defined by (4.2).

Applying standard double-blocking arguments on Lemma 89, will prove Lemma 88. In
the same vein as the coding steps taken in [Schaefer and Boche(2014b)], we prove Lemma
89 in two steps. At first, we prove the following random coding result, that guarantees
reliable decoding of common messages by Bob and Eve, and reliable decoding of public
messages by Bob. Here, we do not concern ourselves with the security condition. In the
next step, we apply privacy amplification arguments on the public part of the codebook,

to achieve the desired confidential message transmission rate.
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4.3. Coding for broadcast channel

Lemma 90 Let W = {Wi}les € CQ(V, Hp ® Hg) be any compound cqq broadcast
channel and U be a finite alphabet. For any 6 > 0, g € P(U),r(-|u) € P(Y), ue U and
large enough values of n, the following exist.

o A family (tum, Dpm)mefnsy.,) of codes with w,y, € s and (Dgm)mepn,,) © LIHS") a
POVM.

o A mapy: (yz‘j)(z’,j)e[Mo,n]x[Ml,n] — (DB,ij(y))(i,j)e[Moyn]x[]\/[l’n], such that
(D5 () (i.j)elMon]x[M1n] € L(HE") is a POVM and for any family Y = (Yij) i j)e[Mon]x[M.]

of random variables such that for each m € [Moy,], Y™ = (Yimj)je[m,.] 18 distributed

i.i.d according to r (|uﬂ’%§), namely the pruned distribution of r(-|u) (see (4.13)), we
have

1
—log My, = ingmin {I(U; B,ws), [(U; E,ws)} — cd,
n sE

1
—log My, = inf I(Y; B|U,ws) — c0,
n ’ seS

1

. 2 : ”7®n . . —

EY [ igg IMO an n . tr[ B (sz)DB’mZ<Y)]:| z ! o
) " (myg)e[ Mo, | X [M1,n]

1
. z : I)V@n
Ey[;gg Mo M, trl s (YmZ)DEm]} =l

(m,i)G[M()m] X [Ml,n]

with €, — 0 exponentially, constant ¢ > 0 andwy = Y, o, q(uw) [u) (u|@r(y|u) |y) (y|®
Wi(y)-

Proof 91 We approzimate {Ws}ses by a finite 7,-net {Wi}tses, < {Witses with 1, =
2_% with a constant positive number v to be determined later. We choose the net small
enough to have log|S,| < 2-|X|-dim(Hp ® Hg)*(log6 + nv/2) which is possible by
Lemma 197. For v € {B,E} and s € S, consider the effective channel W%s,n U —
S(HE™) defined by W%SC) 1= D ey "W )W, s(y). Applying Lemma 86 on the channel set
{W, s}ses, and probability distribution q, yields the existence of the random (n, My ,,) code
C(U) withU = (Uy,...,Uy,.,), a sequence of i.i.d random variables distributed according
to ¢, 5 and POVMs (Dym(U))meay ] © LIHE™) such that

1
Ey [ min
seSh MO,TL mE[Mo,n]

(Do (U)W (U))] = 1 = €000 (4.16)

with €y, — 0 exponentially and

1
—log My, = min I(U; 7y, ws) — ¢d.
n seSy

Hence we have

1
—log My, = m}gnmin {I(U; B,ws), I(U; E,ws)} — cod.
n s€

n

5



4. Universal superposition codes:capacity regions for quantum broadcast channel

Given (4.16), we can conclude the existence of one realization (uy, ..., ung,) of random
variable U, and POVMs (Dy ) meMo,.] € L(HE™), suitable for transmission of common
messages, namely
. 1
min

wSe Mon 37,

tr( Dy WE (u)) = 1 — €0 (4.17)

Before moving on to the private message, notice that for each u € T)s, using the abbrevi-
ation Ts := r®"(T, 5(u)), we have

1/ ®n n 1 -
“@@—ZWWW?%<§] =y u) (= — DIWE )l
yEY™ yeT, 5(u) 6
o eI L <20 - T <227
yeTC (u)

(4.18)

The upper bound above comes from the fact that Ty approaches unity exponentially with n
(cf. [Csiszdr and Kérner(2011a)]). Now we pursue with the private message, namely the
one Bob has to decode while Eve may or may not. For each uz,, m € [My,,] obtained above,
apply Lemma 84 on {Ws}s, and probability distribution r(-|u), uw € U. on Lemma 84, we
obtain the existence of a random code C(Y"™) with Y™ = (Y1, ..., Yisar,,) and decoding
operation (A (Y™ ))mef, )» such that Y is distributed according to v}, 5(-|ug)®n with

1
Eyun [ inf (A (Y WE (Vim))] = 1 — €1, (4.19)
sESn 1,71 me[MLn]
and )
—log M, = I(Y; B|U, ws) — ¢410.
n
We have
gg}qn Z Eyun | Z (Dy i W (Vi) ]
mE Mo n ’n me[Ml,n]
. 1 -
—min—— 3 (Do ) syl WE(3)))
" 0,n me[Mo,n] yEY™
= min 1 tr(Doy s W (1)) —2-270 > 1 — ¢y, 4.20
ymtt s m 2,n

where in the first equality, we have calculated the expectation value given that for each
m e [Mon], Pr(Yom =y) = (y|um), Ym € [Mo,], and in the last line, we have observed
(4.18) and inserted (4.17), setting s, := €o, + 2 - 27", Consider the random decoding
operation (Dpmm(Y))whm)e[Mon]x[Mi.] defined for each message pair by Dppm(Y) =
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4.3. Coding for broadcast channel

N DpnAm (Y )A/Dp . We have

3 1 (Do (V)YWE (Vi) ] =

Zs: Mon eaty g M1 o
1
Z S By >0 W Dpadn(Y )N D aWEE (Vim))] =
sSES, ’n me[ Mo n) 17” mE[Ml,n]
1 @
Z 2 Eyvualg— X o An(Y ) WEL(Yim))] -
0,n 1n
s€Sn M e[ Mo,n] " me[Ma,n]

(\]

\/1 —E[ ! > (DWW Yim))]) = 1 — €1 — 2\/cam, (4.21)

Ln My o]

where in the first inequality, we have used Lemma 208, and in the last line, we have
inserted the lower bounds from (4.20) and (4.19) and used concavity of the square root
function. Applying standard net approzimation techniques used for example in proof of

Lemma 84, we obtain the claim of the lemma.

At this point we can prove Lemma 89, by applying privacy amplification arguments (c.f
[Boche et al.(2014)Boche, Cai, Cai, and Deppe]) on the M; part of the messages obtained
in Lemma 90. This is done by using equidistribution when inputting part of these messages

to confuse the eavesdropper. The other part of M; will then be secure.

Proof 92 (Proof of Lemma 89) Letpyyx(u,y,x) = puy (w, y)pxpy (x|y) and puy (u,y) =
q(w)r(ylu) Y(u,y,z) eU x Y x X. We approzimate {Ws}ses by a finite 7,-net {Wsls, <
{Wi}ses with 7, := 2_% with a constant positive number v to be determined later. We
choose the net small enough to fulfill the cardinality bound log|S,| < 2-|X|-dim(Hp®
HEg)*(log6 + nv/2) which is possible by Lemma 197. Let 6 > 0, n € N and pruned
probability distributions q;, 5,7, (-[u) over T]'s and T, s(u), (w € U™) be given. Set

MOn _ l2”(mins€5n min{[(U;B,ws)7I(U;E7w5)}_06)J, (422)
Ty — |27 (minses, T075BIUw) -mases, 1075BIUw0)2A40)~eb) (4.23)

and
Ln — [znmaxsesn I(Y;E|U7w5)+nA(6)—|. (424)

For the effective channel W, : ¥ — S(Hp®Mg) defined by Wi(-) := X pxjy (2] )Wi(z), Vs €
S, according to Lemma 90, there exists a family (Um, Dgm)me[mon] and a random family
C(Y) = (Yonjt, DBmjt(Y)) (mj)e[Mon] <[] x[La]» Such that for events

1 ~
- ®n c
A = max MondnLn mgjltr(”B,s(ijl)DB,mjz‘(Y)) = «/En}
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4. Universal superposition codes:capacity regions for quantum broadcast channel

and
1 TN c
B := Islégi(mn;l tr(Wg},s(Ymﬂ)DE,m) = \/5}7 (4-25)
we have
Pr[A u B] < 2y/e,, (4.26)

where we have used the Markov inequality to obtain the above probability from the ex-
pectation value of the same event, and applied the union bound to get the probability of
the complementary events (one with respect to WBJ and the other with respect to WEys ).
Here, €, goes to zero exponentially, given the appropriate choice of T,, as evident in the

proof of Lemma 84. We define the following quantities for each s € S, and u € T7;.

Q?(y) = HWEJ,u,(SHWE’S,u,é<y>WE®UZ(y)HWE,S,u,6(y)HWE&u,J (427)

with quantities defied in Lemma 82 and

O = ) 1hs(ylwWQi(y). (4.28)

yneyn

Given property 4 of Lemma 82, (4.15) and Lemma 203, we have Yu e U™,y € T, s(u) and

ses,

| WE(y) — Q(y) < A/ 27T V252 oo (4.20)

Clearly €, — 0 exponentially. Applying Theorem 87 with C? the range space of projection
Iy, w45 by property 2 of Lemma 82 we have

Furthermore, from the property 6 of the projections introduced in Lemma82, we have for

allue Tl
QU (Y1) < 2 SENULE)T0I"G) (4.31)

Let n > 2. The hypotheses of Theorem 87 are therefore satisfied with € = €, := 9—nI"(9)/6

—SEYUwT)+I0) - Since u,, € 175, Ym € [Mo,], for the event

and p = 2 .
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4.3. Coding for broadcast channel

we have

3

} S(B|UWE™)+nA() _ €0,n
Pr[Coms] <2 x exp ( L”21n2 R ”)—S(E\YU,w?")+n(A(6)—F’(6)))

)

"o 2 - 2I(YE|UWE™)+n(A(6)—1"(5))

< 2n(10g dim Hg+A(5))

xexp(—L

Applying the union bound, for all s € S,,j € Jy,m € [Mo,,] we have

Pr(C:= | J Comj] (4.32)
s,7,m
< J. M. 18 2n(logdimHE+A(6)) L Egﬂ
< JuMon| Sl xexp (- "ang.21(Y;E|U,ws")+n(4(5)*F’(5)))'
(4.33)

From (4.26) and (4.32), we have

Pr [C uBuU A] < 24/€n + Jn Mo, ¥ |Sn|2n(10gdimHE+A(5))
3

6O,n
X exp ( B LnQ In?2 - 2[(Y;E\U,wg@n)Jrn(A(&)fF’(é)) ) ) (434)

Finally, given (4.24), we have

3
EO,n

"9 2 - 2L (VEUWE™)+n(A6)—1"(5))

3 onl’(S
60,712 (%)

2In2-

exp(—L ) <exp(-— ), (4.35)
which gives us a double exponential decay given that €y, = 2-n"O)/6 - Inserting (4.35) in
(4.84), we conclude that we can find one realization {Ymji}m.j1)e[Mon]x[Jn]x[La] Of Y, such

that

A o
e VA 2 mzjl tr(WEs (Ymit) Dpmgt) = 1 = Ve, (4.36)
min ———— S (W (yust) D) = 1 — Ve (4.37)
se8n Mo JnLn =) s AT "
and
1 &
rsré%z( 1’{7112’33}( L_n ; Qsm(ymﬂ) o @sm < €opn- (438)
= 1

Consider the stochastic encoder E(-|m,j) := Lln et Pxpy (Ymjt) and POVM (D =
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4. Universal superposition codes:capacity regions for quantum broadcast channel

Zle[Ln] Dyji)m.j- Therefore with M., = J,, we have

. 1 n
St 2 Eedme mWEL ) D)

o€[Mo], mCE[Mc n]  xexm
M M Z tl" Z Z pX|Y ‘ymomcl Wgz Z DB momcl/
0,n mo,Mme n xEX™ le[ ]

>1— /e, — 2n7,, (4.39)

where in the last line we have inserted the bound from (4.36) and observed that the error
due to {Wilses, can only be 2nt, less than the error due to YW. By the same line of

reasoning we have

. 1 n
g 2 Y BdmemoWRx) D)
’ ’ moG[Mo],mcE[Mcﬂn] xeX™
1 n
i E 0 5 W) T Do
5T cn mo,Me XEX” lE[Ln]
> 1— 4/, — 2n7,. (4.40)

The 5th claim in the statement of the lemma related to the security criterion requires
upper bounding sup,eg I (M.; E|My, 05,,) for all s € Sy, that is done in the following. First

we observe that for all s € S

I(M,; E|My,0,,,) = Ml > I(MiE, o), (4.41)

Y s,n
0, moE[Mo,n]

with

ol Z ® Z (x|mo, me) W (x).

,n me€[Me,n] xXEXT

We continue upper-bounding the mutual information on the right hands side of (4.41) for
each mg € [My,,]. We note that for all s € S,

3 B Wi )

mce[Mc n] xXeEX™

S TeD) ]S( > E<x|mo,mc>wgf>j;<x>)

xXeEX ™

1 T ®n
o X W)
SN e[ Me,n] €[ Ln)

2, S ( > WSZ(ymoﬂ)) (4.42)
" mee[Men]

le[Ly]

rYsmn

(M E, o) =S (

c,n
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4.3. Coding for broadcast channel
Notice that, given (4.29) and (4.38) and the triangle inequality we have for all s € S,

D W Ymost) — O 1< €om + €1 (4.43)
le[Ln]

Applying Lemma 209 with § = €y, + €10, given (4.43) and (4.42) we obtain

I(Mg; E,00%) < 2(n(eon + €1,0) logdim(Hg) + h(eon + €1,0)) - (4.44)

rrsmn

Inserting this into (4.41), we obtain the same upper bound on the conditional mutual
information quantity on the left hand side for all s € S,. Given properties of the T-net

(Lemma 197), applying Lemma 210 with § = 2n7, we obtain

sup [<Mc; E|M07 Us,n) < m%X[<Mc; E‘M(b Us,n)
seS S€EOn

+ 2 (2n*7, log dim(Hg) + (1 + 2n7,)h(2nT7,/1 + 2n7,,))
< 2 (n(egn + €1,) logdim(Hg) + h(eon + €1))
+2 (2n°7, logdim(H ) + (1 + 2n7,)h(2n7,/1 + 2n7,)) . (4.45)

log €, we obtain exponential

Given the upper bound on S, choosing v = SR Om (5 EHE)
decay of the right hand sides of (4.39) and (4.40). Also, with this value of T, and choosing
large enough values of n, (4.45) gives us the 5th claim of the statement.

Proof 93 (Proof of Lemma 88) According to Lemma 89,

(Ro, R Uc (7.p1

implies (Ry, R.) € Cpoc(J). Using standard double-blocking and time sharing arguments,
for each | € N,

0 1.
(RO; Rc) € cl <ZL_J1LijO(1) (\77])7 l)) )

implies (Ry, R.) € Cpcc(T).

Here, in order to construct private codes for the broadcast channel, we first generated
suitable random message transmission codes for the broadcast channel without imposing
privacy constraints (Lemma 90). This was done by establishing suitable bounds for ran-
dom universal ”superposition codes”. Subsequent application of a covering principle these
codes where transformed to fulfill the security criterion in Lemma 89. Beside technical
obstacles to construct superposition codes for cq broadcast channels which are robust re-
garding uncertainty of the channel state, the approach is rather traditional and even dates
back to classical information theory (see e.g. [Csiszar and Koérner(2011a)| for a general

discussion, the classical counterpart to our considerations can be found in [Schaefer and
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4. Universal superposition codes:capacity regions for quantum broadcast channel

Boche(2014b)]).

4.3.2. TPC codes

In this section, we prove the following lemma.

Lemma 94 Let W = {Wles € CQ(X,Hp ® HE) be any compound cqq broadcast
channel. It holds

Crpc|W DCI(UU% (W, p,1 >,

where the second union is taken over all pyyx € P(V x Y x XY) such that random variable
V =Y — X form a Markov chain and alphabets V and Y are finite.

The main step towards proving Lemma 94, is the following statement.

Lemma 95 (Broadcast channel with confidential messages ) Let W := {W,}e5 ©
CQ(X, Hp ® HE) be any compound cqq broadcast channel. For pyyx € P(V x Y x X)
where V. —Y — X form a Markov chain and d,e > 0, there exists ng € N, such that for
n > ng, we find an (n, My, M. ,,) TPC code {E(:|m), Dpm, DEgm, m=(mi,me)e[Myn]x[Men]
with

1. %log M, = infees I(V; B, ws) — cd,

2. Llog Mey = infes I(Y; BV, w,) — sup,eg I(Y; E|V,w,) — ¢b
with some constants ¢ > 0 and ws defined by (4.4).

3. infies g Dment Dxeren EXM)t[WEL(X) Dpm] = 1~ €
4. supyeg I(My; E|My,05,) < €

with state o, defined by (4.2).

Applying standard double-blocking arguments on Lemma 95, will prove Lemma 94. We
prove Lemma 95 in two steps. At first, we prove the following random coding result, that
guarantees reliable decoding of public messages by Bob and Eve, and reliable decoding of
public messages by Bob. In the next step, we apply privacy amplification arguments on
the public part of the codebook, to achieve the desired confidential message transmission

rate.

Lemma 96 Let W = {Wi}les € CQ(V,Hp ® Hg) be any compound cqq broadcast
channel and V be a finite alphabet. For any § > 0, ¢ € P(V),r(-[v) € P(Y), v eV and

large enough values of n, the following exist.

o A family (Vim)me[m,.,) of words with v, € T}s.
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4.4. Outer bounds for the capacity regions

o Amapy: (yij)(i,j)e[Ml,n]x[Mgm] — (DB,ij(y))(i,j)e[Mlm]X[MM], such that (DBJj(y))(i,j)E[MM]X[MQ’"]
L(HE™) is a POVM and for any family Y = (Yi) 6.g)elMin] < [Ma.n] Of random vari-
ables such that for each m € [My,], Y™ = (Yin;)je[Ms.] 18 distributed i.i.d according
to r'(+|vy,) we have
%log M, > }slgéﬁ I(V; Byws) — 0,

1
—log M, = inf I(Y; B|V, w;) — ¢4,
n seS

1
®n ) ) —
By, 2 VR De(Y) | 21—,
(m,i)e[M1,n] % [Mz2 n]

with €, — 0 exponentially, constant c > 0 and ws = Y, q(u) |v) V|@r(y|v) [y) Y|®
Waly).

Proof 97 The proof is done by following exactly the lines in proof of Lemma90, except
that here v = {B}.

Proof 98 (Proof of Lemma 95) The proof follows by applying the privacy amplifica-
tion arguments in the proof of Lemma 89, on [Ma,,] part of the messages in Lemma 96. It
is clear that here, we only consider upper bounding the probability of events corresponding
to events A and C in the proof of that Lemma 89, and drop (4.25).

Proof 99 (Proof of Lemma 94) According to Lemma 95,

(R1, R Uc (T.p,1

implies (Ry, R.) € Crpc(J). Using standard double-blocking and time sharing arguments,
for each l € N,

(Ri,Re) el <© U %C(l) (7. p, l)) :

=1

implies (Ry, R.) € Crpc(T).

4.4. Quter bounds for the capacity regions

In this section, we consider the ”converse” bounds stated in Theorem 77 and Theorem 81.
The arguments of proof turn out to be fairly standard. Therefore, we restrict ourselves
to providing proof details regarding the outer bound to the BCC capacity regions from
Theorem 77.

Proposition 100 Let W := {Wi}ses, Ws : X - S(Hp ® Hg), (s € S) be a set of cqq
channels. It holds
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4. Universal superposition codes:capacity regions for quantum broadcast channel

The second union is taken over all pyyx € P(U x Y x Xl) such that random wvariable
U-Y — X form a Markov chain and alphabets U and Y are finite.

Proof 101 Let (Cy,)nen be a sequence of (n, My, M.,,) BCC codes for W such that with a
sequence e, — 0, (n — ) for all s € Seg(C,, WE"), €x(C,,, WE™) and I(M.,,,; E™| Mo 1, 0s.1)
are simultaneously upper-bounded by e,,. While we fix the blocklength for a moment (and
suppress the index n), we consider for each s € S the quadruple (Mg, M., Més), MC(S)) of
random variables, where Més), M) belong to the common and confidential messages de-
coded by B after transmission with W®". Note, that Pr((My, M,) # (M, M) < e, is

true by assumption. It holds

log My = H(My) = I(My: M) + H(Mo|M) < I(My: B*, 04,) + € - log M.
(4.46)

The second of the above equalities is the chain rule for the mutual information. The
last inequality stems from application of Fano’s lemma and the Holevo bound. A similar

calculation for the second receiver leads us to the inequality
log My < I(My; E",05,) + €, - log M. (4.47)

Mazimizing over all s € S in (4.46) and (4.47) and combining the resulting inequalities

gives the bound

log My < min{sup](MO;B",osm), sup[(Mo;E”,as,n)} + €, log M.
seS seS

In order to derive a bound on M., we notice the inequality
log My - M. < I(MoM,.; B",05,) + €, - log MoM,. (4.48)
The chain rule for the quantum mutual information implies
I(MyM.; B",05,) —log My < I(MyM.; B", 05,)—1(My;B",05,) = I(M. B"|My,0s,).
Combining the above inequality with (4.48) and rearranging terms give us the inequality
log M. < I(M.; B"|My,0s,)+ €, - log MoM,.

