
Technische Universität München

TUM School of Computation, Information and Technology

Efficient Measures for Processing and Exploring
Large-Scale Data Domains

Christian Reinbold

Vollständiger Abdruck der von der TUM School of Computation, Information and
Technology der Technischen Universität München zur Erlangung des akademischen

Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Prof. Dr. Alfons Kemper

Prüfer der Dissertation: 1. Prof. Dr. Rüdiger Westermann

2. Asst. Prof. Dr. Jens Schneider

Die Dissertation wurde am 27.06.2022 bei der Technischen Universität München
eingereicht und durch die Fakultät für Informatik am 21.09.2022 angenommen.

For peace

Abstract

Simulations of chaotic systems such as fluids and meteorological processes, as well as rendering ap-

plications in computer graphics, rely on accurate and thus highly resolved data representations to

converge to a realistic output. Commonly, data is discretized into hundreds and thousands of samples

per dimension, giving rise to giga- and terabyte-scale datasets in the case of spatial (3D) and spa-

tiotemporal (4D) domains. Apart from that, large-scale datasets significantly gained in importance

with recent advances in data-driven designs, more specifically, deep learning. Data passed to and

generated by neural networks easily live in domains with millions of dimensions, of which many may

or may not carry significant information. In general, large-scale datasets pose a couple of challenges

that need to be addressed by the scientific community.

First, algorithms processing large-scale data have to be designed with scalability in mind. Because

of the ever-increasing compute-capabilities of modern hardware, datasets reached a size where a

complexity of O(n log n) introduced by many acceleration structures may already be too large to either

fit the structure into memory or process it in a reasonable time. For instance, we consider summed-

volume tables (SVTs), a data structure that allows to integrate large-scale data over arbitrary, axis-

aligned subregions in O(1) complexity, at a memory cost of O(n log n). SVTs facilitate the creation

of spatial search structures and enable interactive queries of statistical quantities over large, user-

defined regions. We introduce a novel, hierarchical approach to compute and store SVTs by recursively

splitting blocks of data before computing their prefix sums. The proposed splitting algorithm adapts

to any prescribed memory budget between O(n) and O(n log n) by flexibly trading the number of

data-fetch operations for memory. At the cost of just a couple of additional data-fetch operations per

query, SVTs now can be deployed in environments where their memory footprint otherwise would

not allow to do so.

Second, large-scale data—especially high-dimensional data—usually contains a lot of redundant

information. It can be inferred from more compact representations that preserve as much informa-

tion from the original data as possible. Thus, effective measures for identifying low-dimensional data

v

ABSTRACT

embeddings are required. Popular dimensionality reduction (DR) techniques such as multidimen-

sional scaling, t-distributed stochastic neighbour embedding and uniform manifold approximation

and projection address this need, but produce different data embeddings for each run. Therefore,

to obtain reliable insights into the data, multiple embeddings have to be investigated and compared

to each other. We present a visualization technique based on k-order Voronoi diagrams to assess the

stability of ensembles—i. e. collections—of point embeddings. By partitioning the background of a

mapping via a Voronoi diagram and coloring the respective cells, the user can visually identify the

neighborhood relations of an embedding that also persist in most of the other ensemble members.

Further, we introduce a pairwise similarity measure between embeddings that is successfully used to

identify clusters and representative members in the ensemble.

In addition to classical DR techniques, task-orientated encodings of high-dimensional data have

been proposed by learning low-dimensional feature spaces in neural networks. We utilize this ap-

proach in the context of computer graphics. In level of detail applications, multiple representations

of the same scene at various resolutions are rendered depending on the distance to the camera. How-

ever, the validity of representations does not only depend on camera distance but view direction as

well, since parts of the geometry may be occluded and do not contribute to the rendering. We ap-

proach this issue by utilizing an encoder/decoder-based neural network architecture and learning

compact shape and appearance representations of high-dimensional geometry patches. They carry

sufficient information to identify view directions from which geometry is not correctly represented.

We utilize the network for adaptive super-sampling in ray-tracing to predict super-sampling patterns

when seeing coarse-scale geometry. By having access to scene geometry information, we can iden-

tify wrongly shaded pixels due to level of detail rendering more consistently than screen-space-based

alternatives.

Another challenge arises from high-dimensional latent feature spaces in deep learning lacking in-

terpretability. To increase trust in decisions of deep neural networks, methods have to be developed

to better understand the information encoded in latent features. Activation maximization facilitates

interpretability through associating visual and interpretable concepts with various features. Recently,

activation maximization has been used to define a taxonomy of feature classes that form across mod-

els and tasks. However, these findings were only possible by manually comparing and matching a vast

amount of feature visualization. We make a first step towards automating this process, by proposing

the problem of inverse feature visualization and showing that our novel method called gradient-based

inverse feature visualization can identify the neurons for which a feature visualization has been gen-

erated.

vi

Zusammenfassung

Simulationen chaotischer Systeme in der Fluidmechanik oder Meteorologie, sowie Renderings in

der Computergrafik sind auf hoch aufgelöste Datenrepräsentationen angewiesen, um gegen ein re-

alistisches Ergebnis zu konvergieren. Übliche Auflösungen bewegen sich im Bereich von hunderten

und tausenden Datenpunkten in jeder Dimension, sodass im Fall räumlicher (3D) beziehungsweise

raumzeitlicher (4D) Daten Größenordnungen im Bereich von Giga- und Terabytes erreicht wer-

den. Darüber hinaus haben großskalige Datensätze durch neue Fortschritte im datengetriebenen

Algorithmenentwurf, konkret Deep Learning, wesentlich an Bedeutung gewonnen. Von neuronalen

Netzen generierte und verarbeitete Daten sind in Räume mit Millionen von Dimensionen mit vari-

ierendem Informationsgehalt eingebettet. Die Verarbeitung solch großskaliger Datensätze birgt eine

Reihe von Herausforderungen, die es zu adressieren gilt.

Zunächst müssen Algorithmen für die Verarbeitung großskaliger Datensätze in Hinblick auf Skalier-

barkeit entwickelt werden. Aufgrund der kontinuierlich steigenden Leistungsfähigkeit moderner

Hardware haben Datensätze eine Größe erreicht, bei der die für viele Beschleunigungsstrukturen

gängige Komplexität von O(n log n) bereits zu groß ist, um Strukturen im Speicher zu halten oder in

annehmbarer Zeit zu verarbeiten. In unserer Arbeit betrachten wir Summed-Volume Tables (SVTs)

– eine Datenstruktur mit O(n log n) Speicherbedarf – die das Integrieren der Daten über beliebige,

achsenparallele Regionen in O(1) ermöglicht. SVTs werden für die Erzeugung räumlicher Suchstruk-

turen eingesetzt, und ermöglichen das interaktive Abfragen statistischer Größen über große, vom

Nutzer ausgewählte Regionen. Wir präsentieren einen hierarchischen Ansatz zur Berechnung und

Speicherung von SVTs, der auf der rekursiven Aufspaltung von Datenblöcken basiert. Abhängig von

dem verfügbaren Speicherbudget zwischen O(n) und O(n log n) wird eine geeignete Spaltstruktur

abgeleitet, die die Anzahl benötigter Speicherzugriffe und Speicherbedarf gegeneinander abwägt. In-

dem einige wenige, zusätzliche Speicherzugriffe pro Abfrage erlaubt werden, können SVTs in Umge-

bungen eingesetzt werden, wo ihr zusätzlicher Speicherbedarf dies sonst verhindern würde.

vii

ZUSAMMENFASSUNG

Des Weiteren enthalten – insbesondere hochdimensionale – Daten für gewöhnlich in einem hohen

Maß redundante Information. Diese kann aus kompakteren Datenrepräsentationen mit gleichem In-

formationsgehalt rekonstruiert werden. Daher benötigt es effektive Maßnahmen zur Identifikation

niedrigdimensionaler Einbettungen von Daten. Weit verbreitete Techniken zur Dimensionsreduk-

tion (DR) wie Multi-Dimensional Scaling, t-Distributed Stochastic Neighbour Embedding und Uniform

Manifold Approximation and Projection sind hierfür geeignet, generieren jedoch in jedem Durchlauf

andere 2D Einbettungen. Daher müssen mehrere Einbettungen untersucht und miteinander ver-

glichen werden, um gesicherte Einblicke in Datensätze zu erhalten. Wir stellen eine auf Voronoi

Diagrammen höherer Ordnung basierende Visualisierungstechnik vor, die es erlaubt, die Stabilität

von Ensembles über 2D Einbettungen zu beurteilen. Durch Zerlegung und Einfärbung der 2D Ebene

auf Basis eines Voronoi Diagramms werden Nachbarschaftsbeziehungen hervorgehoben, die ebenso

in den meisten anderen Einbettungen des Ensembles zutage treten. Des Weiteren stellen wir ein

neues Ähnlichkeitsmaß vor, mithilfe dessen wir Cluster sowie geeignete Repräsentanten im Ensemble

identifizieren.

Neben klassischen DR-Techniken werden aufgabenorientierte Kodierungen hochdimensionaler

Daten entwickelt, die durch das Erlernen von niedrigdimensionalen Merkmalsräumen in neuronalen

Netzen entstehen. Wir nutzen diesen Ansatz im Kontext der Computergrafik. In klassischen Level

of Detail Anwendungen werden mehrere Repräsentationen derselben Szene in verschiedenen Auf-

lösungsstufen – abhängig von der Distanz zur Kamera – gerendert. Allerdings hängt die korrekte

Wahl der Auflösungsstufe in der Praxis nicht nur von der Kameradistanz ab, sondern auch von der

Blickrichtung. Je nach Perspektive können unterschiedliche Teile der Geometrie verschattet werden

und tragen somit nicht zum finalen Rendering bei. Wir behandeln diesen Aspekt mithilfe einer En-

coder/Decoder Netzwerkarchitektur, und lernen eine kompakte Repräsentation hochdimensionaler

Geometrieausschnitte. Die gelernte Repräsentation enthält hinreichend viel Information, um Blick-

punkte zu identifizieren, unter denen die Geometrie nicht korrekt durch die gewählte Auflösungsstufe

dargestellt wird. Wir verwenden das Netzwerk, um auf Basis niedrig aufgelöster Geometriestruk-

turen geeignete Super-Sampling Strukturen im Ray-Tracing zu detektieren. Durch die Verwendung

von Geometriedaten können wir falsch beleuchtete Pixel zuverlässiger detektieren als alternative,

bildbasierte Ansätze.

Eine weitere Herausforderung entsteht durch die mangelnde Interpretierbarkeit hochdimensio-

naler Merkmalsräume wie sie im Deep Learning auftreten. Um Vertrauen in netzbasierte Entschei-

dungsprozesse zu schaffen, sind Methoden zur Darstellung der in den Merkmalsräumen kodierten

Information unabdingbar. Aktivierungsmaximierung fördert hierbei das Verständnis durch die

Generierung visueller, interpretierbarer Abbildungen von Merkmalen. Mithilfe von Aktivierungs-

maximierung konnte eine Taxonomie von modell- und aufgabenübergreifenden Merkmalen entwi-

ckelt werden. Hierzu wurden in aufwändiger Handarbeit eine Vielzahl an Merkmalsabbildungen

viii

miteinander abgeglichen. Wir schlagen Inverse Feature Visualization als einen ersten Schritt in Rich-

tung automatisierter Verarbeitung von Merkmalsabbildungen vor, und zeigen dass unsere Methode

der gradientenbasierten Inverse Feature Visualization zu einer gegebenen Merkmalsabbildung die

zugehörigen Neuronen identifizieren kann.

ix

Acknowledgments

First and foremost, I would like to thank Prof. Dr. Rüdiger Westermann. As my doctoral supervisor,

he offered me the opportunity to work on a doctoral degree at the Technical University of Munich

(TUM) and provided me with continuous support in all matters regarding administration, research,

and publishing. Our frequent discussions were invaluable when developing research ideas, assessing

results, or composing publications in the graphics and visualization community. I am impressed not

only by the vast amount of input he can provide when brainstorming but also by his remarkable

authoring skills when composing papers. Without his critical feedback and ability to find concise

formulations, publications probably would have had twice the page count while being twice as difficult

to follow along as a reader. Last but not least, I highly value his professional communication style

not only in discussions with me but also in critical conversations with students. From my limited

experience, only a small group of people has the ability to voice honest criticism without running into

danger of getting even slightly personal. Prof. Dr. Rüdiger Westermann certainly belongs to this group.

Even more, he always manages to turn setbacks into motivating suggestions on how to improve and

keep on pursuing one’s goals.

Beyond that, I would like to thank all my former and current colleagues for making each day in

the office more than worthwhile. Thank you Alexander, Behdad, Bianca, Björn, Christoph, Fatemeh,

Georg, Henrik, Josef, Junpeng, Kevin, Ludwig, Lukas, Marc, Marie-Lena, Mathias, Michael, Patrick,

Philipp, Sebastian, Steffen, and many more for all the valuable discussions regarding both work and

private matters, joyful moments, joint activities and welcome diversions when needed. More than two

years of the pandemic have driven home the point that social interaction with all of you is something

I would never like to miss out on again. Specifically, I am more than happy about having Sebastian

as my office mate. He has been a great listener and advisor whenever I got stuck in my research.

Sometimes, just telling a person about one’s problems helps in finding the solution. Sebastian and I

supported each other plenty in this regard, by taking on the role of what we call the (silent) "teddy

bear" listener. Even more, we share common research interests with a slight bias towards mathematics,

xi

ACKNOWLEDGMENTS

as well as a passionate hobby of making and discussing music. In addition to that, I would like to

thank Alexander as co-author on my very first publication at TUM. Collaborating with him in long

nights to hit the deadline and then finally leaving the building at 2:00 am after submitting a paper is

an experience I will never forget. Further, I thank Thorben Funke and Julia Liese for proofreading this

doctoral thesis, Susanne Weitz for her excellent support in all administrative matters, and Sebastian

Wohner for his relentless and quick support whenever I required a desktop environment for a student

or managed to wreak havoc on the chair’s GPU server or my desktop system.

Also, I would like to thank all persons outside of TUM who made my stage of life as a Ph.D. candidate

special. Eternal gratitude goes to Julia Liese for her love, support, and plenty of endurance when

coping with me in stressful times. The same holds for my ever-caring parents, who continue to share

their experience of life with me and my brothers. Speaking of which, I would not be the same person

without my two brothers who sparked my interests in mathematics and computer science early on. I

thank both of them for being babysitters, idols, friends, and family all at once for their “little” brother.

Similarly, I thank my nephews and my niece for their relentless source of energy, joy, and honesty.

You are the best kids ever! Many thanks go to my various flatmates Amy, Hannah, Julia, Kevin, Linda,

Pia, and Victoria over the course of the pandemic. In times of multiple lockdowns, they were the

people who kept me sane. Likewise, I thank all my old friends from Hanover, who suddenly were as

close as the neighbor next door. We had a lot of fun again in virtual board game rounds, chatting,

and gaming. Finally, I wish to express my gratitude to all the warm-hearted and passionate members

of the Sinfonic Wind Orchestra of Germering. Every rehearsal with them is a pure pleasure. Special

thanks go to all fellow board members of the orchestra, for being friends and for dedicating loads and

loads of time to keep the music going, without receiving a penny nor nearly as much recognition as

would be deserved.

xii

Contents

Abstract v

Zusammenfassung vii

Acknowledgments xi

1 Introduction 1

1.1 Contributions . 4

1.2 List of Publications . 6

1.3 Outline . 6

2 Related Work 9

2.1 Summed-Volume Tables . 9

2.2 Voronoi Diagrams . 12

2.3 Dimensionality Reduction . 14

2.4 Neural Scene Representations . 16

2.5 Level of Detail . 20

2.6 Adaptive Super-Sampling . 21

2.7 Explainable Artifical Intelligence . 22

3 Parameterized Splitting of Summed Volume Tables 29

3.1 SVT Split Operation . 31

3.2 Properties of the Data Structure . 33

3.3 Heuristic for Building Parameter Trees . 34

3.4 Addendum to the Paper . 34

3.5 Alternative Representations of Summed-Volume Tables . 35

4 Visualizing the Stability of 2D Point Sets from Dimensionality Reduction Techniques 39

4.1 Dimensionality Reduction . 39

4.2 Voronoi Diagrams . 42

xiii

CONTENTS

4.3 Clustering . 44

4.4 Matrix Seriation . 47

4.5 PageRank . 48

4.6 Robustness Plots . 48

4.7 Representative Point Sets . 50

5 Deep Learning 53

5.1 Training . 54

5.2 Neural Network Architectures . 56

6 Learning Generic Local Shape Properties for Adaptive Super-Sampling 61

6.1 Sparse Voxel Octrees & Level of Detail . 62

6.2 PatchNet . 63

6.3 Derivation of the Super-Sampling Pattern . 66

7 Inverting the Feature Visualization Process for Feedforward Neural Networks 69

7.1 Inverse Feature Visualization . 71

7.2 Gradient-Based Inverse Feature Visualization . 72

8 Summary of Papers 77

A Parameterized Splitting of Summed Volume Tables . 77

B Visualizing the Stability of 2D Point Sets from Dimensionality Reduction Techniques . . 79

C Learning Generic Local Shape Properties for Adaptive Super-Sampling 80

D Inverting the Feature Visualization Process for Feedforward Neural Networks 81

9 Conclusion 83

Bibliography 87

Published version of Paper A 105

Published version of Paper B 123

Published version of Paper C 137

Version of Paper D as hosted on arXiv.org 141

xiv

1
Introduction

Simulations of chaotic systems such as fluids and meteorological processes, as well as rendering ap-

plications in computer graphics, rely on accurate and thus highly resolved data representations in

order to converge to a realistic output. Commonly, data is stored in spatial (3D) or spatiotemporal

(4D) grids with resolutions of hundreds to thousands of samples per dimension, giving rise to giga-

and terabyte scale datasets. In meteorological and climatological research, high-resolution histori-

cal weather data such as the publicly available ERA5 data set [Her+18; Her+20] containing global,

atmospheric reanalysis data is often analyzed to indicate trends and reveal correlations between ob-

served physical quantities. With a distance of 0.25° between samples in both latitude and longitude,

37 vertical pressure levels, and measurements every hour over more than forty years, the resulting

data grid has a resolution of 1440 × 721 × 37 × 350,000, that is over 13T entries. On top of that,

each entry stores a multivariate data sample of up to 16 different meteorological variables. When

considering monthly averages, the dataset reduces to 18G entries.

Over the years, the notion of what is considered a large-scale dataset evolved with the constantly

increasing memory capacities and compute capabilities of modern commodity hardware. Nowadays,

generating and storing large-scale datasets of single-digit terabyte size is tractable on most mid-range

priced desktop systems. However, the scalability of many applications is not defined by the generation

process or storage requirements of the processed data, but by the scalability of the subsequent data

processing algorithm. In general, with the ongoing growth of datasets, non-linear scalability becomes

less practicable every year. For instance, a complexity of O(n log n) introduced by many acceleration

structures may already be too large to either fit the structure into memory or process it in reason-

able time. For a 1TB dataset, the additional logarithmic factor accounts for a 40 times increase in

complexity compared to linear algorithms. Hence, to fully utilize large-scale datasets, the design of

scalable algorithms is paramount. To this end, we are going to present a specific data structure for

1

1. INTRODUCTION

summed-volume tables with flexible control over its memory requirements, ranging from O(n log n)

down to O(n) at the cost of reduced access speed.

Besides high-resolution grid data, a second kind of large-scale datasets gained significantly in impor-

tance with the recent advances in data-driven designs, more specifically, deep learning (DL). Modern

DL architectures are characterized by their sheer expressive power that stems from their highly

parametrizable nature. Deep neural networks (DNNs) such as the well-known GoogLeNet [Sze+15]

incorporate millions of adjustable parameters that are tweaked during a training process. Al-

though the memory requirements for storing these parameters are quite manageable in the range

of megabytes—networks have been used many times for compression schemes [DNJ20; Lu+21;

Tak+21; WHW21]—the intermediate feature spaces arising when evaluating a deep neural net-

work (DNN) are notoriously high-dimensional. In convolutional neural networks (CNNs) such as

GoogLeNet, features are organized in multiple layers, with each layer outputting a multivariate 2D

grid of features per input. Although the spatial resolution of each grid is limited, ranging from 72

to 1122 for GoogLeNet, the number of features is comparably high, with up to 832 features being

computed per 2D feature grid entry. In total, over 3.1M features are computed for a single input im-

age when evaluating GoogLeNet. Even when considering small datasets with 60,000 images such as

CIFAR10 [Kri09] (at the very moment ImageNet [Den+09] comprises more than 14 million images),

this means that any technique that visualizes the feature space of a network over a prescribed dataset

has to cope with ten thousands of a million-dimensional data points.

High dimensional data points as occurring in the context of DNNs pose significant challenges in sub-

sequent reasoning, processing, and exploration. Much of our intuition about low-dimensional spaces

does not translate to high dimensionality. Most striking, the Euclidean distance measure dictating

the 3D world we perceive every day loses its significance in high-dimensional spaces, as randomly

sampled points are all likely to have similar Euclidean distances to each other. In addition to that,

the volume of spaces increases exponentially with the number of dimensions d and thus is difficult

to conceptualize for d ≫ 3. For the very same reasons, processing data in high-dimensional spaces

is not trivial. The choice of distance measures has to be rethought, and reasonable sampling of high-

dimensional spaces is not tractable due to the exponential volume growth. Last but not least, most

existing visualization techniques are limited to encoding only a few dimensions by mapping them

to glyph properties such as position, color, scale, and shape. Even visualization techniques that have

been specifically designed to visualize multivariate data, such as parallel coordinate plots or heatmaps,

are not applicable to datasets with millions of dimensions. Overall, high-dimensional data is not very

accessible to both automated and manual inspection.

In practice, most high-dimensional dataset representations are overdetermined. Many combina-

tions of values either cannot occur in a data generation process—due to constraints, dependencies,

and correlations—or at least are very unlikely to occur, e.g. random pixel noise when taking a picture.

2

The intrinsic dimensionality of a specific dataset, that is the minimal number of variables required to

represent the data, will be significantly smaller. Thus, a common conception of a high-dimensional

dataset is that of a submanifold living in a high-dimensional ambient space. Data points arise as

samples from the submanifold, with the dimension of the submanifold equalling the intrinsic dimen-

sion of the dataset. To increase accessibility, compact representations—i.e. the submanifold—of high-

dimensional datasets have to be found. Dimensionality reduction (DR) serves this purpose by mapping

data from a high-dimensional ambient space to a more benign, low-dimensional embedding space.

However, popular DR techniques such as multidimensional scaling (MDS), t-distributed stochastic

neighbour embedding (t-SNE) and uniform manifold approximation and projection (UMAP) produce

different 2D point mappings for each run. Therefore, to obtain reliable insights into the data, mul-

tiple mappings have to be investigated and compared to each other. In this thesis, we are going to

present a visualization technique that allows—at a glance—to identify regions for which most map-

pings coincide and thus can be considered reliable. Additionally, we present a data-driven scheme

for finding low-dimensional representations of high-dimensional voxel scenes and apply it to support

view-dependent, adaptive super-sampling in level of detail rendering.

Coming back to the initial example of feature spaces in GoogLeNet, some high-dimensional spaces

may suffer from not only high dimensionality but also a lack of interpretability. As of yet, feature

spaces in DNNs are not well understood, although they ultimately determine how a network comes

to its conclusion. This is partially due to their high-dimensional nature, but also due to their complex

relationships that form when concatenating various network layers. In order to facilitate a better

understanding of feature spaces, DR techniques have been utilized to visualize them in interactive ex-

ploration tools [Kah+18; Rau+17; Car+19; Hoh+20]. In doing so, researchers were able to identify

topological structures such as clusters and outliers regularly. Although this approach may be feasible

to explain why a network fails to predict the correct outcome for a specific outlier, up to now neither

it is exactly clear how such approaches translate into designing and training improved networks, nor

do such visualizations reliably express the inter-feature relationships that are crucial in the network’s

decision making process. In this regard, dimensionality reduction may even be detrimental. It rather

obfuscates the meaning of axes in the embedding space, even if axes in the ambient space are associ-

ated with some interpretable concept. Instead, activation maximization (AM) [Erh+09; NYC19] was

proposed as a means of associating visual and interpretable concepts with various features. Recently,

AM has been used to define a taxonomy of feature classes by extensively investigating feature spaces

of multiple networks [Cam+20]. In particular, resulting feature visualizations suggest that analogous

features form across models and tasks [Ola+20]. However, these findings were only possible by man-

ually comparing and matching a vast amount of feature visualization. To automate this process, we

propose the approach of inverse feature visualization (IFV).

3

1. INTRODUCTION

1.1. Contributions

In this thesis, four contributions specific to the issues we have just mentioned are presented. First, we

propose a novel data structure for summed-volume tables (SVTs) that can flexibly trade access speed

for lower memory consumption [RW21a]. In doing so, we ensure the scalability of SVTs even for large-

scale datasets. Second, we address the inherent randomness of multiple DR techniques by providing a

visualization that highlights stable regions over multiple runs of either t-SNE or MDS [RKW20]. Third,

we present a novel encoder/decoder-based network architecture to learn low-dimensional represen-

tations over local geometry patches of large voxel scenes [RW22]. Last, we extend the idea of feature

visualization by inverting the AM process [RW20]. That is, given a visualization of a feature created

by AM, we can identify for which feature the visualization has been created. We envision that this

technique will allow users to automatically detect similar features across multiple networks in an

automated fashion. Note that the work addressing feature visualization has not been published in a

peer-reviewed journal. In the following, the detailed contributions are given for each work of ours.

Parameterized Splitting of Summed Volume Tables [RW21a] We introduce a novel, hierarchi-

cal approach to computing and storing summed-volume tables (SVTs) by recursively splitting blocks

of data before computing their prefix sums. Since partial prefix sums require fewer bits to encode their

values, the overall memory consumption can be controlled by the number and position of the per-

formed splitting operations. We implement a heuristic that automatically identifies close-to-optimal

splits under any prescribed memory budget between O(n) and O(n log n). In doing so, we provide

a flexible SVT representation that can be tailored towards the user’s needs regarding access speed

and/or memory consumption. We demonstrate the scalability of our approach by applying it to

datasets of various sizes. In a comparative study, we compare our approach to various alternative

SVT representations w.r.t. memory consumption, access speed, and qualitative features such as the

complexity of read, update, and construction operations.

Visualizing the Stability of 2D Point Sets from Dimensionality Reduction Techniques [RKW20]
We present a visualization technique to analyze the stability of neighborhood relations in an ensemble

of 2D point embeddings, and we demonstrate its use for assessing the stability of dimensionality

reduction techniques to variations in initialization. Although we present information over ensem-

ble data, we intend to provide information “at a glance”, without making use of large dashboards

or further brushing and linking over vast numbers of embeddings. Instead, we propose to use a

novel stability measure for k-neighborhoods to identify clusters of embeddings via a matrix seriation

technique, and then select a representative embedding by applying the PageRank algorithm. For

each representative embedding determined in this way, we make use of k-order Voronoi diagrams

4

1.1. CONTRIBUTIONS

to analyze the stability of its local regions w.r.t. to the whole ensemble. A visual encoding of stable

regions is provided by partitioning the 2D embedding, with the color of connected components

indicating the stability of their corresponding regions and the color of separating ridges indicating

the separation strength of adjacent components. We compare our approach against Member-centric

cluster variability plots by Kumpf et al. [Kum+18] and show that both approaches can be used in

conjunction to combine their strengths.

Learning Generic Local Shape Properties for Adaptive Super-Sampling [RW22] We propose

a data-driven latent space encoding of local geometry patches that facilitates the identification of

wrongly shaded pixels in level of detail (LOD)-based voxel rendering. It is realized by training a novel

encoder/decoder-based network architecture, called PatchNet, that receives a local geometry patch

as well as a viewport description, and then returns shading information about the geometry patch

projected into the viewport. By comparing the shading information from the network to a 1-sample-

per-pixel rendering, view-dependent discrepancies due to LOD approximations can be detected and

corrected via adaptive super-sampling. Since we train on local geometry patches instead of whole

scenes, our architecture generalizes to arbitrary scenes that are composed of similar geometry patches

seen in training. Additionally, the viewport description is only available to the decoder, so that latent

codes returned by the encoder are view-independent. This design enables the precomputation of all

latent codes, which then are organized in a hierarchical LOD data structure to support coarse to fine

look-ahead at various scales. We evaluate the super-sampling patterns returned by PatchNet against

patterns of multiple other super-sampling strategies and show that PatchNet can detect shading errors

that cannot be detected by any screen-space-based super-sampling strategy.

Inverting the Feature Visualization Process for Feedforward Neural Networks [RW20] We

present the problem of inverse feature visualization (IFV). That is, given an arbitrary input, one

intends to find a linear combination of neurons for which activation maximization will most likely

converge to the given input. We solve this problem for specific inputs that have been obtained by

activation maximization in the first place. Thus, we can recover the neurons for which activation

maximization has been applied, by only having access to the feature visualization and its activations

and gradients when fed to the network. Our method is realized by optimizing for those neurons

for which the gradient of the activation maximization objective vanishes. Since this formulation

allows for multiple trivial solutions (e.g. by dead neurons), several reformulations of the proposed

optimization problem are performed to mask out trivial solutions and reliably recover the neurons of

interest. In various experiments, it is shown that these reformulations are necessary and sufficient

to invert feature visualizations. In discussions, we envision how IFV may be of use in deep learning

5

1. INTRODUCTION

feature analysis and present directions on how to improve our algorithm such that it is applicable to

any input instead of feature visualizations only.

1.2. List of Publications

Two of the four works accompanying the thesis have been published in full papers of the following

peer-reviewed conferences and journals:

• Christian Reinbold and Rüdiger Westermann. “Parameterized Splitting of Summed Volume Ta-

bles”. In: Computer Graphics Forum 40.3 (2021), pp. 123–133. DOI: 10.1111/cgf.14294

• Christian Reinbold, Alexander Kumpf, and Rüdiger Westermann. “Visualizing the Stability of

2D Point Sets from Dimensionality Reduction Techniques”. In: Computer Graphics Forum 39.1

(2020), pp. 333–346. DOI: 10.1111/cgf.13806

One work of the thesis has been published in a short paper of the peer-reviewed conference Euro-

graphics 2022. As a short paper, it is not assessment-relevant according to the TUM Regulations for

the Award of Docotral Degrees, effective January 1, 2014:

• Christian Reinbold and Rüdiger Westermann. “Learning Generic Local Shape Properties for

Adaptive Super-Sampling”. In: Eurographics – Short Papers. Ed. by Nuria Pelechano and David

Vanderhaeghe. The Eurographics Association, 2022. ISBN: 978-3-03868-169-4. DOI: 10.2312/

egs.20221032

Lastly, one work is available on arxiv.org. It has not been published in a peer-reviewed process and

thus is not assessment-relevant according to the TUM Regulations for the Award of Docotral Degrees,

effective January 1, 2014:

• Christian Reinbold and Rüdiger Westermann. “Inverting the Feature Visualization Process for

Feedforward Neural Networks”. In: arXiv e-prints (July 2020). arXiv: 2007.10757 [cs.LG]

1.3. Outline

The thesis is structured as follows. In Chap. 2, prior work related to our publications is discussed.

Chap. 3 to 7 contain the concepts and approaches that are either used or introduced in the works

associated with this thesis. Our novel SVT data structure [RW21a] is described in Chap. 3, and the

visualization technique to analyze the stability of 2D point sets [RKW20] is discussed in Chap. 4. To

prepare Chap. 6 and 7, a compact introduction to fundamentals of deep learning is presented in 5.

Then, Chap. 6 addresses learning generic local shape propertiers for adaptive super-sampling [RW22].

6

https://doi.org/10.1111/cgf.14294
https://doi.org/10.1111/cgf.13806
https://doi.org/10.2312/egs.20221032
https://doi.org/10.2312/egs.20221032
https://arxiv.org/abs/2007.10757

1.3. OUTLINE

Inverse feature visualization [RW22] is discussed in Chap. 7. After presenting summary information of

our publications in Chap. 8, we conclude the thesis and present future research directions in Chap. 9.

7

2
Related Work

In this chapter, we are going to discuss prior work that is related to this thesis. With respect to our

work about summed-volume table representations [RW21a], we present the foundations of summed-

volume tables, alternative representations, applications and efficient algorithms for computing a

summed-volume table. Further, we address applications of Voronoi diagrams, specifically in visu-

alization, as well as dimensionality reduction techniques. Both topics are related to our work about

visualizing stable regions [RKW20]. In the context of learning generic local shape properties for adap-

tive super-sampling [RW22], we discuss neural scene representations, level of detail applications, and

adaptive sampling techniques. Lastly, we present recent developments in the field of explainable ar-

tifical intelligence which we consider to be important for inverse feature visualization [RW20]. Here,

we also emphasize robust training as a technique that facilitates the forming of human interpretable

features.

2.1. Summed-Volume Tables

Summed-area tables (SATs) are a versatile data structure which has initially been introduced to enable

high-quality mipmapping [Cro84] by precomputing integral values over rectangular regions in a 2D

data array F . They are realized by populating an array of equal size as F such that the value at

index (x , y) equals the sum over all values contained in the rectangular subarray that is spanned

by the origin and (x , y). With four values from a SAT, the integral over any rectangular region can

be obtained in constant time. The concept of SATs is applicable to arrays of arbitrary dimension

d [Tap11], in which case the data structure is termed a d-dimensional summed-volume table (SVT).

As shown in Chap. 3, SVTs allow to compute integrals over any hyperbox by querying 2d values.

In other words, integrals can be computed in O(1) independently of the hyperbox or array size.

However, SVTs have two significant limitations, which we discuss in detail in Sec. 3. First, they have

9

2. RELATED WORK

a large memory footprint of O(n log n), where n is the number of elements in F . The additional

logarithmic factor is especially costly for large 3D or even higher-dimensional datasets. Second, the

SVT-accelerated evaluation of integrals suffers from catastrophic cancellation when performed with

floating-point arithmetic [Hen+05].

Summed-Volume Table Representations Several SVT representations have been proposed to ad-

dress the aforementioned limitations. Note that although some authors discuss their modifications in

the context of two-dimensional SATs, all concepts presented here also generalize to SVTs of arbitrary

dimensionality. Hensley et al. [Hen+05] suggest to mitigate precision loss issues for floating-point

SATs by offsetting data values before computing SAT entries. Further, they suggest computing sep-

arate SATs for the four quadrants of the image. Both measures come at no additional costs during

integral computation, and they decrease the dynamic range of floating-point values stored in a SAT

so that the impact of cancellation effects is reduced. The suggestions of Hensley et al. likewise can

be used to reduce precision requirements and thus the memory footprint of integral SATs. From now

on, all related work presented here assumes integral SVTs. As stated in Sec. 3, this prerequisite is

reasonable and can always be established by quantization.

Belt [Bel08] proposes to apply rounding by value truncation to the input array before computing

its corresponding SVT. By reducing the precision of the input, the SVT requires fewer bits of preci-

sion as well. To compensate for rounding error accumulation, the rounding routine is improved by

considering introduced rounding errors of neighboring SVT entries. Note that this technique can also

be utilized when quantizing floating-point arrays to prepare them for a SVT representation expecting

integral inputs. In the same work, Belt also introduces the technique of computation through the

overflow. Here, SVT entries are stored modulo 2ℓ by dropping all except for ℓ least significant bits. As

a consequence, memory requirements reduce to O(ℓn). As long as integrated hyperboxes are small

enough such that results greater or equal than 2ℓ are omitted, all computations can be performed

modulo 2ℓ to obtain correct results. Computation through the overflow excels in filtering tasks with

kernels of prescribed box size. However, it is not applicable in situations where box sizes are ei-

ther large or not known in advance. Further representations of integral SVTs have been proposed

in works of Ehsan et al. [Ehs+15], Zellmann et al. [ZSL18], Urschler et al. [UBD13] and Schneider

and Rautek [SR17]. All of these methods have in common that they reduce the amount of required

memory at the cost of reading more values from the SVT representation when computing an integral.

Concise explanations of each method are given in Sec. 3.5.

Efficient Generation of Summed-Area Tables SATs are generated in linear time by performing

a one prefix sum scan along the rows, and a second one along the columns to sum up row-wise

prefix sums. Bilgic et al. [BHM10] implement the prefix sum scan along the rows on the graphics

10

2.1. SUMMED-VOLUME TABLES

processing unit (GPU) where prefix sum scans along contiguous elements in memory can be efficiently

realized. Then, the array of row-wise prefix sums is transposed by a block-wise operating kernel

that exhibits a coalescent memory access pattern and avoids bank conflicts by additional padding.

Due to the transposition, columns in the original data array are arranged in contiguous memory

now, so that the second prefix sum scan along columns is computed efficiently as well. Overall, this

approach requires three read-write operations in global memory per array entry. The block-register-

local-transpose-scanrow (BRLT-ScanRow) method as proposed by Chen et al. [Che+18] performs the

row-wise prefix sum scan and subsequent transpose operation jointly in shared memory before writing

the results to global memory. By invoking this routine twice, a SAT can be computed with only two

read-write operations in global memory. Emoto et al. [Emo+18] improve further on this by presenting

an algorithm that requires approximately one read-write operation in global memory per array entry.

As a consequence, they achieve a runtime performance that is 5.7% above the theoretical lower bound

given by the runtime performance of matrix duplication.

Applications SVTs have numerous applications in graphics, object detection, and region filtering as

they allow the evaluation of arbitrarily sized box filters in O(1). In graphics, Hensley et al. [Hen+05]

apply SATs to realize glossy reflectors and refractors. Whenever a surface is sampled, the reflected (or

refracted) object’s texture map is filtered with a box filter of a kernel size depending on the distance

between the reflector and the reflected object. Similarly, depth-of-field effects are implemented by a

post-processing step that applies box filters of various sizes to the rendered image. SATs were also

used to realize soft shadow effects, by adaptively blurring variance shadow maps with various filter

sizes depending on the distance to the light blocker [Lau07].

SATs have been successfully used to accelerate classical object detection algorithms that base upon

box filtering. In 2004, Viola et al. [VJ04] utilize SATs in a method to detect faces by convolving

the input image with a simple set of piecewise box filter kernels. Grabner et al. [GGB06] propose to

speed up the scale invariant feature transform (SIFT) method [Low04] that is used to generate feature

descriptors for object detection. SIFT detects scale-invariant points of interest by applying box filters

of various sizes to the image. Similarly, the computation of keypoint descriptors in SIFT can be sped

up by realizing integration over 4× 4 image gradient patches with SATs. Bay et al. [BTV06] propose

a similar method for keypoint detection. Hessian matrices at various scales are approximated by

convolving with piecewise box filter kernels via SATs. Then, local maxima of the Hessian determinant

in 3D scale space are identified as points of interest. In 2014, Facciolo et al. [FLM14] deploy SATs to

speed up block matching, that is finding similar patches between two images with close by centers.

For each eligible center offset, all possible block pairs with the given center offset can be compared

efficiently by building a SAT over a difference image that is obtained after shifting one of the two

input images according to the offset. Porikli [Por05] implements a SAT over histograms to accelerate

11

2. RELATED WORK

the search for image subregions with similar color histograms as the object of interest. Also, SATs

can speed up an adaptive image binarization method with applications in classical optical character

recognition [SKB08].

In region filtering, SATs can be utilized when approximating arbitrary filters with box fil-

ters [BSB10]. Hussein et al. [HPD08] factorize arbitrary filter kernels into a linear combination

of region-independent functions hi and a point-independent functions gi . Whereas each gi is eval-

uated in O(1) when filtering a region, the functions hi have to be integrated, which can be realized

in O(1) by precomputing a SAT for each region-independent function. Phan et al. [Pha+12] show

that SATs enable the computation of statistical quantities for arbitrarily large axis-aligned regions in

constant time, and use this insight to speed up an existing image quality assessment algorithm.

Lastly, SVTs allow to test regions for emptiness in O(1) by evaluating an integral over an occupancy

mask and comparing it to zero. In this context, SVTs have been used in the creation of acceleration

structures for sparse scenes and data. Havran et al. [HHS06] build a bounding volume hierarchy

(BVH) / spatial k-d tree hybrid acceleration structure for mesh data by discretizing the 3D domain and

finding kd-splits in expected O(log log n). A SVT over the discretized domain is then used to evaluate

the split cost function in constant time. Vidal et al. [VMD08] propose to use SVTs to speed up cost

function evaluations in a BVH construction process for voxelized volume datasets. In their work, the

cost function requires the computation of bounding volumes over binary occupancy data. By running

binary search on a SVT, this task can be solved in O(log n) instead of O(n3), where n is the side

length of the volume. Ganter and Manzke [GM19] propose to use SVTs to cluster bounding volumes

of small size before assembling them bottom-up into a BVH for direct volume rendering. Schneider

et al. [SR17] make use of 1D SVTs to realize a spatial indexing structure into sparse volumes.

2.2. Voronoi Diagrams

Voronoi diagrams as introduced by the eponymous author in 1908 [Vor08] have been proven to be

a ubiquitous data structure, with a wide variety of generalizations and applications in numerous

fields [Oka+00]. The classical Voronoi diagram partitions the ambient space of a finite point set P

of Voronoi sites into a set of disjoint regions, called Voronoi cells. Each cell is defined by all loca-

tions in the ambient space that share the same nearest neighbor in P. In particular, Voronoi cells

and points in P are in one-to-one correspondence. By replacing the distance measure according to

which nearest neighbors are defined, various generalizations of Voronoi diagrams such as the power

diagram [Aur87] can be obtained. Here, the Euclidean distance measure is replaced by the square

distance minus the square of a point-specific weight w(p). That is, the distance between a location

x in the ambient space and a point p ∈ P is given by d(x , p) = ||x − p||2 − w(p)2. By leaving out

12

2.2. VORONOI DIAGRAMS

the squares in the distance formulation, additively weighted Voronoi diagrams are obtained. Simi-

larly, multiplicatively weighted Voronoi diagrams are defined by d(x , p) = w(p) · ||x − p||. In practice,

weights can be utilized to adjust the size of Voronoi cells according to application-specific constraints.

Centroidal Voronoi diagrams [DFG99] are defined by the constraint that each point has to be the

centroid of its respective Voronoi cell. They can be created by Lloyd’s algorithm [Llo82].

Another generalization of Voronoi diagrams is realized by not requiring Voronoi sites to be points

anymore. Instead, a Voronoi site can be an arbitrary geometrical shape, or more generally, a (not nec-

essarily finite) subset of locations in the ambient space. In this case, the distance measure between

a site p and location x is given by d(x , p) = miny∈p ||x − y||. Last but not least, k-order Voronoi

diagrams [SH75] generalize regular Voronoi diagrams by organizing locations into regions for which

the k-nearest neighbors coincide. In our work [RKW20], we utilize the topology of k-order Voronoi

diagrams (see Sec. 4.2) to cluster k-neighborhoods. In graphics, Voronoi diagrams are used in proce-

dural mesh generation and surface reconstruction. For instance, Olsen utilizes Voronoi diagrams to

break monotony in noise-based terrain generation [Ols04]. Bletterer et al. [BPA22] construct surfaces

from depth maps by first computing a localized, centroidal Voronoi tessellation per depth map, and

then gluing them to a global Voronoi tessellation representing the 3D surface.

Applications in Visualization Voronoi diagrams exhibit several properties of particular interest for

the visualization community. First, Voronoi tessellations do not suffer from overplotting as Voronoi

cells do not overlap. Second, clutter is avoided as long as values mapped to visual attributes of

Voronoi cells have spatial continuity. Then, even thousands of Voronoi cells appear as large, homo-

geneous regions. Third, Voronoi tessellations can be rendered in the background of visualizations

that leave large portions of the screen empty otherwise. For instance, we make use of this property

when visualizing glyph representations of data points along with robustness plots [RKW20]. Last,

the one-to-one correspondence between Voronoi cells and points is easy to perceive since a point is

always located in its respective Voronoi cell. Note however that this property is lost for higher-order

Voronoi diagrams. Thus, Aupetit [Aup07] proposes to visualize quantities over pairs of points by

Segment-Voronoi diagrams instead of 2-order Voronoi diagrams.

Balzer and Deussen propose Voronoi treemaps [BD05] to layout treemaps with more flexible, non-

rectangular shapes. To lay out the children of a tree node, a Voronoi tessellation is created by sampling

a point per child from the area assigned to the current node. In an iterative process, each point is

processed by a) updating its weight according to the actual and expected size of its Voronoi cell,

and b) moving it to the centroid of its Voronoi cell. The areas assigned to the children are given

by the Voronoi cells after the iterative process converges to a stable, centroidal Voronoi tessellation.

Nocke et al. [NSB04] utilize Voronoi tessellations to generate a space-filling visualization depicting

aggregated values of climate data clusters. Aupetit [Aup07] visualizes a proximity measure assessing

13

2. RELATED WORK

0.00 0.25 0.50 0.75 1.00 1.25
0.0

0.5

1.0

De
ns

ity

(a) 0 10 20 30 40
0.0

0.2

0.4

0.6

De
ns

ity

(b)

Figure 2.1.: Distribution of pairwise Euclidean distances for 100 points sampled from a (a) 3D and (b) 10,000D
unit cube, respectively.

the quality of dimensionality reduction (DR) projections using colored Voronoi cells. Later, Lespinats

and Aupetit [LA11] extend on this idea and map a two-dimensional color-code to Voronoi cells for

the visualization of distortions such as tears and false neighborhoods introduced by DR techniques.

2.3. Dimensionality Reduction

Processing, exploring, or visualizing high-dimensional data is challenging not only due to the in-

creased computational efforts required to process the data but also due to our lack of intuition when

reasoning about more than three-dimensional data. For instance, the significance of Euclidean mea-

sures declines in high-dimensional spaces, as most pairs of points are likely to have similar Euclidean

distances, see Fig. 2.1. Additionally, since the volume of spaces increases exponentially with the num-

ber d of dimensions, dense sampling of high-dimensional spaces is not tractable. On the visualization

side, most visualization techniques cannot cope with high dimensional data as the number of visual

attributes that can be used for mapping dimensions is limited. To bypass issues arising from high di-

mensionality, a plethora of DR techniques have been developed to map data from a high-dimensional

ambient space to a more benign, low-dimensional embedding space. More than 70 approaches are

mentioned in the survey of Espadoto et al. [Esp+21, Table 1]. Here, we can only discuss the most

popular DR techniques and refer the interested reader to the work of Espadoto et al. as well as the

surveys mentioned there for an extensive overview of the field.

Feature selection [Li+17] is the most straightforward approach to DR by identifying a subset of

dimensions that contain the relevant information of a dataset. The remaining dimensions with no—

or redundant—information are removed to obtain a tractable dataset. When including an additional

dimension decorrelation step before applying feature selection, one arrives at the principal compo-

nent analysis (PCA) [Pea01]. It computes the directions of the dataset showing the most variance

by decomposing its covariance matrix. A reduction to a k-dimensional embedding space is realized

14

2.3. DIMENSIONALITY REDUCTION

by projecting all data points onto the subspace spanned by the k directions with the most data vari-

ance. Since the projection from ambient to embedding space can be described by a linear transfor-

mation, PCA is considered a linear method. However, it is not guaranteed that high-dimensional

datasets can be solely explained by a limited set of linear relationships. Data points may be located

on highly non-linear submanifolds embedded in the high-dimensional ambient space. Non-linear

DR techniques intend to identify these submanifolds and use their presumably low intrinsic dimen-

sionality to project the dataset to the low-dimensional embedding space. t-distributed stochastic

neighbour embedding (t-SNE) [MH08] models the neighborhoods of data points in ambient and em-

bedding space separately as two discrete probability distributions. After randomly initializing points

in embedding space, their locations are updated in an iterative optimization scheme minimizing the

Kullback-Leibler divergence between the ambient and embedding probability distribution. By consid-

ering neighborhood relationships, manifold structures are locally preserved in the embedding space.

The original t-SNE formulation has a runtime complexity of O(n2). Van der Maaten [Maa14] presents

an approximation of t-SNE that can be obtained in O(n log n). In the embedding space, distances can

be approximated by a technique first introduced by Barnes and Hut [BH86]. Points are grouped in

hyperoctree cells such that similar distances to all points in a cell of sufficiently small size can be

assumed. In ambient space, neighborhood probabilities are thinned out by considering only a fixed

number of nearest neighbors, which can be efficiently derived from a vantage-point tree [Yia93].

Uniform manifold approximation and projection (UMAP) is a more recent DR technique that is

based upon matching fuzzy topologies of edges in the ambient and embedding space. Each edge

appearing in the k-nearest neighborhood graphs over point locations in both ambient and embedding

space is assigned a probability value depending on the distance of connected points as well as the

distance of both points to their respective nearest neighbor. Then, the point positions in embedding

space are optimized such that the cross-entropy between fuzzy edges in ambient and embedding

space is minimized. Compared to t-SNE, probability relations in embedding space are sparse, so no

further hyperoctree is required as acceleration structure. In particular, UMAP scales better than t-SNE

concerning dimensions of both the ambient and embedding space, making reductions to embedding

spaces with more than two dimensions feasible.

Whereas t-SNE and UMAP optimize for local connectivity of points, multidimensional scaling (MDS)

techniques are global in the sense that they intend to match distances between any pairs of points.

This is achieved by minimizing a stress function over the embedded point positions that becomes

zero if and only if distances are preserved perfectly. As discussed in surveys by Gronen and van de

Velden [GV16], as well as Saeed et al. [Sae+18], various stress functions and algorithms to minimize

them have been proposed over time. Here, we highlight two specific MDS techniques and refer to

the surveys for others. Scaling by majorizing a complicated function (SMACOF) [LM09] by de Leeuw

and Mair solves a least-squares MDS stress function by iteratively optimizing and updating a convex

15

2. RELATED WORK

majorization of the stress function (see Sec. 4.1 for details). Isomap [TdL00], on the other hand, is an

MDS variant where Euclidean distances in embedding space are matched against geodetic distances in

ambient space. Geodetic distances are obtained by computing the weighted k-nearest neighborhood

graph in ambient space and then using a shortest path algorithm on this graph to determine geodetic

distances. Similar to t-SNE and UMAP, this approach intends to recover the submanifolds the data

is located in. However, by considering points with far geodetic distances as well, Isomap attempts to

match the global structures of a submanifold instead of local ones.

Quality Assessment In general, the high-dimensional ambient space cannot be projected to the

low-dimensional embedding space without loss of information. Whereas linear methods such as

PCA explicitly squash dimensions, non-linear methods introduce distortions when mapping high-

dimensional points to low-dimensional ones. For 2D embeddings, Aupetit [Aup07] proposes to vi-

sualize the local quality of a projection by picking a single point and mapping all distances to other

points in high-dimensional space to a color of the respective other point’s Voronoi cell in embedding

space. Thus, distortions become visible by discontinuities and non-circular shapes in the resulting

coloring of a Voronoi diagram tessellating the embedding space. They also propose to use Segment-

Voronoi tessellations to highlight false neighborhoods in the projection. Hermann et al. [HGK09]

visualize local Kruskal stress by mapping it to point color in a scatter plot. It measures distortions in

distances between a data point and its closest neighbors in the projection. Over the years, various

quality assessment metrics have been introduced to evaluate the credibility of projections. We refer

to the work of Venna [Ven07, Section 3] for a survey of metrics that measure and visualize the quality

of projections.

2.4. Neural Scene Representations

In classical computer graphics, geometric scenes and scientific datasets have been described by polygo-

nal surface meshes, point clouds, implicit functional descriptions, or voxel models. Due to the discrete

nature of most representations, they lack differentiability and cannot easily be integrated into exist-

ing deep learning pipelines. Recently, various differentiable scene representation networks (SRNs)

architectures have been developed to encode geometric and volumetric data in 3D space. They al-

low for the integration of geometric models into training pipelines so that various geometric tasks in

computer vision and graphics become amenable to deep learning frameworks. SRNs have success-

fully been used in fields such as shape completion, shape reconstruction, scene compression, adaptive

sampling, super-resolution, and global illumination.

Most neural scene representations are realized by learning either an implicit function description

R3→ R or a volumetric, explicit function description that maps from R3 to volumetric properties such

16

2.4. NEURAL SCENE REPRESENTATIONS

as material density or color. Whereas the former approach is suitable for modeling and rendering iso-

surfaces, the latter approach is closer to direct volume rendering (DVR)—although it also has been

used for modeling surfaces with sparse, volumetric density fields [Mil+20]. Besides being differen-

tiable, SRNs have several other benefits compared to classical approaches. First, they are continuous

by design and do not depend on a specific spatial resolution. The quality of SRNs rather depends

on the number of weights that are available to approximate a geometric shape [DNJ20]. In particu-

lar, a SRN can adaptively allocate more weights to regions with fine geometric details. Second, SRNs

can incorporate geometric priors from a training dataset, so that the space of representable surfaces is

aligned with physically plausible surfaces [CAP20]. This is not true for classical scene representations,

where random initialization most certainly leads to highly fragmented, implausible scenes. In partic-

ular, this prior allows SRNs to store scenes far more compactly than classical approaches [DNJ20].

On the downside, accessing and rendering neural scene representations is comparably slow as of yet,

since each sample of the scene has to be computed on the fly by a costly invocation of the SRN.

Implicit Representations DeepSDF by Park et al. [Par+19] has been one of the first implicit SRNs,

showing that they are capable of learning geometric shapes as well as strong geometric priors for

shape completion. DeepSDF trains jointly on a collection of shapes by learning an implicit function

f : R3 × Z → R, where the additional latent code input z ∈ Z selects the respective shape in the col-

lection. That is, the shape associated with z is given by the implicit function x 7→ f (x , z). This design

enables smooth shape interpolation as well as shape completion from a limited set of signed distance

function samples. Niemeyer et al. [Nie+20] show that rendering implicit surfaces can be made dif-

ferentiable through implicit differentiation. Hence, SRNs can now be trained on multiple 2D views

of an object to capture its view-consistent 3D shape in an implicit SRN and texture in another SRN

mapping position to color. Similar to DeepSDF, both networks can be conditioned with a geometric

prior by adding a latent code z to the input. As a consequence, even single view object reconstruction

is possible by hallucinating occluded geometry according to the prior. Yariv et al. [Yar+20] extend

the approach of Niemeyer by a) additionally optimizing for camera parameters to compensate for

inaccurate camera poses in multi-view datasets and b) replacing the texture network with a more

sophisticated shading network that does not only receive a 3D surface-ray intersection point, but also

surface normal, viewing direction, and a scene-specific global geometry feature vector.

Chibane et al. [CAP20] propose an encoder/decoder structure for shape completion. A 3D

convolutional neural network (CNN) encodes the incomplete input shape at various levels of detail

into latent feature grids. The decoder implements an implicit function describing the completed

shape. It is realized by sampling the multi-scale latent feature grids at the input position and trans-

lating the sampled feature vectors to the implicit function value. Regarding compression, the work

of Davies et al. [DNJ20] demonstrates that SRNs can be used for lossy compression of geometry,

17

2. RELATED WORK

with significantly higher compression rates than classical mesh decimation techniques. Similarly,

Takikawa et al. [Tak+21] achieve impressive compression rates by masking out empty space with a

sparse voxel octree (SVO) and encoding geometry in a level of detail hierarchy of implicit SRNs.

As can be seen from the previous paragraphs, plenty of implicit SRNs have been introduced over

the years, solving problems in various research fields. Here, we only have presented the papers that

did draw our attention when working on our topic of learning generic local shape properties [RW22].

For further research, we refer the reader to an extensive list of works curated by Sitzmann [Sit20].

Volumetric Representations In contrast to implicit representations, volumetric SRNs intend to

learn the volumetric properties of the scene directly. They became popular with the work of Milden-

hall et al. [Mil+20] presenting the neural radiance field (NeRF). Their work borrows from techniques

of DVR to approximate surfaces in 3D space. By sampling a SRN that transforms 3D positions and view

directions to color and density values along view rays, a volumetric, view-consistent 3D representa-

tion of surface models can be learned from multiple views. Many follow-up works have been inspired

by NeRF [Lin20]. For instance, Lie et al. [Liu+20b] present a NeRF variant operating over sparse

voxel grids. The 3D positional input to NeRF is replaced by a latent feature sampled from the voxel

surrounding the current 3D position. Then during training, latent voxel features are trained to encode

the voxel’s geometry. Further, the voxel grid is progressively refined and thinned out by frequently

doubling the voxel grid resolution and removing all voxels for which the neural scene representa-

tion network only returns volume densities close to zero. Compared to NeRF, rendering performance

is improved by sampling the scene representation network only within allocated voxels. Hedman

et al. [Hed+21] reformulate the NeRF architecture to enable real-time rendering. They propose to

split NeRF into a view-independent and view-dependent part. After training, view-independent la-

tent features, volume densities, and diffuse colors are baked in a sparse voxel grid representation.

During rendering, all view-independent quantities are sampled directly from the voxel grid. Only

view-dependent specular lighting is derived from a small scale multilayer perceptron (MLP) that re-

quires the integrated volume density, the integrated latent feature, and the current viewing direction

as input. Garbin et al. [Gar+21] split NeRF into an SRN encoding positional information in latent fea-

tures over a 3D domain, and an SRN encoding view-dependent information in latent features over a

spherical domain. The position- and view-dependent object color is obtained by combining the output

of both networks via the dot product. After factorizing the 5D input domain of NeRF into independent

3D and 2D domains, outputs can be fully baked by sampling both networks along high-resolution 3D

and 2D grids and storing non-zero outputs in a sparse data structure.

NeRF makes explicit use of the DVR pipeline by integrating density and color along view rays.

DeepVoxels by Sitzmann et al. [Sit+18], on the other hand, follow a different approach involving

2D CNNs. Given a set of renderings of an object, feature maps are extracted by a 2D convolutional

18

2.4. NEURAL SCENE REPRESENTATIONS

encoder and—based on current camera parameters—lifted to a 3D feature volume encoding the actual

geometry. To render a new view, the 3D feature volume is projected to the canonical view volume,

where features are blended with an occlusion network. Finally, the 2D image of blended features is

converted to an RGB image by applying a 2D convolutional neural renderer. In a later work [SZW19],

the architecture is refined by a) replacing the 3D feature volume with a scene representation network

mapping 3D positions to latent features, b) dropping the 2D→3D uplifting and 3D→2D projection

module in favor of a ray marching long short-term memory module, and c) changing the final neural

rendering network architecture from a CNN to a per-pixel MLP.

Similar to implicit SRNs, volumetric SRNs can be utilized to realize lossy compressions over vol-

umetric datasets [Lu+21]. By storing network weights instead of grid-based data representations,

significant memory savings can be achieved at the cost of an expensive forward pass through the

network when decoding a value. To further increase compression performance, an additional, coarse

grid of latent features can be learned that provides the SRNs with further geometry cues. Weiss et

al. [WHW21] suggest a similar approach to compress ensembles of 1D density and 4D color volumes

by small-scale MLPs. In particular, they provide real-time decoding performance by utilizing modern

Tensor Cores and keeping all activations in shared GPU memory when evaluating the MLP. Müller

et al. [Mül+22] propose a similar approach to Weiss et al. with real-time performance to represent

gigapixel images, scene geometry, and global illumination effects. However, they realize the memory

backend of the latent feature grid via a hash table with no explicit collision handling. Instead, they

rely on the network to resolve collisions. Thus, sparse latent feature grids with exceptionally high

virtual resolutions can be realized.

Local Geometry Encodings All SRNs presented so far learn the whole scene geometry. A couple

of works focus on learning encodings of local geometry patches instead. Jiang et al. [Jia+20] suggest

encoding scenes by transforming local geometry patches to latent feature codes, which then act as

a neural scene representation. The actual scene geometry can be recovered by evaluating a decoder

network that converts latent features to implicit function samples. Thus, any surface encoded by latent

feature codes can be extracted with isosurface techniques such as marching cubes, ray marching, or

sphere tracing. The respective encoder/decoder architecture is trained once on a sufficiently complex

scene, and then can be used to describe arbitrary scenes that are composed of similar geometry patches

seen in training. In particular, both en- and decoder can be used for new scenes without any costly

retraining. The authors use the latent feature space as a strong geometric prior to extract implicit

surfaces from point clouds. This is achieved by optimizing over latent patch features such that the

implicit function of the scene evaluates to zero at points in the point cloud. Liu et al. [Liu+20a]

propose to encode local geometry information to realize a data-driven extension of Loop Subdivision

where vertex positions are updated based on a stack of neural networks. A first network encodes the

19

2. RELATED WORK

1-ring neighborhood of each vertex in a latent feature vector, which is subsequently processed by a

second and third network to update positions of old and newly introduced vertices, respectively. Chen

et al. [Che+21] propose to upsample voxel geometry by training a generative adversarial network

(GAN) to encode details of local geometry patches into style codes. Depending on the input style

code, specific fine geometric details are fused onto arbitrary coarse voxel geometries by the GAN

encoder.

