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Prüfer der Dissertation: Hon-Prof. Dr. J. Ignacio Cirac
Prof. Dr. Michael Knap

Die Dissertation wurde am 26.04.2022 bei der Technischen Universität München
eingereicht und durch die Fakultät für Physik am 06.06.2022 angenommen.



Abstract

This thesis presents a complete, self-consistent and rigorous theory of varia-
tional methods for quantum many-body physics, with a specific focus on methods
related to Gaussian states. This is achieved by describing in detail the differential
geometry and group theory structures that lie behind these methods.

Firstly, a geometric theory of variational methods is outlined. Understanding
variational ansätze as differentiable manifolds allows us to construct consistent
variational principles to compute ground state approximations, spectral properties
and time evolution for relevant Hamiltonians.

Then, the application of these methods to Gaussian ansätze is discussed, to-
gether with its limitations. To overcome the latter, a method is devised to con-
struct useful variational families that go beyond Gaussian states, while preserving
their favourable computational properties.

Finally, concrete examples are presented of the results that can be obtained
with these methods for specific physical problems. In particular, the Bose-Hubbard
and Sherrington-Kirkpatrick models are considered, where Gaussian methods or
generalisations of Gaussian methods give excellent descriptions of the equilibrium
and, in some cases, non-equilibrium physics.
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Zusammenfassung

In dieser Dissertation wird eine vollständige, konsistente und rigorose Theorie
der Variationsmethoden für die Quantenvielkörperphysik vorgestellt, mit einem
besonderen Schwerpunkt auf Methoden im Zusammenhang mit Gaußschen Zu-
ständen. Dies wird erreicht, indem die differentialgeometrischen und gruppenthe-
oretischen Strukturen, die diesen Methoden zugrunde liegen, im Detail beschrieben
werden.

Zunächst wird eine geometrische Theorie der Variationsmethoden dargestellt.
Wenn man Variationsansätze als differenzierbare Mannigfaltigkeiten versteht, kann
man konsistente Variationsprinzipien konstruieren, um Grundzustandsannäherun-
gen, spektrale Eigenschaften und die zeitliche Entwicklung für relevante Hamilton-
operatoren zu berechnen.

Anschließend wird die Anwendung dieser Methoden auf Gaußsche Ansätze
sowie ihre Grenzen diskutiert. Um letztere zu überwinden, wird eine Methode
entwickelt, um nützliche Variationsfamilien zu konstruieren, die über Gaußsche
Zustände hinausgehen und dabei ihre günstigen Berechnungseigenschaften beibe-
halten.

Schließlich werden konkrete Beispiele für die Ergebnisse vorgestellt, die mit
diesen Methoden für spezifische physikalische Probleme erzielt werden können. Ins-
besondere werden die Bose-Hubbard- und Sherrington-Kirkpatrick-Modelle betra-
chtet, bei denen Gauß-Methoden oder Verallgemeinerungen von Gauß-Methoden
ausgezeichnete Beschreibungen der Gleichgewichts- und in einigen Fällen der Nicht-
Gleichgewichts-Physik liefern.
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Chapter 1

Introduction

1.1 Motivation

Calculating exactly the properties of a quantum many body system using classical
computational resources is in general an intractable task [1]. Indeed, consider a
system composed of N individual components (atoms, spins, lattice sites, available
modes of a bosonic or fermionic field...). The corresponding many body Hilbert
space will have dimension dN , where d is the dimension associated to each local
degree of freedom1. The exponential scaling of this dimension with respect to N
means that it is sufficient to consider a relatively modest number of components
to generate a problem unapproachable for any available or imaginable classical
computer.

Just storing in a computer’s memory a representation of a quantum state (rep-
resented as a Hilbert space vector) would require storing a dN -dimensional complex
vector. Assuming single floating point precision, this means that storing the state
of a system of 40 elements of spin 1/2 would require a few terabytes of memory
space. Storing the state of 65 spins would require hundreds of exabytes, close
to the total storage space available to humanity as estimated in 2007 [2]. A few
hundreds of spins would reach the limit of the estimated available storage capacity
of the universe, ∼ 1090 bits of information [3].

Typically, on top of storing a single state we also want to consider the system’s
Hamiltonian Ĥ. This then corresponds to a dN × dN matrix. Investigating the
energy spectrum of the system, for example, requires diagonalising such a matrix.
Simulating the time evolution of the system means constructing the unitary time

1In the case of bosonic components the local dimension is itself infinite. However in models
of practical interest it is usually possible to impose the constraint of a maximum occupation
number for each mode, thus reducing the problem to a finite dimension, without incurring in
significant errors.
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CHAPTER 1. INTRODUCTION

evolution operator Û = eiĤt and applying it to an initial state vector. These are
tasks that not only need an exponential memory space, but also require a number
of elementary operations that scales exponentially in N .

All classical methods for the analysis of quantum many body systems must
therefore rely on some level of approximation or on some intuition – more or less
model-specific – which sufficiently simplifies the problem.

One may have the expectation that the situation will be changed by progress in
quantum computation. Indeed, already in the 1980s, these observations led Feyn-
man to famously state that it may be advisable to attempt to use other quantum
mechanical systems – rather than classical ones – to simulate the quantum system
of interest [4]. This and other similar statements are often credited with having
provided the initial motivations for the ongoing quest of the development of a
functioning quantum computer. For sure, it appears that the study of the physics
of quantum many body systems represents an ideal playground to observe the so-
called quantum advantage [5]. In other words, it may be possible in the near term
future to build quantum devices that can clearly outperform the best available
classical computers on the solution of some quantum many body problems [6].

Not everything will be automatically solved, however, even for the lucky owner
of a quantum computer. It has been proven that finding the ground state energy
of a local Hamiltonian is in the worst case a hard task, even when using a quantum
computer [7]. Nonetheless, a wide range of heuristic quantum algorithms has been
developed in the hope of solving the ground state problem in the average case,
or at least in some interesting cases, including adiabatic state preparation [8], the
Quantum Approximate Optimization Algorithm (QAOA) [9], variational quantum
eigensolvers and other hybrid quantum-classical methods [10–12].

In simulating the time evolution of quantum many body systems the superiority
of quantum computers over classical ones seems instead more obvious. Taking
easily preparable initial states and evolving them with simple local Hamiltonians
for a fixed time produces highly entangled quantum states. Sampling accurately
from the outcome distribution of local measurements on these states is believed to
be a difficult problem for a classical computer [13]. It is no surprise then that the
first attempts to demonstrate quantum advantage have focused on sampling from
a state produced through a random quantum circuit, i.e., a discretised quantum
evolution [14, 15]. Although these results are certainly remarkable, the current
error rates per gate are still too high to hope to simulate a physical evolution by
discretising it into a quantum circuit (digital quantum simulation). In the shorter
term more relevant results may come from analog quantum simulation, where a
quantum system is engineered to emulate directly the Hamiltonian of interest [16].

Given this context, we believe that it is of great importance to continue to
develop approximate classical methods for quantum many body physics, both for
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CHAPTER 1. INTRODUCTION

the computation of ground states and for the simulation of time evolution. This
is the case for at least two important reasons:

1. It is important to characterise carefully what results are achievable classically
in order to have a better perspective of the potential of quantum computing.
This will guide research in quantum computation towards the most useful
directions and provide fundamental physical knowledge in those cases where
quantum computation will not be of help in the short term.

2. In the development of quantum computers it will be fundamental to have
reliable benchmarks to verify the performance of quantum algorithms. A
quantum computer is a device specifically designed to output results diffi-
cult to reproduce classically. It is therefore intrinsically complex to verify
whether the quantum computer is functioning as expected. It will be vital
to have at least some non-trivial test cases where a reliable classical predic-
tion is available to convince oneself of the correct running of the quantum
device. High quality classical input may possibly also improve performance
of quantum algorithms.

These reasons provide the main motivations why the substance of this thesis
will be the characterisation, development and application of classical computa-
tional methods for quantum many body physics. We will focus on a class of
classical methods known as variational methods and in particular on the ones that
can be implemented using techniques derived from Gaussian states.

In the rest of this introduction we will briefly review the current status of
classical computational methods in general. This will then allow us to put into
context and summarise the more specific variational methods and introduce the
new results which are discussed in detail in the main body of the thesis.

1.2 Classical computational methods

in quantum many body physics:

an overview

In the almost one hundred years that have passed since the formulation of quantum
mechanics a huge variety of classical methods has been developed and applied to
compute – analytically or numerically – the predictions of the theory. Giving a
comprehensive review of all the available methods is thus an overwhelming task,
and it is by no means the objective of this section. Instead, we would like to give
here a general feeling for the physical insights that lie behind some of the most
successful of these methods. This will allow us to put into a broader context the
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CHAPTER 1. INTRODUCTION

specific methods that are the subject of this thesis, i.e., variational methods, and
discuss their usefulness, their limitations and the alternatives that exist to them.

Exactly solvable models

In some cases the exact solutions to many body models can be expressed analyt-
ically. Most of these models fall into the class of free or non-interacting models.
The physical intuition behind such definition is that these models, although for-
mally written as many body models, can be seen as composed of individual degrees
of freedom that do not affect each other. The difficulty of solving these problems
is therefore equivalent to the one of solving a single particle problem and there is
no many body exponential scaling of the complexity. The individual degrees of
freedom will satisfy either bosonic or fermionic statistics and the Hamiltonian of
an arbitrary number of copies of them can be written in second-quantised form as

Ĥ =
∑
nm

â†n hnm âm . (1.1)

Here â†n, ân are the creation and annihilation operators of an orthonormal set of
modes that span the single particle Hilbert space and hnm is the single particle
Hamiltonian matrix on such space. The operators â†n, ân satisfy canonical bosonic
([â†n, âm] = δnm) or fermionic ({â†n, âm} = δnm) (anti)commutation relations.

A very powerful tool to describe the eigenstates of such a Hamiltonian is the
theory of bosonic and fermionic Gaussian states. This language allows to encode
the simple non-interacting nature of the states without giving up on the many
body, second-quantised formalism. This method also allows to slightly enlarge the
class of exactly solvable Hamiltonians to models with pairing terms, i.e.,

Ĥ =
∑
nm

(
â†n hnm âm + â†n ∆nm â

†
m + h.c.

)
. (1.2)

Although this Hamiltonian cannot be written as a first-quantised single particle
Hamiltonian (it is not particle number preserving), its ground state is nonetheless
a Gaussian state.

Furthermore, there exist systems, not necessarily containing physical fermions
or bosons, that can be mapped, through a suitable unitary transformation, to a
bosonic/fermionic model of the form 1.2, thus making them solvable. For instance,
the Jordan-Wigner transformation maps some one dimensional spin models, such
as the Ising model, to a free fermion Hamiltonian.

On top of this, also among interacting systems there exist classes of models for
which exact solutions exist. In 1D for some interacting models an exact solution
can be constructed using Bethe Ansatz techniques [17], although it is not fully clear

4



CHAPTER 1. INTRODUCTION

Quantum
many body
physics

Variational methods

– Variational wavefunctions:
� Tensor network states
� Gaussian states
� Generalised Gaussian states
� Coupled cluster ansatz
� RVB states
� ...

– Variational principles

Exact methods

– Free Hamiltonians
– Integrable systems

Monte Carlo methods

– No explicit representation

of wavefunction needed
– Sign problem

Figure 1.1: Map of computational methods for many body physics. The topics
that will be considered in this thesis are highlighted.

what features distinguish this measure zero set of integrable models from generic
quantum models. In 2D, some Conformal Field Theories are exactly solvable [18].

For all other models, for which no exact solution is known, we have to accept
some kind of approximation or limitation in our treatment.

Monte Carlo methods

One possible approach could be to observe that, if we accept that we will not
be able to describe the wavefunction of our system exactly, then we may as well
give up writing down the wavefunction at all. After all, quantum mechanics is
a probabilistic theory and the wavefunction is not directly observable. If our
computational algorithm can probabilistically sample from the space of possible
outcomes of a given measurement with the same probability distribution as the one
predicted by quantum theory, then we can claim to have effectively simulated the
theory [4], even without having stored a full representation of the wavefunction.
The question at this point is in which cases this can be done efficiently with classical
resources.

The basic idea of Quantum Monte Carlo is to compute the quantum thermal
expectation value

〈Â〉 = TrÂ eβĤ (1.3)

of some observable Â at inverse temperature β by classical statistical sampling.
To achieve this one needs first to recast the D-dimensional quantum average (1.3)

5



CHAPTER 1. INTRODUCTION

as a classical average in D + 1 dimensions

〈Â〉 =

∑
C A(C)W (C)∑

CW (C)
, (1.4)

where the sums run over all possible configurations of some classical variables, for
example configurations C = {Sri,τj} of a set classical spin variables associated to
points in discretised (D+1)-dimensional space-time. Here, W (C) are some weights
associated to each configuration. This mapping can be achieved in various ways,
including expanding eβĤ into a Taylor series or into a Trotter decomposition, or
discretising a path integral formulation in the imaginary time direction.

One can now use a classical Monte Carlo algorithm to sample spin configura-
tions with probabilities distributed like the weights W (C) and estimate the average
value of the observable function A. Two types of difficulties can arise in this kind
of scheme:

1. It may be difficult to accurately sample configurations according to the prob-
ability distribution defined by W . For example, if the system has a large
correlation length and one draws samples through local modifications of a
previous configuration, one may have to propose a large number of such up-
dates before one is accepted by the sampling algorithm. This would lead to
having to propose a number of configurations that is exponentially large in
the system size to compute 〈Â〉 to a desired precision.

2. The weights W may be negative and therefore may not be interpreted as a
probability distribution. In this case one would have to rewrite (1.4) as

〈Â〉 =

∑
C A(C)s(C) |W (C)|∑

C |W (C)|

[∑
C s(C) |W (C)|∑

C |W (C)|

]−1

, (1.5)

where s(C) = sign[W (C)], and sample according to the well-defined proba-
bility distribution given by |W (C)|. However, in some cases the average sign
function in the square brackets will be exponentially small in the system
size, so one will need again to sample exponentially many configurations to
achieve the desired error on 〈Â〉. This is generally referred to as the sign
problem.

The first difficulty may be thought of as a “technical” difficulty, in the sense
that a plethora of methods has been developed to improve sampling efficiency in
many situations [19, 20]. However, developing the appropriate algorithm to sample
efficiently in a given model often requires a lot of fine-tuned handcrafting. The
sign problem, on the other hand, may be a more “fundamental” problem, in the
sense that it is believed to be intrinsic to the nature of many models involving

6



CHAPTER 1. INTRODUCTION

spins in frustrated geometries or an odd number of fermions. In these cases it is
likely impossible to recast the problem in a way that is sign-problem-free. Indeed,
it has been proven that a generic solution to the sign problem would violate some
commonly accepted assumptions of complexity theory [21].

Ansatz -based methods

A complementary approach to the Monte Carlo one is to insist that we do want
to be able to write down some description of the state of the system, and not just
sample from it. This can in general give us some deeper physical insights into
the nature of the solution that we find and might be fundamental to treat those
problems where Monte Carlo methods fail because of the sign problem or because
of difficulties in sampling from complicated distributions.

As writing down the full wavefunction for a large enough system is impossible,
we have to find ways to compress the information contained in the state. In other
words, we have to be able to give an approximate description of the state which
depends on sufficiently few parameters, that we can efficiently save and manipulate.

The simplest approach one can take is to focus on a parametrised ansatz in
Hilbert space. That is, essentially a function that takes a set of M parameters,
which we will collectively indicate as x = (x1, x2, . . . , xM), and maps it to a state
|ψ(x)〉 ∈ H. The image of this function defines a subset M of the many body
Hilbert space which can be efficiently addressed by simply manipulating the pa-
rameters x.

For example, if we are interested in approximating the ground state of a Hamil-
tonian Ĥ, we can compute the energy function

E(x) =
〈ψ(x)|Ĥ|ψ(x)〉
〈ψ(x)|ψ(x)〉

. (1.6)

We shall then try to find the optimal parameter set x0 for which the function
E(x) attains its minimum value E0. According to the Rayleigh-Ritz variational
principle [22], the value E0 will give an upper bound to the ground state energy
of Ĥ and the state |ψ(x0)〉 can be seen as an approximation of the ground state.
The closer this state is to the actual ground state, the tighter the bound on the
energy will be.

If, instead, we are interested in time evolution, we can similarly define methods
– often referred to as Time Dependent Variational Principles (TDVP) – which seek
to identify, through a suitable optimisation scheme, a trajectory x(t) within the
parameter space such that |ψ(x(t))〉 best approximates the real time evolution of
a given initial state.

We will generically refer to this kind of methods as Variational Methods. In this
thesis we will discuss variational methods in detail, starting from the next section

7
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where we will give a more precise definition and an overview of the available
techniques. Already from what we have said here, however, it should be clear
that the quality of their predictions will depend crucially on the choice of the set
M of states |ψ(x)〉. To achieve computational efficiency, the set M has to be
parametrised by a relatively small number of parameters, thus it will only cover a
small corner of the high dimensional Hilbert space. Only if the states of interest –
e.g., the ground states or the time evolved states – are very close to precisely this
corner, then the variational methods can give good results. In other words, the
difficulty of variational methods is to use some physical intuition to choose states
|ψ(x)〉 suitable for the problem faced.

Besides proper variational methods, there exists also other methods that rely
on a similar ansatz -based philosophy. For instance, in quantum chemistry the
so-called Coupled Cluster methods [23] also rely on fitting a certain wavefunction
ansatz to the problem’s ground state. However, this is not done by minimising
the the energy function (1.6), which in this case is too difficult to compute, thus
it does not lead to variational bounds on the ground state energy.

In Density Functional Theory (DFT) [24], the information contained in a many
body electronic wavefunction is compressed by only considering the electron den-
sity function

n(r) =

∫
dr2 · · · dr2|Ψ(r, r2, · · · , rN)|2 . (1.7)

It can be proven that the energy of an atomic system only depends on this function,
which then in principle contains all the relevant information [25]. However, the
precise analytical form of this dependence is unknown. DFT therefore relies on
developing approximate functionals which estimate the energy of the state given
its density function. Thus, in some sense, the ansatz is at the level of the energy
function rather than at the level of the state.

Finally, there is also a large region of overlap between ansatz -based methods
and Monte Carlo methods. In Variational Monte Carlo methods, wavefunction
ansätze are considered which are too complex to evaluate the energy function (1.6)
in a closed form, similarly to the case of Coupled Cluster methods. However, due
to the positive definiteness of their wavefunctions, it is still possible to estimate
E(x) and perform optimisations thanks to stochastic Monte Carlo methods. These
variational ansätze include Jastrow-Slater wavefunctions for correlated electron
systems [26], Resonating Valence Bond (RVB) [27] states for high temperature
superconductors and Restricted Boltzmann Machines (RBM) [28] for spin systems.

8



CHAPTER 1. INTRODUCTION

1.3 Variational Methods

in Quantum Mechanics

Of all the methods outlined in the previous section, this thesis will focus on varia-
tional methods for pure states. These are methods that aim at providing a closed
expression – albeit approximate – for the wavefunction of interest. They achieve
this by assuming that these wavefunctions are well approximated by states of a set
M ⊂ H. This leads to an advantage because M is described by a number M of
parameters that is taken to be small compared to the dimension of the full Hilbert
space H.

It follows that, when we want to apply variational methods to quantum me-
chanical problems, two separate issues are of fundamental importance. Firstly,
how do we choose the set of statesM, which we will refer to as variational states,
over which we perform the variational optimisations? Secondly, once this subset
has been defined, what methods do we use to extract interesting information about
the physical system while referring only to these states and not to the full, expo-
nentially large, Hilbert space? What are the quantities that can be computed in
this way? In this section we will introduce more in detail both these questions.
Answering them in detail will be the core task of the first part of this thesis.

Variational states

A set M of parametrised variational states |ψ(x)〉, in order to be a useful set of
variational states has to fulfil the following three general requirements [29]:

1. There exists an efficient algorithm to compute the expectation value 〈ψ(x)|Â|ψ(x)〉
of some observables Â on any given variational state |ψ(x)〉. Efficient means
that the computational cost of the algorithm scales at most polynomially
with respect to the number M of variational parameters and that this num-
ber of parameters in turn scales polynomially with respect to the system size
N .
Usually, the most important observable is the Hamiltonian Ĥ, but it may be
useful to be able to compute also other observables relevant for the system.

2. There exists some reason to expect that at least some states in M have a
large overlap with the target states of the variational problem. By target
states we generally mean the ground state of the Hamiltonian or the states
resulting from time-evolving under Ĥ a given initial state.

3. It is possible to find a solution to the variational optimisation problem. In
other words, there should exist a procedure that efficiently finds the optimal

9



CHAPTER 1. INTRODUCTION

state inM that minimises the energy function E(x) (in case of a ground state
problem) or that solves the equations for x(t) in case of a Time Dependent
Variational Principle.

Finding classes of states that fulfil all three requirements is far from a trivial
task. Nonetheless, over the decades some sets of variational states have found wide
application, showcasing the power of variational methods. Let us illustrate how
this can be the case with two such examples.

Perhaps some of the most impressive results in this field have been achieved
by Tensor Network States. These comprise a variety of ansätze that represent
a wavefunction using as building blocks some tensor quantities contracted into
a specific network geometry. In particular, a one dimensional variant of Tensor
Network State, namely Matrix Product States (MPS), has affirmed itself as an
unrivaled numerical method for 1D many body systems [30].

Example 1 (Matrix Product States). MPS give a very clear example of how the
requirements above can be fully satisfied:

1. For a one dimensional system of N spin degrees of freedom, an MPS is
parametrised by N tensors whose dimensions are fixed by the local spin di-
mension and a so-called bond dimension. The number of variational param-
eters thus scales linearly with N . Computing the expectation value of a sum
of local observables can be achieved in a time also linear in N [31]. This
satisfies point 1.

2. The intuition why MPS approximate so well the ground states of many rele-
vant Hamiltonians comes from Quantum Information arguments. MPS with
finite bond dimension2 are able to approximate well states whose entangle-
ment satisfies a so-called area law [32, 33]: that is, in one dimension, when
the entanglement entropy across any bipartition of the system is bounded by
a quantity independent of the bipartition [34]. It is proven that the ground
state of any local gapped Hamiltonian will fulfil such an area law and can
thus be represented by an MPS [35]. We thus have point 2.

3. Finally, there exists an algorithm, known for historical reasons as Density
Matrix Renormalisation Group (DMRG), that allows to optimise an MPS
for a given local Hamiltonian in a remarkably robust way [36]. This ensures
point 3.

2By finite bond dimension here we mean that it does not grow with the the total system size
N . In principle, any state can be represented exactly as an MPS, provided that one takes an
arbitrarily high bond dimension. What we care about here is that, in order to represent the
states of interest, we are not forced to choose a bond dimension that grows exponentially as N
gets larger, as this would violate the previous point on the polynomial scaling of the number of
parameters.

10
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These observations also shed light onto the limitations of MPS. Firstly, the
power of MPS as a variational ansatz starts to decrease as soon as the target
states can no longer be expected to satisfy the entanglement area law. In partic-
ular, this is the case for ground states of non-local or gapless Hamiltonians or for
time-evolved states [37]. Secondly, the high numerical efficiency of MPS methods
relies strongly on the one dimensional geometry of the system. It is indeed consid-
erably harder to construct efficient algorithms for Projected Entangled Pair States
(PEPS), which can be understood the natural generalisation of MPS to higher
dimensional systems, and which would be ideal for representing states satisfying
the higher dimensional area laws [38].

Other variational ansätze based on tensor network principles have also been
developed and share some of these favourable properties. For example, the Mul-
tiscale Entanglement Renormalisation Ansatz (MERA) [39] (thought for critical
systems), tree tensor networks or generalisations of Tensor Network States for
systems in continuous space [40, 41].

Besides Tensor Network States another highly successful class of variational
families is the one based on bosonic and fermionic Gaussian states. We have
already discussed in Section 1.2 how Gaussian states are the exact ground states
of non interacting systems. However, it is also possible to see them as a set of
states on which to apply variational methods.

Example 2 (Gaussian states). The reason why Gaussian states can be potentially
very useful as a variational ansatz can again be understood in the terms discussed
above:

1. A Gaussian state of a system of N bosonic or fermionic modes is parametrised
by a number of parameters that scales as N2. Computing expectation values
of polynomials of creation and annihilation operators on Gaussian states is
made highly efficient thanks to a well-known theorem by Wick [42].

2. Gaussian states are known to include exact ground states of non interacting
systems. We may expect them to also do a good job at describing interacting
systems where the interactions are weak enough.

3. Optimisation algorithms on the space of Gaussian states can be easily imple-
mented [43].

In this thesis, methods based on Gaussian states will be taken into particu-
lar consideration. We will introduce Gaussian states more detail in Section 1.4,
exploring also the possibilities of going beyond them.
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Variational principles

In the previous sections we have discussed several examples of strategies that
can be applied once we have selected a reasonable set of variational states, for
instance optimising the energy for an approximate ground state or applying a Time
Dependent Variational Principle. But what is exactly the full range of variational
principles that can be applied in these cases? In other words, what are the available
abstract methods and principles that can be used, given any variational class of
states, to compute physically relevant quantities?

Ideally, what we want to do is to perform any standard quantum mechan-
ical calculation – evaluation of energy spectra and eigenstates, time evolution,
computation of measurement outcome distributions etc. – restricting ourselves to
considering as relevant only the states in our chosen variational classM, escaping
in this way the prohibitive dimensionality of the full space of allowed states H.
However, this objective immediately presents a difficulty. The Hilbert space H is
a complex linear space and standard quantum mechanics is formulated in a way
that makes explicit use of this linear structure. The chosen spaceM on the other
hand, may not necessarily be a complex linear subspace of H. In fact, the most
promising choices ofM discussed above (Tensor Network States, Gaussian states)
are by no means linear spaces. The essence of variational methods can therefore
be understood as formulating approximate versions of quantum mechanics on non-
linear spaces M in such a way that they resemble as much as possible the true
linear quantum mechanics of the linear space H in which M is embedded.

Having put things in this perspective, we realise that the geometric structure of
M plays here a fundamental role: not only its linearity or non-linearity, but also its
curvature, its tangent spaces, its intrinsically complex or real structures. In short,
it has been realised that the language of differential geometry is an exceptional
tool to better describe and understand variational methods. First, this language
allows us to correctly describe the nature of the chosen set of states M and its
relationship with H by viewing it as geometric manifold embedded in the metric
space H. Second, all variational methods can be formulated as the differential
geometric equivalent of quantum mechanical concepts normally defined on the
linear Hilbert space.

The first part of this thesis will be dedicated to following this perspective to
all of its consequences, in the belief that it will best allow us to understand the
full power and possible limitations of variational methods and how to best apply
them. To conclude this section we will list the most important variational methods,
highlighting their connection to differential geometry. Hopefully, this will give the
reader a sufficient intuition of the potential benefits of this approach. In the main
body of the thesis, we will explore each one in detail, deriving step-by-step their
interpretation in the geometric language.
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Ground state problem – The problem of finding the ground state of a given
Hamiltonian operator Ĥ is normally formulated as finding the eigenstate of Ĥ
with the lowest possible eigenvalue. Restricting ourselves to a non-linear spaceM,
where linear operators and spectral decompositions cease to be well-defined, the
best possible reformulation consists of interpreting Ĥ as defining a scalar energy
function on M

E(ψ) =
〈ψ|Ĥ|ψ〉
〈ψ|ψ〉

, ∀ |ψ〉 ∈ M . (1.8)

The ground state is then naturally interpreted as the point in M coinciding with
the global minimum of E. Indeed, the Ritz principle [22] assures us that if we
extend M to include the whole Hilbert space the two definitions will coincide.
Finding the approximate ground state onM thus reduces to a problem of optimi-
sation on a non-linear manifold. The preferred methods employed in this case are
ones based on gradient descent. We will show that these methods can be improved
by including information on the intrinsic geometry ofM, leading to what is some-
times referred to as natural gradient descent and which, from the more physical
point of view, can be understood as projected imaginary time evolution.

Excitation spectrum – On top of the ground state, one is sometimes in-
terested in the other eigenstates lying close above the ground state in the energy
spectrum. These low energy excitations again can hardly be described in terms
of the spectrum of a linear operator, if we restrict ourselves to only considering
a non-linear manifold of states M. However, something similar can be defined
by looking at the small oscillations that are possible on the manifold close to its
minimal energy state. In other words, a linear response theory can be defined on
M, allowing us to identify well-defined excitations that fulfil the properties of hav-
ing low energy and lying close to the ground state on the manifold of considered
states.

Time evolution – Finally, an important application of variational families is
to compute the time evolution of an initial state chosen onM. Here one faces two
possible paths to defining an evolution equation – i.e., a Schrödinger-like equation
– for states onM. One possibility is to look for a global description: a Lagrangian
that is defined on the whole manifold M and which, through its Euler-Lagrange
equations, governs motion on it. The second possible choice is to look at things
from a more local point of view: at each infinitesimal time step of evolution the
true linear Schrödinger equation will in general move our state out of the chosen
manifold. What is the best way to approximate this motion while remaining in
M, i.e., making the least error at each such step? These two approaches lead
to two apparently different Time Dependent Variational Principles, which we will
refer to as the Lagrange and the McLachlan variational principles respectively.

The issue of the equivalence or difference of the Lagrange and McLachlan vari-
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ational principles has given rise to some debate in the past. However, it is now
well understood that the answer depends crucially on the chosen set of statesM.
We will show in this thesis how the relevant property ofM in this case can again
be best understood in terms of differential geometric structures. We will point
out that the two Time Dependent Variational Principles are equivalent only ifM
is what in differential geometry is known as a Kähler manifold. This property is
ultimately related to the extent to which M preserves the complex nature of the
Hilbert space H. We will also discuss what happens if this is not fulfilled and how
to best apply the variational principles in that case.

1.4 Gaussian methods

Discussing variational methods from a general perspective, we have mentioned
some examples of commonly used variational states. In the second part of this
thesis we will focus more in detail on one specific class of variational states, namely
Gaussian states and related constructions. We have already anticipated in Exam-
ple 2 how all these states are exceptionally favourable to deal with computation-
ally. We have further mentioned how Gaussian states are naturally well-suited to
represent the states commonly occurring in weakly interacting quantum systems.
These properties make them a natural and highly successful testing ground for the
application of variational techniques.

There exists indeed a long list of widely applied variational methods that rely on
Gaussian states. The Hartree-Fock method, fundamental in Quantum Chemistry,
can be understood as the variational optimisation over the set of particle num-
ber preserving fermionic Gaussian states [44]. The celebrated Bardeen-Cooper-
Schrieffer (BCS) ansatz for superconducting states is itself a subset of fermionic
Gaussian states (in this case not particle number preserving) [45]. The Quan-
tum Hall states and Topological Insulator states are all represented as fermionic
Gaussian states [46]. In the study of Bose-Einstein Condensation (BEC) bosonic
Gaussian states are widely applied. For example, the Bogoliubov theory for the
ground state and excitations of such condensates relies heavily on the Gaussian
state formalism [47]. The Gross-Pitaevskij equations describe the dynamics of
these systems through a Time Dependent Variational Principle based on a Gaus-
sian state ansatz [48, 49].

Many attempts have also been made to extend Gaussian methods or combine
them with other techniques to enlarge their range of application to more strongly
interacting systems. For example, linear combinations of fermionic Gaussian states
are commonly used in chemistry, under the name of Configuration Interaction (CI)
method [50], as well as in other contexts [51]. More recently, the combination of
Gaussian states with some fixed canonical transformation has been shown to give
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very good results in the description of many impurity problems [52–54].
In the second part of the thesis we will give a general overview of the Gaus-

sian formalism and introduce a new construction that allows to generate useful
variational families that extend Gaussian states.

Gaussian states

In the literature there exist a variety of approaches to defining and understanding
bosonic and fermionic Gaussian states [55–59]. Often these approaches are influ-
enced by the specific needs of the various communities that make use of them, such
as Quantum Optics and Communications, Quantum Chemistry and Condensed
Matter physics. In our analysis, we will instead try to keep a more abstract per-
spective, focusing on understanding the underlying structures that make Gaussian
states as effective as they are.

From this point of view, it becomes clear that a fundamental property is the fact
that Gaussian unitaries (i.e., unitary operators that map Gaussian states into each
other) provide a representation on Fock space of certain group theory concepts.
It is these group structures, together with the related algebraic structures, that
ultimately encode many of the useful properties of Gaussian states.

More precisely, it is possible to define groups of unitary operators UG(g), which
we will refer to as Gaussian unitaries. In the case of bosons, they can be either
displacement operators (generated by linear combinations of creation and annihi-
lation operators) or squeezing operators (generated by quadratic combinations of
creation and annihilation operators). In the fermionic case they are generated by
quadratic combinations of creation and annihilation operators. Importantly, in all
cases these sets of unitaries can be parametrised by an element g belonging to a
certain matrix group. The unitaries UG then inherit (or rather represent) many
of the properties of these groups. Indeed, the products of two different opera-
tors UG(g), their action on creation and annihilation operators and their effects
on certain states can all be described and encoded in the group properties of the
corresponding matrices g.

Gaussian states are then defined as all the states

|ψG(g)〉 = UG(g) |0〉 (1.9)

that can be generated out of the vacuum by Gaussian unitaries. It becomes clear
that exploiting the known group properties of g to manipulate UG(g) gives in turn
the power of manipulating the states |ψG(g)〉 equally efficiently. This lies at the
core of the applicability of Gaussian states, as it allows to compute expectation
values, overlaps, take derivatives with respect to parameters and much more.

There are, of course, also other ways to frame the special features of Gaussian
states. But we believe that the group-theoretic perspective sketched here has one
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further advantage. It allows to understand which other families of states, if any,
share the same fundamental features of Gaussian states. Indeed, several other
classes of useful states can be written as (1.9), replacing the Gaussian unitaries
with the unitary representations of some other arbitrary group G and the Fock
vacuum with a reference state |φ〉 in some other Hilbert space. We obtain states
of the form U(g) |φ〉, which then share many of the fundamental properties of
Gaussian states. Namely, one can exploit the group structures of U(g) to facilitate
computations.

This broad class of states U(g) |φ〉, for some unitary representation U(g) of
a Lie group G, are known as group-theoretic coherent states [60, 61] or Gilmore-
Perelemov coherent states [62, 63]. They contain fermionic and bosonic Gaussian
states as specific instances, but they also include several other interesting exam-
ples, such as atomic coherent states [64] or more complex states based on SU(N)
groups [65, 66].

In general, it is possible to show that all group-theoretic coherent states can
be potentially successful variational manifolds. If the system’s relevant observ-
ables can be written in terms of the operators Ẑi representing the Lie algebra g
associated to G, then expectation values can be computed efficiently. The dif-
ferential geometric structures of the variational manifold can be also evaluated
handily. Under some simple to verify conditions, the states U(g) |φ〉 form a Kähler
manifold, which we have anticipated above makes variational methods particularly
well-behaved.

Beyond Gaussian states

Once we have seen how the group-theoretic structures of Gaussian and coherent
states greatly facilitate their applications as variational families, it comes natural
to ask: are we exploiting these structures to their fullest? Can the group-theoretic
structures be exploited to manipulate more general families of states that go be-
yond the purely Gaussian or coherent paradigm?

This is a question of great importance. Indeed, although Gaussian states have
favourable computational properties, their ability to represent physical systems
is limited. By their nature, Gaussian states are only suited to describe systems
near their non interacting point or close to some classical limit. Although Gaussian
states do contain entanglement [67], the quantum correlations they can express are
constrained: by construction, they can only exhibit correlations that satisfy Wick’s
theorem. Some of the other examples of group-theoretic coherent states suffer
from even lower expressivity. For instance, atomic coherent states are essentially
product states.

Families of states that can go beyond these limitations would therefore greatly
increase the available expressive power of variational methods. The difficulty of
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this search lies in balancing the need for an expressivity going beyond the Gaus-
sian one, with the requirement that classical computations with the resulting states
should be efficient, in order to obtain a usable variational family. Some progress
has been made in these directions. Some generalisations of bosonic and fermionic
Gaussian states were introduced in reference [52], where their computational prop-
erties were proven to be favourable, although their fully variational applications
have been so far limited. Similarly, there exist examples of sets of states, such as
spin squeezed states [68] or weighted graph states [29], that generalise other classes
of group-theoretic coherent states.

In one of the main contributions of this thesis we will show how these generalisa-
tions can be understood as stemming directly from the group-theoretic framework
introduced above. Indeed, we will introduce the concept of generalised group-
theoretic coherent states. That is, we present a construction such that, for every ex-
isting class of group-theoretic coherent states, one can define a generalised version
which contains extended non-Gaussian correlations, while maintaining favourable
computational properties. This formalism allows us to understand in a unified way
what are all the generalisation that can be constructed. But it also sheds light on
where these states draw their computational powers from and in what sense they
exploit to the fullest the group-theoretic structures present in the Hilbert space.

Given a set of group-theoretic coherent state defined as U(g) |φ〉 for g in the
Lie group G, the corresponding generalised states have the form

|ψ(g, g′,M)〉 = U(g′)V(M)U(g) |φ〉 . (1.10)

We have thus added two further parametrised unitaries compared to the plain
coherent states. One is a second group unitary U(g′). The other is a new special
unitary that takes the form

V(M) = exp

(
i

2
MabĤaĤb

)
, (1.11)

for any real symmetric matrix M . Here, Ĥa, for a = 1, . . . , `, are a special set of
algebra operators known as Cartan operators. They are a commuting subset of
the operators Ẑi which represent on H the Lie algebra g associated to G. Con-
cretely they might be the particle number operators n̂ = â†â in case of bosonic or
fermionic Gaussian states or the Pauli operators σ̂z for spin systems. The unitary
V is responsible for introducing on the states (1.10) a much more elaborate entan-
glement and correlation structure than the one of plain group-theoretic coherent
states.

Furthermore, there always exists a procedure to compute expectation values
of operators Ô on the states |ψ(g, g′,M)〉, provided that Ô can be written as a
low degree polynomial in the algebra operators Ẑi. This procedure may in some
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cases appear elaborate, but ultimately relies only on the algebraic structures of
the problem. In fact, all necessary operations are performed in terms of objects
(matrices, vectors...) whose dimension is at most the one of the group G. In most
physical situations, the relevant Lie groups have dimensions that scale polynomi-
ally with the systems size N , thus guaranteeing the computational efficiency of
our construction.

The group-theoretic formalism makes it also simpler to see in what sense the
construction (1.10) is optimal. Reasonable attempts to go beyond this structure
will critically impact the efficiency of calculations: the introduction of further
unitaries in the definition of |ψ(g, g′,M)〉, the extension of V(M) to include oper-
ators from outside the Cartan subalgebra, the introduction in (1.11) of cubic or
higher order terms in Ĥa will all break some step of the procedure for computing
expectation values. We can therefore feel convinced we are exploiting the struc-
tures of group-theoretic coherent states to the fullest to define the most expressive
variational manifold possible with the mathematical tools we have available.

In conclusion, we have seen that the Gaussian formalism gives us tools that can
greatly facilitate the computations necessary for variational methods. Indeed, sim-
ple Gaussian states are of utmost importance in many long-standing computational
methods. However, the range of applicability of these methods is often limited by a
certain lack of expressivity of Gaussian states. And yet, it is possible to construct
extensions of Gaussian states which exploit the same favourable computational
properties while presenting an increased expressivity. There is therefore hope that
Gaussian-based methods and extensions will establish themselves as an important
variational approach that can complement other highly successful methods, such
as Tensor Network based methods, filling the gaps where these other methods are
weakest.

1.5 Outline of the Thesis

Let us now briefly summarise the structure of this thesis. It is divided into three
main parts. In the first part (Chapters 2 and 3) we will present general results
about variational methods. In the second part (Chapters 4 and 5) we will then
focus on more specifically on Gaussian methods and generalisations thereof. In
the third part (Chapters 6 and 7) we will finally present some applications of the
methods discussed previously to concrete examples of physical models.

More specifically, in Chapter 2, we will define the notion of variational manifold
of states. We will discuss what makes such a manifold well-defined and useful
for variational computations. We will especially explain how it can be described
from the point of view of differential geometry. We will introduce the interesting
geometric structures that can be defined on such a manifold and discuss their
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Part I: Variational methods

Section 2: Variational states as
differential manifolds

Section 3: Variational principles
as geometric methods

Part II: Gaussian methods

Section 4: Gaussian states
and coherent states

Section 5: Extensions
of Gaussian states

Part III: Applications

Section 6: Bose-Hubbard model

Section 7: Sherrington
-Kirkpatrick model

|V2〉|V1〉

Figure 1.2: Strucure of the thesis, with its three main parts.

meaning from the perspective of variational methods. We will finally establish the
notion of Kähler manifold, which plays a key role in time dependent variational
methods.

In Chapter 3, we will then review all the available variational methods which
can be implemented once one considers a manifold like the ones defined in the pre-
vious chapter. We will discuss real time evolution, the computation of excitation
spectra, linear response theory and the use of imaginary time evolution to opti-
mise energy functions. In all these cases our focus will be on deriving results that
allow to fully understand the interplay between these methods and the geometry
of the considered manifolds. This concludes the first part on abstract variational
methods.

In Chapter 4 we will then shift our focus on a more specific class of variational
manifolds, namely Gaussian manifolds. We will introduce the general notion of
group-theoretic coherent states and show how Gaussian states can be understood
as a specific example of it. We will present and discuss separately bosonic and
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fermionic Gaussian states, highlighting how their key structures can be understood
from a group theory perspective. We will also mention some other relevant exam-
ples of group-theoretic coherent states, namely spin coherent states. In Chapter 5,
we will move on to consider possible generalisations of the Gaussian and coherent
state concepts. We will in particular introduce generalised group-theoretic coher-
ent states and show how they fulfil the criterion of efficient classical variational
computations.

