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Abstract

Bioprocesses pose challenges for process monitoring and quality control that are not
present in typical chemical processes. For the monitoring of key quantities such as
biomass, product, and substrate concentration, direct measurement methods only
exist in very few cases. Further, analyte concentrations are typically very low. Against
the background of often not completely defined bioprocess media, these low
concentrations are difficult to measure online with sufficient accuracy due to potential
cross-sensitivities. Soft sensors provide a remedy to this situation. "Software sensors"
use existing process data (e.g., readings of different sensors) as inputs to a predictive
model in order to indirectly determine a target quantity (e.g., biomass concentration).
With regard to the data-information-knowledge hierarchy, the soft sensor model is in
most cases used to compress process data into information (target quantity). This type
of model is referred to as data-driven model. Two problems stand out here: First,
process knowledge is neglected in this scenario. Second, the model inputs are
assumed to be true so that faulty input data may corrupt the derived information.

This thesis aims to develop approaches beyond this core function of soft sensors
(compression of data to information). For this purpose, three methodical building
blocks are presented, which can be used modularly in the development of soft sensors.
The first methodical building block comprises an approach for deriving process
knowledge from the analysis of a soft sensor. The second building block serves to
implement process knowledge in a hybrid model for a bioprocess with multiple process
phases. The third building block provides validation of uncertain model inputs (e.g.,
due to sensor faults). This in turn allows to validate the prediction of a soft sensor.
Swarm intelligence is used here to make the fault detection algorithm work more
efficiently.

The soft sensors presented in this thesis are developed based on a standard
biotechnological process: the cultivation of the methylotrophic yeast Pichia pastoris.
This bioprocess is well established, but still offers potential for optimization in the areas
of monitoring, control, and automation. Further, this process shows time-variant and
non-linear behavior. This must be taken into account when developing soft sensors.
The presented approaches represent important building blocks to fill the gaps between
uncertain process data and knowledge in the development of soft sensors. Each of
them contributes to the process analytical technology toolbox and should promote the
acceptance of soft sensors for quality control in the biotechnology industry.



Zusammenfassung

Bei Bioprozessen treten spezifische Herausforderungen an die Prozessuberwachung
und Qualitatskontrolle auf, die bei typischen chemischen Prozessen nicht vorliegen.
Fir die Uberwachung von SchiisselgroRen wie Biomasse-, Produkt- und Substrat-
konzentration gibt es nur in wenigen Fallen direkte Messmethoden. Zudem sind die
Analytkonzentrationen haufig sehr niedrig. Vor dem Hintergrund der oft nicht
vollstandig definierten Bioprozessmedien sind diese niedrigen Konzentrationen
aufgrund von moglichen Querempfindlichkeiten nur schwer online mit ausreichender
Genauigkeit zu messen. Softsensoren schaffen hier Abhilfe. “Software-Sensoren”
nutzen vorhandene Prozessdaten (z. B. Messwerte verschiedener Sensoren) als
Eingangsgrofien flr ein Vorhersagemodell, um damit eine ZielgrofRe (z. B. Biomasse-
konzentration) indirekt zu bestimmen. Bezogen auf die Daten-Information-Wissen-
Hierarchie wird das Softsensor-Modell in den meisten Fallen verwendet, um
Prozessdaten zu Information (Zielgrof3e) zu komprimieren. Diese Art von Modell wird
als datengetriebenes Modell bezeichnet. Dabei fallen zwei Probleme auf: Erstens
bleibt in diesem Szenario vorhandenes Prozesswissen ungenutzt. Zweitens werden
die Modelleingange als wahr angenommen, sodass fehlerhafte Eingangsdaten die
abgeleitete Information verfalschen kénnen.

Ziel dieser Arbeit ist es, Ansatze zu entwickeln, die Uber diese zentrale Funktion von
Softsensoren (Kompression von Daten zu Information) hinausgehen. Hierfur werden
drei methodische Bausteine vorgestellt, die bei der Entwicklung von Softsensoren
modular eingesetzt werden kdnnen. Der erste methodische Baustein beschreibt einen
Ansatz zur Ableitung von Prozesswissen aus der Analyse eines Softsensors. Der
zweite Baustein dient der Implementierung von Prozesswissen in ein hybrides Modell
fur einen Bioprozess mit mehreren Prozessphasen. Der dritte Baustein erlaubt die
Validierung unsicherer Modelleingange (z. B. durch Sensorfehler). Dies ermoglicht es
wiederum, die Vorhersage eines Softsensors zu validieren. Hierbei wird
Schwarmintelligenz genutzt, um den Algorithmus zur Fehlererkennung effizienter zu
gestalten.

Die in dieser Arbeit vorgestellten Softsensoren werden auf Basis eines biotechno-
logischen Standardprozesses entwickelt: der Kultivierung der methylotrophen Hefe
Pichia pastoris. Dieser Bioprozess ist gut etabliert, bietet aber ausreichend
Optimierungspotenzial in den Bereichen der Uberwachung, Regelung und
Automatisierung. Weiter zeigt dieser Bioprozess zeitvariantes und nichtlineares
Verhalten. Dies muss bei der Entwicklung von Softsensoren berticksichtigt werden.
Die vorgestellten Ansatze stellen wichtige Bausteine dar, um die Licken zwischen
unsicheren Prozessdaten und Wissen bei der Entwicklung von Softsensoren zu
schlieBen. Jeder von ihnen tragt zum Werkzeugkasten der Process Analytical
Technology bei und ist geeignet, die Akzeptanz von Softsensoren fur die
Qualitatskontrolle in der biotechnologischen Industrie zu fordern.
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Soft sensors for Pichia pastoris bioprocesses Introduction

1 Introduction

Quality by design (QbD) principles and process analytical technology (PAT) tools form
the framework for a sustainable, risk-minimized, and automated manufacturing
process for biological products.

The term QbD describes the building in of quality into the product by a thorough
understanding of the relationships between the clinical properties of the product, the
critical quality attributes (CQAs), the process, and the variability in raw materials
(Rathore, 2009; Rathore and Winkle, 2009). By understanding these relationships, a
(multidimensional) design space can be defined in which critical process parameters
(CPPs) have been demonstrated to assure quality (Streefland et al., 2013). QbD can
be seen as an “umbrella encompassing [...] concepts including creation of a
manufacturing knowledge base, risk-management principles, process design spaces,
and PAT” (Read et al.,, 2010). PAT tools can in this context be used for online
monitoring and control of CPPs and CQAs so that the process performance and
product quality, respectively, can be assessed during manufacturing. The US Food
and Drug Administration (FDA) distinguishes four main PAT tools in their 2004 PAT
initiative (FDA, 2004): (1) multivariate tools for design, data acquisition, and analysis;
(2) process analyzers; (3) process control tools; (4) continuous improvement and
knowledge management tools. These tools form a system that allows control of
measurable processes toward a desired endpoint and enables improvement of final
product quality by reducing variability. The basic idea is to determine the variability of
the process inputs (e.g., media components) and of the process itself in a timely
manner; this allows a dynamic response to this variability, e.g., via closed-loop control.
The term analytical in PAT includes “chemical, physical, microbiological, mathematical,
and risk analysis conducted in an integrated manner” (FDA, 2004).

Within this framework, soft sensors are becoming increasingly important as PAT tool.
A soft sensor is based on a mathematical model that allows determining a target
process quantity indirectly. This is especially important when the direct measurement
via process analyzers is not economically or technically feasible. For monitoring CQAs
such as biomass or product concentration, soft sensors are in some cases the only
solution to determine the target value online at all.

In the following sections, it is first shown how soft sensors integrate into the data-
information-knowledge hierarchy of bioprocess monitoring. Furthermore, it is shown
how soft sensors, as a PAT tool, allow to make the non-measurable measurable—
even with uncertain input data. In addition, it is shown how soft sensors can help to
build up a manufacturing knowledge base according to the QbD principles and how to
use this knowledge for quality control of biotechnological processes. Finally, the
characteristics of the cultivation of Pichia pastoris (now reclassified as Komagataella
phaffii), which is chosen as use case in this thesis, are described.
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Introduction

1.1 The data-information-knowledge hierarchy in bioprocess monitoring

Within bioprocess monitoring, process data are initially generated by process
analyzers and laboratory analyses. These data are products of observations (Rowley,
2007), and thus primarily raw signals without meaning. Once the data are processed
in a way to be useful, they are referred to as information (Ackoff, 1989). Here, a
condensation process of a wealth of data to little information takes place, which in the

optimal case leads to a reduction of
meaningless noise. The following two real-
world scenarios illustrate this condensation
process from unorganized and meaningless
data to compact information: First, substrate
concentration (e.g., glucose) in a bioprocess
is often determined using chromatograms
and other raw data such as bioreactor
volume, sample volume, and dilution factors;
second, the specific growth rate is typically
determined using raw data such as cell
mass, sample volume, and time. In such
cases, the substrate concentration and the
specific growth rate represent the meaningful
information that can be used for monitoring,
control, and fault diagnosis; whereas raw
process data alone are of no particular use
unless contextualized. This example shows
that although data and information may have
the same structure (value and unit), they
differ in their function and their degree of
condensation (Ackoff, 1989; Davenport and
Prusak, 1998).

Information can further be used to generate
knowledge. Knowledge is obtained by
interconnecting meaningful information in
the right way. Sticking to the above example,
the relationship between the limiting
substrate concentration S and the specific
growth rate u can be revealed via a suitable
experimental design. In the form of the
Monod equation, g = pmer S/(Ks +S), with
the Monod constant K and the maximum
specific growth rate u,,,, (Monod, 1949),
this knowledge is quantifiable as well as
transferable. These two properties are
essential for knowledge management.
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Figure 1: Pyramidal representation of the
data-information-knowledge hierarchy.
Initially, data are just a set of signals
without meaning (shown as empty dots).
When transforming data into information,
the data get a meaning (colored dots).
Finally, knowledge is obtained by inter-
connecting meaningful information in the
right way (connected colored dots).
lllustration of the DIK context using
connected colored dots originally by
Hugh MacLeod (gapingvoid.com/
semiotic-management-systems).
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From this example, it can be seen that a large amount of data (raw data matrices of
experiments) is condensed to a smaller amount of relevant information (S and u). The
knowledge about the relationships between S and u resulting from several
experiments can again be condensed to only one equation with two constants (K5 and
Umax)- This condensation process that takes place when a wealth of data ultimately
results in the literal tip of the iceberg—knowledge—is often illustrated with the help of
the pyramidal data-information-knowledge (DIK) hierarchy (Figure 1). This
representation is widely used in the literature on knowledge management and in some
cases includes even higher levels, such as understanding, wisdom, or insight (Rowley,
2007; Jennex, 2017). However, entities higher than knowledge are not within the scope
of this thesis.

The purpose of this short excursus on the DIK hierarchy was to show how bioprocess
data condenses into usable information and ultimately into knowledge. How do soft
sensors fit into the DIK hierarchy? The short answer first: The core function of soft
sensors is the derivation of information from process data (Mandenius and
Gustavsson, 2015). This information can be, for example, the prediction of a target
value (e.g., S or u) or the occurrence of a process deviation or sensor fault (Kadlec et
al., 2009). However, existing knowledge is rarely left unused. Especially in the field of
bioprocesses, existing knowledge in the form of mechanistic relationships has ever
since the emergence of modern biotechnology assisted in the development of soft
sensors (see exemplarily Yousefi-Darani et al. (2020) for Kalman filters). Thus, in order
to answer the question of how soft sensors fit into the DIK hierarchy in more depth, a
distinction must first be made between data-driven, mechanistic, and hybrid soft
Sensors.

1.2 Soft sensors: development and utilization

With regard to the DIK hierarchy, this section focuses primarily on the role of the tip
(knowledge) as well as the composition and quality of the base of the pyramid (data).
First, the role of process knowledge in the context of soft sensors is explored. Here it
is shown how process knowledge can be implemented in soft sensors and, on the
other hand, how process knowledge can be generated via soft sensors. Second, the
challenge of uncertain input data to the soft sensor is overviewed and discussed.
According to the "garbage in, garbage out" principle, the more erroneous the inputs,
the less accurate the developed soft sensor and its predictions become.

1.21 The role of process knowledge

Dependent on the degree of process knowledge that is implemented, the soft sensor
model can be classified as data-driven, mechanistic, or hybrid. Data-driven
approaches use modeling methods from the spectrum of data science, such as
variants of multiple linear regression (MLR; Jenzsch et al. (2006)), principal component
regression (PCR; Zhu et al. (2018)), partial least squares regression (PLSR; Sokolov
et al. (2015); Zheng and Song (2018)), support vector regression (SVR; Meng et al.
(2019)), and artificial neural networks (ANN; Paquet-Durand et al. (2017)). Mechanistic
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approaches make use of the available process knowledge in the form of first principle
models, such as mass or energy balances (Sagmeister et al., 2013; Ohadi et al., 2015;
Tahir et al., 2019). For example, Ohadi et al. (2015) made use of mass balances in the
form of stoichiometric relationships between substrate uptake, growth, and product
formation rates to predict the key process variables of a mammalian cell culture
process (viable and dead cells, recombinant protein, glucose, and ammonia
concentrations). In fed-batch processes, mass balances play a particularly important
role because the mass of the system varies during the process (Sagmeister et al.,
2013). In general, it can be assumed that purely data-driven approaches demand a
larger amount of training data than purely mechanistic approaches (Stosch et al.,
2014). Hybrid approaches combine both data-driven and mechanistic model parts. For
example, a mechanistic model can use the output of a data-driven model as input if
certain model terms are missing (no online measurements available) or cannot be
predicted mechanistically with sufficient accuracy (Stosch et al., 2014; Solle et al.,
2017). In addition, mechanistic model parts can be combined with other process data
(e.g., fluorescence spectra) via (extended) Kalman filtering for a more accurate
prediction compared to a purely mechanistic model (Ohadi et al., 2015).

As mentioned at the very beginning, knowledge management is an important element
of QbD and PAT. Most of the knowledge about the product and process is accumulated
through targeted experimentation during product and process development (Herwig et
al.,, 2015). Using the mechanistic and hybrid approaches described above, this
knowledge can be implemented during soft sensor development to make soft sensors
more accurate and robust. However, little attention has been paid so far to the
generation of process knowledge by means of soft sensor development.

The statistical methods used within soft sensor development can reveal complex
relationships in data and assist in extracting information, which finally can improve
process understanding (Matero et al., 2013). For example, variable selection and
correlation analysis can as parts of chemometric methods serve for improving process
understanding. Variable selection is typically used iteratively during soft sensor
development to select the input variables that bear information for predicting the target
variable. This preselection serves to reduce (multi)collinearity within the input data,
which in turn can improve the accuracy of model coefficient estimates (Ma et al., 2009).
Furthermore, computational costs as well as overfitting can be reduced by variable
selection (Hawkins, 2004; Kaneko and Funatsu, 2012). An overview of variable
selection methods for soft sensors is provided in Wang et al. (2015) and Souza et al.
(2016). In most cases, the underlying concept of these methods is a correlation
analysis between input data and target variable (Sokolov et al., 2017; Bidar et al.,
2018).

How can these statistical methods concretely help improve process understanding and
contribute to the knowledge base? The number of potential model inputs can often
range into the hundreds or thousands (Souza and Araujo, 2011), especially when
spectroscopic data are used (Ranzan et al., 2014; Tahir et al., 2019). In these cases,
the statistical methods can draw the attention of the process expert to informative
variables or interrelations that either confirm a priori knowledge or were previously
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undiscovered. Moreover, the degrees of correlation become quantifiable during the
variable selection process. Finally, the resulting soft sensor model can represent the
mathematical relationship between process variables and the target quantity. This
digitalized knowledge—in the form of model coefficients and structure—cannot only be
used for monitoring and control purposes but is also part of the manufacturing
knowledge base.

In summary, knowledge has two possible roles in the context of soft sensors: first, it
can be generated during soft sensor development as a quasi by-product in addition to
the actual prediction model (main outcome of soft sensor development); second,
existing knowledge can be implemented into the soft sensor to enable accurate and
robust prediction in the first place or to improve it.

1.2.2 Uncertain input data

The input data of soft sensors consist of available process measurements, which can
be generated via laboratory analyses, sensors, and actuators. The measurements are
distinguished, on the one hand, according to their temporal availability (information-
theoretical distinction) and, on the other hand, according to their measuring location in
relation to the bioreactor system or product (technological distinction).

According to their temporal availability, these measurements are categorized into
offline (time-delayed availability) and online (without or with only a short time delay;
“capable of just-in-time monitoring” (Luttmann et al., 2012)). While offline data are
essential for soft sensor calibration, it is only in individual cases (Wu and Luo, 2010;
Shardt et al., 2015) used as input to the soft sensor during the prediction step. In the
vast majority of cases, only the data available online are used as inputs in the
prediction step.

According to their measuring location in relation to the bioreactor system or product,
the measurements are usually categorized into in-line (sample not removed from the
process stream; invasive or noninvasive), on-line (sample analyzed in bypass), or at-
line (sample removed, isolated from, and analyzed in close proximity to the process
stream) (FDA, 2004). In this thesis, the notation with hyphen (e.g., off-line) is used for
the description of the measuring location, whereas the notation without hyphen (e.g.,
offline) is used for the description of the temporal availability.

The typical online data for bioprocesses include readings for stirrer, gas flow, flow rates
(pH correction agent(s), substrate(s)), temperature, pressure, pH, and pO2 (Harms et
al., 2002). More advanced measurement concepts, whose data can be used as input
for soft sensors, include off-gas CO2 and Og2, turbidity (transmission, transflexion,
reflexion), impedance, flow cytometry, high performance liquid chromatography,
spectroscopy (ultraviolet—visible, near- or mid-infrared, 2D fluorescence, Raman),
ultrasound, in-situ microscope, and biosensors (Luttmann et al., 2012; Biechele et al.,
2015; Simon et al., 2015). In many application areas, off-gas analysis and turbidity
measurement are already considered standard.
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Uncertainty in online measurement can result from the process level, the
instrumentation level (sensors and actuators), and the communication level. At the
process level, changes in media components (batch variability), external environment
(weather or seasons), the production organism (intended or unintended genetic or
physiologic changes), or process fouling can lead to uncertain input data. At the
instrumentation level, incorrect calibration, abrasion of mechanical components, or
unknown cross-sensitivities can lead to faults. At the communication level, loose
contacts or malfunctions in the software for data acquisition can occur.

These measurement uncertainties of sensors and actuators, when used as input to
soft sensors, lead to uncertain predictions. When developing and applying soft
sensors, it is therefore necessary to evaluate the raw input data with respect to outliers
(Adikaram et al., 2015). An univariate method for the identification of deviant data
points is the moving window implementation of the Hampel identifier (Davies and
Gather, 1993), which uses the median ¥ and median absolute deviation from the
median, MAD. All data points outside the moving frame of [¥x — n MAD, X + n MAD] are
classified as outliers. n is a multiplier for tuning the sensitivity of the Hampel identifier.
Multivariate methods for outlier detection are mainly based on distance metrics such
as Euclidean, Mahalanobis, or Canberra distance in the principal component space
(Shyu et al., 2006). Principal component analysis (PCA) occupies a dominant position
among the methods of raw data evaluation because it cannot only be used for
multivariate outlier detection (Shyu et al., 2006; Thomassen et al., 2010), but also for
correlation analysis (Sokolov et al., 2015), and grouping of datasets (Gunther et al.,
2009; Sokolov et al., 2017).

The aforementioned methods represent the basic tools in the detection of outliers in
the input data to soft sensors. However, additional challenges arise for bioprocesses
with variable process lengths and, in some cases, multiple process phases (e.g., batch
and fed-batch phase). The cultivation of P. pastoris is a suitable bioprocess to
investigate these challenges, as will be shown in the following.

1.3 Monitoring and control of Pichia pastoris bioprocesses
1.3.1 Process strategies

P. pastoris is a widely used host for recombinant protein expression in academia and
industry. Both inducible and constitutive promoters can be used for protein expression
in this host system (Yang and Zhang, 2018). The most commonly used inducible
promoter is pAOX1 (alcohol oxidase 1), whose expression is strongly induced by
methanol and repressed by other carbon sources such as glucose and glycerol (Liang
et al., 2012).

Methanol-induced P. pastoris-bioprocesses are typically separated into two main
phases. In the first phase, the biomass generation phase, cells grow relatively fast up
to the desired biomass concentration. This phase can be carried out in batch or fed-
batch mode. Glycerol or another carbon source that represses expression is used as
substrate. In the second phase, the product formation phase, methanol is used as
inducer for protein expression. This phase is typically carried out as fed-batch with
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methanol fed to the bioreactor system. The division of the bioprocess into these two
phases makes it possible to separate biomass generation and product formation as far
as possible, thus optimally directing the energy and anabolism of cells to the
corresponding objective of the respective phase (highest biomass and product yield,
respectively). Optionally, a transition phase between these two main phases can be
inserted. This transition phase can be carried out either without any carbon source
(goal: guaranteeing the complete derepression of the AOX promoter), with a feed of a
carbon source other than methanol (goal: higher biomass concentration before
induction), or with a mixed feed of methanol and another carbon source (goal:
smoother adaption of cells to methanol) (Yang and Zhang, 2018; Liu et al., 2019).

In the product formation phase, the methanol concentration is of crucial importance to
a reproducibly high product yield. Too high methanol concentrations are toxic and thus
lead to lower cell viability. Cell lysis causes the release of intracellular proteases into
the fermentation medium, thus causing increased proteolytic degradation of secreted
target proteins (Yamashita et al., 2009). Wu et al. (2011) showed that high methanol
concentrations (3.5 g L") lead to increased degradation of the extracellular target
protein (Rhizopus chinenisis prolipase) compared to no degradation at lower methanol
concentrations (0.5-1.0 g L="). On the other hand, depending on the expressed target
protein, a minimum methanol concentration is required to induce the AOX promoter.
For these reasons, methanol concentration is in the fed-batch phase often controlled
to a certain setpoint (Pla et al., 2006; Wu et al., 2011). However, as shown by Pla et
al. (2006), the stability of the methanol controller can be disturbed by an increasing
biomass concentration during the fed-batch phase.

Which process variables are typically monitored in P. pastoris bioprocesses? First of
all, the product titer or activity (for enzymes) must be determined. Next, the parameters
that have the greatest impact on protein production must be monitored. These include
pH, temperature, and dissolved oxygen (Harms et al., 2008). For pAOX1-induced host
systems, methanol concentration should also be determined. Biomass concentration
is critical at several stages of the process (e.g., for adjusting inoculation volume and
feed rates). Due to the importance of biomass concentration in P. pastoris
bioprocesses, a separate section is devoted to biomass monitoring in the following.

1.3.2 Monitoring of a key variable of Pichia pastoris bioprocesses: biomass
concentration

Biomass concentration represents the most important process variable in P. pastoris
bioprocesses, along with product-related quality attributes such as product titer (Harms
et al., 2008). The biomass concentration at the end of the batch phase has a direct
effect on the expression level of recombinant protein (Wu et al.,, 2011). Biomass
concentration also indicates process progress and is required as a starting point for
almost all further mechanistic model calculations (Surribas et al.,, 2006b). The
measurement of this key variable is therefore of utmost importance for process
monitoring.
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Biomass concentration is typically measured offline as either volumetric cell count
(Broger et al., 2011), wet cell weight (Pla et al., 2006), or dry cell weight (Wu et al.,
2011). Surrogate measurements such as optical density are also applied offline to
determine biomass concentration (Harms et al., 2008). Offline measurements, as
described above, are neither suitable for just-in-time monitoring nor as input to closed-
loop control systems.

For the online determination of biomass concentration, many process analyzers based
on different measurement principles have been developed. These measurement
principles include turbidity, impedance, fluorescence, Raman, imaging, and ultrasound
(Krause et al.,, 2011). Many authors have addressed the advantages and
disadvantages of these measurement principles for bioprocesses in the past (Harms
et al., 2002; Kiviharju et al., 2008; Simon et al., 2015; Grigs et al., 2021). The raw data
of these process analyzers can be used together with other process data for the online
determination of biomass concentration. However, from a technological point of view,
problems can arise with these sensors, especially in industrial environments. The study
by Kiviharju et al. (2008) deserves special mention here, as they compared not only
various in-line sensors (turbidity and dielectric, infrared, and fluorescence
spectroscopy) but also soft sensors regarding their performance and limitations for
bioprocess monitoring. They conclude that the influence of the cultivation medium
(presence of solid particles, fluorescence characteristics, etc.) and aeration (gas
bubbles) on the accuracy and robustness of in-line sensors is considerably greater
than for soft sensors. Further, soft sensors are often the most economical alternative,
set the case that the process is repeated frequently, and a minimum of process
knowledge is available. However, it must also be noted that a soft sensor can, of
course, only be as cost-effective as the hardware sensors that are used as input
variables. Additional studies compared possible model inputs and different modeling
approaches for bioprocesses. Grigs et al. (2021) investigated which input data
provides the best biomass predictions for two recombinant P. pastoris strains under
different process conditions. Evaluated by the relative prediction error, turbidity (8 %)
and consumption of pH correction agent (base, 8 %) were slightly superior to the
variables oxygen uptake (10 %), permittivity (11 %), and carbon dioxide emission
(13 %) as model inputs.

Studies comparing different modeling approaches have been performed for organisms
other than P. pastoris. However, the transferability of the results to P. pastoris must be
at least critically questioned, since the results of soft sensor development may depend
on the process strategy or organism used. Jenzsch et al. (2006) compared various
modeling approaches for the prediction of biomass concentration for Escherichia coli
processes. In every case, the inputs consisted of carbon dioxide emission rate, oxygen
uptake rate, and base consumption. With regard to the prediction error, feed forward
ANN and polynomial regression with cumulative inputs outperformed other modeling
techniques such as auto-associative ANN, Luedeking—Piret-based model, PCA model,
and MLR with cumulative inputs. However, the authors point out that the choice of
modeling method is often also a choice between accuracy and robustness. For
example, the process knowledge implemented in the Luedeking—Piret-based model
increased the robustness to faults as compared to the ANN-based models. Another
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comparison of modeling approaches was made by Hocalar et al. (2011) for
Saccharomyces cerevisiae fermentations with different operating conditions. The
different approaches for biomass prediction were based on a kinetic model of overflow
metabolism, a metabolic black-box model, an observer, differential evolution, and an
ANN. The predictions based on the metabolic black-box model and differential
evolution generally resulted in lower prediction errors than the other three approaches.
However, the study by Hocalar et al. (2011) shows that the prediction errors are nearly
as strongly influenced by the operating conditions as by the modeling approach.

For monitoring P. pastoris bioprocesses, the following can be concluded: Soft sensors
offer a cost-effective alternative to hardware sensors. The implementation of existing
process knowledge can increase the accuracy and robustness of a soft sensor and, if
necessary, compensate for the lack of a large process database for model training.
The choice of the modeling approach is thus not only dependent on the size of the
process database but also on existing process knowledge.

1.4 Motivation and thesis outline

In the previous sections, the DIK hierarchy in bioprocess monitoring was described,
the role of process knowledge and uncertain input data in the development of soft
sensors were discussed, and the P. pastoris bioprocess was characterized. Based on
this, the initial situation and motivation of this thesis can be summarized as follows:

e The cultivation of P. pastoris is suitable as a use case for soft sensor
development: On the one hand, this cultivation system is commonly used in
biotechnological production and is well described; on the other hand, it shows
enough optimization potential regarding the monitoring of one of its key
variables: biomass concentration.

e The core function of soft sensors with regard to the DIK hierarchy is the
derivation of information (e.g., prediction of target value) from process data.
Within mechanistic or hybrid modeling, existing process knowledge can
additionally be implemented into the soft sensor to assist the data-to-information
compression. However, especially for multiphase P. pastoris bioprocesses,
there is a need for research in hybrid model-based soft sensors.

e Although useful knowledge can be drawn from the analysis of a soft sensor, the
generation of process knowledge by means of soft sensor development has so
far received comparatively little attention. Process knowledge can be derived
during the development of soft sensors as a quasi by-product in addition to the
actual prediction model (main outcome of soft sensor development).

e If the input to a soft sensor is faulty, there is a high probability that the output is
faulty as well. Therefore, when dealing with uncertain process data, methods
must be found to validate model inputs prior to their use in soft sensors.
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Introduction

The objectives of this thesis are, on the one hand, to generate process knowledge
during soft sensor development; on the other hand, to develop robust soft sensors
through the integration of existing process knowledge and validation of model inputs.

The main objective is thus formulated as follows:

The provision of novel concepts to fill the gaps between uncertain process data

and knowledge within soft sensor development

In order to achieve this objective, solution approaches for the following research

questions are to be found:

@ What are the remaining key challenges in the development of soft sensors

for bioprocesses?

@ How can a soft sensor model be utilized to generate process knowledge?

@ How can process knowledge be implemented to develop a soft sensor

model?

(4) How can uncertain model inputs be validated prior to their use in a soft

sensor?

The embedding of these research questions into the context of the DIK hierarchy is
illustrated in the graphical abstract of this thesis (Figure 2). The following chapters
are based on this structure. To answer the first research question, a critical review is
conducted. The remaining research questions are addressed in the form of research

articles.

PROCESS KNOWLEDGE
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RELIABILITY

TARGET VALUE

generation of

fault detection

process knowledge
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process knowledge

soft sensor
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Figure 2: Graphical abstract of
this thesis. The core function of
soft sensors in the DIK hierarchy
is the derivation of information
(e.g., prediction of target value)
from process data. The solution
approaches to research
questions @ to @ help to
fill the gaps between uncertain
process data and knowledge
within soft sensor development.
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2 Methods

2.1 Strain and culture conditions

The P. pastoris cultivation was chosen as use case in this work. The inocula were
prepared in shake flasks containing the mineral medium FM22 (Stratton et al., 1998)
supplemented with 2 mL trace element stock solution (PTM4) per L culture volume.
The main culture medium was also FM22 supplemented with 2 mL PTM4 per L culture
volume. Glycerol was used as carbon source in the batch phase. In cases where a fed-
batch phase was additionally performed (Brunner et al.,, 2020), methanol
supplemented with 12 mL PTM4 per L methanol was fed to the bioreactor.

For the small-scale cultivations, the P. pastoris wildtype strain DSMZ 70382 was used.
Here, the main culture took place in the microplate reader Synergy™ H4 (BioTek
Instruments, Inc., Winooski, VT, USA) with agitated black 96-well plates (200 L
working volume; Greiner Bio-One International GmbH, Kremsmuenster, Germany).
Breathe-Easy® sealing membranes (Sigma-Aldrich Corporation, St. Louis, MO, USA)
enabled gas exchange between the environment and the culture. Temperature was
controlled to 30 °C. Further details can be found in the corresponding publication
(Brunner et al., 2016).