2.5. Level of Detail

Level of detail (LOD) techniques [Lue+03] in computer graphics create a multi-resolution hierarchy

of filtered representation of one and the same entity. Depending on the frequency at which an entity

is sampled by a viewport, one representation is chosen and rendered. LOD techniques do not only

increase rendering performance by reducing the complexity of distant entities but also avoid sampling

below the Nyquist rate by limiting the bandwidth of the original entity. In doing so, aliasing artifacts

and temporal noise during camera movement are avoided.

Textures Mipmapping [Wil83] creates a LOD hierarchy of textures by recursively downscaling them

by a factor of two until only one texel remains. A novel LOD technique for uv-free texture mapping is

proposed by Dolonius et al. [DSA20]. They propose to implement textures by storing surface texture

values in an SVO that is aligned with the surface shape. A LOD hierarchy is realized by storing value

averages at each internal node.

Surface Geometry For 3D geometry, LOD hierarchies can be created by mesh decimation tech-

niques such as progressive meshes by Hoppe [Hop96]. If a mesh decimation technique supports

continuous collapse and expansion operations (i.e. geomorphing), popping artifacts at level transi-

tions can be avoided by interpolating the respective operations that transform the geometry to the

next level representation. A novel, deep learning (DL)-based technique by Takikawa et al. [Tak+21]

implements a continuous LOD representation of implicit surfaces by encoding a signed distance func-

tion (SDF) into latent features organized in an SVO. To sample the SDF, latent features are sampled

from all SVO levels, summed, and then processed by a neural decoder outputting the signed distance.

Point Clouds Layered point clouds by Gobbetti and Marton [GM04] create a LOD hierarchy of point

clouds in a top-down process by partitioning all points over multiple levels of a binary space partition

tree. Each node stores at most M uniformly distributed points, so that rendering the point cloud

with a prescribed point density is achieved by rendering only nodes up to a fixed depth depending

on M . Fraedrich et al. [FSW09] propose a bottom-up process for building a LOD octree hierarchy of

20

2.6. ADAPTIVE SUPER-SAMPLING

particles with varying radii. At each level, particles are thinned out according to two strategies. First,

all particles with small radii such that they project to a single pixel w.r.t. the current LOD are merged

to a single particle of zero radius, i.e. a point. Second, particles with similar radii are merged as soon

as the difference in radius drops below a threshold that is multiplicative w.r.t. to the voxel size at the

current octree level.

Terrain Schneider and Westermann [SW06] implement multi-level digital elevation models (DEMs)

by adaptively refining restricted quadtree meshes until a level-dependent upper error bound is satis-

fied. During rendering, screen-space gradients determine at which LOD a specific tile of the terrain is

sampled. Dick et al. [DSW09] propose a compression scheme for restricted quadtree mesh hierarchies

that allows to efficiently stream large DEMs into GPU memory. Progressive mesh refinements are en-

coded by paths along triangle strips, where each path element can be derived from the previous one

by distinguishing up to six cases. Efficient decoding of paths to triangle strips is realized by splitting

paths into a large number of subpaths, that then are decoded in parallel by the GPU.

2.6. Adaptive Super-Sampling

As discussed in Sec. 2.5, sampling entities below the Nyquist rate results in noticeable sampling arti-

facts such as aliasing and temporal noise. Level of detail techniques ensure a sufficient sampling rate

by limiting the frequency of the sampled signal. Vice versa, one can also increase the sampling fre-

quency instead, which is called super-sampling. In general, super-sampling is difficult to achieve due

to hardware limitations and real-time constraints. Adaptive super-sampling serves as a compromise

by super-sampling only the part of a signal with critical, high-frequency information. For instance,

Mitchell [Mit87] proposes to refine sampling patterns at locations where the contrast between neigh-

boring samples exceeds a user-defined threshold. Weiss et al. [Wei+20] train a network that derives

an adaptive sampling pattern from a low-resolution rendering such that the high-resolution rendering

can be reconstructed from only a few samples. The output image is created by inpainting the samples

via a pull-push algorithm, and then correcting the inpainted result with a convolutional reconstruction

network.

Adaptive sampling techniques are especially important in Monte Carlo ray tracing where stochastic

light path sampling induces high variance in the estimated pixel values. Thus, low sample-count

renderings contain a significant amount of visually distracting noise which gradually declines when

adding more samples per pixel. However, Monte Carlo renderings of complex scenes may require

thousands of samples per pixel to converge to a noise-free image. Generating so many samples is

not feasible on most commodity hardware, and will certainly not be possible in real-time. Instead

21

2. RELATED WORK

of drawing a fixed number of samples per pixel, adaptive super-sampling stops if the already drawn

samples satisfy a notion of stability, i.e. low variance.

A straightforward stopping criterion is realized by assuming a normal sampling distribution and

stopping sampling as soon as the difference between the current and the true sample mean passes a

confidence interval test [LRU85]. Rigau et al. [RFS03a] propose an entropy-based stopping criterion

by reinterpreting luminance sample values for a single pixel as probabilities in a discrete probability

distribution P. If the Shannon entropy of P is sufficiently close to the maximal attainable entropy (it

would be reached if all probabilities and thus sample values are equal), sampling is stopped. This

approach has been modified in several ways. One can derive probabilities from geometric properties

such as surface normals and depth at the ray-geometry intersection point [RFS03a]. Further, it has

been proposed to replace the Shannon entropy measure with Tsallis entropy [Xu+07]. Instead of

measuring entropy, one can also measure the distance of P to the uniform probability distribution

over n events. Sampling stops as soon as the distance drops below a user-defined threshold. Distance

functions such as Kullback-Leibler, Chi-square, and Hellinger distance have been used [RFS03b].

Recently, Kuznetsov et al. [KKR18] proposed a sampling map estimator network to increase sample

density at locations where a subsequent denoising network yields unsatisfactory results otherwise.

Hasselgren et al. [Has+20] extend this approach by considering the temporal domain. The denoised

image of the previous frame is reprojected with optical flow warping and then passed to the sampling

map estimator as well as the denoising network. In doing so, samples of previous frames can be

reused such that the sampling process can focus on previously occluded regions. For further adaptive

super-sampling techniques in Monte Carlo rendering, we refer the reader to the survey of Zwicker et

al. [Zwi+15].

2.7. Explainable Artifical Intelligence

In today’s world, artifical intelligence (AI) has a significant impact on our everyday life. It curates

information presented to us, guides us in making decisions, or even makes the decisions for us. For

many mundane tasks, society has accepted that most AI systems deployed today lack transparency in

their decision making, that is we do not understand how an AI system comes to a certain conclusion.

However, this is unacceptable in safety-critical environments such as autonomous driving or medical

diagnosis. With the recent and omnipresent success of DL, transparency becomes, even more, an

issue since DL models operate on a multitude of abstract, high-dimensional feature spaces, with their

presentation in a human-understandable form being difficult as best. Explainable artifical intelligence

(XAI) recognizes and addresses the aforementioned limitations of AI by providing tools for reasoning

about AI decisions. For an extensive overview of XAI’s philosophy and numerous works in this field,

we refer to the survey of Adadi and Berrada [AB18].

22

2.7. EXPLAINABLE ARTIFICAL INTELLIGENCE

Generally speaking, there are two options to achieve transparency. Either one designs transparent

AI systems that operate on human-understandable signals, or ways have to be found to make signals

in existing AI approaches interpretable. Inference engines are a good example of the first option.

They serve as the backbone of various expert systems. However, they tend to be quite limited in their

expressive power. In contrast, black-box DL systems are highly effective, but not well understood.

Thus, recent research—including our work about inverse feature visualization [RW20]—has focused

on implementing the second option to induce transparency in DL.

Pixel Attribution Pixel attribution methods, also called saliency maps, intend to explain the out-

come of an image processing deep neural network (DNN) by attributing each input pixel accord-

ing to its influence on a specific output. By inspecting highly influential regions in the (human-

understandable) input image, one can obtain indicators about the impact of certain entities on a

network’s decision. Thus, pixel attribution methods provide explanations on a global scale, by high-

lighting what is important to the network. However, these methods usually do not provide information

why something is important. Although pixel attribution mostly has been applied to image classification

networks, many methods presented here can be readily adapted to other input and output domains.

As long as both domains can be communicated in a human-understandable format, attributions can

be readily used to generate interpretable decision indicators.

Several works generate pixel attributions by introducing modifications to the input. By obfuscating

parts of the input image and observing the effects on the network output, influential regions can be

identified. Zeiler and Fergus [ZF14] generate a heatmap of attributions by sliding a grey occluder

over the input image. Fong and Vedaldi [FV17] blur local regions of the image or apply random noise

to them. Ribeiro et al. [RSG16] decompose the input image into superpixels and find a limited set of

them that activates a specific class neuron the most.

Pixel attribution methods based on deconvolution invert the flow of information in a CNN. Af-

ter providing an input image, the activation signal at the neuron of interest is masked and propa-

gated back to the input by providing “inverse” formulations for each preceding layer. Zeiler and Fer-

gus [ZF14] propose to invert max-pooling operations by masking all locations that do not contribute

to a maximum value. Convolutions are inverted by applying the transpose of their linearization, see

Sec. 5.2. Several modifications of this approach exist, such as Grad-CAM by Selvaraju et al. [Sel+17],

or the approach of Springenberg et al. [Spr+14] that leaves out pooling layers. However, there is no

clear theoretical evidence that inversion operations yield meaningful pixel attributions. In particular,

Mahendran and Vedaldi [MV16] show that pixel attributions from deconvolution approaches lack dis-

tinguishability when computing selections for different neurons at deeper levels, making the overall

deconvolution approach questionable.

23

2. RELATED WORK

Other pixel attribution methods exploit a theoretically grounded way of backpropagating infor-

mation by following the gradient of the output signal. Given an activation signal of interest a, the

assumption is that a highly influential pixel p results in a high gradient ∂ a/∂ p. This approach is

motivated by the observation that high gradients indicate a high sensitivity of a w.r.t. p in a local

environment around p. Thus, Simonyan et al. [SVZ13] propose to obtain pixel attributions by back-

propagating the gradient signal through the network to obtain gradients regarding the input image.

However, this approach comes with two issues. First, gradients of neural networks tend to be highly

sensitive to small input pertubations [GAZ19], and they are spatially noisy. Smilkov et al. [Smi+17]

thus propose to average gradients over multiple inputs that are perturbed by some Gaussian noise.

Second, a high gradient may be a sufficient condition for highly influential regions, but it is by no

means a necessary one. For instance, if the value of p is chosen such that it maximizes the activation

a, changing p significantly will have a large impact on a. The gradient ∂ a/∂ p however is zero due to

the necessary condition for optimality. This issue is known by the name model saturation. To address

it, Shrikumar et al. [SGK17] propose to backpropagate finite differences of activations regarding a ref-

erence image instead. Similarly, Sundararajan et al. [STY17] introduce a reference image and then

use it to integrate the gradient over the interpolation path between the reference and the investigated

image. Sturmfels et al. [SLL20] investigate how the choice of a reference image influences the pixel

attributions returned by Sundarajan’s method.

All pixel attribution methods have in common that they are difficult to verify. Verification mostly

has been conducted by investigating pixel attributions for a set of samples and checking if the result

seems plausible. However, this approach runs into the danger of only accepting methods that show

what we consider to be meaningful, while methods showing what is meaningful may be discarded.

Although it is still an open question how to identify “good” pixel attribution methods, misleading ap-

proaches have been identified by running specific sanity checks. Adebayo et al. [Ade+18] invalidate

some widely deployed pixel attribution methods by checking if attributions are similar for correctly

trained networks, untrained ones, or networks that have been trained on a wrong label set. Ghor-

bani et al. [GAZ19] test the robustness of pixel attribution methods by optimizing for very small

ℓ∞-bounded noise patterns on the input such that the network output remains constant, but pixel

attributions change significantly. Kindermans et al. [Kin+19] show that some methods are not invari-

ant to constant shifts in the input data if they are compensated for by updating the bias term in the

first network layer.

Feature Visualization Pixel attribution methods can only highlight signals that are present in a

user-specified input image. As a consequence, any such approach is always biased towards a specific

dataset. In the worst case, analysis is performed over a dataset that does not reflect the input domain

the network was trained for. Then, many salient structures of neurons will not be available. The re-

24

2.7. EXPLAINABLE ARTIFICAL INTELLIGENCE

sulting pixel attributions will either be arbitrary, or worse, misleading. Further, pixel attributions may

become problematic when investigating hidden neurons deep inside a DNN. In contrast to neurons

in the output layer, they are likely to be sensitive to rather general concepts that appear at multiple

locations in the image. Thus, attributions become fragmented and difficult to interpret.

Feature visualization approaches the problem of XAI differently. Instead of searching for salient

structures in a prescribed input, salient structures of a neuron are synthesized on the fly by perform-

ing a process called activation maximization [Erh+09]. Given a user-defined neuron in a DNN, acti-

vation maximization optimizes for an input image that maximally activates the chosen neuron. The

optimized image is called a (feature) visualization of the specific neuron. Various feature visualization

techniques and their applications have been surveyed by Nguyen et al. [NYC19].

By design, feature visualizations do not depend on a specific dataset and thus do not suffer from the

aforementioned limitations. However, they come with other limitations regarding interpretability. In

contrast to pixel attributions that highlight structures in presumably human-understandable images,

there are no guarantees that feature visualizations returned by activation maximization depict inter-

pretable structures. As it turns out, feature visualizations mostly show high-frequency noise patterns

if no regularization is enforced during the optimization process. Although these kinds of patterns may

represent a valid feature learned by a network—we discuss this later when considering adversarial

examples—they are not very helpful for understanding neural networks.

To improve upon the interpretability of feature visualizations, several regularizations have been

proposed. Simonyan et al. [SVZ13] apply a L2 regularization term during optimization. Yosinski

et al. [Yos+15] suggest blurring feature visualizations during optimization to reduce high-frequency

noise patterns. They also clip low-impact pixels to obtain a cleaner image. Mahendran et al. [MV15]

introduce a total variation regularization to directly penalize high-frequency patterns during opti-

mization. Nguyen et al. [Ngu+16] utilize an image prior learned by a pre-trained image generator

network. Feature visualizations then are optimized in the latent feature space of the generator in-

stead of the RGB pixel space. The prior ensures that images roughly resemble human-understandable

concepts. However, features that were not seen during the training of the generator network cannot

be reproduced. Thus, this approach is biased towards the training dataset of the generator. Olah et

al. [OMS17] propose a strong regularizer by randomly jittering, rotating, and scaling the input during

optimization. Thus, only feature visualizations are generated for which the visualized neuron is ro-

bust against the aforementioned operations. Additionally, they propose to optimize images in Fourier

space to obtain better descent directions during optimization.

Feature visualizations are not limited to single neurons. One can also perform activation maxi-

mization jointly for groups of neurons. Olah et al. [OMS17] use this insight to visualize channels in

a CNN. Similarly, all neurons of a layer can be visualized jointly [MOT15] for artistic purposes, or

to obtain an impression of the granularity of learned features. Recently, feature visualizations have

25

2. RELATED WORK

been used extensively by a group of collaborators to reverse-engineer GoogLeNet [Cam+20]. They

found out that GoogLeNet learns rotationally equivariant features, a rich set of curve features, high-

low frequency detectors, and many more. They provide a taxonomy of feature classes per layer and

present indications that similar features form across multiple models and tasks.

Adversarial Examples In 2013, Szegededy et al. [Sze+13] observed that DNNs can be easily ma-

nipulated to form wrong decisions by adding a small, imperceivable noise pattern to the image. They

synthesize these noise patterns with a technique similar to activation maximization, by performing a

first-order optimization of the input w.r.t. a wrongly labeled loss function. The resulting, perturbed

images are called adversarial examples, as they exploit the deficiencies of a specific network. In

principle, one needs access to the network gradients to “attack” a network and generate adversaries.

Hence, this approach is called a white-box attack. However, adversarial examples also generalize to

other models than the one being attacked. For this reason, black-box attacks can be performed by

running a white-box attack on a network under own control, and then deploying the same adversaries

against the “foreign” network. The existence of adversarial examples may seem counterintuitive at

first. However, this is not very surprising when considering how many search directions for adver-

saries exist in the high-dimensional input domain. Adversarial examples demonstrate that we are

lacking intuition for high-dimensional spaces (see Sec. 2.3), whereas a network is able to detect cor-

relations even in spurious high-dimensional data [Goh19]. For the same reason, we conjecture that

noisy, unregularized feature visualizations may be representative of a specific neuron.

As it turns out, generating adversarial examples is inexpensive. Goodfellow et al. [GSS14] ob-

serve that a single optimization step that updates each pixel by a small constant times the sign of

its gradient suffices to generate potent adversaries. This approach is called the fast gradient sign

method. Kurakin et al. [KGB18] show that adversaries can be strengthened further by repeated up-

dating according to the fast gradient sign method. They also propose targeted attacks by using the

fast gradient sign method to decrease a loss function favoring a user-specified, but wrong outcome.

Further, adversarial examples occur in various settings. They are not limited to spatially incoherent

perturbations. Alcorn et al. [Alc+19] show that adversarial examples can be found by rendering ob-

jects under random translations and rotations. Further, adversarial examples with realistic, physically

plausible perturbations can be created from a differentiable renderer by manipulating environmental

lighting and mesh vertex positions [Liu+18].

Robust Training Adversarial examples indicate that the goal of XAI to provide interpretable in-

sights into DNNs might be ill-posed. Any plausible, human-understandable explanation of a DNN

would have to explain both adversaries and “friendly” input alike. However, the existence of indis-

tinguishable adversaries implies that any XAI method must be able to explain multiple contradicting

26

2.7. EXPLAINABLE ARTIFICAL INTELLIGENCE

network outputs for conceptually identical input. In doing so, the method appears to be opportunistic

and—similarly to some pixel attribution methods—thus questionable.

Robust training intends to counteract adversarial examples by designing specific optimization rou-

tines that mitigate adversary-enabling effects. Szegededy et al. [Sze+13] improve on network ro-

bustness against adversarial examples by mixing them into the dataset during training. Goodfellow

et al. [GSS14] suggest incorporating the “one step”-adversary of the fast gradient sign method into the

loss function to improve network resilience. This modification requires two backpropagation passes

instead of one per training step, and thus increases network resilience at the cost of a 50% perfor-

mance decrease when training. The idea of considering adversarial examples in the loss function

led to formalizing robust training as a saddle-point problem [Mad+17]. That is, one intends to find

the optimal network parametrization such that the maximal attainable loss due to a perturbation-

bounded adversary is minimized. In practice, Madry et al. [Mad+17] run two nested optimization

routines to solve the saddle-point problem. The inner routine performs multiple steps of projected

gradient descent to find the “worst-case” adversary in an epsilon ball around the actual input data.

The outer routine minimizes the loss via a standard gradient descent step performed on the adversary

returned by the inner routine. As a result, saddle-point optimization can be considered as standard

training with adversarial data augmentation. We note, however, that training time increases by sev-

eral multiples compared to standard loss minimization.

Instead of integrating adversarial examples directly into the loss formulation, one can also regular-

ize the network’s gradient w.r.t. the input, so that the sensitivity of the network regarding small input

perturbations is reduced. For instance, Ross and Doshi-Velez [RD18] introduce a regularization term

that promotes small gradients. However, to evaluate the regularization term, an optimizer requires

access to the Hessian of the loss. Cisse et al. [Cis+17] introduce Parseval networks that are Lipschitz

continuous with a Lipschitz constant of one. Consequently, Parseval networks guarantee that small

epsilon ball modifications do not have a large impact on the network output.

Similarly, Wong et al. [WK17; Won+18] guarantee that, given a user-prescribed epsilon ball for

which perturbations are permitted, the network output does not leave a specific region, the convex

outer bound of the adversarial polytope. In particular, they propose an algorithm to compute bounds

of linear optimization problems that are constrained to this region. Last but not least, Papernot et

al. [Pap+16] show that robust classifiers can be obtained by training against class probability vectors

as returned by another network trained on the standard dataset.

Robust training commonly lowers accuracy on the original dataset since additional constraints have

to be considered during optimization. On the upside, by applying robust training, one can train DL

models that do not suffer from adversarial examples and thus have a higher chance of being amenable

to interpretation. Thus, robustly trained networks can be seen as a step towards designing inter-

pretable AI systems. Indeed, it has been observed by Tsipras et al. [Tsi+18] that pixel attributions

27

2. RELATED WORK

returned by gradient-based methods align notably better with human-understandable concepts when

being applied to robust networks. Engstrom et al. [Eng+19] show that if applied to robustly trained

networks, activation maximization yields high-quality feature visualizations without the need for any

priors such as transformation robustness or image regularization. In particular, they show that feature

visualizations remain consistent when varying the initial image that subsequently is optimized by ac-

tivation maximization. Similarly, Roberts and Tsiligkaridis [RT21] observe that feature visualizations

with hard L1 and L2 constraints show easy-to-interpret shapes as long as visualizations are generated

for robust networks. Additionally, they utilize perturbations introduced by adversarial examples over

robustly trained networks to indicate which features in an image are important for classification.

28

3
Parameterized Splitting of Summed Volume Tables

Summed-area tables (SATs) by Crow [Cro84] are considered a convenient acceleration structure to

quickly compute integral values over arbitrary rectangular regions in a 2D data array F . They are

realized by replacing the value at index (x , y) in the array with precomputed sums over all values

contained in the rectangular subarray that is spanned by the indices (1, 1) and (x , y), that is

SATF [x , y] :=
∑

x ′≤x , y ′≤y

F[x ′, y ′].

Partial sums of F for arbitrary rectangular subarrays can be computed in constant time, by making

use of the inclusion-exclusion principle. Instead of reading and adding up values of F along the whole

region spanned by (x1+1, y1+1) and (x2, y2), it suffices to read the SAT-values at the corners of the

selected subarray. It holds that

∑

x1<x ′≤x2, y1<y ′≤y2

F[x ′, y ′] =SATF [x1, y1] + SATF [x2, y2]−

SATF [x1, y2]− SATF [x2, y1]

with SATF (x , y) set to zero if x = 0 or y = 0. Thus, SATs reduce the summation of (x2− x1) ·(y2− y1)

values to a summation of four values. The concept of SATs extends to any number of dimensions.

Given a d-dimensional array F , the corresponding d-dimensional summed-volume table (SVT) is

realized by

SVTF [v1, v2, . . . , vd] :=
∑

v′i≤vi

F[v′1, v′2, . . . v′d].

29

3. PARAMETERIZED SPLITTING OF SUMMED VOLUME TABLES

By the inclusion-exclusion principle, it holds that

∑

vi<x ′i≤wi

F[x ′1, x ′2, . . . , x ′d] =
∑

λ∈{0,1}d
p(λ)SVTF [λ1v1 + (1−λ1)w1, . . . ,λd vd + (1−λd)wd] (3.1)

where p(λ) = (−1)
∑

i∈N≤d
λi is the parity of λ and (vi)i∈N≤d

, (wi)i∈N≤d
are multi-indices with vi ≤ wi .

As a consequence, partial sums of hyperboxes (line segments in 1D, rectangles in 2D, cuboids in 3D,

and so on) can be computed by evaluating a SVT at the 2d corner points of that hyperbox. In the

special case of d = 1, a SVT stores prefix sums of a 1D array. This motivates our convention of calling

entries in a SVT d-dimensional prefix sums, or simply prefix sums by omitting the dimension.

Limitations of Summed-Volume Tables Since prefix sums are obtained by summing over large

regions of data, the precision required to accurately store them exceeds the precision of F . In the most

extreme case, F is a bit field with n entries, requiring a total of n bits of storage, whereas the SVT of

F must be able to store entries of non-binary integers with maximal value n. Storing the SVT in fixed

precision requires at least n · ⌈log2(n+ 1)⌉ bits. For large n, SVTs cannot be stored in environments

with tight memory constraints. For instance if n= 20483, F takes up 1GB of data and fits into VRAM

of most graphics processing units (GPUs). On the other hand, SVTF requires 34GB, a demand that—

as of yet—cannot be satisfied by most GPU models. In the future, it is expected that this memory

gap increases further since dataset sizes n tend to scale linearly with available RAM capacity. That is,

whereas available memory grows linearly in n, SVTs grow in n log n.

As is noted by Hensley et al. [Hen+05], the aforementioned precision limitations become even

more obvious when deploying SVTs with floating-point arithmetic. If the dynamic range of the data

array is high, computing partial sums via the inclusion-exclusion principle suffers from catastrophic

cancellation. In the worst case, a single outlier stored at the beginning of the dataset corrupts the

whole SVT. If it is several magnitudes larger than the rest of the data, all prefix sums take on the

same outlier value due to rounding errors in the floating-point IEEE 754 representation. Any partial

sum computed via Eq. (3.1) evaluates to zero, independently of the actual data values stored in the

respective hyperbox. For this reason, we do not suggest do implement SVTs over floating-point values

at all. In the case of continuous data values with a low dynamic range, data first can be rescaled and

quantized to integers with minimal loss. The integral values then can be used to build the SVT.

Negative entries in the integral representation can be eliminated by adding −min(F) to each value.

Without loss of generality, it can be assumed that F stores non-negative integral numbers.

In the following, we give an overview of our SVT data structure [RW21a]. It addresses the large

memory footprint of classical SVTs by performing recursive split operations as explained in Sec. 3.1.

The properties of our data structure are presented in Sec. 3.2. Further, in Sec. 3.3, we describe a

heuristic that derives SVT representations for fixed memory or performance budgets. Insights that

30

3.1. SVT SPLIT OPERATION

Figure 3.1.: Computation of the first three entries of the aggregate array by summing up values along the
split dimension. For the third entry, summed values are highlighted in blue. Figure has been taken from our
presentation held at EuroVis 2021 [RW21b].

Figure 3.2.: Application of the conjugate trick to the block of Fig. 3.1. After separating the front and rear
half, the rear half is mirrored and pruned. Figure has been taken from our presentation held at EuroVis
2021 [RW21b].

were recognized after composing the papers are discussed in Sec. 3.4. Last, alternative representations

of others are discuss in Sec. 3.5. Here, we also show that most alternatives are special cases of our

flexible approach.

3.1. SVT Split Operation

We require the following notation. An array F is said to have shape n ∈ Nd if and only if it is d-di-

mensional of shape n1×n2×· · ·×nd . We define the size of n by |n| :=
∏d

i=1 ni . In particular, an array

of shape n has |n| elements. Further, for any multi-index v ∈ Nd and integers k ∈ {1, . . . , d}, i ∈ N,

we denote by v|k=i the multi-index that is obtained by replacing the k-th component of v by i. When

accessing array elements via a multi-index, F[v] is a shorthand notation for F[v1, . . . , vd].

The central idea behind our data structure is the process of splitting the array F of shape n ∈ Nd into

a small array Fa of precomputed, high precision aggregates and a set {Fs0
, Fs1

, . . . } of low precision

subarrays such that any prefix sum can be efficiently computed from one prefix sum of the aggregate

array and one prefix sum of a single subarray. By recursively splitting the data F into smaller blocks

of partial sums, at some point, blocks become sufficiently small such that the extra logarithmic factor

required to store the SVT of a block does not cause significant memory overhead.

The split process is initiated by choosing a split dimension k ∈ N≤d . Along this dimension, ℓ axis-

aligned cut planes Hi = {x ∈ Rd | xk = ci} are placed at integral split positions c1 < c2 < · · · < cℓ

31

3. PARAMETERIZED SPLITTING OF SUMMED VOLUME TABLES

(Case 1) (Case 2)

(Case 3) (Case 4)

Figure 3.3.: All cases arising when computing prefix sums of the original array F (top block) by querying prefix
sums of arrays obtained after splitting (lower blocks). Cut planes, as well as the aggregate array, are colored
in blue. The additional split of each block into a front and a rear part is indicated by a dashed line. Red blocks
indicate the regions over which prefix sums are considered. For each case, the prefix sum of the top block can
be recovered by combining up to two prefix sums located in the bottom blocks. Figure has been taken from our
presentation held at EuroVis 2021 [RW21b].

(see blue planes in Fig. 3.3). After splitting F along the cut planes, each block except for the last one

is processed as follows: First, we populate a (d−1)-dimensional hyperslice by summing up all values

of the block along the split dimension, see Fig. 3.1. Second, the block is processed according to the

conjugate trick, see Fig. 3.2. For this, we place an additional cut in the middle of the block and add

the front half to the list of low precision subarrays. The rear half is flipped along the split dimension,

and then its last hyperslice is removed. The resulting array is again added to the list of subarrays.

After processing each block, 2ℓ subarrays and ℓ hyperslices of aggregated values are obtained. The

high precision aggregate array Fa is obtained by stacking the hyperslices along the split dimension.

The last block is added without modification to the list of subarrays. A splitting process thus creates

one aggregate array Fa and 2ℓ+ 1 subarrays.

Now, a prefix sum of F can be efficiently computed from at most one prefix sum of the ag-

gregate array and one prefix sum of a single subarray. Let v be a multi-index. We distin-

guish four cases, see Fig. 3.3. In the first case, one has vk = ci for a suitable i ∈ N≤ℓ. Then,

SVTF [v] equals the prefix sum SVTFa
[v |k=i] of Fa. In the second case there exists i ∈ N≤ℓ with

32

3.2. PROPERTIES OF THE DATA STRUCTURE

ci < vk ≤ ⌊(ci+1 + ci)/2⌋, so that v is located in the front half of a block. Then it holds that

SVTF [v] = SVTFa
[v |k=i] + SVTFs2i

[v |k=vk−ci
]. In the third case v is located in the rear half and we

find i ∈ N≤ℓ such that ⌊(ci+1 + ci)/2⌋ < vk < ci+1. The prefix sum is computed by subtracting a

prefix sum from the mirrored rear half as follows: SVTF [v] = SVTFa
[v |k=i+1]−SVTFs2i+1

[v |k=ci+1−vk
].

Lastly, if v falls into the last block, i.e. vk > cℓ, then the prefix sum is computed similarly to the second

case via SVTF [v] = SVTFa
[v |k=ℓ] + SVTFs2ℓ

[v |k=vk−cℓ].

Values in SVTs of subarrays arise as sums over only a fraction of values of F . They require fewer

bits of precision than values in the SVT of F . Hence, at the cost of one additional data-fetch operation

per prefix sum, the memory footprint of a SVT is reduced by storing SVTs of the aggregate arrays

and subarrays respectively. In particular, the memory savings can be reinforced at the cost of more

fetches by recursively applying the split process to the newly acquired arrays Fa and all Fsi
until a

certain termination condition holds. Then, each terminal array is stored by encoding either its entries

verbatim or the entries of its SVT in fixed precision [RW21a].

Parameter Tree The positions ci of cut planes can be chosen in such a way that each subarray

has one out of two distinct shapes. By assuming that all subarrays with equal shapes are processed

similarly, we can express the memory layout of our data structure through a ternary tree, called param-

eter tree, where internal nodes encode split operations and external nodes encode write operations

to memory. More importantly, the tree allows us to quickly compute the memory footprint of our data

structure as well as an upper bound for the number of data-fetch operations required to compute a

prefix sum. The details can be found in our publication.

3.2. Properties of the Data Structure

The proposed data structure exhibits a couple of properties that are important for applications. First

and foremost, by controlling how the parameter tree is constructed, the memory footprint can be

freely adapted between O(n) and O(n log n). At the same time, the number of data-fetch operations

required to retrieve a prefix sum varies between O(1) and O(n). In general, memory consumption can

be decreased by increasing the number of fetches and vice versa. In contrast to the work of Urschler et

al. [UBD13], the memory footprint of our data structure does not depend on the actual values stored

in F .

In our paper, we show that our data structure can be constructed in O(n). Decoding and updating

values is achieved by traversing the parameter tree in a top-down fashion and tracking the blocks

in which multi-indices are located (see four cases in Sec. 3.1). Note that in each split operation, the

block index can be computed from the current multi-index by a simple div-operation. Thus, the cost of

33

3. PARAMETERIZED SPLITTING OF SUMMED VOLUME TABLES

computing the locations of memory access is negligible compared to the cost of fetching the memory

itself. For an exhaustive comparison of our properties to other works, we refer to Table 2 in our paper.

3.3. Heuristic for Building Parameter Trees

Given a fixed budget of either memory consumption or the number of data-fetch operations, the opti-

mal parameter tree minimizing the respective other, unconstrained quantity can be found by solving a

combinatorial optimization problem. By implementing a Branch-and-Bound algorithm, we were able

to identify optimal parameters trees for binary arrays of shape 64×64×64 in 12.5 hours. Clearly, this

approach does not scale for arrays of a larger shape. Instead, we propose a heuristic that is derived

from inspecting the optimal trees of shape 64×64×64. It is implemented in such a way that it returns

a parameter tree H(λ, n) requiring at most λ data-fetch operations for an array F of shape n. If λ= 1

or λ≥ |n|, the optimal parameter tree trivially is given by a single node indicating whether F or SVTF

is stored in fixed precision. In any other case, an internal node splitting along the largest dimen-

sion is generated. Cut planes are placed according to a handcrafted function taking in the required

number of fetches λ. Similarly—by utilizing a second handcrafted function—a fixed amount of λa

data-fetch operations is allocated for querying the aggregate array. The remaining λ−λa operations

are allocated to the subarrays. At this point, the shapes and data-fetch constraints are known for the

aggregate array as well as the subarrays after splitting. Hence, one can invoke the heuristic func-

tion H recursively to determine the subtrees that are going to be attached to the internal node. The

derivation of handcrafted functions can be found in Sec. 1 of the supplementary material provided

with our paper.

Although the heuristic is designed for constraining the number of data-fetch operations, it can be

utilized for memory constraints by performing a bisection search over λ. First, the lower bound of

data-fetch operations is set to one, and an upper bound of data-fetch operations is found by invoking

the heuristic for increasing powers of two until a parameter tree satisfying the memory constraint is

returned. Then, interval nesting is performed. In each step, the heuristic is invoked at the midpoint

(λmin+λmax)/2. If the returned parameter tree violates the memory constraint, subsequent searches

are restricted to the upper half of the current search interval. Otherwise, the lower half is chosen.

3.4. Addendum to the Paper

After publishing our work, we realized that timings for evaluating the heuristic can be reduced signif-

icantly by replacing distributed aligned splits with at_end aligned splits (see Sec. 4.1 of the paper).

The shapes of arrays represented by the third child of each internal node become smaller so that

overall less recursive invocations of H are required to arrive at the termination conditions. Further,

34

3.5. ALTERNATIVE REPRESENTATIONS OF SUMMED-VOLUME TABLES

we would like to mention here that the inaccuracy of the heuristic at λ = 4 can be compensated for

by brute-forcing the optimal parameter tree for λ≤ 4 whenever the bisection search stops at λ= 5. A

brute-force approach is reasonable in this scenario since any parameter tree with at most 4 data-fetch

operations is limited to at most three internal nodes. Also, we note that our representation can be

used in tandem with anchoring the prefix sum origin at the center of the data array, as suggested by

Hensley et al. [Hen+05] of. If doing so, one can save an additional number of d bits per SVT entry

by storing separate SVTs for each hyperoctant of the data array.

3.5. Alternative Representations of Summed-Volume Tables

In the following, we establish the basics of reference methods we compare against. We point out that

most approaches are special cases of our approach. They can be recovered by considering specific

parameter trees that may or may not make use of the conjugate trick. In particular, any optimal

parameter tree outperforms those reference methods by definition. As shown in the paper, the same

holds for parameter trees returned by the proposed heuristic.

Partial Summed-Volume Tables First, we discuss partial SVTs as introduced by Zellmann et

al. [ZSL18]. They propose to chunk a 3D data array into bricks of 323 and store a SVT over 323

elements per brick. Thus, each SVT entry can be represented by a 16bit unsigned integer. When com-

puting partial sums along regions that do not fit into a single 323 brick, one value has to be fetched

from memory for each brick intersecting the queried region. Since there still are O(n/(323)) =O(n)
many bricks, this approach scales equally poorly as summing up all values by iterating over the input

array directly. To circumvent this issue, Zellmann et al. propose to build a hierarchical representation

of partial SVTs by taking the last SVT entry of each brick and arranging them in an array of shape

n1/32× n2/32× n3/32. This array again is bricked and summed up partially. However, the authors

admit that all bricks that overlap only partially with the queried region have to be processed at their

current hierarchy level. Hence, the number of touched bricks reduces to the size of the region bound-

ary. In the best case of cuboid-like data arrays, the complexity still is O(n2/3). If the data array has

one flat dimension, that is, there exists i ∈ N≤d such that ni ≪ n j for all j ̸= i, complexity remains in

O(n). Thus, we compare against the non-hierarchical version only.

Note that the bricking approach of Zellmann directly generalizes to arbitrary dimensionality and

that they can be represented by our recursive split operations if the conjugate trick during splitting is

omitted. That is, instead of creating two subarrays per block, we only create a single subarray that

is derived from the processed block by removing its last hyperslice. The respective parameter tree is

visualized in Fig. 3.4.

35

3. PARAMETERIZED SPLITTING OF SUMMED VOLUME TABLES

k = 1, z = b1

k = 2, z = b2

I = Ø I = {1,...,d}I = {d} I = {1,...,d-1}

k = 2, z = b2

k = d, z = bd k = d, z = bd

Figure 3.4.: Parameter tree describing partial SVTs by arranging the data array into bricks of shape b ∈ N≤d .
Please refer to our paper for explanations of node parameters. We assume that the shape n of the original data
array is a multiple of b, that is ni = mi bi for an appropriate choice of m ∈ N≤d . Then, all subarrays of a split
operation have equal shapes, so that the parameter tree reduces to a binary tree with 2d leaves. By splitting into
blocks of length bi at dimension bi , we ensure that no sums spanning multiple bricks are computed. If a path
to a specific leaf navigates into a subarray node—i.e. turns right—when splitting along dimension i, we add i
to the set I of dimensions indicating along which dimensions array values are cumulated. If the path navigates
into the aggregate array node, no further summation along dimension i is required. It is already performed
when constructing the aggregate array. By design, arrays at the leaf notes can be stored with a fixed precision
of ⌈log2 |b|⌉.

Generalization of the Approach of Ehsan et al. Ehsan et al. [Ehs+15, Sec. 7.2] propose a tech-

nique to compute arbitrary prefix sums by reading one value from the original data array and three

values from a reduced set of prefix sums containing only 5 out of 9 SAT entries. Thus, memory re-

quirements of SAT decrease by 44%. Their approach generalizes to arbitrary numbers d of dimensions

by only storing every third hyperslice of the SVT so that 2d out of 3d SVT entries are not required

anymore. As a consequence, the modified data array now can be viewed as a collection of 3d shaped

bricks for which prefix sums are not known at the 2d corner voxels. If an unknown prefix sum has

to be computed, one can always find multi-indices v, w with wi = vi + 1 such that the left side of

Eq. (3.1) equals to the data value F[w] and the right side sums over the unknown prefix and 2d − 1

known prefix sums. After rearranging Eq. (3.1) such that the unknown prefix sum is isolated, it can

be computed from 2d − 1 known prefix sums and one data value.

The conjugate trick as proposed in our paper can be considered an even more general reformulation

of the approach of Ehsan et al., in which a) dimensions are decoupled from each other by defining

the split operation over a single split dimension, and b) one is not limited to considering every third

hyperslice. Instead, arbitrary spacings between considered hyperslices can be assumed. In particular,

the d-dimensional generalization of Ehsan’s approach can be described by the parameter tree shown

in Fig. 3.5

Fenwick Trees Fenwick trees were first introduced in 1994 [Fen94] as a compact data structure

with O(n) memory that enables the computation of arbitrary prefix sums over 1D arrays of length

n in O(log n) time. After applying a slight variation suggested by Schneider et al. [SR17], they can

36

3.5. ALTERNATIVE REPRESENTATIONS OF SUMMED-VOLUME TABLES

k = 1, z = 1

k = 2, z = 1

I = {1,...,d} I = ØI = {1,...,d} I = {1,...,d}

k = 2, z = 1

k = d, z = 1 k = d, z = 1

Figure 3.5.: Parameter tree representing the technique of Ehsan et al. [Ehs+15]. Please refer to our paper
for explanations of node parameters. Note that all subarrays have a side length of 1 in direction of the split
dimension so that the parameter tree reduces to a binary tree with 2d leaves. If a path to a specific leaf navigates
into an aggregate array node at least once—i.e. turns left—then the values stored at the leaf are located on the
hyperslices carrying SVT entries. Thus, I is set to {1, . . . , d}. The unique leaf that is reached when following
subarray links only encodes the data values appearing on the left side of Eq. (3.1). Hence, we set I = ;.

be realized by repeated application of a simple lifting concept in which the first value of each pair of

array entries is stored in memory, and the second value is summed up with the first one to form a new

array of length n/2. This process is repeated for the newly acquired array, up to the point where no

entry is left over.

As shown by Mishra in 2013 [Mis13], Fenwick trees can be deployed for multidimensional arrays as

well. By considering d-dimensional arrays as 1D arrays of d −1-dimensional hyperslices, the process

described above can be executed with hyperslices as entries. Whenever a hyperslice is about to be

stored in memory, we compute its (d − 1)-Fenwick tree representation and store this instead. At

some point in this recursive process of “peeling dimensions”, hyperslices reduce to zero-dimensional

arrays (i.e. scalars), which then are stored in memory as is. Mishra also proves that arbitrary prefix

sums are computed in O(
∏

i∈N≤d
log ni), and Schneider et al. [SR17] show later in 2017 that memory

consumption is linear in |n|.

The recursive nature of both lifting and dimension peeling aligns perfectly with our recursive split-

ting approach. A parameter tree with
∏

i∈N≤d
ni leaves describing multidimensional Fenwick trees can

be obtained by unrolling the directed acyclic graph as shown in Fig. 3.6 and omitting the conjugate

trick.

Memory Efficient Integral Volume Memory efficient integral volume (MEIV) by Urschler et

al. [UBD13] reduces the memory footprint of 3D SVTs by fitting one-parameter models to bricks of

data, and then storing the model parameters in fixed precision and the remaining error in a dynamic

word length buffer. First, the full SVT is computed and chunked into bricks of small size. For each

brick with low corner v, the lowest entry SVT[v] as well as an integral model parameter µ is saved.

37

3. PARAMETERIZED SPLITTING OF SUMMED VOLUME TABLES

k = 1, z = 1

k = 1, z = 1

k = 1, z = 1

log2 n1
times k = 2, z = 1

k = 2, z = 1

k = 2, z = 1

log2 n2
times k = d, z = 1

k = d, z = 1

I = Ø

I = Ø

I = Ø

k = d, z = 1
I = Ø

log2 nd
times

for each dimension

Figure 3.6.: Directed Acyclic Graph of the parameter tree describing d-dimensional Fenwick trees. Similar sub-
trees were summarized to ease visual inspection. Please refer to our paper for explanations of node parameters.
Note that the parameter tree reduces to a binary tree with

∏

i∈N≤d
⌊log2 ni⌋ leaves since all subarrays have a

sidelength of 1 in direction of the split dimension.

Here, µ is chosen such that the bit lengths of all remaining errors

e[w] = SVT[v] +µ ·





∏

i∈N≤d

(wi + 1)−
∏

i∈N≤d

(vi + 1)



− SVT[w],

where w is a multi-index located in the current brick, are minimized. The authors suggest determining

µ via binary search. Lastly, the remaining errors e[w] are stored in a dynamic word length storage

with the smallest precision possible such that all errors of the current block can be encoded. In doing

so, the authors exploit a) that errors e[w] tend to be notably smaller than the prefix sums SVT[w]

and b) that errors and prefix sums alike are of smaller magnitude for bricks of small multi-indices.

MEIV decreases memory consumption exceptionally well. At the same time, a prefix sum SVT[w]

can be computed from two data fetches from memory. It suffices to query brick-related information

(SVT[v], µ), as well as the error e[w] from the dynamic word length storage. The clear downside

of MEIV is the increased construction time due to fitting µ. In the authors’ experiments, building

the MEIV representation took up to 75 times longer than building the regular SVT. In contrast to

our approach, MEIV cannot give any memory guarantees before encoding the actual data. Ill-posed

input may yield sufficiently higher memory consumption than observed in the authors’ work. This

observation also implies that no parameter tree can be found that reflects the behavior of MEIV.

38

4
Visualizing the Stability of 2D Point Sets from Dimensionality

Reduction Techniques

Dimensionality reduction techniques are utilized for mapping high-dimensional point sets to low-

dimensional embeddings such that structural properties (i.e. clusters, topology) of points are retained.

In doing so, structures can be explored and analyzed using 2D visualization tools. However, popu-

lar dimensionality reduction techniques such as multidimensional scaling and t-distributed stochastic

neighbour embedding produce different 2D embeddings for each run. Whereas many structures con-

sistently appear over multiple runs of a specific dimensionality reduction technique, some structures

may be spurious when only inspecting a single run. Therefore, to obtain reliable insights into the data,

we propose a visualization technique that allows—at a glance—to identify regions in which most 2D

point sets coincide and thus can be considered reliable [RKW20].

Before presenting our contribution in Sec. 4.6 and Sec. 4.7, we provide information about existing

algorithms used throughout our work. First, the dimensionality reduction techniques that have been

used to generate the input to our method are explained. Second, we discuss Voronoi diagrams and

HDBSCAN clustering, which both play a central role in the data processing pipeline for generating

robustness plots. We also introduce the k-Means and DBSCAN clustering algorithms. They are used to

derive the member-centric cluster variability plots [Kum+18] against which we compare our method.

Last, we discuss the algorithms utilized to select representative embeddings, that is matrix seriation

and the PageRank algorithm.

4.1. Dimensionality Reduction

Dimensionality reduction (DR) techniques intend to map data points embedded in a space of arbitrary

dimension n into a low-dimensional space of dimension m < n. If m is chosen to be two, points

reduced via DR can be explored in 2D visualizations, fascilitating new insights into the original point

39

4. VISUALIZING THE STABILITY OF 2D POINT SETS FROM DIMENSIONALITY REDUCTION TECHNIQUES

set. Formally, let X = {x i}i∈N≤|X | ⊂ R
n be finite set of points. Then, a DR technique maps each

point x i to a low-dimensional representative yi := f (x i) ∈ Rm. Ideally, the mapping function f is

able to preserve as much of the original points’ structure as possible. For instance, pairwise distances

in X may be preserved, that is ||x i − x j|| ≈ || f (x i) − f (x j)||. As a consequence, clusters and other

topological properties can be estimated by inspecting the low-dimensional point embedding f (X).
Inevitably, if the intrinsic dimension of X is larger than m, some structural properties of X will not be

reflected in f (X). For instance, a set of n+ 1 pairwise equidistant points can be embedded faithfully

in n dimensions, but not less, as then the equidistance property would be lost. The phenomenon that

low dimensional spaces cannot provide sufficient space to reflect certain point configurations is known

as the crowding problem. Depending on the DR technique, the crowding problem can be mitigated

by focussing on either global or local inter-point relationships, at the cost of inaccurate representation

of the respective other quantity.

t-Distributed Stochastic Neighbour Embedding t-distributed stochastic neighbour embedding

(t-SNE) [MH08] favors embeddings that accurately represent point neighborhoods and thus can be

considered a local DR technique. At its core, t-SNE models the neighborhoods of high-dimensional

points and low-dimensional representatives separately as two discrete probability distributions P and

Q, which then are matched in an iterative optimization scheme minimizing the Kullback-Leibler di-

vergence between P and Q.

In high-dimensional space, the probability distribution of x i is obtained by placing a normalized

Gaussian kernel of fixed variance σi centered at x i so that the probability of walking from x i to yi is

given by

p j|i :=
exp(−||x i − x j||2/(2σ2

i))
∑

k ̸=i exp(−||x i − xk||2/(2σ2
i))

.

For each point, σi is determined via binary search such that λ = 2−
∑

j p j|i log2 p j|i holds, where λ is a

user-chosen perplexity parameter. It is considered a smooth measure for counting the effective size of

the neighborhood of x i modeled by t-SNE and is commonly set to values between 5 and 50. The joint

probability distribution P encoding all high-dimensional neighborhoods is obtained by symmetrizing

and renormalizing the conditional probabilities, that is pi j := (p j|i + pi| j)/(2|X |).
On the low-dimensional end, neighborhoods are modelled via a Student t-distribution

qi j := (1+ ||yi − y j||2/ν)−(ν+1)/2/Z with Z :=
∑

k ̸=ℓ

�

1+ ||yk − yℓ||2/ν
�−(ν+1)/2

,

where the t-SNE authors propose to set ν = 1 for m ≤ 3 and ν > 1 otherwise. After ini-

tializing the representatives yi with random positions in Rm, the Kullback-Leibler divergence

KL(P||Q) =
∑

i, j pi j log
pi j
qi j

is iteratively decreased by a customized gradient descent optimizer

40

4.1. DIMENSIONALITY REDUCTION

that incorporates an adaptive learning rate scheme and a progressively increasing momentum term.

By design, the outcome of t-SNE heavily depends on the choices for λ,ν and—in particular—the

initial configuration of the low-dimensional representatives. To mitigate the randomness of t-SNE,

its authors propose to include an early exaggeration step in the initial stages of the optimization

to separate point clusters and converge to a reasonable global configuration. Nonetheless, t-SNE’s

non-deterministic nature persists.

Barnes-Hut t-SNE Evaluating the gradient of the Kullback-Leibler divergence

∂ KL
∂ yi

= 4





∑

j ̸=i

Z pi jqiq(yi − y j)−
∑

j ̸=i

Zq2
i j(yi − y j)



 (4.1)

requires O(|X |2) time, making the application of t-SNE unfeasible for large point sets. With a couple

of approximations, the complexity of t-SNE is decreased to O(|X | log |X |) [Maa14]. First, the high-

dimensional probability distribution P is thinned out by setting all p j|i to zero for which x j is not one

of the ⌊3λ⌋ nearest neighbors of x i . The remaining ⌊3λ⌋-neighborhoods are efficiently identified by

running depth-first searches in a Vantage-point tree over X . Thus, the first sum in Eq. (4.1) is reduced

to a constant number of terms.

Second, the low-dimensional representatives are structured in an mD-hyperoctree, that is a

quadtree for m = 2 and an octree for m = 3. Given a representative yi and a threshold θ trading off

speed for accuracy, the largest non-empty cells C of side length rcell and center ycell in the hyperoctree

are identified for which rcell < ||yi − ycell||2θ holds. By exploiting that all points of a cell are almost

equally distant to yi , the second term in Eq. (4.1) can be approximated by

∑

cell∈C
ZNcellq

2
i,cell(yi − ycell), (4.2)

where qi,cell = (1+ ||yi − ycell||2/ν)−(ν+1)/2/Z and Ncell is the number of representatives falling into

the respective cell. With the same trick of grouping up points in sufficiently large cells, Z can be

computed in O(|X | log |X |). In particular, with Z available, qi,cell can be computed in O(1), so that

Eq. (4.2) can be computed in O(log |X |) for each yi .

Scaling by Majorizing a Complicated Function Multidimensional scaling (MDS) [KW78; CC08]

is a set of techniques for finding a mapping f such that ||x i − x j|| ≈ || f (x i) − f (x j)|| is as tight as

possible for all points. In comparison to t-SNE, pairs of points do not have to be close neighbors in

order to be influential on f . Thus, MDS can be considered a global DR technique. The scaling by

majorizing a complicated function (SMACOF) algorithm proposed by De Leeuw [LM09] is a specific

41

4. VISUALIZING THE STABILITY OF 2D POINT SETS FROM DIMENSIONALITY REDUCTION TECHNIQUES

MDS approach we use in our implementations. It minimizes

g(Y) :=
∑

i< j

(di j(X)− di j(Y))
2

where X ∈ R|X |×n and Y ∈ R|X |×m are the matrices with rows x i respectively yi , and di j(Z) is given

by the euclidean distance between the i-th and j-th row of a matrix Z .

Instead of directly solving for argminY g(Y), SMACOF assumes a random start configuration Y (0)

and then repetitively solves for Y (i+1) = argminY g(Y, Y (i)) where g is a majorant of g than can be

optimized for quickly. Specifically, it is

g(A, B) := trace(X T V X) + trace(AT VA)− 2 trace(AT Z(B)B)

with

V =
∑

i< j

(ei − e j)(ei − e j)
T and Z(B)i j =







di j(X)/di j(B), di j(B)> 0

0, di j(B) = 0
.

By a simple reformulation of g and the Cauchy-Schwartz inequality stating ||x || · ||y|| ≥ |x T y| with

equality taken on if x = y , it can be shown that g(Y) = g(Y, Y) and g(Y)≤ g(Y, Z) for all Z ∈ R|X |×m.

We refer the reader to the MDS review by Groenen and Van De Velden for the details [GV16, pp. 7–8].

Now, it follows that

g(Y (i+1))≤ g(Y (i+1), Y (i))≤ g(Y (i), Y (i)) = g(Y (i)),

in other words, decent over g is guaranteed. At some point, SMACOF converges to Y (i+1) ≈ Y (i).

Then, Y (i) contains the positions of the low-dimensional representatives. Similar to t-SNE, the result

of SMACOF heavily depends on the initial configuration Y (0).

4.2. Voronoi Diagrams

Assume a finite set of points P ⊂ R2. The Voronoi cell associated with p ∈ P is given by

{x ∈ R2 | ||x − p|| ≤ ||x − q|| for all q ∈ P},

that is all points that share p as nearest neighbor in P. The set of all Voronoi cells forms the Voronoi

diagram. It partitions the ambient space R2, and it permits a binary relationship over P by calling two

points of P adjacent if and only if their corresponding Voronoi cells share a common facet. k-order

Voronoi diagrams contain Voronoi cells defined over k-subsets of P. They group all points in R2 that

share the closest k nearest neighbors in P. That is, for a k-subset V of P, its associated Voronoi cell is

42

4.2. VORONOI DIAGRAMS

Figure 4.1.: Voronoi diagrams of order 1, 2 and 5 (left to right) for a point set of 20 randomly sampled points
over R2. Point positions are indicated by circles. Cells are separated by ridges.

given by

{x ∈ R2 | ||x − p|| ≤ ||x − q|| for all p ∈ V, q ∈ P \ V}.

Sample Voronoi diagrams of various orders are depicted in Fig. 4.1. Note that not all k-subsets of P

give rise to a non-empty Voronoi cell. In general, k-order Voronoi diagrams contain only O(k|P|) non-

empty Voronoi cells, whereas there exist O(|P|k) k-subsets in P. Further, a k-order Voronoi diagram

defines a binary relationship over k-subsets of P by requiring a common facet for Voronoi cells of

adjacent subsets. Thus, the k-subsets of P can be equipped with a graph structure.

Computation of Voronoi Diagrams The dual graph of a 1-order Voronoi diagram over P is the

Delaunay triangulation of P, which can be computed from a convex hull in R3. For this reason, one

can use the quickhull algorithm [BDH96] to first compute a 3D convex hull and then use this result

to derive the 1-order Voronoi diagram. Arbitrary k-order Voronoi diagrams can be computed from

1-order Voronoi diagrams by following an algorithm of Lee [Lee82]. It gradually generates Voronoi

diagrams of increasing order by cutting cells of the previous order k−1. As the k−1 nearest neighbors

for a cell are already known, the remaining k-th neighbor is computed by intersecting the cell with the

1-order Voronoi diagram obtained when discarding the k − 1 known neighbors. Then, the resulting

cutouts with similar k-neighborhoods are stitched together.

The run-time complexity of computing k-order Voronoi diagrams with the aforementioned algo-

rithm is in O(k2|P| log |P|), which is reasonable for modest values of k. However, Voronoi compu-

tation can be sped up significantly by utilizing the GPU [SKW09]. By discretizing the 2D plane to a

high-resolution grid and propagating closest neighbors of grid cells in four sweeps, Voronoi diagrams

can be computed quickly on the GPU’s SIMD architecture, with runtime being linear in the resolution

of the grid.

43

4. VISUALIZING THE STABILITY OF 2D POINT SETS FROM DIMENSIONALITY REDUCTION TECHNIQUES

4.3. Clustering

Clustering commonly is used in data mining to condense objects with similar characteristics into a

single “cluster group” that is representative of all objects it contains. This approach is in line with

the intuition of humans processing data. We tend to quickly categorize large collections of objects

before reasoning about them, as otherwise our mental model would be overburdened. The resulting

categories—that is clusters—then are considered entities and can be handled more easily due to their

modest quantity. Similarly, clustering in data processing eases the design of subsequent algorithms.

For instance, Kumpf et al. [Kum+18] cluster points according to their position in space, so that dif-

ferent point embeddings can be compared by matching a small set of clusters between embeddings.

We utilize clustering to assemble large stable point subsets from smaller k-subsets, which in turn are

utilized to derive a cleaned-up visualization of k-order Voronoi diagrams.

k-Means k-Means can be considered as one of the most widespread clustering algorithms available

and dates back to a work of Steinhaus in 1956 [Ste+56]. It is very effective in detecting circular-

shaped clusters in large point sets P by minimizing its distance to k centroids that can be freely

positioned in space. That is, k-Means intends to solve

argmin
c1,c2,...,ck

∑

p∈P

min
i
||p− ci|| (4.3)

After choosing a random initial position for all centroids, the following two-step process is applied to

update centroid positions. First, the clusters

Ci = {p ∈ P | ||p− ci||< ||p− c j|| for all j ̸= i}

are determined by assigning each point p ∈ P to its closest centroid. Then all centroids are updated

by setting ci := (
∑

p∈Ci
p)/|Ci|. This process is repeated until cluster assignments and thus centroids

do not change anymore. Albeit being simple in nature, k-Means suffers from multiple drawbacks.

As k-Means ends up in local optima of Eq. (4.3), the quality of found solutions highly depends on

the initial configuration. k-Means usually takes a lot of iterations to reach convergence, and it even

may not converge at all for certain initial configurations. Also, it is sensitive to outliers in P. Lastly,

k-Means does not provide guidance on how to choose the number of clusters k. Many improvements

and adaptations on k-Means have been suggested over the years, many of which can be found in the

survey of Filippone et al. [Fil+08].

Density-Based Spatial Clustering of Applications with Noise In comparison to k-Means,

density-based spatial clustering of applications with noise (DBSCAN) does not search for clusters

44

4.3. CLUSTERING

centered at specific points but instead follows connected regions of densely packed objects [Est+96].

It thus is suited for identifying submanifold structures of any shape. Its behavior is controlled by

two user-defined parameters ε ∈ R describing the maximal distance for which points are considered

neighbors, and η ∈ N defining the number of points when a region is considered dense. Given a

point set P and a randomly chosen member p ∈ P, DBSCAN considers its ε-neighborhood

Nε(p) = {q ∈ P | ||p− q||< ε}.

A new cluster C containing p and Nε(p) is initiated if |Nε(p)| ≥ η. As long as there exists a point

q ∈ C with |Nε(q)| ≥ η, the cluster is grown by adding all points in Nε(q) not yet assigned to any other

cluster. When there a no new points to add, the cluster is complete. Further clusters are generated

by the same scanning process initialized at randomly chosen, not yet clustered points p ∈ P with

|Nε(p)| ≥ η. DBSCAN ends when all points p ∈ P with |Nε(p)| ≥ η have been assigned to a cluster.

Any point that is not clustered at that point is considered noise. It neither has a dense neighborhood

nor is located close to an existing cluster.

On the plus side, DBSCAN can detect arbitrary cluster shapes and is robust against outliers. Effi-

cient implementations are realized by deploying acceleration structures for finding close neighbors of

points. Further, the number of clusters is not prescribed and will be derived on the fly by DBSCAN. On

the downside, the results of DBSCAN heavily depend on the order of picking initial cluster positions,

as well as the choice of ε and η. Whereas η usually can be derived from the context in which clus-

tering is performed, choosing a suitable ε is challenging at best. In the case of datasets with spatially

varying density levels, a global value for ε cannot be chosen such that it suits all parts of the dataset

equally well.

