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Abstract 

Mobility-related information systems, particularly, the use case of on-street parking 

information (OSPI) systems have increased in popularity as it lessens on-street parking 

search time and reduces congestion. OSPI service is one of the core elements of smarter 

navigation. A major challenge with the existing information systems is the proper 

assessment of such systems. There is a lack of scalable solutions that reduce reliability 

on manually collected ground truth data. A robust assessment methodology is needed 

to ensure high quality and reliable information is delivered to users. Three studies are 

consolidated within this dissertation which deal with the development of a quality 

assessment methodology.  

Vehicle parked-in and parked-out events were utilised as the main data source to 

infer parking behaviour, to develop a prioritization-based quality assessment 

methodology, and to create a data-driven parking prediction model. These three 

components led to the development of a novel methodology which lessens the 

dependence on manually collected ground truth by carefully selecting areas that need 

to be observed, considered to be the important areas based on the frequency of visits 

as inferred from the parking events data. In line with that, a prioritization-based 

approach giving more weight to important areas adjusts the quality evaluation scores 

that are reflective of users’ demand. Furthermore, with a comprehensive cluster analysis 
of parking behaviour, data-driven models were developed based on enhanced features 

that are able to keep the models up-to-date.  

This dissertation lays the framework towards more comprehensive quality assessment 

methodologies necessary to ensure product quality of mobility-related information 

systems. Recommendations on further research directions on all the aspects of quality 

assessment are provided at the end of this document.  
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Zusammenfassung 

Mobilitätsbezogene Informationssysteme, insbesondere On-Street-Parking-

Informationssysteme (OSPI), erfreuen sich zunehmender Beliebtheit, da sie die Zeit für 

die Parkplatzsuche auf der Straße verkürzen und Staus reduzieren. Der OSPI-Dienst 

ist eines der Kernelemente einer intelligenteren Navigation. Eine große Herausforderung 

bei den gegenwärtig existierenden Informationssystemen ist die angemessene Bewertung 

dieser Systeme. Insbesondere mangelt es an skalierbaren Lösungen, die die Abhängigkeit 

von manuell erfassten Daten verringern. Um sicherzustellen, dass den Nutzern 

qualitativ hochwertige und zuverlässige Informationen zur Verfügung gestellt werden, 

ist eine robuste Bewertungsmethodik erforderlich. In dieser Dissertation werden drei 

Studien zusammengefasst, die sich mit der Entwicklung einer 

Qualitätsbewertungsmethodik befassen.  

Ein- und Ausparkvorgänge wurden als Hauptdatenquelle genutzt, um Rückschlüsse 

auf das Parkverhalten zu ziehen, eine auf Prioritäten basierende 

Qualitätsbewertungsmethodik zu entwickeln und ein datengestütztes 

Parkvorhersagemodell zu erstellen. Diese drei Komponenten dieser Dissertation führten 

zur Entwicklung einer neuartigen Methodik, die die Abhängigkeit von manuell 

gesammeltem Ground Truth durch eine sorgfältige Auswahl der zu beobachtenden 

Bereiche, die aufgrund der aus den Parkereignisdaten abgeleiteten Häufigkeit der 

Besuche als wichtig erachtet werden, verringern kann. Ein auf Priorisierung basierender 

Ansatz, der wichtige Bereiche stärker gewichtet, passt die Qualitätsbewertungspunkte 

an, die die Nachfrage der Nutzer widerspiegeln. Darüber hinaus wurden mit einer 

umfassenden Clusteranalyse des Parkverhaltens datengesteuerte Modelle auf der 

Grundlage erweiterter Funktionen entwickelt, die die Modelle auf dem neuesten Stand 

halten können.  

Diese Dissertation legt den Rahmen für umfassendere Qualitätsbewertungsmethoden 

fest, die notwendig sind, um die Produktqualität von mobilitätsbezogenen 

Informationssystemen zu gewährleisten. Empfehlungen für weitere 

Forschungsrichtungen zu allen Aspekten der Qualitätsbewertung werden am Ende 

dieses Dokuments gegeben.   
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1 Introduction  

Emerging technologies have increasingly become a necessity in the mobility and 

transportation space.  Within the last 15 years, society has experienced the emergence 

of on-demand ride-hailing companies, the development of easily accessible smartphone-

based mobility-related information systems, and the surprising growth of the sharing 

economy (e.g., car sharing, ride sharing, bike sharing, and scooter sharing systems). 

Due to their rapid development, the quality of these systems remains questionable as 

new forms and demands emerge. Quality assurance becomes even more crucial as the 

inevitable and impending technological transition to more connected and automated 

vehicles gathers pace. Information systems will play a vital role for “talking” vehicles 
and users of the system. Poor quality or misguided information may be as bad as or 

worse than not providing any information as it could lead to unnecessary delays and 

conflicts in a system. This is more apparent in on-street parking information (OSPI) 

systems that have been around for over 5 years now. Inaccurate guides lead to circling 

around a neighbourhood and unnecessarily cause delays, which result in potential user 

losses of the system, exacerbation of traffic congestion, and deferring potential 

customers to businesses in the city.  

The existing OSPI approach does not scale. Concurrently, the quality demanded by 

customers is increasing. Thus, the main problem this research aims to address is what 

methods need to be developed and used to efficiently and truthfully assess the quality 

of OSPI systems and support service rollouts with optimum quality. 

This dissertation summarizes the author's research studies [1]–[4] and developments 

towards a better quality assessment methodology for mobility-related information 

systems, and particularly the use case of OSPI services.  

1.1 Smarter Navigation: On-Street Parking Information Systems 

Background 

In-car navigation systems have already existed for a while. However, after its initial roll 

out, providers and automotive Original Equipment Manufacturers (OEMs) realized 

end-of-trip pain points of customers when they are about to search for parking. Within 

the last decade, more research and development work has gone into making the systems 

smarter with added features; one was smart parking search. OSPI services were 
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introduced into the industry around 2015. BMW Group1 was one of the pioneers of 

intelligent parking solutions having started their parking research in 2011. In addition 

to being beneficial for car drivers, smart systems such as OSPI have benefits for the 

city as a whole for it improves city mobility conditions when paired with sustainable 

urban mobility policies. One of the benefits of smarter navigation with OSPI is the 

mitigation of impacts brought by cruising for a parking space [5]–[8]. The goal is to 

reduce the amount of cruising vehicles, which constitutes around 30% of the congestion 

in urban areas [9], [10]. By doing so, there is a direct reduction in air pollution, noise 

pollution, and unnecessary delays [3]. Furthermore, pre-departure information from 

OSPI about parking situation at destination helps drivers decide the mode of transport 

they could take and may even choose to leave their cars behind [1].  Nevertheless, only 

proper measurement of the quality of such information systems determines the benefits 

gained in a transport network as discussed by Gomari et al. in [1]. 

Despite the current benefits of OSPI, the level-of-service, quality and reliability 

remains an on-going challenge within the area of smarter navigation [4], [11]. One reason 

is the reliance on manual ground truth data, which presents a trade-off between 

accuracy and scalability. To address this problem, the goal is to assess the quality with 

a scalable data collection strategy that uses smart systems and less on-site surveyors, 

to validate the accuracy, and thereby enhance the information system. This is even 

more important as the industry shifts towards a future of connected, cooperative, and 

automated vehicles [12]. Connected and cooperative intelligent transport systems (C-

ITS), such as OSPI, have the potential to efficiently and better distribute vehicles 

within a transport network and achieve a traffic state that is closer to the system 

optimum. As this paradigm shift takes place, smarter navigation systems must be able 

to improve and maintain the quality of information that will be shared in cooperative 

transportation systems. Ultimately, these cooperative and adaptive systems together 

with proactive innovation and sustainable governance will minimise impacts of traffic 

congestion and ensure a smart and sustainable urban mobility in cities. 

1.2 Scope & Objectives 

Given the state-of-the-art, this dissertation intends to address the gap in research for a 

scalable quality assessment method specifically tailored to mobility-related information 

systems, and particularly, to tackle the use case of OSPI and its further development. 

 

 

 

 
1 https://www.press.bmwgroup.com/global/article/detail/T0220542EN/bmw-connecteddrive-develops-intelligent-

parking-search-solutions-the-next-step-in-connected-navigation-%E2%80%93-on-street-parking-

prediction?language=en, accessed 20 February 2022 

https://www.press.bmwgroup.com/global/article/detail/T0220542EN/bmw-connecteddrive-develops-intelligent-parking-search-solutions-the-next-step-in-connected-navigation-%E2%80%93-on-street-parking-prediction?language=en
https://www.press.bmwgroup.com/global/article/detail/T0220542EN/bmw-connecteddrive-develops-intelligent-parking-search-solutions-the-next-step-in-connected-navigation-%E2%80%93-on-street-parking-prediction?language=en
https://www.press.bmwgroup.com/global/article/detail/T0220542EN/bmw-connecteddrive-develops-intelligent-parking-search-solutions-the-next-step-in-connected-navigation-%E2%80%93-on-street-parking-prediction?language=en
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The focus is on quality assessment of OSPI parking prediction models; parking search 

is not addressed and is out of scope. That said, this doctoral research aims to: 

• Further the understanding of on-street parking behaviour in cities by using large 

datasets of parking events; 

• Develop a prioritization-based quality assessment method to address scalability 

issues with current manual quality assessment strategies; and 

• Improve and enhance on-street parking prediction models data-driven features 

extracted from parking events data and enhanced parking-related features. 

To address the stated objectives, this publication-based dissertation entails three 

peer-reviewed studies [1], [2], [4] that all together provide the process from 

understanding on-street parking behaviour, developing parking prediction models up 

until the development of a quality assessment that serves the user needs of the OSPI 

system.  

 

 
 

Figure 1. Main research components of the dissertation (source: original figure) 

Figure 1 presents the interconnections of the five main contents in this dissertation. 

As with any data-driven work, there is an input, process, and then output. In this case, 

as the input data, fleet data are predominantly used. To supplement the inference in 

Fleet data (e.g., parking 
events), parking map, & 
other open-source data 

Development of On-
Street Parking 

Prediction Model 

Development and 
Testing of Features 

Prioritization-based 
quality assessment of 

models  

Exploratory Data 
Analysis and Feature 

Engineering 

Conclusions and 
Recommendations 

1 2 

3 4 5 



18 

all the studies, data is also taken from parking maps and other urban context-relevant 

data, such as weather information. The input data are used for exploratory analysis to 

uncover patterns not initially known through unsupervised machine learning (e.g., 

clustering), and the data are also used to extract features relevant for parking prediction 

model features. After discovering and engineering new features from the available 

datasets, the next step is the development of a parking prediction model to comprehend 

the model development process and the quality assessment gaps and needs. Thereafter, 

this then feeds into the development of a prioritization-based quality assessment. The 

last step is then to derive final conclusions and recommendations after conducting the 

different experiments and studies. 

Some parts that were only summarized in the papers are further elaborated in 

different sections here. This document starts with an introduction is provided to 

contextualize the topic and offer a general overview, followed by a detailed analysis of 

the existing related literature in Chapter 2. The developed quality assessment 

methodology in this dissertation is summarized into a framework in Chapter 3, where 

the process and interconnections of the methodology’s main components are elaborated 
and connected with the relevant peer-reviewed papers – based on the three main 

publications of Gomari et al. [1], [2], [4]. Chapter 4 discusses quality assurance by using 

parking-events-based data-driven features based on [4]. This chapter expands on the 

main findings of enhanced parking-related features and the role it plays in further 

developing prediction models into a self-supervising one, which gets updated based on 

the continuous ingestion of parking events data. Chapter 5 provides a list of topics that 

could be pursued in future mobility-related information research. Thereafter, this 

dissertation ends with a conclusion of the research.  

1.3 Contributions 

In relation to smarter navigation, this dissertation contributes to the field of urban 

mobility, intelligent transportation systems, and quality assessment methods for 

software development. Below is a consolidated list of contribution from the three papers 

of Gomari et al. [1], [2], [4]. 

• The cluster analysis of parking behaviour study [2]. Machine learning is a field 

that has gained traction over the last decade simultaneous with high 

performance computers and cloud systems. An important aspect in this field is 

the usage of domain knowledge to create meaningful features, and consequently, 

better models. Within the bigger scope of the entire dissertation, the 

contribution of the cluster analysis of parking behaviour is the development of 

a methodology for capturing parking dynamics. In the paper, this is called 

Temporal Trend of Parking Dynamics (TTPD). The concept of TTPD enabled 

the research to infer parking behaviour from parking events data, and, led to 
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the discovery of new enhanced data-driven features for parking prediction 

models, as presented in Gomari et al [4].  

• The prioritization-based quality assessment study [1]. Current ground truth 

collection strategies are deemed not scalable attributing to costly methods using 

manual observations. Thus, as stated in Gomari et al. [1], [4], an automated 

methodology is sought that can reduce the reliance on manual data collection 

methods, and thereby, reducing associated costs. In line with that, the main 

contribution of the novel quality assessment methodology is to fairly assess the 

true quality of mobility-related quality information system prediction models 

(and more specifically, OSPI), while directing ground truth collection to 

important areas. The true quality of an OSPI system, as defined in [1, p. 2] is 

“assessed by assigning importance weights to areas and time periods based on 

the chosen fleet volume (e.g., parking events, traffic flows)”. This methodology 

avoids potential misfortunate selections that either give an overly positive or 

negative evaluation of a service. Instead, the approach directs the weights in 

evaluation score to ensure that data ground truth collection exists in important 

areas and accordingly, importance, is adjusted relative to the users of the 

system. 

• The study on development of a data-driven on-street parking information 
system using enhanced parking features [4]. Current state-of-the-art models 

have not used fleet parking events data extensively in OSPI studies. The main 

contribution of Gomari et al. [4, p. 1] is the value discovery of vehicle parking 

events-based features to enhance OSPI prediction models. Essentially, these 

data-driven features enforce quality assurance since data is continuously 

collected in the backend. Furthermore, their studies also revealed that simple 

spatial on-street parking capacity features are more valuable when aggregated 

on a higher neighbourhood (i.e., quadkey) level than just on a street-level. 

Ultimately, the development of data-driven prediction models and enhanced 

parking features replace the reliability on historic parking availability features, 

as presented in [4]. Also, to keep parking maps up-to-date and on a high quality, 

a parking behaviour change detection (PBCD) model is proposed to trigger 

alerts in the presence of mid or long-term obstructions to the parking situation 

in certain areas in a city.  
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2 Literature Review 

This chapter discusses a synthesized and compact literature review. The gaps in 

literature are identified and reflected upon in relation to the research conducted within 

this dissertation. This section addresses four main literature areas starting with 

comparison of the available sources for this dissertation, parking prediction models, on-

street parking behaviour change, and prioritization-based quality assessment.  

2.1 Comparison of Different Available Data Sources for Parking 

The first step after identifying the issue with a scalable data collection strategy was to 

understand available data sources.  A few data sources were identified that could 

potentially be useful and tested upon. The main attribute looked at was scalability. 

These included the three readily available data sources including: manual ground truth 

observations, ultrasonic sensors data [13], and parking events [1]–[4]. Other identified 

sources that were initially considered included: floating car data [9], satellite [14]–[16], 
and camera [17]. The readily available data were favourable as these were already 

widespread and the accuracy could be directly measured. Meanwhile, the latter three 

sources were not readily available, and an extensive plan was necessary to extract 

accurate and widespread data, hence, scalability was a concern. Thus, only the first 

three available data sources were qualitatively analysed by Gomari et al. [18] 

considering the following criteria: (1) spatial and temporal coverage, (2) technical 

complexity, (3) costs, and (4) potential for scalability. The potential issues that could 

arise from using the data sources were also analysed in the comparison. The definition 

as described by Gomari et al. [18] of each criterion are as follows: 

• Spatial and temporal coverage: check for the area coverage and time distribution 

within a city. The analysis output on this criterion contributes to further 

analysis on correlation of parking spots and POIs considering the density spread 

of available validation data.  

• Technical complexity: each data source was evaluated based on the difficulty in 

processing for it to become useful. 

• Data costs: the costs associated with data sources were evaluated qualitatively 

relative to data availability within BMW. 
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• The potential for scalability: the scalability was assessed regarding by weighing 

the importance of the above aspects relative to the data gathering method and 

primarily the easy to scale for dynamic data (i.e. detecting open spots).  

• Potential issues: describing the potential errors and shortcoming of data source. 

A summary of the qualitative comparison of the different dynamic data sources are 

shown in Table 1. All data sources that were rated as high in technical complexity were 

left out mainly because of the difficulties to acquire them in a fast and widespread 

manner on top of processing and validating.  

 

Table 1. Qualitative Comparison of Dynamic Data Sources based on Gomari et al. [18] 

Data 
Source 

Spatial & 
temporal 
coverage 

Technical 
complexity 

Costs 
Scalability 
of data 

Other potential 
issues 

Manual 
ground 
truth 
collection 

Low Low High Low Human error 

Ultrasonic 
sensors 

High Medium Low Medium Detection issues 

Park 
events 

Medium Medium Low High 
Does not capture 
streets that are 
full  

Extended 
floating 
car data 

High High Low Medium 
Volume versus 
value 

Camera Low High Medium High 
Low spatio-
temporal 
coverage 

Satellite 
imagery 

Low High Medium Low 

Distorted images, 
necessary 
corrections, low 
frequency of 
images 
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1. Manual ground truth (GT) is the most used method to collect data. Its biggest 

downfall is the low potentially for scalability, although it is one of the most 

accurate data for validation. Costs associated with manual collection also tend 

to be high, thus, it is not a great candidate for scaling.  

2. Ultrasonic sensor (USS) data in contrast to manual collection has a high spatio-

temporal coverage and is low cost in terms of collection; USS data are 

automatically sent back as geolocation coordinates to the backend. The main 

issue USS data faces based on analysis is the difficulty to extract accurate 

detections fast. There are still uncertainties as to the detections. More filtering 

is required to narrow down the sensor detections to parking spots, and thereby, 

allow scaling. 

3. Parking events (PEs) are rated to have medium-level spatio-temporal coverage. 

This is mainly because only the geolocation coordinates at the final stop or start 

are sent back. PEs makes up for not having a high coverage by sending back 

accurate information in comparison to USS. Likewise, as USS, it is also cheap 

in costs. Since the PEs dataset if already trimmed down to send locations about 

high potential open spots, it was assessed as the most scalable among the 

resources available. The biggest issue with PEs is that streets that are full 

cannot be captured since no parking events will occur there. Knowing this 

disadvantage, the dataset cannot be used for validation, but can be used as a 

feature in prediction models instead. The PEs used in this dissertation are 

further described in Section 3.2. 

4. Extended floating car data (XFCD) is a source that has been used for many 

urban mobility studies including parking [19], [20]. XFCD is a collection of 

geographic positioning system (GPS) coordinates of a car’s drive trajectory. It 
is highly used to extract traffic state estimation [21], as speed can be captured 

easily. Despite the widespread collection of such data at car companies, just 

purely based on GPS points from XFCD, it is complex to extract valuable 

insights for parking prediction quality studies. Two studies [20], [22] proposed 

to use floating car videos, i.e., videos captured by a moving car in a study area. 

Although accurate for ground truth collection, these were only used for 

particular studies to calibrate parking ticket vending machine data and was not 

necessary the main data source. Since video data is still not automatically 

collected by car companies, the scalability of relying on it is still not feasible.  

5. Camera video data as abovementioned objectively speaking can replace manual 

counts made by humans. However, due to its low spatio-temporal coverage, it 

is not still scalable until the data is collected and processed automatically. 

Associated costs can be expensive as well due to the large volume of data 
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collection from videos. Although this might not be the case anymore in the years 

to come. 

6. Satellite imagery has been used in some studies to detect parking spaces [14]. 

Extracting parking-related information can be quite complex due to distortion 

and lighting issues. There is also low spatio-temporal coverage, hence, it is not 

the best for parking prediction quality studies. Given these inherent issues, its 

scalability is low considering that it is not easy to get imagery from the relevant 

sources.   

All the compared data sources present their own advantages and disadvantages. 

Based on the available resources at the early stages of data acquisition of this 

dissertation, it was decided that the PEs will give the most fruitful results, as the other 

sources did not yield usable results particularly for parking information quality 

assessment.  

2.2 Parking Prediction Models: A Compact Literature Review 

Over the last six years since OSPI services became popular, many parking prediction 

model studies have been conducted. The prediction model studies on a high-level can 

be categorised into two information systems: off-street and on-street parking. Gomari 

et al. [3, p. 1] describes off-street parking information as guidance systems leading 

vehicles to park away from the street into open-air parking lots, indoor parking garages, 

or multi-storey parking; the parking prediction models for off-street parking estimate 

the occupancy of these parking lots [8], [23]. On-street parking information on the other 

hand is described as a parking guidance system that direct drivers to probable open 

spots that are on-street kerbside parking spaces [3, p. 1]. Normally, a prediction model 

at its deployment stage consists of five main components as shown in the below (see 

Figure 2). The elaborated and complex prediction model development is discussed in 

Chapter 4. In all models, regardless of it being off- or on-street parking, the first 

component is the training and testing parking data. The next part is generation of 

features that are fed into a model algorithm, which then gives out predictions. The last 

step is the evaluation and normally when quality is assessed using a metric. 

 

 
 

Figure 2. Five main components of a production-ready prediction model (source: 

original figure) 
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Same as other fields, in parking prediction studies, the rise of big data has created a 

shift to data-driven solutions. Researchers have used a variety of data sources.  Figure 

3 displays an overview of the various data types, Figure 4 illustrates the different models 

used, and Figure 5 shows the quality metrics (i.e., not necessarily method) used for 

prediction models.  

This subsection provides a compact literature review regarding parking prediction 

models and the reflection on the current state of literature. In each subsection a 

summary of the studies is provided followed by more details from selected studies. The 

summary sections provide the popularity percentage based on the number of citations 

among the literature reviewed about the data types used in parking prediction (see 

Figure 3), the algorithm employed (see Figure 4), and the different metrics used (see 

Figure 5).  

2.2.1 Data types used for parking prediction 

The general trend among the reviewed literature is that off-street parking studies 

mostly rely on historic data, while on-street parking prediction requires more than just 

historic data, as movements and availabilities are more difficult to capture. On-street 

parking prediction requires models that can generalise based on the spatio-temporal 

context. In line with that there are two main data categories used: (1) parking ground 

truth data sources and (2) other supplementary data types that help a mode in 

prediction. 

There was a combined total of 62 mentions of different data types in all the reviewed 

parking-related studies – this also includes studies that are not related to parking 

prediction. As presented in Figure 3, within the top 3 most popular data types used 

according to literature are parking sensors at approximately 24.2% (i.e., mentioned in 

15 studies), carpark data at 12.9% (i.e., mentioned in 8 studies), and crowd-sensing at 

9.7% (i.e., mentioned in 6 studies); this covers 46.8% of all the data that has been 

employed in different researches. Despite the popularity of parking sensors in studies, 

which is mostly based on openly available data, Gomari et al. [4, p. 1] mentions that 

this data source is particularly associated with high installation costs as most are in-

ground sensors. Hence, transferability and scalability are a concern.  

Parking sensors are used in [23]–[29], more specifically, real-time ground sensors are 

used in [26], [27], and some researchers emphasize that parking sensors are not enough 

especially for on-street parking prediction, thus, the data needs to be contextually 

enriched [30]–[32]. Another study that relied on on-street parking occupancy system 

[33] also falls in the category of parking sensors. Furthermore, a research work used 

parking capacity and parking events from parking bays [34].  
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Figure 3. Parking ground truth data sources and other supplementary data types 

used in parking studies (source: original figure) 

Top 2 in the list as mentioned is primarily off-street carpark data [35]. Other forms 

of car park data used in literature are carpark transactions or payments [36], parking 

sensors within parking lots [37], and parking occupancy information of parking lots [11], 

[38], [39]. Another form of carpark data can be counted when a car passes a gate – the 

study of [40] used such parking records.  

Top 3 in the list is crowd-sensing [41]–[43], wherein mobile payments [6], [41], [44] 

also fall into. These data sources primarily focus on extracting value from large number 

of devices or applications that are deployed for human input. Inference also plays role 

here. Typically, if data from crowd-sensing is used, it is combined with other forms of 

data to strengthen the inference. The studies by Gomari et al. [1], [2], [4], where parking 

events was used, can be treated as crowd-sensing as well. This falls in the category of 

crowd data from fleet of vehicles. 

Another 22.6% of the data sources are parking ground truth-related data sources. A 

number of researches used smart parking meters [24], [45]–[48] as the main source for 

their prediction models, wherein a study like Gomari et al. [2] extracted parking 

behaviour information using meter transaction [46]. Four studies utilised ground truth 

smart parking occupancy information [32], [45], [49], [50], two studies used vehicles 

parking events [51], [52], and one study, among those reviewed in published research, 
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used camera data mounted on a vehicle [53]. The most common data used in practice, 

as opposed to in research, is manual observations as used in the research of [54]. 

Majority of the parking studies either were for on-street or off-street parking for private 

vehicles, however, there was one study that focused on estimating truck parking 

prediction using historic truck occupancy data [55]. 

Within the top 3 other supplementary data sources that are used to get more 

contextual insights are weather comprising 9.7%, points of interest (POIs) with 6.5%, 

and traffic data at 4.8%; in total they entail 21%.  

Weather data [24], [29], [35], [36], [40], [56] that has mostly been used in the studies 

are temperature and rainfall. In some cases, wind is also used. Although extreme 

weather may have an impact on parking situation, it is not clear how helpful normal 

weather data is for day-to-day parking prediction. As demonstrated in Gomari et al. 

[4], weather data, specifically, rainfall and temperature were insignificant for the 

parking prediction models built.  

In many mobility-related studies, POIs are a great dataset to infer the probability of 

the activities undertaken within a certain region. In parking studies, only a handful 

have so far used POIs [37], [45], [57] to improve models. Within the duration of this 

dissertation, OpenStreetMap’s POIs were experimented on in relation with parking 
behaviour analysis and prediction models. However, it was discovered that open data 

POIs in general tend to be outdated, while the updated ones are skewed towards 

restaurants. This problem was even more difficult to solve, as the COVID-19 pandemic 

heavily changed the opening hours of many POIs.  

Another important secondary data source used in studies are traffic-related data 

including traffic cameras [36], traffic data services [38], and traffic value [29] of each 

street from the parking information database. Although, one might think traffic data 

can help parking information, this is not always the case. A study [58] claims that 

traffic only has secondary influence on parking information. This is consistent with the 

assumption in this dissertation that OSPI is difficult to predict as contextual data on 

a local level is needed. Traffic data gives extra information about congestion on a street; 

however, this does not highly correlate with chances of finding open parking spots.  

The rest that makes up 9.6% of the total data sources used in parking studies are 

composed of data about landuse [45], departure information [40], OpenStreetMap 

highway data [45], parking violation ticket [57], road closure events [29], and holidays 

[40].  

