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Abstract

Data movements, and the interconnects in heterogeneous systems, will soon become
the bottleneck of computation speeds due to the shift away from general-purpose
processors toward specialized architectures and accelerators.

The aim of this bachelor’s thesis is to gain insight into data movements over the PCIe
bus in heterogeneous computer systems, and to be more specific, data travel between
the CPU and GPU. The thesis describes the development of a set of CUDA-based
tools to both assess a PCIe link’s capabilities and to monitor other programs’ PCIe link
activity.

The first tool aims to benchmark a given system’s PCIe link capability, namely delay
and bandwidth. The benchmark is capable of determining peak bandwidths and the
saturation batch size accurately and shows that the transfer duration does not scale
linearly with the amount of PCIe packets sent.

The second tool aims to monitor a given program’s PCIe activity using NVIDIA’s
NVML library, which has counters to monitor the PCIe link throughput. The program
accurately depicts the PCIe link activity of the program it is monitoring but struggles
with short memory transfers due to the counters’ update frequency.

The third tool additionally aims to detect shorter memory transfers, improving on
the major drawback of the NVML approach. This is done by putting the PCIe link
under load by copying small chunks of memory and monitoring the bandwidths, with
a lower bandwidth indicating PCIe link activity. This tool can detect shorter memory
copy operations at the cost of introducing significant overhead to the program it is
monitoring.

Limitations for each tool are listed, although workarounds for these limitations are
challenging to find due to the lack of documentation for the libraries used in the
development of each tool.

Taken together, the developed tools provide a unique and different approach to the
monitoring process of data movements over the PCIe bus in heterogeneous computer
systems.
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1 Introduction

1.1 Motivation

Moore’s law, based on the paper that Gordon E. Moore wrote in 1965, predicted that
the number of transistors in a dense integrated circuit would double every two years.
[1] Robert H. Dennard made the observation that a transistor’s power use stays in
proportion with the size of said transistor. [2] These two observations are the current
foundation of the computing ecosystem, where transistor sizes are constantly shrinking
and computational capacities are constantly growing. However, this is set to end soon
as transistor sizes are approaching atomic scale in the next few years. [3] Even now,
this end is fast approaching as Taiwan Semiconductor Manufacturing Company, a
chip foundry, has plans to start volume production of its 3nm technology as early as
the second half of 2022. [4] As such, there will be, and already has been to some
degree, a paradigm shift away from general-purpose processing units and towards more
specialized architectures to maintain performance improvements. This paradigm shift
has lead to heterogeneous computing and increased parallelism. As result, this also
leads to data movements becoming increasingly costly, compared to the operations on
said data [5]. Consequently, that data transfers, and the interconnects in heterogeneous
systems, will soon become the bottleneck for computation speeds as moving data to the
relevant processing units becomes more important. As such, it is increasingly important
to gain insight into the data movements in heterogeneous systems to optimize both
current and future software.

1.2 Goals and Aims

The goal of this thesis is to gain insight on data movements in a heterogeneous system.
To be more specific, the data movements over a PCIe bus in a heterogeneous system.
This is done by developing a tool, or a set of tools, to monitor the PCIe link in a
heterogeneous system. To be more specific, the tool(s) should meet a set of abstract
requirements, listed below, to set it apart from existing tools:

• automated

• as few requirements as possible

1



1 Introduction

• low overhead

• no need to modify existing programs

• should gain insight to PCIe link activity

The majority of the available tools, which will be further touched upon in Chapter
6, have specific hardware requirements and require a significant amount of human
input to gather data, necessitating the requirements for the lack of requirements and
automation. The requirement for low overhead is present to facilitate an accurate
representation of a program’s execution times. As the end user is not likely to have
access to the source code of a given program, the programs should not need to be
modified in order for the tools to work. Due to the different approaches described in
this thesis, these requirements will be further discussed and expanded in the relevant
chapters.

1.3 Structure and Approach

The introduction starts by explaining the primary motivation of the thesis. Then, the
goals and aims of the thesis are to be defined in further detail, along with a set of
abstract requirements for the tool being developed. The introduction closes with a brief
description of the structure and approach of this thesis, as described in this section.

The next chapter should briefly introduce the concept of High-performance comput-
ing (HPC), graphics processing units (GPUs), NVIDIA’s CUDA API, and the Peripheral
Component Interconnect Express (PCIe) architecture. Chapter 1 should act as a foun-
dation for the remainder of this thesis and introduce most of the concepts mentioned
in future chapters. This chapter also introduces the testing environment of the tools
developed in the further chapters.

Chapter 3 aims to develop a tool to assess the bandwidth and delay of a PCIe link
of a given system, both to validate the specification and to provide a more accurate
reading on the real-world performance of the interconnect, which is not only limited
by the technical specifications.

Chapter 4 describes monitoring a program’s PCIe link activity by utilizing NVIDIA’s
NVML library and the counters it exposes. The chapter first introduces the basic
concept and concrete goals for the tool being developed. After that, the implementation
is elaborated upon, going into further detail regarding the monitoring concept and
parallelism. Finally, the results and findings are described and discussed in further
detail.

2



1 Introduction

Chapter 5 is about utilizing PCIe link saturation to determine PCIe link activity. The
structure of this chapter is similar to Chapter 4, leading with the concept and concrete
goals, following that with the implementation, results, and discussion.

Chapter 6 touches upon similar papers and approaches to both give a brief insight
into the state-of-the-art and to serve as a target for evaluation purposes.

Chapter 7 summarizes and briefly discusses the contents of this thesis and evaluates
the developed tools against the state-of-the-art discussed in the last chapter. Finally an
outlook for further development and research is given to conclude the thesis.

3



2 Background

2.1 HPC

High-performance computing (HPC), leverages the compute capacity of supercomput-
ers or computer clusters to solve problems that are highly complex in nature [6]. A
computer cluster consists of many different computers (nodes) that are interconnected
with high-speed, low-latency interconnects. Each node contains a set of similar com-
ponents a desktop or laptop PC would contain, such as a CPU, RAM, and storage [7].
It should be noted that modern CPUs, especially ones utilized in HPC applications,
usually contain multiple physical cores and multiple hardware threads to enable some
amount of parallel processing. [example maybe?] Some nodes, just like some PCs,
also have a dedicated graphics processing unit (GPU) to accelerate certain types of
workloads [7].

2.2 Graphics Processing Units

2.2.1 What are GPUs

To begin with, it should be noted that the term graphics processing unit (GPU) does not
equate to a graphics card. GPUs are specialized processing units primarily designed
for parallel processing and accelerating workloads that require parallel processing [8].
A graphics card, on the other hand, is the add-in card that features a PCI-Express link
to facilitate communication between CPU and GPU, dedicated memory and power
delivery for the GPU, and the GPU itself. There are also integrated GPUs, which can
be embedded alongside the CPU. These integrated GPUs are usually less powerful
compared to discrete GPUs [8].

2.2.2 Uses of GPUs

GPUs originally began as, as their names suggest, dedicated graphics accelerators
optimized for floating-point operations, which are essential to 3D graphics rendering.
They were initially developed as a hardware pipeline with fixed functionality, namely
to render graphics. Over the years, GPU architecture has evolved from essentially being

4



2 Background

an integrated frame buffer into a set of general-purpose, highly parallel, programmable
processing cores, enabling more general-purpose computation [9]. Today, a GPU is
more of an accelerator for many different use-cases and workloads. Examples for
personal use include gaming, video editing, and content creation [8]. On the scientific
side, GPUs are frequently used to accelerate workloads that require parallel computing,
such as machine learning, fluid dynamics, and data science [10].

2.2.3 GPU Memory

Addressing GPU memory, assuming that the GPU is connected via PCI-Express and
has its own dedicated video memory, works in the same way as addressing memory in
other PCIe devices, which will be briefly touched upon in Section 2.4.3. However, GPU
memory usually has higher throughput bandwidths compared to conventional RAM
of a similar period. As example, current top of the line consumer grade graphics cards
from NVIDIA are equipped with GDDR6X memory, which has a theoretical maximum
system bandwidth of one terabyte per second. [11], [12] On the other hand, state of the
art main memory, currently DDR4, is limited to a bandwidth of about 35 gigabytes per
second [13].

2.3 CUDA

As GPUs evolved into more general-purpose processing units over the years, there
has been a growing need for an application programming interface (API) that enables
general-purpose programming on GPUs.

CUDA is a closed source API developed and maintained by NVIDIA for general-
purpose GPU computing for their GPUs and graphics cards. It is designed to work
with C++ and Fortran and comes with a set of GPU-accelerated libraries, optimization
tools, debugging tools, and a C++ compiler [10]. Some sample libraries include: linear
algebra, signal processing, and image processing [14]. For this thesis, only the C++
version of CUDA is discussed in further detail.