Hierarchical DBSCAN Campello et al. [CMS13] propose a variant of DBSCAN in which the ε

parameter is dropped in favor of a hierarchical cluster representation, thus the name hierarchical

density-based spatial clustering of applications with noise (HDBSCAN). Intuitively, the proposed al-

gorithm identifies clusters for all values of ε and arranges them in a merge tree according to their

subset relationships. This tree further is tagged with a temporal component at each junction that

tracks at which ε-value two clusters merge into a larger one. In particular, each cluster is assigned

a “lifetime” by computing the difference between the ε-value where it comes into existence due to

a merge event, and the ε-value where it is incorporated into an even larger cluster by merging with

another cluster. The resulting merge tree then is traversed in bottom-up order to identify a disjunct

set of clusters for which the product of cluster size and lifetime becomes maximal. HDBSCAN thus

favors large clusters of locally high densities. That is, the points contained in a cluster are significantly

45

4. VISUALIZING THE STABILITY OF 2D POINT SETS FROM DIMENSIONALITY REDUCTION TECHNIQUES

(a) (b)

Figure 4.2.: Dendrograms visualizing an exemplary cluster hierarchy generated by HDBSCAN (a) before and
(b) after the simplification process. Each box indicates a cluster with the width encoding its size. Horizontal
lines signal merge events. Figure has been adapted from Fig. 4 in [RKW20].

more dense than spurious points in the surrounding. Similarly to DBSCAN, noise points are identified

according to the η parameter already introduced in the previous section.

HDBSCAN implementations proceed in several steps. First, the core distance of each point p ∈ P

is defined by setting dcore(p) := minε |Nε(p)| ≥ η. It is computed via a nearest neighbor search.

The core distance defines the minimal ε-value such that p can enter a cluster-relationship with other

points. Thus, two points p, q can only be arranged in a cluster if the ε-value exceeds their mutual

reachbility distance

dmreach(p, q) :=max{dcore(p), dcore(q), ||p− q||}.

In the second step, single-linkage clustering with respect to dmreach is performed. In other words,

a hierarchical cluster representation is generated by running Prim’s algorithm [Pri57] on the fully

connected, undirected graph over P with edges weighted according to dmreach. Initially, all points are

considered to be singleton clusters. Whenever Prim’s algorithm connects two vertices p and q via the

edge dmreach(p, q), the clusters previously containing p and q respectively are merged. In the merge

tree, this is reflected by introducing a new node with its children set to the nodes representing the

merged clusters. Additionally, the temporal ε-value of the node is set to dmreach(p, q).

At this point, the merge tree still contains a lot of small, spurious clusters, compare Fig. 4.2a. To

remove noise, all nodes of clusters being smaller than ηcluster are dropped. In particular, a lot of nodes

of the merge tree are left with a single child. Such a node is integrated into its parent node by relinking

its child to the grandparent and adding annotations describing the integrating node’s cluster size and

ε-value. After this simplification, a node does not represent a single cluster anymore, but rather

a progression of a cluster collecting surrounding points as ε increases. The resulting simplification

of the cluster hierarchy can be observed in Fig. 4.2b. Commonly, ηcluster is set to η to avoid the

introduction of a new user-chosen parameter.

46

4.4. MATRIX SERIATION

As the last step, a flat clustering is obtained from the simplified cluster hierarchy. To do so, each

node in the merge tree is assigned a persistence value that is computed by integrating the cluster

size over ε. The final clustering is given by the optimal disjunct set of clusters such that the sum

of their persistence values becomes maximal. It is computed in a single bottom-up sweep through

the simplified merge tree. The maximal attainable persistence value for each subtree is computed as

the maximum of the root node’s persistence and the sum over child persistence. The corresponding,

optimal set of clusters is set to either the singleton set containing the root node cluster, or the union of

optimal cluster sets as returned by the child nodes. The final output of HDBSCAN then can be queried

from the root node of the merge tree.

4.4. Matrix Seriation

Heatmaps are a common visualization tool for displaying (dis-)similarities between two sets of enti-

ties, or pairwise (dis-)similarities between a single set of entities. Depending on the order in which

entities are assigned to rows and columns, correlations and clusters between entities become visible.

However, without carefully ordering entities, correlations are difficult to spot, see Fig. 4.3. Matrix se-

riation addresses this issue by finding a permutation of columns and rows such that highly correlated

entities are displayed next to each other and structures such as clusters become apparent. Specifi-

cally, we deploy the rank-two ellipse seriation algorithm of Chen [Che02]. The survey of Behrisch

et al. [Beh+16] suggests that it is well suited to reveal blocks along the diagonal, where each block

hints at a separate cluster. Further, its implementation is rather straightforward. Starting with the

(unsorted) initial distance matrix R(0), matrices R(i+1) := φ(R(i)) are iteratively computed by invoking

the Pearson correlation operator

φ(A)i j =
Ci j
Æ

Cii · C j j

where C is the covariance matrix of A given by

C =
1
|X |M M T with Mi j = Ai j −

1
|X |
∑

k

Aik.

Chen noticed that with an increasing number of iterations, the matrix rank decreases and the columns

of R(i) tend towards the surface of an ellipsoid. Hence, when stopping the iterative process at a matrix

rank of 2, the columns of R(i) can be ordered as they appear on the 2D ellipsis. This is easily achieved

by computing 2D coordinate vectors of the columns w.r.t. the plane spanned by the two-dimensional

image of R(i), and sorting coordinate vectors according to their polar angles. The resulting permuta-

tion can be applied to the rows and columns of the original distance matrix R(0) to disclose clusters,

see Fig. 4.3b.

47

4. VISUALIZING THE STABILITY OF 2D POINT SETS FROM DIMENSIONALITY REDUCTION TECHNIQUES

(a) (b)

Figure 4.3.: Sample pairwise similarity matrix (a) before and (b) after ordering point sets according to the
rank-two ellipse seriation algorithm. Note that after sorting, it becomes evident that point sets can be assigned
to a total of two groups. This information cannot be immediately deduced from (a), although the same data is
shown. Figure has been adapted from Fig. 6 in [RKW20].

4.5. PageRank

Originally, the PageRank algorithm has been deployed to assign scores to web pages returned by a

web crawler. It is designed in such a way that web pages linked from many other pages receive a

higher score and that links emanating from highly scored pages have a higher impact on the target

page as well. Mathematically, PageRank is formulated as a Markov process and solved via the eigen-

value problem Mλ = λ where λ represents the scores assigned to each page and Mi j represents the

probability of a user on page j following a link to page i. In practice, the PageRank algorithm in-

corporates an additional dampening factor d (defaulting to d = 0.85) and solves for the eigenvalue

problem λ= (dM+ 1−d
|X | 11T)λ. This scheme avoids ill-posed solutions and speeds up the convergence

of the Von Mises iteration used to solve the eigenvalue problem.

4.6. Robustness Plots

Now, we present our contribution. As discussed in Sec. 4.1, t-SNE and SMACOF require an initial

configuration of representatives yi that subsequently is refined in an iterative optimization process.

By executing a DR technique multiple times for a fixed set X of high-dimensional points and random

low-dimensional initializations, an ensemble E over embeddings of X into the 2D plane is created.

Here, each ensemble member P ∈ E is an ordered 2D point set in which each point refers to a unique

entity in X . In particular, points between different ensemble members are identified with each other

if they refer to the same high-dimensional point.

The ensemble E serves as input to our method. After picking a distinguished point set P ∈ E ,

our method analyzes its k-neighborhoods and identifies subgroups of points for which neighborhood

relationships are consistent across most 2D point sets in E . Then, those subgroups are visualized

48

4.6. ROBUSTNESS PLOTS

in a novel robustness plot. In theory, one can now generate a separate robustness plot for each

ensemble member and visualize all of them in a large dashboard. However, such a visualization

quickly overburdens the user. Since it is expected that many 2D point sets of the ensemble are related

to each other, we propose to cluster the ensemble and only show one representative robustness plot

for each cluster.

k-Neighborhood Analysis From now on, we assume that a point set P ∈ E and a number k ∈ N
have been fixed. Given a k-subset V ⊂ P, we compute per ensemble member Q ∈ E the smallest

possible disk that covers the points being identified with V . The stability value of V with respect to Q

is then computed as the ratio between k and the number of points covered by the disk. By averaging

the stability values over all ensemble members, we obtain a scalar value that represents the stability of

V with respect to the whole ensemble. Thus, we consider a k-subset to be stable if, for most ensemble

members, its corresponding points are close to each other without any other interfering points in

between. Since computing stability values for all
�|P|

k

�

∈ O(|P|k) k-subsets is intractable for point

sets of modest size, we suggest inspecting the subsets that arise as non-empty cells in the k-order

Voronoi diagram of P. As pointed out in Sec. 4.2, this reduces the number of subsets to O(k|P|),
which is linear in the number of points. In addition to that, the k-order Voronoi diagram provides a

meaningful spatial relationship between k-subsets that we subsequently use to cluster stable k-subsets

into larger subsets of locally stable points. As is elaborated in our publication, this would not have

been possible when only inspecting |P| subsets that arise from each point of P and its k − 1 nearest

neighbors.

Clustering Stable Subgroups of Points To detect stable subsets with more than a limited number

of k points, we propose to cluster the Voronoi cells of investigated k-subsets with a slightly modified

version of the HDBSCAN algorithm (see Sec. 4.3). First, we consider Voronoi cells as objects that are

to be clustered. The core distance of each cell is given by 1 − λ2, where λ is the stability value as

described above. The distance measure ||C −D|| between two cells C, D is given by zero if C and D
share a common facet, and by infinity otherwise. That is, two Voronoi cells can only merge if they

are adjacent to each other. Second, we alter the notion of cluster size. Since we ultimately aim for

clustering the point set P, and since k-order Voronoi cells are not in one-to-one correspondence with

the points in P, we introduce a significance relationship between points and Voronoi cells. Here, each

point has a significance of one, which then is distributed between all Voronoi cells the point is related

to. The significance of a Voronoi cell is given by the sum of all received significance contributions

from its related points. Instead of measuring the size of a Voronoi cell cluster by counting the number

of its cells, we now sum up the significance values of all contained cells. Please refer to our paper for

a detailed discussion about our choice of the core distance and significance contributions.

49

4. VISUALIZING THE STABILITY OF 2D POINT SETS FROM DIMENSIONALITY REDUCTION TECHNIQUES

Figure 4.4.: Exemplary robustness plots for two different point set ensembles E . Figure has been adapted from
Fig. 1 in [RKW20].

After computing a Voronoi cell clustering with HDBSCAN, a postprocessing step is applied to extract

clusters of stable points. By making use of the significance relationship between points and Voronoi

cells again, Voronoi cell clusters can be transformed into fuzzy clusters over P. A final defuzzying

operation yields point clusters that represent subgroups of points with stable k-neighborhood rela-

tionships.

Visualizing Stable Subgroups of Points We visualize the clusters of stable subgroups through a

space-filling tessellation of the 2D plane. The tessellation is determined by first computing a 1-order

Voronoi diagram of P and then merging all adjacent cells where points belong to the same cluster. In

particular, we map the stability value of a subgroup to the color of its corresponding region. Further,

regions are separated by ridges, with ridge color indicating the separation strength of adjacent regions.

To provide context, we also render a scatterplot of P on top of the tessellation where points are colored

according to cluster membership. Two exemplary robustness plot are shown in Fig. 4.4. Note that

black points and gray regions stem from noise detected by HDBSCAN. They indicate high instability,

or in other words, neighborhood relationships in gray regions do not persist across the point set

ensemble E .

4.7. Representative Point Sets

Since showing a robustness plot per point set in E would overburden the visualization, we guide

the user’s selection process of viewing certain point sets by identifying groups of similar point sets

as well as a suitable representative per group. The pairwise similarity between point sets P and Q

encodes how well the k-neighborhoods arising in Q are preserved in the point set P. It is computed

50

4.7. REPRESENTATIVE POINT SETS

by aggregating the stability value of V with respect to P over all subsets V that occur in the k-order

Voronoi diagram of Q. Then, we plot all pairwise similarities in a heatmap where a single row or

column corresponds to a point set in the ensemble. Further, rows and columns are ordered according

to the rank-two ellipse seriation algorithm (see Sec. 4.4), so that clusters of points sets are easily

discernible, see Fig. 4.3b.

After the user selects a subset Ecl ⊂ E from the heatmap, the PageRank algorithm (see Sec. 4.5) is

utilized to find the most representative point set in Ecl. Let S be the matrix containing the pairwise

similarities of point sets in Ecl. Then, we define the matrix M as follows.

Mi j =
(1−δi j)Si j
∑

k ̸=i Sk j
.

It is a stochastic matrix where Mi j encodes the probability of the j-th point set choosing the i-th as

its “most similar” neighbor in the ensemble. By solving the (dampened) eigenvalue problem of M ,

one obtains an impact score for each point set in Ecl, with the highest scoring point set being elected

as the representative for which we show a robustness plot. Note that we consider PageRank to be a

suitable choice in this context since PageRank penalizes dissimilar, outlier point sets to have overall

less influence on scoring results.

51

5
Deep Learning

The upcoming chapters 6 and 7 make heavy use of basic deep learning concepts. Albeit not being

substantial in the context of the previous work presented in Chap. 4, even there some deep learning

was involved when generating high dimensional datasets. In the following, we present basic concepts

about training procedures (Sec. 5.1) and neural network architectures (Sec. 5.2) required to fully

comprehend our work.

Neural networks are highly universal function approximators in the sense that—given enough ad-

justable network parameters—arbitrary functions g can be implemented by fitting a neural network

on sufficiently many function samples (x , g(x)) [MP99]. Regarding Deep Learning terminology, g is

called a task. In comparison to classical (linear) regression and model fitting, where representable

functions are limited by a handcrafted choice of basis functions, neural networks gain their strength

in stacking a large amount of simple, but yet highly parameterized function blocks, so that in the-

ory even the most complex functions can be accurately approximated. Thus, neural networks were

successfully deployed in a vast variety of difficult and as of yet poorly understood domains such

as computer vision [Dai+17; Mil+20; Zol+18], rendering [Tew+20; Gar+21; Tak+21; TZN19],

robotics [Kár+21; Mor+21], medical applications [Aza+21; Bha+21; KA21], light transport [Kal+17;

Mül+21; Mül+22], and physical simulations [EUT19; Thu+20; Umm+19].

A feedforward neural network is a highly parameterized function fθ with the parameters θ called

network parameters, network weights, or simply weights. Given a vector-valued input x , the network

transforms x to another scalar or vector-valued output fθ (x) describing the solution of a task the net-

work has been trained for. The structure of fθ follows a set of simple, piecewise differentiable function

blocks that are organized in a directed acyclic graph called computation graph. Each function block

g computes an output by requiring some network weights and one or more input values x1, x2, . . .

being either the task-related input x or intermediate values computed by other blocks. In the latter

case, edges pointing to g are introduced in the computation graph to indicate its dependencies. The

53

5. DEEP LEARNING

full network fθ is evaluated by doing a forward pass through the computation graph and invoking

the function blocks in such an order that all dependencies are resolved.

5.1. Training

In order to fit fθ to a specific task g, an optimization process modifying the weights θ , called training,

is necessary. First, a task-specific loss function ℓ is selected. It measures the quality of the current

network configuration by comparing a network output fθ (x) to the expected outcome g(x). Common

loss functions are the mean absolute error (MAE) loss

ℓMAE(x , y) =
1
n

n
∑

i

|x i − yi| x , y ∈ Rn,

the mean squared error (MSE) loss

ℓMSE(x , y) =
1
n

n
∑

i

(x i − yi)
2 x , y ∈ Rn,

or—in the case of probabilistic and classification tasks—the cross-entropy loss

ℓcross-entropy(p, q) = −
n
∑

i

qi log pi

where p, q ∈ Rn encode probabilities over n discrete events. Second, the function g has to be sampled

as densely as possible to generate a large dataset D of input/ground truth pairs (x , g(x)). For most

real-world tasks, this step implies an extensive data acquisition process of generating and labeling

data in the wild. For rendering applications such as adaptive super-sampling (see Chap. 6), data

can be generated automatically by generating random scene configurations x and deriving g(x) from

high-resolution renderings. Ultimately, a first-order gradient descent optimization solves for

argmin
θ

L(θ ,D) where L(θ ,X) :=
1
|X |
∑

(x ,g(x))∈X
ℓ(fθ (x), g(x)) (5.1)

by iteratively updating the network weights θ according to the update formula

θ(n) = θ(n−1) −η∇θ L(θ(n−1),D). (5.2)

Here, η is the learning rate that controls the convergence of the optimization method. Oscillating or

unstable updates in the case of highly non-linear objectives can be mitigated by choosing a low value

for η. On the downside, this also increases the number of iterations until convergence is reached.

54

5.1. TRAINING

Backpropagation Each first-order optimizer requires access to the gradient of θ 7→ ℓ(fθ (x), g(x)).

Since function blocks, as well as loss functions used in Deep Learning, have closed-form derivatives,

this can be achieved with the chain rule. It states that

∂ (v ◦ u)
∂ x

(x) =
∂ v
∂ x
(u(x)) ·

∂ u
∂ x
(x),

where u: Rℓ → Rm and v : Rm → Rn are two differentiable functions. The chain rule implies that

if the subsequent gradient ∂ v
∂ x (u(x)) is already known, then the gradient of the composition can be

obtained by evaluating ∂ u
∂ x (x) on the input and computing a matrix product. In particular, gradients

of the loss function w.r.t. any function block can be obtained by caching all function block inputs in

the forward pass and then doing a backward pass through the whole computation graph. Starting

with the loss function, the gradient ∂ ℓ∂ x (fθ (x), g(x)) is evaluated and cached as outgoing gradient at

the last node. Whenever a function block h of the network with cached outgoing gradient y and

cached input x is reached, the partial derivatives of its inputs x i are computed via y · ∂ h
∂ x i
(x) and then

are added to the gradient caches at the function blocks outputting the respective inputs. Similarly,

weight gradients y · ∂ h
∂ θ (x) are computed and cached as well. After completing the backward pass,

the gradient of θ 7→ ℓ(fθ (x), g(x)) can be read off the weight gradient cache.

The whole process of traversing the computation graph from back to front while tracking gradients

is called backpropagation [RHW86]. Since all function block inputs have to be cached, backpropaga-

tion has a significantly higher memory footprint compared to a simple forward pass without caching.

For this reason, training a network requires notably more GPU memory than evaluating it. By caching

only a subset of function block inputs at a time and recomputing others by a second forward pass

through a small part of the computation graph, memory consumption can be decreased at the cost of

additional forward pass computations. This technique is called gradient checkpointing [Che+16].

Stochastic Gradient Descent In practice, datasets are far too large to evaluate the network on ev-

ery sample once per gradient descent step. To make the training process tractable, stochastic gradient

descent (SGD) repeatedly draws minibatches B ⊂ D without replacement and performs a gradient

descent step on the objective L(θ ,B). If minibatches are chosen sufficiently small, the objective and

its gradient w.r.t. θ can be computed in a single forward-backward pass without running out of mem-

ory by caching function block inputs. Additionally, this approach allows escaping bad local minima

of Eq. (5.1) by frequently changing the data samples for which the loss is computed.

Adaptive Moment Estimation Gradient Descent via the update rule Eq. (5.2) requires stable gra-

dients∇θ L throughout the training process in order to function reliably. Especially when computation

graphs of networks become deeper, the quality of gradients starts to erode. Even more, depending

55

5. DEEP LEARNING

on the actual network architecture, gradients tend to diminish or explode when tracking them in the

backpropagation pass. As a consequence, weights appearing at different levels of the computation

graph exhibit a high dynamic range in their gradients. Whereas some weights remain mostly un-

changed in Eq. (5.2), others change (too) drastically. A decent global learning rate η thus cannot be

found.

Adaptive moment estimation (ADAM) by Kingma and Ba [KB14] is a highly successful first-order op-

timization scheme that addresses the aforementioned issues. It replaces the update scheme Eq. (5.2)

by

θ(n) = θ(n−1) −η
Òm(n)
Æ

bv(n) + ϵ
, (5.3)

where Òm, bv are unbiased, exponential moving averages of the first and second order moments of∇θ L,

and ϵ = 10−8 is a small number to avoid a singularity at Òm≈ bv ≈ 0. The biased moment averages are

updated via
m(n) = β1 ·m(n−1) + (1− β1) · ∇θ L(θ(n−1),B) where m(0) = 0

v(n) = β2 · v(n−1) + (1− β2) ·
�

∇θ L(θ(n−1),B)
�2

where v(0) = 0

in each iteration, and then corrected by Òm(n) = m(n)/(1−βn
1) and bv(n) = v(n)/(1−βn

2) to avoid a bias

towards zero in the starting phase.

The new update scheme has two stabilizing properties. First, gradients are smoothed signifi-

cantly by applying a very small amount of decay—Kingma and Ba suggest to use 1 − β1 = 0.1,

1 − β2 = 0.001—and second, high variations in the gradient lead to smaller updates since the ra-

tio m/
p

v decreases. Last but not least, Eq. (5.3) is scale-invariant, that is, the same update happens

even if the gradient is multiplied by a fixed constant in each iteration step. For this reason, it is

possible to find a learning rate parameter η that suits all trainable weights at once.

The discussion of ADAM concludes our introduction to training procedures. At this point, we note

that even with ADAM, training is not yet trivial. We have only scratched the surface of related topics

to provide an intuitive idea of how training proceeds in principle. We did not discuss over- & under-

fitting, adaptive learning rates, regularizations such as dropout [Sri+14], batch normalization [IS15]

or weight decay, the issue of catastrophic forgetting, or data augmentation.

5.2. Neural Network Architectures

Next, we briefly introduce the function blocks and neural network architectures used in the works

accompanying the thesis. More specifically, multilayer perceptrons (MLPs) as well as the princi-

pal architecture choices behind GoogLeNet [Sze+15], DenseNet [Hua+17] and SRNet [SVB18] are

discussed. We only present a very small subset of neural network classes. In general, there exist

56

5.2. NEURAL NETWORK ARCHITECTURES

many more network architectures that we are not going to cover, for instance (variational) autoen-

coders [KW13; HZ93], generative adversarial networks (GANs) [Goo+14] and recurrent neural net-

works (RNNs) [Hop82] such as Transformer Networks [Vas+17] and long short-term memory (LSTM)

networks [HS97].

Fully Connected Layer & Activation Functions The most commonly used function block used

in Deep Learning consists of an affine transformation y = M x + b followed by an activation function

a(y) that exhibits some non-affine behavior. Given the input and output dimensions nin, nout, the

affine transformation is fully defined by the linear transformation matrix M ∈ Rnout×nin and the bias

b ∈ Rnout . The entries of both M and b are part of the network weights θ and are fully adjustable in a

subsequent training process. Note that every component of the output y depends on all components

of x so that a dependency graph over the components of x and y would be a fully connected, bipartite

graph. Hence, this special type of function block with arbitrarily parameterized M and b is called a

fully connected layer.

Since affine transformations are closed under composition, any network utilizing only mappings

x 7→ M x + b is inevitably affine itself. To disrupt this symmetry, a non-affine activation function a

is applied to each vector component after transformation. Hence, the outputs of a function block

are called activations. In our works, we utilize the well known rectified linear unit (ReLU) given by

ReLU(x) :=max(0, x). Arguably, it may be the most simple choice for a non-affine transformation. It

prevailed in literature due to the simple and fast evaluation of ReLU(x) and ∂ ReLU(x)/∂ x , so that

more computational effort can be spent on other parts of the network. Depending on the actual type

of signals one intends to process, other activation functions such as SIREN (periodic), leaky ReLU

(non-vanishing gradients), or SoftPlus (smooth) can be utilized. We consider an extensive overview

and discussion of activation functions to be out of scope for this thesis and refer to the survey of

Apicella et al. [Api+21].

Convolutional Layers Convolutional neural networks (CNNs) [Fuk80] utilize function blocks de-

scribing convolutional operations. They are commonly used in applications processing 1D temporal,

2D image, or 3D volumetric data. In all of these scenarios, data samples are equipped with an addi-

tional temporal or spatial structure which suggests that close-by data samples are highly correlated.

In particular, the presence—or even more importantly—the absence of certain correlations in local

surroundings are of particular interest when reasoning about such data. For instance, it is well known

that image processing neural networks develop edge filters that are sensitive to the lack of correlation

between two adjacent regions [ZF14].

A 2D convolutional layer expects a tensor x ∈ Rcin×h×w describing cin 2D maps of size h × w and

then convolves its with a fully trainable set of filter kernels k ∈ Rcout×cin×h×w such that the i-th slice of

57

5. DEEP LEARNING

y ∈ Rcout×h×w is formed as the sum
∑

j x j ∗ ki, j where ∗ is the discrete 2D convolution operator. The

final output of the layer is obtained by adding an optional, spatially independent bias vector b ∈ Rcout

to y and applying an activation function. Convolutional layers are equivariant w.r.t. translation and

make use of local spatial information when deriving outputs. Both properties are highly desirable

in applications as mentioned above. Note that after flatting x and y into a single dimension, the

convolution operator can be considered a special case of an affine transformation where most of the

matrix M is forced to zero and many entries in M and b share the same weights. A transposed

convolutional layer is a function block where the matrix M is defined by a set of filter kernels as

above, but then M T x + b is computed instead. The concept of 2D convolutional layers translates

directly to arbitrary dimensions, although it has to be mentioned that already for three dimensions

convolutional layers have a critically high memory footprint so that only small input resolutions are

feasible [MS15].

In the following, we describe the networks architectures we have deployed. Regarding learning

generic shape properties [RW22] (see Chap. 6), we use MLPs to en- & decode geometry patches.

Further, we have tested inverse feature visualization [RW20] (see Chap. 7), on the Inception network

GoogLeNet [Sze+15], the DenseNet-BC (k = 12) incarnation and SRNet.

Multilayer Perceptron MLPs are realized by stacking an arbitrary amount of fully connected layers.

That is, the function f of the neural network is given by f = fd ◦ fd−1 ◦ · · · ◦ f1 where each function

block fi is of the form a(M x + b), with a being the activation function. Due to their simplistic design,

MLPs are mostly deployed in applications where a) the input vector x has low dimension and/or

its components are unrelated to each other, and b) forward passes have to adhere to tight timing

constraints.

Recently, MLP architecture became popular again for scene reconstruction and rendering tasks.

Here, networks have to be invoked ten to a hundred million times per second to achieve real-time

performance with per-pixel network invocations. Recent works of Müller et al. [Mül+21] and Weiss

et al. [WHW21] show that such performance levels are realizable on modern commodity hardware

by providing custom CUDA implementations of small-scale MLPs exploiting NVIDIA Tensor Cores.

Inception Networks The Inception network architecture as proposed by Szegedy et al. in

2015 [Sze+15] is a special class of CNNs that was successfully utilized for classifying images

with state-of-the-art performance at that time. Inception blocks consist of multiple convolutional

layers that are connected in parallel. By varying the filter kernel sizes for each layer, the network

can pick the filter radius that performs best for the given task. An Inception network is realized by

stacking Inception modules and occasionally weaving in a max-pooling layer that reduces the spatial

resolution of activations by applying max operations over 2× 2 regions.

58

5.2. NEURAL NETWORK ARCHITECTURES

DenseNet Huang et al. presented the CNN-based DenseNet architecture in 2017 [Hua+17].

DenseNets are created by stacking a small number of dense blocks and transition layers that consist

of a convolutional and a pooling layer to reduce the spatial resolution. In comparison to other designs

where function blocks are chained one after another, dense blocks consist of multiple convolutional

layers that take in not only the output of the previous layer but the outputs of all preceding layers

arising in the current block. Thus, DenseNets encourage the reuse of internal activations over mul-

tiple levels, allowing for network designs with overall fewer network weights compared to previous

CNNs. Further, backpropagation paths are shortened so that problems in training deep architectures

with many layers (see Sec. 5.1) are mitigated.

SRNet SRNet is a fully convolutional neural network architecture that is used for upsampling in

video super-resolution [SVB18]. Besides using transposed convolutional layers over strided kernels

for upsampling, it also incorporates multiple residual blocks with two convolutional layers each. A

residual block requires identical in- and output formats so that the input can directly be added to

the output of the block via a residual connection [He+16]. In doing so, the network is biased toward

learning the identity mapping. Similar to DenseNet, residual connections enable the training of deeper

network architectures.

59

6
Learning Generic Local Shape Properties for Adaptive

Super-Sampling

Voxel-based geometry representations can encode volumetric as well as surface models in a simple

yet compact fashion that can be efficiently rendered via ray-tracing. The central data structure, the

sparse voxel octree (SVO), natively supports a simple level of detail (LOD) scheme, and it allows

to place material information at the same resolution level as the represented geometry. In contrast,

LOD hierarchies for mesh-based representations have to be carefully designed [DSW09; SW06] to

avoid holes at LOD transitions, to prevent geometry popping, and to be memory efficient by reusing

as much information as possible from coarse levels when describing the next finer geometry level.

Providing materials with a mesh-based surface requires uv-texture mapping, a technique that adds

additional complexity by requiring a 2D surface parametrization. For most geometric models, finding

such a parametrization is a non-trivial task since distortions have to be considered and seams must

be placed. Voxel-based texturing can avoid uv-texture mapping completely [DSA20].

As a downside, SVOs disregard partial occlusions of local geometry in screen space, so that the

view-independent, material information stored at coarse SVOs nodes may be highly misleading. In

comparison, LOD texture representations for meshes such as mipmaps [Wil83] suffer from view-

dependent screen space distortion effects. However, errors introduced by distortions are less striking

and can be accurately addressed through anisotropic filtering [Ewi+00]. In our short paper, we ad-

dress the aforementioned disadvantage of SVOs by providing an adaptive super-sampling approach

that detects and refines errors due to LOD voxel rendering [RW22]. Our main contribution lies in

applying a learned, compact shape representation to a rendering task and proving its effectiveness.

In the following, the basics of LOD-based voxel rendering and its failure cases are presented in

Sec. 6.1. Then, we present the PatchNet architecture in Sec. 6.2 and explain in Sec. 6.3 how it can be

utilized to derive super-sampling patterns.

61

6. LEARNING GENERIC LOCAL SHAPE PROPERTIES FOR ADAPTIVE SUPER-SAMPLING

6.1. Sparse Voxel Octrees & Level of Detail

Voxel geometry is represented by storing occupancy information in a high-resolution 3D voxel grid. To

even capture small geometric details in large scenes, grid resolutions of 2K3 and higher are required.

For instance, to accurately resolve maple leaf shapes in the San Miguel scene (see our paper), we

utilize a grid resolution of 8K3. Clearly, even storing a dense bit mask over an 8K3 grid is intractable,

requiring 64GB of data. An SVO limits memory consumption by organizing the grid hierarchically

in an octree where subtrees not containing any geometry are pruned from the representation. Each

node in the SVO contains an 8bit child mask, indicating which subtrees are populated, as well as a

pointer to each of the existing children. At the leaf level, shading information such as voxel color is

stored. Hence, any grid of resolution (2n)3 can be represented by an SVO with n+ 1 levels.

To render the voxel geometry w.r.t. a specific viewport, one ray per pixel is shot through the pixel’s

center and then intersected with the SVO. First, the ray is tested against the root node. If an intersec-

tion with the node’s corresponding voxel occurs, testing is recursed by checking for intersections with

the children of the root node in the order as the ray would pass them. The procedure stops at the

first intersection with a leaf node voxel, where the stored shading information is used to determine

the final pixel color. If the ray exits the root node without intersecting any leaf, the pixel is colored

according to the scene’s background. LOD rendering is realized by equipping internal SVO nodes

with averaged shading information and stopping ray-SVO traversal early at the first intersection—not

necessarily at leaf level—for which the size of the intersected voxel matches the size of the pixel cone

associated to the ray. Since averaged shading information is used to shade a pixel, undersampling

artifacts such as aliasing or temporal flickering during animations are mitigated.

Failure Cases When rendering a pixel with averaged shading information taken from an internal

SVO node, it is assumed that the leaf voxels in the respective SVO subtree fully cover the pixel and

contribute in equal parts. This assumption is violated if the geometry represented by the intersected

voxel suffers from severe self-occlusion for the current view, or projects only to a small portion of the

pixel. For instance, in terrain rendering, mountain peaks that are lit from only one side during dawn

or dusk will be perceived in a grayish tone at low levels of detail, regardless of the viewer’s perspective.

Here, dark colors from the unlit side are erroneously blended with the bright colors of the lit side.

The LOD representation does not account for the fact that half of the mountain is occluded from most

views. When distance is reduced, color-popping artifacts occur as soon as the rendering switches to a

higher LOD in which both sides of the mountain peak are separated. A similar effect can be observed

for stacks of close-by, thin geometry sheets (see Fig. 6.1 top). When viewing fence-like structures (see

Fig. 6.1 bottom), part of the background can be perceived through the laths. At low levels of detail,

gaps between laths are artificially closed, so that any contribution from the background is missed out.

62

6.2. PATCHNET

Coarsen

Figure 6.1.: Failure cases of voxel LOD representations. The left side shows actual voxel geometry, whereas
the right side depicts its coarse representation. Note that errors in the low LOD rendering result in a uniformly
shaded viewport so that screen-space-based super-sampling will not issue more samples. Figure has been
adapted from our presentation held at EuroGraphics 2022.

In our work, we propose a method to detect such cases. By sampling the geometry at a higher

LOD with an increased ray-sample count, errors can be corrected. Note that existing adaptive super-

sampling approach operating in screen-space [LRU85; Mit87; RFS03a; RFS03b; Xu+07] fail to correct

errors, since neighboring pixels show similar, yet consistently wrong appearance in the scenes of

Fig. 6.1.

6.2. PatchNet

We argue that screen-space approaches do not attack the issue with LOD rendering at its core, namely

occluding geometry. Instead, we propose a world-space approach that considers local geometry at

ray-voxel intersections when reasoning about super-sampling. It builds upon a neural network f that

takes a ray-voxel intersection point p, as well as additional rendering parameters θ that describe

the projection to the shaded pixel. The network returns an occupancy value σ that estimates the

fraction of the pixel covered by local geometry around p, and it also returns the average luminance

L projected into this fraction. Our super-sampling approach now operates as follows: For each ray

intersecting with the SVO, we evaluate f and check if the returned occupancy is close to one, and if

the returned luminance is close to the luminance stored in the intersected voxel. If either condition is

not satisfied, super-sampling is issued. We realize f by training an encoder/decoder network that we

call PatchNet. Its architecture is shown in Fig. 6.2. The encoder takes in local geometry patches from

63

6. LEARNING GENERIC LOCAL SHAPE PROPERTIES FOR ADAPTIVE SUPER-SAMPLING

Figure 6.2.: Overview of PatchNet. Given a scene represented by an SVO, its local geometry patches are
encoded in low-dimensional feature vectors called patch codes. Given a ray-voxel intersection p, its surrounding
patch codes are interpolated to derive an abstract descriptor of the local geometry surrounding p. Together
with the view-dependent rendering parameters θ , the subsequent decoder interprets the interpolated patch
code and derives occupancy and luminance. Figure has been taken from our presentation held at EuroGraphics
2022.

the current scene and transforms them into latent feature vectors—so-called patch codes. Together

with the view-dependent rendering parameters, the subsequent decoder acts as a lightweight neural

renderer. It interprets the patch codes and derives view-dependent occupancy and luminance values.

We refer to Sec. 2.3 of our paper for a detailed description of the training process.

Our design comes with several advantages: First, PatchNet does not depend on a specific scene;

a dependency which otherwise is common for geometry encoding networks such as scene represen-

tation networks [SZW19]. By depending on local geometry information only, PatchNet immediately

generalizes to arbitrary scenes that are composed of similar geometry patches seen in training. As

observed in our work as well as other works by Jiang et al. [Jia+20] and Liu et al. [Liu+20a], the

space of plausible, local geometry shapes is rather limited. It can be encoded in a low-dimensional

feature vector. In our experiments, it suffices to train ten-dimensional patch codes to solve the super-

sampling task and generalize to other datasets. As a second advantage, the encoder/decoder structure

of PatchNet permits the computation of all scene-specific patch codes by executing the encoder of the

network in a preprocess. During real-time rendering, only the lightweight decoder has to be evalu-

ated per pixel, thus relieving a large chunk of the computational burden introduced by the overall

architecture.

Geometry Encoding The encoder of PatchNet takes responsibility for transforming the scene into

a hierarchical representation of patch codes that follow the same structure as the scene SVO. Inspired

by the work of Takikawa et al. [Tak+21], we store a patch code per corner of each occupied, internal

voxel of the tree. By trilinear interpolation, one obtains a continuous multi-level hierarchy of geometry

descriptors that can be sampled from the SVO at any ray-voxel intersection at any LOD. We also tested

if trilinear interpolation can be replaced by inputting interpolation weights and patch codes of all

corners directly to the decoder. In doing so, one can further reduce the number of stored patch code

components per voxel corner to two, since the decoder still receives a 16-dimensional patch code by

64

6.2. PATCHNET

concatenating at eight corners. However, this design choice comes at the cost of PatchNet losing some

of its ability to generalize to other datasets. Hence, we did not present it in the paper.

The patch code at a voxel corner c at LOD ℓ is derived as follows. First, we sample a vector-

valued representation of the geometry surrounding the corner. The eight voxels touching c span a

cubical region R of side length 21−ℓ. Due to early termination in LOD-enabled ray-SVO traversal, it is

guaranteed that for any ray intersecting the SVO at a point close to c at LOD ℓ, the pixel cone at the

intersection point has at most a side length of 2−ℓ. In particular, since the voxel corner c is located

in the center of the pixel cone, and the maximal diameter of the pixel cone is
p

2 · 2−ℓ < 21−ℓ, it

is guaranteed that R covers the pixel completely. Thus, it suffices to pass the geometry information

located at R to the encoder. We obtain it by querying the SVO at level ℓ+∆ℓ and populating a dense

3D grid of resolution (21+∆ℓ)3 containing occupancy and shading data. Then, the grid is flattened

and passed to the encoder where it is processed by three fully connected layers of 256 activations

each and one terminal fully connected layer that outputs the ten-dimensional patch code. Since the

encoder operates on local geometry information only, it is not required that geometry passed to the

encoder has to originate from the same scene the encoder was trained on.

Decoder The decoder is realized by a small-scale MLP with three fully connected layers outputting

48-dimensional activations each, and a final fully connected layer outputting occupancy and lumi-

nance. To obtain optimal approximations of the ground truth occupancy and luminance, we experi-

mented with various inputs that can be passed to the decoder. Combinations of the following input

types were considered:

• Ray direction in cartesian coordinates.

• Ray direction encoded as spherical harmonics. That is, the view direction is evaluated on the

(d+1)2 spherical base functions up to degree d, and then the results are passed to the decoder.

• Up vector of the camera projected to the orthogonal complement plane of the current ray di-

rection.

• Pixel-voxel-ratio encoding the relative size of the projected voxel to the current pixel. It is

obtained by dividing the side length of the pixel by the side length of the intersected voxel after

projecting it onto the screen.

• (Averaged) surface normal in world space.

• Surface normal in world space, encoded as spherical harmonics.

• Surface normal in camera space.

• Surface normal in camera space, encoded as spherical harmonics.

65

6. LEARNING GENERIC LOCAL SHAPE PROPERTIES FOR ADAPTIVE SUPER-SAMPLING

• Angle ϕ between the surface normal and view direction, encoded via the Fourier series. That

is, the values cos(nϕ) and sin(nϕ) are provided as input up to a fixed upper degree of n= 8.

• Roll of the camera w.r.t. the up vector (0,1, 0), again encoded via the Fourier series.

Additionally, we tested various patch code dimensions and multiplied some of the patch code compo-

nents with various combinations of

• Spherical harmonics encoding of the view direction up to degree 2, thus multiplying up to 9

patch code components.

• Spherical harmonics encoding of the surface normal in world space up to degree 2.

• Spherical harmonics encoding of the surface normal in camera space up to degree 2.

• Fourier series terms of the roll of the camera up to n= 6, thus multiplying up to 12 patch code

components.

• Fourier series terms of the angle between the surface normal and view direction up to n= 6.

By multiplication with spherical harmonics or Fourier base functions, patch code components are

effectively reinterpreted as spherical harmonics (or Fourier) coefficients. After an extensive ablation

study considering all combinations from the two lists above, we settled on the specific input format

as described in our paper, see [RW22, Sec. 2.2]. It yields close to optimal performance for input of

moderate dimensionality. Similarly, we tested different MLP designs by varying the number of fully

connected layers as well the number of activations they output. We found that our decoder design

yields good results while still being small enough so that it can be evaluated in shared GPU memory

as proposed by Weiss et al. [WHW21]

6.3. Derivation of the Super-Sampling Pattern

To determine which pixels require super-sampling, we use PatchNet to implement a scoring function

that is invoked per pixel. If a pixel’s score supersedes a user-defined threshold, it will be refined.

Instead of providing a score threshold, one can also define a fixed budget of X pixels. Then, the X

top-scoring pixels are marked for super-sampling. Let σN, LN be the occupancy and luminance output

of the network. Further, let LV be the average luminance stored at the intersected voxel of the SVO.

We considered the following scoring functions

• |1−σN|+λ|LV − LN| where λ ∈ {0.1, 0.2,0.5, 1,2, 5,10}

• |1−σN|+σN|LV − LN|

• |1−σN|

• |LV − LN|

66

6.3. DERIVATION OF THE SUPER-SAMPLING PATTERN

and found that scoring with |1−σN|+ 5|LV − LN| as presented in the paper yields the most effective

super-sampling patterns.

67

7
Inverting the Feature Visualization Process for Feedforward Neural

Networks

In the field of explainable artifical intelligence (XAI), feature visualizations are inputs to a neural

network that stimulate a specific neuron [NYC19]. For networks in image classification, feature vi-

sualizations were used to present a large set of visual stimuli to a user, depicting entities that the

network looks out for when classifying images [Car+19]. By inspecting a dashboard of such visu-

alizations [Ola+18; Car+19], users can identify the various concepts learned by the network. Even

more, these dashboards also provide a means to compare networks with each other by searching for

similar visual stimuli occurring in multiple networks at once.

Before feature visualizations became popular, similar neurons were identified by automatically

searching for correlations in their response behavior when being confronted with an existing dataset

of input images [ZF14]. However, if a neuron looks out for features that are not present in the dataset,

it will not generate any significant activations and therefore is overseen. As a consequence, any ap-

proach to analyzing neuron activations always is biased toward a specific dataset. In the worst case,

analysis is performed over a dataset that does not reflect the input domain the network was trained

for. Then, many important correlations will not emerge, and others may be misinterpreted.

Feature visualizations, on the other hand, do not depend on a specific dataset. They are generated

by a process called activation maximization (AM) [Erh+09]. Given a network N and a network input

x , AM generates a stimulus x∗ of neuron i by optimizing for

arg max
x

N(x)i , (7.1)

where N(x)i describes the activation of neuron i when providing x as input to the network. Then,

x∗ visualizes what a neuron “would like to see”. For instance, if x∗ shows dog snout like shapes, it is

very likely that neuron i is important for classifying dogs.

69

7. INVERTING THE FEATURE VISUALIZATION PROCESS FOR FEEDFORWARD NEURAL NETWORKS

Figure 7.1.: Exemplary feature visualizations obtained when applying regularized activation maximization.
Figure from “Feature Visualization” by Olah et al. [OMS17], licensed under Creative Commons Attribution CC-
BY 4.0.

In general, feature visualizations often show highly abstract drawings of competing concepts, and

their interpretation requires some creativity and experience, see Fig. 7.1. We highly suggest browsing

through the appendix material provided by Olah et al. [OMS17] to develop a notion of what stimuli

may look like for GoogLeNet. Although it is claimed that analogous features form across models and

tasks [Ola+20], to our knowledge, feature visualizations were not used yet in any downstream algo-

rithm that can automatically match neurons of similar characteristics. Instead, features visualizations

are integrated in multiple XAI tools [Car+19; Goh+21; Hoh+20; OMS17; Ola+18] to communicate

semantic meanings of neurons to the user. Interpretation and matching of visualizations remain to be

done by the user. We intend to address this issue by proposing inverse feature visualization (IFV) in

our work [RW20]. That is, given x∗, we intend to find the most likely neuron i—or a weighted linear

combination of neurons i j with weights w j—such that x∗ would be returned by optimizing for

argmax
x

∑

j

w jN(x)i j
. (7.2)

The vision behind IFV is as follows: The user (or algorithm) selects and visualizes a neuron using

network A first, and then inverts the resulting visualization with IFV using network B. This yields two

neurons obeying the same visualization and, thus, representing the same semantic concept. One can

utilize this technique in a feature-based comparison of networks to generate insights into the relevance

of patterns for successful network training. In our work, we propose gradient-based inverse feature

visualization (Grad-IFV) to realize IFV for a single network. Given a linear combination of neurons

of network A, we can fully recover them just from knowing the corresponding feature visualization

obtained by optimizing Eq. (7.2) regarding A.

70

https://distill.pub/2017/feature-visualization/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

7.1. INVERSE FEATURE VISUALIZATION

However, we did not succeed in bringing the full vision behind IFV to life. As soon as the visualiza-

tion obtained from network A is inverted with regard to network B, results are unsatisfactory, even if

both networks were trained on the same task and the investigated neuron resides in the classification

layer of A. It was expected to at least be able to match neurons in the final classification layer. We

assume that IFV fails since, in real scenarios, a visualization that is optimal for one network will not

be so for another network. It might not even be close to an optimum as long as the sensitivity of the

objective function Eq. (7.2) to high frequencies and noise is not reduced.

At that point, we accepted the inapplicability of our approach to real-world tasks and decided to

cease further attempts in publishing our results. Nonetheless, in student work, we further pursued

the idea of IFV and integrated concepts such as image priors or transformation robustness [OMS17]

into our work. Further, being in line with the insights of Roberts and Tsiligkaridis [RT21], we hy-

pothesize that feature analysis methods such as IFV can yield consistent results if networks under

consideration were trained by a robust training approach, counteracting high-frequency adversarial

examples [GSS14]. As of yet, we did not investigate the behavior Grad-IFV on a robustly trained net-

work and suggest revisiting Grad-IFV in this matter. Hence, we decided to present the implementation

details of Grad-IFV in this thesis. After setting up the formal definition of IFV in Sec. 7.1, details and

design decisions behind Grad-IFV are presented step by step in Sec. 7.2.

7.1. Inverse Feature Visualization

We repeat the definition of AM as given in our paper [RW20]. Let I be the input domain of a network

of interest, that is the set of all valid inputs with respect to the task the network has been trained for.

Similarly, let N be a function such that N(I) is a n-dimensional vector of all activations of the network

when providing I ∈ X as input. Given a unit vector x ∈ Rn called target objective, AM optimizes for

I∗ = arg max
I∈I

Sx(N(I)), (7.3)

with I∗ being called the realization of x . Here,

Sx(y) = x T y · (x T y/||y||)k (7.4)

with k ∈ N0 is a measure of significance of the network activations y regarding x . Maximizing for a

single neuron can be achieved by setting x = ei .

Since AM neither has to be deterministic nor injective—i.e. different values for x do not necessarily

infer different optima I∗—a rigorous definition of IFV is more complex. For this reason, we consider

AM as a random process Y over the domain I with its probability density function hY depending on

71

7. INVERTING THE FEATURE VISUALIZATION PROCESS FOR FEEDFORWARD NEURAL NETWORKS

x as additional parameter. Then, IFV means to compute the maximum likelihood estimator of Y , i.e.

bx = argmaxx
chY (I ;x) for a given input configuration I .

7.2. Gradient-Based Inverse Feature Visualization

Since realizations I∗ returned by AM are locally optimal solutions of the objective function

fx : I 7→ Sx(N(I)),

the necessary condition for optimality ||∇ fx(I)|| = 0 is supposed to hold. In order to recover the

(most likely) target objective of a realization I∗, we solve for

arg min
x∈Sn

||∇ fx(I
∗)||2. (7.5)

with Sn being the sphere of n-dimensional unit vectors. We call this approach gradient-based inverse

feature visualization (Grad-IFV). As described in the paper, solving Eq. (7.5) directly fails due to

trivial solutions for x . For instance, choosing any x with x T N(I∗) = 0 will result in either a saddle or

minimum of fx . In particular, its gradient vanishes, although x certainly is not the target objective we

were ultimately interested in. We now present the various problems coming with optimizing Eq. (7.5)

and present solutions to them.

Vanishing Gradients in the Significance Measure The chain rule states that

∇ fx(I
∗) =∇Sx(N(I

∗)) · ∇N(I∗).

We show that ∇Sx(N(I∗)) is of the form c · x T · Z where c is a scalar depending on x and N(I∗),

and Z ∈ Rn×n is a symmetric, invertible matrix obtained by a applying a rank one update of N(I∗)

to the identity matrix. The scalar c vanishes if and only if x T N(I∗) = 0. As stated above, in this

case one has found x such that I∗ is a saddle of fx if k is odd, and a minimum otherwise. However,

AM maximizes fx and will not stop at either saddles or minima. Hence, we can safely drop c in the

following reformulation of Eq. (7.5):

argmin
x∈Sn

||x T Z∇N(I∗)||2. (7.6)

At this point, the solution of Eq. (7.6) is given (up to a sign) by the left-singular vector to the smallest

singular value of M := Z∇N(I∗). It is computed by first running a single forward and n backward

72

7.2. GRADIENT-BASED INVERSE FEATURE VISUALIZATION

(a) (b)

Figure 7.2.: Feature visualizations obtained when applying activation maximization (AM) to the feature maps
of the first layer of a CNN. (a) Activations are summed up per feature map and then are jointly maximized. (b)
A 3× 3 max-pooling operation is applied to each feature map before continuing as in (a). Thus, on average,
only every ninth activation contributes to the objective of AM. Note that edge- and stripe-like structures become
visible now.

passes through the network f to determine N(I∗) and∇N(I∗). Then, M M T ∈ Rn×n is computed. The

eigenvalue decomposition of M M T yields the desired left-singular vector of M .

Reducing the Number of Neurons For state-of-the-art networks, the number of neurons n is in the

millions so that the aforementioned strategy of solving Eq. (7.6) is intractable. In practice, however,

feature visualizations act on specific layers of a network. Hence, we modify the function N such that

it only returns neural activations of a preselected layer. If this layer is fully connected, n commonly

reduces to numbers smaller than 1000. If the layer is a 2D convolutional layer instead, neurons form

a 3D grid of c stacked, 2D feature maps with resolution h× w. For instance, the inception-4a layer

of GoogLeNet [Sze+15] outputs 512 feature maps of resolution 142, a total of 100.352 neurons.

However, each feature map of 142 neurons is derived from a single filter kernel (cmp. Sec. 5.2).

Thus, all neurons of a single feature map are sensitive to the same features, but they search for them

at different locations of the image. Olah et al. [OMS17] propose to pick either a single neuron per

feature map or to sum up all activations of a feature map before applying AM. In both cases, the

number of considered activations reduces to the number c of feature maps. Again, typically one has

c < 1000, making our approach tractable.

Nonetheless, summing up activations along the spatial dimensions of a feature map has a significant

catch that seems to have been overlooked by Olah et al. Consider a filter kernel w with weights wi, j .

Filtering an image I with pixels Ii, j by convolving with w, and then summing up all pixels afterward,

yields a linear transformation I 7→
∑

i, j ci j
Ii, j that linearly maps pixels in I to a scalar. However, for

non-border pixels, the coefficient ci j
is given by summing up all filter weights

∑

i, j wi, j . In particular,

all information about the spatial structures detected by w is lost in the final signal and thus does

not appear in feature visualizations. This issue becomes obvious when trying to generate feature

visualizations at the first layer of a CNN. Although it is common knowledge that CNNs learn color

73

7. INVERTING THE FEATURE VISUALIZATION PROCESS FOR FEEDFORWARD NEURAL NETWORKS

and edge detection in their first layer [ZF14], corresponding feature visualizations have—except for

border regions—uniform colors, see Fig. 7.2a. We propose to break linearity by applying a max-

pooling operation before summing over a feature map. In doing so, we obtain results that visualize

edge detector features correctly, see Fig. 7.2b.

Bounded Input Domains More often than not, the input domain I is restricted by some constraints.

For instance, in image classification, each input image can only have RGB pixel values ranging from

zero to one. Further, SRNet [SVB18] expects G-buffer information such as screen-space normal maps.

Hence, some inputs are required to be unit vectors pointing into the Z− direction. In AM, such

constraints can be considered by optimizing via projected gradient descent. In each stop of projected

gradient descent, the current solution for Eq. (7.3) is naively updated by ignoring all constraints

and then reprojected to the constraint boundary ∂ I if necessary. As soon as no further progress

is achieved—for instance, because the current gradient is perpendicular to ∂ I—optimization stops.

Unfortunately, now the necessary condition for optimality, which is crucial to our approach, can be

violated at ∂ I. This issue can be circumvented by means of a differentiable, surjective mapping

P : Rnp → I which parameterizes the input domain I over a real-valued vector space of dimension

np. If such a P is available, the constrained optimization problem Eq. (7.3) can be transformed to an

unconstrained one over np variables via

argmin
v∈Rnp

Sx(N(P(v))).

By replacing N with N ◦ P, we can assume w.l.o.g. that I is unbounded.

Linear Relationships in Network Gradients During our experiments, we noticed that the rows in

the Jacobian ∇N(I) of the network exhibit linear relationships that persist for any choice of I . That

is, the cokernel

coker∇N(I) := {v ∈ Rn f | vT∇N(I) = 0}

of ∇N(I) is non-trivial. For instance, a dead neuron i absorbs all gradients and forces the i-th row of

∇N(I) to zero. As a consequence, Z−1ei will always be a trivial solution to Eq. (7.6), independently

of the realization I∗ and its target objective. Similarly, we noticed that gradients at the final layer of

classification networks consistently cancel out when adding them up, i.e. (1, . . . , 1) ∈ coker∇N(I) for

any input I . Presumably, (1, . . . , 1) arises as a trivial solution because the network learned to exploit

the translation invariance of the softmax activation function at the last layer such that it can improve

upon a regularization term on its weights.

74

7.2. GRADIENT-BASED INVERSE FEATURE VISUALIZATION

Instead of solving Eq. (7.6), we propose to solve

argmin
x∈Snf

||x T Z∇N(I∗)||2 s.t. Z x ∈ C , (7.7)

where the critical space

C :=

�

⋂

I∈I
coker∇N(I)

�⊥

(7.8)

masks out solutions which are valid with regard to all inputs in I. In practice, we compute C as

follows: First, we randomly sample inputs I and approximate the co-kernels coker∇N(I) by com-

puting the subspace of left-singular vectors of ∇N(I) with reasonable small singular values smaller

than ρ · ||∇N(I)||2. Here, ρ acts as a threshold that can be controlled via a nested intervals tech-

nique to determine all values of ρ ∈ (0,1) that yield critical spaces of different dimensions. Second,

we deploy a relaxed scheme for computing intersections of subspaces which is based on interpolating

principal vectors. Given two vector spaces U , V , their principal vectors [KA02] are recursively defined

for k = 1, . . . ,min(dim U , dim V) by

uk, vk = argmax
u∈U , v∈V

uT v

subject to

||u||= ||v||= 1, uT ui = 0, vT vi = 0, i = 1, . . . , k− 1.

Even when U and V do not intersect, the principal vectors define the subspaces of U and V that

are closest to each other in the sense of measuring principal angles θi = arccos(uT
i ki). It holds that

θ1 < θ2 < . . . , so that the k-dimensional subspaces in U , V being closest to each other are given

by span{u1, . . . , uk} and span{v1, . . . , vk}. In particular, by interpolating the generator pairs (ui , vi),

one can determine a subspace that is equally close to both U and V . By defining a threshold on the

maximal allowed angle θk, one can thus find a vector space that approximates the intersection of

U∩V . Note that if the threshold is set to 0, the approximation becomes exact. However, in numerical

computations U and V will most certainly never intersect. That is why we propose to approximate

intersections with a rather generous threshold of 45◦. Subspaces thus may be unnecessarily high-

dimensional, but this is compensated for by intersecting up to 300 co-kernels for various inputs.

After determining the critical space, Eq. (7.7) can be transformed to an equivalent, unconstrained

optimization problem over x ∈ Sdim U that can be solved analytically with the same approach as

described for Eq. (7.6). Please refer to our paper for details. There, we also show in an extended

results section that Grad-IFV can invert the feature visualization process for a single network.

75

8
Summary of Papers

A. Parameterized Splitting of Summed Volume Tables

Abstract of Paper Summed Volume Tables (SVTs) allow one to compute integrals over the data

values in any cubical area of a three-dimensional orthogonal grid in constant time, and they are espe-

cially interesting for building spatial search structures for sparse volumes. However, SVTs become ex-

tremely memory consuming due to the large values they need to store; for a dataset of n values an SVT

requires O(n log n) bits. The 3D Fenwick tree allows recovering the integral values in O(log3 n) time,

at a memory consumption of O(n) bits. We propose an algorithm that generates SVT representations

that can flexibly trade speed for memory: From similar characteristics as SVTs, over equal memory

consumption as 3D Fenwick trees at significantly lower computational complexity, to even further re-

duced memory consumption at the cost of raising computational complexity. For a 641×9601×9601

binary dataset, the algorithm can generate an SVT representation that requires 27.0GB and 46 ·8 data

fetch operations to retrieve an integral value, compared to 27.5GB and 1521 ·8 fetches by 3D Fenwick

trees, a decrease in fetches of 97%. A full SVT requires 247.6GB and 8 fetches per integral value. We

present a novel hierarchical approach to compute and store intermediate prefix sums of SVTs, so that

any prescribed memory consumption between O(n) bits and O(n log n) bits is achieved. We evaluate

the performance of the proposed algorithm in a number of examples considering large volume data,

and we perform comparisons to existing alternatives.

Author Contributions The first author is responsible for the overall idea, implementation as well

as all studies presented in this work. The paper was composed by the first author under consideration

of feedback as well as minor revisions by Prof. Dr. Rüdiger Westermann.

77

8. SUMMARY OF PAPERS

Note A presentation held by the first author is publicly available at

https://youtu.be/JSHjLvIulY0?t=1392

Copyright © 2021 The Author(s). Computer Graphics Forum published by Eurographics - The Eu-

ropean Association for Computer Graphics and John Wiley & Sons Ltd. Reprinted under the Creative

Commons CC-BY-NC license with permission from Rüdiger Westermann.

78

https://youtu.be/JSHjLvIulY0?t=1392

B. VISUALIZING THE STABILITY OF 2D POINT SETS FROM DIMENSIONALITY REDUCTION TECHNIQUES

B. Visualizing the Stability of 2D Point Sets from Dimensionality
Reduction Techniques

Abstract of Paper We use k-order Voronoi diagrams to assess the stability of k-neighborhoods

in ensembles of 2D point sets, and apply it to analyze the robustness of a dimensionality reduction

technique to variations in its input configurations. To measure the stability of k-neighborhoods over

the ensemble, we use cells in the k-order Voronoi diagrams, and consider the smallest coverings of

corresponding points in all point sets to identify coherent point-subsets with similar neighborhood

relations. We further introduce a pairwise similarity measure for point sets, which is used to select a

subset of representative ensemble members via the PageRank algorithm as an indicator of an individ-

ual member’s value. The stability information is embedded into the k-order Voronoi diagrams of the

representative ensemble members to emphasize coherent point-subsets and simultaneously indicate

how stable they lie together in all point sets. We use the proposed technique for visualizing the ro-

bustness of t-SNE and multi-dimensional scaling applied to high-dimensional data in neural network

layers and multi-parameter cloud simulations.

Author Contributions The overall idea of the paper was developed by the first author in discussions

with Prof. Dr. Rüdiger Westermann. The first author is responsible for all implementations except for

the glyph realization in Member-centric cluster variability plots, which is credited to Dr. Alexander

Kumpf. The first author conducted all studies not related to Member-centric variability plots. This in-

cludes performance tests, the choice of the order parameter (Sec. 5.1), the sensitivity of Voronoi plots

(Sec. 5.6) as well as the verification of representative projections (Sec. 5.7). The remaining studies

were designed, performed, and discussed by the first author and Dr. Alexander Kumpf with equal

contributions. The paper was composed by the first author, with extensive revision of introduction,

related work, and conclusion by Prof. Dr. Rüdiger Westermann. Dr. Alexander Kumpf contributed

Sec. 5.2 and related work regarding ensemble visualization and clustering.

Note A presentation held by the first author is publicly available at

https://youtu.be/gbk68zOfVCE?t=229

Copyright © 2019 The Authors. Computer Graphics Forum published by Eurographics - The Euro-

pean Association for Computer Graphics and John Wiley & Sons Ltd. Reprinted under the Creative

Commons CC-BY license with permission from Alexander Kumpf and Rüdiger Westermann.