Mazimizing both sides of the inequality and adding the nonnegative term e, —sup,g I(M.; E™| My, 05.)
to the right hand side of the result, we obtain

log M. < supI(M.;B"|My,05,) — supl(M.;E"|My,0s,) + €,(logMy- M.+ 1).
seS seS

(4.49)
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4.5. BCC and TPC capacities of compound quantum broadcast channels

Let 0 > 0 be arbitrary and ng large enough for €,(log My - M.) < § to hold. It is clear, for

each n > ny, (; log Mo,n, ~log M.,,) is contained in

U- UO (W,p,n)s < [UU DOW, p,1 L, (4.50)

l>n0 =1 p

where As is the §-blowup of A for each § > 0 and A€ Ry x RY, i.e
Ay i={yeR} xR} :dze Az —y <o}
Since § was an arbitrary positive number, we are done.

Proposition 102 Let W 1= {Wilees, Wi : X > S(Hp ® HEg), (s € S) be a set of cqq
channels. It holds

Crpc[W] < d (UU%C(”(W,ZD,Z))
=1 p

The second union is taken over all pyyx € P(V x Y x &) such that random variable
V —Y — X form a Markov chain and alphabets V and ) are finite.

Proof 103 The proof can be conducted following exactly the same strategy as in the proof
of Proposition 100, and therefore is left to the reader. The only modification is, that there
is no need for E to decode the message My (opposed to the case of My in the proof of
Proposition 100). This leads to the bound

log My < supI(My; B",05,) + €,log M.
seS

on the number public messages in the code.

4.5. BCC and TPC capacities of compound quantum

broadcast channels

In this section we extend our results to the ”full quantum” setting where the receivers
input quantum systems to the channels, i.e. the transition maps of the channels are c.p.t.p.
maps instead of cq channels. Since the message transmission tasks we aim to perform are
after all of a classical nature, the corresponding coding theorems can be proven applying
the results from earlier chapters.

Explicitely we apply the results of the preceding sections to derive codes for full quantum

broadcast channels. For the remainder of this section, we fix an arbitrary set J :=
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4. Universal superposition codes:capacity regions for quantum broadcast channel
{N,}ses, where
Ns: LHA) > L(Hp @ HE)

is a c.p.t.p. map for each s € S. Traditionally, the c.p.t.p. map N, is assumed to be an
isometric channel, namely a Stinespring isometry to a given channel connecting A and
B. This way of defining the channel is fairly justified, since it naturally equips E with
the strongest abilities when attacking the confidential transmission goals of the remaining
parties. However, dropping this assumption on the channel does not complicate any
subsequent arguments.

In what follows, we consider the BCC scenario. Corresponding considerations regarding

the TPC scenario are easily extrapolated and are hence left to the reader.

Definition 104 (BCC codes) An (n, My, M.) BCC code for J for channels in C(Ha, Hp®
HE) is afa’mlly C= (V<m)a DB,ma DE,mo)mEM with M := [MO] X [Mc]; where (DB,m)meM
and (Dg g )moe(m) are POVMs on HE" resp. HE" and V(m) is a state on HE™ for each

m.

The average transmission errors for the receivers B, and E with channel N : £L(H4) —

L(Hp ®HEg) and (n, My, M,)-code C are defined by

eg(C,N®") = ™| Z trDg N (V(m)),
and
ep(C, N®") = ,L S D, NV (m)).

By replacing the code and errors the definitions of achievable rate pairs can be directly
guessed from Definition 76 (the notational ambiguity should cause no misunderstandings
since the set J determines whether the classical-quantum or quantum broadcast channel
scenario are considered.) We denote the corresponding BCC' capacity region by Cpecl|T]

We moreover define é(l)(j .0, 1, (py)yey) the set of all points in R? which fulfill the

inequalities

0 < Ry < mf min {I(U; B,ws), I(U; E,ws)} and

0 < R, < mf I(Y; B|U,ws) — 1n£ I(Y; E|U, ws)
se
where we understand the entropic quantities above as being evaluated on the ccq state

Ws = w(/\/tsvp?l) = Z PUY<u7y) : |uay><u7y|®'/v’s®l(py)

ueld ,yey

86



4.5. BCC and TPC capacities of compound quantum broadcast channels

for each s € S.

Theorem 105 [t holds

CBCC[j] = cl (G U %é(ﬁ(j’p’ l))

=1

The second union is taken over all pyyx € P(U x Y x X') such that random variable
U-Y — X distributed accordingly, form a Markov chain and alphabets U and ) are finite.

Proof 106 The proof of achievability is easily performed by referring to the corresponding
result for ccq broadcast channels. Namely, if we fix | € N, probability distributions Py and

Py and a family (py)yey of quantum states on HE" we have

WNep L (py)yey) = DD Puw) - Prip(ylu) lu, ) (u, y| @ NF (p,) = w(Vi,p, 1)

ueld yey

with an effective cqq channel with signals V,(y) = N&(p,), (ye V). As a consequence,
(T, p, 1, (py)yey) = W ({(Vi}ses,p,1). We know from Theorem 77, that each point
on the r.h.s. of the precedmg imequality is achievable. To prove the converse, we assume,

that Cy, := (Dpm, DE.mg, V(M))mem is an (n, My, M.)-code with
EB(Cn7N’5®n)7 ) EE(CnaN’sn)a and [<M6;E|M07Us,n)

are simultaneously bounded by €, € (0,1). Note, that the mutual information quantity

above is evaluated on the code state

Tsm = 31 Z [m) (m| @ N (V (m).

mEM

Using the above bounds and repeating the corresponding steps from the proof of Proposition

100, we obtain the inequalities

log My < min {sup I(My; B",05,), sup ](MO;E",US,,L)} + €,log M.
seS seS

and log M. < I(M.; B"|My, 0s.,) + €, - log MoM, The remaining steps directly carry over

from the cqq converse.
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5. Computability aspects

We analyze general achievability (lower-) and converse (upper-) bounds on the e-capacity
function from a fundamental point of view by studying whether or not such bounds can
be computed by any algorithms in principle (without putting any constraints on the
computational complexity of such algorithms). For this purpose, the concept of Turing
machines is used, which provides the fundamental performance limits of digital computers.
To this end, computable continuous functions are studied and properties of computable
sequences of such functions are identified. Subsequently, these findings are exemplary
applied to the e-capacity of the two-state compound channel. It is shown that there
are examples for which this function (derived here under two capacity notions) is a non-
computable function of its error input. As a result, it is stated that either the achievability
or converse yields a non-computable bound. The crucial consequence is that the e-capacity
cannot be characterized by a finite-letter entropic expression. We also consider a less
restrictive conditions of decidability for the derived capacity functions and obtain negative
results. The channel examples that give us the general non-computability of the capacity
functions, are those that prove communicating parties can have asymptotic gains by pre-
shared entanglement or randomness. This gain cannot necessarily be harnessed by a

digital computer due to general non-computability of the capacity functions.

5.1. Introduction

For the e-capacity of compound channels [Blackwell et al.(1959)Blackwell, Breiman, and
Thomasian, Wolfowitz(1960), Ahlswede(2015)], it is shown and argued that either the
achievability or converse (or both) must result in a non-computable lower or upper bound,
respectively. Accordingly, it is impossible that both achievability and converse are effec-
tively computable at the same time and, as a consequence, we cannot find a finite-letter
entropic characterization for the e-capacity. This has important implications on the ques-
tion of the existence of a strong conserve and the second order coding rate. Both questions
cannot be answered algorithmically as we will demonstrate.

The asymptotic bound for error-correcting codes is a fundamental and open prob-
lem in coding theory [Tsfasman et al.(2007)Tsfasman, Vladut, and Nogin, Joyner and
Kim(2011)]. Despite tremendous effort, attempts to characterize this function have failed.
Except for some trivial points, not much is known about this function and its behavior. It

is conjectured that this function is indeed a non-computable function. With the previous
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findings, this explains the difficulties as either the lower or upper bound on the asymptotic
bound must be non-computable. Thus, it is impossible to derive computable lower and

upper bounds that are asymptotically tight.

The underlying computability framework is introduced in Section 5.2. A Turing ma-
chine is a mathematical model of an abstract machine that manipulates symbols on
a strip of tape according to certain given rules. It can simulate any given algorithm
and therewith provides a simple but very powerful model of computation. Turing ma-
chines have no limitations on computational complexity, unlimited computing capacity
and storage, and execute programs completely error-free. They are further equivalent to
the von Neumann-architecture without hardware limitations cf. also [Avigad and Brat-
tka(2014), Godel(1930), Godel(1934), Kleene(1952), Minsky(1961)]. Accordingly, Turing
machines provide fundamental performance limits for today’s digital computers. Since
bounds on the capacity are usually evaluated and often plotted on digital computers,
Turing machines are the ideal concept to study whether or not such upper and lower
bounds can be found algorithmically in principle (without putting any constraints on the

computational complexity of such an algorithm).

The underlying computability framework is introduced in Section 5.2. Of particular in-
terest here are computable continuous functions [Pour-El and Richards(2017)] since such
functions can be effectively approximated by computable polynomial sequences. To this
end, Section 5.2 also studies further properties and insights of computable sequences of
such computable continuous functions. In Section 5.3 we derive our capacity results for
the e-capacity of the compound channel with two channels present in the uncertainty set,
that give us significant examples of channels that are fundamental to our computability
results in later sections. In Section 5.4, the findings of Section 5.2 are applied to these
examples. In Section 5.5, we use the results from previous sections to prove that either
the converse (upper-bound) or achievability (lower-bound) is not algorithmically com-
putable as a function of the error input. We refute computability already at compound
channels with two channel states, that is the smallest possible uncertainty by assuming
the not-so-realistic tolerated error of 1/2. As mentioned before however, practical coding
strategies must be robust to compound channels of infinite cardinality, that which carries
our negative results to arbitrarily small values of tolerated error (see [Ahlswede(2015)] for
examples of compound channels with more than two channel states).

In Section 5.6, we consider the less restrictive conditions of decidability and semi-decidability,
and demonstrate that even this conditions are not necessarily satisfied by e-capacity as a
function of the error input. In Section 5.7 similar statements are made on computability
of the capacities of assisted scenarios where the communicating parties have access to
pre-shared entanglement or common randomness. We show the existence of examples
where such resources improve the e-capacity of compound channels. These examples are

therefore significant as they refute the generality of statements that deny the use of en-
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tanglement when it pertains to classical communication. This improvement of capacity
should be looked at with skepticism however, as at least in the case of common-randomness
assistance, the resulting function is in general non-computable. The gain in capacity re-
sulting from pre-shared resources, is in other words, cannot necessarily be harnessed by

a digital computer.

5.2. Introduction to Turing Machines and computability

framework

The formalization of computability was established by [Turing(1936), Turing(1937)] and
[Church(1936)] by two different approaches. In a mathematical sense, both frameworks
are fully equivalent. For brevity, we restrict ourselves to Turing’s method: he introduced
the idea of what is known today as Turing machine.

A Turing machine is a hypothetical machine that manipulates strings of symbols on an
infinite work tape. The symbols on the tape emanate from a finite machine alphabet
S = {s1,892,...,8:} U {u}, where "L” is the distinguished symbol that marks a blank
space. Only a finite number of symbols on the tape may differ from the blank space
symbol.

Given an initial tape configuration s =: s°, the machine sequentially manipulates one sym-
bol on the tape at a time, creating a new tape configuration in each step. Simultaneously,
the Turing machine passes trough a sequence of internal states. The succeeding pair of
tape configuration and internal state depend exclusively on the current tape configuration

and the current internal state. This way, we obtain a chain of pairs
(8% ¢") = (s',¢") = (%, ¢°) > ..., (5.1)

where ¢°, ¢!, ¢%, ... € Q denotes the current internal state.

The set Q = {q1,¢2,---,q} U {gs} v {qu1,qnz2,...,qum} of internal states contains a
distinguished initial state qs such that ¢° = gg in (5.1), as well as a set of distinguished
halting states qm1, quz2, - - - qum- Whenever the Turing machine reaches one of the halting

states, the computation ends. In this case, we obtain a sequence
(8" q5) = (s',¢") = (8% ") > ... = (s".q") (5.2)

with 9" € {gu1,qn2, ..., ¢um} for some n € N. The Turing machine is said to halt with
output (s™,q",n) for input s°. On the other hand, given an input s, there may not exist
an n € N such that ¢" € Q, in wich case the Turing machine continues it’s computation
infinitely.

For a Turing machine TM, let T be the set of tape configurations. We denote D(T'M) <

T the set of inputs for which the Turing machine halts with some output. In this sense,
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a Turing machine is a mapping
TM:D(TM)—T % {qu1,qu2,---,qum} x Ny;s — TM(s), (5.3)

where TM(s) € T x {qu1,quz2,---,qum} x N is the output corresponding to input s. We
denote [TM(s)]r the first component, [T M (s)]g the second component and [T'M (s)]x
the third component of the triple TM (s). With some abuse of notation, we may never
the less write T'M (s) instead of [T'M(s)]|r, [TM(s)]g or [TM(s)]y, if it is clear from the

context which of the three we are referring.

5.2.1. Arithmetic Computations

By encoding the set of n-tuples of natural numbers into the set of tape configurations, we
can perform arithmetic calculations on a Turing machine. The simplest sufficient encoding
is the unary numeral system, with successive components of a given n-tuple x € N being
separated by a blank space. Let (g,)nen with g, : N* — T for all n € N be a family of
suitable encodings. A function f : D(f) — N with D(f) < N" is called computable, if

there exists a Turing machine T'M that satisfies the following properties:
a) If x e D(f) for some x € N, then g, (x) € D(TM).
b) If x e N"\D(f) for some x € N, then g,(x) € T\D(TM).
¢) We have [TM (g,(x))]o = ¢1(f(x)) for all x € D(f).

The set of computable functions, which we denote by C*, is a true subset of the set F :=
U o{f : N® — N} (here, the set {f : N — N} = N denotes constant natural numbers).
Other than by the use of Turing machines, the set C* is characterized through the axioms
of p-recursive functions, in the following simply referred to as recursive functions. That
is, a function f: D(f) — N with D(f) < N is computable if and only if it is a recursive
function. A recursive function f : D(f) — N with D(f) < N" is called partial if D(f) #
N"; it is called total if D(f) = N™.

5.2.2. Recursively enumerable sets and the halting problem

Given a recursive function f : D(f) — N with D(f) < N”, the indicator function

. 1 if x € D(f)
].D(f) N — {0, 1}, X = (54)
0 otherwise

of D(f) is in general not a recursive function. This insight is known as the halting
problem, since it is equivalent to determining whether a Turing machine halts for a certain

input or not. Strongly related is the concept of recursively enumerable and recursive
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sets [Soare(1987)], which, in many cases, is is essentail for deriving the noncomputability

of certain mathematical problems.

Definition 107 A set A < N is called recursively enumerable if there exists a recursive

bijection v : N — A. The mapping p enumerates the set A.

Remark 108 A set A < N is recursively enumerable if and only if there exists a recursive
function f: D(f) — N that satisfies D(f) = A. Furthermore, A is recursively enumerable
if and only if there exists a recursive function [ : D(f) — N that satisfies {n : Iz € D(f) :

f(x)=n}y = A.

Definition 109 A set A < N is called recursive if the indicator function 14 : N — {0, 1}

of A is a recursive function.

Remark 110 A set A < N is recursive if and only if both of the sets A and A°:= N\A

are recursively enumerable.

From Remark 108 we know that the domain D(f) of any recursive function f : D(f) — N
is recursively enumerable. On the other hand, we have previously stated that 1p(j
is not a recursive function in general. Hence, D(f) may be a non-recursive set. The
halting problem thus ensures the existence of sets that are recursively enumerable but not

recursive.

5.2.3. Computable real numbers and functions

The basic techniques from Computable Analysis are essential to our work, and will thus
be reviewed in the following.
A sequence of rational numbers (7, ) ey is called a computable sequence of rational numbers

if there exist recursive functions a, b, s : N — N that satisfy
o = (<1 20 (5.5

for all n € N. Note that this definition implies b(n) # 0 for all n € N.
A real number x is said to be computable if there exists a computable sequence of rational

numbers (7, )nen such that
|z —r,| <277 (5.6)

holds true for all n € N. If the latter is satisfied, we have lim,,_,o, r, = x. We denote the

set of computable real numbers by R..

Remark 111 Let (7,)nen be a computable sequence of rational numbers that satisfies

lim,, , 7, = x. Assume there exists a recursive function ¢ : N — N such that

lo — 7 <27 (5.7)
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is satisfied for alln, M € N withn = ((M). Then, the sequence (T, )nen s said to converge

effectively to x. By setting
Tn = ?((n)a (58)

the computable sequence (ry,)nen of rational numbers satisfies |x — r,| < 2™ for all n €
N. Consequently, a real number x is a computable number if and only if there exists a

computable sequence (T )nen of Tational numbers that converges effectively to x.

Remark 112 A computable number x can be represented by a triple (a,b, s) of recursive
functions such that the corresponding computable sequence (ry,)nen of rational numbers
satisfies |x —1r,| < 27" for alln € N. On the other hand, the number x can be represented
by a quadruple (Ei,g, 3,(C), such that the corresponding computable sequence (7)nen of

rational numbers satisfies |x — 1,| < 27" for all n € N.

In practical applications, it is common to encounter sequences of real numbers, which,
in general, may be irrational. For example, an information theoretic channel model may
yield a recursive function f : N — N that specifies the number of messages f(n) that
can be transmitted trough n successive uses of the channel with respect to some error
criterion. As done in previous chapters of this work, this number is turned into a channel
capacity by setting x,, := L log, f(n) and C' := lim,_,o @, (if the limit exists). The number
T, is not necessarily rational, and the sequence (x,),en is not necessarily a computable
sequence of computable numbers. In order to investigate such sequences with respect
to their computability properties, we introduce the concept of computable sequences of
computable numbers.

A sequence (z,)nen of real numbers is called computable sequence of computable numbers

if there exists a computable double sequence (7, )n.men Of rational numbers such that
|Tp — Tom| < 27™ (5.9)

holds true for all n,m € N.

Remark 113 Let (z,)nen be a sequence of real numbers such that there exists a com-
putable double sequence (T m)nmen Of Tational numbers as well as a recursive function
( :Nx N — N that satisfy

[Zp — Tm| < 27M (5.10)

for alln,m, M withm = ((n, M). Setting 1y m = Tncmm), we obtain a computable double
sequence (Tnm)nmen 0f rational numbers such that |x, — 1y, < 27 holds true for all

n,m € N. Thus, (x,)nen s a computable sequence of computable numbers that is fully

specified by the pair ((Tn.m)n.men, C)-

The set of computable functions C* is recursively enumerable. In particular, there exist
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recursive functions A, B,S : N x N — N, such that for all triples a,b,s : N — N of

computable functions, there exists n € N such that
A(n,m)=a(m) A B(n,m)=b(m) ~ S(n,m)=s(m) (5.11)

is satisfied for all m € N (including undefined values). Consequently, given a computable
enumeration (A, B,S) of all triples a,b,s € C*, we can specify each computable real
number x by a single integer n € N, leading to the concept of Borel-Turing computable

functions.

Definition 114 A function f : R. — R. is called Borel-Turing computable function if
there exists a computable enumeration (A, B,S) of all triples a,b,s € C* as well as a
computable function g : N — N such that for all n € N, g(n) is a representation of f(x)
with respect to (A, B, S) whenever n is a representation of x with respect to (A, B, S).

Remark 115 In other words, a function f : R. — R, is called Borel-Turing computable
function if there exists a Turing machine that transforms representations of a computable

number x into representations of the computable number f(x).

The assumptions made in Definition 114 can be weakened to obtain a computability

concept without the requirement of a computable enumeration.

Definition 116 A function f : R. — R. is called Banach-Mazur computable function
if the sequence (f(xn))nen @s a computable sequence of computable numbers whenever the

sequence (Ty)nen 1S a computable sequence of computable numbers.

Remark 117 If f : R. — R. is Borel-Turing computable, it is also Banach-Mazur com-
putable. The converse does not hold true in general. For an overview on the relations
between different notions of computability, the reader is referred to [Avigad and Brat-
tka(2014)] and the introductory textbook [Weihrauch(2000)].

The concept of Banach-Mazur computability may be extended to allow the investigation
of computable continuity properties of real-valued functions. A rectangle I, = R, d € N,

is called a computable rectangle if the boundary values are computable numbers.

Definition 118 Let I. =« R, d € N, be a computable rectangle. A Banach-Mazur com-
putable function f : 1. — R¢ is called computably continuous if it is effectively uniformly
continuous, i.e., there exists a recursive function g : N — N such that |f(z) — f(y)| < 3¢

holds  true for all x,y € I. and all M € N  that satisfy
1

|z =yl < Jam-

Remark 119 Per definition, every function that is computably continuous is also Banach-

Mazur computable. However, there exist infinitely many Banach-Mazur computable func-

tions that are not computably continuous (see [Avigad and Brattka(2014)] for a detailed

discussion.) Accordingly, it is not possible to compute the local variations for functions of

this kind.
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5.2.4. General results for computable sequences of numbers and

functions

In the following we establish some properties of computable sequences which will be

needed subsequently.