2.3.1 Kernels and Scalability

CUDA uses kernels, which are an extension to standard C++ functions, scheduled
and executed on a GPU. Kernels, when called, are executed N times by N different
GPU threads. This enables heterogeneous programming, which allows serial code
to run on the host - the CPU - and parallel code, the kernels, to run on the GPU,
thereby leveraging the GPU’s increased capabilities for parallel computing to accelerate
the workload. As modern CPUs are also capable of parallel processing, this is more

5



2 Background

of a practice than a rule, and kernels are usually specific workloads that are highly
parallel in nature, such as vector and matrix operations. The kernel is executed on a
thread, many of which make up a block, many of which, in return, make up a grid, the
dimensions of which are defined by the user upon calling the kernel in the source code.
Different blocks can be executed in parallel, or in sequence, in any order, on any of the
multiprocessors of a GPU, which enables automatic scalability as the compiled program
can run irrespective of the amount of multiprocessors present on the GPU [15].

2.3.2 Memory Management

The memory management functionalities that CUDA provides include allocation, de-
allocation, and data transfer. CUDA assumes that the CPU and GPU maintain separate
memory spaces, and is able to manage both host and device memory [15].

Host Memory

The degree to which CUDA can manage the main memory is limited, and memory
allocation is mostly handled by C++ with the function shown in Figure 2.1 [16]. C++,
by default, allocates pageable memory, which means that the data can be paged in and
out of RAM into a secondary storage device [17].

The function returns a pointer of the type void and has size as an argument, indicating
the size in bytes the function is to allocate [16]. Size_t is an unsigned integral type used
to represent the size of any object in bytes [18].

CUDA, on the other hand, can allocate page-locked memory, also called ’pinned’
memory with the function shown in Figure 2.2. Page-locked memory cannot be paged
out of the main memory, which allows for faster access and higher bandwidths when
transferring data. It is also worth noting that the GPU cannot access data directly from
pageable memory. As such, attempting to copy pageable memory to the GPU will first
move it to a pinned memory section before copying the data to the GPU, as shown in
Figure 2.3 [19].

The pointer ptr points to the location the memory will be allocated at, while size
is the size of the memory that is to be allocated, in bytes. f lags indicates the access
permissions for the chunk of memory, defaulting to accessible by any stream from any
device. The return type is a cudaError, for debugging and error-tracking purposes [20].
It is also worth mentioning that allocating a large amount of page-locked data may
compromise system stability and influence system performance, and as such should be
done carefully [19].

6



2 Background

1 void* malloc(size_t size);

Figure 2.1: The C++ function to allocate memory[16]

1 cudaError_t cudaMallocHost(void** ptr, size_t size);

Figure 2.2: The CUDA function to allocate pinned memory [20]

Pageable data transfer Pinned data transfer

Device Device

DRAM DRAM

Pinned  

Memory

Pageable

Memory

Pinned  

Memory

Host Host

Figure 2.3: The difference between copying pinned and pageable memory [19]
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Device Memory

Device memory, in this case, is defined as the RAM found locally on the graphics card,
also known as Video RAM (VRAM). It is not accessible to CPU code and data must
first be copied into the device memory for the GPU to execute operations on said data.
The CUDA API offers the function shown in Figure 2.4 to allocate memory on the
device [20].

The function has similar parameters to the CUDA function described in Section 2.3.2,
with devPtr being the equivalent to ptr.

1 cudaError_t cudaMalloc(void** devPtr, size_t size);

Figure 2.4: The CUDA function to allocate device memory [20]

Managed Memory

Unified memory, also known as managed memory, is a technique used by CUDA to
enable both CPU and GPU to access the same address space. However, it is more of
a software feature than hardware allowing the GPU to access CPU memory space or
vice-versa, as the data in question will always be moved to the executing processor’s
address space before operations are performed on said data [17]. Figure 2.5 shows the
function required to allocate managed memory [20].

Similar to the other CUDA allocates, an explanation to the parameters devPtr, again
equivalent to ptr, and size can be found in Section 2.3.2. The parameter f lags indicates
the access permissions for the chunk of memory, defaulting to accessible by any stream
from any device [20].

1 cudaError_t cudaMallocManaged(void** devPtr, size_t size,

2 unsigned int flags = cudaMemAttachGlobal);

Figure 2.5: The CUDA function to allocate managed memory [20]

Memory Copy

CUDA uses one function to copy memory both to and from the device memory, which
can be seen in Figure 2.6. The function copies count bytes of memory from the pointer
src to the location dst points to. The enum cudaMemcpyKind defines the type of
memory transfer it is. The copy types supported are [20]:

8



2 Background

• cudaMemcpyHostToHost

• cudaMemcpyHostToDevice

• cudaMemcpyDeviceToHost

• cudaMemcpyDeviceToDevice

• cudaMemCpyDefault: this is the recommended ’kind’, as this causes the function
to infer the type of transfer from the pointer values [20].

1 cudaError_t cudaMemcpy(void* dst, const void* src,

2 size_t count, cudaMemcpyKind kind);

Figure 2.6: The CUDA function to copy memory [20]

2.3.3 De-allocation

De-allocating memory in C++ is a simple affair, done by calling the function f ree(), as
depicted in Figure 2.7. The variable ptr is a pointer to a chunk of memory previously
allocated by malloc().

CUDA de-allocation works in a similar way, but distinctively separates device and
host memory. Figure 2.8 shows the function call required to de-allocate device memory,
with devPtr being the pointer to a chunk of device memory previously allocated by
cudaMalloc() or cudaMallocManaged(). Similarly, Figure 2.9 shows the function call
required to free pinned memory previously allocated by cudaMallocHost().

1 void free (void* ptr);

Figure 2.7: The C++ function to free a chunk of memory allocated by malloc() [21]

1 cudaError_t cudaFree(void* devPtr);

Figure 2.8: The CUDA function to free a chunk of device memory[20]
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1 cudaError_t cudaFreeHost(void* ptr)

Figure 2.9: The CUDA function to free a chunk of host memory[20]

2.3.4 NVML

Nvidia Management Library, abbreviated NVML, is a part of the CUDA API that
offers, as its name suggests, management and monitoring capabilities. NVML can
monitor many aspects of the GPU, such as GPU utilization, currently active processes,
the current performance state of the GPU, and more [22]. Delving deeper into the
documentation to NVML, it is revealed that the library is also able to monitor some
aspects of the PCIe link that connects the GPU to the CPU. Supported metrics are
the throughput and basic information about the PCIe link [23]. Figure 2.10 shows
the function call required to query the library about the PCIe throughput. The device
parameter is the identifier of the GPU, and counter defines the counter type. Supported
counter types are, according to the NVML documentation [23]:

• NVML_PCIE_UTIL_TX_BYTES

• NVML_PCIE_UTIL_RX_BYTES

• NVML_PCIE_UTIL_COUNT

Whilst the documentation does not specify in further detail what each counter means,
it can be inferred that TX means transmit and RX means receive, as TX and RX
are common abbreviations for transmitter and receiver. Finally, the last parameter
value points to the location where the counter value will be written to. The function
documentation also states that the counters represent the average PCIe throughput per
second over the last 20 milliseconds (ms) [23].

1 nvmlReturn_t nvmlDeviceGetPcieThroughput ( nvmlDevice_t device,

2 nvmlPcieUtilCounter_t counter, unsigned int* value );

Figure 2.10: The NVML function read the PCIe link throughput [20]

2.4 PCI-Express

The last section mentioned the ability to move data from the main memory to the
device memory, and vice-versa. This is done, on a lower level, by PCI-Express.

10



2 Background

PCIe, or PCI-Express, shorthand for Peripheral Component Interconnect Express,
is a "general-purpose serial I/O interconnect" [24]. PCIe, as an interface, allows the
CPU to connect with, as the name suggests, peripherals and components. Common
components and peripherals include, but are not limited to: Graphics cards, sound
cards, video capture cards, WiFi cards, and storage.

PCIe is designed to replace the ageing PCI (Peripheral Component Interconnect),
PCI-X (Peripheral Component Interconnect Extended), and AGP (Accelerated Graphics
Port) standards [25]. These standards are developed, defined, and maintained by the
PCI-SIG group, which is a nonprofit organization with 800+ member companies based
in Beaverton, Oregon [26]. This section will briefly introduce the key features and
functionality of PCI-Express.

2.4.1 Key Features

PCI-Express is, at its core, a serialized, point-to-point connection that is designed to
be processor agnostic, scalable, and backwards compatible with PCI [24], [27], [28].
PCI-Express utilizes a dual-simplex connection to facilitate sending and receiving
information concurrently. Additionally, to ensure backwards compatibility with PCI,
PCI-Express shares the same memory configuration as PCI, which will be elaborated
further upon in Section 2.4.3. Further key features include improvements in error
handling and data integrity [25]. To future-proof the standard, current and future
generations of PCIe are to be designed to be compatible with current PCIe standards [28].
So far, each generation of PCIe doubled the previous generation’s theoretical maximum
bandwidth, as seen in Table 2.1. Currently, PCIe 4.0 is gradually being introduced and
offers twice the bandwidth of PCIe 3.0, which it is succeeding[29].