In Chapter 6 we will introduce the first example of an application of variational
methods to many body physics problems. We will consider the Bose-Hubbard
model and analyse it using bosonic Gaussian states as a variational manifold. We
will show that, thanks to all the techniques discussed previously, even this relatively
simple manifold can be used to describe many non-trivial features of the model
in its superfluid phase. In Chapter 7, we will then present an example where
a more elaborate ansatz is used, belonging to the family of generalised group-
theoretic coherent states. We will discuss the Quantum Sherrington-Kirkpatrick
model, showing how the manifold of generalised spin coherent states gives a good
variational description of its ground state properties.

Each chapter will start with an Overview section where we will summarise the
main results presented the chapter and explain the structure of the chapter itself.
The appendix sections A.1–A.5 contain some extra material that completes the
discussion of the main chapters, but is not necessary for a clear understanding of
the thesis.

Finally, let us mention a couple of notation conventions which might facilitate
the reader’s appreciation of the mathematical formulae. All objects marked with a
hat ˆ are Hilbert space operators. All objects without a hat should be understood
as c-numbers. We will use objects with indices (xµ, Mij...) to indicate the entries
of vectors, matrices etc. We will use the following conventions to help the reader
navigate through them. Greek indices µ, ν, ρ... will label variational parameters
and latin indices m, n, l... will indicate lattice sites, modes or individual degrees
of freedom of a many body system. In contexts where we discuss notions of group
theory we will indicate Lie groups as G, SU, Sp... and the corresponding Lie
algebras as g, su, sp... We will label algebra elements by the indices i, j, k... and
Cartan subalgebra elements by a, b, c... Limited to Chapter 6, we will use the
indices k, p, q... to label momentum values in the reciprocal lattice. With Mᵀ we
will indicate the transpose of a matrix M .
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Chapter 2

Variational states and their
geometry

In this chapter we will define the most general notion of variational states: a
parametrised subset of a many-body Hilbert space. We will introduce some simple
and yet very powerful geometric structures that can be constructed for any such
set. Two different types of geometries can appear, namely Kähler and non-Kähler
geometries. This, as we will see in later chapters, plays a key role in defining
variational principles.

Most of the material presented in this chapter, as well as in the subsequent
chapter 3, was published in reference [69]:
L. Hackl, T. Guaita, T. Shi, J. Haegeman, E. Demler, J.I. Cirac,
Geometry of variational methods: dynamics of closed quantum systems,
SciPost Physics 9, 48 (2020), used under cc by 4.0.

2.1 Overview

We consider variational sets of states as parametrised subsets of the Hilbert space
H. That is, we consider a set of states defined by the function |ψ(x)〉 where x ∈ RM

is a collection of M real parameters. We will indicate the set of all states that can
be written this way as M.

The objective of this chapter is to interpret M as a differential manifold of
dimension M embedded in a Hilbert space of much higher dimension. Following
this interpretation we will define the geometric notion of tangent space to the
manifold. This is a linear space, that we indicate as TψM, which can be defined
for each point |ψ〉 of the manifold. Thanks to the tangent space we can define a
range of further geometric structures, such as tangent projectors, metrics, vector
fields and so on, which will be of great use in the next chapters to construct and
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CHAPTER 2. VARIATIONAL STATES AND THEIR GEOMETRY

understand variational principles.
It is important to stress that we have defined the parameters x to be real. In

principle, one could restrict oneself to variational families that admit a complex
parametrisation, i.e., defined by a function |ψ(z)〉 ∈ H holomorphic in z ∈ CM

and thus independent of z∗. As we will see, this leads to enormous simplifications,
as in the geometric language we are then dealing with so-called Kähler manifolds,
which have very friendly properties. However, in general, we want to use real
parametrisations, which cover the complex case (taking the real and imaginary
part of z as independent real parameters), but apply to more general situations.

While in certain situations, it is easy to extend or map a real parametrisation
to a complex one, this is not always the case. This applies, in particular, to
parametrisations of the form

|ψ(x)〉 = U(x) |φ〉 , (2.1)

where |φ〉 is a suitably chosen reference state and U(x) is a unitary operator that
depends on x ∈ RM . Such parametrisations are often used to describe various
many body models [52–54, 70–73], and the fact that U(x) is unitary is crucial
to compute physical properties efficiently. However, extending x analytically to
complexify our parametrisations, would break the unitarity of U and often make
computations inefficient, thereby limiting the applicability of the variational class.
In conclusion, the focus on real parametrisations is of important physical interest.

The tangent space TψM is the space of all possible linear variations on the
manifold around |ψ(x)〉. We can write them as

∑
µ ẋ

µ ∂µ|ψ(x)〉 and thus the tan-
gent space can be defined as the span of the tangent vectors |vµ〉 = ∂µ |ψ(x)〉.
Importantly, as our parameters x are taken to be real to maintain generality, this
span should only allow real coefficients. The tangent space should therefore be
understood as a real linear space embedded in the complex Hilbert space H.

This observation lies at the heart of all the structures that we will define for
M in this chapter and plays a crucial role in defining the possible geometries of
variational manifolds. To best explain this fact, we will take a step back in our
exposition and begin the chapter by a more general discussion of real structures in
Hilbert space and only gradually move to discuss the detail of variational manifolds.

In section 2.2 we will reinterpret the Hilbert space as a real linear space and
discuss the specific structures that emerge if we take this perspective. This will
allow us to introduce the concept of Kähler structures and real linear maps. In
section 2.3 we then move on to discuss projective Hilbert space P(H), that is the
space of state vectors defined up to arbitrary constant phase and normalisation
factors. This is the space where physical quantum states live and it is the space
in which it will be most natural to embed the manifold M.

In section 2.4 we will be then ready to discuss the variational manifold M
itself. We will define it as embedded in P(H) and we will introduce its tangent
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space TψM and the Kähler structures that can be defined on it. In section 2.5 we
will then come to the crucial point of this chapter, and that is the fact that the
geometry of M that we have introduced can be of two types, defined as Kähler
or non-Kähler. Finally, in section 2.6 we will introduce some further notions that
will be useful in later discussions, including the differential geometric definition of
observables and the related Poisson brackets.

Throughout the chapter we will accompany the discussion with simple examples
to clarify the concepts that we introduce.

2.2 Kähler structures in Hilbert space

Given a separable Hilbert space H with inner product 〈·|·〉, we can always describe
vectors by a set of complex number ψn with respect to a basis {|n〉}, i.e.,

|ψ〉 =
∑
n

ψn |n〉 . (2.2)

As stressed in the overview, we will be particularly interested in real subspaces of
H. Given a set of vectors {|n〉}, we thus distinguish the real and complex span

spanC{|n〉} =
{∑

n ψn |n〉
∣∣ψn ∈ C

}
,

spanR{|n〉} =
{∑

n ψn |n〉
∣∣ψn ∈ R

}
.

(2.3)

On a real vector space, |ψ〉 6= 0 and i |ψ〉 are linearly independent vectors, because
one cannot be expressed as linear combination with real coefficients of the other.
A real basis {|Vµ〉} of H has therefore twice as many elements as the complex basis
{|n〉}, such as

{|Vµ〉} ≡ {|1〉 , i|1〉 , |2〉 , i|2〉 , . . . } . (2.4)

Given any real basis {|Vµ〉} of vectors, we can express every vector |X〉 as real
linear combination

|X〉 = Xµ |Vµ〉 , (2.5)

where we use Einstein’s index summation convention, as we will do in the rest of
the chapter.

A general real linear map is a map Â : H → H that satisfies Â(α |X〉) = αÂ |X〉
only for real α. If it also holds for complex α, we refer to Â as complex-linear. The
imaginary unit i becomes itself a linear map, which only commutes with complex-
linear maps.
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The Hermitian inner product 〈·|·〉 can be decomposed into its real and imagi-
nary parts given by

〈Vµ|Vν〉 =
N
2

(
gµν + iωµν

)
(2.6)

with gµν = 2
N Re 〈Vµ|Vν〉, ωµν = 2

N Im 〈Vµ|Vν〉 and N being an arbitrary normal-
isation which we will later fix in (2.25). This gives rise to the following set of
structures, illustrated in Figure 2.1.

Definition 1 (Kähler space). A real vector space is called Kähler space if it is
equipped with the following two bilinear forms

� Metric1 gµν: symmetric and positive-definite with inverse Gµν, so that
Gµσgσµ = δµν,

� Symplectic form ωµν: antisymmetric and non-degenerate2 with inverse
Ωµν, so that Ωµσωσν = δµν,

and such that the linear map Jµ
ν := −Gµσωσν is a

� Complex structure Jµ
ν: satisfying J2 = −1.

The last condition is also called compatibility between g and ω. We refer to
(g,ω,J) as Kähler structures.

In equation (2.6), clearly g is a metric and ω is a symplectic form. Furthermore,
we will see that they are indeed compatible and define a complex structure J . For
this, it is useful to introduce the real dual vectors Re〈X| and Im〈X| that act on a
vector |Y 〉 via

Re〈X|Y 〉 = N
2
XµgµνY

ν , Im〈X|Y 〉 = N
2
XµωµνY

ν , (2.7)

as one may expect. The identity 1 =
∑

n |n〉 〈n| is then

1 = 2
N Gµν |Vµ〉 Re〈Vν | . (2.8)

Similarly, the matrix representation of an operator Â is

Aµν = 2
N GµσRe〈Vσ|Â|Vν〉 . (2.9)

1Here, “metric” refers to a metric tensor, i.e., an inner product on a vector space. It should
not be confused with the notion of metric spaces in analysis and topology.

2A bilinear form bµν is called non-degenerate, if it is invertible. For this, we can check
det(b) 6= 0 in any basis of our choice.
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Figure 2.1: Triangle of Kähler structures. This sketch illustrates the triangle of
Kähler structures, consisting of a symplectic form ω, a positive definite metric g
and a linear complex structure J . We also define the inverse symplectic form Ω
and the inverse metric G.

ωµν gµν

Jµν

Jµν = −Gµσωσν
(compatibility)

Symplectic form:
Antisymmetric

non-degenerate bilinear form

Metric:
Symmetric positive-definite

bilinear form

Linear complex structure:
Squares to minus identity: J2 = −1

Inverse Ωij with
Ωµσωσν = δµν

Inverse Gµν with
Gµσgσν = δµν

In particular, we compute the matrix representation of the imaginary unit i to be
given by

Jµ
ν = 2

N GµσRe〈Vσ|i|Vν〉 = −Gµσωσν (2.10)

as anticipated in our definition. From i2 = −1, we conclude that the so defined J
indeed satisfies J2 = −1 and is thus a complex structures. Therefore, g and ω as
defined in (2.6) are compatible.

Example 3 (Hilbert space of a Qubit). A qubit is described by the Hilbert space
H = C2 with complex basis {|0〉 , |1〉} and real basis

|Vi〉 ≡ {|0〉 , |1〉 , i |0〉 , i |1〉} . (2.11)

With respect to this real basis gµν, ωµν and Jµ
ν are

gµν ≡ 2
N

(
1 0
0 1

)
, ωµν ≡ 2

N

(
0 1

−1 0

)
, Jµ

ν ≡
(

0 −1
1 0

)
, (2.12)
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where 1 is the 2 × 2 identity matrix. We can represent a complex-linear map
Â =

∑
n,m anm |n〉 〈m|, i.e., with [A, J ] = 0, as the matrix

Aµν ≡
(
A −B
B A

)
, (2.13)

where A = Re(a) and B = Im(a) in the above basis.

In summary, every Hilbert space is a real Kähler space with metric, symplectic
form and complex structure.

2.3 Projective Hilbert space

Multiplying a Hilbert space vector |ψ〉 with a non-zero complex number does not
change the quantum state it represents. Therefore, the manifold representing
all physical states is given by the projective Hilbert space P(H), which we will
define and analyze in this section. Variational families, which we will discuss in
the following section, should then naturally be understood as submanifolds M of
projective Hilbert space P(H).

The projective Hilbert space of H

P(H) = (H\{0}) / ∼ (2.14)

is given by the equivalence classes of non-zero Hilbert space vectors with respect
to the equivalence relation

|ψ〉 ∼ |ψ̃〉 ⇔ ∃ c ∈ C with |ψ̃〉 = c |ψ〉 . (2.15)

Thus, a state ψ ∈ P(H) is a ray in Hilbert space consisting of all non-zero vectors
that are related by multiplication with a non-zero complex number c.

Let us now consider the tangent space to the manifold P(H). For a rigor-
ous definition of tangent spaces we refer the reader to any standard textbook of
differential geometry. However, intuitively TψP(H) represents the space of linear
changes δψ around an element ψ ⊂ P(H). Changing a representative |ψ〉 in the
direction of itself, i.e., |δψ〉 ∝ |ψ〉, corresponds to changing |ψ〉 by a complex fac-
tor and thus does not change the underlying state ψ. Two Hilbert space vectors
|X〉 , |X̃〉 ∈ H therefore represent the same change |δψ〉 of the state |ψ〉 ∈ ψ, if
they only differ by some α |ψ〉. We define tangent space as

TψP(H) = H/≈ , (2.16)

where we introduced the equivalence relation

|X〉 ≈ |X̃〉 ⇔ ∃ c ∈ C with |X〉 − |X̃〉 = c |ψ〉 , (2.17)
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leading to a regular (not projective) vector space.
We can pick a unique representative |X〉 of the class [|δψ〉] at the state |ψ〉 by

requiring 〈ψ|X〉 = 0. Viceversa, two vectors |X〉 6= |X̃〉 both satisfying 〈ψ|X〉 =
〈ψ|X̃〉 = 0 belong to different equivalence classes. We thus identify TψP(H) with

H⊥ψ =
{
|X〉 ∈ H

∣∣ 〈ψ|X〉 = 0
}
. (2.18)

Given a general representative |δψ〉 ∈ [|δψ〉], we compute the unique representative
mentioned above as |X〉 = Qψ |δψ〉 with

Qψ |δψ〉 = |δψ〉 − 〈ψ|δψ〉
〈ψ|ψ〉

|ψ〉 . (2.19)

There is a further subtlety: representing a change δψ of a state ψ as vector
|δψ〉 will always be with respect to a representative |ψ〉. If we choose a different
representative |ψ̃〉 = c |ψ〉 ∈ ψ, the same change δψ would be represented by a
different Hilbert space vector |δψ̃〉 = c |δψ〉. It therefore does not suffice to specify
a Hilbert space vector |δψ〉, but we always need to say with respect to which
representative |ψ〉 it was chosen. This could be avoided when moving to density
operators3.

The fact we can identify the tangent space at each point with a Hilbert space
H⊥ψ enables us, given a local real basis {|Vµ〉} at ψ, such that H⊥ψ = spanR{|Vµ〉},
to induce a canonical metric gµν , symplectic form ωµν and Jµ

ν onto the tangent
space, which thus is a Kähler space, as discussed previously. We see at this point
that on the tangent space TψP(H), it is convenient to choose N = 〈ψ|ψ〉 as
normalisation for the Kähler structures. The rescaled metric 1

2
gµν is well-known

as the Fubini-Study metric [74, 75], while the symplectic form gives projective
Hilbert space a natural phase space structure.

Manifolds such as P(H), whose tangent spaces are equipped with differentiable
Kähler structures, are called almost-Hermitian manifolds. In appendix A.2, we
show that P(H) satisfies even stronger conditions, which make it a so-called Kähler
manifold.

Example 4 (Bloch sphere). The projective Hilbert space of a qubit is P(C2) = S2,
equivalent to the Bloch sphere. Using spherical coordinates x ≡ (θ, φ) and the
complex Hilbert space basis {|0〉 , |1〉}, we can parametrize the set of states as

|ψ(x)〉 = cos
(
θ
2

)
|0〉+ eiφ sin

(
θ
2

)
|1〉 . (2.20)

3We can equivalently define projective Hilbert space as the set of pure density operators, i.e.,
Hermitian, positive operators ρ with Trρ = Trρ2 = 1. The state ψ is then given by the density

operator ρψ = |ψ〉〈ψ|
〈ψ|ψ〉 and its change δψ by δρψ = |δψ〉〈ψ|+|ψ〉〈δψ|

〈ψ|ψ〉 .
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The elements of P(H) are the equivalence classes ψ(x) =
{
c |ψ(x)〉

∣∣ c ∈ C, c 6= 0
}

.
Consequently, the tangent space TψP(C2) = H⊥ψ of the Bloch sphere at xµ ≡ (θ, φ)

can be spanned by the basis |Vµ〉 = Qψ

(
∂
∂xµ

)
|ψ(x)〉 with

|V1〉 = −1
2

sin
(
θ
2

)
|0〉+ eiφ

2
cos
(
θ
2

)
|1〉 ,

|V2〉 = − i
2

sin
(
θ
2

)
sin θ |0〉+ ieiφ

2
cos
(
θ
2

)
sin θ |1〉 .

(2.21)

Using the definition (2.6) of the metric and symplectic form from the Hilbert space
inner product, we can compute the matrix representations

gµν ≡ 2

(
1 0
0 sin2 θ

)
and ωµν ≡ 2

(
0 sin θ

− sin θ 0

)
. (2.22)

We recognize gµνdx
µdxν = 1

2
(dθ2 + sin2(θ)dφ2) to be the standard metric of a

sphere with radius 1/
√

2. Similarly, we recognize ωµνdx
µdxν = 1

2
sin θdθ∧dφ to be

the standard volume form on this sphere. Finally, it is easy to verify that J2 = −1
everywhere.

In summary, a given pure state can be represented by the equivalence class
ψ ∈ P(H) of all states related by multiplication with a non-zero complex number.
Similarly, a tangent vector [|X〉] ∈ TψP(H) at a state ψ is initially defined as
the affine space [|X〉] of all vectors |X〉 differing by a complex multiple of |ψ〉.
A unique representative |X̃〉 can be chosen requiring 〈ψ|X̃〉 = 0. This leads to
the identification TψP(H) ' H⊥ψ , such that the Hilbert space inner product 〈·|·〉
induces local Kähler structures onto TψP(H).

2.4 Generic variational manifolds

The most general variational family is a real differentiable submanifold M ⊂
P(H). Similarly to what we did for the full projective Hilbert space, at every
point ψ(x) ∈ M, we can define the tangent space TψM. This is the space of
tangent vectors |X〉ψ representing local linear variations of the state ψ(x) that can
be achieved by moving within the manifold M. As M is embedded in P(H), so
is TψM can be embedded into TψP(H) ' H⊥ψ .

More specifically, we can define a local basis |Vµ〉ψ ∈ H
⊥
ψ , such that

|X〉ψ = Xµ |Vµ〉ψ . (2.23)

Note that in general the tangent space TψM = spanR{|Vµ〉} is only a real, but not
necessarily a complex subspace of H⊥ψ . Thus, we will encounter families, for which
|X〉 is a tangent vector, but not i|X〉.
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Figure 2.2: Tangent vectors. We sketch the basis vectors |Vµ〉 of tangent space
TψM for a manifold M parametrized by two coordinates (x1, x2).

M

x1

x2

TψM⊂ H⊥ψ

|V2〉|V1〉

ψ(x)

In practice, we often parametrize ψ(x) ∈ M by choosing a representative
|ψ(x)〉 ∈ H. This allows us to construct the local basis |Vµ(x)〉 of tangent space
TψM as

|Vµ(x)〉 = Qψ(x) ∂µ |ψ(x)〉 , (2.24)

at the state |ψ(x)〉, where Qψ was defined4 in (2.19). To simplify notation, we will
usually drop the reference to ψ(x) or x and only write |Vµ〉, whenever it is clear
at which state we are. The schematic idea behind tangent space is sketched in
Figure 2.2.

Similar to projective Hilbert space, we define restricted Kähler structures on
tangent space TψM⊂ TψP(H) as

gµν =
2 Re〈Vµ|Vν〉
〈ψ|ψ〉

and ωµν =
2 Im〈Vµ|Vν〉
〈ψ|ψ〉

. (2.25)

There are two important differences to the corresponding definition (2.6) in full
Hilbert space. First, with a slight abuse of notation, |Vµ〉 here does not span the
Hilbert space, but rather the typically much smaller tangent space. Second, we
set N = 〈ψ|ψ〉 just like for P(H), such that

〈Vµ|Vν〉 =
〈ψ|ψ〉

2
(gµν + iωµν) . (2.26)

4The projector Qψ is important to ensure that |Vµ〉 can be identified with an element of
H⊥ψ ' TψP(H) as discussed in Section 2.3, i.e., 〈ψ|Vµ〉 = 0. For derivations, it can be useful
to choose a local coordinate system of x, in which |Vµ〉 = ∂µ |ψ〉, i.e., the action of Qψ can be
ignored. This can always be achieved locally at a point and any invariant expressions derived
this way, will be valid in any coordinate system.
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This has the important consequence that the restricted Kähler structures are in-
variant under the change of representative |ψ〉 of the physical state. Namely, under
the transformation |ψ〉 → c |ψ̃〉 with |Vµ〉 → c |Vµ〉, our Kähler structures will not
change. This ensures that equations involving restricted Kähler structures are
manifestly defined on projective Hilbert space and thus independent of the repre-
sentative |ψ(x)〉 ∈ H, we use to represent the abstract state ψ(x) ∈M ⊂ P(H).

Projectors on tangent space

For every two Hilbert space vectors |X〉 , |Y 〉 ∈ H, we have the real inner prod-
uct Re〈X|Y 〉. This induces the norm ‖|X〉‖ =

√
Re 〈X|X〉 =

√
〈X|X〉, which

is nothing more than the regular Hilbert space norm. We can then define the
orthogonal projector Pψ from H onto TψM with respect to this norm Re〈·|·〉, i.e.,
for each vector |X〉 ∈ H we define the vector Pψ |X〉 as the vector in TψM that is
closest to |X〉 in this norm. That is, we have

Pψ |X〉 = argmin
|Φ〉∈TψM

‖|X〉 − |Φ〉‖ . (2.27)

We can write this orthogonal projector in two ways:

Pψ =
2 |Vµ〉GµνRe〈Vν |

〈ψ|ψ〉
, Pµψ =

2GµνRe〈Vν |
〈ψ|ψ〉

, (2.28)

such that we have Pψ = |Vµ〉Pµψ. The difference lies in the co-domain: while
Pψ : H → H maps back onto Hilbert space, e.g., to compute P2

ψ = Pψ, we have
that Pµψ : H → TψM is a map from Hilbert space into tangent space. Due to
TψM⊂ TψP(H), we have

Pψ = PψQψ = QψPψ and Pµψ = PµψQψ , (2.29)

which follows from Qψ |Vµ〉 = |Vµ〉 and Q†ψ = Qψ. In contrast to Qψ, the projector
Pψ is in general not Hermitian.

Kähler structures

Provided that there are no redundancies or gauge directions (only changing phase
or normalisation) in our choice of parameters, gµν will still be positive-definite and
invertible with inverse Gµν . We find that

Jµ
ν = −Gµσωσν =

2GµσRe〈Vσ|i|Vν〉
〈ψ|ψ〉

= Pµψi |Vν〉 (2.30)
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is the projection of the multiplication by the imaginary unit (as real-linear map)
onto TψM. It will not square to minus identity if multiplication by i in full Hilbert
space does not preserve the tangent space.

If gµν is not invertible, it means that there exists a set of coefficients Xµ

such that XµgµνX
ν = 0, that is ‖Xµ |Vµ〉 ‖ = 0 and therefore Xµ |Vµ〉 = 0. In

other words, not all vectors |Vµ〉 are linearly independent and thus also not all
parameters are independent. If this is the case, it is not a real problem as the
formalism introduced can still be used with little modifications. More precisely, the
projectors (2.28), as well as all other objects we will introduce, are meaningfully
defined if we indicate with Gµν the Moore-Penrose pseudo-inverse of gµν , i.e.,
we invert gµν only on the orthogonal complement to its kernel (orthogonal with
respect of the flat metric δµν in our coordinates5). Indeed, all directions in the
kernel correspond to a vanishing vector in the tangent space and therefore do not
matter. In this case, also Ωµν , should be defined as the inverse of ωµν on the
orthogonal complement to the kernel of gµν .

6 However, it is still possible that ω
and J are not invertible even on this reduced subspace.

In this case, in order to define Ω one has to reduce oneself to working on
an even smaller subspace, that is one that does not contain the kernel of ω and
J . Here, however, the way in which we reduce these extra dimensions is not
equivalent, as these directions are not anymore just redundant gauge choices of
our parametrisation. The reduction here effectively corresponds to working on a
physically smaller manifold, as we will explain better in the next section. For what
follows we will always suppose that Ω is defined by inverting ω on the tangent
subspace orthogonal, with respect to the metric gµν , to the kernel of J . That is, Ω
is the Moore-Penrose pseudo-inverse of ω with respect to g, i.e., the pseudo-inverse
is evaluated in an orthonormal basis.

In conclusion, we see that we are able to define the restricted structures (g,ω,J)
which, however, do not necessarily satisfy the Kähler property. This is due to the
fact that the tangent space, as we have pointed out, is a real, but not necessarily
complex subspace of H. Note that these objects are locally defined in each tangent
space TψM for ψ ∈M.

Example 5 (Two qubits). For the Hilbert space H = (C2)⊗2 of two qubits, we can
choose the variational manifold M of symmetric product states represented by

|ϕ(x)〉 = |ψ(x)〉 ⊗ |ψ(x)〉 , (2.31)

5In the specific case of the manifold of matrix product states, there exists a different, more
natural definition of orthogonality [76].

6Note that the kernel of ωµν itself does not necessarily correspond to redundant directions of
the parametrisation as Xµωµν = 0 does not imply Xµ |Vµ〉 = 0.
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with xµ ≡ (θ, φ), where |ψ(x)〉 is a single qubit state as parametrized in (2.20).
The tangent space is spanned by

|Wµ〉 = |Vµ〉 ⊗ |ψ(x)〉+ |ψ(x)〉 ⊗ |Vµ〉 , (2.32)

where |Vµ〉 are the single qubit tangent vectors defined in (2.21). With this, we find
according to (2.25)

gµν ≡
(

1 0
0 sin2 (θ)

)
and ωµν ≡

(
0 sin θ

− sin θ 0

)
(2.33)

leading to J2 = −1 everywhere. We therefore conclude that the tangent space
TψM satisfies the Kähler property everywhere.

Example 6 (Bloch sphere equator). For the single qubit Hilbert space H = C2,
we can choose the equator of the Bloch sphere as our variational manifold M.
This amounts to fixing θ = π/2 in the single qubit state (2.20) leading to the
representatives

|ψ(φ)〉 = 1√
2
|0〉+

eiφ

√
2
|1〉 (2.34)

with a single variational parameter φ. We have the single tangent vector |V 〉 = |V1〉
as defined in (2.21). From the inner product 〈V |V 〉 = 1

4
, we find g = 1

2
and ω = 0

implying J = 0. Consequently, and not surprising due to the odd dimension, the
tangent spaces of our variational manifold M are not Kähler spaces. Moreover,
neither ω nor J are invertible.

Example 7 (Squeezed coherent state). We consider a bosonic system with two
degrees of freedom associated with annihilation operators â1 and â2. The vacuum
state |0, 0〉 satisfies âm |0, 0〉 = 0, â†1 |0, 0〉 = |1, 0〉 and â†2 |0, 0〉 = |0, 1〉. We
introduce

b̂ = cosh r â1 + sinh r â†2 (2.35)

with canonical commutation relations [b̂, b̂†] = 1 and r being a fixed constant (not
a variational parameter). We then define the states of our variational manifold as

|ψ(α)〉 = eαb̂
†−α∗b̂ |0〉 , (2.36)

parametrized by a single complex number α. |ψ(α)〉 is not the one-mode coherent
state |α〉 = eαâ

†−α∗â |0〉, because b̂ |0〉 6= 0. Our variational manifold has two
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independent real parameters given by x ≡ (Reα, Imα). After some algebra taking
[b̂, b̂†] = 1 into account, we find

|V1〉 = eαb̂
†−α∗b̂ (cosh r |1, 0〉 − sinh r |0, 1〉) ,

|V2〉 = eαb̂
†−α∗b̂ i(cosh r |1, 0〉+ sinh r |0, 1〉) .

(2.37)

Metric and symplectic form take the forms

gµν ≡ cosh 2r

(
2 0
0 2

)
and ωµν ≡

(
0 2
−2 0

)
. (2.38)

This gives rise to the restricted complex structure

Jµ
ν ≡ sech 2r

(
0 −1
1 0

)
, (2.39)

which only satisfies J2 = −1 for r = 0.

In summary, we introduced general variational manifolds as real differentiable
submanifolds M of projective Hilbert space P(H). By embedding the tangent
spaces TψM into Hilbert space, the Hilbert space inner product defines restricted
Kähler structures on the tangent spaces, whose properties we will explore next.

2.5 Kähler and non-Kähler manifolds

We categorize variational manifolds depending on whether their tangent spaces
are Kähler spaces or not. We will see in the following sections that this distinction
has some important consequences for the application of variational methods on
the given family.

Definition 2. We classify general variational families M⊂ P(H) based on their
restricted Kähler structures. We refer to a variational family M as

� Kähler7, if all tangent spaces TψM are a Kähler spaces, i.e., J2 = −1
everywhere on the manifold,

� Non-Kähler, if it is not Kähler. If ω is degenerate, we define Ω as the
pseudo-inverse.

7A general manifold M, whose tangent spaces are equipped with compatible Kähler struc-
tures, is known as an almost Hermitian manifold. However, if an almost Hermitian manifold
is the submanifold of a Kähler manifold (as defined in appendix A.2), then it is also a Kähler
manifold itself. Thus, due to the fact that P(H) is a Kähler manifold, all almost Hermitian
submanifoldsM⊂ P(H) are also Kähler manifolds, which is why we use the term Kähler in this
context.
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This classification refers to the manifold as a whole. In table 2.1 we summarize
the properties of each class of manifolds.

Many well-known variational families, such as Gaussian states [55], coher-
ent states [62, 63, 77], matrix product states [78] and projected entangled pair
states [31], are Kähler. On the other hand, one naturally encounters non-Kähler
manifolds when one parametrizes states through a family of general unitaries U(x)
applied to a reference state |φ〉, i.e.,

|ψ(x)〉 = U(x) |φ〉 . (2.40)

For example, this issue arises for the classes of generalized Gaussian states intro-
duced in [52], for the Multi-scale Entanglement Renormalisation Ansatz states [79]
or if one applies Gaussian transformations U(x) to general non-Gaussian states.

Example 8 (Kähelr and non-Kähler manifolds). We already reviewed examples for
these cases in the previous section. More precisely, example 5 is Kähler, example 6
is non-Kähler with degenerate ω and example 7 is non-Kähler with non-degenerate
ω.

Given a submanifold M ⊂ P(H), we can use the embedding in the manifold
P(H) to constrain the form that the restricted complex structure J can take on
M.

Proposition 1. On a tangent space TψM ⊂ H of a submanifold M ⊂ P(H) we
can always find an orthonormal basis {|Vµ〉}, such that gµν ≡ 1 and the restricted
complex structure is represented by the block matrix

Jµ
ν ≡



1
−1

. . .

c1

−c1

c2

−c2

. . .

0
. . .


(2.41)

with 0 < ci < 1. This standard form induces the decomposition of TψM into the
three orthogonal parts

TψM = TψM⊕IψM︸ ︷︷ ︸
TψM

⊕DψM , (2.42)
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where TψM is the largest Kähler subspace and TψM is the largest space on which
J and ω are invertible.

Proof. We present a constrictive proof in appendix A.1.

Proposition 1 is also relevant for classifying real subspaces of complex Hilbert
spaces. Interestingly, it is linked to the entanglement structure of fermionic Gaus-
sian states, as made explicit in [80].

The manifoldM is Kähler if there is only the first block in (2.41) everywhere.
The symplectic form ω is non-degenerate if we only have the first two diagonal
blocks. The next proposition provides some further intuition for the non-Kähler
case, which is also known in mathematics in the context of sub manifolds of Kähler
manifolds [81].

Proposition 2. The Kähler property is equivalent to requiring that TψM is not
just a real, but also a complex subspace, i.e., for all |X〉 ∈ TψM, we also have
i|X〉 ∈ TψM. Therefore, the multiplication by i commutes with the projector Pψ,
i.e., Pψi = iPψ and Pψ is complex-linear.

Proof. We present a proof in appendix A.1.

If a manifold admits a complex holomorphic parametrisation, i.e., a parametri-
sation that depends on the complex parameters z, but not on z∗, then the manifold
will be Kähler. Indeed, taking Re z and Im z as real parameters gives the tangent
vectors

|vµ〉 =
∂

∂Rezµ
|ψ(z)〉 , i |vµ〉 =

∂

∂Imzµ
|ψ(z)〉 . (2.43)

It is actually also possible to show that, viceversa, a Kähler manifold is also a com-
plex manifold, that is it admits, at least locally, a complex holomorphic parametri-
sation.

As mentioned before, in order to define the inverse of ω it is necessary to restrict
ourselves to work only in a subspace of TψM. We now see that the definition
we gave previously of always defining Ω as the pseudo-inverse with respect to g
coincides with always choosing to consider only the tangent directions in

TψM = spanR{|V i〉} (2.44)

In order to apply variational methods as explained in the following chapters, it
may be necessary to at least locally restore the Kähler property. We can achieve
this by locally further restricting ourselves to

TψM = spanR{|V i〉} . (2.45)
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Using the bases {|V µ〉} and {|V µ〉}, we can define the restricted Kähler struc-

tures (g,ω,J), which are compatible, and (g,ω,J), where ω and J are non-
degenerate.

Our assumption on the definition of Ω can be understood as taking Ω to be
zero on the subspace DψM, where ω is not invertible, and equal to the inverse
of ω on TψM. Note that this definition is only possible because the tangent
space is also equipped with a metric g, which makes the orthogonal decomposition
TψM = TψM⊕DψM well-defined.

In summary, a general variational familyM⊂ P(H) is not necessarily a Kähler
manifold. We can check locally, if the restricted Kähler structures fail to satisfy
the Kähler condition. If this happens, we can always choose local subspaces

TψM⊂ TψM⊂ TψM (2.46)

on which the restricted Kähler structures satisfy the Kähler properties or are at
least invertible. Defining Ω as the pseudo-inverse with respect to g is equivalent to
inverting ω only on TψM. In what follows, we therefore do not need to distinguish
between the non-Kähler cases with degenerate or non-degenerate structures, as we
will always be able to apply the same variational techniques based on Ω.

2.6 Observables and Poisson brackets

Any Hermitian operator Â defines a real-valued function 〈Â〉 on the manifold M
and in fact on the whole projective Hilbert space. The function is given by the
expectation value

A(x) = 〈Â〉(x) =
〈ψ(x)|Â|ψ(x)〉
〈ψ(x)|ψ(x)〉

. (2.47)

It is invariant under rescalings of |ψ〉 by complex factors and is thus a well-defined
map on projective Hilbert space P(H). We will use the notation 〈Â〉 and A(x)
interchangeably. For the function deriving from the Hamiltonian operator Ĥ, we
use the symbol E = 〈Ĥ〉 and call it the energy.

Given a Hermitian operator Â and the representative |ψ(x)〉, we have the im-
portant relation

PµψÂ |ψ〉 = Gµν(∂νA) , (2.48)

which is invariant under the change of representative |ψ〉 → c |ψ〉 and |Vµ〉 →
c |Vµ〉. It follows from

∂µA =
2 Re〈Vµ| Â |ψ〉
〈ψ|ψ〉

= gµνPνψÂ |ψ〉 , (2.49)
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Table 2.1: Comparison: Kähler vs. Non-Kähler. We review the properties of
restricted Kähler structures and their inverses in each case. See appendix A.2 for
a review of the conditions for a general manifold to be Kähler.

Kähler
Non-Kähler

(non-degenerate) (degenerate)

Metric g
symmetric,

positive definite
symmetric, positive definite,

inverse G invertible invertible

Symplectic
form ω

antisymmetric,
closed (dω = 0)

antisymmetric, may not be closed

inverse Ω
(or pseudo inverse)

non-degenerate non-degenerate degenerate

Complex
structure J

J2 = −1, 0 ≥ J2 ≥ −1,

inverse J−1 = −Ωg
(or pseudo inverse)

invertible with
J−1 = −J invertible

pseudo-
invertible
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where we used product rule and (2.24).
The following definition will play an important role in the context of Poisson

brackets and conserved quantities. Every operator Â defines a vector field given
by QψÂ |ψ〉. If this vector field is tangent to M for all ψ ∈ M, the following
definition applies.

Definition 3. Given a general operator Â and a variational family M ⊂ P(H),
we say Â preservesM if

QψÂ |ψ〉 = (Â− 〈Â〉) |ψ〉 for all ψ ∈M (2.50)

lies in the tangent space TψM, i.e., QψÂ |ψ〉 = PψÂ |ψ〉.

The symplectic structure of the manifold naturally induces a Poisson bracket
on the space of differentiable functions, which is given by

{A,B} := (∂µA) Ωµν(∂νB) . (2.51)

In some special cases this can be related to the commutator of the related operators.

Proposition 3. Given two Hermitian operators Â and B̂ of which one preserves
the Kähler manifold M, i.e.,

(Â− 〈Â〉) |ψ〉 ∈ TψM or (B̂ − 〈B̂〉) |ψ〉 ∈ TψM , (2.52)

the Poisson bracket is related to the commutator via

{A,B} = i
〈ψ|[Â, B̂]|ψ〉
〈ψ|ψ〉

. (2.53)

Proof. We compute

i 〈ψ|[Â,B̂]|ψ〉
〈ψ|ψ〉 = 2 Re〈ψ|(Â−〈Â〉)i(B̂−〈B̂〉)|ψ〉

〈ψ|ψ〉 . (2.54)

As one of the vectors (Â−〈Â〉) |ψ〉 or (B̂−〈B̂〉) |ψ〉 lies in the tangent space TψM,
(2.7) applies, giving

i 〈ψ|[Â,B̂]|ψ〉
〈ψ|ψ〉 = PµψÂ |ψ〉 gµν P

ν
ψiB̂ |ψ〉

= ∂νA Jν
ρG

ρσ∂σB = ∂νA Ωνσ∂σB ,
(2.55)

where we used (2.49) and J = −J−1 = Ωg for a Kähler manifold.

For M = P(H), above conditions are clearly met for any Hermitian operators
Â and B̂. For a general Kähler submanifold M ⊂ P(H), however, the validity
of (2.53) depends on the choice of operators considered. On a submanifold which
is not Kähler the statement is in general no longer valid.
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Chapter 3

Variational principles

In the previous chapter we have defined variational manifolds. In this chapter we
will now address how to apply these manifolds to the computation of properties of
quantum mechanical systems. The approaches which underlie these calculations
take the form of variational principles. We will show that they can be used to
compute several static, dynamical and spectral properties of quantum Hamiltoni-
ans.

Similarly to the previous chapter, much of the content of this chapter is derived
from reference [69]:
L. Hackl, T. Guaita, T. Shi, J. Haegeman, E. Demler, J.I. Cirac,
Geometry of variational methods: dynamics of closed quantum systems,
SciPost Physics 9, 48 (2020), used under cc by 4.0.

3.1 Overview

Given a variational manifoldM defined according to the observations of Chapter 2,
we can define several variational principles, which allow us to compute information
about a model of interest, while relying only on the use of states contained inM.
As discussed in Section 1.3, this is to be understood essentially as restricting the
laws of quantum mechanics to a non-linear subspace M of the Hilbert space. In
this chapter we will discuss four sets of variational principles which are particularly
useful for the study of quantum many body systems.

In Section 3.2 we will focus on variational principles for real time evolution.
These are often also referred to as Time Dependent Variational Principles. The aim
of these principles is to define an approximation of the Schrödinger time evolution
that is restricted to take place only inside the manifoldM. For this reason we will
refer to it as projected real time evolution.

As we will see, there exist two fundamentally different principles to define this
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CHAPTER 3. VARIATIONAL PRINCIPLES

projected real time evolution. There is one based on defining a global Lagrangian
action principle on the variational manifold. We will refer to this as the Lagrange
principle. There is a second one based on minimising a local error measure, which
we will refer to as the McLachlan principle. We will discuss how these two princi-
ples are in general inequivalent and how they coincide only in those cases in which
the manifold M is a Kähler manifold, according to the definition given in the
previous chapter. Finally, we will mention how there also exists a principle that
in the literature often goes by the name of Dirac-Frenkel principle. This principle,
however, is well-defined only in cases in which the other two are equivalent and
then coincides with them.

At the end of the section, we will discuss two other related questions, namely
how conserved quantities of the dynamics are affected by the projection of time
evolution onM and how to take care correctly of the dynamics of the global phase
and normalisation of a state.

In Section 3.3 we will then move on to the use of variational principles to
estimate the spectrum of excitations of a many body model. We will present
two alternative methods, both based on a variational manifold M and both with
some successful applications. The projection method is based on constructing and
diagonalising a restricted version of the system’s Hamiltonian, defined only on
the low-dimensional tangent plane of M. The linearisation methods is based on
finding the fundamental oscillation frequencies of the system around its ground
state: we achieve this through a linearisation of the projected real time evolution
discussed previously.

Ultimately, the two methods provide different approximations to the system’s
energy spectrum, with different characteristic properties. We will show the rela-
tionship between the two methods and discuss when each can be most advanta-
geous. In summary, the projection methods provides truly variational bounds on
the energy spectrum, while the linearisation method can reflect better the physi-
cally relevant properties of the system, especially when the natural symmetries of
the manifold and the system match each other appropriately.

