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Abstract

Serverless computing, mostly powered by Function-as-a-Service (FaaS), has been a growing
field for several years now. In addition, the field of Edge computing has seen simultaneous
growth as well, especially in sectors such as mobile computing, Internet of Things
and Industry 4.0. Both approaches come with various advantages, although they are
sometimes quite contrary to each other.

Now, a combination of the two paradigms for FaaS might be feasible to achieve to
exploit their respective advantages. Yet, implementations for heterogeneous edge-cloud
FaaS-environments have not yet been attempted, although the groundwork has been
laid by edge-only FaaS-approaches such as tinyFaaS [1] or Lambda@Edge [2].

In this thesis, an architecture for heterogeneous edge-cloud infrastructures based on
technologies such as KubeEdge has been designed and implemented, as well as an
automation to reproducibly deploy the infrastructure and all its components.

As a result, the infrastructure enables running a serverless computing framework such
as OpenFaaS on a Kubernetes cluster consisting of both cloud and edge nodes whilst
leveraging knowledge of, among other factors, physical node placement to optimize
FaaS workload scheduling between cloud and edge nodes.

Serverless computing, meist auf der Grundlage von Function-as-a-Service (FaaS), ist bereits
seit einigen Jahren ein stetig wachsender und weiterentwickelter Bereich. Parallel dazu
hat sich auch das Edge-Computing entwickelt, insbesondere in Bereichen wie Mobile
Computing, Internet of Things und Industrie 4.0. Beide Ansätze bringen zahlreiche
Vorteile mit sich, auch wenn sie manchmal recht konträr zueinander sind.

Nun könnte eine Kombination der beiden Paradigmen für FaaS realisierbar sein, um
ihre jeweiligen Vorteile zu nutzen. Bisher wurden jedoch noch keine Implementierungen
für heterogene Edge-Cloud-FaaS-Umgebungen erforscht, obwohl der Grundstein durch
reine Edge-FaaS-Ansätze wie tinyFaaS [1] oder Lambda@Edge [2] gelegt wurde.

In dieser Thesis wurde eine Architektur für heterogene Edge-Cloud-Infrastrukturen
auf Basis von Technologien wie KubeEdge entworfen und implementiert, sowie eine
Automatisierung zur reproduzierbaren Bereitstellung der Infrastruktur und aller ihrer
Komponenten.

Als Ergebnis ermöglicht die Infrastruktur die Ausführung eines serverlosen Computing-
Frameworks wie OpenFaaS auf einem Kubernetes-Cluster, das sowohl aus Cloud- als
auch aus Edge-Knoten besteht, während unter anderem Wissen über die Platzierung
der physischen Knoten genutzt werden kann, um die Verteilung der FaaS-Workloads
zwischen Cloud- und Edge-Knoten zu optimieren.

iii





Contents

Abstract iii

Acronyms vii

Glossary ix

1. Introduction 1
1.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2. Problem Statement and Objectives . . . . . . . . . . . . . . . . . . . . . . . 2
1.3. Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4. Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2. Background 5
2.1. Serverless Functions / Function-as-a-Service (FaaS) . . . . . . . . . . . . . 5
2.2. Used Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.1. Kubernetes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.2. KubeEdge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.3. OpenFaaS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.4. Terraform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.5. Ansible . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.6. KubeSphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3. Taxonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3. Related Work 9
3.1. tinyFaaS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2. K3s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3. MicroK8s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.4. OpenYurt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4. Implementation 11
4.1. Overall Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2. Infrastructure Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.2.1. Hosting Environment and Hardware . . . . . . . . . . . . . . . . . 11
4.2.2. Kubernetes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2.3. KubeEdge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2.4. OpenFaaS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.3. Automated and Reproducible Infrastructure Deployment . . . . . . . . . . 15

v



Contents

4.4. Scheduling of Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.5. Challenges, Caveats and Failed Attempts . . . . . . . . . . . . . . . . . . . 18

4.5.1. KubeSphere Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.5.2. KubeSphere-KubeEdge Integration . . . . . . . . . . . . . . . . . . 20
4.5.3. KubeEdge EdgeMesh / Cross-Cloud-Edge Networking . . . . . . 22
4.5.4. Cluster Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.5.5. NodePort Routing from Cloud to Edge . . . . . . . . . . . . . . . . 23
4.5.6. OpenFaaS Portal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.5.7. Readiness / Liveness Probes on Edge . . . . . . . . . . . . . . . . . 25

5. Evaluation 27
5.1. Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.2. Scenarios and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.3. Examined Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.4. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.4.1. nodeinfo (CPU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.4.2. gzip-compression (Memory & CPU) . . . . . . . . . . . . . . . . . 33
5.4.3. dd (Disk I/O) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.4.4. shasum (Network I/O & CPU) . . . . . . . . . . . . . . . . . . . . . 37

6. Conclusion and Future Work 41

List of Figures 43

List of Tables 45

List of Code Snippets 47

Bibliography 49

A. Appendix 53

vi



Acronyms

AWS Amazon Web Services. 1, 5, 6

Azure Microsoft Azure. 1, 5, 6

CNCF Cloud Native Computing Foundation. 5–7, 9, 10, 22

CNI Container Network Interface. 8–10, 19–21

CRI Container Runtime Interface. 19

FaaS Function-as-a-Service. iii, ix, 1–3, 5, 9–11, 18, 27, 39, 41, 42

GCP Google Cloud Platform. 1, 5, 6

HPA Horizontal Pod Autoscaler. 8, 13, 23, 27, 28, 31–33, 47

IoT Internet of Things. iii, ix, 1, 2, 9, 10, 41

K8s Kubernetes. iii, ix, 2, 3, 5–11, 13–16, 18–25, 27, 32, 41, 42

VU Virtual User. 27, 31, 33–40

vii





Glossary

Amazon Web Services [3] Cloud computing provider owned by Amazon. vii, ix, 1

Ansible [4] Open-Source tool for automation of configuration and administration of
nodes via SSH by declaring repeatable tasks in YAML, see also Section 2.2.5. 3, 7,
16

Google Cloud Platform [5] Cloud computing provider owned by Google. vii, ix, 1

KubeEdge [6] Kubernetes extended infrastructure for edge & Internet of Things work-
loads, see also Section 2.2.2. iii, 2, 3, 6, 7, 9–11, 13, 14, 18–24, 39, 41, 47

Kubernetes [7] Open-Source system for automating deployment, scaling, and manage-
ment of containerized applications, see also Section 2.2.1. iii, vii, ix, 2, 5, 6, 10, 13,
23

KubeSphere [8] Distributed operating system for cloud-native application management,
using Kubernetes as its kernel, see also Section 2.2.6. 3, 7, 18–23

Microsoft Azure [9] Cloud computing provider owned by Microsoft. vii, ix, 1

OpenFaaS [10] Open-Source Function-as-a-Service framework, see also Section 2.2.3.
iii, 3, 5, 6, 11, 14–16, 18, 23, 24, 27, 30, 41, 42, 47

OpenStack [11] Open-Source project providing an architecture stack for cloud comput-
ing. ix, 3, 6, 11, 13, 16

Terraform [12] Open-Source tool developed by HashiCorp to declaratively manage
infrastructure as code, supporting numerous cloud providers, including Amazon
Web Services, Google Cloud Platform, Microsoft Azure, and OpenStack, see also
Section 2.2.4. 3, 6, 16

ix





1. Introduction

1.1. Motivation

Serverless computing, mostly powered by Function-as-a-Service (FaaS), has been a growing
field for several years now. All relevant cloud providers offer services to run FaaS
workloads, such as Amazon Web Services (AWS) Lambda, Google Cloud Platform (GCP)
Functions or Microsoft Azure (Azure) Functions. Together with the usage of a serverless
computing platform comes a plethora of advantages. To name a few, as advertised by
the aforementioned cloud providers [13, 14, 15]:

• no need for provisioning or managing infrastructure

• simple and automatic up- and downscaling depending on the request rate to
respond to different request scales

• save cost for infrastructure by not needing to provision for peak request load

• integrated monitoring, logging and debugging capabilities

• no vendor-lock-in by using Open-Source-FaaS-Framework

In addition, the field of Edge computing, sometimes also known as Fog computing, pio-
neered by Content Delivery Networks, has seen simultaneous growth as well, especially
in sectors such as mobile computing, Internet of Things (IoT) and Industry 4.0. Edge
computing can be seen as quite contrary to cloud computing, a paradigm of moving
away from centralized computing power such as in datacenters of cloud providers and
towards decentralized computing on nodes at the edge of the Internet, in physical
proximity to mobile devices, sensors, robots, connected industrial machines etc. [16]
This approach in turn also offers a multitude of advantages, mainly enabled by the
physical proximity:

• low latency computation close to physical position, important for emerging appli-
cations such as self-driving cars, IoT, Augmented Reality and Virtual Reality [16,
17]

• reduce amount of data that is transmitted to and processed by the cloud, improving
interactivity and user privacy [17]

• reduced energy and power consumption [18]
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1. Introduction

However, edge computing suffers from an important limitation: resources such as
CPU power, RAM and disk availability are limited, contrary to the virtually endless
computing power available to the cloud. Additionally, failover strategies are harder to
establish given the physical nature of edge computing units.

