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A B S T R A C T

Building functions play a crucial role in urban planning, population
density estimation, and risk assessments of natural disasters. While
building functions are available in developed countries, the Global
South often lacks this data. Even if land use maps are created, they are
outdated within a few years due to the fast pace of urban development.

The default way of creating these maps is by conducting a field
study. However, manual labor is not feasible for keeping the maps
up-to-date in fast-growing urban areas. Thus, automated approaches
using other data sources are necessary. At the same time, social media
and remote sensing data are big data sources at almost no cost. They
offer complementary perspectives: One from a ground level and one
from a bird’s eye view. Moreover, both data sources are continuous
data streams providing up-to-date information.

This thesis explores four different, new methods using Google Street
View (GSV), social media, and remote sensing data for building func-
tion classification. It aims at generalizable models, and thus, each
method builds upon culturally diverse datasets. Moreover, the meth-
ods are evaluated on a subset of buildings with human-validated
labels. Finally, they are used in a combined way to improve individual
prediction performances. The four approaches for predicting building
functions are

1. Predicting building functions based on façade-oriented GSV im-
ages

2. Extracting building façade images from big social media image
dataset and aligning them with the spatial surrounding

3. Creating spatio-temporal features from social media metadata
and using their inherent patterns

4. Building an aerial image dataset and using this for predicting

The first approach uses state-of-the-art deep learning architectures
for image classification to predict building functions with street-level
imagery. Subsequently, the second approach describes a computa-
tionally efficient filtering pipeline for extracting suitable images from
large-scale social media datasets. The pipeline identifies photos of
building façades in big image datasets and aligns them spatially with
surrounding buildings. The pipeline is evaluated on a culturally di-
verse dataset with 28 million social media images, and its results
are compared to human-validated labels. Third, the thesis introduces
a social media metadata approach that predicts building functions
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solely based on spatio-temporal features of social media posts. Third,
it demonstrates the results of pure aerial models on the given task
and finally analyzes fusion strategies for combining aerial and social
media-based models. Given a high label quality, the fusion of social
media images and aerial images improves individual results by up to
10.9 %.
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Z U S A M M E N FA S S U N G

Das Wissen über Gebäudefunktionen spielt sowohl in der Städtepla-
nung, bei der Schätzung von Einwohnerzahlen sowie bei der Risi-
koanalyse von Naturkatastrophen eine zentrale Rolle. Aufgrund der
Urbanisierung insbesondere im globalen Süden sind Karten über die
Landnutzung jedoch schnell veraltet, falls sie überhaupt exisitieren.

Gleichzeitig ist die manuelle Kartierung der Landnutzung mittels
Feldstudien sehr aufwändig, so dass automatisierte Verfahren unter
Verwendung von alternativen Datenquellen notwendig sind. Parallel
dazu haben sich die Daten aus sozialen Medien und der Fernerkun-
dung zu unerschöpflichen Quellen entwickelt, die mit geringen Kosten
genutzt werden können. Die beiden Datenquellen haben darüber hin-
aus den Vorteil, dass sie gegensätzliche Perspektiven widerspiegeln:
die eine betrachtet direkt vom Boden aus und die andere aus der
Vogelperspektive. Zudem bieten beide Quellen einen kontinuierlichen
Datenstrom, der jederzeit aktuelle Informationen liefert.

Diese Arbeit beschäftigt sich mit der Vorhersage von Gebäude-
funktionen durch die Kombination von Daten aus sozialen Medien
und der Fernerkundung. Dafür werden vier neue, unterschiedliche
Vorhersagemethoden vorgestellt, die auf Bildern aus Google Street
View (GSV), Bildern und Nachrichten aus sozialen Medien sowie Fer-
nerkundungsdaten basieren. Bei der Entwicklung stand eine weltweite
Anwendbarkeit im Zentrum, weswegen die Methoden auf Datensät-
zen mit globaler Verteilung entwickelt wurden. Desweiteren findet
die Evaluation der Ansätze auf einem Anteil der Gebäude statt, deren
Funktion manuell verifiziert wurde. Nach der Vorstellung der einzel-
nen Methoden werden diese zum Schluss miteinander kombiniert, um
die Vorhersagegenauigkeit weiter zu erhöhen.

Die vier Ansätze zur Vorhersage von Gebäudefunktionen sind wie
folgt:

1. Die Vorhersage von Gebäudefunktionen basierend auf Google
Street View (GSV) Fassadenbildern

2. Die Extraktion von Gebäudefassadenbildern aus großen Bildda-
tensätzen und deren Verknüpfung mit der räumlichen Umge-
bung

3. Die Erstellung von räumlichen und zeitlichen Merkmalen aus
den Metadaten von Nachrichten aus sozialen Medien und der
Mustererkennung in diesen Merkmalen

4. Der Aufbau eines Datensatzes mit Luftbildern und dessen Ver-
wendung zur Vorhersage von Gebäudefunktionen
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Die erste Methode verwendet für die Vorhersage der Gebäudefunk-
tionen aktuelle Ansätze aus dem Bereich der künstlichen Intelligenz
in Kombination mit Fassadenbildern von GSV.

Darauf aufbauendend stellt der zweite Ansatz einen effizienten
Algorithmus zur Extraktion von Fassadenbildern aus großen Bild-
datensätzen von sozialen Medien vor. Dazu muss ein Bild sowohl
eine Gebäudefassade zeigen als auch Positions- und Kompassdaten
enthalten, um die dargestellten Gebäude mit Kartendaten verknüpfen
zu können. Dieser Algorithmus wird auf einem global diversifizier-
ten Datensatz von 28 Millionen Bildern evaluiert. Zusätzlich wurde
ein Teil der Bilder und deren Gebäude durch menschliche Experten
verifiziert.

Die dritte Methode basiert auf den Metadaten von Nachrichten aus
sozialen Medien und erstellt daraus räumliche und zeitliche Merkma-
le. Mittels maschinellem Lernen werden daraus die Funktionen der
umliegenden Gebäude vorhergesagt.

Für die vierte Methode werden Luftbilder der Gebäude verwendet
und analog zu der Vorgehensweise der ersten Methode passende Deep
Learning Modelle trainiert.

Nach der individuellen Analyse der einzelnen Methoden werden
diese am Ende der Arbeit kombiniert, um die Vorhersagen weiter zu
verbessern. Durch die Kombination der vorgestellten Methoden lassen
sich auf dem validierten Datensatz die Vorhersagen um bis zu 10,9 %
verbessern.
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If I have seen further it is by standing on the shoulders of Giants

— Sir Isaac Newton, Letter to Robert Hooke, 1676
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Part I

I N T R O D U C T I O N

Die Erkenntnis der Städte ist an die Entzifferung
ihrer traumhaft hingesagten Bilder geknüpft.

— siegfried kracauer





1
I N T R O D U C T I O N

Urbanization is a global, demographic megatrend transforming our
planet [9]. Back in 1950, 30 % of the world population lived in urban
areas, with the majority of 70 % of people living in rural areas [10]
(Figure 1.1). In the following 58 years, this fraction changed entirely,
and in 2018 55 % of all people worldwide lived in urban areas. This
trend will continue so that current predictions of the UN see 68 %
of the global population living in urban environments by 2050. This
trend will primarily affect metropolitan areas in emerging countries.
Since cities are a place of education and innovation [11], the UN sees
urbanization as a positive development requiring active management
and support [12].
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Figure 1.1: Urban and rural population growth from 1950 to 2050, predicted
in 2018 by the UN for development groups. Data from [10]

1.1 motivation

With more and more people moving into urban areas, new dwellings
are needed together with appropriate commercial and civic infrastruc-
ture like retail stores, schools, and hospitals—especially fast-growing
metropolitan areas in the Global South struggle with the pace of urban
development. For example, Mumbai’s population skyrocketed from
9 million inhabitants in 1980 to 20 million in 2020 [13]. A structured
urban development requires detailed knowledge of where people live,

3
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where they work, and what infrastructure they can access. The im-
portance of this issue is highlighted by the Sustainable Development
Goal (SDG) 11 of the UN: “Make cities and human settlements inclu-
sive, safe, resilient, and sustainable” ([14]). A part of this in-depth
knowledge is the function of the buildings in a city. Connecting the
knowledge, where people live, and what infrastructure they have
access to enables urban planners to estimate current and future de-
mands and manage urban development. Moreover, maps of building
functions allow more fine-grained population density estimation and
can play a vital role in natural hazard risk assessments and disaster
management.

This thesis presents new methods to predict building functions using
geotagged social media and remote sensing data. Building functions
are the most fine-grained level of urban land use in geosciences. In
contrast to land cover, which is based on direct observation, land use
“requires socio-economic interpretation of the activities that take place
on that surface” ([15]). Hence, land use is not directly measurable but
is a subject of pattern recognition. Performing this task on a building
instance level is challenging as buildings are tiny from an urban spatial
perspective, and their function can be hard to estimate from an outside
view. Additionally, buildings can serve multiple functions in dense
urban areas. Outside of the city centers in the suburban areas, there are
functionally more homogeneous neighborhoods that exhibit distinctive
patterns from a street-view [16] and an aerial perspective [17]. Thus,
land use classification schemes [18, 19] are all simplifications of the
real world.

Figure 1.2: Example of an aerial image in Los Angeles, USA. One building
at 11964 Kiowa Ave is highlighted with a red rectangle. Aerial
image © Google Maps and their suppliers

Figure 1.2 illustrates these cases: while the single-detached houses
on the left side are residential buildings, the roofs of the buildings on
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the right side do not provide any hint of their function. The ample
parking space on the bottom right might indicate commercial activ-
ity in this area. Since the ambiguities in the aerial image cannot be
resolved from this perspective, additional information is necessary.
Figure 1.3 shows two examples of data sources that can provide differ-
ent insights: a GSV image centered on the building façade (Figure 1.3a)
and a geotagged photography from Flickr, a social media platform
(Figure 1.3b). The façade image depicts windows with curtains and a
sign reading for rent. Furthermore, there is no other sign advertising
any commercial activity. For a human, these are strong indications
for a residential building. Figure 1.3b shows the kitchen of an empty
apartment, probably taken during a flat viewing. In combination,
both sources provide strong evidence that the building highlighted in
Figure 1.2 is a residential building.

(a) Example of a GSV image showing the
building highlighted in Figure 1.2. ©
Google Maps

(b) Example of a geotagged social media
photo taken inside the building high-
lighted in Figure 1.2. Walkthrough ©
by Jeremiah LaRose

Figure 1.3: Examples of images from additional data sources showing differ-
ent perspectives of the building highlighted in Figure 1.2

While each modality for itself can only provide weak hints, the
fusion of different data sources can resolve these ambiguities. Possible
data sources include, but are not limited to, aerial [20] and satellite
imagery [21], street-level imagery [16], social media text messages [22],
social media images [23], social media metadata [24], Point of Interest
(POI) data [25], and mobile phone cell tower data [26].

However, not every data source is freely and openly available glob-
ally. Since this thesis aims at generalizable methods, the data must be
sampled from worldwide distribution. The widespread usage of social
media platforms and the open access to remote sensing data make
them suitable data sources and allow for combining complementary
perspectives.

1.2 problem statement and objectives

In summary, there are five challenges involved when developing
building function classification methods:

https://www.flickr.com/photos/jeremiahlarosephotos/27171070698
https://www.flickr.com/photos/jeremiahlarosephotos/
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1. Buildings are tiny objects from a global perspective, even within
a city

2. Building functions cannot be directly measured but require the
interpretation of patterns

3. Buildings with one function have a highly diverse appearance
across cultures and partly even within cultures

4. Buildings can have multiple functions at the same time on dif-
ferent stories or parts, and these functions are subject to change
over time

5. Classification schemes for building functions are always incom-
plete as it is impossible to capture all possible variations and
combinations of classes worldwide

This thesis proposes four methods to predict building functions
based on different data sources: Street-level imagery from commercial
providers, geotagged street-level imagery from social media image
platforms, metadata of geotagged social media posts, and aerial im-
ages. Each method is presented individually in the first place and
finally combined for improved predictions. Throughout the work, the
second challenge is handled by using state-of-the-art machine learning
methods that mimic human perception and detect latent patterns in
structured data. The methods proposed in this thesis are developed
with a globally diverse dataset and thoroughly analyzed in different
cultural domains. The thesis builds upon a simple, yet globally ap-
plicable building classification scheme of three classes: Commercial,
residential, and other, which are a subset of the built-up land use classes
proposed by Theobald et al. [19]. For example, commercial buildings
include shopping malls, gas stations, industrial sites, and hotels. Res-
idential buildings are, for example, single-detached houses, terraced
houses, or apartment buildings. All buildings that do not belong to
one of these two classes are categorized as other, e. g. hospitals, schools,
and town halls. This classification scheme allows estimating popu-
lation densities at a fine-grained level by focusing on the residential
buildings [27] and enables estimations on access and demand of public
infrastructure [28]. Moreover, these classes play a crucial role in risk
assessments of natural desasters [29].

1.3 structure of the thesis

While this chapter introduced the task of building function classifi-
cation, its challenges, and the thesis’ objectives, the next Chapter 2

provides background information that helps in understanding the
principles of Earth Observation (EO) and deep learning. Equipped
with this knowledge, Chapter 3 gives an overview of related work
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in the fields of social media analysis, remote sensing for urban land
use, and the fusion of these two subjects. Chapter 4 introduces the
data sources used to build datasets with global coverage. Then four
methodological chapters propose different methods to generate build-
ing function predictions from the datasets mentioned above. Chapter 5

describes a method that uses GSV images. Chapter 6 extends this ap-
proach by introducing a filtering algorithm for social media images
that show similar content as GSV images and compares the results
with the previous chapter. The subsequent Chapter 7 analyzes the
suitability of social media metadata for predicting building functions.
The fourth methodology in Chapter 8 utilizes remote sensing data for
the same task. Chapter 9 analyzes how the individual results from the
different methodologies can be combined to improve the final results.
Finally, Chapter 10 concludes the methods, results, and findings to
discuss opportunities for further research.





Part II

F U N D A M E N TA L S

In God we trust,
all others must bring data

— w. edwards deming





2
F U N D A M E N TA L S

This chapter provides an overview of all methods used in this thesis.
It starts with a basic introduction to Earth Observation (EO) principles
and describes how EO data can be processed with a technique called
deep learning.

2.1 introduction to earth observation

Earth Observation (EO) is often seen as a synonym for remote sensing,
but this does not cover the whole picture. Remote sensing is a part
of EO, while the term itself refers to a much broader field. The Group
on Earth Observations (GEO) defines it as “Earth observations are
data and information collected about our planet, whether atmospheric,
oceanic or terrestrial. This definition includes remotely-sensed data as
well as ground-based or in situ data.” ([30]) Hence, EO data includes
remote sensing data, commercial street-level imagery, and social media
data. This section provides a brief overview of core technologies that
are used across the different parts of EO. It starts with remote sensing
and transfers the concept to ground-level imagery.

1

2 3

Figure 2.1: Concepts of remote sensing with airborne (1) and satellite plat-
forms (2,3) from a vertical (2) and an oblique perspective (1, 3) as
well as active (3) and passive sensors (1, 2)

“In an environmental context, remote sensing typically refers to
technologies for recording electromagnetic energy that emanates from
areas or objects on (or in) the Earth’s land surface, oceans, or at-
mosphere” ([31]). Figure 2.1 illustrates different concepts of remote

11
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sensing. Electromagnetic energy can have its source with the sensor
(satellite 3), the sun (satellite 2 and airplane 1), or other sources. The
first case is an active sensor, while the latter is called a passive sensor.
Examples of active sensors are radar satellites that emit a radar signal
like Sentinel-1 [32] and lidar sensors mounted on airplanes. Both emit
an electromagnetic signal and capture their reflectance from the Earth.
Passive sensors observe the electromagnetic signals reflected or emit-
ted by the Earth. An example is an optical satellite with a camera like
Sentinel-2 [33] or the nighttime lights capturing where light signals
are emitted during the night, for example, VIIRS DNB [34]. Moreover,
the sensor can be mounted on different platforms: a satellite like (2)
and (3) or an airplane (1). Satellite platforms have the advantage of
low maintenance effort once deployed in space but yield lower-quality
imagery. In contrast, capturing aerial imagery requires manual flights
with airplanes but results in high-quality images. A third aspect is the
perspective of the sensor. For example, the airplane (1) in Figure 2.1
has a sensor with an oblique view, looking at approximately 45° de-
grees ahead. Satellites (2) have a vertical view with a perpendicular
angle to the ground. This view is also referred to as the nadir view.

At their core, remote sensing data are digital products similar to
digital images consisting of single pixels. It is a two-dimensional array
with numerical values from a computer science perspective. However,
this array has a particular property: It is georeferenced. Every pixel is
associated with a defined area in a geographical coordinate system al-
lowing mappings to the Earth’s surface. The area covered by a pixel is
called spatial resolution or Ground Sample Distance (GSD). The higher
the spatial resolution, the smaller the area covered by a pixel, and
the better objects can be distinguished. While open satellite imagery
achieves a GSD of up to 10 m [33], freely available aerial imagery taken
by airplanes yields up to 0.1 m GSD [35]. Beyond the spatial resolution,
there are three other resolutions of remote sensing data: temporal,
spectral, and radiometric. The temporal resolution defines how much
time is between two observations of the same area. This resolution is
also referred to as the revisit period in terms of satellites. The spectral
resolution denotes which electromagnetic wavelengths the sensor cap-
tures. Figure 2.2a shows the spectral response functions in visible and
near-infrared bands for the Sentinel-2A and the Landsat-8 satellites.
Last but not least, the sensor’s sensitivity is called the radiometric res-
olution. It denotes the smallest differences in electromagnetic intensity
that the sensor can detect and is denoted in binary bit-depth [36]. As
sensors in remote sensing are carefully engineered and calibrated, the
pixel values of these data are reliable physical measurements of the
Earth’s surface.

Compared with other EO data like social media images, remote
sensing data is highly structured with well-known properties. Fig-
ure 2.2 illustrates the difference between satellite sensors (Figure 2.2a)
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(a) approximately equivalent Sentinel-2A
MSI (solid lines) and Landsat-8 OLI
(dashed lines) [37]

(b) Relative spectral sensitivity functions
of the 20 mobile phone cameras [38]

Figure 2.2: Relative spectral response functions for satellite sensors and mo-
bile phone camera sensors

and smartphone camera sensors (Figure 2.2b). While the response
functions of the satellite sensors are clearly separated with clear signal
edges, the smartphone functions intersect with each other and are not
separated. Furthermore, they show a high variance between different
devices. However, these optical satellites and smartphones have in
common that they capture imagery in three visible channels red, green,
and blue (RGB). Other resolution aspects are also subject to change:
the image quality can differ depending on the mobile device. The
manufacturers optimize their devices to create visually appealing pho-
tos rather than physically correct representations of reality. Moreover,
there is no direct comparison in spatial resolution: Although many
smartphones are equipped with a GPS sensor for positioning, they
have limited accuracy and precision.

Moreover, the signal from a GPS sensor specifies the position of the
devices while taking a photo, but that is not sufficient for aligning
image content with a geographical coordinate system. Only a combi-
nation of camera position and compass direction allows for relating
the image content with spatial entities. From a temporal perspective,
it depends on the users: while touristic hotspots have a high revisit
period, other remote areas are never captured in a photo.

Commercial street-level imagery platforms are in between these two
extreme cases. Providers like Google Street View (GSV) have developed
dedicated devices for capturing street view photos. Hence, the camera
sensors have similar properties to satellite sensors: They use industry-
quality cameras with known properties to take 360-degree images and
have high-precision GPS sensors to align them with maps. However,
their limiting factor is the manual process involving a human driver
during the creation process. With this limit, the temporal resolution
is up to the services provider, who decides when which location is
covered.
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Nevertheless, the ground-level perspective covers details that are
not visible from a remote-sensing perspective. Together with their
global abundance, these details make them a complementary source
to remote sensing and allow a richer landscape of EO products. Almost
all EO data sources in this thesis generate RGB images. They can be
analyzed with deep learning, a technology briefly presented in the
next section.

2.2 deep learning in computer vision

Computer vision aims to interpret the input from cameras similar to
human perception. While this task is easy for humans and requires no
effort, it is extremely challenging for computers. Daniel Kahnemann
describes it as System 1, which acts fast, instinctive, and emotion-
ally [39]. However, perceptional tasks have been studied for decades
with little progress as researchers tried to build systems-based low-
level features like edge [40] and corner [41] detection. This changed
when CNNs became computationally feasible with Graphics Processing
Units (GPUs) that calculates matrix operations massively parallelized.
A milestone in this development is a CNN called AlexNet [42], which
won the ILSVRC-2012 competition on image classification with a top-5
test error rate of 15.3 %, whereas the second-best achieved 26.2 %.
This network with 60 million parameters has 650,000 neurons dis-
tributed among eight layers. Although neural networks have been
a very well-established technique at this time, the number of layers
and parameters was unprecedented and coined the terminology deep
learning, a variant of machine learning. This section introduces the
basic principles of machine learning, discusses how such algorithms
are evaluated, and briefly presents the networks used in this thesis.

2.2.1 Principles of Supervised Machine Learning

Machine learning has three subdisciplines: supervised machine learn-
ing, unsupervised machine learning, and reinforcement learning. As
this thesis aims at building function classification with three classes,
commercial, other, and residential, it is in the domain of supervised
machine learning. The building functions are already known, and the
task is to find a function that maps the input data to one of these
classes. This task is called learning because there is a set of input data
that contains the class label for each input sample. As the function is
created with algorithms based on this set, it is referred to as machine
learning. Mitchell defines it more formally as follows: “A computer
program is said to learn from experience E concerning some class of
tasks T and performance measure P, if its performance at tasks in T ,
as measured by P, improves with experience E .” ([43])



2.2 deep learning in computer vision 15

As this definition is very general, this subsection illustrates its
meaning for this thesis on building function classification. The task
T is a classification problem, which means that the result needs to be
categorical and stand for one of the three classes. Given some input
data x ∈ Rn, the classification function f(x) = y : Rn → {0, 1, 2} maps
x to a building function class that is numerically represented by its
index y ∈ {0, 1, 2}. An alternative representation is the so-called one-
hot-encoding with a vector that contains a 1 and all other values are
zero. For example, an other building can be encoded as y = [0, 1, 0].
This representation can be seen as a probability distribution. The
experience E is packed as a dataset containing samples and their label.
A set of images with labels shapes the dataset and is seen as the
experience E. Finally, the performance measure P allows calculating a
metric of how many samples are correctly assigned to their label. As
machine learning focuses on improving the function f, the algorithm
needs to learn from its errors. Therefore, the performance measure
is often called error rate or loss. For classification tasks with classes
C, the categorical cross-entropy loss LCE is usually employed and
also applied in this thesis for all classification algorithms. It has its
foundations in information theory and compares two probability
distributions: the predicted one ŷ and the true one y:

LCE(y, ŷ) = −
∑
c∈C

yc log ŷc (2.1)

More formally, the objective of every machine learning algorithm
is to minimize the error or loss. As an analytical solution to this
optimization problem is not feasible, different algorithms iteratively
minimize the loss.

2.2.2 Supervised Deep Learning

Deep learning is inspired by the way animals process information
and make decisions. Their nervous system consists of a network of
connected cells that process information from sensors like eyes or
antennae and decide how muscles are used to survive in complex
environments. Deep learning has its roots in the research of neural
networks, which were first described in the 1940s [44]. These networks
consist of single units mimicking the cell that pass on a signal if ac-
tivated. Like a biological cell, the decision if a signal is forwarded
should be based on adaption to the real world. Today’s deep learning
algorithms still build upon this principle. The following paragraphs
provide a coarse intuition of the mechanisms. A more formal descrip-
tion can be found in Goodfellow et al. [45].

This adaption to the real world is an iterative process in which
small parts of the training data are used to predict with a randomly
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initialized network. Afterward, the loss function calculates the error
between the prediction and the actual ground truth. The next step is
called backpropagation: The influence of each network part on the er-
ror is calculated and slightly changed so that the error in the following
prediction phase is lower than before. However, a different part of the
training data is used in this phase, and the process starts again. This
principle of making forward and backward passes while moderately
changing the network to adapt to the data is called Stochastic Gradient
Descent (SGD). The rate of change is known as the learning rate. This
iterative optimization process operates in a high-dimensional space
and finds a minimum of the loss function given the weights. However,
the SGD algorithm is prone to end in a local minimum, which can
be improved by adding momentum. Adam [46] is an optimization
algorithm with momentum by adaptively estimating first-order and
second-order moments.

In the first neural networks, each network unit was connected to
each unit of the previous layer. This kind of layer still exists and is
called a dense or fully connected layer. Due to their many connections,
networks with multiple dense layers can theoretically approximate
any function; they are universal function approximators [47]. How-
ever, they are hard to train in practice, especially when the data has
spatial correlations. LeCun et al. solved this problem by introducing
convolutional layers [48]. They contain multiple convolution filters
with trained parameters and are mostly used for image processing.
For example, a convolutional filter can extract features like edges or
corners in an image. Other layer types are batch normalization, which
is used for re-scaling intermediate values in networks, and pooling
layers, which aggregate values from convolutional layers and act as a
dimensionality reduction mechanism.

The terminology in this field can be puzzling, as several terms de-
scribe different aspects of neural networks: a neural network contains
different layers, and the arrangement of these layers is referred to as
architecture. An architecture can be used for different tasks which
depend on the training dataset. An instance of an architecture trained
for a specific task is called a model.

2.2.3 Evaluation of Classification Algorithms

After training an architecture on a dataset, the final loss gives the
first indication of how well a model performs for a task. However, for
practical use of a model, one needs to know what the performance is
on unseen data. Therefore, the dataset with labels is split into training
and test sets. The first is used only for training, while the second is
never used for training and is only applied when the model is finished.
In this second step, the model predicts the test data, and the resulting
predictions are compared with the actual labels.
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For classification problems, this comparison starts with a confusion
matrix. Intuitively, this table has every class represented in a row and
a column. While the rows represent the actual classes, the columns
stand for the predicted classes. The table is filled by counting how the
samples in the test set are predicted.
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Figure 2.3: Example of a confusion matrix

Figure 2.3 shows an example of a confusion matrix. The correctly
predicted samples are on the diagonal, whereas all wrong predictions
are in the other cells. Three out of five commercial samples are correctly
predicted in this example, and two are wrong. These two wrong
samples are classified as other and residential. Based on these counts,
two metrics can be calculated: Precision and recall. The precision is the
number of correctly predicted samples divided by the column sum.
At the same time, the recall is calculated as the number of correctly
predicted samples divided by the row sum.

More formally, the two metrics are defined based on three counts:

1. true positives TPcx : samples of a class cx that are correctly pre-
dicted

2. false positives FPcx : samples of another class cy that are wrongly
predicted as cx

3. false negatives FNcx : samples of a class cx that are wrongly
predicted as another class cy

The precision Pcx of a class cx is defined as

Pcx =
TPcx

TPcx + FPcx

(2.2)
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The recall Rcx of a class cx is defined as

Rcx =
TPcx

TPcx + FNcx

(2.3)

Intuitively, the precision shows how often a classifier is correct if
it predicts a given class. In contrast, the recall describes how many
samples of a given class are predicted as such. In this example, the
percentage values on the diagonal represent the recall for each class.
With three out of five commercial samples being correctly predicted,
the recall is 60.0 %. By coincidence, the precision is also 60 % in this
example, but that is not always the case. There is a tradeoff between
precision and recall. Suppose one optimizes for one metric, and the
other decreases. Choosing the metric to optimize for is application-
specific. For example, when analyzing the risk for citizens during
a natural disaster, the recall of the residential class would be more
critical. Even if a few commercial or other buildings are included as
false positives, the disaster management capacities should exceed the
demand rather than fail to save lives because of a lack of capacity.

Nevertheless, a classification algorithm for building function classi-
fication should not optimize for recall. Ideally, both metrics are high
or well-balanced in a more realistic scenario. Hence, the F1 score is
a well-suited metric as it is defined as the harmonic mean between
precision and recall

F1cx = 2
Pcx · Rcx

Pcx + Rcx

(2.4)

When evaluating the classification models in this thesis, all metrics
are shown for each class to have a comprehensive comparison.