Lemma 120 Let {r2},en and {r) }nen be computable sequences of rational numbers that
satisfy

re < =) A lim 72 = lim 7 (5.12)

T A T
ntl m—o0 m—o0

for alln e N. Then, x := lim,, . 7’7% = lim,, o 1, is a computable number.
Proof 121 See e.g. [Pour-El and Richards(2017)].

Lemma 122 Let {75} en and {77 }aen be computable sequences of rational numbers that

satisfy

~/A\ . ~/\ ~ . ~ . ~/\ . ~
r, < lim 7 A r, = lim 7 A lim 7, = lim 7,
m—0o0 m—00 m—00 m—00

for alln e N. Then, ¥ := lim,, .o 75 = lim,, 7, is a computable number.

Proof 123 Define the sequences {12} pen and {1 }pen by setting r2 := max{F2 : m < n}
and 7 := min{?Y, : m < n} for all n € N. Then, the sequences {r>},en and {17} nen
satisfy (5.12) with T = lim, . 15 = lim,, .o ry,. Furthermore, since minimization and
mazximization are recursive operations, the sequences {1 }nen and {1 }nen are computable

sequences of rational numbers. Thus, by Lemma 120, we have T € R..

Theorem 124 Let {25 },en and {z) }en be computable sequences of computable numbers
that satisfy

AN : JAN v : v : N 7 \v
z, < lim z, A z, = lim x,, A lim z,, = lim z,,
m—a0 m—00 m—00 m—a0

for alln e N. Then, x, = lim,, . I,% = lim,, o 2y, is a computable number.

Proof 125 By assumption, there exists a computable double sequence (?ﬁm)n’meN of ra-

tional numbers such that |z5 — ?fm] < 27™ holds true for all n,m € N. Define the

Jnen by setting 75 = 72— 27" for all n € N. By construction, (72)nen

n,n

sequence (72

is a computable sequence of rational numbers which satisfies lim, .., 75 = x4 as well as

~

72 < @, for all n € N. Likewise, we can find a computable sequence (7 )nen of rational
numbers that satisfies im, T, = . as well as T, > x4 for all n € N. Thus, by Lem.

122, z, is a computable number.

Lemma 120, 122 and Theorem 124 are based on the representation of computable numbers
through interval arithmetics. The same concept can be used to prove an effectivity result

for monotonic sequences of computable numbers.
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Theorem 126 Let (x,)neny be a monotonically increasing computable sequence of com-
putable numbers that satisfies lim,, o x, = x, for some (computable) real number x, € R..

Then, there exists a recursive function ( : N — N such that

1
holds true for alln, N € N that satisfy n = ((N). That is, the sequence (T, )nen converges
effectively to x,.

Proof 127 The requirement of x, being a computable number ensures the existence of
a computable sequence (r,)nen of rational numbers that satisfies |x, — | < 27" for all

n € N. By setting
ry i=min{r, + 27" :m < n} (5.13)

for all n € N, we obtain a monotonically decreasing computable sequence (1) )nen of ra-
tional numbers with lim, 1, = .. On the other hand, we can find a representation
of the sequence (xy)nen in terms of a computable double sequence (G m)nmen of rational
numbers that satisfies |x, — qnm| < 27™ for alln,m e N. We have gnn — 27" <z, < Tp,
for all n,m € N that satisfy n < m. Consequently, the computable sequence (1% ),en of

rational numbers defined by setting

re = max{gmm — 27" :m < n} (5.14)

A

for all n € N is monotonically increasing and satisfies r;;

< Ty, for all n,m € N with
A

n < m as well as lim, 1> = z, . We arrive at the inequality r’

< Ty S Ty < T,
which holds true for all n,m € N that satisfy n < m. Therefore, we have |r, — x| <
rY — 12 for all n,m € N that satisfy n < m. Following the previously established equality

limy, oo 7Y = lim, o 75 = 24, we also have lim, . (rY —r2) = 0. Setting

C(N) := min{n : rY —r> <27V} (5.15)

yields the required recursive function.

Remark 128 Given x, € R., Theorem 126 proves the effective convergence of any mono-
tonically increasing computable sequence (x,)nen of computable numbers that satisfies
lim,, o0 T, = 4. The monotonicity of (x,)nen S @ necessary requirement in this context.
That is, there exist computable sequences of computable numbers that converge to a com-
putable number, but the convergence is non-effective. Consider any recursively enumerable
but non-recursive set A < N with recursive bijection ¢ : N — A and define the computable
sequence of rational numbers (ry)nen by settin v, := 27, Then, lim, . r, = 0, which
is a computable number. On the other hand, (r,)n.en does not converge effectively to 0,

since this would contradict the non-recursivity of A.
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Remark 129 Note that it is possible to find a computable sequence {T,}nen of Tatio-
nal numbers that converges to a computable real number x, € R, (which can further be
rational), i.e.,

lim ‘m* — xn‘ =0,
n—00

but the convergence is not effective. Then this sequence is not monotonically increasing

or decreasing.

Next, we establish similar results for computable sequences of computable continuous

functions.
Theorem 130 Let F : [0,1] — R be a computable continuous function and {Fy}nen be
a computable sequence thereof with Fy(x) < Fyy1(x), x € [0,1], and

lim Fy(z) = F(z).

N—0

Then there exists a recursive function ¢ : N — N such that for all M € N we have for all

N = ¢(M)
1
|[F(z) — Fy(z)| < a7
Proof 131 Let Qn(x) = F(x) — Fx(x), 2 € [0,1]. We have 0 < Qn1(x) < Qn(x) and
limy_e Qn(x) =0, x€][0,1]. Let M € N be arbitrary. There exists an Ny = No(M, )
with
1

Qn(z) < 507 for all N = No(M, z).

We define the set

S = {95 € [0,1]: Qn(z) < QLM}

and observe that Sy < Snyim- Now, {Sya} is a family of open sets with [0,1] <
Uni Snoar. Since [0,1] is a compact set [Rudin(1987)], there exists an No(M) with
[0,1] © Sny.mr and therewith Qn,(x) < 55 for No and also all N > Ny. Let

ma; x) = Cly.

xe[O,}li] QN( ) N
Since QN is a computable continuous function, we always have Cy € R.. Further, since
{@N}Nen 1S a computable sequence of computable real numbers, the sequence {Cn}nen
1$ also a computable sequence of computable real numbers. For all N € N it holds that
CN = CN+1 and

W O =0

Accordingly, there exists a recursive function ¢ : N — N such that for all M € N we have

for all N = (M)

IF(@) - P (o)] = [Qu(2)] < oo

which proves the desired result.

98



5.2. Introduction to Turing Machines and computability framework

Some remarks are in order:
1. The result extends to functions on compact spaces.
2. The result remains true for monotonically decreasing functions.

3. It is important that F' is a computable continuous function. Already for computable
sequences of rational numbers with x,, < x,,; that converge to a z, ¢ R., we do

not have effective convergence, see e.g. [Specker(1949)].

4. A part of the proof is not effective as we required compactness which is needed to
show uniform convergence. This is subsequently used to show the effective conver-

gence of the computable continuous function F.

We can use Theorem 130 to show the following result.

Corollary 132 Let {Fn}yen and {Gy}nen be computable sequences of computable con-

tinuous functions on [0, 1] with
FN(LC) < FN+1(CC) < GN+1(SC) < GN(SC)

and
lim Fy(z) im Gn(x) =: P(x), =xe€]0,1].

=1
N—0 N—w
Then @ : [0,1] — R is also a computable continuous function and {Fy}yen and {Gn}Nen

converge effectively to ®.
Proof 133 We set
Qn(r) = Gy(z) — Fn(x), z€]0,1],

and {Qn}Nen i a computable sequence of computable continuous functions. For x € [0,1]

we have

\%

\Y
Q@
=2

*

=
s

Qn () (z) = Fn(z)

x) — Fnyi(x) = Qny, ()
and
Alfi_r}rlooQN(x) =0, ze]0,1].

Now, from Theorem 130 follows that the computable sequence {Qn}nen of computable

continuous functions converges effectively to 0 proving the desired result.

Similar results for computable sequences of Banach-Mazur computable functions can be
derived. We will use the following theorem in analyzing computability of upper and lower

bounds for capacity functions introduced in the next section. We consider sequences
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of functions over computable real numbers as well as those over computable compound

channels.

Theorem 134 Let {Fn}neny and {Gn}nen be computable sequences of functions Fy :
[0,1] "R, > R, and Gy : [0,1] nR. —> R., N € N, with

Fn(z) < Fyyi(x), x€[0,1] n R,

GN(JJ) = GN_H(ZE), X € [0, 1] M RC,

and

lim Fy(z) = lim Gy(z) =: @(z), x€[0,1] nR,.

N—o N—o0

Then @ : [0,1] nR. — R is also a Banach-Mazur computable function.

This result allows us to consider the computability of lower and upper bounds on the

e-capacity as a function of the error input, i.e. €.

5.3. Basic concepts and capacity results

We first introduce the concept of classical compound channels, and apply the findings
thus far to its e-capacity afterwards.

Let X and Y be finite input and output alphabets and S be a finite state (uncertainty)
set. Then for a fixed channel state s € §, the channel is given by a stochastic matrix
Wy : X — P(Y) which we interchangeably also write as Wy € CH(X; ), where the latter
denotes the set of all channels from X to ). The channel state s € S is assumed to remain
constant throughout the whole transmission so that the discrete memoryless channel is
given by W(y"|2") := [ -, Wi(yi|z;) for all 2" € X™ and y" € Y".

Definition 135 The compound channel generated by uncertainty set W := {Ws e CH(X;)) :
s € S8} is given by the sequence of channels {W> Wy e W}>_|. The set of all such com-
pound channels is denoted by CC(X,S;)).

Further, let CH.(X;Y) be the set of all computable channels, i.e. for a channel W e
CH.(X;Y) we have W(-|z) € P.(Y) for every x € X. Finally, computable compound

channels are defined as follows.

Definition 136 A compound channel generated W = {Wy € CH.(X;)Y) : s € S} is said
to be computable if there is a recursive function ¢ : S — CH.(X,S;Y) with o(s) = Wi
for all s€ S. The set of all computable compound channels is denoted by CC.(X,S;)).

We require namely, that the compound set W € CC.(X,S;)) is algorithmically con-
structable i.e., for every state s € S the channel W, can be constructed by an algorithm
(or Turing machine) with input s. We further need a concept of distance. For two chan-

nels Wy, Wy € CH(X;Y) we define the d-distance between W, and W, based on the total

100



5.3. Basic concepts and capacity results

variation distance as
d(Wy, Wy) = maxz |W1(y\x) - Wg(y|x)|
reX
yey
To extend this concept to compound channels, we consider the worst case distance between

W1 € CC(X,Sl,y) and W2 € CC(X,SQ,J)) as

D(Wi,W,) = max max min d(W,, Ws,),

51681 SQGSQ

max min d(W,,, Wy,)}. (5.16)

52652 51681

Further, on the interval I = [0, 1] we define the distance Dy(e1, €2) = €1 — €.
We define the set 20 = CC(X,S;Y) x I and the distance

Dm((Wl, 61), (WQ, 62)) = Imax D(Wl, Wg), DH(El, 62)}

for (W, e;) € 20,0 = 1,2. Then, (20, Dyy) is a compact Hausdorff space [Rudin(1987)].
We further set
W= (W,e) : WeCC(X,S;)),eel}

with I, = T n R, the computable interval. We have the following properties:

1. D(-,-) is a computable continuous function on CC.(X,S;)) which follows from its

definition.
2. Dy(+,-) is a computable continuous function on I. which follows similarly.

3. Dgy(-,-) is a computable continuous function on 2., since it is the maximum of two

computable continuous functions.

Since the actual channel state is unknown to transmitter and receiver, universal encoder

and decoder are needed that are independent of the channel state.

Definition 137 An (n, M,)-code is a set of doublets {(x,,, Dy,), m € [M,]} with
e 1, € X" me[M,] and
e D, < V" me[M,] such that D,, () Dy = & for m # m' and UmE[Mn] D,, = Y".

As the receiver needs to decode the transmitted message for all possible channel real-

izations, we define the average probability of error for the compound channel W as

_ 1
en(W):Igle%X—n Z €m,s,n
me[Mn]
with
Cman = Y, WIY"|zm). (5.17)
yneDg,
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This leads to two definitions for achievable rate of communication, when some € > 0
amount of error is allowed. We refer to the first one as the traditional definition (c.f
[Ahlswede(2015)]) and the second one as the alternative (optimistic) definition (c.f [Yagi
and Nomura(2014)]). In the following, we consider these two definitions and derive capac-
ity results for each. Before stating the capacity results, we need the following notation.
The mutual information I1(X;Y), between two random variables (X,Y"), is defined by

I(X;Y) = H(X) - HY|X). (5.18)

Also, given W e CH(X,Y) and random variables (X,Y") distributed according to Px = P
and Pyx(-|-) = W(:|-) on X and Y respectively, we define

I(PW) = I(X;Y). (5.19)

This quantity is called mutual information of the channel W. For properties of this
quantity see [Csiszar and Korner(1981)]. To state our results related to the zero-error
capacity of the channel, we need the concept of a simple graph G = (V(G), E(G)),
characterized by the set of vertices V(G) and the set of edges E(G). Again given W €
CH(X,Y) and any z € X, define sets )V, := {y € Y : W(y|r) > 0} and the graph
GW) = (X, Ew(G)) with

Ew(G) = {(z,2) : Vo[ |V = @} (5.20)

Also, for P € P(X),d > 0, let Tp; be the set of all -typical sequences in &A™ (see
Appendix A for properties of 0-typical sequences). Let G"[P, §] be the graph induced by
G(W™) on the set T ;. We define

Co(W, P) := lim limsup ~ logw(G"[P. )

0 noo N

where w(G™[P,¢]) is the clique number of the graph G"[P, §], namely

w(G"[P,6]) := max{|2] : 2 <« V(G"[P,d]) : z,2" € 2 — yxﬂyx, = J}. (5.21)

5.3.1. Traditional definition of ¢-capacity

We define the following numbers for n € Nand 0 < € < 1, one corresponding to the average
error criterion and the next to the maximum error criterion. The following definitions

lead to the traditional definitions of e-capacity of the compound channel.
1. NOW,e,n) := max{N € N: 3(n, N) — code for W with &,(W) < €},

2. N™™(W,e,n) := max{N € N:3(n, N)—code for W with max.s max,c[n] €sn(m) <

€}.
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5.3. Basic concepts and capacity results

We consider two notations of capacity corresponding to these numbers that are defined

in the following.

Definition 138
Let We CC(X,S;)Y) and 0 < e < 1. Then

o C(W,e) :=limsup,_,, *log N(W, e,n) and C™**(W, ¢) := limsup,,_,., = log N™*(W, €, n)
are the optimistic e-capacities of YW under average and mazximal error criteria re-

spectively.

o Also C(W,e) :=liminf, o, = log NOW, €,n) and C™** (W, €) := liminf, %log N™2>(W €, n)

are the pessimistic e-capacities of VW under average and maximal error criteria re-

spectively.

o Finally, CONV,€) and C™> (W, €) are the e-capacities of W under average and maz-
imal error criteria, if
limsup,,_,,, L log NOW, e,n) = liminf, ., 1 log N(W, €,n) andlimsup,,_,, 711 log N™(W, ¢, n)

=liminf,, 4 %l log N™*(W, €, n) respectively.
The asymptotic behavior of N™*(W e n),e € [0,1) of the compound channel has
already been established in the literature and is stated in the following.

Theorem 139 ( [Blackwell et al.(1959)Blackwell, Breiman, and
Thomasian, Wolfowitz(1960)]) For W € CC(X,S;)) it holds for e € (0,1)

C™™ (W, ¢€) = P){Iel%}&}) I?El;l](Px,Ws) =:C(W), (5.22)
and for e = 0,
C™™ (W, €) = Prg%a@(() min Co(Ws, P) =: Co(WV). (5.23)

Proof 140 See [Blackwell et al.(1959)Blackwell, Breiman, and Thomasian, Wolfowitz(1960)]
for proof of (5.22) and [Csiszdr and Kérner(1981)] for (5.23).

We refer to C'(W) and Cy(W) as the compound capacity and zero-error compound capacity
of W.
This result is in fact a generalization of similar results for the case of perfectly known
channel state (|S| = 1). In other words, defining N(W, e,n) := N(W,e,n) for W = {W},
the following holds.
Theorem 141 For W e CH(X;)) it holds for e € (0,1)

lim = log N™ (I, e,n) = max I(Py,W,) — C(IV), (5.24)

n—o 1 PxeP(X)

and for e =0,

1 1
lim —log N(W,e,n) = lim —log N™*(W,¢e,n) = max Co(W, P) =: Co(W). (5.25)

n—w n n—ow n, PeP(X)
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This gives a complete characterization of the asymptotic behavior of N™**(W e, n), e €
[0,1). Such a characterization is missing for N(W,e,n),e € (0,1), because there is in
general no strong converse for this number (see [Ahlswede(1967b)]). It is of course clear
that for e = 0, NOW,e,n) = N™(W,¢e,n). This characterization does not exist even
for compound channels with two channel states (|S| = 2). In what follows we state
two results, one already existing from [Ahlswede(2015)] and another, the achievablity for

€= % A converse for this point is still missing.
Lemma 142 ( [Ahlswede(2015)]) For W := {W;,Ws} < CC(X, {1,2};)), it holds
c(W) for0<e<1/2

COW,¢) = . (5.26)
ming_1 o C(W,) forl/2 <e<1

The following is the achievability statement for e = 1/2.
Lemma 143 For W < CC(X,{1,2};Y) with Co(W) > 0, it holds

e liminf, . 2 log NOW, 1, n) = max{C (W), min,_; » Co(W,)}.

Proof 144 If C(W) = min,_, 2 Co(Wy), the assertion is clear, as C(W) < C(W, 3).

12
Assume otherwise. Since by assumption of the lemma Co(W) > 0, from Theorem 141,
there exists a k € N, for which there exists a (2,k)-code consisting at the encoder of
x1, 15 € X* and at the decoder of Dy, Dy < Y*, with Dy(\Dy = &, D1\ JDy = Y7,
such that ming_; o min;_; o ZykeDi W,(y*|z;) = 1. By Theorem 141, for § > 0, there exists
lo € N such that for | > ly, there exist (I, M;)-codes {(ug-s),/lf)),i € [M,]} for s = 1,2,

with %log M; = ming_y 2 Co(Ws) — § and max,—; o maXpepas, €1,s(m) = 0. Construct the

(k +1,2M;)-code {(tn, Dy,), m € [2M;] as

o Uy =21 DU, forme [M],

® Uy = SEQ@U&ZMZ, forme {M; +1,...,2M;}.

and decoding operations defined by
o D, =Dy x AW, form e [M],
o Dy i=Dyx A\ forme {M+1,...,2M}.

We calculate the error due to this code. We have thee following average probability of

success for Wy:
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1 1
W( Z 1 _€k+l,1(m)) = 537 2 W1k+l(yk+l‘l’1€|—)u%))
! me[2M;] ! yk+l€D1><A$r11)
1 k+l/ k+l (2)
+2—M Z Wi (y™ |z @ uy,,)

yk+leDy ><A£,21)

1
>or 2 WM me )
! yk+leDy ></1$,11)

1
= o7 2 WEWe) Y WG up) =172 (5.27)
l ykeDl yleA,ErlL)
Similar calculation yields the same lower bound on QLMZ ( ZmE[QMl] 1-— €k+l,2(m)) and hence

we conclude e(W) < L. Hence, for n:=k + 1 we have

1 1
1iTrlrLi£f EN(W’ 3 n) = li%r_{glf T log 2 M,
o 1
> h{gglf T k710g2Ml
> H—l% Co(Vy) — 0. (5.28)

As & > 0 was arbitrary, we are done.

5.3.2. Alternative definition of ¢-capacity

Alternatively, we can consider a definition of e-capacity with a more relaxed requirement
on error. Much like the previous case, we start by defining the following numbers for
n € N and 0 < € < 1, one corresponding to the average error criterion and the next to the

maximum error criterion.

1. Nay(W,€e,n) := max{N,, € N: 3 a sequence of (k, Ny) — codes for W

with limsup,_,, (W) < €},

2. NY¥(W,e,n) := max{N, € N : 3 a sequence of (k, N) — codes for W
with
lim supy,_, ., MaX,es MaXne[N] esk(m) < €.

Again, given these numbers we can define two notions of capacity.

Definition 145 Let W e CC(X,S;)Y) and 0 < e < 1. Then

o Cyy(W,e€) :=limsup,,_, ., % log Nap(W, €, n) and C2* (W, €) := lim supn_m%
log N7 (W, €, n)

are the optimistic e-capacities of VW under average and maximal error criteria re-

spectively.
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o Also Cay(W,€) := liminf, % log Naiw(W, €,n) and C14* (W, €) := liminf, i

log N4t (W, €,n)
are the pessimistic e-capacities of W under average and maximal error criteria re-
spectively.
o Finally, Cau(W,€) and CJ3*(W,€) are the e-capacities of W under average and

mazimal error criteria, if Cap(W,€) = Can(W,€) and CT5* (W, €) = C4* (W, €)

respectively.