Now, a combination of the two paradigms for FaaS might be feasible to achieve to
exploit their respective advantages.

The following non-exhaustive list gives a glimpse of possible achievements realizable
by implementing such a hybrid edge-cloud architecture for FaaS:

• Edge-Cloud-Continuum

Achieve an Edge-Cloud-Continuum between nodes to schedule FaaS edge & cloud
workloads intelligently and transparently on the same cluster containing both edge
and cloud nodes. This removes the need to maintain two separate infrastructures,
say, one Kubernetes (K8s) cluster consisting solely of cloud nodes and one cluster
consisting solely of edge nodes.

• Latency

Functions that work on data from other edge hardware, such as IoT devices, will
operate with lower latency if also scheduled on edge nodes close to where the
data is generated. In addition, functions that heavily communicate with or invoke
each other are likely to be scheduled close to each other on the same hardware or
hardware type (edge or cloud), potentially decreasing latency even further.

• Network bandwidth

Given that communicating workloads are scheduled close to each other, less
network bandwidth is required: data transfers to cloud nodes via the internet or
local network might not even be necessary if workloads are operating on the same
node. As a result, network capacities are freed up to be used by workloads which
actually need to communicate with cloud nodes.

1.2. Problem Statement and Objectives

As outlined in Section 1.1, both edge and cloud computing approaches come with their
own specific advantages. Now, a combination of the two paradigms for FaaS might be
feasible to achieve to exploit their respective advantages, and the basis for this approach
has been described as “Osmotic computing” in 2016 already [19]. Yet, implementations
for heterogeneous edge-cloud FaaS-environments have not been attempted, although
the groundwork has been laid by edge-only FaaS-approaches such as tinyFaaS [1] or
Lambda@Edge [2] as well as by projects extending K8s to the edge, such as KubeEdge.

We want to build upon that research and want to elevate knowledge about e.g. which
nodes run in cloud and which ones run in edge contexts, or physical node location—
information held by a K8s distribution itself or by a hybrid cloud K8s platform such

2



1.3. Contributions

as KubeSphere. To achieve this, an architecture for heterogeneous edge-cloud FaaS-
infrastructures is to be designed and implemented using tools like the aforementioned
KubeEdge and KubeSphere.

The main objective is to run a serverless framework such as OpenFaaS on a K8s cluster
consisting of both cloud and edge nodes. At the same time, we want to leverage K8s’
knowledge of, among other factors, physical node placement to influence and optimize
scheduling of FaaS workloads between cloud and edge nodes.

Ideally, we want to implement some kind of tool to help deploy and configure the
infrastructure and to help with management of deployed FaaS workloads in terms of
scheduling configuration and cloud / edge placement.

After designing and implementing the architecture and tool successfully, we want to
thoroughly test and evaluate our work.

1.3. Contributions

Several contributions as part of this thesis have been crucial to achieve the objectives
listed in Section 1.2.

The most important contribution is the design and implementation of an architec-
ture to run the OpenFaaS framework and corresponding functions on a hybrid edge-
cloud-infrastructure based on KubeEdge, leveraging the power of edge and serverless
computing with manageable overhead by moving management components to the
cloud.

Additionally, an automation based on Terraform and Ansible has been developed to
automatically deploy and configure the architecture and all its related components on
an OpenStack-based cloud in a reproducible manner.

Furthermore, said infrastructure implementation has been tested, benchmarked and
evaluated according to multiple criteria to assess its value and to evaluate whether the
goals stated in Sections 1.1 and 1.2 have been reached.

1.4. Outline

Following this introductory chapter, we will first give an overview on the background
and technologies upon which this thesis is based in Chapter 2. This also includes
significant or essential terms used throughout the thesis and relating to the applied
technologies and tools, which are fundamental for understanding certain concepts.

After shining a light on the technical background in Chapter 2, Chapter 3 contains an
overview of research and technologies which relate to, or aim to achieve goals similar to
what is planned to achieve in this thesis.

Chapter 4 is the first of two longer chapters, which are also the most important ones
as they contain the majority of work done. It describes the designed architecture and
the steps taken to implement said architecture in infrastructure, including hardware
specifications as well as tool configurations. The chapter also contains an overview of

3



1. Introduction

the aforementioned automation that allows for reproducible deployment, as well as
details regarding scheduling configuration and parameters for function deployments
involving edge nodes. The final part of the chapter addresses a number of encountered
challenges during implementation as well as some caveats concerning the implemented
solution.

After implementing our architecture, naturally we want to analyze and evaluate
our approach. Immediately following the implementation details, Chapter 5 contains
detailed information about the evaluation method as well as analyses of several bench-
marks of the implemented infrastructure.

Finishing up, Chapter 6 concludes the thesis and summarizes our work. In addition,
we highlight possible future work and research that may be performed based on the
work of this thesis.

4



2. Background

This chapter provides information about several topics, technologies and concepts
that our work is based on. It gives an overview of significant terms and concepts
used throughout the thesis, as well as a summary of the technologies that Chapter 4
(Implementation) builds upon.

2.1. Serverless Functions / Function-as-a-Service (FaaS)

Serverless Functions, also called Function-as-a-Service (FaaS) workloads, are the core of
the “Serverless” cloud computing execution model.

A function is a piece of code that is uploaded to, deployed, managed and invoked by
a FaaS platform and runtime such as OpenFaaS. Functions can be written in any pro-
gramming language, given the targeted FaaS platform provides a runtime environment
for the one chosen.

The function itself must contain a handler function, which may receive a payload
upon which the function can operate. Invocations may happen due to an HTTP(S)
request targeted directly at the function by a user, or due to any other event tied to the
function, such as triggers fired upon arbitrary changes in other components of a cloud
infrastructure.

Function instances can be up- and downscaled depending on the current request
load, resulting in efficient management of cloud resources and minimization of costs,
especially when using an external cloud provider.

All relevant cloud providers offer services to run FaaS workloads, such as AWS
Lambda, GCP Functions or Azure Functions.

2.2. Used Technologies

The following section briefly describes all major technologies that find employment
throughout this thesis.

2.2.1. Kubernetes

Kubernetes (K8s) [7] is an Open-Source system for the automated deployment, scaling,
and management of containerized applications, originally developed by Google and
nowadays maintained by the Cloud Native Computing Foundation (CNCF). It provides
a common API for large-scale application and container management across hundreds
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2. Background

of computing nodes, with resources such as Pods, Deployments or Services declared
and managed as YAML manifests.

Besides the official K8s distribution, several certified and interoperable downstream
distributions are available, such as Rancher RKE1, Red Hat OpenShift2 or K3s [20].

In addition, all relevant cloud providers offer some form of managed Kubernetes-as-
a-Service: EKS (AWS), GKE (GCP) or AKS (Azure).

2.2.2. KubeEdge

KubeEdge [6] is a “Kubernetes Native Edge Computing Framework”, an incubating project
under the umbrella of the CNCF just like K8s. It enables the orchestration and manage-
ment capabilities of K8s for hosts at the edge with limited resources.

To achieve this, KubeEdge delegates some responsibilities of the K8s kubelet, which
normally runs on each node, from edge nodes to other cloud nodes in the cluster to
a component called CloudCore. Remaining on the edge node is a component called
EdgeCore, communicating with CloudCore and accommodating for edge-specific events
such as a network failure to keep applications running.

2.2.3. OpenFaaS

OpenFaaS [10] is an Open-Source framework for creating, deploying and managing
serverless functions, mainly targeting K8s for deployment. Functions can be created,
managed and deployed via the faas-cli [21] or from a web interface. Deployed
functions on a K8s cluster behave like any other native K8s resource and can be managed,
altered and orchestrated as such.

2.2.4. Terraform

Terraform [12] is an Open-Source tool developed by HashiCorp to manage infrastructure
as code in a declarative manner. It supports numerous cloud providers, including
AWS, GCP, Azure, as well as OpenStack, the one used for the Implementation (see
Section 4.2.1), by using so-called plugin providers.

Infrastructure is managed by declaring resources in the HashiCorp Configuration
Language (HCL) or JSON syntax, and modules that are reusable across different projects
can be implemented, too. Terraform can manipulate infrastructure in any given, deviat-
ing state, so that the result adheres to the desired, declared state after applying the tool.
The desired state may very well be dynamically determined by processing input from
variable files at runtime.

1https://rancher.com/products/rke
2https://www.redhat.com/en/technologies/cloud-computing/openshift
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2.3. Taxonomy

2.2.5. Ansible

Ansible [4] is an Open-Source tool developed by Red Hat used for the automation of
configuration and administration of computing nodes.

Ansible connects to configurable nodes via SSH, has no other prerequisites, and is
driven by declarative, repeatable tasks and roles in the YAML language. Tasks, roles,
templates, and the use of variable files facilitate code reuse, thus configurations can be
applied and adapted to multiple projects easily.