In Section 3.4 we then address the computation of a quantity that is of great
importance in quantum many body physics, namely the spectral function of the
system. This function is of great relevance because it represents an experimentally
measurable susceptibility, in particular in experiments where the system is per-
turbed with a small pump field and then its response is probed. In this section we
present a method for estimating this quantity based on performing linear response
theory directly on the variational manifold M.

Finally, in Section 3.5 we will present a method for finding within a manifoldM
the state with the minimal energy expectation value, i.e., the state representing an
approximate ground state. This method goes by the name of projected imaginary
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time evolution and can be understood as a form of gradient descent method which
also takes into account some information about the geometry and curvature of
the manifold on which the optimisation is performed. Indeed, it is sometimes also
referred to as natural gradient descent.

Throughout this chapter we will always stress the importance of the under-
lying geometric principles for the understanding of each variational principle. In
particular, in each section we will highlight how the presented methods can lead
to different outcomes depending on whether the manifold M has a Kähler or
non-Kähler geometry.

3.2 Real time evolution

For what concerns real time evolution, we would like to approximate the Schrödinger
equation

i
d

dt
|ψ〉 = Ĥ |ψ〉 (3.1)

on our variational manifoldM. There are different principles, used extensively in
the literature, according to which this approximation can be performed. We will
see that only in the case of Kähler manifolds they are all equivalent.

3.2.1 Variational principles

Following the literature, we can define the following variational principles for |ψ〉 ≡
|ψ(t)〉.

Lagrangian action principle [82]. The most commonly used variational
principle relies on defining a Lagrangian action

S =

∫ tf

ti

L dt =

∫ tf

ti

dt Re
〈ψ|(i d

dt
− Ĥ)|ψ〉
〈ψ|ψ〉

. (3.2)

Requiring that |ψ(t)〉 extremises this action leads to

0 = Re 〈Qψδψ|(i ddt − Ĥ)|ψ〉 (3.3)

for all times and all allowed variations |δψ(t)〉 with Qψ |δψ〉 = |δψ〉 − 〈ψ|δψ〉
〈ψ|ψ〉 |ψ〉

from (2.19). This is equivalent to Schrödinger’s equation on projective Hilbert
space1.

1The fact that the projector Qψ onto projective tangent space H⊥ψ appears, shows that the
resulting dynamics is defined on projective Hilbert space, while global phase and normalisation
are left undetermined. We will explain how to recover the dynamics of phase and normalisation
in Section 3.2.3.
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If we restrict ourselves to having the dynamics only taking place on a variational
manifold M ⊂ P(H), we have that the allowed variations in (3.3) must satisfy
Qψ |δψ(t)〉 ∈ Tψ(t)M. So, we have instead

Pψ(i d
dt
− Ĥ) |ψ〉 =⇒ Pψi d

dt
|ψ〉 = PψĤ |ψ〉 . (3.4)

This gives rise to equations of motion which we will derive in Proposition 4. For a
time-independent Hamiltonian, they always preserve the energy expectation value.

McLachlan minimal error principle [83]. Alternatively, we can try to
minimise the error between the approximate trajectory and the true solution. As
we do not know the latter, we cannot compute the total error, but at least we can
quantify the local error in state norm∥∥∥ d

dt
|ψ〉 − (−iĤ) |ψ〉

∥∥∥ , (3.5)

made at each point in time due to imposing that d
dt
|ψ(x)〉 represents a variation

tangent to the manifold, i.e., Qψ
d
dt
|ψ(x)〉 ∈ TψM. According to (2.27), this error

is minimised if

Qψ
d
dt
|ψ〉 = −PψiĤ |ψ〉 . (3.6)

This gives rise to equations of motion which we will derive in Proposition 5. The
resulting equations of motion only agree with the Lagrangian action if M is a
Kähler manifold. Otherwise, they may not preserve the energy expectation value.

Dirac-Frenkel variational principle [84, 85]. Another variational principle
requires

〈δψ|(i d
dt
− Ĥ)|ψ〉 = 0 (3.7)

for all allowed variations |δψ(t)〉. It is easy to see that the real and imaginary parts
of (3.7) are equivalent to (3.4) and (3.6) respectively. Therefore, this principle is
well-defined (and equivalent to the other two) only in the cases in which they are
equivalent between themselves, that is, as we will see, if and only ifM is a Kähler
manifold. Otherwise, the resulting equations will be overdetermined.

Expressing equations (3.4) and (3.6) in coordinates leads to flow equations for
the manifold parameters x(t). We can then define a real time evolution vector
field X everywhere on M, such that

dxµ

dt
= X µ(x) . (3.8)

The schematic idea is illustrated in Figure 3.1. Integrating such equations defines
the flow map Φt that maps an initial set of coordinates x(0) to the values x(t) that
they assume after evolving for a time t.
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In the case of the Lagrangian action principle, the vector field X takes the form
given in the following proposition. A similar derivation was also considered in [82].
Note that here, as well as elsewhere in this chapter, we will be using Einstein’s
summation notation for repeated indices.

Proposition 4. The real time evolution projected according to the Lagrangian
action principle (3.4) is

dxµ

dt
≡ X µ = −Ωµν(∂νE) . (Lagrangian) (3.9)

where E(x) is the energy function, defined in the context of equation (2.47). Such
evolution always conserves the energy expectation value.

Proof. From the definition (2.24) of the tangent space basis, we have

d
dt
|ψ〉 = ẋµ ∂µ |ψ〉 = ẋµ |Vµ〉+

〈ψ| d
dt
ψ〉

〈ψ|ψ〉
|ψ〉 . (3.10)

We substitute this in (3.4) and then expand the projectors using the relations (2.28),
(2.30) and Pψi |ψ〉 = 0 to obtain

Jµ
νX ν = Gµρ 2Re〈Vρ| Ĥ |ψ〉

〈ψ|ψ〉
. (3.11)

We further simplify the expression by using (2.49) and (J−1)µν = −Ωµρgρν from (2.30).
This leads to

X µ = (J−1)µνG
νσ∂σE = −Ωµν∂νE . (3.12)

To obtain the variation of the energy expectation value E we compute directly

dE

dt
= (∂µE)

dxµ

dt
= −(∂µE)Ωµν(∂νE) = 0 , (3.13)

where we used the antisymmetry of Ωµν . If J (and thus also Ω) is not invertible,
one needs to restrict to an appropriate subspace.

The most important lesson of (3.9) is that projected time evolution on a Kähler
manifold is equivalent to classical Hamiltonian evolution with respect to energy
function E(x). As was pointed out in [86], already the time evolution in full
projective Hilbert space, i.e.,M = P(H), follows the classical Hamilton equations
if we use the natural symplectic form Ωµν . Let us point out that the sign in
equation (3.9) depends on the convention chosen for the symplectic form, which
in classical mechanics differs from the one adopted here. One further consequence
of equation (3.9) is that the real time evolution vector field X (x) vanishes in
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stationary points of the energy, that is points x0 such that ∂µE(x0) = 0. These
points will therefore also be stationary points of the evolution governed by X .

Let us here recall that, if ωµν is not invertible, Ωµν refers to the pseudo-inverse,
as discussed in Sections 2.4 and 2.5. This convention means that in practice the
Lagrangian evolution will always take place in the submanifold ofM on which ω is
invertible. There may be pathological cases where ω vanishes on the whole tangent
space and therefore the Lagrangian principle does not lead to any evolution.

In the case of the McLachlan minimal error principle, the evolution equations
take the form given in the following proposition, which cannot be simplified further.
It is also in general not true that this evolution conserves the energy or that it has
a stationary point in energy minima.

Proposition 5. The real time evolution projected based on the McLachlan min-
imal error principle (3.6) is

dxµ

dt
≡ X µ = −2GµνRe〈Vν |iĤ|ψ〉

〈ψ|ψ〉
. (McLachlan) (3.14)

Proof. By substituting (2.24) in (3.6), analogously to what was done in (3.10), we
have

ẋµ = Pµψ(−iĤ |ψ〉) , (3.15)

from which the proposition follows by expanding the projector according to (2.28).

To perform real time evolution in practice, either based on (3.9) for Lagrangian
evolution or based on (3.14) for McLachlan evolution, we will typically employ a
numerical integration scheme [87, 88] to evolve individual steps. It is generally
hard to get rigorous bounds on the resulting error that increases over time, but in
certain settings there still exist meaningful estimates [89]. Let us now relate the
different variational principles, which has also been discussed in [90].

Proposition 6. The Lagrangian, the McLachlan and the Dirac-Frenkel variational
principle are equivalent if the variational family is Kähler.

Proof. To prove the statement, it is sufficient to see that equations (3.4) and (3.6)
can be written simply as applying the tangent space projector Pψ to two different
forms of the Schrödinger equation, i.e.,

Lagrangian: Pψ(i d
dt
− Ĥ) |ψ〉 = 0 (3.16)

McLachlan: Pψ( d
dt

+ iĤ) |ψ〉 = 0. (3.17)
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Figure 3.1: Real time evolution. We illustrate real time evolution on a variational
manifoldM according to the Dirac-Frenkel variational principle (when Lagrangian
and McLachlan principles coincide). The time evolution vector −iĤ |ψ〉 at a state
ψ is orthogonally projected through Pψ onto the variational manifoldM to define
the vector field X µ. The resulting evolution is guaranteed to take place on M.

M
TψM

Pψ

X µ = Pµψ(−iĤ) |ψ〉

−iĤ |ψ〉

ψ

These two forms only differ by a factor of i. However, as we discussed in Propo-
sition 2, one equivalent way to define the Kähler property of our manifold is that
multiplication by i commutes with the projector Pψ. Therefore, if the manifold
is Kähler, an imaginary unit can be factored out of equations (3.16) and (3.17)
making them coincide. If, on the other hand, the manifold is non-Kähler, this
operation is forbidden and they are in general not equivalent.

As discussed in Section 2.5, if the chosen manifold does not respect the Kähler
condition, we always have the choice to locally restrict ourselves to consider only
a subset of tangent directions with respect to which the manifold is again Kähler,

i.e., TψM. Then both principles will again give the same equation of motion,

which will have the same form as (3.9) where we just replace Ωµν with Ωµν , which
will conserve the energy and have stationary points in the minima of the energy.
We will refer to this procedure as Kählerisation.

We can compute explicitly how the vector fields of the Lagrangian and McLach-
lan variational principles differ. For this, we only consider the subspaces, defined
in Proposition 1, in which the complex structure fails to be Kähler, i.e., where we
have

J ≡
⊕
i

(
ci

−ci

)
, (3.18)

as in (2.41). If we enlarge the tangent space to include all vectors i |Vµ〉, the
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enlarged complex structure will have the form

J̌ ≡
⊕
i


ci

√
1− c2

i

−ci
√

1− c2
i

−
√

1− c2
i ci

−
√

1− c2
i −ci

 (3.19)

which clearly satisfies J̌2 = −1. As the enlarged space is Kähler, we can unabigu-
oulsy define a time evolution vector field X̌ ≡ ⊕i(ai, bi, αi, βi) on the enlarged
space, and we find the two distinct restrictions

XLagrangian = J−1PψJ̌X̌

≡ ⊕i
(
ai −

√
1−c2i
ci

αi, bi +

√
1−c2i
ci

βi

)
(3.20)

XMcLachlan = PψX̌ ≡ ⊕i(ai, bi) , (3.21)

associated to the Lagrangian and the McLachlan principle, respectively. We see
explicitly that they agree for ci = 1, but also when αi = βi = 0.

Kähler vs. non-Kähler. On a Kähler manifold all three variational prin-
ciples are well-defined and equivalent. They all give the same energy conserving
equations of motion (3.9). On a non-Kähler manifold, only the Lagrangian and
McLachlan variational principles are well-defined, but they give in general inequiv-
alent equations of motion given by (3.9) and (3.14). Only the Lagrangian ones will
manifestly conserve the energy and have stationary points in the minima of the en-
ergy. In table 3.1, we review advantages and drawbacks discussed in the following
sections. While in most cases, the Lagrangian principle appears to be a natural
choice, the McLachlan principle is often preferable if ω is highly degenerate—in
particular, if ω = 0 its pseudo-inverse is Ω = 0 and the evolution would vanish
everywhere independent of Ĥ, such that the McLachlan principle appears to be
the better choice.

3.2.2 Conserved quantities

Given the generator Â of a symmetry of the Hamiltonian Ĥ, i.e., [Ĥ, Â] = 0,
the expectation value A(t) = 〈ψt| Â |ψt〉 is necessarily preserved by unitary time
evolution on the full Hilbert space

|ψt〉 = U(t) |ψ0〉 = e−iĤt |ψ0〉 . (3.22)

We now consider if this continues to be true for projected time evolution on a
manifold.
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Table 3.1: Action principles. We review the different action principles and how
they relate to the respective manifolds.

Lagrangian McLachlan
Dirac-
Frenkel

Definition Pψ(i ddt − Ĥ) |ψ〉 = 0 Pψ( ddt + iĤ) |ψ〉 = 0 both

Kähler
manifold

always defined and all equivalent

Non-Kähler
manifold

defined for chosen
inverse Ω

(see proposition 4)

always defined
(see proposition 5)

not defined

Advantage
energy conservation
(see proposition 4)

conservation of
symmetries

(see proposition 7)
both

Linearisation
around

ground state

possible
(see section 3.3.2)

not possible
(see section 3.3.2)

possible

For a time-independent Hamiltonian Ĥ, we have seen that the energy expec-
tation value E is always conserved by Lagrangian projected real time evolution.
However, projected time evolution will not in general preserve expectation values
of an operator Â with [Ĥ, Â] = 0. To guarantee this, one has to further require
that Â preserves the manifold.

Proposition 7. Given a variational manifold M and a Hermitian operator Â,
such that [Ĥ, Â] = 0 and Â preserves the manifold in the sense of Definition 3,
i.e.,

QψÂ |ψ〉 = (Â− 〈Â〉) |ψ〉 ∈ TψM ∀ψ ∈M , (3.23)

the expectation value A(x(t)), defined as in equation (2.47), is preserved under real
time evolution projected according to the McLachlan variational principle. It is
also true for Lagrangian variational principle, if the two principles agree, i.e., if
the manifold is Kähler.

Proof. We compute

d

dt
A(t) = (∂µA)

dxµ

dt
= PνψÂ |ψ〉 gνµ P

µ
ψ(−iĤ |ψ〉)

= 2Re〈ψ|(Â−〈Â〉)(−iĤ)|ψ〉
〈ψ|ψ〉 = i〈ψ|[Ĥ,Â]|ψ〉

〈ψ|ψ〉 = 0,
(3.24)
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where in the first line we used relation (2.49) for the gradient of A, the definition
of McLachlan evolution (3.6) and that Pµψ 〈Â〉 |ψ〉 = 0, in the second step we used
that, thanks to the condition (3.23), the restricted bilinear form g in the first line
coincides with the full Hilbert space one in the second line of (3.24).

This result only applies the McLachlan projected real time evolution, for which
the equation of motion (3.15) holds. In the Lagrangian case, we would have

Ȧ = (∂µA)X µ = −(∂µA) Ωµν∂νE = {E,A}, (3.25)

which is in general not equal to i 〈ψ|[Ĥ, Â]|ψ〉 〈ψ|ψ〉−1 on a non-Kähler manifold2

and thus not necessarily zero.
We see here the main advantage of the Kählerisation procedure described in

the previous section. Indeed, through Kählerisation we are able to define, even
for general non-Kähler manifolds, a projected real time evolution that shares the
desirable properties of both, the Lagrangian and the McLachlan projections, i.e.,
it is a symplectic, energy preserving evolution with stationary points in the energy
minima and at the same time preserves the expectation value of symmetry gener-
ators satisfying (3.23). Note that Kählerisation may spoil the conservation laws

of observables Â, for which QψÂ |ψ〉 does not lie in the Kähler subspace TψM, in
which case we will need to enforce conservation by hand, discussed next.

For operators Â where (3.23) is not satisfied, we have two options to correct
for this:

(a) Enlarge the variational manifold M, such that condition (3.23) is satisfied.

(b) Enforce conservation by hand, for which we modify the projected time evo-
lution vector field X µ.

While option (a) is typically more desirable, it requires creativity to find a
suitable extension of a given family M. Of course, if Â is an important physical
observable that is relevant to the problem, a manifold that does not preserve it
may not be a good choice to approximate the system’s behavior. In practice,
however, it may still be worthwhile to check the predictions of an approximated
time-evolution adopting (b).

This is done by adding a further projection of the real time evolution flow onto
the subspace of the tangent space orthogonal (with respect to g) to the direction
PµψÂ |ψ〉 = Gµν∂νA. This is equivalent to restricting ourselves to the submanifold

M̃ =
{
|ψ〉 ∈ M

∣∣ 〈ψ|Â|ψ〉
〈ψ|ψ〉 = A0

}
⊂M, (3.26)

2For Kähler manifolds, as discussed in the context of Proposition 3, {F,G} =

i 〈ψ|[F̂ , Ĝ]|ψ〉 〈ψ|ψ〉−1 only holds if either F̂ or Ĝ preserves the manifold.
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where A0 is the initial value 〈ψ(0)|Â|ψ(0)〉 〈ψ(0)|ψ(0)〉−1. Note that this modified
evolution may spoil other conservation laws (e.g., energy) that were previously
intact.

To preserve several quantities ÂI , we can project onto the subspace orthogonal
to the span of XI = PψÂI |ψ〉. If we also want to preserve the Kähler property, we

should choose XI = (PψÂI |ψ〉 , iPψÂI |ψ〉). We can then define g̃IJ = Xµ
I gµν X

ν
J

to define the projector

P̃ µ
ν = δµν −Xµ

I G̃
IJXρ

J gρν , (3.27)

where G̃IJ is the inverse (or pseudo inverse, if not all vectors XI are linearly
independent) of g̃IJ .

The modified Lagrangian evolution vector field X̃ µ is

X̃ µ = −Ω̃µν(∂νE) with Ω̃µν = P̃ µ
σP̃

ν
ρΩ

σρ , (3.28)

while for the McLachlan evolution, we find

X̃ µ = P̃ µ
νX ν , (3.29)

where X µ represents the unmodified evolution vector field in the McLachlan case.
It will conserve all expectation values AI(t) by construction. In the Lagrangian
case also the energy will continue to be conserved by construction, which would
need to be enforced by hand for the McLachlan case.

Kähler vs. non-Kähler. On a non-Kähler manifold, where we have two
inequivalent definitions of the evolution, only the one coming from the McLachlan
principle preserves the expectation value of symmetry generators satisfying (3.23).
Thus a key reason to Kählerise a non-Kähler manifold is to conserve these expec-
tation values also in the Lagrangian evolution.

3.2.3 Dynamics of global phase

Up to now we have always considered our variational manifoldsM as submanifolds
of projective Hilbert space and thus the tangent space TψM as a subspace of H⊥ψ .
This means all states are only defined up to a complex factor. In practice, our
family ψ(x) ∈ P(H) will be described by a choice |ψ(x)〉 ∈ H, i.e., for every set of
parameters x, we will have a Hilbert space vector |ψ(x)〉 representing the quantum
state ψ(x) ∈ P(H).

If the parametrisation x happens to contain the global phase or normalisation
of the state as an independent parameter, we are overparametrising our family and
the evolution equations (3.9) or (3.14) will keep the evolution of these parameters
undetermined, leading to some gauge redundancy. This is due to the fact that
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normalisation and phase do not change the quantum state that |ψ(x)〉 represents
and our equations of motion only determine the physical evolution of the quantum
state and not of its Hilbert space representative.

In those cases in which we actually are interested in computing the dynamics
of the global phase and normalisation of a state, we can first of all ensure that
they are included in the parametrisation by defining

|Ψ(x, κ, ϕ)〉 = eκ+iϕ |ψ(x)〉 , (3.30)

where κ and ϕ are two additional real parameters. If phase or normalisation were
already contained in x this will lead to an overparametrisation, but we have already
explained how to take care of this in Section 2.4.

Then, on top of the real time evolution equations (3.4) or (3.6), we can obtain
equations for these extra parameters by projecting Schrödinger’s equation on the
corresponding tangent space directions, i.e., |Vκ〉 = |Ψ〉 and |Vϕ〉 = i |Ψ〉, to find
the two equations

Re 〈Ψ|(−i d
dt

+ Ĥ)|Ψ〉 = 0 , Re 〈Ψ| d
dt

+ iĤ|Ψ〉 = 0 . (3.31)

Equivalently, we can use the Lagrangian action principle to find the same equations
by extremizing the alternative action

S =

∫ tf

ti

dt Re 〈Ψ(t)|(i d
dt
− Ĥ)|Ψ(t)〉 (3.32)

for the full set of parameters (x, κ, ϕ) rather than S from (3.2) for only x.
In both cases, the time evolution of x(t) is unchanged, but we find the additional

equations

ϕ̇ =
Re〈ψ|i d

dt
|ψ〉

〈ψ|ψ〉 − E(t) and κ̇ = −Re〈ψ| d
dt
|ψ〉

〈ψ|ψ〉 (3.33)

relating the evolution of phase and normalisation with |ψ(x(t))〉. Interestingly, the
time evolution of κ will ensure that |Ψ(x, κ, ϕ)〉 does not change normalisation.

The procedure can be understood as follows. Global phase and normalisation
are conjugate parameters when considering Hilbert space as Kähler space, as can
be seen from |Vϕ〉 = i |Vκ〉. When considering a variational manifold M ⊂ P(H),
we have the following options:

1. When we are only interested in the time evolution of physical states ψ, we
must project out the information about global phase and normalisation using
Pµψ. Consequently, our evolution equations will not determine how to change
global phase or normalisation as this information is pure gauge. We followed
this philosophy until the current section.
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2. When we are also interested in the time evolution of global phase and nor-
malisation, we can always extend M to include both phase and normalisa-
tion as independent parameters. Given a generic parametrisation |ψ(x)〉, we
can extend it to |Ψ(x, κ, ϕ)〉 to ensure that it satisfies the Kähler property
in the phase/normalisation subspace. Thus we find unambiguous evolution
equations for ϕ and κ. This is what we explained in the current subsection.

Finally, let us emphasize that using equations (3.31) or extremizing action (3.32)
without first ensuring both phase and normalisation are included as independent
parameters may lead to unphysical results.

Example 9 (Unnormalised coherent states). We consider coherent states parametrised
as |ψ(x)〉 = eiϕ(x1,x2)e(x1+ix2)â† |0〉, where the states are not normalised due to
〈ψ(x)|ψ(x)〉 = ex

2
1+x2

2. We chose intentionally a phase ϕ(x1, x2) that is not an
independent parameter but rather depends on x. We further consider the Hamil-
tonian Ĥ = ωâ†â. The equation of motion on projective Hilbert space based on the
action (3.2) are

ẋ1 = ωx2 and ẋ2 = −ωx1 . (3.34)

However, if we use (3.32), we find the action

S =

∫
dt
(
ẋ1x2 − ẋ2x1 − ∂ϕ

∂x1
ẋ1 − ∂ϕ

∂x2
ẋ2

)
ex

2
1+y2

1 , (3.35)

which leads to the equations of motion given by

(1 + x2
1 + x2

2)(ωx1 + ẋ2) = ( ∂ϕ
∂x2
x1 − ∂ϕ

∂x1
x2)ẋ2 , (3.36)

(1 + x2
1 + y2

2)(ωx2 − ẋ1) = ( ∂ϕ
∂x1
x2 − ∂ϕ

∂x2
x1)ẋ1 . (3.37)

They only agree with (3.34) in the special case ∂ϕ
∂x2
x1 − ∂ϕ

∂x1
x2 = 0.

3.3 Excitation spectra

We would now like to use a variational family M to approximate the excitation
energies Ei of some eigenstates |Ei〉 of the Hamiltonian. Typically, we are inter-
ested in low energy eigenstates, that is eigenstates close to the groundstate of the
Hamiltonian. Suppose then that onM we are able to find an approximate ground
state |ψ0〉, that is the state with energy ω0 that represents the global energy min-
imum on M (we will describe a method for finding such state in Section 3.5).
Then there are two distinct approaches of deriving a spectrum: the projection of
the Hamiltonian and the linearisation of the equations of motion.
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3.3.1 Projected Hamiltonian

Given a tangent space Tψ0M at a state ψ0 ∈M, we can approximate the excitation

spectrum of the Hamiltonian Ĥ from its projection onto Tψ0M. This is a matrix
of dimension M which can be readily diagonalised.

Similarly to the case of real time evolution, we define can two different projec-
tions given by

Hµ
ν = Pµψ0

Ĥ |Vν〉 , (Lagrangian)

Rµ
ν = −Pµψ0

iĤ |Vν〉 . (McLachlan)
(3.38)

On a Kähler manifold M, we will have Rµ
ν = −Jµ

σH
σ
ν and [J ,H ] =

[R,H ] = 0. In this case, H represents a Hermitian operator on tangent space
(which is complex sub Hilbert space) and R is anti-Hermitian. The eigenvalues of
H are real and come in pairs (ω`, ω`), while the ones of R come are purely imagi-
nary and come in conjugate pairs (iω`,−iω`). The two associated eigenvectors of
R are related by multiplication of J and also span the respective eigenspace of H .

On a non-Kähler manifold M, the relation between H and R as well as their
respective spectra is non-trivial. H will now represent just a symmetric linear
operator on the tangent space (understood simply as a linear vector space). Its
eigenvalues ω` are therefore real, although not paired. R, on the other hand,
will represent an anti-symmetric linear operator and its eigenvalues will appear in
conjugate pairs3, but will not be related to the ones of H .

The projected Hamiltonian H represents the full Hamiltonian restricted to
the tangent space. The Courant–Fischer–Weyl min-max principle states that the
eigenvalues E` of Ĥ and the eigenvalues ω` of H satisfy

E` ≤ ω` ≤ EN−M+` , (3.39)

with N = dimRH and M = dimR Tψ0M, where we assume that all eigenvalues are
sorted and appear with their multiplicity. Therefore, every approximate eigenvalue
ω` bounds a corresponding true eigenvalue Ei from above. How good this approx-
imation is will highly depend on the choice of variational manifold. Note that the
energy differences ω` − ω0 instead do not necessarily bound E` − E0, because the
ground state energy ω0 might not be exact, i.e., ω0 > E0.

Furthermore, the eigenvalues ω` are variational in the sense that if Xµ
` is an

eigenvector of H such that Hµ
νX

ν
` = ω`X

µ
` , then the corresponding Hilbert space

vector |X`〉 = Xµ
` |Vµ〉 satisfies

〈X`|Ĥ|X`〉
〈X`|X`〉

= ω` . (3.40)

3This also implies that for an odd-dimensional manifold Rµ
ν must have a vanishing eigenvalue,

which is a pure artefact of the projection.
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Kähler vs. non-Kähler. On a Kähler manifold, H and R are related via
R = −JH and they will be the representations of a complex Hermitian and
anti-Hermitian operators, respectively. Real eigenvalue pairs (ω`, ω`) of H will be
related to imaginary eigenvalue pairs (iω`,−iω`) of R. On a non-Kähler manifold,
the eigenvalues ω` of H could all be different and unrelated to the ones R, which
are still imaginary appearing in conjugate pairs.

3.3.2 Linearised equations of motion

A common alternative to projecting the Hamiltionian is to linearise the equations
of motion around a fixed point x0 such that X (x0) = 0

dxµ

dt
= X µ ⇒ d

dt
δxµ 'Kµ

ν δx
ν (3.41)

with δxµ = xµ−xµ0 and Kµ
ν = ∂νX µ|x=x0 . Here, δx represents a small perturbation

around an approximate ground state x0. The frequencies ω` appearing in conjugate
pairs ±iω` in the spectrum of K thus represent the frequencies with which such
perturbations oscillate around the ground state and provide an approximation to
the excitation energies E` − E0 of the Hamiltonian.

As pointed out in Section 3.2.1, the fixed point x0 only coincides with the
approximate ground state ψ0 if the real time evolution is defined in terms of the
Lagrangian action principle. We thus assume the equations of motion (3.9) based
on Lagrangian action principle. In this case, we find

Kµ
ν = ∂νX µ = −∂ν(Ωµρ∂ρE) = −Ωµρ(∂ρ∂νE) , (3.42)

where everything is evaluated at x0 after taking the derivatives. We used that
∂ρE = 0 at the fixed point4.

Provided that ψ0 is an energy minimum, the bilinear form hµν = ∂ν∂µE is pos-
itive definite. By Williamson’s theorem [91], K is diagonalizable and the resulting
eigenvalues appear in conjugate pairs (iω`,−iω`). Furthermore, by construction,
K is a symplectic generator, that is it satisfies KΩ + ΩKᵀ = 0, which implies
that M = eK preserves the symplectic form, i.e., MΩMᵀ = Ω.

The geometric meaning of (3.41), is that δx represents a tangent vector |δψ〉 =
δxµ |Vµ〉 living in the tangent space Tψ0M at the approximate ground state |ψ0〉.

4Usually, defining a derivative of a vector field X requires a way to relate tangent spaces at
adjacent points via a so-called connection. The resulting covariant derivative ∇νX µ = ∂νX µ +
ΓµνρX ρ will depend on Γµνρ that encodes the connection. In our case X µ vanishes at the fixed
point, so that the dependence of Γµνρ drops out and the spectrum of Kµ

ν = ∇νX µ at |ψ0〉 is
canonically defined.
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The time evolution of such a tangent vector at a fixed point |ψ0〉 is described by
the linearised evolution flow5

dΦt : Tψ0M→ Tψ0M . (3.43)

K is the generator of the flow dΦt leading to the important relation

dΦt = etK , (3.44)

which shows that dΦt is symplectic.
Unitary evolution on Hilbert space leads to a flow on projective Hilbert space

that preserves all three Kähler structures. However, when we project this flow
onto a variational manifold to find X , we will project out the part of the vector
field orthogonal to tangent space. When using the Lagrangian action principle,
the projected flow will continue to be symplectic, i.e., preserve Ω, but none of the
other two Kähler structures6. Geometrically, this implies that the trajectories of
states near the fixed point ψ0 will be elliptic rather than circular, when measured
with respect to G.

Therefore, even ifM is a Kähler manifold, K will in general neither commute
with J nor be antisymmetric with respect to G, i.e., satisfy KG = −GKᵀ. This
has the following consequences:

� Right-eigenvectors E(λ) with Kµ
νEν(λ)=λEµ(λ) and left-eigenvectors Ẽ(λ)

with Kµ
ν Ẽµ(λ)=λẼν(λ) are not related via Eµ(λ) = Gµν Ẽν(λ), but need

to be computed independently. This is important when computing spectral
functions in section 3.4.

� There does in general not exist a Hilbert space operator K̂, such that K is
its restriction in the sense of Kµ

ν = Pµψ0
K̂ |Vν〉 or Kµ

ν = Pµψ0
iK̂ |Vν〉. Thus,

K is not a restriction of a Hamiltonian.

Kähler vs. non-Kähler. On a non-Kähler manifold, where we have two
inequivalent definitions of the equations of motion, it only makes sense to linearise
the ones coming from the Lagrangian action principle, as their fixed point coincides
with the approximate ground state. The resulting generator K will in generally
not commute with J , even for Kähler manifolds, which has important consequences
for its eigenvectors relevant for spectral functions.

5Mathematically, the linearised flow dΦt is defined as the differential (also known as push-
forward) of the flow map Φt defined after equation (3.8). In general it is a map from the tangent
space Tψ(0)M to the tangent space Tψ(t)M. In the special case of |ψ0〉 being a fixed point of the
time evolution, it reduces to a linear map from Tψ0

M onto itself. One can then show that this
map is generated by the linearisation K of the vector field X that defines the evolution flow.

6Note that due to the 2-out-of-3 principle, any linear map M satisfying two out of the three
conditions MΩMᵀ = Ω, MGMᵀ = G and MJM−1 = J will satisfy all three. Thus, any
violation will necessarily affect at least two Kähler structures.
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3.3.3 Comparison: projection vs. linearisation

In the following, we will compare the previously introduced approaches of approx-
imating excitation energy. This comparison is particularly illuminating in the case
of Kähler manifold.

At a stationary point, i.e., ∂µE = 2Re 〈Vµ|Ĥ|ψ〉 = 0, we consider the symplec-
tic generator K defined as

Kµ
ν = −Ωµσ(∂σ∂νE) = (J−1)µσ ∂ν

(
PσψĤ |ψ〉

)
, (3.45)

where we only have J−1 = −J for Kähler manifolds. In the second step we
used (2.49). Evaluating the derivative in (3.45) gives the two pieces

∂ν
(
PσψĤ |ψ〉

)
= PσψĤ |Vν〉+ (∂νPσψ)Ĥ |ψ〉 , (3.46)

where we evaluate everything at ψ0 after computing the derivatives. We recognize
Hσ

ν = PσψĤ |Vν〉 and define F σ
ν = (∂νPσψ)Ĥ |ψ〉 = 2

〈ψ|ψ〉G
σρ 〈∂νVρ|Ĥ|ψ0〉 leading

to

K = (J−1)
(
H + F

)
. (3.47)

In summary, we see that the linearisation K consists of the two pieces. The first is
nothing other than the projected Hamiltonian H . The second is the derivative of
the projector. These terms are then multiplied with the inverse complex structure
J−1.

In the case of a Kähler manifold there is a further deeper way to understand
these two term that make up K. We will discuss this now.

In the Kähler case, we can use J2 = −1 to decompose any linear operator K
on Tψ0M as K = K+ + K− with

K±= 1
2
(K ± JKJ) , {K+,J}=0 , [K−,J ]=0 . (3.48)

We will see that this decomposition coincides exactly with the one of K in (3.47).
To do this, we use the fact that a Kähler manifold of dimension 2n always admits7

a parametrisation x = (x1, · · · , x2n) satisfying for 1 ≤ j ≤ n

|Vj〉 = i |Vn+j〉 , (3.49)

i.e., the coordinate xj is conjugate to xn+j. In this basis, J and Ω are

J ≡
(

0 −1
1 0

)
, Ω ≡ 1

2

(
−Im η−1 −Re η−1

Re η−1 −Im η−1

)
, (3.50)

7This ultimately coincides with showing that a Kähler manifold is also a complex manifold,
that is it admits a holomorphic parametrisation in terms of complex parameters zα = xα + iyα.
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where ηjk = 〈Vj|Vk〉. Then the structure of matrices that commute or anti-
commute with J is

K− =

(
a b
−b a

)
, K+ =

(
a b
b −a

)
. (3.51)

We can evaluate K to find exactly this form

Kµ
ν = −Ωµρ∂ρ∂νE = (K+)µν + (K−)µν (3.52)

where its two pieces are explicitly given by

K+ ≡
(

Im(η−1h) Re(η−1h)
−Re(η−1h) Im(η−1h)

)
, (3.53)

K− ≡
(

Im(η−1f) Re(η−1f)
Re(η−1f) −Im(η−1f)

)
, (3.54)

where hjk = 〈Vj|Ĥ|Vk〉 and fjk = 〈∂jVk|Ĥ|ψ0〉. This clearly shows that the two
pieces are given by K− = JH and K+ = JF as defined before (3.47).

In conclusion, from the decomposition (3.52) we immediately see again that
K has two contributions. One is related to the projected Hamiltonian H and
commutes with J . The other is related to the overlap of Ĥ |ψ0〉 with the double
tangent vectors |∂αVβ〉, which coincides with the one we previously described in
terms of the derivative of the projector and anti-commutes with J . Thus K− is a
complex linear map, while K+ is a contribution that makes K non-complex linear.

Finally, if we complexify tangent space, i.e., treat complex linear combinations
of |Vµ〉 as linearly independent, there exists a basis transformation that makes
J diagonal and brings K+ and K− respectively, into block diagonal and block
off-diagonal form, given by

J ≡ i

(
1 0
0 −1

)
,

K− = i

(
−η−1h 0

0 (η−1h)∗

)
,

K+ = i

(
0 (η−1f)∗

−η−1f 0

)
,

(3.55)

i.e., for Kähler manifolds the terms in (3.47) decouple nicely. For a non-Kähler
manifold, neither H nor F may commute with J , but even the decomposi-
tion (3.48) will not work for J2 6= −1.

In the next section, we will see that the term K+ = JF can be a blessing and
a curse: on the one hand, it can ensure that in systems with spontaneously broken
symmetry the eigenvalues of K contain a Goldstone mode. On the other hand, for
unfortunate choices of the variational family M we may encounter such massless
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modes even if there is no spontaneously broken symmetry (spurious Goldstone
mode).

Kähler vs. non-Kähler. We can relate the linearisation K with the pro-
jected Hamiltonian H via (3.47). For Kähler manifolds, this decomposition be-
comes particularly geometric, as the two pieces correspond to its complex linear
and complex anti-linear part.

3.3.4 Spurious Goldstone mode

The spectrum of K is not variational. In contrast to a variational approximation
of an eigenstate, our eigenvector |E(λ)〉 of K with

Kµ
ν Eν(λ) = λ Eµ(λ) , (3.56)

and |E(λ)〉 = Eµ(λ) |Vµ〉, does not satisfy

λ = ±〈E(λ)|iĤ|E(λ)〉 . (3.57)

The expectation value of the full Hamiltonian with respect to |E(λ)〉 is in general
not easily related to λ, as it would be for a variational state. It is also not true
that for every eigenvalue pair ±iω`, there exists a true eigenstate |E`〉 of Ĥ with
excitation energy E` − E0 ≤ ω`.

In fact, there are situations, where the true ground state |E0〉 is non-degenerate,
but K still has a zero eigenvalue associated to a massless Goldstone mode. This
typically occurs if we have a conserved quantity Â with [Â, Ĥ] = 0, such that
−iÂ |ψ〉 ∈ TψM everywhere as discussed in the context of Proposition 7. At this
point, the question is if the global energy minimum |ψ0〉 on M is invariant under

e−iÂ or not. Whenever the global minimum on ψ0 onM is not invariant, i.e., there
is a whole family |ψ0(ϕ)〉 = e−iϕÂ |ψ0〉 of approximate ground states, the generator
K will have a massless Goldstone mode

EµG = Pµψ0
(−iÂ) |ψ0〉 with Kµ

νEνG = 0 . (3.58)

Whenever the true ground state |E0〉 of the system is invariant under e−iÂ, this
Goldstone mode is spurious and merely an artefact of a spontaneous symmetry
breaking on M, but not on full P(H).

We illustrate this issue in Figure 3.2, where the Hamiltonian is spontaneously
broken only on the variational manifoldM, but not in the full Hilbert space, where
it has a unique ground state |E0〉.

This was pointed out in [92] as an important problem of approximating the
spectrum via linearised equations of motion rather than using the projected Hamil-
tonian. However, we also found that sometimes this can also be desirable to capture
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Figure 3.2: Spurious Goldstone mode. Even if the Hamiltonian has a unique
ground state |E0〉 without a spontaneously broken symmetry in full Hilbert space,

on a chosen submanifold M there may be inequivalent states |ψ0(ϕ)〉 = e−iϕÂ |ψ0〉
that all minimise the energy. This leads to a spontaneous breaking of the symmetry
generated by Â and the appearance of a spurious Goldstone mode.

|E0〉 ∈ H

M

|ψ0〉

|ψ0(ϕ)〉 = e−iϕÂ |ψ0〉

physical features of models with spontaneous symmetry breaking. In Chapter 6,
we will discuss an application where the gapless Bogoliubov excitation spectrum
of the Bose-Hubbard model can be shown to result from the diagonalization of the
generator (3.42) on a suitable variational manifold.

3.4 Spectral functions

Next, we would like to use the variational manifold M to estimate the spectral
function of a system with respect to the perturbation operator V̂ .

Given a Hermitian operator V̂ , the spectral function is

A(ω) = − 1

π
ImGR(ω), (3.59)

where GR is the retarded Green’s function

GR(ω) = −i

∫
dt eiωtΘ(t)

〈ψ0|[V̂ (t), V̂ ]|ψ0〉
〈ψ0|ψ0〉

(3.60)

with Θ(t) being the step function and V̂ (t) the Heisenberg evolved operator under
the system Hamiltonian Ĥ.

The definition in terms of the retarded Green’s function stems from linear
response theory. Indeed, let us suppose that a small external perturbing probe
field εϕ(t) couples to our system through the operator V̂ . That is, the system
state |ψε(t)〉 evolves under the perturbed Hamiltonian Ĥ + εϕ(t)V̂ . Then, let
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us measure the response of the system through the expectation value of the same
observable V̂ . As the perturbation is ideally infinitesimally small, we only consider
such response up to linear order in ε. Consequently, we define the time-domain
linear response as

δV (t) =
d

dε

∣∣∣∣
ε=0

〈ψε(t)|V̂ |ψε(t)〉
〈ψε(t)|ψε(t)〉

. (3.61)

Then in frequency domain we have that

δṼ (ω) ≡
∫
dt eiωtδV (t) = ϕ̃(ω)GR(ω). (3.62)

That is, GR is exactly the so-called linear susceptibility of the system, which is an
experimentally accessible quantity.

Given a variational manifold there are two possible paths to trying to approx-
imate A(ω).

1. We can calculate the quantity (3.61) after having projected the evolution of
|ψε(t)〉 on the manifold. In other words, we perform linear response theory
directly on the variational manifold. This leads us to express A(ω) in terms
of the eigendecomposition of the generator of linearised real time evolution
K introduced in (3.42).