Overall, different data sources have been used to infer parking behaviour or predict 

parking availability. Often data are only available in specific areas, hence, it is difficult 

to transfer results elsewhere from the conducted studies. Also, within the studies 

conducted, there is no mention about how other data sources can be used to cross 

validate the models that are based from the primary data source. This happens since 

normally researches only have access to one source of parking ground truth data. This 

gap is addressed in the studies of Gomari et al. [1], [2], [4] as part of this dissertation. 
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2.2.2 Prediction model algorithms 

There are many different types of models that are used in researches as presented in 

this subsection, but there lacks evidence about the models mostly used in practice. 

Usually, there is a gap between the two since the goals are different. In research, 

majority aim for optimization up until the tiny fractions, but in practice, runtime and 

reliability are more important, so long as performance and quality are not compromised 

as much. Nonetheless, in this subsection, the focus is on state-of-the-art in researches 

conducted. The frequency of model usages in studies does not necessary mean it is 

better. Below Figure 4 presented the breakdown of the models used.  

 
Figure 4. The various machine learning prediction algorithms used for parking 

prediction (source: original figure) 
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and optimization of algorithms rather than experimental discovery of the best input 
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their own combination of models. Other models that cover 19% of the studies have used 

decision trees, support vector machines, and statistical models.   

The most common time of neural network (NN) [36], [59] model used in researches is 

Long Short-Term Memory (LSTM) [35], [39], [40], [50], [55]. LSTM is a variant of 

Recurrent Neural Network (RNN) [35] normally used for time-series prediction 

problems, although it not necessarily the best model, considering the processing time. 

Specifically, according to [40, p. 267] LSTM “[…] is characterized by adding valve nodes 

of each layer in addition to the RNN structure to achieve long-term and short-term 

memory functions, so it performs multi-step predictions of multivariable time series” – 
this enables the model to remember localised patterns also in the longer term. Other 

types of NN used in research are Wavelet Neural Network [48], Convolutional Neural 

Network [36], Hierarchical Recurrent Graph Neural Network (GNN) [37], and Artificial 

Neural Network (Feedforward Neural Network FFNN) [45], as also used in Google’s 
research team implemented as a single layer regression and feed forward deep neural 

network [60] for estimating difficult of parking using mainly google maps travel data.  

More commonly machine learning algorithms used in practice are tree-based models 

like Gradient Boosting Regression Trees. With the introduction of Xgboost [61] in the 

industry, many companies and products trusted the algorithm as it provides reasonable 

default parameters and the runtime of the model even with big data is fast. This means, 

teams do not necessarily need to tweak many parameters before initial launch. 

Nonetheless, hyperparameter optimisation of Xgboost is still vital in production 

machine learning models. Parking researches have used the following: Gradient 

Boosting Decision Trees (GBDT) [48] if the model is framed for a classification problem, 

Gradient Boosting Regression Trees (GBRT) [11], [29], [62] when dealing with 

continuous probability models, Xgboost [11], [38], lightGBM [11], and CatBoost [30]. 

These are all variation of different gradient boosting algorithms. According to literature, 

Xgboost is the most performant among all the variation. Although, there are new 

variations of Xgboost that are currently being developed for more specific applications. 

The third most popular parking prediction model are Random Forests [11], [30], [36], 

[45]. Random Forests have been around since 2001 [63]. It is basically a better version 

of Decision Trees [49], [57], which are also used in parking studies. The biggest 

advantage of Random Forests and its fame in usage is its simplicity in implementation 

and that there are only a few parameters to adjust since the model relies on a forest of 

decision trees, it is intrinsically already finding patterns among different combinations 

of features in the ensemble models built.  

Another approach to parking prediction model studies is using hybrid models. Often 

this entails a combination of either multiple NN or NN with Gradient Boosting models. 

A study [34] developed a hybrid Graph convolutional network with gated linear unit. 

Another combined Xgboost with an LSTM model [55], while acknowledging that 

Autoregressive integrated moving average (ARIMA) [64], Regression Trees, and Neural 

Networks are the most common models used in practice. Another study created a hybrid 
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CNN and LSTM model [50]. A step higher than that, a group of researchers combined 

multiple graph CNN (MGCNN) with LSTM [31]. It is not surprising that hybrid models 

are becoming more popular. There is definitely something a certain model is not able 

to capture as also proven a comparative study [59] that analyses different parking 

prediction models and ensemble learning models that combined the different individual 

models. A research [65] conducted a comparative study of different models and 

combined and tested against each other models comprising of linear regression, support 

vector machine, neural network and ARIMA. Despite the advantages of ensemble 

models in better accuracies, a couple of disadvantages of such models are the slower 

processing time and also the inability to understand and interpret the reasons behind 

improvement. 

Two other approaches that are not that common in research are Support Vector 

Regression (SVR) [32], [57], [66] and statistical or mathematical approaches. A study 

for example [25] used availability mean with variance, normally distributed availability, 

normally distributed availability variation, and non-homogeneous poisson distributed 

arrivals and departures. This approach was also able to generalise parking situations 

that fed into parking availbiltiy. 

As shown in literature, neural networks are a popular approach in implementing 

parking prediction models. However, demanding runtime requirements still make it 

unattractive for production deployment and fast testing – this may not be the case in 

the near future as cloud systems are becoming more affordable. And interpretability is 

still an issue with neural network models. A study [45] even got results proving that 

Random Forest outperformed Artificial Neural Network for their parking prediction use 

case. This is proof that even with longer “thinking time”, a more complex and 
sophisticated model is not always the best option. It must also be noted that, 

implementation of neural networks is also a timely process (e.g. undestanding number 

of layers needed) in comparison with Random Forests and Xgboost, which can be used 

with a few hyperparameter tuning. Furthermore, there are methods to extract feature 

importance that enables interpretability of the models.  

Most studies reviewed focus on determining probability based on parking occupancy. 

This means, the focus is to estimate the percentage fullness of a certain street from 0 

(empty/completely vacant) to 1 (full/completely occupied). This approach shows the 

customer of the information system how many slots have already filled up. Another 

approach taken by Gomari et al. [1], [4] is to predict whether there is at least one 

available parking spot or none. The argument is that customer only care about if they 

can find one open parking spot. It does not matter if a street is 10% full or 90% full, as 

long as there is one open parking spot. The availability probability approach is much 

more difficult, but this dissertation focuses on this approach.  
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2.2.3 Quality assessment metrics  

There is a difference between metrics and methods. Metrics solely one its own can 

reflect a false representation of the quality as argued by Gomari et al. [1]. A quality 

method as that presented in [1] is a process that ensures the quality of a product is up 

to the desired level to meet customer satisfaction. According to the best knowledge of 

Gomari et al. [1], there are no quality methods specifically for mobility-related 

information systems and particularly, on-street parking information. Thus, this 

subsection focuses on the quality metrics that have been used in parking studies. 

Nevertheless, metrics are still part of quality assessment methodologies. The 

distribution of different quality metrics used in the studies reviewed are illustrated in 

Figure 5. The formulas for the metrics are not tackled here. For details on the use of 

each metric in the studies reviewed, refer to the citations directly.  

 

 
Figure 5. The different metric scores used in studies (source: original figure) 
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Error (MSE) in 13.7% (i.e., used in 7 different studies). These metrics are commonly 

all measured together in many studies. Besides the use of MAE in many parking-related 

studies [11], [24]–[26], [34]–[37], [39], [45], [62], one study even derived a metric from 

MAE, that is, Mean Absolute Scaled Error [67]. MAE, in general, is a popular metric 

used between models to determine the absolute difference between observed and 

predicted values. Shortly after MAE, RMSE is used in research [26], [29], [32], [34]–[37], 
[40], [55], [57], [68] with one study [28] having special variations of RMSE, Normalized 

Shannon Entropy of RMSE, and the harmonic mean of the two labelled as F. RMSE is 

essentially the standard deviation of residual and is measured by taking the square root 

of MSE. MSE [27], [35], [36], [39], [45], [48], [62] is also equally popular in parking 

studies and measures the variance of the residuals by measuring the squared difference 

between the observations and predictions. The application of MSE in studies where the 

prediction is concerned with probability, hence, having values between 0 and 1 is called 

Brier Score, which is used in Gomari et al. [1]. The top 3 metrics already cover majority 

of the studies, and based on that, it is easy to determine which metrics are deemed 

useful in parking prediction models. 

There are 11 other metrics used in the remaining 37.3% of studies including: Accuracy 

[40], [42], [44], [53], [59], Mean Absolute Percentage Error (MAPE) [24], [26], [34], [39], 

the coefficient of determination or R2 score [30], [36], [45], Recall [49], [59], F metrics 

[32], [59], Precision [59], Entropy [32], False Positive Rate (FPR) [25], False Negative 

Rate (FNR) [25], Receiver Operator Characteristic (ROC) [25] and Confusion Matrix 

[42].  

The review of metrics is to show that, not many studies expound on the quality 

assessment or evaluation of their models. But there are some authors that explain their 

reason for choosing a certain metric, for instance, Balmer et al. [45, p. 4] mention that 

MAE and MSE are good measures of difference in magnitude instead of using a metric 

that measures relative percentage difference such as in MAPE that will focus predicting 

small occupancy values, despite high occupancy values being more important. This is 

exactly the problem Gomari et al. [1] solve by introducing a prioritization-based 

methodology to adjust any metric used corresponding to when it is most critical for the 

users to get information. No study besides this dissertation as conducted based on 

Gomari et al. [1] has given a solution to adjusting the final metric by considering the 

relative to user importance problem. A few studies [45], [49] do acknowledge that busy 

hours are the critical hours to have accurate information but did not device or could 

not use a better method to adjust the scores. The main reason is the lack of data that 

allows prioritization. Gomari et al. [1] use BMW data of fleet parking events that allows 

for identifying important areas. 



32 

2.2.4 Discussion  

A general finding from reviewing the evaluations of different studies shows that off-

street parking studies have higher evaluation scores in comparison to on-street parking. 

The reason for this is the different factors that are influencing on-street parking as 

comparison to off-street parking. It was mentioned by several studies that it is 

important to contextually enrich [30]–[32] ground truth data in order to create better 

OSPI prediction models. There are many different prediction model algorithms (see 

Figure 4), but in this dissertation, the focus was not on building or optimizing 

algorithms, but it was to focus on the utilisation of data and the features engineered 

within prediction models employed in the context of a parking information systems. An 

important aspect in algorithm of prediction model selection was to allow 

interpretability. This was possible with tree-based models like Xgboost and Random 

Forests, and not with neural networks. Besides, an important approach in this 

dissertation was to utilise domain knowledge by first understanding parking behaviour 

and methods to cluster the time-series data from parking events as presented in [2]. 

This is directly related to enriching the models, but also comprehending the process of 

enhancement as presented in [4].  

There is significance in understanding the parking behaviour to influence development 

and build parking prediction models [2]. Balmer et al. [45] studied the importance of 

geospatial data for prediction models. Jelen et al. [30] discovered that contextual 

information makes their predictions better. Gomari et al. [4] describe that predictions 

are made based on the features given to them. These features are extracted from data 

that is fed into them as shown in Figure 3. The better a researcher understands the 

behavioural nature of parking, the better features one can come up with to design their 

behaviour in a prediction model. The main step to understanding the different aspects 

of OSPI prediction models and their quality assessment was researching on parking 

behaviour. The aspect of parking behaviour sets up the framework that is built for 

developing a quality assessment methodology focusing on the OSPI use case. 

More data fed into a prediction model does not necessarily translate to better and 

faster solutions. As presented in Section 2.1, each data source has its own benefits and 

drawbacks. The data used for any application must be selected with precaution. There 

is a need to have sound domain knowledge [69] to develop better products. Domain 

expertise likewise help engineer better features to deal with big data for supervised 

machine learning [70]. Although feature engineering is a manual and time-consuming 

task, it can make a substantial difference in the performance of supervised machine 

learning models, such as those used for on-street parking prediction. Gomari et al. [4], 

for instance, after doing an exploratory analysis as part of a cluster analysis study on 

parking behaviour [2] discovered that developing new features from “…street parking 

capacity features play a major role in the performance of the models” [4, p. 10]. 
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Fundamentally, the primary difference between state-of-the-art OSPI models as 

described in is how the data available are used for training, testing, and validating the 

models [1], [59]. As Gomari et al. [4, p. 1] mention: “the differences in input data play 

a major role in the reliability and quality” of a system. Thereby, this is the step that 

must be given the most attention, and not aiming to build prediction models that are 

difficult to interpret. 

2.3 On-Street Parking Behaviour Change Detection (PBCD) 

Change or anomaly detection studies are quite common in the field of machine learning. 

It is more regularly used for anomalies noticed in continuously ingested data at the 

server side to detect outages or to account for missing data. The process is usually 

generalized in two steps: the prediction step with machine learning algorithms and the 

second step where anomaly detection rules are set to identify outliers in the data. 

Gomari et al. claim that there currently [4, p. 2] “no known studies that specifically use 

parking events to determined potential changes in parking behaviour associated with 

longer term static changes like in rules and restrictions, constructions, or infrastructural 

changes”. A study [41] used sensor data to detect unusual patterns and infer possible 

disturbances in parking location sensors – as mentioned, related to missing data or 

outage. Another research [32] used park-out events for anomaly detection of legal and 

illegal parking spots in comparison with their map. But neither of the studies conduct 

PBCD to improve parking prediction model and its quality 

A study by Shipmon et al. [71] at Google investigated such anomalies using streams 

of traffic data. Their research used machine learning to create regression models and 

predict the pattern in data, and as a second step they set anomaly detection rules to 

identify anomalous changes. In the case of parking studies there are only a few 

researches that have focused on leveraging data to detect anomalous behaviour.  

Bhattacharyya et al. [66] looked at real-time anomalies detected from sensor data in 

various garages across Santa Monica, USA. These were controlled environments and 

every car coming in and out was counted. There were other studies that detected 

unusual patterns in parking behaviour using parking sensor data [66], [72]. Domakuntla 

[51] as part of this dissertation’s research umbrella studied in detail the potential of 

using parking events as a data source to detect static and dynamic parking behaviour 

changes. Gomari et al. [4] leveraged parking events data for static parking behaviour 

changes as an added feature for a data-driven OSPI model.  

A gap in parking prediction data-driven models is internalising change detection to 

keep OSPI services up-to-date. A service provider [73] mentions that maps are only 

updated every quarter. This is because of due diligence as it is a costly process. Many 

parking prediction models use features that best generalize a population. This means, 

sudden changes are difficult to detect unless a large volume of data is collected rapidly 
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[51]. That entails having a large fleet of vehicles sending signals from everywhere in a 

city or study area. To address this problem, a solution is proposed by Gomari et al. [2] 

that focuses on aggregation of data to increase volume of data from surrounding areas 

and time periods to identify spikes that are irregular compared to recurring patterns. 

Particularly, Gomari et al. implements this methodology in [4] using parking events as 

the fleet data. This solution then addresses the lack of such features for automated 

updates, as already existing in some mapping services for traffic information and 

routing.  

The study of [51] looks further into analysing the potential usage of parking events 

in developing a dynamic PBCD model. The study looks into adding real-time features 

such as traffic congestion information obtained from HERE maps and rainfall data. 

The PBCD is modelled as a time-series problem and partially using clustering as done 

in [74]. Once more data can be gathered or acquired from multiple fleets of different 

car OEMs, it would be possible to build a reliable PBCD model. Essentially, the gap is 

the lack of sufficient data. This can also be addressed once camera data becomes more 

prominent in the development and improvement of OSPI services. 

2.4 Prioritization-Based Quality Assessment 

As reviewed in this literature review section, there is an apparent gap in modern quality 

assessment methods other than a simple metric. Balmer et al. [45] was among the few 

studies that described the rationale behind using the metric they employed in their 

study and also acknowledge there is an issue with properly assessing the quality of a 

prediction systems. However, they only go as far as mentioning it is a metric issue and 

not a methodological concern. There are no existing methodologies that specifically look 

into a prioritization-based approach to address the quality assurance concerns of 

mobility-related information systems.  

Even in modern machine learning practices, the rule of thumb is to use a metric for 

objective-based optimization. Hence, a model will look to minimise the overall losses 

based on its available hyperparameters and model architecture. This approach fails to 

recognise if the optimization is hurting a model and in the case of an OSPI system, 

whether it compromises having an average model in a difficult area with a bad one, in 

order to have an excellent model in an easier area to predict. Thus, the importance of 

user usage is ignored. This gap is completely addressed in the study of Gomari et al. 

[1], where they propose to use a prioritization-based subsampling approach to adjust 

scores relative to frequency of parking in a certain area and time period. 
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3 Methodological Framework of a 

Prioritization-Based Quality 

Assessment for Mobility-Related 

Information Services 

This dissertation introduces a new methodological framework for quality assessment of 

mobility-related information services, and particularly, on-street parking information 

(OSPI). The framework is based on a prioritization-based approach that ensures models 

are assessed based on the frequency of parking in certain locations and time periods. 

This translates to importance for the users of the systems, and thus, the methodology 

adjusts scores highlighting error prone and subsequently, low-performing areas. This is 

further discussed in the subsections in this chapter. This chapter also tackles the 

development process of the framework and the connection of the different elements that 

are part of this dissertation. Figure 6 shows the mind map and the interconnections of 

the different topics tackled within the duration of the research period.  

The mind map shown in Figure 6 illustrates the major processes and the connection 

of topics among the three main papers [1], [2], [4] as part of this dissertation. Arrows 

in the image represent relationships. Links that have no arrows direct to subtopics of 

its mother topic. The three main studies are represented in three branches stemming 

from the overarching topic of this dissertation: “Quality Assessment Methodology for 
Mobility-Related Information Systems”. These three are: (1) Exploratory Data Analysis 
(see Section 3.3), (2) Prioritization-Based Subsampling Quality Assessment (see Section 

3.4), and (3) Parking Events-Based Data-Driven OSPI Systems (see Section 4). On the 

upper portion of Figure 6, to the left of the overarching topic is the database, which 

was the basis for all the work done in the main topics. In this figure, it is clearly 

demonstrated how each discovery is linked to the processes in the other studies. For 

example, within the exploratory data analysis, cluster analysis of parking behaviour 

was conducted, where two vital components were discovered: Temporal Trend of 

Parking Dynamics (TTPD) and the quadkey concept. These two as shown in the figure 

are linked with the other two topics.  

The green boxes in Figure 6 represent floating topics. One, as already mentioned, is 

the database of this dissertation. The other three are main outputs that were achieved 

within this research. The end point and target of this study as shown in the mind map 

is the topic on lessening the reliability on manually collected ground truth data.  
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Figure 6. Methodology mind map showing interconnection of all components of the 

framework (source: original figure) 
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3.1 The significance and usage of the developed quality assessment  

3.1.1 Benefits for product development 

Software product development is complex. Not all software products that are developed 

turn out to be useful. As mentioned by the Lean Startup Co. [75], there are steps to 

achieving product-market fit; this means developing a product that fits the needs of 

potential customers and solves their problems. The more inconveniences resolved, the 

more attractive the product will become. This does not necessarily mean the metric 

measured ensures seamless product quality experience. The company Heap [76] 

mentions that “[…] many teams over-rotate on product quality, while overlooking the 

pool of people willing to buy it”. This is the issue specifically Gomari et al. [1] are 

addressing. They [1, p. 2] address that “despite advances in artificial intelligence, […] 
there is still potential to attract more users to increase benefits on a system level”. The 
study highlights the importance of customer-centric quality assessment. Primarily, 

focusing on improving the value for the user of the information rather than ensuring 

product interface quality.  

3.1.2 Benefits for future mobility-related products 

Mobility-related information systems or products will continue to evolve. Society has 

gone from using compasses and now to built-in software solutions in smartphones – 
placing convenient navigation on the tip of our fingers. Looking ahead, enterprises, 

cities, and research institutes have become more proactive than reactive. The impending 

transition to connected and automated driving [12] will pose many quality assurance 

challenges – especially, in cooperative scenarios between vehicles. The safety concerns 

and the value of a product will rely on the reliability and accuracy of the relevant 

systems for its users. Figure 7 shows where the quality assessment comes into play in 

the future of urban mobility on a higher level. The developed methodologies in this 

dissertation can be used to ensure that quality is evaluated correctly. The accurate 

assessment of systems can instigate quality improvement and thereby, propagate the 

benefits of the mobility-related information systems to connected and cooperative 

systems, which ensure gains at the system level of an urban transport network. 
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Figure 7. The role of quality assessment in the bigger picture (source: original figure) 

3.2 Description of data used and data processing 

The data used in this research are categorised into four groups: (1) the Munich study 

area polygon and its parking transport network, (2) parking events as the main data 

source, (3) ground truth observations as the training and validation data for prediction 

models, and (4) other supplementary data. The acquisition and usage details are 

described below: 

3.2.1 Geometric data: Study area polygon, transport network, & 

quadkeys 

Prior to anything else, Munich, Germany was defined as the study area for all 

experiments. The main reason for this was the immediate usability of the data in 2019; 

today, in 2022, there are more cities that could be studied. The Munich polygon was 

taken from the available OSPI parking map in 2019. Likewise, the parking transport 

network was also taken from this map. These data were the basis for setting the 

geometrical boundary conditions of this research. In order to have uniform and discrete 

segmentation of the study area into smaller ones, Microsoft’s [77] Azure maps tile 

standard, also known as quadkey, was used. This is to enable replication of approach 
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in other real-world applications. Specifically, quadkey zoom levels 14 (2.5km x 2.5km) 

gave the best inferential results from the studies. This approach was used in all three 

main studies done by Gomari et al. [1], [2], [4].  

3.2.2 Parking events (PEs) 

PEs, within the scope of this research, are gathered anytime a car switches on or off its 

engine – translating to a parked-out or a parked-in event, correspondingly. An 

exemplary CSV table of PEs are shown below in Table 2. The PEs were the primary 

data source and were constantly being gathered in BMW’s backend. The data were also 
further processed to only capture events that are within a proximity of a street and 

have durations longer than 5 minutes, which is typical for pick-up and drop-off. The 

data used has a bias towards BMW drivers; this is acceptable as the data usage is 

ultimately to the benefit of the same users. Gomari et al. mentioned [4, p. 3] “as opposed 

to studies reliant on ground truth [26], [78] that cover only certain parts of a city, this 

research aims to utilize parking events as floating sensors”. These floating sensors were 
used to estimate parking situations and fit into the prediction models as attributes (see 

Section 4.1). Having an open data source from all car OEMs would be the ideal scenario 

to have a one-stop-shop floating sensors solution for better OSPI systems. However, 

many collaboration steps need to be taken, which are not addressed here. 

The best attribute the PEs have that makes the dataset highly valuable is the geohash 

index [79] (see Table 2) – the encoded latitude and longitude geolocation information. 

In lieu of unique identification numbers of each event due to privacy, this was used to 

match pairs of parked-in and parked-out events. The ability to match pairs allowed for 

the extraction of features such as parking duration, parking dynamics, and parking 

purpose as described in [2, p. 4]. Elaboration of parking dynamics and parking purpose 

is discussed in Section 3.3. 

Table 2. Exemplary CSV table input of parking events 

Geohash Latitude Longitude Date & timestamp Event type 

u281z73dmnfg 48.138393 11.570882 2022-02-22 14:59:17 Parked-in 

u281z73dmnfg 48.138393 11.570882 2022-02-22 17:32:10 Parked-out 

 

3.2.3 Ground truth (GT) 

GT data refer to manual observations made by on-site surveyors. Each city where an 

information service operates has a defined geometric service region. Observers were 
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normally deployed at random times to collect data. There were two main criteria for 

counting: (1) count a street as open, if there is one legally available on-street parking 

space, otherwise, mark as fully occupied, and (2) only count, if a parking space is at 

least 5 meters long. There was no post processing done on the GT dataset as this was 

easily gathered using the INRIX app, where the parking street network could be 

updated with GT counts.  

The processing of GT into model features are further described in the comprehensive 

model development in Section 4.1. 

 

3.2.4 Supplementary data  

Gomari et al. [4, p. 4] briefly mentioned that two other sources were also used in feature 

engineering of prediction models, which included construction information map from 

HERE2 accessed in March 2021 and open weather data from Deutscher Wetterdienst3 

accessed in July 2021. 

Particularly, the construction data was used as a validation data source for the 

parking behaviour change detection [4, p. 11] using processed time-series parking events. 

The parking behaviour change detection model was designed as supplementary 

information component for the OSPI system; this is further described in enhanced 

parking-related features in Section 4.1.  

Weather data, specifically, temperature and rainfall, on the other hand was directly 

incorporated as a feature in the prediction models to see whether there would be any 

impacts on the predictions. The feature selection step continuously excluded this 

feature, as it could not capture variances relative to the other existing features. It can 

inferred then than weather does not play a significant role for on-street parking in the 

city of Munich. The case can be different in cities with heavier rainfall and more extreme 

climate.  

3.3 Exploratory analysis: cluster analysis of parking behaviour 

 

The development process until a methodology (see Section 3.4) was developed 

involved two exploratory aspects: (1) selecting and further understanding the primary 

data source, which was the parking events dataset, (2) developing a sample on-street 

 

 

 

 
2 https://www.here.com/, accessed in March 2021 
3 www.dwd.de/, accessed in July 2021 

https://www.here.com/
http://www.dwd.de/
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parking prediction model (see the next Section 3.4.1) to identify gaps that exist in 

quality evaluation, and (3) design a quality assessment methodology to address the 

gaps discovered (see Section 3.4). 

After understanding the basics about the available data, exploratory data analysis 

was conducted [2] to get more insights. Particularly, Gomari et al. [2] developed a 

methodology to infer parking behaviour from parking events. Since the goal was to 

understand patterns, an unsupervised learning approach was employed to generalise 

parking behaviour. Estimating mobility behaviour from geolocation data is common in 

the mobility field as demonstrated in [80]–[83]. As mentioned by Gomari et al. [2, p. 1], 

the hypothesis that was tested is whether parking events can give more insights about 

the parking dynamics in the city. There are different methods to achieve this, among 

which, clustering was selected. There are various clustering approaches [84] that can be 

used as done in many parking-related studies as well [2], [32], [47], [72], [85], [86].  

Prior to clustering, the parking events data was transformed into a time series format 

and further processed to capture behaviour. The steps taken in the study of Gomari et 

al. [2] can be summarized as follows: (1) data time series composition, (2) agglomerative 

clustering on the temporal trend of parking dynamics, and (3) then inferring generalised 

parking purpose from the application of a two-stage DBSCAN – K-means clustering on 

the parking duration. The key elements of Gomari et al. [2] are presented hereafter. 

For detailed analysis, refer to the paper.  

 

3.3.1 Parking events time series transformation to temporal trend of 

parking dynamics (TTPD) 

 

Having understood that parking events can be paired, a new parameter was developed, 

namely, the temporal trend of parking dynamics (TTPD) (see Figure 8). Gomari et al. 

[2, pp. 3–4] describe this as a parameter that can be used to “[…] estimate the activity 
of parking happening in each quadkey”. TTPD is defined as [2, p. 3] taking the 

cumulative sum, at each quadkey, of the net parking, which is calculated by the 

summation of the difference between the average parked-in (PIN) and parked-out 

(POUT) events aggregated on 15-minute intervals over a 168 week-hours. To reproduce 

this, the following steps need to be done considering a tabular format (or a dataframe 

in Python): 

1. Divide the study area into quadkeys at zoom level 14. For each quadkey there 

is one unique time-series and the next steps are applied on the quadkey level. 