2.2.6. KubeSphere

KubeSphere [8] is “the Kubernetes platform tailored for hybrid multicloud”, and calls
itself an operating system for cloud-native application management, based on K8s and
certified by CNCF. It features plug-in support for use cases such as DevOps and logging,
and is open for third-party extensions to integrate into the platform.

Of particular interest for this thesis is the promised integration with KubeEdge, which
should deliver easy setup, management and configuration of all components involved.

2.3. Taxonomy

Most of the following terms and technologies are also included in the Glossary of the
thesis (see Page ix). However, as some terms are used or coined throughout the thesis
and are most crucial to follow some concepts, the description in the glossary may not
suffice. Therefore, the most important terms receive a more thorough explanation in
this section.

Node

A Node refers to a computing unit. In our case, this term refers to the server VMs further
described in Section 4.2.1. These servers are mapped one-to-one to K8s Nodes [22], being
entities onto which K8s resources such as Pods can be scheduled for execution.

Pod

The term Pod [23] refers to the K8s concept. A Pod is a workload that consists of one
or more containers, which are scheduled onto a node for execution. Pods are usually
managed by Deployments.

Deployment

Deployments [24] are yet another K8s concept, used to declare the desired state of an
application consisting of pods in declarative YAML manifests. After creating or altering
a deployment, the K8s deployment controller takes actions to bring the actual state to
the desired state, e.g. by adding or removing pods.

7



2. Background

Horizontal Pod Autoscaler (HPA)

Horizontal Pod Autoscalers [25] are a K8s resource and are responsible for automatic up-
and downscaling of pod-managing resources such as deployments to match the current
need. Scaling decisions are based on continuously collected and evaluated metrics in
order to fulfill configured target quotas such as average CPU or memory utilization
across pods of a deployment.

Container Network Interface (CNI) Add-on

In order for pods to be able to communicate with each other, a Pod network must be
deployed onto the K8s cluster. Pod networks are also called plugins, and must adhere
to the Container Network Interface specification3. Popular examples for CNI plugins
include Flannel4 and Calico5.

3http://github.com/containernetworking/cni
4https://github.com/flannel-io/flannel
5https://github.com/projectcalico/calico
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3. Related Work

Related research exists that touches on some parts of, or aims to achieve goals similar to
what is planned to achieve in this thesis. Furthermore, technologies that are similar to
the KubeEdge project are continually developed in parallel.

This chapter aims to give a brief overview about both types of related work.

3.1. tinyFaaS

tinyFaaS [1], designed and implemented by Pfandzelter and Bermbach, promises to be
a “lightweight FaaS platform for edge environments”. The prototype is aimed at IoT
applications “with a focus on performance in constrained environments”.

This goal is achieved by implementing a custom FaaS platform that is optimized
for resource-scarce edge nodes, and consists of a Management service, a Reverse Proxy,
and several Function Handlers acting as the core for function execution environments.
Currently, only functions written for NodeJS 10 are supported.

Additionally, the Docker container runtime is expected to be installed on the node
tinyFaaS is to be run on. As Docker is only one flavor of containerization and container
runtime, this may pose as a limitation on certain use-cases.

Unlike our work, tinyFaaS pursuits an edge-only FaaS approach and is not aimed at
hybrid edge-cloud infrastructures. Additional edge-only FaaS approaches, proposals,
and prototypes exist, but at this time, none investigates possibilities of running a FaaS
platform on mixed edge-cloud clusters as is done in this thesis.

3.2. K3s

K3s [20] is a CNCF-certified K8s distribution “built for IoT & Edge computing”, and
calls itself “perfect for Edge”.

K3s bundles all components required to successfully run a K8s cluster, such as
container runtime, CNI plugin or Metrics Server [26] into one single binary. This
binary promises a smaller distribution size, as well as a smaller memory footprint than
upstream K8s, which is beneficial to resource-constricted edge nodes.

In contrast to KubeEdge, K3s does not use a specialized architecture to mimic kubelet
behavior on edge nodes, and does not differentiate between cloud and edge nodes at
all—nodes are solely classified as standard K8s control-plane or worker nodes.

9



3. Related Work

3.3. MicroK8s

MicroK8s [27] is, similarly to K3s from Section 3.2, a CNCF-certified K8s distribution
bundled in a single package. Calling itself “production Kubernetes for [. . .] Edge and
IoT”, it also includes “sensible defaults” for e.g. metrics as well as the capability to plug
in replacements and add-ons easily.

What sets this distribution apart is the way of packaging itself—it is bundled as a
single container image, which seems peculiar at first, but enables features such as simple
K8s upgrades.

Nevertheless, MicroK8s is only suitable for single-node K8s clusters and is therefore
most likely not applicable to most edge computing and FaaS use-cases.

3.4. OpenYurt

OpenYurt [28] is, similarly to KubeEdge, a project under the umbrella of the CNCF,
although at the earlier Sandbox project stage. It is “an open platform that extends
upstream Kubernetes to Edge”, just like KubeEdge promises.

Similarly, OpenYurt employs an architecture of running a management component
in the cloud, and a separate component on each edge node to accommodate for edge-
specific events such as network failure. However, the component at edge does not
mimic a kubelet like EdgeCore does—the edge node still runs all K8s components such
as the kubelet, kube-proxy or CNI plugin, which removes the need for a networking
component such as EdgeMesh.

This project should be closely followed and compared to the state of rivaling projects
such as KubeEdge, given that it progresses further and graduates from the Sandbox
project stage. It could prove itself as an alternative for the integration of edge nodes into
a K8s cluster as a basis for running FaaS workloads in a hybrid edge-cloud environment.

10



4. Implementation

This chapter describes the architecture designed to achieve the objectives already men-
tioned in Chapter 1. It also includes information about all steps taken to implement the
designed architecture in infrastructure, including hardware specifications as well as tool
configurations.

A section provides an overview of the implemented automation that allows for
reproducible deployments of said infrastructure. In addition, the subsequent section is
devoted to detailing scheduling configuration and parameters for deployments involving
edge nodes.

Lastly, we list a number of encountered challenges during implementation as well as
some caveats concerning the implemented solution.

4.1. Overall Architecture

Figure 4.1 depicts the desired architecture to be implemented.
We start with hardware nodes, located both in the cloud and at edge, splitting our

infrastructure in a cloud realm and an edge realm. Now, to form a K8s cluster with
both types of nodes, we will setup KubeEdge. The CloudCore management component
of KubeEdge runs on cloud nodes, its counterpart EdgeCore on every edge node that
should participate in the cluster. The network connection between cloud and edge nodes
is bridged by the KubeEdge component EdgeMesh, which lives inside the K8s cluster.

Furthermore, we deploy OpenFaaS inside the K8s cluster. Its management components
such as the gateway will run in the cloud realm while FaaS workloads will be freely
schedulable between both cloud and edge realm.

4.2. Infrastructure Setup

This section contains information and details about the hosting environment and hard-
ware used to deploy the infrastructure, as well as details regarding the setup and
configuration of employed technologies.

4.2.1. Hosting Environment and Hardware

The infrastructure hosting the architecture is provided by the OpenStack-based Leibniz-
Rechenzentrum Compute Cloud [29]. For this thesis, VMs with specifications according
to Table 4.1 have been used.
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Cloud Realm Edge Realm

NodesNodes

KubeEdge

CloudCore EdgeCore

OpenFaaS

FaaS Workloads

Management

faas-netes

OpenFaaS
Gateway

EdgeMesh

K8s Cluster

Figure 4.1.: Overall Architecture.
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Table 4.1.: Hardware specifications.

VM Name & Alias VM
flavor

vCPU
count

RAM Disk
size

OS

Cloud Node 1 (Main) lrz.large 4 18 GB 20 GiB Ubuntu 20.04
Cloud Node 2 (Worker) lrz.medium 2 9 GB 20 GiB Ubuntu 20.04
Edge Node 1 (Edge) lrz.small 1 4.5 GB 20 GiB Ubuntu 20.04

Table 4.2.: Port Requirements for inter-node communication.

Protocol Port (Range) Purpose

TCP

22 SSH
53 DNS
80 HTTP

443 HTTPS
6443 K8s API Server
8443 K8s Metrics Server
9090 Prometheus
9100 Prometheus Node Exporter

10000–10004 KubeEdge
10250–10258 K8s kubelet

10350 KubeEdge
10550 KubeEdge EdgeMesh

30000–32767 K8s NodePorts

UDP
53 DNS

8285 Flannel
8472 Flannel

The ports in Table 4.2 must be opened for incoming traffic in order to achieve successful
inter-node connectivity and communication. In our case, these adjustments had to be
made in the Security Group rules of our VMs in OpenStack.

4.2.2. Kubernetes

There are many ways to set up a K8s cluster, e.g. via the official kubeadm1 binary provided
by K8s, or via one of many third-party certified distributions. In our setup, the official
upstream K8s distribution in v1.23.4 is installed on all cloud nodes using the kubeadm
installer. We also deploy the Kubernetes Metrics Server [26] for metrics collection to be
used by HPAs. See also Section 4.5.4 for more context about Cluster Monitoring.