For the bioreactor cultivations, a recombinant P. pastoris strain based on wildtype
strain DSMZ 70382 was used. Here, the main culture took place in the bioreactor
system Biostat® Cplus (15L working volume, 42 L total volume; Sartorius AG,
Goettingen, Germany). Temperature, pH, pressure, and dissolved oxygen were
controlled to 30 °C, 5, 500 mbar, and 40 %, respectively. Further details can be found
in the corresponding publications (Brunner et al., 2019; Brunner et al., 2020).

2.2 Laboratory analyses

Dry cell weight was determined in triplicate by centrifugation of either 200 uL (Brunner
et al., 2016) or 2 mL (Brunner et al., 2020) cell suspension in previously weighed
centrifuge tubes. Subsequently, the supernatant was discarded, and the cell pellet was
dried to a constant weight at 80-90 °C. Bioreactor samples were taken using the
BaychroMAT® autosampler (Bayer AG, Leverkusen, Germany) with a minimum
sampling interval of 2 h. Further details can be found in the corresponding publications
(Brunner et al., 2016; Brunner et al., 2020).
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2.3 Sensors and actuators

The sensor and actuator data for the bioreactor cultivations consisted of sensor
readings for temperature, pH, pressure, dissolved oxygen, Oz and CO: in the off-gas
(BluelnOne Cell sensor; BlueSens gas sensors GmbH, Herten, Germany), methanol
(Alcosens; Heinrich Frings GmbH & Co. KG, Rheinbach, Germany), and turbidity
(InPro 8100; Mettler-Toledo GmbH, Giessen, Germany) as well as actuator values for
stirrer speed, air flow, and feed pump speed (base and methanol). The corresponding
publications describe which data were used for modeling in each case (Brunner et al.,
2019; Brunner et al., 2020).

24 Data management

Primary process control (temperature, pH, pressure, DO) and signal recording for the
bioreactor cultivations were realized via the integrated digital control unit (DCU) of the
bioreactor system Biostat® Cplus (Sartorius AG). The laboratory (offline) and process
(online) data were stored in a central database with a recording interval of 30 s for the
online data using the data management system SIMATIC SIPAT (Siemens AG,
Munich, Germany). An OPC DA (open platform communications data access) server
(Sartorius AG) was used as the real-time communication interface between the DCU,
the data management system (SIMATIC SIPAT), and the online modeling software
(SIMULINK, version R2019b; The MathWorks, Inc.).

25 Algorithm development

Offline data preprocessing, data analysis, and algorithm development were performed
in MATLAB (versions 2016a-2019b; The MathWorks, Inc., Natick, MA, USA).
SIMULINK (The MathWorks, Inc.) was used for the development and for running the
soft sensor for biomass and the fuzzy controller for methanol that was used in Brunner
et al. (2020). Further details on the algorithm development can be found in the
corresponding publications (Brunner et al., 2016; Brunner et al., 2019; Brunner et al.,
2020).
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3 Summary of results

In this chapter, the results are summarized and the contributions to the thesis
publications are listed. These summaries are followed by copies of the thesis
publications. All copies are used with permission of the corresponding journals and
authors.

Part 1: What are the remaining key challenges in the development of soft
sensors for bioprocesses?

Title: Challenges in the development of soft sensors for bioprocesses: a critical review
Summary: A review study is conducted to identify the key challenges in the
development of soft sensors for bioprocesses. The challenges are assigned to either
the data, information, or knowledge domain. The key challenges being considered in
this study are (1) variable process lengths, (2) multiple process phases, and (3) sensor
faults. These challenges often occur synchronously, so that solution approaches are
becoming increasingly complex. The corresponding solution approaches originate for
their most part from areas other than biotechnology. Therefore, in addition to the
practicability, the general applicability to bioprocesses is critically discussed. The main
conclusions of this review are, first, that the level of implementable process knowledge
is decisive for the choice of methods for handling variable process lengths and multiple
process phases. Second, soft sensor predictions are in the presence of uncertain input
data (potential sensor faults) only reliable if the input data are validated prior to their
use in the soft sensor model. Since there is still a research gap regarding the validation
of the input data to soft sensors for bioprocesses, sensor faults remain one of the key
challenges in the development of soft sensors in this application area.

Contributions: The doctoral candidate created the structure of the review article,
reviewed the literature, and drafted the manuscript. The co-authors critically reviewed
and edited the manuscript. All authors have made a substantial, direct, and intellectual
contribution to the work and approved it for publication.
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Part 2: How can a soft sensor model be utilized to generate process knowledge?

Title: Biomass estimation in Pichia pastoris cultures by combined single-wavelength
fluorescence measurements

Summary: The first soft sensor family shown here uses four single-wavelength
fluorescence measurements as model inputs to predict the optical density of a P.
pastoris culture (surrogate measurement for biomass concentration). The used
wavelength pairs correspond to excitation-emission maxima for the biogenic
fluorophores tryptophan, NAD(P)H (nicotinamide adenine dinucleotide (phosphate)),
and riboflavin. The modeling techniques of MLR, PCR, and PLSR showed comparable
prediction accuracy. The PLSR model was further analyzed via variable importance in
the projection (VIP) scores to rate the information content of the used wavelength pairs.
This analysis resulted in the highest weighting of the wavelength pair corresponding to
tryptophan. The main conclusion of this study is that useful knowledge can be drawn
from the analysis of a soft sensor. It was confirmed that tryptophan is more coupled to
cell growth than NAD(P)H and riboflavin. This knowledge could be used for the
development of a low-cost alternative to 2D fluorescence spectroscopy for biomass
monitoring.

Contributions: The doctoral candidate reviewed the literature, designed the study,
created, analyzed, and interpreted the data, developed the algorithms, and drafted the
manuscript. The co-authors critically reviewed and edited the manuscript. All authors
have made a substantial, direct, and intellectual contribution to the work and approved
it for publication.

Part 3: How can process knowledge be implemented to develop a soft sensor
model?

Title: Biomass soft sensor for a Pichia pastoris fed-batch process based on phase
detection and hybrid modeling

Summary: A second soft sensor for the biomass prediction was developed to
automatically adapt to the process phases (batch, transition, and fed-batch phase) of
a P. pastoris bioprocess. The model parameters dynamically adapt according to the
current process phase using a multilevel phase detection algorithm. A hybrid approach
combining mechanistic (carbon balance) and data-driven modeling (MLR) is used for
finally predicting biomass concentration. The main conclusion of this study is that the
challenge of multiple process phases in the presence of time-variant behavior can be
tackled without exponentiation of model complexity if the soft sensor algorithm works
on two distinct but interconnected levels: the phase detection and the prediction step.
Contributions: The doctoral candidate reviewed the literature, designed the study,
created, analyzed, and interpreted the data, developed the algorithms, and drafted the
manuscript. The co-authors supported in the interpretation of the modeling results and
critically reviewed and edited the manuscript. All authors have made a substantial,
direct, and intellectual contribution to the work and approved it for publication.
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Part 4: How can uncertain model inputs be validated prior to their use in a soft
sensor?

Title: Online sensor validation in sensor networks for bioprocess monitoring using
swarm intelligence

Summary: The third research study reports on the validation of readings from a
turbidity sensor used to monitor a P. pastoris-batch process. Soft sensors for biomass
concentration that are based on turbidity measurements would lose their predictive
performance in the case of sensor faults. To detect sensor faults and thus to validate
the turbidity sensor, process-time-dependent predictions of the turbidity sensor reading
were established. Sensor faults are indicated by the deviation of these predictions from
original sensor readings. Swarm intelligence is in this context used to determine the
best prediction models according to model fit and overfitting (regularization approach).
The main conclusion of this study is that even in a bioprocess with time-variant and
non-linear behavior as well as variable process length, one of the remaining key
challenges—sensor faults—can be tackled.

Contributions: The doctoral candidate reviewed the literature, designed the study,
created, analyzed, and interpreted the data, developed parts of the algorithms, and
drafted the manuscript. The co-authors developed parts of the algorithms and critically
reviewed and edited the manuscript. All authors have made a substantial, direct, and
intellectual contribution to the work and approved it for publication.
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3.1 Challenges in the development of soft sensors for bioprocesses: a
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Challenges in the Development of Soft
Sensors for Bioprocesses: A Critical
Review

Vincent Brunner, Manuel Siegl, Dominik Geier* and Thomas Becker

Chair of Brewing and Beverage Technology, Technical University of Munich, Freising, Germany

Among the greatest challenges in soft sensor development for bioprocesses are variable
process lengths, multiple process phases, and erroneous model inputs due to sensor
faults. This review article describes these three challenges and critically discusses the
corresponding solution approaches from a data scientist’s perspective. This main part of
the article is preceded by an overview of the status quo in the development and application
of soft sensors. The scope of this article is mainly the upstream part of bioprocesses,
although the solution approaches are in most cases also applicable to the downstream
part. Variable process lengths are accounted for by data synchronization techniques such
as indicator variables, curve registration, and dynamic time warping. Multiple process
phases are partitioned by trajectory or correlation-based phase detection, enabling phase-
adaptive modeling. Sensor faults are detected by symptom signals, pattern recognition, or
by changing contributions of the corresponding sensor to a process model. According to
the current state of the literature, tolerance to sensor faults remains the greatest challenge
in soft sensor development, especially in the presence of variable process lengths and
multiple process phases.

Keywords: soft sensor, online prediction, bioprocess, multiphase process, data synchronization, sensor fault, fault
tolerance

INTRODUCTION

The biologization of the manufacturing industry is leading to more and more processes that were
previously based on chemical synthesis being replaced by biotechnological processes (Buyel et al.,
2017). At the same time, the digitalization of these processes is leading to more transparent, lower-
risk, and more efficient biological manufacturing (Scheper et al., 2021). At the intersection of these
two trends—biologization and digitalization—a multitude of new technologies and approaches have
emerged in recent decades. These include, in particular, advances in the fields of data science as well
as monitoring and control technology for bioprocesses (Steinwandter et al., 2019). With the
introduction of the quality by design (QbD) and process analytical technology (PAT) initiatives,
this development has received institutional support (FDA, 2004; Rathore and Winkle, 2009).

Despite advances in bioprocess monitoring, many relevant process variables are still determined
offline using laboratory analyses. On this basis, a prediction is made about the expected future
behavior of the process. However, this procedure is often not sufficient to effectively react to process
changes, for example, through closed-loop control. The development of soft sensors is a remedy to
this situation.

A soft sensor (“software sensor”) is a combination of process data (input) and a model that uses
these input data to predict a target quantity (output). It is therefore an indirect measurement. The
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input data used for the prediction are typically composed of
signals from hardware sensors and actuators. Dependent on the
degree of process knowledge that is implemented, the prediction
model can be classified as data-driven, knowledge-based, or
hybrid.

The application fields of soft sensors can be distinguished by
the nature of the target quantity (Kadlec et al., 2009). The largest
application field of soft sensors is the online prediction of physical
quantities such as, for example, concentrations of biomass,
substrate, intermediate, or product. These types of soft sensors
are used when online analyzers are not available or economically
feasible for process variables of interest. Further, soft sensors can
be used within supervisory control applications to monitor the
state of the process on a higher level and detect process faults (Liu
et al, 2017; Besenhard et al., 2018; Dumarey et al., 2019). Soft
sensors for process monitoring and process fault detection use
historical process data to derive higher-level, non-physical
process quantities such as latent variables (Kourti, 2005) that
indicate deviations from the normal process conditions. Finally,
soft sensors can be used to detect sensor faults. The soft sensor
here is used to predict the reading of a hardware sensor. A
deviation of the prediction and the hardware sensor reading
indicates a sensor fault (Brunner et al., 2019). The falsified
hardware sensor reading can be reconstructed using the soft
sensor’s prediction.

The development of soft sensors poses several challenges to the
data scientist. These challenges can be assigned to either the data,
information, or knowledge domain. Table 1 lists the most
important challenges together with corresponding solution
approaches. Most of these solution approaches have been
reviewed for the process industry, including phase division
(Yao and Gao, 2009), adaption mechanisms for soft sensors
(Kadlec et al., 2011), JIT learning (Kano and Fujiwara, 2012;
Saptoro, 2014), data synchronization (Undey et al., 2002), process
fault detection (Venkatasubramanian et al, 2003a;
Venkatasubramanian et al., 2003b; Venkatasubramanian et al.,
2003c), dimension reduction (Pani and Mohanta, 2011), variable
selection (Cawley and Talbot, 2010; Souza et al., 2016; Heinze
et al., 2018), sensor fault detection and fault tolerance (Isermann,
2006; Isermann, 2011; Das et al., 2012), identification of
overfitting (Hawkins, 2004), model maintenance (Wise and
Roginski, 2015), digitalization of expert knowledge (Birle et al.,
2013), and hybrid modeling (Stosch et al., 2014; Solle et al., 2017).

A small number of these reviews address bioprocesses, but in
their majority, they play only a tangential role. Several of the
above approaches are equally applicable to bioprocesses (e.g.,
variable selection, dimensional reduction). However, what needs
an updated review or has not yet been reviewed at all in the
context of bioprocesses are the following three challenges:

e variable process lengths,
e multiple process phases, and
e sensor faults.

Especially for bioprocesses, these challenges often occur in
combination, so that solution approaches are becoming
increasingly complex: Sensor faults, which impede the

Soft Sensor Challenges

reliability of soft sensors, are more difficult to detect or
compensate for in processes with variable lengths and
dynamic behavior (Brunner et al,, 2019); data synchronization
(for processes of variable lengths) is more complex for multiphase
processes (Doan and Srinivasan, 2008). The focus of this review is
thus on the synchronous consideration of these three challenges
of soft sensor development. This review aims to critically evaluate
the corresponding solution approaches regarding their
practicality and applicability to bioprocesses. The following
applies here: As simple as possible, as complex as necessary.

This review article is structured as follows. First, an overview
of the status quo in the development and online application of
soft sensors is provided. Here, the typical steps of soft sensor
development and the state of the art in online implementation are
described. The following chapter concerns the challenges in soft
sensor development for bioprocesses from a data scientist’s
perspective, namely, variable process lengths, multiple process
phases, and sensor faults. The corresponding solution approaches
are critically discussed. This chapter is followed by a conclusion
that reveals the greatest remaining research gaps in soft sensor
development for bioprocesses.

SOFT SENSORS: THE STATUS QUO

Soft sensors have become an important tool within the QbD/PAT
framework, as reviewed by Mandenius and Gustavsson (2015),
Randek and Mandenius (2018), and Rathore et al. (2021). One
reason is that they are often the only means of determining
critical process parameters (CPP) or critical quality attributes
(CQA) online at all (Capito et al., 2015; Melcher et al., 2015; Sauer
et al, 2019; Spann et al,, 2019; Walch et al., 2019; Pais et al., 2020;
Wasalathanthri et al., 2020a). Making these quantities measurable
by means of soft sensors, in turn, allows CPPs or CQAs to be
closed-loop controlled (Birle et al., 2015; Matthews et al., 2016;
Voss et al,, 2017; Brunner et al., 2020; Gomis-Fons et al., 2020).
This type of control, also called inferential control, plays an
important role in the automation of bioprocesses, since by far
not all process quantities to be closed-loop controlled can be
measured directly (Rathore et al., 2021).

As mentioned at the beginning, soft sensors are used to
indirectly measure a target variable by combining a predictive
model with corresponding input data. Process data used as input
to soft sensors can compose differently depending on the
organism (bacteria, yeast, filamentous fungi, mammalian or
insect cells, etc.) used in upstream processing (USP) and the
techniques used in downstream  processing (DSP).
Instrumentation of bioprocesses and thus possible input data
for soft sensors have recently been reviewed by several authors
(with varying emphases): Simon et al, 2015 (industrial
application);  Biechele et al, 2015 (USP, disposable
technology); Mandenius and Gustavsson, 2015 (price, utility,
and relevance of online analyzers for soft sensor development);
Claf3en et al., 2017 (spectroscopic sensors); Wasalathanthri et al.,
2020b  (spectroscopic sensors, chromatography, and mass
spectrometry); Gargalo et al, 2020 (spectroscopic sensors,
biosensors, and free-floating wireless sensors). Therefore, only
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TABLE 1 | Overview of the most important challenges and corresponding solution approaches in the development of soft sensors. The challenges are herein broadly
assigned to either the data, information, or knowledge domain.

Domain

Data

Information

Knowledge

Challenges

Multiple process phases

Variable process lengths

Time-variant and nonlinear
behavior

(Multi)collinearity

Process deviations or faults

Sensor faults

Overfitting

Deterioration of model
performance

Implementation of expert
knowledge

Solution approaches

Phase detection and division

Adaption mechanisms

Data synchronization

Adaption mechanisms

Dimension reduction

Variable selection

Enlarge training data pool

Process fault detection

Sensor fault detection

Fault tolerance

Identification of overfitting

Controlling model
complexity
Model maintenance

Digitalization of expert
knowledge
Hybrid modeling

Details and most important methods

Algorithms for phase detection can be based on the shape of process trajectories (e.g., sharp
peak in specific process variable) or the correlation structure of process variables (e.g.,
change in loading matrices of latent variable submodels) (Yao and Gao, 2009; Luo et al.,
2016)

The adaption of the prediction model to multiple process phases can be realized by moving
window, recursive adaption, or ensemble-based methods (Kadlec et al., 2011). Just-in-time
(JIT) learning is a special case of adaptive modeling, because the local JIT models are built
during the online application (Kano and Fujiwara, 2012; Saptoro, 2014)

Datasets with variable process lengths can be aligned based on: indicator variable
techniques, where a measured or computed variable (e.g., maturity index) indicates the
progress of the process instead of time; curve registration techniques, where batch
trajectories are aligned with respect to process landmarks (Undey et al., 2002); and dynamic
time warping (DTW), where the data patterns are compressed and expanded so that similar
features are aligned

A prediction model for time-variant data with nonlinear behavior needs to be adaptive rather
than static. Adaptive modeling approaches include moving window, recursive adaption, and
ensemble-based methods (Kadlec et al., 2011) as well as JIT learning (Kano and Fujiwara,
2012; Saptoro, 2014)

Latent variable methods (principal component analysis (PCA) or partial least squares (PLS)
variants) intrinsically lead to a dimension reduction and thus eliminate (multicollinearity (Pani
and Mohanta, 2011)

A sound variable selection can reduce (multi)collinearity. Approaches for variable selection
include stepwise regression (e.g., backward elimination, forward selection), penalization of
model complexity (e.g., based on least absolute shrinkage and selection operator), and
through expert knowledge (e.g., a variables’ variance is known to be just due to noise or
control error and is thus excluded from model inputs) (Cawley and Talbot, 2010; Souza et al.,
2016; Heinze et al., 2018)

The training data pool can be enlarged by the inclusion of datasets of various fault scenarios
and the whole design space instead of only the operating space. Cases that are not covered
in the training data pool will lead to unreliable extrapolation of the prediction model
Methods of process fault detection can be classified as based on quantitative models,
qualitative models and search strategies, and on process history (Venkatasubramanian et al.,
2003a; Venkatasubramanian et al., 2003b; Venkatasubramanian et al., 2003¢)

Sensor faults can be detected via various approaches (Das et al., 2012): symptom signal
estimation, where the residual between the original and calculated (predicted) sensor reading
indicates a sensor fault (isermann, 2006; Isermann, 2011); multivariate statistical process
control (MSPC), where faults are detected by the contribution of each input variable to
underlying statistics of an empirical process model (e.g., PCA or PLS variants); and pattern
recognition, where supervised or unsupervised learning algorithms are used to differentiate
between faulty and non-faulty sensor data

Fault tolerant soft sensors compensate for faults of inputs to the prediction model by a
reconstruction of those inputs (Isermann, 2006; Isermann, 2011). Ensemble-based methods
can potentially be used to discard or underweight sub-models with faulty model inputs
Overfitting can be determined during model evaluation via internal cross-validation (e.g.,
leave-one-out, k-fold, stratified, or time-series cross validation) and external (holdout)
validation (Hawkins, 2004)

Model complexity can be controlled and thus overfitting can be reduced by a sound variable
selection (see above)

In cases where the performance of the prediction model deteriorates due to unseen events
(not yet included in the training data pool, e.g., changes in the production strain or seasonal
changes in media components), the training data pool and sometimes also the model
structure need to be updated (Wise and Roginski, 2015). In all other cases (similar events
already included in the training data pool), adaptive modeling approaches such as recursive
adaption and ensemble-based methods (Kadlec et al., 2011) as well as JIT learning (Kano
and Fujiwara, 2012; Saptoro, 2014) can be used to maintain the prediction model

Expert knowledge can be digitalized via fuzzy-logic-based approaches in the form of a rule
base (Birle et al., 2013) or via first-principle models (Ohadi et al., 2015; Tahir et al., 2019)
Data-driven modeling can be combined with knowledge-based approaches to make use of
available expert knowledge (Stosch et al., 2014; Solle et al., 2017). Hybrid modeling often
results in a combination of the advantages and compensation of disadvantages of the two
approaches
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a compact selection of the most important process variables and
analyzers, respectively, is given in this article. Typical online
process data are composed of at least the following readings: flow
rates, (differential) pressure (Krippl et al., 2021), temperature,
pH, stirrer speed, pO,, off-gas CO,/O,, and conductivity. Often,
this standard instrumentation is supplemented by advanced
measurement principles, such as turbidity (transmission,
transflexion, reflection), impedance, pCO,, high performance
liquid chromatography (Dumarey et al.,, 2019), flow cytometry,
in-situ microscopy, ultrasound, biosensors, proton-transfer-
reaction mass spectrometry (Berbegal et al., 2020), and, last
but not least, various spectroscopic techniques, such as
ultraviolet-visible, near- or mid-infrared (Capito et al., 2015;
Sauer et al., 2019; Walch et al., 2019; Wasalathanthri et al., 2020a;
Cabaneros Lopez et al,, 2021), 2D fluorescence (Melcher et al.,
2015; Bayer et al, 2020), Raman (Matthews et al., 2016; Voss
et al., 2017), and nuclear magnetic resonance (Kern et al., 2019).

As mentioned, the choice of analyzers used for monitoring and
control depends on the used production organism. In
mammalian bioprocesses (e.g., Chinese hamster ovary cells),
for example, the cell concentration is in most cases
significantly lower than in microbial bioprocesses (e.g., Pichia
pastoris, Saccharomyces cerevisiae, Escherichia coli). Further,
metabolite concentrations, which are particularly relevant in
mammalian bioprocesses such as ammonium and lactate
(Matthews et al, 2016), are relatively low. Due to higher
growth rates, the cultivation time is typically shorter for
microbial than for mammalian bioprocesses. For the
development of soft sensors, special challenges may therefore
arise for the respective expression system: First, the accuracy of
the reference and online measurements limits the accuracy of the
resulting soft sensors, which can take effect when analyte
concentrations are low. Second, faster processes require higher
measurement frequency according to the Nyquist-Shannon
sampling theorem (microbial: ca. 20-120h™" (Voss et al,
2017; Cabaneros Lopez et al, 2021); mammalian: ca.
0.5-12h™! (Ohadi et al., 2015; Matthews et al., 2016)). This
must be considered when specifying the prediction frequency
of the soft sensor. Especially with the complex preprocessing
necessary for spectroscopic data (see next section), the
computational power can limit the prediction frequency of the
soft sensor (Afseth et al., 2006).

Following this description of possible input data to a soft
sensor, the subsequent section shows step by step how to develop
a soft sensor. Afterwards, the state of the art in online
implementation of soft sensors is shown, ie., how the soft
sensor is concretely used for online prediction.

Workflow of Soft Sensor Development

The development of soft sensors has been reviewed by several
authors. Systematic approaches to soft sensor development have
been presented by Fortuna et al. (2007), Kadlec et al. (2009), and
Souza et al. (2016) for the process industry and by Haimi et al.
(2013) for wastewater treatment plants. They all show a similar
workflow. However, the focus of these review articles is on data-
driven modeling approaches, and knowledge-based modeling
approaches are for the most part neglected. Khatibisepehr

Soft Sensor Challenges

et al. (2013) present a systematic workflow for soft sensor
development based on Bayesian methods, which inherently
combine knowledge-based and data-driven modeling.

The basic workflow used as a framework in this review article
generally assumes a hybrid use of knowledge-based and data-
driven approaches (Figure 1). The core of soft sensor
development is setting up and evaluating the prediction
model. Besides these mandatory steps, the workflow is
nonrigid: It depends on the individual case (degree of process
knowledge, noisiness of inputs, need for model maintenance, etc.)
whether all steps are conducted to the full extent.

The first step in soft sensor development is to evaluate the
available raw data in terms of outliers and patterns in the
datasets. Outlier analysis is important to identify samples or
measurements that distinctly stand out from the rest of the data.
An initial correlation analysis between model input and output can
provide a matrix of correlation coefficients (e.g., Pearson’s), which
helps to assess relationships among the data. When interpreting the
results of correlation analysis, however, one must keep in mind that
correlation is not equivalent to causality. The correlation analysis can,
in combination with available process knowledge, already be
employed to preselect information-bearing model inputs (Melcher
etal, 2015; Bidar et al., 2018). These analyses provide the basis for the
selection of suitable data preprocessing and modeling methods.

The purpose of data preprocessing is to transform the raw
input data into a form that minimizes the effect of noise and
outliers while preserving the information content. Methods of
data preprocessing include formatting, centering, scaling (e.g., to
variance), and—specifically for spectroscopic data—baseline
correction and peak alignment (Afseth et al., 2006; Matthews
etal., 2016; Voss et al,, 2017). Signal processing by smoothing and
filtering (e.g., Hampel filter (Pearson et al., 2016)) can help to
reduce noise and eliminate outliers. However, it is important to
note that all preprocessing measures applied during model
establishment must also be executable online.

Process knowledge can be implemented into the soft sensor
model. Knowledge-based model parts such as first-principle
models (Ohadi et al, 2015; Steinwandter et al., 2017;
Pappenreiter et al., 2019; Tahir et al., 2019; Krippl et al., 2021)
can be employed to develop a more accurate and robust model.
Process knowledge in the form of linguistic expressions can be
digitalized using approaches based on fuzzy logic, as reviewed by
Birle et al. (2013).

After these preceding steps, the actual correlation—the core of
the soft sensor algorithm—is established. This correlation model
maps the process data X (input) to the target quantity y (output)
using model coefficients b. In its simplest, linear form, this model
can be formulated as:

y = bX. (1)

If more than one target quantity is predicted with the same
model, the vector y in Eq. (1) is replaced by the matrix Y.

Taking into account the application fields of soft sensors
described above, y can be a physical quantity that can be
measured only offline (online prediction), a higher level,
non-physical quantity (process monitoring and process fault
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FIGURE 1 | Basic workflow of soft sensor development. A loop exists
between model evaluation and optimization and continuous learning;
however, revisions of the first four steps will in many cases be necessary to
develop a sufficiently accurate and robust soft sensor.
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FIGURE 2 | Between the poles of underfitting and overfitting. The
observed error (thick, black line) of a predictive model is influenced by the
modeling of random noise (undesired; thin, gray line) and interference (desired;
thin, black line). The optimal model complexity is a trade-off between
these two competing effects and is case-dependent.

detection), or the reading of a hardware sensor (sensor fault
detection). Various modeling techniques have so far been applied
for soft sensor development, including variants of multiple linear
regression (MLR; Jenzsch et al., 2006), partial least squares
regression (PLSR; Sokolov et al.,, 2015; Voss et al.,, 2017; Zheng
and Song, 2018; Walch et al., 2019; Cabaneros Lopez et al., 2021),
principal component regression (PCR; Zhu et al., 2018), artificial
neural networks (ANN; Paquet-Durand et al., 2017; Zhang et al.,
2020), and support vector regression (SVR; Voss et al., 2017;
Meng et al,, 2019). The choice of the right modeling method
depends on the degree of (multi)collinearity, nonlinearity, and
the availability of process knowledge.

The model is typically trained, ie., b is determined, using
historical data Xp and y,;, (exception: just-in-time (JIT)

Soft Sensor Challenges

learning), so that y,;, = bXpis. Subsequently, the resulting
model needs to be evaluated in terms of goodness-of-fit,
predictivity, and robustness (OECD, 2014). Here, the received
model is used to predict the target quantity y,,, so that
Yhist = bXnise. After training and model evaluation, b can be
used together with online process data X,, to predict the
target quantity y,,, so that y,, = bXo,.

For the robustness of the developed model, it is crucial that the
model has neither too many nor too few model inputs nor too
high nor too low model complexity, respectively (Figure 2).
Methods to determine the optimal model complexity have
been reviewed by several authors (Cawley and Talbot, 2010;
Souza et al,, 2016; Heinze et al., 2018).

Even with a robust and sufficiently accurate soft sensor, model
quality or prediction performance, respectively, usually
deteriorates if the process characteristics change (Kano and
Fujiwara, 2012). Therefore, the maintenance or recalibration of
soft sensors—just as for hardware sensors—is necessary in
practice to preserve the quality of their prediction
performance. In this context, model maintenance refers to the
(automatic) adaptation of models in the event of changing system
conditions. For the prediction models of a soft sensor, this means
that the model parameters and, if necessary, the entire model
structure (e.g., number and type of input variables) must be
adapted over time.

Which programming environment or software solution is
used to develop soft sensors in practice? Soft sensor
development in the academic environment typically takes
place in a programming language of choice such as Matlab
(The MathWorks Inc.), Python, or R. The corresponding
programming environments provide steadily growing libraries
of functions or toolboxes for signal processing, data
preprocessing, and model calibration and validation. Especially
in the industrial environment, software specially developed for
chemometrics is often used for soft sensor development (e.g.,
SIMCA by Sartorius AG; Unscrambler by Aspen Technology
Inc.). Here, the full flexibility of development via program code is
exchanged for a relatively straightforward and guided
development process. Also, many vendors of online analyzers
offer software modules for soft sensor development. In particular,
vendors of spectroscopic sensors should be mentioned here (e.g.,
OPUS suite by Bruker Corp., iC suite by Mettler Toledo Inc.,
GRAMS suite by Thermo Fisher Scientific Inc.), but also vendors
of other multivariate sensors (e.g., BlueVis by BlueSens gas
sensors GmbH) offer corresponding software modules. Some
software tools (chemometric and analyzer software) also offer
the option to embed scripts generated via the above-mentioned
programming languages into the soft sensor algorithm. This
allows adding customized functions for signal processing and
data preprocessing as well as developing prediction models that
might not be included in the commercial software tool. Finally,
soft sensors can also be developed on cloud-based platforms (e.g.,
MindSphere by Siemens AG, Predix by General Electric Co.) to
have access to a wide variety of data processing and modeling
tools and to be able to share the developed soft sensors across
plant or company boundaries (Chen et al., 2020; Kabugo et al.,
2020).
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Online Implementation of Soft Sensors
How is a soft sensor used in practice for online prediction? In

theory, the soft sensor is merely a combination of input data and a
prediction model (see definition above). In practice, however,
several additional aspects must be considered if a soft sensor is to
be used for online prediction, i.e., implemented online.