2. Categorize the parking events data into PIN and POUT. 

3. Sum up the PIN and POUT volumes at each 15-minute interval. 
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4. Create a new attribute named week-hour. This is done since based on time series 

decomposition [2, Fig. 1], it was determined that the dataset has a recurring 

weekly pattern.  

5. In one week, there are 168 hours. Further subdivide this into 15-minute 

intervals. This results to 672-time bins or time intervals for a week. For example: 

7, 7.25, 7.5, 7.75 week-hour.  

6. Since the parking events data has a weekly recurring pattern, the average at 

each interval over the one-month study period is calculated. The output could 

be a float number.  

7. Now, after taking the average, in the tabulated data, each time interval should 

only have one value representing the average volume of PIN or POUT at that 

interval. 

8. Starting from 0 week-hour the cumulative sum is then calculated with a 15-

minute time interval step.  

9. The value can be either positive or negative. As presented in Figure 8 when the 

time series graph is going up (positive slope), this means the quadkey or 

neighbourhood is filling up, while when the graph is going down (negative slope), 

this translates to the emptying of the neighbourhood. 

Mathematically, the TTPD is defined as in [2, p. 4]: 

 

 𝑇𝑇𝑃𝐷𝑞𝑇 = ∑ 𝑃𝐼𝑁𝑞𝑇 − 𝑃𝑂𝑈𝑇𝑞𝑇𝑇
𝑡=0  (1) 

 

where 𝐏𝐈𝐍𝐪𝐓 & 𝐏𝐎𝐔𝐓𝐪𝐓 are time series vectors containing 15-minute aggregated 

parking events at each quadkey, q (i.e. 𝑷𝒒𝑻 = {𝑃𝑞𝑡𝑇 ; 𝑞 = 1, 2, … , 𝑁; 𝑡 =00: 00, 00: 15, 00: 30, … , 𝑇}, where N is number of quadkeys in the study araea, and T 
corresponds to the length of study time period, defined as one week. 
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Figure 8. An example of temporal trend of parking dynamics (TTPD) of a 

commercial neighbourhood (or quadkey), as presented in [2, Fig. 5] 

The abovementioned transformation of the parking events data presents the potential 

of parking events to infer parking behaviour. In simpler terms, the TTPD time-series 

graph shown in Figure 8 is also called the cumulative net parking in the area. If the 

value of net parking is positive, it means more cars have parked in that quadkey 

compared to cars that left that quadkey. Knowing this behaviour and understanding 

the patterns, clustering can be done to combine similar neighbourhoods that are 

represented by quadkeys. This transformation is a prerequisite to the clustering 

presented in the next Section 3.3.2, and also pre-sets the data for application in further 

feature engineering in Gomari et al. [1], for which the summaries are presented in 

Sections 3.4.1 and 4.1, respectively. 

3.3.2 Clustering of TTPD to infer parking behaviour 

The clustering employed in the parking behaviour study of Gomari et al. [2] entails a 

combination of unsupervised machine learning clustering techniques for parking 

behaviour inference. Agglomerative Hierarchical Clustering [87] was used for clustering 

parking dynamics, and density-based spatial clustering of applications with noise 

(DBSCAN) [88] and K-Means were used for inferring parking purpose. The developed 

clustering process methodology is illustrated in Figure 9. The implementation is 

described in [2, pp. 3–7].  
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For each clustering method, a geometric metric parameter can be selected to quantify 

the differences between data points that are being clustered. The chosen metric can 

depend on the use case. For this research, Euclidean distance was used in all instances 

for similarity or dissimilarity measures.  

Agglomerative Hierarchical Clustering was used to see which quadkeys have similar 

TTPD time series. For this approach, it was not required to enter an initial number of 

clusters. Using a stepwise approach and illustration through the dendrogram, the 

number of clusters could be decided afterwards. After clustering 5 meaningful clusters 

were used later in the analysis that were categorised individually into or a combination 

of residential, shopping and commercial (i.e., business hours), and dining (i.e., eating).  

As for the parking purpose, two parameters were used for clustering the data points: 

the parking duration in minutes of each PIN and POUT pair, and the PIN time of the 

pair. Since there were many pair points, DBSCAN was chosen to cluster the points 

that were truly distinct from one another and have a bigger distance gap. Two big 

clusters were generated with DBSCAN, separating daytime and night-time parking. To 

further subdivide these into groups, K-means was utilised to separate short-term, 

medium-term, long-term, and overnight parking. Details can be found in [2, Fig. 6]. 

From the total of 16 clusters, parking purpose was then inferred.  

In the end, the parking dynamics and parking purpose were cross-tabulated, and this 

was thoroughly labelled and analysed to understand on-street parking behaviour in a 

city; in this case, Munich, Germany. Furthermore, the methodology immediately 

provides an understanding of the spatio-temporal behaviour of on-street parking [2, p. 

8].  

The results show that using the methodology introduced, the parking behaviour 

within the city can be obtained using the developed unsupervised learning approach 

with clustering. The main contribution of this exploratory analysis was that it provided 

better insights into the limitations and the potentials for the parking prediction 

development and its usage in quality assessment. For instance, the development TTPD 

as a parking dynamics parameter is more useful than merely using parking duration 

instead. TTPD can capture more information, and thereby, has the capability to 

generalize situations better. This was proven in Gomari et al. [4], and as described in 

Section 4.1.1. A limitation discovered was that the data was not dense enough to have 

parking behaviour features on a micro and more local level. Nonetheless, the cluster 

analysis provided a well-rounded exploration that set the direction moving forward with 

the next studies.  
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Figure 9. Cluster analysis of parking behaviour methodology, as presented in [2, Fig. 

2] 

3.4 Prioritization-based quality assessment key components 

The exploratory analysis sets up the research on how to utilize the parking events 

data. Gomari et al. [1] elaborate the entire process of the quality assessment shown 

step-by-step from processing data to the newly developed concept of prioritization-

based subsamples. The novel methodology developed is shown in Figure 10. This section 

presents a summary of the methodology and the key concepts and their contributions 

towards quality assessment methods. The components mainly discussed in this section 

are highlighted in grey in Figure 10. Particularly tackled here are the geographic 

information system (GIS) procedures with regards to defining neighbourhood zones and 
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their prioritization to get prioritization-based subsampling strategies (PSSs). 

Furthermore, the importance of a sample prediction model in the context of developing 

the quality assessment is explained. The section ends by defining smartly assessed 

quality of the OSPI service.  

 

 
 

Figure 10. Workflow showing the full development process of the developed quality 

assessment, based on [1, p. 2] 
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3.4.1 Development of prioritization-based subsampling strategies (PSSs) 

Based on the exploratory analysis done in Gomari et al. [2], it was identified that the 

TTPD time-series of each quadkey was unique, albeit some having similarities when 

the volume of parking events data was normalized. However, the analysis clearly showed 

that the peak hours vary depending on the quadkeys observed. Hence, the approach in 

the development of the prioritization-based quality assessment [1] hinged on the idea 

that the importance of the neighbourhoods changes depending on what time of the day 

is being studied. These areas were more important for ground truth data collection. 

Gomari et al. [1, p. 2] defined these spatio-temporal segmentation as slices and the of 

each importance is measured based on the “[…] percent volume weight (or density) of 
fleet data that occur within a certain area and at a specific period, hereafter referred to 

as slices”. Having the concept of slices in mind, Gomari et al. [1] proposed a novel way 

to prioritize neighbourhoods (in terms of quadkeys) and time periods by introducing 

the so-called prioritization-based subsampling strategies (PSSs) (see the input of this 

into the entire methodology in Figure 10). These were developed based on the different 

combinations of slices – in total, there were 10 design setups across all the four 

strategies. The goal was to understand what level of spatio-temporal segmentation was 

necessary to achieve a sound quality assessment considering the volume of data 

available. 

In total, four PSSs were developed. The strategies were as follows: (1) based on 

different zoom levels of neighbourhoods or quadkeys (PSS1); (2) based on time, 

specifically, 168-week hours (PSS2); (3) based on the combination of neighbourhood 

and time (PSS3); and based on neighbourhood clusters from the exploratory study [2] 

and time (PSS4). Among the four, PSS1 stood out as the best strategy for the use case 

of on-street parking information and using parking events data as the importance data 

source [1, p. 13].  Specifically, PSS1 with the experimental design based on 

neighbourhood slices at zoom level 15 (1222.99m x 1222.99m quadkeys). This setup 

presented the best balance for quantifying importance. The PSSs with time were not 

great candidates as the 168 week-hour created too many slices even on higher level 

quadkey zoom levels; this was problematic as there was a lack of ground truth data in 

comparison to availability of parking events throughout the 168 week-hour. In future 

work, it is recommended to collect more ground truth data in order to further assess 

the limitations and potentials of the introduced PSSs for the quality assessment method. 

3.4.2 Sample parking prediction model development 

Once the PSSs are identified and the slices are calculated (see Figure 10), sample 

parking prediction models are developed to test and assess the quality against the 

ground truth data. This section explains further the role of the sample models created 

for the study. For further details on the specific application example of the 
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prioritization-based quality assessment refer to Gomari et al. [1]. Sample prediction 

models were built to test the hypotheses of the methodology for the quality assessment. 

Since developing a full-scale more complex models needed more time (as presented in 

[4]), sample models were used to verify the benefits of the quality assessment 

methodology and not necessarily compare the differences in performance of various 

models. Particularly, the study focused on comparing the different ways of assessing 

the models instead.  

The sample OSPI parking prediction models developed included a combination of 

random guesser models and actual models using machine learning algorithms (i.e., 

Xgboost and Random Forest) with real features – although not as extensive as the ones 

in Chapter 4. In Chapter 4, the development process of a self-adjusting prediction model 

based on data-driven features is presented. As presented in Gomari et al. [1], the sample 

models developed only used relatively direct features including temporal features, on-

street parking capacity per street, geolocation information with latitude and longitude, 

engineered features such as basic time-series historic TTPD, and real-time TTPD. As 

for the random guesser models, four models were created for comparison. First, a 

completely random model that guesses a probability between 0 (no parking) and 1 

(available parking) on a uniform distribution. Second, an optimistic model that guesses 

between 0.7 and 1.0. Third, a pessimistic random guesser that only guesses between 0 

and 0.3. And lastly, an unrealistic model that always makes the best guesses based on 

the average availability in the entire ground truth dataset. The last model was an 

interesting case and a model that further validated the prioritization-based 

methodology. This model assumes the same regardless of the area or time – something 

completely opposite of a usual driver’s behaviour, and even more, a specific group of 
users like that of BMW car users.  

Even before implementation of the methodology, it was expected that all the machine 

learning-based models and random guessers would perform worse. The reason being 

that these models do not consider the importance of different locations at different 

times of the day. It was proven, as shown in [1, Fig. 9], that the methodology does 

indeed find weaknesses in the models, particularly, in busy areas of the city. The best 

guesser model was also debunked despite minimizing the brier loss metric in its favour 

– a weakness this research has reiterated. The only model that showed an improvement 

in performance was the pessimistic model, since busy areas tend to be occupied in most 

cases, but not always. In this experiment, it was concluded that, if the methodology is 

applied in quality assessment, further detailed analysis of the models is needed in 

identified important areas. Thus, the primary driver to improve a model would be to 

enhance prediction, specifically, in places that are most frequented by drivers at specific 

periods of time. This also means deeper investigation is required to understand the 

features that could model the rare occasions that an on-street parking spot becomes 

available in busy urban centres.  
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3.4.3 Smartly assessed quality 

 

The biggest motivation for this dissertation was to find a method to lessen unnecessary 

or low-impact ground truth data collection. The main goal was to help OSPI achieve a 

better product-market fit [75] by ensuring the real perceived quality is measured. In 

the context of quality assessment, this means the OSPI service rendered becomes more 

useful to the customer. To do that, this research has now developed a methodology 

that is capable of automatically directing product managers to look at the most 

important slices (i.e., the areas and time periods) and ensure the utmost customer 

experience in this period.  

As argued in this dissertation, merely using metrics (see Section 2.2) to measure the 

quality of a prediction model can give a false assessment of a model’s performance. And 
not just that, the common standard in statistics is to do a simple random sampling [89] 

without doing it strategically. Unfortunately, in the case of mobility-related information 

services there are spatial and temporal considerations. Moreover, once a service is 

tailored only for a certain set of users, random sampling may not be the best approach. 

Gomari et al. [1, p. 11] verified this by comparing the developed prioritization-based 

methodology against a non-prioritizes randomized subsampling (NPRS) approach. “In 
the majority of the cases […] the models performed worse in comparison to NPRS. This 
implies that assessing the quality at the defined important slices must be checked first 

before other areas and time periods are observed”. This proves that, in majority of 
important scenarios for customers, randomly selecting ground truth may lead to 

unfortunate selection of data collection areas and time periods that could lead to a 

misjudged assessment of the service quality. Especially, when only a metric is considered 

without any application of correction factors. This potential mistake can be avoided 

using the introduced prioritization-based methodology, which automatically identifies 

important slices to initially check and assess the true quality of a mobility-related 

information system. 

3.5 General application in mobility-related information systems 

The developed prioritization-based quality assessment is also applicable to other 

mobility-related information systems. The only requirement is to have big data about 

the number of users in the system of concern. This can then be used to automatically 

quantify and identify importance hotspots in the area and keeping in mind that 

importance changes in space and time depending on demand. Information systems are 

great agents to not just improve the experience of its users, but also update its services 

when a prioritization-based quality assessment is employed. In this section, two direct 
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examples are presented: the usage for public transport information systems and car 

navigation systems.  

3.5.1 Public transport traveller information systems 

The applications of intelligent transportation systems (ITS) in public transport have 

significantly improved its services. ITS have allowed automated data collection, which 

is helpful for planning and operations of public transport systems [90]. Public transport 

passengers benefit from information at critical times. In this case, prioritization can be 

on a level important to a traveller. A possibility is to create important slices (see Section 

3.4.1 for definition) on a route-level, where the most important routes are ranked. It 

can also be done on a station-level to determine the most congested stations at peak 

demand hours. The goal in this use case is to reduce the amount of possible delays in 

the most critical connections to ensure service reliability and convenience. The method 

used in Section 3.4.1 employing neighbourhood segmentation using standardised tiles 

or quadkeys can also be applied for the case of public transportation. It depends on the 

type of data used for prioritization. For instance, if anonymised smartphone geolocation 

data is used, the quadkey approach is viable to determine important public transport 

hubs (i.e., segmented in quadkeys). If traveller information is subpar at these transit 

areas that could cause delays, but it is perfect in quiet suburban stations, the system 

will be punished more since less accurate and unreliable information was provided in 

important slices.  

Another issue the methodology can automatically address is during unbalanced 

ground truth data collection. If there are only 5 ground truth data points during busy 

hours but 20 during off-peak hours, this is an unbalanced dataset, which will give a 

high precision score, but not telling the real story behind. If only a metric is used, the 

score and performance of the models will be assessed as great. When the prioritization-

based approach is applied, the methodology automatically adjusts the importance 

weights to lower the impact of less important regions and amplifies the assessment in 

areas deemed more important. In the end, the proposed methodology assesses the true 

quality of a public transport traveller information system. 

3.5.2 Car navigation systems  

 

The use case of on-street parking is a primary example as shown in this dissertation. 

OSPI being part of smarter navigation systems means that the developed methodology 

is likewise applicable to other services of car navigation. This means the proposed 

approach is applicable to routing, real-time traffic information, and incident and hazard 

warning, among others. Since car navigation follows the same structure as the use case 
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applied in this research, the entire method could be replicated with the provision of 

fleet data relevant for the use case.  

Real-time traffic information (RTTI) & Routing. The approach with RTTI is like 

OSPI. Since GPS tracks from floating car data (FCD) are the primary source of 

information here, it is clear that prioritization strategies should be geared towards areas 

with the most congestion. That means forecasting wrongly here it could other 

dependent services to perform poorly as well. Routing is a direct dependent of the RTTI 

service. Although it is obvious that congested areas need to be best calibrated for 

accurate information, quality assessment methodology still do not automatically 

recognize this issue. In a prioritization-based assessment scenario, overtime, it can be 

calculated whether the most important areas are receiving better and more reliable 

information. Indirectly, a key performance indicator here is measuring the number of 

active users of a system. 

Incident and hazard warning. Another service provided in premium navigation 

systems is incident and hazard warnings. The applicability of this methodology can 

extend to scenarios involving potholes, damaged road, and road crashes. Such a system 

provides information about road safety critical areas. Acquiring such low-level 

information about road conditions, is even more challenging than OSPI. Some systems 

use crowd-sourced information on such localized information, but more recently 

autonomous vehicle researches have been using cameras to detect infrastructure 

anomalies [91]. Another aspect is report road crashes, which are typically reported to 

the police department and fed into a database that could provide the incident warning 

systems about road safety concerns in the area. Once a good baseline is identified to 

implement the prioritization-based methodology, it is expected that with a widespread 

use of the service, safety indicators will improve overtime. As opposed to a non-

prioritization-based strategy, one can use normal floating car data, but this may not 

match with the users’ needs for a hazard warning system. 
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4 Quality Assurance by Parking 

Events-Based Data-Driven On-Street 

Parking Information Systems  

Classic parking prediction models mainly use historic parking occupancy data based on 

manually collected ground truth data or parking sensors in only specific areas of a city. 

Manual ground truth observations, as repeatedly mentioned, is not a sustainable and 

scalable method of keeping a prediction model up-to-date. In the case of using on-

ground parking sensors, this is usually limited to specific streets and areas, and it is 

quite costly to construct and maintain due to sustained impact load. Although sensor 

data contribute to a type of solution that works for some streets, it is not easily 

replicable in most cities considering budget constraints and different transport policy 

measures to contain car usage in the city. With the rise of big data in urban mobility, 

there has been interest to look at data-driven solutions to help keep the quality of an 

on-street parking information system up-to-date. Gomari et al. [4] propose to use 

parking events to assure quality in machine learning-based parking prediction models 

without continuously collecting ground truth data. Figure 11 illustrates their developed 

methodology to achieve this. For the detailed methodology elaboration refer to [4]. 

This section primarily focuses on discussing the importance of integrating external 

data-driven features that are independent of the primary ground truth data. These 

features differ in their influence on a model. Normal features are dependent on and 

intrinsic in the ground truth data, whereas data-driven features are detached and act 

as a second validation dataset relying on continuous data coming in; this includes 

parking events, where there are many ways to create features that attempts to capture 

a pattern that predicts the on-street parking state comparable to the traditional ground 

truth. Additionally, an advantage of the parking events dataset is its capability to 

detect parking behaviour changes that are not easily identified by costly manual ground 

truth collectors as presented in [4] – this is summarised in Section 4.1.2. Furthermore, 

this section provides a brief overview of the key steps in developing a data-driven on-

street parking prediction model that aims to self-correct to assure the quality of the 

OSPI service. 
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Figure 11. Overview of a data driven OSPI prediction model development, based on 

[4, Fig. 3]  
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4.1 Generation of enhanced parking-related features and data-

driven supplementary components to assure quality  

Gomari et al. [4] have extensively presented the final features that were used in the 

data-driven parking prediction models developed considering different experimental 

design setups. In this subsection, the process and significance of the generated features 

are further discussed in detail and the rationale behind them. The further usage of the 

developed parking behaviour change model is also summarised at the end of this 

subsection.   

4.1.1 The power of enhanced parking-related features 

In comparison with the sample prediction model (see Section 3.4.2), the enhanced 

parking-related feature models are based on an extensive set of features engineered and 

filtered through a feature selection step – that is using Recursive Feature Elimination 

(RFE) as implemented in scikit-learn [92]. As opposed to limited engineered features as 

it has been done in existing literature, the aim of this study was to further generate 

features from existing data sources that could possibly capture more variances to better 

predict OSPI availability. This was possible because of the availability of parking events 

data as secondary validation that feeds into the model as a set of features. As shown 

in Table 3, Gomari et al. [4] generated 102 features in total to find features capable of 

generalising towards the target value prediction. Based on empirical evidence from the 

trials, in the end, only 21 features were selected in the final models. Below are why and 

how the features were generated (see Table 3). 

Spatial & transport network features. Seven features were generated to cover this. 

Features considered here are those inferring from geolocation position of an area or 

event, and usage of spatial parking capacity. This set of features turned out to be the 

most vital. In majority of experimental design setups, spatial-related features always 

captured the highest variation as part of the estimators – this may also be the reason 

for the neglecting their enhancement. Thus, Gomari et al. [4] tested this with different 

segmentation strategies using various quadkey zoom levels to aggregate on-street 

parking capacity. This means on zoom level 14 the total capacity over a 2.5km x 2.5km 

tile is considered. The test showed, simply by transforming street-level capacity to 

neighbourhood-level capacity, the prediction model was able to enhance generalisation 

of situation, while also considering the GPS geolocation position. Refer to [4, Fig. 10] 

to see the importance of each feature, where experimental design (ED) setups with 

spatial features demonstrate the significant influence of the introduced features. 

Temporal features. Time-related features were the second most important set of 

features with 15 features tested. The process here was to generate various aggregation 

of time. The different levels included: month, week, day, hour, hour of the day, at what 
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minute of the day (in minutes), at which 15 or 30-minute interval during the day (in 

15 or 30-minute intervals), second of the day (in seconds), weekdays, weekends, 

holidays, at which hour in the week (in 168 week-hours), and days from or after 

holidays, among others. In comparison to the benefits gained from the spatial features, 

the impact of the temporal features was slightly lower. The top 2 features as shown in 

the model of interest ED5 in [4, Fig. 10] are time of day in seconds and week-hour. This 

demonstrates that these two features are the best estimators when considering 

predictions over a long-term horizon. 

Weather-related features. This category was quite simple as it only considered 

temperature and rainfall. Although these two features could be beneficial for special 

extreme events that lead to disruption, they were insignificant in generalisation as 

estimators for an OSPI parking prediction model.  

Historic parking availability. Among all features, historic availability is the most used 

in almost all studies. Nine features were created related to historic parking availability. 

This simply depends on the ground truth data and checking for ways to generalise over 

different moving average periods. Essentially, the goal in historic data related features 

is to understand patterns and the recurrence; this is the reason many studies attempt 

to use LSTM recurrent neural networks to capture the patterns. Since parking 

prediction studies are a supervised learning problem, and there is a wide range of 

empirical findings in relation to feature generation, a neural network approach may not 

be the best option; as also proved in few studies, especially, considering the processing 

time performance. As shown in Figure 11, aggregation of historic parking availability 

was done on different quadkey levels and different calendar week moving averages. 

Overall, the set of historic moving averages features was proved to improve the models 

[4, p. 6] when all feature categories were involved. However, when historic averages 

were added to the models with temporal, spatial, and weather features, the performance 

slightly dipped. The enhancement was only observed when it was combined with 

parking events-based features as discussed next.  

Parking-events based features. The aim of generating a variety of enhanced features 

was to reduce the reliance on historic availability information after the model training 

period at the launch of an OSPI service. Gomari et al. [4, p. 6] proved that features 

engineered from parking events can replace historic ground truth information. As shown 

in the scores table in  [4, p. 6], on average, ED5 models perform well even without 

historic averages. This shows that parking events features can indeed be a replacement 

for a given period (i.e., within a 3-month horizon as done in the train and test split [4]) 

without requiring updates from ground truth data. Before this was achieved, 69 parking 

events-based features were tested. They are broken down into three categories: (1) 

based on historic parked-in or parked-out events, (2) historic and real-time temporal 

trend of parking dynamics (TTPD), and (3) parking behaviour change detection 

(PBCD). The first two categories are enhanced by combinations of aggregations on 

various moving average intervals and different quadkey or tile zoom levels, as 
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mentioned for the spatial features; while the last category is discussed in Section 4.1.2. 

In its main findings, Gomari et al. [4, p. 9] mentioned: “5 out of top 10 most important 
features for the mentioned model are parking events-related”. This is proof that parking 
events-based features can supplement parking prediction models to reduce reliability 

on entirely manual ground truth collection. Parking behaviour change detection did not 

have any impacts on parking prediction models. PBCD benefits are primarily noticeable 

for events that affect predictions in the longer term and not real-time. And since not 

many grand changes were seen in the city of Munich, this could not be tested; also, 

considering that usually, ground truth is not being collected when disruptions happen.  

 

Table 3. Features engineered for enhance OSPI models, based on [4, p. 5]  

Feature category 
Number of 
Features 

Description of feature content 

Spatial & 
Transport Network 

7 
GPS location, on-street parking capacity features 
divided or aggregated on different spatial levels 

Temporal 15 

Only time-related features considering aggregations 
into time intervals in different time scales and 
categorization of special days: months, weeks, days, 
hours, minutes, seconds, weekdays, weekends, 
holidays, etc. 

Weather 2 Rain and temperature open data  

Parking availability 9 
Aggregation of historic parking availability on 
different tile levels and time intervals (e.g., moving 
averages) in the past.  

Parking events-
based 

69 

Automated aggregation in various time intervals of 

temporal trend of parking dynamics (TTPD) [2] that 

describe on-street parking activity on tile zoom level 
14, and aggregation in various time intervals (e.g., 
real-time and moving averages) and tile levels of 
parked-in and parked-out events; anomalies detected 
based on the developed behavior change detection 
in  

 

The other model implementation processes and feature selection are described in 

Section 4.3. 
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4.1.2 Parking behaviour change detection: Data-driven supplemental 

OSPI component 

State-of-the-art OSPI systems as shown in literature have focused on maximizing the 

usage of ground truth to train the models. The idea of utilizing other sources to trigger 

updates or directed strategic ground truth collection has not been explored. This is not 

surprising, as on-street parking-specific geolocation data is not easily available for 

research. The parking events dataset used in this dissertation is a unique data source 

that has many use case potentials for improving OSPI services.  

 

 

 

Figure 12. The parking behaviour change detection model, as presented in [4, p. 11] 
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Gomari et al. [4] (see Figure 12) and Domakuntla [51] have proposed methodologies 

to utilise parking events as update trigger systems, specifically, for parking behaviour 

change detection (PBCD). The methodology consists of a two-level anomaly detection 

model primarily created to detect disruptions that lead to on-street parking blockage 

such as in the scenario of construction. As illustrated in Figure 12, the parking events 

data is transformed into a smooth time series format with moving averages to fill 

potential gaps. Then, a lower threshold is set relative to the maximum value in the 

time series in order to detect complete disruptions. This is then transformed to another 

time series of whether the value was above or below the threshold. The next filter 

checks for how long the disruption lasts. Once it also satisfies this criterion, then it is 

considered an anomaly given the indicated time window. Gomari et al. [4, p. 12] further 

validated this using construction data from HERE maps and where available also 

checked with open data from the city of Munich’s website. It was determined that 
implementing such a feature is currently viable to keep the OSPI service up-to-date. 

