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Abstract 

The interactions between rivers and aquifers play a fundamental role in the fate, transport, 

and transformation of solutes, pollutants, and nutrients in the subsurface. Fluctuating stream 

stages and peak-flow episodes associated with extreme events, such as groundwater flooding 

and hydropeaking, can significantly influence the dynamics between streams and aquifers, 

modifying hydraulic gradients, flux exchange, and the subsurface flow paths. The usual 

practice to study what occurs under the hood is the application of numerical groundwater 

models, where the streams and rivers are expressed as boundary conditions. However, 

uncertainties associated with input data, model parameters, numerical implementation, 

process conceptualization, scale, and discretization may lead to a poor understanding. This 

dissertation investigates the interaction between rivers and aquifers during two types of 

extreme events, e.g., groundwater flooding and hydropeaking. The main objective is to 

characterize flow and transport processes in the groundwater under uncertain river boundary 

conditions and quantify the propagation of uncertainty using formal stochastic techniques. In 

addition, the research also aims to propose a series of methodological frameworks for the 

quantification of uncertainty to be applied in similar modeling exercises. Four scientific 

publications are part of this cumulative dissertation. A broad spectrum of sensitivity and 

uncertainty analysis techniques is applied, including scenario modeling, linear uncertainty 

analysis, screening sensitivity analysis, Bayesian inference, spectral expansions, and discrete 

collocation projections. The investigations include the spatiotemporal quantification of flow 

field features as efficient alternatives for describing transport processes and mixing in 

groundwater. Overall, the results of this dissertation include the quantification of uncertainty 

employing deterministic scenario modeling and formal stochastic approaches; the detailed 

quantification of spatial and temporal responses of the groundwater flow and the flow field to 

the dynamics of the river boundary conditions, and the description of the spatiotemporal 

evolution of the uncertainty; and, the characterization of flow and transport processes in the 

subsurface in probabilistic terms by identifying non-trivial flow features (i.e., stagnation 

zones, reverse flow, and Okubo-Weiss metric). Relevant contributions include the 

development of a Bayesian framework for assessing the risk of groundwater flooding and a 

framework based on polynomial chaos expansions for identifying elusive and non-trivial flow 

features in probabilistic terms. 
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Zusammenfassung 

Die Wechselwirkungen zwischen Flüssen und Grundwasserleitern spielen eine grundlegende 

Rolle für den Verbleib, den Transport und die Umwandlung von gelösten Stoffen, 

Schadstoffen und Nährstoffen im Untergrund. Schwankende Wasserstände und 

Abflussspitzen im Zusammenhang mit Extremereignissen (z. B. 

Grundwasserüberschwemmungen und Schwallbetrieb) können die Dynamik zwischen 

Fließgewässern und Grundwasserleitern erheblich beeinflussen und die hydraulischen 

Gradienten, den Flussaustausch und die unterirdischen Fließwege verändern. Um zu 

untersuchen, was unter der Wasseroberfläche geschieht, werden in der Regel numerische 

hydrologische Modelle eingesetzt, und Flüsse werden als Randbedingungen dargestellt. 

Allerdings können Unsicherheiten im Zusammenhang mit den Eingangsdaten, den 

Modellparametern, der numerischen Implementierung, der Prozesskonzeption, der Skala und 

der Diskretisierung zu einem unzureichenden Systemverständnis führen. In dieser 

Dissertation wird die Wechselwirkung zwischen Flüssen und Grundwasserleitern bei 

Grundwasserüberflutungen und Schwallereignissen untersucht. Das Hauptziel besteht darin, 

die Strömungs- und Transportprozesse im Grundwasser unter unsicheren 

Flussrandbedingungen zu charakterisieren und die Ausbreitung der Unsicherheit mit Hilfe 

formaler stochastischer Techniken zu quantifizieren. Darüber hinaus zielt diese Arbeit darauf 

ab, eine Reihe von methodischen Frameworks für die Quantifizierung von Unsicherheiten 

vorzuschlagen, die bei ähnlichen Modellierungsaufgaben angewendet werden können. Vier 

wissenschaftliche Veröffentlichungen sind Teil dieser kumulativen Dissertation. Es wird ein 

breites Spektrum von Sensitivitäts- und Unsicherheitsanalysetechniken angewandt, darunter 