First of all, online implementation of soft sensors requires at
least communication between field (sensors and actuators) and
control level (programmable logic controller and/or process
control system) and in most cases also supervisory level
(supervisory control and data acquisition, SCADA, and/or
other data management system). The data used as inputs to
the soft sensor can originate from various sources (Steinwandter
et al., 2019). Therefore, a standardized communication between
these sources and the software instance in which the soft sensor is
implemented is essential. While a variety of standard
communication protocols exist for communication between
field and control level (4-20 mA, Modbus, Profibus, etc.), it is
communication via OPC UA (open platform communications
unified architecture) that seems to become the predominant
standard for communication in the control and supervisory
level (Chen et al., 2020; Biermann et al., 2021). Recent efforts
even aim at field-level communication using OPA UA
(Veichtlbauer et al., 2017). OPC UA, unlike its predecessors of
OPC classic (data access, alarms and events, historical data
access), allows hardware- and platform-independent
communication.

Once the communication and thus the data flow between field,
control, and supervisory level has been established, the question
arises on which level of the automation pyramid the soft sensor is
implemented. Technically, it is possible to implement soft sensors
directly in the control level. However, the implementation of
scripts directly in the control system is intended for end users
only in exceptional cases and the proprietary language must be
used (Nair et al., 2020). Systems above the control level, on the
other hand, commonly offer the possibility to implement soft
sensors directly or indirectly. In the direct variant, soft sensors are
implemented in the SCADA (e.g., MECS by Sartorius AG, Eve by
Infors AG, BioXpert by Applikon Biotechnology BV) or other
data management system (e.g., SIMATIC SIPAT by Siemens AG,
synTQ by Optimal Industrial Technologies Ltd., xPAT by ABB
Ltd., Lucullus PIMS by Securecell AG, LabVIEW by National
Instruments Corp.). Here, preprocessing steps and model
calculations can be implemented directly to a certain extent.
More importantly, these software tools often offer the possibility
to communicate with external chemometric or analyzer software
(Matthews et al., 2016; Voss et al., 2017; Dumarey et al., 2019) or
to integrate customized scripts that are executed online
(Besenhard et al., 2018). In this indirect variant, soft sensors
are implemented in real-time capable chemometric (e.g., SIMCA-
online by Sartorius AG (Voss et al., 2017), Process Pulse by Aspen
Technology Inc.) or analyzer software (e.g., CMET by Bruker
Corp. (Wasalathanthri et al., 2020a), iC Quant by Mettler Toledo
Inc. (Wu et al,, 2015)) that communicates with the SCADA or
data management system. Here, communication often already
takes place via OPC UA (Kern et al, 2019). In this indirect
implementation, the chemometric or analyzer software
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preferentially communicates information (e.g., the predicted
value) rather than data back to the SCADA or data
management system (Luttmann et al.,, 2012).

The PAT software products mentioned in this section are only
a selection and should not be seen as a recommendation. For a
more comprehensive overview of PAT software, the reader is
referred to Chew and Sharratt (2010). The authors also list
whether the respective software is compliant with regulatory
requirements for electronic records and signatures according
to 21 CFR Part 11 (FDA, 2003).

When soft sensors are implemented in an industrial
environment, they must first undergo an intensive functional
and risk assessment (qualification). A step-by-step guidance for
structured development and implementation has been proposed
by Randek and Mandenius (2018). This guidance considers the
regulatory validation requirements for software including
recommended protocols for installation, operational, and
performance qualification. The validation of software,
especially in the pharmaceutical environment, commonly
follows guidelines such as GAMP 5 (ISPE, 2008), 21 CFR Part
11 (FDA, 2003), or EU GMP Annex 11 (EC, 2010).

CHALLENGES IN SOFT SENSOR
DEVELOPMENT FOR BIOPROCESSES

This chapter concerns the challenges in soft sensor development
for bioprocesses from a data scientist’s perspective, namely,
variable process lengths, multiple process phases, and sensor
faults. For each of these three challenges, the problem
statement is initially outlined. Subsequently, the solution
approaches are critically discussed, linking them to the other
two challenges, wherever possible. Each solution approach is
summarized at the end particularly regarding its practicality
and applicability to bioprocesses.

Variable Process Lengths

Problem Statement

From a process engineering perspective, the end of a bioprocess is
defined either by the expiration of a certain process time or by the
occurrence of a certain process event. Such termination events
can be, for example, the reaching of a target value for the biomass
or product concentration or a specific pattern in the process data
(e.g., a CO, peak indicating the consumption of a carbon source).

In the case of an event-driven process end, the process length
can vary from batch to batch due to multiple sources of variance.
Besides the typical variance of biological reactions, variance can
be introduced by raw materials (e.g., media or feed), by preceding
processing units (e.g., preculture), or by deviations in the current
process itself.

The variable length of process runs can lead to the following
problems. First of all, it can distort the equal weighting of the
individual datasets during model development and evaluation if
the reference data y,,, are generated at a constant frequency:
More reference data points for longer processes lead to an
overweighting of longer processes compared to shorter ones.
Secondly, in case a dynamic soft sensor model incorporates
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FIGURE 3 | Data synchronization of a query curve (gray, thick line)

related to areference curve (black, thin line) of a fictional process variable with
landmarks L1, L2, and L3 and process end E (dashed line): (A) Initial situation
with variable £ and variable L1, L2, and L3; (B) Synchronization of £ but

no coincidence of L1, L2, and L3; (C) Synchronization of £, L1, L2, and L3.
The landmarks L1, L2, and L3 represent typical curve features, namely a local
maximum, a local minimum, and a trend reversal, respectively. The trigger
event for this fictional process to end (E) is the reaching of a plateau after L1,
L2, and L3 have been reached.

time as an input variable to compensate for time-variant
behavior, variable process lengths lead to another problem:
Model performance may deteriorate to the extent that the rate
of process progress deviates (i.e., the process is too fast or too
slow) from the historical data that were used to train the model.
Thirdly, in multiphase processes, the sources of process variance
described above can lead to deviations in the time of occurrence
of process events (Undey et al., 2002). If this issue is not
accounted for, the adaptation of a soft sensor to process
phases could be impeded.

Various methods of data synchronization have been developed
to address the challenge of variable process lengths. Data
synchronization has two goals, as illustrated in Figure 3 for a
fictional process variable: on the one hand, to bring all process
datasets to the same lengths (Figure 3B); on the other hand, to
ensure that the relevant process events (landmarks) coincide
(Figure 3C).

Soft Sensor Challenges

The three techniques used most commonly for data
synchronization are discussed in the following: indicator
variable, curve registration, and dynamic time warping
(DTW). The goal of all these methods is to find a warping
function h that replaces the time ¢ on the abscissa and thus to
obtain synchronized process data X, (Ramsay and Silverman,
2005):

Xome = X[h(D)]. (2

As part of soft sensors that are adaptable to variable process
lengths, the synchronization algorithm needs to be executable
both offline during model development (for Xp;s and y,,;,) as well
as during the online application (for X,y).

As with all, the choice of the data synchronization method is
highly dependent on the process being monitored (Rato et al.,
2016; Rato et al., 2018). It should also be noted that, regardless of
the method used for data synchronization, all subsequent levels of
the monitoring algorithm (soft sensor prediction, fault detection,
etc.) depend for better or worse on the robustness and accuracy of
the synchronization method used.

Indicator Variable Techniques

In this method, the time scale is replaced by an alternative scale,
the indicator variable. The indicator variable can be either a real
(physical) process variable or an estimated process progress, often
referred to as maturity index or percent completion. Process
variables that are used as termination criteria for the process or as
trigger variables for an automation system are particularly
suitable as indicator variables (Undey et al, 2003; Garcia-
Munoz et al., 2011). Examples of process variables suitable as
indicator variable are decrease of substrate concentration (Undey
et al, 2002), cumulative feed volume (Undey et al., 2003),
bioreactor volume, and biomass concentration (Rato et al.,
2016). Regardless whether a real process variable or a maturity
index is used, the indicator variable should ideally progress
strictly monotonically, continuously, and smoothly and have
the same start and end value (e.g., 0 and 100 % maturity) for
all process runs (Nomikos and MacGregor, 1995; Undey et al.,
2002; Undey et al., 2003).

When developing a prediction model for the maturity index,
the percentage of process progress is calculated for the training
data, e.g., by a simple linear transformation. The model requires
monotonically progressing variables that correlate with process
progress. Examples of the use of a maturity index for data
synchronization in bioprocesses can be found in Krause et al.
(2015) and Brunner et al. (2019). Both studies demonstrate how a
maturity index based on a PLS model can be used to determine
process progress online and thus enable adaption to the time-
variant behavior of biological batch processes. Only through
information about the process maturity was it possible to
detect sensor faults in the respective bioprocesses.

Undey et al. (2003) addressed the challenge of variable process
length for a multiphase process, namely a simulated fed-batch
penicillin fermentation with two phases (batch and fed-batch
phase). They proposed using separate indicator variables for each
process phase to compensate for the variable lengths of the
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phases. As a result, the authors were able to construct tighter
control limits for an MSPC model, which in turn enabled faster
fault detection. A similar approach was presented by Garcia-
Murfioz et al. (2003) for an industrial drying process with three
process stages. It was shown that incorporating warping
information—i.e., “the information that comes out of an
alignment” (Garcia-Mufioz et al., 2003)—resulting from the
stage-by-stage alignment can improve a quality prediction model.

In summary, indicator variables are suited for data
synchronization of bioprocess data under the condition that
there is a minimum understanding of the temporal behavior
of the process variables. If this knowledge is available and
especially if the process variable used as the indicator variable
is used as termination criterion for the process, there is no more
robust and simple method than this. Problems with the
prediction of the maturity index can occur if the input
variables of the model change fast in certain process phases
and slowly in others. This is not uncommon, especially in
USP (lag vs. exponential phase). Even if this is considered by
using a non-linear model, the resolution of the input variables
restricts the relative accuracy in “slow” process phases. This
resolution is determined by the sensors and actuators used. In
cases where it is difficult or impossible to find or calculate an
indicator variable that comes close to the above-mentioned
requirements (strictly monotonically progressing, etc.), curve
registration techniques or DTW should be considered. Finally,
it must be stressed that indicator variable techniques are per se
designed to be independent of any landmarks. These structural
features, which are especially helpful for multiphase processes, are
ignored during data synchronization and thus cannot be
exploited. Data synchronization with indicator variable
techniques is therefore limited to the scenario shown in
Figure 3B.

Curve Registration Techniques
Within functional data analysis, curve registration is referred to as
the process of aligning one function curve to another (Ramsay
and Silverman, 2005). In this sense, the term curve registration
does not differ from the term data synchronization, only that it
refers specifically to functional data. The process data are seen as
observations of an underlying continuous function (Undey et al.,
2002). The curves are aligned with respect to their structural
features, referred to as landmarks. These landmarks can be
certain levels, extrema (minima, maxima), or trend reversals
(see L1, L2, L3, and E in Figure 3). The relevant landmarks
are identified using process knowledge and/or numerical
computations, such as first and second derivative, respectively,
and zero crossing (Undey et al, 2002; Ramsay and Silverman,
2005). After matching the landmarks between reference and
query, the sections between the landmarks are warped, which
in the simplest case means that they are resampled linearly.
Williams et al. (2001) and Undey et al. (2002) used curve
registration to align the process data of a simulated fed-batch
penicillin fermentation. For the alignment of multivariate data,
the authors suggest first aligning all process data with respect to
the landmarks of the most important variable (determined, e.g.,
via process knowledge). In the second step, a principal
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component analysis (PCA) is carried out and the process
variables are aligned with respect to the landmarks of the first
principal component. The second step is repeated until the
landmarks converge. In these studies, it was shown that curve
registration provides relatively smooth variable trajectories after
the alignment compared to DTW; in this way, fewer false alarms
occurred with MSPC-based fault detection. In one other of the
few examples from the bioprocess field, Andersen and Runger
(2012) used landmarks of a pharmaceutical batch fermentation
process for data synchronization. The significant landmarks were
automatically identified as the zero crossings of a continuous
Gaussian wavelet transformation (Bigot, 2006). Afterwards, the
resulting curve segments were warped linearly and piecewise for
each segment.

In summary, curve registration techniques allow not only the
alignment of variable lengths—as with an indicator variable—but
also the alignment of curve features. Scenario C in Figure 3 can
therefore be achieved. Since the features of many process
variables occur simultaneously at phase transitions, curve
registration techniques are particularly suitable for multiphase
processes (Undey and Cinar, 2002). However, applications of
curve registration for bioprocesses are rare. The existence of this
niche in the field of bioprocesses can at most be explained by the
circumstance that the indicator variable technique is more
intuitive and comparatively easy to implement and DTW can
be used with less fine tuning.

Dynamic Time Warping
DTW, initially developed for speech recognition (Sakoe and
Chiba, 1978), was proposed for the synchronization of process
data by Kassidas et al. (1998). Since then, it has become one of the
most widely used methods for this purpose. Reasons for this are
that not only variable process lengths but also landmarks can be
aligned using DTW. Scenario C in Figure 3 can therefore be
achieved, just as with curve registration. DTW expands,
contracts, or translates the time axis of the datasets in such a
way that the shape of the variable trajectory is largely preserved,
landmarks coincide in time and all datasets have a uniform
number of measuring points. The basic sequence of DTW
algorithms is as follows: First, the distance matrix (e.g.,
Euclidean) between the instants of the reference and the query
time series is calculated. Then the warping path is searched for
that minimizes the sum of distances and at the same time
considers several boundary conditions (local, global, endpoint).
Using this warping path, the query time series is aligned to the
reference time series by expanding, contracting, and translating.
Since its introduction for data synchronization, the original
DTW algorithm has been varied in several ways to address issues
such as singularities. Singularity in this context refers to the
mapping of a single point of the reference time series to multiple
points of the query time series or vice versa. Derivative DTW
(DDTW) uses local derivatives of the time series instead of raw
data and was proposed for overcoming singularities (Keogh and
Pazzani, 2001). DDTW compared to DTW tends to align more
based on shape rather than magnitude (Spooner et al., 2018).
Since numerical derivation often leads to an amplification of
noise, a Savitzky-Golay filtering step can be implemented in the
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DDTW algorithm to make the alignment more robust (Zhang
et al., 2013).

For process data that show sections with many successive
landmarks (feature-rich) and then again sections with few
landmarks (feature-poor), a fixed warping resolution is often
not sufficient. Therefore, a dynamic warping resolution was
proposed by Gins et al. (2012). This is achieved by a
combination of correlation optimized warping (COW; Nielsen
et al., 1998; Fransson and Folestad, 2006) for feature-poor and
DDTW for feature-rich sections (hybrid DDTW).

The difficulty with the online application of DTW is that a
partially complete dataset (query) needs to be aligned with a
complete dataset (reference). This issue was first addressed by
Kassidas et al. (1998) and later further elaborated by Gonzalez-
Martinez et al. (2011). In both studies, the endpoint constraint,
i.e., that the endpoint of the query must equal the endpoint of the
reference, was omitted. This means, however, that the alignment
has to be calculated at each sampling point and each time the
recent history of the trajectory has to be considered. For this
reason, a computationally efficient way of finding the optimal
warping path within a moving window was proposed by
Gonzalez-Martinez et al. (2011), referred to as relaxed-greedy
time warping (RGTW). Another online application of DTW was
presented by Srinivasan and Qian (2007). They used dynamic
locus analysis (Srinivasan and Qian, 2006) to identify the best
matching signal segment from a reference library by making use
of singular points (landmarks) and thus to determine the state of
the process. For the actual online warping, a greedy version of the
DTW algorithm, referred to as extrapolative time warping (XTW;
Srinivasan and Qian, 2005), was used.

Gonzélez-Martinez et al. (2014) extended the concept of
DTW (offline application) and RGTW (online application) to
the problem of multiple asynchronisms for a simulated S.
cerevisiae fermentation. Multiple asynchronism in this
context refers to a combination of at least two of the
following asynchronism scenarios: variable process length;
no coincidence or overlapping of key process events; initial
delay or premature termination of a process. The authors
proposed a two-step approach in which the asynchronism
pattern is firstly detected based on the warping information
and secondly batch synchronization is performed based on the
detected pattern.

In the standard DTW procedure (univariate DTW), a single
representative process variable is used as a reference to align all
other process variables. In certain cases, however, univariate
DTW can lead to misleading results; this includes, for
example, a delayed measurement in a bypass (on-line) or the
bioreactor periphery (at-line) compared to the remaining
measurements in the bioreactor (in-line). In these cases,
multivariate DTW (MDTW) should be considered. Two
fundamental variants are distinguished in MDTW (Shokoohi-
Yekta et al., 2015): Either DTW is performed separately for each
of the process variables j, resulting in j potentially different
alignments (“independent” MDTW); or the warping path is
determined via a multidimensional p-norm as cost function,
whereby multiple process variables are included in the
calculation of the distance (“dependent” MDTW). For a

Soft Sensor Challenges

review of MDTW, the reader is referred to Moser and
Schramm (2019).

In summary, DTW and its variants have—at least for
simulated data—proven to be well suited for synchronizing
bioprocess data, both offline and online. No process
knowledge is necessary to develop this preprocessing method.
When dealing with multiple process phases, DTW can be used in
two different ways: first, it can be used to detect process phases
(Gollmer and Posten, 1996); second, it can be used to align data
within a process phase (Doan and Srinivasan, 2008; Spooner et al.,
2018). The use of DTW for these purposes is further described in
the following section. Finally, it should be noted that the warping
information can be used for the classification of deviations from
normal operating conditions, such as sensor faults (Gonzilez-
Martinez et al., 2013). However, in order to identify the deviating
sensor, each fault scenario of interest must explicitly be included
in the training data pool.

Multiple Process Phases

Problem Statement

From a monitoring perspective, industrial processes can take
place either in multiple processing units (multistage) or in a single
one. A process with a single processing unit (e.g., USP in a
bioreactor) can have multiple operational regimes, such as a batch
and fed-batch phase, and is referred to as multiphase process.
Multiphase processes are often treated analogously to multistage
processes (Yao and Gao, 2009), i.e., different process phases are
treated as if they took place in separate processing units.

The necessity of considering multiple process phases when
developing a soft sensor is obvious: The relationships within the
input data X (multicollinearity) and between the input data and
the target variable y (correlation) can vary substantially in the
individual phases. The challenges discussed in this section refer to
changes in the relationships from X to y that are related to the
process strategy. These include, for example, an induced change
in media composition due to feeding, the start or end of a
starvation phase, long-term changes between oxygen-limited
and non-limited process conditions, or changes in the
temperature setpoint. Changes in the relationships of X to y
that are associated with time-variant and nonlinear behavior are
not within the scope of this review article, although the respective
adaption mechanisms partly overlap. These adaption
mechanisms have been excellently reviewed by Kadlec et al.
(2011).

Only with much greater development effort or available
process knowledge will a global process model attain the same
accuracy and robustness as several submodels for each process
phase. Graphically expressed, the required model complexity (cf.
Figure 2) of a global model is allocated to several less complex
local models. This in turn can make it easier to optimize the
model (Jin et al., 2015), for example, in terms of avoidance of
overfitting.

The main difference between datasets of multistage and
multiphase processes is that in multiphase processes the
individual phase segments must first be identified and often
cannot be precisely separated. The actual modeling step is
therefore often preceded by a phase detection and division
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step. The detection and division is based either on trajectories of
phase-sensitive process variables or on the changing correlation
structure among the process variables (Luo et al., 2016).

Trajectory-Based Phase Detection and Division

The sequence of the most biotechnological processes is not given
by nature, but by process experts. Therefore, if knowledge about
the process sequence is available, it is reasonable to use it for
phase detection and division. The definition of landmarks by
process experts leads to a solution that is both robust and
comprehensible. An example of this can be found in Spooner
et al. (2018), who, in contrast to their previous study (Spooner
etal, 2017), first divided a bacterial fermentation process into two
phases and then aligned the process data of these phases
separately via DTW and DDTW, respectively. The pH and pH
correction agent (flow and cumulative amount) signals were used
to distinguish the phases. Brunner et al. (2020) used the off-gas
CO, signal to detect the consumption of the carbon source and
thus the end of the batch phase in a P. pastoris fed-batch
bioprocess. To make the detection of this landmark (CO,
peak) more robust, a threshold for the cumulative amount of
pH correction agent was additionally implemented in the phase
detection algorithm.

The role of DTW for data synchronization has already been
described in the previous section. As a means of detecting process
phases, it was first proposed by Gollmer and Posten (1996) for
time-varying fed-batch bioprocesses (E. coli and S. cerevisiae).
With the use of historical time trajectories of CO, and O, together
with available process knowledge, six different process phases
were classified. This reference (prototype) was used in the online
application by the DTW algorithm to assign unknown process
data to this pattern and thus detect the previously defined process
phases. Doan and Srinivasan (2008) proposed a variant of DTW
augmented by singular points (landmarks) for the combined
detection and synchronization of process phases. They used
substrate feed and pH as key variables for the detection of
process phases of a simulated fed-batch penicillin
fermentation. Phase changes were considered equivalent to the
occurrence of singular points and were identified using the
methods described in the previous section (Srinivasan and
Qian, 2005; Srinivasan and Qian, 2007). DTW (offline) and
XTW (online), respectively, were then wused for data
synchronization within the phase segments.

Especially in USP, phase transitions must be considered, as
biological systems involve living cells, which do not react
instantaneously to environmental changes. Luo et al. (2016)
proposed a framework for adapting process models to a
sequence of multiple process phases while explicitly considering
phase transitions in a simulated fed-batch penicillin fermentation.
They used fuzzy c-means (FCM) clustering for phase detection
and division to account for the gradual transition from one steady
phase to another. The FCM clustering algorithm was constrained
by the temporal sequence of the dataset. Phase-based multiway
PLS models were used for prediction in the steady phases, and JIT-
PLS models were used during the transition phases.

In summary, trajectory-based algorithms are suitable for
phase detection and division in cases where a minimum of
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process knowledge is available. This knowledge is necessary to
select the phase-sensitive process variables. Provided that suitable
phase-sensitive process variables can be identified, this approach
is more comprehensible than the correlation-based approach.
This is especially due to the fact that the identified phases usually
correspond to operational phases (Yao and Gao, 2009). Finally, it
must be emphasized that DTW is suitable not only for data
synchronization in the case of variable process lengths, as
described above, but also for the detection of multiple process
phases.

Correlation-Based Phase Detection and Division

A difficulty with the methods mentioned so far is to find variables
that are measurable and sensitive to the individual phases (Luo
et al., 2016) and whose trajectories are reproducible and as noise-
free as possible. In the following, methods are presented that
accomplish phase detection and division without the need for
process knowledge. These methods are based on changes in the
correlation structure among process variables.

Camacho et al. (2008) proposed an algorithm based on latent
variable models (PCA or PLS) for the detection and division of
process phases for a S. cerevisiae and a wastewater treatment
process. The whole process dataset is iteratively divided into
incrementally smaller phases. At each iteration step, the
separation point that leads to the maximum improvement of
the explained variance of the PCA or PLS submodel, respectively,
compared to the undivided dataset is identified (Camacho and
Picé, 2006).

Another method to make use of changes in the correlation
structure is to first determine the loading matrices of PCA or PLS
submodels following a moving window approach and then to find
groups in which the underlying variable correlation remains
similar (Lu et al., 2004; Lu and Gao, 2005). These groups can,
for example, be determined by k-means clustering (Lu et al.,
2004).

However, if different operation modes with variable phase and
process lengths are to be considered, the classical moving window
approach leads to misleading results. The reason for this is that in
the online application it is not clear whether the current moving
window coincides with that of the reference (historical data).
Therefore, the described method for phase detection and division
(Lu et al., 2004) was extended by the ability to identify the current
mode of operation (resulting in variable lengths) online. Zhang
et al. (2018) generated a series of moving windows within a
constrained searching range around the current sample. They
then used the k-nearest neighbor rule to identify the most similar
time slices. The time slices found in this way are then used as
described above (loading matrices of submodels, k-means
clustering) to enable online phase detection despite variable
phase and process lengths.

Finally, Gaussian mixture models (GMM) have proven to be
suitable for phase detection and division for a simulated fed-batch
penicillin fermentation (Yu and Qin, 2009; Yu et al., 2013). Here,
each phase is represented by a Gaussian component with distinct
mean and covariance. The posterior probability is used to group
the process data into separate process phases. This concept was
later adopted for a real industrial bioprocess (Mei et al., 2017).
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In summary, for correlation-based phase division, the reduced
effort in implementing process knowledge is compensated with
an increased effort in modeling. Depending on the modeling
method, however, an entirely different division of the process
phases may result and fine-tuning of the latent variable models is
necessary (Luo et al., 2016). Because the correlation structure is of
multivariate nature, the interpretability of the results of the phase
division is limited in contrast to most trajectory-based methods.

Sensor Faults

Problem Statement

Sensor faults are defined as deviations of the observed sensor
reading from the true value (Balaban et al., 2009; Sharma et al.,
2010). They are distinguished according to the type of occurrence
as abrupt (stepwise) or incipient (driftwise) faults (Isermann,
2006) and according to the shape of the deviation as bias,
precision degradation, and complete failure.

During the training phase of soft sensor development, sensor
faults can severely affect the resulting goodness-of-fit and
predictivity. If sensor faults are present in the training data
Xpise and yy,;,, these deviations may be reflected in the model
coefficient b and the prediction ¥,,,. In this case, evaluation
criteria for goodness-of-fit and predictivity (e.g., R?, root mean
squared error) are affected. During the online application of the
soft sensor, i.e., the prediction phase, sensor faults in X,, may
directly affect the prediction of the target quantity ,.

The validation of sensor readings prior to their use for quality
control, e.g., via soft sensors, is therefore of crucial importance, as
outlined by Feital and Pinto (2015). A sensor reading is valid if
there are no sensor faults or unconsidered influences on the
measurement, which can occur due to cross-sensitivity to matrix
compounds (matrix effects). Deviations between the observed
sensor reading and the true value thus need to be detected, and a
decision logic needs to classify the observed sensor reading as
reliable (valid) or faulty (invalid). Valid sensor readings can be
used for quality control by means of soft sensors, while invalid
ones can lead to misleading results.

The fault tolerance of soft sensors, or, in other words, a reliable
soft sensor prediction in the presence of sensor faults represents
one of the remaining core challenges in the development of soft
sensors. The reason for this is that the detection and subsequent
compensation of sensor faults alone are difficult to realize, but
they become even more complex when the conditions described
above (variable process lengths and multiple process phases)
occur simultaneously.

This section first discusses various methods of detecting sensor
faults. Afterwards, the approaches for tolerance of soft sensors
towards sensor faults are discussed.

Sensor Fault Detection
When a sensor i that is used to monitor a bioprocess gives faulty
readings, its reliability r; decreases. The aim of sensor fault
detection is to detect these faulty readings and thus indirectly
determine ;. Figure 4 shows four fundamental approaches to
sensor fault detection.

Hardware redundancy uses multiple identical sensors to
derive the occurrence and size of sensor faults in case of a
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FIGURE 4 | Approaches for sensor fault detection: (A) hardware
redundancy; (B) symptom signal methods; (C) methods based on variable
contribution in MSPC model; (D) pattern recognition methods. The index i
refers to one type of sensor for one physical or chemical variable,

whereas m ... n refers to any other types of sensors. For example, in (A), the
reliability of one turbidity sensor (sensor /) is determined using other turbidity
sensors in the same bioreactor (redundant sensors /). In (B), the reliability of a
turbidity sensor (sensor /) is determined using other sensors such as exhaust
gas, dissolved oxygen, and pH (sensors m....n). In (C,D), the entire process
data matrix consisting of the turbidity sensor to be monitored (sensor i) and the
other sensors (m ... n) is used as input to the empirical process model (C) and
pattern recognition (D), respectively. Approaches (B-D) are based on
analytical redundancy.

significant discrepancy among these sensors (as, for example,
in airplanes). Voter structures can be implemented into the fault
detection algorithm to allow a “democratic” decision on which of
the individual sensor values is faulty. If, for example, two of three
sensors give a similar reading and the third reading deviates
significantly, the third sensor is considered to be faulty. For
hardware redundancy, the spatial distribution of the sensors
must be considered, and the costs of the sensors limit this
approach (Stork and Kowalski, 1999). Hardware redundancy
can also be used to determine the type of fault as bias, gain,
precision degradation, complete failure, and noise (Kullaa, 2013).

The other three approaches are based on analytical
redundancy and are described in the following.
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Symptom Signal Methods
As mentioned in the introduction, soft sensors themselves can be
used to assist in sensor fault detection. Here, the target quantity y
of the soft sensor is the reading of the hardware sensor to be
monitored. A deviation of the prediction y,, from the original
reading y,, beyond a defined threshold value indicates a sensor
fault. The residual between ¥, and y,, is referred to as symptom
signal e (Zarei and Shokri, 2014) and can in its simplest form be
formulated as:

ezyon_j)nn‘ ©)

Several authors make use of state-space models for the
generation of the symptom signal, as described in the
following. Zarei and Shokri (2014) used a nonlinear unknown
input observer to generate symptom signals and thereby to detect
sensor faults in a simulated continuous stirred-tank reactor
(CSTR) process. Alag et al. (2001) proposed a framework for
sensor fault detection based on the symptom signal method
exemplarily for a gas turbine power plant. They proposed a
multi-step algorithm for determining y,, followed by the
generation and evaluation of the symptom signal. First, a
redundant prediction for each sensor in the network is
generated based on regression methods such as neural
networks  (redundancy creation).  Subsequently, these
predictions are fused with original sensor readings into a
state-space model based on a Kalman filter approach (state
prediction and fusion). The statistical properties of the
symptom signal are in combination with probabilistic
reasoning finally used to identify both abrupt and incipient
sensor faults. Since a symptom signal is created for each
sensor, the proposed methodology is capable of detecting
multiple sensor faults simultaneously.