1https://kubernetes.io/docs/setup/production-environment/tools/kubeadm
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4.2.3. KubeEdge

KubeEdge consists of two main components, also depicted in Fig. 4.1: the CloudCore
component that runs in the cloud and performs management tasks of edge nodes,
which in turn each run the EdgeCore component as an alternative to the classic K8s
kubelet. Both components are installed in v1.10.0 using the keadm [30] installer tool
(v1.9.1) according to the KubeEdge installation guide [31], as seen in Code Snippet 4.1.
CloudCore is installed on the K8s main node, EdgeCore is installed on each edge node
that should be joined to the cluster.

# install CloudCore (main node)
$ keadm init --advertise-address=<PUBLIC IP OF MAIN NODE>
# get join token (main / CloudCore node)
$ keadm gettoken
# install EdgeCore (egde nodes)
$ keadm join --cloudcore-ipport=<PUBLIC IP OF MAIN NODE>:10000 \
--token=<TOKEN>

Code Snippet 4.1: KubeEdge installation with keadm.

$ kubectl taint node <EDGE NODE NAME> "node-role.kubernetes.io/edge:
NoSchedule"

Code Snippet 4.2: Tainting edge nodes with NoSchedule effect.

Each edge node is automatically labeled by the keadm installer with the node-role
.kubernetes.io/edge= label to identify edge nodes. Additionally, we taint each edge
node as seen in Code Snippet 4.2. This prevents workloads from being scheduled onto
these nodes without explicitly specifying a toleration against the taint. We apply this
because we want to select workloads that should be allowed to run at edge, and prevent
everything else that might get deployed to the K8s cluster from accidentally being run
at edge.

4.2.4. OpenFaaS

After setting up the K8s cluster according to Sections 4.2.2 and 4.2.3, OpenFaaS can be
deployed to it. We follow the OpenFaaS deployment guide for K8s [32], and, to facilitate
the installation process, use the arkade [33] installer tool.

Executing Code Snippet 4.3 will install all OpenFaaS components into the K8s cluster.
The additional argument deactivates OpenFaaS Pro-specific features such as scaling
down functions to zero.

All OpenFaaS management components will run in the cloud realm under the names-
pace openfaas, as depicted in Fig. 4.1, due to the taint on the edge nodes described in
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4.3. Automated and Reproducible Infrastructure Deployment

Section 4.2.3.
With Code Snippet 4.4 we can follow the status of the deployment and wait for the

OpenFaaS gateway to reach the K8s Ready state.
In the meantime, we can already retrieve the basic authentication credentials the

deployment has created. Executing Code Snippet 4.5 will print out the username and
password which can be used to access the OpenFaaS gateway to deploy and manage
functions.

$ arkade install openfaas --set openfaasPRO=False

Code Snippet 4.3: OpenFaaS deployment with arkade.

$ kubectl rollout status deployment gateway --namespace openfaas

Code Snippet 4.4: OpenFaaS rollout status.

$ kubectl get secret basic-auth --namespace openfaas \
-o jsonpath="{.data.basic-auth-user}" | base64 --decode

$ kubectl get secret basic-auth --namespace openfaas \
-o jsonpath="{.data.basic-auth-password}" | base64 --decode

Code Snippet 4.5: OpenFaaS credential retrieval.

Now we just need to figure out at which IP address and port the gateway is reachable.
Code Snippet 4.6 first prints the node name to which the gateway is scheduled, followed
by the port where it is accessible. An alternative to access the gateway, e.g. if the node it
is scheduled on is not publicly reachable, is to proxy the gateway service to localhost
with kubectl proxy and accessing it from there.

To deploy and manage functions, we can either use the OpenFaaS portal via a Browser
at the IP and port we retrieved with Code Snippet 4.6, or use the faas-cli [21]. Code
Snippet 4.7 showcases how to login to the portal via the CLI and how to deploy a sample
function, in this example the figlet function, which echoes back input in ASCII art
when called at http://<GATEWAY_IP>:<GATEWAY_PORT>/function/figlet.

All OpenFaaS functions will be deployed inside the K8s cluster namespace openfaas-fn.

4.3. Automated and Reproducible Infrastructure Deployment

As all the provisioning, deployment and configuration described in Section 4.2 can be
quite tedious and also error-prone if performed by hand repeatedly, especially when
working and experimenting with throw-away clusters, we have developed an automation
to handle these tasks [34].
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$ kubectl get pods --selector app=gateway --namespace openfaas \
-o jsonpath="{.items[0].spec.nodeName}"

$ kubectl get service gateway-external --namespace openfaas \
-o jsonpath="{.spec.ports[0].nodePort}"

Code Snippet 4.6: OpenFaaS Gateway node and port retrieval.

$ export OPENFAAS_URL=<GATEWAY IP>:<GATEWAY PORT>
$ faas-cli login --username <USERNAME> --password <PASSWORD>
$ faas-cli store deploy figlet

Code Snippet 4.7: OpenFaaS login and function deployment via faas-cli.

The automation is based on the popular tools Terraform and Ansible, the former
for provisioning of VMs for both cloud and edge, and the latter for deployment and
configuration of the tools employed in our architecture design from Section 4.1 to behave
as described in this thesis.

This results in the ability to reproducibly set up a cluster architecture like the one used
in this thesis in minutes, the only prerequisite being access to an OpenStack-based cloud.
Using a different cloud provider for deployment may also be possible, but requires
adjustments to the Terraform providers and VM resource configurations.

4.4. Scheduling of Functions

To influence K8s scheduler decisions in the way of preferring edge nodes over cloud
nodes and only scheduling to cloud nodes if resources at the edge are depleted, we
make use of K8s node affinity constraints [35].

The configuration for Deployments shown in Code Snippet 4.8 has the following effect:

• Lines 10 to 13 make sure that the deployment’s pods can also be scheduled on
nodes tainted with the node-role.kubernetes.io/edge:NoSchedule taint. As all
our edge nodes are tainted as such (see Section 4.2.3), to only allow selected
workloads, we specify a toleration against said node taint for the respective
deployment. Otherwise, the taint prevents workloads without toleration against it
from being scheduled on the tainted node.

• Lines 14 to 22 make use of the aforementioned node affinity constraints, expressing
a scheduling preference for nodes with the node-role.kubernetes.io/edge label.
The weight value in Line 18 can be adjusted in the range of 0–100, specifying
the weight of the preference with regard to other scheduling rules, effectively
influencing the ratio of pods scheduled on cloud/edge nodes.
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1 apiVersion: apps/v1
2 kind: Deployment
3 [...]
4 spec:
5 [...]
6 template:
7 [...]
8 spec:
9 [...]

10 tolerations:
11 - key: "node-role.kubernetes.io/edge"
12 operator: Exists
13 effect: NoSchedule
14 affinity:
15 nodeAffinity:
16 preferredDuringSchedulingIgnoredDuringExecution:
17 # variable [0-100] depending on preferred cloud-edge ratio
18 - weight: 50
19 preference:
20 matchExpressions:
21 - key: "node-role.kubernetes.io/edge"
22 operator: Exists

Code Snippet 4.8: Deployment configuration for functions at edge.
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By applying this configuration to existing deployments, such as deployments created
by the faas-cli or OpenFaaS gateway when deploying a function, we achieve the
desired scheduling effects for our FaaS workloads.

Given the case one is not working with deployments but rather ephemeral Pods, the
significant key-value pairs in Lines 10 to 22 can also be applied to the PodSpec directly
to only influence scheduling decisions for a specific Pod.

4.5. Challenges, Caveats and Failed Attempts

During implementation and experiments with infrastructure and different tools, multiple
challenges presented themselves. This section lists and describes most of them in detail,
including challenges that resulted in failed attempts, and additionally contains some
caveats regarding the final implementation approach.

4.5.1. KubeSphere Setup

Early attempts implementing the infrastructure included an approach to deploy the
K8s operating system KubeSphere as it promises out-of-the box support for KubeEdge
nodes. Deployment of both K8s and KubeSphere was done using the KubeKey (kk) [36]
installer tool with the commands shown in Code Snippet 4.9. We use an adapted cluster
configuration file to enable KubeEdge integration, as shown in Code Snippet A.1.

$ kk create config \
--with-kubernetes v1.21.5 \
--with-kubesphere v3.2.1 \
-f configuration.yaml

# adapt configuration.yaml file before executing next command
$ kk create cluster -f configuration.yaml

Code Snippet 4.9: Cluster creation with KubeKey.

However, as easy and seamless as installation and deployment of the desired tools
seems, there were a lot of unanticipated issues and challenges both during setup and use,
resulting in a setback of our implementation and evaluation. The following challenges
occurred during setup of the KubeSphere environment and during early use:

1. Operating system versions for cluster nodes

Usage of CentOS 7 and Ubuntu 18.04 LTS is recommended. Attempts at setting up
a KubeSphere cluster with CentOS 8 for cloud nodes and Ubuntu 20.04 for edge
nodes have been unsuccessful and unreliable, see also Challenge 2 in Section 4.5.2.
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2. Choice of Container runtime

Usage of the Docker2 container runtime is recommended, even though Docker
runtime support is deprecated in K8s from version v1.20.0 onwards and removed
altogether in version v1.24.0 to encourage the use of a Container Runtime Inter-
face (CRI)-compliant container runtime. containerd runtime support is marked
as experimental and results in additional issues, see also Challenges 3 and 5 in
Section 4.5.2.