Link Width x1 x2 x4 x8 x16 x32
Gen 1 Bandwidth (GB/s) 0.5 1 2 4 8 16
Gen 2 Bandwidth (GB/s) 1 2 4 8 16 32
Gen 3 Bandwidth (GB/s) 2 4 8 16 32 64
Gen 4 Bandwidth (GB/s) 4 8 16 32 64 128

Table 2.1: PCI Express aggregate bandwidths by generation and link width [30] [29]
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2.4.2 Functionality

Packet

PCIe, similar to IPv4 or IPv6, utilizes packets to communicate between the host -
the CPU - and the device. As shown in Figure 2.11, the packet consists of a few
different elements, which will be further expanded upon below. Additionally, PCIe
communication is separated into three primary layers, with each being responsible for
a specific set of functions. The Physical layer is responsible for translating the packets
to electrical signals and vice-versa. The Data Link Layer is primarily responsible for
link error detection and correction. The Transaction layer is primarily responsible for
flow control and transaction ordering [27].

Figure 2.11: An example of a PCI-Express packet [27]

• Start: this is the start component which signals the begin of a packet to the
Physical layer.

• Sequence: This two-byte sequence is used by the Data Link Layer to determine
the sequence of the packets and to ensure that no packets have gone missing.

• Header: The 12 to 16 Byte header will be discussed in further detail in Subsection
2.4.2. This component belongs to the Transaction layer.

• Payload: The PCIe payload. This is optional, however any memory transferred
via memory copy operations will have the memory as payload. This also is a part
of the Transaction layer.

• ECRC: a CRC code for error-checking purposes used by the Transaction layer.

• LCRC: a CRC code for error-checking purposes used by the Data Link Layer.
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Header

As with IPv4 or IPv6, PCI-Express uses headers to determine the purpose and target of
each TLP (Transaction Layer Packet). However, instead of using IP-addresses, stored
in the header, to determine the sender and the receiver, PCIe uses the Requester ID
to determine the sender. The Address determines the receiver of the intended packet,
as the device memory is memory-mapped into the host address domain to enable the
processor’s native load or store instructions to work with PCIe devices [31]. The header
has a semi-fixed format, with some bytes varying with the type of request. The fields of
a memory request header, as shown in Figure 2.12, and their uses, are briefly explained
below, and a further explanation can be found in the book by Jackson et al. [30].

Figure 2.12: An example of a memory request header [27]

• TC: Traffic Class: this denotes the priority of the packet. A larger value represents
a higher priority.

• TD: The TLP Digest field. If TD is set to 1, it indicates that there is additional
CRC data in the TLP data.

• Length: more or less self-explanatory: length denotes the length of the payload in
Double Words (DW), which is 4 bytes or 32 bits in length.

• Requester ID: self-explanatory: the ID of the device that requested or sent the
packet.

• Tag: The Tag field has the function of a tracking number, as for read requests, the
device must copy this value to its response. All outstanding tags must be unique
to ensure data integrity. Some request types, such as write requests, do not utilize
tags.

• DW BE fields: DW BE stands for Double-Word Byte Enable. This denotes which
of the bytes in the first / last DWs of the payload are valid.
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• Address: self-explanatory: The Address to which this packet is addressed, as
explained above. Additionally, for read and write requests, this denotes the
starting address of the read or write.

• The EP bit indicates whether a payload should be considered valid or not. If EP
is set to 1, the payload is considered invalid.

• The Attr field holds two further special attributes for the header which are not of
relevance here.

2.4.3 Topology and Communication

Topology

There are four significant components to be mentioned when discussing the topology
of a PCI-Express based system. PCIe endpoints, switches, bridges, and a root complex.
The communication between CPU cores and memory controllers to the PCIe endpoint
is handled by the PCIe root complex. This communication can be routed through
(but does not require) PCIe switches. PCIe switches allow for cascading connections,
however do not benefit the total bandwidth, which is limited by the PCIe root complex
in a CPU [32]. Bridges are used to connect legacy PCI and PCI-X devices with the PCIe
root complex [24]. Figure 2.13 shows an example PCIe configuration of an Intel-based
processor.

Memory Management

Each PCI-Express device has some built-in storage and registers to facilitate communica-
tion between the device and the rest of the system. This memory is, due to compatibility
reasons, structured in the same way as the structure found in the older PCI standard.
This divides the PCIe device memory into three major parts for addressing and memory
access [30]:

• Configuration

• Memory

• IO

The configuration address space enables software to both identify and correctly
configure the device, and is defined by its physical bus and device number [31]. It also
enables the software to control and check the status of a PCIe device [30].
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Figure 2.13: PCIe configuration on an Intel-based system [32]

The memory address space is where the internal storage of a PCIe device is
mapped [30]. This memory space is also memory-mapped to the CPU’s address
domain for ease of access by the CPU [31].

The IO address space is a place dedicated to accessing the internal registers / storage
of a PCIe or PCI device. However, this is mostly deprecated in PCIe as the internal
registers and storage of said devices are simply mapped into the memory address space
instead. It is now common practice to map the same set of registers in both memory
and IO address space for backwards compatibility purposes. The PCIe specification
discourages use of the IO space, which indicates that it remains solely for legacy
support purposes [30].

Links and Lanes

A connection between the two PCIe devices is called a link, which is made up of
lanes [30]. A PCIe device, in this case, can be the CPU’s PCIe root complex, bridges,
switches, or a PCIe end point. A lane, on the hardware level, is a set of four copper
wires, two for each signal direction [30]. Due to the scalability of PCIe, the amount of
lanes in a link is variable, from 1 up to 32, and is represented by a x in front of the
lane width, e.g. PCIe x16, which indicates that the PCIe link has 16 lanes. A wider
link means higher bandwidths and transmit capabilities, however it also means higher
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power consumption, space, and cost [30]. Figure 2.14 illustrates an example PCIe link
with several lanes. A normal GPU will usually have a PCIe x16 link.

Wire 
Signal 
Lane 
Link

PCI Express device A

PCI Express device B

Figure 2.14: An example PCIe link between two devices [33]

2.4.4 Revisions and Further Specifications

PCI-Express was first introduced in 2003, and has received a new revision once every
three to four years on average. Whilst most current hardware uses PCIe 3.0 and 4.0,
introduced in 2010 and 2017 respectively [34], PCI-SIG has already published their
specifications for the PCIe 5.0 and 6.0 standards. These, again, double the bandwidths
of the previous generation, enabling theoretical transfer speeds of up to 128GB/sec
in both directions on a PCIe 6.0 x16 link [34]. However, it is to be expected that these
high-speed interconnect standards will take a few years to become widely available
and adopted, as Intel only released their first PCIe 5.0-capable CPUs around the end of
2021 [35].

Additionally, other manufacturers and companies have developed their own pro-
tocols and standards to extend the feature-set of PCIe, such as Intel’s Thunderbolt,
which enables PCIe devices to be connected externally with only a small loss of
performance [36]. Another example is the NVMe standard, a PCIe-compatible in-
terface specifically devised and optimized for high-bandwidth, low-latency storage
solutions [37].
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2.5 System Specifications

Every tool written about in this thesis will be tested on two different systems with
different CPU/GPU configurations, which this section will briefly touch upon. One
system is part of the TUM CAPS cloud and the other system is a part of the LRZ cluster.

2.5.1 P6000

The first system, named p6000, is equipped with an AMD Ryzen Threadripper 2990WX,
featuring 32 cores and 64 hardware threads. The graphics card is a NVIDIA QUADRO
P6000, featuring a PCIe 3.0 x16 link and up to 24 gigabytes (GB) of dedicated memory.
The system has 64GB of DDR4 main memory and is located on the TUM CAPS cloud.

2.5.2 Ice1

The second system, named Ice1, is equipped with two Intel Xeon Platinum 8630Y CPUs,
each featuring 36 cores and 72 hardware threads. The system is also equipped with two
NVIDIA Tesla V100 graphics cards, with 32 GB of dedicated memory, connected with a
PCIe 3.0 x16 link each. Finally, the system is equipped with 530 GB of main memory.
This system is a part of the LRZ cluster.

2.6 Kernels

The tools that monitor a program’s PCIe activity will be tested on two different kernels,
one which is focused on the memory transfers, and one which is more compute-
intensive. Both kernels had timestamps added to facilitate easier correlation between
timeline activities and the program’s execution order.

2.6.1 Vector Add

The vector add kernel is the parallel elementwise addition of two vectors. Memory
for the vectors, 400 megabytes (MB) per vector and 800 MB in total, is allocated and
populated in the main memory before being copied into device memory, at which point
the GPU will execute the kernel. The vectors are then copied back into main memory,
where the values are checked for correctness. After that, the memory is de-allocated
and the program terminates.
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2.6.2 Matrix Multiplication

The matrix multiplication kernel multiplies two matrices. The program first allocates
the memory for a 3200x3200 and a 3200x6400 matrix, about 120MB in total size, and
populates the memory with values. Then, the matrices are copied into device memory,
where the matrix multiplication kernel is executed a total of 301 times, with the first
run being warm-up. This is timed and used as benchmark to assess a GPU’s compute
capabilities. Finally, the matrices are once again copied back into main memory and
checked for errors. This kernel, without the timestamping modifications, can be found
on NVIDIA’s GitHub repository for CUDA Samples[38].
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3.1 Concept

The first step to gain insight on data movements in a PCIe link is to assess the basic
properties of the PCIe link regarding data traffic, namely bandwidth and delay. Addi-
tionally, due to the high bandwidths, it is useful to determine at which batch size the
link will become fully saturated to further optimize memory transfers.