2. Alternatively, one can try to approximate on the manifold the quantity

e−iĤtV̂ |ψ0〉 , (3.63)

that appears in equation (3.60). In this case one should note that in general
V̂ |ψ0〉 does not belong to the variational manifold, so one has to perform

some truncation even before applying the time evolution operator e−iĤt. The
other subtlety here is that one must make sure that the quantity (3.63) is
calculated with the correct global phase, as we explained in Section 3.2.3.

It seems to us that method 2 captures less the spirit of variational manifolds.
Indeed one has that the quantity V̂ |ψ0〉 would morally represent a small pertur-
bation around the groundstate |ψ0〉 and would thus naturally live in the tangent
space to the manifold of states at |ψ0〉. Representing V̂ |ψ0〉 as a vector of M
therefore is only meaningful if the manifold itself is a good representation of its
own tangent space. But this is not true for general manifolds and indeed there
is no uniquely defined method for representing V̂ |ψ0〉 on M. The first method,
on the other hand, can alternatively be thought of precisely as representing the
perturbations generated by V̂ on Tψ0M. Furthermore, we will show that method
1 leads to a closed expression for the spectral function from which it is immediate
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Figure 3.3: Linear response theory. We consider an approximate ground state
ψ0 ∈ M. While |ψ0〉 does not evolve in time, certain trajectories of nearby states
are approximately elliptic. A finite perturbation at time t′ changes the state to
|ψε(t′)〉 = eiεV̂ |ψ0〉. This state will then evolve according to the equations of
motion. We linearise by taking the limit ε → 0, where we find that the tangent
vector |δψ(t)〉 = d

dε
|ψε(t)〉 |ε=0 rotates in a way defined by the eigenmodes of K.

|ψg〉

1. t = 0

|ψε(t′)〉

2. t = t′ 3. t > t′ >

|δψ(t)〉

4. t > t′ >

to see that sgnA(ω) = sgnω (as it is in the full Hilbert space), while this cannot
be shown in general for method 2.

For these reasons in the next subsections we will focus on the details of the
first method, giving a final expression for the spectral function estimated in this
way in Proposition 10.

3.4.1 Linear response theory

A possible way of calculating spectral functions is thus to perform linear response
theory directly on the variational manifold. In this subsection we will then briefly
explain how this can be done. The idea is illustrated in Figure 3.3.

Let us consider a possibly time-dependent perturbation Â(t) of our unperturbed
Hamiltonian Ĥ0, such that Ĥε(t) = Ĥ0 + εÂ(t), and an observable B̂, whose
response we are interested in. For spectral functions, we will be interested in the
particular case where Â(t) = ϕ(t)V̂ for arbitrary functions ϕ(t) and B̂ = V̂ , but
we will for the moment keep our treatment general.

Our perturbed Hamiltonian gives rise to the time dependent real time evolution
vector field Xε(t), which is

Xε(t) = X0 + εXA(t) , (3.64)

where X0 and XA(t) are the evolution vector fields associated to the Hamiltoni-
ans Ĥ0 and Â(t) respectively. The solution of this perturbed evolution is |ψε(t)〉
satisfying

Qψ
d
dt
|ψε(t)〉 = X µ

ε (t) |Vµ〉 . (3.65)
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For the following Proposition 8 it would not be important whether the evolu-
tion vector field is defined according to the Lagrangian or McLachlan variational
principles, as long as it has the form (3.64). However, later we will be interested in
the case in which the perturbed evolution happens around the approximate ground
state |ψ0〉 and it will be important that this state is also a fixed point of the time
evolution. So, as was the case in Section 3.3.2, from now on we will suppose that
the evolution vector fields are defined according to the Lagrangian evolution (3.9).

We are interested in the response in expectation value of the observable B̂ at
linear order in ε, that is

δB(t) = d
dε
〈ψε(t)|B̂|ψε(t)〉
〈ψε(t)|ψε(t)〉

∣∣∣
ε=0

= δxµ(t) ∂µB(x(t)) ,
(3.66)

where we defined the propagated perturbation

δxµ(t) |Vµ〉 = Qψ
d
dε
|ψε(t)〉

∣∣∣
ε=0
∈ Tψ(t)M (3.67)

which can be evaluated as follows.

Proposition 8. Given a variational manifold M we define (according to the La-
grangian action principle) the free projected real time evolution |ψ(t)〉 as governed
by the free Hamiltonian Ĥ0 and the perturbed projected real time evolution |ψε(t)〉
as governed by the perturbed Hamiltonian Ĥε(t) = Ĥ0 + εÂ(t), both with the same
initial state |ψ(0)〉. Then, the propagated perturbation, defined according to (3.67),
is given by

δxµ(t) = −
∫ t

−∞
dt′ (dΦt−t′)

µ
ν Ωνρ ∂ρA(t′)

∣∣
ψ(t′)

, (3.68)

where dΦt is the linearised free evolution flow8.

Proof. This can be shown in a standard way by using the interaction representa-
tion. We sketch a proof in Appendix A.1.

Put simply, δxµ is the superposition of all propagated perturbations, i.e., a
perturbation

−Jν
ρPρψ(t′)Â(t′) |ψ(t′)〉 = −Ωνρ ∂ρA

∣∣
ψ(t′)

(3.69)

at time t′ is evolved with the linearised free evolution dΦt−t′ to time t where it
contributes towards δxµ(t).

8See footnote 5.
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If we now take as initial state |ψ(0)〉 the approximate ground state |ψ0〉, that
is a fixed point of the projected evolution, we have that the free evolution is trivial
|ψ(t)〉 = |ψ0〉. It also follows that dΦt is a linear map from Tψ0M onto itself given
by

dΦt = eKt , (3.70)

where K is the generator of the linearised flow introduced in (3.42). The map dΦt

can therefore be evaluated in terms of the spectral decomposition of K.

Proposition 9. The linear response to a perturbation Â(t), measured in terms of
the observable B̂, for a system initially in the state ψ0 ∈M is given by

δB(t) = −i
∑
`

sgn(iλ`)[Eµ(λ`)∂µB]

×
∫ t

−∞
dt′ eλ`(t−t

′) [Eν(λ`)∂νA(t′)]
∗
,

(3.71)

where all derivatives are evaluated at |ψ0〉 and Eµ(λ`) is an eigenvector of K such
that

Kµ
νEν(λ`) = λ`Eµ(λ`) , (3.72)

and normalised so that Eµ(λ`)ωµνEν(λ`)∗ = i sgn(iλ`).

Proof. We can always decompose K in terms eigenvectors E(λ) with eigenvalues

λ and dual eigenvectors 9 Ẽ(λ), such that

Kµ
ν =

∑
`

λ` Eµ(λ`) Ẽν(λ`) . (3.73)

The eigenvalues λ` will come in conjugate pairs ±iω`, which implies that the associ-
ated eigenvectors and dual eigenvectors are complex and mathematically speaking
lie the complexified tangent space.
However, as K is a real map, we must have Eµ(iω) = Eµ(−iω)∗. We then no-

tice that Ωµν Ẽν(−iω) is an eigenvector of K with eigenvalue iω. To see this it is
sufficient to apply K to it and use the symplectic property KΩ = −ΩKᵀ. It
is then always possible to normalise the eigenvectors Eµ such that the relation
Ωµν Ẽν(−iω) = −i sgn(ω)Eµ(iω) = −i sgn(ω)Eµ(−iω)∗ holds. 10 From this, invert-

ing Ω and exploiting its antisymmetry, we have Ẽµ(−iω) = i sgn(ω)Eν(−iω)∗ωνµ.

9The dual vector Ẽµ(λ) is defined by Ẽµ(λ) Eµ(λ′) = δλ,λ′

10Doing this rescaling while maintaining the property Eµ(iω) = Eµ(−iω)
∗

is actually only
possible if Eµ(−iω)ωµνEν(iω) = ia with a > 0, ∀ω > 0. But this is always true because by
definition K = −Ωh, where hµν = ∂µ∂νE is positive definite (Hessian at a local minimum). It
follows that −ωK > 0 and therefore 0 < −Eµ(iω)

∗
ωµρK

ρ
νEν(iω) = −iωEµ(−iω)ωµνEν(iω) =

ωa.
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Using this and (3.73), we can rewrite (3.70) as

(dΦt)
µ
ν = i

∑
`

sign(iλ`) e
λ`t Eµ(λ`) Eρ(λ`)∗ωρν . (3.74)

Combining this with (3.66) and (3.68) we have (3.71).

3.4.2 Spectral response

To calculate spectral functions we now just need to evaluate the result (3.71) for
Â(t) = ϕ(t)V̂ and B̂ = V̂ and then take the Fourier transform.

Proposition 10. The spectral function with respect to the perturbation operator
V̂ , estimated by performing linear response theory on the variational manifold M,
is

A(ω) = sgn(ω)
∑
`

|Eµ(iω`) ∂µV |2 δ(ω − ω`) , (3.75)

where E i(iω`) are the eigenvectors of K, normalised such that
Eµ(iω`)

∗ωµνEν(iω`) = i sgn(ω`), and the sum runs over all possible values of ω`
(appearing in pairs of opposite signs).

Proof. Evaluating the Fourier transform of (3.71) and comparing with (3.62) leads
us to the estimate for the retarded Green’s function

GR(ω) = −i
∑
`

sgn(ω`)|Eµ(iω`) ∂µV |2
∫
dt ei(ω−ω`)tΘ(t)

=
∑
`

sgn(ω`)|Eµ(iω`) ∂µV |2

×
[
P

1

ω − ω`
− iπδ(ω − ω`)

]
,

(3.76)

where the Sokhotski-Plemelj formula has been used. The imaginary part of this
expression can be then be inserted into the definition of the spectral function (3.59),
leading to the result (3.75).

Spectral functions calculated in this way have the desirable property sgnA(ω) =
sgnω.

Kähler vs. non-Kähler. On a non-Kähler manifold, where we have two
inequivalent definitions of the equations of motion, it only makes sense to perform
linear response theory with the ones coming from the Lagrangian action principle,
as their fixed point coincides with the approximate ground state.
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3.5 Imaginary time evolution

In the previous sections we have assumed we knew the state |ψ0〉 that minimises
the energy on the variational manifold M. Solving this optimisation problem is
often non-trivial and different methods may be appropriate in different situations.
However, we would like here to present a method, known as projected imaginary
time evolution, that makes use of the same geometric notions introduced in Sec-
tion 3.2 for real time evolution.

On full Hilbert space, imaginary time evolution is

d

dτ
|ψ(τ)〉 = −(Ĥ − E(τ)) |ψ(τ)〉 , (3.77)

which can be integrated to the solution

|ψ(τ)〉 =
e−Ĥτ |ψ(0)〉√
〈ψ(0)|e−2Ĥτ |ψ(0)〉

. (3.78)

This will converge in the limit τ → ∞ to a true ground state if and only if the
initial state |ψ(0)〉 had some non-zero overlap with it.

Given a variational manifoldM, we can approximate imaginary time evolution
on it and hope that it will also converge to the approximate ground state |ψ0〉.
This can be done by projecting (3.77) onto tangent space. Contrary to real time
evolution, there does not exist a formulation of imaginary time evolution in terms of
an action principle, so the projection can only be done according to the McLachlan
minimal error principle.

We would like to minimise the local projection error∥∥∥ d
dτ
|ψ(τ)〉 − (E − Ĥ) |ψ(τ)〉

∥∥∥ , (3.79)

imposing that d
dτ
|ψ(τ)〉 ∈ TψM, which leads to

d
dτ
|ψ(τ)〉 = Pψ(τ)(E − Ĥ) |ψ(τ)〉

= −Pψ(τ)Ĥ |ψ(τ)〉 ,
(3.80)

where we used Pψ |ψ〉 = 0.
This leads to the projected evolution equation

dxµ

dτ
|Vµ〉 = −Pψ(τ)Ĥ |ψ(τ)〉 , (3.81)

66



CHAPTER 3. VARIATIONAL PRINCIPLES

Figure 3.4: Imaginary time evolution. We illustrate, analogously to Figure 3.1,
the imaginary time evolution vector field Fµ on the variational family M which
is given by the orthogonal projection of −Ĥ |ψ〉 through Pψ onto M. This vector
field flows towards the global minimum ψ0 of the energy function.

M
TψM

Fµ = Pµψ(−Ĥ) |ψ〉

Pµψ

−Ĥ |ψ〉

ψ

ψ0

from which we can define the imaginary time evolution vector field F everywhere
on M, such that

dxµ

dτ
= Fµ(x) = −Pµψ(x)Ĥ |ψ(x)〉 . (3.82)

This vector field can be understood as follows.

Proposition 11. Given a manifold M, the projected imaginary time evolution is
given by

dxµ

dτ
= Fµ(x) = −Gµν(∂νE) , (3.83)

where E(x) is the energy function, defined in the context of equation (2.47). Its
solution x(τ) monotonically decreases the energy.

Proof. We apply the projector Pµψ in (3.82) to find

Fµ = −PµĤ |ψ〉 = − 2

〈ψ|ψ〉
Gµν Re 〈Vν | Ĥ |ψ〉 . (3.84)

We simplify this by using (2.49). Plugging this back into the previous equations,
we arrive at (3.83). To show that the energy monotonically decreases, we find

dE

dτ
= (∂µE)

dxµ

dτ
= −(∂µE)Gµν (∂νE) ≤ 0 , (3.85)

which follows from the positivity of Gµν .
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We thus recognize projected imaginary time evolution (3.83) as gradient de-
scent of the energy function E(x) with respect to the natural geometry encoded in
the metric G on the manifoldM, as illustrated in Figure 3.4. It is our experience
that solving (3.83) numerically has better convergence properties than perform-
ing a naive gradient descent, where we just try to minimise the energy E(x) as a
function of x assuming a flat metric.

When replacing the fixed time step by a line search, imaginary time evolution
becomes equivalent to Riemannian gradient descent. More specifically, the litera-
ture on Riemannian optimisation [93–96] describes how the Riemannian geometry
(i.e., the metric) of a manifold can be taken into account in each of the standard
optimisation algorithms such as the gradient descent method, Newton’s method,
the conjugate gradient method, and quasi-Newton methods such as the (limited
memory) Broyden–Fletcher–Goldfarb –Shanno scheme [97–100].

Kähler vs. non-Kähler. The results discussed in this section do not rely
on the manifoldM being a Kähler manifold. The McLachlan projection principle
is the only one that can be resonably defined for imaginary time evolution and
leads to the desirable gradient descent result for any real differentiable manifold,
independently of the Kähler property.

3.5.1 Conserved quantities

In many situations, one would like to further constrain our variational manifold
by requiring that certain operators ÂI have fixed expectation values AI . Geomet-
rically, this amounts to restricting the search to the submanifold

M̃ =
{
ψ ∈M

∣∣ 〈ψ|ÂI |ψ〉
〈ψ|ψ〉 = AI ∀ I

}
⊂M . (3.86)

For example, for Hamiltonians commuting with the total particle number op-
erator N̂ , one often wants to find lowest energy state within an eigenspace of N̂
with N̂ |ψ〉 = N |ψ〉. To approximate such a state on a non-linear variational man-
ifoldM, we can search for minimal energy state on the submanifold of states with
〈N̂〉 = N .

In general, this manifold M̃ will not satisfy the Kähler property anymore. In
particular, if we only fix a single expectation value, we will generically reduce the
dimension of a Kähler M to an odd dimension, which cannot be again a Kähler
manifold. However, we have seen that for the purpose of finding the state of
minimal energy, we can apply formula (3.77) on the reduced manifold, regardless
of the Kähler property.

Instead of finding a new parametrisation of the reduced variational manifold,
as long as we choose an initial state for the imaginary time evolution that satisfies
the desired constraints, we can also just implement them locally. We can indeed
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modify the imaginary time evolution vector field F by further projecting it onto
the restricted tangent space T M̃. In this way the respective expectation values
are preserved by construction.

If there are several quantities ÂI that we wish to fix, TψM̃ is given by the sub

tangent space orthogonal to the span of Xµ
I = PµψÂI |ψ〉. To project onto it, we

define

g̃IJ = Xµ
I gµν X

ν
J , (3.87)

which gives rise to the projector

P̃ µ
ν = δµν −Xµ

I G̃
IJXρ

J gρν , (3.88)

where G̃IJ is the inverse of g̃IJ (or pseudo inverse, if not all constraints are inde-
pendent). The modified imaginary time evolution vector field is then

F̃µ = P̃ µ
νFν , (3.89)

which will conserve all the expectation values AI(τ). In analogy to (3.28), this is
equivalent to

F̃µ = −G̃µν(∂νE) with G̃µν = P̃ µ
σP̃

ν
ρG

σρ . (3.90)

If we want to fix the expectation value of the number operator N̂ , we have the
scalar function N(x) = 〈N̂〉 with Xµ = PµψN̂ |ψ〉 = Gµν∂νN , such that

F̃µ = Fµ − Gµν(∂νN)

(∂σN)Gσρ(∂ρN)
(∂λN)Fλ , (3.91)

which clearly satisfies dN
dτ

= (∂µN)F̃µ = 0.
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Chapter 4

Gaussian states

In this Chapter we will introduce a very important family of variational states,
namely Gaussian states. We will see that both fermionic and bosonic Gaussian
states can be understood as examples of a much larger class of states, known as
group-theoretic coherent states, and we will derive some of their most important
properties.

Part of the material presented in this chapter was published in reference [101]:

T. Guaita, L. Hackl, T. Shi, E. Demler, J.I. Cirac,
Generalization of group-theoretic coherent states for variational calculations,
Phys. Rev. Research 3, 023090 (2021), used under cc by 4.0.

4.1 Overview

As already mentioned in the Introduction in Section 1.4, Gaussian states represent
a very successful variational set of states. They can be defined for both bosonic
and fermionic systems and in both cases represent exact ground states of non-
interacting Hamiltonians. From the perspective of variational methods, they can
be readily used as ansätze for an approximate description of the physical states
of systems which are weakly interacting. This approach lies at the heart of many
widely applied methods such as the Hartree-Fock methods for fermionic systems
or the Bogoliubov theory for bosonic systems. Furthermore, Gaussian states are
exceptionally easy to handle computationally, as most relevant quantities can be
expressed in very simple forms through the use of Wick’s theorem.

In this chapter we will introduce the necessary formalism to define and ma-
nipulate bosonic and fermionic Gaussian states. However, to set these states into
a broader perspective we will first take a step back and introduce a more general
class of states, known as group-theoretic coherent states. These states were in-
troduced independently by Gilmore [62, 102] and Perelomov [63, 103] and can be
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constructed for a wide range of different quantum systems. We will see that Gaus-
sian states represent one particular example of group-theoretic coherent states in
systems made up of bosonic or fermionic modes. We will also see that many of the
advantageous computational properties of Gaussian state derive in fact from more
general properties of group-theoretic coherent states. Finally, understanding the
structure of group-theoretic coherent states will prove itself very useful when ex-
ploring the possibilities of defining variational manifolds that go beyond Gaussian
or coherent states, which will be the subject of Chapter 5.

Therefore, in Section 4.2, we will first focus on defining group-theoretic coher-
ent states. The only requirement to construct a set of these states is to have a
Hilbert space on which acts a unitary representation of a Lie group. Given such
a space and such a representation, we will show a construction which ultimately
defines a well-behaved submanifold of the Hilbert space. For states of this mani-
fold, computing expectation values of operators and doing other manipulations is
particularly efficient thanks to the group-theoretic structures with which they are
endowed.

In Section 4.3, we will then move on to define bosonic Gaussian states. Their
understanding will be made easier by using the language of group-theoretic coher-
ent states introduced in the previous section. We will collect a series of results
that, combined appropriately, allow to make an efficient use of Gaussian states as
a variational manifold. In Section 4.4, we will then repeat the analogue construc-
tion for fermionic Gaussian states, highlighting the parallelism with their bosonic
counterparts.

Additionally to bosonic and fermionic Gaussian states, in Example 10 we will
introduce another important example of group-theoretic coherent states, namely
spin-1

2
coherent states. These states have many useful applications and we will

elaborate on them further in Chapters 5 and 7.

4.2 Group-theoretic coherent states

In this section, we review the basic definition and properties of group-theoretic
coherent states, basing ourselves mostly on [60].

We consider a semi-simple Lie group G with Lie algebra g. Let U be a unitary
representation of G on the Hilbert space H, i.e., U(g) is a unitary operator on H
for every group element g ∈ G, such that

U(g1)U(g2) = U(g1g2) ∀g1, g2 ∈ G . (4.1)

The representation of the group induces a corresponding representation of the
algebra. Indeed, for group elements g sufficiently close to the identity, it is pos-
sible to write U(g) = exp(KiẐi), where Ẑi is a set of anti-Hermitian operators
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representing a basis of the algebra g and Ki are real coefficients. We have the
commutation relations

[Ẑi, Ẑj] = ckijẐk , (4.2)

fixed by the structure constants ckij of the algebra. Note that here, as in the rest of
the chapter, we use Einstein’s convention of summing implicitly over all repeated
indices.

The action of U(g) on the operators Ẑi follows the adjoint representation of
the group. More precisely, we have

U−1(g) Ẑi U(g) = Ad(g)ji Ẑj , (4.3)

i.e., U−1(g) Ẑi U(g) is just a linear combination of operators Ẑi with the coefficients
given by the adjoint matrix Ad(g)ji , which is a fixed property of the group1.

The set Mφ of group-theoretic coherent states is then defined as the set of
states obtained by acting with all possible U(g) on a fixed reference state |φ〉 ∈ H,
i.e.,

Mφ = { U(g) |φ〉 : g ∈ G} ⊂ H . (4.4)

Mφ is determined by the choice of the group G, of its representation U and of
the reference state |φ〉. The elements of Mφ are parametrized by group elements
g. This parametrization may entail some redundancies, as there might exist in G
a stabilizer subgroup for |φ〉

Sφ = { g : U(g) |φ〉 = eiθ |φ〉} , (4.5)

i.e., a set of group transformations that leave |φ〉 unchanged up to an overall phase,
which is irrelevant for what concerns the definition of quantum states. The set
of inequivalent group-theoretic coherent states is then isomorphic to the quotient
G/Sφ.

For our purposes, it is necessary to restrict the possible choices for the reference
state |φ〉. We will indeed assume that |φ〉 is a so-called lowest weight state of the
representation U . To understand what is meant by this it is necessary to give
some more details about the structure of the algebra operators [104, 105]. We will
explain this in the rest of the section.

It is always possible to pick a set of ` linearly independent mutually commuting
anti-Hermitian operators Ĥa = H i

aẐi, defined by H i
a ∈ R for a = 1, . . . , `, such

that [Ĥa, Ĥb] = 0. In the standard theory of Lie algebras, the space spanned
by real linear combinations of Ĥa, which we will indicate with h, is known as a
Cartan subalgebra of g. The choice of h is not unique, however all possible choices

1In particular, if we can write U(g) = exp(KiẐi), then it is straightforward to see that

Ad(g)ji = [exp ad(K)]
j
i where the matrix ad(K) is given by ad(K)ji = Kkcjki.
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are isomorphic and will therefore have the same dimension `, known as the rank
of the algebra. A given a choice of Cartan subalgebra identifies the following
structures:

� There exist real vectors η = (η1, . . . , η`) ∈ R` and corresponding operators
Êη such that

[Ĥa, Êη] = iηaÊη . (4.6)

The operators Êη will be linear combinations of Ẑi, however they will in gen-
eral be complex linear combinations and therefore will not be anti-Hermitian
operators.

� The vectors η are known as roots of the algebra and the operators Êη as root
space operators. There is a finite set of non-zero roots which we indicate as
∆. The roots always come in pairs (η,−η). One can choose a conventional
ordering of the roots such that they split into the two disjoint sets of positive
roots ∆+ and negative roots ∆−, with ∆ = ∆+∪∆− and −η ∈ ∆− for every
η ∈ ∆+.

� Let us indicate with gC the space of all complex linear combinations of al-
gebra elements Ẑi, which is known as the complexified Lie algebra. The
operators Ĥa together with the operators Êη span gC under complex linear
combinations.

A Hilbert space vector |µ〉 ∈ H is called a weight vector of the representation
if it is a common eigenstate of all Cartan subalgebra operators Ĥa, i.e., Ĥa |µ〉 =
iµa |µ〉 for some number µa ∈ R ∀a. Among the weight vectors |µ〉 there is a unique
one, called the lowest weight vector, such that Êη |µ〉 = 0 for all negative roots
η ∈ ∆−. From now on we assume that the reference state |φ〉 that appears in the
definition (4.4) of group-theoretic coherent states is a lowest weight vector |µ〉 for
a given choice of Cartan subalgebra and root ordering.

Example 10 (Spin-1
2

coherent states). Spin-1
2

coherent states are defined with re-
spect to the group SU(2) and algebra su(2), represented as complex 2-by-2 matrices.
For the algebra, we choose the basis Ẑi = iσ̂i with σ̂i being the well-known Pauli
operators. The rank of su(2) is 1 and, as conventional, we choose Ĥ = i

2
σ̂3 as

basis of the Cartan subalgebra h. For this choice, we have the roots ±η = ±1, with
the respective root space operators

Ê±η = σ̂± =
1

2
√

2
(σ̂1 ± iσ̂2) =

1

2
√

2
(−iẐ1 ± Ẑ2) . (4.7)

The resulting weight vectors are |↑〉 and |↓〉 because they are the eigenvectors of
Ĥ = i

2
σ̂3. Due to Ê−η |↓〉 = 0, the state |↓〉 is the lowest weight vector, which we
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thus choose as reference state. The family of group-theoretic coherent states results
then from applying all possible group elements U ∈ SU(2) and is given by

MSU(2) = {eiKiσ̂i |↓〉 : K ∈ R3} . (4.8)

This construction can be readily extended to a system of N spin-1
2
, in which case

the Cartan algebra will be composed of N operators Ĥn = i
2
σ̂n3 , one for each spin

n, and the lowest weight vector will be |µ〉 = |↓ . . . ↓〉. In such case, spin coherent
states take the form

eiKi,nσ̂ni |↓ . . . ↓〉 =
N∏
n=1

(
eiKi,nσ̂i |↓〉n

)
, (4.9)

with the coefficients Ki,n taking values for i = 1, 2, 3 and for each spin n = 1, . . . , N
and σ̂ni representing the i-th Pauli operator acting on the n-th spin. In other terms,
the set of spin-1

2
coherent states for a system of multiple spins is simply the set of

all normalised product states.

4.2.1 Group-theoretic coherent states as variational man-
ifolds

We now enquire on the use of the manifold of group-theoretic coherent statesMφ

as a variational submanifold for the Hilbert space H according to the methods
discussed in Chapters 2 and 3. As discussed in the Introduction in Section 1.3,
the practical usefulness of any set of variational states depends on the possibility
of manipulating them in a way that is computationally inexpensive. This depends
on two considerations.

First, the dimension of the manifolds of group-theoretic coherent states is
equal to the dimension of the corresponding Lie algebra g. Indeed, the states
are parametrised by Lie group elements, and the Lie group is itself by definition a
manifold of dimension dim g. Although there are in general no constraints on the
dimensions that the algebras can have, in most cases of practical interest the Lie
algebras defined on H have a dimension that scales polynomially in the system
size N , guaranteeing an efficient parametrisation of the manifold. In Example 10,
for instance, the algebra has dimension 3N .

Second, we must evaluate the practicability of computing expectation values of
relevant observables. Again, in most cases of practical interest, the system’s most
relevant observables (e.g., the Hamiltonian) can be expressed as polynomials in
the algebra operators Ẑi. This means that relation (4.3) can be used to compute
expectation values efficiently. Indeed, the expectation value on U(g) |µ〉 of any
monomial of order d of algebra operators can be expressed as

〈µ|U †(g) Ẑi1Ẑi2 · · · ẐidU(g)|µ〉 = Ad(g)j1i1 · · ·Ad(g)jdid 〈µ|Ẑj1 · · · Ẑjd |µ〉 , (4.10)
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where 〈µ|Ẑj1 · · · Ẑjd|µ〉 is a d dimensional tensor that can be computed using stan-
dard algebra properties. The sum (4.10) then requires evaluating order Md terms,
where M is the dimension of the Lie algebra. In other words, provided that the
observables of interest can be expressed as polynomials of a fixed – and possibly
small – degree d, then evaluating expectation values for group-theoretic coherent
states scales polynomially in the manifold dimensions.

4.2.2 Tangent space and Kähler structure

In the previous chapters we have also explained how the geometric properties of
a variational manifold play an important role in its application within variational
methods. In particular, the tangent spaces to the manifold and their Kähler prop-
erties are a key aspect. We will therefore conclude our discussion of group-theoretic
coherent states by analysing their tangent spaces.

Let us consider the tangent space T|ψ(g0)〉M at the state |ψ(g0)〉 ≡ U(g0) |µ〉,
parametrised by the group element g0 ∈ G. To better understand this space it
is convenient to introduce a new local parametrisation of the manifold of group-
theoretic coherent states

|ψ(x)〉 = U(g0) exp(xiẐi) |µ〉 . (4.11)

Because of the group property (4.1) this parametrisation locally gives rise to the
same manifold as (4.4). However, it is easier to take derivatives with respect to
the parameters x, allowing us to compute the corresponding tangent space basis
of T|ψ(g0)〉M according to (2.24), that is

|Vi〉 = Qψ(g0)
∂
∂xi
|ψ(x)〉

∣∣
x=0

(4.12)

= Qψ(g0)U(g0) Ẑi |µ〉 . (4.13)

We are thus able to compute a simple closed expression for the tangent vectors
at a given point |ψ(g0)〉. Of course, if we wanted to compute tangent vectors also at
other points, i.e., at x 6= 0, then the parametrisation (4.11) would no longer be very
helpful. However, in practice such a local description is often already enough, for
two reasons. First, for many applications it is enough to focus on one tangent space
– usually the tangent space at the approximate ground state. This is for instance
the case when computing excitation spectra or spectral functions with the methods
discussed in Sections 3.3 and 3.4. Second, even when computing time evolution,
in numerical applications this is normally done through a series of small discrete
time steps δt. At each time step the local tangent space T|ψ(g(t0))〉M can be used
to compute ẋ, which determines the increment of the local parameters δt ẋ. The
group multiplication rule can then be used to define a new group theoretic coherent
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state |ψ(g(t0 + δt))〉 through g(t0 + δt) = g(t0) exp
(
δt ẋiẐi

)
. The procedure can

then be repeated at each step only involving the local tangent space.
Concerning the Kähler structures and geometric properties of the manifold of

group theoretic coherent states, it is possible to also obtain simple closed formulas
for the metric and symplectic forms.

Proposition 12. The restricted Kähler structures of the manifoldMµ at the point
|ψ(g)〉 ≡ U(g) |µ〉, expressed with respect to the tangent space basis (4.13), are

gij = − 〈µ|ẐiQµẐj+ẐjQµẐi|µ〉〈µ|µ〉 , (4.14)

ωij =
〈µ|ẐjQµẐi−ẐiQµẐj |µ〉

〈µ|µ〉 , (4.15)

which are independent of g and thus everywhere the same.

Proof. We can straightforwardly compute

〈Vi|Vj〉 = 〈µ|Ẑ†iU †(g)Qψ(g)U(g)Ẑj|µ〉 (4.16)

= −〈µ|ẐiQµẐj|µ〉 , (4.17)

where we used U †(g)Qψ(g)U(g) = Qµ and Ẑ†i = −Ẑi.

Whether these structures give rise to a Kähler manifold or not is more compli-
cated to assess. In reference [69] we have shown the following:

� Semi-simple compact algebra. If the group G is compact (and so also
the Lie algebra g is compact), then the manifoldMµ is always Kähler, if |µ〉
is the lowest weight state of the representation.

� Semi-simple non-compact algebra. If the group is non-compact, not all
choices of Cartan subalgebra and lowest weight vector give rise to Kähler
manifolds. This has to be assessed by analysing the root structure of the
algebra and in particular the imaginary or non-imaginary nature of roots.
See Chapter 5B of reference [69].

4.3 Bosonic Gaussian states

We consider a system of N bosonic modes with creation and annihilation operators
b̂†n and b̂n. The index n = 1, . . . , N labels the modes. For each mode we define the
following Hermitian operators, known as quadrature operators,

x̂n =
1√
2

(b̂†n + b̂n) , p̂n =
i√
2

(b̂†n − b̂n) , (4.18)
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and collect them in a single vector

x̂ = (x̂1, . . . , x̂N , p̂1, . . . , p̂N)ᵀ . (4.19)

They satisfy the commutation relations

[x̂i, x̂j] = i Ωij , (4.20)

where Ω is the anti-symmetric matrix

Ω =

(
0 1N
−1N 0

)
. (4.21)

We identify the vacuum state |0〉 as the state for which b̂n |0〉 = 0 for all n.
On the bosonic Fock space defined by these modes it is possible to identify two

different group representations. We can consider the group of unitary operators
S = eQ̂, where Q̂ is any anti-Hermitian homogeneous order 2 polynomial in the
operators x̂. We will refer to them as squeezing operators. Or we can consider the
group of unitary operators D = eL̂, where L̂ is any anti-Hermitian homogeneous
order 1 polynomial in the operators x̂. We will refer to them as displacement
operators.

Both squeezing and displacement operators give a unitary representation of
a Lie group. Squeezing operators S represent the real symplectic group, while
displacement operators D represent the Heisenberg group. Thus in both cases we
can use them to construct a corresponding manifold of group-theoretic coherent
states, according to the principles set out in the previous section. As for both rep-
resentations the lowest weight state is the vacuum |0〉, we can define the following
sets of states:

MCoherent = {D |0〉 ∀D} , (4.22)

MSqueezed = {S |0〉 ∀S} , (4.23)

MGaussian = {DS |0〉 ∀D, ∀S} . (4.24)

We will refer to the states (4.22), generated by acting on the vacuum with any
possible displacement operator, as bosonic coherent states and to the states (4.23),
generated by acting on the vacuum with any possible squeezing operator, as bosonic
squeezed states. Finally, we will also consider the states (4.24), generated by act-
ing on the vacuum with any possible combination of displacement and squeezing
operators. We will refer to these as the full set of bosonic Gaussian states.

On a more technical side, note that only the real symplectic group, repre-
sented by squeezing operators, is a semi-simple Lie group. The Heisenberg group
represented by the displacement operators is not semi-simple. Therefore, strictly
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speaking, only squeezed states are truly group-theoretic coherent states accord-
ing to the definition of Section 4.2. Nonetheless, we will see that for the non
semi-simple Heisenberg group it is still possible to make constructions almost fully
analogous to the ones that underpin group-theoretic coherent states2. To what
extent this procedure can be generalised and whether there exists a systematic
way to define group-theoretic coherent states also for generic non semi-simple Lie
groups is a very interesting question, which however goes beyond the scope of the
present work.

In the next sections we will now study more in detail at the two sets of operators
– squeezings and displacements – that we have just defined.

4.3.1 Squeezing operators

The squeezing unitary operators S that we have defined give a unitary represen-
tation of the Lie group of real symplectic matrices3

Sp(2N,R) = {S ∈ GL(2N,R) : SᵀΩS = Ω} , (4.25)

with Ω defined in (4.21). Similarly, the set of anti-Hermitian operators Q̂ give a
representation of the symplectic Lie algebra

sp(2N,R) = {K ∈ gl(2N,R) : ΩK +KᵀΩ = 0} . (4.26)

Indeed, for each matrix K ∈ sp(2N,R), one can construct a symmetric matrix
h = ΩK and the corresponding anti-Hermitian Hilbert space operator

Q̂(K) =
i

2
x̂ᵀhx̂ =

i

2
x̂ᵀΩKx̂ . (4.27)

Similarly, for any matrix S ∈ Sp(2N,R) that can be written as S = eK for some
K ∈ sp(2N,R), one can define the corresponding unitary

S(S) = S(eK) = eQ̂(K) . (4.28)

The operators S(S) constitute a group representation, in the sense that one can
show that4

S(S)S(S̃) = S(SS̃) . (4.29)

2Indeed, the manifold (4.22) of bosonic coherent states is a very well-behaved set of states that
shares all the desirable properties of group-theoretic coherent states and, as the name suggests,
represents the original source of inspiration that led to the definition of group-theoretic coherent
states.

3To be completely precise they are a unitary representation of the double cover of the group
Sp(2N,R), known as the metaplectic group Mp(2N,R).

4As discussed in footnote 3 they rigorously constitute a representation only of the double
cover of the group. In practice this means that relation (4.29) may be valid only up to a sign.
For more detail on how to compute such sign see [106].
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Furthermore, the adjoint action of squeezing operators on the quadratures is given
by

S†(S) x̂iS(S) = Sij x̂j . (4.30)

The algebraic structure of the quadratic operators Q̂ can be further highlighted
by noticing that among them we can choose the Cartan operators

Ĥn = i(b̂†nb̂n +
1

2
) , (4.31)

and root space operators

Ê+η(n,m) = ib̂†nb̂
†
m, Ê−η(n,m) = ib̂nb̂m, n ≤ m

Ê+η̃(n,m) = b̂†nb̂m, Ê−η̃(n,m) = b̂nb̂
†
m, n < m (4.32)

corresponding to the root vectors η
(n,m)
a = (δan + δam) and η̃

(n,m)
a = (δan − δam).

All algebra operators Q̂ can be expressed as complex linear combinations of the
Cartan and root space operators. The lowest weight vector of this representation
is indeed the Fock vacuum |0〉 as it is an eigenstate of all Ĥn and is annihilated by
all Ê−.

Finally, a generic squeezing operator S(S) can always be split as

S(S) = S(Tu) = S(T )S(u) , (4.33)

with u and T satisfying

S(u) |0〉 = eiθ |0〉 and ΩT = T−1Ω . (4.34)

These requirements actually fix a unique solution given5 by T =
√
SSᵀ and

u = T−1S. Supposing that T = eK , for some symplectic generator K, the con-
dition (4.34) on T is then equivalent to {K,Ω} = 0. Considering that K is also
symplectic, it must then have the form

K =

(
A B
B −A

)
(4.37)

5Indeed, considering that T should also be symplectic, i.e., T ᵀΩT = Ω, we have that ΩT =
T−1Ω implies T = T ᵀ. The condition S(u) |0〉 = eiθ |0〉 on the other hand implies uuᵀ = 1, as
can be seen by considering

1 = 2Re 〈0|x̂ x̂ᵀ|0〉 = 2Re 〈0|S†(u) x̂ x̂ᵀ S(u)|0〉 (4.35)

= u (2Re 〈0|x̂ x̂ᵀ|0〉) uᵀ = uuᵀ . (4.36)

Using these two properties one immediately has SSᵀ = T 2.
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with A and B real symmetric N ×N matrices. Therefore

S(T ) = exp

(
i

2
ΩijK

j
k x̂ix̂k

)
(4.38)

= exp
(

(K+)nm b̂
†
n b̂
†
m − (K∗+)nm b̂nb̂m

)
, (4.39)

with K+ = 1
2
(A+ iB). This implies in particular that a squeezed state S(S) |0〉 =

eiθS(T ) |0〉 does not actually depend on all the information contained in S but
rather only on T (or equivalently K+). It is nonetheless for many applications
convenient to keep in mind the formalism involving the full symplectic group.

4.3.2 Displacement operators

The displacement operators can be parametrised as

D(β) = exp(iβix̂
i) , (4.40)

by the set of real numbers β ∈ R2N . They fulfil the group relation

D(β)D(β′) = D(β + β′) exp

(
− i

2
βiΩijβ

′
j

)
, (4.41)

and, on the quadrature operators, they have the adjoint action

D†(β) x̂iD(β) = x̂i − Ωijβj . (4.42)

It may also be useful to split D(β) into terms that contain only creation or
only annihilation operators. For this, it follows from (4.41) that

D(β) = D+D−D0 , (4.43)

with

D+ = exp
(
iβi P+

i
j x̂j
)

= exp
(

iβn+ b̂
†
n

)
, (4.44)

D− = exp
(
iβi P−ij x̂j

)
= exp

(
iβn− b̂n

)
, (4.45)

D0 = exp

(
i

2
βi P+

i
j Ωjk P−lk βl

)
= exp

(
−1

2
βᵀ

+β−

)
, (4.46)

where we have introduced the projectors

P± =
1

2

(
1N ∓i1N
±i1N 1N

)
=

1

2
(1∓ iΩ) , (4.47)

which project x̂ on the subspace containing only b̂† or b̂ respectively. That is,
βi P+

i
j x̂j = βn+ b̂

†
n and βi P−ij x̂j = βn− b̂n.
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4.3.3 Expectation values and overlaps

Computations with Gaussian states are particularly convenient. It can be shown [59]
that the full manifoldMGaussian of bosonic Gaussian states can be parametrised by
M = N(N + 3) real parameters. That is, the number of parameters is polynomial
(quadratic) in the number N of bosonic modes of the system.

Furthermore, as discussed in Section 4.2.1 for generic group-theoretic coherent
states, computing the expectation value on a Gaussian state of a product of d
quadrature operators requires order Md operations. However, in the case of Gaus-
sian states this can be made even easier by a result known as Wick’s theorem [42].
Thanks to it, expressions like (4.10) can be further simplified and decomposed into
factors involving only up to two quadrature operators at a time.