Some publications use accuracy as a measure for a classification
algorithm. It is calculated as

Acx =
TPcx + TNcx

TPcx + FNcx + TNcx + FPcx

(2.5)

While it might be suited in some cases, this metric is prone to
misinterpretations when the class distribution is imbalanced. Suppose
a binary classification task dataset has 90 samples for class 0 and 10 for
class 1. In that case, accuracies of 90 % are not convincing: A classifier
could constantly return 0 and would achieve this accuracy. Therefore,
this thesis uses precision, recall, and F1 score for all classes, enabling
a comprehensive assessment of the methods.

2.2.4 Deep Learning Architectures for Image Classification

This subsection describes seven state-of-the-art architectures used in
this thesis. It introduces them chronologically and highlights their
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novelties over each other. The revolution started with AlexNet [42]
when this method won the ILSVRC-2012 competition on image classi-
fication. The competition was started in 2010 with an unprecedented
dataset of 1,461,406 images labeled with 1,000 classes. The training
dataset with labels was publicly released along with an unlabeled test
set. The labels for the test were manually created and kept private
for a fair evaluation. Participants of these competitions needed to
upload predicted labels for the test dataset, and an evaluation server
calculated the winner based on the best predictions.

The game-changer of AlexNet was the stacking of convolutional
layers, using rectified linear units as activation functions, and their
efficient implementation using two modern GPUs. Convolutional op-
erations in neural networks were introduced in 1980 [49], but their
applicability was limited due to their computational demands [42]. In-
tuitively, a convolutional filter slides over an image and processes step
by step a small region to extract a feature on a higher level. Figure 2.4
depicts the 96 convolutional filters learned by AlexNet on ImageNet
data. They are primitive edge and pattern detectors. By stacking convo-
lutional layers on top of each other, the features become more abstract
in the higher layers. The second difference is the use of rectified linear
units (ReLU) [50] instead of sigmoid functions for activation. The
non-linear ReLU function is defined as f(x) = max(0, x) and due to
its non-saturating character, it enables faster training compared to
saturating sigmoid functions. Finally, AlexNet was trained on two
GPUs in parallel by splitting the different convolutional filters into
two partitions. In combination, these three modifications yielded the
break-trough of this model. In the following years, this architecture
has been refined in several ways.

Figure 2.4: Example for 11x11x3 convolution filters of the first layer in
AlexNet [42]

2.2.4.1 VGG16

VGG16 builds upon AlexNet by replacing the large filters in the first
convolutions with smaller ones of 3× 3 filters [51]. Figure 2.4 shows
11 × 11 filters, which are computationally expensive as they have
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364 trainable parameters. For reference, a 3× 3 filter has 28 trainable
parameters. Simonyan et al. compensate for the smaller filter sizes
by increasing the number of convolutional layers to 16 layers in total.
Figure 2.5 illustrates the architecture. Although it is deeper with more
layers, the number of parameters decreased from 60 million to 15

million parameters. This architecture achieved second place in the
ILSVRC-2014 competition.

Figure 2.5: VGG16 network architecture

2.2.4.2 Inceptionv3

Szegedy et al. presented the original InceptionV1 architecture in 2015,
the same year as VGG was introducted [52]. Both networks were
inspired by AlexNet and participated in the ILSVRC-2014 competi-
tion. InceptionV1, called GoogLeNet, won first place ahead of VGG.
Szegedy et al. observed that although images belong to the same
class, the scale of their motifs can be highly different. So it would be
beneficial to have multiple convolutional layers with different filter
sizes in parallel to capture larger and smaller features simultaneously.
However, a linear increase in the size of convolutional filters leads
to a quadratic growth in the number of parameters. Szegedy et al.
mitigate this issue by adding 1× 1 convolutions ahead of the larger
convolutional filter layers.

Figure 2.6: InceptionV1 module from [52]



2.2 deep learning in computer vision 21

Figure 2.6 depicts the architecture of a single inception block. The
whole InceptionV1 network or GoogLeNet has nine blocks stacked
on top of each other. Szegedy et al. used auxiliary losses at the fourth
and the seventh block to handle the vanishing gradient problem. This
architecture has 5 million parameters, a 12x reduction compared to
AlexNet [53]. The subsequent versions two and three were presented
in a follow-up work investigating further computational improve-
ments [53]. The InceptionV2 architecture introduced two significant
optimizations. One of them was factorizing the convolutional oper-
ations into smaller blocks, e.g., two stacked 3× 3 convolutions are
comparable with one 5× 5 convolution but require 28 % fewer com-
putations. The other optimization was reducing the grid size, i.e., the
number of features, without a loss in the representational capacity.
The final InceptionV2 architecture is 42 layers deep, while the com-
putational costs are 2.5 times higher than the initial architecture. At
the same time, the top-1 error decreased from 29 % to 23.4 % on the
ILSVRC-2012 dataset. The third version of this architecture added a
new path to the inception module introducing a 7× 7 convolutional
layer factorized into 3× 3 convolutions. Moreover, it uses RMSprop
instead of SGD for optimizing the loss function, added batch nor-
malization layers to the auxiliary classification branches, and label
smoothing.

Figure 2.7: Inceptionv3 network architecture

Figure 2.7 shows the whole Inceptionv3 architecture as a flattened
visualization without a parallel path of inception blocks. It achieves a
top-1 error of 21.2 % on the ILSVRC-2012 dataset.

2.2.4.3 ResNetV2

The approach of VGG16, increasing depth with smaller convolutional
filters, does not scale beyond tens of layers [54]. If more and more
layers are stacked on top of each other, then the gradients from the
loss function become smaller with every step of backpropagation. This
issue is known as the vanishing gradient problem [55, 56]. As a result,
the early convolution layers are not properly adjusted to the errors,
and the deeper the network is, the worse its performance is. To address
this issue, He et al. proposed to introduce so-called skip connections
that add the results from the previous layer to the current one.

Figure 2.8 shows the skip connections introduced in the first version
of ResNet [54] on the left and the improved version of ResNetV2 on
the right. Adding the previous layers mitigates the vanishing gradient
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Figure 2.8: Identity mappings in ResNet architectures. Left: skip connec-
tion in ResNet50V1 architecture [54], right skip connection in
ResNet50v2 architecture [57]. Illustration from [57].

problem as the skip connection introduces direct gradients for the
previous layer. The difference between the first and the second version
is the position where the addition takes place. The addition was
computed ahead of the activation in the first version, while the second
version made the architecture more modular. In this case, a ResNet
block is shaped from batch normalization layers and convolution
layers with ReLU activation functions. The skip connection adds the
result from the previous block and the current block. This change
allows faster training due to more distinctive gradients [57].

Figure 2.9: ResNet50v2 network architecture

These skip connections allow the training of architectures with 50

layers and more. Figure 2.9 illustrates the depth of the ResNet50v2

network but omits the skip connections. The extended version with 152

layers, ResNet152V1, won first place in the ILSVRC 2015 classification
task.

2.2.4.4 DenseNet

Inspired by the ResNet idea of skip connections, Huang et al. intro-
duced the DenseNet architecture [58]. They extend the idea of skip
connections to all convolutional blocks so that every block obtains the
feature maps from all preceding blocks. Figure 2.10 illustrates this
with an example of five blocks: the last block receives the features
from all other blocks. The direct information flow eliminates the need
to pass on data from one layer to another and allows blocks with fewer
filters. The term DenseNet is a reference to dense layers, where all
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input units are connected with all units from the previous layer. In
this case, the units are convolutional blocks instead of single neurons.

Figure 2.10: DenseNet architecture with five blocks. Each block is connected
to all other blocks. Illustration from [58]

.

This architecture yields a similar performance as ResNet with less
than 12x fewer parameters. Figure 2.11 shows the DenseNet121 back-
bone used in this thesis without skip connections. This architecture
yields a top1-error rate of 25.02 % on the ILSVRC-2021 dataset.

Figure 2.11: DenseNet121 network architecture

2.2.4.5 InceptionResNetv2

Szegedy et al. picked up their Inceptionv3 architecture and combined
it with the idea of skip connection with InceptionResNet in two ver-
sions [59]. They replaced the filter concatenations of Inceptionv3 with
the additive residual connections and improved the top1-error to
18.7 % with ResNet151 achieving 21.4 % and Inceptionv3 achieving
19.8 % on the same baseline. Figure 2.12 illustrates the depth of the
InceptionResNetv2 architecture used in this thesis as a CNN backbone.

Figure 2.12: InceptionResNetv2 network architecture

2.2.4.6 MobileNetV2

The error rate of a model determines the winner of an ILSVRC com-
petition. Hence, all architectures are optimized for a high accuracy
achieved with enormous computational power. Moreover, as only the
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predicted labels for the test are reported, the runtime was neither a
critical point. At the same time, smart, portable devices are ubiqui-
tous but have limited computational power. Therefore, Howard et al.
presented a lightweight network structure called MobileNet to run on
mobile devices [60]. They replaced the standard convolutional filters
with depthwise separable convolutions, which require 8 to 9 times
less computation when used with a 3× 3 filter. This change is similar
to the improvements of the InceptionV2 architecture: By splitting the
convolutional filter into two parts, the computation becomes easier.
The default convolution acts on RGB images with three color channels.
In contrast, the depthwise separable convolution works first on each
channel individually and performs the channel convolution with a sec-
ond 1× 1 filter. Trained on ImageNet, this architecture with 4.2 million
parameters achieved an accuracy of 70.6 %, which is similar to VGG
(71.5 % accuracy, 138 million parameters) or InceptionV1 (69.8 % accu-
racy, 6.8 million parameters). Sandler et al. created a second version
of MobileNet by adding skip connections as in the ResNet architec-
ture [61]. However, their skip connections are called inverted residuals,
which connect bottleneck layers instead of high-dimensional feature
maps. The feature maps introduce a high complexity and require more
computation, whereas bottleneck layers contain the information in a
memory-efficient, compressed form. Finally, all operations on these
layers need less computational effort.

Figure 2.13: MobileNetV2 network architecture

Figure 2.13 sketches the depth of the MobileNetV2 CNN backbone
used in this thesis. A full MobileNetV2 model trained on ImageNet
yields higher accuracy than the initial architecture: 72.0 % compared
to 70.6 % with the same number of parameters. However, the number
of operations decreased from 575 million to 300 million, resulting in
33.6 % faster calculation on a Google Pixel 1 phone.

2.2.4.7 Xception

This architecture is a synthesis of Inceptionv3 and the depthwise sep-
arable convolutions from MobileNetV1 [62]. It replaces the standard
convolutions in the Inceptionv3 architecture with the new convolu-
tions from MobileNetV1. This yields slightly higher performance than
Inceptionv3: The accuracy of Inceptionv3 with 78.2 % is increased
to 79.0 %, but the number of parameters decreased by 770,776 to
22,855,952 parameters. Hence, it uses the parameters more efficiently
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Architecture Year #Para (train) #Features

DenseNet121 [58] 2017 6,953,856 1,024

InceptionResNetv2 [59] 2017 54,276,192 1,536

Inceptionv3 [53] 2016 21,768,352 2,048

MobileNetV2 [61] 2018 2,223,872 1,280

ResNet50v2 [57] 2016 23,519,360 2,048

VGG16 [51] 2015 14,714,688 512

Xception [62] 2017 20,806,952 2,048

Table 2.1: Year of publication, number of trainable parameters in the back-
bone, and output dimensions (#Features) per deep vision architec-
ture in alphabetic order

than the Inceptionv3 architecture. Figure 2.14 illustrates the depth of
the CNN backbone of this network.

Figure 2.14: Xception network architecture

2.2.4.8 Summary

Starting with AlexNet in 2012, several CNN architectures have been
proposed with more depth and new concepts for tackling vanish-
ing gradients and efficient computation. This thesis uses seven of
these state-of-the-art architectures for building function classification.
Table 2.1 gives an overview of all architectures with their year of
publication, the number of trainable parameters, and the number of
features resulting from their CNN backbone after a pooling layer. The
number of parameters in this table is lower than the official number
in the publications as only the CNN backbone is considered, and the
final classification layers for ImageNet are removed. The number of
trainable parameters varies highly, starting with MobileNetV2 with
2.2 million parameters and going up to 54.3 million parameters of
InceptionResNetv2. However, the number of features from these archi-
tectures is similar, with 512 features from VGG16 up to 2,048 features
from Inceptionv3, ResNet50v2, and Xception.

2.2.5 Deep Learning Architectures for Object Detection

The success of deep learning methods for image classification enabled
new methods for a downstream task: object detection in images. An
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image is assumed to be centered on a single object with an irrelevant
background in image classification. However, in reality, many photos
contain many objects of different sizes. Object detection aims to find
each of them and describe the object class and its position in the image.
Figure 2.15 illustrates how the result can look: objects of different sizes
are detected with bounding boxes and class names. The bus covers
a significant part of this photo, but the cars in the background are
also detected. The fire hydrant in the center is wrongly detected as a
person.

Figure 2.15: Object detections with Faster R-CNN [63] in a social media
image. Photo Historic Corridor of Central Ave. L.A. by joey
zanotti is licensed under CC BY 2.0

In 2014 Girshick et al. presented an object detection algorithm us-
ing the power of AlexNet [64]. Their algorithm splits the image into
smaller parts that might contain an object and pass all of them through
an AlexNet trained on ImageNet. However, they cut off the classifica-
tion part of AlexNet and used it as a feature extractor for the object
candidates. They use a Support Vector Machine (SVM) to predict the
classes of an object based on the extracted features. They find their
object candidates with a selective search algorithm [65] and call them
region proposals. “Since we combine region proposals with CNNs,
we call our method R-CNN: Regions with CNN features.” ( [64])
This algorithm had a better performance than the best model in the
ILSVRC2013 object detection competition with an mAP of 31.4 % (com-
pared to 24.3 % of the ILSVRC2013 detection winner OverFeat [66]).
However, it had three drawbacks: a multi-stage training pipeline, a
time-consuming training process, and a slow object detection [67].
Girshick proposed the Fast R-CNN architecture based on a pre-trained
VGG network trained in an end-to-end fashion to overcome these

https://flickr.com/photos/45958601@N02/47981936958
https://flickr.com/photos/45958601@N02/
https://flickr.com/photos/45958601@N02/
https://creativecommons.org/licenses/by/2.0/
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limitations. He replaced the SVM classifier with two new outputs of
the VGG network: One for predicting the object class and a second
one for predicting the object bounding box. Trained with a multi-task
loss, he optimized both outputs in parallel. This setup improved the
detection performance by up to 9.6 % and the detection runtime by
up to 213x compared to R-CNN. However, as the region proposal
generation remained unchanged with a selection search algorithm,
this became a computational bottleneck. Ren et al. solved this issue by
creating a region proposal network (RPN) [63]. This subnetwork slides
over the feature maps of a CNN like VGG and predicts regions of in-
terest. With all functions being merged in one network architecture, it
can be trained end-to-end, and predictions become faster. They report
a framerate of 5 fps with pure GPU implementation with a similar
detection performance as Fast R-CNN.

In this thesis, a Faster R-CNN architecture is used with an Inception-
ResNetv2 CNN backbone [68]. The network was trained on the Open
Images V4 dataset [69, 70]. This dataset has 15.4 million bounding
boxes for 600 object classes, 15x more than the next largest datasets.

2.3 summary

This chapter introduced the fundamentals of EO data and their analysis
with state-of-the-art deep learning architectures. It presented the basic
principles of how EO data is captured with different sensors and the
different types of resolution. Subsequently, this chapter provided a
high-level overview of the principles of supervised machine learning
and the evaluation of machine learning algorithms. Moreover, the key
deep learning architectures of the last decade were presented as they
build the foundation of this thesis for every image classification task:
For street-level, social media, and remote sensing images.

This knowledge opens the way to the next chapter, which introduces
the related work for this thesis. The breakthrough of CNNs in computer
vision enabled several downstream tasks, which are presented in this
following chapter.





Part III

R E L AT E D W O R K

Pour y voir plus clair,
il suffit souvent de changer

la direction de son regard.

— antoine de saint-exupéry, Citadelle





3
R E L AT E D W O R K O N U R B A N A N A LY S I S

This chapter introduces related work for all modalities used in this
thesis. Although the main focus of this work is building function
classification, the following subsections present land use classification
methods and related applications based on the data sources. The order
of data sources and applications follows the overall structure of this
thesis, especially the part of the contributions. Hence, it starts with
methods and applications of commercial street view level imagery and
continues with approaches based on social media images. Afterward,
there is related work on social media text data and combinations of
images and text. The subsequent sections focus on land use classifi-
cation with remote sensing data and fusion methods for combining
ground view and remote sensing data.

3.1 applications of street-level images

Among the different commercial platforms, three are commonly used
in research. Firstly, Google Street View (GSV), the most popular one;
secondly, Mapillary, with crowdsourced image data; and thirdly, Ten-
cent Street View, mainly covering Asia. GSV has gained high popu-
larity because of its worldwide coverage with high-quality data. Its
Application Programming Interface (API) allows fine-grained settings
on the imagery. However, as of today, Google prohibits downloading,
scraping, or storing GSV images in their terms of service [71, §3.2.3].
These restrictions prevent the use of GSV images in research with cre-
ating and sharing datasets. So downloading image data is technically
possible but legally prohibited. Since there are many publicly available
datasets with GSV images for research [16, 72–75], Google seems to
tolerate academic use of this data. Nevertheless, GSV continues to be
the most crucial source of street-level imagery as their image quality
is assured by a fleet of dedicated cars keeping their database up-to-
date with specialized cameras. In contrast to this approach, Mapillary
provides a platform for crowdsourced street view data captured with
a smartphone app by volunteers. Their significant advantage is the
lower effort, but it comes at the cost of varying image quality, a limited
angle of view focused on the street, and uneven spatial distribution.
Last but not least, Tencent offers street view data in China, but it has a
limited spatial extent and an API documentation in Chinese. Therefore,
its user basis concentrates on Chinese researchers.

Among the first studies using GSV for building function classification
is a work from Movshovitz-Attias et al.. They predict 208 services

31
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offered in buildings based on the façade images [76]. Their labels
are based on an ontology from Google Map Maker, and they sample
1.3 million images globally. With a GoogLeNet architecture [52], they
report a 69 % accuracy on a spatial split test set of 100,000 images.

Kang et al. extended the task to more building types, e.g., apart-
ments or churches, while simplifying the classification scheme to eight
classes [16]. They obtain building labels from OSM and download one
or more GSV images for these buildings. After decision-level fusion
of all predictions for one building, they achieve an F1 score of 0.58

with a VGG16 architecture. With a multiscale AlexNet architecture,
Qiao et al. gain 54.7 % overall accuracy on the same dataset. However,
as both publications report different metrics and models, they are not
comparable.

Figure 3.1: Multi stream CNN architecture of Srivastava et al. with averaging
aggregation function. Illustration from [77].

The approach of Srivastava et al. is similar to Kang et al., but instead
of decision-level fusion, they average the VGG16 features of multiple
images [77]. Figure 3.1 illustrates their multi-stream CNN architecture
with an average aggregation function. In their study area of Île-de-
France, the Parisian metropolitan area, they report an average accuracy
of 60 %. Fang et al. present a study using Tencent Street View data from
Wuhan, China, to predict five land use classes at a parcel level [78].
They use 360-degree panoramas and cut them into different parts
according to the position of the parcels. Their evaluation compares
seven state-of-the-art architectures and finds the ResNet50 architecture
best suited for the given task with an accuracy of 71 %.

Beyond land use classification in urban areas, tree mapping is an
essential application as they have a severe impact on health [79, 80].
This mapping can be either done manually with handcrafted features
from super-resolution pixels [81] or in an automated fashion [82]. The
latter study shows that existing tree databases have an approximate
address of the trees but lack precise geo coordinates. Their solution
to this issue relies on an object detection algorithm to find the trees
in GSV images and a municipality-wide optimization that minimizes
the total distance between all pairs of trees. This method assigns a
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geographic location to 56 % of all 1,100,952 trees in 48 Californian
municipalities. Krylov et al. present a similar, more generic pipeline
for geocoding objects in GSV images [83]. In addition to a CNN for
object detection, they predict a depth map with a second CNN and
combine this information in a triangulation algorithm based on a
custom Markov random field model. They report a position precision
of approximately 2 m for traffic lights and telegraph poles.

Moreover, the abundance of GSV images inspired further applica-
tions. For example, Gebru et al. predict socio-economic attributes based
on car models in the US [84]. Using a deep learning algorithm, they
classify the car models and use this information as a proxy for infer-
ring income, race, education, and voting patterns. Goel et al. analyze
if GSV images are suitable for estimating travel patterns at a city level
in Great Britain [85]. By correlating their manual object counts with
survey data, they found strong correlations between the use of bicycles
and buses and their occurrence in GSV images. While social media
images are mostly used for disaster response [86–88], GSV images can
help for risk assessment in case of flooding or earthquakes. Ianelli and
Dell’Acqua estimate the number of floors per building using a VGG16

architecture [89]. They report a classification accuracy of almost 85 %
in their San Francisco, US, study area. For the latter use case of seismic
risk assessment, Aravena Pelizari et al. develop a fine-grained hierar-
chical scheme to classify building characteristics [29]. They report an
accuracy above 80 % on their building structure scheme of 14 classes
in their study area of Santiago de Chile.

Despite all research success with GSV imagery, the legal issue is
still prevalent. Thus, other publications investigate the suitability of
open social media data for similar applications. The following section
provides an overview of these efforts.

3.2 applications of social media data

This section is split into two subsections: The first one discusses differ-
ent applications of social media images focusing on land use classifica-
tion at different scales. However, it also describes other applications of
social media images, including but not limited to landscape aesthetics.
The second part is structured similarly but considers publications on
social media text and metadata.

Geotagged Social Media Images

With social media image platforms becoming more and more popular,
the number of geotagged images increased heavily. This enabled stud-
ies on landmark detection and touristic routes as in [90]. In their work,
Crandall et al. use a dataset of 35 million geotagged Flickr images
to identify landmarks in metropolitan areas around the world using
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clustering of location, visual, and textual features. Snavely et al. use
sets of geotagged images around landmarks from Flickr to create
3D models [91]. They compute handcrafted SIFT features [92] and
use them with a structure-from-motion approach for computing the
3D point clouds for eight landmarks. Additionally, they show how
these point clouds can be aligned geographically with world coordi-
nates and Digital Elevation Model (DEM). Paldino et al. investigate the
attractiveness of different cities for residents, domestic, and foreign
tourists [93]. Based on the spatial distribution of Flickr images, they
analyze differences in habits between US and European tourists when
visiting each other.

Many publications have studied land cover mapping, and land use
as this application is highly intuitive. Among the first is a work from
Leung and Newsam [94], who used geotagged Flickr and Geograph
images for land cover classification in the London metropolitan area.
They generate image features with edge histogram descriptors and
train an SVM. This method yields an accuracy of 75 % on a binary land
cover scheme. Last but not least, they coin the term proximate sensing in
this work when using publicly available photos for mapping purposes.
Oba et al. extend this approach with a larger spatial scale, a different
feature extractor, and a more fine-grained classification scheme [95].
Instead of edge histogram descriptors, they use handcrafted SURF
features [96] with an SVM. Their training set is built using a keyword
search on Flickr to obtain photos labeled with a keyword from the
classification scheme. They achieve an accuracy of at least 60 % on a
classification scheme with six classes for the US.

Xie and Newsam build upon the results from Leung and Newsam to
create a scenicness map of Great Britain using Geograph images [97].
They use handcrafted gist features [98] and learn a regression func-
tion that predicts the scenicness of a location with nearby photos.
The novelty of this work is the combination of image location and
image content information in one regression function. Langemeyer et
al. describe an alternative, manual approach based on handcrafted
categories and expert labeling to assess landscape aesthetics [99].
Havinga et al. take the work from Xie and Newsam into the deep
learning era. They substitute the handcrafted features with two CNNs

and combine their results with a random forest to predict a scenic-
ness score in Great Britain [100]. While the first CNN uses a ResNet50

architecture with Places365 weights, the second one utilizes image
attributes predicted with a CNN trained on the SUN dataset [101].
They use a grid with 5 km by 5 km cells and aggregate the individual
predictions of all images within a cell using average fusion. Together
with an environmental indicator model, the aggregated predictions
are converted into a scenicness score by a random forest model.

Land use is a slightly different use case than land cover but is also
latently encoded in social media images. Leung and Newsam exploit
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Flickr images to predict three different land use classes, academic, resi-
dential, and sports on two campuses in California, US [102]. They train
an SVM with handcrafted features, a bag of visual words (BoW) [103],
to predict land use on a rasterized map of the campuses. Their ap-
proach yields an accuracy of 60 % when trained on one campus and
tested on the other. Object Bank features [104] pose an alternative
to BoW features. Fang et al. apply them to Geograph pictures from
London metropolitan area to predict urban land use on a hierarchical
level [105]. They utilize the completeness of the road network in OSM

to define different block levels: the lower block levels are defined by
small roads like local and neighborhood streets. Subsequently, each
level-up is defined by secondary roads, primary roads, and primary
highways. Based on the Object Bank features, they calculate the land
use with a majority voting algorithm. They report an overall accuracy
of 76.5 % for a classification scheme with five classes. With the rise
of deep learning methods, the methods switched from handcrafted
features and SVMs to CNN-based approaches. Zhu and Newsam use
an existing CNN trained on the Places365 dataset [106] to split a set
of geotagged Flickr images first into indoor and outdoor scenes [107].
Furthermore, they use the CNN features for training an SVM for a final
land use classification. This hierarchical approach achieves up to 76 %
accuracy on a classification scheme with eight classes.

Figure 3.2: Two stream CNN architecture of Zhu et al. with scene and ob-
ject branch trained with Flickr and Google images. Illustration
from [108].

A more sophisticated method from Zhu et al. extends this work with
a more fine-grained classification scheme, an improved training set
collection, and a two-stream CNN [108]. They pruned a hierarchical
taxonomy from the American Planning Association to three levels
with 5, 16, and 45 classes each. Their training dataset is built using a
Google image search with each of the 45 classes to create a labeled
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image set unrelated to the Flickr images for testing. The two-stream
network has one branch for object classification and one for scene clas-
sification, both with fixed convolutional layers from different training
sets (Figure 3.2). While the object stream is initialized with ImageNet
weights [109], the scene-oriented stream is set up with weighted from
Places365 [106]. The authors assume a domain shift from the Google
image set and the Flickr image set. Hence, they train the network with
mixed batches of Google and Flickr images. The Flickr images are
assigned to the next parcel if they are inside or less than five meters
away. This approach yields an accuracy of 49.54 % on the most fine-
grained level of 45 classes. A more comprehensive review of urban
land use classification based on imagery can be found in [110].

Closely related to land use classification is activity mapping. Zhu
and Newsam use geotagged Youtube videos to predict human ac-
tivities using a two-stream CNN [111]. One stream uses the Motion-
Net [112] for spatial features, and one stream is a CNN for temporal
features. They are combined with an average late fusion to predict the
final ten activity classes. This network yields an accuracy of 90.94 %
on the task.

Beyond urban environments, crowdsourced images are also used
for crop monitoring. D’Andrimont et al. evaluate the availability of
Mapillary images across the European Union to monitor eight crop
types [113]. They conclude that the heterogeneous data quality of the
crowdsourced street view imagery is challenging, and the spatial and
temporal sparsity create additional data uncertainty. Although Flickr
images tend to focus on art photography, Chaudhary et al. show that
they contain helpful information for disaster response. In their work
on water height estimation, they use a multitask learning approach to
predict water levels in flooded areas [86]. As accurate, numerical water
height levels are hard to obtain for single Flickr images, they apply
a comparative loss and train a VGG architecture with image pairs to
differentiate between higher and lower water levels. They report an
RMSE of less than 12 cm for their final regression model.