To a large part the alternative definition coincides asymptotically with the previ-
ous definition. For instance, Theorem 139, can be stated as follows (see [Blackwell
et al.(1959)Blackwell, Breiman, and Thomasian, Wolfowitz(1960)]).

Theorem 146 For W e C(X,S;)) it holds for e € [0, 1)
hIElO CuWie) = C(W). (5.29)

Notice that here, ¢ = 0 does not correspond to the zero-error capacity of the channel
defined previously. We give a characterization of Na;(W,e,n), for 0 < e < 1 and W €
C(X,{1,2};)). We also state similar results for the case of perfectly known channel state
(18] =1).

Theorem 147 For W e CH(X;Y) it holds for e € [0, 1)

1
lim - log Ny (Wye,n) = C(W). (5.30)

n—oo

We prove the following.
Theorem 148 For W e C(X,{1,2};)) it holds,

cw 0<e<1/2
Cunw.0) = 1€V Jor0<e<l1/2. (5.31)
ming_1 5 C(Ws) for1/2<e<1

We prove this theorem in two steps. The first step is proof of achievability that is formu-

lated in the following lemma.

Lemma 149 For W e CC(X,{1,2};)) it holds

1 1
lim inf — log N (W, 3 n) = m
n =

n—00 S

in C(Ws).

2

)

To prove the statement of achievability, we need the following result and in particular, a

corollary of it that is stated afterwards.

Lemma 150 For W € CC(X,{1,2}; V) with C(W) = 0 it holds lim sup,,_,, + log Nay(W, €,n) =
0 for0<e<l.

Corollary 151 For W e CC(X,{1,2};Y) with C(W) = 0, it holds, mins_y o C(W;) = 0.
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Proof 152 From Lemma 142 we have limsup,,_,, %log N(W,e,n) = ming_; 5 C(W) for
€€ (1/2,1). Combining this with Lemma 150 we obtain the resull.

Proof 153 (Proof of Lemma 150) Foree (0,1),n €N let Crp := {(tup, D3)M_, : s =

m=1
1,2} be an (n, M)-code with informed decoder (see Section 5.3.3 for precise definition),

namely

max Z 2 My um) < e (5.32)

Let p* be an equidistribution on the message set. Consider the pair of random variables
(X5, X%) with joint distribution

P(X, =m, X, =m/) =p*(m) > WMy"[tm). (5.33)

’I’LEDS

Therefore from (5.32) we have
P(Xs # X)) <e (5.34)

We have
log M = H(p*) = I(Xs; X)) + H(X| X)) < I(X;; X)) + elogM + 1, (5.35)

where 1(Xg; X.) is the mutual information of random variables X, X! and the first in-
equality comes from (5.34) and Fano’s inequality. Rearranging the above inequality and

observing that it holds for s = 1,2 yields

1—¢€)logM < min I(X,, X!)+1< I(Px,W!) + 1. 5.36
(1-¢€)log M < min I( )+ pnax | min (Px, W) + (5.36)
Notice that by definition of Naz(W,€,n), the error is upper-bounded by a fized number
independent of n. Therefore we have (1 — €)limsup,_,,, = log M < C(W) = 0. We are

done.

Proof 154 (Proof of Theorem 149 ) Let C(W) > 0, otherwise from Lemma 150 we
conclude ming_y o C(W,) = 0 and there is nothing to prove. Therefore, according to
Theorem 147, there exists kg € N such that for k > ko, we have two doublets (u;, D;),i =
1,2 with u; € X* and Dy (\ Dy = &, D1 | Dy = V* such that

min min > - Wi(y*lu) > 1 - 6. (5.37)
LA ykEDl‘

with €, — 0 as k — o0. These doublets are what we use for channel state estimation.
By Theorem 147, for 8o > 0, there exists ly, such that for I > ly we find (I, M;)-codes
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{(U,Si),/lﬁ,i)) :m € [M]} for s = 1,2 with
log M, > mln C(Ws) — 0o (5.38)

such that

Z Z W) =1 - ¢, (5.39)

mE[Ml] y EA( s)

with & — 0 as | — . Define the (2M,, k + 1)-code {(iim, D) : m € 2M;} with encoding
sequences defined by:

® Uy, = U @vg), for m e [M],
® U, = U @vfj)_Ml, forme {M; +1,...,2M},
and decoding operations defined by sets
o D, =Dy x AY), forme [M],
e D, = Dy x Ag)_Ml, forme {M; +1,...,2M;}.
Calculating the success probability due to this code, we obtain for Wi:

m=M,

1 1
W( Z 1-— €k+l,1(m)) =27 2 Z Wf+l(yk+l|u1 @’US))
L mep2] l JEHED x AW
m=M,
1 : k+l/, k+l 2)
+ oM, Z Wl (y |u2 @Um )
! m=1 yh+ (2)
EDQXAm
m=M,
1 : kel ktl (1)
> Y W @)
2Ml m=1 k (1)
‘HEDlXA
| =
= 2 DWW ) D Wi )
2M; A
m=1 y~*eD, leA,(i)
1 R
> S(1—e)(1 - &), (5.40)

Similar calculation yields the same lower bound on QLMZ ( Zme[QMl] 1— ekH,g(m)) and hence
we conclude e(W) < 1—1(1—€,)(1—§). Set k =/l and n := 1+ /1. We therefore have

1
lim inf — log Nar(W, =, n)
n—0o0 2
1
> lim inf log 2M,
l—o [+ \ﬁ S
o l

Since dg was arbitrary, we are done.

108



5.3. Basic concepts and capacity results

To prove Theorem 148, it remains to show the following statement of converse.

Lemma 155 For W e CC(X,{1,2};)) it holds

1 1
hmsup—logNAlt(W 2,n) < m

n—ao0

%C’(WS).

1
1

Proof 156 Let C, be a sequence of (n, M,)-codes for W with limsup,, ., €,(W) = 3. In

other words we have €,(W) = % + 9, with 6, —> 0 as n — o. Choosing n large enough
such that 6, < %, we obtain €,(W) < 1. Hence for large enough values of n we have
N (W, 1 5.1n) < NOW,e,n) with e < 1. The proof then follows from Lemma 142.

Proof 157 (Proof of Theorem 148) For e = 1/2, given Lemma 149 and Lemma 155

we have

,3,n) = ming_ 5 C(W,). Foree (0,3)UJ(3,1), the operational in-
equality Nap(W,e,n) = N(W, €,n) for n € N is clear. We prove the inequality

Naz(W,e,n) < NOW,e,n). Let there be a sequence of (n, M,)-codes with lim sup,,_, ., €,(W) <

€. Hence we have

lim,, o % log N (W

en(W) < e+ 6y, (5.42)

with 9,, — 0 as n — 0.

e Foree (0, %), let € = % — 0 for some 6 > 0. This implies

(W) < % 546, (5.43)
Choosing n large enough such that 6, < &, we conclude €,(W) < 3 and hence
NatOW,e,n) < NOW, e, n).
o Foree(3,1), let e =1—10" for some & > 0. Here (5.42) implies
e, (W) <1—6+ 0. (5.44)

Choosing n large enough such that 6, < 0, we conclude €,(W) < 1 and hence
NatW,e,n) < NOW, e, n).

We are done.

5.3.3. The case with informed decoder

In this section, a variation of our results are derived for the case where the decoder knows
the state s € S of the channel in use. As such, the decoding sets depend on s € S, yielding
Dps < Y™, m € [M,] such that D, () Dps = & for m # m’ and Ume[Mn] Dps ="
for s € §. In the following definitions, 1D stands for informed decoder. We show that

in this case, we do not need to require that the compound zero-error capacity Cy(W) is
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strictly positive for our coding. After all this assumption was required to communicate
channel state information to the decoder. We define the average probability of error with
informed decoder for the compound channel W as

_ 1 D
en(W,ID)zmaxM Z e

oy m,s,n
" me[M,]

with
el = Z W (y"|2m), s = 1,2. (5.45)
yneDs,.
We define the following numbers for n € Nand 0 < € < 1, one corresponding to the average
error criterion and the next to the maximum error criterion. The following definitions
lead to the traditional definitions of e-capacity of the compound channel with informed

decoder.

NW,e,n,ID) := max{N € N : 3(n, N) — code for W with e,(W, ID) < €},

2. N™>(W, e,n,ID) := max{N € N : 3(n, N)—code for W with max,es max,,enj €.l (m) <

s,n
€}.

The capacity functions C(W, €, ID), C™** (W, €, ID) are defined accordingly (see Defi-
nition 138). The following three statements are essential to our computability analysis of

compound broadcast channel.

Lemma 158 ( [Ahlswede(2015)]) For W := {W;, Wy} < CC(X, {1,2};)), it holds

cow 0<e<1/2
com.e.py= |V for0<e<1/2 (5.46)
ming_1 2 C(Ws) forl/2 <e<1

We prove an achievability statement for e = 1/2. Here, given the fact that the decoder is

informed, we do not need the assumption of Cy(W) > 0.

Lemma 159 For W e CC(X,{1,2};), it holds

“,?Lio{if%logN(W ; n,ID) = max{C(W), gilgCg(Ws)}. (5.47)
Proof 160 If C(W) = min,_, 2 Co(Wy), the assertion is clear, as by [Ahlswede(2015)],
CW) = C(W,e < 3) < COW,1,ID). Assume otherwise. By Theorem 141, for § > 0,
there exists ly € N such that for I > ly, there exist (I, M;)-codes {(ugs),/lgs)),i e [M]}
for s = 1,2, with %long > ming_19 Co(W,) — 0 and max,_1 2 maX,epar) €,s(m) = 0.
Choose M; to be an even number. Construct the (I, M;)-code with informed decoder
{(ti, ALY, m € [M)], s = 1,2} as

(1)

o Uy =y, forme{l,... M

y o I
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5.3. Basic concepts and capacity results
® U, = u(m2), form e {%—i— 1,...,M}.

We calculate the error due to this code. We have the following average probability of

success for Wy:

M
2 1 : E Lol
— = W (1)

me[M,] Pm=1 14

+M Z > Wi )

m= l +1 yle/l<1)

]Ml
> — Z > Wi ul) = 1/2. (5.48)

m=1 leA(l)

Similar calculation yields the same lower bound on M%(Zme[Ml] 1—e/5(m)) and hence we
conclude W, ID) < % Hence, we have

1 1 1
liminf —log NOW, =, 1, I1D) > liminf — log M,
|—00 l 2 l—o0 l

> II_1¥12 Co(Ws) — 4. (5.49)

As 0 > 0 was arbitrary, we are done.

The case with informed encoder can also be considered when the decoder has channel

state information. We derive similar results.

Theorem 161 For W e C(X,{1,2};Y) it holds,

cw 0<e<1/2
.10y = {0V for0se=iz (5.50)
ming_; . C(W,) forl/2<e<1

Proof 162 First we show the statement for e = 1/2. In this case, from Lemma 149 we
have

liminf, ., * = log N (W, L 5,1, ID) > lim inf, o + ~log Nau(W, 2,n) > ming_y o C(W;), where
the last mequalzty is from Lemma 149. To see the converse, let C,p be a sequence of
(n, My,)-codes with informed decoder for W with limsup,_, e,(W,ID) = 4. In other
words we have én(W,[D) = % + 0, with 0, — 0 as n — o. Choosing n large enough
such that 6, < 3, we obtain &,(W,ID) < 1. Hence for large enough values of n we have
N (W, & 5.1, 1D) < NOW, €,n,1D) with e < 1. The proof then follows from Lemma 5.46.
Therefore we have

lim,,_,o & = log Nae(W, L 5.1, ID) = min,_; o C(W).

For € € (O l)U(§7 1), the operational inequality Nau(W,e,n,ID) = N(W,e,n,ID) for

72
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n € N s clear. We prove the inequality
NazOW, e,n, ID) < NOW, e, n, ID).

Let there be a sequence of (n, M,,)-codes with lim sup,,_,., €,(W, ID) < e. Hence we have
(W, ID) < e +6,, (5.51)

with 6,, — 0 as n — 0.

o Foree(0,3), lete =13 —§ for some 6 > 0. This implies
_ 1
e,(W,ID) < 5~ 0+ 0. (5.52)

Choosing n large enough such that 9, < §, we conclude €,(W,I1D) < % and hence
Naw(W,e,n,ID) < NOW,¢,n, D).

e Foree (3,1), let e =1—10" for some & > 0. Here (5.51) implies
eu(W,ID) <1—6+6,. (5.53)

Choosing n large enough such that 6, < 9, we conclude €,(W,ID) < 1 and hence
Nag(W,e,n,ID) < NOW,e€,n,ID).

The proof follows from Lemma 5.46.

Example 163 An example of two-state compound channel (|S| = 2), with two
dimensional input-output alphabets (|X| =|)| = 2), where C(W) < mings_q 2 C(Wy)
Consider the compound channel generated by W := {W;, Wy} < CH(X,S;Y), X =) =
{1,2}, defined by the following stochastic matrices:

W, ::< Lo ) W, ::<1/2 1/2). (554
1/2 1/2 1 0

I(p,W,) = log(5/4),s = 1,2, 5.55
Jnax (p, W) = log(5/4), s (5.55)

We have

with mazimum taking place at p = (3/5,2/5) and p' = (2/5,3/5) for Wy and W respec-
tively. Therefore we have
MaXpep(x) Ming_12 1 (p, W) < ming_; 2 max,epxy I(p, Ws). We also note that Co(Ws) =

0, s =1,2. From the capacity results of this section, we conclude for this example,
CatW, e < 1/2) = Cau(W, e < 1/2,1D) < Cayy(W, € = 1/2). (5.56)
The following example is from [Ahlswede(2015)]. We state this example here for later

references.
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5.4. Banach-Mazur computability of e-capacity

Example 164 An example where C(W,e< 1) < C(W,e> 1/2)
Consider the compound channel generated by W := {Wy,Wa} < CH(X,{1,2};)),X =
Y ={1,...,5}, defined by the following stochastic matrices:

1 0000 00100
01 00O 00100
Wi:=1001200 Wes:=10 01 0 0 (5.57)
00100 00010
00100 0 00O01
It was show in [Ahlswede(2015)] that for this example, we have
CW,e<1/2) < H_liI%C(Ws) =CW,e>=1/2) =log3. (5.58)

5.4. Banach-Mazur computability of e-capacity

As explained in the previous section, in general the strong converse for compound channels
under the average error criterion does not hold, i.e. there exist channel W, and error
e« € (0,1) with

C Wy, €5) > C(Ws).

This is also true about Cy; (W, €). This can be contrasted with the complete characteri-
zation that exists for C™* (W, €) and C3*(W, €) given by Theorems 139 and 146. Trying
to address this problem, Ahlswede raised the following question [Ahlswede(2015), Secion
3):

Ahlswede’s Question: Does a (simple) recursive formula exist for the e-capacity

C' (W, ¢) of the compound channel W?

From a practical point of view, this is an important question. It is relevant to compute
the e-capacity of compound channels, since practical systems will always be designed
such that they tolerate a certain fixed decoding error e. However, in what follows, we
will obtain a negative answer to Ahlswede’s question. As a consequence, there exists no
formula for the e-capacity C'(W,€) which is in contrast to the maximal error criterion
capacity C™*(W),e). The negative answer is provided to computability of Cyuu(W,-),
namely, the function is not computable in its error input. This is the subject of the

following theorem.

Theorem 165 The following statements hold.

o Given W e C(X,S;)) and é > 0, the capacity functions COWV,-) : (€,1) nR. - R

and Cay(W,-) : (6,1) nR. — R, are not in general Banach-Mazur computable.
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Proof 166 We first prove the statement for Cay, for all |X| = 2,]|Y| = 2 and |S| = 2.
Consider the compound channel WW given by Example 163, given by (5.54). First consider
the error e, = 1/2. As shown in the example, we have C(W,e,) = log(5/4). Also, for
k e N, consider €, := % — 2%, k> 2. As such we have

1 .
lex — €] = oL kll_r&\e* — ¢ = 0.

Given the calculation done for (5.54) , we have Vk € N,k = 2, C(W, €x) = log(5/4) — b,
for some constant b > 0. The remainder of the proof follows by contradiction. For this
purpose, assume C'(W, ) is Banach-Mazur computable. This implies that the computable
sequence {ex}ren < IF is mapped into a computable sequence {C (W, €x)}ren of real num-
bers.

Let A < N be an arbitrary recursively enumerable set such that A is not recursive, i.e.
A° is not recursively enumerable. This means (see Definition 107), we can construct a
total function g, i.e. domain(g) = N, such that g([N]) = A and g is recursive and there-
with a computable function. Furthermore, without loss of generality, we can require that
g: N — A is a one-to-one mapping from N to A.

To show that the e-capacity is not Banach-Mazur computable, we present the following con-
struction, originally conceived in [Pour-El and Richards(2017)]. For every (k,l) e N x N
we define the computable function ¢ : N x N — N as

ey |2 REE0 ) | 559)

r ke {g(0),...,9(2%%) and g(r) = k

Note that r above is unique. Since A is recursively enumerable, the function q is indeed
recursive and therewith computable.

Next we consider the double sequence {€q1)}kjenxn of errors, that is effectively com-
putable, given that q is a recursive function. The idea is, that for each k € N, {€q(r)}ien,
converges effectively to some € € 1.. Furthermore, the sequence {éx}ren is a sequence in
I.. Now we construct for every k € N, a computable function ¢, such that for all k € N,

1t holds .
l€aten) = &l < 5
for all 1 = ¢r(m). We particularly note that the function ¢(k,m) = ¢p(m) with ¢ :
N x N — N s a computable function in both arguments.
For k € A let ly be the smallest natural number such that k € {g(0),...,g(2*?)} is

satisfied. Now, for all | = ly we have q(k,l) = r and therewith also
|€q(k,l) — 67~| =0< ? (560)

On the other hand, for | < ly we have k ¢ {g(0),...,g(2"")} so that e;uy = €xa.
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Accordingly,

|€q(k‘7l) - Er’ = |€21+2 — 67‘|

= |egite — €4 + €4 — €

< |€21+2 — 6*| + |6* — 621+2| (561)
1 1

“p ity
2 1

since for | < ly we have g(r) = k and it must hold r > 2'*% and 272 > |.

Now we consider the case k € A°. Here we have q(k,l) = 2!*2 so that

1 1

ok — €l = 5oz < 51 (5.63)
We consider the sequence {€éj}ren with
€x if ke A°
€ = ! (5.64)

& ifkeAandg(r)=k.

From (5.60),(5.61) and (5.63), we therefore have for arbitrary k € N and arbitrary | € N,

A 1
yeq(kvl) - Ek‘ < 57

i.e. we have for sequence {eq(m)}leN c L., computable convergence to €, for every k € N.
With this we have ¢p(m) = m, since for all | = ¢(m), we obtain
. 1 1

l€aen) — &l < 57 < 5 (5.65)
1.e. we have effective convergence and the function ¢y, is further, independent of k. This
immediately implies that €, € I.. Furthermore, we observe that the sequence {€y}ren 1S
computable as well and that the effective convergence speed can be bounded universally,
i.e. independent of k.
Accordingly,® : N — {0, 1}, with &(k) = $[COWV, &) —log(5/4) + b], k € N, is a recursive
function. This comes from the fact that multiplication and addition of a recursive function,

namely here by assumption Cay(W,-), is recursive. For arbitrary k € N, we have

Pk)=1 «— ke A (5.66)
P(k) =0 «— ke A (5.67)

This means, that the characteristic function of the set A°, and hence that of A are recur-

sive, which is a contradiction, as we started with the assumption that A was recursively
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enumerable and not recursive. This proves the desired result for |X| = |Y| = 2. The proof
immediately extends to general case |X|,|Y| = 2 by zero adding to the channel.

For function C(-, V), we follow the same strategy, only using Example 164 instead.

5.5. Computable upper and lower bound for e-capacity

From a practical point of view, it is of course interesting and relevant to obtain com-
putable lower bounds (e.g. based on improved coding schemes) and computable upper
bounds on the e-capacity.

Since (2, Dyy) is a compact Hausdorff space [Rudin(1987)], we can apply our previous
findings in Section 5.2.4 to the compound channel. In what follows, we consider com-
putability of upper and lower bounds on the capacity function, for a fixed compound
channel input and as a function of ¢ We will see that for the e-capacity of the compound
channel, there is either no computable achievability or no computable converse.

Here, the functions {Fy} can be interpreted as lower bounds for achievable rates and
the e-capacity respectively. Of course, such bounds should be effectively computable so
that they can be evaluated on a digital computer. These bounds should improve with
increasing N € N, ie., FN(W,¢€) < Fnyi(W,e), W,e) € 0., and further should be
asymptotically tight, i.e., for N — oo the sequence {Fy}yen should converge point-wise
to C(W,e).

Accordingly, the functions {Gy} can be interpreted as upper bounds on the achievable
rates and the e-capacity, respectively. Similarly, one would like to have these bounds to
be effectively computable and further C(W,¢) < Gni(W,€) < Gn(W,€), W, €) € 2.,
i.e., the bounds should improve with increasing N € N.