Autoassociative neural networks (AANN) were first
introduced by Kramer (1991) for sensor fault detection and
reconstruction in a simulated chemical batch process. They
have proven to be effective in detecting sensor faults in a
fermentation process (Streptomyces virginiae) with variable
process length and multiple process phases (Huang et al,
2002). AANN are feed-forward neural networks consisting of
an input, an output, and three hidden layers (mapping,
bottleneck, and demapping layer). The outputs of the
bottleneck layer are considered equivalent to the principal
components of a nonlinear PCA (Kramer, 1991). The key
concept of AANN is that the model is trained with fault-free
process data Xj; both as input and output, so that Xpiss = Y pige.
The resulting nonlinear model is used for determining online
predictions of the process data, Y, based on online measured
process data, X,, = Y,,; then, analogous to Eq. (3), the residual is
calculated for each variable and used for the detection of sensor
faults. This concept was extended to a complex nonlinear system
with time-delays, namely a multicomponent distillation column
(Perla et al., 2004).

The symptom signal method was used by Brunner et al. (2019)
to detect sensor faults in a P. pastoris batch process. Due to the
time-variant behavior and variable lengths of the batch processes,
an indicator variable (maturity index) is introduced to predict the
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process progress online. For each process section, a set of
prediction models for ¥, is generated. A regularization
approach based on binary particle swarm optimization (PSO)
is used to select the 25 best prediction models. The distribution of
the predictions y,, is compared to a moving window distribution
of y,, using the Kullback-Leibler divergence (Kullback and
Leibler, 1951). The divergence between ¥,, and y,, indicates a
sensor fault and is used to quantify the sensor reliability 7;.

Most studies use a fixed threshold for fault detection based on
symptom signals. This can lead to false alarms when unforeseen
events or noise occur in the sensor network data. In these cases, a
time-varying as opposed to a fixed threshold can increase
robustness and minimize the fault detection time, as shown by
Armaou and Demetriou (2008) for simulated chemical processes.
However, if process lengths vary, the threshold needs to adapt
dynamically to process progress and not just to process time. For
this reason, Brunner et al. (2019) proposed a dynamic threshold,
which is calculated by means of the confidence width of ¥,
which in turn is dependent on the process progress.

In addition to the mere detection of a sensor fault, information
about the type of fault may also be necessary for the potential
subsequent compensation (fault tolerance). To determine the
type of fault as either bias, complete failure, drifting, or
precision degradation, Dunia et al. (1996) developed a concept
in which the symptom signal is generated using a PCA
prediction model.

In summary, symptom signal methods are well suited for the
detection of sensor faults and they are relatively intuitive due to
their similarity to hardware redundancy. The main bottleneck of
this approach is the model for the prediction of y,,,, which is used
for generating the symptom signal. For most bioprocesses, the
model needs to consider time-variant behavior and variable
process lengths. With the exception of AANNs, this model
must be developed separately for each sensor to be monitored.
The main advantage of the symptom signal method is that there is
a direct reconstruction for the faulty sensor value available. Soft
sensors or control systems, which depend on a reliable sensor
input, can fall back on the reconstructed value and thus be
designed fault tolerant.

Methods Based on Variable Contribution in Multivariate
Statistical Process Control Model

Multivariate statistical process control (MSPC) and its
corresponding empirical process models and control charts are
another method to detect sensor faults. The original idea of MSPC
is to map a wealth of process data X to one or a few higher-level,
non-physical process quantities y or Y, respectively, such as latent
variables (Kourti, 2005). Deviations between historical, X, and
online process data X, are detected using control charts based on
the complementary SPE (squared prediction error; sometimes
denoted as Q) and Hotelling’s T statistics (Nomikos and
MacGregor, 1995; Liu et al., 2017; Sdnchez-Fernandez et al.,
2018). Once these test statistics indicate a significant deviation,
the contribution of each input variable in X,, to the test
statistic(s) is calculated. Sensors or variables, respectively, with
a significantly high contribution to the test statistic(s) are
associated with a sensor fault. A general analysis of the
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variable contribution approach is given by Qin (2003). Various
methods for decomposing the test statistics to contributions, such
as complete, partial, or reconstruction-based decomposition,
were analyzed by Alcala and Qin (2011).

Sanchez-Ferndndez et al. (2018) combined the symptom
signal and the contribution-based method for the detection of
process and sensor faults. Residuals between predictions and
observations for each variable in X,, are used as inputs to a
PCA-based MSPC model. Residuals that are calculated with
faultless training data are used for calculating the thresholds
(control chart limits) for fault detection based on T? and SPE
statistics. Multivariate and univariate exponentially weighted
moving average control charts are used for the detection of
process and sensor faults, respectively. Two simulated
benchmark processes (Tennessee Eastman process and
wastewater treatment plant) were used for validating the concept.

Another combination of the symptom signal and the
contribution-based method was proposed by Yoo and Lee
(2006) for sensor fault detection. Here, contribution plots
assist in identifying faulty variables. In case the contribution
plots indicate a fault, the original measurement is compared with
a prediction based on a fuzzy PLS model of the corresponding
variable. However, no algorithm was presented on how to derive
the sensor reliability or the fault magnitude and type, respectively.
The concept was evaluated on a real and a simulated wastewater
treatment plant.

Reconstruction-based contributions (RBC) were proposed for
sensor fault detection by Yue and Qin (2001). Here, T? and SPE
are combined in a fault detection index ¢. This combined index
proved to have better detectability both for single and multiple
sensor faults than if the contributions to T? and SPE are
considered separately (Yue and Qin, 2001; Alcala and Qin,
2009). This concept was adopted by Torres et al. (2018) for
pharmaceutical tablet manufacturing. The RBC approach was
extended by Mnassri and Ouladsine (2015) to handle multiple
and more complex sensor faults.

A contribution-based approach to sensor fault detection and
tolerance was developed by Krause et al. (2015) for the
monitoring of a yeast fermentation process. This approach
does not consider the contribution to the test statistics as
described above, but the direct contribution to the model b
and the prediction y,,, respectively, for fault detection. They
developed a PLS-based MSPC model using an indicator variable
to compensate for variable process lengths. For each process
section, a set of MSPC models is generated and PSO is used for
finding the best models with respect to historical process data
(with normal process behavior). Variable importance in the
projection (VIP) scores (Chong and Jun, 2005) were used to
evaluate the input variables for their contribution (information
content) to the MSPC model. A reduction of the VIP score of a
variable is assigned to a fault of the corresponding sensor.

A problem not to be underestimated in contribution-based
fault detection is the smearing effect (Alcala and Qin, 2011; van
den Kerkhofet al., 2013). Smearing here refers to the “influence of
faulty variables on the contributions of non-faulty variables” (van
den Kerkhof et al., 2013). Faulty variables (i.e., soft sensor inputs)
can thus be concealed, and non-faulty variables can be incorrectly
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associated with faults. In contribution-based fault detection,
groups of correlating variables are often displayed as faulty
due to the smearing effect (van den Kerkhof et al., 2013); this
is an obstacle especially for the often multicollinear data of
bioprocesses.

To account for the nonlinearity of CSTR processes, several
authors introduced the kernel PCA (Scholkopf et al., 1998) as a
nonlinear extension of the PCA and adapted the calculation of the
contributions to the T? and SPE statistics accordingly (Cho et al.,
2005; Choi et al., 2005; Alcala and Qin, 2010).

The functional principle of AANN has already been described
above for fault detection using symptom signals. Ren et al. (2018)
proposed a reconstruction-based AANN to detect faults in
nonlinear processes (simulated gas turbine). Both single and
multiple faults could be detected despite the occurrence of
smearing effects. It was further shown that in this case
reconstruction-based AANN is superior to the other
investigated ~methods (contribution plots-based PCA,
contribution plots-based AANN, and reconstruction-based
PCA) in terms of detection rate.

In summary, methods based on variable contribution currently
represent the largest share among studies on sensor fault detection
in the process industry. The main advantage of these methods is
that the MSPC model can be used both for process and sensor fault
detection. With only one MSPC model it is theoretically possible to
monitor all input variables or sensors, respectively. To the best of
our knowledge, however, there is only one study (Krause et al,
2015) that shows that, for highly multicollinear bioprocess data,
smearing effects do not prevent successful sensor fault detection.
For multiphase processes with variable process lengths, the MSPC
models used for defect detection can be developed separately for
each phase and a phase-specific indicator variable can be used for
time synchronization (Undey et al., 2003).

Pattern Recognition Methods

Unsupervised (clustering) and supervised (classification and
regression) pattern recognition has been applied extensively
for bioprocess monitoring (Lourengo et al., 2012; Rodriguez-
Meéndez et al., 2016). Also, in the detection of sensor faults by
pattern recognition, a distinction is made between unsupervised
and supervised methods.

In the case of unsupervised pattern recognition, the training
data consist of fault-free process data. The relationships within
the process variables are learned as patterns. A specific deviation
from the fault-free pattern can then be assigned to a specific
sensor fault (Barbariol et al., 2020). In this context, unsupervised
pattern recognition is comparable to the aforementioned
methods based on variable contribution in MSPC models:
First, a deviation from the fault-free standard process is
detected and then it is examined to determine to which
variable the fault can be traced. These two approaches (MSPC
vs. unsupervised pattern recognition) differ less by this
underlying principle than by the modeling methods used
(empirical process model vs. clustering algorithm).

Barbariol et al. (2020) used unsupervised anomaly detection
algorithms to detect faults of a multiphase flow meter. Artificial
faults were added to data of normal operating conditions. The
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type of fault was identified as either complete failure, bias,
precision degradation, or drift by a root cause analysis algorithm.

In the case of supervised pattern recognition, the training data
contain sensor faults. These sensor faults can be artificial or real,
but in any case, they must be labeled according to their reliability
r; or—conversely—their degree of faultiness (1 - ;). Faultiness is
indicated either binarily (fault = true/false) or on a discrete
(Mehranbod et al., 2003) or continuous scale (Guo and Nurre,
1991). Detecting sensor faults becomes a classification problem in
case of binary or discrete faultiness and a regression problem in
case of continuous faultiness. In both cases, labeled faulty data
Xhnist represent the inputs and the degree of faultiness (or the
converse: 7;) represents the output. These input and output data
are used for training the classification or regression model.

Guo and Nurre (1991) used supervised pattern recognition to
detect and reconstruct sensor faults in a space shuttle main
engine. Artificial random Gaussian noise was added to parts of
fault-free data from normal operation. If the resulting artificial
sensor readings are within the valid range, they are assigned a
reliability of 0.9; if they are outside the valid range, they are
assigned a reliability of 0.1. A feedforward ANN is trained with
the manipulated sensor readings as inputs and the corresponding
labeled reliability as outputs using a backpropagation algorithm
to adjust the weights. In this way, even with a very small amount
of original data, sensors whose readings do not match the rest of
the sensor network can be identified. It was further shown that
supervised pattern recognition is also suitable for the detection of
multiple simultaneous sensor faults (Palmé et al., 2011) even in
the presence of system failures (Romesis and Mathioudakis, 2003;
Mathioudakis and Romessis, 2004). In this case, the training data
must cover each of these cases (deviation from normal operation
and multiple sensor faults), which causes the number of training
patterns to increase rapidly.

In addition to the mere detection of faults, Mehranbod et al.
(2003) distinguished between three different fault types (bias,
drift, or noise) by identifying fault patterns in a moving window.
They trained a Bayesian belief network to detect both single and
multiple sensor faults in a polymerization reactor. This concept
was later extended for the time-variant behavior of transient
processes (Mehranbod et al., 2005).

In summary, pattern recognition methods are particularly
attractive because ready-to-use—and in many toolboxes also
auto-tuned—algorithms of machine learning can be applied to
the problem of sensor fault detection without extensive statistical
knowledge. At least in mechanical or chemical processes, efficient
sensor fault detection can be realized with only little original data
from normal operation together with artificial faults (Guo and
Nurre, 1991). Despite this high potential, there are, to our
knowledge, no studies that have explicitly used the previously
trained pattern of sensor faults for their subsequent detection in
bioprocesses. This lack of studies is all the more remarkable as
pattern recognition methods are particularly efficient with such a
high degree of multicollinearity as in bioprocesses.

Sensor Fault Tolerance
In the last sections, three different approaches to sensor fault
detection were described. In the absence of sensor faults, the
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model input to soft sensors is considered reliable (online
validation). But what is the use of online validation if the fault
detected in the input data makes the soft sensor prediction
unreliable? We know that something is going wrong, but we
cannot change anything (upper branch in Figure 5). This is where
the fault tolerance of soft sensors comes into play.

In general, modules for fault tolerance can be implemented at
two layers of a soft sensor: at the inputs or in the actual soft
sensor model.

The first variant of fault-tolerant soft sensors is shown in
Figure 5. Here, sensor faults are first detected and, after a decision
logic, they are compensated for by a reconstruction of the faulty
sensor reading. This reconstruction is equivalent to missing data
imputation (Dunia et al., 1996). The outputs of the fault tolerance
module in Figure 5 are the inputs to the soft sensor. The inputs
and outputs of the described fault tolerant soft sensor are
hereinafter referred to as Xonrr and ¥,, pr. For bioprocesses,
there are, to our knowledge, no studies available that explicitly
address the development a fault-tolerant soft sensor based on
fault detection and reconstruction. However, some authors have
separately described the fault tolerance module shown in
Figure 5, as described in the following.

In the already mentioned study by Huang et al. (2002), an
AANN was used for sensor fault detection by means of a
symptom signal and fault reconstruction in a fermentation
process with variable process length and time-variant
behavior. Examples of sensor fault reconstruction using
AANN in applications other than biotechnology are given
in Kramer (1991), Kramer (1992), and Hamidreza et al.
(2014). Variable contribution statistics (7> and SPE) in a
MSPC model were used by Lawal and Zhang (2017) to

X A L Soft R AN
" sensor i Von
Fault
de’:ea(l;JtlitOn tolerance
module
Fault Decision
reconstruction logic
XonFr s Soft P
) sensor M| y

FIGURE 5 | Concept of a fault tolerance module for creating a fault-
tolerant soft sensor. When a fault occurs in one or multiple variables of the soft
sensor inputs Xon, usually the soft sensor prediction ¥, is also faulty
dependent on the degree of influence of the variable(s) in the soft sensor
model (upper branch). Fault-tolerant soft sensors are capable of
compensating for faults in the inputs by the following procedure: Initially, the
sensor fault is detected. Then, a decision logic determines whether or not to
reconstruct the faulty sensor reading. This reconstruction results in a fault-free
substitute for Xon, Namely, the fault-tolerant inputs Xonfr. The soft sensor
uses these inputs for the determination of a fault-tolerant output (prediction)
YonFr-
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detect and subsequently reconstruct faulty sensor reading
within a crude distillation unit. In the above-mentioned
study by Guo and Nurre (1991) an ANN was used to learn
the patterns of both fault-free and faulty sensor readings to
detect sensor faults. A separate ANN was trained to
reconstruct the faulty readings.

In the second variant of fault-tolerant soft sensors, the faulty
inputs are not reconstructed but the soft sensor algorithm itself is
responsible for the fault management. For bioprocesses, there is,
to our knowledge, only one study available that explicitly
addresses fault tolerance by adapting the soft sensor models
(Krause et al, 2015). The already described MSPC model
developed by Krause et al. (2015) is capable of giving reliable
predictions y,, o (here: higher-level process quantity) in the
presence of sensor faults. As mentioned, PSO is used to find the
best models with respect to historical process data. When sensor
readings in X,, differ significantly from historical data Xp;s, they
are penalized by the PSO cost function. This in turn results in a
drastically decreased contribution of the faulty sensor reading and
thus a fault-tolerant prediction of y,,. With this approach to
sensor fault tolerance the same has to be considered as with the
entire MSPC concept: Both are ultimately based purely on a
statistically significant deviation from X,, to Xpis and are thus
strongly dependent on the size and quality of the process data
pool for Xps.

In summary, it must be noted that, with very few exceptions, there
are no studies on fault-tolerant soft sensors for the process industry. With
regard to fault detection before the subsequent reconstruction, all three
methods described above are applicable. However, for the methods of
variable contribution in a MSPC model and pattern recognition
methods, a separate model must be developed to reconstruct the
faulty sensor reading. Symptom signal methods offer the advantage
that the reconstructed sensor reading is directly available.

CONCLUSION

Based on an overview of the status quo of soft sensor development
and online implementation, this review article describes the
challenges of variable process lengths, multiple phases, and
sensor faults, and critically discusses the corresponding
solution approaches. The challenges are considered both
individually and synchronously, and the solution approaches
are evaluated in terms of their practicality and applicability to
bioprocesses.

Variable process lengths: Data synchronization techniques
are employed to ensure that soft sensors provide correct
predictions despite variable process lengths. For data
synchronization, indicator variable techniques and particularly
DTW dominate the bioprocess literature compared to curve
registration techniques. Indicator variables alone can only be
used for the alignment of the entire process lengths. In contrast,
DTW and curve registration techniques can additionally be used
for the alignment of landmarks. Indicator variable techniques
require a higher degree of process knowledge (selection of
appropriate process variables etc.) compared to DTW and
curve registration techniques. DTW is the technique of choice
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when a solution is sought that does not require much process
knowledge (compared to indicator variable techniques) and fine-
tuning (compared to curve registration techniques).

Multiple process phases: The basic strategy for coping with
multiple process phases is to divide the process datasets into
individual phase segments and develop separate models for these
segments. For the detection and division of process phases,
trajectory-based and correlation-based methods have been
proposed in the literature. Methods based on the progression
of process trajectories, most notably via DTW, have to date been
proposed more frequently in the bioprocess literature compared
to correlation-based methods. Reasons for this include better
comprehensibility of algorithms, easier interpretability of results,
and coincidence with actual operational process phases in
trajectory-based methods (Luo et al, 2016). On the other
hand, correlation-based methods offer the advantage that they
can be developed almost entirely without process knowledge. The
consideration of phase transitions has so far been described only
for trajectory-based methods (via FCM; Luo et al., 2016); for
correlation-based methods, the consideration of phase transitions
is still lacking.

Sensor faults: If the input to a soft sensor is faulty, there is a
high probability that the output is faulty as well. Despite this
obvious relation, studies on the detection of or even tolerance to
sensor faults in bioprocesses are rare. Methods based on variable
contributions in MSPC models are well established in the process
industry for the identification of sensor faults. Further research is
required to evaluate the applicability of these methods to highly
collinear bioprocesses, as groups of correlating variables are often
displayed as faulty due to smearing effects (van den Kerkhof et al.,
2013). Symptom signal methods have been used to detect sensor
faults and to reconstruct faults in bioprocesses. These methods,
especially AANN, seem to be promising tools for the fault
tolerance of soft sensors. The recognition of previously trained
fault patterns has been used in mechanical engineering for fault
detection, but to our knowledge has not yet been addressed in the
bioprocess field. However, it can be assumed that this branch of
machine learning will also increase in popularity in the field of
bioprocesses due to steadily growing libraries of ready-to-use
algorithms. For all three approaches presented for the detection of
sensor faults (symptom signal, MSPC, pattern recognition) it
could be shown that they are also capable of detecting
simultaneously occurring sensor faults.

Synchronous consideration of the three challenges: The
development of soft sensors for bioprocesses with multiple phases
and variable process lengths has been investigated in several studies
(e.g. Undey et al, 2003; Luo et al, 2016). As described above,
landmark-based data synchronization is particularly suitable for
multiphase processes. For sensor fault detection for bioprocesses
with variable lengths but without multiple phases individual studies
exist (Krause et al.,, 2015; Brunner et al., 2019). Regarding sensor fault
detection for multiphase bioprocesses with variable lengths, the
question remains open as to which of the three methods
presented is most suitable. This is because there is to the best of
our knowledge only one study that provides a solution for the
synchronous occurrence of all three challenges for bioprocesses
(Huang et al,, 2002).
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The core conclusions of this review article are as follows:

The choice of methods to handle variable process lengths
and multiple process phases is dependent on the level of
implementable process knowledge.

The dilemma with sensor fault detection via soft sensors is
that the input to the soft sensor can itself be erroneous.
There is a clear research gap regarding the validation of the
input data to soft sensors.

Specifically, approaches to the tolerance of soft sensors to
sensor faults need to be found.

Closing these gaps not only will allow existing sensor networks
to be used more efficiently to monitor bioprocesses but will also
strengthen confidence in soft sensors and PAT.
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GLOSSARY

b model coefficients

E process end

e residual between prediction and original sensor reading
h warping function

i index for sensor of interest

j number of process variables

L landmark

m . .. n indices for sensors other than sensor i

7; reliability of sensor i

SPE squared prediction error (sometimes denoted as Q)
t time

X process data = input to soft sensor

Xhist historical process data

Xon online process data

Xonpr fault-tolerant online process data

X, sync synchronized process data

y or Y target quantity (vector or matrix) = output of soft sensor
¥,on online data of target quantity

YVhise historical data of target quantity

Ypist prediction for historical data of target quantity

flan or ?Dn prediction for target quantity (vector or matrix)
j;(m,FT fault-tolerant prediction for target quantity

¢ combined fault detection index
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Soft Sensor Challenges

AANN autoassociative neural network

ANN artificial neural network

COW correlation optimized warping

CPP critical process parameter

CQA critical quality attribute

CSTR continuous stirred-tank reactor

(D/M)DTW (derivative/multivariate) dynamic time warping
DSP downstream processing

EC European Commission

FCM fuzzy c-means

FDA Food and Drug Administration

GMM Gaussian mixture model

ISPE International Society for Pharmaceutical Engineering
JIT just-in-time

MLR multiple linear regression

MSPC multivariate statistical process control

OECD Organisation for Economic Co-operation and Development
OPC (UA) open platform communications (unified architecture)
PSO particle swarm optimization

RBC reconstruction-based contributions

RGTW relaxed-greedy time warping

PAT process analytical technology

PCA principal component analysis

PCR principal component regression

PLS(R) partial least squares (regression)

QbD quality by design

SCADA supervisory control and data acquisition

SVR support vector regression

USP upstream processing

VIP variable importance in the projection

XTW extrapolative time warping
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Biomass estimation in Pichia pastoris cultures by combined single-

wavelength fluorescence measurements
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ABSTRACT: In this work, the evolution of different biogenic
fluorophores involved in the metabolism of Pichia pastoris was
determined at four different single-wavelength pairs (excitation/
emission) during batch culture in microwell plates and used for
effective and reliable biomass estimation by means of chemo-
metric tools. The chemometric tools for biomass estimation were
multiple linear regression (MLR), partial least squares regression
(PLSR), and principal component regression (PCR). Variable
importance in the projection (VIP) scores were used to rate the
importance of model input variables, indicating tryptophan as
the most important variable for biomass estimation. A direct
correlation between the single fluorescence signals of tryptophan
and biomass was additionally set up. Results indicate a successful
fitting of the MLR, PLSR, PCR, and direct tryptophan correlation
models for the present case and confirm the relevance of biogenic
fluorophores for bioprocess state variables monitoring. The root
mean squared error of prediction (RMSEP) between the predicted
and measured values for the validation batches was 0.017, 0.023,
0.025, and 0.049 gL ™" dry cell weight for MLR, PLSR, PCR, and
direct tryptophan correlation, respectively. The presented
approach of indirectly measuring biomass based on combined
single-wavelength fluorescence measurements can be used for the
development of a low-cost alternative to 2D fluorescence
spectroscopy.
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Introduction

The methylotrophic yeast Pichia pastoris is frequently used in
industry and research as a host for expression of heterologous genes
with over 500 recombinant proteins being expressed in this system
(Cereghino et al., 2002; Cregg et al., 2000). Despite the decades of
experience with P. pastoris in industry and academia, optimization
potential within the production of recombinant proteins in P. pastoris
can still be found (Cos et al., 2006; Potvin et al., 2012). A common
problem in bioprocess monitoring and control is the online
determination of the key variables biomass, substrate, and product.
Biomass is the central process variable because it directly indicates
process performance and is included in all mathematical models
describing cell growth (Surribas et al., 2006¢).

For the online or at-line determination of P pastoris biomass
several techniques have been applied such as optical density
measurements (Holmes et al., 2009; Jahic et al., 2002), near infrared
spectroscopy (Crowley et al., 2005; Goldfeld et al., 2014), dielectric
spectroscopy (Ehgartner et al., 2015; Fehrenbach et al., 1992),
fluorescence spectroscopy (Surribas et al, 2006a,b,c), flow
cytometry (Broger et al., 2011), as well as various soft sensors
(Barrigdn et al., 2012; Khatri and Hoffmann, 2006; Liang and Yuan,
2007; Sagmeister et al., 2013; Wechselberger et al., 2013).

One of the most promising techniques for P. pastoris biomass
estimation is fluorometry, since many biogenic fluorophores are
strongly linked to the progress of biomass development. This
interconnection was used in several studies to correlate single
excitation-emission wavelengths or whole 2D fluorescence spectra
to yeast biomass (Horvath et al., 1993; Li and Humphrey, 1991;
Scheper et al., 1984; Surribas et al., 2006a,b,c). The coenzyme
nicotinamide adenine dinucleotide and its phosphorylated form,
respectively, NAD(P)H (Armiger et al., 1986; Li and Humphrey,
1991; Scheper et al., 1984; Zabriskie and Humphrey, 1978) as well as
the amino acid tryptophan (Horvath et al., 1993; Surribas et al.,
2006¢) were used for this purpose. In addition, riboflavin was used
for the estimation of biomass and substrate in P pastoris
bioprocesses (Hisiger and Jolicoeur, 2005; Li and Humphrey,
1991; Surribas et al., 2006b). In all this studies, the potential to

© 2016 Wiley Periodicals, Inc.
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predict biomass was either tested for whole 2D fluorescence spectra
or single wavelengths. No study investigated the use of combined
single-wavelength fluorescence measurements for biomass estima-
tion in P. pastoris bioprocesses by means of chemometric tools,
although this would be of great interest due to its simplicity and cost
efficiency.

Differently to using the whole 2D spectrum for information
extraction, biomass is in this study estimated based only on the
predetermined set (Surribas et al., 2006b) of single-wavelength
fluorescence measurements of tryptophan, NAD(P)H, and ribofla-
vin. By using a small variable subset compared to a whole 2D
fluorescence spectrum, data reduction and lower computational
cost can be achieved. On the other hand, it is supposed that the
biomass estimation based on tryptophan, NAD(P)H, and riboflavin
is more reliable than a correlation between a single fluorophore’s
intensity alone (Hisiger and Jolicoeur, 2005) because single
fluorophores can be subject to variations during the process (e.g.,
NAD(P)H variations due to oxygen limitation (Siano and
Mutharasan, 1989)). For this reason, it is highly recommended
to use multiple metabolites linked to cell growth for a reliable
biomass estimation model. In this context, the proposed approach
combines the high information content of 2D fluorescence
spectroscopy for biomass estimation with the low model complexity
and acquisition costs for single wavelength measurements.

The chemometric tools used for biomass estimation based on the
fluorescence measurements were multiple linear regression (MLR),
partial least squares regression (PLSR), and principal component
regression (PCR). The modeling results were used to rate the
wavelength pairs for the fluorophores tryptophan, NAD(P)H, and
riboflavin based on their importance for biomass estimation. The
share of each fluorophore in the used estimation model was
quantified by means of variable importance in the projection (VIP)
scores (Chong and Jun, 2005). Based on the rating of VIP scores, a
simple linear correlation between the single tryptophan fluores-
cence and biomass was established. Finally, the prediction
performance for the four different modeling approaches (MLR,
PLSR, PCR, and direct tryptophan correlation model) was
comparatively evaluated.

The major intention of this study was not to develop an advanced
modeling approach for biomass estimation—MLR, PLSR, and PCR
are rather standard methods—but to establish a scientific basis for
the development of a low-cost fluorescence sensor with the same
information content as 2D fluorescence spectroscopy for biomass
monitoring. In this context, the applied chemometric methods give
insight into the information content of each wavelength pair and
allow a densification of the fluorescence data to reliable biomass
information.

Materials and Methods

Strain and Culture Conditions

A single colony of P. pastoris type strain DSMZ 70382 grown on a
YPD plate (yeast extract, 10gL™"; peptone, 20gL™"% glucose,
20gL~"; bacteriological agar, 15gL™") was used to inoculate a
250 mL shake flask with 100 mL of the mineral medium FM22 with
glycerol as carbon source: (NH,),S0, 5g L~% CaS0,-2H,0,
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1gL™ K80, 145gL7" KH,PO, 42.9gL™" MgSO,- 7H,0,
11.7gL71; glycerol, 40gL71 (Stratton et al., 1998); and trace
element solution, 2.0mLL ™" of the culture medium. The trace
element stock solution contained: CuSOQ, - 5H,0, 2gL71; KI,
0.08gL™" MnSO4-H,0, 3gL™% NaMoO,-2H,0, 0.2gL™";
H3BOs;, 0.02gL™% CaSO,-2H,0, 0.5gL™% CoCl, 0.5gL™";
ZnCl,, 7gL_1; FeSO, - H,0, 22gL_1; biotin, O.2gL_J; conc.
H,S04 1 mL. Although only a part of the supplied glycerol is
necessary to reach the maximum biomass concentration in this
cultivations, the standard composition of FM22 medium (40 gL~
glycerol) was used in order to guarantee the transferability of the
proposed approach to other P pastoris cultivations with FM22
medium.

The shake flask culture was used to inoculate 200 wL FM22
medium in a black 96 well plate (Greiner Bio-One International
GmbH, Kremsmiinster, Germany). The plate was incubated with
agitation at 30 °C in a Synergy ™ H4 Hybrid Multi-Mode Microplate
Reader (BioTek Instruments, Inc., Winooski, VT) for 50h. Gas
exchange was enabled using the gas-permeable Breathe-Easy™
sealing membrane (Sigma-Aldrich Corporation, St. Louis, MO).

In this study, 36 of the 96 wells were used as blanks for turbidity
and fluorescence measurements and contained only FM22 medium
without cells. From the remaining 60 wells 35 were used completely
for sampling (200 wL samples) resulting in a data set of 25 batches.