79

https://youtu.be/gbk68zOfVCE?t=229

8. SUMMARY OF PAPERS

C. Learning Generic Local Shape Properties for Adaptive
Super-Sampling

Abstract of Paper We propose a novel encoder/decoder-based neural network architecture that

learns view-dependent shape and appearance of geometry represented by voxel representations.

Since the network is trained on local geometry patches, it generalizes to arbitrary models. A geome-

try model is first encoded into a sparse voxel octree of features learned by a network, and this model

representation can then be decoded by another network in-turn for the intended task. We utilize the

network for adaptive super-sampling in ray-tracing, to predict super-sampling patterns when seeing

coarse-scale geometry. We discuss and evaluate the proposed network design, and demonstrate that

the decoder network is compact and can be integrated seamlessly into on-chip ray-tracing kernels. We

compare the results to previous screen-space super-sampling strategies as well as non-network-based

world-space approaches.

Author Contributions The overall idea of the paper was developed by the first author in discussions

with Prof. Dr. Rüdiger Westermann. The first author is responsible for the implementation as well as

all studies presented in this work. The paper was composed by the first author under consideration

of feedback as well as minor revisions by Prof. Dr. Rüdiger Westermann.

Note The paper has been published in a short paper track.

Copyright © 2022 The Author(s). Eurographics Proceedings © 2022 The Eurographics Association.

Reprinted under Creative Commons Attribution CC-BY 4.0 with permission from Rüdiger Westermann.

80

https://creativecommons.org/licenses/by/4.0/

D. INVERTING THE FEATURE VISUALIZATION PROCESS FOR FEEDFORWARD NEURAL NETWORKS

D. Inverting the Feature Visualization Process for Feedforward
Neural Networks

Abstract of Paper This work sheds light on the invertibility of feature visualization in neural net-

works. Since the input that is generated by feature visualization using activation maximization does,

in general, not yield the feature objective it was optimized for, we investigate optimizing for the fea-

ture objective that yields this input. Given the objective function used in activation maximization that

measures how closely a given input resembles the feature objective, we exploit that the gradient of

this function w.r.t. inputs is—up to a scaling factor—linear in the objective. This observation is used to

find the optimal feature objective via computing a closed form solution that minimizes the gradient.

By means of Inverse Feature Visualization, we intend to provide an alternative view on a networks

sensitivity to certain inputs that considers feature objectives rather than activations.

Author Contributions The overall idea of the paper was developed by the first author in discussions

with Prof. Dr. Rüdiger Westermann. The first author is responsible for the implementation as well as

all studies presented in this work. The paper was composed by the first author under consideration

of feedback as well as minor revisions by Prof. Dr. Rüdiger Westermann.

Note The paper is hosted on arXiv.org but has not been peer-reviewed.

Copyright © 2020 The Authors. Reprinted as provided by arxiv.org with permission from Rüdiger

Westermann.

81

9
Conclusion

In this thesis, we presented several techniques for processing and exploring large-scale datasets. Re-

garding high-resolution grid data, theO(n log n)memory bottleneck of summed-volume tables (SVTs)

has been resolved. By proposing a versatile data structure that evolves around performing a series

of split operations, memory consumption can be controlled in the range of O(n) to O(n log n) bits,

with lower memory consumption implying lower access speed [RW21a]. Compared to alternative

approaches, we achieve significantly reduced memory consumption at similar decoding performance,

or vice versa.

Further, means to process high-dimensional data spaces have been proposed. We have improved

upon visualizations of high-dimensional data via dimensionality reduction (DR), by incorporating

the inherent randomness of several non-linear DR techniques in a novel robustness plot that depicts

the stability of neighborhood relations in an ensemble of 2D point embeddings [RKW20]. Before our

work, visualizations ignored the inherent randomness of frequently used DR techniques such as t-SNE

by presenting the result of a single DR run only. Also, it has been shown that the high-dimensional

space of local geometry patches can be represented by a task-specific, low-dimensional latent space

encoding [RW22]. It is used to implement an effective, adaptive super-sampling scheme that can

incorporate information about 3D geometric details even when the geometry is sampled at a coarse

scale only. In contrast, screen-space-based, adaptive super-sampling schemes can only access coarse-

scale 2D projections of geometry and thus are not able to detect all cases for which super-sampling

improves image quality significantly.

Finally, we have suggested an approach to compare high-dimensional feature spaces in deep learn-

ing. As of yet, neural features have been successfully compared and classified by manual inspection of

thousands of feature visualizations. However, we aim at the automatic matching of features with sim-

ilar feature visualization. In our work, we have made a first step towards this goal by proposing the

problem of inverse feature visualization (IFV) and showing that a novel method called gradient-based

83

9. CONCLUSION

inverse feature visualization (Grad-IFV) can identify the neurons for which a feature visualization has

been generated [RW22].

Future Work

Our work can be extended in multiple ways. First, the performance of most methods can be improved

by utilizing the compute-capabilities of graphics processing units (GPUs). Regarding the proposed

SVT data structure, one can engineer cache-aware and/or GPU-accelerated encoding and decoding

schemes, so that a) decoding can further benefit from massive parallelism and b) encoding can be

realized in timings similar to state-of-the-art summed-area table (SAT) encoding. We believe that

efficient SIMD decoding schemes are comparably easy to implement. One only has to compute in-

dices where specific partial sums are stored in memory, then read these sums from global memory,

and finally combine them with simple arithmetic operations. Specifically, we hypothesize that decod-

ing will be memory-bound. However, throttling memory access patterns cannot be avoided in the

decoding scheme since they are defined by the access patterns of the application utilizing the SVT.

Encoding algorithms, on the other hand, have to be designed carefully. In our work, we propose an

encoding scheme that creates a regular SVT as an intermediate step [RW21a]. However, paging of

data between VRAM and larger RAM may be required. This can be avoided by performing split op-

erations recursively on the GPU. Then, however, numerous, un-coalesced accesses to global memory

may be difficult to avoid. The computation timings of robustness plots [RKW20] are dominated by

the computation of k-order Voronoi diagrams. This step can be sped up significantly by discretizing

the Voronoi diagram over a high-resolution grid and propagating the closest neighbors of grid cells

by SIMD operations on the GPU [SKW09]. Also, we suggest speeding up our adaptive super-sampling

scheme by performing sparse voxel octree (SVO) traversal on the GPU and realizing the decoder

network via a fast Tensor Core implementation [WHW21; Mül+22].

Second, proposed methods can be applied in different contexts. For instance, we can think of de-

ploying our SVT data structure in the process of creating acceleration structures for sparse scenes and

data. Further, we believe that recursive split operations guided by a heuristic can significantly improve

either performance or memory requirements of other data structures as well. For instance, instead of

determining local histogram aggregations according to a mipmap structure as proposed by Al-Thelaya

et al. [AAS21], we propose to aggregate histograms according to our representation. In doing so, a

costly footprint assembly step can be avoided. Regarding our robustness plots [RKW20], we envision

further applications in the fields of crowd analysis or fluid simulation, to identify groups of entities

that remain close over time. In particular, our approach of clustering and selecting representative 2D

embeddings may provide useful to identify repeating configurations in crowd analysis and to deter-

mine timestamps of fluid simulations at which significant topological changes occur. Regarding latent

84

space encodings of local geometry patches, we see applications in level of detail (LOD)-accelerated

ray tracing applications, e.g. by approximating scattering events in distant, heterogeneous participat-

ing media. IFV, on the other hand, may be used to identify correlations between the existence of

specific features and network performance. Then, highly effective features can be distilled in future

training runs to obtain more consistent results and to speed up convergence.

Third, the limitations of proposed methods concerning theory and practice have to be addressed.

As of yet, neither the space of optimal SVT representations nor the proposed heuristic is well under-

stood. Given a prescribed constraint of either data access speed or memory, it would be interesting

to identify formulas for lower and upper bounds of the respective other quantity when assuming ei-

ther an optimal or a heuristic SVT representation. Also, we ask ourselves if there are any theoretical

guarantees that the representations returned by the proposed heuristic are located in a specific band

around the memory-performance trade-off curve introduced in our paper [RW21a]. One can think of

designing better heuristics, providing tractable solutions to the combinatorial optimization problem

of finding optimal parameter trees, or proving that the problem is NP-hard. Concerning latent space

encodings of local geometry patches, further research is required to decrease the memory overhead

of precomputing patch codes. Float quantization, varying the patch code dimension, and eliminating

redundant patch codes are approaches we consider feasible. In addition to that, significant improve-

ments on Grad-IFV have to be made. To reduce the fragility of Grad-IFV w.r.t. high frequency gradient

signals, the Jacobian ∇N(I∗) can be averaged over perturbed inputs. Here, perturbations can be

introduced by either applying transforms such as rotations, translations, or scaling [OMS17], or by

applying a small amount of Gaussian noise [Smi+17]. Further, Grad-IFV needs to be revisited for

robust networks. As discussed in Sec. 2.7, recently it has been observed that explainable artifical in-

telligence (XAI) techniques perform notably better if investigated networks have been trained robustly.

We believe that the same observation can be made concerning Grad-IFV, so that feature matching via

Grad-IFV becomes viable.

85

Bibliography

[AAS21] Khaled Al-Thelaya, Marco Agus, and Jens Schneider. “The Mixture Graph-A Data Struc-

ture for Compressing, Rendering, and Querying Segmentation Histograms”. In: IEEE

Transactions on Visualization and Computer Graphics 27.2 (2021), pp. 645–655. DOI:

10.1109/TVCG.2020.3030451.

[AB18] Amina Adadi and Mohammed Berrada. “Peeking Inside the Black-Box: A Survey on

Explainable Artificial Intelligence (XAI)”. In: IEEE Access 6 (2018), pp. 52138–52160.

DOI: 10.1109/ACCESS.2018.2870052.

[Ade+18] Julius Adebayo et al. “Sanity Checks for Saliency Maps”. In: Advances in Neural Infor-

mation Processing Systems 31. Ed. by Samy Bengio et al. Curran Associates, Inc., 2018,

pp. 9505–9515.

[Alc+19] Michael A. Alcorn et al. “Strike (With) a Pose: Neural Networks Are Easily Fooled by

Strange Poses of Familiar Objects”. In: The IEEE Conference on Computer Vision and

Pattern Recognition (CVPR). June 2019.

[Api+21] Andrea Apicella et al. “A survey on modern trainable activation functions”. In: Neural

Networks 138 (2021), pp. 14–32. ISSN: 0893-6080. DOI: 10.1016/j.neunet.2021.

01.026.

[Aup07] Michaël Aupetit. “Visualizing distortions and recovering topology in continuous projec-

tion techniques”. In: Neurocomputing 70.7 (2007). Advances in Computational Intel-

ligence and Learning, pp. 1304–1330. ISSN: 0925-2312. DOI: 10.1016/j.neucom.

2006.11.018.

[Aur87] Franz Aurenhammer. “Power Diagrams: Properties, Algorithms and Applications”. In:

SIAM Journal on Computing 16.1 (1987), pp. 78–96. DOI: 10.1137/0216006.

87

https://doi.org/10.1109/TVCG.2020.3030451
https://doi.org/10.1109/ACCESS.2018.2870052
https://doi.org/10.1016/j.neunet.2021.01.026
https://doi.org/10.1016/j.neunet.2021.01.026
https://doi.org/10.1016/j.neucom.2006.11.018
https://doi.org/10.1016/j.neucom.2006.11.018
https://doi.org/10.1137/0216006

BIBLIOGRAPHY

[Aza+21] Mir M. Azad et al. “Medical diagnosis using deep learning techniques: A research sur-

vey”. In: Annals of the Romanian Society for Cell Biology 25.6 (2021), pp. 5591–5600.

[BD05] Michael Balzer and Oliver Deussen. “Voronoi treemaps”. In: IEEE Symposium on Infor-

mation Visualization. Oct. 2005, pp. 49–56. DOI: 10.1109/INFVIS.2005.1532128.

[BDH96] C. Bradford Barber, David P. Dobkin, and Hannu Huhdanpaa. “The Quickhull Algorithm

for Convex Hulls”. In: ACM Transactions on Mathematical Software 22.4 (Dec. 1996),

pp. 469–483. ISSN: 0098-3500. DOI: 10.1145/235815.235821.

[Beh+16] Michael Behrisch et al. “Matrix Reordering Methods for Table and Network Visualiza-

tion”. In: Computer Graphics Forum 35.3 (2016), pp. 693–716. DOI: 10.1111/cgf.

12935.

[Bel08] Harm J. W. Belt. “Word Length Reduction for the Integral Image”. In: 15th IEEE Interna-

tional Conference on Image Processing. 2008, pp. 805–808. DOI: 10.1109/ICIP.2008.

4711877.

[BH86] Josh Barnes and Piet Hut. “A hierarchical O(N log N) force-calculation algorithm”. In:

Nature 324.6096 (1986), pp. 446–449. ISSN: 1476-4687. DOI: 10.1038/324446a0.

[Bha+21] Sweta Bhattacharya et al. “Deep learning and medical image processing for coronavirus

(COVID-19) pandemic: A survey”. In: Sustainable Cities and Society 65, 102589 (2021).

ISSN: 2210-6707. DOI: 10.1016/j.scs.2020.102589.

[BHM10] Berkin Bilgic, Berthold K. P. Horn, and Ichiro Masaki. “Efficient integral image compu-

tation on the GPU”. In: IEEE Intelligent Vehicles Symposium. 2010, pp. 528–533. DOI:

10.1109/IVS.2010.5548142.

[BPA22] Arnaud Bletterer, Frédéric Payan, and Marc Antonini. “Graph-based Computation of

Voronoi Diagrams on Large-scale Point-based Surfaces”. In: Eurographics – Short Papers.

Ed. by Nuria Pelechano and David Vanderhaeghe. The Eurographics Association, 2022.

ISBN: 978-3-03868-169-4. DOI: 10.2312/egs.20221030.

[BSB10] Amit Bhatia, Wesley E. Snyder, and Griff Bilbro. “Stacked Integral Image”. In: IEEE

International Conference on Robotics and Automation. 2010, pp. 1530–1535. DOI: 10.

1109/ROBOT.2010.5509400.

[BTV06] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. “SURF: Speeded Up Robust Features”.

In: Computer Vision – ECCV 2006. Ed. by Aleš Leonardis, Horst Bischof, and Axel Pinz.

Berlin, Heidelberg: Springer, 2006, pp. 404–417. ISBN: 978-3-540-33833-8.

[Cam+20] Nick Cammarata et al. “Thread: Circuits”. In: Distill (2020). DOI: 10.23915/distill.

00024.

88

https://doi.org/10.1109/INFVIS.2005.1532128
https://doi.org/10.1145/235815.235821
https://doi.org/10.1111/cgf.12935
https://doi.org/10.1111/cgf.12935
https://doi.org/10.1109/ICIP.2008.4711877
https://doi.org/10.1109/ICIP.2008.4711877
https://doi.org/10.1038/324446a0
https://doi.org/10.1016/j.scs.2020.102589
https://doi.org/10.1109/IVS.2010.5548142
https://doi.org/10.2312/egs.20221030
https://doi.org/10.1109/ROBOT.2010.5509400
https://doi.org/10.1109/ROBOT.2010.5509400
https://doi.org/10.23915/distill.00024
https://doi.org/10.23915/distill.00024

BIBLIOGRAPHY

[CAP20] Julian Chibane, Thiemo Alldieck, and Gerard Pons-Moll. “Implicit Functions in Feature

Space for 3D Shape Reconstruction and Completion”. In: IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition (CVPR). June 2020.

[Car+19] Shan Carter et al. “Activation Atlas”. In: Distill (2019). DOI: 10.23915/distill.00015.

[CC08] Michael A. A. Cox and Trevor F. Cox. “Multidimensional Scaling”. In: Handbook of Data

Visualization. Berlin, Heidelberg: Springer, 2008, pp. 315–347. ISBN: 978-3-540-33037-

0. DOI: 10.1007/978-3-540-33037-0_14.

[Che+16] Tianqi Chen et al. “Training Deep Nets with Sublinear Memory Cost”. In: arXiv e-prints

(Apr. 2016). arXiv: 1604.06174 [cs.LG].

[Che+18] Peng Chen et al. “Efficient Algorithms for the Summed Area Tables Primitive on GPUs”.

In: IEEE International Conference on Cluster Computing (CLUSTER). 2018, pp. 482–493.

DOI: 10.1109/CLUSTER.2018.00064.

[Che+21] Zhiqin Chen et al. “DECOR-GAN: 3D Shape Detailization by Conditional Refinement”.

In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2021,

pp. 15735–15744. DOI: 10.1109/CVPR46437.2021.01548.

[Che02] Chun-Houh Chen. “Generalized Association Plots: Information Visualization via Itera-

tively Generated Correlation Matrices”. In: Statistica Sinica 12.1 (2002), pp. 7–29.

[Cis+17] Moustapha Cisse et al. “Parseval Networks: Improving Robustness to Adversarial Exam-

ples”. In: arXiv e-prints (Apr. 28, 2017). arXiv: 1704.08847v2 [stat.ML].

[CMS13] Ricardo J. G. B. Campello, Davoud Moulavi, and Joerg Sander. “Density-Based Cluster-

ing Based on Hierarchical Density Estimates”. In: Advances in Knowledge Discovery and

Data Mining. Ed. by Jian Pei et al. Berlin, Heidelberg: Springer, 2013, pp. 160–172.

ISBN: 978-3-642-37456-2.

[Cro84] Franklin C. Crow. “Summed-Area Tables for Texture Mapping”. In: 11th Annual Con-

ference on Computer Graphics and Interactive Techniques. SIGGRAPH ’84. New York, NY,

USA: Association for Computing Machinery, 1984, pp. 207–212. ISBN: 0897911385.

DOI: 10.1145/800031.808600.

[Dai+17] Angela Dai et al. “ScanNet: Richly-Annotated 3D Reconstructions of Indoor Scenes”. In:

IEEE Conference on Computer Vision and Pattern Recognition (CVPR). July 2017.

[Den+09] Jia Deng et al. “ImageNet: A large-scale hierarchical image database”. In: IEEE Confer-

ence on Computer Vision and Pattern Recognition. June 2009, pp. 248–255. DOI: 10.

1109/CVPR.2009.5206848.

89

https://doi.org/10.23915/distill.00015
https://doi.org/10.1007/978-3-540-33037-0_14
https://arxiv.org/abs/1604.06174
https://doi.org/10.1109/CLUSTER.2018.00064
https://doi.org/10.1109/CVPR46437.2021.01548
https://arxiv.org/abs/1704.08847v2
https://doi.org/10.1145/800031.808600
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848

BIBLIOGRAPHY

[DFG99] Qiang Du, Vance Faber, and Max Gunzburger. “Centroidal Voronoi Tessellations: Appli-

cations and Algorithms”. In: SIAM Review 41.4 (1999), pp. 637–676. DOI: 10.1137/

S0036144599352836.

[DNJ20] Thomas Davies, Derek Nowrouzezahrai, and Alec Jacobson. “On the Effectiveness of

Weight-Encoded Neural Implicit 3D Shapes”. In: arXiv e-prints (Sept. 2020). arXiv:

2009.09808 [cs.GR].

[DSA20] Dan Dolonius, Erik Sintorn, and Ulf Assarsson. “UV-free Texturing using Sparse Voxel

DAGs”. In: Computer Graphics Forum 39.2 (2020), pp. 121–132. DOI: 10.1111/cgf.

13917.

[DSW09] Christian Dick, Jens Schneider, and Rüdiger Westermann. “Efficient Geometry Compres-

sion for GPU-based Decoding in Realtime Terrain Rendering”. In: Computer Graphics

Forum 28.1 (2009), pp. 67–83.

[Ehs+15] Shoaib Ehsan et al. “Integral Images: Efficient Algorithms for Their Computation and

Storage in Resource-Constrained Embedded Vision Systems”. In: Sensors 15.7 (2015),

pp. 16804–16830. DOI: 10.3390/s150716804.

[Emo+18] Yutaro Emoto et al. “An Optimal Parallel Algorithm for Computing the Summed Area

Table on the GPU”. In: IEEE International Parallel and Distributed Processing Symposium

Workshops (IPDPSW). 2018, pp. 763–772. DOI: 10.1109/IPDPSW.2018.00123.

[Eng+19] Logan Engstrom et al. “Adversarial Robustness as a Prior for Learned Representations”.

In: arXiv e-prints (June 3, 2019). arXiv: 1906.00945v2 [stat.ML].

[Erh+09] Dumitru Erhan et al. “Visualizing higher-layer features of a deep network”. In: University

of Montreal 1341.3 (2009), p. 1.

[Esp+21] Mateus Espadoto et al. “Toward a Quantitative Survey of Dimension Reduction Tech-

niques”. In: IEEE Transactions on Visualization and Computer Graphics 27.3 (2021),

pp. 2153–2173. DOI: 10.1109/TVCG.2019.2944182.

[Est+96] Martin Ester et al. “A Density-based Algorithm for Discovering Clusters in Large Spatial

Databases with Noise”. In: Second International Conference on Knowledge Discovery and

Data Mining. KDD’96. Portland, Oregon: AAAI Press, 1996, pp. 226–231.

[EUT19] Marie-Lena Eckert, Kiwon Um, and Nils Thuerey. “ScalarFlow: A Large-Scale Volumetric

Data Set of Real-World Scalar Transport Flows for Computer Animation and Machine

Learning”. In: ACM Transactions on Graphics 38.6 (Nov. 2019). ISSN: 0730-0301. DOI:

10.1145/3355089.3356545.

[Ewi+00] Jon P. Ewins et al. “Implementing an anisotropic texture filter”. In: Computers & Graphics

24.2 (2000), pp. 253–267. ISSN: 0097-8493. DOI: 10.1016/S0097-8493(99)00159-4.

90

https://doi.org/10.1137/S0036144599352836
https://doi.org/10.1137/S0036144599352836
https://arxiv.org/abs/2009.09808
https://doi.org/10.1111/cgf.13917
https://doi.org/10.1111/cgf.13917
https://doi.org/10.3390/s150716804
https://doi.org/10.1109/IPDPSW.2018.00123
https://arxiv.org/abs/1906.00945v2
https://doi.org/10.1109/TVCG.2019.2944182
https://doi.org/10.1145/3355089.3356545
https://doi.org/10.1016/S0097-8493(99)00159-4

BIBLIOGRAPHY

[Fen94] Peter M. Fenwick. “A New Data Structure for Cumulative Frequency Tables”. In:

Software: Practice and Experience 24.3 (1994), pp. 327–336. DOI: 10 . 1002 / spe .

4380240306.

[Fil+08] Maurizio Filippone et al. “A survey of kernel and spectral methods for clustering”. In:

Pattern Recognition 41.1 (2008), pp. 176–190. ISSN: 0031-3203. DOI: 10.1016/j.

patcog.2007.05.018.

[FLM14] Gabriele Facciolo, Nicolas Limare, and Enric Meinhardt-Llopis. “Integral Images for

Block Matching”. In: Image Processing On Line 4 (2014), pp. 344–369. DOI: 10.5201/

ipol.2014.57.

[FSW09] Roland Fraedrich, Jens Schneider, and Rüdiger Westermann. “Exploring the Millennium

Run - Scalable Rendering of Large-Scale Cosmological Datasets”. In: IEEE Transactions

on Visualization and Computer Graphics 15.6 (2009), pp. 1251–1258. DOI: 10.1109/

TVCG.2009.142.

[Fuk80] Kunihiko Fukushima. “A self-organizing neural network model for a mechanism of pat-

tern recognition unaffected by shift in position”. In: Biol. Cybern. 36 (1980), pp. 193–

202.

[FV17] Ruth C. Fong and Andrea Vedaldi. “Interpretable Explanations of Black Boxes by Mean-

ingful Perturbation”. In: IEEE International Conference on Computer Vision (ICCV). Oct.

2017, pp. 3449–3457. DOI: 10.1109/ICCV.2017.371.

[Gar+21] Stephan J. Garbin et al. “FastNeRF: High-Fidelity Neural Rendering at 200FPS”. In:

IEEE/CVF International Conference on Computer Vision (ICCV). Oct. 2021, pp. 14346–

14355.

[GAZ19] Amirata Ghorbani, Abubakar Abid, and James Zou. “Interpretation of Neural Networks

Is Fragile”. In: AAAI Conference on Artificial Intelligence 33.01 (July 2019), pp. 3681–

3688. DOI: 10.1609/aaai.v33i01.33013681.

[GGB06] Michael Grabner, Helmut Grabner, and Horst Bischof. “Fast Approximated SIFT”. In:

Computer Vision – ACCV 2006. Ed. by P. J. Narayanan, Shree K. Nayar, and Heung-Yeung

Shum. Berlin, Heidelberg: Springer, 2006, pp. 918–927. ISBN: 978-3-540-32433-1.

[GM04] Enrico Gobbetti and Fabio Marton. “Layered point clouds: a simple and efficient mul-

tiresolution structure for distributing and rendering gigantic point-sampled models”.

In: Computers & Graphics 28.6 (2004), pp. 815–826. ISSN: 0097-8493. DOI: 10.1016/

j.cag.2004.08.010.

91

https://doi.org/10.1002/spe.4380240306
https://doi.org/10.1002/spe.4380240306
https://doi.org/10.1016/j.patcog.2007.05.018
https://doi.org/10.1016/j.patcog.2007.05.018
https://doi.org/10.5201/ipol.2014.57
https://doi.org/10.5201/ipol.2014.57
https://doi.org/10.1109/TVCG.2009.142
https://doi.org/10.1109/TVCG.2009.142
https://doi.org/10.1109/ICCV.2017.371
https://doi.org/10.1609/aaai.v33i01.33013681
https://doi.org/10.1016/j.cag.2004.08.010
https://doi.org/10.1016/j.cag.2004.08.010

BIBLIOGRAPHY

[GM19] David Ganter and Michael Manzke. “An Analysis of Region Clustered BVH Volume Ren-

dering on GPU”. In: Computer Graphics Forum 38.8 (2019), pp. 13–21. DOI: 10.1111/

cgf.13756.

[Goh+21] Gabriel Goh et al. “Multimodal Neurons in Artificial Neural Networks”. In: Distill (2021).

DOI: 10.23915/distill.00030.

[Goh19] Gabriel Goh. “A Discussion of ’Adversarial Examples Are Not Bugs, They Are Features’:

Two Examples of Useful, Non-Robust Features”. In: Distill (2019). DOI: 10.23915/

distill.00019.3.

[Goo+14] Ian Goodfellow et al. “Generative Adversarial Nets”. In: Advances in Neural Information

Processing Systems. Ed. by Z. Ghahramani et al. Vol. 27. Curran Associates, Inc., 2014.

[GSS14] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. “Explaining and Harness-

ing Adversarial Examples”. In: arXiv e-prints (Dec. 20, 2014). arXiv: 1412 . 6572v3

[stat.ML].

[GV16] Patrick J. F. Groenen and Michel van de Velden. “Multidimensional Scaling by Ma-

jorization: A Review”. In: Journal of Statistical Software 73.8 (2016), pp. 1–26. DOI:

10.18637/jss.v073.i08.

[Has+20] Jon Hasselgren et al. “Neural Temporal Adaptive Sampling and Denoising”. In: Com-

puter Graphics Forum 39.2 (2020), pp. 147–155. DOI: 10.1111/cgf.13919.

[He+16] Kaiming He et al. “Deep Residual Learning for Image Recognition”. In: IEEE Conference

on Computer Vision and Pattern Recognition (CVPR). June 2016.

[Hed+21] Peter Hedman et al. “Baking Neural Radiance Fields for Real-Time View Synthesis”. In:

arXiv e-prints (Mar. 26, 2021). arXiv: 2103.14645v1 [cs.CV].

[Hen+05] Justin Hensley et al. “Fast Summed-Area Table Generation and its Applications”. In:

Computer Graphics Forum 24.3 (2005), pp. 547–555. DOI: 10.1111/j.1467-8659.

2005.00880.x.

[Her+18] Hans Hersbach et al. ERA5 hourly data on pressure levels from 1979 to present. Coperni-

cus Climate Change Service (C3S) Climate Data Store (CDS). Accessed on 14-05-2022.

2018. DOI: 10.24381/cds.bd0915c6.

[Her+20] Hans Hersbach et al. “The ERA5 global reanalysis”. In: Quarterly Journal of the Royal

Meteorological Society 146.730 (2020), pp. 1999–2049. DOI: 10.1002/qj.3803.

[HGK09] Max Hermann, Alexander Greß, and Reinhard Klein. “Interactive exploration of large

event datasets in high energy physics”. In: Journal of WSCG 17.1–3 (2009), pp. 41–48.

92

https://doi.org/10.1111/cgf.13756
https://doi.org/10.1111/cgf.13756
https://doi.org/10.23915/distill.00030
https://doi.org/10.23915/distill.00019.3
https://doi.org/10.23915/distill.00019.3
https://arxiv.org/abs/1412.6572v3
https://arxiv.org/abs/1412.6572v3
https://doi.org/10.18637/jss.v073.i08
https://doi.org/10.1111/cgf.13919
https://arxiv.org/abs/2103.14645v1
https://doi.org/10.1111/j.1467-8659.2005.00880.x
https://doi.org/10.1111/j.1467-8659.2005.00880.x
https://doi.org/10.24381/cds.bd0915c6
https://doi.org/10.1002/qj.3803

BIBLIOGRAPHY

[HHS06] Vlastimil Havran, Robert Herzog, and Hans-Peter Seidel. “On the Fast Construction of

Spatial Hierarchies for Ray Tracing”. In: IEEE Symposium on Interactive Ray Tracing.

2006, pp. 71–80. DOI: 10.1109/RT.2006.280217.

[Hoh+20] Fred Hohman et al. “Summit: Scaling Deep Learning Interpretability by Visualizing Ac-

tivation and Attribution Summarizations”. In: IEEE Transactions on Visualization and

Computer Graphics 26.1 (2020), pp. 1096–1106. DOI: 10.1109/TVCG.2019.2934659.

[Hop82] John J. Hopfield. “Neural networks and physical systems with emergent collective com-

putational abilities”. In: National Academy of Sciences of the United States of America

79.6953413 (Apr. 1982), pp. 2554–2558. ISSN: 1091-6490. DOI: 10.1073/pnas.79.

8.2554.

[Hop96] Hugues Hoppe. “Progressive Meshes”. In: 23rd Annual Conference on Computer Graphics

and Interactive Techniques. SIGGRAPH ’96. New York, NY, USA: Association for Comput-

ing Machinery, 1996, pp. 99–108. ISBN: 0897917464. DOI: 10.1145/237170.237216.

[HPD08] Mohamed E. Hussein, Fatih Porikli, and Larry Davis. “Kernel Integral Images: A Frame-

work for Fast Non-Uniform Filtering”. In: IEEE Conference on Computer Vision and Pat-

tern Recognition. 2008, pp. 1–8. DOI: 10.1109/CVPR.2008.4587641.

[HS97] Sepp Hochreiter and Jürgen Schmidhuber. “Long Short-Term Memory”. In: Neural Com-

putation 9.8 (1997), pp. 1735–1780. DOI: 10.1162/neco.1997.9.8.1735.

[Hua+17] Gao Huang et al. “Densely connected convolutional networks”. In: IEEE Conference on

Computer Vision and Pattern Recognition (CVPR). July 2017, pp. 2261–2269. DOI: 10.

1109/CVPR.2017.243.

[HZ93] Geoffrey E. Hinton and Richard Zemel. “Autoencoders, Minimum Description Length

and Helmholtz Free Energy”. In: Advances in Neural Information Processing Systems. Ed.

by J. Cowan, G. Tesauro, and J. Alspector. Vol. 6. Morgan-Kaufmann, 1993.

[IS15] Sergey Ioffe and Christian Szegedy. “Batch Normalization: Accelerating Deep Network

Training by Reducing Internal Covariate Shift”. In: 32nd International Conference on

Machine Learning. Ed. by Francis Bach and David Blei. Vol. 37. Proceedings of Machine

Learning Research. Lille, France: PMLR, July 2015, pp. 448–456.

[Jia+20] Chiyu Jiang et al. “Local Implicit Grid Representations for 3D Scenes”. In: IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR). 2020, pp. 6000–6009.

DOI: 10.1109/CVPR42600.2020.00604.

[KA02] Andrew V. Knyazev and Merico E. Argentati. “Principal angles between subspaces in an

A-based scalar product: Algorithms and perturbation estimates”. In: SIAM Journal on

Scientific Computing 23.6 (2002), pp. 2008–2040. DOI: 10.1137/S1064827500377332.

93

https://doi.org/10.1109/RT.2006.280217
https://doi.org/10.1109/TVCG.2019.2934659
https://doi.org/10.1073/pnas.79.8.2554
https://doi.org/10.1073/pnas.79.8.2554
https://doi.org/10.1145/237170.237216
https://doi.org/10.1109/CVPR.2008.4587641
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1109/CVPR.2017.243
https://doi.org/10.1109/CVPR.2017.243
https://doi.org/10.1109/CVPR42600.2020.00604
https://doi.org/10.1137/S1064827500377332

BIBLIOGRAPHY

[KA21] Utku Kose and Jafar Alzubi. Deep learning for cancer diagnosis. Springer, 2021.

[Kah+18] Minsuk Kahng et al. “ActiVis: Visual Exploration of Industry-Scale Deep Neural Network

Models”. In: IEEE Transactions on Visualization and Computer Graphics 24.1 (2018),

pp. 88–97. DOI: 10.1109/TVCG.2017.2744718.

[Kal+17] Simon Kallweit et al. “Deep Scattering: Rendering Atmospheric Clouds with Radiance-

Predicting Neural Networks”. In: ACM Transactions of Graphics 36.6 (Nov. 2017). ISSN:

0730-0301. DOI: 10.1145/3130800.3130880.

[Kár+21] Artúr I. Károly et al. “Deep Learning in Robotics: Survey on Model Structures and Train-

ing Strategies”. In: IEEE Transactions on Systems, Man, and Cybernetics: Systems 51.1

(2021), pp. 266–279. DOI: 10.1109/TSMC.2020.3018325.

[KB14] Diederik P. Kingma and Jimmy Ba. Adam: A method for Stochastic Optimization. arXiv:

1412.6980 [cs.LG]. 2014. arXiv: 1412.6980 [cs.LG].

[KGB18] Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio. “Adversarial examples in the phys-

ical world”. In: Artificial intelligence safety and security. Chapman and Hall/CRC, 2018,

pp. 99–112.

[Kin+19] Pieter-Jan Kindermans et al. “The (Un)reliability of Saliency Methods”. In: Explainable

AI: Interpreting, Explaining and Visualizing Deep Learning. Ed. by Wojciech Samek et al.

Cham: Springer International Publishing, 2019, pp. 267–280. ISBN: 978-3-030-28954-

6. DOI: 10.1007/978-3-030-28954-6_14.

[KKR18] Alexandr Kuznetsov, Nima Khademi Kalantari, and Ravi Ramamoorthi. “Deep Adaptive

Sampling for Low Sample Count Rendering”. In: Computer Graphics Forum 37.4 (2018),

pp. 35–44. DOI: 10.1111/cgf.13473.

[Kri09] Alex Krizhevsky. Learning multiple layers of features from Tiny Images. Tech. rep. Uni-

versity of Toronto, 2009.

[Kum+18] Alexander Kumpf et al. “Visualizing Confidence in Cluster-based Ensemble Weather

Forecast Analyses”. In: IEEE Transactions on Visualization and Computer Graphics 24.1

(2018), pp. 109–119. ISSN: 1077-2626. DOI: 10.1109/tvcg.2017.2745178.

[KW13] Diederik P. Kingma and Max Welling. “Auto-Encoding Variational Bayes”. In: arXiv e-

prints (Dec. 2013). arXiv: 1312.6114 [stat.ML].

[KW78] Joseph B. Kruskal and Myron Wish. Multidimensional scaling. Sage Publications, Beverly

Hills, 1978.

94

https://doi.org/10.1109/TVCG.2017.2744718
https://doi.org/10.1145/3130800.3130880
https://doi.org/10.1109/TSMC.2020.3018325
https://arxiv.org/abs/1412.6980
https://doi.org/10.1007/978-3-030-28954-6_14
https://doi.org/10.1111/cgf.13473
https://doi.org/10.1109/tvcg.2017.2745178
https://arxiv.org/abs/1312.6114

BIBLIOGRAPHY

[LA11] Sylvain Lespinats and Michaël Aupetit. “CheckViz: Sanity Check and Topological Clues

for Linear and Non-Linear Mappings”. In: Computer Graphics Forum 30.1 (2011),

pp. 113–125. DOI: 10.1111/j.1467-8659.2010.01835.x.

[Lau07] Andrew Lauritzen. “Summed-Area Variance Shadow Maps”. In: GPU Gems. Vol. 3.

Addison-Wesley Professional, 2007. Chap. 8.

[Lee82] Der-Tsai Lee. “On k-Nearest Neighbor Voronoi Diagrams in the Plane”. In: IEEE Transac-

tions on Computers C-31.6 (June 1982), pp. 478–487. ISSN: 0018-9340. DOI: 10.1109/

TC.1982.1676031.

[Li+17] Jundong Li et al. “Feature Selection: A Data Perspective”. In: ACM Computing Surveys

50.6 (Dec. 2017). ISSN: 0360-0300. DOI: 10.1145/3136625.

[Lin20] Yen-Chen Lin. Awesome Neural Radiance Fields. 2020. URL: https://github.com/

yenchenlin/awesome-NeRF (visited on 05/19/2022).

[Liu+18] Hsueh-Ti D. Liu et al. “Beyond Pixel Norm-Balls: Parametric Adversaries using an Analyt-

ically Differentiable Renderer”. In: arXiv e-prints (Aug. 8, 2018). arXiv: 1808.02651v2

[cs.LG].

[Liu+20a] Hsueh-Ti D. Liu et al. “Neural Subdivision”. In: ACM Transactions of Graphics 39.4 (July

2020). ISSN: 0730-0301. DOI: 10.1145/3386569.3392418.

[Liu+20b] Lingjie Liu et al. “Neural Sparse Voxel Fields”. In: Advances in Neural Information Process-

ing Systems. Ed. by H. Larochelle et al. Vol. 33. Curran Associates, Inc., 2020, pp. 15651–

15663.

[Llo82] Stuart P. Lloyd. “Least squares quantization in PCM”. In: IEEE Transactions on Informa-

tion Theory 28.2 (1982), pp. 129–137. DOI: 10.1109/TIT.1982.1056489.

[LM09] Jan de Leeuw and Patrick Mair. “Multidimensional Scaling Using Majorization: SMA-

COF in R”. In: Journal of Statistical Software 31.3 (2009), pp. 1–30. DOI: 10.18637/

jss.v031.i03.

[Low04] David G. Lowe. “Distinctive Image Features from Scale-Invariant Keypoints”. In: Inter-

national Journal of Computer Vision 60.2 (2004), pp. 91–110. ISSN: 1573-1405. DOI:

10.1023/B:VISI.0000029664.99615.94.

[LRU85] Mark E. Lee, Richard A. Redner, and Samuel P. Uselton. “Statistically Optimized Sam-

pling for Distributed Ray Tracing”. In: SIGGRAPH Comput. Graph. 19.3 (July 1985),

pp. 61–68. ISSN: 0097-8930. DOI: 10.1145/325165.325179.

[Lu+21] Yuzhe Lu et al. “Compressive Neural Representations of Volumetric Scalar Fields”. In:

Computer Graphics Forum 40.3 (2021), pp. 135–146. DOI: 10.1111/cgf.14295.

95

https://doi.org/10.1111/j.1467-8659.2010.01835.x
https://doi.org/10.1109/TC.1982.1676031
https://doi.org/10.1109/TC.1982.1676031
https://doi.org/10.1145/3136625
https://github.com/yenchenlin/awesome-NeRF
https://github.com/yenchenlin/awesome-NeRF
https://arxiv.org/abs/1808.02651v2
https://arxiv.org/abs/1808.02651v2
https://doi.org/10.1145/3386569.3392418
https://doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.18637/jss.v031.i03
https://doi.org/10.18637/jss.v031.i03
https://doi.org/10.1023/B:VISI.0000029664.99615.94
https://doi.org/10.1145/325165.325179
https://doi.org/10.1111/cgf.14295

BIBLIOGRAPHY

[Lue+03] David Luebke et al. Level of detail for 3D graphics. Morgan Kaufmann, 2003.

[Maa14] Laurens van der Maaten. “Accelerating t-SNE using tree-based algorithms”. In: Machine

Learning Research 15.1 (2014), pp. 3221–3245.

[Mad+17] Aleksander Madry et al. “Towards Deep Learning Models Resistant to Adversarial At-

tacks”. In: arXiv e-prints (June 19, 2017). arXiv: 1706.06083v4 [stat.ML].

[MH08] Laurens van der Maaten and Goeffrey Hinton. “Visualizing High-Dimensional Data Us-

ing t-SNE”. English. In: Journal of Machine Learning Research 9.nov (2008), pp. 2579–

2605. ISSN: 1532-4435.

[Mil+20] Ben Mildenhall et al. “NeRF: Representing Scenes as Neural Radiance Fields for View

Synthesis”. In: Computer Vision – ECCV 2020. Ed. by Andrea Vedaldi et al. Cham:

Springer International Publishing, 2020, pp. 405–421. ISBN: 978-3-030-58452-8.

[Mis13] Pushkar Mishra. “A New Algorithm for Updating and Querying Sub-arrays of Multidi-

mensional Arrays”. In: arXiv e-prints (Nov. 24, 2013). arXiv: 1311.6093v6 [cs.DS].

[Mit87] Don P. Mitchell. “Generating Antialiased Images at Low Sampling Densities”. In: 14th

Annual Conference on Computer Graphics and Interactive Techniques. SIGGRAPH ’87.

New York, NY, USA: Association for Computing Machinery, 1987, pp. 65–72. ISBN:

0897912276. DOI: 10.1145/37401.37410.

[Mor+21] Eduardo F. Morales et al. “A survey on deep learning and deep reinforcement learning in

robotics with a tutorial on deep reinforcement learning”. In: Intelligent Service Robotics

14.5 (2021), pp. 773–805.

[MOT15] Alexander Mordvintsev, Christopher Olah, and Mike Tyka. Inceptionism: Going deeper

into neural networks. 2015.

[MP99] Vitaly Maiorov and Allan Pinkus. “Lower bounds for approximation by MLP neural net-

works”. In: Neurocomputing 25.1 (1999), pp. 81–91. ISSN: 0925-2312. DOI: 10.1016/

S0925-2312(98)00111-8.

[MS15] Daniel Maturana and Sebastian Scherer. “VoxNet: A 3D Convolutional Neural Network

for real-time object recognition”. In: 2015 IEEE/RSJ International Conference on Intel-

ligent Robots and Systems (IROS). 2015, pp. 922–928. DOI: 10.1109/IROS.2015.

7353481.

[Mül+21] Thomas Müller et al. “Real-time Neural Radiance Caching for Path Tracing”. In: ACM

Transaction of Graphics 40.4 (Aug. 2021), 36:1–36:16. DOI: 10 . 1145 / 3450626 .

3459812.

96

https://arxiv.org/abs/1706.06083v4
https://arxiv.org/abs/1311.6093v6
https://doi.org/10.1145/37401.37410
https://doi.org/10.1016/S0925-2312(98)00111-8
https://doi.org/10.1016/S0925-2312(98)00111-8
https://doi.org/10.1109/IROS.2015.7353481
https://doi.org/10.1109/IROS.2015.7353481
https://doi.org/10.1145/3450626.3459812
https://doi.org/10.1145/3450626.3459812

BIBLIOGRAPHY

[Mül+22] Thomas Müller et al. “Instant Neural Graphics Primitives with a Multiresolution Hash

Encoding”. In: arXiv e-prints (Jan. 2022). arXiv: 2201.05989 [cs.CV].

[MV15] Aravindh Mahendran and Andrea Vedaldi. “Understanding deep image representations

by inverting them”. In: IEEE Conference on Computer Vision and Pattern Recognition

(CVPR). June 2015, pp. 5188–5196. DOI: 10.1109/CVPR.2015.7299155.

[MV16] Aravindh Mahendran and Andrea Vedaldi. “Salient Deconvolutional Networks”. In:

Computer Vision – ECCV 2016. Ed. by Bastian Leibe et al. Cham: Springer International

Publishing, 2016, pp. 120–135. ISBN: 978-3-319-46466-4.

[Ngu+16] Anh Nguyen et al. “Synthesizing the preferred inputs for neurons in neural networks

via Deep Generator Networks”. In: Advances in Neural Information Processing Systems

29. Ed. by Daniel D. Lee et al. Curran Associates, Inc., 2016, pp. 3387–3395.

[Nie+20] Michael Niemeyer et al. “Differentiable Volumetric Rendering: Learning Implicit 3D Rep-

resentations Without 3D Supervision”. In: IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR). June 2020.

[NSB04] Thomas Nocke, Heidrun Schumann, and Uwe Böhm. “Methods for the visualization of

clustered climate data”. In: Computational Statistics 19.1 (Feb. 2004), pp. 75–94. ISSN:

1613-9658. DOI: 10.1007/BF02915277.

[NYC19] Anh Nguyen, Jason Yosinski, and Jeff Clune. “Understanding neural networks via Fea-

ture Visualization: A survey”. In: Explainable AI: Interpreting, Explaining and Visualizing

Deep Learning. Cham: Springer International Publishing, 2019, pp. 55–76. ISBN: 978-3-

030-28954-6. DOI: 10.1007/978-3-030-28954-6_4.

[Oka+00] Atsuyuki Okabe et al. Spatial tessellations: concepts and applications of Voronoi diagrams.

John Wiley & Sons, 2000. ISBN: 0471986356.

[Ola+18] Chris Olah et al. “The Building Blocks of Interpretability”. In: Distill (2018). DOI: 10.

23915/distill.00010.

[Ola+20] Chris Olah et al. “Zoom In: An Introduction to Circuits”. In: Distill (2020). DOI: 10.

23915/distill.00024.001.

[Ols04] Jacob Olsen. Realtime procedural terrain generation - Realtime Synthesis of Eroded Fractal

Terrain for Use in Computer Games. 2004.

[OMS17] Chris Olah, Alexander Mordvintsev, and Ludwig Schubert. “Feature Visualization”. In:

Distill (2017). DOI: 10.23915/distill.00007.

97

https://arxiv.org/abs/2201.05989
https://doi.org/10.1109/CVPR.2015.7299155
https://doi.org/10.1007/BF02915277
https://doi.org/10.1007/978-3-030-28954-6_4
https://doi.org/10.23915/distill.00010
https://doi.org/10.23915/distill.00010
https://doi.org/10.23915/distill.00024.001
https://doi.org/10.23915/distill.00024.001
https://doi.org/10.23915/distill.00007

BIBLIOGRAPHY

[Pap+16] Nicolas Papernot et al. “Distillation as a Defense to Adversarial Perturbations Against

Deep Neural Networks”. In: IEEE Symposium on Security and Privacy (SP). 2016,

pp. 582–597. DOI: 10.1109/SP.2016.41.

[Par+19] Jeong Joon Park et al. “DeepSDF: Learning Continuous Signed Distance Functions for

Shape Representation”. In: IEEE/CVF Conference on Computer Vision and Pattern Recog-

nition (CVPR). June 2019.

[Pea01] Karl Pearson. “On lines and planes of closest fit to systems of points in space”. In:

The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 2.11

(1901), pp. 559–572. DOI: 10.1080/14786440109462720.

[Pha+12] Thien Phan et al. “Performance-Analysis-Based Acceleration of Image Quality assess-

ment”. In: IEEE Southwest Symposium on Image Analysis and Interpretation. 2012,

pp. 81–84. DOI: 10.1109/SSIAI.2012.6202458.

[Por05] Fatih Porikli. “Integral Histogram: A Fast Way to Extract Histograms in Cartesian

Spaces”. In: IEEE Computer Society Conference on Computer Vision and Pattern Recogni-

tion (CVPR’05). Vol. 1. 2005, pp. 829–836. DOI: 10.1109/CVPR.2005.188.

[Pri57] Robert C. Prim. “Shortest connection networks and some generalizations”. In: The Bell

System Technical Journal 36.6 (1957), pp. 1389–1401. DOI: 10.1002/j.1538-7305.

1957.tb01515.x.

[Rau+17] Paulo E. Rauber et al. “Visualizing the Hidden Activity of Artificial Neural Networks”.

In: IEEE Transactions on Visualization and Computer Graphics 23.1 (2017), pp. 101–110.

DOI: 10.1109/TVCG.2016.2598838.

[RD18] Andrew Ross and Finale Doshi-Velez. “Improving the Adversarial Robustness and Inter-

pretability of Deep Neural Networks by Regularizing Their Input Gradients”. In: AAAI

Conference on Artificial Intelligence 32.1 (Apr. 2018).

[RFS03a] Jaume Rigau, Miquel Feixas, and Mateu Sbert. “Entropy-based Adaptive Sampling”. In:

Graphics Interface. Vol. 2. 3. 2003, pp. 79–87.

[RFS03b] Jaume Rigau, Miquel Feixas, and Mateu Sbert. “Refinement Criteria Based on f-

Divergences”. In: 14th Eurographics Workshop on Rendering. EGRW ’03. Leuven,

Belgium: Eurographics Association, 2003, pp. 260–269. ISBN: 3905673037.

[RHW86] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. “Learning represen-

tations by back-propagating errors”. In: Nature 323.6088 (1986), pp. 533–536. ISSN:

1476-4687. DOI: 10.1038/323533a0.

98

https://doi.org/10.1109/SP.2016.41
https://doi.org/10.1080/14786440109462720
https://doi.org/10.1109/SSIAI.2012.6202458
https://doi.org/10.1109/CVPR.2005.188
https://doi.org/10.1002/j.1538-7305.1957.tb01515.x
https://doi.org/10.1002/j.1538-7305.1957.tb01515.x
https://doi.org/10.1109/TVCG.2016.2598838
https://doi.org/10.1038/323533a0

BIBLIOGRAPHY

[RKW20] Christian Reinbold, Alexander Kumpf, and Rüdiger Westermann. “Visualizing the Stabil-

ity of 2D Point Sets from Dimensionality Reduction Techniques”. In: Computer Graphics

Forum 39.1 (2020), pp. 333–346. DOI: 10.1111/cgf.13806.

[RSG16] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. ““Why Should I Trust You?”:

Explaining the Predictions of Any Classifier”. In: 22nd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining. KDD ’16. San Francisco, Cal-

ifornia, USA: Association for Computing Machinery, 2016, pp. 1135–1144. ISBN:

9781450342322. DOI: 10.1145/2939672.2939778.

[RT21] Jay Roberts and Theodoros Tsiligkaridis. “Controllably Sparse Perturbations of Robust

Classifiers for Explaining Predictions and Probing Learned Concepts”. In: Machine Learn-

ing Methods in Visualisation for Big Data. Ed. by Daniel Archambault, Ian Nabney, and

Jaakko Peltonen. The Eurographics Association, 2021. ISBN: 978-3-03868-146-5. DOI:

10.2312/mlvis.20211072.

[RW20] Christian Reinbold and Rüdiger Westermann. “Inverting the Feature Visualization Pro-

cess for Feedforward Neural Networks”. In: arXiv e-prints (July 2020). arXiv: 2007.

10757 [cs.LG].

[RW21a] Christian Reinbold and Rüdiger Westermann. “Parameterized Splitting of Summed Vol-

ume Tables”. In: Computer Graphics Forum 40.3 (2021), pp. 123–133. DOI: 10.1111/

cgf.14294.

[RW21b] Christian Reinbold and Rüdiger Westermann. Presentation of Parameterized Splitting of

Summed Volume Tables. 2021. URL: https://youtu.be/JSHjLvIulY0?t=1392 (visited

on 05/19/2022).

[RW22] Christian Reinbold and Rüdiger Westermann. “Learning Generic Local Shape Properties

for Adaptive Super-Sampling”. In: Eurographics – Short Papers. Ed. by Nuria Pelechano

and David Vanderhaeghe. The Eurographics Association, 2022. ISBN: 978-3-03868-169-

4. DOI: 10.2312/egs.20221032.

[Sae+18] Nasir Saeed et al. “A Survey on Multidimensional Scaling”. In: ACM Computing Surveys

51.3 (May 2018). ISSN: 0360-0300. DOI: 10.1145/3178155.

[Sel+17] Ramprasaath R. Selvaraju et al. “Grad-CAM: Visual Explanations From Deep Networks

via Gradient-Based Localization”. In: IEEE International Conference on Computer Vision

(ICCV). Oct. 2017.

99

https://doi.org/10.1111/cgf.13806
https://doi.org/10.1145/2939672.2939778
https://doi.org/10.2312/mlvis.20211072
https://arxiv.org/abs/2007.10757
https://arxiv.org/abs/2007.10757
https://doi.org/10.1111/cgf.14294
https://doi.org/10.1111/cgf.14294
https://youtu.be/JSHjLvIulY0?t=1392
https://doi.org/10.2312/egs.20221032
https://doi.org/10.1145/3178155

BIBLIOGRAPHY

[SGK17] Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. “Learning Important Features

Through Propagating Activation Differences”. In: 34th International Conference on Ma-

chine Learning. Ed. by Doina Precup and Yee Whye Teh. Vol. 70. Proceedings of Machine

Learning Research. PMLR, Aug. 2017, pp. 3145–3153.

[SH75] Michael Ian Shamos and Dan Hoey. “Closest-point problems”. In: 16th Annual Sympo-

sium on Foundations of Computer Science. 1975, pp. 151–162. DOI: 10.1109/SFCS.

1975.8.

[Sit+18] Vincent Sitzmann et al. “DeepVoxels: Learning Persistent 3D Feature Embeddings”. In:

arXiv e-prints (Dec. 3, 2018). arXiv: 1812.01024v2 [cs.CV].

[Sit20] Vincent Sitzmann. Awesome Implicit Neural Representations. 2020. URL: https :

/ / github . com / vsitzmann / awesome - implicit - representations (visited on

05/19/2022).

[SKB08] Faisal Shafait, Daniel Keysers, and Thomas M. Breuel. “Efficient Implementation of Lo-

cal Adaptive Thresholding Techniques Using Integral Images”. In: Document Recognition

and Retrieval XV. Ed. by Berrin A. Yanikoglu and Kathrin Berkner. Vol. 6815. Interna-

tional Society for Optics and Photonics. SPIE, 2008, pp. 317–322. DOI: 10.1117/12.

767755.

[SKW09] Jens Schneider, Martin Kraus, and Rüdiger Westermann. “GPU-Based Real-Time Discrete

Euclidean Distance Transforms With Precise Error Bounds”. In: International Conference

on Computer Vision Theory and Applications (VISAPP). 2009, pp. 435–442.

[SLL20] Pascal Sturmfels, Scott Lundberg, and Su-In Lee. “Visualizing the Impact of Feature

Attribution Baselines”. In: Distill (2020). DOI: 10.23915/distill.00022.

[Smi+17] Daniel Smilkov et al. “SmoothGrad: removing noise by adding noise”. In: arXiv e-prints

(June 2017). arXiv: 1706.03825 [cs.LG].

[Spr+14] Jost Tobias Springenberg et al. “Striving for Simplicity: The All Convolutional Net”. In:

arXiv e-prints (Dec. 2014). arXiv: 1412.6806 [cs.LG].

[SR17] Jens Schneider and Peter Rautek. “A Versatile and Efficient GPU Data Structure for

Spatial Indexing”. In: IEEE Transactions on Visualization and Computer Graphics 23.1

(2017), pp. 911–920. DOI: 10.1109/TVCG.2016.2599043.

[Sri+14] Nitish Srivastava et al. “Dropout: a simple way to prevent neural networks from over-

fitting”. In: The journal of machine learning research 15.1 (2014), pp. 1929–1958.

[Ste+56] Hugo Steinhaus et al. “Sur la division des corps matériels en parties”. In: Bull. Acad.

Polon. Sci 1.804 (1956), p. 801.

100

https://doi.org/10.1109/SFCS.1975.8
https://doi.org/10.1109/SFCS.1975.8
https://arxiv.org/abs/1812.01024v2
https://github.com/vsitzmann/awesome-implicit-representations
https://github.com/vsitzmann/awesome-implicit-representations
https://doi.org/10.1117/12.767755
https://doi.org/10.1117/12.767755
https://doi.org/10.23915/distill.00022
https://arxiv.org/abs/1706.03825
https://arxiv.org/abs/1412.6806
https://doi.org/10.1109/TVCG.2016.2599043

BIBLIOGRAPHY

[STY17] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. “Axiomatic Attribution for Deep Net-

works”. In: 34th International Conference on Machine Learning. Vol. 70. ICML’17. Sydney,

NSW, Australia: JMLR.org, 2017, pp. 3319–3328.

[SVB18] Mehdi S. M. Sajjadi, Raviteja Vemulapalli, and Matthew Brown. “Frame-Recurrent Video

Super-Resolution”. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition.

June 2018, pp. 6626–6634. DOI: 10.1109/CVPR.2018.00693.

[SVZ13] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside Convolutional

Networks: Visualising Image Classification Models and Saliency Maps. 2013. arXiv: 1312.

6034 [cs.CV].

[SW06] Jens Schneider and Rüdiger Westermann. “GPU-Friendly High-Quality Terrain Render-

ing”. In: Journal of WSCG 14.1-3 (2006), pp. 49–56. ISSN: 1213-6972.

[Sze+13] Christian Szegedy et al. “Intriguing properties of neural networks”. In: arXiv e-prints

(2013). arXiv: 1312.6199 [cs.CV].

[Sze+15] Christian Szegedy et al. “Going deeper with convolutions”. In: IEEE conference on com-

puter vision and pattern recognition. 2015, pp. 1–9.

[SZW19] Vincent Sitzmann, Michael Zollhoefer, and Gordon Wetzstein. “Scene Representation

Networks: Continuous 3D-Structure-Aware Neural Scene Representations”. In: Ad-

vances in Neural Information Processing Systems. Ed. by Hanna Wallach et al. Vol. 32.

Curran Associates, Inc., 2019.

[Tak+21] Towaki Takikawa et al. “Neural Geometric Level of Detail: Real-time Rendering with Im-

plicit 3D Shapes”. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recog-

nition (CVPR). 2021, pp. 11353–11362. DOI: 10.1109/CVPR46437.2021.01120.

[Tap11] Ernesto Tapia. “A note on the computation of high-dimensional integral images”. In:

Pattern Recognition Letters 32.2 (2011), pp. 197–201. ISSN: 0167-8655. DOI: 10.1016/

j.patrec.2010.10.007.

[TdL00] Joshua B. Tenenbaum, Vin de Silva, and John C. Langford. “A Global Geometric Frame-

work for Nonlinear Dimensionality Reduction”. In: Science 290.5500 (2000), pp. 2319–

2323. DOI: 10.1126/science.290.5500.2319.

[Tew+20] Ayush Tewari et al. “State of the Art on Neural Rendering”. In: Computer Graphics Forum

39.2 (2020), pp. 701–727. DOI: 10.1111/cgf.14022.

[Thu+20] Nils Thuerey et al. “Deep Learning Methods for Reynolds-Averaged Navier–Stokes Sim-

ulations of Airfoil Flows”. In: AIAA Journal 58.1 (2020), pp. 25–36. DOI: 10.2514/1.

J058291.

101

https://doi.org/10.1109/CVPR.2018.00693
https://arxiv.org/abs/1312.6034
https://arxiv.org/abs/1312.6034
https://arxiv.org/abs/1312.6199
https://doi.org/10.1109/CVPR46437.2021.01120
https://doi.org/10.1016/j.patrec.2010.10.007
https://doi.org/10.1016/j.patrec.2010.10.007
https://doi.org/10.1126/science.290.5500.2319
https://doi.org/10.1111/cgf.14022
https://doi.org/10.2514/1.J058291
https://doi.org/10.2514/1.J058291

BIBLIOGRAPHY

[Tsi+18] Dimitris Tsipras et al. “Robustness May Be at Odds with Accuracy”. In: arXiv e-prints

(May 30, 2018). arXiv: 1805.12152v5 [stat.ML].

[TZN19] Justus Thies, Michael Zollhöfer, and Matthias Nießner. “Deferred Neural Rendering:

Image Synthesis Using Neural Textures”. In: ACM Transactions of Graphics 38.4 (July

2019). ISSN: 0730-0301. DOI: 10.1145/3306346.3323035.