Let € € (0,1) be an arbitrary computable real number and we will study the behavior of
C(W,e) for e € I.(€) = [€,1]. We set

We(e) = W,e) : WeCC(X,S;Y),ec(é)}.

Clearly if the desirable bounds cannot be computable as a function of €, they cannot be

computable as a function of (¢, W).

Theorem 167 Let ¢ € (0,1/2) be a computable number. There ezists a computable
compound channel W € CC.(X,S;)), such that for all sequences {Gy}nen, {FN}nen Of

Banach-Mazur computable functions with
e Gy:[6,1] >R, Fy:[¢,1] >R, NeN and
o Fiy <CW,e) <Gpl(e), ee|é 1], NeN,

we have

inf (Gn(1/2) — Fn(1/2)) > 0.

NeN
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Proof 168 Consider W from Example 164. Let {G N} nen, { Fn}nen be arbitrary BM com-

putable sequences as described in the statement. We have for e > 1/2
Fy(e) < C(W,e) = C(W,1/2) = log 3. (5.68)
Since Fy is BM computable on [é,1]nR., we have for all N € N, for sequence (ex){_,, € :=
1/2 — (1/2%):
Fn(1/2) = l}l_r)glo Fn(eg) < kh_)rglo CW,e) =log3 —b,b> 0. (5.69)
We also have for all N € N
Gn(1/2) = C(W,1/2) = log 3. (5.70)
From (5.69) and (5.70) we conclude YN € N,
Gn(1/2) — Fy(1/2) = b > 0. (5.71)

Remark 169 In the proof of Theorem 167, we can use 163 to prove the same statement
about Cap (-, V).

Theorem 170 Let |X| = 2,|)Y| = 2 and |S| = 2. Let ¢ € (0,1/2) be a computable
number. There exists a computable compound channel W € CC.(X,S;)), such that for

all sequences {Gn}nen, {Fn}nen of Banach-Mazur computable functions with
e Gy:[6,1] >R, Fy:[6,1] >R, NeN and
b FN < CAlt<W7 E) < GN(€)7 €c [é7 1]7 N e N7

we have

inf 1/2) — Fn(1/2)) > 0.

inf (Gn(1/2) = Fy(1/2)) > 0
As a consequence, we cannot have a capacity theorem, where the computable achievability
bound could be equal to that of the converse. This in turn makes the entropic charac-
terization of the capacity function impossible. However, Theorem 167, does not rule out

the possibility, that at least one of the bounds (either achievability or converse) would

converge to the e-capacity of the compound channel.

5.6. Decision problem

Algorithmic computability of the e-capacity, as considered so far in this work, is a strong
condition that may be more that what is required to be satisfied in many applications.

Relaxing this condition, we might only want to know if it is possible to algorithmically
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decide, if the e-capacity of the channel is below or above a certain threshold A > 0. More

precisely, we ask

Question 1: Is there an algorithm (or Turing machine) 7'M, that for all e € (0,1) "R,
takes the compound channel W and the threshold requirement A > 0 as inputs and outputs
yes, if the channel satisfies the threshold requirement, i.e. whenever C(W,¢€) > A, and
outputs no, if the channel does not satisfy the threshold requirement, i.e. whenever
CW,e) < \?

Similarly, we can ask the question, about the € input:

Question 1’: Is there an algorithm (or Turing machine) TM, that for all W €
CC(X,S;)), takes 0 < € < 1 and the threshold requirement A > 0 as inputs and out-
puts yes, if the channel satisfies the threshold requirement, i.e. whenever C(W,¢) > A,
and outputs no, if the channel does not satisfy the threshold requirement, i.e. whenever
CW,e) < \?

This is a decision problem where we look for a Turing machine that decides whether or
not a compound channel, or an average error upper-bound, satisfy a certain requirement.
As such the question of decidability has important implications for resource-allocation.
1 Here, the Turing machine needs to stop for every channel-error pair, outputting the
correct answer. However, such a Turing machine may not always exist and the question
above may then be undecidable. In this case, one may be inclined to modify the question
by weakening the assumptions. We only ask the weaker question for the channel input

here, noticing that as before, similar question can be asked about the error input.

Question 2a: Is there an algorithm (or Turing machine) T'M that for W € CC(X, S; ),
takes error input 0 < € < 1 and the threshold requirement A > 0 as inputs, and stops if
CW,e) > \?

While Question 1 (equivalently Question 1) asks whether or not the problem is decid-
able, the modified Question 2a asks whether or not the problem is semi-decidable. This
means the Turing machine is only required to stop and to provide the correct answer
whenever the capacity does satisfy the requirement, i.e. whenever C'(W,e) > A. In the
other case, the Turing machine does not stop at all. Obviously, this is not the only way
to pose the semi-decidability. One can also modify the initial question in the opposite
way by requiring the Turing machine to stop only whenever the channel (or equivalently

the error input) does not satisfy the requirement C'(W, €) < A. Accordingly, in the other

'Note that in Question 1 and Question 1’, all pairs (W, €) with C(W,€) = X are excluded on purpose,
as input to the Turing machine T M. The problem of deciding whether or not an expression is equal
to a given real number is undecidable in general [Pour-El and Richards(2017)].
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case, the Turing machine does not stop.

Question 2b: Is there an algorithm (or Turing machine) TM that for W € CC(X, S;)),
takes error input 0 < € < 1 and the threshold requirement A > 0 as inputs and stops if

the channel does not support the requirement C(W,€) < A7
Remark 171 Note that if both Questions 2a and 2b have a positive answer, i.e. both

problems are semi-decidable, it immediately implies that the wnitial problem is decidable

and Question 1(a,b) has a positive answer as well.

Again, in much the same way that Question 1’ related to Question 1, we might ask
Questions 2a’ and 2b’, that ask the same as in Questions 2a and 2b about the channel
input. We answer the question of semi-decidability, when asked about the error input,
negatively.

Theorem 172 There ezists a compound channel W € CC.(X,S;Y) and X € R, such that
EN):={e:CW,€) > A} and E'(N) :={e: Can(W, €) > A} are not semi-decidable.

Proof 173 We will prove the above theorem for infinitely many A € R.. We prove the
statement for C(W,€) using the compound channel from Ezample 164. We remark that

using the same construction, given Example 163, the same statement can be shown for

Canu(W,€). Let A € R, be such that
COW,e < 1/2) < X < C(W,1/2) = log(3). (5.72)

Assume that E(N) is semi-decidable. Fore € [1/2,1), we construct a Turing machine T M,

that runs the following Turing machines in parallel.

1. TMy, that stops exactly when € < 1/2. This machine exists and runs the following
algorithm. Since X\ is a computable real, there exists a computable sequence of ratio-
nal numbers {r(n)}nen such that |\ —r(n)| <27 for all n € N. Furthermore, there

exist recursive functions a,b: N — N with b(n) # 0 for alln € N and

r(n) = , neN. (5.73)

We now specify an algorithm that stops at € < 1/2. It holds that A — C(W, e < %) €

R., as both arguments of the subtraction are computable reals. We set

A(n) = aln) _ CW,e).

The algorithm run by T M, computes A(1). If A(1) > 1/2, then it stops. Otherwise
the algorithm computes A(2). If A(2) > 55, it stops. Assuming the algorithm has

225

not stopped in | steps, it computes A(l+1). If A(l+1) > 21%, then it stops. With this
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description, the following holds. The algorithm stops if and only if A\— C(W,€) > 0
because:

= if algorithm stops, we have found ng such that

1 a(ng)
3 < Alno) = J8 = O )
= —A+>\+Z(<Tn°)>—0(w,e)
<A+ |ZEZ§§ A= CW,e)
“A—CW.e) + QL

where in the last line, we have inserted |\ — ‘;((Zg))| < 2= Therefore \—C (W, €) > 0.

—:if A= C(W,€) > 0, then there is an ny such that

A—C(W,e) %
Therefore,
2 a(ng)  a(no)
g <A CW.e) = by~ () A—=C(W,e)
a(ng) _ a(no) _ ¢
< Bng) T gy OOV
<Gl cwg +

Therefore 2™ — C(W, ¢) > - which stops the algorithm.

b(no) 2m0

2. TM,, that stops when € = 1/2. This Turing machine exists because by assumption,
E(N) is semi-decidable. This means there exists a Turning machine that stops, when
C(W,€) > X and hence by our choice of X and W, € = 1/2.

We define for e e [1/2,1)

es if TM; stops
T, = |V T stop (5.74)
no  if T My stops .

Therefore we have

TM,(c) = yes ife<1/2 (5.75)
" no ife=1/2. .
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Taking the recursively enumerable set A and €, from Theorem 165, we obtain

fke A
T (e = 4V ke (5.76)
no if ke A°,

which is only the case if A is recursive, that runs contrary to our assumption. Therefore
T M, cannot exist. This can be extended to |X| = 5,|Y| = 5,|S| = 2.

is not semi-decidable.

5.7. Common randomness and entanglement assisted
e-capacities

In this section, we prove some important implications of our results for assisted scenarios.
Here, we consider the e-capacity of the channel, when the communicating parties have at
their disposals pre-shared common randomness and entanglement. In both scenarios, we

make use of the equivalence between a maximal and average error bound requirement.

Definition 174 An (n, M,) randomness assisted code for compound channel W € CC(X,S;)),

is a probability measure p, on (o, X 2,,0,), where
e 0,:={E:[M,] > P},
o 2,:={¢: V"> P([M,])},

e and the sigma-algebra o, is chosen such that the function

Cmsn(E,0) = 1= Y Wi(y"|a") E(z"[m)¢(mly") (5.77)

y/rL?xn
is measurable with respect to w, for all s€ S and m € [M,].?

o We further require that the sigma-algebra contains all the singleton sets. The deter-
manistic codes defined in Section 5.3 are then a specification of p, to a probability

distribution that is equal to unity at a singleton element and zero otherwise.

Let each singleton member be notified by (E, ¢). The following is our average performance

(error) function for the common randomness assisted task

_ 1
6cr,n<W) = r};lea:S'XJ\ E %:/[ ] em,s,n(E7 (b)d:u(Ea ¢) (578)
me n

We also consider the maximal error function defined for each s € S and m € [M,,] by

ZNotice that € s.n(F,¢) = em.sn where the right hand side is defined by (5.17) with E(z"|m) = 1 iff
2" =z and ¢(m|y™) > 0 iff y”™ € Dyy,.
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eeonm = fem,s,nuﬂ, 6)du(E, 9). (5.79)

We define the following numbers for n € N and 0 < € < 1, corresponding to the common

randomness assisted (CR) e-capacity under average and maximal error criteria.
1. NOW, e, cr,n) := max{N € N: 3(n, N) CR code for W with e..,(W) < €},

2. N™@*>(W e n):=max{N € N:3(n,N) CR code for W with

maXses MaXme[N] €m,s,crn < 6}-

There could be two notions of capacity corresponding to these numbers that are defined

in the following.

Definition 175 Let W e CC(X,S;Y) and 0 < e < 1. Then

o C(W,¢,cr) :=limsup,,_,, +log N(OW, ¢, cr,n) and C™**(W, €, cr) := limsup,,_,., =
log N™(W €, cr,n)
are the optimistic CR e-capacities of W under average and mazimal error criteria

respectively.

e Finally, C(W, €, cr) and C™ (W, e, cr) are the CR e-capacities of W under average

and mazimal error criteria, if

1 1
lim sup —log N(W, €, cr,n) = liminf —log N(W, €, cr,n) = C(W, €, cr)
n

n—ao0 n—oo 7N

and

1 1
limsup — log N (W, €, cr,n) = liminf — log N™™ (W, €, cr,n) = C™**(W, €, cr)

n—ow N n—o 1
respectively.

The definitions for zero-error CR capacity Co(W, cr) are given by setting ¢ = 0 in the
above given definitions.

Definition 176 An entanglement-assisted (n, M)-Code for compound channel W € CC(X, S;))
is a triple (€, D,¥) with € = (EY")xexr mem) being a family of M POVMs on Hilbert space

ICa with outcomes in X", (DY) merayeyn being a family of |Y"| POVMs on Hilbert space

K with outcomes in [M] and ¥ being a quantum state on Hilbert space K4 ® Kp.

Remark 177 Since we do not assume any restrictions on the dimension of K4y ® Kpg

other than being finite, we can without loss of generality assume ¥ to be a pure state.
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5.7. Common randomness and entanglement assisted e-capacities

Otherwise, the communicating parties may resort to a purification of ¥ on a Hilbert space

of larger dimension.

Similar to the previously discussed communication scenarios, we can assign a probability
to the occurrence of an erroneous decoding. Given a compound channel W € CC(X, S;))
with corresponding (n, M)-Code (£,D,¥), define

7 = max — Z > e (B @Dy, W) Wa(ylx) (5.80)

se§ M M] xeX™ yey™
e : = max max Z Z tr (B @ DY) W) W(y|x) (5.81)
se5 me[M xeX” yeyn

We define the following numbers for n € N and 0 < ¢ < 1, one corresponding to the

average-error criterion and one corresponding to the maximum-error criterion:

NW,e,n, EA) : = max{M € N : 3(n, M)-Code for W satisfying e < e},  (5.82)
N"*(W, e,n, EA) : = max{M € N : 3(n, M)-Code for W satisfying e < e¢}.  (5.83)

In Definition 138, we have introduced the optimistic and the pessimistic e-capacity for
the standard non-assisted compound channel. The definition of optimistic and pessimistic
e-capacities for the entanglement-assisted communication scheme follows the same line of

reasoning.

Definition 178 Let W € CC(X,S,)) be a compound channel and 0 < € < 1 a real

number. Then,

o C(W,¢, EA) :=limsup,_,., = log N(W, ¢, EA) and
Cmax(W e FA) := limsupnﬁoo%logNmaX(W,e,EA) are called the optimistic e-

capacity of W with respect to the average- and the mazimum-error criterion, re-

spectively;

e C(W,e, EA) :=liminf, %log NW,e, EA) and
Cm(W, e, EA) := liminf,_o +log N™*(W, ¢, EA) are called the pessimistic e-

capacity of W with respect to the average- and the mazimum-error criterion, re-

spectively;

e if the corresponding limit exists, C(W,e, EFA) = limn_,ooilogN(W,e, EA) and
C™> (W, e, EA) =
limnﬂoo%log N™*(W e, EA) are called the e-capacity of W with respect to the

average- and the maximum-error criterion, respectively.

Remark 179 The capacities C(W, e, EA) and
C™*(W., e, EA) exist if and only if COW,e, EA) = C(W,e, EA), C™™ (W, ¢, EA) =
Cmax(W. e, EA), respectively, holds true.
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Setting € to equal zero, we obtain the entanglement-assisted zero-error compound capac-
ity
CoOW,EA) := COW,0,EA) = C™*(W,0,EA). This capacity exists in the sense of

Remark 179, following from Fekete’s lemma.

Based on these definitions, we prove the following results.

Lemma 180 For W e CC(X,S;Y) it holds

CW.,e,cr) =C(W,e),e€[0,1). (5.84)

Proof 181 The inequality C(W, €, cr) = C(W,€) is operationally clear for all € € [0,1).
This is because the communicating parties can choose to ignore the common randomness
resource available to them. To see the other inequality, we notice that for all € € [0, 1), if
there exists a randomness assisted code ji,,, such that (5.78) is satisfied, then there must

exist one singleton (E, ¢) that fulfills the same upper bound.

Theorem 182 For W e CC(X,S;)) it holds

C™ (W, e, cr) = C(W,€),e€ [0,1). (5.85)

Proof 183 Let (E,¢) be an (n, M)-code for W with the average error upper bounded as

e,(W) = max% > emsnl(E ¢) <e. (5.86)

We define the CR code fi on (& x 2,5) with & := {E™ :m e [M]} ,2 := {¢™) :m’ e
[M]}, defined by

e 9] = 6(il-) and

o W(BD,6V) =52,

for all i,j € [M] and 6, ; the Kronecker delta function. Calculating the error due to this
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5.7. Common randomness and entanglement assisted e-capacities

code, for each m € [M] we obtain

maxe€m s,cr,n = mMax J em,s,n(E(i)a ¢(J))dﬂl,j

seS seS
_ O s a(ED 40
IgleE}SXZZ]: em,s,n(E ’ ¢ )M(E ) ¢ )
1 Iglelgl;xnzynw (y"z™) B (z" |m) " (mly™) a(E, ¢)
1 . .
_1_ s n/ nj|.n @) (| A (2],
1 - mip Z >, Wiy |2 ED 2" 1) (jly")
ie[M] x™y"
1 —min E%:ﬂxnz;n W (y"|z") E(z"D)o(ily") = en(W) < e (5.87)

The first line is the definition of the error function given by (5.79), the second line follows
because of the discrete nature of the probability space, the second last line comes from
the definition of i and the last line comes from the defining property of our code with
respect to (E,¢). Therefore, we have concluded that for every code for the compound
channel that satisfies the upper bound on the average error criterion, we find a CR code
that satisfies the upper bound on maximal error criterion. This shows the statement
CW,e) < C™W,e,cr). Given that the inequality C™ (W, e, cr) < COW, e, cr) is
operationally clear, the statement follows from Lemma 180.

The following statement, results from Theorem 182 and our results on the computability
of the e-capacity in Section 5.4.

Corollary 184 The capacity function C™(-,-,cr) : CC(X,S;Y) x (0,1) — R is not in
general Turing computable.

Remark 185 We note that for the compound channel W and € € (0,1), the capacity
function C™*(W,e) = C(W) (see [Ahlswede(2015)]). Theorem 182 and Ezamples 163

and 164, show that pr-shared randomness improves the e-capacity of the compound channel

under maximal error criterion.

We continue this section by deriving analogous results for entanglement assisted e-capacity
of the channel. The next lemma states that average and maximal error criteria yield the

same EA assisted e capacities.

Lemma 186 Let W e CC(X,S;)Y) and € € (0,1). It holds
O (W, e, EA) = C(W, e, EA). (5.88)

Proof 187 See [H. Boche(2017)] Lemma 4. for a proof.

Remark 188 We note that for the compound channel W and € € (0, 1), the capacity func-
tion C™*>(W, €) = C(W) (see [Ahlswede(2015)]). Given Lemma 186 and Examples 16/

or 163, entanglement can indeed improve the e-capacity under mazximal error criterion.
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6.1. Chapter 2: Randomness cost of symmetric twirling

In this chapter, we derived upper and lower bounds of randomness consumption of uni-
versal symmetrization of states by applying averaged permutations. Our bounds lead to
positive and negative conclusions when applied to information-theoretic modelling. First,
the encouraging implication of our upper bound on the support of weighted designs shows,
that there are always protocols which universally symmetrize quantum states on a given
n-partite quantum system, consuming reasonable common randomness resource. Specifi-
cally, the number of coordinated random choices of permutations used for symmetrizing
arbitrary quantum states on that system can be always restricted to being exponentially
growing (with number of systems). The lower bounds on the common randomness needed
for permutation-based symmetrization of arbitrary quantum states proven in this chapter,
enforce a rather disillusioning conclusion. To universally symmetrize quantum states on
the n-fold tensor extension of a given system with Hilbert space dimension d, one asymp-
totically needs at least a common randomness rate of logd. Since this number marks the
trivial upper bound for common randomness rates generated from repetitions of an ideal
system of that dimensionality, the common randomness consumption seems exorbitant in
some situations.

Since universal symmetrization of communication attacks is a vital ingredient of a broad
class of security proofs for quantum key distribution protocols, our findings strongly moti-
vate further research for finding more efficient protocols for symmetrizing quantum states

and channels.

6.2. Chapter 3: Simultaneous transmission of classical

and quantum information under channel uncertainty

We have developed universal codes for simultaneous transmission of classical information
and entanglement under possible jamming attacks by a third malignant party. In the
compound channel model, the quantum part of information transmission was done under
two important scenarios of entanglement transmission and entanglement generation. The
present random codes differ from those used for the perfectly known channel in [Deve-

tak(2005)]. We therefore did not need to approximate our input random codes by an
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i.i.d state (one with tensor product structure). Also, we evaded BSST type lemmas used
in [Bjelakovié¢ et al.(2009)Bjelakovié¢, Boche, and Nétzel] by using basic concavity proper-
ties of von Neumann entropy. Future work will hopefully include another important sce-
nario under which quantum information is transmitted, namely subspace transmission.
An equivalence statement between the strong subspace transmission and entanglement
transmission has been proven in [Ahlswede et al.(2012)Ahlswede, Bjelakovié, Boche, and
Notzel]. Recently in [Boche et al.(2019d)Boche, Janflen, and Saeedinaeeni], an instance
of the present classically enhanced codes was used for universal coding of multiple access
quantum channels, where one of the senders shares classical messages with the receiver
while the other sends quantum information.

Theorem 32 does not make a positive statement about the structure of IlrchT in the
case where Ay cpr = {(0,0)}. In [Boche and Nétzel(2014)], the authors have constructed
an example of a channel where the intersection of .717«,0 gr with the z-axis is positive and
Agcer = {(0,0)}. Future work will consider the structure of the non-zero region in this
case along both axes.