The bandwidth is defined as the amount of data that can be transmitted through the
PCIe link in a given time, and the delay is determined by the duration of time that one
packet takes to traverse the PCIe link. It is worth noting that metric is not the raw PCIe
link delay as there is a certain amount of overhead introduced by CUDA function calls
regarding memory copies.

Due to the high throughput of the PCIe link, transmitting smaller packet sizes will
not fully saturate the link even for a small duration as both CUDA and the PCIe link
itself will introduce some overhead to the memory transfer. As such, it is important to
assess the batch size at which the PCIe link will be fully saturated.

Finally, it is worth noting that the actual PCIe bandwidth in a system will likely
vary from the theoretical maximum due to the fact that it is, as the name implies, in a
system. This means that there are several other factors influencing the practical PCIe
bandwidth, such as main memory, other PCIe controllers, the CPU’s memory controller,
and more. As such it is prudent to measure the actual capabilities of a PCIe link by
means of a benchmark instead of just relying on a theoretical value.

3.2 Goals

The primary aim of this chapter is to create a program that assesses the PCIe bandwidth
of any given system. The primary metrics of interest for this benchmark are the practical
PCIe bandwidth and the link saturation batch size.

Additionally, the tool developed should meet a set of more concrete requirements,
based off the abstract ones defined in Chapter 1:

• The tool should not have any requirements on hardware outside of a CUDA-
capable GPU
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• The tool should support automation by outputting data to a file

• The tool should measure different memory copy sizes and their respective band-
widths to determine a saturation threshold

• The tool should measure both pinned memory and pageable memory transfer
speeds

3.3 Implementation

3.3.1 Bandwidth Measurements

Figure 3.1 depicts a flowchart of the bandwidth test procedure, and this section’s
contents is depicted in the smaller black box. The bandwidth, as defined in section 3.1,
is the amount of data that can be transmitted in a given time. This can be measured by
measuring the time taken for a cudaMemcpy() call, and dividing the size of the memory
copied with the time taken by the method call. The high_resolution_clock :: now() is
used to provide accurate timestamps immediately before and after the memory copy.
Subtracting the value of the first timestamp from the second yields the amount of time
taken. The bandwidth is the result of dividing the memory size with the duration of
the method call, calculated the following way:

bandwidth =
size

duration
,

duration = (time_2 − time_1)− delay
(3.1)

3.3.2 Delay

A delay measurement, present as delay in Equation 3.1, is measured by the time taken
for a memory copy operation with 4 bytes of data from host to device. This time is
taken as the combined delay for a call of cudaMemcpy() and the PCIe link, as the
duration to transfer 4 bytes of data should be negligible. To ensure consistency, this is
done ten times, and the times measured are aggregated and averaged to determine the
delay. This is done for both pinned and pageable memory. A more detailed workflow
is presented in Figure 3.2.

3.3.3 Benchmark

To both determine the packet size at which the PCIe link is saturated, and to determine
the potential maximum bandwidth of the link, sequential memory copies of doubled

20



3 Bandwidth Benchmark

buffer sizes are tested with the method described in section 3.3.1, up to a limit of
2 gibibyte (GiB). A further compensation is that a memory copy is executed before
measuring the bandwidths, as the first memory transfer is usually marginally slower.
The procedure to test the PCIe bandwidth for a specific memory size is depicted in
Figure 3.1, and the benchmark consists of such tests for the mentioned memory sizes.

A final note is the PCIe max payload per packet, which is 4 kibibytes (KiB). As such
the difference in time between transferring one and two bytes of data would be zero,
or close to zero. This leads to either astronomically high or negative bandwidths due
to division near zero in the bandwidth calculations. To eliminate any possibility of
this disrupting the accuracy of the benchmark, 4 packets, meaning 16 KiB in size, was
chosen to be the minimum packet size for the benchmark.

3.4 Results

3.4.1 P6000

Figure 3.3 shows the measured theoretical bandwidth for a PCIe 3.0 x16 link with
regards to pinned and pageable memory copies for the P6000 system. The pinned
bandwidth stabilizes around 12 GiB per second, whilst the pageable memory is sig-
nificantly slower, at about 4 GiB per second. This is most likely not the result of
the PCIe bandwidth being limited, but rather due to the internal transfer to a chunk
of intermediate pinned memory as described in Section 2.3.2 as there is otherwise
little discernible difference between the memory transfers. It is also worth noting that
the pageable bandwidth declines steadily with increasing chunk size, likely due to
overhead from first copying the data into pinned memory, as mentioned in Section
2.3.2. The pinned memory shows highs at around 13 GiB per second at a chunk size of
1MB, before steadying itself at around 12 GiB/sec with larger chunk sizes.

The first two data points for the pageable graph in Figure 3.3, 16 and 32 KiB in
size respectively, are not present in the graph due to inconsistencies with the delay
measurement. The 16 KiB transfer seems faster than the delay measurements, causing
negative values. The 32 KiB transfer is similar, however the time taken is only marginally
larger than the delay, causing the bandwidth to grow exponentially. This phenomenon
was observed over a sample size of 10 separate runs of the benchmark, with similar
resulting values and plots outside of shifts of around 200 MiB/sec at both data points,
which can be attributed to per-run variance. The overhead also explains the theoretically
impossible measurement for 128 KiB, as it exceeds the 16GB/sec bandwidth that a PCIe
3.0 x16 link is capable of.

Regarding link saturation, the plot in Figure 3.3 shows that the link is saturated
at about 64 to 128 KiB for the pinned memory, however the peak bandwidth about
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Time start 
(clock_monotonic)

cudaMemcpyHtoD 
(pinned / pageable)

Time end 
(clock_monotonic)

Time Elapsed = 
(time end - time start)

- delay

Repeat 1 + 10
times (warmup)

Bandwidth = 
size / time elapsed

Calcluate average
bandwidth and

duration

Measure Delay 
(pageable, pinned)

Print to documents

Free memory 
(pageable, pinned,

device)

Allocate memory 
(pageable, pinned,

device)

Input: Memory chunk size

Figure 3.1: Rough Flowchart of the bandwidth measurement method
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1 //allocate memory

2 long delay = 0;

3 for (int i = 0; i < 10; i++)

4 {

5 auto t1 = std::chrono::high_resolution_clock::now();

6 cudaMemcpy(device, host, sizeof(float), cudaMemcpyHostToDevice);

7 auto t2 = std::chrono::high_resolution_clock::now();

8 auto mys_int = std::chrono::duration_cast

9 <std::chrono::nanoseconds>(t2 - t1);

10 delay += mys_int.count();

11 }

12 //free memory

13 //calculate and return average duration

Figure 3.2: Code snippet measuring the CudaMemcpy() delay

1GiB/sec higher than the bandwidth at which the link transfers bigger packets. On the
other side, it is difficult to tell at which chunk size the link saturates for the pageable
copies, due to the steadily declining bandwidth values as chunks get bigger. However,
the biggest jump of bandwidth is between 1 mebibyte (MiB) and 16 MiB, indicating
that the intermediate chunk of memory may be limited at about 16 MiB in size.

Figure 3.4 shows the times taken for the memory transfers. It is worth noting that,
for the pinned memory, the chunk sizes of 16 and 32 KiB take about the same time to
copy, indicating that the duration of a memory copy does not scale linearly with the
amount of packets sent over the PCIe link. It is also apparent that the duration, after
the link has been fully saturated, grows more or less linearly for both memory types.

3.4.2 Ice1

Figure 3.5 is the measured theoretical bandwidth for the Ice1 system. Technically, the
GPU should be connected by a PCIe 3.0 x16 link, just like the P6000. As the links
are technically similar in generation and link width, this means that the bandwidths
observed should be similar, which is the case for the pinned memory transfer at about
12 GiB/sec. However, the pageable memory transfer has inconsistent bandwidths,
fluctuating from 2 to 15 GiB/sec for smaller memory sizes and stabilizing at around
11.5 GiB/sec for transfers above 512 MiB in size. Similar to the P6000 measurements,
the first data point was consistently negative in value, and as such, was cut from the
graph. However, the bandwidth fluctuated from -16 GiB/sec to around -5 GiB/sec over
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Figure 3.3: Pinned and pageable memory copy bandwidths (P6000)

Figure 3.4: Pinned and pageable memory copy duration (P6000)
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several measurements.
Regarding link saturation, the plot in Figure 3.5 shows that the link is saturated at

about 128 to 512 KiB for the pinned memory. This chunk size is marginally larger
compared to the P6000 system, which may be due to a few different factors, such
as memory speed, driver / CUDA versions, or CPU/GPU properties. The pageable
transfer, however, behaves in a volatile manner and is much faster than the pageable
transfers on the P6000 system. This can most likely be attributed to the main memory
size of the Ice1 system being several times larger than the main memory size of the
P6000 system, as the pinned memory pool scales with total memory size.