Biomass Determination

The goal of this study is to estimate biomass concentrations in
microwell plates based on online fluorescence measurements. For
creating the regression models, a reliable online reference value for
biomass concentration is necessary. This online value, however,
needed to be correlated to the offline biomass concentration
determined as dry cell weight cx to have a comparable value for
biomass concentration that is independent of the used photometer.

Offline biomass concentration was determined as dry cell weight
cx by centrifugation of 200 L (content of one well) of cell broth in a
preweighed centrifuge tube, followed by washing the cells with
phosphate buffered saline three times and drying to constant weight
at 90 °Cin a drying cabinet. However, due to high-relative standard
deviations for dry cell weight determinations at small biomass
concentrations (up to 29.2 % in the lag phase; data not shown) this
data could not be used as reference value for modeling. It is for this
reason that a correlation between cx and optical density at 600 nm
in offline mode (ODggo/of) Was established for concentrations up to
cx=3 gL’1 in threefold determination (1) (results see the Data
Pre-Processing section).

cx=d - OD600/off (1)

The relation (1) between cx and ODgggsof is linear because
samples for optical density determination were diluted accordingly
(ODgoyofr in the range of 0.1-0.3).

Online biomass concentration was determined by measuring
optical density at 600 nm (ODggg/0n) in the SynergyTM H4 Hybrid
Multi-Mode Microplate Reader (BioTek Instruments, Inc., Winooski,
VT). Measurement frequency was 4h™'. Correlations between
ODggo/0n @and ODggo/ofr Were established for optical density values up
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to ODgpgroif = 8 in fivefold determination (2) (results see the Data
Pre-Processing section).

ODgpo/off = €2 - ODéoo/on + dy - ODgg /on (2)

The relation (2) between ODgpp/ofr and ODggoon is typically of
higher order when diluting is not possible in online mode. The
ODgpo/on Measurements are in this work referred to as reference
measurements for biomass concentration.

Fluorescence Measurements

Fluorescence intensities were measured online as relative fluores-
cence units (REU,_ /;,.) in the Synergy™ H4 Hybrid Multi-Mode
Microplate Reader (BioTek Instruments, Inc., Winooski, VT) at
the excitation and emission wavelengths pairs Aey/Aep listed in
Table L. Riboflavin has characteristic excitation maxima at Ao, = 370
and 450nm that can change with environmental conditions
(Duggan et al,, 1957; Li and Humphrey, 1991; Surribas et al,
2006b), which is why riboflavin was excited at this two wavelengths.
The Synergy™ H4 Hybrid Multi-Mode Microplate Reader uses a
xenon flash as light source for excitation and detects emission
from the bottom of the microplates. Measurement frequency was
4h™'. A correlation (3) between ODggojon and RFUjeq3s0 Was
established for optical density values up to ODggoporr=38 in
fivefold determination (results see the PLSR and PCR Modeling
section).

ODg00/on = d3 - REUsg350 (3)

Chemometrics

Data pre-processing, modeling, and post-processing were per-
formed in MATLAB R2016a (The MathWorks, Inc., Natick, MA). A
detailed description of the chemometric tools PLSR, PCR, and MLR
as well as the underlying concepts can be found invarious literature,
for example, Geladi and Kowalski (1986), Marbach and Heise
(1990), Rajalahti and Kvalheim (2011), Wold et al. (1987).

The raw batch data for MLR, PLSR, and PCR model generation
consisted of two three-dimensional matrices for fluorescence and
biomass data gathered online (I x J X K, corresponding to number
of batches I, process variables J, and sampling times K). This 3D
matrices were unfold lining up the batches into a 2D matrix X and
the vector y. X and y were mean-centered and used as independent

Table I. Excitation and emission wavelengths for the biogenic
fluorophores tryptophan, NAD(P)H, and riboflavin predetermined by
Surribas et al. (2006b).

Variable Biogenic Excitation wavelength ~ Emission wavelength
number fluorophor A (nm) Aem (nm)

1 Tryptophan 290 350

2 NAD(P)H 350 450

3 Riboflavin 370 530

4 Riboflavin 450 530
2396 Biotechnology and Bioengineering, Vol. 113, No. 11, November, 2016

and dependent variables for model calibration, respectively. During
PLSR and PCR model calibration the preliminary models were
internally validated by means of the mean squared error of
prediction (MSEP) with size of test set N, predicted value y;, and
reference value y;yer (4). The MSEP, sometimes denoted as mean
squared error of cross-validation (MSECV), is obtained by a 10-fold
cross validation (Mevik and Cederkvist, 2004) and is used to choose
an appropriate number of principal components for PLSR and PCR
modeling.

1 N
MSEP = NZ(J’: _yi/ref)2 (4)
i=1

The final models were validated by predicting the biomass of 10
equivalent cultivations. For evaluating the models, the root mean
squared error of prediction (RMSEP) was calculated between
measurement and prediction values (5):

1 N

In order to quantify the contribution of each of the four
wavelength pairs to the information content with regard to biomass
estimation, the variable importance in the projection (VIP) method
was chosen. The resulting VIP scores are a prediction of the
importance of a variable j in the PLS model. In contrast to variable
selection by just considering the PLS weights alone, the VIP score
gives a weighted sum of squares of the PLS weights by taking into
account the explained variance of each principal component of the
PLS model (Chong and Jun, 2005; Krause et al., 2015; Wold et al.,
2001). The VIP score of the j-th variable is calculated by (6) with by
representing the k-th element of the regression coefficients vector b.
The vectors # and wy, represent the k-th column vector of the score
matrix T and weight matrix W, respectively. Further, || Wi || is the
Euclidean norm of wy, SS(byty) = bit}(tk is the percentage of Y.
explained by the k-th principal component of the PLS model, and &
is the number of retained principal components, in this case h =2
(Chong and Jun, 2005).

S (5S(kte) On/Iowil)?)
= |p ;
S0 SS(buti)

Variables with VIP scores below the predefined threshold of 1 are
rated as less important because the average of squared VIP scores
generally equals 1.

VIP,

(6)

Results and Discussion

Small-Scale Batch Process Progression

As described in the Materials and Methods section, cultivations
were conducted for 50 h and fluorescence and optical density were
measured online with a frequency of 4h~". The time course of the
normalized mean values for fluorescence and biomass is shown in
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Figure 1. The mean valued were normalized to a range of 0-1 for
illustration purposes. The mean relative standard deviation for the
biomass reference measurements is 4.20 % (calculated from 25
ODgoo/on data sets). The lag phase in the 200 L scale lasts for 7h
followed by exponential growth (maximal growth rate pty.x=
0.250h™") until 11-12h. In a subsequent transition phase, which
lasts until 36 h, the biomass increases to its maximum Cxmax =
0.633 +0.06 gL' followed by the short stationary phase in which
biomass reaches a plateau. After 42 h the biomass declines with an
average decay rate of p=—0.015h"". Only low biomass
concentrations can be obtained in this bioreactor system due to
limited homogenization of the liquid phase (no stirrer), resulting in
partial sinking of the cells, which gave rise to limited oxygen supply
of the cells. This sinking of the cells was most likely also the reason
for the sudden shifts in ODgqy,, and fluorescence measurements at
cultivation time 8 h because the shaker function of the microplate
reader was off for 0.5h and thus the cells were not homogenized
sufficiently in this time period. Thereby, the cells sank below the
focal point for ODgppon and fluorescence measurement which
resulted in erroneous values in this time period. This measurement
error was nevertheless included in the data sets for modeling
because both ODgg,,, and fluorescence measurements showed this
shift and model robustness would increase by including this process
disturbance.

During the time course, the biogenic fluorophores tryptophan,
NAD(P)H, and riboflavin measured at their characteristic wave-
lengths (Table I) show a characteristic curve progression. Both
NAD(P)H (ex/em 350/450 nm) and riboflavin (ex/em 370/530 nm)
fluorescence intensities reach a high value during the lag phase and
dedline to a minimum shortly before the exponential phase ends
(11h). After 11 h the intensities for these fluorophores increase until
the maximum biomass is reached, followed by a plateau phase. The
intensity for riboflavin (ex/em 450/530 nm) fluorescence increases
during the cultivation with a change of slope at about 11 h. The time
course for tryptophan (ex/em 290/350 nm) follows the one for optical
density closely, indicating a tight correlation between this amino
acid’s development and biomass generation. The mean relative
standard deviations for the fluorescence measurements (calculated
from 25 RFU, /5., data sets) are as follows: 3.31 % for tryptophan

L
14
@

o
o

0.4

14
=

Normalized biomass (-)

Tryptophan (ex/em 290/350)
NAD(P)H (ex/em 350/450) 1 0.2
Riboflavin (ex/em 370/530)
----- Riboflavin (ex/em 450/530)
Biomass

T

Normalized relative fluorescence (-)

. 0
0 10 20 30 40 50

Time (h)

Figure 1. Time course of normalized fluorescence signals (tryptophan, NAD(P)H,
and riboflavin) and biomass. Lines represent mean values for 25 batches.

46

(ex/em 290/350 nm), 7.73 % for NAD(P)H (ex/em 350/450 nm),
8.26 %, and 5.56 % for riboflavin (ex/em 370/530 and 450/530 nm,
respectively). Referring to the measurement deviation for the
ODgoo/on and REU;,_ /3, data sets, the cultivations as well as the
measurements are reproducible but still contain enough variability
for model calibration and validation.

Data Pre-Processing

As described in the Biomass Determination section, due to the high-
relative standard deviation for dry cell weight determinations at small
biomass concentrations (up to 29.2% in the lag phase) the online
biomass ODgg0/0n Was correlated to the optical density in offline mode
ODgoo0fr and the offline biomass concentration cy, respectively, via
(1) and (2). The correlation factors d; =0.280 gL71 (threefold
determination; R®>=0.982; data not shown), ¢,=3.106, and
d,=2.204 (fivefold determination; R*=0.999; data not shown)
were obtained.

For creating the regression models the 25 batches were separated
randomly into 15 batches for model calibration and 10 batches for
model validation. The data were further processed by mean-
centering and matrix unfolding.

MLR Modeling

After data pre-processing, the training set for model calibration
consisted of the independent variable matrix X (fluorescence
intensity of the four fluorophores) and dependent vector y (optical
density in online mode). The dependent vector y was correlated to
the reference value cx via (1) and (2), as described above.

Interactions between the variables in X can be considered or not
during model generation (Preacher et al., 2006). In this study, both
MLR approaches were evaluated, resulting in X and an extension of
X by multiplicative combinations of the fluorescence intensities.

The final MLR models were validated externally by predicting the
biomass for 10 validation cultivations. Determination coefficients
R*=0.971 for the MLR model with interactions and R* = 0.967
without interactions were calculated. The RMSEP (5) with and
without interaction terms, respectively, between the predicted and
measured values for the validation batches was 0.022 and 0.014 for
the optical density measurements in online mode, corresponding to
0.025 and 0.017 gL ™" dry cell weight. Compared to the maximum
biomass concentration cxmax = 0.633 gL_1 this resulted in a
relative estimation error of 3.9 % and 2.6 %, respectively.

In the present study, the MLR without interaction terms provides
better results than the MLR with interaction terms. It is supposed
that including the interactive relations in the MLR model leads to
overfitting, that is, new data cannot be predicted sufficiently. This
statement is substantiated by the higher determination coefficient
when using interaction terms.

The MLR model without interactions was further investigated for
the relevance of each input variable on the estimation accuracy by
the backward elimination method based on the correlation
coefficients (Pires et al., 2008). A low-determination coefficient
of a MLR model without a certain input variable indicates the
importance of this variable. The resulting determination coefficient
R? for the MLR model without tryptophan (ex/em 290/350 nm) was
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0.506, while the determination coefficients of models without
NAD(P)H (ex/em 350/450 nm), riboflavin (ex/em 370/530 nm), and
riboflavin (ex/em 450/530 nm) were 0.967, 0.960, and 0.966,
respectively. This indicates tryptophan as the most important
variable for biomass estimation and an equal distribution of the
other three variables.

Biomass could not be estimated accurately when not all four
wavelength pairs were used for MLR modeling. The resulting
relative estimation errors compared to the maximum biomass
concentration ¢xmax = 0.633 gLf1 were significantly higher than
for a MLR model with all four variables: 15.3 %, 53.7 %, 48.9 %, and
54.6 % for omitted tryptophan (ex/em 290/350 nm), NAD(P)H
(ex/em 350/450 nm), riboflavin (ex/em 370/530 nm), and riboflavin
(ex/em 450/530 nm), respectively.

PLSR and PCR Modeling

PLSR and PCR were used as alternative to MLR to model the
relationships between y and X. The data were pre-processed and the
regression models were validated as described before.

As a first step of PLSR and PCR model creation the number of
principal components was determined because using all available
components may be more than will be needed to adequately fit
the data. A quick way to choose the number of components is to
plot the percent of variance explained in the independent
variables X as a function of the number of components, as done
in Figure 2A for the PLSR. The first PLS component explains
48.05 % of the variance in X. Adding a second PLS component to
the model raises the explained variance to 96.96 %. For the PCR
model the percent variance explained in X is 63.00 % and 96.99 %
for two and three principal components, respectively. The
uniformly higher curve for PCR compared to PLSR is due to the
different ways of these methods in constructing the components.
PLSR and PCR construct components to best explain variation in
y and in X, respectively. Two components were chosen as
adequately because the addition of a third component only gives a
minor increase to 99.23 % for both modeling approaches at the
cost of model complexity. Another reason to not use a too large
number of components is that this strategy leads to overfitting,
that is, the model fits the data too well and does not generalize
well to other data.

The chosen number of components was further confirmed by
plotting the estimated mean squared prediction error (4) obtained
by a 10-fold cross-validation (Mevik and Cederkvist, 2004) against
the number of components used for model creation, as done in
Figure 2B. The mean squared prediction error with using two
components was ~0.001 both for PLSR and PCR, corresponding to
a relative error of 0.8 % with respect to the maximum optical
density in online mode ODggo/0n = 0.1220. This internal validation
of the model by cross-validation showed that the prediction error
does not significantly decrease by using three components, whereas
for using only one component it is over double the value as for two
components for PLSR and even 13-fold for PCR.

The next step was to detect outliers and remove them from the
training set by plotting the fitted response against the observed
response, as done in Figure 2C. The figure further provides an
evaluation of model accuracy for both modeling approaches. Both
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Figure 2. (a) Variance explained in X and (b) estimated mean squared prediction
error (ODgggon data) for number of principal components. () Fitted versus observed
response (calibration results) for PLSR and PCR with two components (outliers marked
green).

PLSR and PCR show a fairly accurate fitting of the response
variable y.

Finally, the PLS weights were plotted against the dependent
variables contained in X in order to describe the dependency of
each component in the PLSR model on the original variable.
Figure 3A shows the PLS weight for the variables that refer to the
fluorescence intensities of tryptophan (ex/em 290/350 nm),
NAD(P)H (ex/em 350/450 nm), and riboflavin (ex/em 370/530 and
450/530 nm). Analogically, the PCA loadings show the dependency
of the components generated by the PCR model on the variables
contained in X, as shown in Figure 3B.
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-©-2nd component

PLS weight

Variable

-8~ 1st component
1- -©-2nd component|

Variable

Figure 3. (a) PLS weights and (b) PCA loadings for fluorescence variables (1) tryptophan (ex/em 290/350 nm), (2) NAD(P)H (ex/em 350/450 nm) as well as (3) and (4) riboflavin (ex/

em 370/530 and 450/530 nm, respectively).

The final PLSR and PCR models were validated externally by
predicting the biomass for 10 validation cultivations. Determina-
tion coefficients R” = 0.967 for the PLSR model and R* = 0.938 for
the PCR model were calculated. The RMSEP (5) for PLSR and PCR,
respectively, between the predicted and measured values for the
validation batches was 0.018 and 0.019 for the optical density
measurements in online mode, corresponding to 0.023 and
0.025gL~" dry cell weight. Compared to the maximum biomass
concentration Cxjmax = 0.633 gL_l this resulted in a relative
estimation error of 3.6 % and 3.9 %, respectively.

In the present study, the PLSR provides a slightly better
prediction of biomass than the PCR. PLSR is supposed to have
better prediction performance than PCR, since PLSR uses y in
addition to X to determine the principal components. In the
following, the PLSR model was further investigated on the
contribution of each variable to the model in order to investigate if a
model with only the most important variable fits well.

Variable Selection via Variable Importance in the
Projection Scores

One major goal of this study is to obtain a reliable model with
only a few fluorescence variables compared to, for example, 2D
fluorescence spectroscopy with hundreds of variables. In this
context, it is furthermore advantageous to quantify the contribution
of each of the four wavelength pairs to the information content with
regard to biomass estimation. This contribution to the model was
quantified by means of the variable importance in the projection
(VIP) scores, as described in the Chemometrics section. The
resulting VIP scores are shown in Figure 4. The VIP score for
tryptophan (ex/em 290/350 nm) is by far the highest with 1.828,
followed by 0.513, 0.509, and 0.370 for riboflavin (ex/em
450/530nm), riboflavin (ex/em 370/530nm), and NAD(P)H
(ex/em 350/450 nm), respectively. This distribution of VIP scores
is supported by the statement of Horvath et al. (1993) that
tryptophan outweighs NADH in the importance for the estimation
of biomass in yeast culture processes. Further, the high importance
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of tryptophan in the PLSR model indicated by its VIP score is in
accordance with the results of the backward elimination method for
MLR modeling (MLR Modeling section) and the similar
progressions of biomass and fluorescence signal of tryptophan
shown in Figure 1.

It was further investigated whether the single tryptophan
fluorescence is sufficient for reliably predicting the biomass in the
present small-scale batch process. For this purpose, the correlation
(3) was set up between ODggo/0n and the relative fluorescence units
for tryptophan (ex/em 290/350 nm) RFU,q¢,350 with the correlation
factor d; (fivefold determination; R* = 0.993; data not shown). A
determination coefficient R* = 0.993 was calculated.

The RMSEP between the predicted and measured values for the
validation batches was 0.036 for the optical density measurements in
online mode, corresponding to 0.049 g ! dry cell weight. Compared
to the maximum biomass concentration (cx/max=0.633 g LY this
resulted in a relative estimation error of 7.7 %.

@
T

0.509 0.513

Variable importance in the projection

Variable

Figure 4. Variable importance in the projection (VIP) for variables (1) tryptophan
(ex/em 290/350 nm), (2) NAD(P)H (ex/em 350/450 nm) as well as (3) and (4) riboflavin (ex/
em 370/530 and 450/530 nm, respectively).
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Comparative Evaluation of Prediction Performance

The results of biomass predictions with the four different modeling
approaches (MLR, PLSR, PCR, and the single tryptophan
fluorescence model) are summarized in Table II and Figure 5.
Figure 5 shows the fluorescence model predictions and the
estimations based on optical density measurements (referred to as
reference measurements) for biomass concentration for a
representative batch. As can be seen, the estimation of MLR fits
the reference measurement well for the whole cultivation time,
whereas PLSR and PCR fits the reference measurement well until
the beginning of the decline phase at 42 h cultivation time. In the
decline phase, the predicted value for biomass concentration falsely
increases further for PLSR and PCR estimates. The MLR approach,
thus, provides the best estimates in this case because even the
decrease of cell concentration in the decline phase is modeled and
the estimation error is lowest (Table II).

The stationary and decline phases are characterized by an
increase in cell lysis rate, which is believed to cause release of
proteases (Sinha et al., 2004). According to Surribas et al. (2006b),
the resulting proteolysis is one reason for the discrepancy between
model estimation and measurements in the stationary and decline
phase for PLSR. A more specific reason for the low model accuracy
(PLSR and PCR) after the exponential phase could be that the
riboflavin (ex/em 450/530 nm) intensity seems to rise indepen-
dently of the beginning of the stationary and decline phase, while
the other three variables used for model generation reach a plateau
value (see Fig. 1). Even a slight increase in the rate of riboflavin
(ex/fem 450/530nm) development can be observed with the
beginning of the decline phase that could be ascribed to the release
of riboflavin during cell lysis.

Although MLR results in the best estimates according to the
lowest RMSEP and the best fit over the whole cultivation time, it
could have some disadvantages compared to PLSR and PCR. When
multicollinearity is present in the data, the MLR model becomes
highly sensitive to outliers and noise. This would be a drawback for
the use in online monitoring applications, because data have to be
filtered for outliers before modeling. PLSR and PCR, however,
reduce collinearity before the actual regression step and are less
sensitive to small errors in the X and y data (Rajalahti and
Kvalheim, 2011).

The modeling accuracy of the single tryptophan fluorescence
model is lower compared to the MLR, PLSR, and PCR models, as
can be seen in Table II. The predicted biomass differs from the
reference measured biomass by twice the estimation error (RMSEP)

Table Il. Comparison of different modeling approaches by their
regression coefficients A%, root mean squared error of prediction
(RMSEP), and the relative estimation error with respect to the maximum
biomass concentration (cymax =0.633gL™").

RMSEP Relative estimation error
Modeling approach R? (gL™") (%)
MLR (without 0.967 0.017 26

interactions)

PLSR (2 PCs) 0.967 0.023 3.6
PCR (2 PCs) 0.938 0.025 39
RFU90/350 0.993 0.049 7.7
2400 Biotechnology and Bioengineering, Vol. 113, No. 11, November, 2016
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when NAD(P)H and riboflavin are not taken into account in the
model (see also Fig. 5). It thus stands to reason that biomass
estimation via combined fluorometric measurements and chemo-
metric modeling is more reliable than a correlation between a single
fluorophore’s intensity alone.

Conclusions

In this work, the key variable biomass was successfully predicted for
small-scale P. pastoris batch cultures based on the measurements of
fluorescence intensity at four characteristic single-wavelength pairs
(excitation/emission) and their combination by means of chemo-
metric tools. These wavelength pairs corresponded to the biogenic
fluorophores tryptophan, NAD(P)H, and riboflavin, with detection
wavelengths identified before by Surribas et al. (2006b). Differently
to these authors’ approach of taking into account a whole 2D
fluorescence spectrum for modeling, biomass in this work was
estimated based on the combined measurement of three
fluorophores at four single-wavelength pairs.

The three modeling approaches MLR, PLSR, and PCR were
comparatively evaluated on their prediction performance with a
slightly better model accuracy for MLR compared to PLSR and PCR.
The importance of the four model input variables was rated by
means of the VIP scores. Tryptophan (ex/em 290/350 nm) was
found to be the most important fluorophore for biomass estimation
in this study. Further, biomass was successfully predicted via a
correlation between single tryptophan fluorescence and optical
density measurements in online mode; however, model accuracy
was lower compared to MLR, PLSR, and PCR.

In this study, 96 well plates were chosen as scale for cultivations
in order to obtain a large data set under identical conditions
(temperature, mixing properties, and oxygen supply) and enable
simultaneous online monitoring of optical density and fluorescence
intensity in a microplate reader. Only low biomass concentrations can
be obtained in this bioreactor system due to limited oxygen supply
and homogenization of the liquid phase. However, the presented
approach seems to be promising for higher biomass concentrations
(>20 gL ") because the underlying principle is still the same as for
the established 2D fluorescence spectroscopy (Surribas et al., 2006a).
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The approach’s applicability for higher biomass concentrations and
under large-scale conditions has to be examined in future with a 2D
fluorescence spectrometer or a fluorescence sensor measuring only at
the specified wavelength pairs.

Also, the effects of the fluorescent properties of other P. pastoris
media than FM22 (e.g., BSM, BMGY, and YPD media) have to be
investigated. It is supposed that the presented measurement
principle performs well with almost colorless and defined media
due to the absence of fluorescence interferences in the region of
interest (Marose et al., 1998; Rhee et al., 2006) and that the effort to
calibrate the model to such media is minor. In contrast, complex
and colorful media are likely to lead to spectral overlaps (Hisiger
and Jolicoeur, 2005) that would increase the effort for model
calibration and potentially hinder successful biomass estimation.
Hisiger and Jolicoeur (2005) reported on spectral overlaps of serum
and phenol-red with NAD(P)H, riboflavin, and tryptophan when
cultivating a mouse myeloma cell line (NSO0). Their results indicate
that biomass estimation based on the progress of this fluorophores
is possible; however, the culture medium optimization is required.
Contrary to yeast cells, mammalian cells cannot synthesize
tryptophan and riboflavin de novo and thus are added to the
medium, which is why their progress during cultivation will differ
from that of yeasts. It is supposed that also fungal cell biomass can
be monitored because 2D fluorescence spectroscopy was success-
fully applied for Claviceps purpurea biomass estimation (Boehl
et al., 2003). In general, the proposed approach is more sensitive to
spectral overlaps from media compounds than methods that
use whole spectra (2D fluorescence, UV-VIS, NIR, MIR, or Raman
spectroscopy) because the fluorescence signal cannot be compen-
sated by signals at other wavelengths but the four specified ones.

Compared to turbidity measurements for biomass monitoring,
the proposed approach simple sensor designs choose between range
and precision.

The results show that biomass can successfully be predicted based
on combined single-wavelength fluorescence measurements. The use
of multiple metabolites linked to cell growth results in a more reliable
biomass estimation model compared to using a single fluorophores’
intensity alone. Based on this finding, the development of an
alternative measurement system for data-intensive and expensive 2D
fluorescence spectroscopy seems promising. The proposed measure-
ment system would use LEDs (light emitting diodes) to excite only at
a small set of wavelengths and the resulting spectrum would contain
sufficient information for successful biomass estimation. The
measurement system would consist of a fluorescence measurement
device in addition to a turbidity measurement device (ODgq 0r near-
infrared region). The biomass estimation would this way become
more reliable because two different measurement principles are used.
By comparing the results of biomass estimation via fluorometric
measurements and PLSR and PCR modeling with the turbidity
signal the beginning of cell lysis in the decline phase and the
culture’s metabolic activity could potentially be predicted. This
information could then be used for process state estimation (end
of exponential phase, beginning of decline phase) or the
determination of optimal harvesting time for protease sensitive
recombinant proteins.

To sum up, this study shows the high potential of biogenic
fluorophores for biomass estimation. The proposed approach for
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online biomass estimation can be used as basis for the development
of a fluorometric biomass sensor that offers similar information
content for bioprocess monitoring and control purposes compared
to expensive 2D fluorescence spectroscopy.

This work was supported by the German Federal Ministry of Education and
Research (project 031A616D).
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phases: biomass generation on glycerol and protein production via methanol induction.
This study reports the establishment of a soft sensor for the prediction of biomass
concentration that adapts automatically to these distinct phases. A hybrid approach

combining mechanistic (carbon balance) and data-driven modeling (multiple linear re-
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gression) is used for this purpose. The model parameters are dynamically adapted ac-
cording to the current process phase using a multilevel phase detection algorithm. This
algorithm is based on the online data of CO, in the off-gas (absolute value and first
derivative) and cumulative base feed. The evaluation of the model resulted in a mean
relative prediction error of 5.52% and R® of .96 for the entire process. The resulting
model was implemented as a soft sensor for the online monitoring of the P. pastoris
bioprocess. The soft sensor can be used for quality control and as input to process
control systems, for example, for methanol control.
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1 | INTRODUCTION

added to the medium to induce protein expression via the genetically
modified AOX1 promotor. This phase aims to reproducibly generate the

The methylotrophic yeast Pichia pastoris (now reclassified as Komaga-
taella phaffii) is frequently used as a host for expressing heterologous
proteins for both basic research and industrial production (Cereghino,
Cereghino, llgen, & Cregg, 2002). When the methanol-inducible alcohol
oxidase 1 (AOX1) promotor is used for controlling protein expression,
the process is typically separated into two main phases with different
objectives. In the first phase, the carbon source—typically glycerol—is
converted to biomass. It aims to produce large amounts of biomass
before methanol induction. This phase is often referred to as the glycerol
or biomass phase and can optionally be extended by a glycerol feed to
accumulate more biomass before methanol induction (Gao et al., 2012;
Jahic, Veide, Charoenrat, Teeri, & Enfors, 2006). The second phase, also
referred to as the induction or methanol phase, starts when methanol is

highest product titers.

Besides product titer, biomass concentration can be seen as one of
the most critical quality attributes in upstream bioprocessing due to its
effect on all other quality attributes, which holds true for P. pastoris
bioprocesses in both the glycerol and the methanol phases (J. Harms,
Wang, Kim, Yang, & Rathore, 2008). Several techniques such as turbidi-
metry, infrared or fluorescence spectroscopy, and flow cytometry are
available for monitoring biomass, as reviewed by P. Harms, Kostov, and
Rao (2002), Luttmann et al. (2012), and Schiigerl (2001). However, the
use of online measurement systems for monitoring biomass in a technical
context is still often problematic. The reasons for this include lack of

reliability, the considerable dependence on the process and product

matrix (isolated solutions), and high standards of operation and
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maintenance (Kano & Fujiwara, 2012). For these reasons, biomass is in
many cases not measured online at all.

Because the direct measurement of biomass is often not feasible,
soft sensors can be used for predicting it. Soft sensors consist of
computational models or algorithms that allow the prediction of
target values, such as biomass concentration, via continuously mea-
sured secondary variables, such as exhaust gas concentrations, dis-
solved oxygen (DO), and flow rates (Luttmann et al., 2012).

Various modeling techniques have been proposed for developing
soft sensors, the majority of which are based on mechanistic or data-
driven approaches. An overview of soft sensors and the selection of
appropriate modeling techniques for online bioreactor state estimation
has been presented elsewhere (Zhang, 2009). Mechanistic modeling
approaches include, for example, differential balancing systems, which
describe the material and energy conversions at the cellular level, as
well as mass and energy balances (Jenzsch, Gnoth, Kleinschmidt,
Simutis, & Libbert, 2007). Data-driven approaches include, among
others, artificial neural networks (ANN; Gonzaga, Meleiro, Kiang, &
Maciel Filho, 2009) and methods from the field of multivariate statistical
process control (Kadlec, Gabrys, & Strandt, 2009), such as principal
component regression and partial least squares regression. In hybrid
modeling, mechanistic and data-driven modeling approaches are com-
bined, as reviewed by Kalos, Kordon, Smits, and Werkmeister (2003)
and Solle et al. (2017).

The main challenges in the development of soft sensors are as
follows: control of model complexity (overfitting vs. underfitting) (Kor-
don, Smits, Kalos, & Jordaan, 2003); limited amount of data sets or data
points (Fortuna, Graziani, & Xibilia, 2009); outliers resulting from, for
example, sensor faults (Zhang, 2009); adaption mechanisms for model
maintenance (Bakirov, Gabrys, & Fay, 2017); input variable selection;
reliability of soft sensors; and changes in process characteristics and
operating conditions (Kano & Fujiwara, 2012). In addition, a specific
challenge arises in soft sensor development for P. pastoris bioprocesses
given its distinct process phases, as described previously: The under-
lying principles of prediction models for biomass are related to the
inherent biological relationships between online measured variables and
biomass (Chen, Nguang, Li, & Chen, 2004); thus, the soft sensor needs to
be adaptive to the current process phase to give accurate prediction
results throughout the entire process.