Proposition 13 (Wick’s theorem). Consider a product of d operators

Â1Â2 · · · Âd , (4.48)

where each term is a linear combination of quadrature operators, i.e., Â = A(0) +
A

(1)
i x̂i. Let us then take the expectation value of this product on a bosonic Gaussian

state |S, β〉 ≡ D(β)S(S) |0〉. Such expectation value can be expressed as

〈S, β|Â1Â2 · · · Âd|S, β〉 = 〈Â1〉 〈Â2〉 · · · 〈Âd〉
+ 〈Â1Â2〉 · · · 〈Âd〉
+ . . . (Sum over all possible contractions) . (4.49)

Here, by contractions we mean all possible ways to subdivide the operators in prod-
uct (4.48) into groups of one or two operators, and then defining

〈Âi〉 = 〈S, β|Âi|S, β〉 , (4.50)

〈Âi1Âi2〉 = 〈S, β|Âi1Âi2|S, β〉 − 〈Âi1〉 〈Âi2〉 . (4.51)

Proof. For a full proof see, for example, Chapter 8 of reference [107]. The proof
essentially relies on decomposing the product (4.48) into terms involving products
of creation and annihilation operators and then using their canonical commutation
relations to show that the result (4.49) holds for these terms individually.

This result does not directly improve the scaling of the computation with re-
spect to the degree d of the operator (4.48). Indeed the total number of possible
contractions scales factorially in d. However, if d is small, as is usually the case,
the number of terms in the sum (4.49) is limited. A great reduction of the overall
computational cost is then achieved due to the fact that each term in this sum can
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be evaluated just by knowing the one and two point functions

〈x̂i〉 = −Ωijβj , (4.52)

〈x̂ix̂j〉 =
1

2
SikS

j
l (δkl + iΩkl) , (4.53)

where we have again assumed that the Gaussian state is parametrised asD(β)S(S) |0〉.
Notice that the one point function always vanishes if the state contains no displace-
ment operator.

Calculations with Gaussian states can often be performed easily also because,
on top of expectation values, it is possible to compute overlaps between different
Gaussian states efficiently. This is in fact a feature Gaussian states share with
all group-theoretic coherent states and which, we will see in Chapter 5, is crucial
for defining useful generalisations of Gaussian and group-theoretic coherent states.
The procedure that we will sketch now can be indeed seen as a special case of the
general one for group-theoretic coherent states contained in Section 5.4.

Proposition 14 (Overlap of bosonic Gaussian states). Given two bosonic Gaus-
sian states |S, β〉 ≡ D(β)S(S) |0〉 and |S ′, β′〉 ≡ D(β′)S(S ′) |0〉, their overlap is
given by

r0 = 〈S, β|S ′, β′〉

= exp

[
− i

4
tr(Ω log

√
∆ᵀ∆∆−1) +

i

2
βᵀΩβ′

−1

4
(β′ − β)ᵀS ′RRᵀS ′ᵀ(β′ − β)

]

×

[
det

2
√

∆ᵀ∆

∆ᵀ∆ + 1

] 1
4

, (4.54)

where ∆ = S−1S ′ and R = 1− P+(∆ᵀ∆− 1)(∆ᵀ∆ + 1)−1P−, with P± are defined
as in (4.47).

Furthermore, the overlap can be computed efficiently even if a product of quadra-
ture operators is inserted between the two states:

〈S, β|x̂i1 · · · x̂id |S ′, β′〉 = r0 〈0|ˆ̃xi1 · · · ˆ̃xid |0〉 . (4.55)

Here, the operators ˆ̃x are specific linear combinations of the regular quadrature
operators therefore their expectation value can be computed using Wick’s theorem
based on their one and two point functions

〈0|ˆ̃xᵀ ˆ̃x|0〉 =
1

2
S ′R(1 + iΩ)RᵀS ′ᵀ (4.56)

〈0|ˆ̃x|0〉 = S ′R ΩPᵀ
−Rᵀ S ′ᵀ(β′ − β)− Ωβ′ (4.57)
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Proof. These quantities can be computed by making use of the fact that any
squeezing operator of the form (4.39) can be further decomposed as

S(T ) = S+S0S− , (4.58)

where

S+ = e(A+)nm â†n â
†
m (4.59)

S0 = e(A0)nm â†n âm+(Aᵀ
0)nm ân â

†
m (4.60)

= e2(A0)nm â†n âm+trA0 (4.61)

S− = e−(A∗+)nm ânâm . (4.62)

(4.63)

We have that A+ is defined by the relation

2

(
ReA+ ImA+

ImA+ −ReA+

)
= tanh log T = (T 2 − 1)(T 2 + 1)−1 (4.64)

and A0 is calculated as

A0 =
1

4
log(1− 4A+A

∗
+) ⇒ trA0 =

1

8
tr log

[
2T (T 2 + 1)−1

]
. (4.65)

We further have that S− x̂i = Ri
j x̂j S−. Using there relations repeatedly together

with (4.33), (4.43) and (4.41) we can first decompose the displacement and squeez-
ing operators in (4.55) and then commute their components left and right in order
to exploit the fact that 〈0| S+D+ = 〈0| and D−S− |0〉 = |0〉, leading to the final
result.

4.3.4 Tangent space and Kähler property

Comparing the general discussion on the tangent space of group-theoretic coherent
states with the particular form of Gaussian states and especially with the decom-
position (4.32), one finds the following structure for the Gaussian tangent space.
The tangent space of the full manifold of bosonic Gaussian states at a point given
by the state |S, β〉 ≡ D(β)S(S) |0〉 is given by the real span of the following tangent
vectors

T|S,β〉MGaussian = spanR

{
D(β)S(S)b̂†n |0〉 , D(β)S(S)b̂†nb̂

†
m |0〉 ,

iD(β)S(S)b̂†n |0〉 , iD(β)S(S)b̂†nb̂
†
m |0〉 , ∀n ≤ m

}
(4.66)
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Firstly, notice that this tangent space can be interpreted as containing essen-
tially one and two particle excitations on top of the base Gaussian state. The one
particle excitations are due to the displacement operators while the two particle
excitations are due to the squeezing terms.

Second, we have highlighted that, for each tangent vector |V 〉, also i |V 〉 is in the
tangent space. In other words, T|S,β〉MGaussian is a complex linear space. According
to Proposition 2, this ensures that bosonic Gaussian states are a Kähler manifold.

4.4 Fermionic Gaussian states

We consider a system of N fermionic modes with creation and annihilation opera-
tors ĉ†n and ĉn. The index n = 1, . . . , N labels the modes. For each mode we define
the following Hermitian operators, known as Majorana operators,

γ̂n =
1√
2

(ĉ†n + ĉn) , ˆ̄γn =
i√
2

(ĉ†n − ĉn) . (4.67)

They play a role analogous to the quadratures in the bosonic case. We collect
them in a single vector

x̂ = (γ̂1, . . . , γ̂N , ˆ̄γ1, . . . , ˆ̄γN)ᵀ . (4.68)

They satisfy the anti-commutation relations

{x̂i, x̂j} = δij . (4.69)

We identify the vacuum state |0〉 as the state for which ĉn |0〉 = 0 for all n.
On the fermionic Fock space defined by these modes it is possible to identify

a group representation given by the unitary operators U = eQ̂, where Q̂ is any
anti-Hermitian homogeneous order 2 polynomial in the operators x̂. We will refer
to them as fermionic Gaussian unitaries.

These unitaries belong to a representation of the real orthogonal group. Thus
we can use them to construct a corresponding manifold of group-theoretic coherent
states, according to the principles set out in Section 4.2. For the representation
the lowest weight state is the vacuum |0〉, so we can define the following set of
states:

Mf.Gaussian = {U |0〉 , ∀U} . (4.70)

We will refer to these states as fermionic Gaussian states.
In the next sections we will now study more in detail the fermionic Gaussian

unitaries that we have just defined.

87



CHAPTER 4. GAUSSIAN STATES

4.4.1 Fermionic Gaussian unitaries

The fermionic Gaussian unitaries U belong to a unitary representation of the Lie
group of real orthogonal matrices

O(2N,R) = {G ∈ GL(2N,R) : GᵀG = 1} . (4.71)

Similarly, the set of anti-Hermitian operators Q̂ gives a representation of the special
orthogonal Lie algebra

so(2N,R) = {K ∈ gl(2N,R) : K +Kᵀ = 0} . (4.72)

Indeed, for each matrix K ∈ so(2N,R), one can construct the corresponding
anti-Hermitian Hilbert space operator

Q̂(K) =
1

2
x̂ᵀKx̂ . (4.73)

Similarly, for any matrix G ∈ O(2N,R) that can be written as G = eK for some
K ∈ so(2N,R), one can define the corresponding unitary

U(G) = U(eK) = eQ̂(K) . (4.74)

Here, it is important to notice that, contrarily to the bosonic case, the group
O(2N,R) is not fully connected. There exist two disconnected components, cor-
responding to matrices with detG = ±1. It turns out that they generate two
disconnected components of fermionic Gaussian states, corresponding to states
with even and odd fermion number parity. Only the matrices in the component
connected to the identity, i.e., the subgroup SO(2N,R), can actually be written
as G = eK . In order to be able to represent also the elements with detG = −1,
we can choose any 2N -dimensional vector v, normalised such that vᵀv = 2 and
introduce the unitary U(Gv) = vix̂

i, representing the matrix Gv = vvᵀ − 1. We
see that detGv = −1 and that, for any G ∈ O(2N,R) with detG = −1, we can
write U(G) = U(Gv)U(eK) for some K ∈ so(2N,R).

The operators U(G) constructed this way constitute a group representation, in
the sense that one can show that

U(G)U(G̃) = U(GG̃) . (4.75)

Furthermore, the adjoint action of fermionic Gaussian unitaries on the Majorana
operators is given by

U †(G) x̂iU(G) = Gi
j x̂j . (4.76)
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The algebraic structure of the quadratic operators Q̂ can be further highlighted
by noticing that among them we can choose the Cartan operators

Ĥn = i(ĉ†nĉn −
1

2
) , (4.77)

and root space operators

Ê+η(n,m) = iĉ†nĉ
†
m, Ê−η(n,m) = iĉnĉm, n < m

Ê+η̃(n,m) = ĉ†nĉm, Ê−η̃(n,m) = ĉnĉ
†
m, n < m (4.78)

corresponding to the root vectors η
(n,m)
a = (δan + δam) and η̃

(n,m)
a = (δan − δam).

All algebra operators Q̂ can be expressed as complex linear combinations of the
Cartan and root space operators. The lowest weight vector of this representation
is indeed the Fock vacuum |0〉 as it is an eigenstate of all Ĥn and is annihilated by
all Ê−.

Finally, a generic squeezing operator U(G) can always be split as

U(G) = U(Tu) = U(T )U(u) , (4.79)

with u and T satisfying

U(u) |0〉 = eiθ |0〉 and ΩT = T−1Ω . (4.80)

These requirements actually fix a unique solution given6 by T =
√
−GΩGᵀΩ and

u = T−1G, with Ω defined as in the bosonic case (4.21). Supposing that T = eK ,
for some anti-symmetric generator K, the condition (4.80) on T is then equivalent
to {K,Ω} = 0. Considering that K is also anti-symmetric, it must then have the
form

K =

(
A B
B −A

)
(4.83)

with A and B real anti-symmetric N ×N matrices. Therefore

U(T ) = exp

(
1

2
Kij x̂ix̂j

)
(4.84)

= exp
(
(K+)nm ĉ

†
n ĉ
†
m + (K∗+)nm ĉnĉm

)
, (4.85)

6Indeed, considering that T should also be orthogonal, i.e., T ᵀT = 1, we have that ΩT =
T−1Ω implies TΩ = ΩT ᵀ. The condition S(u) |0〉 = eiθ |0〉 on the other hand implies uΩuᵀ = Ω,
as can be seen by considering

1 = 2Im 〈0|x̂ x̂ᵀ|0〉 = 2Im 〈0|U†(u) x̂ x̂ᵀ U(u)|0〉 (4.81)

= u (2Im 〈0|x̂ x̂ᵀ|0〉) uᵀ = uΩuᵀ . (4.82)

Using these two properties one immediately has −GΩG
ᵀ
Ω = T 2.
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with K+ = 1
2
(A+ iB). This implies in particular that a gaussian state U(G) |0〉 =

eiθU(T ) |0〉 does not actually depend on all the information contained in G but
rather only on T (or equivalently K+). It is nonetheless for many applications
convenient to keep in mind the formalism involving the full orthogonal group.

4.4.2 Expectation values and overlaps

Computations with fermionic Gaussian states are as convenient as in the bosonic
case. The manifold Mf.Gaussian of fermionic Gaussian states has dimension M =
N(N − 1) [59]. That is, the number of parameters is polynomial (quadratic) in
the number N of fermionic modes of the system. Similarly to the case of bosonic
Gaussian states, the evaluation of the expectation value of products of d Majorana
operators requires order Md operations are greatly simplified by Wick’s theorem

Proposition 15 (Wick’s theorem). Consider a product of d operators

Â1Â2 · · · Âd , (4.86)

where each term is a linear combination of Majorana operators, i.e., Â = A(0) +
A

(1)
i x̂i. Let us then take the expectation value of this product on a fermionic Gaus-

sian state |G〉 ≡ U(G) |0〉. Such expectation value can be expressed as

〈S, β|Â1Â2 · · · Âd|S, β〉 =(−1)s 〈Â1Â2〉 · · · 〈Âd−1Âd〉
+ (−1)s

′ 〈Â1Â3〉 〈Â2Â4〉 · · · 〈Âd−1Âd〉
+ . . . (Sum over all possible contractions) . (4.87)

Here, by contractions we mean all possible ways to subdivide the operators in prod-
uct (4.86) into groups of two operators, and then defining

〈Âi1Âi2〉 = 〈G|Âi1Âi2|G〉 . (4.88)

The signs s are given by the sign of the permutation that is necessary to reorder
the initial product (4.86) into the contractions.

Proof. The proof is based on the same ideas as in the bosonic case. See, for
example, Chapter 8 of reference [107].

The total number of possible contractions scales factorially in d. However, if d
is small, as is usually the case, the number of terms in the sum (4.87) is limited.
A great reduction of the overall computational cost is then achieved due to the
fact that each term in this sum can be evaluated just by knowing the two point
functions

〈x̂ix̂j〉 =
1

2
Gi

kG
j
l (δkl + iΩkl) , (4.89)
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where we have again assumed that the Gaussian state is parametrised as U(G) |0〉.
Notice that the one point function always vanishes on fermionic Gaussian states.

Calculations with Gaussian states can often be performed easily also because,
on top of expectation values, it is possible to compute overlaps between different
Gaussian states efficiently. This is in fact a feature Gaussian states share with all
group-theoretic coherent states and which, we will see in Chapter 5, is crucial for
defining useful generalisations of Gaussian and group-theoretic coherent states.

As in the bosonic case, there exists a procedure to compute efficiently the
overlaps of different fermionic Gaussian states. This is a special case of the general
one for group-theoretic coherent states contained in Section 5.4.

Proposition 16 (Overlap of fermionic Gaussian states). Given two fermionic
Gaussian states parametrised as |G〉 ≡ U(G) |0〉 and |G′〉 ≡ U(G′) |0〉, their overlap
is given by

r0 = 〈G|G′〉 = exp

[
i

4
tr(Ω log

√
−Ω∆ᵀΩ∆∆−1)

] [
det

2
√
−Ω∆ᵀΩ∆

1− Ω∆ᵀΩ∆

] 1
4

, (4.90)

where ∆ = G−1G′ and R = 1− P+(Ω∆ᵀΩ∆ + 1)(Ω∆ᵀΩ∆− 1)−1P−, with P± are
defined as in the bosonic case (4.47).

Furthermore, the overlap can be computed efficiently even if a product of Ma-
jorana operators is inserted between the two states:

〈G|x̂i1 · · · x̂id|G′〉 = r0 〈0|ˆ̃xi1 · · · ˆ̃xid|0〉 . (4.91)

Here, the operators ˆ̃x are specific linear combinations of the regular quadrature
operators therefore their expectation value can be computed using Wick’s theorem
based on their two point functions

〈0|ˆ̃xᵀ ˆ̃x|0〉 =
1

2
G′R(1 + iΩ)RᵀG′ᵀ (4.92)

Proof. These quantities can be computed by making use of the fact that any
unitary operator of the form (4.85) can be further decomposed as

U(T ) = U+ U0 U− , (4.93)

where

U+ = e(A+)nm ĉ†n ĉ
†
m (4.94)

U0 = e(A0)nm ĉ†n ĉm−(Aᵀ
0)nm ĉn ĉ

†
m (4.95)

= e2(A0)nm ĉ†n ĉm−trA0 (4.96)

U− = e(A∗+)nm ĉnĉm . (4.97)

(4.98)
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We have that A+ is defined by the relation

2

(
ReA+ ImA+

ImA+ −ReA+

)
= tanh log T = (T 2 − 1)(T 2 + 1)−1 (4.99)

and A0 is calculated as

A0 =
1

4
log(1− 4A+A

∗
+) ⇒ trA0 =

1

8
tr log

[
(2T (T 2 + 1)−1

]
. (4.100)

We further have that U− x̂i = Ri
j x̂j U−. Using there relations repeatedly together

with (4.79), we can first decompose the unitary operators in (4.91) and then com-
mute their components left and right in order to exploit the fact that 〈0| U+ = 〈0|
and U− |0〉 = |0〉, leading to the final result.

4.4.3 Tangent space and Kähler property

Comparing the general discussion on the tangent space of group-theoretic coherent
states with the particular form of Gaussian states and especially with the decom-
position (4.78), one finds the following structure for the Gaussian tangent space.
The tangent space of the manifold of fermionic Gaussian states at a point given by
the state |G〉 ≡ U(G) |0〉 is given by the real span of the following tangent vectors

T|S,β〉Mf.Gaussian = spanR
{
U(G)ĉ†nĉ

†
m |0〉 , iU(G)ĉ†nĉ

†
m |0〉 , ∀n < m

}
(4.101)

Firstly, notice that this tangent space can be interpreted as containing essen-
tially two particle excitations on top of the base Gaussian state. Second, we have
highlighted that, for each tangent vector |V 〉, also i |V 〉 is in the tangent space. In
other words, T|S,β〉Mf.Gaussian is a complex linear space. According to Proposition 2,
this ensures that fermionic Gaussian states are a Kähler manifold.
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Chapter 5

Beyond Gaussian states

In this chapter we will discuss the possibility of defining classes of variational
states that go beyond Gaussian states, while maintaining some of their most useful
properties, in particular the easiness of computations.

Most of the material presented in this chapter was published in reference [101]:

T. Guaita, L. Hackl, T. Shi, E. Demler, J.I. Cirac,
Generalization of group-theoretic coherent states for variational calculations,
Phys. Rev. Research 3, 023090 (2021), used under cc by 4.0.

5.1 Overview

In Chapters 2 and 3 we have discussed the important role that sets of variational
states play in the classical simulation of quantum many body systems. In Chap-
ter 4 we have discussed the example of bosonic and fermionic Gaussian states
as variational states, stressing particularly how they allow to perform variational
calculations at a low computational cost. However, Gaussian states also have lim-
itations. For example, Gaussian states have only limited forms of correlations,
similar to the ones of free systems. Also other commonly used variational ansätze
present drawbacks, for instance the use of MPS is limited to 1D geometries.

The goal of this chapter is to define extensions of some existing variational
ansätze, that continue to satisfy the property of efficient computations, but contain
more correlations or can be used for higher dimensional systems. To do this
we will be inspired by two observations: (i) there exist known classes of states
that extend Gaussian states [52] or spin product states [68, 108] to contain more
correlations while continuing to admit easy computations of expectation values; (ii)
Gaussian states, bosonic coherent states and some classes of product states can
all be understood within a unified framework, namely the framework of group-
theoretic coherent states, that we have anticipated in the previous chapter in
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CHAPTER 5. BEYOND GAUSSIAN STATES

Section 4.2.

The group-theoretic perspective provides some very powerful tools that allow
us to show how all the properties of the constructed families of states are actually
encoded purely in the algebraic structures of the chosen groups and representa-
tions. Conveniently, several frequently used families of quantum states can be
understood as instances of group-theoretic coherent states resulting from different
choices of Lie groups. Standard bosonic coherent states arise from the Heisenberg
group, bosonic and fermionic Gaussian states arise from representations of the
groups Sp(2N,R) and O(2N,R), while atomic coherent states [64] arise from the
two dimensional representation of SU(2).

Exploiting these available group-theoretical structures, in Section 5.2 we thus
consistently define an extension for all families of group-theoretic coherent states,
which we will refer to as generalised group-theoretic coherent states. We achieve
this by applying to the coherent states a single unitary transformation V(M) =
exp(− i

2
MabĤaĤb), where Ĥb represents Cartan subalgebra operators and the ma-

trix M contains additional variational parameters.

In Sections 5.3 and 5.4, we will then show how the specific form of this extension
is designed to preserve the desirable feature of being able to compute expectation
values efficiently. In fact, all necessary operations are performed in terms of objects
(matrices and vectors) whose dimension is at most the one of the Lie group. In
most examples, this dimension scales polynomially with the size of the considered
system, making our methods feasible even for studying large systems and exploring
the thermodynamic limit.

While satisfying this constraint, the extension also enlarges the range of avail-
able types of quantum correlations, going thus beyond mean field treatments. In-
deed, the exponent of V(M), which is quadratic in algebra operators, can represent
structures not present in coherent states. For example, it can be used to introduce
non trivial density-density correlations in Gaussian states or spin-spin correlations
in spin systems. Furthermore, in composite systems it can produce entanglement
between different types of degrees of freedom (spins, bosons, fermions) as it can
contain products of Cartan subalgebra operators from the different sectors, as
sketched in figure 5.1.

The proposed construction is very general, in the sense that it can be applied
to group-theoretic coherent states associated to any choice of Lie group. For this
reason, we will give all definitions in a sufficiently general language that does not
refer to a specific Lie group and algebra, but rather makes use of the general nota-
tion introduced in Section 4.2 of the previous chapter. To make the rather formal
construction more concrete, we will illustrate each step for two paradigmatic ex-
amples, namely spin-1

2
coherent states and bosonic Gaussian states. In Section 5.5,

we then give a more complete discussion of the applications where we believe this
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construction could reveal itself most promising.

Figure 5.1: We show schematically how a unitary operator V(M) (edges of the tri-
angle) can generate entanglement in composite systems between different sectors,
e.g., bosonic, fermionic or spin sectors (vertices of the triangle).
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5.2 Generalised group-theoretic coherent states

In this section, we will define new families of states, which we refer to as generalised
group-theoretic coherent states, that extend the families of group-theoretic coherent
states described in Section 4.2.

Definition

We choose a Cartan subalgebra h ⊂ g, spanned by the operators Ĥa as defined in
Section 4.2. Let us then consider the unitary operator

V(M) = exp

(
i

2
MabĤaĤb

)
, (5.1)

where, as we will do in the rest of this chapter, we used Einstein’s convention of
implicitly summing over repeated indices. The real symmetric matrixMab defines a
bilinear form on h and contains `(`+1)/2 real parameters that define the operator.
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The exponent of (5.1) is not an element of the Lie algebra g, as it is quadratic
in the basis operators Ẑi. Consequently, V(M) is not a group transformation and
the product of more operators of this type does not follow a group multiplication
rule. Furthermore, the action of a transformation V(M) will in general take an
element of Mφ out of the set of group-theoretic coherent states.

We now define the class of generalised group-theoretic coherent states as the
set of states of the form

|ψ(g1, g2,M)〉 = U(g1)V(M)U(g2) |µ〉 . (5.2)

The states are conveniently parametrized by two group elements g1 and g2 and one
bilinear form M , although this parametrization will contain several redundancies.
Similarly to group-theoretic coherent states, this class of states is determined by
the choice of the group G and of its representation U on Hilbert space. In the case
of compact Lie groups any choice of Cartan subalgebra and lowest weight state
|µ〉 will define the same family of states1.

Example 11 (generalised spin-1
2

coherent states). Based on Example 10, we con-
sider a system of N spin-1

2
degrees of freedom with Cartan algebra spanned by

Ĥn = i
2
σn3 . The unitary operator (5.1) takes the form

V(M) = exp

(
− i

8
Mnm σ̂

n
3 σ̂

m
3

)
, (5.3)

for any given N × N real symmetric matrix M . The generalised spin-1
2

coherent
states take the form

|ψ(K1, K2,M)〉 = U(K1)V(M)U(K2) |↓ · · · ↓〉 , (5.4)

where, similarly to Example 10, the group unitaries are defined as

U(K) = exp
(
iKi,nσ̂ni

)
, (5.5)

with the coefficients Ki,n taking values for i = 1, 2, 3 and for each spin n =
1, . . . , N .

1This is because in this case all Cartan subalgebras and lowest weight states are equivalent
up to group unitary transformations, which can be absorbed in to the parameters g1 and g2.
In the case of non-compact Lie groups there may instead exist unitarily inequivalent classes of
Cartan subalgebras. Their choice is therefore relevant. Note that the Cartan subalgebra choice
with respect to which operator (5.1) is defined may even be different from the one with respect
to which the lowest weight state |µ〉 is defined.
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Example 12 (Generalised bosonic Gaussian states). We consider a system of N
bosonic modes with Cartan algebra spanned by Ĥn = i(b̂†nb̂n + 1

2
), as discussed in

Section 4.3. The unitary operator (5.1) takes the form

V(M) = exp

(
− i

2
Mnm(b̂†nb̂n + 1

2
)(b̂†mb̂m + 1

2
)

)
, (5.6)

for any given N ×N real symmetric matrix M . The generalised bosonic squeezed
states take the form

|ψ(S1, S2,M)〉 = S(S1)V(M)S(S2) |0〉 , (5.7)

where S(S) are the squeezing unitaries discussed in Section 4.3.1. We recognize
that these states constitute one of the classes of non-Gaussian states previously
introduced in [52].

Entangling degrees of freedom in composite systems

The construction of group-theoretic coherent states is possible also in the case in
which different groups act on different sectors of a composite system. In this case
the construction of generalised group-theoretic coherent states is particularly use-
ful, because, as mentioned in the overview, it enables us to entangle and correlate
the different types of degrees of freedom in the system, such as spins, bosons and
fermions. This provides a distinct advantage over coherent states alone, which
are always product states over the different system components, described by the
different groups (special unitary group for spin, symplectic group for bosons, or-
thogonal group for fermions).

More precisely, let us assume that we have two semi-simple Lie groups G1 and
G2, such that the respective representations act on a tensor product of Hilbert
spaces H = H1 ⊗H2 and thus commute with each other, i.e., we have a represen-
tation of the product group G = G1×G2 with Lie algebra g = g1⊕g2. By applying
the construction of group-theoretic coherent states, we will find that the Cartan
subalgebra h = h1 ⊕ h2 is the direct sum of the respective Cartan subalgebras.
Following our definition of generalised coherent states, the transformation V(M)
will contain three terms, i.e.,

i

2
MabĤaĤb =

i

2

(
Mab

(1)Ĥ
(1)
a Ĥ

(1)
b +Mab

(2)Ĥ
(2)
a Ĥ

(2)
b + 2Mab

(12)Ĥ
(1)
a Ĥ

(2)
b

)
, (5.8)

where H
(i)
a ∈ hi. We thus see explicitly that the last term is a product of Cartan

generators associated to the two different original groups. As our representation
acts on a tensor product, this last term in V(M) will be responsible for entangling
degrees of freedom associated to different parts of a composite system. This is
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particularly relevant when G1 and G2 are associated to different types of physical
degrees of freedom, such as spins, bosons and fermions.

Example 13 (Entangling spin-1
2

and bosonic systems). Let us consider a system

composed of N spin-1
2

degrees of freedom, as described in Example 10, and Ñ
bosonic modes, as described in Section 4.3. The total Lie group acting on it will be
given by G = SU(2)N × Sp(2Ñ ,R). The corresponding Cartan subalgebra is given
by the span of all the operators

Ĥ(1)
n =

i

2
σ̂n3 , Ĥ

(2)
ñ = i(b̂†ñb̂ñ +

1

2
) . (5.9)

Consequently the unitary V(M) takes the form

V(M) = exp

[
− i

8
M (1)

nm σ̂
n
3 σ̂

m
3

− i

2
M ñm̃

(2) (b̂†ñb̂ñ + 1
2
)(b̂†m̃b̂m̃ + 1

2
)

− i
2
M

(12)
nm̃ σ̂n3 (b̂†m̃b̂m̃ + 1

2
)

]
.

(5.10)

In particular we see that the last term generates entanglement between the spin
and bosonic degrees of freedom.

5.3 Standard form of expectation values

Our definition was carefully chosen, such that we can efficiently compute the expec-
tation value of physical observables Ô of interest (e.g., Hamiltonians). To achive
this, we first show that these expectation values can be brought into a standard
form, which can then be evaluated efficiently.

Here, we assume that the group was chosen, such that Ô can be expressed
as a polynomial in the operators Ẑi, which can be accomplished in most physical
systems. Then, any such expectation value can be brought into the standard form

〈ψ|Ô|ψ〉 =
∑
d,{i}

Ci1...id 〈µ| U(gd) Ẑi1 · · · Ẑid |µ〉 . (5.11)

To reach this standard form, we need to commute U1 ≡ U(g1), V and U2 ≡ U(g2)
through the operators Ẑi that appear in Ô according to

〈ψ|Zi1 . . . Zid|ψ〉 = 〈µ|U †2V†U
†
1 Zi1 . . . ZidU1VU2|µ〉 . (5.12)

This will only transform the operators Ẑi or generate additional group unitaries
U(gi), which can all be collected to the left to form the single unitary U(gd). To
do this, we need the following two commutation rules:
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� Commuting U with Ẑi:
From (4.3) we have that commuting group transformations with algebra
operators only gives rise to linear combinations according to

Ẑi U(g) = Ad(g)ji U(g) Ẑj . (5.13)

� Commuting V with Ẑi:
Even though V(M) is not a group transformation, its action on algebra
elements has a simple form. Indeed, from relation (4.6) it follows that

Êη V(M) = V(M) eηaM
abĤb− i

2
ηaMabηbÊη (5.14)

= V(M) eiθη U(eKη)Êη , (5.15)

where in the second line we have recognised that the exponential can be
decomposed into a complex phase factor θη = −1

2
ηaM

abηb and the expo-
nential of a real linear combination of algebra operators Kη = ηaM

abHb.
Furthermore we have that

ĤaV(M) = V(M)Ĥa , (5.16)

as V(M) is a function exclusively of Cartan subalgebra operators and there-
fore commutes with Ĥa. As all algebra operators Ẑi can be expressed as
complex linear combinations of operators of the types Ĥa or Êη, it follows

that the commutation of V(M) through Ẑi will be a linear combination
of (5.16) and (5.15).

By combining a series of operations of these kinds, we can always commute the
unitaries U1, V and U2 in (5.12) through any monomial of operators Ẑi. They
will then combine with the corresponding U †1 , V† and U †2 coming from the bra
vector 〈ψ| yielding identities and leaving a linear combination of terms of the form
U(g) Ẑj1 · · · Ẑjd .

More specifically, the unitaries V(M) will give rise to a series of group trans-
formations eθηiU(eKηi ) according to (5.15). Then one has to commute all U(eKηi ) to
the left using using (5.13), which will produce linear combinations of U(eKηi ) Ẑj1 · · · Ẑjd .
Once all the group transformations are on the left side, they combine with U(g) =

U(eKηi1 ) . . .U(e
Kηid ). Thus, the action of V(M) on a monomial of algebra oper-

ators Ẑi will give rise to a polynomial of the same order multiplied with a single
group transformation U(g) from the left.

In summary, any expectation value of an observable Ô can be brought into
the standard form (5.11), whose efficient evaluation will be subject of the next
section. This enables the application of the full range of variational methods
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when using generalised group-theoretic coherent states as an approximation of
the true state of the system2. The specific form of definition (5.1) – which at
first sight may appear somewhat arbitrary – was fundamental for achieving this.
Indeed, the inclusion in the exponent of (5.1) of algebra elements outside of the
Cartan subalgebra or of non-quadratic terms would make it impossible to express
the transformations (5.13) and (5.15) exclusively in terms of algebra and group
operators, and thus would prevent the subsequent calculations.

Example 14 (Commutation rules for generalised spin-1
2

coherent states). The
operators U(K) and V(M), defined in Example 11 satisfy the following relations: σ̂n1

σ̂n2
σ̂n3

 U(K) = U(K) e−2Ki,nLi

 σ̂n1
σ̂n2
σ̂n3

 , (5.17)

corresponding to (5.13), where we have the 3-by-3 matrices (Li)kl = εikl, with εikl
being the totally antisymmetric tensor; and

σ̂n3 V(M) = V(M) σ̂n3 , (5.18)

σ̂n± V(M) = V(M) e−
i
2
Mnne±

i
2
Mnmσ̂m3 σ̂n± , (5.19)

corresponding to (5.16) and (5.15).

Example 15 (Commutation rules for generalised Gaussian states). The commu-
tation of the operators S(S), discussed in Section 4.3 and Example 12, with any
creation or annihilation operator can be achieved through

S†(S) x̂S(S) = Sx̂ , (5.20)

where x̂ = (q̂1, . . . , q̂N , p̂1, . . . , p̂N)ᵀ and q̂n = (b̂†n + b̂n)/
√

2 and p̂n = i(b̂†n− b̂n)/
√

2
are canonical quadrature operators. The commutation of V(M), discussed in Ex-
amples 12, with creation or annihilation operators can be achieved through

V†(M)b̂nb̂mV(M) = e−
i
2

(Mnn+Mnm+Mmn+Mmm)

× e−i(Mnl+Mml)(b̂†l b̂l+
1
2

) b̂nb̂m ,
(5.21)

V†(M)b̂†nb̂mV(M) = e−
i
2

(Mnn−Mnm−Mmn+Mmm)

× ei(Mnl−Mml)(b̂†l b̂l+
1
2

) b̂†nb̂m ,
(5.22)

2The careful reader will know by now that to apply the full range of known variational methods
to a given family of quantum states (e.g., as described in Chapters 2 and 3), it is not always
sufficient to be able to compute the expectation values of the Hamiltonian. It is also necessary
to compute quantities involving so-called tangent vectors. In appendix A.3, however, we show
that for generalised group-theoretic coherent states also these quantities can be simply brought
to the standard form (5.11).
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and the corresponding conjugate relations, which follow from (5.15). Combining
transformations of these types, the expectation value on the states (5.7) of any
polynomial of creation and annihilation operators can be brought to the standard
form of linear combinations of

〈0|S(S)x̂i1 · · · x̂id |0〉 . (5.23)

5.4 Efficient evaluation of expectation values in

standard form

Generalised group-theoretic coherent states will only be useful as variational fam-
ilies if we can efficiently evaluate expectation values 〈ψ|Ô|ψ〉. In the previous
section, we have shown that any such expectation value can be reduced to the
standard form (5.11). To evaluate this standard form, we need to be able to
compute its building blocks of the form

〈µ| U(g) Ẑi1 · · · Ẑid|µ〉 . (5.24)

In this section, we will discuss how to compute (5.24) efficiently and thereby eval-
uate arbitrary expectation values from the standard form (5.11).

BCH decomposition

Computing (5.24) can be achieved by performing a normal ordered Baker-Campbell-
Hausdorff decomposition, also known as Gauss decomposition, of the group unitary
U(g) that appears in it. Let us assume that U(g) can be written as an exponential
of algebra elements. We therefore have

U(g) = exp

∑
η∈∆+

Kη
+Êη +Ka

0 Ĥa +
∑
η∈∆+

Kη
−Ê−η

 , (5.25)

where we have used that the algebra operators Ẑi can be decomposed on the basis
Ĥa, Êη and we have introduced the corresponding complex coefficients Ka

0 , Kη
±.

We would like to split the exponential appearing in (5.25) into the product of three
terms and rewrite U(g) as

U(g) = T̂+ T̂0 T̂− , (5.26)

where T̂± and T̂0 are operators of the forms

T̂± = exp

∑
η∈∆+

Aη± Ê±η

 , T̂0 = exp
(
Aa0 Ĥa

)
, (5.27)
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for some appropriate choice of the coefficients Aa0, Aη±.

The specific functional dependence of Aa0 and Aη± on Ka
0 and Kη

± and the extent
to which it can be calculated analytically will depend on the given choice of the
group G. However, let us point out that the decomposition (5.26) only depends
on the abstract group and algebra properties and not on the specific choice of
representation. It may therefore be convenient to perform such decomposition
working in a smaller representation than the one of the physical system, e.g., the
fundamental or adjoint representation.

Once the decomposition (5.26) of U(g) has been performed the computation
of the expectation value (5.24) becomes relatively straightforward. Indeed, one
can commute T̂− to the right of the algebra operators Ẑi1 · · · Ẑid just giving rise
to new linear combinations of algebra operators. To do this one needs a relation
analogous3 to equation (5.13), i.e.,

T̂− Ẑi = Rj
i Ẑj T̂− . (5.28)

In this way, one reduces (5.24) to the form

Rj1
i1
· · ·Rjd

id
〈µ|T̂+T̂0 Ẑj1 · · · Ẑjd T̂−|µ〉

= eiAa0µa Rj1
i1
· · ·Rjd

id
〈µ|Ẑi1 · · · Ẑid |µ〉 ,

(5.29)

where we used that the lowest weight vector |µ〉 is left-invariant by T̂− on the right,
right-invariant by T̂+ on the left and is an eigenstate with eigenvalue iµa of the
operators Ĥa that appear in T̂0. Let us stress again that the eigenvalues µa are the
only object in this derivation that depends on the choice of representation that we
are using.

The information on the group element g appearing in the original expres-
sion (5.24) is contained in the linear coefficients Rj

i (which will depend on Aη−)
and in the coefficients Aa0 that appear in the first factor of (5.29). The factor
〈µ|Ẑi1 · · · Ẑid|µ〉 is instead independent of g and thus needs to be computed only
once. This can be done using the standard algebra commutation relations.

Example 16 (BCH for spin-1
2

coherent states). As U(g) is always a tensor product
over individual spin degrees of freedom, we can evaluate the standard form of the
expectation value for each one individually. We thus consider

〈↓|eiKiσiσ̂i1 . . . σ̂id |↓〉 . (5.30)

3Formula (5.28) and the form of matrix R can be derived in the same way as (4.3) and (5.13)
as explained in footnote 1. Note that we have here the quantity T̂− (instead of U(g)) which is
not a unitary operator, but is still the exponential of complex combinations of algebra elements.
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The BCH decomposition of eiKiσi is well-known [64, 109] and explicitly given by

eK+σ̂++i
K0
2
σ̂3−K∗+σ̂− = eA+σ̂+e

A0
2
σ̂3eA−σ̂− , (5.31)

where the respective coefficients are given by

A0 = −2 log
(

cosϕ− 1
2
K0

sinϕ
ϕ

)
(5.32)

A+ = A∗− = −iK+
sinϕ
ϕ

(
cosϕ− 1

2
K0

sinϕ
ϕ

)−1

, (5.33)

with ϕ =
√
|K+|2 + 1

4
K2

0 . To find the equivalent of (5.29), we can use (5.17) to

deduce eA−σ̂− σ̂i = Rij σ̂j e
A−σ̂− with

R =

 1− 1
4
A2
−

i
4
A2
−

1√
2
A−

i
4
A2
− 1 + 1

4
A2
− − i√

2
A−

− 1√
2
A−

i√
2
A− 1

 . (5.34)

Combining these results, we thus find

〈↓|eiKiσ̂iσ̂i1· · · σ̂id |↓〉 = esA0 Ri1j1· · ·Ridjd 〈↓|σ̂j1· · · σ̂jd |↓〉 (5.35)

with s = −1
2

for spin-1
2
, which generalises easily to larger spin.

Example 17 (BCH for bosonic Gaussian states). To evaluate (5.23) via BCH we
first can decompose the unitary as S(S) = S(u)S(T ), where 〈0| S(u) = e−iθ 〈0| and

S(T ) = exp
(

(K+)nm i b̂†n b̂
†
m + (K∗+)nm i b̂nb̂m

)
, (5.36)

for a suitable K+. For this type of unitary the decomposition U(T ) = T̂+T̂0T̂− is
known analytically [43]. Using this decomposition one can obtain the final result

〈0| S(S)x̂i1 · · · x̂id|0〉 = r0Ri1j1 · · ·Ridjd〈0|x̂j1 · · · x̂jd |0〉 , (5.37)

where r0 is given by

r0 = e−
i
4

tr(Ω log
√
S
ᵀ
SS−1) det(1− 4A+A

∗
+)

1
4 , (5.38)

and R is the 2N × 2N matrix

R =

(
1− A∗+ −iA∗+
−iA∗+ 1 + A∗+

)
. (5.39)

The matrix A+ can be derived analytically from S according to (4.64). See Sec-
tion 4.3 for more details.
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Time evolution of the BCH decomposition

In the previous section, we showed how to compute (5.24) which required a normal
ordered Baker-Campbell-Hausdorff decomposition of U(g) for every g. For many
standard Lie groups, the needed formulas already exist in the literature. However,
this decomposition can also be computed by solving a corresponding set of dif-
ferential equations. This approach can be used if the respective closed analytical
formulas are not known or difficult to implement and is especially convenient in
settings where one performs time evolution.

Time evolution is an important application of generalised group-theoretic co-
herent states, where one uses them to simulate the dynamics of quantum systems,
either in real time or imaginary time. A similar setting is the one where one applies
gradient descent methods to our family of states. In all these applications one has
the need to compute a certain set of expectation values at each time step of the
evolution, then update the state to a new one which is (theoretically) infinitesi-
mally close and repeat the procedure. Therefore, it is required to calculate the
decomposition (5.26) at a series of subsequent time steps as g evolves as a function
of time (more precisely, g is a function of the variational parameters which in turn
evolve as functions of time). In these settings, it would be useful if one could
compute the BCH decomposition for U(g(t + dt)) based on the decomposition of
U(g(t)) at the previous time step, instead of having to compute it from scratch
at each step. We will now show how this can be done. As already mentioned
above, this will also lead to a general method for computing (5.26), that, although
not always the most efficient, can be useful in cases where a closed formula is not
available.