It must be noted that, the volume of parking events generated has yet to reach a 

significant penetration level to influence real-time parking prediction systems. However, 

as shown in Gomari et al. [4] study, the volume is currently sufficient to detect medium 

(a few weeks) to long term (months) changes. This is a significant finding considering 

that, the usual map updates for real-time traffic information or routing (i.e., more 

mature services) get updated only 4 times a year [73]. Integrating such a trigger function 

into an OSPI product will serve as a supplementary component that can assure quality 

besides collecting manual ground truth collection. 

4.2 Hyperparameter tuning process of the OSPI prediction models 

This section discusses the setup and the taken steps to tune the hyperparameters of the 

implemented models in the study of Gomari et al. [4]. For a detailed analysis of the 

parking prediction results refer to [4, p. 5]. The machine learning algorithms or models 

selected were based on the literature review conducted as presented in Section 2.2. The 

commonly performant models were selected for comparison and the ones proven inferior 

in most studies were left out to reduce comparison parameters. Besides, a goal in this 

dissertation was to utilise algorithms that are rather simple to implement in comparison 

to hybrid complex models, which can dilute the analysis and interpretation of the 

models developed. 

4.2.1 Models selected 

Based on the literature conducted by Gomari et al. [4, p. 4], the most performant 

machine learning models in OSPI are primarily tree-based models: Xgboost, Random 

Forests, and Decision Tree. The most basic of them three is Decision Tree. Decision 
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Trees split the observations based on the most common feature at each node created 

until the last possible split, where the subgroups that have been created are as similar 

as possible. Extreme Gradient Boosting or Xgboost [61] is essentially an ensemble model 

that, sequentially, builds trees and predicts. Xgboost learns from the mistakes of weaker 

decision trees and corrects these predictions. Xgboost’s greatest attribute is its fast yet 
accurate prediction capability because of its simpler structure relative to neural 

networks, for instance. Random Forests [63], [93] are simply composed of a large number 

of decision trees that are built in parallel that are based on bagging (i.e. random sample 

selection) and feature randomness (i.e. selecting random set of features). The principle 

followed is that with many uncorrelated trees, that have their own random set of 

features and training sample, mistakes would be made, individually, while the outcome 

is decided based on the average of probabilities from the predictions made at the end. 

Furthermore, apart from the chosen models, deep learning models in combination with 

gradient boosting tree models have shown better performance in some instances, 

however, “given similar performance in comparison to efforts in long processing time” 
[4, p. 4] and model complexity, these models were left out in experiments.  

4.2.2 Tune hyperparameters 

A crucial step in model implementation is conducting the hyperparameter tuning. 

The essence of this is to automate parameter changes that are input in the models 

implemented. Two methods were used in the study of [4, p. 5]: (1) exhaustive grid 

search, also called GridSearchCV in scikit-learn [92] and (2) randomised parameter 

optimisation, also called RandomizedSearchCV as implemented in scikit-learn [92].  

Among the three models used, the fastest algorithm to tune was the Decision Tree 

models, shortly followed by Xgboost, and Random Forest took the longest. However, 

the most difficult to tune was Xgboost since it had the greatest number of parameters 

to tune. Since runtime with Decision Tree and Xgboost were relatively fast, grid search 

was used in both cases. The initial step here was based on literature and heuristics to 

define initial range of values to test. As a start, this can be as low as two initial values 

that are far apart for each parameters and observe the difference in performance of the 

models. The next step is to adjust the range of parameters. After a few iterations, it is 

all about optimisation – and here, a low interval step is recommended, until there is no 

significant changes in the mode score. It is also best practice to tune the parameters 

one by one for more precision and avoid going back and forth between parameter 

tuning.  

It must be noted that, each model could have special parameters that have to be 

adjusted depending on the problem in hand. For instance, in the Xgboost 

implementation, it was important to change the objective parameter to “binary:logistic” 
since the target value was probability of parking availability, which is between 0 and 

1. For ensemble models such as Random Forests, the parameters were optimised for 
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the best results, but since it is also an ensemble model that combines many individual 

trees, the parameter tuning did not have as much of an impact compared to the impacts 

from features engineered. Hyperparameter tuning was discovered to be, however, more 

important in a basic implementation of Decision Tree models. This is because the 

default parameters from the library are the bare minimum to allow implementation. 

Gomari et al. [4, p. 6] for instance observed a 31% improvement in the model 

implementation since the min_samples_leaf and maximum depth were adjusted. 

Nonetheless, Decision Tree models were not performant in any of the scenarios, but it 

was a good baseline since the other two ensemble models are based on it. 

4.3 Other key learnings from developed OSPI parking prediction 

models  

4.3.1 Experimental design setup 

A major step before model implementation is designing the experimental design 

parameters and the combinations thereof to test different model scenarios. In the study 

of Gomari et al. [4], an incremental heuristic approach was taken to determine the set 

of combinations based on the feature categories (see Table 3). Experimental design 

setups are necessary to understand which combination of features and/or model 

algorithm render the best performance. In the study of Gomari et al. [4], the most 

important learning was that parking events-based features could replace industry 

historic parking availability features and marginally outperform them. This is a 

significant finding as incorporating parking events-based features can lessen the 

dependency on continuous ground truth collection. Additionally, in combination with 

the parking behaviour change detection (PBCD) model, the OSPI system is alerted 

with triggers for possible mid to long term disruptions in parking availability in an 

area.   

4.3.2 Feature selection with Recursive Feature Elimination (RFE) 

As mentioned in Section 4.1, many features were engineered to explore which set could 

capture the most variance to improve predictions. Since many features were generated, 

instead of doing the selection manually, Recursive Feature Elimination (RFE) was used 

as implemented in scikit-learn [92]. There are also a variety of methods for feature 

selection, which can change depending on the use case. The RFE approach recursively 

reduces the set of features used in the model, while pruning the least important ones in 

each round.  

Once implemented in the study, from 102 features generated, only 21 were retained 

in each model implementation, as the rest could not even capture more than 1% 
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importance factor (i.e., based on variance), if any at all. An important finding was that 

a lot of features are not needed for regression problems since the requirement is to have 

less features that can generalise better. If there are a lot of features included but only 

contribute marginally, this could lead to overfitting, which is not desirable in a use case 

such as OSPI, where scenarios and contexts can differ from one another. 

In this study, the ideation stage was the most difficult part. It is also important to 

consider that feature generation has a bias towards the background knowledge of the 

data scientist dealing with the problem. It was discovered that, in general, a good 

balance between aggregated features and detailed features is needed. A feature 

aggregated on a high level may not be able to distinguish changes, while a local or 

detailed feature may result to overfitting and not able to predict properly – a downfall 

of many machine learning implementations, if not done cautiously. 
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5 Discussion and Future Research 

Following the summaries of the three main studies discussed in Chapters 3 and 4, this 

section follows up with a discussion of constraints and the direction of future research. 

A list of suggested future studies is also elaborated here. 

5.1 Data collection constraints 

A great advantage of this dissertation was the availability of some data sources within 

the first year of research. A qualitative assessment was done (see Section 2.1) comparing 

the different available datasets. However, early analysis showed that there were certain 

aspects beyond the control of the researcher. For instance, changing the data collection 

specifications by the fleet – as it is a business process within BMW, and cannot be 

easily changed, and was also not in the scope. Nonetheless, the goal was to explore the 

possibilities with the existing data that was being collected at the time. Furthermore, 

a promising solution at the beginning of this research was data fusion; however, because 

of the disaggregated nature in collection of the different sources, and the other 

complexities involved in post-processing, it was decided to stick to one reliable source 

rather than many sources that are difficult to combine and unavailable. Another 

limitation was collecting manual ground truth data, as it was a costly process. A few 

studies for validation of experiments were supported, and regular random collection 

was done, but doing strategic data collection could not be done on a regular basis due 

to financial constraints.  

Like most studies, the data availability for this research was also impacted by the 

COVID-19 pandemic. Since behaviours changed and some confidential data 

specifications and projects in the horizon changed, the data used in this dissertation 

were bound by a period of study. Nonetheless, this was not a hindrance to the research, 

but rather a missed opportunity due to an unforeseen pandemic.  

5.2 Limitations and further extension of the assessment 

methodology 

The prioritization-based quality assessment methodology developed (see Chapter 3) in 

this research does not include software and system quality assessment. This refers to 

the impacts related to user interface and user experience aspects. The developed 
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automated system also did not focus on the potential impact of missing data, where an 

alert trigger system could be built to alert when there are no ground truth data at 

important areas. This is a minor detail that could be extended in future extensions.  

As there was only limited time to develop the methodology within this dissertation, 

there is a lack of post monitoring after application on the proposed OSPI prediction 

models. To extend this part of the research, after conducting the prioritization-based 

assessment, further ground truth data needs to be collected to re-evaluate and analyse 

changes in model scores.  

To further extend the quality assessment, it is suggested to apply the methodology 

on a higher level that assesses other mobility-related information systems as well, such 

as real-time traffic information. This will make the methodology easier to implement 

since adjustment will be made to full tailor the methodology to all the products that 

are crucial for smarter navigation systems. 

5.3 Recommended research direction of future on-street parking 

information systems studies 

OSPI systems will continue to play a role in urban mobility. The shift towards more 

automated and connected systems will shift the information systems as necessary and 

proactively. The ability of cars to communicate and cooperate their search for parking 

spaces can lessen congestion and improve information systems on a city level. 

Nonetheless, prediction models to estimate open spots will still serve in the background 

as a guide from the origin. It is foreseen that ground truth collection will move towards 

assisted systems with computer vision.  

In general, future research should focus on data fusion to enhance mobility-related 

information systems and particularly, OSPI. Being a multivariate problem, on-street 

parking information accuracy can benefit enormously from data fusion by using the 

advantages of different data sources. Fusing of data will also enhance the proposed 

prioritization-based quality assessment, as a higher volume of data is available for 

prioritization. Camera as sensors will be the future direction of research combined with 

redundancies from data sources that will validate them. These data sources can include 

parking events, municipality parking information from street sensors, ultrasonic sensors, 

and LIDAR data that is mostly used in autonomous driving.  

Three main topics were tackled in this dissertation including cluster analysis of 

parking behaviour, prioritization-based quality assessment, specifically, for OSPI, and 

development of data-driven parking prediction model. In relation to the mentioned 

future overview and studies already conducted, here below is a list of topics and research 

questions that can be tackled within the scope of OSPI and mobility-related information 

systems, in general: 
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• As suggested by Gomari et al. [1, p. 11], a next possible research direction for 

the prioritization-based quality assessment is comprehensively studying and 

identifying the optimal minimum fraction of ground truth required for the 

proposed true quality assessment check. To do this, an extensive amount of 

random and strategic ground truth data collection will be needed. 

• The application of the prioritization-based quality assessment methodology on 

other mobility-related information use cases, and “the extension of 

prioritization-based subsampling strategies (PSSs) using other factors such as 

the density of points-of-interest (POIs) or local contextualized information and 

so on” [1, p. 11]. 

• Current OSPI prediction models still focus on localised availability prediction 

per street. However, this does not completely represent a driver’s behaviour in 
search for on-street parking. Drivers typically go to an area and knowing their 

chances (in temporal terms) to find a parking spot. It is suggested to conduct a 

deeper investigation to understand the features that could potentially model the 

rare occasions that an on-street parking spot becomes available in busy urban 

centres. For this, focused data collection and research on limited parts of a city 

is the first step. Direct interviews and understanding drivers’ needs and 

requirements are also recommended to understand the gap in the market. This 

study can be combined with parking search route research work. 

• Parking behaviour studies not related to prediction models are still uncommon. 

As argued in Gomari [2], it is crucial to understand parking behaviour to create 

meaningful features for prediction models. Gomari et al. [2, p. 8] in relation to 

their study, suggest to extensively research on activities specifically related to 

on-street parking choices. This can be done in the form of stated and revealed 

preference studies. And as a supplementary validation dataset, cleaned 

OpenStreetMap4 points of interest (POIs) can be used to correlate with 

potential activities of users. As mentioned in Gomari et al. [2, p. 8]: “This helps 

better comprehend possible correlations between quadkeys and an activity 

performed resulting to more localised estimations and the detection of popular 

areas in time and space”. 

• As technology has evolved over the last three years, a follow-up research to 

address the data collection constraint is to use computer vision with cameras to 

collect on-street parking ground truth. Particularly, develop a spatio-temporal 

 

 

 

 
4 https://www.openstreetmap.org/ 
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collection strategy that could complement the prioritization-based quality 

assessment of Gomari et al. [1]. The focus of this research should be on 

comparing the benefits gained shifting from manual collection to automated 

detection from organic crowd-sourced camera or fleet camera data. It is also 

useful to estimate the error rate and the correction needed to compensate for 

the errors.  

• More related to the product side research, a recommended study would be 

getting popup user feedback in the navigation system for quality feedback. The 

feature can be embedded into the system. This is direct valuable feedback that 

could be beneficial both for the customers and the service provider, in this case 

the car OEM. This study will be supplementary research to the existing system 

in place.  

• In all the studies conducted in this dissertation, the quadkey approach was used 

to make reproducibility viable. Another approach that can be taken in future 

research is the application of gradual rasterization as defined by [94]. The 

proposed method would be to conduct an analysis and adjust study area size 

depending on the amount of volume on the tiles, quadkeys, or zones. This 

means, geographically small but high-volume tiles can be compared with large 

tiles with the same amount of volume. This has already been done for transport 

modelling studies like those in [94], [95]. The focus of this study should be 

comparing the results and identify potential gaps in opportunities to do better 

prioritization-based quality assessment.  
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6 Conclusions 

 

On-street parking information (OSPI) systems will continue to play a major role in the 

context of smart cities. This dissertation has extensively studied and developed 

methodologies to assess the true quality of a mobility-related information system with 

a focus on OSPI as presented in the studies of Gomari et al. [1], [2], [4] as presented in 

Appendices A, B, and A. Quality assurance, typically, is aligned with user satisfaction 

and product usage and growth. This means, a wider and better usage of mobility-related 

information systems like OSPI can achieve transport network system-level benefits [1]. 

Combined with sound sustainable urban mobility policies, OSPI could improve the 

overall mobility situation in cities today and in the future with more connected, 

automated, and cooperative systems in sight.  

In summary and conclusion, the developed novel prioritization-based assessment 

methodology for mobility-related information systems, specifically OSPI, has been 

proven to deliver valuable results as presented in [1], [2], [4]. Even with low volume 

parking event counts in different cities, the volume can still steer the quality assessment 

towards areas that are most frequented by customers, in this case, that of BMW. Since 

fleet data is typically a representation of a bigger population, as demonstrated in [2], it 

is worthwhile to investigate the users’ parking behaviour which can be obtained from 
the same fleet data. Furthermore, the parking events data, as the core element of the 

entire dissertation, has proven that reduction of dependence on manually collected 

ground truth data is possible [4]. Gomari et al. [4] developed a series of models aiming 

to find the best combination to reduce dependency on manual ground truth data by 

introducing data-driven features based on parking events and enhanced spatial features. 

The experiments in the study prove that, even up to a horizon of 3 months as tested 

in the cross-validation test set, the prediction scores were still performant. And on top 

of that, a parking behaviour change detection model is proposed that can be used a 

trigger component to alert the system about potential long-term changes in the OSPI 

service. Of course, the proposal cannot beat real-time information, but the system is a 

big step towards reducing reliance on historic ground truth that is costly to collect.  
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1. Introduction 

Vehicles cruising for parking contributes to substantial congestion within an urban transport network (Friedrich et 

al., 2019). As a parking management measure, parking guidance signs have been placed within a transport network to 

guide vehicles to predominantly off-street parking options. Comparable systems have also recently been developed 

for finding parking spots on the streets, denoted as on-street parking information (OSPI). State-of-the-art OSPI 

systems are mostly developed using complex machine learning techniques aiming to optimise prediction estimates 

without necessarily investigating the underlying parking behaviour in a city. The quality of the information provided 

by such systems are validated by the comparison of observed on-site data against the prediction model estimates. 

Although many forms of ground truth (GT) strategies exist, there is still no scalable method that can significantly cut 
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Abstract 

Estimates show that vehicles cruising for on-street parking contribute to 30% of urban traffic congestion. On-street parking 

information (OSPI) systems are increasingly becoming a more popular service to help lessen the on-street parking search time and 

consequently reduce congestion. However, despite the service offerings of these prediction models, the on-street parking behaviour 

of people in cities have not been studied to the same magnitude. The lack of appropriate empirical parking data is one main reason. 

This study focuses on the analysis of parking behaviour by capturing the on-street parking dynamics, which can give a better insight 

on a city’s parking contextualization. The case study examined is the parking behaviour dynamics within Munich by inferring from 

parked-in and parked-out events data from vehicles. A two part clustering analysis was conducted: (1) agglomerative clustering on 

the temporal trend of parking dynamics (TTPD) and (2) a two-stage DBSCAN – K-means clustering on the parking duration 

information. The results show that using the methodology introduced, the parking behaviour within the city can be obtained using 

this unsupervised learning approach.  
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down data collection costs. The hypothesis being tested in this study is that clustering the parking events data can give 

us a better insight about the parking dynamics within a city. The results can then give guidance to do targeted, as 

opposed to random, ground truth collection to truly validate the models on all important facets, and not have an 

imbalanced training data. The parking behaviour dynamics is analysed within Munich, Germany by inferring from a 

new type of dataset, which is parked-in and parked-out events data generated from a fleet of vehicles. This paper 

primarily focuses on the clustering of temporal dynamics of the parking events and the parking duration. The paper is 

further structured by first a review of studies, in particular, the type of data used for the parking information researches, 

followed by the description of the parking events dataset that is used in this study. A methodology for the cluster 

analysis to determine the parking behaviour is then elaborated. The results of the clusters generated are examined in 

the analysis section. The paper ends with conclusions that can be drawn and with recommended applications. 

2. Literature Review 

There have been studies that have tackled the challenges of estimating mobility behaviour and approximating the 

possible trip purpose or activity done by a group of users inferring from GPS data. (Cantelmo et al., 2020; Ettema et 

al., 2007; Gong et al., 2014; Montini et al., 2014) However, there have not been many studies that tackle this in the 

area of parking behaviour. The majority of studies in the area of parking have been on prediction models, where 

parking behaviour or model interpretation is not the focus, but accuracy. The models use a diverse range of data 

sources to train, validate, and test their complex machine learning models. The datasets could potentially have also 

been used for understanding parking behaviour despite being spatially and temporally limited. Relevant for this paper 

is to get an overview of the ground truth parking data used for within their research and qualitatively compare them 

with the parking events dataset used in this study.  

Smart parking meters is one of the data sources researchers have been looking into as mentioned in Bock & Di 

Martino (2017)  and Yang & Qian (2019). Liu et al. (2018), Shao et al. (2018), and Monteiro & Ioannou (2018) 

developed on-street parking guidance systems using data gathered from on-street parking spaces with sensors. Gkolias 

& Vlahogianni (2018) obtained parking data from fewer than 10000 images captured by a camera on a moving vehicle. 

All of these researches were successful in creating a prediction model, despite the spatial limitation in their data 

collection. The parking events dataset used in our study has an advantage over these studies spatially distributed 

without limitation, in spite of fleet drivers’ behaviour constraints. Furthermore, the parking events data is continuously 

gathered and increasing in volume as more vehicles are equipped.  

3. Data and Study Area 

3.1. Study area and data description 

The parking events dataset in this study contains geolocation and temporal information of parked positions of 

BMW vehicles in Munich for the month of July 2019. The data collection is done by BMW’s backend services 

including filtering steps to ensure complete anonymisation according to EU defined data privacy standards. A parking 

event is generated after a certain minimum time threshold since the vehicle has switched on or off the engine, 

indicating a parked-out and a parked-in position, respectively. The anonymised data collected contains only parking 

events within the proximity of a street. This limits the study to BMW’s 2019 OSPI service area for the city of Munich, 

Germany (see Figure 1a). For this study, the sample taken contains no mid-week public holidays and it is assumed to 

be representative of regular weekday and weekend conditions. The number of parking events even gathered for just a 

day is more than the manual observations made by on-site surveyors over a year. This indicates the potential of 

extracting the parking dynamics situation from a data source that is more accessible and widespread spatially and 

temporally. The parking events data can be paired within the defined service area (see Figure 1); green dots are parked-

out events while red dots are parked-in. This is significant in terms of the usage of the data and allows the extraction 

of duration information. On an overall level (see Figure 1c), the mean duration of the dataset is at 272 minutes with a 

median of 48 minutes, indicating right skewness. The parking events data only up to the 95th percentile was taken with 

the value at 1069 minutes; the remaining 5th of a percentile stretches the dataset’s maximum duration to 32774 minutes. 

This preprocessing step was done to cut out large outliers from the dataset.  
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Figure 1. Paired parking events for one day (left); b) time series decomposition of parked-in events (centre); c) parking duration histogram (right) 

Mobility data is normally assumed as a time series data that follows a trend. The additive time series decomposition 

unravels the different trends present in parking events dataset for a month. Figure 1b shows the slight overall decrease 

in the observed volume towards the end of July. This can be attributed to inhabitants of Munich going on holidays. 

Specifically, looking at the trend graph, for parked in events there is a decline, which can indicate a trend of more 

vehicles leaving Munich towards the end the month than coming in. The seasonal graph illustrates a weekly pattern 

and the residual graph shows the random trends that occur constituting a maximum of ±3% randomness. 

4. Methodology 

Clustering, an unsupervised learning approach, was the chosen method for identifying on-street parking event 

clusters. This method captures and partitions similar patterns that are difficult to identify manually (Zheng et al., 

2014). The parking behaviour cluster analysis is divided into two parts (Figure 2): (1) parking dynamics: the grouping 

of quadkey-level districts by the temporal trend of parking dynamics (TTPD) and (2) parking purpose by parking 

duration. A quadkey1 is an indexing naming convention and unique identifier of a standard map tile on a particular 

zoom level. This standardized division of the world map into tiles is a standard used by Microsoft’s Azure Maps. 

 

Figure 2. Workflow of the methodology 

4.1. Parking dynamics: Clustering of quadkey-aggregated parking events based on TTPD  

The raw parking events attributes used in the study were parking event type (parked-in or parked-out), timestamp, 

latitude, and longitude. The first data processing step was to aggregate parking events by quadkey. The quadkey zoom 

level 14 (2457.6 x 2457.6 m) was the selected optimal tile size to reduce relative error propagation due to low 

aggregated volume since the data is only for one month. A finer tile level would reduce the number of parking events 

per tile, and thereby increasing relative error. The quadkey approach is favorable to generate reproducible and 

comparable results for the same application in future researches. The cumulative sum, at each quadkey, of the net 

parking is calculated by the summation of the difference between parked-in (PIN) and parked-out (POUT) events per 

                                                           
1 See definition of quadkey at: https://docs.microsoft.com/en-us/azure/azure-maps/zoom-levels-and-tile-grid?tabs=csharp#quadkey-indices 
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15-minute intervals aggregated to a weekly period. This is to estimate the activity of parking happening in each 

quadkey, referred to hereafter as temporal trend of parking dynamics (TTPD) defined by the time-series: 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑞𝑞𝑇𝑇 = ∑ 𝑇𝑇𝑃𝑃𝑃𝑃𝑞𝑞𝑇𝑇 − 𝑇𝑇𝑃𝑃𝑃𝑃𝑇𝑇𝑞𝑞𝑇𝑇𝑇𝑇𝑡𝑡=0        (1) 

where parked-in (𝐏𝐏𝐏𝐏𝐏𝐏𝐪𝐪𝐓𝐓) and parked-out (𝐏𝐏𝐏𝐏𝐏𝐏𝐓𝐓𝐪𝐪𝐓𝐓) events are time series vectors of 15-minute aggregated parking events 

at each quadkey, q (i.e. 𝑷𝑷𝒒𝒒𝑻𝑻 = {𝑇𝑇𝑞𝑞𝑡𝑡𝑇𝑇 ; 𝑞𝑞 = 1, 2, … , 𝑃𝑃; 𝑡𝑡 = 00: 00, 00: 15, 00: 30, … , 𝑇𝑇}, for N number of quadkeys, and length of 

study time period, T, which is one week. The time series are normalised to get the relative values for comparability of 

quadkeys. The final step was to cluster the time series on quadkey-level by agglomerative hierarchical clustering using 

Ward’s algorithm (Ward, 1963). This hierarchical clustering method is widely used and has been popular for its 

interpretability through a dendrogram and step-wise approach of starting with all objects as one cluster and joining, at 

each step, the two most similar clusters. Essentially, no input is required, with number of clusters being defined 

afterwards. The silhouette score metric (Rousseeuw, 1987)was also used as a guide to select the number of clusters. 

The output clusters are groups of the most similar quadkey-level parking dynamics time series over the study period. 

4.2. Parking purpose: Clustering of individual parking events based on parked-in time and parking duration 

The parking purpose was categorised using parking duration and parked-in time. The parked-in time was converted 

to time during the day in seconds and analysis was done on a week unit as the time period. The parking duration (PD) 

was calculated by matching the Geohash (i.e. geocode for specific pair coordinates) of parked-in and parked-out events 

and taking their difference; in this case each pair match can essentially be treated as a remote on-street parking sensor:  𝑇𝑇𝑇𝑇 = 𝑇𝑇𝑃𝑃𝑃𝑃𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − 𝑇𝑇𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡      (2) 

Parked-in time is the start time of an activity or walk to a driver’s destination, while parking duration indicates the 

time spent in a neighbourhood. These two features were inputs to the two-staged clustering using density-based spatial 

clustering of applications with noise (DBSCAN) and K-means. DBSCAN was first applied to cluster according to the 

densities formed by similar observations and to recognise if there are distinct groups that are separate according to 

their density cluster distances from one another. The method was selected as it has been widely recommended for its 

ability to identify shape patterns in large datasets. It was discovered from the exploratory data analysis that the majority 

of observations were close and densely packed in one whole cluster regardless of the features used. Hence, 

partitioning-based clustering was needed by K-means to further create further clusters. This approach was taken to 

automate the partitioning of the parked-in time and duration instead of slicing the unlabelled data manually.  

5. Cluster Analysis 

To capture the on-street parking behaviour, the analysis was done jointly on parking dynamics and parking purpose. 

First, quadkeys were identified that could be similar in terms of when they fill up and when they empty using the 

TTPD; second, clusters were identified from the parked-in time and parking duration. Then, the analysis is done by 

interpreting the distribution share of the parking purpose clusters in each quadkey category cluster.  