Geotagged Social Media Text

Apart from GSV images and social media images, urban land use
can also be predicted using metadata and textual features. Huang
et al. group tweets with Latent Dirichlet Allocation (LDA) into topics
and use this as features for a Long Short-Term Memory (LSTM) [24].
The LSTM aggregates tweets that belong to the same spatial building
block together with their temporal metadata. Based on a classification
scheme with three classes, they report an average accuracy of 63 %
in their study area of Munich, Germany. Häberle et al. investigate the
suitability of Twitter tweets for building function classification [114].
Their study analyzes three different word embedding methods and



3.2 applications of social media data 37

how building functions are represented in the embeddings of sur-
rounding tweets. They conclude that although there are clusters in the
embeddings, no general patterns can be derived. In their follow-up
study, they predict buildings functions in Berlin, Germany, with a feed-
forward network trained on fastText [115] sentence vectors [22]. They
achieve F1 scores up 0.87 for the best performing accommodation class
but report F1 scores of 0.2 for commercial buildings. Their conclusion
summarizes that the linguistic patterns between the five classes are
not distinctive due to multilingual input. While Häberle et al. have a
building-centric approach, Terroso-Saenz and Muñoz create land-use
areas using a clustering method [116]. They cluster locations of Flickr
posts with a density-based approach and obtain a land use label for
these clusters using the most abundant venue type from Foursquare.
Their Flickr datasets in the study areas of New York City, US, and San
Francisco, US, are extracted from the Yahoo Flickr Creative Commons
100M dataset [117]. Their approach does not take the images into
account but focuses on the text of each post. They report an average
F1 score of 0.71 in New York City and 0.67 in San Francisco with
a random forest classifier on a six-class scheme. Terroso-Saenz et al.
extend this work by combining multiple data sources. They use taxi
trajectories, social media posts from Twitter and Flickr, and the pub-
lic transport network from subways and busses to create time-based
features [118] and thus, predict urban land use in New York City and
Chicago. They achieve an accuracy above 80 % on 14 land use classes
from Km4City ontology [18] with a random forest classifier. As land
use classification schemes always simplify reality and cannot capture a
variety of possible combinations of usages, Dax and Werner introduce
the concept of abstaining classifiers [119]. They use the abstaining
principle to decide if a classifier’s prediction is helpful for a task or
not. Their approach increases the precision at the cost of a lower recall
in their study area of Los Angeles, US.

Furthermore, Twitter data can be used to identify the activities of
citizens in urban green spaces [120]. Hamstead et al. investigate how
people interact with parks and conclude that from “a social equity
perspective, the findings may imply that parks in high-minority neigh-
borhoods are not as accessible, do not accommodate as many visitors,
and/or are of lower quality than those in low-minority neighborhoods”
([121]). From a socio-economic perspective, Twitter data shows high
correlations with income. For example, Mitchell et al. perform a senti-
ment analysis on tweets from the United States and reveal a strong
correlation between household income and positive sentiment [122].
Li et al. investigate where tweets and Flickr photos are posted and
find that “tweet density is highly dependent on the percentage of
well-educated people with an advanced degree and a good salary
who work in the areas of management, business, science, and arts.
The second model suggests that high photo density is correlated with
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a high percentage of white and Asian people with an advanced de-
gree in the areas of management, business, science, and arts.” ([123])
Bokányi et al. confirm these findings and conclude there is a strong
correlation between the words and language used in tweets and the
socio-economical and cultural similarities, like degree of urbanization,
religion, or ethnicity [124]. Beyond these influences, Twitter data helps
to identify mobility patterns, e.g., during the first lockdown in Ger-
many during the Covid-19 pandemic [125], or how people perceive
public transport like the metro in Madrid [126].

3.3 urban land use prediction with remote sensing data

Urban remote sensing creates geoinformation products from EO data
to analyze socio-economic, ecological, and cultural aspects of human
life [127]. Parts of these products are land cover and land use maps.
Although they are related concepts, they reflect different perspectives
of spatial data. “Land cover is determined by direct observation while
land use requires socioeconomic interpretation of the activities that
take place on that surface.” ([15])

Land use classification is not based on direct measurements but
on interpretation, and hence, it requires high-resolution optical im-
ages [128]. Therefore, Yang and Newsam use aerial images sampled
from different states of the United States Geological Survey (USGS)
National Map and create a new dataset called UC Merced Land Use
Dataset [129]. This dataset became a benchmark for several studies
that improved the original baseline of 81.19 % overall accuracy. The
dataset consists of 100 images for 21 classes, 2,100 in total. Yang and
Newsam propose a bag-of-visual-words based on SIFT features [92]
to create the baseline. With the rise of deep learning methods, CNNs

models yielded above 90 % accuracy on the UC Merced Land Use
Dataset. For example, Castelluccio et al. report an accuracy of 97.10 %
on this dataset when using a fine-tuned GoogLeNet architecture [130].
However, the relatively small size of the dataset makes CNN-based
models with millions of parameters prone to overfitting. Albert et al.
propose an alternative land use classification dataset for benchmarks
with ten classes, including agricultural and water bodies [131]. Their
labels are from the Urban Atlas [132], and hence, its classification
scheme is a mixture between land use and land cover. This dataset
contains more than 140,000 image patches from Google Maps opti-
cal images at zoom level 17, i.e., approximately 1.2 m GSD, covering
six European cities. They report 68 % - 83 % accuracy within cities
and 23 % - 54 % accuracy on cross-city evaluations with a fine-tuned
ResNet50 architecture.

The launch of high-resolution optical satellites like QuickBird, IKONOS,
and RapidEye enabled unprecedented studies on land use classifica-
tion with remote sensing data from space. Their increased spatial
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resolution enabled clear distinctions of objects in urban environments.
An example of such a study is a work by Hu and Wang. They use
handcrafted features and decision trees in a study area of Austin,
Texas, US, to predict four land use classes with an overall accuracy of
61.68 % [133]. Ruiz Hernandez and Shi propose a similar approach
with more sophisticated features and random forests to classify land
use in Ciudad Juarez, Mexico [134]. They combine textural and spatial
features and yield an overall accuracy of 92.3 % for five land use
classes. As deep learning models showed their superiority over hand-
crafted features, different studies on using CNNs for urban land use
classification were published. An example is a work from Huang et al.
who use a two-stream CNN for predicting 13 land use classes in Shen-
zhen and Hong Kong [21]. Their network takes high spatial resolution,
multispectral remote sensing imagery as input: WorldView-3 with
eight channels and WorldView-2 with four channels. Their two-stream
CNN model has one branch for three-band RGB channels with a large
receptive field and one branch for all multispectral channels with a
small receptive field. They achieve an overall accuracy of 80 % in
Shenzhen and 91 % overall accuracy in Hong Kong. However, with
more and more studies being published in different datasets, the need
for available benchmark datasets became inevitable. The image scene
classification dataset NWPU-RESISC45 fills this gap [135]. It consists
of 45 classes with 700 images per class; 31,500 images in total. Cheng
et al. use Google Earth imagery on multiple scales from 0.2 m GSD to
30 m GSD. They propose a fine-tuned VGG16 model with an accuracy
of 90.36 % as a baseline.

Figure 3.3: CNN architecture with metric learning term for regularization of
Cheng et al.. Illustration from [136].

In a follow-up publication, Cheng et al. extend their work by using
a discriminative CNN model [136]. They add a metric learning regu-
larization term to the dense layer before the softmax, which forces
the network to learn more discriminative features (Figure 3.3). This
regularization term is based on a contrastive embedding [137] pushing
features of the same class closer together and those of other classes
apart. Their discriminative CNN with a VGG16 backbone gains 91.89 %
accuracy on the NWPU-RESISC45 dataset. The Functional Map of the
World (FMoW) poses an alternative benchmark dataset [138]. It is
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based on QuickBird-2, GeoEye-1, WorldView-2, and WorldView-3 data
and contains crowdsourced object boxes from experts. Moreover, it fea-
tures a global coverage with 63 categories and a multi-temporal image
series for each sample. Christie et al. set an LSTM model as a baseline
with an average F1 score of 0.731. The LSTM combines the deep features
from different time steps and uses a DenseNet121 backbone together
with a metadata branch. Minetto et al. improve this result with an
ensemble of CNNs called Hydra [139]. Their combination of DenseNet
and ResNet architectures yields an average F1 score of 0.781, rank-
ing them third in the official competition. Moreover, they report an
accuracy of 94.51 % on the NWPU-RESISC45 dataset with Hydra. All
recent successes on the NWPU-RESISC45 and remote sensing scene
classification have been reviewed by Cheng et al. in [140].

Apart from urban areas, Campos-Taberner et al. propose a bidirec-
tional LSTM for agricultural land use classification with multitemporal
Sentinel-2 data [141]. They report an overall accuracy of 98.7 % in their
study area of València, Spain.

Zhang et al. exploit the close relationship between land cover and
land use by learning them jointly with two networks [142]. A Multilayer
Perceptron (MLP) predicts the land cover for an image patch, which is
used as a conditional probability for an object-based CNN that predicts
the land use. This output is used as a priori knowledge for the next
training step of the MLP. Hence, this process can be formulated as a
Markov process. They test their method in two study areas in Manch-
ester, GB, and Southampton, GB, on aerial images with 0.5 m GSD and
report an overall accuracy of 90.18 % for land cover classification and
87.92 % for land use classification.

A related concept to land use is Local Climate Zones (LCZ) [143].
They capture the morphological features of urban environments and
are suited, e.g., for analyzing urban heat islands. Qiu et al. propose an
LSTM that combines features from a ResNet architecture to predict LCZ

using multi-seasonal Sentinel-2 imagery [144]. For each time step, the
ResNet backbone extracts image features from a scene, while the LSTM

combines the multitemporal features for the final classification. Their
approach achieves an overall accuracy of 84 % on six classes. They
extend this work by simplifying the method and replacing the LSTM

with decision level fusion and yield an overall accuracy of 86.7 % [145]
LCZ definition.

3.4 fusion of remote sensing and ground-level data

As ground-level data and remote sensing data have a complementary
perspective on the world, several studies proposed methods to com-
bine the best of both modalities. However, the temporal and spatial
alignment of different modalities poses a major challenge, as well as
handling the many-to-many relationships between multiple input data
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points and the matching spatial targets. This section introduces seven
selected methods focusing on land use classification exemplary for the
state-of-the-art in this research field.

Figure 3.4: CNN architecture of Workman et al. that combines street-level and
aerial images. Illustration from [146].

Workman et al. propose a CNN architecture that integrates deep fea-
tures from ground-level imagery as an additional feature map to the
CNN processing the aerial imagery [146]. They combine multiple GSV

images with a kernel regression to a ground-level feature map that is
stacked together with feature maps from convolutions of the aerial
image (Figure 3.4). Workman et al. apply their method to two study
areas in New York City, US: Brooklyn and Queens. Based on aerial
imagery from Bing Maps and panoramic GSV images, they report a
top-1 accuracy of 45 % in Brooklyn for a building function classifica-
tion scheme of 206 classes. An extension of their approach includes
a geospatial attention mechanism, which increases the accuracy to
60 % [147].

As a pilot study for this thesis, Hoffmann et al. investigate the com-
bination of aerial and ground-level imagery with different multimodal
fusion strategies [20]. Their study is based on Google Maps images
at three different zoom levels together with GSV images for building
function classification. They sample their dataset from labeled OSM

buildings of all 52 states of the US. They train two CNN architectures,
Inceptionv3 and VGG16, for each modality and analyze which fusion
strategy yields the best performance. The fusion strategies are early
feature fusion (stacking feature maps from convolutional layers), late
feature fusion (concatenating feature vectors of dense layers), decision
level fusion (averaging the probabilities of the softmax layer), and
model stacking (training a naïve Bayes classifier to predict the best
probability vector). They achieved the best results with decision-level
fusion on a four-class scheme and increased the precision of 67 % from
the best unimodal to 76 % when fusing all modalities.
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Similar work is presented by Srivastava et al., who extend their CNN

based on GSV images [77] with a second CNN branch that includes
Google Maps aerial imagery [148]. They concatenate the dense features
from the ground-level CNN with the dense features from the aerial
CNN. All CNN branches are based on a VGG16 backbone. Additionally,
they show how to handle missing modalities, aerial or GSV images, by
substituting them with the next neighbor image in a feature embed-
ding space. They improve their result of pure GSV from 60 % to 70 %
on 16 classes when using the two-stream CNN in the metropolitan area
of Paris, France.

Leichter et al. show how Twitter data can be fused with optical
remote sensing data. They propose a method for LCZ classification
based on Sentinel-2 data and features derived from geotagged Twitter
tweets [149]. Their custom CNN takes Sentinel-2 channels at multiple
resolutions and augments the resulting feature maps from the convo-
lutional layers with six feature maps calculated on Twitter data. Their
Twitter feature maps contain, among others, the number of tweets and
the mean text length and are rasterized based on the geotags. Leichter
et al. achieve a performance increase by 1.3 % to 78.6 % when adding
the Twitter feature maps in their study area of Washington, DC, US.

Zhang et al. combine remote sensing data from GaoFen-2, a Chinese
panchromatic and multispectral satellite, with social media posts from
Weibo and POI data from Baido to predict urban land use on a parcel
level in Beijing [150]. They derive the parcels from segmentations de-
fined by the OSM road network. Their method is based on handcrafted
features used by a random forest and achieves an accuracy of 77.83 %
in their study area of Haidian District, Beijing, China.

A similar study uses Google Earth data and POI data from Amap
for land use classification in Wuhan. Lin et al. predict seven land use
classes based on eight geometrical features from building footprints
and eight textural features from Google Earth imagery [151]. They
obtain their POI data from Amap, a Chinese geoinformation provider
Alibaba owns. Their method distinguishes if there is sufficient data
in the vicinity and predicts the land use class by nearest neighbor
classification in the feature space or based on kernel density estimation
(KDE) that builds on the neighborhood similarity of buildings. They
report an accuracy of 68 % for the spatial similarity approach and
66 % when applying KDE.

Salem et al. present a generic method for generating time-aware em-
beddings that combine ground and aerial views [152]. They create their
Cross-View Time (CVT) dataset with global coverage based on two
other datasets: First, Archive of Many Outdoor Scenes (AMOS), a col-
lection of webcam images around the world [153, 154] and second, Ya-
hoo Flickr Creative Commons 100 Million Dataset (YFCC100M) [117].
Together with aerial data from Bing maps, they train a CNN-based
embedding that takes ground views along with their metadata as ad-
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ditional input. The final embedding can retrieve ground-level images
for a given month and hour, reflecting the visual appearance at that
date and time. They state that “our objective is to construct a map that
represents the expected appearance at any geographic location and
time.” ([152]) This embedding and the resulting map have three appli-
cations: Cross-view image retrieval, image localization, and metadata
verification. They report an accuracy of 31.2 % for localization and an
accuracy of 40.3 % for time verification.

A more general review focussing on data fusion of multi- and
hyperspectral data, SAR data, and LiDAR data is provided by Ghamisi
et al. in [155].

3.5 differentiation of this work

The contribution of this thesis concerning all presented works is in the
combination of six aspects:

1. The underlying data distribution is global, with 42 study areas
from different cultural zones

2. All inferencing is executed on real-world social media data

3. All experiments are based on large-scale raw datasets

4. Urban land use classification is performed at the most fine-
grained level of individual building instances

5. The final prediction results are evaluated on a human-verified
subset of buildings

6. Three different data modalities, two of them based on social
media data, are used for building instance prediction and finally
fused

The following part of this thesis describes the datasets in more
detail and discusses the methods for predicting building functions on
a global scale.





Part IV

C O N T R I B U T I O N S

Zum Beispiel mit gelehrten Sachen
kann man sich vielfach nützlich machen.

— wilhelm busch, Die Haarbeutel





4
D ATA S E T S

For this thesis, five different sources of data were considered:

1. OpenStreetMap for global building information

2. Google Maps aerial images as remote sensing data

3. Google Street View images as the gold standard for façade-
oriented ground-level images

4. Geotagged Flickr images as a source of social media images

5. Geotagged Twitter tweets as a source of social media posts

The first source, OpenStreetMap (OSM), provides ground truth in-
formation for extracting labels on a building instance level, also called
target data. All other sources are used as input for creating, developing,
and training machine learning models.

OSM provides building function information on different levels of
granularity. OSM has three different, optional tags for indicating build-
ing functions: building, amenity, and shop. This thesis uses a unified
scheme of three classes for building function classification: commercial,
residential, and other. Although this simple scheme has its limitations,
it allows fine-grained population density estimations by including
only residential buildings and improved estimations of the economic
strength by providing details about commercial activities. Commercial
buildings include offices and retail buildings as well as malls and halls
on industrial sites. Residential places can be single, detached houses,
large apartment blocks, and high-rise skyscrapers with a primary
focus on providing permanent housing for people. The class other
consists mainly of civic buildings, e.g., schools, universities, city halls,
and built landmarks.

As input data, four different sources are considered: Google Maps
aerial images as very high-resolution remote sensing data, Google
Street View (GSV) images as ground-level imagery focusing on building
façade images, geotagged Flickr images as a source of social media
images and geotagged Twitter tweets for spatially and temporally
dense social media posts.

This thesis focuses on 42 metropolitan areas as defined in the So2Sat
LCZ classification benchmark [156] covering cities in all cultural zones
and continents. Figure 4.1 shows the distribution of these areas on the
globe. This work is part of the So2Sat project [157], which combines
social media and satellite data to create 3D maps of urban settlements
with detailed semantics. Further, these cities will be referred to as the
LCZ42 cities.

47
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Figure 4.1: Distribution of LCZ42 cities [156] on the globe

4.1 openstreetmap buildings as ground truth data

OpenStreetMap (OSM) was founded as a wiki-style, collaborative map-
ping project in London, 2004 [158], and has more than 7.9 million
registered contributors [159]. They insert and correct geographical
data based on aerial imagery and field studies. OSM data covers, for
example, streets, buildings, administrative boundaries, and topolog-
ical information, but it is not limited to these entities. However, the
contributors of OSM add and correct the data voluntarily without strict
guidelines. Thus, the data quality is mixed: E. g. urban areas are more
frequently updated than rural areas [160]. Moreover, building foot-
prints and their semantic annotations show high variations concerning
accuracy [161] and completeness [162].

This thesis builds upon a global OSM data dump from July 2020.
Based on this dump, all building information has been extracted. This
information includes building footprint information as well as seman-
tic details about building types, amenities, and shops inside these
buildings. In summary, there are 400,800,001 buildings worldwide
included in this dataset, 73,889,355 of them have a known function
according to the mapping defined in Table A.1 and Table A.2.

Figure 4.2 shows the number of buildings in each LCZ42 city as
the total number of buildings mapped in a city and the number
of buildings having a semantic label. These cities have significant
differences, even when considering their spatial extents. Paris and
Jakarta have more than three million mapped buildings, but less than
ten percent have labels. Los Angeles has the best coverage of labeled
buildings, both absolute and relative numbers. More than 2.2 million
labeled buildings, which is 94.5 % of all buildings. Amsterdam has
the second-highest number of labeled buildings with 1.2 million but
compared to the total number of mapped buildings, just 57.9 % of all
buildings have semantics.
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Figure 4.2: Total number of buildings and number of labeled buildings
mapped in OSM for each LCZ42 city.

Further notable examples are Santiago, Qingdao, and Islamabad,
with a labeling rate of more than 63 % (69.2 %, 65.3 %, and 63.7 %,
respectively). They all have very few mapped buildings but a high
labeling coverage. This finding indicates that mostly the POIs are anno-
tated. Generally, China has low coverage in OSM as private mapping
is illegal and strictly prosecuted, with researchers going to prison for
collecting geodata [163].

4.2 google aerial images as remote sensing data

Finding remote sensing data suitable for building function classifica-
tion is challenging. Given that 50 % of all labeled building footprints
in the LCZ42 cities are smaller than 275.2 m2 (Figure A.1), free satellite
imagery can not be used here. For example, Sentinel-2 has 10 m GSD

in the human visible bands [164]. Assuming that a building with the
median footprint size of 275.2 m2 has a quadratic shape, its side length
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would be 16.6 m. Hence, with 10 m GSD, the whole building is covered
by four pixels. This resolution is not sufficient for the given task [165].

Therefore, this thesis uses aerial imagery from Google Earth at zoom
level 18, which has been successfully applied for building instance
detection [166, 167]. This zoom level yields a spatial resolution of
approximately 0.48 m in our study areas.

Google Earth uses the WGS84 web Mercator standard and provides
tiles with a resolution of 256× 256 pixels on up to 22 zoom levels1.
Therefore, the GSD gsd on a given zoom level z and a latitude lat is

gsd(z, lat) =
2πrE cos(lat)

2(z+8)
(4.1)

with rE as the equatorial radius of 6,378,137 m 2. For example, New
York is at latitude 40, and Los Angeles is at latitude 33. Hence, the
ground sample distance of our image patches is 0.46 m to 0.50 m in
these cities.

Based on multiple map tiles stitched together, patches of 256× 256

pixels centered on the building centroid were cropped. Hence, each
aerial image covers an area of approximately 15,100 m2 around the
building center. For every labeled building in the LCZ42 cities, there
is the respective aerial image from Google Earth.

4.3 google street view images as a source of ground-
level images

Google Street View (GSV) is a commercial service from Google pro-
viding geolocated panoramic images around the world. The company
collected this data first by itself but later opened it to volunteers
and professional photographers. Most imagery is collected while sys-
tematically driving cars through the city. These cars are equipped
with a custom high-resolution 3D camera system called R7. It has 15

5-megapixel CMOS image sensors and custom, low-flare, controlled-
distortion lenses [168]. In October 2021, GSV had imagery from every
cultural zone in the world (Figure 4.3), but at different temporal and
spatial resolutions. However, GSV does not cover every single street: Es-
pecially extremely poor and rich neighborhoods tend to be inaccessible
and are therefore not captured [169].

The Google Cloud API allows programmatic access to the Street
View data as a pay-per-use service. There are two primary endpoints:
a free one, which can be used to check if Street View data are available
at a given location, and a paid one, yielding the actual image at a
given position. Details of an image can be adjusted on a fine-grained
level, starting with a position; the endpoint supports heading, pitch,
and field-of-view [170].

1 https://developers.google.com/maps/documentation/javascript/coordinates

2 https://wiki.openstreetmap.org/wiki/Zoom_levels

https://developers.google.com/maps/documentation/javascript/coordinates
https://wiki.openstreetmap.org/wiki/Zoom_levels
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Figure 4.3: Coverage of Google Street View data; image © Google 2021 (from
https://www.google.com/streetview/explore/)

This thesis uses a dataset of 43,392 globally sampled GSV images,
with 14,512 commercial, 14,184 other, and 14,696 residential images.
The sampling algorithm tries to obtain a GSV image of labeled OSM

buildings for every administrative region in the world and every
building class. However, if a given number of trials is reached, it will
continue with the next class or region. For this thesis, the maximum
number of trials was set to 25.

Figure 4.4 shows the spatial distribution of the dataset. It shows a
high density in Europe as there are many small countries. Especially,
the Benelux area and central European countries are highly repre-
sented, whereas Germany and France are comparably sparse. The
American continent is evenly covered from North to South without a
strong focus on the USA. However, some middle American countries
are missing, e.g., Cuba, Nicaragua, El Salvador, or small island states
in the Caribean sea.

In Africa, only eleven countries show up on the map: The highest
density has Tunesia, Senegal, Kenya, Botswana, and South Africa.
Hotspots in Asia are Israel, Oman, Kirgisitan, Sri Lanka, Bangladesh,
Taiwan, Japan, Indonesia, and the Philippines. Australia and New
Zealand are also part of the dataset but with fewer buildings.

Generally speaking, the distribution is based on an intersection of
labeled building footprints in OSM and image data from GSV.

https://www.google.com/streetview/explore/
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Figure 4.4: Global distribution of sampled dataset with labeled OSM buildings
and a corresponding GSV image

4.4 flickr as a source of social media images

Flickr is a platform for uploading and sharing photos founded in
2004 with a focus on high-quality photography [171]. Its users can
comment and like shared photos of other users as well as follow
updates from other users. The platform hosts billions of photos for
more than 100 million registered users [172]. Following the stream of
newly uploaded photos in 2018 showed that approximately 5 % of all
uploaded images are geotagged; i. e., have latitude and longitude data
from a GPS sensor. This work uses only geotagged Flickr images.

Besides an app for smartphones and a website, Flickr allows sharing
and exploring content via an official web API. The API endpoints give
access to all entities, e.g., users, groups, photos, cameras, or places.
Using the photos.search endpoint, any machine can look up photos for
a given bounding box defined by two points containing the latitude
and longitude of the start and end. This method returns details about
all geotagged photos taken in the specified bounding box. Based on
the URL in these details, it is possible to download each photo with a
separate request.

Figure 4.5 illustrates the variety of motifs in geotagged Flickr images
from Venice, Italy. The feature vectors from a VGG16 network trained
on ImageNet are embedded in a two-dimensional space using T-
SNE [173]. The lower right part of the Figure shows images of water
and sky, while the upper center contains photos of people. On the
left side, there are pictures from night activities as well as macro
photographs of flowers and food.

The dataset for this thesis was generated using random sampling
of bounding boxes in the LCZ42 cities. By continuously querying
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Figure 4.5: Two-dimensional embedding of feature vectors from geotagged
images in Venice, Italy

the endpoint mentioned above from May 2018 to October 2021, the
download script yielded 28,818,438 images. Figure 4.6 shows the
number of Flickr images found in each LCZ42 city. The most images
were taken in London, with almost 4 million images, followed by New
York City and Los Angeles (2.4 million and 2.0 million). Eight cities
have more than one million images with a geotag; seven are in the
western hemisphere, and only Tokyo is from Asia.

A notable example of sparse coverage in social media is Dongying.
There are 153 images, while all other cities have a few thousand Flickr
images. A recent study found that Dongying is likely to be a ghost
city, meaning that the number of housing possibilities outnumbers the
number of inhabitants [174].

4.5 twitter as source of social media text

Twitter is a social media service focussing on short, public text mes-
sages. It allows direct and private messages, but every profile is public
by default. Twitter was founded in 2006 [175] and has more than 330

million monthly active users worldwide [176]. A user’s post is called
a tweet and is up to 280 characters long.

Twitter provides access to its data via an official API to obtain a
one percent sample of its continuous data stream. An endpoint called
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Figure 4.6: Number of geotagged Flickr images and Twitter posts for each
LCZ42 city.

statuses/filter [177] enables authenticated users to capture parts of a
live stream of tweets. Additional filters allow focusing on hashtags,
user ids, or bounding boxes of latitude and longitude.

Tweets can be geotagged based on two properties: Geolocation,
technically coordinates of latitude and longitude, or place, e.g., a POI,
neighborhood, or city. Figure 4.7 shows an example of a geotagged
tweet from Munich, Germany, posted in May 2016 that includes an
optional image3. It includes a username, a text, a timestamp, and
a location. Moreover, a tweet contains information about the client
app, the number of retweets, and likes. In 2019, Twitter announced
discontinuing precise locations in tweets because most users did not
use them [178]. However, there are still geotagged tweets with a
geolocation [179].

This thesis is based on a continuous one percent sample from the
Twitter API covering November 2017 to October 2021. A bounding-

3 https://twitter.com/Pommesflusterer/status/736907779034775552

https://twitter.com/Pommesflusterer/status/736907779034775552
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Figure 4.7: Example of a geotagged tweet from Munich, Germany, including
a picture of the town hall

box filter covering all possible GPS coordinates ensured that only
geotagged tweets were captured. This database consists of 589,764,252

tweets, with 76,061,274 coming from one of the LCZ42 cities. Figure 4.6
shows the distribution of tweets for these cities.

Most of the tweets, 21.7 million (28.5 %), are from Istanbul. Second,
New York City has 8.6 million tweets, and the third is Tokyo, with 8.2
million tweets. The lowest tweet coverage has Qingdao (13,206 tweets),
Changsha (11,276), and Dongying (250). Most cities have between
100,000 and 3 million tweets.

4.6 summary

Another part of the So2Sat project [157] is a multimodal social me-
dia dataset for building function prediction. This dataset consists of
655,425 labeled OSM buildings from the LCZ42 cities. Each building
comes with at least one tweet in its 50 m surrounding, and one very
high-resolution aerial image focused on the building centroid.