Let us assume that U(g(t)) can be written as

U(g(t)) = eK
i(t) Ẑi (5.40)

and that we want to decompose it as

U(g(t)) = T̂+(t) T̂0(t) T̂−(t) , (5.41)

where T̂−(t), T̂0(t) and T̂+(t) are operators of the forms

T̂−(t) = e
∑
η∈∆+

Aη−(t) Ê−η , (5.42a)

T̂0(t) = eA
a
0(t) Ĥa , (5.42b)

T̂+(t) = e
∑
η∈∆+

Aη+(t) Êη . (5.42c)

We now take the time derivative of U(g(t)) and multiply it by U−1(g(t)).
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From (5.40), we have

U−1(g(t))
d

dt
U(g(t)) =

∫ 1

0

dτ e−τK
j(t) Ẑj

[
d

dt
Ki(t) Ẑi

]
eτK

j(t) Ẑj (5.43)

=

[∫ 1

0

dτ eτ ad(K(t))

]i
j

d

dt
Kj(t) Ẑi (5.44)

=
[
ad(K(t))−1

(
ead(K(t)) − 1

)]i
j

d

dt
Kj(t) Ẑi (5.45)

where ad(K(t)) represents the matrix

[ad(K(t))]ij = Kk(t) cikj , (5.46)

similarly to what explained in footnote 1. For the expression used in (5.43) see,
e.g., the appendix of [52]. From (5.41), we instead have

U−1(g(t))
d

dt
U(g(t)) = T̂−(t)−1T̂0(t)−1

[ ∑
η∈∆+

dη+(t)Êη

]
T̂0(t) T̂−(t)

+ T̂−(t)−1
[
da0(t)Ĥa

]
T̂−(t) +

[ ∑
η∈∆+

dη−(t)Ê−η

]
.

(5.47)

The coefficients da0(t) and dη±(t) are defined by4

d

dt
T̂−(t) = T̂−(t)

[ ∑
η∈∆+

dη−(t)Ê−η

]
, (5.48a)

d

dt
T̂0(t) = T̂0(t)

[
da0(t)Ĥa

]
, (5.48b)

d

dt
T̂+(t) = T̂+(t)

[ ∑
η∈∆+

dη+(t)Êη

]
. (5.48c)

By applying relations analogous to (5.28), equation (5.47) can be brought to the
form of a linear combination of the algebra basis operators Ẑi, similarly to (5.45).

Finally, comparing these algebra elements, one can write da0(t) and dη±(t) as
functions of d

dt
Ka

0 and d
dt
Kη
± and of Aa0(t) and Aη±(t). More precisely, equat-

ing (5.47) and (5.45) leads to

M[A0(t), A−(t)]

 dη−(t)
da0(t)
dη+(t)


=
[
ad(K(t))−1

(
ead(K(t)) − 1

)] d
dt

 Kη
−(t)

Ka
0 (t)

Kη
+(t)

 ,

(5.49)

4Note that in general dη±(t) 6= d
dtA

η
±(t), because not all Êη commute among themselves.
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where M[A0(t), A−(t)] is a matrix of the dimension of the algebra, that depends
on A0(t) and A−(t) through the adjoint representation of the corresponding group
elements, and which we need to invert.

Note that here the derivatives d
dt
K(t) depend only on how we update the vari-

ational parameters at the given time step and how this update influences g(t).
We therefore assume them to be known. Similarly, the quantities K(t), A0(t) and
A−(t) depend only on the group element g(t) and on its BCH decomposition at
the current time step. Having found da0(t), dη±(t) from equation (5.49), we can
then integrate equations (5.48a) to (5.48c) for one time step to obtain the BCH
decomposition (5.41) at time t+ dt.

If instead we just want to compute the Baker-Campbell-Hausdorff decomposi-
tion for a fixed group transformation of the form (5.25), we can write Ki(t) = tKi

and integrate from t = 0 to t = 1 the corresponding differential equations (5.48a)
to (5.48c) as described in this section to obtain the desired decomposition (5.26).

5.5 Applications

In this manuscript, we have introduced generalised group-theoretic coherent states
as a new family of pure quantum states. This family is defined on top of the well-
known group-theoretic coherent states by applying an additional unitary V(M).
There exist many examples of group-theoretic coherent states, defined by different
choices of Lie groups and representations, and this makes our construction quite
general and applicable in various contexts.

The transformation V(M) is defined as the exponential of a quadratic expres-
sion in the so-called Cartan subalgebra operators Ĥa. This introduces quantum
correlations not contained in traditional group-theoretic coherent states, thus al-
lowing the treatment of problems beyond mean-field. The dynamics of regular
group-theoretic coherent states correspond to the group-theoretic version of semi-
classical Landau-Lifshitz (LL) equations for SU(2) spin models [110]. Our new
class of wavefunctions allows in this sense to go beyond semi-classical dynamics.
In particular, we expect generalised coherent states to be suitable for systems with
interacting Hamiltonians containing terms also quadratic in Cartan operators. For
these, it will be interesting to explore whether the many exact theoretical results
that have been proven for the Landau-Lifshitz equations, such as existence of soli-
tons in one dimension, will be be robust to going beyond the LL factorizable wave-
function ansatz. We further emphasized that generalised group theoretic states are
particularly powerful when we want to correlate different types of degrees of free-
dom (e.g., spins, bosons, fermions) in composite systems, as the transformation
V(M) can be used to entangle them by including Cartan generators of different
types.
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While going beyond coherent states, we showed in section 5.4 that generalised
coherent states still allow for an efficient evaluation of generic expectation val-
ues. We stress, however, that computing the overlap 〈ψ|ψ̃〉 between two arbitrary
generalised group-theoretic coherent states |ψ〉 and |ψ̃〉 remains in general a hard
task.

We gave two key examples of how our construction can be applied in different
settings, namely for spin-1

2
coherent states and bosonic Gaussian states. However,

the range of applications of our proposal is by no means limited to these examples:
they can be extended, combined or complemented in many ways. The SU(2)
construction can, for instance, be extended to higher spin representations, for
example to atomic coherent states [64] obtaining so-called spin squeezed states [68].
The Gaussian state construction can be repeated for fermionic Gaussian states,
defined in Section 4.4.

It is also straightforward to apply the described generalisation to more elabo-
rate Lie groups and algebras [111, 112]. This is particularly useful as many lattice
systems can be described as an SU(N) problem, where N is the dimension of the
Hilbert space at a site [65, 66]. Our approach can thus be used to study dynamics
with variational states that have non-trivial entanglement utilizing this SU(N)
perspective. Finally, a further interesting possibility is that of defining V(M) in
terms of a choice of Cartan subalgebra different from the one with respect to which
the reference state |µ〉 is a lowest weight state, which can be done for non-compact
Lie groups, such as Sp(2N,R) for bosonic Gaussian states.

We currently restricted ourselves to semi-simple Lie groups, as those are the
ones studied systematically in mathematical physics and for which the construction
of Cartan subalgebra and root system is fully understood. While this enabled us
to present a systematic framework of generalised group-theoretic coherent states,
we know that in special cases we can follow the same philosophy also for Lie
groups that are not semi-simple. The most prominent example is the Heisenberg
group associated to displacement operators for bosonic degrees of freedom, which
plays the key role in the definition of regular bosonic coherent states. It will
be an interesting exercise to explore the full extent to which this group can be
incorporated in our formalism and consider whether the same can be done for
other non-semi-simple groups.

Some of the examples discussed above have already been proposed and stud-
ied [52]. A few of them already have a history of successful applications. For
example, by choosing a fermionic number operator n̂f and a bosonic quadrature
operator p̂ = i√

2
(b̂† − b̂) as Cartan-type generators we obtain a V(M) that corre-

sponds to the well-known Lang-Firsov Polaron transformation [113], often used for
correlated boson-fermion systems. However, the presented framework can lead to
a whole spectrum of new generalisations which we believe can be of great interest.
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In terms of concrete applications, we believe that interesting developments can
come from two directions. First, as our states are particularly amenable to being
produced in common experimental implementations and their expectation values
can be computed efficiently by classical computation, they provide an ideal setting
for benchmarking experimental set-ups and quantum computer prototypes. Sec-
ond, they can be applied as variational states to describe and understand ground
state and dynamical properties of many quantum many-body systems. Some fam-
ilies of states that can be understood as generalised coherent states have already
been successfully employed to perform both exact and variational calculations [54,
71, 108, 114], testifying to the large spectrum of potential applications of the con-
struction. In particular, they include systems that contain bosons or fermions or
both, for which our construction allows to go beyond a Gaussian approach and
also caters for the necessity of entangling the bosonic and fermionic sectors. One
can also consider systems where a spin impurity is coupled to a bosonic, fermionic
or spin bath, such as the paradigmatic Kondo [115, 116] and Bose polaron mod-
els [117, 118]. We can finally take in consideration pure spin problems for which
tensor network methods do not give satisfactory results, e.g., in higher dimensions.

Some specific systems of the types above for which we believe generalised coher-
ent states would represent an interesting novelty include the case of fermions with
bi-phonon coupling [119], where the interaction is given by Ĥe−ph =

∑
i Q̂

(f)
i Q̂

(b)
i ,

where Q̂
(f)
i and Q̂

(b)
i are respectively fermionic and bosonic quadratic operators.

Of interest is also the case of the Jahn-Teller polaron [120] where, after a Lee-
Low-Pines transformation [121], the Hamiltonian takes the form Ĥe−ph =

∑
i F̂iq̂i.

Here, the q̂i are quadratures of a bosonic bath and the F̂i are a set of fermionic op-
erators realizing an su(2) algebra, which could be described by generalised spin-1

2

coherent states.
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Chapter 6

Application: the Bose-Hubbard
model

Here, we will present a concrete application of the methods discussed in the pre-
vious chapters. We will show how the variational methods of Chapters 2 and 3
can be applied to the manifold of bosonic Gaussian states, defined in Chapter 4,
to study the well-known Bose-Hubbard model. This will highlight how, using the
full power of variational methods, even a relatively simple manifold like Gaussian
states is enough to reveal many non-trivial properties of the model in its superfluid
phase.

Most of the material of this chapter was published in reference [122]:

T. Guaita, L. Hackl, T. Shi, C. Hubig, E. Demler, J.I. Cirac,
Gaussian time-dependent variational principle for the Bose-Hubbard model,
Phys. Rev. B 100, 094529, © 2019 American Physical Society.

6.1 Overview

The Bose-Hubbard model provides a theoretical description of interacting cold
atoms in optical lattices [123], which in the last years have proven to be a promising
experimental platform. Its Hamiltonian is given by

Ĥ = −
∑
〈n,m〉

b̂†nb̂m +
U

2

∑
n

b̂†nb̂
†
nb̂nb̂n − µ

∑
n

b̂†nb̂n , (6.1)

where b̂†n and b̂n are the bosonic creation and annihilation operators for a particle
on site n of a square lattice. The model has been analysed theoretically with a
several different methods, ranging from the historical Bogoliubov theory [47] to
later approaches based on the Gutzwiller ansatz [124].
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For different choices of the model parameters U and µ, the system exhibits two
different phases in the thermodynamic limit: a superfluid phase (small U) and a
Mott insulator phase (large U). One characterization of the superfluid phase is that
the U(1) symmetry generated by the particle number operator N̂ =

∑
n b̂
†
nb̂n [125]

is spontaneously broken for N → ∞. This leads to both a gapless Goldstone
mode and a massive Higgs amplitude mode in the excitation spectrum around the
transition. The properties of these have both been described theoretically, e.g.,
with methods based on the Gutzwiller ansatz [126–128], strong coupling [129, 130],
the variational cluster approach [131], the random phase approximation [132] or
the ladder diagram approximation for the continuum theory [133], and observed
in experimental realizations of the model [134–136].

The aim of this chapter is to describe a systematic study of the superfluid phase
based on variational methods using the variational family of bosonic Gaussian
states – including both squeezing and displacement (see Section 4.3). This can be
seen in some way as a generalisation of the Bogoliubov mean field theory, which can
be understood as based on the smaller variational family of bosonic coherent states.
Bogoliubov theory describes the model by suitably truncating the Hamiltonian to
a quadratic non-interacting mean field Hamiltonian. This mean field Hamiltonian
can be diagonalized using Bogoliubov transformations and its spectrum describes
the dispersion relation of the gapless Goldstone mode of the model. This last step
is in fact equivalent to applying the linearised time dependent variational principle
to coherent states (coherent TDVP).

The minimal energy of the Bogoliubov Hamiltonian approximates remarkably
well the exact ground state energy and the spectrum captures the gaplessness of
the model. Bogoliubov theory, however, also presents several drawbacks. First,
the Bogoliubov ground state energy approximation is not variational, i.e., the
mean field ground state does not minimise the expectation value with respect
to the full Hamiltonian. Second, it does not capture other excitations beyond
the Goldstone one, such as the Higgs amplitude mode or bound doublon states.
Third, the Goldstone quasiparticles are non-interacting and thus, the decay of
quasiparticles excitations can only be studied by re-including the initially discarded
Hamiltonian terms as a perturbation [137]. By instead applying linearised TDVP
to an extended variational manifold, i.e., the larger class of Gaussian states in
place of just coherent states, we overcome all of these drawbacks.

First, in Section 6.2, we compute a variational ground state approximation
given by the Gaussian state |ψg〉 with minimal energy expectation value. We show
that |ψg〉 can be efficiently computed in any dimension from two self-consistent
equations.

Second, in Section 6.3, we study the linearisation of the projected real time
evolution on the variational manifold to obtain an expression for the system’s
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excitation spectrum. The approximate spectrum captures both 1- and 2-particle
states, which include the gapless Goldstone mode, a doublon mode and a gapped
mode which may be interpreted as a Higgs amplitude mode.

Third, in Section 6.4, we apply geometric linear response theory to capture how
linear perturbations couple to different parts of the spectrum. As the Gaussian
tangent space naturally captures the interaction of quasi-particle excitations in the
1- and 2-particle sector, this allows us to compute the decay and time evolution of
excitations.

We conclude in Section 6.5 with a summary of the methods we have discussed.
In particular, we point out how the Gaussian variational method is related to and
generalises simpler methods such as Bogoliubov theory or variational methods
based on coherent states.

6.2 Gaussian ground state approximation

As first step of applying our variational methods, we compute the best Gaussian
state |ψg〉, i.e., the normalised Gaussian states whose energy expectation value

E|ψg〉 = 〈ψg| Ĥ |ψg〉 on the full Hamiltonian is minimal.

6.2.1 Variational manifold

We generalise the Bogoliubov theory of the Bose-Hubbard model by extending
the variational manifold for the system state to the full manifold MGaussian of
bosonic Gaussian states. This is in contrast to regular Bogoliubov theory, where
the variation is only done with respect to bosonic coherent states. The manifold of
Gaussian states can be conveniently defined by first squeezing and then displacing
the reference vacuum |0〉, as discussed in Section 4.3.

In practice, we use a variant of the parametrisations (4.39) and (4.40), namely

MGaussian =
{
|β, λ〉 = U(β, λ) |0〉

}
, (6.2)

with unitaries U(β, λ) = D(β)S(λ) defined by

D(β) = exp

[
1

2

∑
k

(
βkb̂
†
k − β

∗
k b̂k

)]
, (6.3)

S(λ) = exp

[
1

2

∑
kq

(
λk,q b̂

†
k−q b̂

†
q − λ∗k,q b̂k−q b̂q

)]
, (6.4)

where b̂k = 1√
N

∑
n e
−i k·xn b̂n are the momentum space annihilation operators.

Here, βk is a complex vector and λk,q is a complex matrix invariant under q → k−q.
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The indices k and q run in the reciprocal lattice. The only redundancy contained
in this parametrization is the symmetry of λ. For a system with N bosonic degrees
of freedom, we count N(N + 3)/2 complex coordinates (βk, λk,q) or N(N + 3) real
coordinates

x =
(
Re(βk),Re(λk,q), Im(βk), Im(λk,q)

)
. (6.5)

We will use the shorthand notation U(xg) for the choices of x, such that U(xg) |0〉 =
|ψg〉.

The manifold is closed under the action of any subgroup generated by any
operators that are linear and quadratic in creation/annihilation operators. In par-
ticular, this applies to the U(1) symmetry group generated by the total number
operator N̂ =

∑
n b̂
†
nb̂n. Here, for any Gaussian state |ψ〉 other than the vacuum

|0〉 we find a whole ring of inequivalent states eiθN̂ |ψ〉 with the same energy ex-
pectation value. Therefore, we expect this variational manifold to be well suited
to capture spontaneously broken U(1) symmetry phase of the system, i.e., the
superfluid phase, and its features, such as the massless Goldstone mode.

While the symmetry of the Bose-Hubbard model is known to be only sponta-
neously broken in the thermodynamic limit (N → ∞), our ansatz already gives
rise to a family of non-symmetric approximate ground states at finite N . We
furthermore point out that, while finite temperature spontaneous breaking of a
continuous symmetry at zero temperature is ruled out in one dimension, there
might still be quasi-long range order, therefore a broken symmetry ansatz can
turn out to be a reasonable choice also in one dimension.

The manifold contains a submanifold of states which are translationally invari-
ant, namely the set of states |ψ(βk, λk,q)〉 with βk = δk,0β0 and λk,q = δk,0λ0,q. For
the ground state search, it is sufficient to restrict ourselves to this submanifold as
we expect the ground state to preserve the translational symmetry of the problem.
For the study of excitations around the translationally invariant ground state, we
will then use the full manifold in order to capture also excitations with non-zero
momentum.

The tangent space T|ψ〉MGaussian of the variational manifold at the point |ψ〉 is
spanned by the tangent vectors |Vµ〉, which naturally include states with 1- and
2-particle excitations (compare with Section 4.3.4):

T|ψ(x)〉MGaussian = spanC

{
U(x)b̂†k |0〉 , U(x)b̂†k−q b̂

†
q |0〉

}
k,q
. (6.6)

Put differently, the variational class of all Gaussian states captures accurately the
1- and 2-particle quasiparticle excitation sector of our model.
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6.2.2 Ground state search

The first step of our procedure to exploit the given choice of variational manifold
is to find within it the best approximation of the ground state, that is the state
with the lowest energy expectation value.

Our strategy to do this is simply to look for the stationary points of the energy
function. That is to find states |ψ(x)〉 in the variational manifold such that

0 =
∂

∂xµ
E(x) =

∑
ν

gµνPνψ(x)Ĥ |ψ(x)〉 , (6.7)

where E(x) ≡ E(β, λ) = 〈β, λ|Ĥ|β, λ〉 is simply the energy function and we
have applied (2.49). Notice that it is not necessary to actually compute gµν =
2Re 〈Vµ|Vν〉, since its positive definiteness guarantees that (6.7) is equivalent to

P|ψ(x)〉Ĥ |ψ(x)〉 = 0 , (6.8)

where P|ψ(x)〉 is the orthogonal projector onto the tangent space to the manifold
at |ψ(x)〉. For Gaussian states, we find simple equations for this stationary point
and see that they only admit a single solution up to the redundancy generated by
eiαN̂ .

This solution |ψg〉 can be characterized analytically, independently of the sys-
tem size or dimensionality, in terms of two parameters A and B, which can be
efficiently computed numerically as the fixed point of two coupled self-consistent
equations. For more details on this calculation and on how to parametrize the
approximate ground state see Appendix A.4.2.

6.2.3 Ground state properties

Having obtained an analytical expression for the approximate ground state, it is
then possible to calculate the predictions of our model for ground state properties
such as the energy and particle densities. The quality of our method can be
benchmarked by comparing these quantities with the ones obtained through other
methods, such as Bogoliubov theory or, at least in one dimension, with a numerical
DMRG calculation [36] (see Figure 6.1). Our variational energy E|ψg〉 = 〈ψg| Ĥ |ψg〉
is higher than the DMRG one, as expected, but lower than the one obtained by
other variational choices, such as the coherent state |βc

0〉 with minimal energy
E|βc

0〉. The energy obtained as the ground state energy of the Bogoliubov mean
field Hamiltonian is generally lower than ours and remarkably close to the DMRG
result. However, it is important to emphasize that this energy EBogoliubov is not
variational as it is computed with respect to the truncated mean field Hamiltonian,
which actually does not admit a well defined ground state in the zero momentum

115



CHAPTER 6. APPLICATION: THE BOSE-HUBBARD MODEL

Figure 6.1: Comparison of ground state energies in 1D. We compare the following
approaches: (a) Minimal energy on manifold of coherent states E|βc0〉, (b) Bogoli-
ubov ground state energy EBogoliubov = E|βc0〉 −∆c from (6.16), (c) DMRG energy
EDMRG and (d) minimal energy E|ψg〉 of all Gaussian states, in the limit N →∞.
The DMRG results were computed for finite systems with open boundary condi-
tions and then extrapolated to the thermodynamic limit N → ∞. The Gaussian
state energy E|ψg〉 appears to have saturated to the thermodynamic limit value by
N ≈ 500.
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mode. More precisely, the state minimising the mean field energy is infinitely
squeezed, which would lead to a diverging energy expectation value with respect
to the full Bose-Hubbard Hamiltonian.

Thus, the Gaussian variational family provides a consistent class to approxi-
mate the ground state of the Bose-Hubbard model in the superfluid phase. Its
ground state energy estimate is reasonable, although worse than the one obtained
from Bogoliubov theory. The strength of our extended variational family, however,
lies in its prediction of quasiparticle excitations and their properties, such as life
time and linear response.

6.3 Quasi particle excitations

We can derive an approximate excitation spectrum from the perspective of our
Gaussian variational manifold by using the method of linearised projected real time
evolution (see Section 3.3.2). As our variational class generalises the coherent state
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manifold used in standard Bogoliubov theory, we will be able to capture higher
excitation modes of the model.

The projected real time evolution is computed as prescribed by the time de-
pendent variational principle (TDVP)

d

dt
|ψ(t)〉 = P|ψ(t)〉(−iĤ) |ψ(t)〉 . (6.9)

Note that, as bosonic Gaussian states are a Kähler manifold, this is equivalent to
both the Lagrangian and McLachlan TDVP (compare with Section 3.2). The equa-
tion of motion (6.9) generates a Hamiltonian time evolution flow Φt :MGaussian →
MGaussian that, linearised around the stationary state |ψg〉, reduces to a sum of
phase rotations. From the perspective of our variational manifold, the frequen-
cies of these rotations provide a natural approximation of the lowest excitation
energies.

6.3.1 Linearised TDVP

We calculate the excitation energies, shown in Figure 6.2, as the eigenvalues of
the linearisation of the equations of motion (6.9), that can be understood as a
generalisation of the well-known Gross-Pitaevskij equations [48, 49].

In particular, we consider the linearisation of the projected real time evolu-
tion around the stationary point |ψg〉. Given our real variational parameters x
from (6.5), the projected Schrödinger equation (6.9) takes the form∑

µ

ẋµ
∂

∂xµ
|ψ(x)〉 = P|ψ(x)〉(−iĤ) |ψ(x)〉 . (6.10)

The projector P|ψ(x)〉 projects onto the tangent plane T|ψ(x)〉MGaussian spanned by
the vectors ∂

∂xµ
|ψ(x)〉. We can therefore in particular introduce the component

Pµ|ψ(x)〉 referring to the projection onto the specific direction corresponding to the
coordinate xµ. This leads to the coordinate time evolution equation

ẋµ = X µ(x) = Pµ|ψ(x)〉(−iĤ) |ψ(x)〉 , (6.11)

which can be compared to (3.14). We then linearise the equations of motion
around the stationary point xg, i.e., where X µ(xg) = 0. The linearisation is based
on taking xµ = xµg + δxµ and expanding (6.11) to first order in δxµ leading to

δẋµ =
∑
ν

∂X µ(xg)

∂xν
δxν =

∑
ν

Kµ
ν δx

ν , (6.12)
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Figure 6.2: Excitation spectra for µ = 0. We compare the quasiparticle excitation
spectrum computed from Gaussian TDVP with Bogoliubov theory. The results
are shown for µ = 0 and two different values of the interaction strength (U = 0.1
and U = 1) in 1, 2 and 3 dimensions. The spectrum was computed as eigenvalues
of Kµ

ν from (6.12), where we interpolated the continuum part of the spectrum.
The computations were performed for N = (501, 1012, 413) for dim = (1, 2, 3)
respectively.
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where we introduced the N(N + 3) × N(N + 3) linearisation matrix Kµ
ν . The

approximate excitation spectrum is then found as the eigenvalues of Kµ
ν . We

construct Kµ
ν explicitly in Appendix A.4.2.

Another formal expression for the matrix K can be shown to be

Kµ
ν = −

∑
ρ

Ωµρ ∂

∂xρ
∂

∂xν
E(x), (6.13)

where E(x) is the energy expectation value of the state |ψ(x)〉, and the matrix Ω
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Figure 6.3: Comparison with Bogoliubov spectrum. We compare the spectra from
Gaussian TDVP (left figure) with the one from Bogoliubov theory (right figure).
For this, we overlap both figures (middle figure) and zoom into the narrow light
strip around the Bogoliubov dispersion relation Ek (red dotted line). We see that
the Goldstone mode merges into the TDVP continuum spectrum in the same re-
gion, where free Bogoliubov theory predicts Ek to lie inside the 2-particle continuum
(indicated by arrows). The TDVP was performed in 1 dimension for N = 501,
µ = 0 and U = 0.01.
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is the antisymmetric symplectic form defined as

Ω =

(
0 1N
−1N 0

)
. (6.14)

The evaluation of the matrix Kµ
ν = ∂νX µ(xg) reduces to calculating expec-

tation values using Wick’s theorem and taking derivatives, therefore it can be
calculated analytically in terms of the ground state parameters obtained in the
previous section. More details on the form of K can be found in Appendix A.4.2.
K is a symplectic matrix whose eigenvalues come in complex conjugate pairs ±iω.
The values of ω are our estimates of the excitation energies of the model.

Due to the translational invariance of Ĥ the matrix K is block diagonal, with
each block acting on the span of tangent vectors with fixed total momentum, which
we labeled by k in (6.6). The approximate excitation energies ω can therefore also
be labeled by the total momentum k their respective eigenvector. The size of each
block grows linearly in N , and therefore in the thermodynamic limit N → ∞
there is an infinity of eigenvalues ωk for each k, which can arrange themselves in
a continuum plus possibly some discrete excitations that represent bound states.
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6.3.2 Excitation spectrum

In Figure 6.2, we show the dispersion relations obtained by diagonalizing the ma-
trix K numerically. For momenta close to zero, we always find a gapless isolated
mode that agrees well with the Bogoliubov dispersion relation Ek. However, we
also find a continuum of states that have energies above this Goldstone mode and
that always shows a gap around k = 0. Finally, for certain parameter choices, e.g.,
for strong interactions, our spectrum also contains another isolated state above
the continuum, which can be interpreted as a doublon state.

We point out that the fact that our method gives a gapless mode was to be
expected. Indeed, N̂ commutes with the Hamiltonian and the vector N̂ |ψ〉 is
part of the tangent space for all |ψ〉 ∈ MGaussian, because N̂ is quadratic in the
bosonic creation and annihilation operators. Therefore there exists a direction in
the manifold along which the energy is constant. In this direction, the Hessian
∂
∂xµ

∂
∂xν

E(x) has a vanishing eigenvalue and thus, because of equation (6.13), also
K does.

Our method captures the tangent space generated by displacements and squeez-
ing, i.e., it is spanned by 1- and 2-particle excitations. A generic eigenvector |Ek〉
of Kµ

ν with momentum k is

|Ek〉 = U(xg)
[
C b̂†k +

∑
q

Cq b̂
†
k+q b̂

†
−q

]
|0〉 , (6.15)

where C,Cq ∈ C. We should therefore compare our results with the 1- and 2-
particle excitation spectrum obtained from Bogoliubov theory.

Traditional Bogoliubov theory constructs the excitation spectrum from the 1-
particle dispersion relation Ek of the mean field Hamiltonian

[Ĥ]|βc
0〉 = E|βc

0〉 −∆c +
∑
k

Ec
k (δb̂c

k)
†δb̂c

k , (6.16)

as reviewed in Appendix A.4.1. The dispersion relation Ek is independent of the
interaction strength U and becomes exact in the limit U → 0+. General eigenstates
of [Ĥ]|βc

0〉 consist of non-interacting excitations created by (δb̂c
k)
†. A general 2-

particle excitation with momentum k is therefore given by (δb̂c
k+q)

†(δb̂c
k−q)

† |βc
0〉

and has energy Ek+q + Ek−q.
Because of the gapless nature of the 1-particle Bogoliubov dispersion relation,

the continuum of non-interacting 2-particle excitations is never separated in en-
ergy from the 1-particle dispersion, as seen in Figure 6.3 (right) and discussed in
Appendix A.4.1. The gap between the isolated bound state (Goldstone mode) and
the continuum of higher excitations is therefore a new feature of Gaussian TDVP
due to the fact that it implements the interaction within the 1- and 2-particle
sectors.
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While the Goldstone mode continues to be well-described by the Bogoliubov
dispersion relation Ek, the spectrum of 2-particle excitations from Gaussian TDVP
starts to divert as we increase U . In particular, we see that for sufficiently large
U both, the Goldstone mode and the doublon mode are completely separate from
the continuum.

In figure 6.3, we compare Gaussian TDVP and Bogoliubov theory in the regime
where the Goldstone mode partially intersects with the continuum. We observe
that this intersection appears for small U in the Gaussian TDVP results only
in those regimes where also the in Bogoliubov theory the 1-particle mode lies
partially above the bottom of the many particle continuum. This phenomenon
occurs for choices of µ and system dimension such that the dispersion relation Ek
is not convex, i.e., there exist q, k, such that Ek+Eq < Eq+k. In Appendix A.4.1, we
show that this can only happen for µ < 6−2 dim. When going to the full Gaussian
TDVP, these simple kinematic considerations are no longer sufficient, due to the
interaction between 1- and 2-particle excitations. The Gaussian TDVP continuum
(light orange) agrees well with the Bogoliubov 2-particle spectrum (light red),
where it intersects with the Goldstone mode, i.e., roughly for 2πk/N ∈ (π/4, 3π/4).
Outside of this region, the two disagree: While the Gaussian TDVP gives rise to a
finite gap between continuum and isolated Goldstone mode, 2-particle continuum
and 1-particle dispersion relation necessarily touch for the non-interacting mean
field Hamiltonian from Bogoliubov theory.

Gaussian TDVP can describe the decay of single particle excitations into a con-
tinuum of higher excitations for those momenta k, where the excitation continuum
and the Goldstone mode intersect. The absence of isolated bound states for those
momenta k leads to an excitation spectrum composed only of finite width peaks.
This in turn means that every excitation that couples to the continuum will com-
pletely decay and thus have a finite lifetime. This phenomenon is known as Beliaev
damping [137] and is not captured by the standard Bogoliubov theory, but so far
has been typically obtained from perturbative expansions by re-including higher
order terms of the Hamiltonian. We will further investigate this decay behaviour
of excitations into the continuum in Section 6.4.2.

6.3.3 Higgs mode

Another suggestive observation can be made on the physical interpretation of the
gapped mode at the bottom of the continuum. A possible interpretation is that
it is a remnant of what, near the superfluid to Mott insulator transition, becomes
known as the Higgs mode. It corresponds to oscillations of the amplitude of the
order parameter 〈b̂0〉 (while the Goldstone mode is interpreted as oscillations of
the order parameter phase) and it has been observed experimentally by coupling
to it through modulation of the tunneling amplitude [134].
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Figure 6.4: Continuum/Higgs gap as function of 1/U . This figure shows the gap
between the gapless Goldstone mode and the continuum of excitations as a function
of 1/U in 1D and 2D and for different system sizes. The asymptotic value for large
N and small U obtained in equation (6.17) is also indicated for N = 1001 in 1d
and N = 1012 in 2d.
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The prediction of our model for the continuum gap, which because of this
possible interpretation we will label as EHiggs, can be studied numerically through
the diagonalization of the matrix K described in the previous paragraphs. At
fixed non-zero U , EHiggs converges to a finite non-zero value in the thermodynamic
limit.

We are also able to give an analytical asymptotic result for the limit in which
U → 0 while µ varies so as to keep a constant particle number density of the
ground state n = 〈N̂〉 /N (see Appendix A.4.2). In this limit, we have that the
gap goes to zero linearly in the interaction strength U , namely

lim
U→0

EHiggs

U
= α(N, n) ∼ 2

3
√

2n
2
3N−

1
3 as N →∞ . (6.17)

Note that it is instrumental that we took here first the limit U → 0, before studying
the large N asymptotics.

In Figure 6.4 one can see the numerical results for the behaviour of the ratio
between the Higgs gap and U and notice how it indeed approaches a constant
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asymptotic value for small U . In the large U region, it has instead an unexpected
divergent behaviour (the gap should close at the SF/MI transition [127]), however
this can be understood as a breaking down of our model at the transition where
Gaussian states are no longer a good description of the system’s ground state.
It is instead interesting to see how the constant small U behaviour matches the
experimentally measured value of the Higgs mode gap [134] even better than the
previous theoretical results obtained with Gutzwiller theory.

6.4 Linear Response

We use our variational manifold and the real time evolution projected onto it
to study the response of the system to small perturbations. We achieve this by
applying the linear response framework discussed in Section 3.4. This is significant,
as it provides possible connections to actual experiments, where certain system
responses can be probed and measured.

6.4.1 Spectral Functions

We model an external perturbation by considering the time dependent perturbed
Hamiltonian

Ĥε(t) = Ĥ + ε ϕ(t) V̂ , (6.18)

where Ĥ is the unperturbed Bose-Hubbard Hamiltonian (6.1), ϕ(t) is a classical
external field that couples to the system through the Hermitian operator V̂ and ε
is a small real parameter. We shall then consider the projected real time evolution
|ψε(t)〉 of the system under such perturbed Hamiltonian and evaluate its response
in terms of the expectation value of the same coupling operator V̂ . In particular,
we consider this response in the limit of small perturbations, i.e., we compute
quantities only up to first order in the parameter ε. Thus, we consider the response

δV (t) =
d

dε
〈ψε(t)|V̂ |ψε(t)〉

ε=0
(6.19)

to the perturbation V̂ .
As discussed in Proposition 10, the Fourier space response δV (ω), calculated

on the variational manifold as explained above, takes the form δV (ω) = ϕ̃(ω)χ(ω),
where ϕ̃ is the Fourier transform of the perturbing field ϕ(t) andAV (ω) ≡ − 1

π
Imχ(ω)

is the response function of the system with respect to the perturbation V̂ . Such
response functions are expressed in terms of the spectral decomposition of the
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Figure 6.5: Spectral functions for the density variation V̂
(k)

density from (6.22). We
show, as colour plots, the values of the spectral response function Ak(ω) in the
relevant range of values of k and ω. In the first column, we show more logarithmic
graphs ofAk(ω) for fixed slice of k (indicated by vertical lines of the respective color
in the second column). The computations were performed for N = (501, 1012, 413)
for dim = (1, 2, 3) respectively. To extract a continuous response functions, we
performed a binning in energy intervals of ∆ω = (0.13, 0.2, 0.37) for dim = (1, 2, 3)
respectively.

Ak(ω)
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Figure 6.6: Spectral functions for the lattice modulation V̂
(k)

lattice from (6.23). We
show, as colour plots, the values of the spectral response function Ak(ω) in the
relevant range of values of k and ω. In the first column, we show more logarithmic
graphs ofAk(ω) for fixed slice of k (indicated by vertical lines of the respective color
in the second column). The computations were performed for N = (501, 1012, 413)
for dim = (1, 2, 3) respectively. To extract a continuous response functions, we
performed a binning in energy intervals of ∆ω = (0.13, 0.2, 0.37) for dim = (1, 2, 3)
respectively.

Ak(ω)
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linearised real time evolution K defined in Section 6.3 as

AV (ω) =
1

2
sign(ω) |eµ(ω) dVµ|2 δ(|ω|) , (6.20)

where dV is the gradient differential form of the real valued function on the man-
ifold 〈ψ(β, λ)|V̂ |ψ(β, λ)〉, e(ω) are the eigenvectors of K (as defined in Appendix
A.4.2) with eigenvalue ω and δ(|ω|) is a normalisation of the eigenvectors such that
the conditions of Proposition 9 are satisfied.

For the Bose-Hubbard model, we consider the following types of perturbations:

V̂
(k)

1−particle =
∑
k

U(xg)(ib̂†k − ib̂k)U †(xg) . (6.21)

V̂
(k)

density =
∑
n

b̂†nb̂n cos(kxn) (6.22)

V̂
(k)

lattice =
∑
〈n,m〉

(b̂†nb̂m + b̂†mb̂n) cos(kxn) . (6.23)

In (6.21), we use a linear operator to create a single particle perturbation of mo-
mentum k. The other two perturbations are quadratic in creation and annihilation
operators, such that the excitation consists in general of both single and 2-particle
excitations. In (6.22), we consider a spatial density variation by modulating the
chemical potential with momentum k, which couples directly to the local particle
density. In (6.23), we consider a spatial modulation of momentum k of the hopping
constant. This can be achieved through a modulation of the lattice depth [138].
Such perturbation naturally couples to the kinetic energy operator.

The different response functions Ak(ω), obtained by evaluating (6.20) for dif-
ferent types of perturbation operators of momentum k and at energy ω, give us an
indication of how strongly each type of perturbation couples to different regions of
the spectrum. Some of the resulting response functions are plotted in Figure 6.5
and 6.6.

A first observation we can make is on the behaviour of the isolated Goldstone
mode in those situations when it merges with the continuum part of the spectrum.
In Figure 6.7, we see how the isolated peak of the response function broadens into a
wider feature inside the continuum. This indicates how, even when the Goldstone
mode is not an isolated eigenstate, it still survives as a finite lifetime excitation of
the system.

We can then also compare how the different perturbations considered couple to
the system. In Figure 6.8, we see how the perturbation that couples the strongest
to the continuum modes at k = 0 is the lattice modulation operator. Although
it has to be mentioned that the definition of the normalisations of the pertur-
bations (6.22) and (6.23) is not free of some arbitrariness, the large difference in
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Figure 6.7: Peak merging into continuum. We plot the spectral response function
Ak(ω) relative to a density perturbation for a set of different momenta k. The
function is calculated for a set of parameters (dim = 1, U = 0.01 and µ = 0) such
that for some values of k the Goldstone mode merges into the continuum spectrum.
The plot shows how the delta-like peak of the Goldstone mode transforms into a
finite width feature when this merge occurs (purple line).
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these coupling strengths provides a further element of support to the identification
of the lower continuum modes as the Higgs excitation. Indeed it is known that
the Higgs mode should be excited most easily through perturbations of the kinetic
energy term of the Hamiltonian, while the Goldstone mode through perturbations
in the particle density [127].

6.4.2 Real time evolution

The analysis of the response function can also give indications on the real time evo-
lution of perturbations of the system. Indeed, we can interpret the operator V̂ as
creating a perturbation described by the tangent vector |δψg(0)〉 = P|ψg〉(−iV̂ ) |ψg〉
at t = 0, which is equivalent to giving the system a kick by choosing ϕ(t) = δ(t).
The evolution in the tangent plane of this perturbation vector is then given by
dΦt at |ψg〉, i.e., the push-forward of the real time evolution flow Φt around the
stationary point. dΦt is a linear map on the tangent space at |ψg〉, explicitly it is
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Figure 6.8: Comparison: Density variation (6.22) and lattice modulation (6.23) at
k = 0. We compare the response functions from density variation with the one from
lattice modulations. The response to the lattice modulation is by several orders
of magnitude stronger. Note that we rescaled the data by factors of 10±x to fit
into the same range. The computations were performed for N = (501, 1012, 413)
for dim = (1, 2, 3) respectively. To extract a continuous response functions, we
performed a binning in energy intervals of ∆ω = (0.5, 1, 1) for dim = (1, 2, 3)
respectively.
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given by the matrix eKt with respect to the basis (6.6).

We consider an initial perturbation |δψg(0)〉 in the 1-particle sector of the
tangent plane, i.e., we require |δψg(0)〉 to be only spanned by 1-particle states
in basis (6.6). In particular, this is accomplished by the perturbation created by

V̂
(k)

1−particle. The time evolution of |δψg(0)〉 under the map dΦt will either describe the
full decay with finite life time or a partial decay leading to a remaining excitation
with infinite lifetime. This was already mentioned in Section 6.3.2, where we
argued that full decay only occurs if there is no bound state, i.e., for those momenta
where the Goldstone mode intersects with the 2-particle continuum.

Indeed we observe that if the perturbation is created at a momentum value
where there exists an isolated Goldstone state with a strong coupling to the 1-
particle sector (quantified by the 1-particle response function), the perturbation
will persist indefinitely. If, instead, the excitation has a momentum at which the 1-
particle perturbation couples sufficiently strongly to the continuum, a part of it will
decay into the continuum modes, disappearing in a time proportional to the inverse
of the width of the response function. Finally, if there is no isolated Goldstone
state at the chosen momentum, but only the continuum, the perturbation will
have a finite lifetime and decay completely into continuum excitations.

In Figure 6.9, we show the overlap of the time evolved perturbation with the
1-particle sector of the tangent plane, for different total momenta of the initial
perturbation. A perturbation with momentum k corresponding to an isolated
Goldstone state will maintain a large overlap with the 1-particle sector. For pertur-
bations with momentum k closer to the region where the Goldstone mode merges
with the continuum, a larger part of the overlap with the 1-particle sector will
decay in time. Finally, if the perturbation has a total momentum k, for which
no isolated Goldstone state exists in the spectrum, the single particle overlap will
decay completely to zero after a finite lifetime. Such decay behavior is similar
to what can also be seen in quantum optical systems coupled to unconventional
photon baths [139].