5.1. Parking dynamics clusters based on TTPD 

The spatial spread of parking events within Munich is mostly concentrated on a few quadkeys. Figure 3 shows that 

the top 2 out of the 23 quadkeys contain about 25% of all events, the top 5 comprises more than 50%, while the bottom 

12 quadkeys encompass only 25% of all parking events. The majority of the events take place around the city centre 

and a secondary transport hub to north of the Munich polygon (see Figure 3). From this perspective, the relative error 

is large for quadkeys with lower volume of parking events, despite potentially behaving the same as quadkeys with a 

large volume. The low volume is interpreted in two ways: one is that there are no BMW vehicles present in these areas 

or there are parking events occurring but not captured by the dataset. Since Munich has a good coverage of BMW, it 

is assumed that the dataset is representative of the population.  
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Figure 3. Cumulative distribution of parking events by quadkey (left) and its relative spatial distribution (right) 
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Figure 4. a) Quadkey categories 0: Eating, but low volume of events (left); 1: b) Business and shopping (center); 2: c) Business and eating (right) 

  

 

 

   

Figure 5. a) Quadkey categories 4: Residential (left); b) 5: Residential, shopping, and eating (middle); c) Spatial distribution of categories (right) 

The TTPD for each quadkey was calculated and agglomerative hierarchical clustering (see Section 4.1) was 

performed. Seven clusters were identified based on the silhouette score metric, the dendrogram, and manual labeling 

of the 23 quadkeys based on their TTPD and other parking dynamics indicators, such as, total parking (Figure 4b) , 

net parking, and the difference of the two. Only 5 out of the 7 clusters were significant, the other 2 had low volumes 

of parking events (i.e. categories 3 and 6). The manual labeling was done to compare and validate the robustness of 

the clustering technique, which turned out to be confirmatory. An example for each identified quadkey category is 

illustrated in Figure 4 and Figure 5. The cumulative net parking and the total parking are displayed in these figures, 

which represent the rate of filling in of a quadkey and the volume of parking events at each time step, respectively. 
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Category 1 ‘eating’ cluster (Figure 4a) shows activity at lunch and dinner hours; category 2 ‘business and shopping’ 

(Figure 4b) covers the usual working hours with some activity going in between the peak hours; category 3 ‘business 

and eating’ (Figure 4c) shows a TTPD peaking parked-in events in the morning rush hour, lunch time, afternoon rush 

hour and continuing until dinner time and weekend dining patterns; while category 4 ‘the residential’ cluster (Figure 

5a) shows the filling in of the quadkeys at night time without any activity until the morning peak hour; and category 

5 (Figure 5b) is a mixture of ‘residential, shopping, and eating’, where some parking activities is observed during the 

day and peaking towards the dinner hours and stabilizing until next day’s morning peak hour and with no day shopping 

activities on Sunday but with a peak in the evening. The clustering with TTPD on 15-minute time intervals shows that 

meaningful clusters for parking dynamics can be extracted on a high level. The next 1 aims to go further into detail 

with regards to understanding the purpose for parking in the quadkeys based on duration.  

5.2. Parking purpose clusters based on parked-in time and duration 

The input for the parking purpose clustering was mainly the parked-in time of a vehicle and the duration of stay in 

the area. The entire dataset was fed into the clustering algorithm without prior geographical grouping. The identified 

clusters of parking purpose in combination with the parking dynamics by quadkey clusters (see Section 5.1) gives an 

estimate of the parking behaviour as a whole in each quadkey. Based on initial exploratory data cluster analysis, the 

hypothesis of different parking behaviours during weekdays and weekends is valid and separation improves clustering 

results. Hence, two temporal grouping were introduced: weekdays and weekends. Different separations of days and 

time periods were tested, and the most logical result was to create a separation for Monday to Friday evening, and 

Friday evening to Sunday.  

The results of the first clustering step using DBSCAN are shown in Figure 6. There is a distinction between two 

large clusters during the entire period. These are shorter term parking during the day and longer term overnight parking 

towards the night. The noise from the results of the DBSCAN clustering and the night clusters for both temporal 

groupings are left out for the next step. The night cluster though is labeled as overnight parking purpose cluster and 

included in the final cluster output. The results of the K-means clustering are shown in Figure 6. There are 6 clusters 

for the weekday grouping, and 9 clusters for the weekend. The former has lower number of clusters, since there are 

more regular daily activities on weekdays, as opposed to random activities on weekends. Overall, the two-staged 

clustering aids in identifying more clusters, compared to doing it using only DBSCAN.  

The important details of the 16 parking duration purpose clusters are summarised in Table 1. The summary includes 

a brief cluster description, descriptive statistics about the duration in minutes and the parked-in hour, the volume share 

of parking events per cluster, and the spread of these parking events across the 5 quadkey categories. A heat map color 

map is applied to illustrate the difference in magnitude of the events share in each quadkey category at each parking 

duration purpose cluster. Each table cell in the heat map describes the parking event joint probability on that cell. 

The share of parking events by quadkey is 37.1%, 24.0%, 22.3%, 16%, and 0.7% for category 2, 4, 3, 5, and 1, 

respectively. The change in order of share within a certain purpose cluster can describe its parking behaviour. The 

high-share parking event clusters can be seen on weekdays. The top 3 highest, comprising of about 19% of all events, 

occur on quadkey category 2 (business and shopping) at parking purpose clusters 1, 4, and 6, which are early morning 

short-term parking (mean parked-in time of 7:00), lunch time parking (12:00), evening peak (17:00) hour short-term 

parking, correspondingly. The average parking duration in these 3 clusters is circa 30 minutes. The share order is not 

disrupted much, indicating stability on weekdays. The order change only happens on purpose cluster 5, where quadkey 

category 3 comes in second highest share. Cluster 5 overlaps with lunch time and includes intermediate parking to do 

other activities other than going home (category 4) until after dinner time with a mean duration of 180 minutes. On 

weekends, the peaks occur from 10:00 to 15:00 and 17:00 to 20:00. Five out of nine clusters, these are clusters 9, 10, 

12, 14, and 15 have a higher share on quadkey category 3 (business and eating) than 4 (residential). These happen to 

be overlapping with the two peak hours, thus, the reason is most likely eating or longer term shopping.  

Another cluster which was separated after the DBSCAN clustering process, which was labeled as overnight parking 

purpose proved to be correct. As it can be seen, there is a high share of long-term overnight parking occurring at 

quadkey category 4 and 5 (relative to its overall share), which were interpreted and labeled as residential from the 

TTPD graphs (Figure 5).   
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Figure 6. Generated parking purpose (duration) clusters using DBSCAN and K-means clustering 

Table 1. Summary of the details for each parking purpose duration cluster 

Purpose 

cluster 

number 

Temporal 

Grouping 
Purpose cluster description 

Parking duration (min.) Parked-in time (hour) Mean 

parking 

events 

share 

Quadkey category share 

Mean Min Max Mean Min Max 0 1 2 4 5 

1 

W
ee

k
d
ay

 

Early morning short parking 30 0 155 6.90 0.00 9.42 18.2% 0.11% 6.27% 4.06% 4.45% 3.33% 

2 Morning peak hour parking to work 511 358 798 7.35 3.32 15.01 2.5% 0.01% 1.04% 0.44% 0.48% 0.56% 

3 Intermediate parking before lunch 228 120 401 8.78 3.22 13.89 4.7% 0.02% 1.87% 0.93% 0.95% 0.89% 

4 Lunch time parking 34 0 150 11.89 9.27 14.58 20.4% 0.12% 7.24% 4.50% 4.93% 3.66% 

5 Intermediate parking after lunch 182 94 425 15.92 11.84 21.56 7.2% 0.06% 2.95% 1.69% 1.50% 1.01% 

6 Evening peak short parking 27 0 132 17.02 14.40 23.98 16.6% 0.10% 5.82% 3.98% 4.06% 2.70% 

7 

W
ee

k
en

d
 

Early morning short parking 20 0 162 6.66 0.00 8.74 2.6% 0.01% 0.86% 0.58% 0.68% 0.46% 

8 Long-term parking during the day  440 339 658 9.28 4.74 17.81 0.4% 0.00% 0.16% 0.09% 0.12% 0.06% 

9 Morning parking for shopping and/or dining 234 155 340 9.45 3.37 13.05 1.0% 0.01% 0.41% 0.23% 0.22% 0.15% 

10 Morning parking for weekly shopping/dining 112 65 188 10.62 4.53 13.94 2.4% 0.02% 0.98% 0.58% 0.51% 0.33% 

11 Morning short parking 18 0 67 10.75 8.64 12.93 4.2% 0.03% 1.38% 1.01% 1.11% 0.68% 

12 Afternoon short parking 20 0 90 15.03 12.81 17.48 4.1% 0.02% 1.45% 1.01% 0.99% 0.60% 

13 Afternoon shopping and/or dining 252 182 403 16.21 12.46 23.95 1.0% 0.01% 0.42% 0.20% 0.22% 0.15% 

14 Evening dining/pubs 123 62 202 17.00 13.77 23.93 2.0% 0.02% 0.87% 0.50% 0.42% 0.23% 

15 Evening short parking 18 0 125 19.87 17.44 24.00 2.9% 0.02% 1.13% 0.74% 0.70% 0.35% 

16 Overnight Overnight long-term parking at residence 770 355 1075 17.59 10.40 23.96 9.6% 0.05% 2.19% 1.85% 3.47% 2.01% 

      Parking events share in each quadkey: 0.7% 37.1% 22.3% 24.0% 16.0% 

6. Conclusions and recommendations 

The paper has given insights on estimating on-street parking behaviour from BMW’s parking events data. The 

analysis was done on two parts: the temporal trend of parking dynamics (TTPD) and the parking purpose based on 

duration. The first aspect was formulated based on the aggregation of the parking events on a quadkey. Quadkey zoom 

level 14 was selected as the optimal trade-off between size of the tile and relative noise based on the volume of parking 

events per quadkey. The volume of parking events in each quadkey was feature engineered into a weekly time series. 

This entails getting the cumulative distribution of the difference between the parked-in and parked-out events on 15-

minute intervals. This transformation was used as an indicator to detect if an area is filling up or emptying. Then, the 

quadkeys were clustered and categorised using agglomerative hierarchical clustering. The second aspect was 

identifying the parking purpose based on the attributes parked-in time and the parking duration. Given the nature and 

spread of the data, a two-step clustering approach using DBSCAN and K-means was applied to partition the parking 

events. Overlapping the results of the two parts enabled the better capturing of the overall parking behaviour. The 
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outcome gave us the joint probability of parking purpose by duration and quadkey category. This collectively 

generated the general parking behaviour insights within a study area using the parking events dataset.  

The study area in this paper covers a dense urban area close to Munich’s city centre with a mixture of commercial 

and residential landuse. This creates a bias towards short term parking behaviour considering the predominantly dense 

parking situation. Through the introduced unsupervised learning methodology, we were able to further categorise 

areas by quadkeys into a combination of residential, business, eating, and shopping areas. However, a further 

categorisation of short-term parking activities, especially shopping, is difficult to identify without driver input about 

trip purpose. To further go into detail, a recommended approach is to use the parking behaviour results in combination 

with inferring from cleaned OpenStreetMap points of interest (POIs) data. This helps better comprehend possible 

correlations between quadkeys and an activity performed resulting to more localised estimations and the detection of 

popular areas in time and space. 

Automating processes, especially of data collection, has become quite popular. Another application of the results 

of this study is leveraging the value of an automated data collection system such as parking events. The ability to infer 

parking behaviour from the inflow of parking events data automatically could support testing and validation efforts 

for parking-related products and research. The findings from this paper are a guiding step to enable the better 

measurement of the quality of prediction models, given that the parking events data is widespread spatially and 

temporally, as opposed to manual data collection. 

The methodology applied in this paper can be extended to all other cities where parking events data is being 

gathered. The method can immediately provide first insights on the spatio-temporal parking behaviour that exists 

within a city while employing a random automated data collection by a fleet of vehicles representing normal human 

mobility behaviour, with a bias towards the group of vehicle users. This study will directly feed into a bigger research 

on ground truth strategies for parking prediction by applying the method to all the available data for a longer period. 
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Abstract

Mobility-related information systems, such as on-street parking information (OSPI) sys-

tems have become more popular in the original equipment manufacturer (OEM) indus-

try over the last decade. However, there is a lack of methods to assess their quality at a

large scale. This paper introduces a data-driven methodology to measure the true qual-

ity by fleet data prioritization-based subsampling strategies (PSSs). It is applied to the use

case of OSPI using parking events (PE), but is applicable to other mobility-related infor-

mation systems utilizing their respective fleet data. PSSs are defined based on neighbour-

hoods and time periods. Each PSS generates a unique set of spatio-temporally important

areas at different quadkey zoom levels over 168 week-hours, called slices. The impor-

tance weight in each slice depends on the volume of PE within them. The algorithm

for each PSS automatically selects important areas and time frames that are vital to be

observed. Sample prediction models are used for the benefits assessment of the method-

ology by comparing it against non-prioritized randomized selection of ground truth. It

is proven that the methodology can lessen the effort of ground truth collection, while

maintaining the amount of information necessary to assess the true quality of a prediction

model.

1 INTRODUCTION

1.1 Background on quality assessment of
mobility-related information systems

Quality assessment (QA) of mobility-related information sys-

tems (IS) has mainly focused on measuring the discrepancies

in the technical broadcasting and availability of information [1].

The assessments do not necessarily evaluate the accuracy of the

information’s content [1]. Existing QA in the area of mobility,

do not consider the relative importance of information given to

users. For example, the importance of correctly relying informa-

tion to a user about a train with a 15-min headway is higher than

a train that arrives every 2 min. Another instance is, information

about vacant on-street parking is more important for a driver

in a busy central area compared to parking availability in the

periphery of a city with minimal traffic. [2] and [3] refer to this

as the gap between the delivered information quality by a ser-

vice provider and the users’ expected quality based on perceived

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the

original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

© 2022 The Authors. IET Intelligent Transport Systems published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology

utility. The quality of an IS needs to be assessed based on the

features important to the system objectives and user or manage-

ment expectations [4]. Essentially, to assess the true quality of

an IS, the evaluator must comprehend the needs of its users and

satisfy them to the highest quality. Although quality assessment

methods exist in mobility-related information systems, to the

best knowledge of the authors, there is a gap in knowledge for

comprehensive prioritization-based methods. To address this

gap, in this paper, a methodology is introduced that describes a

procedure on utilisation of fleet data for defining prioritization-

based subsampling for quality assessment. Furthermore, the

viability of the method is demonstrated by assessing the quality

of on-street parking information (OSPI) systems delivered

by different prediction models. OSPI is a chosen special case

where higher efforts are required for QA in comparison to traf-

fic for instance. OSPI involves a high number of small streets

where low volume of on-street parking occurs, whereas the

traffic deals with observing a low number of major roads where

high volume traffic is easier measured. This makes OSPI QA
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comparably more error-prone, and thus, higher efforts and

more precise QA methods are needed. As a limitation in this

research, software and system quality are not tackled and are

out of scope.

1.2 Use case background: On-street parking
information (OSPI)

Vehicles cruising for on-street parking contribute to a signifi-

cant amount of congestion within a city’s inner urban area [5,

6]. Based on 22 studies in different cities ranging from 1927 to

2015 as discussed in [6], the average cruising traffic share in a

city is around 34% and drivers spent around 8 min searching

for parking. OSPI services exist as a guidance system to smartly

navigate drivers in search for on-street parking. A couple of

benefits of OSPI are the reduction of traffic congestion caused

by cruising drivers [7–10] and pre-departure information of

parking situation at destination that increases the chances of

finding a parking spot [11]. The latter can even help drivers

decide whether it is wise to take their vehicles. The state-of-

the-art OSPI systems are mostly developed using complex

machine learning techniques [7, 8, 10, 12–18]. The majority

of models aim to achieve real-time prediction, but there has

also been a study on estimating parking availability for a given

time interval, like 10–20 min [19]. Despite advances in artificial

intelligence, OSPI services still have yet to entice the majority

of potential users, and hence, there is still potential to attract

more users to increase benefits on a system level. Further added

value for drivers comes with the capability to correctly assess

the quality of a service. Thus, as an initial step, the true quality

of OSPI needs to be assessed, which entails considering the

relative importance of the information delivered to drivers,

and thereby satisfy their needs. After all, the true quality of

such systems determines the benefits gained in a transport

network. True quality in this paper refers to the adjusted quality

metric scores based on important or prioritized areas (see

Section 2).

The main difference between state-of-the-art OSPI models

available and how they are validated is the data gathered and

the features considered for training, validating, and testing the

models [19]. Data sources that have been used to validate park-

ing prediction models are: smart parking meters [15, 18, 20, 21],

mobile payments [8, 22, 23], intelligent parking systems [24],

real-time ground sensors [14, 17, 25, 26] images captured by

a camera mounted on a moving vehicle [7, 27], crowd-sensing

information by equipping probe vehicles (e.g. taxis) with on-

board sensors, cameras, or ultrasonic sensors [28, 29], or crowd-

sensing using GPS signals from smartphones [23, 29–31], and

also manual observations [32]. A study aiming to improve auto-

matic extraction of parking spaces used on-street parked out

events from connected vehicles to validate legal and illegal park-

ing spaces in the city [33]. The differences in input data play a

major role in the reliability and quality. The information qual-

ity of models in the studies was validated by the comparison of

randomly observed ground truth (GT) data against prediction

availability estimates.

1.3 Significance of prioritization-based
subsampling for quality assessment

Although many forms of GT strategies exist, there is still no

scalable method that can reduce data collection efforts and

costs. Some alternatives are to randomly reduce subsamples,

which is tested in this study (see Section 3.4), or acquire local

knowledge about the landuse and daily parking behaviour.

However, since these methods are labour-intensive, they are

not scalable. Thus, a fully automated prioritization method is

sought to reduce ground truth efforts and thereby reduce costs,

while maintaining and also potentially improving the system.

The hypothesis tested in this study is that with a data-driven

methodology using fleet data; it is possible to get a better insight

for targeted and prioritization-based subsampling GT collection

strategies. No studies exist that provide a prioritized-based sub-

sampling of GT for quality assessment since most are based on

fixed sensors or parking meters and lack large amounts of data

to prioritize areas. This paper looks into the potential usage of

vehicle parking events as a source for prioritizing ground truth

collection at neighbourhoods, which are selected based on the

frequency of visits within a certain time bucket, called slices.

Identifying such priority slices assist GT collection efforts in

areas which are important for customers to have relevant accu-

rate dynamic parking information. Developing a methodology

considering strategical slices of a GT collection set gives a com-

plete picture of the service quality.

The main contribution of this study is the development of

a methodology that measures the true quality of competitive

mobility-related prediction models (see Section 2) and can pro-

vide recommendations to reduce the required ground truth data

for quality assessment. The true quality is assessed by assigning

importance weights to areas and time periods based on the

chosen fleet volume (e.g. parking events, traffic flows). The

methodology is applied on the use case of on-street parking (see

Section 3). The main findings are described in Section 3.4, and

a summary of contributions are described in the last section.

2 METHODOLOGY: USING VEHICLE
FLEET DATA FOR QUALITY ASSESSMENT

Figure 1 shows the workflow for the data-driven methodology

to measure the true quality of a mobility-related information

system. The core idea is to use vehicle fleet data to iden-

tify spatially and temporally important areas as the basis for

prioritization-based subsampling strategies (PSS). This is used

for the reduction in ground truth collection strategies and

subsequently, quality assessment. It allows to smartly reduce

ground truth collection while not missing out important areas

to customer in evaluating the quality of a system.

2.1 Acquire and process vehicle fleet data

First step was to acquire vehicle fleet data as the main source for

determining the fleet data spatio-temporal density spread (see
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FIGURE 1 Methodology workflow

Section 3.1.1) within a city. The data was processed for geo-

graphical analysis using the geographic coordinates and times-

tamps. More specific processing aspects are mentioned in the

strategies defined in the rest of this section.

2.2 Identification of spatio-temporally
important areas for prioritization-based
subsampling strategies (PSSs)

The processed fleet data was used for identifying spatio-

temporally important areas. Importance is defined by the per-

cent volume weight (or density) of fleet data that occur within

a certain area and at a specific period, hereafter referred to as

slices. Prioritization-based subsampling strategies (PSSs) were

identified, that have different slice proportions. Various strate-

gies were tested to have a robust experimental design setup

looking at the fleet data from several perspectives. The PSSs are

further elaborated in the following sections.

2.2.1 PSS 1: Based on neighbourhoods

The first strategy was purely based on spatial slices, referred

to as neighbourhoods. This strategy only considers the density

of fleet data in each neighbourhood within the city over the

entire study period. The spatial method considered was based

on the quadkey concept [34], which is an indexing convention

and unique identifier of a standard map tile at a specific zoom

level. This standardized partitioning of the world map into tiles

is a standard used by Microsoft’s Azure Maps. The zoom level

of quadkeys varies from 0 to 24, corresponding to a tile size of

40,075,017 m x 40,075,017 m to 2.39 m x 2.39 m, respectively.

The finer the tile level, the lower volume of the fleet data per tile,

and thereby increasing relative error. The quadkey approach is

favourable to generate reproducible and comparable results for

similar researches. Each quadkey equates to a slice; the densest

quadkey was then considered the most important area and this

was sorted from highest to lowest.

2.2.2 PSS 2: Based on time

The time-based strategy defines slices as 168 week-hours. An

hour was the selected time interval based on heuristics as it is

not too small, and not too large, while maintaining interval con-

sistency. Half-hour slices were also experimented with, but with

negligible differences in the overall scores calculated in the use

case in Section 3.3, hence, omitted from further analysis. The

busiest week-hour is the densest slice, and thereby the most

important. Typically morning and afternoon peak hours were

the ones with the highest densities and after midnight hours are

the quietest.

2.2.3 PSS 3: Based on a combination of
neighbourhood and time

The third strategy combines the first two. Each neighbourhood

was divided into 168 h slices. The first two PSSs were on a higher

aggregated level, while this PSS created lower aggregated prior-

ity. This PSS was a generic strategy that can be used in any city

use case; it divided the study area spatially based on a standard

quadkey approach and the week-hour basis hourly slices. This

allowed for a precise identification of important areas by pin-

pointing neighbourhoods that are more important at specific

hours during a week. The slices were sorted according to fleet

volume density. Since the division was done both across neigh-

bourhood and time, the sequence of most important slices can

be from different mixtures of neighbourhoods and hour during

the week. For example, the top most could be from neighbour-

hood A at 13:00–14:00, while the second highest could be from

neighbourhood B at 8:00–9:00. Furthermore, different quad-

key zoom levels indicate varying and more precise importance

weighting.

2.2.4 PSS 4: Based on neighbourhood clusters
and time

Neighbourhood clusters was generated based on fleet data

behaviour within the different neighbourhoods in a city. The

idea was to group together neighbourhoods that have similar

behaviour and can be treated as one entity. This was done by

first defining the behaviour of each neighbourhood through an

aggregation method of the fleet data and then performing clus-

tering on the behavioural pattern. The behavioural modelling

and clustering concept used for this paper can be found in Sec-

tion 2.5. The next step was to divide the clusters into 168 h

slices as previously and then sort according to density to get the

importance.
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2.3 Measure the quality for different PSS by
a key performance indicator (KPI)

Once the PSSs were identified and applied on the ground

truth data, the different slices for each strategy were then pro-

duced. The slices were used for subsampling of the collected

ground truth data. A key performance indicator was used

as the quality metric. The logic behind calculating the KPI

for all the strategies was to ensure that these prioritizations

were consistent at different slices and measure the real quality

correctly. Random sampling has in most cases been the norm

[35] to reduce any biases in sampling. This paper introduces

PSS as a competing method to the traditional random sampling

for true quality assessment of prediction models. Moreover,

an experimental design is defined to test the strategies against

thousands of random sampling trials. The experimental design

setup is defined to test the chances of selecting a sample, that is,

areas at a specific time span that would falsely assess the quality.

A popular KPI that was used is the Brier Score, as described

below:

KPI =
1

N

N
∑

t = 1

(

pt − ot

)2
, (1)

where p is the predicted outcome, o is the observation at

instance t (0 means there was no occurrence, 1 means there was

an occurrence), and N is the total number of instances.

The KPI was calculated for each slice within a strategy. A total

KPI score for a strategy was calculated based on the evidence-

based multi-criteria decision making method called weighted

sum model (WSM) as described in Equation (2). WSM was the

chosen technique for its objectivity and not being prone to score

skewness.

KPIPSS =

N
∑

s = 1

KPIs × ws , (2)

ws =
PEVolumes

∑N

s = 1
PEVolumes

, (3)

where KPIs is the KPI of a slice, w is the importance weight

assigned to a slice, s is a slice within a PSS, and PEVolumes is the

parking events volume at a slice

The calculation of the KPI is dependent on two variables:

estimations from different types of prediction models and the

strategy from different PSS. Only two weighting techniques

were applied in this paper, equally weighted for all slices, which

was computed by one divided by total number of slices and

importance weighted based on fleet percent volume share at

each slice. This was done to see the impact of weighted KPI

on the overall PSS KPI, and whether the weights play a role in

shifting the penalty or incentive to the important areas. After

the KPIs were calculated for all PSS, the next step was to check

the true quality measurement. This was done by comparing the

results against the baseline, which is randomized subsampling

of ground truth.

2.4 Benefits validation of PSS against
non-prioritized randomized subsampling of
ground truth

The experimental design for random subsampling of ground

truth was necessary to assess and ensure the robustness of the

PSS method. One objective was to ensure that if any of the PSSs

are followed for ground truth collection, they can be representa-

tive of the actual quality of a prediction system. The goal of ran-

dom subsampling was to generate different random slices not

following fleet data density. The ideal, however, unrealistic ran-

domized subsampling that gives the best quality measurement

for a certain prediction model was also calculated as a base com-

parison for the benefits of the PSS implemented. This validation

aimed to identify weakly designed prediction models that only

perform well in rare instances. The experimental design ensured

that the random trials cover the majority of the possible combi-

nations for randomized subsampling that eventually selected all

the ground truth data in different experiment setups.

The comparison of top importance-weighted fractions of the

PSS with fractions of the randomized ground truth subsampling

was done to compare the effects of subsample size reduction.

This also provided the opportunity to check the benefits of the

PSS at smaller sample sizes, which have higher relative error.

It must be noted that the top importance-weights are corre-

sponding to the fleet percent share that is attributed to a slice,

and therefore not corresponding to the fraction of the ground

truth observations. For instance, within the top 50th percentile

importance-weighted slices, it is possible to only have a sam-

ple size of 30% of ground truth observations occurring in these

specific areas and time. In summary, the following steps were

followed for the benefits validation:

1. Sort the slices of each PSS based on their corresponding

importance weights.

2. Take the top 30th up to 90th percentile importance-weighted

slices, at 10th percentile interval steps, and calculate the KPI

scores for all PSS.

3. Get the equivalent sample size % of the ground truth for the

randomized selection.

4. Run n-number of trials that covers different fraction combi-

nation in consideration of the ground truth dataset size and

calculate the KPI scores.

5. Get the KPI variation of the m-number of PSS.

6. Get the KPI variation of the n-number of random trials.

7. Use the interquartile range (IQR) method of outlier detec-

tion for robustness of KPI scores.

IQR = Q3 − Q1, (4)

where Q3 is the third quartile value (75th percentile), and Q1 is

the first (25th percentile)
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Media

Q Q
IQR

Min. Max.

1.5*IQR1.5*IQR

Lower bound outliers < Q1 − 1.5 ∗ IQR, (5)

Upper bound outlier > Q3 + 1.5 ∗ IQR. (6)

1. Compare the score variance for random trials with the score

variance for PSS.