This thesis uses this dataset in two ways for training models: First,
for training classification algorithms on social media metadata in
Chapter 7. Second, for training CNNs on the aerial images in Chap-
ter 8. Parallelly, this thesis describes an independent dataset of labeled
OSM buildings from social media images in Chapter 6, which are pre-
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dicted using GSV models from Chapter 5. Thus, there are independent
datasets for training models on different modalities and one com-
mon set of labeled OSM buildings that are used across all chapters for
evaluation.

The next chapter introduces CNNs that predict building functions
from GSV images (Chapter 5). These CNNs are re-used in Chapter 6 on
social media images. The set of labeled OSM buildings from this chapter
serves as a common test set for all subsequent methods in Chapter 7,
Chapter 8, and Chapter 9. This approach has two advantages: First, all
images from Flickr can be used for testing and the sparsity of Flickr
images is mitigated. Second, the independent, large-scale training
datasets allow for building robust models that are finally all evaluated
on the same test set. Hence, the strength and weaknesses of different
methods can be directly compared.
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P R E D I C T I N G B U I L D I N G F U N C T I O N S U S I N G
S T R E E T V I E W I M A G E RY

As commercial services for street view imagery evolved, they soon
became a subject of research on how they could be used for socioeco-
nomic studies. In urban analysis, street view images are considered
the gold standard for building-level imagery. For example, Google
Street View (GSV) provides fine-grained settings for the location, the
compass direction, the heading, the pitch, and the field-of-view of an
image. This chapter introduces seven state-of-the-art architectures for
building function classification using GSV data. They serve as baseline
models and are re-used in different parts of this thesis.

(a) GSV image for com-
mercial OSM building
12174077 in Ulfborg,
Denmark

(b) GSV image for other OSM

building 50655248 in
Minsk, Belarus

(c) GSV image for residential
OSM building 53770628

in Koidu, Estonia

Figure 5.1: Examples for GSV images showing buildings with clear function.
Images © Google

Figure 5.1 illustrates how GSV images look like. For this thesis,
all images are centered on the building they represent with a field-
of-view of 90° and zero pitch. Figure 5.1a shows a supermarket in
Ulfborg, a town in the west of Denmark, as an example for a commercial
building. The theater in Figure 5.1b is the Belarusian State Academy of
Music, located in Minsk, Belarus. Figure 5.1c depicts a single-detached
house in Koidu, a village near Estonia’s capital Tallinn. All images in
Figure 5.1 are captured during clear, sunny weather conditions, but
this is not generally the case.

5.1 fine-tuning methodology

Google provides an API for obtaining street view images with fine-
grained control over the image content. It allows specifying either the
viewpoint or location of the image. Moreover, the API has parameters
for the field-of-view, the compass direction, and the pitch. This level
of detail ensures high-quality image content.
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As a drawback, Google charges users for every API request with
a small amount of money. While a single image comes at moderate
costs, building a global dataset to train a deep neural network from
scratch is comparably expensive. Furthermore, the Terms of Service
for Google Maps are very restrictive on usage.

Therefore, this thesis uses the GSV dataset introduced in Section 4.3
for fine-tuning pre-trained ImageNet models. The fine-tuning ap-
proach is organized in two steps: first, a newly added classification
layer is adopted to the backbone model. Second, the whole network is
fine-tuned in an end-to-end fashion. An intuitive explanation is: The
first step aligns a new prediction layer with the existing backbone,
while the second step adopts the whole model to the task.

Fine-tuning describes a method that takes the weights of an existing
deep model and adopts them to a new but related task. It relies on the
observation that all deep vision models have generic feature extractors
in the early layers and aggregate them in the subsequent layers. Only
the last layers of a network contain the actual, task-specific weights.

The more general a vision task is, the more general feature extrac-
tors are expected in a trained vision model [180]. Hence, this thesis
uses seven deep neural networks trained on ImageNet [181] to predict
building functions based on street view imagery. The architectures
are DenseNet121 [58], InceptionResNetv2 [59], Inceptionv3 [53], Mo-
bileNetV2 [61], ResNet50 [57], VGG16 [51], and Xception [62].

ImageNet models are trained to predict 1,000 image classes in their
final output layer, unsuitable for the given task. Therefore, all task-
specific dense layers are cut off so that only feature extraction layers
remain. These layers are frozen in the first training step, i.e., their
weights are not adjusted during training. A newly added, randomly
initialized output layer predicts the final building function class using
a softmax activation function. This layer is trained in the first step
using a categorical cross-entropy loss and Adam [46] as optimizer. The
learning rate in this step is defined as lr1 = 10−4.

The training runs for n1 = 16 epochs with model checkpointing
based on the validation loss. After training, the model with the lowest
validation loss is used for the next step to prevent overfitting. In this
case, all layers are trained with a learning rate lr2 = 10−5, while all
other parameters stay the same. Again, the resulting final model is
chosen based on the lowest validation loss during training.

5.2 evaluation

5.2.1 Creating Subsets for Training and Testing

For evaluation, the dataset from Section 4.3 is divided into two inde-
pendent sets for training and testing. Visual inspection of the dataset
revealed that not all images depict a building. Figure 5.2 shows two
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images that are heading toward buildings, but they are not visible due
to occlusions from vegetation. Therefore, an object detection algorithm
was applied, and only images containing a house or building were kept.
All objects were detected using a Faster R-CNN trained on OID v4

(see Section 2.2.5).

(a) GSV image for residential OSM building
5662533

(b) GSV image for other OSM building
4631033

Figure 5.2: Examples for GSV images showing no building, but task unrelated
content. Images © Google

This step reduced the dataset by 14 % from 43,383 to 37,295 images.
Table 5.1 shows the class distribution in the training and test set after
filtering and applying an 80:20 split. These steps retained the class
balance from the original dataset and left approximately 10,000 images
per class for fine-tuning.

Dataset Original Filtered

Class Train Test

Commercial 14,509 9,979 2,497

Other 14,181 9,438 2,288

Residential 14,693 10,419 2,674

Sum 43,383 29,836 7,459

Table 5.1: Training and test set of Google Street View (GSV) images

5.2.2 Architecture Analysis

After fine-tuning with the two-step approach, all architectures were
evaluated on the test set. They all show a similar precision and recall
performance between 0.513 and 0.568 (Table 5.2). The best architecture
is InceptionResNetv2, with a precision of 0.563 and a recall of 0.568.
Close to this is the related Inceptionv3 model gaining the second
highest values of precision and recall (0.560 and 0.564, respectively). In
contrast, the ResNet50 architecture shows the lowest performance of
0.513 precision and 0.519 recall. All other architectures are in between
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these results but always with a high balance between precision and
recall. The difference between both metrics is 0.002 on average, with
recall as the higher value.

From a class-level perspective, there are more differences. The resi-
dential class yields generally the highest F1 scores, 0.602 on average,
with one exception: the VGG16 architecture has a higher F1 score for
commercial than for residential. Commercial buildings are predicted with
an average F1 score of 0.595. Finally, all architectures have the lowest
F1 score for other buildings (0.428 on average). The precision and recall
values show no distinctive pattern beyond these findings on the F1

score due to their balanced values.
Since InceptionResNetv2 has the most parameters of all architec-

tures, it also has the largest capacity to adopt fuzzy patterns, which
poses a possible explanation for its performance. The following sub-
section analyzes the InceptionResNetv2 model in more detail.

5.2.3 Analysis of Best Performing Model

The InceptionResNetv2 architecture yielded a weighted F1 score of
0.562 on the GSV image test dataset, which is the best value of all
architectures. Figure 5.3 shows the confusion matrix of this model
for a deeper analysis. The majority of commercial images, 60.8 %, is
correctly predicted. The remaining wrong classified images are almost
evenly distributed among the two other classes with 18.5 % on other
and 20.7 % on residential images. Other images show the most con-
fusion: 38.3 % of all other images are correctly classified, but almost
the same number, 36.1 % is predicted to be residential. Less confu-
sion is between other and commercial with 25.5 % wrongly classified
images. Last but not least, the residential class yields the best results
with 69.0 % of all residentail images being predicted correctly. It is
mostly confused with other buildings in 18.0 % and less confused with
commercial (13.1 %). While the commercial and residential classes are rel-
atively well-defined, the other class combines very different classes like
stations, hospitals, schools, churches, mosques, and temples. Hence,
the inter-class variance of other buildings is substantially higher than
for the other two classes. Moreover, the first three examples, stations,
hospistals, and schools, exhibit often similar façades as commercial or
residentail buildings.

These findings are also reflected by the geographical evaluation in
Figure 5.4. The F1 score results for commercial and residential build-
ings is mostly above 0.50 across all regions. The InceptionResNetv2

architecture shows comparable results in industrialized regions and
developing areas for both classes. It yields the best F1 scores for com-
mercial in Polynesia, Australia and New Zealand, and Western Asia.
However, the score for Polynesia needs to be taken with care as it is
based on one building. For the two other regions, the F1 scores are cal-
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Metric F1-score Precision Recall

Model Class

DenseNet121

Commercial 0.605 0.602 0.608

Other 0.427 0.467 0.394

Residential 0.612 0.578 0.650

Weighted 0.553 0.552 0.557

InceptionResNetv2

Commercial 0.614 0.619 0.608

Other 0.427 0.482 0.383

Residential 0.629 0.578 0.690

Weighted 0.562 0.563 0.568

Inceptionv3

Commercial 0.608 0.609 0.606

Other 0.445 0.475 0.418

Residential 0.616 0.587 0.649

Weighted 0.561 0.560 0.564

MobileNetv2

Commercial 0.573 0.611 0.539

Other 0.419 0.473 0.376

Residential 0.610 0.542 0.697

Weighted 0.539 0.544 0.546

ResNet50v2

Commercial 0.565 0.544 0.588

Other 0.396 0.436 0.363

Residential 0.569 0.551 0.588

Weighted 0.515 0.513 0.519

VGG16

Commercial 0.607 0.591 0.623

Other 0.463 0.431 0.499

Residential 0.575 0.641 0.522

Weighted 0.551 0.560 0.549

Xception

Commercial 0.591 0.589 0.592

Other 0.419 0.464 0.382

Residential 0.599 0.561 0.642

Weighted 0.541 0.541 0.546

Table 5.2: Prediction results of different deep architectures trained with a
global GSV dataset. Weighted denotes the weighted average of all
classes.
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Figure 5.3: Confusion matrix of InceptionResNetv2 architecture fine-tuned
on original GSV dataset

culated with 50 samples in Australia and New Zealand, reaching 0.750

and 119 images in Western Asia with a score of 0.681. Figure 5.5a de-
picts a correctly predicted commercial building in Western Asia. Apart
from the Seven Seas region as an outlier with one sample, commer-
cial buildings have the lowest scores in Northern Africa and Western
Africa: 0.421 and 0.460. Figure 5.6a presents a cafe, which is predicted
as other, which might result from the neatly ordered chairs. Other
buildings are best predicted in Western Asia (0.589 F1 score on 129

images), Northern Africa (0.536 F1 score on 29 images), and Central
Asia (0.492 F1 score on 28 images). An example of an other building
is shown in Figure 5.5b. As there are no other buildings in Polynesia
and the Seven Seas, the lowest F1 scores for other buildings come from
Eastern Africa with 0.341, Southern Africa with 0.286, and Australia
and New Zealand with 0.286. All three have a substantial number
of buildings, with 25, 58, and 51 samples, respectively. Figure 5.6b
illustrates a possible reason for misclassification: the building, a city
hall, contains an estate agency. Regarding residential buildings, three
unrelated regions yield the highest F1 scores: Micronesia with 0.784

on 47 buildings, the Caribbean with 0.716 on 104 buildings, and South-
ern Europe with 0.661 on 353 buildings. Figure 5.5c gives a correctly
predicted example of a residential building in Micronesia. Polynesia
is considered an outlier because its F1 score of 1.0 is based on two
samples. The lowest F1 values for residential images are from Southern
Asia (0.545 on 83 images), Western Africa (0.540 on 79 images), North-
ern Africa (0.438 on 40 images). The cafe displayed in Figure 5.6c is
predicted as commercial but the label is residential.
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Figure 5.4: F1 scores of building predictions in LCZ42 cities on a class-wise
level for InceptionResNetv2 model trained on the original global
GSV dataset. The numbers in brackets behind the region names
indicate the number of buildings in the same order as the plot
columns.

(a) GSV image for com-
mercial OSM building
829179350 in Western
Asia

(b) GSV image for other OSM

building 1361736724 in
Northern Africa

(c) GSV image for residential
OSM building 690199384

in Micronesia

Figure 5.5: Examples for GSV images correctly predicted by the InceptionRes-
Netv2 model. Images © Google

5.3 summary

Predicting building functions from GSV images of building façades is
still a challenging task if performed on a global scale. Different aspects
are limiting the prediction performance: First, the quality of OSM labels
is not consistent across the globe. Furthermore, the labeling scheme of
three classes, commercial, other, and residential cannot model types of
mixed-use buildings. The consistent results of all architectures are a
strong hint that the label quality is a limiting factor in this case. A more
fine-grained classification scheme could give more insights into what
confuses the other class while going towards a multilabel classification
model would take mixed uses into account. However, as the ground
truth is still mostly for only one class, such an approach is challenging
to evaluate. On the positive side, the InceptionResNetv2 model shows
no bias towards the Global North but gains similar results across all
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(a) GSV image for com-
mercial OSM building
770071764 in North-
ern Africa, predicted as
other

(b) GSV image for other OSM

building 660972198 in
Australia, predicted as
commercial

(c) GSV image for residential
OSM building 804768742

in Northern Africa, pre-
dicted as commercial

Figure 5.6: Examples for GSV images wrongly predicted by the InceptionRes-
Netv2 model. Images © Google

regions. Its results are balanced between America, Europe, and Asia.
Nevertheless, the weaker results are primarily from Africa. With these
strengths and weaknesses in mind, the next chapter takes the models
to the next level with social media images.
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P R E D I C T I N G B U I L D I N G F U N C T I O N S U S I N G
S O C I A L M E D I A I M A G E S

This chapter focuses on social media images that are geotagged and
publicly available. However, the methodological approach is not lim-
ited to this data or task. The application, in this case, is building
function prediction, i.e., estimating the usage of a building using a
façade image.

Social media images are taken for the given task but serve other
purposes. However, they contain a small fraction of images beneficial
for building function prediction. Figure 6.1 shows three examples of
Flickr images that depict building façades giving a clear hint towards
the building function. This chapter introduces a filtering method to
extract such images from large-scale social media datasets and uses
the models from the previous chapter to predict building functions.

(a) Flickr image showing
commercial OSM build-
ing 107655590. Photo
spasso @ 6021 college
by Jed Schmidt is li-
censed under CC BY-
NC-SA 2.0

(b) Flickr image for other
OSM building 31826960.
Photo ©CIMG2016 by
bwilliamsdc

(c) Flickr image for resi-
dential OSM building
857226308. Photo
©Sneak preview of my
new listing by Tracy
King

Figure 6.1: Examples for Flickr images showing building façades with clear
function

6.1 filtering relevant social media images

Social media images cover different content and motifs, including but
not limited to photography, digital art, and cartoons. However, given
a task like building function classification, most images do not help
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https://www.flickr.com/photos/15308437@N00/3799112739
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solve the task. For the task of building function classification, an image
must have three features:

1. Shows a building façade

2. Has a valid geotag

3. Has a known compass direction

The image content allows for predicting the building function based
on the façade. The geotag determines the position where the image
was taken, and the compass direction is necessary to map the image
content to a nearby building.

A filtering pipeline is needed to identify all images that fulfill these
three criteria in a social media image dataset. Additionally, it must
account for big data to work on datasets with more than 20 million
images.

Unique 
Location 
Filtering

Similarity
Filtering

Object 
Detection 
Filtering

Social
Media 
Dataset

(e.g. Flickr)

Compass 
Direction 
Filtering

OSM 
Building 
Mapping
Filter

1 2 3 4 5

Figure 6.2: Filter pipeline for extracting Street View-like images from Flickr
image database

Figure 6.2 shows the pipeline used in this thesis. It consists of five
steps, starting with unique location filtering. This filter is a heuristic
to discard images with an invalid geotag by checking if more than
one image is from one location. The following two steps focus on
the image content and ensure that the first two criteria are matched.
Similarity filtering checks if a social media image has potentially
helpful content by comparing it to a set of images that are known to
be helpful. Object detection filtering is an optional step that applies
a deep object detection algorithm to the images yielded from the
previous step. If a social media image contains an object defined as
valuable, it will be passed on to the subsequent step. At this point,
there is evidence for each image showing a building, and its geotag
is probably from a GPS sensor. The next filter step checks the third
criterion: the compass direction. An image passes this filter if the tag
GPSImgDirection is present in the Exchangeable Image File Format
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(EXIF) metadata. Please note that this pipeline builds on the assumption
that the EXIF data is not present and needs to be downloaded separately
for each image. The final step, OSM building mapping filter, is most
relevant for evaluation. It ensures that the first building within the
line of sight is labeled, and predictions can be compared with this
label. However, it would be sufficient to relate the image content to an
unlabeled building in a pure inference case.

Having the pipeline in this order allows fast filtering and reduces
the required communication with external servers.

The following subsections describe the filter steps in more detail.

6.1.1 Unique Location Filtering

This filter is a heuristic to identify images that were manually tagged.
Geotags can be created in two different ways: either automatically by a
GPS sensor of the camera or manually by the user. GPS sensors in mo-
bile devices have a warm-up phase, in which the location is constantly
updated based on visible satellites and nearby WiFi identifiers [182].
If users have to pick locations of images by hand, they tend to do it
batch-wise, tagging multiple images at the same place.

Therefore, two images taken at the same position with the same
device will have a slightly different geotag. If two images have pre-
cisely the same geotag, up to the 16th digit, likely, they were manually
tagged while post-processing. In this case, a geotag is not considered
to be valid.

More formally, an image ix with location l(ix) passes this filter if

∀i ∈ I, i ̸= ix∄l(i) = l(ix) (6.1)

If naïvely done, the geotag for each image needs to be compared
with all geotags in the database, a so-called sequential scan. A geospa-
tial index decreases the necessary checks by excluding geotags far
away. An R-tree allows finding the images in a very close neighbor-
hood, and a subsequent check on true equality is performed only on
the geotags of these images.

6.1.2 Similarity Filtering

This first content-based step is a coarse filtering step aiming at finding
images that are potentially helpful for building function classification.
Previous studies showed the relevance of façade images to predict
building functions [16, 20, 77, 183]. Therefore, this step is formulated
as an image retrieval problem with a sample of GSV images as a seed
dataset and a social media dataset.

This sample is compiled from the global GSV dataset as described in
Section 4.3. To ensure that all seed images show a meaningful object,
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they are filtered to contain either a building or a house using object
detection with Faster RCNN (see Subsection 2.2.5).

Features from deep neural networks are well-suited for finding
structurally similar images. As they aggregate information with every
layer, the final layers of a network are an abstract representation of
the whole image. For example, the deep features of VGG16 have been
successfully applied in different domains for image retrieval [184–187].

For this thesis, features are taken from the last hidden layer of a
VGG16 network trained on ImageNet. This process yields feature
vectors v ∈ R4096. To assess similarity between pairs of images i1, i2,
the cosine similarity scos is calculated based on the feature vectors
v1, v2:

scos(v1, v2) =
v1v

T
2

∥v1∥ ∥v2∥
(6.2)

For efficient calculation, the features for all images of the seed
dataset are calculated beforehand. Then, the features for all social
media images are computed batch-wise. Next, the pair-wise cosine
similarity is calculated between the batch and the seed dataset. The
similarity score simscore of an image with feature vector vs is defined
as the maximum similarity with all seed images:

simscore(vs) = max ({scos(v1, vs), ..., scos(vn, vs)}) (6.3)

A threshold tsim is set as a minimum similarity value and all social
media images with simscore < tsim are discarded.

6.1.3 Object Detection Filtering

The previous step is a fast check for structural similarity to a given
seed dataset but does not ensure that the social media images contain a
building façade. Therefore, this step uses an object detection algorithm
to find all objects in the images that passed the previous filter.

There are two main criteria for selecting an object detection algo-
rithm. First, it needs to detect the object types of interest, and second,
its trade-off between speed and accuracy must be appropriate for the
task. There are no images with bounding boxes available for training,
and only a pre-trained detection algorithm could be applied. The
Open Image Dataset [70] is the only dataset with buildings and houses
as part of the training data to the best knowledge of the author. A
suitable architecture trained on this dataset is Faster R-CNN [63] with
an mAP of 37 and a runtime of 727 ms [68].

Applying the object detection algorithm yields a list of objects for
each image. If this list contains either a house or a building it is a
candidate for passing this filter. Each detected object comes with a size
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relative to the image and a confidence score. Based on these variables,
there are two thresholds for adjusting if a candidate image passes the
filter: tsize and tscore. Only if there is a building or a house that is
larger than tsize and has confidence higher than tscore the image is
passed to the next step. The filter is a logical OR, i.e., if there is at least
one object matching the criteria, the image passes the filter.

6.1.4 Compass Direction Filtering

The geotag of an image defines where its photographer was standing
while taking it. This information is essential but does not say anything
about the camera’s viewing direction. Without a compass orientation
of the camera, it is almost impossible to align the image content with
the spatial surrounding. Therefore, this step checks if this value is
available for an image.

This step is based on metadata of images, so-called Exchangeable
Image File Format (EXIF) data. EXIF is a standard established by the
Camera and Imaging Products Association (CIPA) and the Japan Elec-
tronics and Information Technology Industries Association (JEITA)
[188]. It defines fields for saving details about images, including the
date and time of capturing, camera model, and camera settings. More-
over, it specifies how data from GPS sensors can be incorporated.
Possible options for this data are GPS positions with longitude and
latitude, compass orientation, or compass direction.

An intermediate step is downloading the EXIF data for all images
that pass the previous filter. As this is not part of the filtering pipeline,
it is omitted in Figure 6.2. However, every request that can be avoided
with the unique location filtering reduces network traffic and hence,
the overall runtime of the filtering pipeline.

Assuming that EXIF data is present for all images that passed the
filters so far, this step checks if the tag GPSImgDirection is present and
rejects all images that do not have this tag.

6.1.5 OSM Building Mapping Filter

This final step establishes a connection between buildings shown in
an image and their representations in OSM. Having a position and
a compass orientation allows one to draw a line of sight. The first
building intersecting with this line is defined as the building shown
in the image with pdist as the distance between the position and the
building in meters. Figure 6.3 illustrates the approach.

Based on this parameter, a fourth threshold is introduced: tdist
sets the maximum distance for a building. For evaluation, all images
looking at unlabeled buildings are skipped.
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Camera: Apple iPhone 7 Plus, Compass: 45.3°, Distance: 5.51 m

Classes
Commercial Other Residential Unknown

Image 44241461340

Figure 6.3: Example for mapping a Flickr image to an OSM building. The
image location and line-of-sight are in purple. Background map
tiles by Stamen Design, under CC BY 3.0. Data by OpenStreetMap,
under ODbL.

6.1.6 Filtering Pipeline Summary

Having the pipeline in this order enables a content-first strategy while
keeping the computational effort low. Additionally, the number of
hyperparameters is small with four thresholds:

1. minimum seed similarity tsim

2. minimum object size tsize

3. minimum object score tscore

4. maximum building distance tdist

6.1.7 Predicting Building Functions

Instead of training new models, this thesis builds upon the models
from the previous Chapter 5. The similarity filtering implicates that the
distributions of the GSV dataset and the social media images are close
to each other. Additionally, the social media image labels will probably
have a lower quality as there are more error sources in the process.
Last but not least, reusing models saves energy and is environmentally
more friendly.
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6.1.8 Human Label Verification

Using labels from OSM has the advantage of potentially global cov-
erage, but the activity of contributors limits them. Moreover, the
simplicity of the classification scheme cannot cover mixed usages.

The human visual processing system is still among the top classifi-
cation mechanisms despite the recent success of CNNs [189]. Therefore,
a group of humans was asked to verify the labels of the social media
images to assess the label quality. They were shown an image and a
corresponding label obtained from the filtering pipeline. Based on this
information, they had to vote if a label was correct or not. For unclear
cases, a third option unsure was offered. Figure 6.4 shows the user
interface of the tool with a sample image. Once n users voted on an
image, it was not shown to any other user to have the same number
of votes for every image.

Figure 6.4: Web-based tool for human validation of image labels

6.2 evaluation

This section is structured based on the pipeline order. Therefore, it
investigates the effects of each filtering step in the first place. After-
ward, an end-to-end evaluation analyzes the performance of different
state-of-the-art architectures for this task.

Subsequently, an analysis of human-validated labels shows the
accuracy of OSM labels from the pipeline and how the results can be



72 predicting building functions using social media images

assessed when applied in inference mode. Finally, a discussion of the
results summarizes this chapter.

The filtering starts with the dataset from Section 4.4 containing
28,818,438 images. The unique location filter first processes this dataset.

6.2.1 Unique Location Filtering
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Figure 6.5: Number of Flickr images per unique location on log-log scale

9,188,589 out of 28,818,438 images have no other image at precisely
the same location (31.9 %). Hence, more than two-thirds of all images
in this dataset do not pass this filter. Figure 6.5 shows the distribution
of the number of images per location on a log-log-scale. Twenty-
five percent of all images share their position with two to ten other
images. Further, 23 % have eleven to 100 other images at the same
position. Generally, the histogram can be described with a power-law
distribution having a long tail. In total, there are 487 locations with
more than 1,000 images. However, only 9,188,589 are unique and used
for the next step.

6.2.2 Similarity Filtering

Figure 6.6 shows the distribution of similarity values from the unique
location-filtered images. These images have a mean similarity of 0.539

to the GSV seed dataset (variance 0.016). The minimum similarity is
0.159, and the maximum similarity is 0.895, with a skewness of -0.307.
Hence, the distribution is skewed towards higher values than the
mean.

This indicates that the previous step is a good heuristic as the
distribution of similarity scores from the overall dataset follows a
normal distribution almost perfectly. Figure A.2 depicts little skewness,
while the mean similarity is 0.506. Without taking the content into
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Figure 6.6: Distribution of similarity parameter psim after unique location
filtering

account, unique location filtering helps to focus on the more street-
view-like images.

For further analysis, a minimum threshold tsim = 0.70 is set to
keep the number of images for object detection and the number of
requests to download EXIF metadata reasonable. This results in 821,110

images that are used for the next steps. If object detection filtering is
applied, this is the next step. Otherwise, these images are passed to
the compass direction filtering directly.

6.2.3 Object Detection Filtering
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Figure 6.7: Number of detected houses and buildings as a function of detec-
tion scores and relative object sizes in social media image dataset

This optional step removes all images that do not show a house or
a building. Figure 6.7 depicts the distribution of the confidence scores
and the relative object sizes in the dataset. Almost all combinations of
size and scores are present, but most houses and buildings cover less
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than 20 % of an image and are detected with scores < 0.8. Since the
algorithm does not report objects with a score lower than 0.3, this value
represents the start of the detection score axis. For further analysis,
thresholds are set to tscore = 0.0 and tsize = 0.0. Hence, an image
passes this filter if a house or a building was detected independent of
any score or size. The effects of higher thresholds are discussed below.
Out of 821,110 images, 76 % (624,099) fulfill this requirement.

6.2.4 Compass Direction Filtering

This binary filter checks if an image has the tag GPSImgDirection in its
EXIF data. It is assumed that this data is not present and needs to be
downloaded individually for each image.

If object detection is omitted, this step yields 168,456 images out of
821,110 (20.5 %). Otherwise, 88,809 images pass this filter after object
detection.

6.2.5 OSM Building Mapping Filtering

Out of 168,456 images from the previous step, 120,547 have an OSM

building within their line-of-sight, and 43,526 of these buildings are
labeled. If object detection filtering is applied, the numbers are 98,604

(all buildings) and 35,568 (labeled buildings). There is a notable differ-
ence in the proportions: without object detection, 71.5 % of images can
be mapped to a building. By using object detection, this proportion
increases to 78.6 %. However, in absolute numbers omitting object
detection results in 22.3 % more images mapped to labeled buildings.