This behaviour of the evolution of perturbations can be interpreted as a rem-
nant in lattice systems of what in continuum Bose-Einstein condensates (BEC) is
known as the Beliaev damping of excitations, i.e., the decay of 1-particle excita-
tions into the continuum of many particle excitations due to scattering interac-
tions. Our variational scheme successfully captures at least part of this behaviour,
namely the one associated to the 1- and 2-particle sector that are fully included in
our tangent space. This is in contrast to the traditional Bogoliubov theory that
is restricted to the non-interacting 1-particle sector. In particular, standard Bo-
goliubov theory cannot describe the interaction with the continuum consistently,
which can only be incorporated by re-including the previously neglected terms as
perturbations [137].
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Let us emphasize that our method does not allow us to infer the properties of
excitations three or more particles. In particular, it is possible that by including
three and more particle excitations, the gap between 1-particle Goldstone mode
and 2-particle continuum may become filled. If this were the case, the respective
1-particle excitations would have a finite lifetime as they now could decay into the
continuum of higher excitations.

Figure 6.9: Time evolution of 1-particle weight. We show, for different momenta
k, the real time evolution of the 1-particle weight Wk(t) = | 〈ψk(0)|ψk(t)〉 |2, where

|ψk〉 = V̂
(k)

1 particle |ψg〉 is a perturbation vector in the one particle sector of the
tangent plane.
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6.5 Comparison between methods

Our study is based on the time dependent variational principle, where we project
the equations of motion on a given variational class and linearise them around the
stationary state that provides the best approximation of the ground state. While
we focused on the class of all Gaussian states, the method can be applied to any
suitable family of states, so it is natural to compare the results between different
variational classes. In the context of Bogoliubov theory, it is natural to compare
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our larger manifold of all bosonic Gaussian states D(β)S(λ) |0〉 with the smaller
sub manifold consisting only of coherent (or displaced) states D(β) |0〉.
(i) Coherent TDVP around |βc

0〉. If we apply linearised TDVP to the manifold
of coherent states, we obtain the same excitation spectrum as the single-particle
spectrum Ek of Bogoliubov mean field theory (see Appendix A.4.1). However, we
should point out that [Ĥ]|βc

0〉 contains more information than the linearised TDVP,
as it gives us a Hamiltonian operator whose minimal energy EBogoliubov is a better
estimate of the system’s ground state energy than just E|βc

0〉. On the other hand,
this energy is not variational, i.e., it cannot be expressed as the expectation value
of an ansatz state on the full system Hamiltonian. Furthermore, the truncation of
[Ĥ]|βc

0〉 is not self-consistent, because |βc
0〉 is not its ground state.

(ii) Coherent TDVP around |ψg〉. After finding the best Gaussian ground
state approximation |ψg〉, we can linearise around it the equations of motion re-
stricted to the space of displaced states D(β) |ψg〉. The 1-particle spectrum Eg

k

obtained this way is gapped and consequently not a good approximation to the
Goldstone mode. However, we can use Eg

k to construct the 2-particle continuum of

the quadratic Hamiltonian [Ĥ]|ψg〉. Interestingly, the resulting 2-particle spectrum
provides a good approximation to the continuum with Gaussian TDVP. In this
way, we can understand the gap Eg

0 as already encoding the interaction energies
between two particle excitations that is required to approximate the interacting
2-particle spectrum.

(iii) Gaussian TDVP around |βg〉. In order to obtain a self-consistent ground
state, we enlarge the manifold of states and introduce general Gaussian states,
which also allow for squeezing. Indeed, the Gaussian state of minimal energy |ψg〉
can also be identified as the state that fulfills the property of being the ground
state of the corresponding mean field Hamiltonian [Ĥ]|ψg〉, i.e., the quadratic trun-
cation of the full Hamiltonian when normal-ordered with respect to |ψg〉. If we
apply linearised TDVP to the extended manifold of Gaussian states, we obtain
the spectrum which was the main object of this chapter, which naturally contains
both 1- and 2-particle excitations (see Section 6.3).

Projected Hamiltonian. Finally, there is a well-known alternative based on
the projected Hamiltonian (see Section 3.3) to compute excitation spectra from
a tangent space. Instead of linearising the equations of motion, we can directly
take the tangent space as variational ansatz for eigenstates by projecting the full
Hamiltonian onto it, i.e., H = P|ψ〉ĤP|ψ〉, and then computing its spectrum. The
eigenstates |Ei〉 with energy Ei of the projected Hamiltonian H are manifestly
variational, i.e., their expectation value with respect to the full Hamiltonian is
equal to Ei and there exists a true eigenstate of the full Hamiltonian with smaller
energy. This is not necessarily the case for the eigenvectors of K in the linearised
TDVP. In [92], it has been further pointed out that – in contrast to the projected
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Hamiltonian method – the linearised TDVP may incorrectly predict massless ex-
citation modes. This occurs whenever the approximate ground state within the
chosen variational family spontaneously breaks a symmetry which is not sponta-
neously broken in the exact ground state. In the case of the Bose-Hubbard model,
this is actually a desirable feature: while the true ground state only breaks the
U(1) symmetry in the limit N →∞, the family of Gaussian states already breaks
this symmetry for finite N and is thus well-suited to study the superfluid phase in
the thermodynamic limit.

In conclusion, our Gaussian TDVP method naturally generalises Bogoliubov
theory to describe the superfluid phase of the Bose-Hubbard model. The presented
methods provide systematic framework to compute (a) approximate ground state
energies, (b) excitation spectra and (c) linear response functions for general vari-
ational families.

The one of our predictions that calls most for further inquiry is the gapped
2-particle continuum above the Goldstone mode. It will be interesting to further
explore with other methods whether the identification of the lowest continuum
mode as the Higgs mode is correct and whether the gap that separates it from
the Goldstone mode survives, once one also considers excitations of three or more
particles.

The presented scheme is self-consistent and requires no other assumptions than
the choice of variational manifold. It can be easily applied to other variational
families, such as non-Gaussian states [52] or Gutzwiller states. In particular, it
would be interesting to find a simple variational family with which it is possible
to perform a similar study also in the Mott phase of the Bose-Hubbard model.
Even more interesting would be a single variational set which can capture both
the Mott and superfluid phases.
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Chapter 7

Application: the
Sherrington-Kirkpatrick model

In this chapter we will present another application of the methods discussed in this
thesis to a physical model. We will construct an explicit example of the generalised
group-theoretic coherent states introduced in Chapter 5 and show how they can
be used to successfully describe the ground state of the Quantum Sherrington-
Kirkpatrick model, a paradigmatic model for quantum spin glasses.

Most of the material of this chapter was published in reference [140]:

P.M. Schindler*, T. Guaita*, T. Shi, E. Demler, J.I. Cirac,
A Variational Ansatz for the Ground State of the Quantum Sherrington-Kirkpatrick
Model, arXiv:2204.02923 (2022)
* Co-first authors

7.1 Overview

Spin glasses are an important paradigm in statistical physics. Besides their rele-
vance in describing disordered classical magnets [141, 142], it was shown that opti-
misation tasks, such as the travelling salesman problem, can be mapped to solving
for the ground states of spin glass systems [141, 143, 144]. Classical spin glasses
can be promoted to quantum models by introducing a transverse field. The result-
ing quantum spin glasses form by themselves an important playground to study
the interplay of disorder and frustration with quantum effects [145]. Moreover,
there is evidence that the quantumness can be exploited to shortcut optimisation
tasks, for instance through quantum annealing [146–150].

The textbook example of a quantum spin glass model is the Quantum Sherrington-
Kirkpatrick (QSK) model, a generalisation of the classical Sherrington-Kirkpatrick
(SK) model [151, 152]. The QSK model has been studied extensively in the lit-
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erature both analytically [152–156] and numerically [157–167]. While the famous
Parisi solution [168, 169] provides a full solution to the classical SK model, many
open questions remain for the quantum SK model. Since the QSK model is an
all-to-all coupled model one might assume that a mean-field product state ansatz
well describes the ground state. However, this ansatz predicts a quantum phase
transition (QPT) from a quantum spin glass phase to a paramagnetic phase at a
critical transverse field gC ≈ 2 J [163]. Field theory approaches [155, 156] using
the replica method suggest instead a phase transition at gC ≈ 1.5 J . Numerical
calculations at small system sizes [161, 162] or obtained at finite temperature [157,
158, 162, 166] confirm the latter. So far no good ansätze have been found which
can describe the zero temperature regime for large system sizes, preventing the
study of further properties of the ground state, such as entanglement.

To tackle this problem, in this chapter we propose a variational family which
extends the product state ansatz, introducing a richer entanglement structure.
This ansatz is constructed according to the generalised group-theoretic coherent
states formalism defined in Chapter 5. Indeed, we are dealing with a spin system,
where product states represent the notion of group-theoretic coherent states. Our
generalised construction therefore provides a natural way to go beyond that. As
previously discussed, the special structure of the generalised states allows us to
introduce non-trivial quantum correlations while at the same time being able to
efficiently find variational ground states for large systems, in this case of up to
N = 200 spins.

In Section 7.2, we will introduce the QSK model in detail and present the
generalised coherent state ansatz that we will use to study it. Thanks to these
variational ground states, we obtain a significantly improved description of the
model compared to plain product states. Indeed, we observe an extensive im-
provement in terms of ground state energies with respect to product states. More
importantly, generalised coherent states predict the quantitatively correct critical
transverse field of the spin glass phase transition, while product states fail to do
so.

In Section 7.3, we further exploit our ground state ansatz to study some previ-
ously unexplored properties of the model. In particular, we develop a method to
study the entanglement structure of the ground states. We numerically compute
the entanglement entropy of subsystems of varying sizes with the rest of system
and compare the results with some related models. Our results show a volume law
of entanglement, which indicates that entanglement monogamy does not provide
a scaling constraint despite the fact that the QSK model involves all-to-all spin
interactions. Finally, we discuss how the observed entanglement structure admits
an even simpler description. Indeed, a qualitatively analogous entanglement struc-
ture can be observed in an ensemble of states that have been introduced in the
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Quantum Information Theory context, namely random weighted graph states [170]
with normally distributed phase gates.

In Section 7.4, we address a further unresolved aspect of the model, namely
the existence of a spin glass phase transition at non-vanishing longitudinal fields.
It has been conjectured that such transitions exist, but the conjecture is debated
and decisive evidence has yet to be collected in its favour. The power of our ansatz
helps to provide a contribution to answering this question. Indeed, we show that,
according to our analysis of both the order parameter and of the entropy data,
there is no evidence of a phase transition at finite longitudinal fields.

7.2 Model and variational ansatz

Concretely, we consider a system of N spin-1
2

degrees of freedom. The QSK model
corresponds to a mixed field Ising model with all-to-all couplings and quenched
disorder in the couplings and longitudinal field,

ĤQSK = −1

2

N∑
n,m=1

Jnmσ̂
n
z σ̂

m
z − g

N∑
n=1

σ̂nx −
N∑
n=1

hnσ̂
n
z , (7.1)

where σ̂ni is the i-th Pauli-matrix acting on the n-th spin. The longitudinal field
hn and the couplings Jnm are independently normally distributed numbers with
zero mean and variance h2

n = h2 and J2
nm = J/N , respectively. Here and in the

following we use the convention that an overbar · indicates disorder average.
For such a system, the natural group-theoretic coherent states are atomic co-

herent states (CS) [64], which we already introduced in Example 10. They can be
written as

|φ(x)〉 = U(x) |↑, . . . , ↑〉 , (7.2)

where σ̂z |↑〉 = + |↑〉 and U(x) = exp(−i
∑

n,i x
i
nσ̂

n
i ) rotates each of the N spins in-

dividually on the Bloch sphere. This construction makes explicit use of the SU(2)N

group representation that exists on the Hilbert space. The simple CS ansatz is
parametrized by the real parameters x = {xin}i=x,y,z;n=1,...,N and corresponds to
the set of normalised product states.

To these states we can apply the generalisation procedure defined in Chapter 5,
which leads to the set of generalised atomic coherent states (GCS),

|Ψ(x, y, M)〉 = U(y)V(M) |φ(x)〉 , (7.3)

where xkn, ykn and Mnm (n < m) are the variational parameters. U and |φ〉 are
defined as in equation (7.2) and the entangling unitary V(M) is given by

V(M) = exp(− i
4

∑
n<m

Mnmσ̂
n
z σ̂

m
z ) , (7.4)
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for any real symmetric matrix M . The states (7.3) have previously been studied
in References [29, 171] and can be seen as a one-layer QAOA-ansatz [9, 172].

The entangling unitaries V(M) contain two-spin terms which give the states (7.3)
a non-trivial correlation structure. However, as extensively discussed in Chap-
ter 5, this structure is chosen so that it is still possible to efficiently compute
the expectation values on |ψ(x, y,M)〉 of any polynomial of Pauli operators. In
the present case, when computing expectation values of Pauli operators we have
V(M)†σ̂n±V(M) = σ̂n± exp(±i/4

∑
mMnmσ̂

m
z ), that is the two-spin terms cancel

and we are left just with products of single spin operators [101, 108]. This crucial
property allows us to find analytical expressions for the energy and the gradient
of the energy with respect to the variational parameters [173](see Appendix A.5.1
for more details). Thanks to this, we can apply the imaginary time evolution
algorithm (see Section 3.5) to efficiently obtain the variational ground states of
individual disorder realisations for large system sizes of up to N = 200 spins.

In order to demonstrate the expressivity of the GCS ansatz, we first consider
the approximate ground state energy. For small system sizes we can compare the
variational energies with numerically exact results, obtained via a Lanczos Exact
Diagonalization method (ED) [174], see Figure 7.1. We find good quantitative
agreement of the variational ground state energy with the exact ground state
energy over a broad range of transverse and longitudinal field values. In particular
a notable improvement of the GCS ansatz upon the CS ansatz becomes visible. For
larger systems it is no longer possible to compare to an exact solution. However, we
observe an extensive improvement in energy upon the CS ansatz, suggesting that
the GCS ansatz gives a non-vanishing improvement even in the thermodynamic
limit, see inset of Figure 7.1.

Quantum phase transition

Our variational ansatz also allows us to study the QPT on the h = 0 line of the
model’s parameter space. In Figure 7.2 we depict the spin glass susceptibility

χsg = N−1
∑

n,m 〈σ̂nz σ̂mz 〉
2, which is independent of the system size in the paramag-

netic phase (large g) and scales with the system size in the ordered spin glass phase
(small g) [141, 161, 164, 175, 176]. For small system sizes we find good quantita-
tive agreement of the variational results with numerically exact (ED) results, see
left panel of Figure 7.2. However, importantly the variational ansatz also enables
us to study the phase transition at much larger system sizes, see right panels of
Figure 7.2. Strikingly for the larger system sizes N ≥ 100 finite size effects are
almost absent allowing us to read off the critical field value directly. Notice, that
both variational ansätze clearly indicate the existence of a phase transition. How-
ever, in agreement with the literature [163] we find that the CS underestimate the
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Figure 7.1: Average error in energy density ε = ∆E/W as a function of the
transverse field. ∆E is the difference between the variational energy and the exact
ground state energy for different methods (CS in orange, GCS in blue and ED in
purple) and for different system sizes N = 8, 12, 16 (light to dark). It is normalised
by the spectral bandwidth W, i.e. the difference between the highest and lowest
energies in the exact spectrum. Inset: Difference between CS and GCS energies
per site (ECS−EGCS)/N as a function of the system size N for different transverse
field values g/J = 0.1, 1.0, 1.5, 2.0, 3.0 (light to dark grey). All data is for h = 0
and averaged over nsamples = 1000 disorder realisations. Results of similar quality
can be obtained also for other longitudinal field values h > 0.
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quantum fluctuations leading to a phase transition at roughly gC ≈ 2 J . In con-
trast, the GCS capture the true critical point at gC ≈ 1.5 J . Thus, the additional
entanglement structure introduced in the GCS not only leads to an improvement
in energy but also seems crucial in capturing the physics of the QSK model in the
thermodynamic limit.

7.3 Entanglement structure of the ground state

The findings above suggest that the GCS ansatz describes the ground state of the
QSK model very well for all system sizes up to the thermodynamic limit. Having
such an explicit expression for the ground state wavefunction allows us to study in
detail its entanglement properties. Before looking into the numerical results, we
will consider some hypotheses about the expected entanglement behaviour.

First, let us try to understand the role of the additional two-spin entangling
gates contained in V(M) by taking a closer look at the matrix elements Mnm.
Considering the probability distribution p(Mnm) over many disorder realisations,
we observe that it resembles a Gaussian distribution with zero mean and variance
scaling as 1/N . In addition, we find that the mean level spacing ratio averaged
over many realisations yields 〈r〉 ≈ 0.53 roughly independent of the transverse
field value g > 0 and system size N , which is in agreement with the result of the
Gaussian Orthogonal Ensemble (GOE) [177].

This implies that most two-spin entangling gates approach the identity as N →
∞. This may seem compatible with the naive hypothesis that, due to the mean-
field nature of the model, product states should well describe the ground state, at
least in the thermodynamic limit. This assumption would predict the entanglement
entropy between any two subsystems going to zero as N →∞.

However, we emphasize that the number of entangling gates acting on each
individual spin diverges in the thermodynamic limit, suggesting that a non-trivial
entanglement structure is still possible also in this limit. Indeed, let us consider a
subsystem A composed of the first L spins. We quantify the entanglement between
these L spins and the rest of the system by computing the second Rényi entropy
S2(L) of the subsystem’s reduced density matrix. Given the all-to-all connectivity
of our ansatz, there exist L(N −L) two-spin entangling gates acting between spins
in A and in its complement Ac. Each of these gates individually generates a two-
spin state with an average entanglement entropy proportional to M2

nm ∼ 1/N . The
cancellation of these two scalings could lead to a second hypothesis, i.e. that the
entanglement entropy between A and Ac is proportional to L in the thermodynamic
limit N →∞. This expectation can also be made more rigorous with an argument
based on the Central Limit Theorem (see Appendix A.5.2).

As a third alternative, we may compare the model to a related but analytically
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Figure 7.2: Spin glass quantum phase transition. Left Panel: Spin Glass sus-
ceptibility χsg as a function of the transverse field g for ED (purple circles)
and GCS (blue squares). Right Panels: Spin Glass susceptibility per site
χsg/N for GCS (top, blue) and CS (bottom, orange) for different system sizes
N = 20, 100, 200 (from light to dark). All data is for h = 0 and averaged over
nsamples = 1000 disorder realisations.

solvable model, namely a model with all-to-all interactions and invariant under any
permutation of the spins. Notice that in our case, due to the disordered nature
of the QSK model, individual realisations of the couplings Jnm and hn are not
permutationally invariant. However, invariance is present upon disorder averaging,
so the permutationally invariant case may still provide a useful comparison. In
such case the ground state |Ψ〉 must possess a Schmidt decomposition

|Ψ〉 =
∑
k

λk |ϕk〉 |ηk〉 , (7.5)

where |ϕk〉 and |ηk〉 are orthonormal states of A and Ac respectively. Due to
the permutational invariance of the system, the states |ϕk〉 must in particular
belong to the subspace of permutationally invariant states of A. Such subspace
has dimension L + 1, so there can be at most L + 1 terms in the sum (7.5). It
follows that the entanglement entropy of A is bounded by S2(L) ≤ log(1 + L).
This scaling of the entanglement can be viewed as a consequence of entanglement
monogamy [178, 179].

We would like now to compare our results with these hypotheses. To do this
we have developed an efficient method to numerically compute S2(L) for the
states (7.3), reducing the problem to the one of computing averaged properties
of a related classical model using Monte Carlo methods (see Appendix A.5.2 for
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Figure 7.3: Ground state entanglement entropy. Top panel: Average Renyi-2 en-
tanglement entropy of the QSK ground state as a function of the subsystem size L,
computed for g = 1 J , h = 0 and various total system sizes (N = 50, 100, 150, 200
from light to dark blue markers). The data is fitted with the function (7.6) (or-
ange dashed lines). Fits of similar quality can be obtained also for other values
of the fields g and h. Bottom panel: Average Renyi-2 entanglement entropy of
an ensemble of weighted graph states (7.8) as a function of the subsystem size
L, computed for various total system sizes (N = 50, 100, 150, 200 from light to
dark green markers). Also in this case the data is well fitted by the function (7.6)
(orange dashed lines).

details). The results for the average entropy, see top panel of Figure 7.3, are well
fitted by the empirical functional form

S2(L;N) = A(N) log

[
1 +

B(N)

π
sin(

πL

N
)

]
. (7.6)

Notice that, in the large N limit, this functional form may alternatively represent
a S2(L) ∼ L scaling, a S2(L)→ 0 scaling or a S2(L) ∼ logL scaling of the entropy,
depending on the behaviour of the fit parameters A(N) and B(N).

In the range of system sizes that we were able to explore (N ≤ 200), we observe
that the parameter B(N) converges to a finite constant as N →∞. Similarly, the
product C(N) ≡ A(N)B(N)/N also converges to a constant C. This suggests the
asymptotic behaviour

S2(L;N) = CL+O(1/N) , (7.7)
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Figure 7.4: Entropy coefficient C(N). The coefficient C(N) = A(N)B(N)/N ,
extrapolated from the Rényi entanglement entropy fit, is plotted as a function of
the transverse field g at h = 0 for different system sizes N (different shades of
blue).

in the thermodynamic limit. In other words, we observe an entanglement scaling
larger than both the one of a product state description and the one of a permuta-
tionally invariant model. It instead scales proportionally to the volume L of the
considered subsystem.

Finally, we point out that the entanglement structure of the ground states
appears to encode very clearly some information about the phase transition of the
model. More specifically, if we compute the fit coefficient C(N) defined above as a
function of the transverse field g at h = 0, we will see that this function develops,
in the thermodynamic limit, a discontinuity in its derivative at the critical value
gC ≈ 1.5J , as shown in Figure 7.4.

Comparison to random weighted graph states

The uncomplicated form of the matrix M , which appears to be distributed ac-
cording to a GOE, suggests that the entanglement structure of the QSK ground
states could be described in an even simpler way. Consider indeed the set of states
parametrized as

|Ψ(M)〉 = V(M) |+, . . . ,+〉 , (7.8)

where |+〉 = 1√
2
(|↑〉+ |↓〉). These are a subset of the full variational class (7.3) and,

in the context of Quantum Information Theory, are referred to as weighted graph
states [170]. Let us then consider a random ensemble of such states constructed
by drawing the matrix M from a GOE with variance M2

nm = 1
N

.
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We can compute the average subsystem entanglement entropy S2(L) for this
ensemble of states, similarly to what we did for the ground states. We find that
this entropy is fitted by the same functional form (7.6) and that the fit parameters
A(N) and B(N) obey the same large N scalings as in the ground state case. It is
also possible to show analytically that the entanglement of these states must scale
according to a volume law, as confirmed by these fits (see Appendix A.5.2).

Let us stress that the actual ground states contain more elaborate features
than the states (7.8). The state |φ(x)〉 appearing in the variational ansatz (7.3)
is in general not equal to |+, . . . ,+〉. Rather, we observe that |φ(x)〉 transitions
from being polarized in the z-direction at small transverse fields g to being almost
fully polarized in the xy-plane of the Bloch sphere for large g. Furthermore, the
proportionality constant between M2

nm and 1
N

also shows a non-trivial dependence
on g and h.

Nonetheless, the qualitative entanglement structure that we observe in the
ground states appears to be present already in the simplified form (7.8) if one
samples M from a GOE. In view of this, we conclude that the ground state of the
QSK model can be seen as a weighted graph state, where the entangling weights
are random variables taken from a Gaussian distribution, while the underlying
product state encodes information about the model’s phase.

7.4 Phase transition at finite longitudinal fields

Another non-trivial feature of the QSK model which can be studied thanks to our
method is the presence of a phase transition at h > 0. It has been conjectured that
the model’s spin glass phase survives also for non-vanishing longitudinal fields h.
This would suggest the existence of a line of quantum phase transitions between
the spin glass and paramagnetic phases that extends from the g = gC , h = 0
critical point into the h > 0 plane (often referred to as the quantum de Almeida-
Thouless line) [166, 180]. This conjecture is however debated and decisive evidence
has yet to be collected in its favour.

Our analysis can provide a new contribution towards answering this question.
Indeed, we can extend our analysis to variational ground states in the whole pa-
rameter space of the model, including h > 0. What we observe is that all indicators
of a phase transition vanish as soon as h > 0.

More specifically, the spin glass susceptibility χsg becomes a smooth function of
g whenever h > 0, no longer presenting the discontinuity in its derivative typical of
a phase transition, even at large N . Similarly, the coefficient C characterizing the
entropy behaviour of the ground states clearly shows a singular behaviour at h = 0
but not for finite h. These results are illustrated in Figure 7.5. In conclusion, our
analysis was not able to identify any sign of the presence of a phase transition in
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Figure 7.5: Analysis at finite longitudinal fields. Behaviour of the spin glass sus-
ceptibility per site χsg/N (green squares) and entropy coefficient C (blue circles) as
functions of g for different values of h/J = 0, 0.1, . . . 1 (dark to light) at N = 150.
We observe that both functions develop a singularity typical of a phase transition
only in the h = 0 limit.

the h > 0 region of the model’s parameter space.
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Chapter 8

Conclusion

In this thesis, we have made contributions to the development and understanding
of variational methods for many body physics. These contributions have been
directed both at understanding variational methods from a general perspective
and at the development of specific new tools, especially in the context of Gaussian
methods. Taken all together, they provide a robust set of techniques to circumvent
the curse of dimensionality of the many body Hilbert space and derive predictions
about quantum systems using classical computational resources efficiently.

In the first part of the thesis, we have presented a geometric perspective of vari-
ational methods. In Chapter 2, we have shown how a variational set of pure states
M can be understood as a differential geometric manifold embedded in the Hilbert
space H. This point of view facilitates the definition of a series of geometric struc-
tures associated toM. These structures encode information about the manifold’s
curvature, its linearity, its complex structure and provide important insights on
the correct application of variational methods to it. The most important notion
that one can consider is whether the manifold M is a Kähler manifold or not.
This has significant impact on the definition of variational principles, especially
for time evolution.

We have then looked more closely at these variational principles, in Chapter 3,
defining them on a manifold M which we assumed to have been characterised
in the way described above. We have derived a geometric equivalent for all the
most relevant quantum mechanical calculations. We have shown how ground state
search can be implemented as a natural gradient descent method on a Rieman-
nian manifold. We have given geometric principles for defining time evolution on
a curved variational surface and discussed how the geometry of this surface cru-
cially impacts the inequivalence of different time dependent variational principles.
We have described how the excitation energies of a Hamiltonian are encoded in
the linear response theory of these time evolution equations on the manifold. In
summary, we hope to have convinced the reader of how the toolbox of differential
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geometry allows us to construct a complete, self-consistent and rigorous theory
of variational methods on any given set of variational states, including ones with
exotic but nonetheless useful geometric structures.

In the second part of the thesis, we have shown how one particular class of
states – Gaussian states – fits into the variational paradigm. In Chapter 4, we have
discussed how the characteristics of Gaussian states are well-suited for an efficient
numerical implementation of variational methods. We have in particular focused
on how this property stems from a special group-theoretic structure encoded in
Gaussian unitaries. This structure is not unique to Gaussian states, indeed we
have identified group-theoretic coherent states as the larger category of states in
which these properties can be identified.

These observations have led us to realise that these group-theoretic structures
can be exploited further than what is normally done in plain Gaussian or coherent
states. In particular we have shown how to use them to define sets states which,
thanks to their group structures, allow for efficient numerical computations, while
at the same time extending the variational manifolds beyond purely Gaussian
states. We have provided a rigorous construction of these states, which we called
generalised group-theoretic coherent states, in Chapter 5, proving the efficiency of
the related computational methods.

In the third part of the thesis we have then given some examples of the results
which can be obtained using the variational methods described above. In Chap-
ter 6 we have shown how the superfluid phase of the Bose-Hubbard model can
be analysed using pure Gaussian states as a variational ansatz. Many non-trivial
features of this phase can be observed even with such a relatively simple approach,
provided one uses the full range of variational principles available. In Chapter 7
we have illustrated the power of the generalised group-theoretic coherent states.
Indeed, we have shown how this construction in the context of spin systems pro-
vides a very reliable ansatz for the ground states of the paradigmatic Quantum
Sherrington-Kirkpatrick model.

We believe that using the approaches described in this thesis many more such
applications could be found, testifying the usefulness of variational methods. A
full understanding of the geometry of variational methods will pave the way to
applications involving more elaborate manifolds. Indeed, many variational ansätze
can be though of that could potentially provide interesting solutions to relevant
problems – for example, applying various kinds of parametrised unitaries to fixed
reference states. These manifolds will, however, in general have complicated non-
Kähler geometric structures. Their naive application will then lead to inconsistent
results that only a precise understanding of the geometric nature of variational
methods can resolve.

Generalised group-theoretic coherent states can themselves represent a prolific
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source of new variational ansätze and replicate in other contexts their success at
describing the Quantum Sherrington-Kirkpatrick model. We believe in particular
that their most unexplored potential lies in the application to systems which con-
tain mixtures of different types of degrees of freedom – for example, spins, bosons
and fermions. The generalised group-theoretic construction allows to define states
which present non-trivial correlations between these different degrees of freedom
which are not normally found in common variational ansätze.

Mixed quantum states have not been addressed in this thesis, even though
they represent a fundamental tool for the description of open quantum systems.
A comprehensive description of the geometry and the variational principles for
families of mixed states is most likely a non-trivial task, however it would provide
a valuable extension and completion of the present work, which we hope will one
day be addressed.
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Appendix

A.1 Proofs

In this appendix, we present several technical proofs of selected propositions from
the main text, whose proof would have interrupted the reading flow.

Proposition 1. On a tangent space TψM ⊂ H of a submanifold M ⊂ P(H) we
can always find an orthonormal basis {|Vµ〉}, such that g ≡ 1 and the restricted
complex structure is represented by the block matrix

Jµ
ν ≡



1
−1

. . .

c1

−c1

c2

−c2

. . .

0
. . .


(A.1)

with 0 < ci < 1. This standard form induces the decomposition of TψM into the
three orthogonal parts

TψM = TψM⊕IψM︸ ︷︷ ︸
TψM

⊕DψM , (A.2)

where TψM is the largest Kähler subspace and TψM is the largest space on which
J and ω are invertible.

Proof. We focus on a single tangent space TψM ⊂ H and refer to the Kähler
structures on H, rather than the restricted ones on TψM, as (g, ω, J). To shorten
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notation, we define A := TψM and B as its orthogonal complement in H with
respect to g, so thatH = A⊕B. We will refer to the restricted Kähler structures on
A or B by (gA, ωA, JA) and (gB, ωB, JB), respectively. The relation J = Gω = −Ωg
implies g = −ωJ or, equivalently1, g(v, w) = −ω(v, Jw), and also g(Jv, Jw) =
g(v, w) for all v, w ∈ H. From here, g(Jv, w) = −g(v, Jw) follows and we can
derive for a, a′ ∈ A

gA(JAa, a
′) = g(Ja, a′) = −gA(a, JAa

′) , (A.3)

which implies that JA is antisymmetric with respect to gA and thus is diagonaliz-
able, has either vanishing or purely imaginary eigenvalues with the latter appearing
in pairs ±ci. Furthermore, we can always choose an orthonormal basis, such that
gA = 1 and JA is represented by (A.1).
Next, we show that ci ∈ (0, 1]. We define the orthogonal projectors PA :H → A
and PB :H → B, such that

J =

(
JA JAB
JBA JB

)
,

JA : A→ A, a 7→ PA(Ja) ,
JB : B → B, b 7→ PB(Jb) ,
JAB : B → A, b 7→ PA(Jb) ,
JBA : A→ B, a 7→ PB(Ja) .

(A.4)

We write J2 − 1 = 0 in blocks to find(
J2
A + JABJBA −1A JAJAB + JABJB
JBJBA + JBAJA J2

B + JBAJAB −1B

)
= 0 . (A.5)

We consider an eigenvector a ∈ A of JA with JAa = ica for non-zero c, which
implies J2

A a = −c2 a. We compute

g(a, a) = g(JAa+ JBAa, JAa+ JBAa)

= g(JAa, JAa) + g(JBAa, JBAa)

≥ g(JAa, JAa) = −g(a, J2
Aa) = c2g(a, a)

(A.6)

where we used that A and B are orthogonal which eliminates crossing terms. This
implies the inequality c2 ≤ 1 and thus, we can choose ci ∈ (0, 1] as in (A.1).

Proposition 2. The Kähler property is equivalent to requiring that TψM is not
just a real, but also a complex subspace, i.e., for all |X〉 ∈ TψM, we also have
i|X〉 ∈ TψM. Therefore, the multiplication by i commutes with the projector Pψ,
i.e., Pψi = iPψ and Pψ is complex-linear.

1In the following notation we will treat g and ω as bilinear forms. In other words, g(v, w) ≡
vµgµνw

ν for any two vectors v, w ∈ H
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Proof. We want to show that J2
A = −1A implies that for all a ∈ A, we also have

ia = Ja ∈ A. Therefore, we need to show that Ja = JAa, which is equivalent to
JBA = 0. For arbitrary a ∈ A, we compute

g(JBAa, JBAa) = g(Ja, JBAa) = −g(a, JJBAa)

= −g(a, JABJBAa) .
(A.7)

This expression vanishes if J2
A = −1A, because in that case JABJBA = J2

A−1A = 0
follows from the first block in (A.5). Since g is non-degenerate, this implies JBA =
0. Similarly, we can use the last block in (A.5) to conclude J2

B = −1B, which
implies JBA = 0. With vanishing JAB and JBA, J is block diagonal and commutes
with the projectors. In the language of complex vector spaces, this implies that
Pψi = iPψ.

Proposition 8. Given a variational manifold M we define (according to the La-
grangian action principle) the free projected real time evolution |ψ(t)〉 as governed
by the free Hamiltonian Ĥ0 and the perturbed projected real time evolution |ψε(t)〉
as governed by the perturbed Hamiltonian Ĥε(t) = Ĥ0 + εÂ(t), both with the same
initial state |ψ(0)〉. Then, the propagated perturbation, defined according to (3.67),
is given by

δxµ(t) = −
∫ t

−∞
dt′ (dΦt−t′)

µ
ν Ωνρ ∂ρA(t′)

∣∣
ψ(t′)

, (A.8)

where dΦt is the linearised free evolution flow.

Proof. Let us define the perturbed evolution flow Φε
t as the map that sends the

coordinates of an initial state xµ(0) to the coordinates xµ(t) of the state time
evolved under the projected perturbed real time evolution. It is governed by

d

dt
Φε
t(x) = Xε(Φε

t(x)) = X0(Φε
t(x)) + εXA(Φε

t(x)) , (A.9)

where X0 and XA are the evolution vector fields associated to the Hamiltonians
Ĥ0 and Â respectively. We define the free evolution flow Φ0

t analogously by just
setting ε = 0 in the previous expressions.
Let us now define the interaction picture flow Φ̃ε

t = Φ0
−t ◦ Φε

t. It has the useful
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property that its time evolution only depends on the perturbing vector field:

d

dt
Φ̃ε
t(x) = −X0(Φ̃ε

t(x)) + dΦ0
−tXε(Φε

t(x)) (A.10)

= −X0(Φ̃ε
t(x)) + dΦ0

−tX0(Φε
t(x))

+ ε dΦ0
−tXA(Φε

t(x))
(A.11)

= −X0(Φ̃ε
t(x)) +

d

dt′

∣∣∣
t′=0

Φ0
−tΦ

0
t′Φ

ε
t(x)

+ ε dΦ0
−tXA(Φε

t(x))
(A.12)

= −X0(Φ̃ε
t(x)) +

d

dt′

∣∣∣
t′=0

Φ0
t′−tΦ

ε
t(x)

+ ε dΦ0
−tXA(Φε

t(x))
(A.13)

= −X0(Φ̃ε
t(x)) + X0(Φ0

−tΦ
ε
t(x))

+ ε dΦ0
−tXA(Φε

t(x))
(A.14)

= ε dΦ0
−tXA(Φε

t(x)) . (A.15)

We are interested in the propagated perturbation

δxµ(t) =
d

dε

∣∣∣
ε=0

Φ0
t Φ̃

ε
t(x) = dΦ0

t

(
d

dε

∣∣∣
ε=0

Φ̃ε
t(x)

)
. (A.16)

The quantity d
dε

∣∣∣
ε=0

Φ̃ε
t(x) is for all times a vector of Tψ(0)M and its time evolution

can be obtained by using (A.15) after having commuted derivatives:

d

dt

[
d

dε

∣∣∣
ε=0

Φ̃ε
t(x)

]
=

d

dε

∣∣∣
ε=0

[
d

dt
Φ̃ε
t(x)

]
(A.17)

=
d

dε

∣∣∣
ε=0
ε dΦ0

−tXA(Φε
t(x)) (A.18)

= dΦ0
−tXA(Φ0

t (x)) . (A.19)

The solution to this equation follows from integrating as

d

dε

∣∣∣
ε=0

Φ̃ε
t(x) =

∫ t

−∞
dt′ dΦ0

−t′XA(Φ0
t′(x)) . (A.20)

Combining this with (A.16) and the expression (3.9) for the Lagrangian real time
evolution vector field XA(Φ0

t′(x)) leads to the result (A.8).

A.2 Kähler manifolds

Kähler manifolds play a central role in this manuscript. For completeness, in this
appendix we will discuss their definition and properties. More information can
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be found in [81]. A Kähler manifold is a manifold M equipped with a metric g
and a symplectic form ω that satisfy several properties. These include some local
properties, that is that Jµ

ν = −Gµσωσν verifies J2 = −1 at all points, and also
some non-local properties (closedness of ω and vanishing Nijenhuis tensor). The
precise definition is as follows.

Definition 4 (Kähler manifold). A real manifold M is called Kähler if each tan-
gent space is equipped with a positive definite metric g and a compatible symplectic
form ω as in Definition 1, such that Jµ

ν = −Gµσωσν with J2 = −1, and the
following conditions are satisfied:

� Symplectic form ω is closed (dω = 0) with

(dω)µνσ = 1
6

(∂µωνσ + ∂νωσµ + ∂σωµν

−∂µωσν − ∂νωµσ − ∂σωνµ) .
(A.21)

� Nijenhuis tensor NJ vanishes (NJ = 0) with

(NJ)µνσ = Jλ
σ ∂λJ

µ
ν − Jλ

ν ∂λJ
µ
σ

+ Jµ
λ(∂νJ

λ
σ − ∂σJλ

ν) .
(A.22)

In essence, a Kähler manifold is simulteneously a Riemannian, a symplectic and
a complex manifold, such that the respective structures in every tangent space are
compatible in the sense of Definition 1.

For the purpose of the methods presented in this manuscript, it is of inter-
est only whether the restricted Kähler structures on M satisfy the compatibility
conditions from Definition 1. If they do, the manifold is known as an almost-
Hermitian manifold. We do not use the additional properties of ω being closed or
NJ vanishing.

However, as shown in the following proposition, if an almost-Hermitian mani-
foldM is also a submanifold of a Kähler manifold, the additional non-local condi-
tions are automatically satisfied andM is itself a Kähler manifold. In the context
of this manuscript we always deal with manifolds M ⊂ P(H), where projective
Hilbert space P(H) is known to be a Kähler manifold [181]. For this reason, for all
the manifolds we encounter, the local compatibility conditions from Definition 1
are sufficient conditions for the manifold to be Kähler and we will therefore refer
to manifolds that satisfy them as Kähler.

Proposition 15. Given a Kähler manifold M̃ with compatible Kähler structures
(g̃, ω̃, J̃), a sub manifold M ⊂ M̃ equipped with the restricted Kähler structures
(g,ω,J = −Gω) is itself a Kähler manifold provided that J2 = −1.

153



APPENDIX

Proof. M satisfies all local Kähler conditions. We therefore only need to show
that ω is closed and NJ = 0. We consider local coordinates x̃µ̃ on M̃, such that
xµ̃ ≡ (xµ, x′µ

′
) where changes in xµ preserve the submanifold M, while changes

in x′µ
′

are orthogonal to it. We can further choose xµ and x′µ
′

locally, such that
the matrix representations of the Kähler structures (ω, g,J) with respect to the
decomposition µ̃ ≡ (µ, µ′) are

g̃ ≡

(
g 0

0 g′

)
, ω̃ ≡

(
ω 0

0 ω′

)
, J̃ ≡

(
J 0

0 J ′

)
, (A.23)

which is a consequence of J2 = −1, as proven in proposition 1. Thus, this implies
that J̃ = J ⊕ J ′ with respect to this decomposition TψM̃ = TψM⊕ (TψM)⊥.

� Symplectic form is closed. In the above basis, (dω)µνσ corresponds to a sub
block of the array (dω̃)µ̃ν̃σ̃. Consequently, dω̃ = 0 implies dω = 0.

� We restrict ÑJ̃ on M̃ to M to find

(ÑJ̃)µνσ = J λ̃
σ ∂λ̃J

µ
ν − J λ̃

ν ∂λ̃J
µ
σ

+ Jµ
λ̃(∂νJ

λ̃
σ − ∂σJ λ̃

ν)
(A.24)

which is not obviously equal to (NJ)µνσ due to the contraction over λ̃, which
takes the full manifold into account. However, our previous considerations
showed that J̃ = J ⊕ J ′. This implies that J λ̃

µ = Jλ
µ, which proves the

equality. Consequently NJ̃ = 0 implies NJ = 0.