Figure 3.5: Pinned and pageable memory copy bandwidths (Ice1)

Figure 3.6 once again shows the times taken for the memory transfers. The most
notable finding for pinned memory is the fact that a 16KiB transfer is actually marginally
slower than a 32KiB transfer. This, once again, indicates that the duration of a memory
copy does not scale linearly with the amount of packets sent over the PCIe link. On the
other hand, just like the bandwidths, the pageable transfer durations are erratic and
not linearly scaling. This is not quite as visible in the graph, due to the logarithmic
scale of the y-axis.
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Figure 3.6: Pinned and pageable memory copy duration (Ice1)

3.5 Discussion

3.5.1 Successes

This benchmark gives an accurate reading of both the saturation threshold and the
possible bandwidth over a given PCIe link, which is the primary goal of the benchmark.
However, it is difficult to verify the measurement accuracy with tools that were not
developed by NVIDIA due to the proprietary nature of both the GPU drivers and the
CUDA API.

The program also shows that the transfer duration does not scale linearly with the
packet count, and that this scaling bears further potential for investigation.

Another success is that the primary requirements for the tool as defined in Section
3.2 are met. Specifically, the developed tool is able to measure memory transfer
bandwidths for both pinned and pageable memory transfers across different memory
copy sizes, outputting its results to a data file, and required no further hardware besides
a CUDA-capable GPU.

3.5.2 Shortcomings

The first issue is the lack of explanation for the first memory copy being slower than
the others. This may be due to the CPU’s caching and paging algorithms, or due to
something else entirely. The exact cause is hard to pinpoint due to CUDA’s closed
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source nature and the lack of detailed insight into the GPU side of the process.
Additionally, it is worth mentioning that the delay measurement is not representative

of the raw PCIe delay, as there is a certain amount of overhead involved regarding the
memory copy in CUDA. To more accurately assess the delay of a PCIe link, it is better
to time a packet being sent and the packet being received by the GPU. However, due to
the closed-source nature of CUDA, the success of this approach is not guaranteed.

Finally, it is worth noting that not every system guarantees a max PCIe payload size
of 4096 bytes. The maximum size is usually negotiated between the different endpoints.
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4.1 Concept

The benchmark in Chapter 3 does not really provide more detailed information on
when a memory transfer could be happening, and at what bandwidths said transfers
happen. The goal of this chapter is to utilize the hardware counters exposed by the
NVML library, as discussed in Section 2.3.4, to assess PCIe link activity. As the counters
are separated by transmit and receive, monitoring of both input and output data
transfers should be possible.

4.2 Goals

The primary goal of this chapter is to develop a tool that monitors the PCIe link activity
of another given program with the help of NVIDIA’s NVML library, primarily to
measure when and at what bandwidths the data is being moved to and from the GPU
memory.

Just like the Chapter 3, the tool developed should meet a set of more concrete
requirements, extending the abstract goals defined in Chapter 1:

• The tool should not have any requirements on hardware outside of a CUDA-
capable GPU

• The tool should support automation by outputting data to a file

• The tool should measure the PCIe link activity of another program

• The tool should measure both host to device and device to host data transfer

• The tool should induce as little overhead as possible while monitoring

• The tool should not require modifications to the program it monitors
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4.3 Implementation

4.3.1 Parallelism

As the primary goal of this tool is to monitor the PCIe link activity of another process,
including but not limited to memory operations, there is a requirement for the tool to
run in parallel with the programs it is intended to monitor. This is facilitated by creating
a ’wrapper’ that starts both threads, the monitor and the program to be monitored,
simultaneously. Figure 4.1 shows the code snippet responsible for creating and starting
the different threads. The two pthread_create() calls are responsible for starting the
monitoring threads, which should be running before the monitored process executes.
The variable child is the process to be monitored and was forked beforehand, and put
on hold immediately, which is given as command line argument. The ptrace() call
signals child to continue. A do-while loop monitoring status allows tracking of the
monitored process to terminate the monitor when said program has concluded. The
monitoring threads are then stopped by calling the stop_monitoring() method, which
sets a global variable called running to false.

1 pthread_t thread_id;

2 pthread_create(&thread_id, NULL, start_monitoring_rx, (void *)0);

3 pthread_t thread_id_2;

4 pthread_create(&thread_id_2, NULL, start_monitoring_tx, (void *)0);

5 ptrace(PTRACE_CONT, child, 0, 0);

6 do

7 {

8 wait(&status);

9 } while (!WIFEXITED(status));

10 stop_monitoring();

Figure 4.1: Code snippet showing thread behavior

4.3.2 Monitoring

As the NVML method call takes about 20 milliseconds (ms) to execute because the
counters are only updated in a 20 ms interval, it seems prudent to monitor both transmit
and receive in parallel. To monitor the counters in sequence would lead to a loss of
granularity and a potential loss of data as essentially half the data for each counter is
lost, as the counters are updated once every 20 ms. Thus, there is a monitoring thread
for each direction, transmit and receive. As the counters are only updated once every
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20 ms, there is no benefit in including additional monitoring threads in either direction
as they will all wait for the same counter to update at the same time.

To go into further detail, the monitoring thread, a rough flowchart of which can be
seen in Figure 4.2, first initializes the necessary environment for the measurement, such
as the output file, the NVML library, and the start timestamp. After that, it repeatedly
loops a call of nvmlDeviceGetPcieThroughput(), which was further explained in Section
2.3.4, a timestamp after the call has concluded, the elapsed time calculation, and printing
both the timestamp and the counter readout to the file. The condition for the thread to
terminate is tied to the global variable running, as mentioned in Section 4.3.1. After the
while loop terminates, cleanup is done by shutting down the NVML library and file
streams.

Setup (NVML, file
streams, start time)

CleanupThread Running?
no

yes

Take NVML counter
readout (TX/RX)

Time elapsed =  
time now - time start

print time and 
counter to file

Figure 4.2: Rough Flowchart of the bandwidth measurement method

To summarize: The wrapper starts the two monitoring threads, one for transmit and
one for receive, before starting the program that the threads are to monitor. As the
program is being executed, the monitoring threads continuously print each readout
and the corresponding timestamp into a dedicated file. After the program terminates,
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both monitoring threads are terminated as well. The files the threads printed to can
then be used to plot a timeline of the PCIe link activity while the monitored program
was running.

4.4 Results

4.4.1 Vector Add

P6000

As Figure 4.3 shows, the memory copies in the vector add program described in Section
2.6.1 are clearly visible as spikes of activity on the P6000 system. However, there are
some bigger gaps between data points, indicating that there may be an issue with either
repeatedly calling the method or the update frequency of the NVML counters, as both
TX and RX graphs show gaps in the graph. This is especially apparent as there seems
to be a lack of data entirely for a time after the two memory transfers has concluded.

Figures 4.4 and 4.5 show similar graphs as Figure 4.3, with varying vector sizes.
The smaller the vector size, the harder it is to pin down the exact time of the memory
transfer, just as it is harder to appropriately measure the bandwidth of the memory
transfer. This is especially visible in the 25MB and 50MB graphs, as the memory
transfers are portrayed to be happening in parallel, which is clearly not the case, as the
memory copies are coded in sequence. The sequential nature becomes more visible
with bigger vector sizes.

It is also worth noting that there is no significant increase in computation time, no
matter the vector size. The execution time of the vector add program varies to some
extent from run to run, and wrapping the NVML monitor around the program seems
to have no impact on the time taken.

Ice1

The results form the Ice1 system, a graph of which is shown in Figure 4.6, show the
data transfers of the monitored program. However, the receive (RX) bandwidth, as in
host to device bandwidth, is measured at 45 GB/sec. This is technically impossible
for a PCIe 3.0 x16 link, which is limited to 16 GB/sec in bandwidth. As the memory
copy completed without issue, it indicates that the NVML library did not reset the
value of the counter for a period of time, resulting in the aggregation of the counter’s
value. This is also supported by the lack of data on the RX graph for the last 60ms,
three counter cycles, before the spike occurred.

Additionally, whilst the receive counter does not show any visible inconsistencies
in the graph, the transmit thread shows bigger gaps in data points over several times
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Figure 4.3: NVML monitoring of vector addition (400MB vector, P6000)

in the graph. This issue was present in both directions on the P6000. As the issue
seems to not persist when switching hardware, at least in one direction, it seems to be
a software-based issue. And as the RX thread is working as intended, whilst the TX
thread is not, and both are implemented in the exact same way, it indicates that it most
likely is an issue with the NVML library.

Figures 4.7 and 4.8 further demonstrate the impact of changing vector sizes on the
monitoring results. The result is, as expected, similar to the ones from the P6000, with
smaller vector sizes being much harder to accurately portray. It is also worth noting
that the receive (RX) bandwidth value goes beyond what is technically possible for a
PCIe link for vector sizes of 200MB and above, similar to the behavior shown in Figure
4.7, indicating that it is not just an issue with that specific vector size. Additionally, the
TX graph seems to display the data gaps in several of the graphs, missing a few data
points here and there, indicating that it is not limited to bigger vector sizes.

Similarly to the results from the P6000, there is no significant overhead or increase in
computation time compared to running the program without the monitor.