In this study, an adaptive soft sensor for biomass concentration was
developed. The novelty of this study is that the soft sensor changes its
model coefficients regarding the current process phase (batch, transi-
tion, or fed-batch phase) of the P. pastoris bioprocess. The soft sensor's
underlying prediction model is based on a hybrid of mechanistic and
data-driven approaches. The mechanistic part comprises mass balancing
of carbon using methanol and CO, fluxes. The outcome of this me-
chanistic model—the generation rate of total organic carbon inside the
bioreactor—is fed into a data-driven model that in turn leads to an
online prediction of biomass concentration. The adaptability of the soft
sensor to the distinct process phases is guaranteed by automatic and
reliable detection of glycerol depletion based on online process vari-
ables, namely, CO, in the off-gas (absolute value and first derivative)
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and cumulative base feed. The soft sensor's model coefficients switch
automatically depending on the current process phase and thus give
accurate biomass predictions throughout the entire process. Finally, the
soft sensor was implemented in a real-time capable system to enable
online biomass monitoring.

2 | MATERIALS AND METHODS

2.1 | Strain and preculture conditions

The inoculum of a recombinant P. pastoris strain based on type strain
DSMZ 70382 was prepared in three 150 ml shake flasks containing
50 ml of the mineral medium FM22 with glycerol as the carbon source:
(NH4)2504, 5g-L™% CaSO4-2H,0, 1g-L% K504 143g-L7Y
KHoPO4, 42.9g-L7Y MgS04-7H,0, 11.7g-L°Y glycerol, 40g-L!
(Stratton, Chiruvolu, & Meagher, 1998); and trace element stock
solution (PTM4), 20 ml-L™* of the culture medium. The PTM4 stock
solution contained CuSO,-5H,0, 2g- L% KI, 0.08g-L™%; MnSO,-
H,0, 3g-L™% NaMoO,-2H,0, 02g-L% HiBOs; 002g-L7Y
CaSO,-2H,0, 05g-L™%; CoCl,, 05g-L™% ZnCl, 7g-L™% FeSO,-
H,0, 22g- L% biotin, 0.2g-L™%; and conc. H,SO,4, 1 ml. Cells were
grown for 70 hr at 30°C on a shaker at 150 min™%.

2.2 | Fed-batch cultivation in bioreactor

The shake flask culture was used to inoculate the main culture in the
bioreactor Biostat® Cplus (Sartorius AG, Goettingen, Germany) with
working and total volumes of 15 and 42L, respectively. The main
culture medium was FM22. Pressure, pH, temperature, and dissolved
oxygen were controlled to 500 mbar, 5, 30°C, and 40%, respectively.
NH4OH was used as nitrogen source and to set and maintain a pH of
5. A dissolved oxygen minimum of 40% was controlled by a cascade
control using variable stirrer speed (300-600 min~Y) and air flow rate
(20-40L-min™?).

The end of the batch phase, that is, the depletion of glycerol, was
indicated online by a characteristic peak in the off-gas CO, con-
centration. The complete depletion of glycerol was verified offline via
HPLC analysis (data not shown). After a short transition phase, which
prevents the potential repression of the AOX1 promotor by glycerol
residues from the preceding batch phase, the culture was induced
with methanol. The methanol feed was supplemented with
12ml-L™* PTM4 stock solution. Methanol concentration was con-
trolled via a fuzzy logic controller to 4.5 g- L™ This controller uses
methanol concentration as the main input and the feed rate of me-
thanol as output. The general concept of fuzzy logic controllers is
described, for example, in Birle, Hussein, and Becker (2013).

The off-gas CO, concentration was measured with a BluelnOne
Cell sensor (BlueSens gas sensors GmbH, Herten, Germany). Me-
thanol concentration was measured with an inline Alcosens sensor
(Heinrich Frings GmbH & Co. KG, Rheinbach, Germany).
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2.3 | Determination of dry cell weight

Dry cell weight was determined in triplicate by centrifugation of 2ml
cell suspension in previously weighed centrifuge tubes, followed by
discarding the supernatant and drying the cell pellet to a constant
weight at 80°C. Samples for the determination of dry cell weight
were taken using the BaychroMAT® autosampler (Bayer AG, Le-

verkusen, Germany) with a minimum sampling interval of 2 hr.

2.4 | Data management

The digital control unit (DCU) of the Biostat® bioreactor (Sartorius
AG) was used for primary process control (pressure, pH, tempera-
ture, and dissolved oxygen) and signal recording. SIMATIC SIPAT
(Siemens AG, Munich, Germany) was used for data management and
to store the process (online) and laboratory (offline) data in a central
database with a recording interval of 30s. Offline data preprocessing
and modeling were performed in MATLAB R2019b (The MathWorks,
Inc., Natick, MA); signal processing, real-time prediction of the target
quantity, biomass concentration, by means of the developed soft
sensor as well as model-based control via a fuzzy logic controller
were performed in SIMULINK R2019b (The MathWorks, Inc.). An
interface capable of real-time communication between the DCU, the
data management system (SIMATIC SIPAT), and the online modeling
software (SIMULINK) was realized via a Sartorius OPC DA server
(Sartorius AG).

3 | RESULTS AND DISCUSSION

This study aims to develop a soft sensor for the prediction of biomass
concentration that provides accurate online predictions for a multi-
phase process (batch, transition, and fed-batch phase) with two dif-
ferent carbon sources (glycerol and methanol). The general concept

0.6

DIOENGINEERING

of the hybrid-model-based soft sensor presented here consists of two
main levels: The first level comprises a phase detection algorithm to
differentiate online among batch, transition, and fed-batch phase; the
second level consists of a hybrid-model-based prediction equation
that automatically adjusts the model parameters based on the cur-
rent process phase (batch, transition, or fed-batch phase). For the
development of the first and second levels, nine and six data sets,
respectively, were used. Only the latter six data sets had a fed-batch
phase with control of methanol concentration and therefore can be
compared with each other.

The hybrid model uses a carbon balance as the mechanistic part.
The result of the carbon balance is fed into a data-driven part to
provide accurate prediction of the biomass concentration. The
information-bearing model inputs that were used in this study to
predict biomass concentration are cumulative methanol and base
feed as well as concentrations of off-gas CO, and methanol.

Figure 1 shows the time course of the relevant model inputs of
the soft sensor for an exemplary process run. This process run is used
as an illustrative example throughout the following sections. In this
case, the batch phase ends at 39.6 hr, followed by a transition phase
that lasts for 6.9 hr, and a fed-batch phase that starts at 46.5 hr. In
the batch phase, glycerol is metabolized and biomass is generated.
The presence of the transition phase prevents the potential repres-
sion of the AOX1 promotor by glycerol residues from the preceding
batch phase. In the transition phase, no significant increase (due to
the absence of carbon sources) or decrease of biomass concentration
was observable. In the fed-batch phase, methanol is fed into the
bioreactor via a pump for the first time. Subsequently, methanol
concentration is controlled to a setpoint of 4.5g - L™ via a fuzzy logic
controller. This process run shows control errors such as high initial
overshoot and an increasing deviation of the measured methanol
concentration to the setpoint in the subsequent time course. Base
(NH40H, 5M) is fed into the bioreactor via a pump and is used to
maintain pH at 5.0. The cumulative base feed represents the degree
of metabolic activity, that is, substrate depletion. This variable shows
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FIGURE 1 Time course of the relevant model inputs of the soft sensor for an exemplary process run, namely, cumulative feed volume of
methanol, Vpetn, and base, Vy,qse, as well as concentrations of CO, in the off-gas, oco,, and methanol, cetn. For this exemplary process, the batch

phase ends at 39.6 hr and the fed-batch phase starts at 46.5 hr
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high collinearity to the biomass concentration (see later in Figure 6).
In the batch phase, the off-gas CO, signal almost continuously in-
creases until the end of this phase. Here, the signal drops abruptly
and, except for minor fluctuations, begins to rise again only upon

methanol induction. After methanol induction, the cells need to adapt
to the metabolization of methanol.

3.1 | Multilevel process phase detection
3.1.1 | General concept of process phase detection

This algorithm step aims to differentiate among the three distinct
process phases, which are listed in Table 1 together with its process
data characteristics regarding process phase detection. The detection
of the end of the batch phase is primarily based on the off-gas CO,
signal. The metabolization of glycerol together with an increasing cell
concentration leads to an almost continuous increase in CO, emission
during the batch phase. When glycerol is depleted, the off-gas CO,
signal drops abruptly, as shown in Figure 1 (here at 39.6 hr). The re-
lationship between the CO, drop and substrate consumption is shown
and discussed in detail in Munch et al. (2020). This abrupt drop is the
main sign of the end of the batch phase and is hereinafter referred to
as trigger 3. To increase robustness of the phase detection algorithm,
two additional trigger conditions upstream of trigger 3 were im-
plemented, namely the exceeding of absolute values for cumulative
base feed (trigger 1) and off-gas CO, concentration (trigger 2).

The output of the algorithm for process phase detection is a binary
value indicating whether the end of the batch phase has been reached
(1 =true) or not (0 = false) together with the corresponding timestamp.
Variable inputs to the algorithm consist of the signals for cumulative
base feed (Vi) for trigger 1, the absolute off-gas CO, concentration
(oco2) for trigger 2, and the timewise derivative of the off-gas CO,
concentration (doco/dt) for trigger 3. Only when triggers 1 and 2 are
initiated, that is, they are “true”, trigger 3 is active and can be initiated.
The end of the batch phase is indicated when all three triggers are “true.”

The process variable Vs represents the cumulative metabolic
activity regarding the consumption of the carbon source. Because the
batch process starts with a glycerol concentration of 40g- L%, the
total volume of base fed into the bioreactor at the end of the batch
phase is restricted to the stoichiometry of glycerol metabolization.
Trigger 1 is therefore initiated when a defined threshold for Vygs is
exceeded. In the transition phase, the variable V}4s remains constant
because cells do not grow. Similar to Vs, the process variable ocoy is
strongly related to biomass growth and substrate consumption.

During exponential growth, oco, increases almost continuously until
the end of the batch phase. Trigger 2 is therefore initiated when a
defined threshold for oco, is exceeded. This trigger is implemented to
guarantee that natural fluctuations in ocoz, which can statistically
occur in biological systems (see Figure 1), and sensor faults impede
the functionality of the process phase detection as little as possible.
Trigger 2 thus slightly increases robustness of the phase detection
algorithm. Figure 2 shows the functioning of trigger 3 in terms of the
time course of doco,/dt for an exemplary process run. The value of
docoo/dt falls below the threshold uniquely at the end of the batch
phase (here at 39.6 hr). A median filtering step was implemented
before and after the derivation step to decrease noise of the vari-

ables aco2 and docoz/dt, respectively.

3.1.2 | Threshold definition

The thresholds for triggers 1, 2, and 3 were calculated as shown in (1),
where threshold; is the threshold for the trigger variable used for
process phase detection with i = {V,se, 0co2, docoo/dt}; mean; and std;
is the arithmetic mean and standard deviation, respectively, of the
variablei at the end of the batch phase. The end of the batch phase was
for this purpose defined as the time at the minimum of doco,/dt. SF is a
constant safety factor of 3 that is implemented to avoid false positive
detections of the end of the batch phase of the phase detection and
thus to increase the robustness of the multilevel detection algorithm.

threshold; = mean; — std; SF. &)

For illustration and comparison of the three triggers, Figure 3
shows the results (mean +standard deviation) for the trigger vari-
ables normalized to the corresponding threshold. The resulting
threshold values together with the mean and standard deviation are
summarized in Table 2. These threshold values were implemented in
SIMULINK to automatically detect the end of the batch phase and
therefore to select the right model coefficients for the biomass soft
sensor shown in the following.

3.2 | Mass balance for carbon

The underlying principle of the mechanistic modeling part is mass
balancing of carbon. The boundary for the balancing is the bioreactor
system: Carbon is fed into the bioreactor in the form of methanol
(fed-batch phase) and leaves the boundary in the form of CO,.

TABLE 1 Main characteristics of the three distinct process phases (batch, transition, and fed-batch phase) regarding process phase detection

Process phase Main process objective

Batch phase Biomass generation Glycerol
Transition phase Derepression of the AOX1 promotor None
Fed-batch phase Product formation Methanol

Carbon source
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Main process data characteristic
Abrupt drop in off-gas CO, signal at the end of batch phase
No base feed due to absent cell growth

Starting with methanol feed
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FIGURE 2 Timewise derivative of the off-gas CO, sensor reading,
docoz/dt, for an exemplary process run. A median filter (window
size = ten sensor readings) is implemented before and after the
derivation step to handle noisy sensor readings. The characteristic
negative peak (here at 39.6 hr) is the main indicator for the depletion
of the batch phase substrate (glycerol) and thus the end of the batch
phase. This landmark is used to initiate the start of the transition and
fed-batch phase, respectively

The remaining carbon is in the form of either glycerol or methanol or
is bound in cells as well as extracellular organic acids and proteins.
The following sections show how the timewise rates of off-gas CO,
and methanol are calculated. These rates are then balanced to enable
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FIGURE 3 Triggers for the multilevel detection of the end of the
batch phase (i.e., depletion of glycerol). Only when defined values for
base, Viase, and absolute off-gas CO, concentration, ooy, are reached
for the first time, the last trigger—the timewise derivative of the off-
gas CO, concentration, doco,/dt—is active. The three thresholds are
defined based on the calculation of the mean and standard deviation
for each of the three variables at the end of the batch phase as well
as a safety factor. The diagram shows normalized absolute variable
values; error bars correspond to the normalized standard

deviation (n=9)
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TABLE 2 Threshold, mean, and standard deviation for the three
trigger variables Vpase, 0coz, and docoy/dt at the end of the batch
phase (n =9)

Trigger Standard

number Variable Mean deviation Threshold

1 Vhbase 540 ml 117 ml 188 ml

2 oco2 1.284% 0.177% 0.755%

3 doco/dt  -0.038%-hr™* 0.007%-hr™*  -0.017%-hr™*

calculation of the formation rate of total organic carbon (TOC) that
remains bound in cells as well as extracellular organic acids and
proteins. To determine the cumulative amount of TOC online, this
rate needs to be multiplied by the total liquid volume and numerically
integrated. This cumulative amount of TOC is used in the subsequent
data-driven modeling part to predict biomass concentration
(Figure 4).

3.2.1 | Calculation of liquid volume

To calculate the total liquid volume, all feeds and removals (sampling)
need to be considered. The total reactor volume V., is calculated as
n (2), where V¢ is the start volume after inoculation; Vpgse, Vinetn, and
Vafoam are the cumulative volumes of base, methanol, and antifoam,
respectively, fed into the bioreactor; Viampies is the cumulative volume
of samples automatically taken via the BaychroMAT® autosampler:

2
Vtota) = Vstart + vbase + vmeth + Vafoam - Vsamples~ ( )

3.2.2 | Calculation of carbon dioxide emission rate

The calculation of the carbon dioxide emission rate rco, in (3) is
adapted from Takors (2013), where Qg is the air flow rate, p is
the pressure, R is the universal gas constant (8.314 x 1072
L-bar-mol™*-K™), T is the temperature, oco, and oo, are the con-
centrations of carbon dioxide and oxygen, respectively, and the indices c
and @ represent the gas inlet and outlet of the bioreactor, respectively:

1 — 002, — Gcoz, 3)

fco2 =

Qair P
vtotal RT

0co2, — 0cO2 |-
1 - 0oz, — 0coz,

3.2.3 | Calculation of methanol reaction rate

As described above, errors in the methanol control, such as an initial
overshoot or a deviation of the measured methanol concentration to
the setpoint (Figure 1), can occur. The carbon balance is designed to
compensate for disturbances of methanol control by incorporating
the methanol accumulation rate fpenacc. Changes in fpetnacc result
from the uptake of methanol by cells and methanol feeding (espe-
cially at the feed start when the methanol setpoint is reached for the

first time). fethacc is determined by the timewise derivative of the
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mechanistic model

I'roc = I'meth — I'co2

I'roc

data-driven model

TOC, Vhase = X

FIGURE 4 Simplified representation of the hybrid-model-based
soft sensor for biomass concentration cx. The methanol reaction rate
Imeth and the carbon dioxide emission rate rco, are fed to the
mechanistic model; carbon balancing is here used to calculate the
formation rate of total organic carbon, rroc. The subsequent data-driven
model uses the numerical integration of rroc, namely, TOC, together
with the cumulative base feed, Vs, as inputs to calculate the amount of
biomass X. Finally, X is divided by the total liquid volume inside the
bioreactor, Viotal, to calculate the biomass concentration cx. Both the
data-driven and the mechanistic parts can be carried out online

methanol concentration cyetn that is measured in the bioreactor (in-
line), as follows:

dcmeth

dt

Fmeth,acc = ()

The methanol reaction rate ry,e, describes the net rate at which
methanol accumulates in or is withdrawn from the liquid phase of the
bioreactor and is calculated as follows, where rmetn in is the feed rate
of methanol into the bioreactor related to the total liquid vo-
lume Viotar:

5

Fmeth = Imeth,in — 'meth,acc-

3.2.4 | Calculation of formation rate of total organic
carbon

TOC refers to all carbon inside the bioreactor system that is bound in
the substrate (glycerol or methanol) and cells as well as extracellular
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organic acids and proteins. The formation rate of TOC, rrgc, is not
directly measured by reference analysis but calculated as follows by
balancing the methanol reaction rate r,., and the carbon dioxide

emission rate rcop:

Itoc = Fmeth — fco2- (6)

In the batch phase fyen = 0 and no glycerol is fed into the

bioreactor; therefore, the carbon balance in this phase

is rroc = —fco2-

3.3 | Development of hybrid-model-based soft
sensor

3.3.1 | Combination of mechanistic and data-driven
parts in a hybrid model

Figure 4 shows the soft sensor algorithm and how process variables
are passed through the mechanistic and data-driven modeling parts
to finally result in the online prediction of biomass concentration cx.
The output of the mechanistic part (mass balance for carbon), rroc, is
together with V4. fed into the data-driven part. The data-driven part
comprises a numerical integration step for rroc to obtain the cumu-
lative amount of total organic carbon, TOC, and a multiple linear
regression (MLR) step. MLR was chosen as regression method be-
cause the prediction model uses only the two inputs TOC and Vjgs.

Using TOC only for biomass prediction leads to acceptable pre-
diction results (data not shown). However, the concentrations of
dissolved carbon dioxide (H,COg3) as well as extracellular proteins
(cp) and organic acids, which can in most cases not be measured
online, distort the biomass prediction. The prediction model for
biomass is therefore complemented by adding information about
acids in the medium. The process variable with most information
about acids in the medium is the cumulative base feed, Vi4s.. Because
cp < Cx, the extracellular protein concentration is neglected for
biomass prediction.

TOC is calculated as follows by multiplication with Vot and nu-
meric integration from the beginning of the process run (tp) to the
current time (t):

TOC = jt: rroc Viotal dt. )

When in sum (up to t) more carbon passed the bioreactor
boundary to the outside than to the inside, TOC has a negative value.
The time course of TOC is together with rye and reo; illustrated in
Figure 5 for an exemplary process run. In the batch phase (Figure 5a),
the only carbon passing through the bioreactor boundary is CO,.
Therefore, TOC has a negative gradient. In the fed-batch phase
(Figure 5b), methanol is fed to the bioreactor, resulting in a net po-
sitive gradient for TOC.

The soft sensor uses three distinct sets of model coefficients for
each the batch, transition, and fed-batch phase. For model calibration
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lllustration of the carbon balance for (a) the batch and (b) fed-batch phase for an exemplary process run. The carbon dioxide

emission rate, rcop, and—in the fed-batch phase, additionally—the methanol reaction rate, r,,.:n, are used to calculate the formation rate of total
organic carbon, rroc, as in (6). Multiplication of rroc with Viote) and numeric integration as in (7) result in the cumulative amount of total organic

carbon, TOC

via MLR in the batch phase, TOC and V,4 are used as inputs and the
biomass amount X (determined offline as dry cell weight) as output.
The prediction equation is formulated as follows, where by, bs, and b,
are the model coefficients:

X = bo + by TOC + by Vhase: ®

In the transition phase, no significant cell growth or decline was
observed, so by was set to the value of X at the end of the batch
phase (Xpatchend) and by and b, were set to O. In the fed-batch phase, by
was set to Xpatchend and by and b, were determined analogously to the
methods used in the batch phase.

The regression step in (8) is related to the total liquid volume
inside the bioreactor, Viota. To determine the biomass concentration
¢x, the biomass amount X is divided by Vjua, as in the following
equation:

c X
X = .
Viotal

3.3.2 | Cross-validation approach for model
calibration and validation

The model was calibrated and validated by a batch-wise cross-
validation approach. The six data sets used for developing the bio-
mass soft sensor were iteratively partitioned into two-thirds of
calibration and one-third of validation data sets. This resulted in a
total of 6!/(2!4!) = 15 different combinations of complementary
subsets for cross-validation. For each iteration step, R2, root mean
squared error (RMSE), and normalized root mean squared error
(NRMSE) of cross-validation were calculated separately for the batch
and fed-batch phase as well as for the entire process (including the
transition phase). R? is calculated for the four calibration data sets.
The NRMSE in the following equation is the normalized version of
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RMSE and is calculated from reference measurements y and predic-
tions y of the two validation data sets. yyax and ymin are the maximum
and minimum values of y, respectively, and m is the number of data

1m .
\ o D O = 02

The use of separate subsets for internal and external (holdout)
validation (OECD,

points iny:

1

Ymax = Ymin

NRMSE = (10)

2014) does not appear to be practicable because
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FIGURE 6 Online prediction of biomass concentration cx during
batch, transition, and fed-batch phase for an exemplary process run
using the hybrid-model-based soft sensor. Both the batch and the
fed-batch phase start with a lag phase after which cells grow
exponentially (batch phase) or linearly (fed-batch phase). The two
dashed, gray lines indicate the switches from batch to transition
phase (39.6 hr) and from transition to fed-batch phase (46.5 hr),
respectively
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Process phase bo + Cl g5, (8) by + Cl g5p, (g-mol™?)

Batch phase 4.60+2.54 -13.69+9.81
Transition phase Replaced by Xpatchend 0
Fed-batch phase Replaced by Xpatchend 2.63+1.57

the total number of data sets that are available for model calibration

and validation is too small (n = 6).

3.4 | Online prediction of biomass using the
multilevel phase detection

The multilevel phase detection algorithm resulted in a 100% correct
hit rate for the detection of the end of the batch phase. On average,
the phase end was detected 2.56 measurements (corresponding to
77 s) before the minimum doco,/dt was reached—which was defined
as the end of the batch phase.

The arithmetic means for R2, RMSE, and NRMSE are calculated
using the abovementioned 15 combinations of n =6 data sets. The
mean R? for the batch and fed-batch phases is .97 and .95, respec-
tively; the mean R? for the entire process is .96. The mean RMSE for
the batch and fed-batch phase is 1.14 and 5.05g- L%, respectively;
the mean RMSE for the entire process is 3.57 g - L™, which results in a
mean NRMSE of 5.52%.

Figure 6 shows the results for the online prediction of biomass
concentration based on the hybrid-model-based soft sensor. The
figure shows validation data of one iteration of the cross-validation
for an exemplary process run. The underestimation of the online
prediction at 40-52 hr and after 64 hr is due to an error in biomass
prediction at the end of the batch phase that entails prediction errors
in the transition phase.

The results for the model coefficients by, b;, and b, in (8) are
listed in Table 3. As described above, these model coefficients are
used to determine the biomass amount X, which needs to be divided
by Vietar to calculate the biomass concentration cx. Viota Varies be-
tween Vipta = Vitart = 10.00 L and on average Vjotq = 12.56 L (n = 6) at
the end of the cultivation. In the batch phase, the intercept by de-
scribes the initial biomass from inoculation. As mentioned above, bg
was in the transition and fed-batch phase replaced by Xpatchend, Which
has a mean of 253.47 g (n = 6). The model coefficient for TOC, by, is
negative in the batch phase because here the carbon balance in (6) is
simplified to rroc = —rco2 (boundary for the balancing is the bior-
eactor system) and thus TOC in (7) decreases with increasing CO»
emission and biomass, respectively. In the fed-batch phase, in which
methanol is fed to the bioreactor, TOC correlates positively with X.
The model coefficient for Ve, by, is positive for both the batch and
fed-batch phase. In the fed-batch phase, b, is more than 50% higher
than in the batch phase, which means that more than 50% base is
necessary to maintain the pH setpoint on glycerol compared to me-
thanol. The soft sensor's model coefficients switch automatically
depending on the current process phase. The differences in the
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TABLE 3 Results for model coefficients

by + Clgsp, (g:L7") ) )
bo, by, and by in (8) and the corresponding

701.96+79.62 95% confidence intervals, Cl gs. In the

0 transition and fed-batch phase, by is set to
the value of X at the end of the batch

1074.05 +94.28

phase (Xpatchena)

model coefficients b; and b, between the individual process phases
indicate the necessity for the adaption of model coefficients with
changing process phases.

The accuracy of the estimates of the model coefficients is given
by the corresponding 95% confidence intervals, Cl o5 (Table 3). None
of the Clgs contains the value zero, which is considered to be a
primary indication that the model inputs are to a certain degree
significant to the model output, biomass. The width of Cl o5 relative to
the absolute value of the model coefficient is a further indicator for
the quality of the regression and hence for the uncertainty of the soft
sensor model (Fernandes et al., 2012). For by, the ratio of the width
of Cl g5 to the absolute value of the model coefficient is 55%; for by,
the ratio is 72% and 60% for the batch and fed-batch phase, re-
spectively; for by, the ratio is 11% and 9% for the batch and fed-batch
phase, respectively.

The contribution of the model coefficients by, by, and b, to the
prediction of X is illustrated in Figure 7 for an exemplary process run.
Here, each model coefficient's contribution was determined by dis-
assembling the linear combination in (8) and dividing each model
coefficient's prediction by the total model prediction. As expected,
the contribution of by starts with an initial value of 100% at the
process start and decreases relative to the contribution increases of
b; and b,. Until the end of the batch and fed-batch phase, the
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FIGURE 7 Contribution of model coefficients by, b4, and b, to the
prediction of biomass amount X during batch, transition, and fed-
batch phase for an exemplary process run. The two dashed, gray lines
indicate the switches from batch to transition phase (39.6 hr) and
from transition to fed-batch phase (46.5 hr), respectively. The soft
sensor updates its model coefficients automatically for the three
distinct process phases
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contribution of by falls to values of 1.72% and 0.57%, respectively.
Since by is in the transition and fed-batch phase replaced by Xpatchend,
the contributions to Xpaschend (18.99% for by and 79.29% for by) are
used as offset for the contributions of b; and b, throughout the latter
process phases. The contribution of by initially rises to a maximum of
36.41% approximately at the end of the lag phase and reaches con-
tributions of 18.99% and 18.26%, respectively, at the end of the
batch and fed-batch phase. The contribution of b, starts to rise when
base is first fed to the bioreactor (see Figure 1) and reaches values of
79.29% and 81.18%, respectively, at the end of the batch and fed-
batch phase. It can be concluded from these results that, approxi-
mately after the end of the lag phase, Viqse has a higher impact on
biomass prediction than TOC. This result is consistent with the ap-
parent high collinearity of Vi (see Figure 1) and c¢x (see Figure 6).

4 | CONCLUSIONS

As mentioned at the beginning of this paper, several challenges can
arise when attempting to develop soft sensors. One of these is spe-
cific to P. pastoris bioprocesses with distinct process phases such as
batch, transition, and fed-batch phase. The underlying principles of
prediction models for biomass are related to the inherent biological
relations (Chen et al., 2004), which differ depending on the substrate
used in the specific process phase. The fundamental differences in
the metabolism of different carbon sources have a visible impact on
CO, emission and the consumption of pH correction agent (see
Figure 1), which are two of the main model inputs used in this study.
For multiphase processes with more than one substrate, this means
that the probability of finding a single model that captures the in-
formation necessary for prediction of biomass is rather low.

This study demonstrates the application of a multilevel phase
detection algorithm to determine the end of the batch phase (gly-
cerol depletion) online. In every tested case, the algorithm provided
the correct end time of the batch phase. The detection of this end
time was used to trigger the transition phase and the subsequent
methanol induction. The knowledge about the significantly reduced
CO, emission that comes with glycerol depletion was effectively
utilized. Specifically, the stoichiometric restrictions concerning the
cumulative amount of supplied base (trigger 1) and emitted CO,
(trigger 2) were used to increase robustness of the third trigger
(timewise derivative of the off-gas CO, signal). The usage of purely
data-driven approaches for process phase detection (e.g., Abonyi,
Feil, Nemeth, & Arva, 2005; Ye, Wang, & Yang, 2017) did not appear
practicable in this case because only a relatively small number of data
sets (nine) were available for the development of the phase detection
algorithm.

The output of the phase detection algorithm was used to switch
the parameters of the prediction model online. The prediction model
was calibrated offline using a hybrid-model-based approach. The
output of the mechanistic part (carbon balance) is fed to the data-
driven part (MLR) to provide an accurate prediction of the biomass
concentration. The process runs were conducted under the same
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operating conditions (initial glycerol concentration, constant set-
points for methanol, pH, dissolved oxygen, temperature, and pres-
sure). However, the process runs and corresponding data sets used in
this study were subject to variance of initial biomass concentration,
which in turn resulted from the variability of the preculture. Further,
errors in the methanol control, such as an initial overshoot or a de-
viation of the measured methanol concentration to the setpoint
(Figure 1), occurred and additionally increased the variance between
the data sets. Despite this variance between the used data sets,
model evaluation results in a mean relative prediction error of 5.52%
and R2 of .96 for the entire process. These two evaluation criteria are
of similar magnitude to those of other biomass soft sensors for P.
pastoris fed-batch processes (Beiroti, Aghasadeghi, Hosseini, &
Norouzian, 2019; Crowley, Arnold, Wood, Harvey, & McNeil, 2005;
Fazenda et al., 2013; Surribas, Geissler, et al., 2006; Surribas,
Montesinos, & Valero, 2006). In the approach presented here, how-
ever, the soft sensor is adaptable online to the different process
phases, and no cost-intensive spectroscopic measurement system is
necessary. The robustness of the soft sensor with regard to different
process conditions (e.g., variation of methanol, pH, and temperature
setpoint) was not in the scope of this study. These investigations are
subject of future research.