3. SELinux mode

Although SELinux may be a sophisticated Linux kernel extension to improve
security and access rights management, it is also a hassle to configure correctly,
even more so if one does not have an exact overview of binaries and directory
permissions needed for a service to run. As this is the case for the kubekey installer,
more specifically the Docker and containerd binaries installed by it, it is advised
(also by KubeSphere) to set SELinux, if employed, to Permissive mode by editing
/etc/selinux/config and setting SELINUX=permissive.

We tried adding policies for the binaries etc. of Docker and containerd installed
by kubekey, but still, runtime issues occurred which were only solved by changing
the SELinux mode.

4. Choice of CNI plugin

Use of Flannel as CNI plugin is recommended over the use of Calico (the default
CNI plugin in KubeSphere).

After setting up and using a cluster with Calico for some time, we encountered
an issue where Calico randomly encountered repeated failures and brought one
node into an unstable state, crashing the whole KubeSphere environment in the
process. Trying to solve the issue to recover the node and KubeSphere was way
more troublesome than setting up the cluster anew.

After switching to Flannel no such issue occurred anymore. However, the conse-
quences of Challenge 2 in Section 4.5.2 have to be considered instead.

5. Firewall settings

Correctly adjusting firewall configurations was a challenge, as not all required open
ports were documented at a single source of truth. As certain open ports are crucial
for successfully running a K8s cluster and inter-node communication, also in the
context of KubeEdge, missing opening a port or port range can lead to problems
and challenges further down the road. See also Section 4.2.1 and Table 4.2.

6. Kubeconfig inconsistency / High Availability preference

After successfully running kubekey, as shown in Code Snippet 4.9, we can access

2https://docker.com
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the K8s cluster using the Kubeconfig file created by the installer located in either
/etc/kubernetes/admin.conf or ~/.kube/config.

Now, during setup of the cluster, kubekey assumed we were running in a high-
availability environment and are using a load balancer, even though we did specify
otherwise in the cluster configuration (Code Snippet A.1). If we want to access
the cluster from outside the main node, we have to adjust the K8s API server
location in our local copy of the Kubeconfig, by changing .clusters[].cluster.
server from https://lb.kubesphere.local:6443 to https:<Public IP of main
node>:6443.

7. kubekey [36] incompatible with macOS

The latest kubekey version at the time turned out to be incompatible with macOS,
thus remote cluster creation failed during one of the last installation steps, the
initialization of the CNI plugin. Running the tool on one of the nodes to be
bootstrapped itself circumvented this issue.

4.5.2. KubeSphere-KubeEdge Integration

After working through the challenges mentioned in Section 4.5.1 regarding setup of the
KubeSphere environment, several more challenges presented themselves during setup
and usage of the promised KubeEdge integration.

1. Unstructured and incomplete documentation

The documentation for the KubeEdge integration is distributed across multiple
pages and guides that do not necessarily relate to each other. Additionally, some
components are not documented at all, e.g. the edgewatcher component also
mentioned in Challenge 2, which is very important for node connectivity and
proprietary to KubeSphere.

This makes figuring out issues or debugging connectivity problems quite a bit more
cumbersome than it should be for a feature that has been in a stable release for
some time now (KubeEdge integration debuted in v3.1.0, released April 20213).

2. iptables firewall and routing configuration

The iptables system is internally used both by the Flannel version shipped by
KubeSphere (see Challenge 4 in Section 4.5.1), and the KubeSphere-KubeEdge
integration component called edgewatcher, to configure network packet routing be-
tween cluster nodes (Flannel) and between cluster and edge nodes (edgewatcher).

However, the iptables system has been replaced by the new nftables system
in CentOS 8, the iptables binary used both by Flannel and edgewatcher is no
longer available. This reinforces the advice given in Challenge 1 from Section 4.5.1
regarding OS selection.

3https://github.com/kubesphere/kubesphere/releases/tag/v3.1.0
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One could of course still use another CNI plugin, however, our experience de-
scribed in Challenge 4 from Section 4.5.1 suggests otherwise. Still, the edgewatcher
dependency on iptables would not be solved by switching the CNI plugin.

3. Outdated KubeEdge version v1.7.2

KubeSphere ships the slightly outdated KubeEdge version v1.7.24 (current ver-
sion: v1.9.1). This version still ships with an integrated EdgeMesh networking
component (see Section 4.5.3 for more details), which only works when using
Docker as a container runtime, reinforcing the outcome of Challenge 2 from
Section 4.5.1.

In versions after v1.7.2, the component has been decoupled from KubeEdge.

4. CloudHub configuration not respected by kubekey

The deployment of the CloudHub gateway, the entry point to the KubeEdge Cloud-
Core component, has been configured in Code Snippet A.1, the configuration file
used by the kubekey installer. Namely, the .spec.kubeedge.cloudCore.cloudHub.
advertiseAddress value is set to the public IP of our main node to be reachable.
In addition, the .spec.kubeedge.cloudCore.nodeSelector field instructs K8s to
only schedule the component to our main cluster node.

However, these configurations seemingly are ignored by kubekey, an issue we
also encountered in Challenge 6 from Section 4.5.1. As a result, we need to
manually patch the deployed K8s resource for CloudHub to accord to the values
we originally specified for the component to be used successfully.

5. KubeEdge installer Segmentation faults

The keadm installer tool used to initialize an edge node throws a Segmentation
fault trying to install the KubeEdge version recommended by KubeSphere,
v1.7.2, during initialization of a node configured to use containerd as a container
runtime. This can be circumvented by using a newer version of KubeEdge, e.g.
v1.9.0, or by using Docker as the container runtime on the edge node.

After encountering all these challenges, we came to the conclusion that the KubeEdge
integration into KubeSphere is not as simple or working right out-of-the-box as promised.
The main issues that we were not able to resolve were networking between cloud and
edge nodes as well as DNS resolution on edge nodes, issues most likely caused by the
proprietary edgewatcher component KubeSphere employs.

This lead to us scrapping the KubeSphere approach for our architecture altogether,
experimenting with an approach based on a native K8s distribution in combination with
native KubeEdge instead.

4https://github.com/kubesphere/ks-installer/blob/release-3.2/roles/kubeedge/files/
kubeedge/kubeedge/values.yaml
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4.5.3. KubeEdge EdgeMesh / Cross-Cloud-Edge Networking

After scrapping the KubeSphere environment and trying out a different approach on
a native K8s distribution, there still were challenges to conquer. Namely, challenges
regarding networking across the cloud-edge barrier, meaning communicating with an
edge node from a cloud node or vice-versa. These challenges all relate to the EdgeMesh
component of KubeEdge.

1. Outdated, incomplete and contradicting documentation

Similar to Challenge 1 in Section 4.5.2, KubeEdge and especially the EdgeMesh com-
ponent suffer from either outdated, incomplete or contradicting documentation,
depending on the issue one is looking into.

This has improved in parts, the EdgeMesh documentation is coherent after its
decoupling from KubeEdge, but still is not as exhaustive as one wishes it to
be. Also, missing version references in existing documentation certainly do not
help, especially if information about the decoupling of EdgeMesh into a separate
component can only be found if digging through the project’s GitHub repository.

Granted, we are talking about a project in the CNCF incubating stage, but still, one
can wish for improvements as they would have made debugging issues a more
pleasant experience.

2. Complex setup and configuration

Setting up KubeEdge and EdgeMesh, one has to face a multitude of configuration
options, many of which are not documented, as outlined in Challenge 1. Given
the already complex topic of networking configuration in general, this adds lots of
potential points of failure during setup, resulting in a setup that might not work
as expected.

We got stuck multiple times trying to configure KubeEdge and getting nodes to
communicate across the cloud-edge barrier. Even after following documentation
regarding setup or advice given from maintainers of the project in GitHub issues,
the setup was still not functioning correctly. We tried several approaches, both
with a K8s cluster bootstrapped via the official kubeadm installer and a cluster
based on K3s [20], without success at first.

Now, even though the EdgeMesh component has been difficult to set up and trou-
bleshoot, one of our attempts seemed to work out in the end. Although not perfect, at
least with functionality sufficient for us to continue our research, deploy and invoke
functions, and run our evaluation.

4.5.4. Cluster Monitoring

K8s Cluster Monitoring, meaning the continuous collection of metrics such as CPU
or memory usage on a per-resource basis, is a prerequisite for the automatic up- and
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downscaling of deployments based on request load. Both the K8s integrated HPA and
the OpenFaaS Scaler included in OpenFaaS Pro rely on metrics data to compute scaling
decisions.

When it comes to monitoring solutions for K8s clusters, there are two popular setups:

• Kubernetes Metrics Server [26], works by scraping each node’s kubelet for metrics
data from container runtime

• Prometheus5, works by running a node-exporter6 pod on each node and forward-
ing system data about resource usage to a central instance

Both configurations did not work out-of-the-box for the edge nodes, due to the
specialized KubeEdge architecture which is not running a kubelet per se but rather
emulating one. This ruled out the Prometheus setup in the end.