The images are almost equally distributed among the three classes:
With object detection, there are 10,950 commercial, 11,958 other, and
12,660 residential images. If object detection is not applied, there are
13,525 commercial, 14,474 other, and 15,527 residential images.

The following analysis focuses on the numbers gained without
object detection. Figure 6.8 shows how many images are mapped to
one building. In most cases, there is one image per building for each
class. However, there are two outliers of buildings having more than
50 images. Two other buildings have 81 (ID 806812206) and 60 (ID
6516601) images. The first one, 806812206, is the Kinkaku-ji temple in
Kyoto, a World Heritage Site. The second building, 6516601, is also
a World Heritage Site located in Lisbon: Mosterio dos Jerónimos, a
former monastery. Both are tourist hot spots, and hence many pictures
are taken there.

The residential building with the most images assigned has 38 images.
This building (ID 476482044) is the White House in Washington, DC.
For the class commercial the building with ID 579548282 has 33 images.
It is a supermarket in the south of London, a region with very few
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Figure 6.8: Distribution of Flickr images per OSM building on a class-wise
level

building footprints in OSM. This building is the only one in the broader
area, and it gets all images assigned.
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Figure 6.9: Distance in meters of Flickr images to OSM building on a class-
wise level

As an example, Figure 6.9 depicts the distance of images to buildings.
Between the classes, there are a few differences. More than 75 % of
all images are assigned to buildings less than 75 m away. The median
distance is similar for all classes with 28.8 m for commercial, 31.6 m
for other, and 30.9 m for residential buildings. Nevertheless, there are
outliers of more than 160 m distance to a building. Here, no threshold
is defined as the full parameter range is a subject of further analysis
in Subsection 6.2.8.
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Figure 6.10: Map of Flickr images and assigned OSM buildings in Mumbai,
India. Background map tiles by Stamen Design, under CC BY
3.0. Data by OpenStreetMap, under ODbL.

Figure 6.10 shows social media images identified in Mumbai, India,
and their corresponding buildings according to the algorithm. In this
city, there are 192 images in total, which are mapped to 154 buildings,
with 73.3 % of them unlabeled (filled with red in Figure 6.10). Although
social media images and building data are sparse in this area, there is
still a high potential to fill blind spots in the Global South.

6.2.6 Pipeline Summary and Runtime Analysis

Table 6.1 summarizes the number of images remaining after each
pipeline step. Furthermore, it shows the time needed to process one
image sample. Although the absolute time values change with differ-
ent machines, they allow a relative comparison between the steps. In
this case, all calculations were performed on an Nvidia DGX-1 server
with 80 cores à 2.2 GHz, 512 GB memory, and one Nvidia Tesla V100

GPU with 32 GB
The fastest step is unique location filtering, which takes 0.0002 s. It

reduces the initial dataset to approximately one-third with an overall
runtime of 96 minutes. Similarity filtering requires computing dense
feature vectors, which takes 0.0236 seconds. This is 100 times slower
than the previous step, taking 60.2 h to process the remaining 9,188,590

images. Object detection (OD) takes 144.1 h, with each image being
processed in 0.6319 s. Image direction filtering is the slowest of all
steps taking 1.3 s per image sample. The slowest part of this step
is downloading the EXIF data and waiting to make the subsequent
request. If one continues with the results from the OD step, it takes
231.1 h to check all 624,099 images. If OD is omitted, the process
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Filtering Step #Images % of Dataset Time [s]

Flickr LCZ42 Dataset 28,818,438 100.00 %

Unique location filtering 9,188,590 31.88 % 0.0002

Similarity filtering 821,110 2.85 % 0.0236

Object detection filtering 624,099 2.17 % 0.6319

Image direction filtering 125,375 0.44 % 1.3333

w/o OD 168,456 0.58 %

OSM building in line-of-
sight

98,604 0.34 % 0.0008

w/o OD 120,547 0.42 %

Labeled OSM building in line-
of-sight

35,568 0.12 %

w/o OD 43,526 0.15 %

Table 6.1: Number of Images remaining after each filtering step when using
tsim = 0.70 and tdist = 250. Time [s] describes the execution
time for one image. w/o OD stands for without object detection and
describes the pipeline results if object detection filtering is omitted.
Execution time per image sample in seconds averaged over 10,000

samples

requires 304.1 h. Hence, there is no benefit in using OD from a time
perspective. It is 23.3 % slower than checking the results of similarity
filtering directly. The last step, checking if any OSM building is within
the line-of-sight, is the second-fastest (0.0008 s) because this is also
a spatial index-based database query. The smaller dataset (including
OD) takes 100 s, and without it, it takes 135 s. However, the number
of resulting images is different: OD gives 35,568 images, whereas
omitting it yields 43,526 images, an increase of 22.3 %. Furthermore,
the overall runtime is lower if OD is omitted.

Moreover, this analysis shows the potential of the approach: Without
OD, there are 120,547 images, which are mapped to 86,658 OSM build-
ings. 56,857 out of these buildings, a majority of 65.6 %, are unlabeled
and could be enriched with a semantic tag.

6.2.7 End-to-end Performance Analysis

The resulting images are fed into seven state-of-the-art architectures
trained on ImageNet and fine-tuned on GSV data for this analysis
(Subsection 5.2.2). They are evaluated against the label of the building
they are mapped to, i.e., the performance of a GSV model to predict a
building function based on a façade image from Flickr. Table 6.2 shows
the F1-score, precision, and recall for all architectures at a class-wise
and model level weighted by the number of samples.

As the class distribution is relatively even, the weighted metrics are
always close to the mean of all class-wise metrics. Additionally, the
table enables comparisons between images filtered with and without
OD because both results are in two primary columns.



78 predicting building functions using social media images

Without OD With OD

Metric F1 Pre Rec F1 Pre Rec

Model Class

Dense-
Net121

Com 0.467 0.433 0.507 0.462 0.440 0.486

Oth 0.490 0.417 0.593 0.506 0.429 0.617

Res 0.334 0.531 0.244 0.359 0.542 0.268

Wgt 0.427 0.463 0.442 0.440 0.473 0.453

Incep-
tionRes-
Netv2

Com 0.516 0.430 0.643 0.516 0.435 0.633

Oth 0.490 0.510 0.472 0.511 0.527 0.496

Res 0.428 0.550 0.350 0.453 0.568 0.377

Wgt 0.476 0.499 0.482 0.492 0.513 0.496

Inception
v3

Com 0.485 0.438 0.542 0.480 0.447 0.517

Oth 0.472 0.454 0.492 0.493 0.466 0.523

Res 0.421 0.506 0.361 0.443 0.517 0.388

Wgt 0.458 0.467 0.461 0.471 0.479 0.473

Mobile-
Netv2

Com 0.469 0.432 0.513 0.463 0.438 0.491

Oth 0.491 0.408 0.615 0.505 0.418 0.635

Res 0.282 0.529 0.192 0.312 0.540 0.220

Wgt 0.410 0.459 0.433 0.423 0.468 0.443

ResNet-
50v2

Com 0.436 0.423 0.449 0.426 0.430 0.423

Oth 0.413 0.435 0.393 0.433 0.450 0.417

Res 0.450 0.442 0.459 0.467 0.449 0.486

Wgt 0.433 0.434 0.434 0.443 0.443 0.443

VGG16

Com 0.472 0.431 0.523 0.465 0.436 0.499

Oth 0.480 0.400 0.601 0.496 0.410 0.627

Res 0.276 0.537 0.186 0.300 0.553 0.206

Wgt 0.405 0.458 0.429 0.417 0.469 0.438

Xception

Com 0.496 0.419 0.609 0.494 0.426 0.588

Oth 0.465 0.456 0.474 0.487 0.468 0.508

Res 0.365 0.504 0.287 0.387 0.520 0.308

Wgt 0.439 0.462 0.449 0.454 0.474 0.461

Table 6.2: Prediction results of different deep architectures trained with GSV

data on filtered Flickr images. Filtering is done with and without
object detection (OD). Metrics are abbrivated as F1-score, Precision,
and Recall. Classes are abbrivated as Commercial, Other, and
Residential. Wgt denotes the weighted average of all classes.
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Generally, the results of all architectures are on a similar level, with
weighted F1 scores between 0.405 and 0.492. With OD applied, the F1

scores are on average 3 % better than without OD. Moreover, most
models have slightly better precision than recall (0.016 on average).
All further analysis will focus on the pipeline without OD considering
the higher runtime, fewer images, and a slight performance gain.

From a model perspective, InceptionResNetv2 outperforms all other
architectures concerning all metrics at a weighted level. This finding
is following the results from Subsection 5.2.2 thus, the InceptionRes-
Netv2 shows the best performance on GSV images and filtered social
media images. These results are another indicator for the hypothesis
that the large capacity of the network is best suited for fuzzy patterns.
However, at a class-wise level, some other architectures gain better
results than InceptionResNetv2. For example, MobileNetV2 has 0.143

better recall for other buildings, but this comes with a very low preci-
sion of 0.508 (InceptionResNetv2 0.510). Overall, InceptionResNetv2

has an appropriate balance between precision and recall while ob-
taining the best results. Figure 6.11 shows an example for which this
model is predicting the correct class while most other models fail.
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Figure 6.11: Example of a Flickr image that is correctly predicted by Incep-
tionResNetv2 and MobileNetV2. Photo Daibutsuden - Todaiji
Temple by John Dunsmore is licensed under CC BY-ND 2.0

The InceptionResNetv2 model has a high precision of 0.550 on
residential images but a lower recall of 0.361. This finding is in contrast
to the commercial class, for which it has a high recall of 0.643 and a
comparably low precision of 0.43.

https://www.flickr.com/photos/92636246@N00/9935065986
https://www.flickr.com/photos/92636246@N00/9935065986
https://www.flickr.com/photos/neebong/
https://creativecommons.org/licenses/by-nd/2.0/
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6.2.8 Influence of Pipeline Parameters on Performance

This evaluation looks at how the four parameters of the pipeline affect
the classification performance. All metrics are computed using the
InceptionResNetv2 architecture. Figure 6.12 shows the weighted F1

score and the size of the resulting dataset when the thresholds for
minimum similarity tsim and maximum distance tdist are changed.
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Figure 6.12: Influence of pipeline parameters on classification performance
of InceptionResNetv2 model without applying object detection

Increasing tsim from 0.7 to 0.8 improves the F1 score from 0.476 to
0.512, an increase of 7.6 % (Figure 6.12a). At the same time, the dataset
size decreases to 681 images, which is 1.6 % of the original dataset
with 43,525 images. Using tsim > 0.85 yields seven images resulting
in an unstable F1 score of 0.543.

A decrease of tdist from 250 m to 100 m increases the F1 score from
0.476 to 0.487 while maintaining a dataset size of 85.6 % (37,292 images,
Figure 6.12b). The highest F1 score of 0.509 is reached for tdist = 20

with 36.6 % of the dataset. Going below these values decreases the F1

score again before it becomes unstable when approaching 0.0.
Figure 6.13 depicts the influence of parameters from object detection

on the classification performance. This analysis is also based on the
InceptionResNetv2 architecture predicting the 35,567 images from the
filtering pipeline with OD.

An increase of tscore = 0.50, the minimum object detection score,
leads to a F1 score of 0.507, which is 0.015 more than the initial 0.492 F1

score (Figure 6.13a). In this case 80.2 % of the dataset is still available.
Above tscore > 0.5 the F1 score increases up to 0.636 at tscore = 0.92.
However, at this threshold, the dataset is reduced to 3.5 % (1,233

images). Further increases result in an unstable F1 score due to one
remaining image at tscore > 0.973.

Changing the minimum building tsize yields a F1 score of 0.522

at tsize = 22.4 (Figure 6.13b). Using this threshold results in 15,215
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Figure 6.13: Influence of additional pipeline parameters on classification
performance of InceptionResNetv2 model with applying object
detection

images, which is 42.8 % of the whole dataset. Lower and higher values
of this threshold result in lower F1 scores.

All parameters significantly influence the dataset size and have a
low effect on the prediction results. Setting more strict values reduces
the dataset size to small fractions of the original one. However, there is
not much change in the prediction performance. This insight indicates
that the classification results are influenced more by the label quality
than the image quality. The following section investigates this aspect
in more detail.

6.2.9 Results of Human Label Verification

A subset of 1,500 images was created to assess the task’s difficulty,
with 500 images for each class. Thirty-four humans checked the image
labels and voted if the label was correct, wrong, or they could not
tell. If an image received three votes from different reviewers, it was
defined as done and taken out of the set.

756 image labels out of 1,500 got full agreement from all three
reviewers. Figure 6.14 shows the confusion matrix of these human
labels and the labels from OSM. The overall accuracy of OSM is 69 %,
but there are differences between the classes. Commercial has a recall
of 0.635, whereas residential gains 0.725. Commercial is most often
confused with other (54 images). The reverse holds true as well: other is
confused with commercial in 45 images. Residential images are equally
confused with the other classes: 33 images as commercial and 30 images
as other.

There are two conclusions from this verification. First, only half of
the images show a building façade that humans can use to identify the
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Figure 6.14: Agreement between images labels from OSM and human-verified
labels as confusion matrix

building’s function. Second, only two-thirds of OSM building labels
are correct.

These insights enable a new assessment of the classification perfor-
mance. Figure 6.15 depicts the confusion matrix for the InceptionRes-
Netv2 model on images with human-verified labels. In this case, the
weighted F1 score is 0.78, which increases 62.5 % compared to the F1

score of 0.48 on the full filtered dataset. Especially the commercial class
gains a high F1 score of 0.81, which is mostly due to a recall of 0.92.
In contrast, the residential class shows a precision of 0.87 and a recall
of 0.64.

Generally, the relatively low classification performance from Subsec-
tion 6.2.7 is not a result of an underperforming model but rather due
to label noise and unclear images. This issue needs to be considered
when analyzing the performance at a building level in the next part.

6.2.10 Performance Analysis at the Building Level

So far, all evaluations have been performed at the level of individual
images. However, the overall task is building function classification,
so aggregation is needed at a building instance level. This aggregation
is accomplished by fusing the predicted probability vectors for each
building image using an unweighted average.

The mean fusion at the building level yields the following class dis-
tribution: 13,525 commercial images are aggregated to 9,345 buildings,
14,474 other images to 7,774 buildings, and 15,527 residential images to
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Figure 6.15: Confusion matrix of InceptionResNetv2 model on images with
human-verified labels

12,748 buildings. In summary, the total number of 43,526 images is
aggregated to 29,867 buildings.

The following analysis takes a closer look at how building functions
are predicted in different LCZ42 cities (Figure 6.16). The number of
buildings for each class is in brackets behind the city names. Most
buildings are located in London, with 5,508 samples. Other cities in
the top 5 are Los Angeles (4,255), Amsterdam (2,794), Berlin (2,304),
and New York City (1,528).

The top 5 cities with the lowest number of buildings are Nanjing (12),
Tehran (11), Changsha (10), Wuhan (7), and Islamabad (5). Dongying
does not appear in this list as there is no intersection between filtered
images and labeled buildings. These cities are considered outliers and
are not part of any further analysis.

Most F1 scores are in line with the overall performance of 0.48

from Subsection 6.2.7. However, there are some notable examples.
Commercial buildings show high F1 scores in Los Angeles (0.687) and
San Francisco (0.631), which is related to the geographical distribution
of training samples. These building types are also identified with
high scores in Jakarta, 0.750 on 33 buildings, Shenzhen, 0.699 on 94

buildings, and Beijing, 0.654 on 60 buildings. On the other hand,
commercial buildings gain the lowest F1 scores in Berlin (0.300), Rome
(0.241), and Qingdao (0.200). A low number of samples can explain
the latter: there are six commercial buildings in Qingdao.

Other buildings yield high F1 scores in cities that are famous for
historical sights. Twenty other buildings in Cairo show 0.800 F1 score,
230 buildings in Rome reach 0.733 F1 score, and 85 buildings in
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Figure 6.16: F1 scores of building predictions in LCZ42 cities at a class-wise
level for InceptionResNetv2 model. The numbers in brackets
behind the city names indicate the number of buildings in the
same order as the plot columns.

Istanbul get 0.675 F1 score. Surprisingly, two western cities are among
the three cities with the lowest scores for other buildings: Los Angeles
with 0.233 on 360 buildings and Amsterdam with 0.218 on 246. Only
Shenzhen is even lower, with 0.207 on 27 buildings.

On the other hand, these two western cities appear in the list of
top 3 for residential buildings. Lisbon shows the highest F1 score for
this class with 0.590 on 257 buildings. Next, Amsterdam has 0.570 on
2,010 buildings, and Los Angeles with 0.528 on 1,903 buildings. The
cities with the lowest F1 scores of 0.0 for residential buildings are Cairo,
Jakarta, and Nairobi, but they have just two or one building of this
class.

There are no geographical patterns, but all cities show similar results.
While this is probably an effect of the label noise, it also shows that the
prediction model is robust and generalizes well to different cultural
regions.
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Figure 6.17: F1 score, precision, and recall as a function of the number of
images per building at a class-wise level for InceptionResNetv2

model.

A summarizing confusion matrix of the results at a building instance
level can be found in the Appendix, Figure A.3. Last but not least,
the mean fusion approach introduces a new variable: The number
of images per building. Figure 6.17 shows the F1 score, precision,
and recall as functions of the number of images per building. The
classification performance increases with more images per building,
and the predictions become more robust. This effect is most significant
for up to ten images afterward; the number of buildings with more
than ten images becomes too small for statistical evaluation. As only
one building has n > 10 images per class, the metrics become 1 or 0.
However, up to ten images increase the classification performance.

6.3 summary

This chapter introduced a computationally efficient filtering pipeline
to identify images in large social media datasets for building function
classification. It shows how the content of the resulting images can be
related to geospatial information to map images to buildings.

An extensive analysis investigates the effects of filtering steps on
a dataset of 28 million social media images and the classification
performance. Since 65.6 % of all identified OSM buildings are unlabeled,
there is considerable potential for closing gaps in semantic tags of
OSM. Seven state-of-the-art deep learning architectures are evaluated
for predicting the building functions based on the filtered images. The
results of the best-performing model received an in-depth analysis
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concerning the correctness of labels, geographical distribution, and
effects of the image on building aggregation.

Building function classification is challenging for humans and com-
puters on real-world datasets. Additionally, the labels of OSM data
cannot be considered as ground truth as the label quality is far from
perfect. A possible option to improve the label quality could be adding
additional data from other platforms, e.g., Foursquare or Wikipedia,
which also contain POIs data. Although these platforms have little data
about residential buildings, they could be used for validating commercial
and other labels. Going from image content to spatial knowledge re-
quires a chain of multiple tools that introduce further uncertainty. The
next chapter will propose a method independent of any social media
content and focus only on its metadata to avoid these shortcomings.



7
P R E D I C T I N G B U I L D I N G F U N C T I O N S U S I N G
M E TA D ATA O F S O C I A L M E D I A P O S T S

All approaches mentioned earlier use visual features from aerial or
ground-level imagery. Visual data is high-dimensional and requires so-
phisticated algorithms combined with tremendous computing power.
This chapter presents an alternative way to predict building functions
using social media data by focusing on the metadata. When a user
creates a social media post, its content is saved along with several
other data fields describing the context during creation. For example,
a Flickr image has 20 attributes apart from the image identifiers, and
a tweet has 83 other attributes beyond the text. This approach works
with three essential attributes of every geotagged social media post:
the user id, the location, and the timestamp. While this information is
trivial for a single post, it becomes a rich data source as different users
create them at different times and locations. If the posts are aggregated
for multiple years, spatio-temporal patterns become visible.

1,099 tweets from 723 users near
commercial OSM building 1001139336

Building Class
Commercial Other Residential

(a) Tweets around commercial OSM build-
ing 1001139336 near Kyoto, Japan

16 tweets from 15 users near
residential OSM building 1000803540

Building Class
Commercial Other Residential

(b) Tweets around residential OSM building
1000803540 in Melbourne, Australia

Figure 7.1: Examples for spatial distributions of tweets around different
building classes, colors indicate different users, marker sizes
illustrate the number of tweets from one user and location. Back-
ground map tiles by Stamen Design, under CC BY 3.0. Data by
OpenStreetMap, under ODbL.

Figure 7.1 illustrates the hypothesis behind this method: in the
surrounding of commercial buildings, different users post a lot of
content, while the number of posts around residential buildings is
relatively low and mainly from the same users. Figure 7.1a shows the

87
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distribution of 1,099 tweets from 723 users around Pieri Moriyama,
a shopping mall near Kyoto, Japan. In contrast to this pattern, the
distribution of tweets in Figure 7.1b shows only 16 tweets from 15 users
in the surrounding of a residential building in Melbourne, Australia.

This approach is based on spatio-temporal features derived from the
metadata to keep the computational effort low. The following sections
describe how the features are generated and used for training machine
learning classifiers. Furthermore, Section 7.3 shows the results and
discusses the performance of different classification algorithms.

7.1 creating features from metadata

This approach puts buildings in the first place. It has two primary hy-
perparameters: First, a maximum distance threshold td ∈ R defining
how far away a social media post can be, and second, a minimum
post threshold tp ∈N that sets the minimum number of posts, which
must be within the distance threshold td. If a building has at least
tp posts within distance td, the building is considered valid, and 181

features are calculated. These thresholds ensure that there is sufficient
information in the defined spatial context. Thus, if a building does not
fulfill these criteria, the features become meaningless and introduce
noise. Therefore, these buildings are omitted. Otherwise, there are
equal or more than tp social media posts around a building. Let this
resulting set of social media posts be Sb for a building b, with each
post s being a tripel of user id, timestamp, and location s = (u, t, l).

This section assumes that all locations are in a cartesian coordinate
system to speed up distance calculations. All data sources considered
in this thesis, Flickr and Twitter, provide locations in WGS 84, and
hence, all location information needs to be reprojected to a suitable,
local UTM zone. In this case, a suitable UTM zone is defined using
the building footprint.

7.1.1 Spatial Features

Spatial features combine the location of social media posts with other
attributes, e.g., users, distances, or point patterns.

7.1.1.1 Density Features

Density features represent the number of an attribute relative to the
size of the region of interest.

First, there is the Spatial Post Density denpost defined as the number
of posts per search area:

denpost =
|Sb|

(2td)2
(7.1)
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Second, there is the number of unique users in a search area denuser

denuser_area =
|{(u, . . . ) ∈ Sb}|

(2td)2
(7.2)

Third, there is the number of users per post

denuser_post =
|{(u, . . . ) ∈ Sb}|

|Sb|
(7.3)

This feature might seem counterintuitive in the first place. However,
it has the same information as the number of posts per user, but the
inverse scales between 0 and 1. Otherwise, the numbers might become
large compared to all other features.

7.1.1.2 Distance Features

All four features are statistical measures based on distances between
a building centroid cb and the locations of surrounding social me-
dia posts. They are the minimum distance, the mean distance, the
maximum distance, and the standard deviation of the mean. As these
statistics are intuitive, no formulas are given.

7.1.1.3 Spatial Entropy

In information theory, entropy describes the degree of information in
a random variable. Claude Shannon was the first who adopted the
entropy known in physics and formulated a mathematical theory of
communication [190]. Given a discrete random variable X with pos-
sible outcomes x1, . . . , xn,n ∈ N with probabilities p(x1), . . . ,p(xn),
the Shannon entropy H(X) is defined as

HS(X) = −

n∑
i=1

p(xi) logp(xi) (7.4)

There are two possible outcomes of the random variable in a binary
scenario: 0 and 1. A data source that only contains zeros has 0 entropy
as there is no change or surprise in the data. The maximum entropy
has a data source with an equal number of zeros and ones, making
the output unpredictable. The maximum entropy of a discrete random
variable is log(n) with n as the number of possible outcomes.

Shannon formulated his entropy with a sender and a receiver in
mind, but in geographical science, there are at least two dimensions
to take into account. Michael Batty built upon Shannon’s entropy and
evolved it into a spatial entropy measure by discretizing a region of
interest into small, random partitions [191]. His entropy compares
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how often an outcome of a random variable occurs in a partition. More
formally, the Batty entropy HB is defined as

HB(X) = lim
∆si→0

−
∑

p(xi) log
p(xi)

∆si
(7.5)

with si as the size of the partition i that is close to zero.
Karlström and Ceccato extended the idea of a spatial entropy mea-

sure based on partitioning by including spatial correlation [192]. Their
S-statistics takes the surrounding partitions into account and calculates
entropy based on how much a partition differs from its neighbors.
Intuitively, the resulting entropy is low if neighborhoods are very
similar. They formulate it as

HKC(X) =

n∑
i=1

p(xi) log
n∑

j=1

wij
p(xi)

q(xi)
(7.6)

with wij being the weight from an adjacency matrix W and q(xi)

the probabilities from other partitions. The adjacency matrix wij is 1

if two partitions p and q are neighbors and 0 if not.
This thesis is based on an implementation of entropy measures in

R [193] providing Battys entropy HB and Karlström and Ceccatos
entropy HKC as an absolute abs and a relative value rel: HBabs

, HBrel
,

HKCabs
, HKCrel

. All four values are considered metadata features
derived from the locations of social media posts.

7.1.2 Temporal Features

These features take only the timestamps of social media posts into
account; any user or location information is omitted. Moreover, all
timestamps are converted to local time based on the geotag of the
social media post.

7.1.2.1 Time Difference Features

For calculating time differences, all posts are put in chronological
order. This order is used to compute two features: First, the mean
difference between two subsequent posts in days, and second, the
respective standard deviation.

7.1.2.2 Hour of Week Features

These features capture when users create social media posts. Divided
into 24 hours for all seven days, this yields 168 features counting the
number of posts during a given hour of the week. As all timestamps
are represented in local time, they reflect the actual time patterns
of their location and are not shifted toward Greenwich Mean Time
(GMT).
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7.1.3 Normalization of Features

All spatial and temporal features have different scales, e.g., spatial
distance-based features range between 0 and td, whereas time distance
can be more than 365 days if there are posts between years.

However, machine learning methods require evenly scaled data
across all features. Hence, all features are normalized. The spatial
density features are scaled using the area of interest or the number of
posts. Spatial distance features are scaled with the maximum distance
threshold td. The four spatial entropy features are within the range of
0 to log(nclasses) and are normalized by definition. Time difference
features are normalized by the number of days per year, 365, whereas
the hour-of-week features are scaled using the number of posts |S|.

7.2 training classification algorithms using metadata

features

As the features are simple and numerical, there is no need for a so-
phisticated classification algorithm. Simplicity is key in this approach,
with easy-to-compute features and lightweight models for prediction.

Therefore, two different algorithms are compared: First, a gradient-
boosted tree algorithm, and second, a multilayer perceptron.

7.2.1 Gradient Boosted Trees

Gradient-boosted trees are combinations of multiple decision trees
trained subsequently. Each decision tree itself is a weak classifier, but
together they compensate for their weaknesses and form a powerful
committee [194].

The general principle behind it is called boosting. Basic committee
or ensemble methods use a set of independent classifiers and combine
their results to predict. In contrast, boosting starts with an initial, weak
classifier that is slightly better than random. Afterward, the method
analysis for which samples of the dataset this classifier fails and trains
an additional classifier with these samples. The more classifiers are
trained, the more weight is put on samples that are hard to predict.
Once a given number of classifiers is trained, the final prediction for
a new sample is calculated by weighting the results of individual
classifiers.

Boosting became popular with the introduction of AdaBoost [195]
and was extended towards learning with gradients in 2001 [196]. This
theoretical work on gradient boosting has been implemented in differ-
ent frameworks, e.g., MART [197], CatBoost [198], or LightGBM [199].
However, there is one outstanding implementation that has proven
successful in different prediction challenges: XGBoost [200]. It showed
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superiority against various other classification methods, especially
when handling different feature types [201].

XGBoost uses decision trees as weak classifiers and trains them
subsequently with Boosting. Three parameters heavily influence its
performance:

1. Learning rate lr

2. Number of trees ntree

3. Maximum tree depth nlevel

For our approach, XGBoost is trained using a cross-entropy loss.
The optimal configuration of the learning rate, number of trees, and
maximum tree depth is subject to analysis in the subsequent evalua-
tion 7.3.