The capacity region characterized in Theorem 25 is of a multi-letter nature (requiring a
limit over many uses of the channel) but might reduce to a single-letter formula for specific
cases of compound channels, which is in itself an interesting question to be considered in
future work. Ensuing this question, one might suggest formulas for these capacity regions
that offer a more useful characterization. This means that the alternative characterization
could entail larger one-shot regions compared to our C (Ns,p,¥). An instance of such a
characterization in the case of perfectly known quantum channels exists in [Hsieh and
Wilde(2010a)] Theorem 5. Therein however, the authors note that their one-shot trape-
zoids is the same as rectangular regions offered in [Devetak and Shor(2005)], when one
considers the union over all the one-shot, one-state regions. The converse statement for
compound channels implies that other such characterizations, must also reduce to ours.
Reduction to single-letter formulas is nevertheless an important criterion when comparing
different characterizations.

Today, in classical systems, secure communication is obtained by applying cryptographic
methods upon available reliable- communication schemes. Security of the resulting pro-
tocol, that can hence be separated into two protocols (one responsible for reliability and
the other for security), relies on assumptions such as non-feasibility of certain tasks or the
limited computational capabilities of illegal receivers. For the next generation of classi-
cal communication systems, it is expected that different applications (e.g. secure message
transmission, broadcasting of common messages and message transmission), are all imple-

)

mented by physical coding or ” physical layer service integration ” schemes (see [Schaefer

and Boche(2014c)]). For quantum systems that offer a larger variety of services, [Devetak
and Shor(2005), Hsieh and Wilde(2010a), Hsieh and Wilde(2010b)] were the first papers
in this line of research. The present chapter develops solutions for different models of

channel uncertainty that are unavoidable when implementing such integrated services in
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real-world communication. Following up on the results of [Boche et al.(2019d)Boche,
JanBen, and Saeedinaeeni|, an interesting direction for future work is towards finding the
solution to the arbitrarily varying model for multiple access and broadcast channels as a

key step in development of quantum networks.

6.3. Chapter 4: Universal superposition codes: capacity

regions for quantum broadcast channel

To construct private codes for the broadcast channel, we first generated suitable ran-
dom message transmission codes for the broadcast channel without imposing privacy
constraints (Lemma 90). This was done by establishing suitable bounds for random uni-
versal "superposition codes”. With subsequent application of a covering principle, these
codes were transformed to fulfill the security criterion in Lemma 89.

As a possible alternative technique to generate such codes, we mention the rather re-
cent "position decoding” and ”convex split” techniques [Anshu et al.(2017)Anshu, Dev-
abathini, and Jain, Anshu et al.(2019a)Anshu, Jain, and Warsi]. This approach proved to
be powerful yet elegant and was successfully applied to determine ”one-shot capacities”
or "second order rates” in several scenarios. However, these techniques need still to be
further developed, to also be suitable when dealing with channel uncertainties as in the
scenarios considered in the present chapter. A partial result in that directions is [Anshu
et al.(2019b)Anshu, Jain, and Warsi|, where near-optimal universal codes for entangle-
ment assisted message transmission over compound quantum channels with finitely many
channel states are constructed. Recently, convex split and position-decoding have been
applied in [Wilde et al.(2019)Wilde, Khatri, Kaur, and Guhal] to determine the second-
order capacity of a cqq compound wiretap channel under the restriction, that the channel
state does not vary for the legitimate receiver. For establishing this result, only the ”con-
vex split” part has to be universal, while ”position- decoding” is applied on a channel
with fixed state. As a future research goal, it is desirable to close the gap and establish a
fully universal version of these protocol steps.

As mentioned in the introduction, a strong converse cannot be established for the mes-
sage transmission capacity of the compound cq channel under average error criterion, even
when considering |S| = 2. When considering a fixed non-vanishing upper bound on the
average of decoding error, calculation of capacity for the compound channel is further
problematic as there are examples where the optimistic definition of the e-capacity yields
a strictly larger number than the one yielded by its pessimistic definition (see [Boche
et al.(2018a)Boche, Schaefer, and Poor| Remark 13). This implies that in general there is
no second rate capacity theorem possible. The implications of these negative statements
are highly interesting in practice, as channel coding in all existing communication systems

(such as wireless cellular and WiMax systems), is done given a fixed error probability. It is
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therefore important to design channel codes corresponding to e-capacity of the compound
channel, that is in general larger than its message transmission capacity.

When considering the one-shot approach ( [Anshu et al.(2017)Anshu, Devabathini, and
Jain, Anshu et al.(2019a)Anshu, Jain, and Warsi, Salek et al.(2020)Salek, Anshu, Hsieh,
Jain, and Fonollosa]) as an alternative to proving capacity results derived here, one must
take certain consequences into account. In this approach, one tries to obtain lower and
upper-bounds for the e-capacity, and then consider the limit ¢ — 0 of these bounds. For
the compound channel however, the capacity is in general strictly smaller than the e-
capacity and hence, it is not clear how these bounds will help, as a lower bound on the
e-capacity is not a priori a lower bound on the capacity of the channel. Furthermore,
there are some additional highly interesting properties of the e-capacity and the capacity,

even when one considers finite compound channels (|S| < o0):

e The capacity of the finite compound channel is, as a function of the computable
compound channel, a Turing computable function. This is no longer true about

infinite compound channels (see [Boche et al.(2020a)Boche, Schaefer, and Poor]).

e The e-capacity of the finite compound channel, as a function of €, is not Banach-
Mazur computable, which in turn means that it is not Turing computable either, as

the latter condition is a stronger one on computability than former.

These results have of course an impact on the effectiveness of the one-shot approach to
achieving capacity results in classical and quantum information theories [Boche et al.(2020a)Boche,

Schaefer, and Poor].

A direction for future work given the results derived here, is considering a three di-
mensional capacity region, establishing a trade-off between the ability of the quantum
channel in transmitting common, public and confidential messages under assumptions of
the compound channel model. One must pay attention to the operational difference be-
tween public messages (belonging to the set [M;,,]) and those used for equivocation by
Alice (belonging to the set [L,]).

Another direction for future work given the results derived here, is considering the arbi-
trarily varying quantum channel (AVQC) model for the broadcast channel with confiden-
tial messages. Given that in all instances, our error and security requirements, achieve
exponential rates of decay, it is perceivable that using the well known robustification
and elimination techniques developed in [Ahlswede(1978)], capacity results including di-

chotomy statements can be made for the AVQC model.

6.4. Chapter 5: Computability aspects

Using channel examples where the e-capacity of the channel exhibits discontinuity as a

function of the error input, we were able to show that the function is not in general com-
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putable. Further, we showed that in general, there could not be matching computable
lower and upper-bound sequences converging to the capacity function, that in turn refutes
the existence of a single letter formula and effectiveness of second order rate theorems that
intend to achieve the asymptotically optimal rates from those available in the one-shot

regime (see [Boche et al.(2020b)Boche, Janfien, and Saeedinaeeni] for more discussions).

The statements proven here have concerned the e-capacity of the channel as a function of
the error input. An interesting direction for future work would be to consider this number
as a function of the channel input. Our statement of achievability given by Lemma 143,
suggests that zero-error codes might play a role in the traditional definition of e-capacity
at the discontinuity point of € = % This could be promising as there are examples of
compound channels where C(W) < ming_; o Co(W) < ming_; 5 Co(W;). Such an example
can be readily perceived by appropriate perturbation of the channel given by Example
164. To see this consider the following channel. For ¢ € [0, 1), consider the compound
channel generated by

Wi i= (Wi, Was) € CH(X,{1,2};9),X =Y = {1,...,5},

defined by the following stochastic matrices:

10 0 0 b 01-0 00

01 0 0 06 1-6 00
Wi:=100 0 0 Weas:=[ 00 1 00 (6.1)

00 1-6 460 00 0 120

00 1-6 0 9 00 0 01

It is clear that Co(W;) = Cy(W2). We show that for this example, we have Cy(Wjs) > 0 for
5 €]0,1), and hence the hypothesis of Lemma 143 is satisfied. For this purpose, consider
the (2, 2)-code (blocklength 2 and 2 messages), with input strings my := (3,3), my := (1, 5)
and decoder sets D := {(3, 3)} and D¢ respectively. Calculation of error for the W ;5 yields:

emsm1 = >, WE(I(3,3)) = 0, (6.2)
yeD¢e

Emasm1 = Y, WE(yl(1,5)) = 0. (6.3)
yeD

Similarly for the second channel we obtain e, s—o = €,,s—2 = 0 and hence we have
Co(Ws) > 0.
We observe for § € (0,1).

Co(Was) = C(Wy,0) = log 3. (6.4)
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It is also clear that
C(Was) > C(Wy) =log3, (s = 1,2). (6.5)

Also, given Theorem 211, we have
[C(Wo) — C(Ws)| < f(9), (6.6)

with some f(0) such that f(§) — 0 as 6 — 0. Let mins,_;5C(Ws0) — COWo) = A
From [Ahlswede(2015)], we know that A > 0. Choose d such that f(5) < A. From (6.6)
we have

C(Ws) < log 3. (6.7)

With this choice of 4 > 0, we have from (6.4) and (6.5),

C(Wy) < log3 = min Co(W) < min C(1W,.5). (6.8)
Our capacity results for the case with informed decoder in Section 5.3.3 can be used to
derive similar results for the e-capacity of the Broadcast Channel. In this channel model,
a sender transmit messages that will be received by two receivers, each in control of the
output of a different channel. A specific scenario is when the transmitter wishes to send
public messages (decoded by both receivers) and two individual messages. The rates
corresponding to the public message transmission are then exactly those achieved in the
compound model with two channel states. The negative computability analysis for this

specific model would then extend to the general case.
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In this appendix we give the basic definitions regarding types and frequency typical sets.
For a broad as well as concise introduction to the concept of types the reader is referred
to [Csiszér and Korner(2011b)], where the bounds stated in this appendix can be found
without exception.

Let X be a finite set, p a probability distribution on X. We define the set of p-typical
words in X" by

T) :={x: Yae X : IN(a|x) = p(a)}.

If this set in nonempty, we call p a type of sequences in X" (or n-type for short). The
concept of types is a powerful tool in classical as well as quantum Shannon theory. In
this chapter, use some cardinality bounds on the entities introduced which are stated in
the next two lemmas. If we denote, for n € N the set of n-types by T(n, X), the following

statement is true.

Lemma 189 (cf. [Csiszar and Ko6rner(2011b)]|, Lemma 2.2) For each n € N, it
holds

1T (n, X)| < (n+ 1)1,

Lemma 190 (cf. [Csiszdr and Ko6rner(2011b)], Lemma 2.3) For each n € N, and
each n-type X € T(n, X), it holds

(n+ )7 2nH) ) < 2nH O,

Lemma 191 For each n € N, there exists a type uy of sequences in X™, such that

log(n + 1)

H(py) = log |X| — |X]| "

(A1)

holds.

Proof 192 Let puy be a type of sequences in X™, which mazimizes the Shannon entropy,

i.e.

H(ps) = H(N)
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holds for each type X\. Then, by standard bounds for the frequency typical sets [Csiszdr
and Korner(20110)]

T < onH(N) < onH (k)

holds for each type . Since there are not more than (n+ 1)* different types of sequences
m X, the bound

X" < (n 4 1)%- 2 H i)

18 valid, which with some rearrangements proves the lemma.
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compound channels using nets

Definition 193 A 7-net in C(H,K) is a finite set {N;}_, with the property that for each
N € C(H,K) there is at least one i € {1,....,T} with || N = N; |l.< 7.

Existence of 7-nets in C(H, K) is guaranteed by the compactness of C(H, ). The next

lemma contains an upper bound on the minimal cardinality of T-nets.

Lemma 194 (see e.g. [Boche et al.(2018b)Boche, Deppe, Nétzel, and Winter] Lemma
7) For any 7 € (0,1], there is a T-net {N;}_, in C(H,K) with T < (%)Q(d'd/)2, where
d=dimH and d = dim K.

Given a net in C(H,K), any compound channel generated by J < C(H,K) can be ap-
proximated by one of its finite subsets. This is the subject of the following lemma.

Lemma 195 (see e.g Lemma 13 [Bjelakovié et al.(2009)Bjelakovié, Boche, and Notzel])
Given any compound channel generated by J < C(H,K), one can construct a finite set

J. with the following properties:
1L J<J,
2. | Ty | < (8)244) with d,d’ the dimensions of H,K respectively and
8. for all N € J,3IN" € J, such that || N — N ||.< 27.

The net approximation can also be performed for arbitrary sets of classical-quantum
channels.

Definition 196 For W < CQ(X,H) and 7 > 0, a T-net is a finite set W, := {W,}ics, <
CQ(X,H), with property that for every W € W, there exists and index i € [S,] such that

|| W — Wz ||C’Q< T. (Bl)

The existence of such 7-net does not readily guarantee that YW, < W. The following

lemma gives the existence of a good 7-net contained in the given channel set.

Lemma 197 (cf. [Bjelakovic¢ et al.(2013)Bjelakovié, Boche, Janflen, and Notzel] Lemma
6) Let W := {W;}ics € CQ(X,H) and 7 € (0,1/e). There exists a set W, 1= {W,}ics, <
W with such that
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im 2
1. ]Sy | < (£)H1 GO,

2. given any n € N, for every i € S, there exists i’ € S,, such that

| WE (x) - WE"(x) o< 207, (vx € A7),
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In this section we state some results for reader’s convenience.
Lemma 198 ( [Yard et al. (2005)Yard, Devetak, and Hayden]) Let ¥, p,o € S(K) and let
¥ be pure. Then
FW,p) > FW,0)~5 | p—o
Lemma 199 ( [Boche et al.(2018b)Boche, Deppe, Nétzel, and Winter]) Let L and D be

N x N matrices with non-negative entries which satisfy

and
Djl < Il’laX{Djj, D”}

forall j,le{l,....,N}. Then
N N
1
2 VD <22,V IuDy

Lemma 200 ( [Bjelakovié et al.(2009)Bjelakovié¢, Boche, and Nétzel] Lemma 3) Let p €
S(H) for some Hilbert space H. Let, for some other Hilbert space K, A€ C(H,K), D €
C(K,H), g€ LK) be an orthogonal projection. If for some e > 0, F.(p,DoQoA) = 1—¢
holds, then we have

F.p,DoA)>1-—3e.

Lemma 201 (see e.g. [Bjelakovi¢ et al.(2009)Bjelakovié, Boche, and Nétzel] Lemma 5)
There is a real number ¢ > 0 such that for every Hilbert space H, there exist functions
R :N—-RY ¢:(0,1/2) - R* with lim_ A'(I) = 0 and lims_o ¢(0) = 0, such that for
peSH), §de (0,1/2), l € N, there is an orthogonal projection qs; called the frequency
typical projection satisfying

1. tr(,0®lQ5,z) >1— 2—1(552_h/(l))

2. qsp® sy < 2710 g,

Lemma 202 (see e.g. [Bjelakovi¢ et al.(2009)Bjelakovié, Boche, and Nétzel] Lemma 6)
Let H and K be finite dimensional Hilbert spaces. There are functions v : (0,1/2) — R*
and h' : N — R satisfying lims_ov(0) = 0 and I'(1) \, 0, such that for each N' € C(H,K),
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0 €(0,1/2), I € N and mazimally mized state mg on some G < H, there is an operation
N, € CHHE®L K, called the reduced operation with respect to N and wg, satisfying

1 tr(Nsy (7)) = 1 — 9= W) ith universal constant ¢ > 0.

2. Ns; has a Kraus representation with at most ns; < 95e(r§ NEYVHEO)+ D) Kraus

operators.

3. For every state p € S(H®) and every two channels M € CHHE, H®) and L €
CHK®L, HEY) | the inequality

F.(p,LoNs o M) < FE.(p,LoN® o M)
15 fulfilled.

Lemma 203 (Gentle measurement) (see e.g. [Wilde(2017)]) Let p € S(H) and 0 <
A < T with

tr(Ap) > 1—¢€
for some 0 < e < 1. Then for p = % we have

Il p—p" Ih<2ve

Lemma 204 ( [Boche et al.(2018b)Boche, Deppe, Nitzel, and Winter| proof of Theorem
3.2 equation (16) ) Let F < G < H with dim(F) = k be given. Also let any member
of the set {N1,...,Nisi} = CHH,K) have a Kraus representation with n; operators for
je{l,...,S} and set

Then there ezists a recovery operation R € C(KC,H) such that
F.(r7,RoN)=w— | D(p) |1, (C.1)

where w := tr(N'(7x)), p := krr and

S| R
1
D(p) == ), ] > Dijyin(p) ® leayen @ |f;) (fil -
gi=1 121 ir=1
In the above . .
D(ij)(rl) (p) = E(paj,iazrp - Etr(pa;,ial,rp)p)'
where {|f1), ..., | fisp} and {|e1), ..., |en s>} are arbitrary orthonormal bases for Cl®l and

C"8! and where {a;;};2, is the set of Kraus operators for Nj.
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Lemma 205 (see [Ahlswede(1978)]) If a function f : S' — [0, 1], satisfies

2 fE)d () =1 (C2)

steSt
with ¢ (") := [T'_, q(s:), for all g€ T(1,S) and some € [0, 1], then

zl' > flols) 2 1=+ )y vs' e st (C3)

O’EGZ

Lemma 206 (see [Ahlswede(1978)]) Let K € N and numbers ay,...,ax, by, ..., bg €
[0, 1] be given. Assume that

ai>1—e

|
VR

S
Il
—_

and

bl>1—€

=)=
19

~
I
—_

hold. Then
)
K
Lemma 207 Let {Ws: X — S(H)}ses be a set of cq channels and let p e P(X). Then
lim inf xo,(W;, p) = inf x(p, Ws).
a—1seS seS

Lemma 208 Letp,qe L(H), 0 <p,q < 1y and 7€ S(H). It holds

tr(rpgp) = tr(rq) — 2+4/tr(7(1 — p)).

Lemma 209 (cf. [Audenaert(2007)]) For any two states p and o on Hilbert space H,
let § =|| p—o |1 and dim(H) = d. Then

IS(p) — S(o)| < dlog(d — 1) + h(d) (C.5)

hold, with h(x) = —(1 — z)log(1 — x) — xzlogx, for x € (0,1] and h(0) = 0, the binary
entropy.

Lemma 210 [c¢f. [Shirokov(2017)], Corollary 2] Let p,o € S(Ha ® Hp ® H¢), with ||
p—o |li=9 and dim(Hg) = d. It holds

|I(A; B|C, p) — I(A; B|C,0)| <2 (5logd+ (1 +6)h(—1i5)) )

wit h, the binary entropy, as defined in the previous lemma.

We also state a continuity theorem for the compound capacity of the classical channel.
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C. Auxiliary results

Heuristically, this theorem states, that when two compound channels are close to each
other in terms of their distance defined by (5.16), then their compound capacities are also

close to each other.

Theorem 211 ( [A. Grigorescu and Poor(2015)]) Let p € (0,1) and W, W € CC(X, S;Y)
with DOW,W) < . It holds |C(W) — CONV)| < f(u,|Y]), with

f(py |V]) := 12ho () + 8pulog [V,

where ho(z) is the binary entropy of x.
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D. Universal classical-quantum

superposition coding

In this appendix, we establish a random coding construction of superposition codes for
classical-quantum channels which are a major ingredient for the achievability proofs in
Section 4.3. In particular a detailed proof of Lemma 84 is provided.

Over the years several code constructions for message transmission over compound cq
channels have been established (see [Bjelakovic and Boche(2007), Hayashi(2009), Datta
and Hsieh(2010), Mosonyi(2015)]). The arguments we invoke below for proving Lemma
84 rely heavily on the techniques Mosonyi’s work [Mosonyi(2015)]. Therein properties of
the quantum Renyi Divergences and the closely related ”sandwich Renyi divergences” are
used to derive universal random coding results for classical-quantum channels. Below we
further elaborate on that approach and extend it by suitable superposition codes.

To facilitate connecting the discussion below with the arguments in [Mosonyi(2015)] we
introduce some notation from there. For a probability distribution p € P(Y) and a cq

channel W : Y — S(H), we define quantum states

Wp) =Y p@W) - W),  Wp) = p@)lpyl@W(y),and  p:= > py) |y Yl

yeX yelX yeX

For each pair of non-zero positive semi-definite operators p,o and every a € (0,1) we
define

—a 1 a _l—a
Qulpllo) = tr(p*o™™*),  and  Da(pllo) := 7——logtr(p"0" ™)

from

(P, = inf D, D D.1
Xa(p, W) nf (W(p)|lp®0) (D.1)

derives. It is known, that the limit &« — 1 of the above quantity exists and equals the
Holevo quantity x(p, W). Translating to the notation in the statement of Lemma 8, we
notice, that x(p, W) = I(Y; B) holds.

Lemma 212 Let W be a set of cq channels each mapping Y to S(K), q a probability
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D. Universal classical-quantum superposition coding
distribution on X and r, a probability distribution on ) for each x € X. It holds

it 1By 230000 Xl V) = 2, o)X V)
TeEX TeX

The above statement slightly generalizes that of Lemma 3.13 in [Mosonyi(2015)] (regard-
ing the limit from below). The proof is by a similar argument. We include a proof for the

readers convenience.