However, the Metrics Server approach worked with a few configuration tweaks, both
on KubeEdge’s and the metrics server’s side. For KubeEdge, we needed to configure a
mixture of concepts, namely CloudStream, EdgeStream, and Tunnel Port.

For the metrics server to work, we adjusted and added some command line arguments
to the deployment spec, see the relevant excerpt in Code Snippet 4.10. Line 13 has been
altered to prefer the external IP address of nodes for scraping kubelets, away from the
default of preferring the internal IP address, otherwise the edge node can not be scraped
correctly. Line 16 has been added, as the kubelet’s certificates are only valid for their
internal IP address, the aforementioned change therefore lets TLS connections fail due
to invalid certificates. In a production environment, this change should not be applied,
instead the underlying issue should be resolved by regenerating certificates for nodes
whilst also including their external IP addresses.

It should also be mentioned that metrics collection did not function at all during ex-
periments with the now-disbanded KubeSphere approach (see Section 4.5.1 for reasons),
even though advertised otherwise.

4.5.5. NodePort Routing from Cloud to Edge

Normally, exposing a K8s service through the service type NodePort exposes a port on
all nodes of the K8s cluster. Sending a request to any of the nodes at that port will relay
the request to a pod belonging to the service, no matter on which node these pods are
running, and especially if no pod of the service is running on the targeted node itself.

However, this type of routing does not work as expected in our implementation, or at
least only partially. Requests to edge nodes will always reach their destination, even if
no pod is running on the node itself, as is the expected behavior.

If a request is, however, targeted at a cloud node, and pods belonging to the targeted
service are only running on edge nodes, the request will time out. Yet, if at least one

5https://prometheus.io
6https://github.com/prometheus/node_exporter
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1 apiVersion: apps/v1
2 kind: Deployment
3 [...]
4 spec:
5 [...]
6 template:
7 [...]
8 spec:
9 containers:

10 - args:
11 - "--cert-dir=/tmp"
12 - "--secure-port=4443"
13 - "--kubelet-preferred-address-types=ExternalIP,InternalIP,Hostname"
14 - "--kubelet-use-node-status-port"
15 - "--metric-resolution=15s"
16 - "--kubelet-insecure-tls"

Code Snippet 4.10: Metrics server deployment manifest.

pod is also running on a cloud node in addition to edge, routing will fall back to the
cloud pod and work as expected.

The cause of this abnormal behavior is unclear, but it might be due to yet another issue
with the setup and configuration of the KubeEdge EdgeMesh component, as already
detailed in Section 4.5.3.

4.5.6. OpenFaaS Portal

The OpenFaaS portal, which can be used to deploy, manage and invoke functions, will
fail with an Internal Server error when invoking functions through it that exclusively
have pods running on edge nodes. This behavior may be linked to the issue described
in Section 4.5.5.

Curiously, accessing the pods from within the K8s network via means of either
individual Pod IP, Service Cluster IP or Service DNS name in the form of <SERVICE>.
<NAMESPACE>.svc.cluster.local:<PORT> works as expected without a problem.

As a result, this issue does not really have an impact on function usage and man-
agement, as functions can still be deployed from either the Portal or the faas-cli [21],
invoked via means of direct requests, and configured natively in K8s via their respective
resource manifests.
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4.5.7. Readiness / Liveness Probes on Edge

For function deployments on edge nodes, pods scheduled on edge nodes fail to suc-
cessfully answer to Readiness and Liveness probes from the kubelet, or in our case,
EdgeCore. This is occurring even though the pods have started up completely and are
answering to requests if invoked directly via their Pod IP. Whether EdgeCore actually
does not probe pods correctly or simply fails to relay information about the outcome
of probes to the K8s API Server on the main node of the cluster is unclear. This issue
might as well be linked to the EdgeMesh component, as described in Section 4.5.3 and
Section 4.5.5.

As a consequence, in order for deployed pods on edge to be marked as Ready and
therefore addressable by K8s services, and to prevent incorrect restarting of pods due
to failing liveness probes, the deployment’s readiness and liveness probes have to be
removed from the K8s resource, if present.
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Now, after designing an architecture to run a FaaS-framework on a hybrid edge-cloud-
infrastructure and setting up the required infrastructure to run it, we want to test and
evaluate our implementation.

This chapter describes the evaluation approach used as well as the results of the
evaluation tests applied to different scenarios.

5.1. Method

In order to collect data for our evaluation, we need to generate requests for functions
running on the infrastructure.

To generate these requests, we rely on the tool k6 [37]. Over the span of 3 minutes, we
let k6 generate requests appropriate to the current function under test. We configured
k6 to gradually ramp up the number of Virtual Users (VUs), which basically act as while
loops running a script generating a single request, up to a limit over the span of 2
minutes. After the ramp-up, k6 is instructed to then continue to run for an additional
minute at the height of the ramped-up VU count.

During the whole k6 run, we continuously query the K8s API server retrieving the
number of pods associated with the function under test, as well as the node on which
they are running.

As a result, this data collection approach yields timestamped data about request
duration associated with the overall request load represented by the VU count, as well
as the number of pods responding to the requests, including their distribution across
cloud and edge nodes.

The complete list of steps taken during evaluation for each function from Section 5.3
and scenario described in Section 5.2 is as follows:

1. Deploy the function, either via the OpenFaaS portal or the faas-cli, an example
for the latter is also shown in Code Snippet 4.7.

2. Alter the generated K8s service to conform to type NodePort instead of ClusterIP,
due to issues described in Section 4.5.6.

3. Define deployment resource requests for HPA, as functions do not always specify
one.

4. Configure an HPA for the deployment, as shown in Code Snippet 5.1. The
parameter --max specifies the upper limit of pod scalability, whilst --cpu-request
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Table 5.1.: Evaluation Scenarios.

Scenario Request
Entrypoint

Initial Pod
Locations

HPA Scheduling
Locations

Base
Cloud Cloud Cloud

Active
Cloud only

Edge Edge Edge Edge only

Evaluation 1 (E1) Edge Edge Active Cloud & Edge

specifies the average percentage of CPU load per pod that should be achieved by
the HPA.

5. Configure tolerations and affinities of the deployment depending on the applied
scenario from Section 5.2.

6. Remove liveness and readiness probes of deployment, due to issues described in
Section 4.5.7 (only in scenarios involving edge nodes).

7. Run evaluation script based on k6 and collect data.

$ kubectl autoscale <FUNCTION> --namespace openfaas-fn --max 25
--cpu-request 50

Code Snippet 5.1: HPA configuration for deployments.

5.2. Scenarios and Objectives

Table 5.1 displays the different scenarios according to which we evaluate our imple-
mented infrastructure.

The first two scenarios, Base Cloud and Base Edge have the goal of collecting data about
the base performances of the two sites, by only exploiting resources of either cloud or
edge nodes at the same time.

We target our generated requests only at a node belonging to the respective site under
evaluation, on which the initial pod is also running. The respective deployment’s HPA
will also schedule pods only to the respective site due to the deployment’s affinities
and tolerations being adjusted in Step 5, as displayed in Code Snippet 5.2 and Code
Snippet 5.3. See also Section 4.4 for more information on nodeAffinity, tolerations, and
taints.

The third scenario, Evaluation 1 (E1), aims to collect data of a hybrid edge-cloud
configuration.

Requests are targeted at the node on the edge site on which the initial pod runs,
partially due to the issue described in Section 4.5.5. The configured HPA will schedule
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apiVersion: apps/v1
kind: Deployment
[...]
spec:
[...]
template:
[...]
spec:
affinity:
nodeAffinity:
requiredDuringSchedulingIgnoredDuringExecution:
nodeSelectorTerms:
- matchExpressions:
- key: "node-role.kubernetes.io/edge"
operator: DoesNotExist

Code Snippet 5.2: Deployment configuration for Scenario Base Cloud.

apiVersion: apps/v1
kind: Deployment
[...]
spec:
[...]
template:
[...]
spec:
tolerations:
- key: "node-role.kubernetes.io/edge"
operator: Exists
effect: NoSchedule

affinity:
nodeAffinity:
requiredDuringSchedulingIgnoredDuringExecution:
nodeSelectorTerms:
- matchExpressions:
- key: "node-role.kubernetes.io/edge"
operator: Exists

Code Snippet 5.3: Deployment configuration for Scenario Base Edge.
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to both cloud and edge nodes in this scenario, according to the deployment affinities
and tolerations displayed in Code Snippet 5.4. This configuration resembles the one
displayed in Code Snippet 4.8, the only change being the weight parameter, modified
from a moderate 50 to 80 (out of 100) to express a stronger preference of edge nodes
over cloud nodes.