2. Make conclusion on findings about robustness of PSS.

3. Is it feasible to safely reduce ground truth collection to only

important areas and time for the quality assessment that

needs to be made? Will this be representative of the true

quality?

2.5 The use case of on-street parking
prediction

This paper applied the described methodology to the use case

of on-street parking. The parking events dataset was used as the

main source for analysis and the PSSs. The entire methodology

can be applied as already described, but for PSS 4, a specific on-

street parking behaviour modelling and clustering concept was

used.

The neighbourhood clusters identified in this study were

based on a specific parking behaviour dynamics concept taken

from the study of [36] about temporal trend of parking dynam-

ics (TTPD) inferred from parking events. TTPD is a week-hour

time-series of the cumulative sum of the difference of the week-

hour normalised average parked-in and parked-out events per

30-min intervals at quadkey zoom level 14. For the case of on-

street parking, zoom level 14 was selected as the optimum since

a more localised level would generate high relative errors given

that the volume of parking events within 30-min intervals was

small. Each neighbourhood at zoom level 14 has a particular

normalised TTPD. These TTPDs were used as the base for clus-

tering similar neighbourhoods. Each cluster consisted of multi-

ple neighbourhoods and was spatially treated together, and then

the cluster is divided into 168 h slices. The logic in this strategy

was that, the important slices of different neighbourhoods with

similar parking behaviour can be analysed on the same level and

therefore combined in the cluster.

For the use case of on-street parking prediction model qual-

ity assessment, various parking prediction models were utilised

to generate availability predictions. However, the model devel-

opment was not of essence in this paper, and was only consid-

ered as sample models that generate adequate results to allow

quality comparison between models. A number of real feature-

based models and random parking prediction models were used

as later described in the Section 3.3.

The code to carry out the analysis in this paper was writ-

ten in Python. The main packages used were: Pandas, GeoPan-

das, Folium, Numpy, OSMnx, Matplotlib, Seaborn, Statsmodel,

PySal, and Scikit-learn.

3 QUALITY ASSESSMENT OF
COMPETING ON-STREET PARKING
PREDICTION MODELS

The application results of the methodology introduced in this

paper is described in this section. The experimental design setup

of the PSSs implemented is in Table 1. The experimental design

was designed to cover all possible combinations of the defined

spatio-temporal slices.

3.1 Study area and description of data

3.1.1 Study area and parking events

The study area of this paper is BMW’s OSPI service area for the

city of Munich, Germany. Together with the defined polygon,

the on-street parking capacity of blocks or number of parking

spots was also collected from BMW’s parking map.

The main data source used in this study as the importance

indicator was parking events (PEs). PEs data are gathered from

the fleet of BMW vehicles. Hence, there is a bias towards BMW

users. This is within the bound of this study since importance

is relative to the OEM or the agency of concern; this means for

example, the share of BMW vehicles in an area is what is defined

as important for BMW, while if importance is to be defined

by the city the share of BMW vehicles amongst all other vehi-

cles need to be known to classify whether it is representative.

The data collection happens at BMW’s backend services which

includes anonymisation according to EU defined data privacy

standards. A PE is generated when a vehicle switches off or

on the engine, triggering a parked-in event or parked-out event,

respectively. The PE event was also post processed to contain

only events within 10 meters of a street. An example of the spa-

tial distribution of data collected can also been seen in Figure 2.

For this paper, the PE data from February 2020 to September

2020 was taken. It was observed that the PEs from Mondays to

Friday evening have a similar temporal distribution with small

day to day discrepancies (see Figure 3), hence, can be grouped

together in later analysis [36] During a normal weekday there

are peaks in the morning and afternoon, as expected since the

study area is quite commercial. On weekends, the peak occurs at

around noon during lunch hours and shopping before or after.

3.1.2 Ground truth data

The ground truth (GT) data used was collected between June

2018 and October 2020. The GT dataset is used for testing the

methodology. For this study, more than 20000 random observa-

tions spread across the city’s service area were used in Munich.
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TABLE 1 PSS experimental design setup

Neighbourhood zoom level TTPD cluster zoom level Time slice

Setup # PSS # 14 15 16 17 14 168 week-hour

1 1 x

2 x

3 x

4 x

5 3 x x

6 x x

7 x x

8 x x

9 2 x

10 4 x x

FIGURE 2 The weight importance distribution in neighbourhoods for PSS 1

FIGURE 3 The weight distribution importance during the week-hour for PSS 2
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Each observation is made on a block at the time of the test. A

block is the stretch of a street measured from one intersection

to the other. When at least one legal parking spot is observed on

a block, this was recorded as available. Regardless of the number

of open spots, for this paper, the observations were recorded as

a binary outcome—available or not available.

3.2 Spatio-temporally important areas for
the use case of on-street parking in Munich

For the specific case of this paper, the volume of parked BMW

vehicles is the indicator of importance. Only parking event pairs

with a duration of more than 5 min were considered to eliminate

noise generated by standing by cars. The hundreds of thousands

of PEs that happened in Munich during the indicated collection

period show the spatio-temporal importance of an area in the

city. The results of the PSSs are described below.

3.2.1 PSS 1: Based on neighbourhoods

For the neighbourhood-based prioritization (see Figure 2), the

total volume of PEs in each quadkey was considered as the

importance weights. Quadkey partitioning is described in Sec-

tion 2.2.1. The highest and lowest quadkey zoom levels con-

sidered as a neighbourhood were level 14 (2457.6 × 2457.6 m)

and 17 (250 × 250 m), respectively. These quadkey zoom levels

were heuristically determined for this research as an assumption

of the cruising distance range for on-street parking search. The

spread of the events are mainly focused on hubs (see Figure 2)

within the polygon as seen in the figures; this corresponds to

the prioritized areas to focus on for the KPI calculation.

3.2.2 PSS 2: Based on time

The global hourly based PSS applied on the PEs dataset shows

(see Figure 3) that the peak importance occurs in the early

mornings during the weekdays and at noon during the week-

ends. It is observed that on a global level, the importance by

time is not that distinguishable as the weights are similar during

the day hence making it difficult to prioritize. This prioritiza-

tion confirms the nature of the study area as being mainly com-

mercial and business centres. With prioritization only based on

global time slices, a small trend shift of ground truth resources

can be done by taking the following top prioritized hours as

important: period 7:00–15:00 during weekdays, 9:00–14:00 on

Saturdays, and Sundays can essentially be left out, as it is not as

busy as weekdays. The observations here can change once this

is looked further in detail by neighbourhood.

3.2.3 PSS 3: Based on a combination of
neighbourhood and time

PSS 3 applied to the on-street PE data provides detailed pri-

oritized subsamples in specific areas of Munich at certain

periods of time (see Figure 4). The PSS was performed for zoom

levels 14 to 17, but only level 14 is discussed in this section as

an example. For simplification of 14-digit labels of quadkeys in

the example, a basic label encoder was used to assign a number

label to each of the 23 level 14 neighbourhood quadkeys gen-

erated (see right image in Figure 4). In the final analysis of KPI

scores (see Section 3.3), all levels were considered. The neigh-

bourhoods at quadkeys 6 and 8 have the highest hourly impor-

tance contribution. It can be seen that neighbourhood 8, which

is located around the central station of Munich, has the high-

est share, and the hourly weights are consistent throughout the

day. Within the duration of 6:00 – 18:00, most neighbourhoods

have stable hourly importance. In neighbourhood 14, a slight

increase in importance is observed on Saturday afternoon; this

neighbourhood mainly consists of shopping and dining activi-

ties. Neighbourhoods 0, 4, 10, and 18 are located at the periph-

ery of the service area (see Figure 4) and have low volume of

parking events - illustrated by light yellow indicating low impor-

tance in the upper left image in Figure 2, hence, considered as

less important.

As an example, the slices that are within the top 50th per-

centile of importance weights are illustrated in the lower image

in Figure 5. It must be noted that the weights were not normal-

ized, and the representation in heatmap is essentially extractions

from considering all slices in Figure 4. In comparison to the

heatmap showing all the weights, the top 50th percentile has pri-

oritized 539 (14.7%) slices out of 3671. And instead of looking

at 23 neighbourhoods, the choices have already been reduced to

10 neighbourhoods. At higher priority areas, within top 10th per-

centile of importance weights, only 76 (2.0% of all) slices within

3 neighbourhoods are considered, at top 20th percentile, there

are 167 (4.5%) slices in 7 neighbourhoods, at top 30th percentile,

276 (7.5%) slices within 7 neighbourhoods, and within top 40th

percentile, 398 (10.8%) slices inside 7 neighbourhoods as well.

Depending on the urgency to check the quality of a certain area,

this PSS provides narrowed down areas and time slots that need

to be checked first for quick quality measurements.

3.2.4 PSS 4: Based on neighbourhood clusters
and time

This strategy builds on the previous PSS by aggregating similar

neighbourhoods. The logic behind neighbourhood clustering,

as explained in [36], is to group based on same temporal trend

of parking dynamics (TTPD) (see Section 2.5). The proposed

method of [36] suggests using hierarchical clustering and deter-

mining the optimum number of clusters based on the silhou-

ette score metric and the analysing its dendrogram. Applying

this for the use case of on-street parking in Munich generates 7

neighbourhood clusters, where 2 (i.e. clusters 3 and 5) of them

occurring at peripheries have negligible importance for BMW

as they have low volume shares. Having 5 valid clusters in the

study area is sufficient, as also validated in the study of [36],

since the neighbourhoods within central Munich are quite sim-

ilar based on the BMW PE dataset. The PSS was only applied

on zoom level 14 as the considered optimal size for modelling
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FIGURE 4 Importance weight distribution by PSS 3 on neighbourhood zoom level 14 and time (left); and encoded neighbourhood labels within Munich (right)

FIGURE 5 Importance weight of the same PSS 3 but for weights within top 50th-percentile

FIGURE 6 Importance weight distribution by PSS 4 on neighbourhood clusters and time (left); spatial distribution of neighbourhood clusters (right)

of temporal trends of parking dynamics (TTPD) in 15-min

intervals.

The importance weights of this PSS slices are shown in Fig-

ure 6. Cluster 1 contains the majority of areas in Munich city

centre and is considered important in almost all week-hours

between 6:00 and 18:00, with lesser importance on Sundays.

For the same period, Cluster 2 has the same stable hourly dis-

tribution with lesser magnitude in the weight. For cluster 6 the

important weights are lower in the morning and intensify late

afternoon and evening hours, and then fade shortly after the

evening. Clusters 0 and 4 are neighbourhoods in the periphery,

where the weights are lower in magnitude, but uniform during

the week. The benefit of PSS 4 is that instead of being lim-

ited to certain neighbourhoods in PSS 3, similar slices can be

selected from the neighbourhoods belonging to the same cluster

that fits the spatio-temporal behaviour for overall ground truth

strategy. The spatial distribution of the clusters showing the

grouped neighbourhoods are illustrated on the right of Figure 6.

3.3 Quality measurement of sample parking
prediction models using PSSs

The generated spatio-temporally important slices from the

prioritization-based subsampling strategies in Section 3.2 are

now used as the input for quality measurement (see Section 2.3)

of the different sample on-street parking prediction models.

The Brier Loss Score was used as the KPI. This study is

focused mainly on assessing the quality of various prediction

models and not model improvement or development. Hence,

the details of the models are not highlighted here. Only the

output of the models is presented here and are evaluated
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TABLE 2 Sample model algorithms

Avg. KPI

Model Algorithm Features KPI Eq. Imp.

1 Xgboost T 0.249 0.249 0.249

2 Random Forest 0.303 0.306 0.307

3 Xgboost T, C, L 0.227 0.224 0.229

4 Random Forest 0.236 0.233 0.238

5 Xgboost Model 3 features + hTTPD 0.228 0.226 0.231

6 Random Forest 0.231 0.231 0.235

7 Xgboost T, h-TTPD, rt-TTPD 0.233 0.232 0.232

8 Random Forest 0.248 0.247 0.248

9 Random Rand {0:1} 0.332 0.334 0.335

10 Optimistic Random Rand {0.7:1} 0.273 0.267 0.273

11 Pessimistic Random Rand {0:0.3} 0.486 0.493 0.487

12 Single Optimum Value Average available spots 0.226 0.224 0.227

T: temporal features; C: on-street parking capacity per street; L: GT GPS location; h-TTPD: historic TTPD; rt-TTPD: real-time TTPD; Rand: random uniform between {lower limit: upper

limit}; average available: average availability value of all ground truth observations for both train and test sets.

using the introduced quality assessment for comparison of

the models. Twelve models were used as samples for testing

the quality assessment methodology introduced in this paper.

The algorithms implemented in the sample models, and some

general information about the models are displayed in Table 2.

The model features and algorithms were developed with the

knowledge gained from existing literature in model develop-

ment for parking [7, 8, 10, 12–16]. Each model developed was

either based on XGBoost [37], Random Forest [38], or random

generation of probabilities. The default hyper-parameters of the

model algorithms were taken without tuning. The train and test

split was taken as 0.7 and 0.3, respectively, and also depending

on the features that were employed. The following features in

different combination were used: temporal features including

time of day, month, type of day, on-street parking capacity of

blocks, GPS coordinates of the ground truth observation, and

temporal trend of parking dynamics (TTPD) [36].

For the calculation of the KPIs as shown in Equation (2),

two weighting techniques were applied: equally weighted slices

and importance weighted, respectively. Table 2 and Figure 7

display the normal KPI score without any PSS setup for each

model using Equation (1), as well as the average equally and

importance weighted KPI scores from the 10 PSS experimental

design setups (see Table 1) using Equation (2). Models 1 to 8

use actual on-street parking related features, while 9 to 11 are

random models. Model 12 is essentially an unrealistic random

guesser model that only has a single optimum prediction value

determined based on the expected parking availability from the

ground truth data; meaning it is not forecasting, but based on

all the ground truth availability, what was the average probabil-

ity of finding one spot open. Nonetheless, model 12 is used as a

baseline reference for comparison of quality and to test whether

the quality assessment method can detect its weakness. The best

models were: 3, 5, 7, and 12, whereas the worst model by large

was model 11.

FIGURE 7 The KPI scores of each sample model

The KPI scores were calculated considering the PSSs and

subsequent weightings. The range of scores per PSS can be

observed in Figure 8. The figure shows the heatmaps of equally

and importance weighted scores for all models against each PSS.

The average scores from the heatmaps are illustrated for com-

parison to the normal KPI calculation in Figure 7. All feature-

based models have on average a slightly worse importance

weighted KPI (Brier Loss) compared to the equally weighted

and normal KPI.

Figure 9 presents the average relative differences depend-

ing on the model (upper graph) and PSS (lower graph) scores,

respectively. It is observed again that, on average the impor-

tance weights do not shift the scores by much from the equally

weighted scores, although for each model and PSS combina-

tion the difference varies (see Figure 8). The KPI scores are on

average -1.06% worse considering importance weighted for all

models, while -1.07% for the PSSs. The neighbourhood-based

PSSs (PSS 1) setups 1 to 4 had the largest negative relative dif-

ference between the equally and importance weighted. Setups 5
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FIGURE 8 Heatmaps of equally (upper) and importance (lower) weighted KPI scores for all models considering each PSS

FIGURE 9 Average relative difference between equally and importance weighted KPI scores based on models (upper) or PSS setup (lower)

to 8, representing neighbourhood and time-based PSSs (PSS 3),

starting at zoom level 14 and 168 week-hours incurred a positive

difference but as the zoom level increased (i.e. smaller spatial

scope), there was a gradual decrease in scores. For time-only-

based PSS 2 setup 9, and PSS 4 neighbourhood clusters and

time PSS setup 10, the calculated importance weighted scores

were higher compared to the equally weighted score.

In instances when temporal aspects are considered in the

experiments, the sample models’ scores indicate a better perfor-

mance score compared to the measured normal KPI as shown

by PSS 2 setup number 9 (see Figure 9), while when a design

setup includes spatial importance, the models’ KPI scores are

punished as shown by the average scores of PSS 1 in Fig-

ure 9 and Table 4. In the case of setup number 9, time-only-

based importance assignment dilutes the goal of a prioritization-

based quality assessment by disregarding the spatial factor, that

is, location of parking. Hence, experimental design setup 9 is

not the deciding test setup. The same can be said for PSS

4 or setup 10, in which different neighbourhoods were clus-

tered and undermined the spatial importance of on-street park-

ing location. PSS 4 could possibly work in a polycentric city

use case, where a city has multiple equally busy centres and

neighbourhoods could be more similar. However, this is not the

case for Munich, as it only has one centre.

In the experimental design setups, the temporal and spatial

aspects of the PSSs create a push and pull effect in the KPI

measurements, thus, the average difference between equally

weighted and importance weighted cannot be clearly distin-

guished for PSS 3 that contains setups 5 to 8 (see Figure 9),

where both neighbourhood levels and the time component are

considered. Further investigation shows that the reason this

happens with PSS 3 is there are so many slices that are removed

in the calculation of the KPI because of the lack of available

ground truth for those slices (see Table 3). Table 3 displays the

diminishing prioritization problem as more slices are excluded

due to the lack of ground truth observations for the period of

study. The lower the zoom level, the more slices are generated—

this lessens the influence of prioritization-based quality assess-

ment, unless there would be available ground truth observations

at every short segment of a street within 1 h intervals. Therefore,

given different PSSs, it is necessary to select a PSS that covers

sufficient amount of slices generated that ensures a logical spa-

tial aggregation and weight assignment that better represents an

importance weighted or prioritization-based assessment.
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TABLE 3 Excluded important slices without GT observation

Setup # PSS #

# of

Slices

# of Slices

Used

Cumulative percentage

of excluded important

slices

1 1 23 22 0%

2 83 76 1%

3 285 232 4%

4 952 662 15%

5 3 3671 725 66%

6 12246 1264 83%

7 36756 1980 92%

8 103545 2781 97%

9 2 168 114 11%

10 4 1090 416 36%

Since the ground truth set in this study was based on random

observations made throughout Munich and does not cover as

many generated important slices as desired, it can only partially

differentiate between equally and importance weighted KPI for

PSS 3. Nonetheless, the differentiation is clear for experimen-

tal design setups 1 to 4 for PSS 1 using only spatial slices.

Thus, since the results of PSS 2 and PSS 4 show the under-

mining of location importance, PSS 1 stands out amongst the

four prioritization-based subsampling strategies tested. Further-

more, as the disparity between equally and importance weighted

has been proven with PSS 1 when a significant portion of the

slices are covered, the importance weighted approach is used in

the benefits assessment as the basis.

Having calculated the KPI scores considering the different

PSSs and weighting techniques, the next step is to check the

true quality measurement. This is done by proving that this qual-

ity assessment methodology using PSSs which provides priority

slices can give better insights about on-street parking prediction

models as compared to doing random ground truth slices. This

section covered the KPI scoring when the entire ground truth

was used for the KPI measurement, while the next section cov-

ers the impact of smartly reducing ground truth data on the KPI

scores.

3.4 Benefits assessment based on
comparison against non-prioritized randomized
subsampling of slices

The benefits assessment (see Section 2.4) of the methodology

was done by comparing the top important PSS KPI scores

against the scores determined by the baseline case of non-

prioritized randomized subsampling (NPRS) of ground truth.

The NPRS selection was done on the slices generated from

the PSS, but the importance weight was not considered, hence

non-prioritized. Specifically, this section presents the impacts

of top importance-based subsample reduction of ground truth

size on the PSS KPI scoring and the robustness check that

the methodology can eliminate the weakness of unfortunate

random ground truth sampling. The ground truth sample size

reduction was implemented by sorting the importance weights

of the PSS slices and then taking a certain top fraction per-

centile. For example, using the prioritization-based reduction of

GT considering only important slices of PSS setup 6 within the

top 90th percentile, the GT sample size is reduced to 3563 (30%

decrease) out of 5152 observations. However, if reduction was

to be done randomly, 90% of the GT observations are 4637

observations. There are two reasons for the large reduction:

(1) slices are only generated in areas and time frames that have

recorded a parking event, hence, the GT outside of these slices

are automatically disregarded as less important, in the case of

the example, only 4838 observations (6% decrease) exist for

PSS setup 6; and (2) there is a disproportionate distribution

of the GT observations throughout the city since they were

conducted randomly, and based on the performed reduction, a

TABLE 4 Percent (%) difference between weighted KPI scores and each model’s normal KPI score
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FIGURE 10 Comparison of KPI scores from NPRS against top 50th percentile important PSS

substantial amount of the collected GT were outside important

areas and have sparse coverage in comparison to the number of

slices for setup 6.

Further prioritization-based reduction was performed at

percentile fractions ranging from 30th to 90th at 10 percentile

intervals as a preliminary heuristic step. It was decided as a use

case, for the main analysis here, the tiles within 50th percentile

top fraction is considered. The same experimental design was

setup for the NPRS. For the NPRS, at each fraction, 1000

random subsampling sets were created from the combination

of 10 PSS setups and 100 unique random sampling trials. For

both cases, this was done to understand the difference in the

information retained about quality as compared to calculating

the KPI score for the entire GT dataset. As a counterpart to

the average sample size of the top 50th percentile importance

fraction based on the different PSSs, only 30% GT fraction was

used for NPRS. Top 50th percentile importance was selected, as

the variances of scores from this fraction size onwards to 90%

are relatively small.

The robustness indicator used in this analysis is the IQR

method of outlier detection (see Section 2.4). This was used to

measure the spread of the KPI variation for each sample model

and to identify scores that were far from the central tendency.

Scores that are considered as outliers are interpreted as sub-

sampling strategies that have made an unfortunate selection of

subsampling; these are not wrong, but are an indication that a

strongly biased quality assessment is present. Outliers are not

to be considered as part of the decisive factors. Furthermore, it

can be observed on the right graph in Figure 10, the KPI scores

on average are measured worse in the case of PSS compared to

NPRS on the left. In the case of NPRS, 60% of scores across the

first 8 feature-based models were worse than the normal KPI,

while this was 69% for the PSS importance approach. This is

also visible in right graph on Figure 10 as the normal KPI is

consistently below the median. This signifies that, the areas and

time frames belonging in the top 50th percentile important slices

are harder to predict, thus, the scores are worse. This proves the

need to highlight PSS important spatio-temporal slices during

ground truth to measure the true quality and value of an on-

street parking prediction system. Moreover, it is observed that

for the pessimistic model (number 11), the scores improve in a

PSS-based quality assessment (see Table 4) since the important

areas are busy areas, suggesting some pessimism is necessary for

a model to perform well in such areas. This is the opposite for

the optimistic model number 10.

The benefits assessment proves to detect weakly designed

ground truth collection strategies that give a false perception of

the true quality and performance of models because of unfor-

tunate quality testing subsampling selection. The introduced

approach reveals the true performance scores. Moreover, the

method can also be used to conduct a marginal benefits compar-

ison between several competing models. This is demonstrated

by investigating feature-based models 3, 5, and the top base-

line unrealistic retrospective average parking availability model

12. Model 2 essentially is always just a single optimal pre-

diction value that is equal to the average of all ground truth

observations.

Models 3 and 5 both have a similar KPI value with model

12 (see Table 2) showing that these two models are high

performing. To understand whether the two models are on

average better than model 12, the scores are first all adjusted by

applying all PSSs introduced. Model 12 had a normal KPI score

ranking among the best (see Table 2) and when the scores were

calculated using NPRS, the model was assessed as even better

than the normal KPI in 49% of cases. Upon the selection of

ground truth within the top 50 percentile important PSS slices,

this occurred only in 10% of the PSS design setups (1 out of the

10) as highlighted in bold inside Table 4, and indeed detecting

the model as initially falsely assessed. For models 3 and 5, the

scores were better in the random NPRS scenario 52.4% and

39.2%, respectively, while as illustrated in Table 4, these feature-

based models are performing better in 30% of the scores (3 out

of 10 for both models) compared to the normal KPI. Based

on the adjusted performances, thus, it can be gauged that the

feature-based models marginally outperform the top baseline

unrealistic model 12 based on a simple tally of whether the

models’ scores improve or get worse. In a real-world compar-

ison, model 12 cannot exist. Hence, if the comparison is now

focused on choosing between the two models 3 and 5, the next

step is to select a PSS strategy that is best suited to the use
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case considering the available ground truth observations. As

concluded in Section 3.3, PSS 1 can be the deciding factor for

this study. In this case, as shown in Table 4 after adjusting the

scores to setup number 2 a prioritization-based subsampling

strategy (PSS 2) that focuses on neighbourhood level 15, it is

concluded that model 3 is better than model 5, with KPI scores

of 0.253 and 0.257, respectively, which roughly puts model 5 as

1.58% worse than model 3 after the adjusted scores.

3.5 Synopsis of analysis

An elaborate discussion in Section 3.3 proved that PSS 1 is the

most suitable for the use case presented in this paper among the

4 PSSs introduced. PSS 2 and 4 undermine spatial importance,

and this is a big weakness that cannot be overcome in these

PSSs. PSS 3 despite its promising approach, could not be utilised

for further benefits analysis, as there was a big gap between the

available ground truth observations and the number of slices

generated. As presented in Table 3, although important slices

can be generated using the parking events data, there is a lack

of observations in order to consider the importance weights in

the final score calculation for true quality. Also, it was difficult

to distinguish the difference between equally and importance

weighted KPI scores. However, PSS 1 does not suffer from any

of these gaps, as not too many but sufficient slices are generated,

that were capable of aggregating the importance and assigning

reasonable weights that primarily consider the neighbourhood

importance. Specifically, the most critical design setup among

the 10, is setup number 2, which adjusted the models’ scores on

average by−6.6% as shown in Table 4. In Section 3.4, the bene-

fits were shown by the comparison of non-prioritized random-

ized subsampling (NPRS) versus the PSSs. The adjustments for

the worse in KPI scores were apparent and it proved that there is

a need to calculate the true scores and assess models’ true qual-

ity. In summary, with the application of the introduced method,

it was possible to assess the true quality by reducing the ground

truth subsample to areas most important to the customers, and

also help decide between competing models.

4 CONCLUSIONS AND
RECOMMENDATIONS

The proposed data-driven methodology in this paper has shown

that it is possible to smartly reduce ground truth and still

assess the true quality of different prediction models by mul-

tiple prioritization-based subsampling strategies (PSSs). The

approach automatically identifies important neighbourhoods

(space) and time periods, called slices, based on the volume

share of the fleet’s parking events within them. Different PSSs

were introduced that can be applied to any type of fleet data

prioritization strategy. For the use case of on-street parking

information (OSPI), the method was applied using the parking

events dataset of Munich, Germany.

The methodology benefits assessment confirms that, the

prioritization-based technique is capable of identifying false

assessment of models. This was evaluated based on a compari-

son with non-prioritized randomized subsampling (NPRS) on a

30% fraction of the ground truth dataset. The NPRS approach

was done to quantify the chances of misfortunately randomly

selecting areas and time periods that do not necessarily repre-

sent the true quality. This was accomplished by assessing the

quality metric scores at the automatically defined slices across

the 10 PSS design setups that were tested. The PSS approach

considered the top 50% important slices as the subsample to

assess the true quality of the different OSPI models. In majority

of the cases, the measured scores at important slices that are

more valuable to potential customers, the models performed

worse in comparison to NPRS. This implies that assessing the

quality at the defined important slices must be checked first

before other areas and time periods are observed. The prioriti-

zation method then immediately gives a robust first impression

of a model’s performance.