The main constraint of the presented soft sensor is that the
prediction in the transition and fed-batch phase is directly dependent
on the prediction result in the batch phase. This is due to the passing
on of the biomass prediction at the end of the batch phase (Xpatchend)
as a start value for the prediction models of the subsequent phases.
The effect of error propagation can be visualized by considering the
slight decrease of R? and increase of prediction error between batch
and fed-batch phase. It should further be noted that the carbon
balance in the individual phases depends on constant ratios of bio-
mass formation, CO, emission, and—in the fed-batch phase—
methanol metabolization. Longer periods of substrate limitation or
metabolite inhibition would impede an accurate biomass prediction if
these scenarios are not included in the data sets used for model
calibration.

Knowledge-based relationships were combined with data-driven
methodology in this study. No general statement can be made here
about whether mechanistic, data-driven, or hybrid approaches are
superior because the choice is strongly dependent on the available
process knowledge and measurement systems (offline/online) as well
as the number of data sets and data points (Solle et al., 2017).
However, in this study, the usage of a hybrid approach appears to be
suitable because of the benefits from both components of it. This is
due to the availability of the necessary online measurement systems
for capturing the information relevant for modeling biomass (off-gas
CO,, methanol, cumulative base feed) and, on the other hand, the
relatively small number of data sets (six) for model calibration and
validation.

The transferability of the developed phase-dependent soft sen-
sor to other fed-batch cultivations with different P. pastoris strains,
control strategies, media, and process parameters must be in-
vestigated in future research. It is supposed that the presented



Soft sensors for Pichia pastoris bioprocesses

Summary of results

BRUNNER ET AL

2758 BIOTECHNOLOGY
WILEY BIOENGINEERIN

approaches for process phase detection and hybrid-model-based
prediction are transferable to any methanol-induced P. pastoris pro-
cess provided that the carbon source used for initially generating
biomass (glycerol, glucose, etc.) is not co-fed to methanol.

The developed algorithm for process phase detection and the
prediction model were implemented as a soft sensor for the online
monitoring of biomass. The soft sensor can be used for quality con-
trol and as input to the process control system, for example, for
methanol control.

NOMENCLATURE

bo, by, b, model coefficients (g, g- mol™®, g-L™%)

c molar or mass concentration

Cl g5 95% confidence interval for model coefficients

(g g-mol™, g-L™")

Crmeth methanol concentration (mol - L™%)

cp extracellular protein concentration (g- LY

Cx biomass concentration (g-L™%)

m number of data points in y (-)

mean arithmetic mean of trigger variable (L or % or % -hr™?)

n number of data sets (-)

NRMSE  normalized root mean squared error (%)

p pressure (bar)

Quir air flow rate (L-hr %)

r timewise rate

R universal gas constant (L-bar-mol™-K™?)

R2 coefficient of determination (-)

RMSE root mean squared error (g-L™%)

rcoz carbon dioxide emission rate (mol-L™*-hr™%)

Feth methanol reaction rate (mol-L™*-hr™?)

Imethace ~ Methanol accumulation rate (mol - L™+ hr™?)

Imethyin methanol feed rate (mol-L™*-hr™%)

froc formation rate of total organic carbon (mol-L™*-hr™%)

SF constant safety factor (-)

std standard deviation of trigger variable (L or % or % - hr'?)

T temperature (K)

t time (hr)

threshold  threshold for trigger variable (L or % or % -hr™%)

TOC cumulative amount of total organic carbon (mol)

Vafoam cumulative volume of antifoam (L)

Vhase cumulative volume of base (L)

Vineth cumulative volume of methanol (L)

Viamples cumulative volume of samples (L)

Vitart start liquid volume inside bioreactor after inoculation (L)

Viotal total liquid volume inside bioreactor (L)

X biomass amount (g)

Xbatchend ~ biomass amount at the end of the batch phase (g)

y reference measurement (g - LY

y prediction (g-L™%)

YimaxYmin ~ Maximum/minimum values of reference measurements
y (g-L™)

a index for gas inlet of the bioreactor (-)

volume concentration

61

Oco2 off-gas CO, concentration (%)

docop/dt  timewise derivative of the off-gas CO, concentra-
tion (% - hr™%)

002 off-gas O, concentration (%)

@ index for gas outlet of the bioreactor (-)
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Abstract

Sensor faults can impede the functionality of monitoring and control systems for bioprocesses. Hence, suitable systems need to be
developed to validate the sensor readings prior to their use in monitoring and control systems. This study presents a novel
approach for online validation of sensor readings. The basic idea is to compare the original sensor reading with predictions for
this sensor reading based on the remaining sensor network’s information. Deviations between original and predicted sensor
readings are used to indicate sensor faults. Since especially batch processes show varying lengths and different phases (e.g., lag
and exponential phase), prediction models that are dependent on process time are necessary. The binary particle swarm optimi-
zation algorithm is used to select the best prediction models for each time step. A regularization approach is utilized to avoid
overfitting. Models with high complexity and prediction errors are penalized, resulting in optimal predictions for the sensor
reading at each time step (5% mean relative prediction error). The sensor reliability is calculated by the Kullback—Leibler
divergence between the distribution of model-based predictions and the distribution of a moving window of original sensor
readings (moving window size = 10 readings). The developed system allows for the online detection of sensor faults. This is
especially important when sensor data are used as input to soft sensors for critical quality attributes or the process control system.
The proof-of-concept is exemplarily shown for a turbidity sensor that is used to monitor a Pichia pastoris-batch process.

Keywords Sensor network - Sensor fault - Fault detection - Online validation - Particle swarm optimization

Introduction sensor networks can be afflicted by errors resulting from sen-
sor faults.
The use of multimodal sensor networks has become an inte- A sensor fault is generally defined as the deviation of the
gral part of bioprocess monitoring. Multimodal sensor net-  observed sensor reading from the true value [2, 3]. Faults in
works consist of different types of sensor devices measuring  sensor networks can be classified as bias (intermittent, step-
various process variables simultaneously and online. The sen- wise, drift-wise, or cyclic deviation), precision degradation
sor’s measurement quality is restricted to a calibration priorto  (increase in sensor reading variance), and complete failure
the process or experiment. Once this calibration is successful- (severe malfunction, e.g., permanent zero value due to discon-

ly performed and a sensor provides data, the reliability of the ~ nection) of one or multiple sensors [4-6]. Possible causes of

measurement system is usually not investigated further. sensor faults include damaged sensors, short-circuited connec-

However, besides the uncertainties typical for biological reac-  tions, and calibration errors [2]. Furthermore, measurement

tions [1], bioprocess data generated by means of multimodal ~ can be affected by unconsidered cross-sensitivity to matrix
compounds (matrix effects).

Published in the topical collection Advances in Process Analytics and

Control Technology with guest editor Christoph Herwig. Previous work on online sensor validation
>4 Dominik Ulrich Geier The ability to detect sensor faults online and thus to validate
dominik.geier@tum.de the measurement system during the running process requires a

supervision system. This system reads sensor network data

! Chair of Brewing and Beverage Technology, Technical University of and includes a decision logic with sensor reliability as an
Munich, Weihenstephaner Steig 20, 85354 Freising, Germany outcome, i.e., deciding whether a sensor reading can be
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regarded as faulty or reliable. As outlined by Feital and Pinto
[7], online sensor validation is an integral part of quality con-
trol via process analytical technology (PAT), especially when
sensor data are used as input to soft sensors for the determi-
nation of critical quality attributes and process parameters or
to the process control system. In the latter cases, false control
responses can be avoided and productivity losses can poten-
tially be reduced by the early detection of faults while the
process is still running in a controllable state.

Several concepts for detecting sensor faults exist. In most
cases where it is aspired to verify that the online measurement
system provides reliabie data for the target quantity, it is typ-
ically validated offline via lab reference measurements. For
applications where high process safety must be guaranteed,
one or a number of identical sensors in easy-to-compare posi-
tions can be installed and checked for equality [8]. However,
lab reference measurements and redundant sensors incur ad-
ditional costs. Furthermore, in the first case, it is not possible
to replace the falsified sensor reading online and thus use the
replaced value for control purposes. The latter case leaves
open the question of which sensor reading to trust when only
a small number of redundant sensors are used.

For these reasons, a series of approaches to the online vali-
dation of sensor readings has been developed, as reviewed by
Das et al. [9] and Isermann [10]. These approaches can be
classified as statistical, artificial intelligence, and model-based
techniques, as well as their hybrid variants [9]. All these
methods are, to a certain degree, based upon the information
redundancy inherent in sensor network data. However, only a
minority of these approaches have proven their transferability to
highly non-linear and time-variant processes, such as biological
batch processes. Below, previous work on online sensor vali-
dation is reviewed briefly, focusing on non-linear processes.

The multivariate statistical process control (MSPC) ap-
proach uses principal component analysis (PCA) and partial
least squares (PLS) or their variants to build an empirical
model based on measurements of a reference database de-
scribing the normal operation of the process. Deviations from
normal operation, such as process or sensor faults, are then
indicated in control charts [11]. The contribution of each input
variable to the underlying statistics of the latent variable
models allows one to investigate which input variable(s)
caused the deviation [12, 13], thus allowing sensor fault de-
tection and identification.

The pattern recognition approach uses artificial intelligence
methodology to detect the patterns of sensor faults and can
therefore be considered as a pattern recognition problem. For
example, Bayesian networks were trained with artificially
added sensor faults and subsequently used for fault identifica-
tion [4, 14]. For this approach, however, separate prediction
models are necessary to replace the falsified sensor reading.
Guo and Nurre [15] trained two different artificial neural net-
works for a sensor validation problem: the first was trained to
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detect and isolate sensor faults and the second to recover the
values of critical variables when their measurements fail.

Another promising approach to sensor fault detection is to
predict the sensor reading of interest using the data stream of
the remaining sensor network and evaluating the residual be-
tween the predicted and original sensor reading, which is re-
ferred to as a symptom signal [16]. This approach contains two
major steps—prediction and symptom signal evaluation—for
which suitable methods must be found depending on the ap-
plication. Symptom signals generated by PCA model predic-
tions were used by Dunia et al. [17] to identify sensor faults
and determine the type of fauit as bias, compiete faiiure,
drifting, or precision degradation. Alag et al. [18] proposed a
method of adaptive time-series modeling based upon an artifi-
cial neural network for sensor reading prediction and used the
statistical properties of the residuals in combination with prob-
abilistic reasoning to identify sensor faults. Ibargiiengoytia et al.
[19] used probabilistic propagation based on Bayesian net-
works for residual generation and probabilistic reasoning for
fault detection inside the sensor network. Zarei and Shokri
[16] proposed a non-linear unknown input observer based upon
a Bayesian filter to generate the residuals. The advantage of
these approaches is that the replacement for falsified sensor
readings is directly accessible. However, this approach has a
bottleneck, namely the accuracy of the underlying model that
gives the prediction to be compared with the original sensor
reading. For fault detection and recovery in batch processes
with varying lengths and different phases (e.g., lag, exponential,
and stationary phase or process phases resulting from multi-
substrate media), prediction models must be capable of operat-
ing in real time and depend upon the process time, i.e., they
must be dynamic [20]. However, most studies on fault detection
and identification use a static prediction model for the whole
process. Furthermore, the information redundancy inherent
in the sensor network is not utilized efficiently when only
one model input combination is used for prediction, i.e.,
for residual generation. It is supposed that sensor fault
detection is more robust when several model combina-
tions are used for residual generation, resulting in a dis-
tribution of predictions. Finally, a fixed threshold for fault
detection, as used in most studies, can yield false alarms
when noise or unforeseen events occur in the sensor net-
work data.

Scope and outline of this study

In the present study, a novel approach for online sensor vali-
dation using dynamic modeling based on swarm intelligence
was developed. The approach can be summarized in four
steps: (I) the process progress (maturity) is predicted via
PLS regression (PLSR), making it possible to divide the pro-
cess into overlapping process segments; (II) for each process
segment, a pool of possible models for the prediction of the
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sensor reading to be validated is defined; the inputs of these
models consist of various combinations of the remaining sen-
sor network’s readings, as in Krause et al. [13]; (III) an optimal
subset of models for the prediction of the sensor reading is
determined for each process segment using the binary particle
swarm optimization (BPSO) algorithm [21]; and (IV) the
BPSO-based best models are used to create a distribution of
predictions for each process time step. The deviation of the
original and predicted sensor readings, evaluated by means of
the Kullback—Leibler divergence, indicates a sensor fault and
is used to quantify the sensor reliability. The threshold be-
tween a fauity and reliable sensor reading is dynamic and
based upon the total accuracy of the prediction models select-
ed via the BPSO algorithm.

This study shows the proof-of-concept of this approach for
a turbidity sensor that is used to monitor a Pichia pastoris-
batch process. Turbidity measurements are frequently used as
the main input to soft sensors for the prediction of biomass
concentration. Biomass concentration is associated with the
majority of critical quality attributes (CQA) in upstream
bioprocessing [22] and its online monitoring is therefore piv-
otal for quality control. Soft sensors for biomass concentration
based on turbidity measurements would lose their predictive
performance in the case of sensor faults or unexpected devia-
tions. Unexpected deviations of turbidity readings are herein-
after defined as deviations of the correlation of biomass with
the turbidity reading that cannot be explained by any other
available online or offline process analysis. The developed
system makes it possible to detect faults as well as unexpected
deviations of the turbidity sensors used for the prediction of
biomass concentration online and, if necessary, to replace the
falsified original value with that predicted via the sensor net-
work. The advantages of this approach are that the replace-
ment for the falsified sensor reading is directly accessible and
sensor validation is reliable due to taking the whole sensor
network’s information into account in a dynamic manner.

Materials and methods
Strain and preculture conditions

A single colony of a recombinant P. pastoris strain based on
type strain DSMZ 70382 was grown on a YPD plate (yeast
extract, 10 g L peptone, 20 g L glucose, 20 g L' bac-
teriological agar, 15 g L™"). This working culture was used to
inoculate the preculture in three 150-mL shake flasks contain-
ing 50 mL of the mineral medium FM22 with glycerol as the
carbon source: (NH4),SOy4, 5 g | CaSO42H,0, 1 g L
K5S04, 143 g L7'; KH,PO,, 42.9 g L™'; MgS0,4-7H,0,
11.7 g L™"; glycerol, 40 g L' [23]; and trace element solution,
2 mL L' of the culture medium. The trace element stock
solution contained: CuSO,45H,0, 2 g L% K1, 0.08 g L
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MnSO,H,0, 3 g L™!; Na,Mo0,2H,0, 0.2 g L™'; H;BO;,
0.02 gL', CaS042H,0, 0.5 g L™'; CoCl,, 0.5 g L™"; ZnCl,,
7gL7"; FeSO,H,0,22 g L™"; biotin, 0.2 g L™"; conc. H,SO,,
1 mL.

Bioreactor and sensor network

Atotal of 150 mL of preculture was used to inoculate the main
culture in a Biostat® Cplus bioreactor (42 L total volume;
Sartorius AG, Goettingen) with a working volume of 15 L
and control of pressure, pH, temperature, and dissolved oxy-
gen (DO); the controiier setpoints were 500 mbar, 5, 30 °C,
and 40%, respectively. A DO minimum of 40% was con-
trolled in a sequence cascade by agitation with three
Rushton impellers (300-600 min~") followed by air flow
(2040 L min") via a ring sparger. NH,OH was used as
nitrogen source and to set and maintain a pH of 5. The end
of the batch process was defined as the time at which the
carbon source glycerol was completely depleted, as indicated
by a characteristic peak in the off-gas CO, signal. To measure
the O, and CO, concentrations in the off-gas, a BlueInOne
Cell sensor (BlueSens gas sensors GmbH, Herten) was used.
Turbidity was measured with an optical fiber sensor InPro
8100 (Mettler-Toledo GmbH, Giessen), measuring the
backscattered light of the cell suspension.

The portion of sensor network data used for modeling
consisted of sensor readings for O, and CO, in the off-gas,
DO, and turbidity, as well as actuator values for air flow, stirrer
speed, and base feed (see Fig. 1). The process variables pres-
sure, pH, and temperature are robustly controlled to a specific
setpoint and therefore contain no information that would be
relevant for modeling.

Data management

The Biostat® digital control unit (Sartorius AG, Goettingen)
was used for primary process control. The Sartorius OPC server
and SIMATIC SIPAT (Siemens AG, Munich) were used for
communication and data management, respectively. Data were
collected in a central SIPAT process database with a recording
rate of 30 s. Data pre-processing and modeling were performed
in MATLAB R2019a (The MathWorks, Inc., Natick, MA).

Results and discussion

This study presents a novel approach for online validation of
sensor readings. The basic idea is to compare the original
sensor reading with predictions for this sensor reading based
on the remaining sensor network’s information. Deviations
between original and predicted sensor readings are used to
indicate sensor faults. The algorithm is structured into two
branches (see Fig. 2). The left branch is used for automatic
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Fig. 1 Bioreactor and sensor network with all sensors and actuators used
for the monitoring and control of the P. pastoris-batch process. Signals
used in the prediction models are marked in gray. The online data stream
comprises sensor readings for O, and CO; in the off-gas, pressure, pH,
dissolved oxygen (DO), temperature, and turbidity, as well as actuator
values for air flow, stirrer speed, and base feed. Since pressure, pH, and
temperature are robustly controlled to a specific setpoint, they are not
used in the prediction models

model selection and calibration based on historical process
data; the right branch uses these models for the validation of
sensor readings based on the online data stream. Fig. 2 shows
how data and model parameters are passed through the algo-
rithm. Each step of the algorithm is described below in detail.

A proof-of-concept for this algorithm is exemplarily shown
for a turbidity sensor that is used to monitor a P, pastoris-batch
process. Automatic model selection and calibration (see Fig. 2,
left branch) were performed with four data sets of batch pro-
cesses, which did not show significant sensor faults. Three
further data sets were used to simulate the online application
of the algorithm, i.e., to perform online sensor validation (see
Fig. 2, right branch). The batch process that was chosen as an
illustrative example in the following sections showed multiple
significant faults of the turbidity sensor. The structure of this
chapter is oriented according to the four algorithm steps de-
scribed previously (see the “Introduction” section).

Determination of process progress

The interrelations between the sensor of interest and the re-
maining sensor network are assumed to be similar for a certain
process phase (e.g., lag or exponential phase). However, the
duration and progress of batch processes can vary due to, e.g.,
variable cell viability and vitality in the preculture. This results
in sometimes shorter, sometimes longer batch processes.
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Thus, the first step of the algorithm is to develop a model
for the process progress, hereinafter referred to as maturity
m. When a batch process is finished, m can be calculated via
(1), where ¢ is the time vector and ¢,,,; corresponds to the total
batch duration.

t

tend

(1)

The model in (2) is used to predict the maturity m for given
sensor network data X, at time step ¢ with b,, corresponding
to the model coefficients.

m =X, () by (2)

The main prerequisite for the determination of process prog-
ress via the proposed approach (indicator variable technique) is
that model inputs should be monotonically increasing or de-
creasing [24]. Thus, a subgroup X, of the whole sensor net-
work data X was used for the determination of the process
progress. This subgroup comprised all process variables show-
ing almost monotonical behavior, namely base feed, off-gas
CO, and O,, and DO, as well as the logarithm of each of these
variables. Logarithmic transformation was used to account for
the exponential behavior of process variables related to biomass
growth in biological batch processes. This resulted in a total of
eight predictor variables (four original, four logarithmic) used
for the maturity model. Even though DO is a controlled vari-
able, it is a suitable indicator for maturity due to its reproducible
decline from 100% at process start to 40% at about three fourths
of the total batch duration. After DO reaches the setpoint of
40%, it is reliably controlled to that value (see the “Materials
and methods” section).

The model coefficients, b,,, were determined by PLSR
using the In- and non-transformed historical sensor network
data X, as the predictor and the maturity as the predicted
variable. Three latent variables were used for the PLSR. The
contributions of the In- and non-transformed variables to the
PLSR model were calculated via the variable importance in
the projection (VIP) method [25]. This method is used to
quantify the information content of each variable used in the
resulting PLSR model. The In- and non-transformed variables
base feed, off-gas CO,, off-gas O,, and DO contributed with
62%, 6%, 5%, and 27%, respectively, to the maturity model.
The high impact of base feed to the maturity model is in line
with the quasi-linear increase of base feed during the batch
process. Validation with the three test data sets resulted in
NRMSE =11% (normalized root mean squared error) and
R*=0.85. Fig. 3 shows the result of the maturity model for
an exemplary validation batch process with a total batch du-
ration #,,,=35.8 h. The bisector depicts the calculated matu-
rity as in (1). For this batch process, the predicted maturity
starts with 8% due to the high amount of base fed to the
bioreactor at the very beginning in this case and the high
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Automatic model selection
and calibration based on
historical process data

Online validation of
sensor readings based on
online data stream

Fig. 2 Algorithmic structure for sensor fault detection using the binary
particle swam optimization (BPSO) algorithm. Xy, ¥aise Xons Yo, and
Y, correspond to the historical, online, and predicted data for the model
inputs X and the variable to be predicted ¥ or y, respectively. Xj s, and
Xon,m correspond to a subgroup of the whole sensor network data X,
and X,,, respectively, and are used for the determination of the process
progress (maturity). Byys and Bgpso,s correspond to the model coeffi-
cients of all models included in the model pools and the ones determined

influence of base feed in the maturity model. Leaps in the
maturity domain (e.g., at 7 h) result from slight inaccuracies
of the underlying PLSR model and the not completely monot-
onous behavior of the model inputs. Considering the difficulty
of finding a reliable measure for process progress before the
process is actually finished, the shown maturity model is ac-
curate enough to use the predicted maturity in the following
algorithm steps.

The model for maturity is necessary for selecting the right
model pool independent of process time, as described in the
next section.

Definition of prediction model pools

The maturity model (2) is used to disassemble the whole batch
process into b overlapping process segments. Each segment s, =

historical data sets online data stream
Xhist(t) Yhist(?) Xon(), Yon(t)
Xhist(t) Xon(t)
A 4 Y
model for process progress bum prediction of process progress
Yhis(t) (maturity) P (maturity)
m = Xpistm(t) - bm m = Xonm(t) - bm
m m Yon(t)
Y Y
| definition of estimator model pool o prediction of sensor reading
g Yhist(M) = Xhist(M) + Brot,s(M) g Ypre(m) = Xon(M) - Bapso,s(M)
Btot,s(m) Ypre(m)
A 4 A 4
-~ model selection via Bepso,s(M) sensor fault detection P
| BPSO algorithm D(Y orefm) | Yon(m) <
Bhot,s(M) — Bgpso,s(M) pre o
Yhist(m), Bepso,s(M) Bgpso,s(M) D(Ypre(m) || Yon(m))
Y
models for prediction of sensor reliability
sensor reading { R=<0 faulty
Yhist(m) = Xnist(M) - Bepso,s(m) 0<R=<1 reliable
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via the BPSO algorithm, respectively, where s is the used process seg-
ment. D(¥p,,(m)lly,n(m)) is the Kullback—Leibler divergence from ()
t0 ¥p,(m) as in (13). R corresponds to the sensor reliability calculated by
the Kullback-Leibler divergences from ¥,,.(m) to the 95% confidence
limits of ¥,,,,(m) and ¥,,,(m), respectively, as in (15). Sensor readings with
R <0 are regarded as significantly faulty, while readings in the range of 0
<R <1 are regarded as significantly reliable. Furthermore, ¢ = time and m
= maturity (process progress)

Sy ... Sp has an identical maturity size of m = 30% corresponding
to a time span of approximately 10 h. Given a recording rate of
30 s, each segment contains about 1200 sensor readings for
model calibration. The size of this time span represents a trade-
off between insufficient amount of data points for reliably cali-
brating the prediction models (too small time span) and not cap-
turing different process phases, such as the lag and exponential
phase (too large time span). The start of segment s, is
shifted by m = + 1% compared to segment s, resulting in
overlapping segments. Although m is for the calibration of
the maturity model (2) limited to 0% and 100%, the seg-
mentation was conducted for m= —5% to 105%, resulting
in b =81 segments. By permitting this bidirectional extrap-
olation of Am=15% for the segmentation, the segments at
process start (m=0%) and end (m=100%) are overlap-
ping. This overlapping is essential for having smooth predictions
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Fig. 3 Calculated and predicted maturity (i.e., process progress) for an
exemplary validation batch process with a batch duration 7,,,= 35.8 h.
For this batch process, the predicted maturity starts at 8% due to the high
amount of base fed to the bioreactor at the very beginning in this case and
the high influence of base feed upon the maturity model

for the sensor reading of interest. A segmentation without over-
laps would result in leaps of the sensor prediction. Additionally,
slight inaccuracies of maturity predictions at the process end are
covered by permitting segments up to m = 105%.

For each segment s, a pool of possible prediction models
(3) is set up to map the historical sensor network data Xz, to
the historical sensor readings of interest ¥}z, The maturity
model (2) is used for transformation so that the prediction
models (3) are a function of maturity m rather than of time 7.
Biors 1s the matrix of model coefficients.

Yist(m) = Xpist(m) Bior,s (m)

®3)

The matrix of independent variables, X}, contains, be-
sides raw signals (data for CO, and O, in the off-gas, DO,
air flow, stirrer speed, and base feed), polynomial combina-
tions. With these extensions, interrelations between the sensor
network readings and the quadratic and cubic characteristics
of the prediction models are accounted for. These extensions
result in a total of 78 different model inputs comprising the
following structure of terms:

Six single raw, quadratic, and cubic terms (e.g., DO,
(DO)?, and (DO)?, respectively)

15 combinations of raw terms (e.g., DO*(base feed))

15 combinations of quadratic terms (e.g., (DO)Z*(base
feed)z)

30 combinations of mixed raw and quadratic terms (e.g.,
DO*(base feed)?)

By allowing all possible model structures except for the
case where all coefficients in B, are zero, the maximum
number of possible combinations for each process segment
s, is 277~ 1.51 x 10%*. Due to this high number of possible
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combinations, an intelligent search is necessary for finding the
best prediction models.

A prediction model pool is herein referred to as a unique
combination of model inputs for (3) and can be different for
each process segment s, to account for the time variance of
batch processes.

To find the optimal prediction models from the » model
pools regarding prediction error and the risk of overfitting, the
BPSO algorithm is used, as described in the following section.
PLSR is used as regression method for solving (3) due to its
superior behavior with highly collinear data compared to, for

example, muitipie linear regression (MLR) [26].

Model selection via the BPSO algorithm

The BPSO algorithm is used to determine a subset of the best
prediction models out of the previously described model pool for
each of the b = 81 process segment. In contrast to the continuous
PSO, each particle in the BPSO represents its position with bi-
nary values, as first described by Kennedy and Eberhart [27].
The position vector is thus a bit vector with the dimension of
the search space. In the present optimization problem, each bit of
this position vector describes whether the according input term
out of the prediction-model pool for segment s is used in the
model structure (1 or “true”) or not (0 or “false”). For the number
of iterations, ;s wions, the optimization algorithm evaluates the
cost function for each particle out of the total number of particles,
Nparictes> (Population size) to determine the optimal subset of
prediction models. The BPSO algorithm was adapted from
Khanesar et al. [21], as described below.

The BPSO changes the particle positions, i.e., the model
selection, by updating the position bits by means of a change
rate v; (corresponding to the velocity in a continuous PSO).
Each particle’s bit has one of the two change rates v}/ or vg., as
in (4), where v,.l/. and vg. describe the rate at which the jth bit of
the ith particle changes its value from 0 to 1 or from 1 to 0,
respectively, at iteration step z.

J _
Vlj if XU =0

vii(z) = { 0

Updating the change rates v}j and v?j is conducted accord-

(4)

if X = 1

ing to the local (p;p.,) and global best position (pgpe), as in
(5), (6), and (7), where d 11, and d?/. are temporary variables that
depend on pjpy and pgyey and w is the inertia weight. The
local and global best positions in (7) are integers in {0, 1}
and are determined by evaluating the cost function (11), which
is described later on. pjs. 1s the best position of the ith parti-
cle, whereas pgpes, is the best position of all particles up to the
current iteration step. Both p;. and pgy., are updated in each
iteration step. ¢; and ¢, are positive constants that can be
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considered as the impacts of the local and global bests, respec-
tively. 7, and r, are uniformly distributed random numbers
(data type “double”) in [0, 1] generated for each iteration step.

(5)
(6)

1
il
0

il

1o 1
vij—wvij+d +dij,2

W=

0
i wv,-j-er

0
+dj,

1

The temporary variables d;; and dg- are determined follow-

ing the rules in (7).

if piog; =1 thendj =ric; and dff =-rc
if Pipeg; =0 then dg.,l =riq and d3,1 =-ric
if gy =1 then dj, =rmcy  and d), =-r o
if Py ; =0 then d}i,z =rnao and dg’] =-nao
(7

As shown in (8), the thus selected change rate is processed
by means of a uniform sigmoid function sig(*) to transform the
change rate v;; to v;/, where v;;' is the probability that the bit
changes its value; v,/ is constrained to the interval [0, 1].

_ 1
TTren®

vy (2) = sig(vy(2)) (8)

The position of each particle is updated iteratively by (9),
where X;; is the complement of x;; and r;; is a uniformly dis-
tributed random number in [0, 1].

ween= {770 I o

x;i(z) else

The position of each swarm particle represents one model
input combination, as described previously. A PLSR is con-
ducted for each particle , i.e., a certain model input combina-
tion, and iteration step z with training data Xj,;, as predictor
and yy,;, as target variable, resulting in predictions for the
sensor reading of interest, y,;;.

The cost function is designed such that the normalized root
mean squared error (VRMSE) of the prediction models
resulting from a given model input combination is minimized.
The NRMSE in (10) is calculated from training data yy,;, and
Yuise by @ 10-fold cross validation, where y,,,;, and y,,,,, is the
minimum and maximum value of y,;, respectively, and / is
the number of data points in yp;e.