Proof 213 Set f(a,V) =3 .+ q(x)-Xa(rs, V) for each a € (0,1) and cq channel V.. It
holds

aNeong‘lowl \}QW f(a7 V) ozNe(ig}owl {r/%l% f(Oé, V)
Y sup min f(a,V)
aeg(0,1) Vew
(¢)

= min sup f(a,V)
Vew ae(0,1)

@ min lim fla, V)
vew aNearrowl

= jnf 2, q(x) - x(V,72)
The equality in (a) holds by continuity of f(c,-) for each o € (0,1) (the closure might be
performed in any norm, for example the |-|cq), (b) is justified, because the argument of the
limit is monotonously increasing on (0,1). The min-mazx exchange in (c) is an application
of Lemma 2.3 from [Mosonyi(2015)], (d) by monotonicity of f in «, and in (e) the limit
aNearrowl is performed according to Lemma B.3 in [Mosonyi and Hiai(2011)].

The starting point for our proof of Lemma 84 is the generic random coding bound from

Hayashi and Nagaoka [Hayashi and Nagaoka(2003)] we state below.

Lemma 214 ( [Hayashi and Nagaoka(2003)], cf. [Mosonyi(2015)], Lemma 4.15)
Let V : Y — S(K) be a cq channel, M € N and p € P(Y). There exists a map
(Y1, ym) = (Ai(y), ., Au(y)), such that (Ap(y))mepn < L(K) is a POVM, and,
given YM .= (Y1,...,Yy) of independent random variables each with distribution p, for
each Ya € (0,1), the bound

EYM[% DT tr(W (Vi) An(YM)9)] < 8- M- Qa(W(p)|Ip @ W(q))

me[M]

holds.

Proof 215 (Proof of Lemma 84) Fizn e N and an n-word x € T7's which we assume
to be of type X (i.e. x € TY). We approzimate {Ws}ses by a finite 7,-net {Wi}ses, <
nNu

{Wi}tses with 7, := 2" 2 with a constant positive number Nu to be determined later. We

choose the net small enough to fulfill the cardinality bound log |S,| < 2-|X| - d*(log6 +
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nNu/2) which is possible by Lemma 197. We introduce abbreviations d := dim Kpg, r«(-) :=
r®(x) and ri(-) := 1}, 5(-|x) for each x € X™. Applying Lemma 214 on the cq channel

W, = |ZS€S W& with p := ., and
M := [exp(n(iné[(Y; B|X,04) — 0§ - |X|logd — Nu))|, (D.2)
se
we know that choosing a codewords Yi,...,Yy i.i.d. according to 7l each, allows us to

bound the expectation by

By | 52 2 (W) AV | <

me[M]

8'M17Q'Qa

2 )| [ @ W (r )) (D.3)

for each o € (0,1). By linearity of the trace and the expectation, the above inequality

implies

By | min - S (W2 (V) 4,00)) | <
sesn M
8-|Sn|-M1‘“-Qa(‘S‘2W®” )7 @ W (7 )) (D.4)
SES,

The left hand side of the above inequality can be identified as the expected average error
of a random code. We proceed to further bound the Function QQ, on the right hand side.
We have

0 (7 X Wl W) < o (e X wer el ).

"l seS, TT’6<X))2 "l ses,

(D.5)

In (D.5) we have used definition of the pruned distribution, and observed operator mono-
tonicity of the function f(x) = z® for a € [0,1] (cf. [Bhatia(1996)], Theorem 5.1.9).
Following the arguments in proof of Lemma 4.16 [Mosonyi(2015)] we obtain

1
Qulig D W@ W) < o X exp (o~ 1) - xalra, WET) e
|S | s€Sn |Sn|a 5€Sn
< exp <(a —1) a- m}gn Xa (T, WE) + n(a — 1)*logd + log ]Sn]) (D.6)
SEOSN
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D. Universal classical-quantum superposition coding

In order to further estimate the error exponent above, we note that for each s € S

o(WE 2 Ax) - Xa(Wsyr(-|z)) = Z q(x) - Xa(Ws,r(-|z)) — 6 - | X|logd.
reX TeX
In the above, we have used |N(x) — q(x)| < and xo(Ws,r(-|2)) <logd. By Lemma 212,
choosing a close enough to one allows us to bound
avinf } 7 q(z) - xa(r(f),Ws) = inf } q(z) - x(r(|2), W) =6+ |X|logd  (D.7)

seS
zeX zeX

= ing I(Y;B|X,05) — ¢ - |X|logd. (D.8)
se

where we introduced the notation from the statement of Lemma 8 in the second line. Note,

that with our choice of M, we have

1
ainé q(z) - Xal(r(-|z), Ws) — —logM > Nu>0 (D.9)
€ TeX n

Combining the estimates from (D.4) - (D.9) and subsequent upper-bounding the right hand
side of (D.3), we achieve the bound

EyM mini Z tr(W?n(Ym)Am(YM)C)

SES,
me[M]

1
< 16 -exp ((a —1)-n(Nu+ (a — 1) logd + 2| X|d* [—— Ogﬁ %J)) < 9w/

Where the last inequality above holds for a fixed choice of o close enough to one and large

enough n. By the property of the 1, net and linearity of trace and expectation, we can

conclude

1
Eyu [inf— > tr(WE (Vi) A (YM)) | < 2704 427t (D.10)
s M o

We are done.

144



Bibliography

[Grover(1996)] L. K. Grover, “A fast quantum mechanical algorithm for database search,”
in STOC 96, 1996.

[Bennett et al.(1993)Bennett, Brassard, Crépeau, Jozsa, Peres, and Wootters| C. H.
Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Tele-

porting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen
channels,” Physical Review Letters, vol. 70, no. 13, p. 1895, 1993.

[Wilde(2017)] M. W. Wilde, Quantum Information Theory, 2nd ed. Cambridge, 2017.

[Holevo(1998)] A. S. Holevo, “The capacity of the quantum channel with general signal
states,” IEFEE Transactions on Information Theory, vol. 44, no. 1, pp. 269-273,
1998.

[Schumacher and Westmoreland(1997)] B. Schumacher and M. D. Westmoreland, “Send-
ing classical information via noisy quantum channels,” Physical Review A, vol. 56,
no. 1, p. 131, 1997.

[Devetak(2005)] 1. Devetak, “The private classical capacity and quantum capacity of a
quantum channel,” IEEFE Transactions on Information Theory, vol. 51, no. 1, pp.
44-55, 2005.

[Cai et al.(2004)Cai, Winter, and Yeung| N. Cai, A. Winter, and R. W. Yeung, “Quan-
tum privacy and quantum wiretap channels,” Problems of Information Transmis-
sion, vol. 40, no. 4, pp. 318-336, 2004.

[Devetak and Shor(2005)] I. Devetak and P. W. Shor, “The capacity of a quantum chan-
nel for simultaneous transmission of classical and quantum information,” Commu-
nications in Mathematical Physics, vol. 256, no. 2, pp. 287-303, 2005.

[Bennett et al.(1999)Bennett, Shor, Smolin, and Thapliyal] C. H. Bennett, P. W. Shor,
J. A. Smolin, and A. V. Thapliyal, “Entanglement-assisted classical capacity of
noisy quantum channels,” Physical Review Letters, vol. 83, no. 15, p. 3081-3084,
Oct. 1999. [Online|. Available: http://dx.doi.org/10.1103/PhysRevLett.83.3081

[Hsieh and Wilde(2010a)] M.-H. Hsiech and M. M. Wilde, “Entanglement-assisted

communication of classical and quantum information,” IEEE Transactions on

145


http://dx.doi.org/10.1103/PhysRevLett.83.3081

Bibliography

Information Theory, vol. 56, no. 9, p. 4682-4704, Sep. 2010. [Online]. Available:
http://dx.doi.org/10.1109/TIT.2010.2053903

[Hsieh and Wilde(2010b)] ——, “Trading classical communication, quantum communi-
cation, and entanglement in quantum shannon theory,” IEEE Transactions on
Information Theory, vol. 56, no. 9, p. 4705-4730, Sep. 2010. [Online]. Available:
http://dx.doi.org/10.1109/TIT.2010.2054532

[Jones et al.(2012)Jones, Van Meter, Fowler, McMahon, Kim, Ladd, and Yamamoto]
N. C. Jones, R. Van Meter, A. G. Fowler, P. L. McMahon, J. Kim, T. D. Ladd, and

Y. Yamamoto, “Layered architecture for quantum computing,” Physical Review X,
vol. 2, no. 3, p. 031007, 2012.

[Wilde et al.(2012)Wilde, Hayden, and Guha] M. M. Wilde, P. Hayden, and S. Guha,
“Quantum trade-off coding for bosonic communication,” Physical Review A, vol. 86,
no. 6, p. 062306, 2012.

[Schaefer and Boche(2014a)] R. F. Schaefer and H. Boche, “Physical layer service inte-
gration in wireless networks : Signal processing challenges,” IEEE Signal Processing
Magazine, vol. 31, no. 3, pp. 147-156, 2014.

[Liang et al.(2009)Liang, Poor, and Shamai] Y. Liang, H. V. Poor, and S. Shamai, Infor-

mation theoretic security. Now Publishers Inc, 2009.

[Jorswieck et al.(2010)Jorswieck, Wolf, and Gerbracht] E. A. Jorswieck, A. Wolf, and
S. Gerbracht, “Secrecy on the physical layer in wireless networks,” Trends in

Telecommunications Technologies, 2010.

[Liu and Trappe(2010)] R. Liu and W. Trappe, Securing wireless communications at the
physical layer. Springer, 2010, vol. 7.

[Bloch and Barros(2011)] M. Bloch and J. Barros, Physical-layer security: from informa-

tion theory to security engineering. Cambridge University Press, 2011.

[Wyner(1975)] A. D. Wyner, “The wire-tap channel,” Bell System Technical Journal,
vol. 54, no. 8, pp. 1355-1387, 1975.

[Csiszar and Korner(1978)] I. Csiszar and J. Korner, “Broadcast channels with confiden-
tial messages,” IEEFE Transactions on Information Theory, vol. 24, no. 3, pp. 339—
348, 1978.

[Dynes et al.(2016)Dynes, Tam, Plews, Frohlich, Sharpe, Lucamarini, et al.] J. F.
Dynes, W. W. Tam, A. Plews, B. Frohlich, A. W. Sharpe, Lucamarini et al.,

7

“Ultra-high bandwidth quantum secured data transmission,” Scientific reports,

vol. 6, no. 1, pp. 1-6, 2016.

146


http://dx.doi.org/10.1109/TIT.2010.2053903
http://dx.doi.org/10.1109/TIT.2010.2054532

Bibliography

[Jacak et al.(2016)Jacak, Melniczuk, Jacak, Janutka, Jézwiak, Gruber, and Jozwiak]
M. Jacak, D. Melniczuk, J. Jacak, A. Janutka, I. Jézwiak, J. Gruber, and
P. Jézwiak, “Quantum key distribution security constraints caused by controlled
quality of dark channel for non-entangled and entangled photon quantum cryp-
tography setups,” Optical and Quantum FElectronics, vol. 48, no. 7, pp. 1-16,
2016.

[Boche et al.(2019a)Boche, Janfien, and Saeedinaeeni] H. Boche, G. Janfien, and S. Saee-
dinaeeni, “Universal random codes: Capacity regions of the compound quantum
multiple-access channel with one classical and one quantum sender,” Quantum In-

formation Processing, vol. 18, no. 8, pp. 1-27, 2019.

[H. Boche(2020a)] H. V. P. H. Boche, R. F. Schaefer, “Denial-of-service attacks on com-
munication systems: Detectability and jammer knowledge,” IEEE Transactions on

Signal Processing, vol. 68, May 2020.

[Ahlswede et al.(2013)Ahlswede, Bjelakovic, Boche, and Nétzel] R. Ahlswede, 1. Bje-
lakovic, H. Boche, and J. Notzel, “Quantum capacity under adversarial quantum

b

noise: Arbitrarily varying quantum channels,” Communications in Mathematical

Physics, vol. 317, no. 1, pp. 103-156, Jan. 2013.

[H. Boche(2014)] J. N. H. Boche, “Positivity, discontinuity, finite resources, nonzero error
for arbitrarily varying quantum channels,” in IEEE International Symposium on
Information Theory, Jul. 2014, pp. 541-545.

[H. Boche(2019)] N. C. H. Boche, M. Cai, “Message transmission over classical quantum
channels with a jammer with side information, correlation as resource and common
randomness generating,” in 2019 IEEFE International Symposium on Information
Theory. 1EEE, Jul. 2019.

[H. Boche(2020b)] ——, “Message transmission over classical quantum channels with a
jammer with side information: Correlation as resource, common randomness gen-
eration,” Journal of Mathematical Physics, vol. 61, p. 062201 Online, 2020.

[Boche et al.(2019b)Boche, JanBen, and Saeedinaceni] H. Boche, G. Janfien, and S. Saee-
dinaeeni, “Simultaneous transmission of classical and quantum information
under channel uncertainty and jamming attacks,” Journal of Mathemati-
cal Physics, vol. 60, mno. 2, p. 022204, Feb. 2019. [Online]. Available:
http://dx.doi.org/10.1063/1.5078430

[Ahlswede(1978)] R. Ahlswede, “Elimination of correlation in random codes for arbi-
trarily varying channels,” Zeitschrift fir Wahrscheinlichkeitstheorie und verwandte
Gebiete, vol. 44, no. 2, 1978.

147


http://dx.doi.org/10.1063/1.5078430

Bibliography

[Avigad and Brattka(2014)] J. Avigad and V. Brattka, “Computability and analysis: The
legacy of Alan Turing,” in Turing’s Legacy: Developments from Turing’s Ideas in
Logic, R. Downey, Ed. Cambridge, UK: Cambridge University Press, 2014.

[Godel(1930)] K. Godel, “Die Vollstandigkeit der Axiome des logischen Funktio-
nenkalkiils,” Monatshefte fir Mathematik, vol. 37, no. 1, pp. 349-360, 1930.

[G6del(1934)] ——, “On undecidable propositions of formal mathematical systems,”
Notes by Stephen C. Kleene and Barkely Rosser on Lectures at the Institute for
Advanced Study, Princeton, NJ, 1934.

[Kleene(1952)] S. C. Kleene, Introduction to Metamathematics. ~ Van Nostrand, New
York: Wolters-Noordhoffv, 1952.

[Minsky(1961)] M. Minsky, “Recursive unsolvability of Post’s problem of ’tag’ and other
topics in theory of Turing machines,” Ann. Math., vol. 74, no. 3, pp. 437-455, 1961.

[Boche et al.(2019¢)Boche, Janen, and Saeedinaeeni] H. Boche, G. Janfen, and S. Saee-
dinaeeni, “Universal superposition codes: capacity regions of compound quantum

broadcast channel with confidential messages,” 2019.

[Ahlswede(1967a)] R. Ahlswede, “Certain results in coding theory for compound chan-
nels,” in Proceedings of the Colloquium on Information Theory, vol. 1, 1967, pp.
35-60.

[Ahlswede and Wolfowitz(1969)] R. Ahlswede and J. Wolfowitz, “The structure of ca-
pacity functions for compound channels,” in Probability and Information Theory.
Springer, 1969, pp. 12-54.

[Bjelakovié et al.(2013)Bjelakovié, Boche, JanBen, and Noétzel] 1. Bjelakovié, H. Boche,
G. Janflen, and J. Notzel, “Arbitrarily varying and compound classical-quantum
channels and a note on quantum zero-error capacities,” in Information Theory,

Combinatorics, and Search Theory. Springer, 2013, pp. 247-283.

[Boche et al.(2018a)Boche, Schaefer, and Poor] H. Boche, R. F. Schaefer, and H. V. Poor,
“Analytical properties of shannon’s capacity of arbitrarily varying channels under
list decoding: Super-additivity and discontinuity behavior,” Problems of Informa-
tion Transmission, vol. 54, no. 3, pp. 199-228, 2018.

[Boche et al.(2022)Boche, S. Saeedinaeeni, and Poor] H. Boche, R. S. S. Saeedinaeeni,
and V. Poor, “On the algorithmic computability of achievability and converse:e-
capacity of compound channels and asymptotic bounds of error-correcting codes,”

Unpublished, 2022.

148



Bibliography

[Holevo(2012)] A. S. Holevo, Quantum systems, channels, information: a mathematical
introduction.  Walter de Gruyter, 2012, vol. 16.

[Ludwig(1983)] G. Ludwig, The Problem: An Aziomatic Basis for Quantum Mechanics.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1983, pp. 1-11. [Online]. Available:
https://doi.org/10.1007 /978-3-642-86751-4 1

[Bose(1924)] Bose, “Plancks gesetz und lichtquantenhypothese,”  Zeitschrift  fir
Physik, vol. 26, no. 1, pp. 178-181, Dec 1924. [Online|. Available: https:
//doi.org/10.1007/BF01327326

[Compton and Heisenberg(1984)] A. H. Compton and W. Heisenberg, The Physical
Principles of the Quantum Theory. Berlin, Heidelberg: Springer Berlin
Heidelberg, 1984, pp. 117-166. [Online]. Available: https://doi.org/10.1007/
978-3-642-61742-3_10

[Heinosaari et al.(2016)Heinosaari, Miyadera, and Ziman] T. Heinosaari, T. Miyadera,
and M. Ziman, “An invitation to quantum incompatibility,” Journal of Physics
A: Mathematical and Theoretical, vol. 49, no. 12, p. 123001, feb 2016. [Online].
Available: https://doi.org/10.1088/1751-8113/49/12/123001

[Filippov et al.(2017)Filippov, Heinosaari, and Leppéjarvi] S. N. Filippov, T. Heinosaari,
and L. Leppajarvi, “Necessary condition for incompatibility of observables in general
probabilistic theories,” Physical Review A, vol. 95, no. 3, p. 032127, 2017.

[Plavala(2016)] M. Plavala, “All measurements in a probabilistic theory are compatible
if and only if the state space is a simplex,” Phys. Rev. A, vol. 94, p. 042108, Oct
2016. [Online|. Available: https://link.aps.org/doi/10.1103/PhysRevA.94.042108

[Werner(2001)] R. F. Werner, Quantum Information Theory — an Invitation. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2001, pp. 14-57. [Online]. Available:
https://doi.org/10.1007/3-540-44678-8_2

[Wold(2012)] M. Wold, “Quantum channels and operators: Guided tour,” Unpublished

lecture notes, 2012.

[Wolf et al.(2009)Wolf, Perez-Garcia, and Fernandez] M. M. Wolf, D. Perez-Garcia, and
C. Fernandez, “Measurements incompatible in quantum theory cannot be measured
jointly in any other no-signaling theory,” Phys. Rev. Lett., vol. 103, p. 230402,
Dec 2009. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.103.
230402

[Holevo(1973)] A. Holevo, “Statistical decision theory for quantum systems,” Journal of
Multivariate Analysis, vol. 3, pp. 337-394, 1973.

149


https://doi.org/10.1007/978-3-642-86751-4_1
https://doi.org/10.1007/BF01327326
https://doi.org/10.1007/BF01327326
https://doi.org/10.1007/978-3-642-61742-3_10
https://doi.org/10.1007/978-3-642-61742-3_10
https://doi.org/10.1088/1751-8113/49/12/123001
https://link.aps.org/doi/10.1103/PhysRevA.94.042108
https://doi.org/10.1007/3-540-44678-8_2
https://link.aps.org/doi/10.1103/PhysRevLett.103.230402
https://link.aps.org/doi/10.1103/PhysRevLett.103.230402

Bibliography

[Hsieh and Wilde(2009)] M.-H. Hsieh and M. M. Wilde, “Public and private
communication with a quantum channel and a secret key,” Physical Review
A, vol. 80, no. 2, Aug. 2009. [Online]. Available: http://dx.doi.org/10.1103/
PhysRevA.80.022306

[Kitaev et al.(2002)Kitaev, Shen, and Vyalyi] A. Y. Kitaev, A. Shen, and M. N. Vyalyi,
Classical and quantum computation, ser. Graduate Studies in Mathematics. Amer-
ican Mathematical Soc., 2002, no. 47.

[Christandl et al.(2009)Christandl, Kénig, and Renner] M. Christandl, R. Konig, and
R. Renner, “Postselection technique for quantum channels with applications to

quantum cryptography,” Physical Review Letters, vol. 102, no. 2, Jan. 2009.
[Online]. Available: http://dx.doi.org/10.1103/PhysRevLett.102.020504

[Gross et al.(2007)Gross, Audenaert, and Eisert] D. Gross, K. Audenaert, and J. Eisert,

2

“Evenly distributed unitaries: On the structure of unitary designs,” Journal of

mathematical physics, vol. 48, no. 5, p. 052104, 2007.

[Wakakuwa(2017)] E. Wakakuwa, “Symmetrizing cost of quantum states,” Phys. Rev. A,
vol. 95, no. 032328, 2017.

[Barvinok(2003)] A. Barvinok, A course in convezity, Graduate studies in mathematics.

merican Mathematical Society, 2003.

[Nielsen and Chuang(2010)] M. A. Nielsen and I. L. Chuang, Quantum Computation and
Quantum Information: 10th Anniversary Edition. Cambridge University Press,
2010.