We therefore conclude that any submanifoldM of a Kähler manifold M̃ with J2 =
−1 everywhere is again a Kähler manifold. Note that this implies in particular
that M is also a complex and a symplectic manifold.

A.3 Variational methods with generalised group-

theoretic coherent states

The main application of a family of states |ψ(x)〉 such as the one defined in (5.2)
(where we indicate with x collectively all the parameters defining the state) is to
use it as the ansatz for a variational calculation. In this appendix we show that all
the relevant quantities one needs to compute for such application can be brought
to linear combinations of terms of the form

〈µ| U(g) Ẑi1 · · · Ẑid |µ〉 . (A.25)
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To do this we use the result of section 5.3 that the adjoint action of V(M) on any
polynomial of operators Ẑi gives rise to a linear combination of products of group
operations and algebra operators.

Given a Hamiltonian Ĥ defined on H, an ansatz |ψ(x)〉 may be used both to
approximate the ground state of Ĥ and to simulate the real time dynamics of the
system. This can be done according to different variational principles, as discussed
in Chapters 2 and 3 and reference [69] and illustrated for Gaussian states in [52,
122, 182]. To do so it is necessary to be able to compute the following quantities:

〈ψ(x)|Ĥ|ψ(x)〉 , 〈Vµ(x)|Ĥ|ψ(x)〉 , 〈Vµ(x)|Vν(x)〉 , (A.26)

where |Vµ(x0)〉 = ∂
∂xµ
|ψ(x)〉 |x=x0 is a so-called tangent vector of the variational

manifold.

Here, we have assumed that the group G and its representation have been
chosen so that Ĥ can be expressed as a polynomial in the operators Ẑi. For
what concerns the computation of the tangent vectors, it can be shown (see Sec-
tion 4.2.2 and reference [69]) that the derivatives of U(g) with respect to a suitable
parametrization of the group can be written as linear combinations of terms of the
form U(g) Ẑi. Similarly, it holds that

∂

∂Mab
V(M) =

i

2
V(M)ĤaĤb . (A.27)

Consequently, we have that for generalised group-theoretic coherent states tangent
vectors have the form

|Vµ(x)〉 =Ci
1 U(g1)ẐiV(M)U(g2) |µ〉

+ Ci
2 U(g1)V(M)U(g2)Ẑi |µ〉

+ Cab
3 U(g1)V(M)ĤaĤbU(g2) |µ〉 .

(A.28)

With this in mind, one sees immediately that the quantities (A.26) are made
up of terms where one has to evaluate repeatedly the adjoint action of U(g) or
V(M) on products of operators Ẑi and then compute the expectation value of the
result on |µ〉. Using the results (5.15) and (5.16) these give rise to linear combina-
tions of further products of operators Ẑi and potentially of group transformations
U(g). Using then (5.13) as explained in Section 5.3 to commute all the group
transformations to the left, they can thus be all brought to linear combinations of
terms of the form (A.25).
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A.4 Calculations for the Bose-Hubbard model

A.4.1 Review of Bogoliubov theory

In Chapter 6, we generalise the well-known Bogoliubov theory of the Bose-Hubbard
model by extending the underlying variational family from coherent to Gaussian
coherent states. To allow for a fair comparison, we review here the three steps
involved in traditional Bogoliubov theory.

For later computations, it is useful to write the Bose-Hubbard Hamiltonian (6.1)
in momentum space

Ĥ =
∑
k

εkb̂
†
kb̂k +

U

2N

∑
k,p,q

b̂†k+q b̂
†
p−q b̂kb̂p (A.29)

where we defined b̂k = 1√
N

∑
n e
−ik·xn b̂n on the reciprocal lattice and introduced

the non-interacting dispersion relation

εk = −2
dim∑
d=1

cos
2πkd
Nd

− µ , (A.30)

where Nd refers to the number of lattice sites in the d-th direction, such that
N =

∏
dNd.

Step 1 (coherent variation). Bogoliubov theory approximates the ground state
within the class of translationally invariant coherent states, i.e., the states

|β0〉 = D(β0) |0〉 with D(β0) = eβ0b̂
†
0−β∗0 b̂0 , (A.31)

satisfying 〈β0| bk |β0〉 = β0δ0,k. Within this class, the average energy value is
minimised for |β0| equal to

βc
0 :=

√
−ε0N/U (A.32)

leading to the expectation value

E|βc
0〉 = 〈βc

0| Ĥ |βc
0〉 = ε0 |βc

0|2 +
U

2N
|βc

0|4 = −ε
2
0N

2U
, (A.33)

provided that ε0 < 0. There is a larger set of solutions given by β0 = βc
0e

iϕ

associated to the spontaneously broken U(1) symmetry generated by N̂ =
∑

k b̂
†
kb̂k.

Step 2 (mean field Hamiltonian). We can use |βc
0〉 to define the mean field

Hamiltonian

[Ĥ]|βc
0〉 = E|βc

0〉+
1

2

∑
k

(
U c
k(δb̂c

k)
†δb̂c

k + V c
k δb̂

c
kδb̂

c
−k + H.c.

)
, (A.34)
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where δb̂c
k = b̂k − δk,0β

c
0, U c

k = εk + 2U
N
|βc

0|2 = εk − 2ε0 and V c
k = U

N
(βc

0)2 =

−ε0. Here, we define [Ĥ]|ψ〉 to be the quadratic Hamiltonian resulting from the

quadratic truncation of Ĥ written as normal ordered polynomial in creation and
annihilation operators δb̂†k and δb̂k associated to the Gaussian state |ψ〉, i.e., in our

case, δb̂k |βc
0〉 = 0.

Step 3 (squeezed ground state). The mean field Hamiltonian [Ĥ]|βc
0〉 is quadratic,

implying that we can diagonalize it by applying the Bogoliubov transformation

S(λ) = exp
(

1
2

∑
k(λk b̂

†
kb̂
†
−k − λ∗k b̂kb̂−k)

)
. (A.35)

We perform the transformation by expressing b̂k in terms of new creation and
annihilation operators

δB̂k = D(β)S(λ) b̂k S†(λ)D†(β) (A.36)

= uk(b̂k − βk)− vk(b̂†−k − βk) , (A.37)

with uk = coshλk and vk = sinhλk. The diagonalization is accomplished by
β = βc

0 and λc
k given by

tanh 2λc
k = −V

c
k

U c
k

, (A.38)

such that the Hamiltonian takes the form

[Ĥ]|βc
0〉 = E|βc

0〉 −∆c +
∑
k

Ec
k (δB̂c

k)
†δB̂c

k , (A.39)

where the energy shift ∆c and the excitations Ec
k are

∆c =
1

2

∑
k

ε2
0

εk − 2ε0 +
√

(2ε0 − εk)2 − ε2
0

, (A.40)

Ec
k =

√
(U c

k)2 − (V c
k )2 =

√
(εk − 2ε0)2 − ε2

0 . (A.41)

The formal ground state of this Hamiltonian is given by a state |βc
0, λ

c〉 = D(βc
0)S(λc) |0〉,

such that δB̂c
k |βc

0, λ
c〉 = 0. The Bogoliubov spectrum is gapless, i.e., we have

Ec
0 = 0.

The full spectrum of the mean field Hamiltonian [Ĥ]|βc
0〉 is constructed from

the 1-particle Bogoliubov spectrum Ec
k, whose excitations are non-interacting. De-

pending on the shape of the function Ec
k, i.e., if there exist k, q with Ec

k > Ec
k−q+Ec

q ,
it is possible to find a superposition of excitations with total momentum k whose
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total energy is less than Ek. To get the lower bound on the excitation continuum,
we need to compute

Emin
k = min

qi

∑
i

Ec
qi

with k =
∑
i

qi . (A.42)

For the system in one dimension, it is sufficient to compute the slope for k = 0,
namely E ′0, to find the explicit form of the lower bound to be given by

Emin
k = min

(
Ek,
√

4 + 2µ
2πk

N

)
. (A.43)

We can derive the condition on µ, such that there is some range of k, for which
Emin
k lies underneath the Bogoliubov spectrum Ec

k. This condition is given by
∂2
kEc

k(µ) = 0, i.e., the second derivative of Ec
k must vanish. Its solution is

2πk

N
= cos−1

(
8 + 3µ−

√
5µ2 + 32µ+ 48

4

)
, (A.44)

which only exists for µ ≤ 4. In higher dimensions, we can consider the slice
k = (kx, 0, . . . , 0), which leads to an effective rescaling of µ → µ + 2(dim−1).
In this case, we therefore have the condition µ < 6 − 2 dim to have part of the
continuum spectrum to lie underneath the 1-particle dispersion relation Ek.

Let us make the following three important remarks. First, the Bogoliubov
energy

EBogoliubov = E|βc
0〉 −∆c (A.45)

is not variational, i.e., it is not the expectation value of the state |βc
0, λ

c〉 with
respect to the full Hamiltonian, but rather the minimal energy of the mean field
Hamiltonian [Ĥ]|βc

0〉. Only the energy E|βc
0〉 is variational, i.e., it minimises the

energy expectation value within the class of coherent states.
Second, the state |βc

0, λ
c〉 is actually ill defined in the zero mode, due to λc

k →∞
for k → 0. Put differently, the minimal energy EBogoliubov is only reached in
the limit of an infinitely squeezed state, whose energy with respect to the full
Hamiltonian actually diverges.

Third, we could have computed the Bogoliubov dispersion relation without
defining the mean field Hamiltonian [Ĥ]|βc

0〉, but rather just by studying the real
time flow of the full Hamiltonian projected on the manifold of coherent states and
linearised around the stationary coherent state |βc

0〉
To see this last point more in detail, consider the manifold of coherent states

|β〉 = D(β) |0〉 with D(β) = e
∑
k(βk b̂

†
k−β

∗
k b̂k) . (A.46)
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Here, β is a vector written in the momentum basis, i.e., its components are la-
beled by k. The tangent plane at the state |β〉 is spanned by vectors of the form
D(β)b̂†k |0〉. Therefore, the projected real time evolution can be computed from the
quantity

hk(β) = 〈0|b̂kD†(β)ĤD(β)|0〉 , (A.47)

which for the Bose Hubbard model evaluates to

hk(β) = εkβk +
U

N

∑
k1,k2

β∗k1+k2−kβk1βk2 . (A.48)

Expressed in real components, the resulting evolution is(
Reβ̇

Imβ̇

)
=

(
Imh(β)
−Reh(β)

)
= −i

1√
2
T−1

(
h(β)
−h∗(β)

)
, (A.49)

where we introduced the transformation matrix

T =
1√
2

(
1 i1
1 −i1

)
. (A.50)

The symbols β and h denote the column vectors that group the values of βk and
hk for all values of k.

The linearisation around |βc
0〉 is then given by

K =
(

∂
∂Reβ

, ∂
∂Imβ

)( Reβ̇

Imβ̇

)
(A.51)

=
√

2
(

∂
∂β
, ∂

∂β∗

)( Reβ̇

Imβ̇

)
T

= −iT−1
(

∂
∂β
, ∂

∂β∗

)( h(β)
−h∗(β)

)
T , (A.52)

where we expressed the derivatives with respect to Reβ and Imβ in terms of deriva-
tives with respect to β and β∗, taken as independent variables. All derivatives are
evaluated at βk = δk,0β

c
0. The matrix iK, whose eigenvalues ±ω represent the

TDVP estimate of the 1-particle excitation energies of the model, is then, up to
similarity transformations, equal to

K =

[(
∂
∂β
, ∂

∂β∗

)( h(β)
−h∗(β)

)]
βk=δk,0β

c
0

. (A.53)
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This matrix decomposes into blocks of the form

Kk =

(
U c
k V c

k

−V c
k −U c

k

)
(A.54)

with U c
k = εk − 2ε0 and V c

k = −ε0 as before. The eigenvalues ±ωk are given by

ωk =
√

(U c
k)2 − (V c

k )2 = Ec
k , (A.55)

which is in full agreement with Bogoliubov theory (A.41).

A.4.2 Computation of Gaussian ground state and equa-
tions of motion

Here, we review the underlying analytical and semi-analytical methods associated
to Section 6.2, that enabled us to compute the best Gaussian state, i.e., the Gaus-
sian state |ψg〉 with the lowest energy expectation value with respect to Ĥ. We can
restrict ourselves to searching for the ground state in the translationally invariant
submanifold, which is parametrized by β0 and λk := λ0,k. Due to the U(1) invari-
ance, it is always possible to find a ground state in which both these parameters
are real. It turns out to be very convenient to parametrize the state in terms of
the Bogoliubov parameters βk, uk = coshλk and vk = sinhλk such that

δB̂k = U(β, λ) b̂k U †(β, λ)

= uk(b̂k − βk)− vk(b̂†−k − βk)
(A.56)

will annihilate the Gaussian state |β, λ〉 = U(β, λ) |0〉.
The stationary point |ψg〉 is characterized by vanishing P|ψg〉(−Ĥ) |ψg〉, which

translates into the conditions

〈0|b̂0U †(β, λ)H|ψ(β, λ)〉 = 0 , (A.57)

〈0|b̂kb̂−kU †(β, λ)H|ψ(β, λ)〉 = 0 . (A.58)

Rewriting these conditions in terms of our parameters (β0, λk) gives

ε0 +
U

N
(β2

0 + A+ 2B) = 0 , (A.59)[
εk +

2U

N
(β2

0 +B)

]
ukvk +

U

2N
(β2

0 + A)(u2
k + v2

k) = 0 , (A.60)

160



APPENDIX

where we defined A =
∑

k ukvk and B =
∑

k v
2
k and εk is the dispersion relation

in (A.30). Equations (A.59-A.60) are solved by

βg
0

2 = −Nε0

U
− A− 2B , (A.61)

ug
k =

1√
2

√
(1− T 2

k )
− 1

2 + 1 , (A.62)

vg
k =

1√
2

signTk

√
(1− T 2

k )
− 1

2 − 1 , (A.63)

where we introduced the convenient parameter

Tk = −
(

1 +
2U

N

B

ε0

)(
2− εk

ε0

+
2U

N

A+B

ε0

)−1

. (A.64)

This expression for the solution depends on the final values of the quantities A
and B which have to be obtained from the coupled equations

A =
1

2

∑
k

2BU +Nε0√
(2U(A+ 2B) +N(3ε0 − εk)) (2AU +N(ε0 − εk))

,

B =
1

2

∑
k

N(εk − 2ε0)− 2(A+B)U√
(2U(A+ 2B) +N(3ε0 − εk)) (2AU +N(ε0 − εk))

− N

2
,

(A.65)

which can be solved numerically efficiently independently of the dimensionality of
the system and with a linear dependence on the system size.

We can similarly express the energy E and particle density n of a Gaussian
state |ψ〉 in terms of β0, uk, vk, A =

∑
k ukvk and B =

∑
k v

2
k as

E =
∑
k

εkv
2
k −

Nε2
0

2U
− (A+ 2B)ε0 −

U

N
(2A+B)B ,

n =
〈N̂〉
N

= −ε0

U
− A+B

N
.

(A.66)

In particular, we can use βg
0 , ug

k and vg
k to compute E|ψg〉.

Next, we present a comprehensive derivation of the linearisation matrix Kµ
ν . It

is here convenient to consider a slightly different parametrization of the manifold
than the one used in Section 6.3.1, namely |ψ(x̃)〉 = U(xg)U(x̃) |0〉. Note that
this is an example of the parametrisation discussed in Section 4.2.2 The physical
quantities we are interested in, i.e., the spectrum of K, are independent of the
choice of parametrization.
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Using the parametrization |ψ(x̃)〉, we can write the projected Schrödinger equa-
tion as

d

dt
|ψ(x̃)〉 =

dx̃µ

dt
∂µ |ψ(x̃)〉 = P|ψ(x̃)〉(−iĤ) |ψ(x̃)〉 . (A.67)

The tangent vectors |vµ(x̃)〉 = ∂µ |ψ(x̃)〉 define the metric

gµν(x̃) = Re 〈vµ(x̃)|vν(x̃)〉 , (A.68)

whose inverse Gµν is characterized by the property Gµρ(x̃)gρν(x̃) = δµν . Note
that we we use Einstein’s sum convention where we sum over repeated indices.
We point out here that we are employing a real formalism in which we use the real
parametrization (6.5) and we consider the tangent plane as a real vector space,
i.e., we consider the vectors |W 〉 and |W ′〉 = i|W 〉 to be linearly independent (and
orthogonal with respect to the real inner product Re 〈W |W ′〉).

Using Gµν , we can solve for the time evolution of the coordinates

dx̃µ

dt
= X̃ µ(x̃) = Gµν(x̃) Re 〈vν(x̃)| (−iĤ) |ψ(x̃)〉 . (A.69)

The choice of parametrization is convenient because it implies Gµν(0) = δµν as
|vµ(0)〉 = U(xg) |Wµ〉, where

{|Wµ〉} =
{
b̂†k |0〉 , b̂

†
k−q b̂

†
q |0〉 , ib̂

†
k |0〉 , ib̂

†
k−q b̂

†
q |0〉

}
(A.70)

is a set of orthonormal vectors. For a generic x̃ 6= 0, the vectors |vµ(x̃)〉 will not be
orthonormal, but still form a basis of the tangent space T|ψ(x̃)〉M = span {U(xg)U(x̃) |Wµ〉}.
We can expand them as

|vµ(x̃)〉 = Mν
µ(x̃)U(xg)U(x̃) |Wν〉 , (A.71)

with respect to the orthonormal basis U(xg)U(x̃) |Wν〉. The expansion coefficients
are encoded in a matrix Mν

µ(x̃). For our purposes it suffices to see that Mν
µ(0) =

δνµ. Indeed, exploiting this and the fact that the approximate ground state is also
the stationary point of real time evolution, i.e.,

X µ(0) = Re 〈Wµ|U †(xg)(−iĤ)|ψ(0)〉 = 0, (A.72)

we can linearise the equation of motion (A.69) around x̃ = 0 finding

Kµ
ν =

∂

∂x̃µ

∣∣∣∣
x̃=0

X̃ µ(x̃)

=
∂

∂x̃µ

∣∣∣∣
x̃=0

Re 〈Wµ| U †(x̃)U †(xg)(−iĤ) |ψ(x̃)〉 . (A.73)
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This is equivalent to linearising the equations of motion for xµ around xµg as de-
scribed in (6.12).

Evaluating the matrix K from (A.73) reduces to calculating expectation values
using Wick’s theorem and taking derivatives. It leads to the form

K = −iT−1ST (A.74)

where the matrix T is defined in (A.50), taking the subdivision into blocks to refer
to the split between real and imaginary parameters in (6.5).

The matrix S is block diagonal with each block Sk referring to a fixed total
momentum. Each block can be written as the sum of a diagonal matrix and a
rank 5 matrix, that is Sk = E + CR, with

E =


Ek 0 0 0
0 ∆q,q̃ 0 0
0 0 −Ek 0
0 0 0 −∆q,q̃

 , R =


1 0 0 0
0 0 1 0
0 ak,q̃ 0 ak,q̃
0 bk,q̃ 0 ck,q̃
0 ck,q̃ 0 bk,q̃

 ,

C =


0 Gk

2U
N
β0(uk + vk)

U
N
β0vk

U
N
β0uk

Fk F̄k
2U
N
ak,q

U
2N
bk,q

U
2N
ck,q

−Gk 0 −2U
N
β0(uk + vk) −U

N
β0uk −U

N
β0vk

−F̄k −Fk −2U
N
ak,q − U

2N
ck,q − U

2N
bk,q


with newly introduced parameters

Ek = (εk +
2U

N
(β2

0 +B))(u2
k + v2

k) +
2U

N
(β2

0 + A)ukvk,

∆q,q̃ = (δq,q̃ + δq,−q̃)(E k
2

+q̃ + E k
2
−q̃),

Gk = 2(εk +
2U

N
(β2

0 +B))ukvk +
U

N
(β2

0 + A)(u2
k + v2

k),

Fk =
U

N
β0 [2ak,q(uk + vk) + bk,qvk + ck,quk] ,

F̄k =
U

N
β0 [2ak,q(uk + vk) + bk,quk + ck,qvk] ,

ak,q = u k
2

+qv k
2
−q + u k

2
−qv k

2
+q̃,

bk,q = 2v k
2

+qv k
2
−q,

ck,q = 2u k
2

+qu k
2
−q,

where uk and vk have to be evaluated at the solutions corresponding to the ground
state approximation defined in Appendix A.4.2, i.e., at βg

0 , ug
k and vg

k from (A.61-
A.63), and εk is the dispersion relation in (A.30).
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Given the simple structure of the blocks Sk, it is easy to diagonalize them
numerically. Their eigenvalues are the zeros of the function f(ω) := det[1 +
R(E − ω)−1C]. Evaluation only scales linearly with the system size N and more-
over, we can characterize analytically some properties of the spectrum in the ther-
modynamic limit.

More specifically, the function f(ω) presents a series of poles, given by the
diagonal elements of E. Its zeros (i.e., the eigenvalues of the system) are positioned
one in between each pair of subsequent poles. One subset of the poles, that is
the diagonal elements of ∆q,q̃, for N → ∞ come closer together, creating in the
thermodynamic limit a continuous line. The zeros that are in between such poles
will therefore also come together to a continuum that represents the continuum
in the spectrum of Sk. The boundaries of this continuum can thus be inferred by
computing the values of the minimal and maximal diagonal elements of ∆q,q̃. In
particular, we can identify the minimum, given by 2Ek, with the Higgs excitation
mode. In order to give an expression for the Higgs gap at zero momentum, we
need to evaluate 2E0.

We want to do this at constant filling n, which is equivalent to imposing ε0 =
−U

(
n+ A+B

N

)
, due to (A.66). Substituting this condition into equations (A.65),

we find equations for A and B at fixed n. These equations admit constant solutions
in the limit U → 0. Inserting these solutions in the expression for E0, we find the
asymptotics of the Higgs gap at constant density for U → 0

2E0 ∼ α(N, n)U as U → 0 . (A.75)

The function α has a complicated analytical expression that admits the large N
asymptotics

α(N, n) ∼ 2
3
√

2n
2
3N−

1
3 as N →∞ . (A.76)

Finally, notice that K has eigenvectors eµ(ω) appearing in complex conjugate
pairs satisfying

Kµ
νe
ν(ω) = +iωeµ(ω) ,

Kµ
νe
∗ν(ω) = −iωe∗µ(ω) . (A.77)

We assume to normalise them such that δ(ω) = ±1, where

δ(ω) = [Im eµ(ω)]Ωµν [Re eν(ω)] . (A.78)
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A.5 Calculations for the Sherrington-Kirkpatrick

model

A.5.1 Variational Method

In this appendix we will present the algorithm used to find the variational ground
states for the generalised atomic coherent states of the form

|Ψ〉 = U(y)V(M) |φ(x)〉 , (A.79)

defined in Chapter 7.
The GCS variational ground state is described by the parameters ζ0 = (y0, x0, M0)

which minimise the energy E(ζ) = 〈Ψ(ζ)| Ĥ |Ψ(ζ)〉, where Ĥ is the Hamiltonian
of the system. For optimisation of the parameters we used the natural gradient
descent (natural GD) algorithm (also known as imaginary time evolution, see Sec-
tion 3.5). Like for standard gradient descent (GD), natural GD starts at some
initial state and iteratively updates the parameters, with an update based on the
local structure, until a minimum in the energy is reached. However, while the pa-
rameters in GD are updated in the direction X of the energy gradient X = −∇E,
the direction for natural gradient descent is defined by

gX = −∇E (A.80)

and encodes additional information on the curvature in terms of the local metric
gµν = 2Re 〈Vµ|Vν〉, where the tangential vectors |Vµ〉 are specified below. Natural
GD in general leads to enhanced convergence compared to GD, however, like GD
can get stuck in local, non-optimal minima of the energy. In order to avoid this,
we employ an adiabatic updating procedure. Thereby, we start at g = 0, where
the system is exactly described by a product state and apply the natural GD
algorithm to a large number of random initial CS (usually 10.000) and use the
state with minimal energy as the variational ground state for both CS and GCS
at g = 0. Then, iteratively for increasing transverse field values g > 0, we use
ζ0(g) + η, that is the variational ground state parameters of the point g with some
small perturbation η, as the starting point of the natural GD algorithm to find
the optimal parameters ζ0(g + δg) for the point g + δg.

In order to perform the optimisation procedure described above, we will need
to compute quantities of the form

〈Ψ| Ĥ |Ψ〉 , 〈Ψ| Ĥ |Vµ〉 , 〈Vµ|Vν〉 , (A.81)

corresponding to the energy of the state, the derivative of the energy with respect
to the variational parameters and the local structure of the variational manifold,
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respectively. The |Vµ〉 are the so called tangential vectors, describing the change
in the state |Ψ〉 upon infinitesimal change in the variational parameters

|Vµ〉 = QΨ
∂

∂ζµ
|Ψ〉 , (A.82)

where we take the derivative with respect to the µ-th variational parameter. The
projection QΨ |φ〉 = |φ〉 − 〈Ψ|φ〉 |Ψ〉 removes all directions which lead only to a
change in phase or amplitude of the state |Ψ〉, i.e., which would not change the
physical state.

There are three different kinds of tangential vectors

|X i
n〉 = QΨU(y)V(M)U(x)(iσ̂ni ) |↑〉⊗N ,

|Mnm〉 = QΨU(y)V(M)

(
−i
4
σ̂nz σ

m
z

)
|φ(x)〉 ,

|Yjm〉 = QΨU(y)(î(σ)mj )V(M) |φ(x)〉 .

(A.83)

corresponding to the three kinds of variational parameters xin, Mnm and yin, re-
spectively.

To evaluate the quantities (A.81) let us first observe that the adjoint action of
the rotation unitaries U(x), defined below equation (7.2), on a product of Pauli
operators simply results in independently rotating each Pauli operator according
to

U(x)†σ̂ni σ̂
m
j . . .U(x) =

(∑
i′

Rii′

n σ̂
n
i′

)(∑
j′

Rjj′

m σ̂mj′

)
. . . , (A.84)

with the orthogonal matrices Rn(x) = Rn(xn) depending only on the parameters
for the n-th spin xin, where i = x, y, z. Hence, for any of the quantities in equa-
tion (A.81), we can take care of the action of U(y) simply by rotating the Pauli
operators that appear in Ĥ.

Let us now consider product operators Ô =
⊗N

n=1 Ôn, where Ôn acts only on
the n-th spin, since any operator is a linear combination of such product operators.
Another direct consequence of equation (A.84) is that for two CS |φ〉 and |χ〉 the
quantity 〈φ| Ô |χ〉, where Ô is an arbitrary product operator, factorizes into a
product of N single-spin terms

〈χ| Ô |ψ〉 =
∏
n

〈χn| Ôn |ψn〉 (A.85)

and is thus efficiently calculable.
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Finally, in order to compute expectation values for GCS, the key observation
is

V(M)†σ̂nαV(M) = σ̂nα exp(
αi

4

∑
m

Mnmσ̂
m
z ) (A.86)

≡ Ôαn(M) ,

for α ∈ {+, −, 0} and σ̂α=0 ≡ σ̂z. Note that in what follows Greek subscripts
α, β, . . . will refer to +, −, 0. The relation (A.86) is a direct consequence of the
commutation relations [σ̂nα, σ̂

m
z ] = αδnmσ̂

n
α.

Notice that the operator Ôαn(M) is a product operator. Moreover, for multiple
Pauli operators we can insert identities 1 = VV†, such that

V†σ̂nασ̂mβ . . .V = V†σ̂nαVV†σ̂mβ VV† . . .V (A.87)

= ÔαnÔβm . . . (A.88)

is again a product operator.
Thus, using the special relation (A.86), as well as the explicit form of the

GCS (7.3) and the tangential vectors (A.83), one immediately finds that the quan-
tities (A.81) are simply sums of expectation values of product operators with
respect to the CS part |φ(x)〉 of the GCS and can thus be computed efficiently.

Let us point out that the procedure described above for the computation of
expectation values 〈σ̂ni σ̂mj . . .〉Ψ with respect to a GCS |Ψ〉 scales polynomially
in the system size, but at the expense of scaling exponentially in the number of
Pauli operators. However, for the present application one will have to compute
expectation values of products of at most 4 Pauli operators, so this scaling does
not pose a problem.

A.5.2 Rényi-2 entropy

In this appendix we will present a method that can be used to efficiently estimate
numerically the second Rényi entropy of entanglement for states of the form

|Ψ〉 = U(y)V(M) |φ(x)〉 , (A.89)

that is GCS as defined in (7.3). Let us consider a system of N spins and a partition
of the spins into two sets A and Ac constituted of L and N −L spins, respectively.
We are interested in computing the Rényi-2 entropy S2 = − log2(qA) of the reduced
state ρA = trAc |Ψ〉 〈Ψ|, where qA is the purity qA = tr(ρ2

A). Notice that the local
unitaries contained in U(y) do not modify this quantity in any way, so in what
follows we will assume them to be all equal to the identity.
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We will show that the quantity qA can be rewritten in terms of a sampling
problem of a set of L classical spin-1 variables, taking values −1, 0 and +1. That
is, we have

qA =
∑

j1,...,jL=−1,0,+1

P1(j1) · · ·PL(jL)F (j1, . . . , jL) , (A.90)

for a certain function F and certain probability distributions Pn. Thus, one
can estimate qA by sampling configurations of the classical spins {jn} according
to the product probability distribution P1 · · ·PL and computing the expectation
value A.90 as the mean value of F . To achieve an error ε on qA it is sufficient
to sample ∼ 1/ε2 configurations, rather than compute all the exponentially many
terms in the sum (A.90). Notice, that the entropy S2 is invariant if one exchanges
the sets A and Ac, so we can always choose A to be the smallest of the two.

To rewrite qA let us consider an ancillary system also made up of N spins and
prepared to be in a copy of the state |Ψ〉. We will denote quantities relative to
this ancillary system with primes. We then have

qA = 〈Ψ, Ψ|SAA′ |Ψ, Ψ〉 , (A.91)

where SAA′ is the swap operator acting between the spins in A and the correspond-
ing ancillas in A′.

Note that the terms in V(M) that only connect spins within A or within Ac

do not contribute to (A.91). We can therefore replace V(M) with

Ṽ(M) = exp(− i
4

∑
n∈Ac

σ̂nz
∑
m∈A

Mnmσ̂
m
z ) . (A.92)

We will also assume that |φ(x)〉 =
⊗N

n=1 |φn〉 with |φn〉 = c0
n |↑〉+ c1

n |↓〉.
We can then write

qA = 〈φ(x), φ(x)| Ṽ†Ṽ ′†SAA′ṼṼ ′SAA′ |φ(x), φ(x)〉 , (A.93)

where we exploited the fact that SAA′ |φ(x), φ(x)〉 = |φ(x), φ(x)〉 to add an extra
swap operator. We then act with the swap operators on ṼṼ ′ (exchanging system
and ancilla operators in A) to obtain

Q̂ ≡ Ṽ†Ṽ ′†SAA′ṼṼ ′SAA′ (A.94)

= exp(
i

4

∑
n∈Ac

(σ̂nz − σ̂n ′z )
∑
m∈A

Mnm(σ̂mz − σ̂m ′z )) (A.95)

=
∏
n∈Ac

exp(
i

4
(σ̂nz − σ̂n ′z )

∑
m∈A

Mnm(σ̂mz − σ̂m ′z )) (A.96)

≡
∏
n∈Ac

Q̂n . (A.97)
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Each operator Q̂n has support on the single spin n ∈ Ac and on all of A. We
can therefore first take the expectation value of each Q̂n on the term |φn, φn〉
corresponding to the spin n (of the system and of the ancilla) within the product
state |φ(x), φ(x)〉. We easily find

〈φn, φn| Q̂n |φn, φn〉 = 1− 4pn sin2

[
1

4

∑
m∈A

Mnm(σ̂mz − σ̂m ′z )

]
, (A.98)

where we set pn = |c0
n|2|c1

n|2.
We then proceed to take the expectation value of

∏
n∈Ac 〈φn, φn| Q̂n |φn, φn〉

on the remaining part of the state |φ(x), φ(x)〉 corresponding to the subsystem A
which leads to the expression (A.90), once we define

Pm(0) = |c0
m|4 + |c1

m|4 (A.99)

Pm(+1) = Pm(−1) = |c0
m|2|c1

m|2 , (A.100)

which gives rise to a well-defined probability distribution. The function F turns
out to be

F (j1, . . . , jL) =
∏
n∈Ac

[
1− 4pn sin2

(
1

2

∑
m∈A

Mnmjm

)]
, (A.101)

which can be evaluated efficiently for any configuration of js. Note how the classical
spin-1 variables jm emerge as the possible eigenvalues of the operators (σ̂mz −
σ̂m ′z )/2.

The form (A.90) of the purity can also be used to prove that the ensemble of
random weighted graph states discussed in Section 7.3 around equation (7.8) must
have a volume law scaling of the entanglement.

For this, let us use the fact that S2 is invariant under exchange of A and Ac to
rewrite (A.90) as

S2(L) = − log2

∑
{j}

P (jL+1) · · ·P (jN)F (jL+1, . . . , jN)


= − log2

∑
{j}

P (jL+1) · · ·P (jN)
L∏
n=1

f(Xn)

 , (A.102)

where f(x) = 1− sin2 x and Xn are random variables defined by

Xn =
1

2

N∑
m=L+1

Mnmjm . (A.103)
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Notice, that in the case of weighted graph states where we fix |φ(x)〉 = |+ · · ·+〉
the probability distributions Pn are all the same for each jn and are given by
P (0) = 1/2, P (±1) = 1/4.

The variables Xn are the sum of a large number of independently distributed
random numbers. By the Central Limit Theorem we can therefore assume that,
in the limit of large N (and fixed L), the variables Xn are distributed according
to normal distributions with mean and variance given by

〈Xn〉 = 0 (A.104)〈
X2
n

〉
=

1

8

N∑
m=L+1

M2
nm , (A.105)

where by 〈 · 〉 we denote averaging over the variables j. Note that each entry Mnm

of the matrix M is an independent identically normally distributed variable. We
can therefore assume that in the large N limit the sum

∑
mM

2
nm will approximate

the variance of Mnm. More precisely

N∑
m=L+1

M2
nm ≈ (N − L)M2

nm = (N − L)
1

N
. (A.106)

It follows that 〈X2
n〉 → 1/8 for N →∞.

We can also assume that the variables Xn are independently distributed. In-
deed, their correlator is given by

〈XnXm〉 =
1

8

N∑
l=L+1

MnlMml . (A.107)

For n 6= m this correlator has vanishing average with respect to the disorder of
M . Its variance is a function of M2 and can be seen to decay as 1/N .

From all these considerations we can conclude that equation (A.102) will ulti-
mately reduce to

S2(L) = − log2

〈
L∏
n=1

f(Xn)

〉
(A.108)

= − log2

L∏
n=1

〈f(Xn)〉 (A.109)

= −
L∑
n=1

log2 〈f(Xn)〉 (A.110)

= −
L∑
n=1

log2

1 + e−2〈X2
n〉

2
. (A.111)
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The factorisation in (A.109) is valid only up to corrections containing the correlator
〈XnXm〉, however we have seen that this correlator will go to zero at least as 1/N
in the limit N → ∞. In step (A.111) we have simply computed the average of
f(x) over a normally distributed variable with zero mean and variance 〈X2

n〉.
In the preceding paragraphs we have seen how, in the large N limit, the vari-

ances 〈X2
n〉 actually neither depends on n nor on the specific realization of M , but

rather all tend to 1/8. We can therefore arrive at the result

S2(L) = L

(
− log2

1 + e−
1
4

2

)
= C L (A.112)

which shows that the volume law entanglement entropy scaling holds in the limit of
large N and fixed L. The value of the constant C that we have derived analytically
here coincides numerically with the one that can be extracted from the functional
fits discussed in Section 7.3.

A similar behaviour can be expected also in the case of the QSK ground states.
There, however, the product state |φ(x)〉 has some structure which will make the
distributions Pn(j) depend on n. It follows, that the variances 〈X2

n〉 will also
depend on n in a non-trivial way. However, they will still be of order 1 in the large
N limit and therefore the expression (A.111) remains extensive in L.
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Basel, 2006).

107A. Fetter and J. Walecka, Quantum Theory of Many-particle Systems, Interna-
tional series in pure and applied physics (McGraw-Hill, 1971).

108M. Foss-Feig, K. R. A. Hazzard, J. J. Bollinger, and A. M. Rey, “Nonequilibrium
dynamics of arbitrary-range Ising models with decoherence: An exact analytic
solution”, Phys. Rev. A 87, 042101 (2013).

109M. Ringel and V. Gritsev, “Dynamical symmetry approach to path integrals of
quantum spin systems”, Physical Review A 88, 062105 (2013).

110M. Lakshmanan, “The fascinating world of the Landau–Lifshitz–Gilbert equa-
tion: an overview”, Philosophical Transactions of the Royal Society A: Mathe-
matical, Physical and Engineering Sciences 369, 1280–1300 (2011).

111M. Mathur and H. S. Mani, “SU(N) coherent states”, Journal of Mathematical
Physics 43, 5351–5364 (2002).

112V. Galitski, “Quantum-to-classical correspondence and Hubbard-Stratonovich
dynamical systems: a Lie-algebraic approach”, Physical Review A 84, 012118
(2011).

182

https://doi.org/10.1137/11082885x
https://doi.org/10.1137/11082885x
https://doi.org/10.1007/978-3-642-12598-0_16
https://doi.org/10.1007/978-3-642-12598-0_16
https://doi.org/10.1137/140955483
https://doi.org/10.1137/140955483
https://doi.org/10.1103/PhysRevResearch.3.023090
https://doi.org/10.1103/PhysRevResearch.3.023090
https://doi.org/10.1103/PhysRevA.87.042101
https://link.aps.org/doi/10.1103/PhysRevA.88.062105
https://doi.org/10.1098/rsta.2010.0319
https://doi.org/10.1098/rsta.2010.0319
https://doi.org/10.1063/1.1513651
https://doi.org/10.1063/1.1513651
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.84.012118
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.84.012118


REFERENCES

113Lang, I.J. and Firsov, Y.A., “Kinetic Theory of Semiconductors with Low Mo-
bility”, Journal of Experimental and Theoretical Physics 16, 1301 (1963).

114Y. E. Shchadilova, F. Grusdt, A. N. Rubtsov, and E. Demler, “Polaronic mass
renormalization of impurities in Bose-Einstein condensates: correlated Gaussian-
wave-function approach”, Phys. Rev. A 93, 043606 (2016).

115J. Kondo, “Resistance Minimum in Dilute Magnetic Alloys”, Progress of The-
oretical Physics 32, 37–49 (1964).

116S. Florens, L. Fritz, and M. Vojta, “Kondo Effect in Bosonic Spin Liquids”,
Physical Review Letters 96, 036601 (2006).

117L. D. Landau and S. I. Pekar, “Effective Mass of a Polaron”, Journal of Exper-
imental and Theoretical Physics 18, 419 (1948).
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troscopy of Ultracold Atoms by Periodic Lattice Modulations”, Phys. Rev. Lett.
97, 050402 (2006).

139A. González-Tudela and J. I. Cirac, “Markovian and non-Markovian dynamics
of quantum emitters coupled to two-dimensional structured reservoirs”, Phys.
Rev. A 96, 043811 (2017).

140P. M. Schindler, T. Guaita, T. Shi, E. Demler, and J. I. Cirac, “A Variational
Ansatz for the Ground State of the Quantum Sherrington-Kirkpatrick Model”,
arXiv:2204.02923 (2022).

184

http://arxiv.org/abs/1401.4466
https://doi.org/10.1103/PhysRevA.71.033629
https://doi.org/10.1103/PhysRevA.71.033629
https://doi.org/https://doi.org/10.1016/j.nuclphysb.2018.02.021
https://doi.org/https://doi.org/10.1016/j.nuclphysb.2018.02.021
https://doi.org/10.1103/PhysRevB.83.134507
https://doi.org/10.1103/PhysRevB.83.134507
https://doi.org/10.1103/PhysRevB.77.235120
https://doi.org/10.1103/PhysRevA.55.498
https://www.nature.com/articles/nature11255
https://doi.org/10.1103/PhysRevLett.106.205303
https://doi.org/10.1103/PhysRevLett.106.205303
https://doi.org/10.1103/PhysRevLett.93.240402
https://doi.org/10.1103/PhysRevLett.93.240402
http://www.jetp.ac.ru/cgi-bin/e/index/e/7/2/p299?a=list
https://doi.org/10.1103/PhysRevLett.97.050402
https://doi.org/10.1103/PhysRevLett.97.050402
https://doi.org/10.1103/PhysRevA.96.043811
https://doi.org/10.1103/PhysRevA.96.043811
http://arxiv.org/abs/2204.02923


REFERENCES

141K. Binder and A. P. Young, “Spin glasses: experimental facts, theoretical con-
cepts, and open questions”, Rev. Mod. Phys. 58, 801–976 (1986).

142H. Nishimori, Statistical physics of spin glasses and information processing: an
introduction (Oxford University Press, Oxford; New York, 2001).

143M. Baity Jesi, “An introduction to spin glasses: history, simulations and phase
transition”, in Spin glasses: criticality and energy landscapes (Springer Interna-
tional Publishing, Cham, 2016), pp. 3–42.

144M. Mezard and A. Montanari, Information, physics, and computation (Oxford
University Press, Oxford, 2009).

145S. Sachdev, “Spin glasses enter the quantum regime”, Physics World 7, 25
(1994).
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