Szenarienmodellierung, lineare Unsicherheitsanalyse, Screening-Sensitivitätsanalyse, 

Bayes'sche Inferenz, spektrale Erweiterungen und diskrete Kollokationsprojektionen. Die 

Untersuchungen umfassen die raum-zeitliche Quantifizierung von Strömungsfeldmerkmalen 

als effiziente Alternativen zur Beschreibung von Transportprozessen und Vermischung im 

Grundwasser. Insgesamt umfassen die Ergebnisse dieser Dissertation die Quantifizierung der 

Unsicherheit unter Verwendung deterministischer Szenarienmodellierung und formaler 

stochastischer Ansätze, die detaillierte Quantifizierung der räumlichen und zeitlichen 

Reaktionen der Grundwasserströmung und des Strömungsfeldes auf die Dynamik der 

Flussrandbedingungen und die Beschreibung der räumlich-zeitlichen Entwicklung der 
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Unsicherheit sowie die Charakterisierung von Strömungs- und Transportprozessen im 

Untergrund in probabilistischer Hinsicht durch die Identifizierung nicht-trivialer 

Strömungsmerkmale (d.h. Stagnationszonen, Rückströmung und Okubo-Weiss-Metrik). Zu 

den relevanten Beiträgen gehören die Entwicklung eines Bayes'schen Frameworks für die 

Bewertung des Risikos von Grundwasserüberschwemmungen und eines auf polynomialen 

Chaos-Erweiterungen basierenden Frameworks für die Identifizierung schwer fassbarer und 

nicht-trivialer Strömungsmerkmale unter probabilistischer Betrachtung. 

 



iv 

Affidavit 

I hereby declare that the work presented in this Doctoral thesis is authentic and original unless 

clearly indicated otherwise, and in such instances full reference to the source is provided. I 

further declare that no unethical research practices were used. This dissertation was not 

submitted in the same or in a substantially similar version to another examination board.  

 

Munich, April 4th, 2022 

Pablo Merchán-Rivera 

 

  

 



v 

Acknowledgments 

This dissertation represents a snapshot of knowledge and theories in the field of uncertainty 

quantification in hydrology. It is also a snapshot of four years of doctoral research. A path 

that I enjoyed but that was not free of challenges, glitches, and virus variants. Fortunately, I 

was not alone, and I would like to acknowledge all the people without whom I would not have 

made it through these years.   

First, I owe my deepest gratitude to Prof. Dr. Gabriele Chiogna. Thank you for providing 

friendly guidance and support throughout this project. I am glad and grateful for having such 

a great supervisor. Thank you also for trusting me since my master’s degree began. Special 

thanks to Prof. Markus Disse for the opportunity to be part of this fantastic research group 

and for the friendly support during these years.  

I would like to thank Prof. Dr. Giovanni Porta for his kind willingness to take part in the 

Examination Board. Thank you as well to Prof. Dr.-Ing. Michael Manhart for accepting to 

participate as Chairman of my doctoral defense. 

I want to acknowledge the support of my dear country, reflected in the grant CZO2-11621 of 

the Secretaría Nacional de Educación, Ciencia y Tecnología de Ecuador (SENESCYT), which 

back a significant part of my doctoral research.  

Thank you to the UNMIX and Hydromix team (Mónica Basilio Hazas, Daniel Bittner, Giorgia 

Marcolini, Steven Mattis, Tanu Singh, Mario Texeira Parente, and Francesca Ziliotto) for the 

great discussions and feedback. Furthermore, thanks to Prof. Dr. Barbara Wohlmuth for her 

support and contribution, which help me to explore the mathematical techniques of this 

dissertation with much more confidence. 

I want to say thank you to the Chair of Hydrology and River Basin Management staff, which 

made this a pleasant and welcoming workplace. Particularly, thanks to Christiane Zach-

Cretaine for her incredible support and patience.  

I would also like to thank all of the persons who contributed to my work in different ways 

during the last four years: Danika Ahoor, Mohammad Alqadi, Punit Bhola, Alexandra 



vi 

Elbakyan, Alexandra Geist, Wesley Henson, Florentin Hofmeister, Jingshui Huang, Fabian 

Merk, Soukaina Mourchid, Santiago Osorio, Teresa Pérez Ciria, Francesca Perosa, Rebecca 

Schill, Claire Sembera, Michael Tarantik. I sincerely apologize to everyone I forgot on this 

list.  