4.4.2 Matrix Multiplication

P6000

Figure 4.9 depicts the results of using the NVML wrapper to check the matrix mul-
tiplication program’s PCIe link activity. The graph shows the two memory transfers
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Figure 4.4: NVML: Monitoring vectors of different sizes (P6000, part 1)
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Figure 4.5: NVML: Monitoring vectors of different sizes (P6000, part 2)
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Figure 4.6: NVML monitoring of vector addition (400MB vector, Ice1)

at the very beginning and at the end of the program. However, the bandwidths don’t
quite match up with the results shown in Figure 5.4, as technically the 120MB data
transfer should be showing peak bandwidths of around 10 GB/sec. Instead, the peak
bandwidth, both for transmit and receive, lies at around 4.5 GB/sec. It is worth noting
that the RX counters show that there was traffic over two counter readouts, indicating
that the bandwidth was either not fully saturated or the counter resetting during the
memory copy. The TX graph shows a lack of counters immediately after the peak,
which implies that the memory copy was not completely shown on that graph either.
Furthermore, this indicates that the issue with missing datapoints is not solely related
to the measured program.

Additionally, the counters showed minimal but steady PCIe traffic, around 5 KB/sec
on the TX graph and 16 KB/sec on the RX graph, when the kernel was running the 300
iterations. This is an indication that the commands the CPU issues to the GPU, and
the GPU’s responses, are both visible on the GPU’s NVML counter, indicating that it
captures all traffic over the PCIe link, and not just memory copy operations.

Finally, the computation time seems to remain static, regardless of whether the
monitor is attached or not. This once again indicates that the wrapper introduces little
to no overhead to the program it is to monitor.
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Figure 4.7: NVML: Monitoring vectors of different sizes (Ice1, part 1)
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Figure 4.8: NVML: Monitoring vectors of different sizes (Ice1, part 2)
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Figure 4.9: NVML monitoring of matrix multiplication (P6000)

Ice1

Figure 4.10 once again clearly shows the two memory transfers at the very beginning
and at the end of the program. Similar to the results in the P6000, the bandwidth
results for a 120MB transfer do not quite match up with the observations from Figure
5.7, capping out at 7GB/sec for the RX graph and 4.5GB/sec for the TX graph, instead
of the expected 10 or 11 GB/sec. Furthermore, the TX counter once again stutters
immediately after the TX graph peaks, similar to the results observed from the P6000
system. The RX graph, on the other hand, does not seem to miss any datapoints.

It is also worth mentioning that the memory copies from Figure 5.10 do not corre-
spond to the timestamps that were output into the console, indicating that the code may
not be executing in sequence due to optimizations when compiling. Another possible
explanation for this occurrence is the non-blocking nature of cudaMemcpyAsync(),
which was used in this kernel.

Additionally, the counters once again show minimal but steady PCIe traffic, around
6 KB/sec on the TX graph and 19 KB/sec on the RX graph, during the compute section.
This once more indicates that the communication between CPU and GPU, is visible on
the GPU’s NVML counter. This further indicates that the NVML counters capture all
traffic instead of only memory copy operations.

Finally, the computation time once again seems to be within margin of error, deviating
by around 1 or 2% in either direction, regardless of whether the monitor is attached
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or not, which can be attributed to per-run variance. This once again indicates that the
wrapper introduces little to no overhead to the program it is to monitor.

Figure 4.10: NVML monitoring of matrix multiplication (Ice1)

4.5 Discussion

4.5.1 Successes

The primary success of the tool is that it is not only able to pinpoint when a memory
transfer happens, but also able to measure the bandwidth at which it happens. This
gains some insight into an application’s utilization of the PCIe link. Furthermore, the
tool is able to capture most of the PCIe traffic, including instructions and responses
from the CPU and GPU respectively.

Another point to the tool is that it introduces little overhead despite being executed
in parallel with the thread it is measuring, as the results show. Granted, if the software
is capable of fully leveraging all hardware threads in a system, this overhead would
likely not be negligible.

Additionally, there is no requirement in terms of what it can or cannot measure, as
long as the program to be measured can be started as a process.

Finally, the primary requirements defined in Section 4.2 were all fulfilled. The
program does not have any requirements except for a CUDA-capable GPU, it does not
require any modifications to the software it monitors to accurately read the PCIe link
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bandwidth in both directions, and both the execution and plotting of the data can be
automated.

4.5.2 Shortcomings

The primary shortcoming of this approach is the limitation of the NVML method call.
As it is limited to a 20ms interval, data transfers that are shorter than that are not
accurately represented, as seen in the results. Furthermore, the NVML library seems
inconsistent in terms of monitoring and result accuracy, as shown by the inconsistent
counter readout frequencies. This is also likely tied to the driver and CUDA API
versions, with more recent drivers showing fewer inconsistencies.

Additionally, there is nothing that helps in identifying what method or software
thread called the memory transfer, except for adding timestamps into the wrapped
source code, which would fail the requirement of not needing modifications to existing
software to work.

Furthermore, the method seems to stutter every once in a while, leading to periods
of time where there is no data at all.

A further issue is that the tool is not able to isolate the transfers of the software
it is wrapped around, but rather measures the throughput of the entire PCIe link.
This means that other software running on the system may cause inaccuracies in the
measurements.

A final issue is that the closed-source nature of CUDA is not transparent about how
these counters are aggregated, and that the documentation about these counters is
murky at best. As such, it is a concern that the readings may be inaccurate to some
extent. This also means that the exact cause for the data leaks found in Section 4.4 is
difficult to pinpoint, and probably just as hard to fix.
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5.1 Concept

The primary flaw in the NVML approach described in Chapter 4 is data granularity,
which is directly tied to the counters’ update frequency. The 20ms update interval of the
counters does not allow for correct profiling of shorter memory transfers. To address
this issue, a measurement method that is faster in nature needs to be devised. The
primary concept of this tool is to saturate both directions of the PCIe link by repeatedly
copying small chunks of memory to and from the device, and monitoring the transfer
bandwidths to determine PCIe link activity. In theory, if a memory transfer happens
while the link is already fully saturated, both memory transfers should technically slow
down. Due to the dual-simplex nature of PCIe, the transmit and receive links must
both be saturated and monitored separately.

5.2 Goals

?? The primary goal of this chapter is, just like Chapter 4, to develop a tool that monitors
the PCIe link activity of another given program. However, this chapter aims to detect
shorter memory transfers more accurately, to improve on the biggest issue of the NVML
approach.

Just like the last two chapters, the tool developed should also meet a set of more
concrete requirements, based off the abstract ones defined in Chapter 1 and similar to
those described in the last chapter, with the addition of the ability to detect shorter
memory transfers:

• The tool should be able to detect shorter memory transfers accurately

• The tool should not have any requirements on hardware outside of a CUDA-
capable GPU

• The tool should support automation by outputting data to a file

• The tool should measure the PCIe link activity of another program
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• The tool should measure both host to device and device to host data transfer

• The tool should induce as little overhead as possible while monitoring

• The tool should not require modifications to the program it monitors

5.3 Implementation

5.3.1 Parallelism

Similar to the approach described in Section 4.3.1, this tool needs to be run in parallel
as the program it is supposed to monitor. As such, a similar ’wrapper’ approach is
used, a flowchart of which can be seen in Figure 5.1. A further addition over the NVML
wrapper is a command line argument to define the memory chunk size the monitor is
supposed to copy.

5.3.2 Monitoring

The primary difference to the implementation of the NVML approach described in
Section 4.3.2 is that running transmit and receive threads separately seems to negatively
impact the performance of both threads. This could be due to an overload of the
memory controller by repeatedly copying small chunks of data in both directions, or
due to some other, unknown reason. As such, the transmit and receive copy operations
are executed in one thread, in sequence, to bypass the performance penalty.

A code snippet depicting this behavior can be seen in Figure 5.2, however it is worth
noting that only the host to device transfer is depicted in the snippet due to the identical
nature of both transfers. First, the timestamp for the memory transfer is calculated by
comparing the current time to the start time. Then, the PCIe link latency is measured
once, and saved to the variable latency. Finally, the bandwidth is measured similar
to the concept described in 3.3.1, using the high_resolution_clock :: now() call to time
the memory transfer, and derive the bandwidth. It is worth noting that there is no
delay compensation when timing the repeated memory copies, as the delay may affect
bandwidths in a similar way to how they did in Section 3.4, leading to negative values
and unsuitable data.

As the default memory chunk size being copied is only large enough to briefly
saturate the PCIe link, 200 KiB in size, the granularity of the measurements shouldn’t
be impacted. At full bandwidth, a memory transfer of 128KiB, which is the saturation
threshold determined in Section 3.4, takes about 0.01 ms, which should be enough to
pick up most memory transfers longer than a millisecond in duration.
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Parse arguments 
(buffer size, process)

Forks and pauses
process

Child process 
(to be monitored)

Measures delay 
(10 iterations)

Start monitoring
thread

Resumes child

Child terminates

Terminate monitoring
thread

Figure 5.1: Flowchart of the copy wrapper
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Another addition is the monitoring of the delay of the PCIe link, to see if there is
any visible correlation between PCIe link load and PCIe delay. To do this, a memory
copy of 4 bytes is sent to the device and the method call timed, similar to how it was
done in Section 3.3.2. However, as everything is being executed in sequence, this delay
measurement is only run once per cycle. This is represented by the measure_delay(1)
call in the code snippet. The delay is also printed to the text file to allow easy plotting
and data gathering.