[UBD13] Martin Urschler, Alexander Bornik, and Michael Donoser. “Memory Efficient 3D Integral

Volumes”. In: IEEE International Conference on Computer Vision (ICCV) Workshops. June

2013.

[Umm+19] Benjamin Ummenhofer et al. “Lagrangian fluid simulation with continuous convolu-

tions”. In: International Conference on Learning Representations. 2019.

[Vas+17] Ashish Vaswani et al. “Attention is All you Need”. In: Advances in Neural Information

Processing Systems. Ed. by Isabelle Guyon et al. Vol. 30. Curran Associates, Inc., 2017.

[Ven07] Jarkko Venna. “Dimensionality reduction for visual exploration of similarity structures”.

Doctoral thesis. 2007. ISBN: 978-951-22-8752-9.

[VJ04] Paul Viola and Michael J. Jones. “Robust Real-Time Face Detection”. In: International

Journal of Computer Vision 57.2 (2004), pp. 137–154.

[VMD08] Vincent Vidal, Xing Mei, and Philippe Decaudin. “Simple Empty-Space Removal for In-

teractive Volume Rendering”. In: Journal of Graphics Tools 13.2 (2008), pp. 21–36. DOI:

10.1080/2151237X.2008.10129258.

[Vor08] Georges Voronoi. “Nouvelles applications des paramètres continus à la théorie des

formes quadratiques. Deuxième mémoire. Recherches sur les parallélloèdres primitifs.”

In: Journal für die reine und angewandte Mathematik (Crelles Journal) 1908.134 (1908),

pp. 198–287. DOI: 10.1515/crll.1908.134.198.

[Wei+20] Sebastian Weiss et al. “Learning Adaptive Sampling and Reconstruction for Volume Vi-

sualization”. In: IEEE Transactions on Visualization and Computer Graphics (2020). DOI:

10.1109/TVCG.2020.3039340.

[WHW21] Sebastian Weiss, Philipp Hermüller, and Rüdiger Westermann. “Fast Neural Represen-

tations for Direct Volume Rendering”. In: arXiv e-prints (Dec. 2, 2021). arXiv: 2112.

01579v1 [cs.GR].

[Wil83] Lance Williams. “Pyramidal Parametrics”. In: 10th Annual Conference on Computer

Graphics and Interactive Techniques. SIGGRAPH ’83. Detroit, Michigan, USA: Associ-

ation for Computing Machinery, 1983, pp. 1–11. ISBN: 0897911091. DOI: 10.1145/

800059.801126.

102

https://arxiv.org/abs/1805.12152v5
https://doi.org/10.1145/3306346.3323035
https://doi.org/10.1080/2151237X.2008.10129258
https://doi.org/10.1515/crll.1908.134.198
https://doi.org/10.1109/TVCG.2020.3039340
https://arxiv.org/abs/2112.01579v1
https://arxiv.org/abs/2112.01579v1
https://doi.org/10.1145/800059.801126
https://doi.org/10.1145/800059.801126

BIBLIOGRAPHY

[WK17] Eric Wong and Zico Kolter. “Provable defenses against adversarial examples via the con-

vex outer adversarial polytope”. In: arXiv e-prints (Nov. 2, 2017). arXiv: 1711.00851v3

[cs.LG].

[Won+18] Eric Wong et al. “Scaling provable adversarial defenses”. In: Advances in Neural Infor-

mation Processing Systems 31. Ed. by Samy Bengio et al. Curran Associates, Inc., 2018,

pp. 8400–8409. eprint: 1805.12514v2.

[Xu+07] Qing Xu et al. “A Novel Adaptive Sampling by Tsallis Entropy”. In: Computer Graphics,

Imaging and Visualisation (CGIV 2007). 2007, pp. 5–10. DOI: 10.1109/CGIV.2007.10.

[Yar+20] Lior Yariv et al. “Multiview Neural Surface Reconstruction by Disentangling Geometry

and Appearance”. In: Advances in Neural Information Processing Systems 33. Ed. by Hugo

Larochelle et al. Curran Associates, Inc., 2020, pp. 2492–2502.

[Yia93] Peter N. Yianilos. “Data Structures and Algorithms for Nearest Neighbor”. In: fourth

annual ACM-SIAM Symposium on Discrete algorithms. Vol. 66. SIAM. 1993, p. 311.

[Yos+15] Jason Yosinski et al. “Understanding Neural Networks Through Deep Visualization”. In:

arXiv e-prints (June 2015). arXiv: 1506.06579 [cs.CV].

[ZF14] Matthew D. Zeiler and Rob Fergus. “Visualizing and Understanding Convolutional Net-

works”. In: Computer Vision – ECCV 2014. Ed. by David Fleet et al. Cham: Springer

International Publishing, 2014, pp. 818–833. ISBN: 978-3-319-10590-1.

[Zol+18] Michael Zollhöfer et al. “State of the Art on Monocular 3D Face Reconstruction, Track-

ing, and Applications”. In: Computer Graphics Forum 37.2 (2018), pp. 523–550. DOI:

10.1111/cgf.13382.

[ZSL18] Stefan Zellmann, Jürgen P. Schulze, and Ulrich Lang. “Rapid kd Tree Construction for

Sparse Volume Data”. In: Symposium on Parallel Graphics and Visualization. EGPGV ’18.

Brno, Czech Republic: Eurographics Association, 2018, pp. 69–77.

[Zwi+15] Matthias Zwicker et al. “Recent Advances in Adaptive Sampling and Reconstruction for

Monte Carlo Rendering”. In: Computer Graphics Forum 34.2 (2015), pp. 667–681. DOI:

10.1111/cgf.12592.

103

https://arxiv.org/abs/1711.00851v3
https://arxiv.org/abs/1711.00851v3
1805.12514v2
https://doi.org/10.1109/CGIV.2007.10
https://arxiv.org/abs/1506.06579
https://doi.org/10.1111/cgf.13382
https://doi.org/10.1111/cgf.12592

Eurographics Conference on Visualization (EuroVis) 2021
R. Borgo, G. E. Marai, and T. von Landesberger
(Guest Editors)

Volume 40 (2021), Number 3

Parameterized Splitting of Summed Volume Tables

Christian Reinbold and Rüdiger Westermann

Computer Graphics & Visualization Group, Technische Universität München, Garching, Germany

Abstract
Summed Volume Tables (SVTs) allow one to compute integrals over the data values in any cubical area of a three-dimensional
orthogonal grid in constant time, and they are especially interesting for building spatial search structures for sparse volumes.
However, SVTs become extremely memory consuming due to the large values they need to store; for a dataset of n values an SVT
requiresO(n logn) bits. The 3D Fenwick tree allows recovering the integral values inO(log3 n) time, at a memory consumption
ofO(n) bits. We propose an algorithm that generates SVT representations that can flexibly trade speed for memory: From similar
characteristics as SVTs, over equal memory consumption as 3D Fenwick trees at significantly lower computational complexity,
to even further reduced memory consumption at the cost of raising computational complexity. For a 641×9601×9601 binary
dataset, the algorithm can generate an SVT representation that requires 27.0GB and 46 ·8 data fetch operations to retrieve an
integral value, compared to 27.5GB and 1521 ·8 fetches by 3D Fenwick trees, a decrease in fetches of 97%. A full SVT requires
247.6GB and 8 fetches per integral value. We present a novel hierarchical approach to compute and store intermediate prefix
sums of SVTs, so that any prescribed memory consumption between O(n) bits and O(n logn) bits is achieved. We evaluate the
performance of the proposed algorithm in a number of examples considering large volume data, and we perform comparisons
to existing alternatives.

CCS Concepts
• Information systems → Data structures; • Human-centered computing → Scientific visualization;

1. Introduction

Summed Area Tables (SATs) are a versatile data structure which
has initially been introduced to enable high-quality mipmapping
[Cro84]. SATs store the integrals over the data values in quadratic
areas of a two-dimensional orthogonal grid that start at the grid’s
origin. The entries in a SAT can be considered prefix sums, as they
are computed via column- and row-wise one-dimensional prefix
sums. With four values from a SAT the integral over any quadratic
region can be obtained in constant time. The three-dimensional
(3D) variant of SATs is termed Summed Volume Tables (SVTs).
They are of special interest in visualization, since they can be used
to efficiently build adaptive spatial search structures for sparse vol-
umes. In particular, construction methods for kD-trees and Bound-
ing Volume Hierarchies (BVHs) [VMD08, HHS06] can exploit
SVTs to efficiently find the planes in 3D space where the space
should be subdivided.

Fig. 1 shows a temperature snapshot in Rayleigh-Bénard con-
vection flow of size 641× 9691× 9601. To efficiently render this
dataset via direct volume rendering algorithms, some form of adap-
tive spatial subdivision needs to be used to effectively skip empty
space. However, the SVT from which such an acceleration struc-
ture can be computed requires 247.6GB of memory, so that only
on computers with large memory resources all data can be stored

in main memory. While the input field is only of size O(n), the
memory consumption of a SVT is of O(n logn).

Alternative SVT representations such as 3D Fenwick trees
[Fen94, Mis13, SR17] offer a memory-efficient intermediate data
structure from which an adaptive space partition can be con-
structed. 3D Fenwick trees have a memory consumption of O(n)
bits, yet recovering the integral values requires a number of
O(log3 n) data fetch operations. For the example given in Fig. 1,
a 3D Fenwick tree requires only 27.5GB of memory, but to obtain
an integral value for a given volume 1512 · 8 fetches need to be
performed.

For labelled datasets, SVTs can be used as an alternative to hier-
archical label representations like the mixture-graph [ATAS21], to
efficiently determine the number of labels contained in a selected
sub-volume. Furthermore, SVTs can effectively support a statis-
tical analysis of the data values in arbitrary spatial and temporal
sub-domains. As another application of SVTs, we briefly sketch
meteorological data analysis in Sec. 7. This includes the time- or
memory-efficient computation of moving averages over selected
sub-regions and time intervals.

1.1. Contribution

We propose an algorithm to generate SVT representations that can
flexibly trade speed for memory. These representations build upon

© 2021 The Author(s).
Computer Graphics Forum published by Eurographics - The European Association for Computer
Graphics and John Wiley & Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution NonCommercial
License, which permits use, distribution and reproduction in any medium, provided the original work
is properly cited and is not used for commercial purposes.

DOI: 10.1111/cgf.14294

C. Reinbold & R. Westermann / Parameterized Splitting of Summed Volume Tables

7x

1x
1x

3x

7x

28x

Pr
ec

is
io

n

Co
un

t

n2 x
n1 x

n3 x

n4 x

n5 x

n6 x

Figure 1: Schematic operation principle of splitting SVTs. A 3D ar-
ray is hierarchically split into multiple high to low precision arrays
(decreasing color saturation indicates decreasing precision), to ob-
tain a data structure from which sums over axis-aligned subarrays
can be computed. For the 641×9601×9601 input volume obtained
by a supercomputer simulation of a Rayleigh–Bénard convection,
the SVT requires 247.6GB. Our algorithm generates SVT represen-
tations at 27.0GB or 71.2GB, requiring respectively 46 or 8 data
fetch operations per prefix sum.

a recursive uni-axial partitioning of the domain and corresponding
partial prefix sums, in combination with a hierarchical representa-
tion that progressively encodes this information. Since partial pre-
fix sums require less bits to encode their values, the overall mem-
ory consumption can be controlled by the number and position of
the performed domain splitting operations. By using different par-
titioning strategies, any prescribed memory consumption between
O(n) bits and O(n logn) bits can be achieved.

In principle, the algorithm proceeds in two phases: Firstly, for
every possible SVT representation of a given volume an abstract
parameter tree is constructed. This tree encodes the uni-axial split
operations in a hierarchical manner, and it allows estimating both
the memory consumption of the resulting SVT representation and
the required data fetch operations for computing an integral value.
Secondly, the tree is translated into the concrete SVT representa-
tion, by traversing the tree and performing the encoded operations.

To find a SVT representation according to a prescribed mem-
ory consumption or number of fetches, we propose a heuris-
tic that generates a parameter tree which adheres to a given re-
source budget. This heuristic provides a close-to-optimal parame-
ter tree for arbitrary budgets, over the entire spectrum ranging from
memory-efficient yet compute-intense SVT representations to stan-
dard memory-exhaustive SVT representations with constant recon-
struction time.

Our algorithm generates SVT representations with equal mem-
ory consumption as 3D Fenwick trees at significantly lower com-
putational complexity. For the example in Fig. 1, we can construct
a SVT representation that requires 27.0GB but requires only as few
as 46 · 8 data fetch operations to retrieve an integral value, a de-
crease in data fetch operations of 97% compared to Fenwick trees.
Our specific contributions are

• an abstract parameter tree representation that translates directly
into a SVT representation,

• a capacity estimator for the memory and compute requirements
of a given parameter tree,

• a heuristic that automatically provides a parameter tree that
matches a prescribed capacity.

We analyze our proposed approach with respect to memory
consumption and data fetch operations, and compare the results
to those of alternative SVT representations. By using differently
sized datasets, we demonstrate lower capacity requirements and
improved scalability of our approach compared to others.

The paper is structured as follows: We first discuss approaches
related to ours in the light of memory consumption and computa-
tional issues. After a brief introduction to the concept of SATs, we
introduce the versatile data structure our approach builds upon. We
demonstrate in particular the parameterization of this data structure
to enable trading memory consumption for computational access
efficiency. In Sec. 6, we then describe how to realize a concrete
SVT representation that adheres to a user defined performance or
memory budget. We evaluate our design choices and compare the
obtained representations to alternative approaches in Sec. 7. We
conclude our work with ideas for future work.

2. Related Work

SATs have been introduced by Crow [Cro84], as a data struc-
ture to quickly obtain integral values over arbitrary rectangular
regions in 2D data arrays. Since then, SATs have found use in
many computer vision and signal processing tasks such as ob-
ject detection [BTVG06, VJ04, GGB06, Por05], block matching
[FLML14], optical character recognition [SKB08] and region fil-
tering [HPD08, Hec86, BSB10].

In computer graphics, SVTs are used to realize gloss effects
[HSC∗05], and in particular to accelerate the creation of spatial
search structures for sparse scene or data representations. Havran et
al. [HHS06] build a BVH / SKD-Tree hybrid acceleration structure
for mesh data by discretizing the 3D domain and finding kd-splits in
expected O(log logn). A SVT over the discretized domain is then
used to evaluate the split cost function in constant time. Similarly,
Vidal et al. [VMD08] propose to use SVTs to speed up cost func-
tion evaluations in a BVH construction process for voxelized vol-
ume datasets. In their work, the cost function requires the computa-
tion of bounding volumes over binary occupancy data. By running
binary search on a SVT, this task can be solved in O(logn) in-
stead of O(n3), where n is the side length of the volume. Ganter &
Manzke [GM19] propose to use SVTs to cluster bounding volumes
of small size before assembling them bottom-up into a BVH for
Direct Volume Rendering (DVR). SVTs also allow to compute sta-
tistical quantities for arbitrarily large axis-aligned regions in con-
stant time [PSCL12]. Thus, they facilitate interactive exploratory
tasks in large scale volume datasets. The major drawback of SVTs
is their memory consumption. Since prefix sums may span up to n
elements, where n is the number of entries in a d-dimensional ar-
ray, SVT entries require up toO(logn) bits precision. This yields a
total memory consumption of O(n logn), where the original array
is only of size O(n).

In Computer Graphics, classical Mip Mapping [Wil83] (or Rip
Mapping in the anisotropic case) has been used for decades to ap-

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

124

C. Reinbold & R. Westermann / Parameterized Splitting of Summed Volume Tables

proximately compute partial means (or equivalently sums) of tex-
tures in constant time and O(n) memory. Partial means of boxes
with power of two side length are precomputed and then interpo-
lated to approximate boxes with arbitrary side length. Belt [Bel08]
proposes to apply rounding by value truncation to the input array
before computing its corresponding SVT. By reducing the preci-
sion of the input, the SVT requires less bits of precision as well. To
compensate for rounding error accumulation, the rounding routine
is improved by considering introduced rounding errors of neigh-
boring SVT entries. Clearly, this scheme cannot be used to reduce
memory requirements for arrays of binary data. Although approx-
imate schemes may suffice for imaging or computer vision tasks
where small errors usually are compensated for, they are inappro-
priate in situations where hard guarantees are required (e.g. the sup-
port of a BVH has to cover all non-empty regions).

Exact techniques such as computation through the overflow
[Bel08] or the blocking approach by Zellmann et al. [ZSL18] en-
force a maximal precision bound per SVT entry and, thus, avoid
the logarithmic increase in memory. The former approach simply
drops all except for ℓ least significant bits and hence stores prefix
sums modulo 2ℓ. As long as queried boxes are small enough such
that partial sums greater or equal than 2ℓ are omitted, this method
is exact. This approach excels in filtering tasks with kernels of pre-
scribed box size. However, it is not applicable in situations where
box sizes are either large or not known in advance.

Zellmann et al., on the other hand, brick the input array into
323 bricks and compute a SVT for each brick separately, hence
they dub their method Partial SVT. As each prefix sum cannot sum
over more than 323 elements, the amount of additional bits per en-
try is limited to 15 bits. However, when computing sums along
boxes which do not fit into a single 323 brick, one value has to
be fetched from memory for each brick intersecting the queried
box. Since there still areO(n/(323)) =O(n) many bricks, this ap-
proach scales equally poorly as summing up all values by iterating
over the input array directly. More generally, any attempt to store
intermediate sums with a fixed precision PREC scales poorly. In
order to recover the "largest" possible sum of all array elements,
one would have to add up at least O(n)/2PREC factors of maximal
size 2PREC. To circumvent this issue, the authors propose to build
a hierarchical representation of partial SVTs where the largest en-
tries of each partial SVT form a new array that again is bricked and
summed up partially. However, the authors admit that all bricks that
overlap only partially with the queried box have to be processed at
their current hierarchy level. Hence, the number of touched bricks
reduces to the size of the box boundary. In the best case of cubes
as boxes, the complexity still is O(n2/3)—which is impractical for
n≥ 10243.

Ehsan et al. [ECRMM15] propose a technique that allows to
compute arbitrary prefix sums by fetching a constant number of
four values only through replacing each third row and column of
a 2D array by their corresponding high precision SAT entries. By
either adding an array entry to preceding SAT entries, or subtract-
ing it from subsequent ones, the full SAT can be recovered. Their
approach directly generalizes to 3D, requiring eight values instead.
As a consequence, they only have to store 19 out of 27 SVT entries
in high O(logn) precision, reducing memory consumption by up

to 30%. However, total memory consumption still is in O(n logn)
and does not scale well.

3D Fenwick Trees as introduced by Mishra [Mis13] have bene-
ficial properties with regard to both memory consumption and ac-
cess. As shown by Schneider & Rautek [SR17], they require O(n)
memory while allowing to compute prefix sums by summing up
O(log3 n) values. In the 1D case [Fen94] this is achieved by recur-
sively processing subsequent pairs of numbers such that the first
number is stored verbatim; and the second one is summed up with
the first one and then passed to the next recursion level. In the 3D
case, this process generalizes to processing 23-shaped blocks where
one corner is stored verbatim and the other corners are processed
recursively. Note that a complexity of O(log3 n) still yields num-
bers in the thousands for n ≥ 10243 and above. Our approach im-
proves significantly in this regard.

Memory Efficient Integral Volume (MEIV) by Urschler et al.
[UBD13] first computes the full SVT and then partitions it into
bricks of small size (brick sizes of 33 up to 123 were investigated).
For each brick, MEIV stores its smallest prefix sum bo together
with a parameter µ describing a one-parameter model for the brick
entries subtracted by bo. The value of µ is determined by an opti-
mization step performing binary search. Since the model cannot fit
all block entries perfectly, the remaining error per entry is stored
in a dynamic word length storage with smallest as possible preci-
sion. As a result, MEIV is able to decrease memory consumption
exceptionally well with regard to the minimal overhead of fetching
only two values from memory, namely some brick information and
a value from the dynamic word length storage. Its clear downside is
the increased construction time by fitting µ. In the authors’ exper-
iments, constructing the MEIV representation with optimal block
size for the largeRandomVolume dataset takes 75 times longer than
for the regular SVT. Further, MEIV cannot give any memory guar-
antees as the final memory consumption is sensitive to the chosen
brick size as well as the actual dataset. Compared to MEIV, we ob-
tain the same savings in memory by allowing 6 instead of 2 fetches
from memory, and—more importantly—memory requirements of
our approach are known before actual encoding. Further, our ap-
proach is able to flexibly adapt memory requirements in the full
range of O(n) to O(n logn) respecting the user’s need, and thus
still can be used whereas other approaches (especially Ehsan and
MEIV) run out of memory.

3. Summed Volume Tables

We now briefly describe the basic concept underlying SVTs. For
the sake of clarity, we do so on the example of a SAT, the 2D coun-
terpart of a SVT, before we extend the concept to an arbitrary num-
ber of dimensions. Note that we use 1-based indexing whenever
accessing arrays during the course of the paper.

Given a two-dimensional array F of scalar values, an entry (x,y)
of its corresponding SAT is computed by summing up all values
contained in the rectangular subarray that is spanned by the indices
(1,1) and (x,y), that is

SATF [x,y] := ∑
x′≤x, y′≤y

F [x′,y′].

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

125

C. Reinbold & R. Westermann / Parameterized Splitting of Summed Volume Tables

If the values of a SAT are precomputed, partial sums of F for
arbitrary rectangular subarrays can be computed in constant time,
by making use of the inclusion-exclusion principle. Instead of read-
ing and adding up values of F along the whole region spanned by
(x1 +1,y1 +1) and (x2,y2), it suffices to read the SAT-values at the
corners of the selected subarray. It holds that

∑
x1<x′≤x2, y1<y′≤y2

F [x′,y′] =SATF [x1,y1]+SATF [x2,y2]−

SATF [x1,y2]−SATF [x2,y1]

with SATF (x,y) set to zero if x = 0 or y = 0. Thus, SATs reduce
the summation of (x2−x1) ·(y2−y1) values to a summation of four
values. The concept of SATs extends to any number of dimensions.
Given a d-dimensional array F , the corresponding d-dimensional
SVT is realised by

SVTF [v1,v2, . . . ,vd] := ∑
v′i ≤vi

F [v′1,v
′
2, . . .v

′
d].

Partial sums of hyperboxes (line segments in 1D, rectangles in 2D,
cuboids in 3D, and so on) can be computed by evaluating a SVT at
the 2d corner points of that hyperbox. In the special case of d = 1,
a SVT stores prefix sums of a 1D array. The entries in a SVT can
be interpreted as d-dimensional prefix sums regarding axis-aligned
volumes.

4. Hierarchical SVT data structure

We now introduce a hierarchical approach that allows identifying
the intermediate representation to store a SVT so that a prefix sum
can be computed with as little as possible additional compute un-
der a prescribed memory budget. Here we assume that the input ar-
ray F stores non-negative integral numbers. Thus, negative entries
need to be eliminated by appropriate shifting, and floating point
values need to be rescaled. While shifting does not affect accuracy,
since the sign bit can be reused, floating point numbers cannot be
rescaled to integers in a reasonable way if their value range is too
large. In this case, however, computing partial sums even with the
plain SVT is likely to fail due to numerical errors introduced by
adding and subtracting potentially large prefix sums.

We require the following notation: An array F is said to
have shape n ∈ Nd if and only if it is d-dimensional of shape
n1 × n2 × ·· · × nd . We define the size of n by |n| := ∏d

i=1 ni. In
particular, an array of shape n has |n| elements. Further, for any
multi index v ∈ Nd and integers k ∈ {1, . . . ,d}, i ∈ N, we denote
by v|k=i the multi index that is obtained by replacing the k-th com-
ponent of v by i. When accessing array elements via a multi index,
F [v] is a shorthand notation for F [v1, . . . ,vd].

Our proposed intermediate representation (i.e, a data structure)
evolves around the concept of splitting the input array F of shape
n ∈Nd into a small array Fa of precomputed, high precision aggre-
gates and a set {Fs0 ,Fs1 , . . .} of low precision subarrays such that
any prefix sum can be efficiently computed from one prefix sum of
the aggregate array and one prefix sum of a single subarray. Fig. 2
illustrates an exemplary split of a 3D input array. The aggregates
are obtained by summing values of F along bands following one
of the d dimensions, let us say the k-th one, which is called the
split dimension. Each band is dissected into multiple segments by

1

0
0

0

1
0

0

0
1

0

0
0

1

1
1

0

0
0

1

0
0

0

1
0

1

1
0

1 1
1

0

0 0 0 1 0 1 0 1 1 1 1
0

0

0 1 0 1 1 0 1 1 0 1 1
0

0

1
0

1 0

1

1 0 10 0 0 1 1 1
0

1

1 1 1 1 1 1 0 0 0

2

2
1

1

1
1

2 2
3

4

1 2 2
2

0

2 3 3
0

1

2 1 1
1

2

4

0

1
0

1

0
0

1 1
1

1

0 0 0
0

0

0 1 0
0

1

1 0 1
0

0

1

0

1
0

1
0
0

1

0

0
0

1

1
1

1 0
1

1

0 1 0
0

0

1 0 1
0

1

0 1 0
0

1

1

1

0
0

0
0
1

0

1

1
0

1

1
0

1 1
1

0

1 1 1
0

0

0 1 1
0

0

1 1 1
0

1

0

Fa

Fs0 Fs1 Fs2

Figure 2: Splitting a 10× 4× 3 block along the largest dimension
into the aggregate array Fa and three subarrays Fs0 ,Fs1 ,Fs2 . Cut
position are marked in blue. Red blocks and arrows indicate how
two entries of Fa are formed by summation.

cutting at positions c1 < c2 < · · ·< cℓ, called split positions, along
the split dimension. For each segment, its values of F are summed
to form an aggregate. All aggregates are arranged in the aggregate
array Fa of shape n|k=ℓ. More precisely, it is

Fa[v] =
cvk

∑
i=cvk−1+1

F [v|k=i],

where v ∈ Nd and c0 := 0. The prefix sums of Fa correspond to
prefix sums of F ending at corners v ∈ Nd with vk ∈ {c1, . . . ,cℓ}.

To enable the computation of any prefix sum of F , ad-
ditional ℓ + 1 subarrays Fsi ⊆ F of shape n|i=ci+1−ci−1 with
Fsi [v] = F [v|k=ci+vk] are defined. Here, i ranges from 0 to ℓ with
cℓ+1 := nk + 1. Any prefix sum of F up to the corner v ∈ Nd now
can be computed as follows: The index of the last split position not
succeeding v, i.e., i = max({m | cm ≤ vk}∪{0}), and the subarray
offset j = vk− ci are determined. Then it is

SVTF [v] = SVTFa [v |k=i]+SVTFti
[v |k= j]. (1)

Note that due to ℓ+∑ℓ
i=0(ci+1−ci−1) = cℓ+1−c0−1= nk, the

number of values stored in F equals the numbers of values stored
in Fa and all subarrays. Since values in SVTs of subarrays arise as
sums over only a fraction of values of F , they require less bits of
precision than values in the SVT of F . Thus, storing SVTs after
applying the splitting operation comes with memory savings at the
cost of one additional memory fetch and addition per prefix sum
query on F . The memory savings can be reinforced at the cost of
more fetches by recursively applying the split process to the newly
acquired arrays Fa and all Fsi until a certain termination condition
holds. Then, each terminal array of small shape is stored by encod-
ing either its entries (verbatim), or the entries of its SVT in fixed
precision. The result is a split hierarchy of which an example is
shown in Fig. 3. To compute a prefix sum from this representation,
Eq. (1) is applied recursively up to the point where a prefix sum can
be derived from a terminal array stored in memory.

4.1. The parameter tree

We describe a specific split hierarchy by means of a parameter tree.
When splitting the input array F , we encode split dimension as
well as split positions into the root node of the parameter tree. If a
newly acquired array (aggregate array or subarray) is split further, a

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

126

C. Reinbold & R. Westermann / Parameterized Splitting of Summed Volume Tables

1

0
0

0

1
0

0

0
1

0

0
0

1

1
1

0

0
0

1

0
0

0

1
0

1

1
0

1 1
1

0

0 0 0 1 0 1 0 1 1 1 1
0

0

0 1 0 1 1 0 1 1 0 1 1
0

0

1
0

1 0

1

1 0 10 0 0 1 1 1
0

1

1 1 1 1 1 1 0 0 0

2

2
1

1

1
1

2 2
3

4

0 2 2
2

0

2 3 3
0

1

2 1 1
1

2

4

0

1
0

1

0
0

1 1
1

1

0 0 0
0

0

0 1 0
0

1

1 0 1
0

0

1

0

1
0

1
0
0

1

2 x 1

1
0

1

1
0

1 1
1

0

1 1 1
0

0

0 1 1
0

0

1 1 1
0

1

0

0

2
1

2

1
1

2 1 2
1

1

0 1 0
0

1

1

2
1

2
0

2 x 0

0
0

0

1
0

0 1 0
0

1
1

0
0

0

4 x

0

0
0

0

1
1

0 1 1
1

2
2

1
1

1

4 x0

2
1

2

1
1

2 1 2
1

1

0 1 0
0

1

1

2
1

2
0

2 x
7

8
5

8

8
6

7 7
5

5

0 5 5
2

1

2 3 3
0

1

8 8 8
6

7

6

1 x 6

2
5

8

4
5

3 3
4

4

1 2 2
2

2

0 1 1
1

1

2 4 4
5

6

1

1 x

Memory

I = {2}

I = {Ø}

I = {1,2,3} I = {2,3}

1. dim (x)

2.
 d

im
 (y

)

3. d
im

 (z
)

Figure 3: Sample split hierarchy of a 10× 4× 3 binary input ar-
ray. We show aggregate arrays and subarrays generated during the
recursive split process. Whenever two or more subarrays of similar
shape form in a split operation, a multiplier in the top left corner of
a block indicates how many arrays of its shape arise. The block’s
filling with numbers matches the first (i.e. leftmost/undermost) of
its associated subarrays. The other subarrays of similar shape may
contain different numbers. As a final step indicated by wavy ar-
rows, each terminal array is processed by computing cumulative
sums according to the leaf parameter I (see Sec. 4.1). The result is
stored in memory.

parameter subtree representing its subsequent split process is built
and attached to the root node. If a newly acquired array is terminal,
a leaf node describing its memory layout is created and attached
instead.

In a naive implementation, the parameter quickly becomes un-
manageable since it is branching with a factor that scales with the
number of subarrays per split. By recursively splitting all subar-
rays of similar shape in the same way, one can collapse all of their
corresponding subtrees to a single one and thus reduce the branch-
ing factor to the number of different subarray shapes occurring in
a split, plus one for the aggregate array. Hence, we constrain the
branching factor by requiring as few as possible different subarray
shapes. This can be achieved by specifying a fixed subarray size
z along the split dimension and placing split positions accordingly
with equal spacing. However, we have to resolve alignment issues
if z+ 1 is not a divisor of the length nk of the split dimension mi-
nus one. Overall, we experimented with three different alignment
strategies:

3 x 1 x

2 x 2 x

4 x0

0
0

0 0
0

0

0 0
0

0

0 0
0

0

0 0
0

0
0

0
0

0
0
0

0

(a)

(b)

(c) pad

Figure 4: Splitting a 13×4×3 array along the longest dimension
into subarrays of size 3 with (a) at_end, (b) distributed and (c) pad
alignment. Split positions are highlighted on the left. The number
and shape of resulting subarrays is shown on the right.

at_end: The last subarray remains "incomplete" and thus has a
size smaller than z along the split dimension.

distributed: A slice is removed from as many subarrays as one
would have to pad in order to expand the last subarray to size z
along the split dimension.

pad: The last subarray is padded with zeros until size z is reached.

Figure 4 depicts the results of all alignment strategies when split-
ting a 13× 3× 3 field with fixed subarray size of 3 along the first
dimension. During our experiments we noticed no difference in
quality when generating SVT representations with either at_end or
distributed aligned splits. Further, both yield subarrays of at most
two different shapes, thus restricting the branching factor of the re-
cursion to 3. Pad alignment incurs an additional memory overhead
of up to 10%. In return it guarantees a unique subarray shape, re-
ducing the branching factor to 2. This property may be favourable
when engineering massively parallel en- & decoding schemes in
future work. In the scope of this paper we decided to utilize dis-
tributed aligned splits.

In summary, a split now is defined by the split dimension k and
subarray size z that allows to infer the split positions according to
the distributed alignment strategy. Both values are encoded into an
internal tree node representing the split. A leaf node, on the other
hand, contains a set of dimension indices I ⊆ {1, . . . ,d} which de-
scribe along which dimensions array values are cumulated before
finally storing each cumulated value in memory. The special cases
of storing verbatim or SVT entries are represented by I = ∅ and
I = {1, . . . ,d}, respectively. Fig. 5 shows the parameter tree de-
scribing the split hierarchy of Fig. 3. Note that a tree node may
represent more than one array by collapsing subtrees of similarly
shaped subarrays. For instance, two arrays of shape 3× 4× 3 are
represented by the "k= 2, z= 1" internal node, and the memory lay-
out of the four terminal arrays of shape 3× 1× 3 is given by the
"I = {1,2,3}" node.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

127

C. Reinbold & R. Westermann / Parameterized Splitting of Summed Volume Tables

k = 1, z = 3

k = 2, z = 1

I = Ø I = {1,2,3}

I = {2} I = {2,3}

I = Ø

Figure 5: A parameter tree of depth 2 describing the split hierarchy
of Fig. 3. It has two internal (blue) and five leaf nodes (green). The
leftmost subtree of each internal node describes the split hierarchy
of the aggregate array whereas the remaining subtrees describe the
split hierarchy of subarrays for two different subarray shapes. Text
in nodes indicate encoded parameters. Note that the lower right
leaf node can be chosen arbitrarily since for the 3D shape given
in Fig. 3 there is only one unique subarray shape arising from the
lower split.

4.2. The conjugate trick

To reduce the numbers of split positions and thus the number of
high precision aggregates by one half (without changing the subar-
ray size), we are generalizing the technique described by Ehsan
et al. [ECRMM15]. Instead of adding up a subarray prefix sum
and the aggregate prefix sum at the preceding split position as in
Eq. (1), one can obtain the same result by subtracting the prefix
sum of a flipped subarray from the aggregate prefix sum at the sub-
sequent split position. If Fsi is the (i+ 1)-th subarray with entries
Fsi [v] = F [v|k=ci+vk], we denote with F∗

si its conjugate that is ob-
tained by shifting by one and mirroring along the split dimension,
i.e. F∗

si [v] = F [v|k=ci+1+1−vk]. Then we have

SVTF [v] = SVTFa [v |k=i]−SVTF∗
si−1

[v |k= j], (2)

where i = min{m | cm ≥ vk} and j = ci− vk.

By replacing every second subarray by its conjugated version,
one out of two split positions become superfluous. An exemplary
split resulting from this process is shown in Fig. 6. Whenever a
corner v is located in a subarray with odd index, Eq. (2) is used to
compute the prefix sum, and Eq. (1) otherwise. If the last subarray
of a split is a conjugate one, a split position at nk (the last possible
position) is added to ensure that a subsequent split position always
exists. Allowing for both addition and subtraction and thus halv-
ing the size of Fa generally improves the final SVT representation
by a more shallow split hierarchy and/or smaller block sizes at leaf
levels. This is advantageous as smaller SVT leafs require less pre-
cision per entry, and smaller verbatim leafs require less additions
to obtain a prefix sum.

5. Analysis of the parameter tree

If the shape of the input array F as well as its largest possible en-
try (usually of the form 2#bits− 1) is known in advance, all rele-
vant properties of a SVT representation of F can be derived via

1

0
0

0

1
0

0

0
1

0

0
0

1

1
1

0

0
0

1

0
0

0

1
0

1

1
0

1 1
1

0

0 0 0 1 0 1 0 1 1 1 1
0

0

0 1 0 1 1 0 1 1 0 1 1
0

0

1
0

1 0

1

1 0 10 0 0 1 1 1
0

1

1 1 1 1 1 1 0 0 0

3

3
2

6 6
6

5

2 2
2

3

4 4
0

3

3 3
2

3
0

1
0

1

0
0

1 1
1

1

0 0 0
0

0

0 1 0
0

1

1 0 1
0

0

1

0

1
0

1
0
0

1

0

0
0

1

1
1

1 1
1

1

0 1 0
1

0

1 0 1
0

0

0 1 0
1

0

0

1

0
0

1
0
1

0

1

0
0

0

1
0

0 1
1

0

1 1 1
0

0

1 0 1
0

0

0 1 1
0

1

0

1

1
0

1
1
1

1

shift flip

Figure 6: Splitting a 10× 4× 3 array by permitting subtraction.
Compared to Fig. 2, the first split position is introduced after two
subarrays instead of one, and the second (red) subarray is conju-
gated by first shifting by one and then flipping. Note how the boxed
1 changes position. Subarrays in green are not conjugated.

a top-down-top traversal of the corresponding parameter tree de-
scribing the split hierarchy. When descending the tree, information
about shapes and largest possible entries is propagated according
to the split parameters k, z. Note that whereas the largest possible
entry for subarrays can be taken over from the array being split, for
aggregate arrays, an additional factor of 2z+ 1 has to be applied.
It matches the number of values that are summed up to compute
a single entry of the aggregate array when utilizing the conjugate
trick (see Sec. 4.2).

5.1. Memory requirements

Let T be the parameter tree. If T consists of a single, terminal node
with dimension indices I, the largest possible entry that will be
stored in memory is given by m ·∏i∈I ni, where n is the array shape
at the terminal node and m is the array’s largest possible entry. Con-
sequently, we have

MEM(T) = |n| · ⌈log2(1+m ·∏
i∈I

ni)⌉.

If the root node of T is an internal node, let Ta be the subtree
describing the representation of the aggregate array Fa, and let Ts1

and Ts2 be the two subtrees describing representations for the two
distinct subarray shapes. Then, the memory consumption can be
computed as

MEM(T) = MEM(Ta)+λ1 ·MEM(Ts1)+λ2 ·MEM(Ts2),

where λi is the number of subarrays with shape represented by Tsi .

The memory required for storing the parameter tree itself is neg-
ligible. Even for large datasets of GB-scale, the whole parameter
tree is of KB-size. If the parameter tree is fixed beforehand and
baked into the encoding & decoding algorithm, it does not need to
be stored at all.

5.2. Estimation of fetch operations

The parameter tree T exposes an upper bound for the number of
fetch operations required to compute a prefix sum. We call this
bound the fetch estimate for T and denote it by FETCH(T). If the
root node of T is terminal with dimension indices I, we require

FETCH(T) = ∏
i∈{1,...,d}\I

ni

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

128

C. Reinbold & R. Westermann / Parameterized Splitting of Summed Volume Tables

fetches to compute a prefix sum, with n being the array shape at the
terminal node. If the root node of T is internal, we have

FETCH(T) =FETCH(Ta)+

max(FETCH(Ts1),FETCH(Ts2))
(3)

with the same notation as in Sec. 5.1. Since computing a pre-
fix sum according to Eq. (1, 2) is performed by querying a prefix
sum of the aggregate array and one subarray, the fetch estimate is
an upper bound for the number of fetch operations—however, not
necessarily the minimal one. In the appendix, we present a method
for computing a tighter bound that in our experiments is lower by
3% on average and 24% at most. All fetch counts presented in this
paper are computed with the tighter bound instead of the fetch es-
timate.

A very coarse upper bound for the number of compute opera-
tions per prefix sum can be given by four times the number of
fetches. Since memory access is of magnitudes slower than sim-
ple arithmetic operations, we conclude that computing prefix sums
is memory-bound. Hence, we use the number of fetch operations as
performance indicator.

5.3. Update costs

Whenever a value of F is modified, a single aggregate of Fa as well
as one value of the subarray containing the modified value have
to be updated. Hence, the cost UPDATE(T) for updating the SVT
representation can be described by the same recursion formula (3)
as for the fetch estimate. At terminal nodes however, update costs
are computed by

UPDATE(T) = ∏
i∈I

ni

since an entry of a terminal array of shape n can be part of up to
∏i∈I ni sums stored in memory.

5.4. Construction costs

In the supplement, we show that each value stored in memory by
our SVT representation is a certain partial sum of the input array
F . Hence, all stored values can be efficiently determined by com-
puting the classical SVT of F for instance via GPU computing,
and then sampling a partial sum from the SVT for each stored
value. Since our representation stores n values at leaf nodes, and
SVTs can be computed in O(n) and sampled in O(1), the over-
all runtime-complexity of the construction algorithm is O(n). Due
to the fundamental assumption that O(n logn) of main memory is
not available, we propose to realize the classical SVT via bricking
strategies falling back to larger, but slower memory (e.g. persistent
storage). After construction, partial sums can be queried by fetch-
ing data from the constructed SVT representation that is stored in
(fast) main memory.

6. Identification of optimal parameter trees

Our split hierarchy design opens up a high-dimensional search
space for SVT representations, with the parameters trees being el-
ements in the space of parameters defining the hierarchy. Ideally,

Fetch count

M
em

or
y

co
ns

um
pt

io
n

m
in

Fetch count

M
em

or
y

co
ns

um
pt

io
n

min

Figure 7: Schematic illustration of parameter tree search spaces.
Each dot represents a parameter tree of certain fetch count and
memory consumption. Optimal parameter trees are colored in
green and define the memory-performance trade-off curve shown in
black. By restricting the search space in one quantity and optimiz-
ing for the other, the optimum is uniquely determined (highlighted
dot).

querying this search space for SVT representations yields a param-
eter tree instance that minimizes both the fetch count and the mem-
ory consumption with respect to input arrays of fixed shape and
precision. However, representations with low fetch count have a
high memory consumption and vice versa. To obtain a well defined
optimization problem, we restrict the search space to representa-
tions that do not exceed a prescribed budget of either the number
of fetch operations or the memory consumption, and then ask for
the SVT representation that minimizes the respective other quan-
tity. The resulting parameter trees follow a memory-performance
trade-off curve as shown in Fig. 7.

The parameters which define a parameter tree are all discrete
quantities, so that we are facing a combinatorial optimization prob-
lem. Even though we do not give a formal proof here, we believe
that this problem is NP-hard. Thus, we propose a heuristic H that
receives the shape n of the input array as well as a control parameter
λ and returns a parameter tree H(λ,n) that is close to the mem-
ory-performance trade-off curve. Increasing [decreasing] λ typi-
cally results in parameter trees with higher [lower] fetch count and
lower [higher] memory consumption. In particular, this design al-
lows finding a beneficial parameter tree for a prescribed budget B
of either fetches or—more interestingly—memory. It is achieved
by defining the function

f (λ) =

{
FETCH(H(λ,n))−B if fetch budget
MEM(H(λ,n))−B if memory budget

and applying a root-finding method such as the bisection method
to find λ with f (λ) ≤ 0 being close to zero. Then, H(λ,n) is a
parameter tree that, on the one hand, minimizes the unconstrained
quantity, and exhausts the given budget on the other hand.

In the algorithmic formulation of the heuristic, λ represents a
threshold for the fetch estimate described in Sec. 5.2. It is guar-
anteed that the fetch estimate of H(λ,n) does not exceed λ. We
achieve this by the following procedure: If λ equals one, the heuris-
tic returns the parameter tree representing a classical SVT; that is
a single leaf node with I = {1, . . . ,d}. If, on the other hand, λ is
at least as large as the shape product |n|, it returns a single leaf

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

129

C. Reinbold & R. Westermann / Parameterized Splitting of Summed Volume Tables

node with setting I = ∅—that is the verbatim representation. For
1 < λ < |n|, the heuristic builds an internal node. The split di-
mension k is chosen such that nk = max(n1, . . . ,nd). The subar-
ray size z is derived from λ according to an interpolation function
that is manually defined to match the structure of optimal param-
eter trees for small array shapes. These were computed once by a
Branch-and-Bound strategy that performs an exhaustive search.

The split parameters k and z define the shapes n(a), n(s1), n(s2) of
the aggregate array and the subarrays. Thus, we can use the heuris-
tic recursively to compute the subtrees of the internal node. To do
so, we define control parameters λa, λs and set the aggregate sub-
tree to H(λa,n(a)) and both subarray subtrees to H(λs,n(s1)) and
H(λs,n(s2)) respectively. By requiring λa,λs ≥ 1 and λa +λs ≤ λ,
we assure that the recursion terminates and that the fetch estimate
of the final parameter tree does not exceed λ. This is due to Eq. (3)
and the assumption that the heuristic already satisfies this guaran-
tee for recursive calls. In order to find a reasonable choice for λa
and λs, we again analyzed optimal parameter trees and noticed that
the ratio of the fetch estimate FETCH(Ta) of the aggregate subtree
to the fetch estimate FETCH(T) of the whole tree correlates to the
ratio of the number of split positions (n(a))k to the length nk of the
split dimension. While the latter ratio can be computed from the
split parameters, the first is unknown yet. However, by assuming
that the observed correlation applies for arbitrary array shapes, we
can derive an estimate for the first ratio. Now, the exact value for
λa is obtained by matching λa/λ to the estimate of the first ratio.
Then, λs is computed by subtracting λa from λ. Pseudo code for
the heuristic is given in the appendix.

7. Evaluation

The following evaluation sheds light on a) the quality of the heuris-
tic to find an optimal parameter tree (Sec. 6) and b) on the proper-
ties of our derived SVT representations compared to alternative ap-
proaches, such as MEIV by Urschler et al. [UBD13], 3D Fenwick
Trees by Mishra [Mis13], Partial SVTs by Zellmann et al. [ZSL18],
and the approach of Ehsan et al. [ECRMM15].

All our experiments were run on a server architecture with 4x
Intel Xeon Gold 6140 CPUs with 18 cores @ 2.30GHz each. Al-
though we do not exploit any degree of parallelism, the genera-
tion of parameter trees with the proposed heuristic requires be-
tween 8.5s seconds for the smallest and 45.4s for the largest dataset
(see Table 1). Timings reflect convergence speed of the bisection
method used during parameter tree search as well as the cost for
evaluating the heuristic in each bisection step. Parameter tree gen-
eration for single digit fetch counts is fast since the runtime of the
heuristic correlates with the size of the parameter tree—and trees
are very shallow in that scenario.

As the parameter tree has to be created only once for a fixed ar-
ray shape and precision, we consider the runtime of the heuristic
as negligible. Finding globally optimal parameter trees, however, is
not tractable even for MB-scale datasets. The Branch-and-Bound
strategy for precomputing optimal parameter trees already takes
12.5 hours for a 643 dataset, clearly necessitating the use of a
heuristic.

100 101 102 103 104 105
32KB

200KB

400KB

608KB

Figure 8: Memory-performance curves for a binary 643 volume,
when (blue) solving the global combinatorial optimization prob-
lem of parameter trees, and when (green) utilizing parameter trees
returned by our heuristic. The x-axis shows number of fetch opera-
tions. The y-axis shows memory consumption. Black lines indicate
lower and upper bounds for the memory consumption of SVT rep-
resentations.

7.1. Quality of the heuristic

We now evaluate how closely the parameter trees returned by the
heuristic match the optimal parameter trees. The optimal mem-
ory-performance curve for a binary 643 volume is shown by the
blue curve in Fig. 8. A point (x,y) on the curve indicates that there
exists an optimal parameter tree with x fetches and y bits of mem-
ory consumption, i.e., if memory is constrained to y bits, our hier-
archical data structure principally allows to reduce the number of
required fetches to x, and vice versa. The green curve indicates the
characteristic of our proposed heuristic. By measuring the shift in
x-direction, one can determine the fetch operation overhead of the
heuristic for a fixed memory threshold. Compared to the optimal
solution, roughly 1.5 times the optimal amount of fetches are re-
quired. Note that due to the logarithmic scale of the x-axes, a shift
translates to a factor instead of an offset. Vice versa, measuring the
shift in y-direction yields the memory overhead of the heuristic, as-
suming a fixed budget of fetches. Here we can clearly see that the
heuristic performs quite well except for the number of 4 fetches,
where memory consumption is increased by 25%.

Note that although the memory-performance curve given by the
heuristic is not guaranteed to be monotone, it shows a clear falling
trend. Thus, when using the bisection method w.r.t. λ to achieve a
certain memory threshold, close to perfect results can be expected.
We are also confident that the heuristic has not been manually over-
fitted to the validation scenario. In the design phase, optimal param-
eter trees for various 1D to 4D arrays with at most 9.000 elements
were investigated, while the volume used in the evaluation contains
262.144 elements. On the other hand, due to this we cannot ensure
that the results of the evaluation generalize to GB-scale arrays.

7.2. Comparative study

In this study, we compare the SVT representations found by our
heuristic to the approaches proposed by Ehsan et al. [ECRMM15],

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

130

C. Reinbold & R. Westermann / Parameterized Splitting of Summed Volume Tables

Table 1: Performance statistics for various SVT representations. Each group of three rows contains results (memory consumption, fetch count)
for different approaches using the same volume. For each volume, theoretical lower and upper bounds for SVT representations are given.
The Reference column shows results for the reference approaches by others. The Ours columns show results and timings for parameter tree
computation for our SVT representations under varying constraints. Either memory or fetch count is constrained according to the reference
in the same row. Note that the non-constrained quantities (in bold) are significantly lower than the corresponding reference quantities.

Volume Reference Ours (Memory ≤ Ref. Memory) Ours (Fetch ≤ Ref. Fetch)
Name Memory Fetch Memory Fetch Timing Memory Fetch Timing

256 × 256 × 256 Ehsan 36.6MB 8 35.1MB 3 20ms 14.9MB 8 41ms
Size: 2MB Part. SVT 32MB 512 27.0MB 4 25ms 3.9MB 476 8.0s
SVT: 50MB Fen. Tree 8.0MB 512 8.0MB 38 8.5s 3.9MB 476 8.1s
1024 × 1024 × 1024 Ehsan 2.8GB 8 2.7GB 3 23ms 1.2GB 8 52ms
Size: 128MB Part. SVT 2GB 32K 1.5GB 5 147ms 170.1MB 27.5K 31.4s
SVT: 3.9GB Fen. Tree 511.6MB 1000 511.6MB 40 6.9s 252.7MB 952 20.5s
2048 × 2048 × 2048 Ehsan 24.3GB 8 24.2GB 3 26ms 10.3GB 8 56ms
Size: 1GB Part. SVT 16GB 256K 12.7GB 5 161ms 1.2GB 255.8K 33.5s
SVT: 34GB Fen. Tree 4.0GB 1331 4.0GB 39 9.7s 1.9GB 1294 17.3s
641 × 9601 × 9601 Ehsan 176.6GB 8 168.1GB 3 30ms 71.2GB 8 51ms
Size: 6.9GB Part. SVT 110.1GB 1.8M 86.7GB 5 157ms 7.5GB 1.7M 40.4s
SVT: 247.6GB Fen. Tree 27.5GB 1521 27.0GB 46 11.8s 11.8GB 1468 34.6s
8192 × 8192 × 8192 Ehsan 1.8TB 8 1.8TB 3 51ms 725.5GB 8 40ms
Size: 64GB Part. SVT 1TB 16M 892.8GB 5 100ms 67.9GB 10.6M 39.1s
SVT: 2.5TB Fen. Tree 256.0GB 2197 252.7GB 46 10.7s 114.4GB 2188 45.4s

Mishra [Mis13], Zellmann et al. [ZSL18] and Urschler et al.
[UBD13]. Table 2 summarizes the qualitative features supported
by the varying approaches. For a quantitative analysis, we manu-
ally compute the memory consumption as well as the number of
fetch operations for all reference methods except for Urschler et
al., which will be covered later. We use binary volumes of shape
2563 and 1K3, to reproduce the results of the alternatives from
other works. To demonstrate the scalability of our approach, ad-
ditional results using large scale binary datasets from 2K3 to 8K3

are presented. The results of these experiments are given in Table 1.
They generalize to arrays with elements of arbitrary precision p, by
adding an offset of (p−1) ·n to all memory footprints of both our
and reference methods.

It can be seen that our proposed heuristic performs significantly
better than any other approach relying on intermediate sum com-
putation. In all cases, we can achieve an improvement of more than
a factor of 2.5 in memory consumption or number of fetch oper-
ations while matching the budget regarding the respective other
quantity. Notably, while it seems that the approach by Ehsan is in
all scenarios only this factor behind us, it cannot reduce the mem-
ory consumption any further. Thus, where Ehsan requires 1.8TB,
our SVT variant can go down as low as 64GB. In comparison to
Partial SVTs, we can trade almost all fetch operations for the mem-
ory requirement of 67.9GB, and can reduce the memory require-
ment about more than 90% at the same number of fetch opera-
tions. Compared to the 3D Fenwick Tree, our SVT representation
requires only 2% of the number of fetch operations at similar mem-
ory consumption.

It is fair to say, however, that the improvements over Partial
SVTs with respect to memory requirement become less significant
with increasing sparsity of the volume. Partial SVTs first split the

3D array into subarrays of size 323, so that empty subarrays can be
pruned and do not need to be stored. Even though the so generated
sparse structure requires a certain overhead to encode the sparsity
information, it is likely that at extreme sparsity levels the Partial
SVTs become competitive with respect to memory consumption. It
is, on the other hand, not the case that the number of fetch opera-
tions decreases similarly, since indirect memory access operations
are required to step along the sparse encoding.

Another comparison we perform is against MEIV of Urschler
et al. [UBD13], by reusing the array shapes and precision of the
datasets used in the authors’ work. We set the lowest achieved
memory consumption achieved by MEIV as fixed memory bud-
get and compute the parameter tree according to Sec. 6. For the
smallRandomVolume dataset of shape 5123 and a maximal possible
entry of 1023 we require 6 fetch operations and 311MB of mem-
ory (compared to 319MB by MEIV). For the largeRandomVolume
dataset of shape 1K3 and a maximal possible entry of 512 we
again require 6 fetch operations, but 2491MB of memory (com-
pared to 2544MB by MEIV). In the case of the realCTVolume
dataset with shape 512× 512× 476 and a maximal possible entry
of 1023, MEIV achieves roughly 350MB of memory consumption.
We achieve 304MB while requiring 5 fetch operations. Clearly, we
achieve results of equal quality compared to MEIV without having
its limitations as described in Sec. 2.

7.3. Meteorological use case

In meteorological and climatological research, historical weather
data such as the publicly available ERA5 data set [HBB∗20] con-
taining global, atmospheric reanalysis data is often analyzed us-
ing statistical measures like mean and variance over spatial sub-
domains and time intervals. These measures indicate trends and can

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

131

C. Reinbold & R. Westermann / Parameterized Splitting of Summed Volume Tables

Table 2: Properties of different SVT representations where n is the number of data values in the volume. Besides memory consumption, we
show runtime-complexities for reconstructing an arbitrary partial sum, reconstructing an actual data value, single-threaded construction
of the data structure, and updating the representation after a single data value is changed. Further, we indicate if memory consumption
can be predicted before constructing the representation, if construction is straightforwardly parallelizable, and if representations can be
modified to exploit sparsity in datasets. For our approach, we present lower and upper complexity bounds for all achievable representations.
(*) Average runtime-complexity is shown. Worst Case complexity is O(log3 n). (**) Our approach reconstructs data values with the same
amount of fetches as required for partial sum reconstruction by regarding data values as partial sums over hyperboxes of size 1. (***) Update
performance heavily depends on the actual parameter tree (see Sec. 5.3).

Verbatim SVT Ehsan Part. SVT Fen. Tree MEIV Ours

Memory consumption O(n) O(n logn) O(n logn) O(n)
large const.

O(n) O(n logn)
better in practice

O(n) – O(n logn)

Read partial sum O(n) O(1) O(1) O(n)
small const.

O(log3 n) O(1) O(1) – O(n)

Read data value O(1) O(1) O(1) O(1) O(1) * O(1) O(1) – O(n) **

Construction time – O(n) O(n) O(n) O(n) O(n)
large const.

O(n)

Data value update O(1) O(n) O(n) O(1) O(log3 n) O(n) O(1) – O(n) ***
Predictable memory ✓ ✓ ✓ ✓ ✓ x ✓
consumption
Parallelizable construction – ✓ ✓ ✓ ✓ ✓ ✓
Can exploit sparsity ✓ x x ✓ x x ?

be used to reveal correlations between observed physical quantities
at different sub-domains and times.

As a use case, we utilize the 2m temperature field of the ERA5
hourly data on single levels from 1979 to 2020 [HBB∗18]. Data
is rescaled to 8bit integers according to Sec. 4 and hourly data
is aggregated per day, yielding an 8bit precision dataset of size
1440× 721× 15404. We use our parameterized SVT representa-
tion to plot the mean temperature progressions over different in-
teractively selected, spatial sub-domains of 150× 50 grid points
(roughly matching the extend of the Sahara) in a line plot. Assum-
ing a horizontal resolution of 200 pixels, we partition the user cho-
sen time range in 200 equally large intervals and compute one ag-
gregate for each pixel. When viewing the whole temporal domain,
each aggregate thus describes a sub-domain of 150× 50× 77 grid
points and requires 577.500 fetches from the verbatim dataset of
size 14.9GB. A SVT requires only 8 fetch operations but 78.2GB
of memory. In contrast, by employing our parameterized SVT rep-
resentation using 22.8GB of memory, we can still perform the com-
putation of mean values per any sub-domain using 31 · 8 fetch op-
erations, facilitating an interactive visual analysis of arbitrary sub-
regions.

8. Conclusion and future work

We have proposed a versatile data structure and heuristic for gener-
ating SVT representations that can flexibly trade speed for memory.
Hence, SVT representations that are specifically built for a fixed
memory or compute budget can be utilized. In a number of experi-
ments on large scale datasets we have compared the resulting SVT
representations to those by others, and we have demonstrated sig-
nificantly reduced memory consumption at similar decoding per-
formance, or vice versa.

In the future, we intend to address the following issues: Firstly,
we will engineer cache-aware and/or GPU-accelerated encoding
and decoding schemes, so that a) decoding can further benefit from
massive parallelism and b) encoding can be realised in timings sim-
ilar to state-of-the-art SAT encoding. [CWT∗18, EFT∗18, HSO07]
Secondly, we will apply our approach to build spatial acceleration
structures such as BVHs for large-scale mesh or volume datasets.
Further, we plan to efficiently build implicit BVH structures for
DVR that optimize for low variance in density per bounding vol-
ume. By using the technique described by Phan et al. [PSCL12],
our technique allows to compute variances in constant time with-
out running out of memory. Note that memory efficient SVT im-
plementations are especially important in this regard, because the
SVT that is used for computing second order moments is created
from an input of double precision than the dataset. Third, we will
investigate potential optimizations for sparse data. Here we will ad-
dress how much memory used by our data structure can be saved by
pruning empty subarrays, and whether the heuristic can be adapted
to respect empty regions in the dataset.

Further, we plan to extend our approach to nominal data, that is,
computing SVTs of histograms instead of scalar entries. Applica-
tions are in any research field processing segmented volumes such
as neuroscience or material science. For instance, Al-Thelaya et
al. [ATAS21] perform sub-volume queries over nominal data to en-
able real-time computation of local histograms over user selected
regions. However, due to arranging histograms in a Mip Map struc-
ture, their approach requires an additional footprint assembly step
that quickly becomes unfeasible if very large regions are selected.
By replacing the Mip Map architecture with our SVT scheme, we
believe it will be possible to build a sophisticated mixture graph
that allows to skip the footprint assembly step entirely.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

132

C. Reinbold & R. Westermann / Parameterized Splitting of Summed Volume Tables

9. Acknowledgements

Open access funding enabled and organized by Projekt DEAL.
[Correction added on 05 November 2021, after first online publi-
cation: Projekt Deal funding statement has been added.]