1 \/ 1
Ymax ~ Ymin /

Furthermore, a regularization approach is used to avoid the
risk of overfitting. Models with high complexity, as quantified
by means of the total number of model terms (#; s.,,) and the

2
NRMSE = Zi:l ()A’kthist - yk,hixt) (10)
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number of latent variables of the PLSR (#;,,) are penalized.
The cost function of the BPSO algorithm can thus be written
as in (11), where cost, is the variable to be minimized and w;,
wy, and ws are the weights for the three cost function terms.

cost; = wy NRMSE; + w) N germs + W3 Nijur (11)

The BPSO algorithm is used to determine a subset of the 25
best prediction models from each of the » model pools described
above. Since the process segments are overlapping, the number
of predictions for each process time step varies (Fig. 4): there are
fewer prediction models at the beginning and end of the batch
process and a maximum number of prediction models in the
middle (plateau). As shown in Fig. 4, the number of predictions
per time step is 750 between 5.7 h and 28.9 h, resulting from 30
overlapping segments and 25 models selected via the BPSO
algorithm. The number of available models before and after
5.7 h and 28.9 h, respectively, is influenced by segmentation
based on the predicted maturity. Thus, leaps in the time domain
can occur, resulting in deviations of the trapezoidal shape.

The parameter settings of the BPSO algorithm are summa-
rized in Table 1. The parameterization of the inertia weight w
is a compromise between exploratory (high w) and exploit-
ative (low w) search behavior and can be a fixed or dynami-
cally changing value [28]. The choice of w = 0.8 is close to the
upper limit of the range suggested by Del Valle et al. [28] as
w=[0.4,0.9]. A fixed w was preferred over a linearly decreas-
ing w (as for example described by Shi and Eberhart [29]),
because the swarm would lose its exploration mode when w is
lowered during iterations. The best acceleration coefficients ¢,
and ¢, regarding convergence were 0.45 and 0.6, respectively

800

700

600+

5004

400

300

2004

100

Number of prediction models per time step (-)

15 20 25 30 35

Time (h)

10

Fig.4 Number of prediction models for an exemplary batch process with
a batch duration 7,,, = 35.8 h. Between process times of 5.7 h and 28.9 h,
750 different BPSO predictions are available. This plateau results from a
maximum number of 30 overlapping segments and 25 models per
segment. Before and after 5.7 h and 28.9 h, respectively, fewer
segments overlap; thus, the number of available models is influenced
by segmentation based on the predicted maturity (i.e., process progress)
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Table 1 Parameters for the BPSO algorithm used in this study 100 [ start
Il end
Parameter w Cy C wy W2 W3 Mierations  Mparticles
804
Value 08 045 06 500 1 1 100 50
w is the inertia weight; ¢, and ¢, are positive constants that can be con- % 604
sidered as the impacts of the local and global bests, respectively; wi, ws, S
and wy are weights for the three cost function terms in (11); 7,4iczes 18 the 2
total number of particles (i.e., the population size); 7;4uions 1S the total %
number of iterations 3 40 N N
=
(data not shown). The cost function weichts w-. w-. and w= 20 N N N N
(data not shown). The cost function weights w;, w,, and ws
were parameterized so that the effect of the cost function terms ‘
NRMSE;, 1; terms, and n; 4, described in (11) have an impact ol |
0 10 20 30 40 50 60 70

ratio of approximately 70, 25, and 5%, respectively, with re-
spect to the total cost. This weighting of impact was imple-
mented due to the different importance of each of the three
quality criteria for regression models and resulted in global
mean values of 0.05, 9.43, and 2.87, respectively, for
NRMSE;, 1; 10ys» and n; .. The number of iterations, 7.,usions.
was set to 100 because convergence was reached after at least
80 iterations (data not shown). The number of swarm parti-
cles, ,qricres, Was set to 50. An increase of 71,44icres did not
improve convergence (data not shown).

The results of the model selection via the BPSO algorithm
are illustrated by means of the model inclusion. Model inclu-
sion is referred to as the percentage of all 50 swarm particles
that include the specific input term in the model structure. As
swarm particles are randomly generated inside the search
space, the model inclusion is randomly distributed for all 78
possible model inputs at the iteration start. At the iteration end,
the BPSO converges to an optimal set of prediction models, to
which a few model inputs contribute more than others. As can
be seen in Fig. 5, which shows the model inclusion at the
iteration start and end for a process segment in the late expo-
nential phase, the main contributing model inputs (> 50%) are
DO, (base feed)®, (air flow)*(off-gas CO,)?, and (stirrer
speed)*(off-gas 0,)%. In this example, the model inputs (base
feed)® and (air flow)*(off-gas CO,)? are even contained in
100% of the optimal prediction models. This result is in line
with the observation of high collinearity between the turbidity
reading and the data of these parameters in this process state.

The result of the BPSO algorithm is a set of 50 optimal
prediction models for each process segment. The 25 best
prediction models in terms of cost function evaluation
(cost;) were selected and handed over to the next step of
the algorithm.

Sensor fault detection
The main idea behind sensor fault detection in this study is to

compare the distribution of predictions with that of original
online sensor readings. For discrimination between two discrete
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Model input (-)

Fig. 5 Representation of the model inclusion calculated via the BPSO
algorithm at the iteration start and end for a process segment in the late
exponential phase. At the iteration start, the model inclusion (i.e., the
portion of prediction models that includes the specific model input) is
randomly distributed around 50% for all 78 possible model inputs. At
the iteration end, the model pool is narrowed down to a smaller subset of
optimal prediction models, including main contributions (> 50%) of the
model inputs with numbers 5, 18, 46, and 60, corresponding to DO, (base
feed)3, (air flow)*(off-gas COz)z, and (stirrer speed)*(off-gas 02)2

probability distributions Q and P, the directed Kullback—Leibler
divergence D [30] from Q to P is formulated as

P(i))
(i)
where the logarithms are taken to base 2 if information is mea-
sured in bits. D is zero if the distributions @ and P are equal and
increases logarithmically with increasing discrepancy.

The best prediction models, as selected by the BPSO and
ranked by means of the cost function (11), are used to generate
the distribution of online predictions for the sensor reading of
interest for each process segment. This results in a vector y,,
containing the prediction results for each measurement step.
The distribution of original sensor readings is generated using
a moving window approach. Moving window regression with
first degree polynomial regression (window size = 10 read-
ings) is used to transform the original readings, as in (13),
where e is the residual vector between the original readings
and the moving window predictions, y,, is the arithmetic
mean of the last ten original readings, and y,, is a vector
containing the transformed readings for each measurement
step. Every single turbidity reading is transformed this way
using the sensor readings of the last 5 min (= 10 readings).

(13)

By using first order polynomial regression, the quasi-linear
increase of turbidity readings inside the time frames is accounted
for. The moving window regression thus transforms the quasi-

p(PIQ) =3, (P,- log, (12)

yon :e+y0n
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Fig. 6 (al-a3) Histograms of the prediction models at different process
times (8, 16, and 32 h) with distributions of original (blue bars) and BPSO
prediction data (black bars) of the normalized turbidity signal. The
probability indicates how often one of the 750 prediction models for
this time step predicted a value in the corresponding bar range. (b)
Exemplary batch process with original (blue line) and mean BPSO pre-
diction (black line) of the normalized turbidity signal. The confidence

linear original time frame (polynomial degree=1) to a quasi-
constant transformed time frame (polynomial degree = 0). This
quasi-constant time frame of transformed sensor readings y,,, is
subsequently used for fault detection.

Since the decision as to whether a sensor reading is
regarded as reliable or faulty should depend upon the con-
sistency of the predictions y,,., a dynamic threshold is
introduced to quantify the sensor reliability R, as in (14).

Time (h)

interval (gray corridor) corresponds to the interval in which the model
predictions lie with a probability of 95%. Significant faults of the turbidity
sensor occur at 0—12 h, 23-26 h, and after 34 h. (c) Reliability of the
turbidity sensor R calculated with a dynamic threshold. Turbidity readings
with R <0 are regarded as significantly faulty (blue dots), while readings
in the range of 0 < R <1 are regarded as significantly reliable (black dots)

Here, yiresn corresponds to the 95% confidence limits of
Ypre and is thus dependent on the consistency of the pre-
dictions y,y..

D (ypre”ythre.\'h> -D (ypre"yzm>

D (y pre ”y thresh)

(14)
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The formula for R (14) is designed such that R, = 1 if y,
and y,,, are equal, and R <0 for sensor readings outside of the
95% confidence interval of y,.. As in (15), sensor readings
with R <0 are regarded as significantly faulty, whereas read-
ings in the range of 0 <R <1 (i.e., sensor readings are inside
the 95% confidence interval of y,,.) are regarded as signifi-
cantly reliable.

s

The results of sensor fault detection are summarized in
Fig. 6. At each time step, a distribution of predicted (y,.)
and original sensor readings (y,,) is generated using the pre-
diction models selected via the BPSO algorithm and the mov-
ing window data, respectively. Graphs al—a3 show the histo-
grams of these distributions exemplarily at process times of 8,
16, and 32 h. A divergence between the original data and those
predicted via the whole sensor network indicates a sensor
fault. Graph b depicts the time course of the original turbidity
signal, together with the mean and 95% confidence interval of
the BPSO predictions; the graph can be used to indicate sig-
nificant sensor faults at 0—12 h, 23-26 h, and after 34 h.

Using the graphs a and b, sensor faults can be identified
qualitatively. To quantify sensor faults, the Kullback—Leibler
divergence between y,,. and y,,, is calculated. Together with a
dynamic threshold that depends upon the distribution range of
Ypre the sensor reliability is calculated. Graph ¢ shows the
results of this quantification approach.

The batch process chosen for illustration shows many de-
viations from the expected turbidity reading. These deviations
could result from foaming and/or coalescing bubbles on the
probe tip, as described by Gregory and Thornhill [31], and
lead to significant discrepancies between expected and ob-
served turbidity readings, especially at 0—12 h, 23-26 h, and
after 34 h. Biological reasons for the oscillating signal at the
beginning of the process (0—4 h) can be excluded due to the
significantly higher time constants for biomass growth and
decline, as well as offline reference measurements for dry cell
weight (data not shown).

faulty if R<O
(15)

reliable if O0< R<I1

Conclusions

This novel approach to online sensor validation uses process
time-dependent predictions of a sensor reading based on the
whole sensor network’s information to calculate a symptom
signal and thus indicate sensor faults. The underlying princi-
ple is based upon the information redundancy inherent in the
sensor network’s data. It is supposed that the readings of the
whole sensor network are more trustworthy than those of the
single sensor to be supervised and validated.
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The proof-of-concept is exemplarily shown for a turbidity
sensor that is used to monitor a P. pastoris-batch process. The
novel approach allows sensor faults such as bias, precision
degradation, and complete failure to be detected. Besides that,
it also allows unexpected deviations of turbidity readings to be
detected. Such deviations were in this context defined as de-
viations of the correlation of biomass to turbidity that could
not be explained by any other available online or offline pro-
cess analysis. Soft sensors for biomass concentration that are
based on turbidity measurements would lose their predictive
performance in the case of sensor faults or unexpected devia-
tions. The turbidity sensor was successfuily supervised, and
significant deviations from the expected turbidity readings
were indicated.

The direct usage of the BPSO prediction instead of the
original reading might appear obvious. The presented ap-
proach for the prediction of a certain target value based upon
sensor network data can be used directly for the development
of soft sensors for, e.g., biomass concentration. In many cases,
however, the hardware turbidity sensor used for quality con-
trol (e.g., via a biomass soft sensor) is part of the accepted
process validation and thus cannot be replaced by a prediction.
The developed online validation system can in these cases be
used to verify the results of a soft sensor.

The transferability of this online validation system to
batch processes with other production organisms such as
Saccharomyces cerevisiae, Escherichia coli, or mammali-
an cells, as well as different process parameters, must be
investigated in future research. It is supposed that this ap-
proach is transferable to sensors for the monitoring of any
kind of biological batch process provided that a minimal
degree of redundancy (mathematically expressed: collin-
earity) exists in the sensor network data. Defining this
minimum will be the main challenge for future studies.

The algorithmic structure is designed in such a way that
computational power is mainly needed offline (Fig. 2, left
branch) for model selection via the BPSO algorithm, whereas
the actual online validation (Fig. 2, right branch) is not com-
putationally intensive. This would, for instance, allow the on-
line validation system to be run on embedded systems with
low computational power.

The presented approach is subject to two major constraints.
First, an experienced process expert is essential to exclude
sensor faults in the historical process data used for model
selection. Second, major process faults (e.g., contamination)
or varying process settings could cause misleading predictions
and thus malfunction of the sensor validation system. If, how-
ever, these constraints are considered, the presented approach
can be used for reliable online sensor validation. This is espe-
cially important when the sensor data are used as input to a
process control system or to soft sensors for CQA, as with a
turbidity sensor used to predict biomass concentration. The
present approach thus contributes to the PAT toolbox and will
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Summary of results
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help drive the acceptance of online sensors for quality control
in the biotechnology industry.
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4 Discussion

The core function of soft sensors is to derive utilizable information (output) from
process data (input). Soft sensors based purely on data-driven prediction models
provide exactly this core function. Soft sensors based on mechanistic or hybrid
prediction models additionally use process knowledge to assist in the compression of
process data to information. The process data are products of observations made in
the real process environment and thus subject to uncertainties such as sensor faults.
However, faulty inputs to a soft sensor will so far most likely lead to faulty outputs.
Within the scope of this thesis, the key challenges in the development of soft sensors
for bioprocesses were first identified (first thesis publication, section 3.1, Brunner et al.
(2021)). The challenges of variable process lengths, multiple process phases, and
sensor faults were discussed along with corresponding solution approaches. In
conclusion, the availability of process knowledge plays a crucial role in selecting the
appropriate approaches for handling variable process lengths and multiple process
phases. Moreover, there is still a research gap regarding the validation of the input
data to soft sensors for the application area of bioprocesses. Another identified key
challenge in this context is the tolerance of soft sensors to sensor faults. Fault-tolerant
soft sensors are addressed at the end of this discussion.

With this in mind, the following three research questions were investigated for the use
case of a P. pastoris bioprocess: How can a soft sensor model be utilized to generate
process knowledge? How can process knowledge be implemented to develop a soft
sensor model? How can uncertain model inputs be validated prior to their use in a soft
sensor? The solution approaches to these questions form building blocks with which
the gaps between uncertain process data and knowledge can be filled.

The first building block provided here comprises an approach to derive

process knowledge as a quasi by-product of soft sensor development (second
thesis publication, section 3.2, Brunner et al. (2016)). For this purpose, the model
inputs of a biomass soft sensor based on a PLSR model were analyzed with respect
to their weighting. The model inputs comprised four single-wavelength fluorescence
measurements corresponding to the biogenic fluorophores tryptophan (ex/em
290/350 nm), NAD(P)H (ex/em 350/450 nm), and riboflavin (ex’em 370/530 and
450/530 nm, respectively). The selection of these wavelength pairs was based on the
study by Surribas et al. (2006a) on monitoring a P. pastoris bioprocess using 2D
fluorescence spectroscopy. The weighting in the present study was quantified by
means of VIP scores, which can give an indication of the importance of the variables
in the model (Wold et al., 2001; Chong and Jun, 2005). Evaluation of VIP scores shows
that tryptophan has, of all fluorophores investigated, the highest weighting in the PLSR
model. In addition, the importance of the four aforementioned input variables was
evaluated in an MLR-based soft sensor for biomass using the backward elimination
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method based on correlation coefficients (Pires et al., 2008). Here, the results also
indicate tryptophan as the most relevant input variable. The importance of tryptophan
for biomass prediction in P. pastoris bioprocesses is consistent with the above
mentioned study of Surribas et al. (2006a). These authors used complete 2D
fluorescence spectra (ex/em 270-550/310-590 nm), whereas only four wavelength
pairs were used in the present study. One goal of the present study was to show that
biomass concentration can also be predicted using only these four wavelength pairs
instead of the whole 2D fluorescence spectrum.

Regarding the use of MLR as modeling method in this study, the following should be
noted: Only four variables were used as inputs to the biomass soft sensor. This small
number of inputs argues for the use of MLR. However, overfitting is likely when using
MLR, especially when (multi)collinearity is present in the data. The MLR soft sensor is
therefore relatively sensitive to outliers and noise in the input data, which can lead to
drawbacks in online applications. Thus, for online applications, the soft sensors based
on PLSR or PCR would be more suitable, as these methods can better handle
(multi)collinearity.

The broader goal of the present study was to quantify the knowledge of the
relationships between the selected fluorophores and biomass concentration. It was
shown that VIP scores and backward elimination are suitable methods to reveal and
quantify this knowledge during the development process of soft sensors. In the present
study, a modest number of input variables (four) were ranked according to their
importance in the prediction model. In cases where it is necessary to determine the
relevant input variables from a larger number of input variables, swarm intelligence
methods such as the ant colony optimization algorithm can be used to accelerate the
selection process (Ranzan et al., 2014).

The knowledge generated in this way can be used to select relevant wavelength pairs
for biomass monitoring in low-cost alternatives to 2D fluorescence spectroscopy. In
these fluorometers (e.g., spectromex® ATFM200, Aquasant Messtechnik AG,
Bubendorf, Switzerland), the number of LEDs (light emitting diodes) or excitation
wavelengths, respectively, is technically and thus also economically limited.
Furthermore, the relevant wavelength pairs for biomass prediction may vary between
different cultivation strategies and organisms (Faassen and Hitzmann, 2015). The
quantified knowledge, i.e., the rating on the importance of excitation wavelengths for
biomass prediction, can help here in selecting the relevant LEDs. This in turn leads to
more efficient process monitoring, as only what is really important is actually
measured.

In summary, the first building block contributes to the generation of knowledge by data-
driven tools. It further contributes to the challenge of variable selection, which is an
important step of soft sensor development. Both together allow to reduce overfitting in
model training and to develop more robust soft sensors. In addition, the knowledge
obtained in this way is available in quantified form. Together with existing expert
knowledge, it can become part of the manufacturing knowledge base required within
the QbD framework.
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The second building block serves to implement process knowledge in a

hybrid model for a bioprocess with multiple process phases (third thesis
publication, section 3.3, Brunner et al. (2020)). Process knowledge was implemented
here at two levels of the soft sensor: first, in the phase detection algorithm; second, in
the hybrid prediction model for biomass concentration. The transitions between the
phases were determined automatically and the corresponding set of model coefficients
was selected for the prediction model. The biomass soft sensor thus adapts to the
individual process phases.
The P. pastoris bioprocess studied consisted of three process phases with different
substrate and thus different metabolism: batch phase on glycerol (biomass
generation), transition phase without substrate, and fed-batch phase on methanol
(product formation). The main task of the phase detection algorithm was to detect the
end of the batch phase, i.e., the complete consumption of glycerol. The end of the
transition phase, i.e., the beginning of the fed-batch phase, was predefined in the
automation system and therefore did not have to be detected first.
Two of the three triggers for detecting the complete consumption of glycerol were
based on the trajectory of the off-gas COz2 concentration (absolute value o, and first
derivative dao.y,/dt). However, since sensor faults or minor process deviations can
have a serious effect on the correct functioning of this trigger—especially in the case
of do.o,/dt—a knowledge-based safeguard measure was implemented in the phase
detection algorithm. For this purpose, the amount of base consumed V,,,, was
implemented upstream of the two triggers mentioned. This trigger is based on
knowledge of the stoichiometric relationship between the constant starting
concentration of glycerol (S, = 40 g L") and the maximum amount of V,,,, when
glycerol is fully consumed. While it was not possible to determine a precise value for
the final amount of base consumed (V, 5. = 540 £ 117 mL) due to the buffering effect
of the medium, no extreme outliers were expected for V,,,, based on process
experience. Implementing this knowledge makes the phase detection algorithm more
robust to faults of the CO2 off-gas sensor. Alternatives to this hybrid of knowledge-
based and trajectory-based phase detection would be, for example, purely trajectory-
based or correlation-based methods of phase detection and division (Brunner et al.,
2021). Of the purely trajectory-based methods, for example, online variants of dynamic
time warping (DTW), such as extrapolative time warping (Srinivasan and Qian, 2005,
2007) or relaxed-greedy time warping (Gonzalez-Martinez et al., 2011) might be
suitable in this case. The aforementioned methods not only allow the phases to be
detected and separated, but also compensate for variable process lengths. The same
is true for correlation-based methods as presented by Lu et al. (2004). In this study,
the correlation structure was represented by loading matrices of moving-window PCA
or PLS submodels; the process phases were then determined via k-means clustering.
Future research needs to investigate whether these methods can achieve similar
robustness of phase detection as the described approach.
Depending on the current process phase, different prediction models were trained
(offline) and used to predict biomass concentration (online). Process knowledge was
implemented into the soft sensor models via a carbon balance. In this carbon balance,
the system boundary was the bioreactor system: carbon left the bioreactor only in the
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form of COz2. In the fed-batch phase, the only carbon influx was in the form of methanol.
The carbon in the bioreactor was either in the form of substrate (glycerol or methanol)
or bound in the form of cell mass, extracellular protein (negligible), and acids (e.g.,
H2CO3). The latter could not be measured online. Since the information about the
proportion of carbon bound in acids was missing (and not constant throughout the
cultivation), the biomass concentration could not be directly inferred from the carbon
balance. However, information about the formation of acids was available at least
indirectly via V4., Since the added base serves to correct the pH. Mechanistically
linking the carbon balance to V,,,, was impracticable due to the aforementioned
buffering effect of the medium. Therefore, the model output of the carbon balance was
linked to the indirect information about the acid formation rate (V,,s.) via MLR. The
present hybrid model thus shows a serial structure of mechanistic (carbon balance)
and data-driven (MLR) parts (Stosch et al., 2014; Solle et al., 2017).

In summary, the second building block contributes to the implementation of process
knowledge in an adaptive soft sensor. Process knowledge here not only enables
biomass prediction via a serial hybrid model, but also makes the phase detection
algorithm more robust. In addition, it was confirmed that bioprocess data that are often
standard, such as off-gas CO2 and base consumption (Jenzsch et al., 2006; Grigs et
al., 2021), have a value for biomass monitoring that should not be underestimated
compared to more expensive spectrometer data. As with the first building block, the
aim was again to develop a robust soft sensor with as little input data as possible.

The third building block aims to detect sensor faults in bioprocesses with

variable process lengths (fourth thesis publication, section 3.4, Brunner et al.
(2019)). As mentioned, the validation of soft sensor inputs is a key challenge, as there
are comparatively few approaches in literature, but the problem is ubiquitous. In
bioprocesses, the validation of inputs, i.e., the detection of sensor faults, is further
impeded because bioprocesses often vary in length and show time-variant behavior.
In these cases, constant or purely time-dependent thresholds for sensor fault detection
(Armaou and Demetriou, 2008) can lead to false-positive fault detections (false alarms)
or concealment of faults. This means that variable process lengths add complexity to
the problem of fault detection. In the presented study, the threshold as well as the
whole fault detection algorithm were therefore designed to be dynamic, i.e., dependent
on the current process section. The turbidity readings obtained during the batch phase
of P. pastoris bioprocesses were used for the proof-of-concept.
In addition to physical redundancy, there are generally three different approaches for
the detection of sensor faults, all of which are based on information redundancy in the
sensor network (Brunner et al., 2021): symptom signal methods, methods based on
variable contribution in a MSPC model, and pattern recognition methods. In the here
used symptom signal method, residuals (symptom signals) are formed between the
original sensor reading and a prediction of the sensor reading. To increase resistance
to outliers in the predictors and make fault detection more robust, distributions of
original and predicted sensor readings were compared instead of single values. The
distributions of the original readings were obtained using a moving-window approach.
The distributions of the predictions were determined via the binary particle swarm
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optimization (BPSO) algorithm. This algorithm selected the 25 best prediction models
out of a pool of various PLSR-models for each process section (maximum number of
possible model combinations: 1.51 x 102%) according to a cost function that was to be
minimized. The cost function included the prediction error, the number of model inputs,
and the number of latent variables of the PLSR models. This regularization approach
penalized complex models—and thus the tendency to overfitting. The Kullback—Leibler
divergence (Kullback and Leibler, 1951) between the distributions of the original and
the predicted sensor readings indicated a sensor fault and was used to classify the
sensor reading as reliable or faulty. The threshold for this classification was computed
based on the changing confidence interval of the 25 predictions. A less accurate
prediction resulted in a wider confidence interval and thus an increased threshold for
fault detection. This dynamic design of the threshold allows false alarms to be
prevented.

As indicated, the distributions of the predictions for the turbidity sensor were
determined for each process section. The current process sections, and thus the
correct model pool for the BPSO search, were determined online using a separate
maturity index model. This approach was taken to cope with the variable process
lengths and the time-variant behavior of the batch process. Alternatives to compensate
for variable process lengths via the here used indicator variable (maturity index) are
DTW and curve registration techniques (Brunner et al., 2021). These alternatives offer
advantages over indicator variable in case of multiphase processes, since the
information about landmarks is utilized during data synchronization (Bigot, 2006;
Gonzalez-Martinez et al., 2014). However, in the investigated batch process without
prominent landmarks (peaks, etc.), these advantages would not have come into effect.
Although the presented algorithm contains some strongly data-driven parts (e.g.,
automatic model selection via BPSO), it must be noted that a process expert still has
to ensure that there are no significant sensor faults in all training datasets. In contrast,
there are approaches where only one fault-free dataset is required to develop fault
detection algorithms. It was shown by Guo and Nurre (1991) for a space shuttle engine
that an ANN can be trained to detect sensor faults by using one process dataset to
which artificial random Gaussian noise was applied. This pattern recognition method
for detecting sensor faults can in principle also be applied to bioprocesses (data not
shown), but further research is needed here.

In summary, the third building block contributes to the reliability of, and thus confidence
in, soft sensors for bioprocesses. Studies on the related topics of validation of soft
sensor inputs and detection of sensor faults in bioprocesses are rare. Even fewer
studies exist on the additional challenges of variable process lengths or time-variant
process behavior (Huang et al., 2002; Krause et al., 2015). This study thus contributes
to filling this gap in the field of soft sensor development. Moreover, it can be used as a
starting point for another research objective: fault tolerance of soft sensors.
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The three building blocks serve the main objective stated in the thesis

outline (section 1.4): the provision of novel concepts to fill the gaps between

uncertain process data and knowledge within soft sensor development.
The broader view on these novel concepts allows for the following main conclusions.
In the field of soft sensor development, there is no “Swiss Army knife” method that
combines all the desired functions. The development of soft sensors tends to be more
like the selection of suitable building blocks from a construction set. A wealth of
different methods exists for each step of the soft sensor development workflow—some
of which have been evaluated for bioprocesses, some of which have not. The first
thesis publication (section 3.1, Brunner et al. (2021)) discusses the extent to which
methods that address the challenges of variable process length, multiple process
phases, and sensor faults can be applied to bioprocesses. From both this review and
the third (section 3.3, Brunner et al. (2020)) and fourth (section 3.4, Brunner et al.
(2019)) thesis publications, the following can be concluded: The availability of process
knowledge influences the choice of the preprocessing and modeling method; the
choice of the preprocessing and modeling method in turn influences the robustness
and accuracy of the soft sensor. Against this background, it seems all the more
important to have methods for generating process knowledge as a quasi by-product of
soft sensor development (first thesis publication, section 3.2, Brunner et al. (2016)).
The second main conclusion relates to the base of the DIK pyramid presented at the
beginning of this thesis. The data used for process monitoring and as input to soft
sensors are subject to uncertainties. Ignoring these uncertainties causes the accuracy
of soft sensors to decrease if the inputs are erroneous ("garbage in, garbage out"
principle). Besides ignoring, there are two possible strategies to deal with uncertainties
in the input data.
The first strategy is to detect the faults in the input data in order to generate an alarm
in the process control or data management system. For this strategy, the building block
described above was provided (fourth thesis publication, section 3.4, Brunner et al.
(2019)). This alarm information or quality rating (e.g., reliable/faulty), respectively, can
be attached to the sensor reading as metadata during signal transmission (e.g., via
OPC UA, open platform communications unified architecture). In case an examination
of these quality tags of the input data is implemented in the soft sensor algorithm, the
output of the soft sensor can be provided with another quality tag. This can assist in
deciding whether the soft sensor output is to be used as input to an inferential controller
or for real time release (Mandenius and Gustavsson, 2015).

The second strategy to deal with uncertainties in soft sensor input data is fault
tolerance. A brief outlook on this so far almost unresearched area of soft sensor
development is given in the following.

Fault-tolerant soft sensors compensate for faults, as opposed to just detecting them.
Thus, soft sensors as PAT tool would remain operational in case of faulty inputs. In the
first thesis publication (section 3.1, Brunner et al. (2021)), two different approaches are
described on how fault tolerance can be realized for soft sensors. In the first variant,
sensor faults are first detected and then compensated for by reconstructing the faulty
sensor reading (Huang et al., 2002). The soft sensor model remains unchanged, since
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the fault is already corrected at the input layer. To implement this variant, the approach
presented in the fourth thesis publication (section 3.4, Brunner et al. (2019)) would
have to be supplemented by an algorithmic solution that manages the reconstruction
of the faulty reading. In the second variant, the fault is compensated by the soft sensor
model itself. Here, the faulty input layer remains unchanged, but the model adapts in
a way that compensates for the fault. In Krause et al. (2015), fault tolerance was
integrated into a soft sensor model via a regularization approach: model inputs that
deviated significantly from the historical data were penalized during model building.
The contribution of faulty inputs was drastically reduced; the resulting soft sensor
prediction can thus be considered fault tolerant.

Both approaches to fault tolerance of soft sensors have advantages and
disadvantages. With the first variant (fault tolerance module at the inputs), the fault-
compensated process data can be used for any monitoring or control purposes, not
just as an input to a soft sensor. With the second variant (fault tolerance integrated in
the model), this positive side effect does not exist. However, it is assumed that the
regularization of faulty model inputs is algorithmically less complex to implement than
taking the detour via fault-compensated inputs. To provide a sound comparison of
these two variants, much more studies are needed on fault-tolerant soft sensors—
especially in the field of bioprocesses with the aforementioned challenges. Although
this thesis provides one building block for achieving the goal of fault-tolerant soft
sensors, there is still a considerable need for research in this area.

In summary, soft sensors offer many possibilities to link the domains of uncertain
process data, information, and knowledge. By extending the core function of deriving
information from data, soft sensors can be designed to be more reliable (validated
model inputs and knowledge-based predictions) and even assist in knowledge
generation. Soft sensors thus not only serve the goals of PAT in numerous ways
(Mandenius and Gustavsson, 2015), but also assist in building up and utilizing the
manufacturing knowledge base required in QbD environments.
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