Apart from performance data, we also want to collect data about the pod distribution
across cloud and edge in this scenario. This will allow evaluating scalability on edge
and to test if pods overflow to cloud nodes to handle request load in case the resources
of the edge site are exceeded. The impact on performance in this case is of interest, too.

apiVersion: apps/v1
kind: Deployment
[...]
spec:
[...]
template:
[...]
spec:
tolerations:
- key: "node-role.kubernetes.io/edge"
operator: Exists
effect: NoSchedule

affinity:
nodeAffinity:
preferredDuringSchedulingIgnoredDuringExecution:
- weight: 80
preference:
matchExpressions:
- key: "node-role.kubernetes.io/edge"
operator: Exists

Code Snippet 5.4: Deployment configuration for Scenario E1.

5.3. Examined Functions

Table 5.2 lists all serverless functions examined and used for data collection during the
evaluation, including a short description of each function.

The functions originate either from the OpenFaaS Store [38] or are custom functions
also used by Jindal et al. in “Estimating the Capacities of Function-as-a-Service Func-
tions” [39]. Each function serves a different purpose, meaning they each target one or
more specific resources of the host they are running on, such as CPU, Memory, Network
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Table 5.2.: Functions used for Evaluation.

Name Description Purpose Origin

nodeinfo Returns basic character-
istics about node, such
as CPU count and host-
name

CPU-intensive under
heavy load

[38]

gzip-compression Creates a 10 MB file
with random data and
compresses it using gzip

Memory & CPU-
intensive

Custom

dd Converts a 128 byte
block 10 times using
UNIX dd command

Disk I/O-intensive Custom

shasum Generates a shasum for
the given input, in our
case a 1 MB file with
random data

Network I/O & CPU-
intensive

[38]

or Disk I/O.

5.4. Results

Now, after describing the process of data collection, we want to have a look at the result-
ing data. The following section describes and interprets the sampled data visualized by
plots for each examined function.

5.4.1. nodeinfo (CPU)

Figure 5.1 shows the results according to the Scenarios Base Cloud and Base Edge from
Section 5.2 for the nodeinfo function, which is rather CPU-heavy on pods and their
hosting nodes under heavy request load.

We can observe a relatively stable response time up to approximately 150ms on both
cloud and edge, disregarding some outliers pushing request durations up to 300ms and
400ms respectively for cloud and edge. The increasing request load represented by the
climbing number of VUs seems to have no effect on request durations, due to scaling
efforts on the respective nodes.

Regarding scaling, in the Base Cloud scenario, the deployment is upscaled up to the
maximum number of pods allowed by the HPA, increasing together with the request
load, while the number of pods maxes out at 6 in the Base Edge scenario. This can be
explained by the fact that the Cloud site simply has more resources in terms of CPU
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Figure 5.1.: nodeinfo Base Scenarios.

capacity at hand (see Table 4.1), and the Edge site can not handle more than 6 pods
of the deployment at a time. Nevertheless, this seems to have no effect on the request
durations. It is likely the HPA would have scaled up the deployment given enough
resources to fulfill the CPU request requirement across pods, but pods were not yet as
overwhelmed as to have an impact on response times.

It is to be mentioned that during data collection in these scenarios, the metrics scraping
performed by the metrics server sometimes deviated from the defined resolution of 15
seconds when scraping the edge node. This is due to metrics scraping requests to the
kubelet, or in this case, CloudCore together with EdgeCore on the edge node, timing
out, meaning EdgeCore was not able to tunnel metrics data back to CloudCore for
consumption by the metrics server when under heavy load. However, this does not seem
to have an effect on the collected data, as this issue only occurred when the deployment
on edge had already been maxed out due to exhausted resource capacity.

Figure 5.2 shows the collected data relating to the Scenario E1 from Section 5.2.
We can observe request time behavior similar to that of Scenarios Base Cloud and

Edge, with the request time being consistently under 150ms, disregarding one outlying
request again. However, two average request duration trends can be observed too, one
lying between 100 and 150ms, the second one being around or under 50ms per request.
One possible explanation could be delays caused by internal K8s service load balancing
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Figure 5.2.: nodeinfo Scenario E1.

and routing distributing requests across different nodes and possibly even the barrier
between cloud and edge nodes.

Having a look at the scaling behavior, we can see that at first, additional pods were
scheduled at edge, only when edge CPU capabilities were nearly exhausted, pods were
also scheduled to cloud nodes to cope with the increasing request load, eventually
overtaking the edge pod count.

Overall, the combination of cloud and edge nodes seems to have handled the request
load better, as the maximum number of scheduled pods reached only 15, as opposed to
25 in Scenario Base Cloud. Yet, this could also be due to the aforementioned issue with
metrics scraping of pods at edge under heavy load, thus reported CPU usage of edge
nodes deviating from actual usage, potentially leading to skewed HPA behavior.

5.4.2. gzip-compression (Memory & CPU)

Figure 5.3 shows the results according to the Scenarios Base Cloud and Base Edge from
Section 5.2 for the gzip-compression function, which mainly uses memory and CPU
resources of the hosting node.

For the Base Cloud scenario, we observe request times ranging from under 1 second
up to approximately 4 seconds, with a steady incline relating to the increasing request
load represented by the VU count. Due to higher resource usages of the function, we
examine that the deployment is upscaled to the maximum capability of 6 pods already
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Figure 5.3.: gzip-compression Base Scenarios.

in the first third of the evaluation run. After this point, no more pods can be scheduled
to cope with the increasing load, thus, request durations increase slowly but steadily
from that point onwards.

Comparing to Base Edge, we start out with comparable request durations under 2
seconds. But, as expected due to fewer resources at edge, the rise in request time under
increasing load begins earlier and is steeper compared to Base Cloud, up to a maximum
of about 6 seconds after approximately the first half of the run. Having a look at the
scaling behavior, we can see the correlation, as the edge node maxes out on scheduled
pods at a count of 2, even earlier than in the Base Cloud Scenario.

For both Base Cloud and Base Edge, the sudden fall in VUs and sudden uptick in
request time at the end of the data collection interval can be explained with k6’s behavior
of cancelling requests at the end of the execution time after a grace period. Due to a
longer request round-trip time, this shutdown behavior is also reflected in the collected
data.

Figure 5.4 shows the collected data relating to the Scenario E1 from Section 5.2.
Starting with 1 pod at edge, and another one each at edge and cloud kicking in shortly

after start, we observe request times comparable to Base Cloud and Edge: starting
at under 2 seconds and increasing steadily together with rising request load, up to a
maximum of just under 6 seconds. As more and more cloud pods are scheduled to
assist with the load, request duration drops and maintains a steady trend of around 1
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Figure 5.4.: gzip-compression Scenario E1.

second about halfway through the evaluation run, disregarding some outlying requests.
The slight discrepancy between more pods being scheduled and request time only

decreasing some time after may be explained by the missing readiness probes for pods
due to the issue described in Section 4.5.7.

Again, the sudden drop in VUs and sudden uptick in response time at the end of the
evaluation window may be explained by k6’s shutdown behavior.

5.4.3. dd (Disk I/O)

Figure 5.5 shows the results according to the Scenarios Base Cloud and Base Edge from
Section 5.2 for the dd function, which mainly impacts the host’s disk by executing disk
I/O operations.

Examining the response times for the Base Cloud scenario, we can observe a steadily
rising trend in the first half of the evaluation run, correlating with the climbing request
load represented by the number of VUs. Pods have already reached the maximum
possible count of 8 shortly after the first quarter.

In the third quarter, we notice some jumps of response times between about 5 and
10 seconds, potentially related to routing delays between the two participating cloud
nodes. However, in the last quarter, request times drop, with some requests experiencing
times under 5 seconds. This may be explained by k6’s behavior, where the tool is not
generating any new requests but simply waiting for existing requests to finish towards
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Figure 5.5.: dd Base Scenarios.

the end of execution.
Having a look at the results belonging to the Base Edge scenario, we see a similar rise

in request time correlating with the rise in VUs in the first half, although steeper up to
around 8 seconds. This checks out when bringing in the pod count, which has already
maxed out at 2 almost immediately after the start of the evaluation run.

In the third quarter of the run, we can observe some jitter in the response times,
jumping between about 3–5 seconds and up to 17 seconds, while experiencing maximum
request load by the VUs. The same behavior is observed well into the last quarter,
although not quite as severe, with times jumping between about 7 and 13 seconds,
disregarding some outlying data points. One possible explanation for this observation
may be CPU scheduling on the resource-limited edge node with one CPU core (see also
Table 4.1) under heavy load. Depending on which of the pods on the edge node the
request is routed to and which pod currently holds CPU access, requests may either
complete sooner or later.

Figure 5.6 shows the collected data relating to the Scenario E1 from Section 5.2.
In the first quarter, with only pods scheduled at edge, the request duration trend

is similar to the one of the Base Edge scenario, with request times steadily increasing
together with load generated by VUs up to around 5 seconds. Afterwards, we observe a
peak in request time while more cloud pods are scheduled to assist, probably related to
a delay in pod readiness due to the issue described in Section 4.5.7.
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Figure 5.6.: dd Scenario E1.

From there on, request times stay consistently under 5 seconds even under maximum
load with the maximum possible amount of pods deployed, an improvement to the
individual findings of each the Base Cloud and Base Edge scenarios. Some jitter in this
range is still observed, likely due to the reason already mentioned in relation to the Base
scenarios—the routing of requests between the request entrypoint node and the node
hosting the pod actually answering to the request may add a delay.