[Audenaert(2007)] K. Audenaert, “A sharp continuity estimate for the von neumann
entropy,” Journal of Physics A: Mathematical and Theoretical, vol. 40, no. 28,
2007. [Online|. Available: https://doi.org/10.1088/1751-8113/40/28/S18

[Renner(2005)] R. Renner, “Security of quantum key distribution,” Ph.D. dissertation,
ETH Zurich, 9 2005, available at http://arxiv.org/abs/quant-ph/0512258.

[Bjelakovi¢ et al.(2009)Bjelakovi¢, Boche, and Notzel] 1. Bjelakovi¢, H. Boche, and

J. Notzel, “Entanglement transmission and generation under channel uncertainty:
Universal quantum channel coding,” Communications in Mathematical Physics,
vol. 292, no. 1, p. 55-97, Aug. 2009. [Online]. Available: http://dx.doi.org/10.

1007/s00220-009-0887-0

[Klesse(2007)] R. Klesse, “Approximate quantum error correction, random codes, and
quantum channel capacity,” Physical Review A, vol. 75, no. 6, Jun. 2007. [Online].
Available: http://dx.doi.org/10.1103/PhysRevA.75.062315

150


http://dx.doi.org/10.1103/PhysRevA.80.022306
http://dx.doi.org/10.1103/PhysRevA.80.022306
http://dx.doi.org/10.1103/PhysRevLett.102.020504
https://doi.org/10.1088/1751-8113/40/28/S18
http://dx.doi.org/10.1007/s00220-009-0887-0
http://dx.doi.org/10.1007/s00220-009-0887-0
http://dx.doi.org/10.1103/PhysRevA.75.062315

Bibliography

[Mosonyi(2015)] M. Mosonyi, “Coding theorems for compound problems via quantum
Rényi divergences,” IEEE Transactions on Information Theory, vol. 61, no. 6,
p. 2997-3012, Jun. 2015. [Online]. Available: http://dx.doi.org/10.1109/TIT.2015.
2417877

[Ahlswede et al.(2012) Ahlswede, Bjelakovi¢, Boche, and Nétzel] R.  Ahlswede, 1. Bje-
lakovi¢, H. Boche, and J. Notzel, “Quantum capacity under adversarial
quantum noise:  Arbitrarily varying quantum channels,” Communications in
Mathematical Physics, vol. 317, no. 1, p. 103-156, Nov. 2012. [Online]. Available:
http://dx.doi.org/10.1007 /s00220-012-1613-x

[Boche and No6tzel(2014)] H. Boche and J. Notzel, “Positivity, discontinuity, finite
resources, and nonzero error for arbitrarily varying quantum channels,” Journal of
Mathematical Physics, vol. 55, no. 12, p. 122201, Dec. 2014. [Online]. Available:
http://dx.doi.org/10.1063/1.4902930

[Wilde and Hsieh(2011a)] M. M. Wilde and M.-H. Hsieh, “The quantum dynamic
capacity formula of a quantum channel,” Quantum Information Processing, vol. 11,
no. 6, p. 1431-1463, Sep. 2011. [Online]. Available: http://dx.doi.org/10.1007/
s11128-011-0310-6

[Boche et al.(2018b)Boche, Deppe, Nétzel, and Winter] H. Boche, C. Deppe, J. Notzel,
and A. Winter, “Fully quantum arbitrarily varying channels: Random coding
capacity and capacity dichotomy,” 2018 IEEE International Symposium on
Information Theory (ISIT), Jun. 2018. [Online]. Available: http://dx.doi.org/10.
1109/1SIT.2018.8437610

[Ericson(1985)] T. Ericson, “Exponential error bounds for random codes in the arbitrarily

varying channel,” IEEFE Transactions on Information Theory, vol. 31, no. 1, pp. 42—

48, 1985.
[Karumanchi et al.(2016)Karumanchi, Mancini, Winter, and Yang] S. Karumanchi,
S. Mancini, A. Winter, and D. Yang, “Quantum channel -capacities

with passive environment assistance,” I[EEFE Transactions on Information
Theory, vol. 62, mno. 4, p. 1733-1747, Apr. 2016. [Online]. Available:
http://dx.doi.org/10.1109/TIT.2016.2522192

[Ahlswede and Winter(2002)] R. Ahlswede and A. Winter, “Strong converse for identifi-
cation via quantum channels,” IEEE Transactions on Information Theory, vol. 48,
no. 3, pp. 569-579, 2002.

[Schaefer and Boche(2014b)] R. F. Schaefer and H. Boche, “Robust broadcasting of com-

mon and confidential messages over compound channels: Strong secrecy and de-

151


http://dx.doi.org/10.1109/TIT.2015.2417877
http://dx.doi.org/10.1109/TIT.2015.2417877
http://dx.doi.org/10.1007/s00220-012-1613-x
http://dx.doi.org/10.1063/1.4902930
http://dx.doi.org/10.1007/s11128-011-0310-6
http://dx.doi.org/10.1007/s11128-011-0310-6
http://dx.doi.org/10.1109/ISIT.2018.8437610
http://dx.doi.org/10.1109/ISIT.2018.8437610
http://dx.doi.org/10.1109/TIT.2016.2522192

Bibliography

coding performance,” IEEE Transactions on Information Forensics and Security,
vol. 9, no. 10, pp. 1720-1732, 2014.

[Boche et al.(2014)Boche, Cai, Cai, and Deppe] H. Boche, M. Cai, N. Cai, and
C. Deppe, “Secrecy capacities of compound quantum wiretap channels and
applications,” Physical Review A, vol. 89, no. 5, May 2014. [Online]. Available:
http://dx.doi.org/10.1103 /PhysRevA.89.052320

[Wilde and Hsieh(2011b)] M. M. Wilde and M.-H. Hsieh, “Public and private
resource trade-offs for a quantum channel,” Quantum Information Processing,
vol. 11, mno. 6, p. 1465-1501, Oct. 2011. [Online|. Available:  http:
//dx.doi.org/10.1007 /s11128-011-0317-z

[Salek et al.(2020)Salek, Anshu, Hsieh, Jain, and Fonollosa] F. Salek, A. Anshu, M.-
H. Hsieh, R. Jain, and J. R. Fonollosa, “One-shot capacity bounds on
the simultaneous transmission of classical and quantum information,” I[FEFE
Transactions on Information Theory, vol. 66, no. 4, p. 2141-2164, Apr. 2020.
[Online]. Available: http://dx.doi.org/10.1109/TIT.2019.2945800

[Anshu et al.(2017)Anshu, Devabathini, and Jain] A. Anshu, V. K. Devabathini, and
R. Jain, “Quantum communication using coherent rejection sampling,” Physical
Review Letters, vol. 119, no. 12, p. 120506, 2017.

[ANSHU(2018)] A. ANSHU, “One-shot protocols for communication over quantum net-
works: Achievability and limitations,” Ph.D. dissertation, 2018.

[Anshu et al.(2019a)Anshu, Jain, and Warsi| A. Anshu, R. Jain, and N. A. Warsi,
“Building blocks for communication over noisy quantum networks,” I[EEE
Transactions on Information Theory, vol. 65, no. 2, p. 1287-1306, Feb. 2019.
[Online]. Available: http://dx.doi.org/10.1109/TIT.2018.2851297

[Csiszar and Korner(2011a)] 1. Csiszar and J. Korner, Information Theory: Coding The-
orems for Discrete Memoryless Systems, 2nd ed. Cambridge University Press,
2011.

[Cai(2018)] M. Cai, “Classical-quantum channels: Secret transmission under attacks,”
Ph.D. dissertation, 2018.

[Blackwell et al.(1959)Blackwell, Breiman, and Thomasian] D. Blackwell, L. Breiman,
and A. J. Thomasian, “The capacity of a class of channels,” Ann. Math. Stat.,
vol. 30, no. 4, pp. 1229-1241, Dec. 1959.

[Wolfowitz(1960)] J. Wolfowitz, “Simultaneous channels,” Arch. Rational Mech. Analysis,
vol. 4, no. 4, pp. 371-386, 1960.

152


http://dx.doi.org/10.1103/PhysRevA.89.052320
http://dx.doi.org/10.1007/s11128-011-0317-z
http://dx.doi.org/10.1007/s11128-011-0317-z
http://dx.doi.org/10.1109/TIT.2019.2945800
http://dx.doi.org/10.1109/TIT.2018.2851297

Bibliography

[Ahlswede(2015)] R. Ahlswede, Transmitting and Gaining Data: Rudolf Ahlswede’s Lec-
tures on Information Theory 2, A. Ahlswede, I. Althofer, C. Deppe, and U. Tamm,
Eds. Springer International Publishing, 2015.

[Tsfasman et al.(2007)Tsfasman, Vladut, and Nogin] M. Tsfasman, S. Vladut, and
D. Nogin, Algebraic Geometric Codes: Basic Notions.  Providence: American
Mathematical Society, 2007.

[Joyner and Kim(2011)] D. Joyner and J.-L. Kim, Selected Unsolved Problems in Coding
Theory. Basel: Birkhauser, 2011.

[Pour-El and Richards(2017)] M. B. Pour-El and J. I. Richards, Computability in Analysis
and Physics. Cambridge: Cambridge University Press, 2017.

[Turing(1936)] A. M. Turing, “On computable numbers, with an application to the
Entscheidungsproblem,” Proc. London Math. Soc., vol. 2, no. 42, pp. 230-265, 1936.

[Turing(1937)] ——, “On computable numbers, with an application to the Entschei-
dungsproblem. A correction,” Proc. London Math. Soc., vol. 2, no. 43, pp. 544-546,
1937.

[Church(1936)] A. Church, “An unsolvable problem of elementary number theory,”
American Journal of Mathematics, vol. 58, no. 2, pp. 345-363, 1936. [Online].
Available: http://www.jstor.org/stable/2371045

[Soare(1987)] R. L. Soare, Recursively Enumerable Sets and Degrees. Berlin, Heidelberg:
Springer-Verlag, 1987.

[Weihrauch(2000)] K. Weihrauch, Computable Analysis - An Introduction. Berlin, Hei-
delberg: Springer-Verlag, 2000.

[Rudin(1987)] W. Rudin, Real and Complex Analysis, 3rd ed. Mcgraw-Hill Higher Ed-
ucation, 1987.

[Specker(1949)] E. Specker, “Nicht konstruktiv beweisbare Sétze der Analysis,” Journal
of Symbolic Logic, vol. 14, no. 3, pp. 145-158, Sep. 1949.

[Yagi and Nomura(2014)] H. Yagi and R. Nomura, “Single-letter characterization of
epsilon-capacity for mixed memoryless channels,” in 2014 IEEFE International Sym-

posium on Information Theory, 2014, pp. 2874-2878.

[Csiszér and Korner(1981)] 1. Csiszar and J. Korner, Information Theory - Coding The-

orems for Discrete Memoryless Systems, 1st ed. Academic Press, 1981.

[Ahlswede(1967b)] R. Ahlswede, “Certain results in coding theory for compound chan-
nels,” in Proc. Colloquium Inf. Th. Debrecen, Hungary: Bolyai Mathematical
Society, 1967, pp. 35-60.

153


http://www.jstor.org/stable/2371045

Bibliography

[H. Boche(2017)] S. H. Boche, G. Janfl en, “Entanglement-assisted classical capacities
of compound and arbitrarily varying quantum channels,” Quantum information

processing, vol. 16, 2017.

[Boche et al.(2019d)Boche, Janfien, and Saeedinaeeni] H. Boche, G. Janflen, and S. Saee-
dinaeeni, “Universal random codes: Capacity regions of the compound quantum
multiple-access channel with one classical and one quantum sender,” Quantum In-

formation Processing, vol. 18, no. 246, 2019.

[Schaefer and Boche(2014c)] R. F. Schaefer and H. Boche, “Physical layer service inte-
gration in wireless networks: Signal processing challenges,” IEEE Signal Processing
Magazine, vol. 31, no. 3, pp. 147-156, May 2014.

[Anshu et al.(2019b)Anshu, Jain, and Warsi] A. Anshu, R. Jain, and N. Warsi, “A hy-
pothesis testing approach for communication over entanglement-assisted compound
quantum channel,” IEEE Transactions on Information Theory, vol. 65, pp. 2623~
2636, 2019.

[Wilde et al.(2019)Wilde, Khatri, Kaur, and Guha] M. M. Wilde, S. Khatri, E. Kaur,
and S. Guha, “Second-order coding rates for key distillation in quantum key distri-
bution,” 2019, available online at https://arxiv.org/abs/1910.03883.

[Boche et al.(2020a)Boche, Schaefer, and Poor] H. Boche, R. F. Schaefer, and H. V. Poor,
“Robust transmission over channels with channel uncertainty: An algorithmic per-
spective,” in Proc. IEEFE Int. Conf. Acoustics, Speech, Signal Process., Barcelona,
Spain, May 2020.

[Boche et al.(2020b)Boche, Janfien, and Saeedinaeeni] H. Boche, G. Janflen, and S. Saee-
dinaeeni, “Universal superposition codes: Capacity regions of compound quantum
broadcast channel with confidential messages,” Journal of Mathematical Physics,

vol. 61, no. 4, p. 042204, 2020.

[Csiszar and Korner(2011b)] I. Csiszar and J. Kérner, Information Theory: Coding The-
orems for Discrete Memoryless Systems, 2nd ed. Cambridge, UK: Cambridge
University Press, 2011.

[Yard et al.(2005)Yard, Devetak, and Hayden] J. Yard, I. Devetak, and P. Hayden, “Ca-
pacity theorems for quantum multiple access channels,” Proceedings. International
Symposium on Information Theory, 2005. ISIT 2005., pp. 884-888, 2005.

[Shirokov(2017)] M. Shirokov, “Tight uniform continuity bounds for the quantum condi-
tional mutual information, for the holevo quantity, and for capacities of quantum
channels,” Journal of Mathematical Physics, vol. 58, p. 102202, 2017.

154



Bibliography

[A. Grigorescu and Poor(2015)] R. F. S. A. Grigorescu, H. Boche and H. V. Poor, “Ca-
pacity region continuity of the compound broadcast channel with confidential mes-
sages,” IEEE Information Theory Workshop, Jerusalem, pp. 1-5, 2015.

[Bjelakovic and Boche(2007)] 1. Bjelakovic and H. Boche, “Classical capacities of aver-
aged and compound quantum channels,” ArXiv, vol. abs/0710.3027, 2007.

[Hayashi(2009)] M. Hayashi, “Universal coding for classical-quantum channel,” Commu-
nications i Mathematical Physics, vol. 289, pp. 1087-1098, 2009.

[Datta and Hsieh(2010)] N. Datta and M.-H. Hsieh, “Universal coding for transmission of
private information,” Journal of Mathematical Physics, vol. 51, pp. 122 202-122 202,
2010.

[Mosonyi and Hiai(2011)] M. Mosonyi and F. Hiai, “On the quantum rényi relative en-
tropies and related capacity formulas,” IEEE Transactions on Information Theory,

vol. 57, pp. 2474-2487, 2011.

ayashi and Nagaoka . Hayashi an . Nagaoka, eneral formulas for ca-

H hi and N ka(2003)] M. H hi and H. N ka, “G 1 f las f
pacity of classical-quantum channels,” IEEE Transactions on Information Theory,
vol. 49, pp. 17531768, 2003.

[Bhatia(1996)] R. Bhatia, Matriz Analysis. Springer-Verlag, 1996.

155



	Introduction
	Introduction to the topics of the present work
	Introduction to the statistical model
	Notations and conventions

	Randomness cost of symmetric twirling
	Introduction
	Bounds for symmetric designs
	Communication-theoretic implications of the results

	Simultaneous transmission of classical and quantum information under channel uncertainty
	Introduction
	Basic definitions and main results
	The compound quantum channel
	The arbitrarily varying quantum channel

	Universal random codes for quantum channels
	Entanglement transmission codes
	Classical message transmission codes

	Proofs for the compound channel
	Proof of the converse
	Proof of the direct part

	Proofs for the arbitrarily varying quantum channel
	Proof of converse
	Proof of the direct part

	Simultaneous classical message and entanglement transmission over fully quantum AVCs

	Universal superposition codes:capacity regions for quantum broadcast channel
	Introduction
	Basic definitions and main results
	Coding for broadcast channel
	BCC codes
	TPC codes

	Outer bounds for the capacity regions
	BCC and TPC capacities of compound quantum broadcast channels

	Computability aspects
	Introduction
	Introduction to Turing Machines and computability framework
	Arithmetic Computations
	Recursively enumerable sets and the halting problem
	Computable real numbers and functions
	General results for computable sequences of numbers and functions

	Basic concepts and capacity results
	Definition and results for the averaged channel
	An alternative definition for -capacity

	Banach-Mazur computability of -capacity
	Computable upper and lower bound for -capacity
	Computable lower and upper bounds as a function of 
	Computable lower and upper bounds as a function of the channel

	Decision problem
	Common randomness and entanglement assisted -capacities

	Conclusions and outlooks
	Chapter 2: Randomness cost of symmetric twirling
	Chapter 3: Simultaneous transmission of classical and quantum information under channel uncertainty
	Chapter 4: Universal superposition codes: capacity regions for quantum broadcast channel

	Frequency typical sets
	Approximation of compound channels using nets
	Auxiliary results
	Universal classical-quantum superposition coding
	Net approximation of arbitrary classical-quantum channel sets
	Auxiliary results
	ffdce037-9626-4945-8eee-3254b4ab15ac.pdf
	51065512-5093-48eb-a1d1-1e504ca3d126.pdf
	Introduction
	Introduction to the topics of the present work
	Introduction to the statistical model
	Notations and conventions

	Randomness cost of symmetric twirling
	Introduction
	Bounds for symmetric designs
	Communication-theoretic implications of the results

	Simultaneous transmission of classical and quantum information under channel uncertainty
	Introduction
	Basic definitions and main results
	The compound quantum channel
	The arbitrarily varying quantum channel

	Universal random codes for quantum channels
	Entanglement transmission codes
	Classical message transmission codes

	Proofs for the compound channel
	Proof of the converse
	Proof of the direct part

	Proofs for the arbitrarily varying quantum channel
	Proof of converse
	Proof of the direct part

	Simultaneous classical message and entanglement transmission over fully quantum AVCs

	Universal superposition codes:capacity regions for quantum broadcast channel
	Introduction
	Basic definitions and main results
	Coding for broadcast channel
	BCC codes
	TPC codes

	Outer bounds for the capacity regions
	BCC and TPC capacities of compound quantum broadcast channels

	Computability aspects
	Introduction
	Introduction to Turing Machines and computability framework
	Arithmetic Computations
	Recursively enumerable sets and the halting problem
	Computable real numbers and functions
	General results for computable sequences of numbers and functions

	Basic concepts and capacity results
	Traditional definition of -capacity
	Alternative definition of -capacity
	The case with informed decoder

	Banach-Mazur computability of -capacity
	Computable upper and lower bound for -capacity
	Decision problem
	Common randomness and entanglement assisted -capacities

	Conclusions and outlooks
	Chapter 2: Randomness cost of symmetric twirling
	Chapter 3: Simultaneous transmission of classical and quantum information under channel uncertainty
	Chapter 4: Universal superposition codes: capacity regions for quantum broadcast channel
	Chapter 5: Computability aspects

	Frequency typical sets
	Approximation of quantum compound channels using nets
	Auxiliary results
	Universal classical-quantum superposition coding

	5e714a0e-105e-4b6e-8cf9-4db80826bdec.pdf
	51065512-5093-48eb-a1d1-1e504ca3d126.pdf
	Introduction
	Introduction to the topics of the present work
	Introduction to the statistical model
	Notations and conventions

	Randomness cost of symmetric twirling
	Introduction
	Bounds for symmetric designs
	Communication-theoretic implications of the results

	Simultaneous transmission of classical and quantum information under channel uncertainty
	Introduction
	Basic definitions and main results
	The compound quantum channel
	The arbitrarily varying quantum channel

	Universal random codes for quantum channels
	Entanglement transmission codes
	Classical message transmission codes

	Proofs for the compound channel
	Proof of the converse
	Proof of the direct part

	Proofs for the arbitrarily varying quantum channel
	Proof of converse
	Proof of the direct part

	Simultaneous classical message and entanglement transmission over fully quantum AVCs

	Universal superposition codes:capacity regions for quantum broadcast channel
	Introduction
	Basic definitions and main results
	Coding for broadcast channel
	BCC codes
	TPC codes

	Outer bounds for the capacity regions
	BCC and TPC capacities of compound quantum broadcast channels

	Computability aspects
	Introduction
	Introduction to Turing Machines and computability framework
	Arithmetic Computations
	Recursively enumerable sets and the halting problem
	Computable real numbers and functions
	General results for computable sequences of numbers and functions

	Basic concepts and capacity results
	Traditional definition of -capacity
	Alternative definition of -capacity
	The case with informed decoder

	Banach-Mazur computability of -capacity
	Computable upper and lower bound for -capacity
	Decision problem
	Common randomness and entanglement assisted -capacities

	Conclusions and outlooks
	Chapter 2: Randomness cost of symmetric twirling
	Chapter 3: Simultaneous transmission of classical and quantum information under channel uncertainty
	Chapter 4: Universal superposition codes: capacity regions for quantum broadcast channel
	Chapter 5: Computability aspects

	Frequency typical sets
	Approximation of quantum compound channels using nets
	Auxiliary results
	Universal classical-quantum superposition coding