In conclusion, it is possible to make mistakes of wrongly

assessing the true quality of a model when the ground truth

data is collected randomly. The usage of the prioritization-based

quality assessment is that, collectively, the PSSs can robustly

evaluate the performance of a mobility-related prediction

model, where it matters most to the users of the system. The

methodology also allows the quality managers to gain first valu-

able insights fast at a lower cost with less ground truth needed.

Thus, the introduced methodology in this study can directly be

used by companies that are maximizing their resources for qual-

ity testing of mobility-related information systems.

The next possible directions of this research are to conduct

a comprehensive study on the optimized minimum fraction of

ground truth required for the true quality assessment check, the

application of the methodology on other mobility use cases,

and the extension of prioritization-based subsampling strate-

gies using other factors such as the density of points-of-interest

(POIs) or local contextualized information and so on. The pre-

diction models presented in this paper were only used as exam-

ples to demonstrate the capability of the quality assessment

methodology introduced in this research. As research contin-

uous, there are plans to do a study on model development and

improvement.
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ABSTRACT On-street parking information (OSPI) systems help reduce congestion in the city by lessening

parking search time. However, current systems use features mainly relying on costly manual observations

to maintain a high quality. In this paper, on top of traditional location-based features based on spatial,

temporal and capacity attributes, vehicle parked-in and parked-out events are employed to fill the quality

assurance gap. The parking events (PEs) are used to develop dynamic features to make the system

adaptive to changes that impact on-street parking availability. Additionally, a parking behavior change

detection (PBCD) model is developed as an OSPI supplementary component to trigger potential parking

map updates. The evaluation shows that the developed OSPI availability prediction model is on par with

state-of-the-art models, despite having simpler but more enhanced and adaptive features. The foundational

temporal and aggregated spatial parking capacity features help the most, while the PE-based features

capture variances better and enable adaptivity to disruptions. The PE-based features are advantageous

as data are automatically gathered daily. For the PBCD model, impacts by construction events can be

detected as validation. The methodology proves that it is possible to create a reliable OSPI system with

predominantly PE-based features and aggregated parking capacity features.

INDEX TERMS Change detection, connected vehicles, geospatial analysis, intelligent transportation

systems, machine learning, parking, vehicle navigation.

I. INTRODUCTION

A. BACKGROUND

VEHICLES cruising for parking are estimated to

contribute to 30% congestion within a transport

network [1]. This causes noise, air pollution, and travel

time delays. As a parking management measure, cities have

invested in parking guidance signs to direct cars to pri-

marily off-street parking lots and multi-story car parks.

Comparable systems have also recently been developed for

finding parking spots on the streets, denoted as on-street

The review of this article was arranged by Associate Editor
Emmanouil Chaniotakis.

parking information (OSPI). One of the benefits of such

services is reduction of traffic congestion caused by cruising

for a parking space [2], [3], [4], [5].

Connected intelligent transport systems (C-ITS), such as

OSPI, have the potential to efficiently and better distribute

vehicles within a transport network as they search for park-

ing. Reliability and quality of such information systems must

be ensured to offer dependable services that contribute to

helping people make better decisions on how to navigate

inside the city or whether to even use a car or not.

The content of state-of-the-art OSPI systems are mostly

developed using complex engineered features and machine

learning techniques [2], [3], [5], [6], [7], [8], [9]. The main
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difference between the models available are the data gathered

for training the models and the incorporated features in the

models. The differences in input data play a major role

in the reliability and quality. The quality of the information

provided by such systems are validated by the comparison of

observed on-site data against the prediction model estimates.

B. PROBLEM STATEMENT WITH THE CURRENT

SYSTEMS

Continuous manual ground truth collection for parking

information systems is costly. The level-of-service and relia-

bility remains an on-going challenge within the industry. This

is attributed to difficulties in gathering accurate yet scalable

data with adequate spatial and temporal coverage relative

to the localized information needed. Many researches have

used sensor data to develop models, but as stated in [6],

these incur high costs of installation. Further, maps are usu-

ally only updated every quarter [10] as it is likewise a costly

process to do so. This can be problematic when there are

mid- to long-term changes that last from a few weeks to

permanently. This is especially true for the case of on-street

parking, since searching in an area that has obstructed park-

ing could considerably increase the parking search time. For

a parking service the sooner the changes are known, the

better a service can be and parking availability models can

be updated as well. As such, the goal is to provide the same

quality of a prediction model with a scalable set of features

based on sound domain knowledge to engineer features that

rely on smart systems and less on-site surveyors.

This issue is partially tackled in this study with the use

of real-time and readily available parking events data, which

can be used to engineer added-value features to an OSPI

service. Additionally, the same dataset could be used to

specifically help parking maps be adaptive with the use of

parking behavior change detection trigger.

C. CONTRIBUTIONS AND MAIN OBJECTIVE

The contributions of this research are as follows:

• The value discovery in vehicle parking events as a

source to extract a wide range of features to enhance

an on-street parking information system. These fea-

tures include variations of hourly to weekly moving

averages of time-series parked-in and parked-out data.

The proposed OSPI system also has a parking events-

based adaptive feature with a supplementary parking

behavior change detection (PBCD) feature that is more

dynamic as it can detect mid- to long-term (i.e., more

than 10 days) static anomalies, closures, and disrup-

tions signaled by the drop of parking events caused by

construction obstructions, rule changes, or significant

infrastructural changes, among others. These detec-

tions, essentially, convert predictions to zero to indicate

unavailability of parking on top of an alert trigger to

drivers to flag and confirm potential changes relating to

on-street parking provisions and as an alert for the eval-

uation of the OSPI system. To the best knowledge of

the authors, currently, there are no systems in practice

or in research that updates their maps and predictions

using such a dataset.

• The domain knowledge of the authors enhanced engi-

neering of parking features from the parking events data

and spatial parking capacity data previously unknown.

Engineered valuable features from simple spatial capac-

ity features that are easy to collect and prepare as input

for an on-street parking availability model. Simple spa-

tial on-street parking capacity features become more

valuable when aggregated on a higher neighborhood

(i.e., quadkey) level. Rather than just having the capac-

ity information on a street-level, aggregation on a

higher level can capture variances that supplements

the variances captured through the street-level capacity

feature.

• This proposed OSPI system can replace a system which

solely relies on a prediction model that depends on con-

tinuous expensive parking availability features to keep

the information system up-to-date. Shifting away from

such a system lessens the cost associated with manual

ground truth collection and allows faster scaling.

As opposed to many researches that have been done

using complex models to create parking prediction models,

this study aims to use less time-intensive machine learn-

ing algorithms that are easier to comprehend, interpret, and

implement. Thus, the focus is on utilizing domain knowledge

to engineer features to improve an OSPI system while using a

readily available machine learning algorithm that only needs

to be trained and hyperparameters-tuned. Developing a new

machine learning algorithm is out of scope.

The paper is organized as follows. Related literature is

described in Section II. Section III covers the main discus-

sions of this paper. The data and study area are introduced in

Section III-A. The elaboration of the development method-

ology of the OSPI system is presented in Section III-A1.

Section IV presents the supplemental OSPI feature developed

with the parking behavior change detection methodology

that represent the dynamicity of the proposed OSPI system.

The specifics regarding the features, algorithm hyperparam-

eters, and the evaluation of the models are described in

Section V. Section VI gives concluding remarks and some

recommendations.

II. RELATED LITERATURE

The proposed approach in this study focuses on developing

a data-driven OSPI system focused on valuation generation

from different data sources while using prominent machine

learning algorithms as the different baseline models. The

logic behind this is that domain knowledge in parking can

enhance the model developed. The literature review in this

section is subdivided to the ground truth data used for val-

idation in parking studies, the supplementary data used to

engineer features that are not dependent on ground truth data,

the popular parking prediction machine learning models that
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have been used in research, and the usage of parking behav-

ior change detection models in OSPI systems. The review

here mainly focuses on on-street parking.

A. GROUND TRUTH DATA USED FOR VALIDATION OF

PARKING STUDIES

Most state-of-the-art on-street parking availability models

developed today use a diverse range of data sources. This

can be classified to two: data only used for feature engi-

neering and ground truth data primarily used for training,

testing, and validating. The latter can also be used for feature

engineering.

Different types of ground truth data exist for validation

of on-street parking prediction models. Some have used

parking sensors in researches [8], [9], [11], [12], [13],

[14], [15]. Some [9], [16], [17] have also used parking

meter payments or mobile payments [3], [18] as a type

of sensor to infer parking availability. A study also used

costly labor-based manual observations for validation [19].

Another line of research [2], [20] have used images and

videos from the camera of a moving vehicle to iden-

tify on-street parking spaces by processing these through

some machine learning image recognition algorithm. Some

researchers also employed crowd-sensing information by

equipping probe vehicles with on-board sensors, cameras,

or ultrasonic sensors [20], [21]. There are also studies

who have explored the usage of crowd-sourcing data from

smartphones or Global Positioning System (GPS) devices

[18], [20], [22], [23].

Most of the ground truth data sources abovementioned

have been studied to replace the longstanding industry prac-

tice that is still primarily based on manual ground truth

collection to the best knowledge of the authors. The main

reason is, each alternative ground truth is either limited

in scope in different cities, such as street parking sen-

sors and meters, and/or is unscalable. If different ground

truth sources are used for each model in each city, this

can be problematic as it will increase development costs

of a system. Hence, the dependence on reliable manual

observation.

An apparent gap that exists in all studies is that they

have not tested these other ground truth sources to instead

support manual ground truth to reduce frequency of manual

observations required in practice. That is, the training of

a model can be based on the manual observations, and the

coverage-limited data gathered can be used as updates to the

system since it is automatically collected albeit being sparse

in space and time. The focus of the studies has been to

completely replace them without direct comparisons against

models that rely completely on manually gathered ground

truth data.

In this study, the authors propose to use the cheaply and

automatically collected sparse parking events data as a source

to support manual ground truth collection and reduce the

frequency of collection.

B. FEATURES IN PARKING BEHAVIOR AND PARKING

PREDICTION STUDIES

On-street parking behavior and prediction studies have used

a variety of features for their models. Common practice

is to use the data as is as a feature and do feature engi-

neering in this data to possibly capture different variances

to better predict the target value. Two common features in

research are temporal and spatial features mainly taken from

the ground truth parking availability data that inherently has

a location and time component. This typically is the com-

position of a baseline model’s feature set. A few studies

incorporated traffic data in their parking prediction mod-

els [6], [15], [24], [25] – this can be in the form of speed

or their own engineered features to get traffic congestion

indices. Some studies also have used parking-specific influ-

encing factors such as parking pricing to understand changes

in parking occupancy [26], [27]. Such factors can be used

on street-level features. Another study used on-street parked

out events to classify legal and illegal parking spots in the

city [28]. Floating car data is another indirect source to infer

parking behavior [1], [29]. Weather data has been proven by

many studies to either help make prediction models or under-

stand parking behavior [6], [9], [25]. Some other features

that are also incorporated include map-related features such

as street length, landuse, and points-of-interest (POI) data

regarding shops, parking facilities, [1], [5], [7], [15], [19].

A few studies also included special events [5], [6]. A par-

ticularly interesting approach was done using survey data

by studies like that done by Google’s research team, where

they asked about the subjective difficulty of parking in one’s

search area [30].

All studies besides a few do not give details regarding

the features engineered. Particularly, a gap was observed in

further aggregating simple features such as street capacity.

This is typically done on temporal features, where moving

averages or aggregation on various intervals are incorporated,

but spatial aggregation has not been explored much according

based on the literature reviewed. Studies also primarily focus

on developing better algorithms than focusing on the usage

of domain knowledge for feature engineering to improve

their parking prediction models.

C. POPULAR PARKING PREDICTION MODELS

Parking prediction modelling studies have become popular

in the last years since the hype of big data. There is a wide

range of machine learning models that have been employed

by researchers in the last few years. The following models

have been tested in the reviewed studies: clustering [15],

[21], [31], different linear regression algorithm like Lasso,

Ridge, or basic linear regression [32], vector spatio-temporal

autoregression [13], ARIMA [25], Support Vector Machine

classifier [33], decision tree [15], [28], random forest [7],

Support Vector Regression [14], [25], and tree-based algo-

rithms like Gradient Boosting Regression Tree (GBRT) [15],

[34] among others. Despite longer run times and in the

hopes that unsupervised learning can enhance models, many
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studies have utilized deep learning approaches using neural

networks like multi-layer perceptron [15], [35], CNN, Hybrid

CNN, Graph CNN, RNN, LSTM, [2], [3], [6], [8], [9], [25].

Another one used logistic probability distribution and aggre-

gating over all the observations [16]. XGBoost [36], one

of the currently popular algorithms in various fields that

uses a type of gradient tree boosting system that resembles

an ensemble tree model, was employed by several stud-

ies [3], [7], [24] that showed the most promise in the use

case of our proposed system as well. Google’s research team

used a single layer regression and feed forward deep neural

network [30] for estimating difficult of parking using mainly

Google maps travel data.

D. PARKING BEHAVIOR CHANGE DETECTION MODELS

There are no known studies that specifically use parking

events to determine potential changes in parking behavior

associated with longer term static changes like in rules and

restrictions, constructions, or infrastructural changes. There

was one study by [37] that used sensor data as well for

detection of unusual patterns and infer it to any possible

disturbances to parking location or sensors. Reference [28]

used park-out events to detect anomalies with regards to

classifying legal and illegal parking spots in relation to their

map.

Majority of the studies have relied on explicit usage data

input from on-street parking sensors or apps, while implicit

recognition of parking occupancy has not be widely used [6].

In our study, we employ user data from parked-in and

parked-out events to partly infer parking availability in con-

junction with other features. The aim is to combine these

data with readily available machine learning algorithms that

could compete on the same level as commercial OSPI mod-

els. Although we aim to provide real-time updates to the

model through introducing parking events-based features,

parking events cannot be used for validation as half of the

picture is missing. Fully occupied streets (true negatives)

and streets that were predicted to have parking but did not

(false positives) also cannot be validated with parking events,

hence, it was used primarily as a source to engineer features.

Nonetheless, as an added component to an OSPI system, the

parking events data is also utilized to provide map triggers

about potential on-street parking behavior changes that are

caused by long term external factors such as construction.

III. DEVELOPMENT METHODOLOGY OF A DATA-DRIVEN

ON-STREET PARKING INFORMATION (OSPI) SYSTEM

A. DESCRIPTION OF DATA USED

This section describes the data that were used in this study

for training and evaluation of the model. The data that were

used to extract features from are also presented. BMW’s

OSPI service area for the city of Munich, Germany was the

chosen city use case for this paper.

The data sources are only described on a high-level to not

violate BMW data confidentiality policies. Absolute num-

bers and descriptive statistics cannot be elaborated upon.

Nonetheless, details relevant for the development of an OSPI

system are described here.

1) PARKING EVENTS

Feature extraction from parking events (PEs) is one of the

main contributions of this paper. Parking events (PEs) data

are gathered from the fleet of BMW vehicles and are col-

lected at BMW’s backend data center. Hence, there existence

of the bias towards these users. All parking events adhere to

anonymization according to EU defined data privacy stan-

dards. A PE is generated when a car engine switches off

or on, corresponding to a parked-in event or parked-out

event, respectively (see Fig. 2). The PE event was also post

processed to contain only events within the proximity of a

street. Further details about the nature of the parking events

dataset are discussed in [38] and [39]. As opposed to studies

reliant on ground [7], [8] which cover only certain parts of

a city, this research aims to utilize parking events as floating

sensors.

Hundreds of thousands of parking events data used was

gathered between May 2019 and October 2020 with a gap

between October 2019 and February 2020.

2) GROUND TRUTH OBSERVATIONS

The ground truth (GT) data used was collected between May

2019 and October 2020. The GT observations were used for

training and testing the models developed. For this dataset,

the sparse data collection strategy (i.e., where, when, and

how much data) was beyond the control of the authors. In the

validation phase and the final scoring phase, a prioritization-

based quality assessment [42] is used to adjust the scores

depending on the amount of parking events that occurred in

each spatio-temporal cell. This helps eliminate unimportant

hours. In this study, more than 10000 random walk observa-

tions were made within the central area of Munich, Germany.

Each recorded observation was made on a street block (i.e.,

intersection to intersection) at the time of collection. When

at least one legal parking spot is observed on a block, this

was recorded as available. Regardless of the number of open

spots, the observations were recorded as a binary outcome –

available (1) or not (0). Most foundational and important fea-

tures are extracted from these observations. Among others,

this includes spatial and temporal features further described

in Table 1. In Fig. 1, the average parking availability aggre-

gated on quadkey level 14 over a period of 168 week-hours

is illustrated. Since observations were mostly random, there

is an uneven distribution of collection throughout the city.

Fig. 3 represents the spatial distribution of each observation.

The average parking availability in the entire study area is

0.56. Central busy areas such as neighborhoods 6, 8, 14, and

16 (see Fig. 1) are more difficult to predict compared to the

periphery.

A time series split (i.e., temporally sorted) cross valida-

tion was implemented for training and testing. In this case,

testing sets here are considered the evaluation sets as well.

The data is split into three equal partitions to conduct two
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FIGURE 1. The average parking availability aggregated over 168 week-hours at zoom level 14 in Munich’s study area.

FIGURE 2. Paired parking events in Munich for one day. Green is for parked-out

events and red is for parked-in events.

FIGURE 3. Spatial distribution of ground truth observations.

cross validation iterations. In the first iteration, the first 33%

of the ground truth observations are used for training the

model, and the next 33% used for evaluation. The second

iteration takes the first 66% for training and the last 33% for

evaluation.

FIGURE 4. Time series split cross-validation (CV) train and test sets.

3) TRANSPORT NETWORK FOR ON-STREET PARKING

BMW’s transport network consists of on-street blocks as

defined above. The main feature used from here is the num-

ber of legal parking spots or on-street parking capacity of

each block.

4) OTHER MAP DATA AND WEATHER DATA

To further enhance the features of the model, map data

regarding construction were requested from HERE maps

(2021). Furthermore, open weather data were downloaded

from Deutscher Wetterdienst (2021). Only temperature and

rainfall data were used in the models.

B. METHODOLOGICAL FRAMEWORK FOR OSPI

DEVELOPMENT

The core feature of an OSPI system is the provision of

an availability prediction to show the users the chances or

difficulty of finding a parking spot in certain areas at given

time periods. Particularly, the availability model that was

developed in this study, as part of its novel contribution, uses

mainly parking events-based features, which are dynamic in

nature and uphold or improve the performance of a model.

Despite the unbalanced nature of the PE dataset, the goal

was to develop a model that is up to the level of commercial

models. The PE dataset is unbalanced as it only provides

information about open spots and occupied parking spots
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FIGURE 5. Development methodology workflow for an OSPI system.

cannot be directly inferred. Additionally, further aggregate

features from basic attributes such as parking capacity were

developed as described in Section V.

The OSPI availability prediction models were developed

in four main steps (see Fig. 5). The overview of each step

is described below. All machine learning implementation

besides Xgboost was done using scikit learn [40] in Python.

1) IDENTIFICATION AND SELECTION OF FEATURES

The pre-requisite to start the development was raw data

acquisition as described in Section III-A. As the first step,

these datasets were used to engineer relevant on-street park-

ing features that are identified based on related literature

and domain knowledge. The descriptions of feature content

are explained later in Table 1. The features were categorized

as follows: temporal, spatial, weather, ground truth historic

availability, fleet (parking events) data-based, and other map

data.

2) SELECTION OF ALGORITHMS AND ENSEMBLE

MODELS

There is a wide range of machine learning models that could

be used for parking prediction. The most promising libraries

shown in literature are: gradient boosting decision trees like

XgBoost [36], Random Forest, and Decision Tree. Deep

learning approaches with neural networks have also recently

become widely popular butgiven similar performance scores

in comparison with the increase in training and processing

time [41] it did not seem to be promising. Furthermore, [8]

mentions that neural networks perform well with high num-

ber of samples to train with like their 12 million records

from Melbourne, but with smaller sizes, it may not be fea-

sible. Also, [6] describes that neural networks are suitable

when relationships are unknown and high volume of data

is available. In this case, since many studies have explored

which features could possibly influence the model, unknown

relationships are not a big concern. Nonetheless, two neural

network models namely Feed Forward Multilayer Perceptron

(MLP) and Long Short-Term Memory (LSTM) were imple-

mented for baseline comparisons of all popular models used

for parking studies. This is on top of the following four most

popular models that were selected and tested amongst each

other: Xgboost, Random Forest, Decision Tree, and LassoCV

as the baseline linear regression model. Moreover, to get the

best of all models, as done in [35], 3 ensemble models were

created using RidgeCV as the final estimator that combines

the four models (i.e., excluding neural networks) to avoid

overfitting on one model.
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TABLE 1. Defined feature categories.

3) DEFINITION OF THE EXPERIMENTAL DESIGN (ED)

SETUP

An experimental design setup was created to organize the

process of evaluating the performance of each model by

gradually adding feature categories and changing to different

types of machine learning algorithms. The aim of the ED

setup is to recreate and identify the best combination across

algorithms and data types to allow comparison between the

different setups that normally exist in the industry given the

available dataset in this study. The industry replica model

is developed to the best knowledge of the authors since the

actual models cannot be used in publications. This ED also

allows to identify if a certain setup mainly reliant on parking

events-based features can be on par with an industry model

and replace it or outperform the industry-level model. In

total 54 ED setups were created as displayed and discussed

later in Table 3. Further combinations of features for the

experimental design were not necessary since even if more

features are added to a prediction model, these are reduced

in the feature selection step in the pipeline implementation

described next.

4) MODEL PIPELINE IMPLEMENTATION

After setting up the input needed into each model, the

next step was to create a pipeline implementation to main-

tain consistency from data transformation to evaluation. The

implementation was done through the following pipeline

(see Fig. 5): (1) defined the train and test strategy using

the time series split cross-validation (see Fig. 4); (2) fea-

tures were independently normalized using standard scaler

from scikit learn; (3) since a large number of features were

created, feature selection was employed using recursive fea-

ture elimination (RFE) to recursively reduce the number

of features used in a model and eliminate irrelevant input

features that either do not help the prediction or are redun-

dant; (4) once the optimal features are selected to make the

best predictions, these are passed on to a selected model

algorithm, and the hyperparameters are tuned. The parking

availability predictions are made to the resolution of a second

based on the time of request. When the results are integrated

into a system, they conform to the user interface (UI), e.g.,

to be stable, not change frequently, and update every 5 min-

utes for example, similar to traffic variable message signs

(VMS). (5) The last step is to do the evaluation using a met-

ric. Hours that have no ground truth data are excluded from

evaluation and are a limitation of this study. Nonetheless,

these hours are also considered unimportant hours in Munich

based on the study of Gomari et al. [42]. The selected met-

ric for analysis in this study was the Mean Squared Error

(MSE) as described below, which is also called the Brier

Loss for cases with binary outcomes:

MSE =
1

N
=

N∑

t=1

(pt − 0t)
2 (1)

where p is the predicted probability outcome, o is the obser-

vation at instance t (0 means there was no available parking

spot, 1 means there was at least one available spot), and N

is the total number of instances.

MSE is used here as it can punish probability predictions

that are farther away from the binary observed ground truth.

For further insights, additional metric scores are calculated

using the Mean Absolute Error (MAE) and the Root Mean

Square Error (RMSE) which can be found in the Appendix.

Additionally, given the BMW user-centric system in this

study, the proposed prioritization-based quality assessment

of [42] is implemented. This method essentially adjusts the

scores by taking the weighted sum of the scores of each

quadkey at zoom level 14, denoted as KPIp. The importance

weights are based on the total volume of parking events

recorded per quadkey over last 3 months of the study period.

KPIP =

N∑

s=1

KPIq × wq (2)

wq =
PEVolumeq∑N
q=1

PEVolumeq
(3)

where KPIq is the KPI of a quadkey, w is the importance

weight assigned to a quadkey, and PEVolumeq is the parking

events volume in a quadkey.

All data science tasks carried out in this paper were per-

formed in the Python scripting language. The main packages
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used were as follows: ADTK, xgboost, Pandas, GeoPandas,

Numpy, OSMnx, Matplotlib, Seaborn, Statsmodel, PySal,

Scikit-learn, and PyTorch.

IV. SUPPLEMENTAL DYNAMIC OSPI SYSTEM FEATURE:

PARKING BEHAVIOR CHANGE DETECTION (PBCD)

An on-street parking availability prediction model is the

core component of an OSPI system. This section presents

an added-value component and feature to an OSPI system

(see Fig. 5) that provides additional dynamicity external of

a prediction algorithm, but still part of the OSPI system.

The availability of parking events data provided the opportu-

nity to develop a parking behavior change detection (PBCD)

model to enhance a user’s experience. The PBCD model

described here was mainly developed to detect static longer-

term changes. Long term is defined as changes that remain

in place for at least some defined duration of days rang-

ing from 3 days to 2 weeks. The idea is that the detector

allows flagging of potential anomalies due to parking behav-

ioral changes in a city’s neighborhood. This then allows

an update in the availability predictions made and change

the values to zero to represent unavailable spots. Mainly

detected are street parking capacity changes or parking rule

changes that impact an OSPI system’s performance. Such an

automatic fleet-based change detection system aims to keep

on-street parking maps up-to-date. Early detection of impact-

ful changes helps keep the parking map reliable, accurate,

and reduce costs. Furthermore, a PBCD system can alert

evaluators to assess the quality of their OSPI models in

identified areas by the detector.

The following sections describe the development process

and the evaluation carried out for partial validation of the

detector. An extensive analysis of the PBCD model is not

within the scope of this study. In this paper, only the current

status and potential of a PBCD model as an added component

within an OSPI system is discussed.

A. METHODOLOGICAL FRAMEWORK FOR THE

PARKING BEHAVIOR CHANGE DETECTION (PBCD)

MODEL DEVELOPMENT

The complete workflow for the PBCD is illustrated in Fig. 6.

The first step after importing parking events fleet data and the

on-street parking network was to filter out and process the

data. Minimum spatial level and data volume requirements

were set to enable behavior change detection. Initially, the

spatial requirement heuristically was set to a sub-street quad-

key level 17 (approximately 306m x 306m). Each sub-street

could contain more than one street block (i.e., intersection to

intersection). A sub-street level analysis was chosen instead

of street or block level since it was observed that disruptions

only occur in small portions of a street affecting only a few

parking spots. To minimize noise in the change detection,

only sub-street quadkeys at level 17 with parking events

greater than 100 for the whole duration of study are cho-

sen for analysis to lessen ambiguity in results. Next, after

FIGURE 6. Methodology workflow for developing a parking behavior change

detection model.

processing the data is converted into a time series for each

sub-street.