7.2.2 Neural Networks

An alternative algorithm for predicting building functions is a neural
network with hidden dense layers. A network needs one input neuron
for each feature. These input neurons are succeeded by an arbitrary
number of hidden units that build the first hidden layer. An optional
second hidden layer takes more non-linearities into account. The final
output layer consists of three neurons indicating a pseudo-probability
for each class to predict.

The network is trained using Adam [46] as an optimizer with a
sparse categorical cross-entropy loss for at most eight epochs. Check-
pointing prevents overfitting to the training set by monitoring the
validation loss. The final model is restored from the weights that
yielded the lowest validation loss during the training process.

7.3 evaluation

This evaluation is structured as follows: First, the creating phase of
the dataset is described briefly. Afterward, the results of the two
different model types are analyzed, and the best model is selected.
Subsequently, this model is evaluated concerning feature importance,
confusion matrix, and the results in different geographical areas.

7.3.1 Creating a Dataset

The dataset used in this thesis is created based on the list of buildings
from the So2Sat social media dataset having at least one tweet in
a surrounding of 50 m. This threshold is also used as a distance
threshold td = 50 for creating the dataset. The minimum number of
posts is tp = 5.
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Out of 655,425 buildings in the So2Sat social media dataset, 385,975

fulfill the criteria above. Hence, the dataset used in this chapter consists
of 385,975 buildings, each with 181 features. For training and testing,
the dataset is split randomly into 67 % training and 33 % test data.

7.3.2 Comparison of Classification Algorithms

Both model types come with multiple hyperparameters that have a
tremendous influence on the final performance. Therefore, an exten-
sive grid search was applied to find the best models. All models were
trained on an Nvidia DGX-1 server with 80 cores à 2.2 GHz, 512 GB
memory, and one Nvidia Tesla V100 GPU with 32 GB. For XGBoost,
nine learning rates, thirteen values for the number of estimators, and
nine values for max depth were trained and evaluated, 1,053 models
in total. The following parameters were used:

lr ∈ {0.6, 0.3, 0.1, 0.06, 0.03, 0.01, 0.006, 0.003, 0.001}
ntree ∈ {4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4098, 8192, 16384}
nlevel ∈ {3, 5, 7, 9, 11, 13, 15, 17, 19}
Table 7.1 shows the top ten models concerning F1 score in descend-

ing order. Overall, the F1 score is very similar among all models with
0.72. Small differences start with the third digit. All models are in the
middle of the parameter space, which indicates that they are close to
the optimal model, and further extension of the space would not gain
more performance. The top-performing model has 4,096 trees, at most
13 levels, and was trained at a learning rate of 0.06. This model gained
the highest F1 score of 0.723, while the training took 11.8 minutes. All
other models have a higher complexity with more parameters and a
longer training time (except for #6). Hence, this fast and lightweight
model is used for further comparisons and analysis.

A similar evaluation was done for neural network models: The grid
search investigated eight learning rates, four batch sizes, nine sizes for
the first layer, and ten sizes for the second layer. The number of units
for the second layer has 0 as an additional value to analyze single-layer
models. In total, 2,880 were trained and evaluated using the following
parameters:

lr ∈ {0.03, 0.01, 0.003, 0.001, 0.0003, 0.0001, 0.00003, 0.00001}
bs ∈ {8, 16, 32, 64}
nfirst ∈ {4, 8, 16, 32, 128, 256, 512, 1, 024, 2, 048}
nsecond ∈ {0, 4, 8, 16, 32, 128, 256, 512, 1, 024, 2, 048}
Table 7.2 contains the performance of the top ten models sorted

descending by their F1 score. The NN models show a similar pattern
as the XGBoost models: All gain a similar F1 score of approximately
0.50, although their architectures are very different. For example, the
third model is shallow, with 256 units in the first and 16 in the second
layer. In contrast to this model, the fourth one has 1,024 units in the
first and 2,048 units in the second layer. Hence, the #3 model has 50,755
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Duration lr nlevel ntree F1 score

1 11.8min 0.06 13 4096 0.723016

2 34.1min 0.03 13 16384 0.722678

3 15.1min 0.06 15 4096 0.722639

4 17.2min 0.06 13 8192 0.722545

5 23.0min 0.06 17 8192 0.722537

6 11.5min 0.10 15 4096 0.722435

7 23.1min 0.03 13 8192 0.722404

8 15.4min 0.10 15 8192 0.722372

9 25.1min 0.03 11 16384 0.722364

10 1.2h 0.01 15 16384 0.722349

Table 7.1: Parameters of top-10 XGBoost models w.r.t. F1 score, sorted de-
scending. lr is learning rate, nlevel the maximum tree depth, and
ntree the maximum number of trees

trainable parameters while the #4 model has 2,291,715 parameters. The
top-performing model has 179,715 parameters based on 256 units in
the first layer and 512 units in the second layer. It was trained for 3.6
minutes using a learning rate of 0.003 and batch size of 64, yielding
an F1 score of 0.505. Two patterns show up: Firstly, larger batch sizes
are better as six out of ten models were trained using a batch size of
64, three with 32, one with 16, and none with 8. Secondly, bottleneck
architectures are predominant. Seven models have a first layer that is
larger than the second one.

Despite all structural differences, the final performance is quite
similar among all models, indicating that an F1 score of 0.51 is an
upper bound. NN models are at least 0.21 below the XGBoost models
compared with the gradient-boosted tree models. This finding is in line
with [202, p. 19], stating that gradient boosting is used for problems where
structured data is available, whereas deep learning is used for perceptual
problems.

7.3.3 Analysis of Best Performing Model

This subsection takes a closer look at the top-performing XGBoost
model with 4,096 estimators, a maximum depth of 13, and a learning
rate of 0.06. This model was trained in 11.8 minutes and gained an F1

score of 0.723. Figure 7.2 shows the confusion matrix of this classifier
on the test data. Commercial buildings are correctly predicted in 59.3 %
and in 37.2 % confused with residential buildings. In 3.4 % of the cases,
a commercial building is wrongly predicted to be other. Truly other
buildings are accurately classified in 16.4 %, hence the majority is
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Duration lr bs nfirst nsecond F1 score

1 3.6min 0.0030 64 256 512 0.504886

2 7.1min 0.0030 32 512 32 0.503232

3 13.9min 0.0003 16 256 16 0.501860

4 4.5min 0.0010 64 1024 2048 0.500750

5 7.3min 0.0030 32 256 1024 0.499757

6 3.4min 0.0030 64 128 64 0.495546

7 3.5min 0.0100 64 2048 4 0.494862

8 4.2min 0.0300 64 2048 32 0.494674

9 3.4min 0.0001 64 2048 512 0.494259

10 6.5min 0.0001 32 2048 64 0.493770

Table 7.2: Parameters of top-10 neural network models w.r.t. F1 score, sorted
descending. lr is learning rate and bs the batch size. nfirst and
nsecond denote the number of hidden units in the first and second
layer of the neural network.

mixed-up with residential (45.6 %) and commercial (38.0 %). Residential
buildings are correctly identified in 89.2 %. The remaining residential
samples are predicted as commercial in 9.3 % and as other in 1.5 %.

As the test dataset is unbalanced towards residential buildings, one
might suspect that the model is predicting according to the class
frequencies. 60.6 % of all 127,372 samples are residential, but 89.2 %
are correctly classified, which indicates that the model captures more
than a random, frequentistic classifier. For commercial one could expect
27.5 % correct predictions, but there are more than twice the relative
numbers of accurate classifications. For other buildings, the difference
is not that significant: While expecting 12.0 % accurate predictions,
the number is 16.4 %. Hence, the features capture information about
building functions, which is straightforward mainly for residential
buildings and fuzzier for other buildings.

Gradient-boosted models have a significant advantage over deep
learning models: They are based on decision trees, and thus, the
input features can be analyzed concerning their importance. There are
different ways in which feature importance can be measured: gain and
weight. The gain value tells how discriminative a feature is when used
for a split. The weight value counts how often a feature was used to
create a split.

A simple example illustrates the relation: One wants to predict if a
forest can adapt to climate change. The features are, among others, a
binary feature whether a forest is a monoculture and the age of the
forest. The binary attribute can only be used once in a tree, but it is
rather distinctive [203]. As the age feature is numerical, it can serve
multiple times as a split criterium with different values in the same
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Figure 7.2: Confusion matrix of Top1 XGBoost model when predicting the
test dataset

tree. Hence, the monoculture feature has a significant gain but low
weight. Vice versa, the age will appear with a low gain but a high
weight.

Therefore, this analysis looks at both metrics: gain and weight.
Figure 7.3 shows the top 25 features by gain. This value has no units
and denotes the average gain if this feature is used. In this case, the
most important feature is the user area density, i.e., the number of
unique users relative to the area, with an average gain of 5.8. The
second most gain comes from the relative Karlstrom entropy with 3.8.
All other top-23 features have a similar gain of approximately 0.94 to
1.10 and cover the early morning hours (except for #13, the Karlstrom
entropy). As these features are very sparse, they do not often appear
in the decision trees, but they are very distinctive if they do.

Figure 7.4 shows the 25 most important features concerning their
weight, i.e. how often they appear in a tree. In this case, two distance-
based features are at the top: the mean distance between posts and
buildings is used most often (249,009), followed by the minimum
distance between the two entities (247,423). Third, there is the Batty
entropy with a weight of 240,190. Afterward, the standard deviation
of the distance between posts and buildings is the fourth-ranked
feature (229,738). Subsequently follows the first time-based feature,
the standard deviation of days between two posts with a weight of
228,823. Next is the last distance-based feature, the maximum distance
between posts and buildings (226,040). Seven-ranked is the mean
time delta between two posts with a weight of 209,563, followed
by the user post density with a weight of 195,175. The next two
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Figure 7.3: 25 features with the highest average gain in gradient boosted
tree model with 4,096 estimators, a maximum depth of 13, and a
learning rate of 0.06

features appeared also in Figure 7.3: the Karlstrom entropy (192,181

weight) and the user area density (106,939 weight). The latter has
approximately the same weight as the remaining density-based feature:
the spatial post density with 106,610. Starting with rank twelve, hours
of the week features are dominating with lower weights between
26,407 and 30,434. In contrast to the feature importance by gain, the
midday hours have more importance, especially during the weekend.
The relative Karlstrom entropy has the lowest weight of 8 (Figure A.5),
which was the second most important feature regarding gain.

Although some features have more importance than others, the two
sides of this evaluation show that all features contribute to the final
decision of the XGBoost models. Some are more versatilely helpful,
i. e.have a high weight, and some are more helpful in some exceptional
cases, which means a high gain. Only the user area density showed
up in both evaluations, highlighting that the number of unique users
is the most important feature for predicting a building function.

7.3.4 Predictions on Buildings from Social Media Image Approach

The results from the previous chapter cannot be directly compared to
the results of this chapter as the datasets are different. Therefore, an
additional metadata dataset was created that contains all buildings
identified in Subsection 6.2.10. These buildings were identified on
Flickr images, but the metadata feature vectors are always calculated
based on Twitter tweets. Out of 29,867 buildings, 18,489 have at least
five tweets in their surrounding. However, 38 of these buildings are
also in the training set of this approach and therefore are excluded.
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Figure 7.4: 25 features with the highest weight in gradient boosted tree model
with 4,096 estimators, a maximum depth of 13, and a learning
rate of 0.06

Hence, this evaluation of the best-performing XGBoost model takes
place on 18,489 buildings identified in the social media image ap-
proach. As both datasets are independent, buildings from the social
media image set can be part of the training dataset for this method.
The intersection between both sets contains 9,565 buildings, which
must be excluded for an unbiased evaluation. Therefore, the following
analysis is performed on 8,924 buildings, 3,018 of them commercial,
2,073 other, and 3,833 residential.

The top-performing XGBoost model from above was used to predict
the functions of these buildings yielding a weighted F1 score of 0.557.
Figure 7.5 shows the confusion matrix, which is similar to the one
from the test set. Commercial buildings show a higher recall than
before: it raised from 59.4 % by 9.6 % to 69 %. This class is still mostly
confused with residential buildings but with a lower frequency of
26.4 % compared to 37.2 % in the test set. The other class has a slightly
increased value as well: from 16.4 % to 19.7 %. In contrast to the test
set, it is mostly confused with commercial buildings (47.4 %) rather than
residential buildings (32.9 %). Residential buildings gain the highest
recall of all classes again but at a lower number. While the model was
correct at 89.2 % for the test set, the value decreased to 70.2 % in this
case.

Going toward a city level provides more insights into how this model
performs in different cultures (Figure 7.6). However, four LCZ42 cities
are not covered here due to a lack of data: Changsha, Dongying,
Tehran, and Wuhan. The F1 score was used for this analysis, and cities
with less than five buildings for a given class are considered outliers.
Commercial buildings are predicted best in Jakarta, Istanbul, and Cape
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Figure 7.5: Confusion matrix of Top1 XGBoost model when predicting the
metadata of buildings from the social media image approach

Town with scores of 0.833 on 15 samples, 0.800 on seven samples,
and 0.769 on 23 samples, respectively. The lowest F1 scores are found
in Bejing with 0.333 (9 samples), Madrid with 0.317 (16 samples),
and Rome with 0.212 (11 samples). While commercial buildings are
predicted with an F1 score of 0.594, other buildings have generally a
lower score of 0.287. Seven cities have less than five other buildings and
are therefore not discussed. The highest F1 scores for other buildings
are from Kyoto with 0.569 on 152 samples, Hong Kong with 0.524 on
29 samples, and Sydney with 0.451 on 48 samples. On the three last
ranks, there are Amsterdam (0.136 on 90 samples), Madrid (0.127 on
56 samples), and Cairo (0.000 on six samples). Although Amsterdam
has the third-lowest result for other buildings, it yields the highest F1

score for residential buildings with 0.788 on 903 samples. Next, Hong
Kong has a score of 0.769 on 68 buildings, and Madrid gains 0.758

on 90 samples. The lowest F1 scores are from Instanbul (0.286 on five
samples), New York City (0.275 on 41 samples), and Cape Town (0.182

on five samples). Moreover, nine cities have less than five residential
buildings and are excluded.

Generally, there is no apparent bias towards any culture: the method
shows its strengths and weaknesses across all LCZ42 cities. A lack of
data in Chinese cities prevents insights into this region, but the limited
good results from Beijing and Guangzhou indicate that the method
generalizes. However, there is likely a bias towards neighborhoods
with high income and good education as this is the primary user basis
of Twitter [123]. This issue opens the opportunity for further research
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Figure 7.6: Geographical analysis of Top1 XGBoost model when predicting
the metadata of buildings from the social media image approach.
Numbers in brackets behind city names denote the number of
buildings per class in column order.

investigating if there is a correlation between mapped buildings and
socioeconomic parameters.

7.4 summary

This chapter described a method to predict building functions based
on three attributes of social media metadata: user id, location, and
time. After defining a region of interest around a building, a set of
social media posts is collected in the vicinity of a building. The method
aggregates this set in 181 spatial and temporal features. Two different
classification algorithms were evaluated for their suitability to predict
building functions based on these features: gradient-boosted trees
and neural networks. An extensive grid search showed the optimal
hyperparameter settings for both algorithms. A gradient-boosted tree
model with 4,096 estimators, a maximum depth of 13, and a learning
rate of 0.06 yields the best prediction performance with a weighted
F1 score of 0.723. An in-depth analysis of this model showed that
commercial and residential buildings are predictable with high accuracy,
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but other buildings are confused with the two other classes. Evaluating
the feature importance highlights that all features contribute to the
final predictions, some because they are very distinctive (Karlstrom
entropy) and others as they often help in indifferent situations (spatial
distance features). A second dataset was created using the set of OSM

buildings from the previous chapter to check the model’s performance
on different data distributions. This analysis confirmed the findings
from the test dataset and explored the prediction performance in the
LCZ42 cities.

Furthermore, no cultural bias is evident. As social media is widely
adopted worldwide, temporal and spatial patterns around commercial
and residential buildings are culture-independent and globally similar.
Hence, this approach is versatile and independent of regional differ-
ences as long as there is sufficient data from a social media platform.
Nevertheless, it shares the effects of label noise with the previously
introduced methods. Especially the other building class combines
buildings with highly different usage patterns, e. g. schools, hospitals,
and public transport stations. They are all used at different times
but have the same label, making it difficult for a machine-learning
algorithm to detect patterns. The next chapter will introduce a social
media-independent approach: A remote sensing method to classify
building functions. It uses aerial images to predict building functions
based on roof types and spatial surroundings from a nadir view.





8
P R E D I C T I N G B U I L D I N G F U N C T I O N S U S I N G
R E M O T E S E N S I N G D ATA

Remote sensing data is not always suitable for predicting building
functions, especially in dense urban areas [17]. However, its worldwide
coverage provides a good baseline for solving this task. Nevertheless,
some buildings show characteristic patterns that allow predictions
with high confidence in their function.

(a) Google aerial image for
commercial OSM build-
ing 12357640 in London,
GB

(b) Google aerial image
for other OSM building
28393 in Milan, Italy

(c) Google aerial image for
residential OSM building
15946583 in Los Ange-
les, USA

Figure 8.1: Examples for Google aerial images showing buildings with a clear
function. Imagery © Google

Figure 8.1 shows clear examples for all building function classes.
Commercial buildings like malls tend to have roofs with metal sheeting
and are often surrounded by parking spaces for their customers (Fig-
ure 8.1a, a warehouse in northern London, Great Britain). A cemetery
with a church in the middle is an example of an other building as in
Figure 8.1b. It shows the Rotonda della Besana in Milan, Italy. Figure 8.1c
depicts residential buildings in the north of Los Angeles surrounded
by green gardens, pools, and trees. More generally, this task is also re-
ferred to as aerial scene classification. This chapter describes creating a
culturally diverse but class-wise balanced aerial imagery dataset. This
dataset is used to train models with the aforementioned fine-tuning
approach from Section 5.1. All models are evaluated on a dedicated
test set and aerial images of buildings from the social media image
dataset.

8.1 methodology

Naturally, there is a huge class imbalance between other and residen-
tial buildings. For example, schools, hospitals, and train stations as

103
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other buildings serve multiple residential buildings at the same time.
The number of Commercial buildings is usually between both other
classes as there are more shops, restaurants, and industry than other
institutions, but less than residential buildings with one or more house-
holds. Additionally, a generalizable model needs to be trained on
samples from different regions worldwide. However, the number of
labeled buildings varies among different countries and cities. If nat-
urally sampled, this leads to imbalanced datasets from two aspects:
cultural and class-wise. Moreover, most machine learning algorithms
are prone to predict the majority class as this yields the lowest loss
while training [204].

8.1.1 Creating a Culturally and Class-wise Balanced Dataset

A balancing algorithm for this case has two objectives in parallel: It
needs to balance classes and cities simultaneously. For this thesis, an
undersampling method was implemented that has three main steps:

1. Calculate the aspired number of samples per class and city na

2. Create an initial list of samples by random sampling of na

samples from each city and class

3. Backfill with unused samples for classes and cities that have less
than na samples

Algorithm 1 contains the pseudocode for the procedure. This algo-
rithm takes a set of triples (b, l, c) with building id b, label l, and city
c as input, and returns a subset of the input. The first step identifies
the class with the lowest support and divides the number of samples
by the number of cities (lines 2-4). This number is denoted as na. Next,
for each class and city, na samples are drawn from the original set and
added to an initial sample list (lines 8-19). If the number of samples
is larger than na, a random sample of size na is added to the initial
list (lines 11-14). All remaining samples are saved for the subsequent
step. If there are not enough samples, the number of missing samples
is saved for the next step (lines 15-17). In this third backfilling step,
the sum of missing samples for each class is calculated and randomly
drawn from the remaining class sets (lines 20-22). Hence, the number
of samples for each class is balanced, and the distribution at a city
level follows roughly the original distribution. This balanced dataset
is ready to use for fine-tuning.

8.1.2 Fine-tuning on Aerial Images

The fine-tuning methodology from Section 5.1 is applied again to
create models that predict building functions using aerial imagery.
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Algorithm 1: Class- and city-wise dataset balancing algorithm
Input :D = {(b1, l1, c1), ..., (bn, ln, cn)},n ∈N

1 begin
2 assert ∀(bx, lx, cx) ∈ D, ∄(by, ly, cy) ∈ D : bx = by

3 cities← {c1, . . . , cn}
4 labels← {l1, . . . , ln}
5 na ← minlb∈labels{|{b, l = lb, c}}|/|labels|
6 result = ∅
7 surplus = ∅
8 missing = ∅

/* Sampling the initial set */

9 for city in cities do
10 for label in labels do
11 subset← {b, l = label, c = city}

12 if |subset| > na then
13 data,plus← random_split(subset, na)
14 result[label] = result[label]∪ data
15 surplus[label] = surplus[label]∪ plus
16 else if |subset| < na then
17 result[label] = result[label]∪ subset
18 missing[label]+ = na − |subset|

19 else
20 result[label] = result[label]∪ subset

/* Backfill missing data */

21 for label in labels do
22 data, _← random_split(surplus[label], missing[label])

23 result[label] = result[label]∪ data)
Output : result as balanced subset D ′

Although ImageNet models are trained on object photos, a study
showed that basic features from such models are also helpful for
optical remote sensing data [205]. Moreover, ImageNet-based CNN

models can also help when applied to night light remote sensing
data [206]. The third-ranked solution in the FMoW challenge initialized
its models with ImageNet weights [139].

8.2 evaluation

8.2.1 Balancing Algorithm

The So2Sat social media dataset comprises 655,425 buildings in the
LCZ42 cities, with at least one tweet surrounding 50 m. Each building
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comes with an aerial image centered on the building centroid. The
class distribution is as follows: 158,435 are commercial, 87,863 are other,
and 409,138 are residential. Figure A.6 shows the original distribution of
the dataset. For evaluation purposes, this dataset is split into a training
and test set by 80:20. After applying the balancing algorithm and train-
test-split, 70,363 samples are available for training from each class.
Figure 8.2 shows the details on a log scale. The most commercial and
residential buildings are from Los Angeles, while most other buildings
are from London. Cities from the US and Great Britain dominate the
first three ranks, but Moscow and Jakarta are in ranks four and five,
introducing cultural variation. The list continues with Amsterdam,
Istanbul, Kyoto, Sao Paulo, and Madrid. Hence, the ten cities with the
most samples partly cover America, Europe, and Asia. Chinese cities
are in the last six positions with less than 350 buildings samples each.
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Figure 8.2: Number of aerial building images after balancing in the training
dataset, sorted in descending order by the number of buildings
on a log scale.
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8.2.2 Predictions on Test Dataset

Training and test sets follow the same distribution as the balancing
is done before the split is applied. Table 8.1 shows the results of all
seven architectures fine-tuned on the training set and evaluated on the
test set. The VGG16 model outperforms all other models concerning
precision (0.738), recall (0.738), and, hence, the F1 score (0.736). The
slightly lower F1 score is due to numerical instabilities. This model
gains the highest F1 scores for all classes with 0.717 for commercial,
0.683 for other, and 0.809 for residential. There are only three metrics
for which the VGG16 model is outperformed. In every case, the Incep-
tionResNetv2 model yields better results: it has better precision for
commercial (0.707 vs 0.694) and residential (0.781 vs 0.780). Moreover,
the InceptionResNetv2 has a better recall for other buildings with 0.689

compared to 0.633 of VGG16. All other models gain lower values,
with ResNet50v2 as the worst-performing model (weighted F1 score
of 0.677). A possible explanation for this result might be that the
VGG16 features for ImagetNet are more generic than those from other
architectures. As VGG16 has fewer convolutional layers and, thus,
less capacity than all other architectures, these layers must be highly
generic to capture different patterns in ImageNet.

The following analysis looks in-depth at the results of the best-
performing model, VGG16. Figure 8.3 shows the confusion matrix of
this model on the balanced test set from the So2Sat dataset. 74.2 %
of all commercial buildings are correctly classified. The most errors,
15.5 %, occur with other buildings, but 10.2 % are confused with
residential buildings. Other buildings are correctly predicted in 63.3 %
and show the highest confusion with commercial buildings (23.2 %).
13.4 % of other buildings are wrongly predicted as residential ones.
Residential buildings show the highest recall of all classes with 84.0 %.
The highest confusion occurs with commercial buildings with 9.1 %
and 6.9. % wrongly predicted as other buildings.

Overall, the aerial model with a VGG16 architecture can predict
aerial building images with an accuracy of 73.8 %. The following
analysis applies this model to aerial images of the buildings identified
in Chapter 6.

8.2.3 Predictions on Buildings from Social Media Image Approach

Additionally, this VGG16 model is evaluated on the aerial images
of the buildings identified in Chapter 6. Hence, for each building,
a corresponding aerial image was downloaded. There is no overlap
between the buildings in the training set and those from the social
media image part, and all 29,867 building images are used for this
analysis. Figure 8.4 shows the confusion matrix of the VGG16 model
predicting these images. The results are similar to the ones from the
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Metric F1-score Precision Recall

Model Class

DenseNet121

Commercial 0.678 0.694 0.663

Other 0.669 0.662 0.676

Residential 0.772 0.763 0.781

Weighted 0.706 0.706 0.707

InceptionResNetv2

Commercial 0.687 0.707 0.669

Other 0.681 0.674 0.689

Residential 0.793 0.781 0.805

Weighted 0.721 0.721 0.721

Inceptionv3

Commercial 0.695 0.700 0.690

Other 0.678 0.691 0.665

Residential 0.783 0.764 0.804

Weighted 0.719 0.718 0.720

MobileNetv2

Commercial 0.680 0.678 0.681

Other 0.652 0.678 0.627

Residential 0.768 0.743 0.796

Weighted 0.700 0.700 0.701

ResNet50v2

Commercial 0.653 0.648 0.658

Other 0.631 0.639 0.622

Residential 0.747 0.742 0.751

Weighted 0.677 0.676 0.677

VGG16

Commercial 0.717 0.694 0.742

Other 0.683 0.741 0.633

Residential 0.809 0.780 0.840

Weighted 0.736 0.738 0.738

Xception

Commercial 0.674 0.662 0.686

Other 0.654 0.656 0.653

Residential 0.761 0.774 0.748

Weighted 0.696 0.697 0.696

Table 8.1: Prediction results for aerial images on So2Sat balanced data
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Figure 8.3: Confusion matrix of VGG16 architecture fine-tuned on So2Sat
aerial image dataset

test set: commercial buildings are predicted with 74.4 % recall, which is
an increase of 0.2 %. For other buildings the value raises from 63.3 %
to 66.4 %. However, residential buildings show a decrease by 5.5 %
from 84.0 % to 78.5 %. The relative numbers of wrong predictions are
also comparable to the previous results. If the dataset is limited to
buildings with human-verified social media images, the findings are
confirmed as well (Figure A.7).

A look at the prediction performance at a city level shows that
the results are stable across cultural zones. Figure 8.5 contains the
F1 scores for each class and city. This analysis focuses on cities with
more than five samples per class and considers all other outliers. For
commercial buildings, Los Angeles shows the best results with an F1

score of 0.882 on 1,922 buildings. As most training samples are also
from this city, this finding is intuitive. On the second and third ranks,
there are Beijing and Jakarta, with F1 scores of 0.79 on 60 samples
and 0.794 on 33 samples. The three cities with the lowest scores are
Amsterdam (0.506 on 538 samples), Lisbon (0.471 on 68 samples), and
Rome (0.364 on 41 samples). However, for other buildings, Rome yields
the second-highest F1 score of 0.851 on 231 samples, behind Nanjing
with 0.933 on eight samples. On the third rank for other buildings is
Cairo, with an F1 score of 0.833 on 20 samples. Both Cairo and Rome
are well known for their historical sites leading to a high number of
other buildings with distinct shapes and patterns from an aerial view.
On the lowest ranks are Shenzhen (0.536 on 27 samples), Amsterdam
(0.455 on 246 samples), and Mumbai (0.222 on six samples). Residential
buildings are best predicted in Vancouver with 0.883 on 348 samples,
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Figure 8.4: Confusion matrix of VGG16 architecture fine-tuned on Flickr
image dataset

Los Angeles with 0.879 on 1,903 samples, and Berlin with 0.877 on
1,445 samples. The worst results for residential buildings are from
Tokyo (0.641 on 170 samples), Sao Paulo (0.615 on 21 samples), and
Kyoto (0.500 on 85 samples).