The sudden drop in VU count at the end of the request run can again be explained by
k6’s shutdown behavior, as detailed in Section 5.4.2.

5.4.4. shasum (Network I/O & CPU)

Figure 5.7 shows the results according to the Scenarios Base Cloud and Base Edge from
Section 5.2 for the shasum function, which was chosen mainly to target the network and
partly the CPU capabilities of nodes.

This function stands out quite a bit compared to the previous functions: as this
function is targeted at network capabilities, we have to deal with requests timing out.
This is represented by k6 with a request duration of 0, resulting in the sudden drops
noticeable in the data plots. We also had to limit the VU count to 10 instead of the
maximum of 20 used for the previous functions in order to collect meaningful data,
otherwise too many requests timed out.

Assessing the Base Cloud scenario, we notice there is a lot of jitter in request times
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Figure 5.7.: shasum Base Scenarios.

throughout the whole evaluation run. However, a trend is still visible. In the first half
of the run, request times climb from about 1 second up to about 4 seconds, correlating
to the increasing load generated by the rising number of VUs. The pod count almost
climbs to the maximum amount possible shortly after the first quarter mark.

In the second half of the data collection window for the Base Cloud scenario, the
jitter becomes even more noticeably, with more requests timing out now. Requests that
complete successfully however either have a quick or rather long response time, ranging
between about 1 second up around 5 seconds, with deployed pods having reached their
maximum count of 8.

Having a look at the results of the Base Edge scenario, we notice results similar to
Base Cloud, with a similar pod scaling behavior, but instead capped at 6 pods. Due
to comparable pod count, request times behave similar, too, climbing from around 1
second to around 4 seconds in the first half of the run, although with some spikes in
between.

In the second half, similar to Base Cloud, we observe some more jitter in request
times, with more requests timing out, and some resulting in request durations of 5 to 6
seconds under maximum request load by VUs. However, some requests finish quite fast
with a duration of about 1 to 2 seconds.

Again, for both Base Cloud and Edge, the sudden drop in VUs at the end of the
evaluation window may be explained by k6’s graceful shutdown behavior, as detailed in
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Figure 5.8.: shasum Scenario E1.

Section 5.4.2. The drop in request times at the end of the run may as well be explained
by k6 not generating any new requests near the end of execution, waiting for existing
requests to complete or time out instead. The same behavior has already been observed
in Section 5.4.3 (dd Base Cloud).

The similarities of Base Cloud and Edge seem to stem from similar pod counts in both
scenarios. In this scenario, we can clearly see the advantage of the specialized KubeEdge
architecture of not running all management components on the rather resource-scarce
edge node, instead moving some to the cloud, thus freeing up more resources for actual
(FaaS) workloads on the nodes.

Figure 5.8 shows the collected data relating to the Scenario E1 from Section 5.2.
We can observe a behavior similar to both the Base Cloud and Base Edge scenarios,

with request times climbing from around 1 second to around 4 seconds in the first half
of the data collection window, correlating with rising VU count. Scaling behavior is
similar too, with most of the load being handled by 5 edge pods after one quarter of the
run, with assistance of 1 and 2 cloud pods respectively at the first and second quarter
mark, resulting in a total pod count of 7 for the remainder of the evaluation run.

In the second half, we can again see the jitter in request times, with requests either
climbing to durations around 5 seconds, completing quite fast with durations around 2
seconds, or timing out. In this scenario, the timeouts seem to happen more frequently
when compared to Base Cloud or Base Edge individually. One possible cause may be
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the increased amount of nodes involved in Scenario E1, with both cloud and edge nodes
participating as opposed to the individual Base Scenarios.

As mentioned earlier, the dropping VU count towards the end caused by k6 can be
observed in the Scenario E1 as well.
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Let us look back and see if our objectives from Section 1.2 motivated by the points from
Section 1.1 have been fulfilled.

In this thesis, we have designed an architecture for heterogeneous edge-cloud infras-
tructures based on K8s and KubeEdge, integrating a FaaS platform, namely OpenFaaS.

We have implemented this architecture successfully, whilst developing a means of
deploying the complete setup in a reproducible and extensible manner. Additionally,
we have highlighted how to configure deployed workloads with regard to scheduling
on both edge and cloud nodes.

As our Evaluation (Chapter 5) proves, we have achieved the Edge-Cloud-Continuum
for FaaS workloads mentioned in Section 1.1, which allows for intelligent and transparent
scheduling on one K8s cluster composed of both cloud and edge nodes. Furthermore,
the collected data suggests that the application of such an approach to the right use-case
promises significant improvements regarding metrics such as latency, most noticeable in
the results gathered with the gzip-compression function (Section 5.4.2).

Applications such as IoT or the closely connected Industry 4.0 may certainly profit
from the use of an infrastructure such as the one proposed and implemented in this
thesis.

Future Work

Even though the implementation developed in this thesis delivers promising results,
future work is always possible to improve and evolve building on our findings.

First, the remaining issues described in Section 4.5 could be ironed out, mainly the
issues regarding NodePort routing (Section 4.5.5), the OpenFaaS portal not working for
edge-only deployments (Section 4.5.6), and Pod probes (Section 4.5.7).

Another possibility lies in exploring a different K8s-integrated edge computing ap-
proach as a basis for integrating edge nodes, such as the technologies K3s [20] or
OpenYurt [28] already mentioned in Chapter 3. This approach could also rule out any
issues related to the KubeEdge EdgeMesh component, which proved to be error-prone
as described in Section 4.5.3, but may come with other issues or disadvantages which
have to be considered.

Furthermore, one could research more reliable monitoring solutions that also integrate
well with KubeEdge’s special architecture as an alternative to the Kubernetes Metrics
Server [26] used in our approach. Instead of looking into other solutions, trying to
integrate metrics data collected by the Metrics Server into Prometheus, e.g. by writing
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an adapter, would also be feasible to allow for a more professional monitoring solution,
also enabling analysis and visualization with tools like Grafana1.

Further work could also explore if tools such as kustomize2 could be integrated into
the FaaS deployment workflow with currently employed tools such as the faas-cli [21].
This could assist with the patching of new and existing K8s resource manifests in order
to configure them for deployment on edge-cloud infrastructures according to Section 4.4.
If this approach does not work out, a custom tool solution may be implemented.

Lastly, as an alternative or addition to the previous point, one could explore automatic
patching of all new K8s resources, to automatically and reliably add adjustments such as
tolerations or nodeAffinity configurations. One possible approach to achieve this would
be looking into creating a custom Mutating Admission Webhook3 to patch resources created
in a specific K8s namespace, such as the OpenFaaS-specific openfaas-fn namespace.

1https://grafana.com
2https://kustomize.io
3https://kubernetes.io/docs/reference/access-authn-authz/extensible-admission-controllers/
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A. Appendix

Code Snippet A.1: KubeKey cluster configuration file.

apiVersion: kubekey.kubesphere.io/v1alpha2
kind: Cluster
metadata:
name: ba-faas

spec:
hosts:
- name: ba-cloud-node-1
address: "<PUBLIC␣IP>"
internalAddress: "<INTERNAL␣IP>"
user: "centos"
privateKeyPath: "<PATH␣TO␣PRIVATE␣SSH␣KEY>"

- name: ba-cloud-node-2
address: "<PUBLIC␣IP>"
internalAddress: "<INTERNAL␣IP>"
user: "centos"
privateKeyPath: "<PATH␣TO␣PRIVATE␣SSH␣KEY>"

roleGroups:
etcd:
- ba-cloud-node-1

master:
- ba-cloud-node-1

worker:
- ba-cloud-node-1
- ba-cloud-node-2

kubernetes:
version: v1.21.5
clusterName: cluster.local

network:
plugin: flannel
kubePodsCIDR: 10.233.64.0/18
kubeServiceCIDR: 10.233.0.0/18
enableMultusCNI: false

---
apiVersion: installer.kubesphere.io/v1alpha1
kind: ClusterConfiguration
metadata:
name: ks-installer
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namespace: kubesphere-system
labels:
version: v3.2.1

spec:
kubeedge:
enabled: true
cloudCore:
nodeSelector: { "node-role.kubernetes.io/master": "" }
tolerations: []
cloudhubPort: "10000"
cloudhubQuicPort: "10001"
cloudhubHttpsPort: "10002"
cloudstreamPort: "10003"
tunnelPort: "10004"
cloudHub:
advertiseAddress:
- "<PUBLIC␣IP␣OF␣MAIN␣NODE>"

nodeLimit: "100"
service:
cloudhubNodePort: "30000"
cloudhubQuicNodePort: "30001"
cloudhubHttpsNodePort: "30002"
cloudstreamNodePort: "30003"
tunnelNodePort: "30004"

edgeWatcher:
nodeSelector: { "node-role.kubernetes.io/worker": "" }
tolerations: []
edgeWatcherAgent:
nodeSelector: { "node-role.kubernetes.io/worker": "" }
tolerations: []
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