I want to include in this acknowledgment all the authors and contributors of the various 

Python libraries used in this work for their enormous contribution to science and education. 

To close with a flourish, I want to thank my family for their love and unconditional support. 

María Elena, Iván, Jorge, and Daniel, all this work belongs to you because all I am is thanks 

to you. Thanks to all my big family in Ecuador. I felt your support in every step. Thanks to 

Mounia Lahmouri for walking on my side. Her motivation and encouragement are the reason 

why you are reading this work. Thank you, Mounia, for sharing the good and the bad during 

these last years. Thank you for making me feel that you are always there for me. 

 



vii 

Scientific contributions 

Research articles 

  

Title: Propagation of Hydropeaking Waves in Heterogeneous Aquifers: Effects on Flow 

Topology and Uncertainty Quantification 

Authors: Merchán-Rivera, P.(1), Basilio Hazas, M.(2), Marcolini, G.(3), Chiogna, G.(4) 

Journal: International Journal on Geomathematics (submitted) 

Contributions: (1) conceptualization, data curation, formal analysis, funding acquisition, investigation, 

methodology, software, validation, visualization, and writing - original draft, writing - review & 

editing; (2) conceptualization, data curation, formal analysis, investigation, methodology, writing - 

original draft; (3) conceptualization, data curation, formal analysis, investigation, methodology, 

writing - original draft; (4) conceptualization, methodology, investigation, supervision, project 

administration, writing - original draft, writing – review & editing 

  

  

Title: A Bayesian Framework to Assess and Create Risk Maps of Groundwater Flooding 

Authors: Merchán-Rivera, P.(1), Geist, A.(2), Disse, M.(3), Huang, J.(4), Chiogna, G.(5) 

Journal: Journal of Hydrology (published) 

Contributions: (1) conceptualization, data curation, formal analysis, investigation, methodology, software, 

visualization, and writing - original draft, writing - review & editing; (2) validation, formal analysis, 

investigation, writing - original draft; (3) conceptualization, resources, writing - review & editing, 

supervision; (4) conceptualization, writing – review & editing; (5) conceptualization, methodology, 

project administration, supervision, investigation, writing – review & editing 

  

  

Title: Identifying Stagnation Zones and Reverse Flow Caused by River-Aquifer Interaction: 

An Approach Based on Polynomial Chaos Expansions 

Authors: Merchán-Rivera, P.(1), Wohlmuth, B.(2), Chiogna, G.(3) 

Journal: Water Resources Research (published) 

Contributions: (1) conceptualization, data curation, formal analysis, funding acquisition, investigation, 

methodology, resources, software, validation, visualization, writing - original draft, writing - review 

& editing; (2) conceptualization, formal analysis, methodology, project administration, validation, 

supervision, writing - review & editing; (3) conceptualization, formal analysis, methodology, 

supervision, project administration, writing - original draft, writing – review & editing 

  



viii 

 

  

Title: Surface Water and Groundwater Interaction During Flood Events in the Alz Valley: 

Numerical Modeling and Solute Transport Simulations 

Authors: Merchán-Rivera, P.(1), Chiogna, G.(2), Disse, M.(3), Bhola, P.(4) 

Journal: Agua Subterránea (published) 

Contributions: (1) conceptualization, data curation, formal analysis, funding acquisition, investigation, 

methodology, software, visualization, and writing - original draft, writing - review & editing; (2) 

conceptualization, funding acquisition, investigation, methodology, project administration, 

supervision, investigation, writing – review & editing; (3) resources, supervision, writing - review 

& editing, supervision; (4) data curation, formal analysis, investigation, writing – review & editing 

  

Conferences and talks 

  

Title: Polynomial Chaos Expansions for Identifying Stagnation Zones and Reverse Flow 

Caused by River-Aquifer Interactions 

Authors: Merchán-Rivera, P., Wohlmuth, B., Chiogna, G. 