Amsterdam appears two times with comparably low numbers for
commercial and other buildings. In both cases, the low F1 scores re-
sult from low precision. Since Amsterdam has a high number of
labeled buildings (c.f. Figure 4.2), this finding stands out. Compared
to all other cities, Amsterdam has a high number of labeled residential
buildings, 2,010, ranking second after London with 2,373 residential
buildings. However, the number of identified commercial and other
buildings is relatively low (784) compared to the number of residential
buildings (2,010). Since 407 residential buildings are wrongly presented
as commercial or other, this has a low impact on the recall of the residen-
tial class but a severe impact on the precision of the other two classes.
In these cases, approximately half of the samples are actually residen-
tial and thus, decrease the precision value. Hence, the low values are
numerical artifacts from a highly imbalanced distribution. A scattered
occurrence of urban green spaces in Amsterdam likely reinforces this
effect [207].

Nevertheless, the overall results from aerial models are better than
any other modality. While social media images yielded a top-weighted
F1 score of 0.463 (Figure 6.16) and the metadata approach showed
a top-weighted F1 score of 0.557 (Figure 7.6), the aerial model out-
performs them with a top F1 score of 0.741. Additionally, Chapter 6
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Figure 8.5: F1 scores of building predictions in LCZ42 cities on a class-wise
level for VGG16 model trained on the So2Sat aerial image dataset.
The numbers in brackets behind the region names indicate the
number of buildings in the same order as the plot columns.

revealed that OSM labels have an accuracy of 69 %. Hence, the results
of the aerial model are better than the label quality.

A probable explanation for this behavior is the core principle of
machine learning. The algorithms are generic function approximators
without any prior knowledge of a task. They map patterns in the
features to labels they have seen before. The clearer the patterns are,
the better the prediction results. In the case of social media images, the
patterns are fuzzy. Thus they predict the correct class only in obvious
cases. As the aerial images have more evident visual patterns than
the social media images or the GSV images, the models show a better
performance.

Figure 8.6 illustrates this with examples of correctly predicted aerial
images. Figure 8.6a shows a shopping mall in Beijing, which is not
taken from a perfect nadir position but contains parts of the façade.
Moreover, it has a darker appearance than the other two examples.
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Figure 8.6b depicts the ruins of a church in Rome, Chiesa di San Nicola
a Capo di Bove, as an example of an other building outside of a dense
urban area surrounded by trees and dry grass. Overall, the contrast is
lower than in the other two examples. Figure 8.6c shows an example
of a residential building in Vancouver with high contrast and a perfect
nadir perspective.

(a) Google aerial image for
commercial OSM build-
ing 952257478 in Beijing,
China

(b) Google aerial image
for other OSM build-
ing 607234690 in Rome,
Italy

(c) Google aerial image for
residential OSM building
656482824 in Vancouver,
Canada

Figure 8.6: Examples for Google aerial images correctly predicted by the
VGG16 model. Imagery © Google

In contrast to these correctly predicted examples, Figure 8.7 provides
samples of images that are misclassified. The commercial building in
Figure 8.7a is predicted as other most likely because of its unique
shape. It serves as the headquarters of Acea SpA, Italy’s main national
operator of water infrastructure. Figure 8.7b depicts the main building
of Bandra Railway Station in Mumbai, an other building predicted
as commercial. The image quality is lower than in all other samples,
with less sharpness and lower contrast. However, the water supplier
in Rome and the train station in Mumbai are borderline cases, which
could be arguable in the ground truth class and the predicted class.
Figure 8.7c is an example of a residential building in Kyoto. As it is
surrounded by several cars in parking lots, the prediction is reasonable
for a human expert.

Generally, the predictions of the VGG16 model are sensible, and it
performs well across different cultures and on varying image quali-
ties. It is robust to nadir and close-nadir perspectives, contrast, and
sharpness.

8.3 summary

This chapter introduced a baseline for predicting building functions
using high-resolution aerial imagery. It presented an undersampling
algorithm to create perfectly balanced datasets concerning prediction
classes and maintain the spatial distribution. By re-using the fine-
tuning approach from Chapter 5 deep learning models for predicting
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(a) Google aerial image for
commercial OSM build-
ing 7209745 in Rome,
Italy, predicted as other

(b) Google aerial image
for other OSM building
1538393938 in Mumbai,
India, predicted as com-
mercial

(c) Google aerial image for
residential OSM build-
ing 720173914 in Kyoto,
Japan, predicted as com-
mercial

Figure 8.7: Examples for Google aerial images wrongly predicted by the
VGG16 model. Imagery © Google

building functions were created and evaluated. The evaluation showed
that the VGG16 architecture best suits the given task and gains com-
parable results for all three classes. Analyzing the performance of the
independent set of buildings from the social media image pipeline re-
vealed that the predictions are robust and work across cultural zones
and varying image qualities. Generally, the results from the aerial
approach outperform all previous methods using GSV images, social
media images, or social media metadata because the signal-to-noise
ratio is higher in the social media-based approaches. Nevertheless, all
models have their strengths and weaknesses, which might comple-
ment each other. The next chapter examines if combining different
modalities can improve overall performance.





9
F U S I O N S T R AT E G I E S

The previous four chapters introduced different data sources and
approaches to predict building functions. As this thesis focuses on
social media data rather than GSV data, this chapter uses the results
from Chapter 6 and Chapter 7 and analyses the opportunities to
combine the strengths of them with the remote sensing method from
Chapter 8.

Social media images, social media metadata, and aerial imagery
are different data types, also referred to as modalities. The literature
summarizes different modalities for a common goal as multimodal
fusion. Most state-of-the-art approaches for multimodal fusion implic-
itly assume a one-to-one relationship between the modalities [208] or
create one [209]. Additionally, deep learning methods with end-to-end
learning require a common architecture that allows gradient-based
learning. However, the social media image approach yields a 1 : n

relationship between buildings and images as landmarks and touristic
hotspots are popular motifs. Chapter 7 showed that gradient-boosted
trees are better suited for structured metadata features. The XGBoost
algorithm is not compatible with a CNN architecture to be trained at
once end-to-end. Hence, deep multimodal architectures are not di-
rectly applicable to the given task—however, all prediction algorithms
yield probability vectors, which opens the space for decision-level
fusion strategies. Last but not least, different studies showed the ef-
fectiveness of decision-level fusion over feature-level fusion [20, 145].
Since the evaluation with human-verified labels revealed severe label
noise, this chapter focuses on the subset of buildings that have a clear
function, which experts have confirmed in Subsection 6.2.9.

9.1 decision-level fusion strategies

All fine-tuned architectures have a dense layer with softmax activation
to indicate the final prediction result. The output of a softmax layer
can be interpreted as a probability vector; however, it needs to be
treated with care as the probabilities are not well calibrated [210].
The probability vectors do not represent actual probabilities but are
overconfident as the models are trained using one-hot encodings and
not with actual probabilities. Gradient boosted trees are also affected
by this issue [211]. Nevertheless, the prediction vector reflects this
uncertainty with more equally distributed values, especially in fuzzy
cases. If a second modality has a more confident prediction, this can
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be decisive for the final prediction. The following paragraph presents
four functions to combine prediction vectors:

1. Average fusion

2. Prediction-entropy weighted average fusion

3. Model-entropy weighted average fusion

4. Minimum prediction-entropy fusion

Let Pb be a set of prediction vectors Pb = {p1, . . . ,pn},p ∈ Rx,n ∈
N for a building b with n denoting the number of probability vectors
and x as the number of classes to predict. The set of all buildings is
denoted as B.

The average fusion is defined as

cp = argmax
1

|Pb|

∑
p∈Pb

p (9.1)

with an argmax function that transforms the average probability vector
to a class index. As the argmax returns the index of the vector element
with the highest value, the normalization with the cardinality of Pb
has an illustrational purpose.

The prediction-entropy weighted average fusion is defined as

cp = argmax
∑
p∈P

HS(p)
−1 p (9.2)

and similar to Equation 9.1: each probability vector is weighted using
with HS(p) as the Shannon entropy in Equation 7.4. By weighting
inversely with the entropy it emphasizes predictions with higher
confidence.

The model-entropy weighted average fusion is defined as

cp = argmax
∑
p∈P

H ′
S(p)

−1 p (9.3)

with

H ′
S(px) =

1

|B|

∑
px∈Pb,b∈B

HS(px)

In contrast to Equation 9.2, it weights prediction vectors using the
model entropy rather than with individual prediction entropies. The
model entropy H ′

S is calculated as the average entropy of all predic-
tions of one model.

The minimum entropy fusion is defined as

cp = argmax argmin
p∈P

{HS(p)} (9.4)
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and considers only the prediction with the lowest entropy.
As all functions are based on set operations, they can handle an

arbitrary number of predictions individually for each building. The
functions are evaluated on two fusion sets: one with social media
images and aerial data and one with metadata and aerial data.

9.2 combining social media and aerial images

This evaluation focuses on the dataset of 522 images with human-
verified labels from Subsection 6.2.9. There is a one-to-one relation
between images and buildings in this subset, so there is exactly one
image per building. Table 9.1 shows the results for the single modali-
ties in the first two blocks, followed by the results of the four fusion
methods, and finalized by a block with the theoretically optimal fusion
result. The optimal fusion results are based on the assumption that
one would know which model is correct for a sample and pick the
corresponding prediction. If both are wrong or correct, the choice
would be random, making no difference.

For other and residential buildings, the basic average method out-
performs the single modalities as well as the other fusion methods.
For example, the F1 score for residential buildings is 0.891, which is
6 % higher than the aerial F1 score and 20 % higher than the F1 score
using only social media images. However, commercial buildings show a
higher F1 score when predicted using the prediction-entropy weighted
average with 0.839 compared to 0.835 from the plain average fusion.
Two examples of a higher score from other methods are the precision
of commercial buildings and the recall of residential buildings when
using the model-entropy weighted average. Generally, the differences
between the average fusion methods are negligible, with changes after
the second digit. The minimum entropy fusion is always higher than
the single modality results but does not reach the average-based per-
formances. Using the basic average fusion improves the weighted F1

score of the aerial predictions by 6.9 % and the social media images
results by 10.9 %. Nevertheless, the optimal fusion shows that there
is still room for improvement: The weighted F1 score of the average
fusion is 0.863, which is 6.6 % below the theoretically best possible
weighted F1 score of 0.924.

The confusion matrix in Figure 9.1 shows the results of the average
fusion. Compared to the results of the single modalities (Figure A.4
and Figure A.7) the other and residential classes benefit from the fusion,
while the score for commercial stays at 90.7 % as it is with pure social
media images. The prediction of other buildings raises from 78.4 % in
social media images and 75.8 % in aerial images to 82.5 % using aver-
age fusion. The same applies to residential buildings that are correctly
predicted with social media in 65.1 % and aerial in 83.7 % to 86.1 %
with fusion.
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Metric F1 Precision Recall

Method Class

Aerial

Commercial 0.780 0.734 0.833

Other 0.803 0.855 0.758

Residential 0.837 0.837 0.837

Weighted 0.807 0.812 0.807

Social
Media
Images

Commercial 0.788 0.697 0.907

Other 0.798 0.813 0.784

Residential 0.745 0.871 0.651

Weighted 0.778 0.795 0.780

Average

Commercial 0.835 0.774 0.907

Other 0.863 0.904 0.825

Residential 0.891 0.923 0.861

Weighted 0.863 0.869 0.862

Prediction-
entropy

weighted
average

Commercial 0.839 0.775 0.914

Other 0.859 0.903 0.820

Residential 0.885 0.916 0.855

Weighted 0.861 0.868 0.860

Model-
entropy

weighted
average

Commercial 0.832 0.783 0.889

Other 0.851 0.897 0.809

Residential 0.875 0.883 0.867

Weighted 0.853 0.857 0.852

Minimum
entropy

Commercial 0.815 0.747 0.895

Other 0.836 0.890 0.789

Residential 0.888 0.917 0.861

Weighted 0.846 0.854 0.845

Optimal

Commercial 0.905 0.869 0.944

Other 0.926 0.951 0.902

Residential 0.939 0.951 0.928

Weighted 0.924 0.926 0.923

Table 9.1: Individual prediction results of aerial and social media image
approach in the first two blocks, results of fusion methods in the
subsequent four blocks, and theoretically optimal fusion results in
the last block
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Figure 9.1: Confusion matrix of average fusion of predictions from aerial
images and social media images based on buildings with human-
verified labels.

Modality Social media image prediction

Wrong Correct

% FW % FC #Spl % FW % FC #Spl

Aerial
pred.

Wrong 97.5 % 2.5 % 40 36.1 % 63.9 % 61

Correct 14.7 % 85.3 % 75 0.0 % 100.0 % 346

Table 9.2: Contribution analysis of aerial and social media image modalities
to average fusion. FW is for Fusion Wrong, FC abbreviates Fusion
Correct. These values are relative to the number of samples (#Spl)
for each modality.

Table 9.2 allows an in-depth analysis of the contribution of each
modality to the final average fusion result. It shows the relative number
of samples for which each modality is wrong and correct and how
this influences the average fusion result. For example, both modalities
are wrong in 40 cases, but for one case (2.5 %), the average of both
prediction vectors yields the correct prediction. Figure 9.2 depicts
the two images for this special example. The social media image
prediction is correct for 61 buildings when the aerial prediction is
wrong. Averaging these predictions leads to 39 correct predictions
(63.9 %). On the other hand, the aerial prediction is correct on 75

buildings, whereas the social media image prediction is wrong. The
final average prediction is 85.3 % correct, which indicates that the
prediction vectors of the aerial model have lower entropy than the
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social media model. The correct social media prediction leads only
to 63.9 % correct fusion results. Finally, the fusion is always correct if
both predictions are correct (346 buildings).

There is one example in which both individual predictions are
wrong, but the fusion prediction is correct. How can this happen?
Figure 9.2 shows the two images. The aerial VGG16 model predicts
0.491 commercial, 0.440 other, and 0.068 residential, so the probabilities
for commercial and other are almost the same. However, as commercial
has a slightly higher value it "wins" the final prediction. The GSV model
with an InceptionResNetv2 architecture predicts 0.114 commercial, 0.393

other, and 0.493 residential. Hence, it is unsure if the image shows an
other or a residential building. Fusing both probability vectors using
the average yields 0,303 commercial, 0.417 other, and 0.281 residential.
Hence, both individual predictions are unsure between the two classes
and decide on the wrong one, while neglecting the second-ranked
correct prediction. As the uncertainty is different for each modality,
the fusion averages them out and emphasizes the second-ranked other
class.

(a) Google aerial image. Imagery ©
Google

(b) Flickr image. Photo ©Los Castillos by
Luz D. Montero Espuela

Figure 9.2: Example of both modalities, aerial and social media image, being
wrong but fusion is correct with other OSM building 386627182,
Museo Municipal de Arte en Vidrio (MAVA), Madrid, Spain

Figure 9.3 illustrates a fusion example, for which the aerial predic-
tion is correct, but the social media model fails. The aerial VGG16

model outputs a distinctive prediction of 0.028 commercial, 0.970 other,
and 0.002 residential for Figure 9.3a. However, based on Figure 9.3b
the InceptionResNetv2 model tends to commercial with 0.485, other
with 0.355, and residential with 0.160. The clear prediction from the
aerial model contributes most to the fusion results and vanishes the
uncertain prediction from the GSV model.

As Table 9.2 shows, social media images can help if the aerial
model is wrong. Figure 9.4 depicts such an example. The aerial image

https://flickr.com/photos/40692954@N07/43837329890
https://flickr.com/photos/lulibelula/
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(a) Google aerial image. Imagery ©
Google

(b) Flickr image. Photo Cerritos by Sergei
Gussev is licensed under CC BY 2.0

Figure 9.3: Example of correct aerial prediction and wrong social media
image prediction other OSM building 699832958, Cerritos Public
Library, Los Angeles, USA

from Figure 9.4a is predicted as 0.307 commercial, 0.269 other, and
0.426 residential. Thus, it is classified as residential. The prediction
based on the social media image Figure 9.4b yields 0.156 commercial,
0.528 other, and 0.316 residential. Although the fusion results are close
between other with 0,399 and residential with 0.371, it is finally correctly
predicted as other.

(a) Google aerial image. Imagery ©
Google

(b) Flickr image. Photo ©iPhone 7 by
Håkan Dahlström

Figure 9.4: Example of wrong aerial prediction and correct social media
image prediction other OSM building 690278732, House of the
Wannsee Conference, Berlin, Germany

This analysis shows that the two modalities, aerial images, and
social media images, are complementary when predicting building
functions. A simple average of the prediction probability vectors from
both models improves the classification performance to a weighted F1

https://flickr.com/photos/133200397@N03/35755467322
https://flickr.com/photos/sergeigussev/
https://flickr.com/photos/sergeigussev/
https://creativecommons.org/licenses/by/2.0/
https://flickr.com/photos/93755244@N00/42422279285
https://flickr.com/photos/dahlstroms/
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score of 0.863. Analyzing the contributions of both modalities to the
fusion revealed that it is in every case beneficial: the performance is
always better than with a single modality. Even two wrong individual
predictions can be corrected by fusing the vectors in exceptional cases.
However, there is still room for improvement, as the theoretically
optimal fusion result shows. Moreover, the aggregation of predictions
from multiple social media images provides opportunities for further
investigations. For example, the set of social media images for a
building can consist of several hundred samples. In this case, the
influence of the aerial image would fade out compared to the social
media image. A straightforward solution for this issue could be a two-
step aggregation: first, fusing all social media image predictions, and
second, a fusion of the aggregated social media prediction with the
aerial image. A more sophisticated approach could involve clustering
social images based on their content to aggregate based on similarity
or distance to the building. Last but not least, an end-to-end deep
learning architecture could be a two-stream network that processes the
aerial image in one stream and the social media images in a second
stream. At the same time, a recurrent layer or an attention layer
combines multiple social media images. However, due to the large
amount of training data needed, a feasibility study should investigate
such an approach.

The following section has the advantage that the n:1 relation be-
tween social media data and buildings has already been resolved
during the feature calculation step. It focuses on the combination of
gradient-boosted tree models and CNN-based models.

9.3 combining metadata and aerial images

The dataset from Section 7.3 contains features from all buildings
that appear in the filtered social media images but not in the So2Sat
metadata training set. For a fair comparison with the previous section,
the buildings of this dataset are filtered again based on the set of
buildings with human-verified labels. This results in a test set of 264

buildings with 70 commercial, 77 other, and 117 residential samples.
Table 9.3 shows the results analogous to the previous section. The

first two blocks contain individual modalities, aerial images, and social
media metadata. They are followed by the results of the four fusion
methods, and in the last block, there are the theoretically optimal
fusion results. Overall, the results from the aerial model are not im-
proved by a fusion method in most cases. Two notable exceptions are
the model-entropy weighted average fusion and the minimum entropy
fusion, which achieve higher results on the precision of the other class
and the recall of the commercial and residential class. In the first case,
the precision of other buildings increases from 0.868 (aerial) and 0.824

(metadata) to 0.909. The recall of commercial buildings raises to 0.871
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after fusing aerial predictions (0.829) and metadata predictions (0.800)
with the model-entropy weighted average. A similar pattern occurs
for the recall of the residential class: Aerial predictions with a recall of
0.897 and metadata predictions with a recall of 0.761 are combined
with a model-weighted entropy average to a recall of 0.915. Generally,
the fusion methods yield better results if the individual modalities
perform at a similar level with comparable scores. Nevertheless, the
optimal scores in the last table block reveal room for improvement for
each class and evaluation metric. For example, the optimal weighted
F1 score is 0.928, 0.087 better than the best-performing standalone
aerial model.

Table 9.4 provides deeper insights into how both modalities con-
tribute to the results of average fusion. If both predictions are wrong,
then the fusion is also wrong. If the metadata prediction is correct
and the aerial prediction is wrong, the fusion is correct in 14 out of 23

cases. Vice versa, if the aerial model is right and the metadata is wrong,
then 51 of 86 samples are correctly predicted using the average fusion.
The missing 35 samples, for which the aerial model is correct, but the
metadata is wrong, make the difference between the best performing,
single aerial modal and the fusion models with the lower performance.
This difference becomes evident as the fusion model is always correct
if both modalities are correct.

Two examples illustrate the cases of one modality being correct
and one failing: Figure 9.5 and Figure 9.6. In the first case, the aerial
image, Figure 9.5a is correctly predicted as other with 0.970, whereas
the metadata model classifies it as commercial with 0.648, as other with
0.147, and as residential with 0.342. Figure 9.5b depicts the spatial
distribution of 286 tweets around the building. They are clustered in
17 locations around the building without a clear pattern. The same
applies to Figure 9.6b, which is an example of the metadata model
being correct. The hotel is predicted as commercial with 0.725, as other
with 0.112, and as residential with 0.162. Based on Figure 9.6a the
aerial model classifies the building as other with a probability of 0.743,
whereas the commercial class gains 0.235 and the residential class gets a
probability of 0.027.

Generally, no fusion method in this thesis is suited for combining
metadata and aerial prediction vectors. The analysis shows that the
prediction performance must of both modalities be on a similar level
to gain a benefit. The fusion will yield no profit from a combination if
one is weaker.

9.4 summary

The modalities in this thesis are different in terms of their methods
and relation to buildings. Therefore, an abstract method for fusion is
needed. This chapter introduced four methods to combine prediction
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Metric F1 Precision Recall

Method Class

Aerial

Commercial 0.784 0.744 0.829

Other 0.814 0.868 0.766

Residential 0.894 0.890 0.897

Weighted 0.841 0.845 0.841

Social
Media

Metadata

Commercial 0.583 0.459 0.800

Other 0.298 0.824 0.182

Residential 0.736 0.712 0.761

Weighted 0.568 0.677 0.602

Average

Commercial 0.732 0.638 0.857

Other 0.598 0.875 0.455

Residential 0.858 0.815 0.906

Weighted 0.749 0.786 0.761

Prediction-
entropy

weighted
average

Commercial 0.736 0.645 0.857

Other 0.615 0.900 0.468

Residential 0.863 0.817 0.915

Weighted 0.757 0.796 0.769

Model-
entropy

weighted
average

Commercial 0.758 0.670 0.871

Other 0.661 0.909 0.519

Residential 0.870 0.829 0.915

Weighted 0.779 0.810 0.788

Minimum
entropy

Commercial 0.753 0.663 0.871

Other 0.661 0.909 0.519

Residential 0.873 0.836 0.915

Weighted 0.780 0.811 0.788

Optimal

Commercial 0.907 0.850 0.971

Other 0.901 0.985 0.831

Residential 0.958 0.950 0.966

Weighted 0.928 0.933 0.928

Table 9.3: Individual prediction results of aerial and social media metadata
approach in the first two blocks, results of fusion methods in the
subsequent four blocks, and theoretically optimal fusion results in
the last block
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Modality Metadata predictions

Wrong Correct

% FW % FC #Spl % FW % FC #Spl

Aerial
Pred.

Wrong 100.0 % 0.0 % 19 39.1 % 60.9 % 23

Correct 40.7 % 59.3 % 86 0.0 % 100.0 % 136

Table 9.4: Contribution analysis of aerial and metadata modalities to average
fusion. FW is for Fusion Wrong, FC abbreviates Fusion Correct.
These values are relative to the number of samples (#Spl) for each
modality.

probability vectors from different methods. This decision-level fusion
has the advantage of requiring no training or setup, handling n:1
relations between predictions and buildings, and combining differ-
ent methods. If applied to social media images and aerial images,
the basic average fusion is effective on the subset of buildings with
human-verified labels. It improves the weighted F1 score of the aerial
predictions by 6.9 % and the social media image results by 10.9 %.
The additional weighting of the predictions does not yield any im-
provement. Combining metadata and aerial images does not improve
the performance because the metadata predictions were much weaker
than the aerial predictions. Nevertheless, the theoretically optimal
fusion result reveals room for improvement with both combinations.
A pilot study of this thesis investigated different fusion methods,
including deep feature level fusion and model stacking if there is
a 1:1 relation between ground-level image and aerial image [20]. It
concludes that average fusion is the best approach if the different
modalities share no common features and are different in any aspect.
Hence, further research could develop multimodal networks that cope
with different modalities. Approaches like CLIP [212], DALL·E [213],
or MAGMA [214] that use text for better image classification or gen-
erate images from the text are promising points for going forward to
multimodal fusion.
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(a) Google aerial image. Imagery ©
Google

55 tweets from 49 users near
other OSM building 953923942

Building Class
Commercial Other Residential

(b) Spatial distribution of tweets. Col-
ors indicate users, marker sizes indi-
cate the number of tweets per user
and location. Background map tiles
by Stamen Design, under CC BY
3.0. Data by OpenStreetMap, under
ODbL.Background map tiles by Sta-
men Design, under CC BY 3.0. Data
by OpenStreetMap, under ODbL.

Figure 9.5: Example of correct aerial prediction and wrong social media
metadata prediction other OSM building 699832958, Edward St.
John Learning and Teaching Center, Washington, D.C., USA

(a) Google aerial image. Imagery ©
Google

86 tweets from 77 users near
commercial OSM building 955335622

Building Class
Commercial Other Residential

(b) Spatial distribution of tweets. Colors
indicate users, marker sizes indicate
the number of tweets per user and lo-
cation. Background map tiles by Sta-
men Design, under CC BY 3.0. Data
by OpenStreetMap, under ODbL.

Figure 9.6: Example of wrong aerial prediction and correct social media meta-
data prediction commercial OSM building 955335622, Richmond
Harbour Hotel, Washington, D.C., USA
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C O N C L U S I O N

One of the lessons I have learned in the different stages of my
career is that science is not done alone. It is through talking with

others and sharing that progress is made.

— carol w. greider
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C O N C L U S I O N

Unprecedented volumes of EO data help to see the world in high
spatial and temporal resolution. They show us the world from a dif-
ferent perspective allowing large-scale analysis and improving our
understanding of urbanization. Part of this process is the rapid and
sometimes uncoordinated construction of new buildings. This chap-
ter briefly reviews the concepts and results of the four automatic
methods for building function classification introduced in this work
and presents future work that could improve and extend the existing
approaches.

10.1 summary

Building function classification with EO data is challenging: As the task
cannot be directly measured, its prediction requires the interpretation
of patterns. This thesis aims at developing generalizable methods
for the given task and thus, uses a simple yet universal classification
scheme of three classes: commercial, other, and residential. A global
dump from OpenStreetMap (OSM) forms the basis to extract building
footprints and functions for 400 million buildings worldwide. Four
different methods for building function classification are presented
and evaluated on a culturally diverse dataset of 42 metropolitan areas
around the Globe. The four methods rely on different data sources to
predict building functions:

1. Fine-tuning of deep learning architectures for image classifica-
tion with façade imagery from GSV images

2. Filtering street-level imagery from big social media datasets with
re-use of the GSV models

3. Using spatio-temporal features from social media metadata to
predict building functions

4. Fine-tuning of deep learning architectures for image classifica-
tion with aerial imagery from Google Maps

The first method establishes a basis for the social media image-based
approach. It builds a seed dataset of reference images and creates state-
of-the-art prediction models for building function classification based
on façade images (Chapter 5). These models are seven fine-tuned
deep learning architectures based on ImageNet weights and adapted
to the given task with a globally sampled GSV image dataset. The

129
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best-performing model with an InceptionResNetv2 architecture yields
a weighted F1 score of 0.562. An in-depth analysis on a subregion
basis reveals that the model’s prediction performance is stable across
different cultural zones. The individual examples show that some
missed predictions are due to label noise.

However, data from GSV is not free, and hence, other open data
sources become interesting. Social media image platforms like Flickr
contain massive image data with open licenses. Thus, applying the
existing street-level-based models to social media images is evident. A
suitable filter algorithm is necessary because social media platforms
are not made explicitly for street-level imagery but contain various
motifs and different photography styles. This thesis proposes a filter-
ing pipeline that extracts GSV-like images from extensive collections
and maps them to buildings in Chapter 6. The pipeline uses the GSV

image set from the previous method as a seed dataset and finds all
social media images that show similar motifs using feature vectors
from CNNs. It combines spatial heuristics and geoinformatics methods
to create direct relationships between images and buildings.