1 while (running)

2 {

3 //timestamping

4 auto time_point = std::chrono::high_resolution_clock::now();

5 auto ns_int = std::chrono::duration_cast<std::chrono::nanoseconds>

6 (time_point - time_start);

7 outdata << std::fixed;

8 outdata << ns_int.count() << "\t";

9 long latency = measure_delay(1);

10 auto t1 = std::chrono::high_resolution_clock::now();

11 cudaMemcpy(device, host_pinned, bytes, cudaMemcpyHostToDevice);

12 auto t2 = std::chrono::high_resolution_clock::now();

13 auto mys_int = std::chrono::duration_cast<std::chrono::nanoseconds>

14 (t2 - t1);

15 outdata << (bufsz / (mys_int.count() / 1e9)) << "\t";

16 outdata << latency << std::endl;

17 \\repeat, but device to host

18 }

Figure 5.2: Code snippet depicting monitoring thread measurements

5.4 Results

5.4.1 Vector Add

P6000

Figure 5.3 clearly shows the two memory copies that happen in sequence, with the
Host to Device (HtoD) and Device to Host (DtoH) graphs dropping to a near zero
bandwidth as the memory copies happen during the vector addition. It is also worth
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noting, however, that the other respective link was also only able to copy at reduced
speeds, indicating that the full dual simplex bandwidth may be impossible to maintain.
This may be due to limitations either in the memory controllers or in the software,
however the exact cause is difficult to pinpoint due to the closed-source nature of
CUDA and the lack of insight into the process in general. The graph also shows that
there is a lack of correlation between the delay measured over a PCIe link and the
load said PCIe link is under, as the delay does not increase noticeably when the link is
fully saturated by the memory copy operations of the vector add program. However,
the delay can be found spiking as the kernel of said program is running, which may
indicate that delays may be related to the GPU load, instead of the PCIe load.

A further irregularity shown in Figure 5.3 is the inconsistency of bandwidths before
the first memory copy. The speeds seem to fluctuate heavily between 5 and 7 GiB per
second, and then increasing in value to around 7 to 8 GiB per second. Only after the
memory copies have concluded does the bandwidth settle just below 9GiB per second.
This indicates that the allocates performed before the memory copies may have some
impact on the PCIe link bandwidths.

Figure 5.3: Bandwidth saturation monitoring of vector addition (400MB vector, P6000)

Figures 5.4 and 5.5 on the other hand show that, with smaller chunk sizes, the
wrapper is still able to monitor the copy operations accurately, to some degree, despite
not fully saturating the link. The plots also show that the speed reductions found
in Figure 5.3 are constantly scaling with the respective maximum bandwidth as well,
dropping to about half of their original values when the other link direction is fully
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saturated.
It is also worth noting that only a chunk size of 200KB and above was able to utilize

the link at more or less full bandwidth, around 10 GiB/s. However, this was expected
as the saturation threshold was pinpointed at somewhere around 128KiB, as mentioned
in Section 3.4. The accuracy drops at the smallest chunk sizes of a few packets (5KB),
as the drop in host to device bandwidth doesn’t drop to near zero as expected.

Finally, there seems to be no significant increase in computation time on the P6000,
similar to the approach devised in Chapter 4. Once again, the execution times, with
and without attaching the monitor, are within margin of error.

Ice1

Figure 5.6 shows the same test as Figure 5.3, with a vector size of 400MB and a
chunk size of 200KB. The graph also shows that there is less inconsistency in terms
of bandwidth fluctuation before the memory transfer. This difference can either be
attributed to the A100’s superior compute capacity or to the more modern drivers
installed on the system. Another major finding is that there seems to be a lack of data
when the first memory copy occurs. This is not quite visible in the graph, but there is
no data from 0.86 sec to 0.92 sec (just before 1 ∗ 109 in the graph) in the data files used
to generate the plot. This time frame also corresponds to the duration of the memory
copy from the console output timestamps. This is caused by the low bandwidth of
the measured transfer, combined with the sequential nature of the monitoring thread,
resulting in a single datapoint taking up the entirety of the duration.

Another visible difference is that the bandwidth of the link which is not under load
by the program is not as affected on the Ice1. During the DtoH transfer, the HtoD is at
around 7 GiB/sec, compared to the 4.5 GiB/sec on the P6000. This, once again, can
either be attributed to the higher performance of the A100 or to the updated driver
versions. Furthermore, the graph shows a clear fluctuation of the bandwidth in the
timeline after the memory copy operations have concluded. As the program should
only be running the error checking and freeing the memory at this time, it is difficult
to say what exactly causes the memory transfer speeds to fluctuate, as none of those
operations should have any PCIe link activity.

Figure 5.7 and 5.8 show that the behavior of the wrapper, when varying the chunk
sizes used to monitor the link with, behave similarly to the default chunk size of 200KB.
It is also worth noting that the same lack of data applies for the same duration over the
first memory copy on the graph, across all different chunk sizes, once again caused by
the sequential execution and low measured bandwidths. Furthermore, the fluctuations
in bandwidth after the memory copies have concluded are also present, but in different
lengths and magnitudes across the various buffer sizes.
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Figure 5.4: Chunk size variation of bandwidth saturation (400MB vector, P6000, part 1)
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Figure 5.5: Chunk size variation of bandwidth saturation (400MB vector, P6000, part 2)
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Figure 5.6: Bandwidth saturation monitoring of vector addition (400MB vector, Ice1)

The 300KB graph shows a similar decrease in performance around the beginning of
the graph as Figure 5.3, indicating that this fluctuation may be more prominent with
larger buffer sizes. However, this is not in line with the observations from Figure 5.4,
as some fluctuations were present even on the smaller buffer sizes on the P6000.

The time taken to execute the vector add program is actually shorter when using the
wrapper, compared to running it standalone. Execution times are around 2.2 seconds
when the monitor is attached, and range anywhere from 3 to 4.5 seconds when the
wrapper is not attached. The majority of the increased runtime is located before the
first memory copy, indicating that the CPU is slower in either allocating or populating
the vectors when the program is running standalone. However, the data gathered on
another occasion indicates that the runtime is around 1.5 seconds, with no difference
regarding the wrapper’s presence.

5.4.2 Matrix Multiplication

P6000

Figure 5.9 shows the PCIe link activity of the matrix multiplication kernel, or lack
thereof, when monitored through the link saturation approach. The bandwidths are at
a constant 9.5 GiB/sec, with some fluctuations throughout the runtime, similar to the
results shown in Figure 5.3. The memory copies are not very visible on the graph, but,
similar to the results observed on the P6000, can be found in the raw data. Technically,
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Figure 5.7: Chunk size variation of bandwidth saturation (400MB vector, Ice1, part 1)
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Figure 5.8: Chunk size variation of bandwidth saturation (400MB vector, Ice1, part 2)
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the dip of the graphs in the very beginning (HtoD) and the very end (DtoH) are the
memory transfers, which are not very visible.

An interesting finding is that there is a consistent delay of 2.2 milliseconds that is
shown in the graph, which corresponds to the time the GPU is under load as indicated
by the NVML graph. This shows a clear correlation between GPU load and PCIe link
delay, indicating that memory transfers are ideally done when the PCIe link is not
under load.

Finally, there is a significant overhead involved when it comes to using this monitor,
as runtimes of the program increased by as much as 10 to 15% when the monitor was
attached, over an average of about 10 runs. The average runtime of the standalone
program is about 24 seconds, and attaching the monitor increases that runtime to about
26.5 seconds on average.

Figure 5.9: Bandwidth saturation monitoring of matrix multiplication (P6000)

Ice1

Figure 5.10 shows the link saturation monitoring of the matrix multiplication program
on the Ice1 system. The memory copies are not very visible on the graph due to the
large amount of datapoints that make up the graph, but, similar to the results observed
on the P6000, can be found in the raw data.

Once again, the delay of about 2.2 milliseconds is observed when the GPU is perform-
ing the matrix multiplications, once again indicating that there is a clear correlation
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between PCIe delay and GPU load.
Furthermore, the timestamps do not match with the PCIe load and delay measure-

ments, similar to the graphs shown in Section 4.4.2. The delay starts roughly at the
same time as the memory transfer is shown in Figure 4.10, indicating that the kernel is
started, and the GPU put under load, around that time. This once again indicates that
some sections of the code are not executed in sequence due to optimizations made by
the compiler.

The graph also shows a peak bandwidth of 10 GiB/sec, which is lower than the 12
GiB/sec measured in Chapter 3. This bandwidth is also affected by the PCIe link delay
and is likely to be higher if the delay was compensated for in the calculation.

Finally, this test once again shows that there is a clear overhead when using this
wrapper, as execution times have gone up by about 1 to 2 seconds with the wrapper
attached, from 11 up to 12 or 13 seconds. This observation was made by running the
program 10 times with and without the monitor respectively, and taking the timestamps
from the console output as execution time, and the percentage overhead of about 15%
is in-line with the observations from the P6000.

Figure 5.10: Bandwidth saturation monitoring of matrix multiplication (Ice1)
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5.5 Discussion

5.5.1 Successes

The primary success of the link saturation approach is the ability to measure shorter
memory transfers, improving on the primary shortcoming of the NVML-based monitor.
This is especially apparent regarding the memory transfers in the matrix multiplication
program, which is about a seventh of the 800MB total found in the vector add program.