Event: SIAM Conference on Mathematical and Computational Issues in the Geosciences 

Place and date: Milan (Italy), 23.06.2021 

  

  

Title: Numerical Models: Theory, applications and implementation 

Authors: Merchán-Rivera, P. 

Event: Ministry of Environment of Ecuador 

Place and date: Quito (Ecuador), 23.12.2019 

  

  

Title: Uncertainties due to boundary conditions in predicting mixing in groundwater 

Authors: Chiogna, G., Merchán-Rivera, P., Basilio Hazas, M., Bittner, D., Texeira Parente 

Event: IGSSE Martini Colloquium  

Place and date: Munich (Germany), 08.11.2019 

  

  

Title: Comparative Analysis of Groundwater Modeling Software to Describe the Interaction 

Between Surface Water and Groundwater During Floods 

Authors: Merchán-Rivera, P., Chiogna, G., Disse, M. 

Event: SIAM Conference on Mathematical and Computational Issues in the Geosciences 

Place and date: Houston (USA), 11.03.2019 

  

 



ix 

  

Title: Conceptual and numerical models for groundwater contamination 

Authors: Merchán-Rivera, P. 

Event: Hidrogeocol Ecuador Cía. Ltda,  

Place and date: Quito (Ecuador), 07.11.2018 

  

  

Title: Interaction between surface water and groundwater during flood events 

Authors: Merchán-Rivera, P., Disse, M., Bhola, P., Chiogna, G. 

Event: Ciclo de Conferencias EPN 

Place and date: Quito (Ecuador), 31.10.2018 

  

  

Title: Surface water and groundwater interaction during flood events in the Alz Valley: 

Numerical modeling and solute transport simulations 

Authors: Merchán-Rivera, P., Chiogna, G., Disse, M., Bhola, P. 

Event: XIV Congreso Latinoamericano de Hidrogeología 

Place and date: Salta (Argentina), 23.10.2018 

  

Posters 

  

Title: UNMIX – Uncertainties due to boundary conditions in predicting mixing in groundwater 

Authors: Basilio Hazas, M., Merchán-Rivera, P., Bittner, D., Texeira Parente, M., Mattis, S., 

Wohlmuth, B., Chiogna, G. 

Event: IGSSE Forum 2019 

Place and date: Raitenhaslach (Germany), 25.06.2019 

  

  

Title: Effect of river boundary conditions on groundwater flow and solute transport during a 

flood event 

Authors: Merchán-Rivera, P., Disse, M., Bhola, P., Chiogna, G., 

Event: Annual Doctoral Seminar - Karlsruher Institut für Technologie, TU Dresden, Universität 

Stuttgart, TU München 

Place and date: Saldenburg (Germany), 16.05.2019 

  

 

 

 



x 

  

Title: Effect of river boundary conditions on groundwater flow and solute transport during a 

flood event 

Authors: Merchán-Rivera, P., Disse, M., Bhola, P., Chiogna, G.,  

Event: EGU General Assembly 2019 

Place and date: Vienna (Austria), 08.04.2019 

  

  

Title: Uncertainties predicting subsurface mixing due to river boundary conditions during 

flood events 

Authors: Merchán-Rivera, P. 

Event: TUM-GS Kick-off seminar 

Place and date: Raitenhaslach (Germany), 24.07.2018 

  

 



1 

1 Introduction 

From sanitary functions to the critical role for sustaining the proliferation of life, the 

occurrence, distribution, and movement of water are essential for a plethora of activities and 

processes in the Earth (Dingman, 2015; Ward et al., 2016). It is under this veil that hydrology, 

the science of water, has been developed and, day by day, it receives more attention due to 

the depleting and scarcer water resources. Hydrological systems are composites of 

continuously interrelated elements with dynamics that span within numerous temporal and 

spatial scales. In fact, our conception of the hydrologic systems and our capabilities to manage 

water resources evolve with our knowledge about the interrelation mechanisms of these 

constitutive components. In this line of thought, a growing body of literature recognizes the 

importance of the interactions between surface water and groundwater (Brunner et al., 2017; 

Krause et al., 2014; Lewandowski et al., 2020). It comes with no surprise given their 

significance in a wide range of scientific and engineering subjects, such as ecohydrology, 

water supply, and water quality (Winter, 1998). Aquatic environments depend on the 

relatively stable influx of groundwater that provides water and nutrients (Kløve et al., 2011). 