The rule-based anomaly detection model developed was

executed as a two-level model shown in Fig. 6 below. A

rule-based approach was chosen heuristically based on the

known disruptions in the city. For level 1, a threshold was

set, and each day with a daily on-street parking volume

below this was considered as anomaly and labelled as 1

(with anomaly) or 0 (no anomaly). For an anomaly to be

qualified, it must satisfy the level 2 condition, which was

done using a rolling aggregator that sums up anomalies and

behaves consistently over a defined window number of days

based on an experimental design.

The level 1 detection: a moving average with a window

size of 7 days was chosen heuristically for smoothing and

transforming the time series. This transformed time series

was then used to identify the first level behavioral anomalies.

To further eliminate ambiguity, the removal of holidays and

weekends before level 1 detection was done, to remove drops

on these days, but nonetheless, nothing changed in terms of

anomaly detection, indicating that these days do not impact

the model. The main factor in the level 1 detection is the

testing of different threshold values as cut off values. All the

days in the time series which had fewer parking events than

the respective threshold value were considered as anomalies.

For instance, given the set threshold at 10%, all the days in

the time series with parking events less than 10% quantile

value are anomalies. This method ensures that all the days

with comparatively fewer activities reported are identified

as potential longer-term anomalies and can be marked for

further analysis.
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FIGURE 7. Anomaly detection model instance for time window of 3 days.

As an input to level 2 after the threshold detector, each

day in the generated anomalies time series was classified as

either having a value of 0 (not an anomaly) or 1 (anomaly).

Thereafter, the level 2 detector transformed the time series

by performing a rolling aggregate to identify the number

of non-zero values, i.e., number of anomalies of level 1

for a defined window size in days. If all the values in the

considered window are 1, then all are considered as second

level anomalies. Even if one of the values in the window

is 0, which is not an anomaly, all the remaining values are

also considered as 0. For instance, when a window of 5 days

is considered, if all the days in that window are first stage

anomalies, then all of them are also second stage anomalies;

however, if even one day of the 5-day window is not a first

stage anomaly, then all the 5 days are dropped as potential

anomalous behavior. If both levels are satisfied, a warning

can be triggered to change the availability status after 5

days regarding drop in the parking activity of the sub-street,

which can be flagged due to a disruptive activity, such as

construction, rule change, or some special event.

Fig. 7 illustrates an abstract example of the level 1 and

level 2 detections from the PBCD model. The solid line rep-

resents the imaginary sample of parking events time series

data after performing a 7-day moving average. Now, consid-

ering 10 parking events counts as the threshold value (dotted

black line), all the days with park event values less than 10

are anomalies after level 1. This new time series with values

0 or 1 is plotted as the dashed blue line. Considering a time

window of 3 days for level 2, the green squares show the

values (count of number of 1’s in the 3 days window) after

level 2, which can be 0 or 1 or 2 or 3 and the red circles

are the final anomalies after level 2, which are considered as

final potential parking behavior changes. These are obtained

by considering the green circles with count equal to 3 and

two respective previous days as final anomalies.

The percent anomalies omitted after level 2, left-over

anomalies, i.e., the days which turned out to be anomalies

after level 1 but are rejected in level 2 (the day 2019-05-09

FIGURE 8. Evaluation precision scores (left y-axis) of each experimental design

setup for the parking behavior change detection model including the percentage of

anomalies filtered after level 1 detection (on the right y-axis).

in the Fig. 7) are considered as omitted anomalies and these

could also be due to construction (see Fig. 8). For instance,

if the considered window in the level 2 is 15 days and all the

14 days in a window are anomalies after level 1. After level

2, none of the dates in that window are considered as anoma-

lies as they do not satisfy the criteria of level 2. But still,

they could be due to construction and therefore it is impor-

tant to capture the percent of omitted anomalies which could

be potential anomalies. Percent omitted anomalies within the

days where there is a construction event reported could have

more chances of becoming an anomaly and therefore these

are also evaluated separately.

B. EVALUATION EXPERIMENTAL DESIGN OF PBCD

MODEL

To evaluate the capabilities of the defined PBCD model,

the following experimental design was defined: basically,

there were 5 threshold values from below 10% to 30% at

5% intervals, and 6 minimum duration values namely 1, 3,

5, 7, 10, 14, resulting to 30 experimental design setups to

check the precision scores. The calculated precision score is

a partial validation that presents the percentage of detected

parking behavior anomalies that coincide with construction

activities, although there may be other reasons for anomalies.
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Construction events dataset from HERE Maps was used

for the partial cross-validation of the PBCD model. It must

be noted that the construction dataset may have a few

shortcomings as well, such as: latency in updates and lack

of information on impact on parking. The only construc-

tion information used were the period of construction and

the location or street, where the construction works were

observed. Each on-street parking behavior change detected

by the model on quadkey level 17 was validated against

the existence of construction on street level. If there is a

construction on a particular day, then that day is consid-

ered as an anomaly. These days with construction events are

considered as known anomalies. The precision is defined as:

precision = % anomalies within construction =
TP

TP+ FP
(4)

where the observed value is the construction report by

HERE maps and detected is an on-street parking behav-

ior change detection. True Positive (TP) is any day which

is a model anomaly and a known construction anomaly, and

False Positive (FP) is defined as any day which is a detected

anomaly but an unknown anomaly.

Based on field inspection, a construction observation does

not necessarily mean the on-street parking segment was

closed, thus, not all days with construction coincides with an

anomaly. It was more often the case that when the road was

open, then a parking lane was taken for this, hence, the park-

ing segment was obstructed. Based on the sanity check of

construction precision score, which means detecting that for

at least one day, an anomaly is recorded within the construc-

tion period, we were able to detect at least one disruption

in on-street parking for each construction event. The con-

struction sanity precision score of 1.0 for all construction

events means that all were detected at some point during

their reported period of construction on a specific street.

However, the overall anomaly precision scores are lower

(see Fig. 8) given that there were identified changes that

were not within any construction period. Hence, an anomaly

detected by the model is not always caused by construction.

Other detections could be other longer-term changes due to

parking rules changes, an event occurring at that place for

a certain period, or other potential unknown anomalies. It is

also possible that, the model anomalies estimated are false

change detections. This means not all model anomalies are

actual changes but could be because of model inaccuracies.

C. MAIN FINDINGS FROM THE PBCD MODEL

The precision scores corresponding to the various combi-

nations of threshold values for level 1 and the minimum

window duration in days for level 2 are presented in Fig. 8.

Both the scores for the 2019 and 2020 parking events data

are presented. In most cases, it is observed that, higher min-

imum window duration values for level 2 correlates with a

higher precision score. Concurrently, many level 1 anomalies

are filtered out as seen with the green lines in the figure.

The scores for the 2019 experimental design range from

0.55 to 0.79, while the spread is from 0.39 to 0.46 for the

year 2020. The reason for the big difference in precision

scores between 2019 and 2020 is the range of data used. In

2019 only 5 months of data from May to September was

available, while for 2020 it was 9 months from February

until October. Henceforth, the possibilities of detecting more

anomalies throughout the year. Another reason for the dif-

ference is that anomalies detected in 2020 may not be due to

construction; an example could be anomalies from varying

restrictions due to the COVID-19 pandemic that started in

March 2020 – although this is not tackled here. For both

2019 and 2020, it can also be observed from Fig. 8, that

the percent proportion of anomalies omitted after level 1

increases as the minimum window duration is increased. For

2019, the precision improves as more level 1 anomalies are

omitted, meaning they are unlikely to be an actual anomaly.

However, for 2020, the precision score remained on the same

level throughout the different experimental designs as seen

in the graph. Similarly, this is attributed to other possible

anomalies not related to construction.

Nonetheless, these precision scores are acceptable as it

can detect some behavioral changes for which more than

55% and 40% precisions were achieved that are attributed

to construction for 2019 and 2020, respectively. This is suf-

ficient as far as the goal to use the PBCD model only as

an additive component on top of the availability prediction

model (see Section III-A).

Considering all the setups, the most optimal parameters

are 0.20 as the threshold for the level 1 detector and the min-

imum window of 10 days for the rolling aggregator at level

2. With this setup, the parking behavior change detection

(PBCD) model developed can detect long term disruptions

which last for at least 10 days - anything below this period

is neglected. The aim of the developed model was to detect

long term static anomalies signaled by the drop of parking

events caused by construction, rule change, or a significant

infrastructural change, among others. Anomalous activities

that increase the number of parking events were not part of

this study. In summary, the developed model is valuable and

can be used as a trigger functionality in a navigation app

to flag potential changes to on-street parking provisions and

as an alert for the evaluation of OSPI systems. Furthermore,

the feature can be incorporated in the proposed OSPI system

described in the next chapter by changing predictions to 0

for unavailability of on-street parking spots.

V. DEVELOPMENT OF A DATA-DRIVEN OSPI SYSTEM

This section presents a comprehensive comparison of dif-

ferent OSPI availability models based on the pipeline

implementation discussed in Section III-B4) that can be

used as part of the proposed OSPI system. The specific

features engineered, elaboration on the usage of each fea-

ture category, and the model evaluation are discussed here

as well.
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A. FEATURES ENGINEERED

A relevant parking prediction study in Munich was car-

ried out by [6] in 2016, wherein they discovered that

weekday, location, temperature, and time of the day signifi-

cantly improve their model performance, while information

regarding traffic, holidays and rainfall only had a sec-

ondary influence. Hence, apart from traffic information,

all the other features were also created and enhanced in

this study. In total 102 features were extracted from the

raw data available. The breakdown is as follows: 15 time-

related, 7 space and location-related, 2 weather-related, 9

based on historic parking availability, 54 features related

to parked-in and parked-out events, 12 related to aggre-

gated parking events data called temporal trend of parking

dynamics (TTPD) as defined in [38], and 3 related to parking

behavior change detection (see Section IV). The description

in Table 1 provides more information.

In summary, to create more generalized features, all the

data except weather, were aggregated on different quadkey

zoom levels; this is a standardized partitioning of the world

map into tiles provided by Microsoft’s Azure Maps [43].

Aggregation was done from zoom levels 14 corresponding

to a tile size of 2446m x 2446m to smaller sizes up to

level 17 of 306m x 306m. For the parking events-related

and historic parking availability features, different horizons

of moving averages slices were tested. A slice is a spatio-

temporal boundary consisting of a specific quadkey and hour

within the 168 hours of the week. These moving averages

include taking the average value over the last 2, 4, 6, 8 hours

or looking at the same week-hour and quadkey (i.e., slice)

over the last 2, 4, 6, 8 calendar weeks. Another averaged

value was, for example, taking the average number of parking

events at each slice from the last month.

B. MODELS AND TUNED HYPER-PARAMETERS

The optimal hyperparameters of the models change depend-

ing on the feature and the nature of the problem tackled. It

was observed within all the experimental design setups, the

tuned hyperparameters only marginally helped to improve

the models relative to the improvements brought by features

included in a model. The tuned values displayed in Table 2

are those of experimental design setup 6, which is chosen

as the sample setup of the analysis.

The optimal parameters were determined using exhaus-

tive grid search (i.e., GridSearchCV), when it was

feasible, and randomized parameter optimization (i.e.,

RandomizedSearchCV) [40] when model runs take much

more time, like in the case of the Random Forest models.

For model parameters not listed in Table 2, the default val-

ues were taken [36], [40]. The 3 ensemble models created

within this paper combines the different standalone mod-

els using RidgeCV, which is a linear regression model. The

default alpha parameter was taken for the ensemble models.

On average, Xgboost [36] was the best standalone machine

learning algorithm tested in this paper. Xgboost is a type

of gradient tree boosting system, which is a tree ensemble

TABLE 2. Models and tuned hyperparameters.

model on its own, wherein the final prediction is based on the

prediction values calculated from an aggregation of each tree.

The objective function to minimize was set to binary logistic,

since the problem dealt with is a logistic regression for binary

classification that gives a probability output between 0 and 1.

The most important parameter to tune was learning rate; the

lower value, the better the predictions had become. After

setting a learning rate, the number of trees (n_estimators)

is determined. After a certain number of trees, the score

does not improve anymore, and it plateaus. For Random

Forest, the number of estimators made the most difference,

but the scores did not change much in comparison with

the default hyperparameters. The biggest difference observed

in tuning parameters was with the Decision Tree model.

After changing the minimum number of samples to be at

a leaf node (min_samples_leaf) from default of 1 to 57,

and updating the maximum depth from none to 4, the MSE

score improved by 31%. As a baseline example for a linear

regression model, LassoCV was used. LassoCV is usually

used in regularization in machine learning to avoid overfitting

and for feature selection. The only relevant factor to tune

here was the complexity parameter alpha which was set to

0.022. For the Multilayer Perceptron (MLP) the hidden layer

size was the most relevant. The optimum value for this was

the desired number of selected input features after feature

selection in the pipeline. For the Long Short-Term Memory

baseline model, the number of epochs was the most crucial
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TABLE 3. Experimental design and Prioritization-based scores for prediction models.

FIGURE 9. Ground truth observations (left), test set predicted probability maps of the best standalone model (middle) and the best overall model (right).

to optimize training time. After 50 epochs, the score was

not improving anymore.

The main finding in the hyperparameter tuning task for

the prediction model of the OSPI system is that the fea-

tures selected and passed on to a model are more important

compared to hyperparameter optimization unless a new algo-

rithm is to be developed. However, for a simpler model like

Decision Tree, the parameter values have a larger impact

on the evaluation score. Nonetheless, tuning is vital in

maximizing the performance of prediction algorithms used.

C. EXPERIMENTAL DESIGN AND EVALUATION OF OSPI

AVAILABILITY MODELS

The comparative analysis of the various models based on

the experimental designs is discussed in this section: the

mean MSE scores, the features that help a model, the fea-

tures that can replace other ones, geographical analysis, and

the performance of different algorithms. The systematic pro-

cess of evaluation was defined through several experimental

design (ED) setups as described in Table 3. Different feature

categories were gradually added as part of the experiment.

For each of the 6 EDs, 9 models were used, totaling to

54 setups.

The calculated prioritization-based MSE scores [42] are

illustrated in Table 3. The worst performing model scores

are achieved at ED1 when only temporal features are con-

sidered. In this scenario, it can be observed that the neural

network models outperform the other models as they are

more capable of finding latent variances that the other algo-

rithms cannot determine without more features. The best

performing model among the 54 setups was Ensemble 3

at ED5 with a 0.2146 score, which combines Xgboost and

Random Forest while taking all features except historic park-

ing availability-based features. The best standalone model is

also at ED5: Random Forest with a score of 0.2152. Each

predicted probability from the test set of around 7000 obser-

vations is mapped in Fig. 9. To demonstrate the sensitivity

to time in terms of average parking availability, see Fig. 10.

This is the average parking availability versus the average

parking probability prediction based on the best model per

week-hour. And as seen, the model can predict in line with

the availability patterns. If there are discrepancies, these are
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FIGURE 10. Average parking availability based on ground truth versus the best prediction model’s average parking probability.

FIGURE 11. The stages of comparison evaluation and the differences between a nonadaptive (top) and an adaptive (bottom) OSPI system.

considered in the prioritization-based scores, which adjusts

in accordance with spatio-temporal importance [42].

Fig. 9 illustrates the difference between the predictions

made between the two models. ED5: Ensemble 3 has a wider

spread of prediction, meaning the spread is farther from the

mean. This can be observed in the maps by the larger contrast

in color in the best model’s predicted probability map. This

translates to the model making more confident prediction.

An objective of this study was to reduce reliability on

ground truth data collection and have a more dynamic data-

driven OSPI that does not rely on continuous ground truth

collection to reduce costs. There are two main stages to

assess this: (1) see if an alternative model, in this case, the

parking events-based model (ED5) is on par with existing

industry-level models as represented by ED4; and (2) illus-

trate the dynamicity and advantage of the alternative model.

The stages of comparison are demonstrated in Fig. 11.

Stage 1: In Table 3, it is shown that the performance of

ED5 across the different algorithms implemented is in most

cases outperforming the ED4 models. This makes it clear

that ED5 can be a feasible alternative to an industry model

that focuses on historic parking availability features for its

dynamicity (see Fig. 11). To compare features, specifically,

the industry-level model at ED4 using Random Forest can
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TABLE 4. Prioritization-based scores after introducing disruption/closure in 5 out of 772 street segments.

be compared to the best standalone model ED5: Random

Forest. The reason standalone models are compared is that

feature importance can be directly extracted as opposed to

an Ensemble model. This is obtained from the built-in fea-

ture importance attribute, determined by the proportion of the

number of times a feature appeared in a tree by a model. The

optimal number of features selected through various trials

was 21. Thus, whenever more features were available, the 21

best features that best generalize the parking prediction were

selected. The differences in features used and the respective

importance factors are shown in Fig. 11. The most impor-

tant features are the primary spatial and temporal features:

parking spaces or capacity, time of day in seconds, and GPS

location. Looking at Table 3, the primary features support

each other. There are variances only captured by spatial fea-

tures, that significantly improve the performance that are not

captured by temporal features as seen in scores of ED1. In

the ED5: Random Forest feature importance graph (lower

left in Fig. 11), it can be seen that 11 out of 21 features

are parking event-based. Looking at Table 3, ED5: Random

Forest attains a score of 0.2152, while ED4: Random Forest

attains 0.2174. This presents a 1% difference in score and

can be concluded that ED5: Random Forest after replac-

ing historic parking availability-based features with parking

events-based features does not impact the performance. Thus,

for stage 1 of the assessment, it can be an alternative to an

industry model.

Furthermore, from the comparison of features it was dis-

covered that aggregated spatial features appear to capture

variances previously unknown. This is beneficial to further

reduce reliance on historic parking availability features. On

top of on-street parking capacity on a street-level, denoted

as i_spaces in Fig. 11, aggregation of capacity on level

14, 16, and 17, labelled as i_spaces_14, i_spaces_16, and

i_spaces_17, respectively, are capable of capturing variances

and better generalize. To the best knowledge of the authors,

this is a new finding that has not been discussed in research,

as majority focus on directly using street parking capacity on

a street-level, when this data is available. This static feature

can also be updated with a dynamic feature such as PBCD

that detected disruptions as discussed next.

Stage 2: For the next stage, the dynamicity is impor-

tant, hence, as shown in Fig. 11, the best models are used

for score comparison, and these are ED4: Ensemble 1 and

ED5: Ensemble 3, respectively. To explicitly demonstrate

the dynamicity of the parking events-based models at ED5

with the integration of a PBCD, on-street parking disruption

or closures were artificially introduced to 5 of 772 street

segments in the study area. For the entire study period, the

ground truth availability is then changed to zero. This was

to illustrate the difference in the performance scores for

models that detect these anomalies and adapt. As seen in

Fig. 11 in the two predicted probability maps, the adaptive

OSPI system using parking events features and PBCD can

detect the closures that are denoted with the boxes. This

is visibly not detected in the nonadaptive model of ED4:

Ensemble 1. Before disruption, the scores are quite similar

with the nonadaptive model scoring 0.2152, and the adap-

tive model scoring 0.2146. However, after the closure, only

the adaptive one improves its score as it is able to change

its predictions based on a trigger from its PBCD. In large

cities, these disruptions are difficult to detect. And often in

a city like Munich, a parking closure that is left unnoticed

and not updated in the system causes a compounding effect

on parking search that can lead to a worsened experience

of the OSPI system. Thus, a system that relies on parking

events and its added PBCD feature does not only lessen the

dependence on manual ground truth observations to check for

disruptions, it also automatically improves user experience

of the proposed OSPI system.

The complete changes in scores are shown in Table 4

with the updated scores after the introduction of disruption

and Table 5 Shows the percentage difference in compari-

son with the prioritization-based MSE scores in Table 3.

To summarize, the spread of scores based on feature cate-

gory experimental design and by model used is shown in

Fig. 12 Based on the average scores per feature category

ED, ED 6 scores the best with an average MSE of 0.2181

after introduction of disruption, followed by ED 5, 3, 2, 4,

and 1 (see Fig. 12). It is also apparent that the adaptive mod-

els in ED5 and ED6 outperform the other 4 EDs proving

their advantage over models that need manual ground truth
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TABLE 5. Score percentage difference between after and before disruption per model and experimental design.

FIGURE 12. Spread of scores after disruption. Average cross-validation MSE score box plot by feature category experimental design (ED) and average cross-validation MSE

score box plot by machine learning algorithm/model.

observations to identify disruptions. Meanwhile, the worst

score is recorded when using Random Forest with only

temporal features (ED 1). However, when spatial features

are added, the Random Forest model significantly improves

its performance. The same is also observed with Xgboost

and the ensemble models. The Decision Tree and LassoCV

models only improve with the gradual increase in features.

For MLP the trend is unclear as a decline in performance

was observed at ED4. For LSTM, since it is a model that

primarily relies on organized time-series data, there is no sig-

nificant improvements after the temporal features introduced

at ED1. This proves that a domain knowledge driven mod-

els that rely on feature engineering can outperform baseline

neural networks as those presented here.

ED4 includes historic parking availability features, but

comparatively, it performed worse than the previous step

on average. This changes at ED6 when parking events-

based features are added, resulting to the best average MSE.

Comparing ED5 against ED4, it can be concluded that in

most models, the parking events-based features help more

than the historic parking availability features. The more

features provided, on average, models can capture more vari-

ances to make adjustments necessary to improve predictions

– this is even more apparent with LassoCV, a simple linear

model. The boxplot for the average MSE for LassoCV in

Fig. 12 shows the shift from 0.2410 at ED 1 to 0.2201 at

ED6 that is tabulated in Table 3.

D. DISCUSSION ON THE LATENCY OF THE PROPOSED

OSPI SYSTEM

Fig. 4 shows that training only needs to take place every

three months as conducted in this study. This means, the esti-

mator factors in the machine learning algorithms employed

remain the same. These factors are calibrated and adjusted

based on the input values in the training sets. Table 2 presents

the feature categories that contain different engineered fea-

tures for each. Each feature takes a different value input.

The temporal features get input in relation to a timestamp

of a request. The spatial features are static based on the

parking map but can be updated when the parking behavior

change detection (PBCD) feature detects long-term closures

or disruptions in capacity. However, for dynamic feature

categories such as weather, historic parking availability and

parking events-based features the system relies on ingested

data. The feed or ingestion rate is different for each. For

weather, hourly temperature and rainfall data can be cap-

tured. For ground truth historic parking availability data,

this can only be fed into the system at random intervals

depending on when data collection is scheduled with on-

site observers. Thus, the system takes the historic averages
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TABLE 6. Experimental design and prioritization-based root mean squared error scores for prediction models.

available from the last collection period. This is also the rea-

son that manual collection is not deemed feasible. Parking

events-based features are engineered to aggregate values for

several intervals with the shortest being 15 minutes. This

means, the OSPI system predicts parking with a 15-minute

latency or 15 minutes into the future. Thus, if information

is requested now, the parking events-based features feed the

aggregated value in the last 15-minute interval.

In the occurrence of feed failure errors, the system reverts

to the last historic averages to fill in the missing data.

Detailed feed failures with regards to parking events can-

not be covered in this study due to the lack of access to

relevant data at the point of collection.

E. MAIN FINDINGS AND DEPLOYMENT OF A

DATA-DRIVEN OSPI SYSTEM

The best model based on the analysis is ED5: Ensemble 3

using temporal, spatial, weather, and parking events-based

features. The ensemble model is a combination of Random

Forest and Xgboost. The ED5: Random Forest standalone

model was the best performing. Once combined with

Xgboost, the resulting model was able to take the best of

the two algorithms by learning from the weak predictions

and replacing them with the advantages of the other. This is

illustrated by the starker difference in predicted probabilities

of the ED5: Ensemble 3 model as shown in Fig. 9. This is

also interpreted as a more confident prediction model since

the values are closer to a binary outcome, while improving

the prioritization-based MSE score performance.

Even though an industrially accepted model such as ED4:

Ensemble 1, which mainly relies on manual ground truth for

updates and disruption information, model ED5: Ensemble 3

is a better model of choice for companies or institutions that

have direct access to reliable incoming fleet data. This is

because the best model employs features that rely on con-

tinuously available parking events data capable of capturing

real-time and up-to-date variances that are needed to adjust

the parking availability model. Furthermore, a parking behav-

ior change detection (PBCD) feature based on the parking

events improves the performance of the system by detecting

disruptions and closures of on-street parking spaces. Such a

system reduces the need to send manual observers to collect

data to update the system and its relevant associated parking

maps.

VI. CONCLUSION AND RECOMMENDATIONS

In the industry, manual data collection is still prevalent to

ensure quality. The authors have proposed an on-street park-

ing information system with a parking availability prediction

model and a supplementary additive component that provides

on-street parking behavior change detection (PBCD) using

the parking events dataset. The parking availability prediction

model utilizes parking events-based features and enhanced

spatial features that have a better capability to generalize

on-street parking capacity on different spatial aggregation

quadkey zoom levels. The developed parking availability

prediction model and methodology can be a competitive

alternative to existing models which mainly rely on historic

ground truth observations converting it to parking availability

features and do not have many adaptive and dynamic fea-

tures such as the parking events-based ones introduced in this

paper. A wide range of feature categories and machine learn-

ing algorithms were tested as part of an experimental design

to identify the best configuration of features engineered

based on domain knowledge and existing algorithms.

One main advantage of the presented approach for a city

like Munich, where there is abundant parking events data, is

the opportunity to reduce the frequency of ground truth col-

lection since the model can rely on incoming parking events
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TABLE 7. Experimental design and prioritization-based mean absolute error scores for prediction models.

data from vehicles. This was proven by the performance

ED 5: Ensemble 3 model. Although the model performs

well and adapts to disruptions and closures, normal routine

ground truth checks are still necessary at intermittent periods.

The introduced methodology in this paper however is also

limited based on the accessibility of institutions to reliable

fleet data that can be used.

It is known that many special events, construction activ-

ities, rule changes occur unannounced and undocumented

for, hence, the PBCD model presented in this paper can

be recommended as an automated flagging component in

future OSPI services, that would request for user feed-

back and confirmation on parking availability. This in return

enables faster update of parking maps, while enhancing user

experience. It would be interesting to further validate the

parking behavior change detection with other data sources

such as special events, and rule and infrastructure change

data, among others.

The model of interest parking availability prediction model

developed in this paper used the following features: tempo-

ral, spatial (location and parking capacity spatial aggregates),

weather, and parking events-based. Reference [5] demon-

strated the value of using their Baidu maps with refined

POI data for example. However, in this research it was

difficult to obtain reliable POI data without much catego-

rization. Existing open-source POI data are unbalanced and

skewed towards restaurants. Future researchers can work on

OpenStreetMap POI data with an extensive category defini-

tion and cleansing that could be useful for comprehensive

development of models in specific cities. The level of OSM

POI data coverage is different for each city. Another recom-

mendation is to investigate and evaluate the scores based on

priority or important areas in a city [42].

In the future fast processing of videos and images

will change the game, but for the meantime, the data

volume of parking events is much smaller, and it

will remain as a possible source for validating future

researches.

APPENDIX

See Tables 6 and 7.
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