A further finding is the clear correlation between GPU load and PCIe link delay, as
shown in the matrix multiplication results. Whilst the delay does not impact bandwidth
in a major way, it does mean that any data transferred will take a bit longer to arrive.

Furthermore, the monitor is able to detect data travel over the PCIe link despite
not fully saturating the link, as even small packets show the data transfers with full
bandwidth. However, it is worth noting that the lower the bandwidth of the transfer,
the less likely it is to be detected with smaller chunk sizes that do not fully saturate a
PCIe link. It is also worth noting that smaller chunk sizes will lead to marginally less
overhead.

Finally, the tool fulfills most of the goals described in Section ??. It is able to detect
shorter data transfers, doesn’t require any hardware outside of a CUDA-capable GPU,
outputs the data to a file, and monitors both host to device and device to host traffic of
a given program, with no requirements to modify said program.

5.5.2 Shortcomings

The major drawback of this approach is the amount of overhead it introduces to the
program it is monitoring, with an runtime increase of up to 15%, which is in direct
opposition of a goals defined in ??. Furthermore, the granularity of the measurements
is dependent on the chunk size, with smaller chunk sizes equating to more datapoints
and a more detailed measurement. This also directly opposes the initial set goal of ’low
overhead’.

Another issue is the sequential implementation of the monitoring thread, as a single
blocking call of cudaMemcpy() can block the entire measurement. This includes the
delay measurement as well, further compounding the issue, especially when the GPU
is under compute load, which increases delays significantly.

Finally, the wrapper does not give a comprehensive insight into the PCIe traffic
properties, but rather a timeline of PCIe link utilization, with lower values indicating a
higher link utilization. This, however, is not entirely accurate, as seen by the results de-
scribed in Section 5.4.1, as the bandwidth fluctuates without the PCIe link experiencing
traffic.
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6 Further Reading

A paper by Zhu et al. discusses intercepting PCIe traffic and dissecting packet payloads
to reconstruct DNN models, using the PCIe link as attack vector[39]. This is accom-
plished by using a hardware-based bus snooping device to dissect PCIe packets and
payloads. A further finding noted in that paper is that PCIe payload structures are not
documented, along with the fact that there is significant noise involved when dissecting
CUDA data traffic. The paper also dissected the payload structure of CUDA packets in
further detail.

Additionally, there are several different vendors for hardware-based PCIe traffic
analyzers and interposers. The paper presented by Nakamura et al. used a PCIe
interposer by Teledyne LeCroy to dissect PCIe data in further detail [32]. These
interposers are usually expensive, ones made by Teledyne LeCroy are priced on quote
[40]. Software by Teledyne is also closed-source, however the solutions provide a
detailed insight into PCIe packets and traffic.

Furthermore, there is a set of software-based tools available to monitor hardware
counters on both the CPU and GPU side. These counters vary by CPU architecture to
some degree, meaning that counters are not consistent across different generations of
CPUs.

Likwid, one of these software-based tools, is able to monitor counters for most Intel
and AMD CPU architectures with likwid − per f ctr. The program either be used to
monitor specific regions of code by using a header file and linking a library, or be
used in a wrapper-style format similar to the tools developed in Chapters 4 and 5 [41].
Furthermore, Likwid has a NVIDIA GPU backend, which is currently deprecated for
modern Nvidia GPUs [41].

Similar tools include Intel’s Processor Counter Monitor (PCM), which is only com-
patible with Intel CPUs, perf, which is a performance counter monitor built into the
Linux kernel, and PAPI, a tool developed by the University of Tennessee’s innovative
computing laboratory [42], [43], [44].

Another approach to monitoring PCIe traffic is the NVIDIA Visual Profiler (NVVP),
which, as the name suggests, is capable of profiling CUDA applications. AMD has a
similar tool, called AMD uProf, which is also able to monitor CPU events, along with
AMD GPUs [45], [46].
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7 Summary

This thesis documented the development of a set of tools with the goal to gain insight
on PCIe data movements. The process first defines the basic concept of the tool and
assesses the primary goals and a set of requirements the final tool should fulfill. After
that, the implementation of the program is described in further detail, and data is
gathered. The findings from the data and the tool’s properties are then discussed.

The bandwidth benchmark is mostly a way to assess a system’s PCIe link capabil-
ities, which is done by timing memory copy operations of increasing chunk sizes to
determine the link bandwidth. The benchmark measures both pinned and pageable
memory transfers, device to host, and compensates for the delay. However, that delay
compensation sometimes causes negative values for pageable memory transfers.

The NVML monitor relies on the NVML library’s exposed hardware counters to
measure another program’s PCIe link activity. This is done by creating a wrapper-style
program that starts both the monitor and the program that is to be monitored. The
monitoring thread continuously queries the counters and prints the results into a file
to facilitate plotting the graph. The results can be plotted into a graph that shows the
PCIe link activity over the course of the program’s runtime.

The final tool utilizes PCIe link saturation to measure both PCIe link traffic and GPU
processing load by repeatedly copying small chunks of memory to and from the GPU.
The metrics measured are the link delay, which indicates GPU load, and the bandwidth,
which indicates data traffic. This approach shares the wrapper-style implementation
with the NVML monitor, and monitors the PCIe link traffic over the duration of a
program’s runtime.

7.1 Successes

The tools developed in this thesis give a basic insight into the properties of PCIe data
movements, such as the bandwidth, and link activity profiles.

Further insights worth mentioning is the correlation between PCIe delay and link
activity, and the lack of correlation between PCIe delays and PCIe link load found by
the link saturation approach described in Chapter 5.

Another success is that there is no external and expensive hardware required to
use the tools developed, unlike the approaches discussed in Chapter 6. Further, all
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the requirements defined in the respective approaches’ chapters were met, with the
exception of the ’low overhead’ requirement in Chapter 5. This was expected to some
degree, due to the concept of putting the PCIe link under load.

It is also worth mentioning that the tools developed are compatible with both Intel
and AMD’s CPUs. The software-based approaches described in Chapter 6 are limited
in compatibility, with Intel’s PCM only being compatible with Intel processors, and
Likwid only being compatible with a given set of processor architectures.

Finally, it should be noted that these tools can easily be translated to be compatible
with AMD’s HIP API due to the similarities HIP and CUDA share, for compatibility
with AMD-based GPUs. This can even be automated, to a degree, with the HIPify
tool providing an automated source-to-source transformation from CUDA to HIP [47],
. It is worth noting, however, that HIP does have an equivalent to the NVML library
(ROCm-smi), which however lacks an equivalent to the counters that NVML uses, and
as such, translating the wrapper from Chapter 4 is likely an impossibility [48] [49].

7.2 Problems

The first major failing of this thesis is the inability to delve into lower-level data traffic,
unlike the hardware-based solutions presented in Chapter 6.

Additionally, it is impossible to leverage both the NVML and link saturation mea-
surements at the same time, because NVML will record the activity of the repeated
copy operations as well. As such, measurements on the same program need to be
done over at least two separate runs, subjecting the results to some level of variance
and uncertainty. This issue is further compounded by the overhead the link saturation
approach introduces, making the task of comparing timelines difficult.

Finally, it is worth noting that both wrappers, by themselves, have multiple significant
drawbacks and are not universally applicable in most use cases. Both approaches will
struggle to pick up memory transfers shorter than a few hundred kilobytes in size, as
example. Additionally, workarounds to these drawbacks will be challenging to develop,
primarily due to the closed-source nature of CUDA.

7.3 Conclusion

To conclude, it seems that there is a hardware requirement for a PCIe interposer in
order to gain deeper insight into PCIe data traffic. Additionally, there is a large amount
of research to be done towards understanding PCIe payloads and packets, as seen in
the closed-source approach of NVIDIA and their CUDA API.
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The benchmark developed in Chapter 3 of this thesis is a baseline tool to determine
the capabilities of a given PCIe link, such as bandwidth and saturation threshold.

Additionally, the two wrappers give a basic insight into the activity of the PCIe
link caused by a given program. The primary drawback is that any non-related PCIe
traffic to the target device will also be recorded, and that this may lead to measurement
inaccuracies if there is other software running.

Finally, the tools developed offer a unique blend of universal compatibility, automa-
tion, and insight into the data movements between CPU and GPU.

7.4 Outlook

A further direction to research may be the manual writing of data headers and payloads,
attempting to manually communicate with a PCIe device. Some information regarding
this approach can be found in the Linux kernel documentation [50].

Furthermore, there are more complex tests possible for the monitors implemented in
Chapters 4 and 5, to further gain insight on how they work and their functionality, as
the two programs used were simple in nature to facilitate data-gathering and a proof
of concept. One such example may be a series of concurrent memory copies on the Ice1
system, to gain insight on how the GPU schedules memory copy operations. Another
example would be a program that simultaneously puts the GPU under load and copies
data to or from the GPU, to verify the monitors’ behaviors.

Additionally, it bears merit to test the tools developed in different hardware configu-
rations, as they have not been tested or verified for PCIe 4.0 traffic. It also bears merit
to translate the CUDA code to HIP, where applicable, to gain further insight into AMD
GPUs.

Finally, the automation could be improved upon, as there is still some amount of
human input needed to both gather data and to plot the data.
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