References

[ATAS21] AL-THELAYA K., AGUS M., SCHNEIDER J.: The Mixture
Graph-A Data Structure for Compressing, rendering, and querying seg-
mentation histograms. IEEE Transactions on Visualization and Com-
puter Graphics 27, 2 (2021), 645–655. doi:10.1109/TVCG.2020.
3030451. 1, 10

[Bel08] BELT H. J. W.: Word Length Reduction for the Integral Im-
age. In 15th IEEE International Conference on Image Processing (2008),
pp. 805–808. doi:10.1109/ICIP.2008.4711877. 3

[BSB10] BHATIA A., SNYDER W. E., BILBRO G.: Stacked Integral
Image. In IEEE International Conference on Robotics and Automation
(2010), pp. 1530–1535. doi:10.1109/ROBOT.2010.5509400. 2

[BTVG06] BAY H., TUYTELAARS T., VAN GOOL L.: SURF: Speeded
Up Robust Features. In Computer Vision – ECCV 2006 (Berlin, Heidel-
berg, 2006), Leonardis A., Bischof H., Pinz A., (Eds.), Springer Berlin
Heidelberg, pp. 404–417. 2

[Cro84] CROW F. C.: Summed-Area Tables for Texture Mapping. In
Proceedings of the 11th Annual Conference on Computer Graphics and
Interactive Techniques (New York, NY, USA, 1984), SIGGRAPH ’84,
Association for Computing Machinery, p. 207–212. doi:10.1145/
800031.808600. 1, 2

[CWT∗18] CHEN P., WAHIB M., TAKIZAWA S., TAKANO R., MAT-
SUOKA S.: Efficient Algorithms for the Summed Area Tables Primi-
tive on GPUs. In IEEE International Conference on Cluster Computing
(CLUSTER) (2018), pp. 482–493. doi:10.1109/CLUSTER.2018.
00064. 10

[ECRMM15] EHSAN S., CLARK A. F., REHMAN N. U., MCDONALD-
MAIER K. D.: Integral Images: Efficient Algorithms for Their Compu-
tation and Storage in Resource-Constrained Embedded Vision Systems.
Sensors 15, 7 (2015), 16804–16830. doi:10.3390/s150716804.
3, 6, 8

[EFT∗18] EMOTO Y., FUNASAKA S., TOKURA H., HONDA T.,
NAKANO K., ITO Y.: An Optimal Parallel Algorithm for Computing
the Summed Area Table on the GPU. In IEEE International Parallel
and Distributed Processing Symposium Workshops (IPDPSW) (2018),
pp. 763–772. doi:10.1109/IPDPSW.2018.00123. 10

[Fen94] FENWICK P. M.: A New Data Structure for Cumulative Fre-
quency Tables. Software: Practice and Experience 24, 3 (1994), 327–
336. doi:10.1002/spe.4380240306. 1, 3

[FLML14] FACCIOLO G., LIMARE N., MEINHARDT-LLOPIS E.: Inte-
gral Images for Block Matching. Image Processing On Line 4 (2014),
344–369. doi:10.5201/ipol.2014.57. 2

[GGB06] GRABNER M., GRABNER H., BISCHOF H.: Fast Approxi-
mated SIFT. In Computer Vision – ACCV 2006 (Berlin, Heidelberg,
2006), Narayanan P. J., Nayar S. K., Shum H.-Y., (Eds.), Springer Berlin
Heidelberg, pp. 918–927. 2

[GM19] GANTER D., MANZKE M.: An Analysis of Region Clustered
BVH Volume Rendering on GPU. Computer Graphics Forum 38, 8
(2019), 13–21. doi:10.1111/cgf.13756. 2

[HBB∗18] HERSBACH H., BELL B., BERRISFORD P., BIAVATI G.,
HORÁNYI A., MUÑOZ, SABATER J., NICOLAS J., PEUBEY C., RADU
R., ROZUM I., SCHEPERS D., SIMMONS A., SOCI C., DEE D., THÉ-
PAUT J.-N.: ERA5 hourly data on single levels from 1979 to present,
2018. Copernicus Climate Change Service (C3S) Climate Data Store
(CDS). Accessed on 08-03-2021. doi:10.24381/cds.adbb2d47.
10

[HBB∗20] HERSBACH H., BELL B., BERRISFORD P., HIRAHARA
S., HORÁNYI A., MUÑOZ-SABATER J., NICOLAS J., PEUBEY C.,
RADU R., SCHEPERS D., SIMMONS A., SOCI C., ABDALLA S.,
ABELLAN X., BALSAMO G., BECHTOLD P., BIAVATI G., BID-
LOT J., BONAVITA M., DE CHIARA G., DAHLGREN P., DEE D.,
DIAMANTAKIS M., DRAGANI R., FLEMMING J., FORBES R.,
FUENTES M., GEER A., HAIMBERGER L., HEALY S., HOGAN R. J.,
HÓLM E., JANISKOVÁ M., KEELEY S., LALOYAUX P., LOPEZ P.,
LUPU C., RADNOTI G., DE ROSNAY P., ROZUM I., VAMBORG F.,
VILLAUME S., THÉPAUT J.-N.: The era5 global reanalysis. Quar-
terly Journal of the Royal Meteorological Society 146, 730 (2020),
1999–2049. URL: https://rmets.onlinelibrary.wiley.
com/doi/abs/10.1002/qj.3803, arXiv:https://rmets.
onlinelibrary.wiley.com/doi/pdf/10.1002/qj.3803,
doi:https://doi.org/10.1002/qj.3803. 9

[Hec86] HECKBERT P. S.: Filtering by Repeated Integration. SIG-
GRAPH Comput. Graph. 20, 4 (Aug. 1986), 315–321. doi:10.1145/
15886.15921. 2

[HHS06] HAVRAN V., HERZOG R., SEIDEL H.: On the Fast Construc-
tion of Spatial Hierarchies for Ray Tracing. In IEEE Symposium on In-
teractive Ray Tracing (2006), pp. 71–80. doi:10.1109/RT.2006.
280217. 1, 2

[HPD08] HUSSEIN M., PORIKLI F., DAVIS L.: Kernel Integral Images:
A Framework for Fast Non-Uniform Filtering. In IEEE Conference on
Computer Vision and Pattern Recognition (2008), pp. 1–8. doi:10.
1109/CVPR.2008.4587641. 2

[HSC∗05] HENSLEY J., SCHEUERMANN T., COOMBE G., SINGH M.,
LASTRA A.: Fast Summed-Area Table Generation and its Applications.
Computer Graphics Forum 24, 3 (2005), 547–555. doi:10.1111/j.
1467-8659.2005.00880.x. 2

[HSO07] HARRIS M., SENGUPTA S., OWENS J. D.: Parallel prefix sum
(scan) with CUDA. GPU gems 3, 39 (2007), 851–876. 10

[Mis13] MISHRA P.: A New Algorithm for Updating and Querying Sub-
arrays of Multidimensional Arrays. arXiv (2013). arXiv:1311.
6093v6. 1, 3, 8, 9

[Por05] PORIKLI F.: Integral Histogram: A Fast Way to Extract His-
tograms in Cartesian Spaces. In IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (CVPR’05) (2005), vol. 1,
pp. 829–836 vol. 1. doi:10.1109/CVPR.2005.188. 2

[PSCL12] PHAN T., SOHONI S., CHANDLER D. M., LARSON E. C.:
Performance-Analysis-Based Acceleration of Image Quality assessment.
In IEEE Southwest Symposium on Image Analysis and Interpretation
(2012), pp. 81–84. doi:10.1109/SSIAI.2012.6202458. 2, 10

[SKB08] SHAFAIT F., KEYSERS D., BREUEL T. M.: Efficient Imple-
mentation of Local Adaptive Thresholding Techniques Using Integral
Images. In Document Recognition and Retrieval XV (2008), Yanikoglu
B. A., Berkner K., (Eds.), vol. 6815, International Society for Optics and
Photonics, SPIE, pp. 317 – 322. doi:10.1117/12.767755. 2

[SR17] SCHNEIDER J., RAUTEK P.: A Versatile and Efficient GPU Data
Structure for Spatial Indexing. IEEE Transactions on Visualization and
Computer Graphics 23, 1 (2017), 911–920. doi:10.1109/TVCG.
2016.2599043. 1, 3

[UBD13] URSCHLER M., BORNIK A., DONOSER M.: Memory Effi-
cient 3D Integral Volumes. In Proceedings of the IEEE International
Conference on Computer Vision (ICCV) Workshops (June 2013). 3, 8, 9

[VJ04] VIOLA P., JONES M. J.: Robust Real-Time Face Detection. In-
ternational Journal of Computer Vision 57, 2 (2004), 137–154. 2

[VMD08] VIDAL V., MEI X., DECAUDIN P.: Simple Empty-Space Re-
moval for Interactive Volume Rendering. Journal of Graphics Tools 13,
2 (2008), 21–36. doi:10.1080/2151237X.2008.10129258. 1,
2

[Wil83] WILLIAMS L.: Pyramidal Parametrics. In Proceedings of the
10th Annual Conference on Computer Graphics and Interactive Tech-
niques (New York, NY, USA, 1983), SIGGRAPH ’83, Association for

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

133

C. Reinbold & R. Westermann / Parameterized Splitting of Summed Volume Tables

Computing Machinery, p. 1–11. doi:10.1145/800059.801126.
2

[ZSL18] ZELLMANN S., SCHULZE J. P., LANG U.: Rapid kd Tree Con-
struction for Sparse Volume Data. In Proceedings of the Symposium on
Parallel Graphics and Visualization (Goslar, DEU, 2018), EGPGV ’18,
Eurographics Association, p. 69–77. 3, 8, 9

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

134

Eurographics Conference on Visualization (EuroVis) 2021
R. Borgo, G. E. Marai, and T. von Landesberger
(Guest Editors)

Volume 40 (2021), Number 3

Supplementary Material to the Publication
Parameterized Splitting of Summed Volume Tables

Christian Reinbold and Rüdiger Westermann

Computer Graphics & Visualization Group, Technische Universität München, Garching, Germany

1. Details of the Heuristic

In our work we did not elaborate on two technical aspects of the
heuristic, namely the interpolation scheme to derive the subarray
size z and the ratio correlation to partition λ into λa and λs. We now
make up for it so that the heuristic can be reimplemented accurately.
Further, we present pseudo code to ease implementation.

1.1. Subarray size

In order to derive the heuristic, we computed sets of optimal pa-
rameter trees via an expensive Branch-and-Bound approach for ar-
rays of small shape. When investigating these, we noticed that the
subarray size parameter at the root node correlates with the fetch
estimate computed for a parameter tree. For instance in Fig 1, all
optimal parameter trees for a binary 2D array of shape 642 are rep-
resented via points (x,y), with x being the fetch estimate and y be-
ing the subarray size parameter at the root node. For all investigated
array shapes, most points roughly follow a logarithmic curve. We
found out that the function

f (λ) :=
log2(2 ·λ/(0.35 ·nk)+1)

log2(2|n|/nk +1)
,

where n is the shape of the input array and k is the split di-
mension, allows to interpolate between the smallest and largest
occurring subarray size z. Clearly, z ≥ 1. Since one can have
up to three subarrays when having only one split position (keep
in mind the conjugate trick, see Sec. 4.2), distributed align-
ment yields maximal subarray sizes of d(nk − 1)/3e. Setting
z = (1− f (λ)) · 1+ f (λ) · d(nk − 1)/3e yields the green curve of
Fig. 1. After rounding to the nearest subarray shape that can ac-
tually arise in distributed aligned splits, we obtain our final esti-
mate of z. The orange curve of Fig. 1 depicts which subarray size
is chosen for which fetch estimate. Note that it roughly follows the
distribution of optimal parameter trees.

1.2. Finding fetch estimates for recursion

Again, by looking at optimal parameter trees, we made the obser-
vation that the fetch estimate of the first aggregate subtree can be
approximated as well. This is easily seen by considering some ra-
tios. Let T be an optimal parameter tree for an input array of shape

0 200 400 600 800 1000 1200 1400
0

5

10

15

20

Figure 1: Scatterplot relating fetch estimates (x-axis) to the subar-
ray size parameter at the root node (y-axis) for all optimal param-
eter trees for a binary 2D array of shape 642. Blue points represent
optimal parameter trees. Curves indicate the heuristic used for es-
timating subarray size from the fetch estimate (green) before and
(orange) after discretization.

n and let Ta be the aggregate subtree of T describing the split hier-
archy of an aggregate array of shape n(a). We noticed that

FETCH(Ta)

FETCH(T)
≈ 2 · |n

(a)|
|n| .

In Fig. 2, optimal parameter trees for a binary 642-shaped array are
represented via points (x,y) where x represents the ratio |n(a)|/|n|
and y the ratio FETCH(Ta)/FETCH(T). The orange curve hints at
the conjectured linear correlation.

Since the control parameter λ of the heuristic represents a thresh-
old for the fetch estimate, it is reasonable that the control parameter
λa is chosen such that the conjectured correlation holds true. This
can be achieved by setting λa := 2 · `/nk ·λ, where ` is the number
of split positions. It can be computed from the subarray size z via
`= d(nk− z)/(2 · z+1)e. As a last step, we round λa to the nearest
integral number and clamp it to the interval [1,min(|n(a)|, λ−1)].
This ensures a) that λa cannot surpass the maximal amount of |n(a)|
fetches for the aggregate array, and b) that both λa and the number
of fetches λs := λ−λa that remain for the subarrays is at least one.
Algorithm 1 depicts the pseudo code of the heuristic after incorpo-
rating the considerations of this section.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

C. Reinbold & R. Westermann / Supp.: Parameterized Splitting of Summed Volume Tables

0.00 0.05 0.10 0.15 0.20 0.25 0.30
0.0

0.2

0.4

0.6

Figure 2: Scatterplot relating the ratio |n(a)|/|n| (x-axis) to the
ratio FETCH(Ta)/FETCH(T) (y-axis) for all optimal parameter
trees for a binary 2D array of shape 642. Blue points represent op-
timal parameter trees. The orange curve indicates the conjectured
linear correlation between both ratios.

2. A tighter bound for fetch operations

Although the recursive formula for estimating the fetch operations
in Sec. 5.2 is a useful tool for deriving the heuristic, it is not the
actual number we are interested in. Instead, we wish to know the
maximal number of fetch operations we require when querying
an arbitrary prefix sum. Eq. (3) overestimates this number since
it assumes that one has to query a prefix sum from the full ag-
gregate array and a full subarray simultaneously to get the recur-
sion going. This is not quite true in the scenario of Fig. 3 which—
for demonstration purposes—does not utilize the trick of conjugat-
ing subarrays. Here, we have FETCH(Ta) = FETCH(Ts1) = 2 and
FETCH(Ts2) = 1. FETCH(T) evaluates to 4. In the estimate formu-
lation it is assumed that whenever we query into a subarray of size
2, we have to query both aggregates as well. However, we only have
to query aggregates at preceding split positions. Thus, the second
aggregate entry never is fetched as it is not followed by a subarray
of size 2. Consequently, querying into one of the first two subarrays
requires at most 3 fetches. It is only in the case of querying into the
last subarray of size 1 that we require both aggregate entries. But
then querying the smaller subarray requires only one fetch, sum-
ming up to 3 as well. If we query into an aggregate array instead
of a subarray, one would require at most 2 fetches. As a result, one
requires at most 3 fetch operations instead of 4 as indicated by the
fetch estimate.

In order to obtain a tighter bound, we have to make sure that we
only pair fetch operations of a subarray with the fetch operations
that are required to evaluate prefix sums of the aggregate array up
to the preceding split position; or up to the subsequent split posi-
tion in the case of a conjugated subarrays. To resolve this issue,
we introduce a more complex recursion formula P(T,v) that takes
a parameter tree T and a corner v ∈ Nd , and then returns an upper
bound for fetch operations required to retrieve any prefix sum over
a subarray contained in the box of v, that is the volume spanned by
the origin and the corner v. Any box spanned by the origin and a
point in the box of v is called a subbox of v.

Algorithm 1: heuristic for approximately solving the opti-
mal parameter tree problem.

1 FunctionH(control parameter λ, array shape n ∈ Nd):
Output: Parameter tree T with at most λ fetches for

array of shape n

2 T ← new Node();
/* Covering leaf cases */

3 if λ = 1 then // SVT block
4 attach parameter I = {1,2, . . . ,d} to T ;
5 return T ;
6 else if λ≥ |n| then // verbatim block
7 attach parameter I = ∅ to T ;
8 return T ;
9 end

/* Defining split parameters */
10 k← argmaxi(ni);
11 f ← log2(2 ·λ/(0.35nk)+1)/ log2(2|n|/nk +1);
12 zcontinuous← (1− f) ·1+ f · d(nk−1)/3e;
13 z← round zcontinuous to the nearest subarray size that

can occur with distributed aligned splits along a split
dimension of length nk;

14 attach parameters k, z to T ;

/* Creating subtrees via recursion */
15 `← d(nk− z)/(2 · z+1)e;
16 n(a)← n|k=`;
17 n(s1)← n|k=z;
18 n(s2)← n|k=z−1;
19 λa← round(2 · `/nk ·λ);
20 Clamp λa to [1,min(|n(a)|,λ−1)];
21 λs← λ−λa;
22 Ta←H(λa, n(a));
23 Ts1 ←H(λs, n(s1));
24 Ts2 ←H(λs, n(s2));
25 Attach Ta, Ts1 and Ts2 to T ;

26 return T ;

2.1. Leaf nodes

If T consists of a single leaf node, evaluation of P(T,v) is straight-
forward. We just have to compute the number of entries along the
axes for which values have not been cumulated before storing them.
Hence, we read off the I parameter of the leaf node and set

P(T,v) = ∏
i∈{1,...,d}\I

vi.

2.2. Split nodes

If the root of T is an internal node, computations become more in-
volved. We differentiate between upper bounds of fetches for each
subarray shape n(s) arising in the split operation via an operation
Ps(T,v,n(s)). Similarly, we define a function Pa(T,v) that returns
an upper bound of fetches if one queries into an aggregate array.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

C. Reinbold & R. Westermann / Supp.: Parameterized Splitting of Summed Volume Tables

2 x

Memory

I = {Ø} I = {Ø} I = {Ø}

10 01 01 1

12 10 1

12 10 1

Figure 3: Decomposition of a 1D array of size 7 according to a
parameter tree describing a single split with subarray size 2. All
entries at leaf nodes are stored verbatim.

Clearly, P(T,v) can be computed by taking the maximum over the
value of Pa and the value of Ps for each subarray shape. In the sce-
nario of Fig. 3, Ps evaluates to 3 for both subarray shapes and Pa
evaluates to 2. Thus, P evaluates to the maximum of 3 as well.

From now on let us assume that T is an internal node with
an aggregate subtree Ta and one or more subarray subtrees T i

s ,
i ∈ {1,2, . . . ,#subarray shapes}. The split dimension of T is de-
noted by k. Further we assume a fixed array F of shape n that splits
into an aggregate subarray Fa of shape na and subarrays F i

s of dif-
ferent shapes ni

s such that the subarray subtree T i
s relates to shape

ni
s.

2.2.1. Query to aggregate arrays

Pa(T,v) is computed as follows: First, the index of the last split
position contained in the box of v is computed. In the notation of
Sec. 4 of the paper this is i = max({m | cm ≤ vk} ∪ {0}). By
Eq. (1), the box of v |k=i resembles the region in Fa that has to be
queried in order to compute a prefix sum of a subbox of v in F .
Since we do query into an aggregate array, the subarray offset j
of Eq. (1) and thus the number of fetches to evaluate the second
summand in Eq. (1) always is 0. By the definition of P, we can set

Pa(T,v) = P(Ta,v |k=i).

Note that P now depends on Pa, which itself depends on P again,
but invoked on a subtree. Hence, we have setup a recursion formula.

Now we address the evaluation of Ps(T,v,ni
s) for a subarray

shape ni
s. We simplify notation by fixing the i for which Ps is evalu-

ated and leave out the superscript, that is Fs =∧ F i
s , ns =∧ ni

s and so on.
A subarray S is called complete, if all its entries projected to the
split dimension are contained in the box of v. In other words, S is
complete if and only if for each voxel w covered by S it holds that
wk ≤ vk.

2.2.2. Query to complete subarrays

First, we consider the case of querying into a complete subarray of
shape ns. W.l.o.g. we can assume that the queried subarray is the
"last" complete subarray Slast which is most distant from the ori-
gin and thus has the highest number of preceding split positions. If
we would query into another subarray S, we can query into Slast
instead and would obtain an upper bound at least as high as when

querying into S. The upper bound of fetches for the second sum-
mand of Eq. (1) remains the same, and the upper bound of fetches
for the first summand can only become bigger to due more preced-
ing split positions. Now, we set i to the index of the split position
preceding Slast. If Slast is not going to be conjugated, we compute

pcomplete = P(Ta,v |k=i)+P(Ts,v |k= j),

where j := (ns)k is the subarray size along the split dimension. If
Slast is going to be conjugated, Eq. (2) instead of Eq. (1) is used for
prefix sum computation, which is why we then have

pcomplete = P(Ta,v |k=i+1)+P(Ta,v |k= j)

instead. Note that i is incremented by one.

2.2.3. Query to incomplete subarrays

Second, we discuss the case of querying into an incomplete sub-
array of shape ns, if there is any. Clearly, there can be only one of
them and it has to follow the last complete subarray Slast. Let us call
it Sinc and, again, denote by i the index of its preceding split posi-
tion. In comparison to the complete case, we cannot set j := (ns)k
anymore, but have to keep in mind that we query only those voxels
of Sinc that are also contained in the box of v. Hence, we set j to the
size along the split dimension obtained after intersecting Sinc with
the box of v. If Sinc is not going to be conjugated, then it holds that

pincomplete = P(Ta,v |k=i)+P(Ts,v |k= j).

If, on the other hand, Sinc is going to be used as a conjugated sub-
array in Eq. (2), we have to keep in mind that even if the width j is
only one, we have to sum over the whole subarray due to flipping.
Hence, then we have

pincomplete = P(Ta,v |k=i+1)+P(Ta,v |k=(ns)k
).

If there exists no incomplete subarrays at all, we set pincomplete = 0.
With both complete and incomplete subarrays covered, we can
compute Ps via

Ps(T,v,ns) = max(pcomplete, pincomplete).

2.2.4. Performance considerations

This concludes the formulation of the recursion formula. At this
point, formally proving its upper bound property is a mere exercise
in precise mathematical formulation and rephrasing of the sections
above in a definition-theorem-proof style. However, we still have
to improve performance. If j is the number of different subarray
shapes (in our case j = 2), P has to invoke itself 2 j+1 times with
the aggregate subtree and 2 j times with a subarray subtree. Since
this factors multiply for each level of the tree, computation times
quickly get out of hand. Performance can be improved significantly
by introducing a cache storing results of previous evaluations of P.
In doing so, the algorithm even can be used in the bisection method
that tweaks the control parameter λ of the heuristic. Timings given
in Table 2 include the costs for repeatedly computing the upper
bound as proposed here. Further, note that performance does not
depend on the actual array size because subarray shapes as well as
indices i, j can be derived from split parameters and the input array
shape in constant time. Pseudo code for the complete implementa-
tion is shown in Algorithm 2.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

C. Reinbold & R. Westermann / Supp.: Parameterized Splitting of Summed Volume Tables

Algorithm 2: Computation of a tighter bound for fetch op-
erations respecting queries into subboxes.

Input: Parameter tree T ,
index v ∈ Nd into the input array,
(Optional) cache datastructure C

Output: Upper bound P(T,v) for fetch operations required
to retrieve prefix sums over any subbox of v when
using the SVT representation defined by T

1 Initialize empty cache C if not provided;
2 if (T,v) ∈ C then
3 return cached result P(T,v);
4 end

5 if root node of T is leaf then
6 Read off I parameter from root of T ;
7 result←∏i∈{1,...,d}\I vi;
8 Insert result into C at position (T,v);
9 return result;

10 else
11 Read off split dimension index k from root of T ;
12 i← index of last split position contained in the box of v;
13 upper← P(Ta,v |k=i,C);
14 foreach subarray subtree Ts of T do
15 ns← array shape associated to Ts;
16 Find last complete subarray Slast;
17 i← index of last split position preceding Slast;
18 if Slast is conjugated then
19 p← P(Ta,v |k=i+1,C)+P(Ta,v |k=(ns)k

,C);
20 else
21 p← P(Ta,v |k=i,C)+P(Ta,v |k=(ns)k

,C);
22 end
23 upper←max(upper, p);
24 Search for incomplete subarray Sinc;
25 if Sinc exists then
26 i← index of last split position preceding Sinc;
27 j← size along split dimension k of intersection

of Sinc and the box of v;
28 if Sinc is conjugated then
29 p← P(Ta,v |k=i+1,C)+
30 P(Ts,v |k=(ns)k

,C);
31 else
32 p← P(Ta,v |k=i,C)+P(Ts,v |k= j,C);
33 end
34 upper←max(upper, p);
35 end
36 end
37 Insert upper into C at position (T,v);
38 return upper;
39 end

3. SVT representations store partial sums

When discussing construction costs of the proposed SVT represen-
tations in Sec. 5.4, we assume that each value stored in memory is
a partial sum of the input array F and thus can be sampled from
a SVT of F . This claim is intuitive insofar as values of aggregate

arrays are obtained by summing consecutive values of the array be-
ing split. In the following, we give a formal proof of this claim in
Theorem 3.6. However, we require some additional notation first.

Definition 3.1. Let c = (c1,c2, . . . ,cn) be a sequence of n natural
numbers. We denote by |c| its length n. For another sequence d of
natural numbers such that di≤ n for all i∈N≤|d|, the concatenation
c◦d of c and d is the sequence of length |d| given by (c◦d)i = cdi .
For m ∈ N<|c|, the sequence c� m of length |c| −m is given by
(c� m)i = ci+m.

Definition 3.2. Let c be a monotone sequence of natural numbers.
The range of c at index i ∈ N≤|c|−1 is

range(c, i) =

{
{n ∈ N | ci < n≤ ci+1} if c is increasing
{n ∈ N | ci+1 < n≤ ci} if c is decreasing.

Lemma 3.3. Let c be a monotone sequence of natural numbers and
d be an increasing sequence of natural numbers such that c ◦ d is
defined. Then for all i ∈ N≤|d| and m ∈ N0 it holds that

di+1−1⋃

j=di

range(c, j) = range(c◦d, i)

range(c, i+m) = range(c� m, i)

Proof. Follows immediately from the definition of range.

Definition 3.4. Let c be a finite (that is |c| <∞) monotone se-
quence of natural numbers with. The inverse ¬c of c is the mono-
tone sequence given by (¬c)i = c|c|+1−i.

Lemma 3.5. Let c be a finite monotone sequence of natural num-
bers. Then for all i ∈ N≤|c|−1 it holds that

range(¬c, i) = range(c, |c|− i).

Proof. Follows immediately from the definition of the inverse and
range.

Theorem 3.6. Let A be an array of shape n ∈ Nd arising in a
split hierarchy of the input array F. Then there exist d monotone
sequences a(1), . . . ,a(d) of length |a(i)|= ni +1 such that

A[v] = ∑
v′i∈range(a(i),vi)

F [v′],

where v ∈ Nd is any multi index indexing into A. In particular, A[v]
is a partial sum of a hyperbox of F that starts at the corner

(min(a(1)v1 ,a(1)v1+1)+1, . . . ,min(a(d)vd ,a(d)vd+1)+1)

and ends at

(max(a(1)v1 ,a(1)v1+1), . . . ,max(a(d)vd ,a(d)vd+1))

Proof. The second claim immediately follows from the definition
of range. The first claim is proven via induction regarding the num-
ber of performed split operations before arriving at A. For the initial
case, A = F and the claim holds true by setting a(i) = (0,1, . . . ,ni).

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

C. Reinbold & R. Westermann / Supp.: Parameterized Splitting of Summed Volume Tables

Next, the inductive step is shown. Assume that A arises by split-
ting the array B of shape m ∈ Nd along split dimension k and split
positions

0 = c0 < c1 < · · ·< c` ≤ mk

with the array B being split. By the induction hypothesis, B can be
written as

B[v] = ∑
v′i∈range(b(i),vi)

F [v′]

with appropriate monotone sequences b(i).

Case 1: A is the aggregate array returned by the split process. We
define the monotone sequence d of length `+1 via dm = cm−1 +1.
Then, by Lemma 3.3, we have

A[v] =
cvk

∑
i=cvk−1+1

B[v |k=i]

=

dvk+1−1

∑
i=dvk

∑
v′k∈range(b(k),i)

∑
v′j∈range(d(j),v j)

j 6=k

F [v′]

= ∑
v′k∈range(b(k)◦d,vk)

∑
v′j∈range(d(j),v j)

j 6=k

F [v′]

Thus, the claim holds true by setting a(k) = b(k) ◦d and a(j) = b(j)

for all j 6= k.

Case 2: A is a non-conjugated subarray returned by the split pro-
cess. Choose i such that ci is the last split position preceding A. By
Lemma 3.3, it is

A[v] = B[v |k=ci+vk]

= ∑
v′k∈range(b(k),ci+vk)

∑
v′j∈range(b(j),v j)

j 6=k

F [v′]

= ∑
v′k∈range(b(k)�ci,vk)

∑
v′j∈range(b(j),v j)

j 6=k

F [v′]

Again, the claim holds true by setting a(k) = b(k) � ci and
a(j) = b(j) for all j 6= k.

Case 3: A is a conjugated subarray returned by the split process.
Choose i such that ci is the first split position succeeding A. By
Lemma 3.3 and 3.5, it is

A[v] = B[v |k=ci+1−vk]

= ∑
v′k∈range(b(k),ci+1−vk)

∑
v′j∈range(b(j),v j)

j 6=k

F [v′]

= ∑
v′k∈range(¬b(k),mk−ci+vk)

∑
v′j∈range(b(j),v j)

j 6=k

F [v′]

= ∑
v′k∈range(¬b(k)�(mk−ci),vk)

∑
v′j∈range(b(j),v j)

j 6=k

F [v′]

The claim holds true by setting a(k) = ¬b(k) � (mk − ci) and
a(j) = b(j) for all j 6= k. Note that mk ≥ ci.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

DOI: 10.1111/cgf.13806 COMPUTER GRAPHICS forum
Volume 39 (2020), number 1 pp. 333–346

Visualizing the Stability of 2D Point Sets from Dimensionality
Reduction Techniques

Christian Reinbold , Alexander Kumpf and Rüdiger Westermann

Computer Graphics & Visualization Group, Technische Universität München, Garching, Germany
{christian.reinbold, alexander.kumpf, westermann}@tum.de

Abstract
We use k-order Voronoi diagrams to assess the stability of k-neighbourhoods in ensembles of 2D point sets, and apply it to
analyse the robustness of a dimensionality reduction technique to variations in its input configurations. To measure the stability
of k-neighbourhoods over the ensemble, we use cells in the k-order Voronoi diagrams, and consider the smallest coverings
of corresponding points in all point sets to identify coherent point subsets with similar neighbourhood relations. We further
introduce a pairwise similarity measure for point sets, which is used to select a subset of representative ensemble members
via the PageRank algorithm as an indicator of an individual member’s value. The stability information is embedded into the
k-order Voronoi diagrams of the representative ensemble members to emphasize coherent point subsets and simultaneously
indicate how stable they lie together in all point sets. We use the proposed technique for visualizing the robustness of t-distributed
stochastic neighbour embedding and multi-dimensional scaling applied to high-dimensional data in neural network layers and
multi-parameter cloud simulations.

Keywords: visualization

ACM CCS: • Human-centred computing → Visualization techniques; • Computing methodologies → Dimensionality reduction
and manifold learning

1. Introduction

Dimensionality reduction is used to compute a projection of a set of
data points in some high-dimensional space into a low-dimensional
space, typically two dimensions, in which visual data exploration
can then be performed effectively. If the projection preserves rel-
ative distances between the initial data points, or at least allows
distinguishing near from far neighbours, coherent subsets can be
discerned and even computed in an unsupervised manner using
clustering techniques in the low-dimensional space.

The results of many dimensionality reduction techniques, how-
ever, are subject to randomly selected initial parameters. For in-
stance, multi-dimensional scaling (MDS) [CC00, KW78] sets the
initial objects to random positions and then re-adjusts them. Re-
adjustment is performed in a physics-inspired way, by pushing ob-
jects apart (or together) if two objects are too close to (or too far
from) each other. The result of this relaxation depends on tuning
parameters to adjust the strength of non-local repulsive forces. Due
to this parameter dependency, multiple MDS projections are usually

computed using varying input parameters and the best rest configu-
ration is selected. Another frequently used dimensionality reduction
technique is t-distributed stochastic neighbour embedding (t-SNE)
[vH08]. In t-SNE, perplexity is an adjustable parameter that controls
the size of the neighbourhood around each object that the projec-
tion attempts to preserve. Besides, t-SNE is often used with random
values to initialize its seed configuration, i.e. the initial locations
of projected objects which are considered by gradient descent op-
timization. Therefore, also t-SNE is usually re-run with different
input configurations and the most meaningful projection is selected.

Due to these parametrization dependencies, MDS and t-SNE can
be run multiple times and yield a different result each time. The
variations can be both with respect to the location of projected data
points and their neighbourhoods. It is in particular important to
find those subsets of points with similar k-neighbourhood, i.e. the k

closest points, in all projections. Such stable subsets can be deemed
coherent, and they indicate robustness of the dimensionality reduc-
tion technique. Analysing the stability of these k-neighbourhoods,

c© 2019 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,
provided the original work is properly cited.

333

334 C. Reinbold et al. / Visualizing the Stability of 2D Point Sets

(a)

(a1)

(a2) (b) (c)

Figure 1: Robustness plots (using 100 projections) of representative projections for t-SNE on 12D parameter vectors of voxels in a cloud
dataset (a, b), and multi-dimensional scaling on activations of a convolutional layer of neural classification network (c). (a, c) Voronoi plot
reveals structures of high (light blue) to low (dark blue) stability. Point colour indicates groups of similarly stable k-neighbourhoods or
outliers. (a1) By picking the marked point, points assigned to the same group of similar k-neighbourhoods in ≥70% of all projections are
highlighted. (a2) Background Voronoi structure without points. (b) Simplified robustness plot of (a). Grey indicates outlier regions, other
colours as in (a).

in context of the projections that are computed by the used dimen-
sionality reduction technique, is the major focus of this work.

1.1. Contribution

We present a visualization technique to analyse the stability of
neighbourhood relations in an ensemble of two-dimensional (2D)
data points, and we demonstrate its use for assessing the ro-
bustness of dimensionality reduction techniques to variations in
the input parametrizations. A novel coherence indicator based on
k-order Voronoi diagrams measures how well k-neighbourhoods are
preserved in multiple ensemble members.

The visual encoding we propose utilizes the partitioning of the
projection plane based on k-order Voronoi diagrams. In this way, the
spatial distribution of data points is maintained, and stability infor-
mation of similar neighbourhoods is placed close to each other. This
allows accessing in a very intuitive way region of neighbourhoods
with similar stability, which cannot be accessed from non-spatial
encodings like, e.g. bar charts. Since for each projection, a k-order
Voronoi diagram is computed, we select the most representative one
via the PageRank score. Voronoi cells are colour-coded according
to the stability of enclosed subsets of data points, and the stability
information is used to simplify the visual encoding by removing
cell boundaries. Remaining cell boundaries are coloured according
to how strongly separated the subsets in either cell are.

Our specific contributions are:� the use of k-order Voronoi diagrams to analyse the stability of
neighbourhood relations in an ensemble of 2D point sets;� a stability measure for k-neighbourhoods in ensembles of 2D
point sets, using smallest coverings of points belonging to a
k-neighbourhood computed for all ensemble members;� a visual encoding of the stability of neighbourhood relations, by
visualizing major separating ridges in a k-order Voronoi diagram
via colours indicating their separation strength.

Figure 1 demonstrates the application of the proposed technique
to analyse the robustness of MDS and t-SNE for two different
datasets, indicating the specific visual encoding we propose. It pro-
vides a general means to analyse the stability of neighbourhood
relations in ensembles of 2D point sets. We use this means to shed
light on how to determine for a given dimensionality reduction tech-
nique whether it can robustly reveal certain structures in the data, yet
we do not aim to compare different dimensionality reduction tech-
niques. In particular, we show that the proposed visualizations can
be used to find subgroups of objects for which a current projection
provides a robust representation of their locality. In a number of ex-
amples, including a synthetic dataset, we demonstrate the use of the
proposed technique and the information concerning the robustness
of dimensionality reduction techniques they provide.

2. Related Work

Our approach takes as input an ensemble of 2D point sets and visu-
alizes which subsets of points are connected to each other, i.e. are
neighbours, in all or many ensemble members using a suitable neigh-
bourhood relation. The neighbourhood relation we employ is based
on Voronoi diagrams. In visualization, classical one-order Voronoi
diagrams have been used to encode properties of points [BD05,
NSB04, PFMA06, LA11]. Aupetit [Aup07] discusses the limita-
tions of two-order Voronoi diagrams for visual encoding properties
of pairs of points, and suggests an improvement using Segment–
Voronoi cells. We use higher order Voronoi diagrams to deter-
mine larger contiguous neighbourhoods, and clustering to obtain
a meaningful visual encoding, thus resolving some of the limita-
tions pointed out by Aupetit.

Regarding the input to our approach, it falls into the
broader category of ensemble visualization techniques (see Wang
et al. [WHLS18] for a recent overview). Notably, while ensem-
ble visualization has emerged as an important field, to the best
of our knowledge, visualization techniques for ensembles of 2D

c© 2019 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

C. Reinbold et al. / Visualizing the Stability of 2D Point Sets 335

Figure 2: Method overview. (a) A k-order Voronoi diagram is computed for each ensemble member. (b) Each pairing of a projection P with a
Voronoi diagram V yields a coloured version of V where the colour of a cell encodes the stability of its corresponding k-neighbourhood in P .
(c) Coloured variants of V are aggregated into a single colouring. Colours encode the stability of each cell with respect to the ensemble.
(d) Core features of each Voronoi diagram are extracted via density-based clustering—identifying local maxima of stability—and used to
generate robustness plots. (e) A pairwise similarity matrix based on k-neighbourhoods is computed from stability values for each pair (P,V)
which then allows us to identify one or more clusters and select representative robustness plots in (f).

points are not existing. The majority of works in ensemble visu-
alization have addressed ensembles of physical fields, or features
derived from such fields, and they have focused on the extraction
and visual encoding of their variability. Parametric statistical dis-
tributions and distribution shape descriptors for scalar-valued en-
sembles were presented by Love et al. [LPK05]. Isocontours in
an ensemble of 2D scalar fields have been conveyed via spaghetti
plots [PWB*09, SZD*10, Wil11]. Different variants of confidence
regions were introduced to represent the major geometric trends
in ensembles of isocontours and streamlines [WMK13, MWK14,
FBW16, FKRW16]. Demir et al. [DJW16] proposed a closest-point
representation to convey the central tendency of an ensemble of
multi-dimensional shapes. Hummel et al. [HOGJ13] analyse the
spread of particle trajectories in an ensemble of vector fields to re-
veal the transport variability, and Jarema et al. [JDKW15] model
directional data ensembles via mixtures of probability density func-
tions to compactly classify complex distributions. Poethkow and
Hege [PH13] and Athawale et al. [ASE16] use location-wise esti-
mators of non-parametric distributions from ensemble members and
use these distributions to estimate the spread of surface and vector
field features.

Alternatively, clustering has been used to group ensemble mem-
bers regarding similar data characteristics [BM10, TN14, OLK*14,
FBW16, FFST19]. While these techniques compare ensemble mem-
bers to each other, our approach aims at finding groups of elements
in each member which remain ‘close’ to each other in all members.
Strehl and Ghosh [SG02] apply different clustering techniques to
one single ensemble, and combine the results into a single cluster-
ing. Ferstl et al. [FKRW16] cluster different time steps of the same
ensemble in a hierarchical way to convey the change of clusters
over time. For the clustering of genomic data, Lex et al. [LSP*10]
introduce extended parallel coordinate plots to compare different
clusterings and analyse the quality of cluster assignments. Kumpf
et al. [KTB*18] consider a set of ensembles and cluster each en-
semble using the same algorithm and number of clusters. Clusters
are matched to clusters in a reference clustering by using their in-
tersection, and cluster variability plots are proposed to analyse the
robustness of the clustering results. Our method, in contrast, does
not make any assumption about whether the data can be clustered
and into how many clusters it can be separated.

In our scenario, each ensemble member is a set of 2D points,
which is generated by applying a dimensionality reduction tech-
nique to a set of points in a high-dimensional space. Some recent
surveys [KH13, LMW*16] give thorough overviews of visualization
techniques for high-dimensional data. In combination with dimen-
sionality reduction, clustering is often used to identify groups of
points lying close together in the low-dimensional space or form-
ing coherent structures in this space. Wenskovitch et al. [WCR*17]
discuss the combination of dimensionality reduction and clustering
techniques, and provide recommendations for their concurrent use.
General overviews of the numerous techniques for dimensionality
reduction and clustering can be found in the surveys by Sorzano
et al. [SVM14] and Everitt et al. [ELLS11], respectively.

Related to our approach are also techniques which aim to find
projections that best represent the structures in high-dimensional
data, by using quality measures for projections [FT74, HA85].
Even though the goal of these techniques is different to ours, as
we do not attempt to find the best projection for a given dataset,
proposed measures indicate the (dis-)similarity between projections
and might be used for robustness analysis as well. Examples in-
clude vector distance measures for high-dimensional feature de-
scriptors [BvLBS11] and feature vectors derived from point-wise
distance matrices [JHB*17], as well as measures using matrix norms
to quantify the dissimilarity of multivariate projections invariant to
affine transformations [LT16]. None of these approaches, however,
analyses the stability of multiple projections. Instead, they quantify
the similarity of projections to order them or find new projections
with as less as possible redundancy to previous ones.

3. Method Overview

Let X be a finite set of n entities in some multi-dimensional coor-
dinate or parameter space. Our method analyses an ensemble E of
embeddings of X into the 2D plane. Each embedding is an ordered
2D point set P = (px)x∈X ∈ E of cardinality n. Points in different
ensemble members that have the same index refer to the same entity.

To analyse whether certain subgroups of points are stably
connected—using a suitable neighbourhood relation—across all en-
semble members, we introduce the pipeline in Figure 2. In general,

c© 2019 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

336 C. Reinbold et al. / Visualizing the Stability of 2D Point Sets

for a certain subgroup of size k, all
(
n

k

)
available subgroups need to be

tested. As this is intractable, we utilize k-order Voronoi diagrams—
computed in step (a)—to reduce this number to O(kn) many k-
neighbourhoods. The k-order Voronoi diagrams provide topologi-
cal information that is used to assemble neighbourhoods of fixed
size k into subgroups of arbitrary size. The geometric structure of
these diagrams is further used to visualize simultaneously the sta-
bility information that is obtained from it and a 2D embedding
of X.

In step (b), the stability of each k-neighbourhood is assessed us-
ing minimum covering circles of the corresponding point set in all
other ensemble members. In this way, multiple stability values are
obtained for each neighbourhood. These values are finally aggre-
gated into a single value that quantifies the overall stability of a
neighbourhood in the ensemble (step (c)).

Higher order Voronoi diagrams can be used in principle to per-
form a fine-granular analysis of the neighbourhood relations in the
ensemble. However, since they comprise thousands of convex poly-
gons which cannot easily put into relation to the data points, some
expertise is required to observe the major trends. To ease the inter-
pretation, an abstract visualization is provided in which the informa-
tion is condensed. Therefore, the major information regarding stable
subgroups and their relations to each other is extracted by clustering
the k-order Voronoi diagrams (step (d)). The clustering is only used
to obtain an alternative visual representation, and it incorporates
derived stability information of subgroups. A region’s stability is
mapped to its background colour, and ridges between these regions
are coloured to indicate how strongly adjacent subgroups are sep-
arated. We will subsequently call these plots robustness plots. A
robustness plot allows to identify points which are connected via
k-neighbourhoods of locally high stability. Furthermore, if regions
of high stability have a particular shape, such as band- or ball-like,
one can conclude that these shapes also appear in most of the en-
semble members.

For each P ∈ E , a distinct k-order Voronoi and robustness plot is
generated. As demonstrated in Section 5.7, many of these plots carry
similar information, in particular regarding the stable regions. Build-
ing upon a pairwise similarity matrix that is computed in step (e),
a small set of representative plots is finally selected in step (f). These
plots carry most of the stability information, and they are used to
embed the stability information into the 2D domain. A robustness
plot of any ensemble member reveals the agreement of the member
to the derived stability information.

4. Stability Analysis

Our notion of stability is based on how well neighbourhoods are
preserved in different point sets: Given a k-subset V of points in
one point set, how large is the spread of these points in all other point
sets. This is determined by computing the smallest possible disks
that cover the points in V in the other sets. These disks may also
cover points not being part of V, indicating that additional points
interfere with the neighbourhood relationship. The stability value
stab(V, P) of V with respect to P ∈ E is then computed as the ratio
between k and the number of points covered by the disk. Consider
P containing the grey and orange points in Figure 3(a), and V

Figure 3: (a) A three-order Voronoi diagram of six points. One
cell, its nearest three neighbours (orange points) and the smallest
disk enclosing these points are shown. (b) Orange circles indicate
the 3-neighbourhoods of their centre points. The 3-neighbourhood
centred at the location marked with the blue cross is indicated by the
dashed blue circle. (c) Five-order Voronoi diagram of a random set
of 20 points. Orange points are the five nearest points to the orange
cell. All cells related to the dark blue point are coloured blue.

containing the three orange points. Then, stab(V, P) evaluates to
3/5, since the cardinality of V is 3 and the smallest disk covering
V contains five points. This measure is invariant to uniform scaling
and isometric transformations applied to P , and it has domain (0, 1],
as the disk always contains at least the k points of V . We extend
this measure to an ensemble of point sets E = {P1, P2, . . . , P�}, by
using the mean over all stab(V, Pi), i ∈ [1, 2, . . . , �]. Alternatively,
aggregations that better represent the distribution of stability values
can be used.

4.1. Voronoi diagrams

The subsets V that are considered in the stability analysis are com-
puted from the higher order Voronoi diagrams. To reduce the number
of neighbourhoods to be computed, the analysis could, in principle,
be restricted to the k-neighbourhood around each initial point, i.e.
the k-neighbourhood including the point and its (k − 1)-nearest
neighbours. However, as shown in Figure 3(b), this approach does
not always allow for a meaningful assessment of the stability of
subgroups in the point set. In the example, when grouping each
point with its two nearest neighbours, no 3-subset covering at least
one light grey and one dark grey point is obtained. In particular,
stability values computed for these subsets are not affected by the
distance between the light and dark grey group in other point sets of
the ensemble E . Thus, information about the stability of the relative
position of the dark grey group to the light grey group cannot be
inferred. Both may be adjacent only in the seen point set, or in all
point sets of E .

Ideally, the situation in Figure 3(b) can be resolved by sampling
the 3-nearest neighbours of the location marked by a blue cross, so
that points with different colours are related to each other. In the
general case, this approach leads to sampling all k-nearest neigh-
bourhoods induced by every possible location in 2D space. When
grouping all 2D locations according to their k-nearest neighbour-
hoods, a partition of the 2D space into a finite number of (pos-
sibly unbounded) convex regions is obtained. These regions are
called Voronoi cells. A many-to-many correspondence between cells
and points is established by relating a cell to each of its k-nearest
points (see Figure 3c). The partition is called the k-order Voronoi

c© 2019 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

C. Reinbold et al. / Visualizing the Stability of 2D Point Sets 337

diagram of the given point set and extends the well-known (one-
order) Voronoi diagram.

Considering region-wise neighbourhoods provides several ben-
efits over the approach of only sampling neighbourhoods centred
around 2D points. Firstly, it does convey strictly more information
by construction since all 2D points may also be considered 2D lo-
cations. Secondly, it defines a meaningful spatial relationship by
relating two k-neighbourhoods iff their corresponding Voronoi cells
share a common facet. Adjacent neighbourhoods of 100% stability
are guaranteed to be located next to each other in every point set.
Finally, the computation of k-order Voronoi diagrams is tractable
for modest values of k, with run-time complexity O(k2n log n), and
yields O(kn) neighbourhoods [Lee82].

In our approach, k-order Voronoi diagrams are computed in
step (a) via the algorithm by Lee [Lee82]. It gradually generates
Voronoi diagrams of increasing order by cutting cells of the pre-
vious order k − 1. As the k − 1 nearest neighbours for a cell are
already known, the remaining k-th neighbour is computed by inter-
secting the cell with the one-order Voronoi diagram obtained when
discarding the k − 1 known neighbours. Then, the resulting cut-outs
with similar k-neighbourhoods are stitched together. It remains to
compute one-order Voronoi diagrams for which we use the Qhull
implementation [BDH96].

When computing smallest disks for k-neighbourhoods in a
Voronoi diagram, the iterative approach of Lee greatly increases
the performance. Each cut-out originates from a cell of order k − 1,
for which the smallest encompassing disk D of its neighbourhood
regarding a point set P has already been computed. If the added k-th
point, embedded in P , is also contained in D, the disk Dnew for all
k points is again D. If not, the point has to be located on the bound-
ary of Dnew. Since each circle is entirely defined by three points,
Dnew can be computed in O(1) whenever three or more cut-outs are
stitched together. When a k-order cell is generated by stitching two
cut-outs—less is not possible—a possibly existing third boundary
point has to be guessed in O(k). In practice, approximately every
second cell is stitched by three or more pieces.

4.2. Clustering stable subgroups of points

As can be seen in Figure 3(c), the interpretation of higher order
Voronoi diagrams is challenging. First of all, the size of a Voronoi
cell, in general, does not provide relevant information. In addi-
tion, since related cells and points may be distant from each other,
especially for high orders or areas with low point density, it be-
comes difficult to infer these relations. Finally, the fine granular cell
structures introduce visual clutter and even interfere with the basic
stability information to be conveyed (see Figure 1(a2)).

To ease the interpretation of k-order Voronoi diagrams, density-
aware clustering is used (step (d) in Figure 2). The approach builds
upon the observation that in k-order Voronoi diagrams, when their
cells are coloured according to the stability of neighbourhoods, re-
gions packed with stable, connected components are often separated
by instable bands. This property is seen in Figures 1(a), 2 and 13.

By means of clustering, these components are extracted and trans-
lated to subgroups of stable points. Hence, considerably larger stable

areas than k-neighbourhoods can be identified and put into relation
to each other. Two points are located in the same cluster if they are
part of the same stable submanifold, whereas a submanifold is con-
sidered stable if it occurs in most of the point sets of the ensemble.
The topological structure of the submanifold is outlined by ridges.

4.2.1. Clustering of Voronoi cells

From a k-order Voronoi diagram, enriched by stability information,
connected areas of locally high stability can be emphasized by
arranging the Voronoi cells in a hierarchical manner. For this, we
utilized concepts from persistent homology [EH08, EH10]. More
specifically, the function mapping Voronoi cells to their respective
stability values can be interpreted as a monotonic function defined on
a simplicial complex. Its merge tree yields the desired hierarchical
representation, and a persistence value attached to each node in the
tree is used to select the final clustering.

Let λ ∈ [0, 1] be an arbitrary threshold. For a selected λ, the
superlevel set L+(λ) is the set of all Voronoi cells with a stability
value greater or equal to λ. The superlevel set is composed of a set
of connected components Comp(λ). When λ is decreased towards 0,
these components merge until one connected component remains.
By relating a component to all components that have been merged to
form it, a tree with nodes

⋃
λ∈[0,1] Comp(λ) is generated that serves

the desired hierarchical representation. For instance, the Voronoi
diagram in Figure 5 yields the hierarchical representation that is
shown by the Dendrogram (1) in Figure 4.

In principle, and similar to some common clustering algorithms
like Agglomerative Hierarchical clustering and Density-based Spa-
tial Clustering of Applications with Noise (DBSCAN), a clustering
can be obtained from a certain level of the merge tree. If clusters are
extracted from the same level, however, prominent clusters at other
levels will be missed. This situation commonly occurs when one
cluster is located in a vastly stable region of the Voronoi diagram
(cluster in Figure 1c), and a rather unstable cluster is surrounded
by significantly less stable cells (cluster in Figure 1c).

0.4

0.2

0.6

0.8

1.0

0.0 1.0

0.2

0.8

0.6

0.4

0.0 (1) (2)

Figure 4: The cluster hierarchy for the Voronoi diagram in
Figure 5. Each box indicates a connected component with the width
encoding its significance. Horizontal lines signal merge events. By
distorting the stability threshold scale so that the timing scale be-
comes linear, the height of a box encodes the lifetime of a component
and its area corresponds to persistence. Dendrogram (2) displays
the simplified hierarchy. The framed clusters form the largest disjoint
component set regarding overall persistence. Box colours match the
components in Figure 5(a).

c© 2019 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

338 C. Reinbold et al. / Visualizing the Stability of 2D Point Sets

To avoid this limitation, we utilize the same concept as used in
the clustering technique Hierarchical Density-based Spatial Clus-
tering of Applications with Noise (HDBSCAN) [CMS13]. Instead
of taking clusters from the same level, HDBSCAN slices the merge
tree at different depths such that components which persist for an
extended duration before merging into another one are kept intact.
To detect persistent components, sufficiently small components and
their merge events are dropped beforehand.

When HDBSCAN is used in the current scenario, the size of
a component can be determined by the number of encompassed
Voronoi cells. However, since we ultimately aim for clustering
points but not Voronoi cells, we introduce a different notion of
size, called significance. The significance of a Voronoi cell roughly
represents by that cell (see Section 4.2.2). Then, the significance of
a connected component is the sum of significances of its encom-
passed Voronoi cells. The box width in Dendrogram (1) of Figure 4
encodes the significance of each component.

The modified HDBSCAN algorithm now works as follows:
Firstly, the hierarchical representation is simplified and made ro-
bust against noise by dropping connected components. In our
case, it is reasonable to drop all components with a significance
lower than the order k of neighbourhoods. This process results in
Dendrogram (2) in Figure 4. In a second step, a persistence term ϕC
is assigned to each connected component based on its significance
integrated over its lifetime � tC . In Figure 4, the area of each com-
ponent represents its persistence. The time t(λ) of a merge event is
derived from the value of λ when the event occurred. The negative
of the derivative −∂t(λ)/∂λ serves as an unnormalized weight dis-
tribution along the domain of λ, and the lifetime between t(λ2) and
t(λ1) reduces to integrating weights along [λ1, λ2] by

t(λ2) − t(λ1) =
∫ λ2

λ1

−∂t(λ)

∂λ
dλ.

We suggest to use t : λ �→ 1 − λ2 with the weight distribution
−∂t(λ)/∂λ ∝ λ to favour stable regions. In all our experiments,
this lead to the most plausible clustering results. Depending on the
application, the use of other weight distributions such as a con-
stant distribution—yielding t : λ �→ −λ—may be worth consider-
ing as well.

Finally, a set of disjoint connected components is selected such
that the sum of their persistence values becomes maximal. The se-
lected set represents the final clustering of the Voronoi cells, of
which—as in DBSCAN—some may not be covered and thus con-
sidered noise. In Figure 4, the selected components are framed by
dashes. As seen in Figure 5(a), the components do not cover the
unstable cells, thus letting the user instantly distinguish between
stable and unstable groups of points when they are overlaid.

4.2.2. Point clusters

To relate the Voronoi cell clusters to the initial point set, these clus-
ters are interpreted as fuzzy point clusters, and hard point clusters
are derived by a fix assignment of points to their most likely cluster.
Since an initial point can be part of many equally stable neighbour-
hoods, it contributes fractions to each cell C the point is related to.

Figure 5: Extracting point clusters from a three-order Voronoi di-
agram. (a) Connected components of Voronoi cells in the simplified
cluster hierarchy shown in Figure 4. (b) The contributions of the or-
ange point are indicated by overplotting the related cells with their
respective contribution values. (c) Contributions after concentra-
tion. (d, e) Pie charts illustrate proportions of a point’s contribution
to (d) the highlighted cell (orange) and all other cells (white), and (e)
fuzzy point clusters stemming from the framed Voronoi cell clusters
of Figure 4. White slices indicate contributions to cells considered
noise.

Fractions are chosen such that they are proportional to stab(C,E)
and add up to one. The contributions of an exemplary point are
visualized in Figure 5(b).

Compared to assigning the whole contribution of a point to a sin-
gle cell, however, this approach smooths out densities over adjacent
cells. As a consequence, it prevents HDBSCAN from identifying
meaningful clusters. To avoid this, we decided to let the contribu-
tions of a point p ‘flow’ upwards to adjacent, related cells with
higher stability until the whole contribution is concentrated in cells
with spatial-local maximal stability. Applying this process to the
situation in Figure 5(b) gives the concentrated contributions shown
in Figure 5(c).

A Voronoi cell can now be related to a fuzzy point cluster by
gathering the contributions from points contained in its k-nearest
neighbourhood. For a single cell, the sum of all contributions defines
its significance (see Figure 5d). Note that the contribution of the
highlighted point in Figure 5(c) to the marked cell in Figure 5(d)
is visualized in both figures. A Voronoi cell cluster may now be
interpreted as a fuzzy point cluster, by adding up all contributions
of the cells contained in the cluster. When applying the process to the
selected Voronoi cell clusters of Figure 4, the fuzzy point clustering
depicted in Figure 5(e) is obtained. Defuzzying yields the expected
clustering that separates points contributing to the upper and lower
Voronoi cells, respectively.

4.3. Visualizing stability in point sets

We propose an abstract visualization of k-order Voronoi diagrams
which refrains from the limitations of k-order Voronoi diagrams
mentioned in Section 4.2. In addition to showing the point set in a

c© 2019 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

C. Reinbold et al. / Visualizing the Stability of 2D Point Sets 339

scatterplot, points in different clusters as well as points deemed noise
are separated via ridges. The ridges are extracted by querying the
(regular) one-order Voronoi diagram. Here, each ridge is a boundary
between two adjacent cells, each containing a single point. If the
points fall into different clusters, the ridge is drawn. The ridge colour
is determined by the least stable cell that is touched when following
the line connecting both points in the original k-Voronoi diagram. It
encodes how strongly both clusters are separated. The background
colour of a cluster is defined by a weighted average of the stability
values of the cells assigned to the cluster, computed by

∑
C ωCstab(C,E)∑

C ωC
with ωC := σC · � tC,

where σC is the significance of cell C and � tC its lifetime in the
cluster. Thus, cells contributing most and for the longest time to the
cluster are emphasized.

The colourmap of choice originates from a subrange of the per-
ceptually uniform cmocean ice colourmap [TGH*16]. It emits a
pleasing light colour for highly robust regions while effectively re-
vealing small changes in robustness. Both factors are especially
important if most of the screen is filled with areas depicting high
robustness. The background of noise clusters is coloured in grey. It
can be clearly distinguishable from the chosen colourmap without
introducing any undesirable signaling effect. Points are coloured
according to cluster membership. Assigned colours have been care-
fully selected to be perceptually discriminative without conflicting
with the background.

4.4. Selection of representative point sets

Since a single plot for each ensemble member would overburden
the visualization, we guide the user’s selection process of viewing
certain point sets in step (f) by computing a pairwise similarity
matrix in step (e) of the pipeline. The pairwise similarity between
point sets P,Q ∈ E encodes how well the k-neighbourhoods arising
in Q are preserved in the point set P . It is computed by using the
stability measure stab(V, P) proposed in Section 4. The stability
values of all neighbourhoods V occurring in the k-order Voronoi
diagram of Q are averaged.

Since the k-order Voronoi diagrams of P and Q contain different
neighbourhoods, interchanging the roles of P and Q changes the re-
sult. This makes the measure non-symmetric. It is also not reflexive
in situations as in Figure 3(a), where the centre of the smallest disk
encompassing a k-neighbourhood V is not located in the k-order
Voronoi cell associated to N . When comparing the point set with
itself, its three-order Voronoi diagram contains the orange coloured
cell. It relates to the neighbourhood formed by the orange points
with its stability given by 3/5 (see Section 4). Thus, the average of
stability values over all cells is strictly lower than one. However, in
all of our experiments, strong symmetry and a sharp diagonal in the
similarity matrices are observed (see, for instance, Figure 6).

To extract clusters of similar point sets in the ensemble E , matrix
seriation [BBHR*16] is used to sort columns and rows such that
hidden patterns become apparent. We utilize the two rank ellipse
seriation of Chen [Che02] for identifying blocks of point sets, as

(a) (b)

Figure 6: Non-symmetrized similarity matrices for the 100 projec-
tions (a) of the Cloud dataset, ordered according to their PageRank
scores, and (b) of the MNIST dataset, ordered by the rank-2 ellipse
seriation technique of Chen [Che02]. For MNIST, our measure sug-
gests to form two groups of similar projections.

shown in Figure 6(b). When the blocks are identified, for each
block, a representative is picked that is determined by the highest
score when applying the PageRank algorithm [BP98].

5. Results and Evaluation

We now analyse the stability of k-neighbourhoods in ensembles
of 2D point sets that are generated via dimensionality reduction
techniques from high-dimensional data points. To generate the ro-
bustness plots, DBSCAN and k-means are used for clustering. Per-
formance measurements are performed on a standard desktop PC,
equipped with an Xeon CPU E5-1650 v2 with 6 cores @ 3.50GHz,
32 GB RAM, and an NVIDIA GeForce GTX 1070 Ti graphics card
with 8 GB VRAM.