The evaluation of the filtering pipeline shows that out of 28 million
images, 0.34 % can be mapped to an OSM building. However, as 65.6 %
of these buildings are unlabeled, 56,857 OSM buildings could profit
from an additional semantic tag. A more detailed analysis of the
prediction results confirms the findings of the previous chapter: The
InceptionResNetv2 model yields the best-weighted F1 score of 0.476.
Since this number is 0.086 lower than the F1 score of the GSV images,
a group of human experts validated a subset of the images and their
labels.

This study shows that only 50.4 % of all images show a building
with a precise function, and the building labels from OSM are correct
in 69 % of the cases. If evaluated on the human-validated subset,
the InceptionResNetv2 model yields a weighted F1 score of 0.78.
This result demonstrates the vast impact of label noise on prediction
performance.

The third method from Chapter 7 presents a different approach
that ignores the noisy, user-generated content of social media and
focuses on the metadata of social media posts. A building-first ap-
proach starts with a building and analyzes the spatial and temporal
patterns of social media posts surrounding a building. With an ex-
tensive hyperparameter search, two different classification algorithms
are trained on 181 features from 385,975 buildings. It turns out that
the gradient-boosted tree algorithm outperforms the neural network-
based approach by a 0.218 difference. The tree-based method yields a
weighted F1 score of 0.723 on the test set compared to a weighted F1

score of 0.505. Other publications confirm that gradient-boosted trees
are better suited for structured data than neural networks [45, 201]. An
in-depth analysis of the feature importance for the best-performing



10.2 future work 131

model reveals two different groups of features: those with a high gain,
like the user area density, and those with a high weight, e.g., the mean
distance between social media posts and buildings. When applied to
the buildings resulting from the image filtering pipeline (Chapter 6),
the best-performing tree-based model yields a weighted F1 score of
0.557.

The fourth method for predicting building functions utilizes the
same fine-tuning approach as the GSV method but uses aerial images
from the So2Sat social media dataset (Chapter 8). As the fine-tuning
approach assumes a balanced training dataset, an algorithm for under-
sampling is introduced that ensures a class-wise balance and equalizes
the city-wise sample distribution. The best-performing model for this
data is based on a VGG16 architecture with a weighted F1 score of
0.736. A city-wise analysis shows that it generalizes across all LCZ42

cities. The results from the test set are confirmed when the method is
applied to the buildings identified with the image filtering pipeline.

Chapter 9 proposes four fusion strategies for decision-level fusion.
A pilot study for this thesis found the decision level best suited for
fusing multimodal data. It has the additional benefit of seamlessly
resolving 1:n relations between images and buildings. The evaluation is
performed on the subset of buildings with human-validated functions
to eliminate the effect of label noise. The analysis shows that an
average mean fusion of the filtered social media images and the aerial
images improves the weighted F1 score to 0.863. This fusion method
can improve the results if one modality provides a wrong prediction,
but it never turns a correct prediction into a wrong one. The fusion of
metadata and aerial images does not yield an overall improvement in
the results. With the generally superior predictions of the aerial model,
the relatively weak metadata predictions do not provide any benefit,
except for some exceptional cases.

A general pattern across all methods is the comparably low predic-
tion results of the other class. Commercial and residential buildings have
clear patterns either in their façade images, their social media meta-
data patterns or in their aerial images. As these two classes summerize
precise functions, they have more apparent patterns and are easier
to predict for machine learning algorithms. The other class combines
a wide variety of building functions, like schools, hospitals, airports,
and stations, resulting in a high inter-class variance. This variance
makes it hard for prediction models to detect any distinctive patterns.

10.2 future work

All methods in this thesis have a huge potential for further develop-
ment and research. As all of them are severely affected by the label
noise, this could be one direction of further investigations. Possible op-
tions include accepting the noisiness of labels and applying a less rigid
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scheme with multiple labels, e.g., a building can be commercial and
residential at the same time [215]. Such an approach needs to cope with
obtaining ground truth labels: Very few OSM buildings have this fine-
grained information. Alternatively, the hierarchical relation between
building functions might be exploited. Since the other class consists of
multiple different subclasses, a hierarchical learning approach could
help to distinguish better between subclasses [216]. Moreover, the
commercial and residential classes have the potential to benefit from
this method as well. In this case, the balancing between subclasses is
a major challenge as there are few samples for rare subclasses, e.g.,
monasteries.

While the different classes are not equally well recognizable, all mod-
els yield a comparable performance across different cultural zones and
nationalities. This finding indicates that the CNN models have sufficient
capacity to include versatile patterns of single classes. Nonetheless,
some studies suggest having local expert models that are trained in
specific regions [217]. An investigation of regional models versus a
global model poses another opportunity for further research.

However, mapping based on ground-level data risks systematic
biases toward society’s upper and lower parts. Extremely poor neigh-
borhoods are neither appropriately covered by GSV [169] nor by Twit-
ter [218]. There are different reasons for this finding: First, the commer-
cial power of these communities is low, which reduces the attractivity
for commercial platforms. Second, these areas are not accessible with
the mapping equipment, and third, a mapping campaign in these ar-
eas might put the staff at risk of becoming a victim of crime. Last but
not least, the inhabitants of these areas are not users of social media
platforms. The other extreme is gated communities of rich people that
prevent trespassing. With closed roads for the public, they are inacces-
sible for every volunteer cartographer. Moreover, as Li et al. stated that
the user basis of Flickr is “white and Asian people with an advanced
degree” ([123]), their neighborhoods are likely overrepresented in the
social media image approach of this thesis. The analysis of this aspect
poses another research opportunity, especially when the results of
these methods are possibly used for policymaking.

Beyond these generally applicable ideas, each method offers several
opportunities for further development. Although GSV imagery sam-
pling is aimed at a globally diverse dataset, some types of building
façades might be missed because they are unique to some regions. A
taxonomy-guided sampling strategy could help identify blind spots
and enrich the existing dataset. However, the legal barriers are still ex-
isting and need to be respected. Moreover, the analysis of architectures
for street-level images in Chapter 5 revealed that other architectures
have better performance for some classes. Hence, a combination of
multiple architectures with decision level fusion [20] or advanced
feature level fusion [219] might improve the overall prediction results.
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The filtering pipeline for social media images could be evolved
with a more task-specific image retrieval algorithm. Content-based
image retrieval (CBIR) is a research field on its own and provides task-
specific methods that allow the filtering of more images with higher
relevance [220]. An alternative opportunity for further development
is considering the camera’s focal length. This information allows
computing a field of view, and thus, all buildings in an image can be
identified. Hence, a building-wise prediction might help to predict
multiple buildings with one image. Moreover, façade images are just
one type of image that can be related to a building function. With
other seed datasets, this pipeline could identify images for activity
recognition [221, 222], which is a different way of describing land use.

Concerning the metadata approach, its features are handcrafted.
Similar to the evolution in computer vision moving from handcrafted
features to learned features, this transformation is also possible for
metadata. For example, the occurrences of tweets in a specific time in-
terval could be processed with a CNN for predicting building functions.
Such an approach would implicitly encode spatio-temporal features
rather than taking the spatial and temporal features separately as in
the current status. However, while this method offers an end-to-end
training phase, the discretization of the tweets in terms of spatial and
temporal resolution requires thorough analysis. In any way, the dis-
cretization will result in sparse input data, which requires a tailored
CNN architecture.

The aerial image classification is based on single-scene classification.
However, most buildings are not solitary but part of a neighborhood
that often shares the same function. A segmentation approach has the
potential to scale the method to larger areas. For example, the aerial
images could be predicted using a semantic segmentation method that
returns its predictions together with an uncertainty measure [17]. This
approach would show where additional, complementary data from
other sources are necessary. In such an environment, social media data
might be used in a more targeted manner. Alternatively, this opens
the opportunity to switch from passive data capturing to active data
collection based on citizen science [223]. For example, this data can be
collected by citizens or tourists with a mobile app. If they register for a
dedicated data collection platform, they will receive push notifications
asking them to take a picture of a given building. In combination
with a monetary incentive, this approach allows for closing blind
spots and data lack, similar to Amazon Mechanical Turk. Especially
in developing countries, an active data collection platform could be a
win-win for scientists and citizens.
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10.3 outlook

Urbanization has a tremendous impact on metropolitan areas, es-
pecially in the Global South, where little data for planning is avail-
able [224]. However, shaping this process according to the SDGs is
challenging but necessary. EO data can help to monitor the status quo,
detect changes, and ultimately help policymakers to understand the
dynamics and make data-driven solutions that increase the well-being
of citizens [225, 226]. In the best case, this data is free and open as
in OSM to enable democratic and informed processes about future
development. Although OSM has its deficits, it is still the best platform
for sharing geospatial data and has vast potential, especially when
combining expert knowledge with algorithmic approaches [227]. With
data and algorithms becoming a core foundation of today’s world and
making decisions for the future [228], their outcome shall be accessible
by the public to allow informed discussions.

This thesis tries to contribute a small part to this goal by providing
generalizable methods to gather semantic building information. The
author of this thesis sincerely hopes that the goals can be fulfilled
and would be humbled if some of the results of this thesis help other
researchers to bring the SDGs closer to reality.
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value description class

apartments A building arranged into individual dwellings, often on separate floors. May also have
retail outlets on the ground floor.

residential

bungalow A single-storey detached small house, Dacha. residential

cabin A cabin is a small, roughly built house usually with a wood exterior and typically found
in rural areas.

residential

detached A detached house, a free-standing residential building usually housing a single family. residential

dormitory For a shared building, as used by college/university students (not a share room for
multiple occupants as implied by the term in British English). Alternatively, use build-
ing=residential plus residential=university.

residential

farm A residential building on a farm (farmhouse). For other buildings see below build-
ing=farm_auxiliary, building=barn, . . . If in your country farmhouse looks same as
general residential house then you can tag as building=house as well. See also lan-
duse=farmyard for the surrounding area

other

hotel A building designed with separate rooms available for overnight accommodation.
Normally used in conjunction with tourism=hotel for the hotel grounds including
recreation areas and parking.

commercial

house A dwelling unit inhabited by a single household (a family or small group sharing
facilities such as a kitchen). Houses forming half of a semi-detached pair, or one of a
row of terraced houses, should share at least two nodes with joined neighbours, thereby
defining the party wall between the properties.

residential

houseboat A boat used primarily as a home residential

residential A general tag for a building used primarily for residential purposes. Where additional
detail is available consider using ’apartments’, ’terrace’, ’house’ or ’detached’.

residential

static_caravan A mobile home (semi)permanently left on a single site residential

terrace A single way used to define the outline of a linear row of residential dwellings, each
of which normally has its own entrance, which form a terrace (row-house in North
American English). Consider defining each dwelling separately using ’house’.

commercial A building where non-specific commercial activities take place, not necessarily an office
building. Consider tagging the surrounding area using landuse=commercial. Use ’retail’
if the building consists primarily of shops.

commercial

industrial A building where some industrial process takes place. Use warehouse if the purpose
is known to be primarily for storage/distribution. Consider using landuse=industrial
for the surrounding area and the proposed industrial=* tag to describe the industrial
activity.

commercial

kiosk A small one-room retail building. commercial

office An office building. Use building=office with office=* to describe the type of office.
Consider tagging the surrounding area using landuse=commercial. Use ’retail’ if the
building consists primarily of shops.

commercial

retail A building primarily used for selling goods that are sold to the public; use shop=* to
identify the sort of goods sold or an appropriate amenity=* (pub, cafe, restaurant, etc.).
Consider use landuse=retail for the surrounding area.

commercial

supermarket A building constructed to house a self-service large-area store. commercial

warehouse A building primarily used for the storage or goods or as part of a distribution system. commercial

cathedral A building that was built as a cathedral. Used in conjunction with
amenity=place_of_worship, religion=*, denomination=* and landuse=religious
for the cathedral grounds where it is in current use.

other

chapel A building that was built as a chapel. Used in conjunction with
amenity=place_of_worship, religion=*, denomination=* and landuse=religious
for the chapel grounds where it is in current use.

other

church A building that was built as a church. Used in conjunction with
amenity=place_of_worship, religion=* , denomination=* and landuse=religious
for the church grounds where it is in current use.

other

mosque A mosque. Used in conjunction with amenity=place_of_worship, religion=*, denomina-
tion=* and landuse=religious for the grounds where it is in current use.

other

religious Unspecific religious building. Prefer more specific values if possible. other

shrine A building that was built as a shrine. Used in conjunction with
amenity=place_of_worship, religion=*, denomination=* and landuse=religious
for the grounds where it is in current use. Small buildings should consider
historic=wayside_shrine.

other

synagogue A building that was built as a synagogue. Used in conjunction with
amenity=place_of_worship, religion=*, denomination=* and landuse=religious for the
grounds where it is in current use.

other

137
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temple A building that was built as a temple. Used in conjunction with
amenity=place_of_worship, religion=*, denomination=* and landuse=religious
for the grounds where it is in current use.

other

bakehouse A building that was built as a bakehouse (i.e. for baking bread). Often used in conjunction
with another node amenity=baking_oven and oven=wood_fired.

other

civic For any civic amenity, for example amenity=community_centre, amenity=library,
amenity=toilets, leisure=sports_centre, leisure=swimming_pool, amenity=townhall etc.
Use amenity=* or leisure=* etc. to provide further details. See building=public as well.

other

government For government buildings in general, including municipal, provincial and divisional
secretaries, government agencies and departments, town halls, (regional) parliaments
and court houses.

other

hospital A building which forms part of a hospital. Use amenity=hospital for the hospital
grounds.

other

kindergarten For any generic kindergarten buildings. Buildings for specific uses (sports halls etc.)
should be tagged for their purpose. Use amenity=kindergarten for the perimeter of the
kindergarten grounds.

other

public A building constructed as accessible to the general public (a town hall, police station,
court house, etc.).

other

school For any generic school buildings. Buildings for specific uses (sports halls etc.) should be
tagged for their purpose. Use amenity=school for the perimeter of the school grounds.

other

toilets A toilet block. other

train_station A building constructed to be a train station building, including buildings that are
abandoned and used nowadays for a different purpose.

other

transportation A building related to public transport. You will probably want to tag it with proper
transport related tag as well, such as public_transport=station. Note that there is a
special tag for train station buildings - building=train_station.

other

university A university building. Use amenity=university for the whole university area. other

barn An agricultural building used for storage and as a covered workplace. other

conservatory A building or room having glass or tarpaulin roofing and walls used as an indoor
garden or a sunroom (winter garden).

other

cowshed A cowshed (cow barn, cow house) is a building for housing cows, usually found on
farms.

other

farm_auxiliary A building on a farm that is not a dwelling (use ’farm’ or ’house’ for the farm house). other

greenhouse A greenhouse is a glass or plastic covered building used to grow plants. Use lan-
duse=greenhouse_horticulture for an area containing multiple greenhouses

other

stable A stable is a building where horses are kept. other

sty A sty (pigsty, pig ark, pig-shed) is a building for raising domestic pigs, usually found
on farms.

other

grandstand The main stand, usually roofed, commanding the best view for spectators at racecourses
or sports grounds.

other

pavilion A sports pavilion usually with changing rooms, storage areas and possibly an space
for functions & events. Avoid using this term for other structures called pavilions by
architects (see Pavilion)

other

riding_hall A building that was built as a riding hall. other

sports_hall A building that was built as a sports hall. other

stadium A building constructed to be a stadium building, including buildings that are abandoned
and used nowadays for a different purpose.

other

hangar A hangar is a building used for the storage of airplanes, helicopters or space-craft.
Consider adding aeroway=hangar, when appropriate.

other

hut A hut is a small and crude shelter. Note that this word has two meanings - it may be
synonym of building=shed, it may be a residential building of low quality.

other

shed A shed is a simple, single-storey structure in a back garden or on an allotment that is
used for storage, hobbies, or as a workshop.

other

carport A carport is a covered structure used to offer limited protection to vehicles, primarily
cars, from the elements. Unlike most structures a carport does not have four walls, and
usually has one or two.

other

garage A garage is a building suitable for the storage of one or possibly more motor vehicle
or similar. See building=garages for larger shared buildings. For an aircraft garage, see
building=hangar.

other

garages A building that consists of a number of discrete storage spaces for different owners/-
tenants. See also building=garage.

other

parking Structure purpose-built for parking cars. other

digester A digester is a bioreactor for the production of inflatable biogas from biomass. other

service Service building usually is a small unmanned building with certain machinery (like
pumps or transformers).

other

transformer_tower A transformer tower is a characteristic tall building comprising a distribution transformer
and constructed to connect directly to a medium voltage overhead power line. Quite
often the power line has since been undergrounded but the building may still serve as a
substation. If the building is still in use as a substation it should additionally be tagged
as power=substation + substation=minor_distribution.

other

water_tower A water tower other

bunker A hardened military building. Also use military=bunker. other

bridge A building used as a bridge. Can also represent a gatehouse for drawbridges. See also
bridge=yes for highway=*. Don’t use this tag just for marking bridges (their outlines).
For such purposes use man_made=bridge.

other
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construction Used for buildings under construction. Use construction=* to hold the value for the
completed building.

other

roof A structure that consists of a roof with open sides, such as a rain shelter, and also gas
stations

other

ruins Frequently used for a house or other building that is abandoned and in poor repair.
However, some believe this usage is incorrect, and the tag should only be used for
buildings constructed as fake ruins (for example sham ruins in an English landscape
garden).

other

yes Use this value where it is not possible to determine a more specific value.

user defined All commonly used values according to Taginfo, generally building types

Table A.1: Mapping of possible values in OSM tag building to the unified
classification scheme of this thesis. Value and description are
taken from the OSM wiki [229], the class stands for the mapped
value in the unified classification scheme.

value description class

bbq BBQ or Barbecue is a permanently built grill for cooking food, which is most
typically used outdoors by the public. For example these may be found in city
parks or at beaches. Use the tag fuel=* to specify the source of heating, such as
fuel=wood;electric;charcoal. For mapping nearby table and chairs, see also the
tag tourism=picnic_site. For mapping campfires and firepits, instead use the tag
leisure=firepit.

other

biergarten Biergarten or beer garden is an open-air area where alcoholic beverages
along with food is prepared and served. See also the description of the tags
amenity=pub;bar;restaurant. A biergarten can commonly be found attached to
a beer hall, pub, bar, or restaurant. In this case, you can use biergarten=yes addi-
tional to amenity=pub;bar;restaurant.

commercial

cafe Cafe is generally an informal place that offers casual meals and beverages; typically,
the focus is on coffee or tea. Also known as a coffeehouse/shop, bistro or sidewalk
cafe. The kind of food served may be mapped with the tags cuisine=* and diet=*.
See also the tags amenity=restaurant;bar;fast_food.

commercial

drinking_water Drinking water is a place where humans can obtain potable water for consumption.
Typically, the water is used for only drinking. Also known as a drinking fountain or
bubbler.

other

fast_food Fast food restaurant (see also amenity=restaurant). The kind of food served can be
tagged with cuisine=* and diet=*.

commercial

food_court An area with several different restaurant food counters and a shared eating area.
Commonly found in malls, airports, etc.

commercial

ice_cream Ice cream shop or ice cream parlour. A place that sells ice cream and frozen yoghurt
over the counter

commercial

pub A place selling beer and other alcoholic drinks; may also provide food or accom-
modation (UK). See description of amenity=bar and amenity=pub for distinction
between bar and pub

commercial

restaurant Restaurant (not fast food, see amenity=fast_food). The kind of food served can be
tagged with cuisine=* and diet=*.

commercial

college Campus or buildings of an institute of Further Education (aka continuing education) other

driving_school Driving School which offers motor vehicle driving lessons commercial

kindergarten For children too young for a regular school (also known as preschool, playschool
or nursery school), in some countries including afternoon supervision of primary
school children.

other

language_school Language School: an educational institution where one studies a foreign language. other

library A public library (municipal, university, . . . ) to borrow books from. other

music_school A music school, an educational institution specialized in the study, training, and
research of music.

other

school School and grounds - primary, middle and seconday schools other

university An university campus: an institute of higher education other

bicycle_parking Parking for bicycles other

bicycle_repair_station General tools for self-service bicycle repairs, usually on the roadside; no service other

bicycle_rental Rent a bicycle commercial

boat_rental Rent a Boat commercial

boat_sharing Share a Boat other

bus_station May also be tagged as public_transport=station. other

car_rental Rent a car commercial

car_sharing Share a car other

car_wash Wash a car commercial

vehicle_inspection Government vehicle inspection other

charging_station Charging facility for electric vehicles other

ferry_terminal Ferry terminal/stop. A place where people/cars/etc. can board and leave a ferry. commercial
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fuel Petrol station; gas station; marine fuel; . . . Streets to petrol stations are often tagged
highway=service.

commercial

grit_bin A container that holds grit or a mixture of salt and grit. other

motorcycle_parking Parking for motorcycles other

parking Car park. Nodes and areas (without access tag) will get a parking symbol. Areas
will be coloured. Streets on car parking are often tagged highway=service and
service=parking_aisle.

other

parking_entrance An entrance or exit to an underground or multi-storey parking facility. Group
multiple parking entrances together with a relation using the tags type=site and
site=parking. Do not mix with amenity=parking.

other

parking_space A single parking space. Group multiple parking spaces together with a relation
using the tags type=site and site=parking. Do not mix with amenity=parking.

other

taxi A place where taxis wait for passengers. other

atm ATM or cash point: a device that provides the clients of a financial institution with
access to financial transactions.

other

bank Bank or credit union: a financial establishment where customers can deposit and
withdraw money, take loans, make investments and transfer funds.

commercial

bureau_de_change Bureau de change, money changer, currency exchange, Wechsel, cambio – a place
to change foreign bank notes and travellers cheques.

commercial

baby_hatch A place where a baby can be, out of necessity, anonymously left to be safely cared
for and perhaps adopted.

other

clinic A medium-sized medical facility or health centre. other

dentist A dentist practice / surgery. other

doctors A doctor’s practice / surgery. other

hospital A hospital providing in-patient medical treatment. Often used in conjunction with
emergency=* to note whether the medical centre has emergency facilities (A&E
(brit.) or ER (am.))

other

nursing_home Discouraged tag for a home for disabled or elderly persons who need permanent
care. Use amenity=social_facility + social_facility=nursing_home now.

other

pharmacy Pharmacy: a shop where a pharmacist sells medications\ndispensing=yes/no -
availability of prescription-only medications

other

social_facility A facility that provides social services: group & nursing homes, workshops for the
disabled, homeless shelters, etc.

other

veterinary A place where a veterinary surgeon, also known as a veterinarian or vet, practices. other

arts_centre A venue where a variety of arts are performed or conducted other

brothel An establishment specifically dedicated to prostitution commercial

casino A gambling venue with at least one table game(e.g. roulette, blackjack) that takes
bets on sporting and other events at agreed upon odds.

commercial

cinema A place where films are shown (US: movie theater) commercial

community_centre A place mostly used for local events, festivities and group activities; including
special interest and special age groups. .

other

fountain A fountain for cultural / decorational / recreational purposes. other

gambling A place for gambling, not being a shop=bookmaker, shop=lottery, amenity=casino,
or leisure=adult_gaming_centre. \nGames that are covered by this definition include
bingo and pachinko.

commercial

nightclub A place to drink and dance (nightclub). The German word is "Disco" or "Dis-
cothek". Please don’t confuse this with the German "Nachtclub" which is most likely
amenity=stripclub.

commercial

planetarium A planetarium. other

public_bookcase A street furniture containing books. Take one or leave one. other

social_centre A place for free and not-for-profit activities. other

stripclub A place that offers striptease or lapdancing (for sexual services use
amenity=brothel).

commercial

studio TV radio or recording studio commercial

swingerclub A club where people meet to have a party and group sex. commercial

theatre A theatre or opera house where live performances occur, such as plays, musicals
and formal concerts. Use amenity=cinema for movie theaters.

other

animal_boarding A facility where you, paying a fee, can bring your animal for a limited period of
time (e.g. for holidays)

commercial

animal_shelter A shelter that recovers animals in trouble other

baking_oven An oven used for baking bread and similar, for example inside a build-
ing=bakehouse.

other

bench A bench to sit down and relax a bit other

childcare A place where children of different ages are looked after which is not an
amenity=kindergarten or preschool.

other

clock A public visible clock other

courthouse A building home to a court of law, where justice is dispensed other

crematorium A place where dead human bodies are burnt other

dive_centre A dive center is the base location where sports divers usually start scuba diving or
make dive guided trips at new locations.

commercial

embassy An embassy, consulate or diplomatic office. Also see office=diplomatic other

fire_station A station of a fire brigade other
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firepit Deprecated. For campfires and firepits, see Tag:leisure=firepit other

grave_yard A (smaller) place of burial, often you’ll find a church nearby. Large places should
be landuse=cemetery instead.

other

gym Do no use, leisure=fitness_centre or leisure=sports_centre is preferred! A place
which houses exercise equipment for the purpose of physical exercise.

commercial

hunting_stand A hunting stand: an open or enclosed platform used by hunters to place themselves
at an elevated height above the terrain

other

internet_cafe A place whose principal role is providing internet services to the public. commercial

kitchen A public kitchen in a facility to use by everyone or customers other

kneipp_water_cure Outdoor foot bath facility. Usually this is a pool with cold water and handrail.
Popular in German speaking countries.

other

marketplace A marketplace where goods and services are traded daily or weekly. commercial

monastery Monastery is the location of a monastery or a building in which monks and nuns
live.

other

photo_booth Photo Booth – A stand to create instant photo. commercial

place_of_worship A church, mosque, or temple, etc. Note that you also need religion=*, usually
denomination=* and preferably name=* as well as amenity=place_of_worship. See
the article for details.

other

police A police station where police officers patrol from and that is a first point of contact
for civilians

other

post_box A box for the reception of mail. Alternative mail-carriers can be tagged via opera-
tor=*

other

post_depot Post depot or delivery office, where letters and parcels are collected and sorted
prior to delivery.

commercial

post_office Post office building with postal services commercial

prison A prison or jail where people are incarcerated before trial or after conviction other

public_bath A location where the public may bathe in common, etc. japanese onsen, turkish
bath, hot spring

other

public_building A generic public building. Don’t use! See office=government. other

ranger_station National Park visitor headquarters: official park visitor facility with police, visitor
information, permit services, etc

other

recycling Recycling facilities (bottle banks, etc.). Combine with recycling_type=container for
containers or recycling_type=centre for recycling centres.

other

sanitary_dump_station A place for depositing human waste from a toilet holding tank. other

sauna Deprecated. For sauna use: leisure=sauna other

shelter A small shelter against bad weather conditions. To additionally describe the kind of
shelter use shelter_type=*.

other

shower Public shower or bath. other

telephone Public telephone other

toilets Public toilets (might require a fee) other

townhall Building where the administration of a village, town or city may be located, or just
a community meeting place

other

vending_machine A machine selling goods – food, tickets, newspapers, etc. Add type of goods using
vending=*

other

waste_basket A single small container for depositing garbage that is easily accessible for pedestri-
ans.

other

waste_disposal A place where canal boaters, caravaners, etc. can dispose of rubbish (trash/waste). other

waste_transfer_station A waste transfer station is a location that accepts, consolidates and transfers waste
in bulk.

other

watering_place Place where water is contained and animals can drink other

water_point Place where you can get large amounts of drinking water other

user defined All commonly used values according to Taginfo other

shop All commonly used values according to Taginfo commercial

Table A.2: Mapping of possible values in OSM tag amenity to the unified
classification scheme of this thesis. Value and description are
taken from the OSM wiki [230]
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Figure A.1: Distribution of OSM building footprint sizes in LCZ42 cities
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Figure A.2: Distribution of similarity parameter psim in Flickr LCZ42 dataset.
The histogram is based on 28,818,438 images with a minimum
similarity of 0.143, a maximum similarity of 0.904, a mean simi-
larity of 0.506, a variance of 0.015, and a skewness of 0.014.
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