The following datasets are used:� MNIST: A subset of the MNIST dataset [LBBH98]. It is com-
posed of 1k 196-dimensional points, each representing the 196
activations in the second layer of a convolutional network that
was trained to classify input images to digits 0–9. Since all digits
occur equally often in the 1k inputs, 10 equally large clusters can
be expected.� Cloud: A 3D multi-parameter cloud simulation [WBJ*18].
The dataset contains roughly 11k points, each representing a
12-dimensional vector showing physical parameters such as ice,
graupel and water contents at different locations in the 3D simula-
tion domain. It is unknown whether the dataset contains clusters.� Gaussian: A synthetic dataset, generated by sampling a mixture
of eight isolated multi-variate Gaussian distributions in 3D space
with random covariance matrices. The dataset contains 1k points
equally spread over all distributions.

For each dataset, an ensemble of 2D points is created via MDS
or Barnes-Hut t-SNE [VDM14] with randomly generated initial
point positions. One hundred different random initializations are
used to represent the ensemble variability. For a certain dataset, this
number can be adapted by generating new random initializations
until the average of the pairwise distances introduced in Section 4.4
falls below a threshold. The size k of the neighbourhoods we aim

c© 2019 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

340 C. Reinbold et al. / Visualizing the Stability of 2D Point Sets

Figure 7: Performance measurements of our pipeline for computing
a robustness plot in a single thread.

to analyse is set to 10, independently of the dataset. Due to space
restrictions, we analyse only the overall best ranked projection of
each dataset and do not consider other representations of, e.g. the
MNIST dataset projected with MDS.

The times required to generate the Voronoi plots using a single
thread on our target architecture are given in Figure 7. The approach
scales approximately linearly, only degraded by the quadratic run-
time behaviour of naively computing the smallest disk enclosing
for a certain neighbourhood. By employing a hierarchical acceler-
ation structure, the complexity of neighbour identification can be
decreased to O(n log n). For computing the pairwise similarity ma-
trix, all stages listed in Figure 7, except for the clustering stage, are
required. They can be executed for all projections in parallel.

5.1. Choice of k

The parameter k controls the locality of our proposed method. By
construction, our approach cannot detect stable subsets of maximal
size < k since each k-neighbourhood containing a stable subset
of smaller size also contains some unstable points enforcing low
stability values. On the other hand, as we assemble stable regions by
collecting circular shaped neighbourhoods, all detected regions have
to covered by disks not containing instable points. If the parameter
k, and thus the disks, become too large, stable regions of intricate
shape may not be detected anymore. For this reason, we favour a
small value for k in our experiments.

To detect a stable group of points, our approach requires this
group to be locally stable as well, i.e. its k-neighbourhoods must
be stable over the entire ensemble. For instance, by increasing k

from 10 to 60 in the example shown in Figure 8(a), the points are
bisected into two stable regions (light background). For k = 10,

(a1) (a2) (b1) (b2)

Figure 8: Voronoi plots of two small-scale datasets (100 points)
with (x1) k = 10 and (x2) k = 60.

this information is lost. Instead, the background reveals the stability
of smaller subgroups. If no large stable subgroup exists, such as
in Figure 8(b), increasing k smooths out the patterns arising for
smaller k. Animations with k ranging from 2 to 100 are provided in
the Supporting Information.

We suggest to inspect several point sets of the ensemble E to
determine a reasonable value of k. By covering prominent structures
with sufficiently small disks, one can compute the average amount
of points covered per disk and choose this value as an initial guess
for k. Due to the iterative nature of our approach, k may be lowered
without costly re-computations. In practice, the magnitude of k is
limited by the quadratic complexity in k of computing Voronoi
diagrams (see Section 4.1).

5.2. Cluster variability plots

In recent work by Kumpf et al. [KTB*18], a method for analysing
the variation in composition of clusters over multiple clusterings
and the variability in cluster membership for individual ensemble
members was introduced. The method takes a set of ensembles,
each composed of a number of high-dimensional data vectors, and
then clusters these data points separately for each ensemble. The
method assumes that the number of clusters is known, and a ref-
erence clustering exists to which all clusters can be matched. Via
pie glyphs, the method encodes for each data point the frequency
of cluster membership over the set of clusterings (see Figures 10a,b
and 11b). Stable clusters are indicated by groups of glyphs coloured
predominantly with the same colour, with no or only a small num-
ber of pieces with different colours. Highly fragmented pie glyphs
indicate frequent changes in cluster assignments over the ensemble,
hinting to instable groups. By picking a glyph, all data points with
similar cluster membership over all clusterings can be highlighted.

Since the method strongly relies on the clustering results, includ-
ing the selected number of clusters and clustering algorithm, it can
obscure the relationships between data points. This is demonstrated
in Figure 9, where each member of an ensemble of three 1D point
sets including eight elements is clustered via k-means. Even though
the ensemble members are only slightly jittered without chang-
ing the neighbourhood relationships, the clustering algorithm—
depending on the point positions as well as a random initial po-
sitions of centroids—groups different sub-sets together. Hence, the
visualization using pie charts (bottom row in Figure 9) exhibits a
transitioning artefact. It suggests that both clusters are connected in
most ensemble members, and thus, form a single, connected cluster
in the ensemble. In the following experiments, we demonstrate the

Figure 9: Top rows: Three 1D point sets, each split by k-means into
two clusters. Bottom row: the resulting pie glyphs of the method of
Kumpf et al. [KTB*18].

c© 2019 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

C. Reinbold et al. / Visualizing the Stability of 2D Point Sets 341

Figure 10: (a, b) Member-centric cluster variability plots [KTB*18] and (c) the robustness plot (Figure 1(b) without points) of the Cloud
dataset projected with t-SNE. Clusters are formed by either (a) DBSCAN or (b) k-means. Regions of special interest are highlighted.

different strengths and weaknesses of the method by Kumpf et al.
in comparison to Voronoi plots. We will also show that both visual-
izations can be combined effectively, the Voronoi plot makes use of
the visual background channel not occupied by Kumpf et al.

5.3. Cloud dataset

The robustness of t-SNE to variations in its input configurations
is analysed in the following. For the Cloud dataset, the pair-
wise similarity matrix renders all projections equally similar (see
Figure 6a). Thus, a single representative projection is selected via
the PageRank algorithm (see Section 4.4). Corresponding Voronoi
and robustness plots are displayed in Figures 1(a) and (b). The visu-
alizations show that t-SNE is largely robust, and only a few scattered
outliers are produced. As seen in the region dominated by points
in Figure 1, some clusters can be deemed adjacent in many projec-
tions since no ridges form. Conversely, a cluster enclosed by dark
ridges (in Figure 1) is not considered adjacent to its currently
depicted neighbouring clusters in many projections.

To compare Voronoi plots to the pie glyphs by Kumpf et al., we
use their method in combination with the DBSCAN clustering algo-
rithm. The use of DBSCAN is motivated by the band structures in
the projections, from which the existence of manifold structures in
the original data can be concluded. Although the clusterings of in-
dividual projections look meaningful, it is difficult to relate them to
each other over multiple projections. Due to different linkage thresh-
olds in each projection, vastly different split and merge events occur,
and the number of computed clusters varies. This makes it impos-
sible to compute meaningful matchings between different cluster-
ings. As a consequence, many pie glyphs are highly fragmented (in
Figure 10a). Over that, transitioning artefacts, as seen in region (1)
and discussed in Section 5.2, are introduced and need to be resolved.

Voronoi plots, on the other hand, do not suffer from these
deficiencies, as they do not rely on separate clusterings for each
projection. In Figure 10(c), areas of high stability are reliable deter-
mined. Two dominant cluster colours are observed in region (2) of
Figure 10(a), yet the robustness plot (Figure 10c) does not show
a ridge between them. When analysing projections manually, one

sees that both clusters indeed are located next to each other in all
projections, confirming the lack of a ridge in the robustness plot. In
comparison, pie glyphs show multiple dominant colours, but not a
smooth transition between them. Hence, spatial proximity cannot be
concluded solely from the pie glyphs. DBSCAN fails to reliably ex-
tract this information, since both groups of points are often separated
by a small area of zero density. The same mismatch holds true for
region (3).

The result when using k-means with 16 clusters instead of DB-
SCAN is shown in Figure 10(b). Region (4) now splits into four
clusters, which can only be joined manually by following smooth
transitions. Transitions, on the other hand, can be misleading. For
instance, one could assume a transition between colours and in
region (5). When analysing the projections in combination with the
robustness plot, it turns out that points being mainly dark blue move
independently of the rose ones. Furthermore, region (6) is perceived
as highly instable. Yet, besides being broken apart into two or three
components from time to time, the components themselves are iso-
lated and stable when browsing the ensemble of projections. Thus,

Figure 11: (a) Excerpt of the best ranked MNIST t-SNE-projection
underlaid with its robustness plot. Points are rendered as (a1) pie
glyphs or (a2) their corresponding MNIST digit representation. (b)
Member-centric cluster variability plot [KTB*18] of the best ranked
MNIST MDS-projection together with the Voronoi background of
Figure 1(c). Regions of special interest are highlighted.

c© 2019 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

342 C. Reinbold et al. / Visualizing the Stability of 2D Point Sets

(a) (b) (c) (d)

Figure 12: Resulting Voronoi and robustness plots for the best ranked Cloud projection with each point perturbed by up to (a) 0.15, (b) 0.2,
(c) 0.5 and (d) 2.0 in each direction.

the robustness plot correctly classifies this region as a slightly less
stable and strongly isolated cluster. The robustness plot also cap-
tures the proximity of the crescents in region (7), and it reveals that
they are always placed next to points of region (8) with only a small
strip of empty space between them. Pie glyphs fail to communicate
this relation.

5.4. MNIST dataset

The assumption of 10 clusters in the MNIST dataset—one for each
digit 0 to 9—suggests using the method by Kumpf et al. [KTB*18]
to analyse the stability of these clusters. In our implementation, we
use k-means for clustering the initial 2D point sets.

In particular, it can be seen that the method of Kumpf et al. fails
to reveal certain anomalies, i.e. small inter-cluster details. The pie
glyphs in Figure 11(a1) suggest a strongly stable cluster. The robust-
ness plot in the background, on the other hand, shows a separating
ridge of medium stability. When plotting the input digits corre-
sponding to each data point (see Figure 11a2), we observe that the
robustness plot separates the hand-written digit 2 with and without
loops. By following the cluster over the ensemble, we discover that
the cluster of digit 2, in fact, consists of two adjacent sub-clusters
warping independently of each other.

From the structure and colouring of the pie glyphs in Figure 11(b),
stable and instable regions, outliers as well as transitions between
clusters can be concluded. For the MNIST dataset, the Voronoi plot
in the background conveys mostly similar information (Figure 1c
shows the Voronoi plot and derived groups of stable points). How-
ever, Voronoi plots, in this case, are not effective in relating distant
points to each other. Although we point out instable neighbourhoods
in regions (1) and (2), only due to the pie glyphs, one can detect that
both regions regularly exchange some points.

5.5. Gaussian dataset

For the Gaussian dataset, the plot in Figure 13 reveals all isolated
Gaussians. In particular, the following well-known properties of
t-SNE can be observed. Firstly, t-SNE tries to preserve neighbour-
hoods so that points of the same isolated Gaussian are always clus-
tered together. Highly stable regions around each Gaussian confirm
this assumption. Secondly, the arrangement of the eight clusters is

random since no neighbourhood considered by t-SNE touches two
Gaussians simultaneously. The plot reveals this instability by dark
ridges separating the Gaussians.

5.6. Sensitivity of k-order Voronoi diagrams

To investigate the sensitivity of Voronoi plots to small pertur-
bations in the reference point set, the following experiments
are performed: Each point is jittered from its 2D location
by an offset uniformly sampled from [−x, x]2. x is increased
continually from one experiment to the next. We choose x ∈
{0.01, 0.02, 0.05, 0.1, 0.12, 0.15, 0.2, 0.5, 1.0, 2.0}, with 0.12 be-
ing the average nearest neighbour distance of all selected projec-
tions. Only the transitions with the most significant changes are
shown in Figure 12. The unperturbed plots are shown in Figures 1(a)
and (b).

Up to a box radius of x = 0.2, one can hardly perceive any differ-
ence in the coloured k-order Voronoi diagrams, although already for
x = 0.1, over 50% of all Voronoi cells in the unperturbed diagram
are lost. For values x > 0.2, the stability values start to degrade
notably. Note that even for x = 2.0, the Voronoi plot still shows
the same ridge structures. When inspecting the robustness plots,
significant changes cannot be observed up to x = 0.15. Starting at
x = 0.2, the clustering approach starts to fragment the previously
generated clusters. We attribute this behaviour to the use of a weight

Figure 13: Split showing the Voronoi and robustness plots for the
best Page-ranked t-SNE-projection of the Gaussian dataset. The
point colours encode the eight isolated Gaussians in the dataset.

c© 2019 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

C. Reinbold et al. / Visualizing the Stability of 2D Point Sets 343

(a) (b) (c) (d)

Figure 14: Voronoi plots with point colours according to the clusters found in the best Page-ranked projection of the according Dataset.
(a) The best ranked and (b) a randomly picked Cloud projection. (c) Random MNIST MDS-projections of the larger group of similar projections
in Figures 6(b) and (d) smaller group, respectively.

distribution favouring high stability in Section 4.2.1. While numer-
ous small, highly persistent components are maintained, the overall
persistence of larger components degrades. As soon as the persis-
tence of a larger component drops below the accumulated persis-
tence of its subcomponents, it fractures. This effect can be counter-
acted in principle, by either exchanging the weight distribution or
by raising the significance threshold when simplifying the compo-
nent hierarchy.

Since we do not think that inspecting globally instable projections
is particularly meaningful, we adhere to the suggested weight dis-
tribution and keep the significance threshold as low as reasonable.
Overall, we conclude that the proposed method is robust to noise of
a magnitude similar to the average nearest neighbour distance. Thus,
adjacent points may flip positions without significant changes.

5.7. Verifying representative projections

We further evaluate how well the selected representative projection
emphasizes the major trends in the data. Therefore, different projec-
tions are compared by mapping point colours in a random projection
to the clustering of similar k-neighbourhoods obtained from the best
ranked projection. The results are shown in Figure 14.

Notably, the representative projection of the Cloud dataset seen
in Figure 14(a) as well as the randomly selected projection in
Figure 14(b) both show similar structures. For instance, the two
dominating clusters , various smaller bands, as well as a joint
connecting an identical subset of bands exist in both projections.
Furthermore, clusters are not intermingled. This is in accordance
with the pairwise similarity matrix in Figure 6(a), which suggests
that each projection represents the ensemble fairly well.

Nonetheless, t-SNE breaks some bands differently in every pro-
jection. When viewing only the projection in Figure 14(a), the con-
nectivity of separated bands cannot be recovered since neighbour-
hoods of distant points are not considered. For instance, it cannot
be recovered that clusters as well as are connected in
most projections. If the projection in Figure 14(b) is chosen as the
representative, other connections get lost, such as these of cluster .
When using the computed clusterings for each projection—obtained
as in Section 4.2—as input for the method of Kumpf et al., some

of the missing links can be exposed by querying for cluster-robust
subsets as seen in Figure 1(a1). Here, the point marked with a cross
is queried for all points being located in the same cluster for at least
70% of all projections. All highlighted points are covered by the
two red lenses. As a result, the connection between and can
be identified.

Next, the same analysis is run for the MNIST dataset projected
with MDS. It provides two blocks of projections, as shown in
Figure 6(b). By applying the PageRank algorithm, a represen-
tative for the larger block is obtained (see Figure 1c), which
is compared to a randomly selected projection of each block.
Figure 14(c) clearly shows that the projection selected from the
larger block is a rotated version of the representative, while many
clusters are intermingled when viewing the projection of the smaller
block shown in Figure 14(d). We make this observation for all pro-
jections we randomly sampled from both blocks, indicating that
the selected representative indeed represents the larger block of the
dataset.

6. Conclusion and Future Work

We have proposed a new approach for visualizing the stability of
k-neighbourhoods in ensembles of 2D point sets. We have demon-
strated the use of this approach for identifying coherent subgroups
of points over many ensemble members, and thus, assessing the ro-
bustness of dimensionality reduction techniques. For this purpose,
we have introduced a novel stability measure for k-order Voronoi
diagrams, and we have used this measure to determine stable neigh-
bourhoods over many point sets. The similarity measure has also
been applied to determine a subset of representative ensemble mem-
bers using matrix seriation techniques as well as the PageRank al-
gorithm. In comparison to the cluster-driven analysis of point sets,
the proposed approach does not rely on the choice of an interme-
diate clustering and succeeds in detecting inter-cluster details and
intra-cluster relationships.

In a number of examples, we have shown that the proposed
approach gives interesting insights into the behaviour of
dimensionality reduction techniques. Besides quantifying the
sensitivity of techniques to variations in their initial parametriza-
tions, certain characteristics of the used techniques could be

c© 2019 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

344 C. Reinbold et al. / Visualizing the Stability of 2D Point Sets

revealed. Furthermore, the proposed approach has revealed struc-
tures in datasets that were previously unknown.

In future work, we will address the following issues: Firstly, we
will investigate whether the proposed similarity measure can be used
to progressively find the most representative ensemble members,
without the need to compute many of them in advance. Secondly,
we will examine performance improvements to enable interactive
insertion and re-positioning of points. In this way, we hope to gain
further inside into the particular strengths and weaknesses of dimen-
sionality reduction techniques, and eventually provide data-specific
guidelines for their use. Lastly, we intend to apply the proposed
technique in other fields such as crowd analysis and fluid dynam-
ics. We see in particular the application to particle sets which are
seeded in a certain region, to determine subgroups that remain stably
together during particle integration.

Acknowledgements

The research leading to these results has been done within the
subprojects B5 ‘Data-driven ensemble visualization’ of the Tran-
sregional Collaborative Research Center SFB/TRR 165 ‘Waves to
Weather’ funded by the German Research Foundation (DFG). We
thank all the reviewers for their constructive criticism and valu-
able comments.

Open access funding enabled and organized by Projekt DEAL.
[Correction added on 26 October 2020, after first online publication:
Projekt Deal funding statement has been added.]

References

[ASE16] ATHAWALE T., SAKHAEE E., ENTEZARI A.: Isosurface vi-
sualization of data with nonparametric models for uncertainty.
IEEE Transactions on Visualization and Computer Graphics 22,
1 (January 2016), 777–786.

[Aup07] AUPETIT M.: Visualizing distortions and recovering topol-
ogy in continuous projection techniques. Neurocomputing 70, 7
(2007), 1304–1330. Advances in Computational Intelligence and
Learning.

[BBHR*16] BEHRISCH M., BACH B., HENRY RICHE N., SCHRECK T.,
FEKETE J.-D.: Matrix reordering methods for table and network
visualization. Computer Graphics Forum 35, 3 (2016), 693–716.

[BD05] BALZER M., DEUSSEN O.: Voronoi treemaps. In IEEE Sym-
posium on Information Visualization, 2005 (INFOVIS 2005) (Oc-
tober 2005), pp. 49–56.

[BDH96] BARBER C. B., DOBKIN D. P., HUHDANPAA H.: The quickhull
algorithm for convex hulls. ACM Transactions on Mathematical
Software 22, 4 (1996), 469–483.

[BM10] BRUCKNER S., MOLLER T.: Result-driven exploration of sim-
ulation parameter spaces for visual effects design. IEEE Trans-
actions on Visualization and Computer Graphics 16, 6 (2010),
1468–1476.

[BP98] BRIN S., PAGE L.: The anatomy of a large-scale hypertextual
web search engine. Computer Networks and ISDN Systems 30, 1

(1998), 107–117. Proceedings of the Seventh International World
Wide Web Conference.

[BvLBS11] BREMM S., VON LANDESBERGER T., BERNARD J., SCHRECK

T.: Assisted descriptor selection based on visual comparative data
analysis. Computer Graphics Forum 30, 3 (2011), 891–900.

[CC00] COX T. F., COX M. A.: Multidimensional Scaling. Chapman
and Hall/CRC, London, 2000.

[Che02] CHEN C.-H.: Generalized association plots: Information
visualization via iteratively generated correlation matrices. Sta-
tistica Sinica 12, 1 (2002), 7–29.

[CMS13] CAMPELLO R. J. G. B., MOULAVI D., SANDER J.:
Density-based clustering based on hierarchical density esti-
mates. In Advances in Knowledge Discovery and Data Min-
ing (Berlin, Heidelberg, 2013), J. PEI, V. S. TSENG, L. CAO,
H. MOTODA and G. XU (Eds.), Springer, Berlin, Heidelberg,
pp. 160–172.

[DJW16] DEMIR I., JAREMA M., WESTERMANN R.: Visualizing the
central tendency of ensembles of shapes. In SIGGRAPH ASIA
2016 Symposium on Visualization (2016), ACM.

[EH08] EDELSBRUNNER H., HARER J.: Persistent homology — A
survey. Contemporary Mathematics 453 (2008), 257–282.

[EH10] EDELSBRUNNER H., HARER J.: Computational Topology: An
Introduction. American Mathematical Society, Providence, RI,
2010.

[ELLS11] EVERITT B. S., LANDAU S., LEESE M., STAHL D.: Cluster
Analysis. John Wiley & Sons, Ltd, West Sussex, 2011.

[FBW16] FERSTL F., BÜRGER K., WESTERMANN R.: Streamline vari-
ability plots for characterizing the uncertainty in vector field
ensembles. IEEE Transactions on Visualization and Computer
Graphics 22, 1 (January 2016), 767–776.

[FFST19] FAVELIER G., FARAJ N., SUMMA B., TIERNY J.: Persistence
atlas for critical point variability in ensembles. IEEE Transactions
on Visualization and Computer Graphics 25, 1 (January 2019),
1152–1162.

[FKRW16] FERSTL F., KANZLER M., RAUTENHAUS M., WESTERMANN

R.: Visual analysis of spatial variability and global correlations
in ensembles of Iso-Contours. Computer Graphics Forum 35, 3
(2016).

[FT74] FRIEDMAN J. H., TUKEY J. W.: A projection pursuit algorithm
for exploratory data analysis. IEEE Transactions on Computers
C-23, 9 (September 1974), 881–890.

[HA85] HUBERT L., ARABIE P.: Comparing partitions. Journal of
classification 2, 1 (1985), 193–218.

[HOGJ13] HUMMEL M., OBERMAIER H., GARTH C., JOY K.: Compar-
ative visual analysis of Lagrangian transport in CFD ensembles.
IEEE Transactions on Visualization and Computer Graphics 19,
12 (December 2013), 2743–2752.

c© 2019 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

C. Reinbold et al. / Visualizing the Stability of 2D Point Sets 345

[JDKW15] JAREMA M., DEMIR I., KEHRER J., WESTERMANN R.: Com-
parative visual analysis of vector field ensembles. In 2015 IEEE
Conference on Visual Analytics Science and Technology (VAST)
(October 2015), pp. 81–88.

[JHB*17] JÄCKLE D., HUND M., BEHRISCH M., KEIM D. A., SCHRECK

T.: Pattern trails : Visual analysis of pattern transitions in sub-
spaces. In IEEE Conference on Visual Analytics Science and
Technology (VAST) (2017).

[KH13] KEHRER J., HAUSER H.: Visualization and visual analysis
of multifaceted scientific data: A survey. IEEE Transactions on
Visualization and Computer Graphics 19, 3 (March 2013), 495–
513.

[KTB*18] KUMPF A., TOST B., BAUMGART M., RIEMER M., WESTER-
MANN R., RAUTENHAUS M.: Visualizing confidence in cluster-based
ensemble weather forecast analyses. IEEE Transactions on Visu-
alization and Computer Graphics 24, 1 (2018), 109–119.

[KW78] KRUSKAL J. B., WISH M.: Multidimensional Scaling. Num-
ber 07–011 in Sage University Paper series on quantitative appli-
cations in the social sciences. Sage Publications, Beverly Hills,
1978.

[LA11] LESPINATS S., AUPETIT M.: Checkviz: Sanity check and
topological clues for linear and non-linear mappings. Computer
Graphics Forum 30, 1 (2011), 113–125.

[LBBH98] LECUN Y., BOTTOU L., BENGIO Y., HAFFNER P.: Gradient-
based learning applied to document recognition. Proceedings of
the IEEE 86, 11 (November 1998), 2278–2324.

[Lee82] LEE D.-T.: On k-nearest neighbor Voronoi diagrams in the
plane. IEEE Transactions on Computers C-31, 6 (June 1982),
478–487.

[LMW*16] LIU S., MALJOVEC D., WANG B., BREMER P.-T., PAS-
CUCCI V.: Visualizing high-dimensional data: Advances in the
past decade. IEEE Transactions on Visualization and Computer
Graphics 23, 3 (2017), 1249–1268.

[LPK05] LOVE A. L., PANG A., KAO D. L.: Visualizing spatial
multivalue data. IEEE Computer Graphics and Applications 25,
3 (May 2005), 69–79.

[LSP*10] LEX A., STREIT M., PARTL C., KASHOFER K., SCHMALSTIEG

D.: Comparative analysis of multidimensional, quantitative data.
IEEE Transactions on Visualization and Computer Graphics 16,
6 (November 2010), 1027–1035.

[LT16] LEHMANN D. J., THEISEL H.: Optimal sets of projections of
high-dimensional data. IEEE Transactions on Visualization &
Computer Graphics 22, 1 (January 2016), 609–618.

[MWK14] MIRZARGAR M., WHITAKER R., KIRBY R. M.: Curve box-
plot: Generalization of boxplot for ensembles of curves. IEEE
Transactions on Visualization and Computer Graphics 20, 12
(2014), 2654–2663.

[NSB04] NOCKE T., SCHUMANN H., BÖHM U.: Methods for the visu-
alization of clustered climate data. Computational Statistics 19,
1 (February 2004), 75–94.

[OLK*14] OELTZE S., LEHMANN D. J., KUHN A., JANIGA G., THEISEL

H., PREIM B.: Blood flow clustering and applications in virtual
stenting of intracranial aneurysms. IEEE Transactions on Visu-
alization and Computer Graphics 20, 5 (2014), 686–701.

[PFMA06] PINHO R., FERREIRA DE OLIVEIRA M. C., MINGHIM R.,
ANDRADE M. G.: Voromap: A voronoi-based tool for visual
exploration of multi-dimensional data. In 10th International
Conference on Information Visualisation (IV’06) (July 2006),
pp. 39–44.

[PH13] PÖTHKOW K., HEGE H.-C.: Nonparametric models for un-
certainty visualization. Computer Graphics Forum 32, 3 (2013),
131–140.

[PWB*09] POTTER K., WILSON A., BREMER P.-T., WILLIAMS D.,
DOUTRIAUX C., PASCUCCI V., JOHNSON C. R.: Ensemble-Vis: A
framework for the statistical visualization of ensemble data. In
Proceedings of the IEEE International Conference on Data Min-
ing Workshops (2009), pp. 233–240.

[SG02] STREHL A., GHOSH J.: Cluster ensembles—A knowledge
reuse framework for combining multiple partitions. Journal of
Machine Learning Research 3 (December 2002), 583–617.

[SVM14] SORZANO C. O. S., VARGAS J., MONTANO A. P.: A
survey of dimensionality reduction techniques. arXiv preprint
arXiv:1403.2877, 2014.

[SZD*10] SANYAL J., ZHANG S., DYER J., MERCER A., AMBURN P.,
MOORHEAD R. J.: Noodles: A tool for visualization of numeri-
cal weather model ensemble uncertainty. IEEE Transactions on
Visualization and Computer Graphics 16 (2010), 1421–1430.

[TGH*16] THYNG K. M., GREENE C. A., HETLAND R. D., ZIM-
MERLE H. M., DIMARCO S. F.: True colors of oceanogra-
phy: Guidelines for effective and accurate colormap selection.
Oceanography 29 (September 2016). https://doi.org/10.5670/
oceanog.2016.66.

[TN14] THOMAS D. M., NATARAJAN V.: Multiscale symmetry detec-
tion in scalar fields by clustering contours. IEEE Transactions on
Visualization and Computer Graphics 20, 12 (2014), 2427–2436.

[VDM14] VAN DER MAATEN L.: Accelerating t-sne using tree-based
algorithms. The Journal of Machine Learning Research 15, 1
(2014), 3221–3245.

[vH08] VAN DER MAATEN L., HINTON G.: Visualizing high-dimens
ional data using t-sne. Journal of Machine Learning Research 9
(November 2008), 2579–2605.

[WBJ*18] WELLMANN C., BARRETT A. I., JOHNSON J. S., KUNZ M.,
VOGEL B., CARSLAW K. S., HOOSE C.: Using emulators to un-
derstand the sensitivity of deep convective clouds and hail to

c© 2019 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

346 C. Reinbold et al. / Visualizing the Stability of 2D Point Sets

environmental conditions. Journal of Advances in Model-
ing Earth Systems 10 (2018). https://doi.org/10.1029/2018MS
001465.

[WCR*17] WENSKOVITCH J., CRANDELL I., RAMAKRISHNAN N., HOUSE

L., LEMAN S., NORTH C.: Towards a systematic combination of
dimension reduction and clustering in visual analytics. IEEE
Transactions on Visualization and Computer Graphics 24 (2018),
131–141.

[WHLS18] WANG J., HAZARIKA S., LI C., SHEN H.: Visualization and
visual analysis of ensemble data: A survey. IEEE Transactions
on Visualization and Computer Graphics 25 (2019), 2853–2872.

[Wil11] WILKS D. S.: Statistical Methods in the Atmospheric Sci-
ences. Academic Press, Waltham, MA, 2011.

[WMK13] WHITAKER R. T., MIRZARGAR M., KIRBY R. M.: Contour
boxplots: A method for characterizing uncertainty in feature sets
from simulation ensembles. IEEE Transactions on Visualization
and Computer Graphics 19, 12 (2013), 2713–2722.

Supporting Information

Additional supporting information may be found online in the Sup-
porting Information section at the end of the article.

Video of varying k - Example a

Video of varying k - Example b

c© 2019 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

EUROGRAPHICS 2022/ N. Pelechano and D. Vanderhaeghe Short Paper

Learning Generic Local Shape Properties
for Adaptive Super-Sampling

Christian Reinbold and Rüdiger Westermann

Computer Graphics & Visualization Group, Technische Universität München, Garching, Germany

Abstract
We propose a novel encoder/decoder-based neural network architecture that learns view-dependent shape and appearance
of geometry represented by voxel representations. Since the network is trained on local geometry patches, it generalizes to
arbitrary models. A geometry model is first encoded into a sparse voxel octree of features learned by a network, and this model
representation can then be decoded by another network in-turn for the intended task. We utilize the network for adaptive super-
sampling in ray-tracing, to predict super-sampling patterns when seeing coarse-scale geometry. We discuss and evaluate the
proposed network design, and demonstrate that the decoder network is compact and can be integrated seamlessly into on-chip
ray-tracing kernels. We compare the results to previous screen-space super-sampling strategies as well as non-network-based
world-space approaches.

1. Introduction

Scene representation networks (SRNs) have gained popularity for
single-and multi-view object reconstruction [LGZL∗20, MST∗20,
NMOG20, PFS∗19, SZW19, YKM∗20] and realtime rendering
[GKJ∗21, TLY∗21]. SRNs represent models by features that are
learnt by a network, so called latent codes. They can be accessed
at arbitrary positions to obtain model-specific information such as
shortest distance to the model or color. The networks overfit to the
model they are trained for and do not generalize to other models.
For shape reconstruction from 3D point clouds, Jiang et al. address
this limitation by encoding implicit functions of local geometry
patches in low dimensional latent codes, and optimizing for those
during reconstruction [JSM∗20]. Similarly, local geometric detail
can be encoded in 3D style codes and transferred to coarse geo-
metric representations for geometry upscaling [CKF∗21], and to
implement data-driven mesh subdivision [LKC∗20].

We extend on current SRNs as follows: We present a novel en-
coder/decoder-based network architecture, called PatchNet, which
learns generic local properties of geometric shapes on different lev-
els of details (LoDs). The architecture generalizes to new models
by learning a view-dependent encoding of local geometry patches,
so that at a coarse scale the network can predict the appearance
of geometric details. The learned feature representations are orga-
nized in a hierarchical LoD data structure to support coarse to fine
look-ahead at various scales.

We utilize the aforementioned capabilities in ray-tracing, to
predict super-sampling patterns when seeing coarse-scale geome-
try. Therefore, we ray-trace against a Sparse Voxel Octree (SVO)
[LK11], where each node represents a voxel that intersects the ge-

ometry and stores averaged luminance LV and normal NV over the
intersected surface. For each pixel, a ray is intersected with the
SVO by traversing it in top-down manner until the projected voxel
size is approximately equal to the pixel size. Then, the pixel appear-
ance can be estimated by LV at the intersected voxel. If the local
geometry shows self-occlusions for the current view, or projects
only to a sub-pixel area, LV is likely to be a bad approximation.
Super-sampling patterns attempt to identify this case and compute
improved estimates by tracing several rays for each critical pixel.

We compare our approach to a non-network-based world-space
approach as well as classical [LRU85, Mit87, RFS03a, RFS03b,
XSXZ07] and network-based [KKR18, WITW20] screen-space
super-sampling strategies. Conceptually, screen-space approaches
refine a pixel whenever its neighboring pixels show significant vari-
ation in appearance. They fail if neighboring pixels show similar,
yet consistently wrong appearances. For instance, this effect occurs
at fence-like structures where the gaps between laths are not pre-
served at coarser scales.

2. Method

We propose a world-space approach that uses a view-dependent
per-ray oracle function f : (P,θ) 7→ (σgt,Lgt) to detect pixels that
need refinement. Its input is a local geometry patch P(M, p) of
M close to the intersection point p between the ray and the SVO,
as well as additional rendering parameters θ. P is projected into
the current pixel according to θ, and the oracle returns the fraction
σgt ∈ [0,1] of the pixel covered by the projection ofP as well as the
average seen luminance Lgt ∈ [0,1]. If σgt≪ 1 or |Lgt−LV | ≫ 0,
the current pixel has to be refined to obtain an accurate pixel ap-

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

DOI: 10.2312/egs.20221032 https://diglib.eg.orghttps://www.eg.org

Appeared in Eurographics 2022 - Short Papers.

© 2022 The Author(s). Eurographics Proceedings © 2022 The Eurographics Association.

This record was published online in this final form at https://diglib.eg.org:443/handle/10.2312/egs20221032. DOI: 10.2312/egs.20221032

© 2022 The Author(s). Eurographics Proceedings © 2022 The Eurographics Association. Reprinted under Creative Commons Attribution CC-BY 4.0.

https://diglib.eg.org:443/handle/10.2312/egs20221032
https://doi.org/10.2312/egs.20221032
https://creativecommons.org/licenses/by/4.0/

C. Reinbold & R. Westermann / Learning Latent 3D Geometry Patch Codes

LoD ℓ LoD ℓ+∆ℓ Patches

V r

Figure 1: 2D Example showing patches for all corners of a voxel
V with ∆ℓ= 2, r = 8. They are obtained by sampling blocks of fine
voxels with side length r after descending ∆ℓ levels of detail.

pearance. We suggest to realize f by an encoder/decoder network
PatchNet, which can be evaluated efficiently on a per-pixel basis.
The encoder E : (M, p) 7→ Penc(M, p) extracts the local geometry
patch P and transforms it to a low dimensional feature code Penc.
The decoder D : (Penc,θ) 7→ (σN,LN) acts as a lightweight neural
renderer to compute approximate values (σN,LN) for (σgt,Lgt).

2.1. Encoder

The encoder design is inspired by the work of Takikawa et al.
[TLY∗21], in which a collection Z of trainable feature codes is
structured in a SVO that corresponds to the geometric model. Each
allocated voxel stores a d-dimensional feature code at each of its
corners, with the features being shared at common corners of ad-
jacent voxels. When SVO traversal stops by intersecting a voxel
of LoD ℓ ∈ N at p ∈ R3, the eight feature codes of the intersected
voxel are trilinearly interpolated according to the relative position
of p in the voxel. The interpolated d-dimensional vector forms the
output Penc of the encoder. In a number of experiments we have
found that d = 10 is sufficient to learn model independent features.

Patch Codes

In current scene representation networks, the feature codes in Z
are learned on a per model basis, i. e. a training process is re-
quired once per model. Instead of optimizing for the feature codes
directly, we propose to train a Patch Encoder network Epatch that
maps small patches of local geometry data to patch dependent fea-
ture codes, which we call patch codes. Given a corner C ∈ R3 of
a voxel V at LoD ℓ in the SVO, its corresponding patch holds ge-
ometry data over a block of r3 "fine" voxels at LoD ℓ+∆ℓ that is
centered at C (see Fig. 1 for a 2D example). Geometry information
of each fine voxel is represented by a 5D vector with the first com-
ponent encoding shape by setting it to 1 if the fine voxel is existing,
and the remaining components containing LV , NV as stored in the
fine voxel. The resulting 4D tensor of shape (r,r,r,5) is passed to
Epatch : Rr×r×r×5→ Rd to compute the patch code for C.

We found that Epatch can be efficiently realized by flattening the
input to a 5r3-dimensional vector and processing it in a multilayer
network with three hidden layers of 256 channels each. Each layer
is realized by taking the input vector x (or output of the previous
layer) and transforming it to the output y = max(Mx+b, 0)∈R256

with an appropriately sized matrix M and bias vector b containing
learnable network weights. Experiments with 3D convolutions and

Voxception blocks [BLRW16] increased computation costs signif-
icantly with no significant effect on predictive power. We attribute
this to the oracle function f lacking translation invariance.

We set ∆ℓ= 2, so that PatchNet is able to "look ahead" two addi-
tional levels of detail when deciding if refined sampling is required.
The block resolution is set to r = 2 · 2∆ℓ, yielding a block of twice
the side length than that of V . Thus, the network is able to perceive
all geometry that can influence the current pixel, even if the pixel’s
center ray just barely scratches V .

2.2. Decoder

The decoder D is realized by a small multilayer network that com-
bines the feature code of the encoder and additional rendering pa-
rameters to form the output (σN,LN). The following input is pro-
vided to the decoder: a) The d-dimensional encoder output Penc. b)
The 6D ray frame for the current pixel, i.e., the ray direction and its
up vector (the projection of the camera’s up vector to the orthogo-
nal complement plane of the ray). c) The 1D pixel-voxel-ratio en-
coding the relative size of the projected voxel to the current pixel.
It is obtained by dividing the side length of the pixel by the side
length of the voxel projected onto the screen. d) All evaluations of
the 25D spherical harmonics up to degree 4 at the ray direction, to
facilitate learning view-dependent features. 9 out of 10 dimensions
of the patch code Penc are interpreted as spherical harmonic coef-
ficients by multiplying them with the nine spherical harmonic base
functions up to degree 2 evaluated at the ray direction.

The decoder consists of three layers with 48 channels each. Ran-
dom dropout of network units to prevent overfitting was not per-
formed, and normalization of activation values to the same scale
didn’t show any improvement. The output layer is followed by
a shifted and rescaled non-linear sigmoid activation function to
limit the network outputs to the interval [−1,2]. Outputs are fur-
ther clamped to [0,1] during inference, yet no additional clamping
is performed during training to avoid vanishing gradients.

2.3. Training

Epatch and the decoder once are trained on randomly sampled ge-
ometry patches of a complex geometry model. A training sample
is generated by first sampling a voxel V of the model’s SVO, ex-
tracting a patch at LoD ℓ+∆ℓ with resolution (3 · 2∆ℓ)3 centered
at V , and rendering it into an orthographic 64×64 viewport repre-
senting a single pixel. The pixel-voxel-ratio is uniformly sampled
from [1

2 ,1] and determines the size of the viewport in world space.
Camera parameters are obtained via rejection sampling such that
the viewport’s center ray intersects V . By choosing a patch reso-
lution as stated above, it is ensured that the patch can fill out the
whole viewport independently of where the center ray intersects V .

Each training sample is processed by invoking Epatch at each cor-
ner of V and retrieving Penc at the intersection point as described in
Sec. 2.1. Next, the rendering parameters are derived from the train-
ing sample and the decoder is invoked to compute (σN,LN). To
train the network, its weights are repeatedly updated through a gra-
dient descent optimizer that minimizes |σN−σgt|+ |LN−Lgt|. The
gradients are computed by back-propagating them via the chain

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

58

Appeared in Eurographics 2022 - Short Papers.

© 2022 The Author(s). Eurographics Proceedings © 2022 The Eurographics Association.

This record was published online in this final form at https://diglib.eg.org:443/handle/10.2312/egs20221032. DOI: 10.2312/egs.20221032

© 2022 The Author(s). Eurographics Proceedings © 2022 The Eurographics Association. Reprinted under Creative Commons Attribution CC-BY 4.0.

https://diglib.eg.org:443/handle/10.2312/egs20221032
https://doi.org/10.2312/egs.20221032
https://creativecommons.org/licenses/by/4.0/

C. Reinbold & R. Westermann / Learning Latent 3D Geometry Patch Codes

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 2: (a-d) Sample rendering splits (top left = 12-spp, bottom right = 322-spp) of all datasets used during training and evaluation. (a)
Underbelly interior of Airplane, (b) Power Plant, (c) San Miguel, (d) Sponza. (e) 12- and (f) 322-spp renderings of the airplane’s tail fin and
refinement pattern as returned by (g) PN-Airplane and (h) SS-Variance.

rule through the network. The network is trained for 8 epochs on a
dataset of 16 million samples, starting with a learning rate of 0.001
that is reduced by a factor of 0.1 after 4 and 7 epochs respectively.

2.4. Preprocessing & Rendering

In order to support realtime-performance during rendering, the per-
voxel corner patch codes are precomputed and stored for all SVOs
that are about to be rendered. This is performed by traversing each
SVO and applying Epatch to the patches of all allocated voxel cor-
ners. Note that since Epatch only processes small patches of geom-
etry, it can be readily applied to new models without costly retrain-
ing. The patch codes Z are baked into the SVO, and at each inter-
section the codes at the corners of the intersected voxels are read.

3. Results

We evaluate PatchNet on four scenes (see Fig. 2a-d): the San
Miguel scene, a bisected Sponza scene, and detailed CAD mod-
els of an airplane and power plant. Except for San Miguel, di-
rect, diffuse lighting from two antipodal directional light sources
is baked into voxel luminance. For San Miguel, we remove most
plants and bake global illumination effects with the Cycles ren-
derer of Blender. Additionally, camera tracks of 2000 frames per
scene are rendered in a resolution of 1302 pixels. All tracks start
far away from geometry, close in over 1000 frames and then ex-
plore the scene’s detailed geometry for another 1000 frames.

Different refinement strategies are compared by fixing a per
frame budget of X% of active pixels—i. e. pixels that intersect
geometry or have intersecting neighbors—that may be refined at
least once. Refinement quality is measured by computing the MSE
over all active pixels in any frame, with refined pixel errors being
zero and unrefined pixel errors being the difference between render-
ing with 12-spp and 322-spp. Evaluations with other image metrics
such as PSNR, SSIM and LPIPS yield similar results.

Fig. 3 shows the MSE values for each camera track when vary-
ing the per frame budget between 0% and 100%. Our PN-[Model]
strategies are implemented by evaluating PatchNet, trained on
patches of [Model], for each pixel intersecting the SVO. Pixels with
high values of |1−σN|+λ · |LV −LN|, where λ= 5, are refined first.
We compare against the—according to our findings—best perform-
ing classical screen-space based strategy SS-Variance [LRU85] that
refines pixels showing a high variation of luminance in their sur-
rounding 3x3 kernels first, as well as a world-space based strategy

WS-LUT that—for each pixel—looks up an error estimate based on
the child mask of the intersected voxel. View-dependent error es-
timates are precomputed by rendering allocated child voxels from
many views, and then stored as nine spherical harmonics coeffi-
cients for each of the 28 possible child configurations. We consider
WS-LUT as a classical analog of our approach in which PatchNet
is exchanged by a look up table. Both, SS-Variance and WS-LUT
are implemented by us. Further, we evaluate against pretrained
screen-space networks of Weiss et al. [WITW20] and Kuznetsov
et al. [KKR18]. Both networks learn an intermediate sampling map
from a low quality rendering and utilize new samples drawn accord-
ing to the sampling map to enhance the results of a subsequent re-
construction/denoising pass. We feed in the 12-spp rendering (plus
G-buffers) and utilize the sampling map to decide which active pix-
els are refined first. Note that compared to the original approach
by Weiss et al., we disable temporal coherence due to the lack of a
flow field, and downsample the 42-super-sampled sampling map by
summing over 4× 4 pixel blocks. Lastly, we also plot the optimal
refinement strategy that assumes knowledge of the 322-spp render-
ing and ranks pixels w.r.t. their deviation to the 12-spp rendering.

The results show that our approach yields superior sampling
patterns compared to Weiss et al. [WITW20] and Kuznetsov et
al. [KKR18]. However, this is not entirely surprising, since their
sampling masks were trained for different rendering algorithms.
When refining at least 13% of active pixels, PatchNet performs con-
sistently better than all reference methods, going as far as yielding
half the MSE at 30% pixels for Airplane when comparing against
SS-Variance. Further, except for San Miguel, PatchNet performs
almost equally well independently of the dataset it was trained on.
That is, PatchNet generalizes to other models. For San Miguel,
training on other datasets yields notable worse results, although
still being better than SS-Variance. We argue that San Miguel is the
most complex dataset of all, including rich geometry, texture and
advanced lighting. Hence, one can generalize from San Miguel, but
not necessarily towards San Miguel.

Fig. 2e-h shows that PatchNet can refine porous geometry such
as the airplane’s tail fin. However, SS-Variance fails to detect the
fine grid structure as it is lost in the coarse voxel representation
rendered to screen. Similarly, as shown in Fig. 4, it cannot detect
erroneous renderings of table surfaces in the San Miguel scene,
where the unlit tabletop bleeds dark color into the bright tablecloth
it is covered by. PatchNet detects the errors up to a certain distance,
depending on the look-ahead parameter ∆ℓ of PatchNet.

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

59

Appeared in Eurographics 2022 - Short Papers.

© 2022 The Author(s). Eurographics Proceedings © 2022 The Eurographics Association.

This record was published online in this final form at https://diglib.eg.org:443/handle/10.2312/egs20221032. DOI: 10.2312/egs.20221032

© 2022 The Author(s). Eurographics Proceedings © 2022 The Eurographics Association. Reprinted under Creative Commons Attribution CC-BY 4.0.

https://diglib.eg.org:443/handle/10.2312/egs20221032
https://doi.org/10.2312/egs.20221032
https://creativecommons.org/licenses/by/4.0/

C. Reinbold & R. Westermann / Learning Latent 3D Geometry Patch Codes

0.0 0.5 1.0
0.000

0.005

0.010

0.0 0.5 1.0
0.000

0.002

0.004

0.0 0.5 1.0
0.000

0.002

0.004

PN-Airplane
PN-PowerPlant

PN-SanMiguel
PN-Sponza

SS-Variance
WS-LUT

Kuznetsov
Weiss

optimal

(a) (b) (c)

Figure 3: Evaluations on (a) Airplane, (b) San Miguel and (c)
Sponza showing refinement quality in MSE for various refinement
strategies plotted over per frame budgets from 0% to 100%. Results
on Power Plant are similar to Airplane. Lower means better.

SS-Var PN-∆1 PN-∆1 PN-∆2 PN-∆2 PN-∆3

Figure 4: San Miguel courtyard rendered at various distances from
close (block 1) to far (block 3). First image in block indicates the
actual error between 12-spp and 322-spp renderings. Other images
in block depict refinement patterns (redder areas are refined first)
of strategies that fail (Image 2) or succeed (Image 3) in detecting
errors at tablecloths. SS-Var stands for SS-Variance. PN-∆x repre-
sents PatchNet trained with a look-ahead of ∆ℓ= x.

4. Conclusion

We have presented an encoder/decoder network PatchNet that
learns model independent patch codes to predict super-sampling
patterns from coarse-scale geometry. Our experiments have shown
that patterns predicted by our architecture are significantly more ef-
fective than those of reference methods, in particular for medium
to high refinement counts, and that PatchNet generalizes to models
not seen during training.

In the future, we intend to reduce inference timings during ren-
dering by storing and traversing the SVO on the GPU, as well as
evaluating the decoder in shared GPU memory. Nonetheless, we
expect that inference timings will be inferior to brute-force 4x-su-
per-sampling when casting primary rays only. As a next step, we in-
tend to utilize PatchNet in recursive ray tracing applications, where
samples are far more costly to acquire. This makes brute-force
super-sampling less attractive than invoking PatchNet to identify
dispensable samples. Lastly, we plan to apply model indepen-
dent patch codes for model compression, learning spatially varying
BSSRDF models, and predicting cone split events at rough and/or
pointy surfaces in differential cone-tracing.

References

[BLRW16] BROCK A., LIM T., RITCHIE J. M., WESTON N.: Gen-
erative and Discriminative Voxel Modeling with Convolutional Neural
Networks. arXiv:1608.04236v2. 2

[CKF∗21] CHEN Z., KIM V. G., FISHER M., AIGERMAN N., ZHANG
H., CHAUDHURI S.: DECOR-GAN: 3D Shape Detailization by Condi-
tional Refinement. In 2021 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR) (2021), pp. 15735–15744. 1

[GKJ∗21] GARBIN S. J., KOWALSKI M., JOHNSON M., SHOTTON J.,
VALENTIN J.: FastNeRF: High-Fidelity Neural Rendering at 200FPS.
In Proceedings of the IEEE/CVF International Conference on Computer
Vision (ICCV) (2021), pp. 14346–14355. 1

[JSM∗20] JIANG C., SUD A., MAKADIA A., HUANG J., NIESSNER M.,
FUNKHOUSER T.: Local Implicit Grid Representations for 3D Scenes.
In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR) (2020), pp. 6000–6009. 1

[KKR18] KUZNETSOV A., KALANTARI N. K., RAMAMOORTHI R.:
Deep Adaptive Sampling for Low Sample Count Rendering. Computer
Graphics Forum 37, 4 (2018), 35–44. 1, 3

[LGZL∗20] LIU L., GU J., ZAW LIN K., CHUA T.-S., THEOBALT C.:
Neural Sparse Voxel Fields. In Advances in Neural Information Process-
ing Systems (2020), vol. 33, pp. 15651–15663. 1

[LK11] LAINE S., KARRAS T.: Efficient Sparse Voxel Octrees. IEEE
Transactions on Visualization and Computer Graphics 17, 8 (2011),
1048–1059. 1

[LKC∗20] LIU H.-T. D., KIM V. G., CHAUDHURI S., AIGERMAN N.,
JACOBSON A.: Neural Subdivision. ACM Trans. Graph. 39, 4 (2020). 1

[LRU85] LEE M. E., REDNER R. A., USELTON S. P.: Statistically Op-
timized Sampling for Distributed Ray Tracing. SIGGRAPH Comput.
Graph. 19, 3 (1985), 61–68. 1, 3

[Mit87] MITCHELL D. P.: Generating Antialiased Images at Low Sam-
pling Densities. In Proceedings of the 14th Annual Conference on
Computer Graphics and Interactive Techniques (1987), SIGGRAPH ’87,
pp. 65–72. 1

[MST∗20] MILDENHALL B., SRINIVASAN P. P., TANCIK M., BARRON
J. T., RAMAMOORTHI R., NG R.: NeRF: Representing Scenes as Neu-
ral Radiance Fields for View Synthesis. In Computer Vision – ECCV
2020 (2020), pp. 405–421. 1

[NMOG20] NIEMEYER M., MESCHEDER L., OECHSLE M., GEIGER
A.: Differentiable Volumetric Rendering: Learning Implicit 3D Repre-
sentations Without 3D Supervision. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR)
(2020). 1

[PFS∗19] PARK J. J., FLORENCE P., STRAUB J., NEWCOMBE R.,
LOVEGROVE S.: DeepSDF: Learning Continuous Signed Distance
Functions for Shape Representation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR)
(2019). 1

[RFS03a] RIGAU J., FEIXAS M., SBERT M.: Entropy-based Adaptive
Sampling. In Graphics Interface (2003), vol. 2, pp. 79–87. 1

[RFS03b] RIGAU J., FEIXAS M., SBERT M.: Refinement Criteria Based
on f-Divergences. In Proceedings of the 14th Eurographics Workshop on
Rendering (2003), EGRW ’03, pp. 260–269. 1

[SZW19] SITZMANN V., ZOLLHOEFER M., WETZSTEIN G.: Scene
Representation Networks: Continuous 3D-Structure-Aware Neural
Scene Representations. In Advances in Neural Information Processing
Systems (2019), vol. 32. 1

[TLY∗21] TAKIKAWA T., LITALIEN J., YIN K., KREIS K., LOOP C.,
NOWROUZEZAHRAI D., JACOBSON A., MCGUIRE M., FIDLER S.:
Neural Geometric Level of Detail: Real-time Rendering with Implicit
3D Shapes. In CVPR (2021), pp. 11353–11362. 1, 2

[WITW20] WEISS S., IŞIK M., THIES J., WESTERMANN R.: Learning
Adaptive Sampling and Reconstruction for Volume Visualization. IEEE
Transactions on Visualization and Computer Graphics (2020). 1, 3

[XSXZ07] XU Q., SBERT M., XING L., ZHANG J.: A Novel Adap-
tive Sampling by Tsallis Entropy. In Computer Graphics, Imaging and
Visualisation (2007), pp. 5–10. 1

[YKM∗20] YARIV L., KASTEN Y., MORAN D., GALUN M., ATZMON
M., RONEN B., LIPMAN Y.: Multiview Neural Surface Reconstruction
by Disentangling Geometry and Appearance. In Advances in Neural
Information Processing Systems (2020), vol. 33, pp. 2492–2502. 1

© 2022 The Author(s)
Eurographics Proceedings © 2022 The Eurographics Association.

60

Appeared in Eurographics 2022 - Short Papers.

© 2022 The Author(s). Eurographics Proceedings © 2022 The Eurographics Association.

This record was published online in this final form at https://diglib.eg.org:443/handle/10.2312/egs20221032. DOI: 10.2312/egs.20221032

© 2022 The Author(s). Eurographics Proceedings © 2022 The Eurographics Association. Reprinted under Creative Commons Attribution CC-BY 4.0.

https://diglib.eg.org:443/handle/10.2312/egs20221032
https://doi.org/10.2312/egs.20221032
https://creativecommons.org/licenses/by/4.0/

Inverting the Feature Visualization Process for Feedforward Neural Networks

Christian Reinbold 1 Rüdiger Westermann 1

Abstract

This work sheds light on the invertibility of fea-
ture visualization in neural networks. Since the
input that is generated by feature visualization
using activation maximization does, in general,
not yield the feature objective it was optimized
for, we investigate optimizing for the feature ob-
jective that yields this input. Given the objective
function used in activation maximization that mea-
sures how closely a given input resembles the fea-
ture objective, we exploit that the gradient of this
function w.r.t. inputs is—up to a scaling factor—
linear in the objective. This observation is used to
find the optimal feature objective via computing a
closed form solution that minimizes the gradient.
By means of Inverse Feature Visualization, we in-
tend to provide an alternative view on a networks
sensitivity to certain inputs that considers feature
objectives rather than activations.

1. Introduction
To better understand the learning behavior of neural net-
works, the similarity of representations learned by differ-
ently trained networks has been assessed by statistical anal-
ysis of activation data (Li et al., 2015; Raghu et al., 2017).
Wang et al. (2018) search for similar representations by
using activation vectors and matching them over different
networks. These approaches can determine similar behavior
of neurons for a finite set of inputs, but they do not con-
sider which patterns the neurons are sensitive for and, thus,
neglect the semantic meaning of representations. There is
also no evidence that representations behave similarly on
different input sets, so that the findings are sensitive to the
choice of inputs.

Another class of approaches, mainly used in image under-
standing tasks, tackle the problem of identifying patterns
a network reacts to. For instance, pixel-wise explanations
(Bach et al., 2015) and saliency maps (Simonyan et al.,
2013) aim to reveal areas in input samples that certain in-

1Chair of Computer Graphics and Visualization, Technical
University of Munich, Bavaria, Germany.

ference tasks or neurons are sensitive to. Vice versa, ac-
tivation maximization (Erhan et al., 2009; Nguyen et al.,
2015; Nguyen et al., 2016; Szegedy et al., 2013) or code
inversion (Mahendran & Vedaldi, 2015) target the recon-
struction of input samples with certain activation character-
istics. The recent survey of Nguyen et al. (2019) gives a
thorough overview of activation maximization approaches
used in Feature Visualization (FV). Some techniques do
not only analyze the activations of a single neuron, but con-
sider groups of neurons that form a semantic unit (Olah
et al., 2018). Groupings arise from the investigated net-
work topology, i.e., convolution filters can act as semantic
units of convolutional neural networks (CNNs), grouping all
neurons together that share identical filter weights. Hence-
forth we call these units the features we aim to analyze,
and denote by nf the finite number of available features.
To measure the features’ stimulus w.r.t. an input sample I ,
neuron activations of a given network N are aggregated into
a single value per neuron group, yielding the input’s feature
response—denoted by yI , a vector of dimension nf .

In its pure form, activation maximization optimizes for an
input sample I∗ (from the set I of all valid inputs) so that
yI∗ resembles a prescribed vector x ∈ Rnf , i.e.,

I∗ = arg max
I∈I

S(x,yI), (1)

where S(x,y) is a measure of significance of y regarding
x. We call I∗ the realization of x, and x the target objective
of I∗. Maximizing for a single feature can be achieved by
setting x = ei.

Inputs stimulating a certain feature usually stimulate also
many other features, yet to lesser extent. Hence, although
penalized by the optimization process, feature response yI∗

and target objective x can differ substantially. Extending
the argument that I∗ represents a facet of a neuron that hints
towards patterns (and their granularity) it is sensitive for,
we argue that an input does not necessarily represent the
neurons it stimulates most, but instead should represent the
neurons which cannot be stimulated more strongly by other
inputs. For instance, an input I of stripes may stimulate a
cross and a stripe detector neuron to equal amounts. Repre-
sentation matching techniques consider both neurons equal,
especially when crosses are not contained in the inputs for
which activations are drawn. We argue that they represent

ar
X

iv
:2

00
7.

10
75

7v
1

 [
cs

.L
G

]
 2

1
Ju

l 2
02

0

Inverting the Feature Visualization Process for Feedforward Neural Networks

Figure 1. Interplay between Feature Visualization (FV) and Inverse
Feature Visualization IFV (in red). Given an input I∗ that is opti-
mized via FV for a prescribed target objective x, IFV recovers x
solely from the network’s response to I∗ and gradient information.
If features and neurons of the network are not in 1:1-correspon-
dence, this is ensured via an aggregation term Agg—concatenated
with the network function N—that maps activations to features.
The function fx is given by I 7→ S(x,yI).

two semantically different concepts. Instead of using ac-
tivations, as it is done in many approaches, we aim for a
semantically richer representation in the form of inversely
reproduced target objectives. That is, we suggest to consider
the target objective x that yields I when applying FV. Thus,
stripes in the input will only be associated with stripe detec-
tors, while cross detectors are stimulated more if stripes are
exchanged with crosses.

In this work, we make a small step towards identifying
target objectives. We propose a method for Inverse Fea-
ture Visualization (IFV) that—given a network that can be
back-propagated and an input optimized via FV—can recon-
struct the input’s target objective x. Since the FV process
neither has to be deterministic nor injective—i.e. different
values for x do not necessarily infer different optima I∗—a
rigorous definition of IFV is more complex: When seeing
FV as a random variable Y over the domain I with its prob-
ability density function hY depending on x as additional
parameter, IFV means to compute the maximum likelihood
estimator of Y , i.e. x̂ = arg maxx ĥY (I;x) for a given
input configuration I .

Since realizations I∗ returned by FV are locally optimal
solutions of the objective function fx : I 7→ S(x,yI) (or are
at least close to them), the necessary condition for optimality
||∇fx(I)|| = 0 is supposed to hold. In order to recover the
(most likely) target objective of a realization I∗, we solve
for

arg min
x∈Ω

||∇fx(I∗)||2. (2)

with Ω being the space of allowed target objectives. An
overview of the principle approach underlying our work is
shown in Fig. 1.

Unfortunately, solving Opt. (2) directly usually fails due to
trivial solutions for x. These occur at saddle or minimal
points of fx, or are induced by nontrivial co-kernels of

matrices that propagate when chaining Jacobian matrices to
form ∇fx. We introduce a method called Gradient based
Inverse Feature Visualization (Grad-IFV) to address these
limitations. Our key idea is to eliminate saddle points by
introducing factors in fx and intersecting the search space
Ω with an appropriate subspace of Rnf . The consequential
reformulation of Opt. (2) is solved by computing a singular
value decomposition of a matrix derived from the gradient
of the objective function fx.

While in this work we demonstrate that Grad-IFV can re-
produce the target objective for which a given input was
optimized, building upon this observation it then needs to
be investigated whether Grad-IFV can be extended to arbi-
trary input. In this way, it may even become possible to
control certain patterns in the inputs and ask for the specific
features that are sensitive for them. This sheds light on the
question whether it can be determined which patterns in the
given inputs are relevant and which feature combinations
of a network have learned these patterns, i.e., strive toward
transfer learning. By inverting an input representing feature
x in one network, the feature x̃ that is represented by this
input in another network can be obtained. This can give rise
to a feature-based comparison of learned representations, in-
cluding insight into the relevance of patterns for successful
network training.

2. Method
In this work, we consider FV objective functions provided
by the Lucid library (Olah et al., 2017). For a thorough dis-
cussion of the use and interpretation of objective functions
in the context of FV, let us refer to the recent work by Carter
et al. (2019). The objective function fx is a concatenation
of three functions N , Agg and Sx, where N : I → A rep-
resents the network and maps an input to activations that
were tapped from the network, Agg: A → Rnf aggregates
neuron activations into a feature response y of which compo-
nent i represents excitement of feature i and Sx : Rnf → R
is defined as Sx(y) = xTy·(xTy/||y||)k with k ∈ N0. The
set of allowed target objectives Ω is set to the nfD-sphere
containing feature directions, i.e. normalized linear com-
binations of features. The term xTy measures the length
of the projection of y onto x, and xTy/||y|| is the cosine
similarity of x and y.

If N has an input domain I that is not a vector space Rm,
Opt. (2) is a constrained optimization problem for which a)
common solvers such as gradient descent or Adam cannot
be applied, and b) the necessary condition for optimality
can be violated at the domain boundary ∂I. These issues
can be circumvented by means of a differentiable, surjec-
tive mapping P : Rnp → I, which parametrizes the input
domain I by a real-valued vector space of dimension np. If
such a P is available, the constrained optimization problem

Inverting the Feature Visualization Process for Feedforward Neural Networks

arg minI∈I fx(I) can be transformed to an unconstrained
one over np variables via arg minv∈Rnp (fx ◦ P)(v).

In the following, if I ∈ I is an input configuration, we use
vI to indicate a valid parameter vector that describes I , i.e.,
P (vI) = I . Furthermore, P , N , Agg are combined into a
single function Ñ := Agg ◦N ◦ P , which maps parameter
vectors to feature responses. The feature response Ñ(vI)

of I is denoted by yI , and the Jacobian matrix DÑ(vI) is
written as DyI .

2.1. Reformulation of ∇fx
Given the described family of objective functions, the gra-
dient ∇fx can be computed. The chain rule allows us to
write ∇(fx ◦ P)(vI) = (k + 1)qkI x

TZk(yI) DyI , where
Zk(y) = Zk(y)T := Id − k/(k + 1)yyT , y := y/||y||,
qI := xTyI (see supp. material). The scalar factor (k+1)qkI
equals zero if xTyI = 0. Depending on the parity of k, val-
ues of yI with xTyI = 0 either yield minimal or saddle
points of Sx. Since one is interested in maximizing Sx, the
factor can be safely dropped. Hence, if I∗ is a local maxi-
mum for fx, this implies that ||xTZk(yI∗) DyI∗ || = 0.

In practice, the investigated network may have linear rela-
tions that result in DyI and potentially Zk(yI) DyI hav-
ing a nontrivial co-kernel that is similar for all I ∈ I.
For instance, dead neurons absorb gradients and introduce
zero rows such that ei ∈

⋂
I∈I coker DyI for some i.

As a consequence, ei will always be a trivial solution to
||xTZk(yI∗) DyI∗ || = 0, independently of the realization
I∗ and its target objective. Thus, we introduce an additional
constraint filtering out trivial solutions. Instead of solving
Opt. (2), it is then solved

arg min
x∈Ω

||xTZk(yI) DyI ||2 s.t. Zk(yI)x ∈ C (3)

Here, C ⊆ Rnf denotes a freely selectable subspace not
dependent on I , which we call critical space. By setting

C :=


⋂

I∈I
coker DyI



⊥

, (4)

the previously described degeneracy can be avoided. Since
the constraint is linear in x, we can find a length preserv-
ing substitution x = Uσ that reduces Opt. (3) to solving
arg min||σ||=1 ||σTUTZk(yI) DyI ||2 (see supp. material).
The solution (up to a sign) is given by the left-singular vec-
tor to the smallest singular value of M := UTZk(yI) DyI .
Thus, first a single forward and nf backward passes are
run to determine yI and DyI . Then, MMT ∈ Rnf×nf is
computed. The eigenvalue decomposition of MMT yields
the desired left-singular vector of M .

Algorithm 1 Co-kernel Approximation

Input: Samples Dy(1), . . . ,Dy(n), threshold ρ
for i = 1 to n do

Compute UΣV T = SVD(Dy(i))
Si ← span{U·,j | Σj,j < ρ · ||Dy(i)||2}

end for
L← {(S1, 1), . . . , (Sn, 1)}
while |L| > 1 do

Remove (U,wU), (V,wV) from L
Compute principal vectors (p1

U , p
1
V), . . . , (pmU , p

m
V)

Drop all pairs with ^(pjU , p
j
V) > 45◦

Interpolate pjI ← SLERP(pjU , p
j
V ;wV /(wU + wV))

L← L ∪ {(span{pjI | j not dropped}, wU + wV)}
end while
return U⊥ with (U,wU) ∈ L

2.2. Identifying the Critical Space

Since we do not make any assumptions about the architec-
ture of N , the network’s state (i.e., weights, biases, etc.)
cannot be used to deduce C. Instead, we sample n ran-
dom target objectives xi (i ∈ {1, . . . , n}), compute real-
izations Ii

∗ by applying FV, and then try to approximate
C by investigating the matrices Dy(i). We denote DyIi∗

by Dy(i) and yIi∗ by y(i). In practice, the matrices Dy(i)

will not develop clear co-kernels, due to numerical inaccu-
racy, incomplete training runs, or stochastic optimization,
just to mention a few reasons. Hence, special care has to
be taken when designing an algorithm to determine C. In-
stead of searching for co-kernels, we search for a subspace
C of which its vector-matrix products with the sampled
matrices Dy(i) diminish, i.e., the spectral norm quotients
||CT Dy(i)||2/||Dy(i)||2 have to become small.

Algorithm 1 approximates Eq. (4). First, the co-kernels
are roughly approximated by computing a subspace of
left-singular vectors with reasonable small singular values
< ρ · ||Dy(i)||2 for each sample. Afterwards, two sub-
spaces at a time are merged until one is left over. The
merging is implemented by computing the principal angles
and vectors as suggested by Knyazev & Argentati (2002),
dropping all vectors with principal angles of 45◦ or higher
and then applying spherical linear interpolation (SLERP) to
each pair of corresponding left and right principal vectors.
Thereby, the interpolation parameter is given by the ratio
of subspaces that already have been merged into either of
the two spaces to merge. The set of newly acquired vectors
form a basis of the merged space. It can be interpreted as a
roughly approximated intersection of two spaces, with the
exact intersection being obtained when dropping all prin-
cipal vectors with principal angles not exactly 0◦. Note
that the result of Algorithm 1 depends both on choices for

Inverting the Feature Visualization Process for Feedforward Neural Networks

the singular value threshold as well as the order in which
subspaces are merged.

In a perfect world, solving Opt. (3) for a sample Ii
∗ would

yield a projected target objective x̃i ∈ Ω ∩ Zk(y(i))−1C
such that Zk(y(i))x̃i points into the same direction as
Zk(y(i))xi projected onto C. It is uniquely determined
by normalizing Zk(y(i))−1CMC

T
MZk(y(i))xi. This means

that the realization’s target objective xi can only be recov-
ered modulo a shift in (Zk(y(i))−1C)⊥ direction followed
by a renormalization. One cannot expect to be any better
since the objective function parametrization x 7→ fx(Ii

∗) is
(by construction of C) constant on (Zk(y(i))−1C)⊥-shifts.
In terms of maximum likelihood estimation, one still finds
a solution for arg maxx fY (I;x). However, it may be an-
other point on the plateau of the graph of fY (I; ·) where
the realization’s target objective one started with resides as
well.

2.3. The Adversary - Aggregation

Common choices for Agg Olah et al. (2017) either average
along the activations of all neurons associated with a fea-
ture, or pick a single representative activation—for instance
the center pixel of a feature map. Both approaches have
limitations. When aggregating over activations returned by
a convolution filter such as a Sobel filter, except for border
pixels, all contributions of pixels being convolved cancel
out. Any filter would thus degenerate to a detector of color
patches plus some border pattern. More general, aggre-
gating along a dimension would eliminate the effect of a
preceding linear operation in this dimension. When picking
only a single neuron’s activation as representative, the re-
alization returned by FV becomes sensitive to its receptive
field, rendering realizations of different layers or network
architectures incomparable. Although this does not pose
an immediate issue for IFV itself, it counteracts our main
motivation of using IFV techniques for network comparison
later on.

To overcome these limitations, we propose to use a
max-pooling operation followed by mean-aggregation.
While the latter operation is independent of the receptive
field, the former breaks linearities and allows us to still
distinguish between different convolution filters. Note that
a basic mean operation may also be sufficient if the acti-
vations returned by N are generated by a rectified linear
activation function (ReLU) or max-pooling operation. We
suggest to always include operations breaking linearity in
the aggregation process.

3. Results and Evaluation
In the following we analyze the accuracy of Grad-IFV and
how the recovered target objectives differ from feature re-

sponses. FV is applied to three networks with different
topology, size and application domains, to generate real-
izations for randomly sampled target objectives xi. Given
these realizations, Opt. (3) is solved to yield the solutions
xi
∗, which are then compared to the target objectives xi. We

will subsequently call the solutions xi
∗ predicted objectives,

since they are returned by Grad-IFV and are supposed to be
an accurate estimate for the target objectives.

3.1. Network Architectures

GoogLeNet: GoogLeNet (Szegedy et al., 2015) builds upon
stacked Inception modules, each of which takes the input
of the previous layer, applies convolution filters with kernel
sizes (1×1, 3×3, and 5×5), and concatenates all resulting
feature maps into a single output vector. GoogLeNet has
been trained for image classification, its input domain is
given by 224× 224 RGB-images.

DenseNet: The DenseNet-BC architecture (Huang et al.,
2017), with growth rate k = 12, has been trained on the
CIFAR-10 subset of the 80 million Tiny Images dataset
(Torralba et al., 2008; Krizhevsky, 2009). Its input domain
is given by 224× 224 RGB-images that are partitioned into
10 different classes. Three dense blocks are connected via
convolution layers, followed by max pooling, form the core
part of the network. Within a dense block, each layer takes
the outputs of all preceding layers as inputs and processes
them by applying a 1× 1-bottleneck convolution, batch nor-
malization, ReLU activation, and finally a 3×3-convolution.
The output is passed to all subsequent layers of the dense
block. In total, 0.8M weights are trained with weight decay
by stochastic gradient descent with nesterov momentum.
During training, images are flipped, padded with 4 pixels
on each side, and cropped back to its original size with a
random center.

SRNet: The fully convolutional SRNet (Sajjadi et al., 2018)
has been modified and trained to upscale low resolution
geometry images (normal and depth maps) of isosurfaces in
scalar volume data by Weiss et al. (2019). The low resolu-
tion input size is set to 128× 128 pixels. Residual blocks
of 3× 3 convolutions transform the input maps into a latent
space representation, which is then upsampled, folded, and
added as residual to bilinearly upscaled versions of the input.
The input domain is given by a 2D normal field comprised
of 3D vectors, a 2D depth map with values in the range [0, 1],
and a 2D binary mask with values in {−1, 1} to indicate
surface hits during rendering.

3.2. Feature Visualization

If not stated otherwise, the components of the objective func-
tion fx used for FV are as follows: The network function
N applies the network up to the investigated layers (that is
inception4c, dense3 etc.) and outputs their respec-

Inverting the Feature Visualization Process for Feedforward Neural Networks

tive activations as a 3D-tensor with 2 spatial and 1 channel
dimension. The aggregation operation Agg then applies 2D
max pooling with kernel size 3×3 and a stride of 1 followed
by taking the mean. Both operations are performed along
the spatial dimension so that one ends up with a 1D vector of
,,channel activations” that act as our feature response. Here,
each channel constitutes a separate feature. The feature re-
sponse is combined with the target objective x as described
in Sec. 2. The power k of the cosine term is set to 2. Last
but not least, the used parametrization Prgb yields batches
of RGB images clamped to values in [0, 1] by applying the
sigmoid function to the unbounded space RH×W×3, where
H and W denote the respective input image dimensions for
the investigated network.

The target objectives x with nonnegative entries are sampled
from a vector distribution X with uniform Hoyer sparseness
measure (i.e. hoyer(X) ∼ U{0, 1}) (Hoyer, 2004). After
sampling x, we optimize for arg minv∈Rnp (fx ◦ P)(v) by
first applying Adam optimization (Kingma & Ba, 2014)
followed by some steps of fine tuning with L-BFGS (Byrd
et al., 1995). For DenseNet and SRNet, we run 800 steps
of Adam and 300 steps of L-BFGS. To let GoogLeNet con-
verge to an optimum, we run 3000 steps of Adam followed
by 500 steps of L-BFGS.

3.3. Time Complexity & Performance

The runtime complexity of solving Opt. (3) and Algorithm 1
isO(max(npn

2
f , n

3
f)) per sample. Runtime is dominated by

singular value decompositions and multiplication of nf×nf
and nf × np matrices. The computation of Dy requires nf
backward passes through the network, making it strongly
dependent on the network architecture. Performance mea-
surements are performed on a server architecture with 4x
Intel Xeon Gold 6140 CPUs with 18 cores @ 2.30GHz each,
and an NVIDIA GeForce GTX 1080 Ti graphics card with
11 GB VRAM. Timings are shown in Table 1. Note that the
generation of realizations takes significantly longer due to
the additional L-BFGS steps. Except for Algorithm 1, all
computations are executed on the GPU.

3.4. The Simple Case

In the first experiment, the 512 filters in the inception4c
layer of GoogLeNet, which we abbreviate by GN4c, are
investigated. We sample 150 target objectives xi as
described above and add further 150 canonical vectors
of sparsity measure 1. Then, FV is performed. For
each resulting realization Ii

∗, a target objective xi
∗ is

predicted by solving Opt. (3), and then compared to
xi by measuring their angular distance in degrees, i.e.,
180/π ·min{cos−1(−xTi xi

∗), cos−1(xTi xi
∗)}. The elimi-

nation of trivial solutions in not required yet, hence we set
C = Rnf .

Table 1. Timings for computing realizations via FV (Ii∗),
back-propagation (Dy(i)), solving Opt. (3) (xi

∗) and re-optimiza-
tion of Ii∗ (re-opt.), for different number of input parameters (np)
and features (nf). All timings are in seconds per sample. Tim-
ings associated to IFV are in bold. Critical space computation for
DN[4]cl takes 0.5s on average per space. Batch sizes in FV are 8
for GN4c, 64 for DN[4]cl and DNde, and 32 for SRNet. Re-opti-
mization always is performed with a batch size of 64. Solutions of
Opt. (3) are computed for all samples at once, in a single batch.

Model np nf Ii
∗ Dy(i) xi

∗ re-opt.

GN4c 2242 · 3 512 17.3 0.7 0.2 0.7
DN[4]cl 322 · 3 10 2.1 0.0 0.0 0.7
DNde 322 · 3 342 2.0 0.3 0.1 0.7
SRNet 1282 · 4 64 10.7 0.4 0.0 3.1

The horizontal margin distribution in Fig. 2a shows the an-
gular distances between the target objectives and either the
predicted objectives xi

∗, feature responses y(i), or randomly
sampled vectors. Note that whereas the angular distance
between xi and y(i) is about 45◦ (or a cosine similarity
of ≈ 0.7) with large variance, the predictions xi

∗ show
only a deviation of approx. 10◦ (≈ 0.98 in terms of cosine
similarity!) with very few outliers.

Next, it is verified that the realizations are optimal w.r.t.
the predicted objective. To achieve this, a realization is
re-optimized w.r.t. either xi, xi

∗, y(i), or a random objective
with Adam for 500 steps. Finally, the SSIM index between
the realization before and after optimizing is computed.
SSIM is a perception-based model to measure the similarity
of two images w.r.t. structural information (Zhou Wang
et al., 2004).

The results are shown in Fig. 2a. High SSIM indices con-
firm that almost all realizations remain optima under the
predicted objectives, yet there is clearly more change hap-
pening when re-optimizing for the feature response as objec-
tive. This observation confirms the rationale underlying the
Deep-Dream process (Mordvintsev et al., 2015) that enhanc-
ing features changes the input significantly. In particular,
in many cases re-optimizing for the feature response yields
similar results to re-optimizing for a random vector.

Note that the SSIM index is strictly lower than one when
re-optimizing for the target objective. This observation re-
lates back to the Adam optimizer having an internal state
that has to warm up first before Adam convergences. Hence,
even when initializing Adam with an instable, local opti-
mum, Adam may leave it and converge to a completely
different one, lowering the SSIM index significantly.

Inverting the Feature Visualization Process for Feedforward Neural Networks

0.0 0.2 0.4 0.6 0.8 1.0
1

0.0 0.2 0.4 0.6 0.8 1.0
1 2

0.0 0.2 0.4 0.6 0.8 1.0
1 2 3

0 20 40 60 80
0.6

0.7

0.8

0.9

1.0

xi * xi y(i) rnd

(a) 0 20 40 60 80

0.2

0.4

0.6

0.8

1.0

10 C1

1.0
0.8
0.5
0.2
0.0

(b) 0 20 40 60 80

0.2

0.4

0.6

0.8

1.0

10 C1 C2

1.0
0.8
0.5
0.2
0.0

(c)

Figure 2. (a) GoogLeNet, (b) DenseNet, (c) DenseNetEx4. (top) Values α1, . . . , α10 indicating the mean contribution of j-th left-singular
vectors to the target objectives, stacked in a bar chart in increasing order of j. Bars of missing values are too small for plotting. (bot (a))
Bivariate distribution of angular distances to the target objectives (horizontal axis) and SSIM indices (vertical axis) when re-optimizing
w.r.t. predicted objectives, target objectives, feature responses or random feature objectives. (bot (b,c)) Trivariate distribution when
re-optimizing w.r.t. predicted objectives for different critical spaces. Point size encodes the fraction of the target objective xi that lives in
the respective critical space, that is ||v||/(||v||+ ||w||) with xi = v +w, v ∈ Zk(y

(i))−1C, w ∈ (Zk(y
(i))−1C)⊥. Triangles represent

instable samples for which re-optimization with the target objective yields an SSIM index lower than 0.7.

3.5. Utilizing the Critical Space

Next, we investigate the ten neurons in the
classification layer of DenseNet for two dif-
ferently trained networks. Since aggregation along spatial
dimensions becomes unnecessary in this case, we set
Agg ≡ Id . The second network is trained in a similar way
than the first network described above, yet it never sees any
training data for class 4. The classification layers of
both networks are denoted by DNcl and DN4cl respectively.
We sample 290 target objectives and add the ten canonical
ones.

When predicting objectives and comparing them to the target
objectives xi as in the previous section, Grad-IFV fails. The
experiment represented by blue dots in Fig. 2b,c show that
the predicted objectives do not resemble the target objectives.
To see how close the target objective is to be an optimal
solution for Opt. (3), we decompose each xi as follows: Let
vi,1, . . . , vi,nf

be the left-singular vectors of Zk(y(i)) Dy(i)

with singular values σi,1 ≤ σi,2 ≤ · · · ≤ σi,nf
. Then we

determine coefficients ci,j such that xi =
∑
j ci,jvi,j . Fi-

nally, we average along all squared coefficients of the same
order and obtain values αj =

∑n
i=1(c2i,j/n) that indicate

how much the j-th left-singular vectors contribute to the xis.
Note that ci,0 = xTi xi

∗ and that 90(1 − c2i,0) is the poly-
nomial of degree two approximating the angular distance
between xi and xi

∗ with coincidence in c2i,0 ∈ [0, 0.5, 1].

Since Grad-IFV always predicts the left-singular vector of
Zk(y) Dy to the lowest singular value, it performs well
when α1 ≈ 1 and αj ≈ 0 for j > 1. As seen in Fig. 2a,
α1 ≈ 1 holds true for the scenario of Sec. 3.4. However, the
horizontal bars of Fig. 2b,c indicate additional contributions
indicated by significant values for α2 and α3, respectively.
When further investigating left-singular vectors, we realized
that all contributions of α1 (and α2 for DN4cl) relate back
to the same span of left-singular vectors for all samples.
We consider these vectors to be trivial solutions of Opt. (3),
which we intend to sort out.

To obtain the trivial solutions and their complement, the crit-
ical space, the first 32 of the 300 Jacobian matrices Dy(i)

are passed to Algorithm 1. We apply a nested intervals tech-
nique to determine all values of ρ ∈ (0, 1) that yield critical
spaces of different dimensions. For DNcl, a single 9-dimen-
sional critical space C1 is determined, of which the com-
plement is spanned by (approximately) (1, · · · , 1)T ∈ R10.
The same critical space C1 is retrieved for DN4cl, accom-
panied by a second one C2 of 8 dimensions with its com-
plement being spanned by (1, · · · , 1)T and e4. Presumably,
(1, · · · , 1)T arises as trivial solution because the network
learned to exploit the softmax translation invariance in order
to improve on a regularization term on its weights. Similarly,
e4 relates back to a dead neuron of a class the network of
DN4cl never has seen.

The solutions xi
∗ of Opt. (3) are computed by setting C to

either the full 10-dimensional ambient space, C1, or C2. We

Inverting the Feature Visualization Process for Feedforward Neural Networks

evaluate how closely the predicted objectives resemble the
target objectives by projecting both onto (Zk(y(i))−1C)T

and computing their angular distance. The distribution of
angular distances, which is shown in the horizontal margin
plots of Fig. 2b,c, indicate that Grad-IFV performs well
for one particular critical space (C1 for DNcl and C2 for
DN4cl). In practice, the correct one can be identified by
running the described procedure for a set of known, i.e.
sampled, target objectives x, choosing the best performing
critical space, and then solving Opt. (3) for realizations Ii∗

with unknown target objective.

When applying re-optimization, Fig. 2b,c indicates that all
samples with high angular distance to the target objective
exhibit a low SSIM index. In particular, target objectives
cannot be recovered accurately for samples where FV failed
to find a stable optimum (marked by triangles in Fig. 2b,c).
Further, there exists a cluster of (stable) samples for which
the SSIM index is low although the prediction is accurate.
All samples in the cluster have in common that a notable
fraction of their corresponding target objectives is located
in the subspace (Zk(y(i))−1C)⊥, which we just factored
out. This observation gives evidence that, in practice, the
objective function parametrization x 7→ fx is not entirely
constant for (Zk(y(i))−1C)⊥-shifts, as it would be if C is
chosen to be the exact union of co-kernels as expressed in
Eq. (4). Thus, whenever we eliminate outliers by dropping
all predicted objectives with a low SSIM value, we loose
some relevant results as well.

3.6. Dropping the Cosine Term

When experimenting with different numbers of features nf
and alternative aggregation functions, we observed that—as
long as we keep the cosine term of the significance measure
Sx with a power of k = 2—Grad-IFV is quite resilient.
When increasing the number of features or exchanging the
aggregation function by averaging or picking as described
in Sec. 2.3, we notice only slight increases in angular dis-
tances with prediction quality being similar to the results
of Sec. 3.4. Except for the very few occasional outliers
which can be filtered out by re-optimizing the input w.r.t.
the predicted objective and investigating the SSIM index,
the target objective is reliably recovered.

However, when running the experiments again with the
cosine term dropped (k = 0), predictions may become
unreliable. When only considering the first 160 convolu-
tion filters in the dense3 block of DenseNet, which we
call DNde from now on, predicted objectives still perform
significantly better than just estimating xi via the feature
response y(i). The SSIM index obtained by re-optimization
does not drop below 0.89. For more features, prediction
quality starts to degenerate quickly. When considering more
than 288 of the 342 available filters in DNde, almost all

po
olav

g
pic

k 32 12
8

25
6

34
2 32 12

8
25

6
38

4
51

2
0.0

0.5

1.0

Figure 3. Values of αj (i.e., mean contribution of j-th singular
vectors, ordered by singular values, to target objectives) for dif-
ferent experiments with dropped cosine term, stacked in a bar
chart in increasing order of j. Black indicates high fragmentation.
Statistics for (left) 80 filters in the dense3 block of DenseNet for
different aggregation routines, (middle) nf filters of DNde, and
(right) GNcl, where nf increases in steps of 32.

angular distances between xi
∗s and xis are in the range

from 70◦ to 90◦. When increasing the feature count in the
inception4c layer of GoogLeNet (GN4c), degradation
starts to set in for 96 features and continues up to 256. Be-
yond, most predicted objectives are perpendicular to the
target objective.

As discussed in Sec. 3.5, the target objective can be ex-
pressed as a linear combination of singular vectors, to inves-
tigate by which margin Grad-IFV fails to extract the correct
prediction. The resulting αj-values for different feature
counts nf are depicted by stacked bars in Fig. 3. The predic-
tion quality of Grad-IFV can be assessed via the height of
the lowest bar, which shows the value of α1. High fragmen-
tation of the bar charts suggests that target objectives cannot
solely be recovered by setting up an appropriate critical
space—at least not by one perpendicular to singular vectors
of small singular values as returned by Algorithm 1.

Next, we consider the first 80 filters of DNde and exchange
the aggregation function. The coefficient histograms of
Fig. 3 show that Grad-IFV fails to extract meaningful pre-
dictions for averaging- and picking-aggregations, although
the results for max pooling followed by averaging are close
to perfect.

Interestingly, when the experiments are conducted with
k = 2—i.e. with the cosine term—accurate predictions
are obtained. In this case, FV has limited options in order
to produce a visualization so that objectives pointing into
perpendicular direction of y can be ignored during IFV. In
Sec. 2.1, the matrix Zk(y) shrinks all vectors in the input’s
feature response direction and thus makes them more likely
to be the left-singular vector to the smallest singular value.

3.7. Different Parameterizations

We further investigate the influence of the parametrization
P on Grad-IFV. Therefore, we define the variables v over

Inverting the Feature Visualization Process for Feedforward Neural Networks

which FV optimizes in Fourier space and perform spatial
de-correlation (Olah et al., 2017), i.e., Pfft is set to the
inverse discrete fourier transform (iFFT) followed by sig-
moid clamping. A parametrization favoring low frequencies
can be obtained by scaling Fourier coefficients according to
their frequency energies before applying iFFT, denoted by
Pffte. For each parametrization Prgb, Pfft and Pffte, Grad-IFV
is applied to GN4c and DNde. Although the image quality
of the resulting realizations change notably (see Fig. 4), the
quality of predicted objectives is not influenced. In partic-
ular, results do not suffer from low image quality of FV in
case no regularizations such as transformation robustness
are used.

Lastly, we analyze the SRNet for upscaling geometry im-
ages. We parameterize the normal map by coordinates
(ϕ, θ), yet ϕ is not bound to an interval length of 2π so
that warping gradients at interval borders can be avoided.
To ensure that the z-component is positive, we restrict θ
to the interval [−π/2, π/2] by applying a sigmoid function
followed by an appropriate affine transformation. The depth
map is clamped to [0, 1] with the sigmoid function. The
binary mask is either hard-coded to be one or parameterized
continuously in the interval [−1, 1]. Note that we cannot
properly represent the mask by a discrete set of values since
this would turn the optimization problem of FV (Opt. (1))
into a mixed-integer programming problem.

When investigating the 64 filters of the 8th residual block
of SRNet, Grad-IFV always recovers the 64 sampled target
objectives accurately up to an angular distance of 5◦. We
even obtain reliable results with angular distances < 20◦,
when dropping the cosine term of the objective function.

4. Limitations & Future Work
One of our major goals is to identify convolution filters with
similar feature visualizations along different networks. Un-
der the assumption that feature visualizations carry semantic
information about what a network learns, such an approach
can eventually raise network comparison from mere signal
analysis of activations to a semantic level. IFV enables
selecting and visualizing a feature using one network first,
and then inverting the resulting realization using a second
network. This yields two features obeying the same visual-
ization and, thus, representing the same semantic concept.

In real scenarios, however, a realization that is optimal for
one network will not be so for another network. It might
not even be close to an optimum as long as the sensitivity of
the objective function to high frequencies and noise is not
reduced. In particular, Grad-IFV relies on an input that is
close to optimal, since a gradient’s magnitude, in general,
cannot reflect how distant an input is to an optimal solution
in the surrounding.

(a) (b)

Figure 4. Realizations returned by FV when parameterizing images
through (top) Prgb, (mid) Pfft and (bot) Pffte. Visualized features
stem from (a) GoogLeNet and (b) DenseNet.

Therefore, in future work we will consider to widen the
scope of objective functions to include arbitrary input priors
(such as in Mahendran & Vedaldi (2015) or Nguyen et al.
(2016)). Furthermore, we intend to integrate concepts that
facilitate the processing of visualizations that are robust w.r.t.
transformations (Olah et al., 2017). Both, input priors and
transformation robustness, are key techniques to generate
consistent and interpretable visualizations. By considering
such techniques in IFV, we hope to achieve feature predic-
tions that are less sensitive to network variations or input
noise.

Upon resolving these issues, IFV can be used for network
comparison, to analyze learned representations of networks
trained on different datasets. Here it will be interesting to
investigate which features are shared between two networks,
and whether invariant operations on a network’s weight
space such as permuting or rescaling neurons can be recov-
ered.

5. Conclusion
We introduce the problem of identifying target objectives
under which Feature Visualization (FV) yields a certain in-
put, and propose a solution for certain types of FV objective
functions. We demonstrate that the (possibly unknown) tar-
get objective can be accurately approximated by performing
a singular value decomposition of a modified version of the
network’s Jacobian matrix. In cases where the Jacobian
matrix is ill-behaving, we identify problematic subspaces
and factor them out to obtain accurate results modulo the
reduction. In a number of experiments we investigate the
accuracy by which the target objective is recovered, and
whether the input remains stable under the predicted objec-
tive, i.e., the result truly is an inverse of FV. We observe
that different choices for layer size, aggregation and objec-
tive functions can have a significant impact on the proposed
technique. Finally, we envision future research directions to-
wards feature-based comparison of learned representations—
including assessment of the relevance of patterns for suc-
cessful network training—and the use of Inverse Feature
Visualization for network comparison.

Inverting the Feature Visualization Process for Feedforward Neural Networks

References
Bach, S., Binder, A., Montavon, G., Klauschen, F., Mller,

K.-R., and Samek, W. On pixel-wise explanations
for non-linear classifier decisions by layer-wise Rele-
vance Propagation. PLOS ONE, 10(7):1–46, 07 2015.
doi:10.1371/journal.pone.0130140.

Byrd, R. H., Lu, P., Nocedal, J., and Zhu, C. A Limited
Memory Algorithm for Bound Constrained Optimization.
SIAM Journal on Scientific Computing, 16(5):1190–1208,
1995. doi:10.1137/0916069.

Carter, S., Armstrong, Z., Schubert, L., John-
son, I., and Olah, C. Activation Atlas.
Distill, 2019. doi:10.23915/distill.00015.
https://distill.pub/2019/activation-atlas.

Erhan, D., Bengio, Y., Courville, A., and Vincent, P. Visual-
izing higher-layer features of a deep network. University
of Montreal, 1341(3):1, 2009.

Hoyer, P. O. Non-negative matrix factorization with sparse-
ness constraints. Journal of machine learning research, 5
(Nov):1457–1469, 2004.

Huang, G., Liu, Z., v. d. Maaten, L., and Weinberger,
K. Q. Densely connected convolutional networks. In
2017 IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), pp. 2261–2269, July 2017.
doi:10.1109/CVPR.2017.243.

Kingma, D. P. and Ba, J. Adam: A method for Stochas-
tic Optimization, 2014. URL https://arxiv.org/
abs/1412.6980. arXiv: 1412.6980 [cs.LG].

Knyazev, A. V. and Argentati, M. E. Principal an-
gles between subspaces in an A-based scalar product:
Algorithms and perturbation estimates. SIAM Jour-
nal on Scientific Computing, 23(6):2008–2040, 2002.
doi:10.1137/S1064827500377332.

Krizhevsky, A. Learning multiple layers of features from
Tiny Images. Technical report, University of Toronto,
2009.

Li, Y., Yosinski, J., Clune, J., Lipson, H., and Hopcroft,
J. Convergent Learning: Do different neural Networks
learn the same representations? In Storcheus, D., Ros-
tamizadeh, A., and Kumar, S. (eds.), Proceedings of the
1st International Workshop on Feature Extraction: Mod-
ern Questions and Challenges at NIPS 2015, volume 44
of Proceedings of Machine Learning Research, pp. 196–
212, Montreal, Canada, 11 Dec 2015. PMLR.

Mahendran, A. and Vedaldi, A. Understanding deep
image representations by inverting them. In 2015
IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pp. 5188–5196, June 2015.
doi:10.1109/CVPR.2015.7299155.

Mordvintsev, A., Olah, C., and Tyka, M. Inception-
ism: Going deeper into neural networks, 2015.
URL https://ai.googleblog.com/2015/06/
inceptionism-going-deeper-into-neural.
html.

Nguyen, A., Yosinski, J., and Clune, J. Deep neural net-
works are easily fooled: High confidence predictions for
unrecognizable images. In 2015 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp.
427–436, June 2015. doi:10.1109/CVPR.2015.7298640.

Nguyen, A., Dosovitskiy, A., Yosinski, J., Brox, T., and
Clune, J. Synthesizing the preferred inputs for neurons in
neural networks via Deep Generator Networks. In Lee,
D. D., Sugiyama, M., Luxburg, U. V., Guyon, I., and
Garnett, R. (eds.), Advances in Neural Information Pro-
cessing Systems 29, pp. 3387–3395. Curran Associates,
Inc., 2016.

Nguyen, A., Yosinski, J., and Clune, J. Understanding neu-
ral networks via Feature Visualization: A survey, pp. 55–
76. Springer International Publishing, Cham, 2019. ISBN
978-3-030-28954-6. doi:10.1007/978-3-030-28954-6 4.

Olah, C., Mordvintsev, A., and Schubert, L. Feature Vi-
sualization. Distill, 2017. doi:10.23915/distill.00007.
https://distill.pub/2017/feature-visualization.

Olah, C., Satyanarayan, A., Johnson, I., Carter, S., Schubert,
L., Ye, K., and Mordvintsev, A. The Building Blocks of
Interpretability. Distill, 2018. doi:10.23915/distill.00010.
https://distill.pub/2018/building-blocks.

Raghu, M., Gilmer, J., Yosinski, J., and Sohl-Dickstein, J.
SVCCA: Singular Vector Canonical Correlation Anal-
ysis for Deep Learning Dynamics and Interpretability.
In Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H.,
Fergus, R., Vishwanathan, S., and Garnett, R. (eds.), Ad-
vances in Neural Information Processing Systems 30, pp.
6076–6085. Curran Associates, Inc., 2017.

Sajjadi, M. S. M., Vemulapalli, R., and Brown,
M. Frame-Recurrent Video Super-Resolution. In
2018 IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 6626–6634, June 2018.
doi:10.1109/CVPR.2018.00693.

Simonyan, K., Vedaldi, A., and Zisserman, A. Deep inside
Convolutional Networks: Visualising Image Classifica-
tion Models and Saliency Maps, 2013. URL https:
//arxiv.org/abs/1312.6034. arXiv: 1312.6034
[cs.CV].

Inverting the Feature Visualization Process for Feedforward Neural Networks

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan,
D., Goodfellow, I., and Fergus, R. Intriguing properties of
neural networks, 2013. URL https://arxiv.org/
abs/1312.6199. arXiv: 1312.6199 [cs.CV].

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.,
Anguelov, D., Erhan, D., Vanhoucke, V., and Rabinovich,
A. Going deeper with convolutions. In Proceedings
of the IEEE conference on computer vision and pattern
recognition, pp. 1–9, 2015.

Torralba, A., Fergus, R., and Freeman, W. T. 80 Million Tiny
Images: A large data set for nonparametric object and
scene recognition. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 30(11):1958–1970, Nov 2008.
ISSN 1939-3539. doi:10.1109/TPAMI.2008.128.

Wang, L., Hu, L., Gu, J., Hu, Z., Wu, Y., He, K., and
Hopcroft, J. Towards understanding Learning Repre-
sentations: To what extent do different neural networks
learn the same representation. In Bengio, S., Wallach,
H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., and
Garnett, R. (eds.), Advances in Neural Information Pro-
cessing Systems 31, pp. 9584–9593. Curran Associates,
Inc., 2018.

Weiss, S., Chu, M., Thuerey, N., and Westermann, R.
Volumetric Isosurface Rendering with Deep Learning-
based super-resolution. IEEE Transactions on Visualiza-
tion and Computer Graphics, 2019. ISSN 2160-9306.
doi:10.1109/TVCG.2019.2956697.

Zhou Wang, Bovik, A. C., Sheikh, H. R., and Simoncelli,
E. P. Image Quality Assessment: From error visibility
to Structural Similarity. IEEE Transactions on Image
Processing, 13(4):600–612, April 2004. ISSN 1057-7149.
doi:10.1109/TIP.2003.819861.

Inverting the Feature Visualization Process for Feedforward Neural Networks
Supplementary Material

Christian Reinbold 1 Rüdiger Westermann 1

This document accompanies our paper Inverting the Feature
Visualization Process for Feedforward Neural Networks. It
contains additional material that could not be included in
the manuscript due to page restrictions. In particular, we
provide

• a mathematically rigor formulation of the transforma-
tion of∇fx (Sec. S1),

• additional details on how the target objective is sam-
pled (Sec. S2),

• visual differences in realizations when re-optimizing,

• additional results of all performed experiments
(Sec. S4).

S1. Reformulation of∇fx - Calculations
In our work, we derive the gradient ∇fx ◦ P for solving

arg min
x∈Ω

||∇(fx ◦ P)(I∗)||2.

In the following, we outline the calculations to compute
the gradient. Let us recall that fx ◦ P = Sx ◦ Ñ, where
Sx is defined as Sx(y) = xTy · (xTy/||y||)k for fixed
k ∈ N0 and Ñ is a function returning the feature response
yI for an input parametrization vI . With y := y/||y|| and
q(y) := xTy, one first obtains

∂q(y)

∂yi
=

∂
∂yi

(xTy) · ||y|| − ∂
∂yi

(||y||) · xTy
||y||2

=
xi · ||y|| − yi · xTy

||y||2 = (xi − q(y) · yi)/||y||,

1Chair of Computer Graphics and Visualization, Technical
University of Munich, Bavaria, Germany.

that is ∇q(y)T = (x − q(y) · y)/||y||. By applying the
chain rule, for k > 0 we obtain

∇Sx(y)T =
∂

∂y
(xTy · q(y)k)

= q(y)k · x + xTy · kq(y)k−1 · ∇q(y)T

= q(y)k · x + kq(y)k · (x− q(y) · y)

= (k + 1)q(y)k(x− k

k + 1
xTy · y)

= (k + 1)q(y)k(x− k

k + 1
y · yTx)

= (k + 1)q(y)k(I − k

k + 1
yyT)x

We then set

Zk(y) = Zk(y)T := Id − k/(k + 1)yyT

(as in the paper) to obtain

∇Sx(y)T = (k + 1)q(y)kZk(y)x.

Again by the chain rule, it follows that

∇(fx ◦ P)(vI) = ∇(Sx ◦ Ñ)(vI)

= ∇Sx(Ñ(vI)) DÑ(vI)

= (k + 1)q(Ñ(vI))
kxTZk(Ñ(vI)) DÑ(vI)

Denoting Ñ(vI) by yI and the Jacobian matrix DÑ(vI) by
DyI , this expression simplifies to

∇(fx ◦ P)(vI) = (k + 1)q(yI)
kxTZk(yI) DyI .

For k = 0, it holds that∇(fx ◦P)(vI) = xT DyI . Because
Z0 evaluates to the identity matrix, independently of yI , the
reformulation

arg min
x∈Ω

||xTZk(yI) DyI ||2 s.t. Zk(yI)x ∈ C (3)

is valid for k = 0 as well.

For k → ∞, the matrix Zk(yI) converges to a projection
matrix that introduces yI in the co-kernel of Zk(yI) DyI .
Hence, the solution to Opt. (3) converges to the normal-
ized feature response yI . This behavior is consistent with
the observation that the significance measure Sx pushes
the feature response closer to the feature objective x when
increasing k.

ar
X

iv
:2

00
7.

10
75

7v
1

 [
cs

.L
G

]
 2

1
Ju

l 2
02

0

Inverting the Feature Visualization Process for Feedforward Neural Networks

0.0 0.2 0.4 0.6 0.8 1.0

2 dimensions.
10 dimensions.
100 dimensions.

Figure S1. Distribution of sparsity values (obtained via the Hoyer
measure (Hoyer, 2004)) for 10,000 uniformly sampled vectors
from a sphere in 2/10/100-dimensional ambient space. A value
of zero indicates no sparseness, i.e. all components are equal,
whereas a value of one indicates a canonical vector.

Incorporating the Linear Constraint

Opt. (3) can be further simplified by integrating the linear
constraint Zk(yI)x ∈ C into the objective function via
substitution. Let CM ∈ Rnf×dimC be a matrix such that
its columns form an orthonormal basis of C. Then, x sat-
isfies the constraint in Opt. (3) iff x ∈ ImZk(y)−1CM .
Note that Zk(y)−1 = Id + k · yyT always exists by
the Sherman-Morrison formula. Since Zk(y)−1CM has
full column-rank, the singular value decomposition (SVD)
UΣV T = Zk(y)−1CM yields an orthogonal matrix U with
ImU = ImZk(y)−1CM . The substitution of x then is
given by x = Uσ, for σ ∈ RdimC with ||σ|| = 1. Opt. (3)
reduces to

arg min
||σ||=1

||σTUTZk(y) Dy||2.

S2. Sampling Strategy for Target Objectives
When selecting the target objectives, we noticed that uni-
formly sampling the nD-sphere Ω does not yield represen-
tative target objectives. Due to the curse of dimensionality,
the density of sparse target objectives, especially canonical
objectives ei representing single features, rapidly tends to 0
even for medium sizes of n (see Fig. S1). However, sparse
target objectives are usually those which are investigated in
FV. Hence, we implement a sampling strategy as follows:
First, a scalar value s in [0, 1] is sampled from a uniform
distribution. It indicates how sparse the target objective x
is supposed to be. We use the Hoyer sparseness measure
(Hoyer, 2004) to measure sparseness of x. It measures the
ratio of ||x||1 and ||x||2, and then applies an affine trans-
formation such that the smallest possible ratio of 1:1 (for
canonical vectors) maps to 1 and the largest possible ratio
of
√
n:1 (for vectors with all components being equal) maps

to 0. Second, we (uniformly) sample a random vector x0

from Ω and run curvilinear search (Wen & Yin, 2013) with
x0 as initial value to find a vector x ∈ Ω that minimizes
(hoyer(x)− s)2.

When experimenting with an optimization based approach
of finding critical spaces (which we dropped due to the lack
of reliability), we observed that introducing sampling as
above highly increases the chance of finding the global op-
timum. If target objectives are sampled uniformly from Ω,
the optimization process commonly gets stuck in a slightly
worse than globally optimal solution C∗ that does not gen-
eralize well to sparse target objectives. That is, the solution
of Opt. (3) w.r.t. the critical space C∗ matches the projected
target objective x̃ when providing a realization of a sampled
target objective, but does not so when providing a realiza-
tion to a canonical target objective ei. Since the proposed
sampling strategy helps in this regard, we utilize it in our
experiments as well to avoid potentially skewed results.

S3. Realizations and Difference maps
In our work, we commonly compare angular distances to
SSIM indices. Since SSIM is just one of many potential
measures to quantify similarity between images, we addi-
tionally provide difference maps in Fig. S2 and argue that
SSIM represents these accurately. The shown excerpt of
GoogLeNet-inception4c samples reveals that predicted
objectives mostly behave similarly to target objectives in
re-optimization, whereas feature responses introduce sig-
nificant high frequency changes of the same magnitude as
randomly picked feature vectors. Note that the outliers pro-
duced by our method also show up in the difference maps.
One is contained in the excerpt. It corresponds to a blue
outlier point of Fig. 2a in the paper that is located next to
the red cluster. We do not provide difference maps for all
experiments to keep the size of the supplementary file to
reasonable sizes. We refer to the experiment suite provided
in the source code submission for creating further imagery.

References
Hoyer, P. O. Non-negative matrix factorization with sparse-

ness constraints. Journal of machine learning research, 5
(Nov):1457–1469, 2004.

Wen, Z. and Yin, W. A feasible method for optimization
with orthogonality constraints. Mathematical Program-
ming, 142(1):397–434, Dec 2013. ISSN 1436-4646.
doi:10.1007/s10107-012-0584-1.

Inverting the Feature Visualization Process for Feedforward Neural Networks

S4. Detailed Results of Experiments
In the “Results and Evaluation” section of our manuscript we perform a number of experiments and summarize the resulting
findings. To further back up these findings, we provide several additional statistics below. For each experiment, we show the
following diagrams:

1. A stacked bar chart depicting mean contributions αj of j-th left-singular vectors—ordered by singular values—to
target objectives (details see paper).

2. A kernel density estimation (kde) plot showing the distribution of SSIM indices when re-optimizing samples w.r.t. the
target objectives. A sample is considered instable if its SSIM index drops below 0.7 (red, dashed line).

3. A bivariate plot relating angular distances to target objectives and SSIM indices when re-optimizing samples w.r.t. the
predicted objective. Triangular markers correspond to instable samples. If present, point size encodes the fraction of
the target objective that lives in the respective critical space.

The following experiments are conducted:

ID Network Features Aggregation Cos. term Param.

The Simple Case

1 GoogLeNet 512 filters, inception4c Max pooling + mean aggr. k = 2 RGB

Utilizing the Critical Space

2 DenseNet 10 neurons, classification – k = 2 RGB
3 DenseNetEx4 10 neurons, classification – k = 2 RGB
4 DenseNet 10 neurons, classification – k = 0 RGB
5 DenseNetEx4 10 neurons, classification – k = 0 RGB

Dropping the Cosine Term

6 DenseNet 32 to 342 filters, dense3 Max pooling + mean aggr. k = 0 RGB
7 GoogLeNet 32 to 512 filters, inception4c Max pooling + mean aggr. k = 0 RGB
8 DenseNet 80 filters, dense3 Max pooling + mean aggr. k = 0 RGB
9 DenseNet 80 filters, dense3 mean aggr. k = 0 RGB

10 DenseNet 80 filters, dense3 pick center neuron k = 0 RGB
11 DenseNet 32 to 342 filters, dense3 Max pooling + mean aggr. k = 2 RGB
12 GoogLeNet 32 to 512 filters, inception4c Max pooling + mean aggr. k = 2 RGB
13 DenseNet 80 filters, dense3 Max pooling + mean aggr. k = 2 RGB
14 DenseNet 80 filters, dense3 mean aggr. k = 2 RGB
15 DenseNet 80 filters, dense3 pick center neuron k = 2 RGB

Different Parameterizations

16 DenseNet 342 filters, dense3 Max pooling + mean aggr. k = 2 RGB
17 DenseNet 342 filters, dense3 Max pooling + mean aggr. k = 2 FFT
18 DenseNet 342 filters, dense3 Max pooling + mean aggr. k = 2 FFT-E
19 GoogLeNet 512 filters, inception4c Max pooling + mean aggr. k = 2 RGB
20 GoogLeNet 512 filters, inception4c Max pooling + mean aggr. k = 2 FFT
21 GoogLeNet 512 filters, inception4c Max pooling + mean aggr. k = 2 FFT-E
22 SRNet 64 filters, 8-th block Max pooling + mean aggr. k = 2 mask = 1
23 SRNet 64 filters, 8-th block Max pooling + mean aggr. k = 2 mask ∈ [−1, 1]
24 SRNet 64 filters, 8-th block Max pooling + mean aggr. k = 0 mask = 1
25 SRNet 64 filters, 8-th block Max pooling + mean aggr. k = 0 mask ∈ [−1, 1]

Inverting the Feature Visualization Process for Feedforward Neural Networks

(a)

(b)

(c)

(d)

(e)

(a)

(b)

(c)

(d)

(e)

Figure S2. (a) Excerpt of realizations for experiment (1). Difference maps obtained when re-optimizing w.r.t. (b) the target objective, (c)
the predicted objective, (d) the feature response or (e) a random feature vector. Differences are computed per pixel by taking the maximal
difference over the three RGB channels. Best viewed electronically. Note that the image has been compressed to comply with arXiv
file size constraints. Nonetheless, perceived noise and checkerboard artifacts occur in the uncompressed version as well and cannot be
ascribed to image compression.

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0 20 40 60 80
0.6

0.7

0.8

0.9

1.0

(1)

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0 20 40 60 80

0.4

0.6

0.8

1.0

(2 - trivial critical space)

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0 20 40 60 80

0.2

0.4

0.6

0.8

1.0

1.0
0.8
0.5
0.2
0.0

(2 - 9 dim. critical space)

Inverting the Feature Visualization Process for Feedforward Neural Networks

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0 20 40 60 80

0.2

0.4

0.6

0.8

1.0

(3 - trivial critical space)

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0 20 40 60 80
0.2

0.4

0.6

0.8

1.0

1.0
0.8
0.5
0.2
0.0

(3 - 9 dim. critical space)

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0 20 40 60 80

0.2

0.4

0.6

0.8

1.0

1.0
0.8
0.5
0.2
0.0

(3 - 8 dim. critical space)

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0 20 40 60 80

0.4

0.6

0.8

1.0

(4 - trivial critical space)

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0 20 40 60 80

0.4

0.6

0.8

1.0

1.0
0.8
0.5
0.2
0.0

(4 - 9 dim. critical space)

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0 20 40 60 80
0.2

0.4

0.6

0.8

1.0

(5 - trivial critical space)

Inverting the Feature Visualization Process for Feedforward Neural Networks

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0 20 40 60 80

0.4

0.6

0.8

1.0

1.0
0.8
0.5
0.2
0.0

(5 - 9 dim. critical space)

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0 20 40 60 80
0.2

0.4

0.6

0.8

1.0

1.0
0.8
0.5
0.2
0.0

(5 - 8 dim. critical space)

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0 20 40 60 80
0.90

0.92

0.94

0.96

0.98

1.00

(6 - 32 filters)

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0 20 40 60 80
0.80

0.85

0.90

0.95

1.00

(6 - 64 filters)

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0 20 40 60 80
0.80

0.85

0.90

0.95

1.00

(6 - 96 filters)

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0 20 40 60 80
0.90

0.92

0.94

0.96

0.98

1.00

(6 - 128 filters)

Inverting the Feature Visualization Process for Feedforward Neural Networks

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0 20 40 60 80
0.80

0.85

0.90

0.95

1.00

(6 - 160 filters)

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0 20 40 60 80
0.5

0.6

0.7

0.8

0.9

1.0

(6 - 192 filters)

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0 20 40 60 80
0.5

0.6

0.7

0.8

0.9

1.0

(6 - 224 filters)

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0 20 40 60 80
0.4

0.5

0.6

0.7

0.8

0.9

1.0

(6 - 256 filters)

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0 20 40 60 80

0.4

0.6

0.8

1.0

(6 - 288 filters)

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0 20 40 60 80
0.4

0.5

0.6

0.7

0.8

0.9

1.0

(6 - 320 filters)

Inverting the Feature Visualization Process for Feedforward Neural Networks

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0 20 40 60 80

0.4

0.6

0.8

1.0

(6 - 342 filters)

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0 20 40 60 80
0.90

0.92

0.94

0.96

0.98

1.00

(7 - 32 filters)

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0 20 40 60 80
0.90

0.92

0.94

0.96

0.98

1.00

(7 - 64 filters)

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0 20 40 60 80
0.7

0.8

0.9

1.0

(7 - 96 filters)

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0 20 40 60 80
0.7

0.8

0.9

1.0

(7 - 128 filters)

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0 20 40 60 80
0.6

0.7

0.8

0.9

1.0

(7 - 160 filters)

Inverting the Feature Visualization Process for Feedforward Neural Networks

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0 20 40 60 80
0.5

0.6

0.7

0.8

0.9

1.0

(7 - 192 filters)

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0 20 40 60 80
0.7

0.8

0.9

1.0

(7 - 224 filters)

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0 20 40 60 80
0.7

0.8

0.9

1.0

(7 - 256 filters)

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0 20 40 60 80
0.7

0.8

0.9

1.0

(7 - 288 filters)

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0 20 40 60 80
0.7

0.8

0.9

1.0

(7 - 320 filters)

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0 20 40 60 80
0.6

0.7

0.8

0.9

1.0

(7 - 352 filters)

Inverting the Feature Visualization Process for Feedforward Neural Networks

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0 20 40 60 80
0.7

0.8

0.9

1.0

(7 - 384 filters)

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0 20 40 60 80
0.6

0.7

0.8

0.9

1.0

(7 - 416 filters)

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0 20 40 60 80
0.6

0.7

0.8

0.9

1.0

(7 - 448 filters)

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0 20 40 60 80
0.6

0.7

0.8

0.9

1.0

(7 - 480 filters)

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0 20 40 60 80
0.6

0.7

0.8

0.9

1.0

(7 - 512 filters)

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0 20 40 60 80
0.80

0.85

0.90

0.95

1.00

(8)

Inverting the Feature Visualization Process for Feedforward Neural Networks

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0 20 40 60 80

0.2

0.4

0.6

0.8

1.0

(9)

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0 20 40 60 80

0.2

0.4

0.6

0.8

1.0

(10)

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0 20 40 60 80
0.90

0.92

0.94

0.96

0.98

1.00

(11 - 32 filters)

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0 20 40 60 80
0.90

0.92

0.94

0.96

0.98

1.00

(11 - 64 filters)

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0 20 40 60 80
0.80

0.85

0.90

0.95

1.00

(11 - 96 filters)

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0 20 40 60 80
0.90

0.92

0.94

0.96

0.98

1.00

(11 - 128 filters)

Inverting the Feature Visualization Process for Feedforward Neural Networks

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0 20 40 60 80
0.90

0.92

0.94

0.96

0.98

1.00

(11 - 160 filters)

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0 20 40 60 80
0.80

0.85

0.90

0.95

1.00

(11 - 192 filters)

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0 20 40 60 80
0.90

0.92

0.94

0.96

0.98

1.00

(11 - 224 filters)

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0 20 40 60 80
0.80

0.85

0.90

0.95

1.00

(11 - 256 filters)

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0 20 40 60 80
0.90

0.92

0.94

0.96

0.98

1.00

(11 - 288 filters)

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0 20 40 60 80
0.80

0.85

0.90

0.95

1.00

(11 - 320 filters)

Inverting the Feature Visualization Process for Feedforward Neural Networks

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0 20 40 60 80
0.90

0.92

0.94

0.96

0.98

1.00

(11 - 342 filters)

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0 20 40 60 80
0.90

0.92

0.94

0.96

0.98

1.00

(12 - 32 filters)

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0 20 40 60 80
0.90

0.92

0.94

0.96

0.98

1.00

(12 - 64 filters)

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0 20 40 60 80
0.90

0.92

0.94

0.96

0.98

1.00

(12 - 96 filters)

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0 20 40 60 80
0.90

0.92

0.94

0.96

0.98

1.00

(12 - 128 filters)

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0 20 40 60 80
0.90

0.92

0.94

0.96

0.98

1.00

(12 - 160 filters)

Inverting the Feature Visualization Process for Feedforward Neural Networks

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0 20 40 60 80
0.90

0.92

0.94

0.96

0.98

1.00

(12 - 192 filters)

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0 20 40 60 80
0.90

0.92

0.94

0.96

0.98

1.00

(12 - 224 filters)

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0 20 40 60 80
0.90

0.92

0.94

0.96

0.98

1.00

(12 - 256 filters)

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0 20 40 60 80
0.90

0.92

0.94

0.96

0.98

1.00

(12 - 288 filters)

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0 20 40 60 80
0.90

0.92

0.94

0.96

0.98

1.00

(12 - 320 filters)

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0 20 40 60 80
0.90

0.92

0.94

0.96

0.98

1.00

(12 - 352 filters)

Inverting the Feature Visualization Process for Feedforward Neural Networks

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0 20 40 60 80
0.90

0.92

0.94

0.96

0.98

1.00

(12 - 384 filters)

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0 20 40 60 80
0.90

0.92

0.94

0.96

0.98

1.00

(12 - 416 filters)

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0 20 40 60 80
0.90

0.92

0.94

0.96

0.98

1.00

(12 - 448 filters)

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0 20 40 60 80
0.6

0.7

0.8

0.9

1.0

(12 - 480 filters)

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0 20 40 60 80
0.90

0.92

0.94

0.96

0.98

1.00

(12 - 512 filters)

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0 20 40 60 80
0.90

0.92

0.94

0.96

0.98

1.00

(13)

Inverting the Feature Visualization Process for Feedforward Neural Networks

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0 20 40 60 80
0.90

0.92

0.94

0.96

0.98

1.00

(14)

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0 20 40 60 80
0.80

0.85

0.90

0.95

1.00

(15)

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0 20 40 60 80
0.4

0.5

0.6

0.7

0.8

0.9

1.0

(16)

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0 20 40 60 80
0.4

0.5

0.6

0.7

0.8

0.9

1.0

(17)

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0 20 40 60 80

0.4

0.6

0.8

1.0

(18)

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0 20 40 60 80
0.90

0.92

0.94

0.96

0.98

1.00

(19)

Inverting the Feature Visualization Process for Feedforward Neural Networks

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0 20 40 60 80
0.90

0.92

0.94

0.96

0.98

1.00

(20)

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0 20 40 60 80
0.90

0.92

0.94

0.96

0.98

1.00

(21)

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0 20 40 60 80
0.90

0.92

0.94

0.96

0.98

1.00

(22)

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0 20 40 60 80
0.90

0.92

0.94

0.96

0.98

1.00

(23)

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0 20 40 60 80
0.80

0.85

0.90

0.95

1.00

(24)

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0 20 40 60 80
0.80

0.85

0.90

0.95

1.00

(25)

	Abstract
	Zusammenfassung
	Acknowledgments
	Introduction
	Contributions
	List of Publications
	Outline

	Related Work
	Summed-Volume Tables
	Voronoi Diagrams
	Dimensionality Reduction
	Neural Scene Representations
	Level of Detail
	Adaptive Super-Sampling
	Explainable Artifical Intelligence

	Parameterized Splitting of Summed Volume Tables
	SVT Split Operation
	Properties of the Data Structure
	Heuristic for Building Parameter Trees
	Addendum to the Paper
	Alternative Representations of Summed-Volume Tables

	Visualizing the Stability of 2D Point Sets from Dimensionality Reduction Techniques
	Dimensionality Reduction
	Voronoi Diagrams
	Clustering
	Matrix Seriation
	PageRank
	Robustness Plots
	Representative Point Sets

	Deep Learning
	Training
	Neural Network Architectures

	Learning Generic Local Shape Properties for Adaptive Super-Sampling
	Sparse Voxel Octrees & Level of Detail
	PatchNet
	Derivation of the Super-Sampling Pattern

	Inverting the Feature Visualization Process for Feedforward Neural Networks
	Inverse Feature Visualization
	Gradient-Based Inverse Feature Visualization

	Summary of Papers
	Parameterized Splitting of Summed Volume Tables
	Visualizing the Stability of 2D Point Sets from Dimensionality Reduction Techniques
	Learning Generic Local Shape Properties for Adaptive Super-Sampling
	Inverting the Feature Visualization Process for Feedforward Neural Networks

	Conclusion
	Bibliography
	Published version of Paper A
	Published version of Paper B
	Published version of Paper C
	Version of Paper D as hosted on arXiv.org