The water and energy exchange between surface water and groundwater are also important 

for ecosystem restoration due to their effect on the distribution and abundance of microbial 

activity (Arrigoni et al., 2008; Daniluk et al., 2013). Furthermore, the integration of large-

scale interactions of groundwater and surface water bodies can be relevant for the operation 

of water reservoirs (Tian et al., 2018), watershed planning (Khan and Khan, 2019) and the 

assessment and management of flood risk (Abboud et al., 2018). Similarly, due to the dynamic 

interconnection between water bodies, the investigation of contamination and the 

understanding of solute transport often require to explicitly focus on assessing the transfers 

between surface water and groundwater (Andrade et al., 2018; Hintze et al., 2020). Within 

the context of the river-aquifer systems, the transport and fate of solutes and contaminants 

have been major areas of interest and debate (Brunner et al., 2017; Krause et al., 2014). A 

large number of studies explains the possible implications of the interactions between rivers 

and aquifers in the biogeochemical transformations for nutrient cycling and ecosystem 

metabolism (Boano et al., 2014; Boulton et al., 2010; Findlay, 1995; Pinay et al., 2015), and 

it has also been observed that the continuous flux exchange influences the thermal dynamics 
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in rivers and aquifers, which is also related to reactive transformations (Marzadri et al., 2016; 

Master et al., 2005).  

The interaction between rivers and aquifers is a complex matter that happens at different 

spatiotemporal scales that can be affected by the occurrence, magnitude and distribution of 

hydrologic controls and anthropogenic impacts (Ascott et al., 2017; Lewandowski et al., 2019; 

Woessner, 2000). Extreme events, such as groundwater flooding and hydropeaking, can 

modify the usual behavior of the hydrological regime and the dynamics of rivers and aquifers 

(Abboud et al., 2018; Macdonald et al., 2008; Pérez Ciria et al., 2019). Although, there are 

various definitions are used for extreme event in physical sciences, there are some generic 

points of consensus in the interpretation. A natural or anthropogenic event is considered 

extreme when it is unexpected, i.e., when the event was unforeseen, or disruptive, i.e., when 

some process or activity in the evaluated system faces some disorder or upheaval (Coles, 

2001; McPhillips et al., 2018; Sharma et al., 2013). Following the classifications presented in 

McPhillips et al. (2018), groundwater flooding and hydropeaking can be defined as extreme 

events within the context of hazards in earth science and ecological disturbance, respectively. 

On one hand, groundwater flooding occurs when the groundwater rises to the surface level or 

into underground civil infrastructure (Macdonald et al., 2012, 2008) and can yield significant 

economic and social damages and disruptions (Abboud et al., 2018; Colombo et al., 2018; 

Gattinoni and Scesi, 2017; Morris et al., 2018; Oyedele et al., 2009; Yu et al., 2019). On the 

other hand, hydropeaking refers to downstream fluctuations in discharge and water levels 

from the activities of high-head storage hydropower plants (Bruder et al., 2016; Meile et al., 

2011), which can greatly exceed the natural behavior of the hydrological system and modify 

the hydraulic conditions of the streams (Hauer et al., 2017; Meile et al., 2011). Overall, rapid 

fluctuating stages and peak-flow conditions from these extreme events can affect the water 

flux, the residence time of solutes, and flow paths in the subsurface flow (Bernard-Jannin et 

al., 2016; Boano et al., 2013; Malzone et al., 2016a; Singh et al., 2020; Trauth and 

Fleckenstein, 2017; Wu et al., 2018; Ziliotto et al., 2021). For instance, recent findings point 

out the influence of transient conditions and turbulent flow on mixing and transport processes 

in aquifers (Baioni et al., 2021; Singh et al., 2019; Ziliotto et al., 2021). 

Numerical models are frequently used to understand the river-aquifer interactions, in which 

the river stage fluctuations are described as transient boundary conditions in the groundwater 

system (Anderson et al., 2015). Numerical models based on finite-difference or finite-element 

techniques are regularly applied because they allow us to approximate the complex geometry 

of the surface streams (Peyrard et al., 2008). Accordingly, to simulate solute transport and 

reactive solute transport in the subsurface, models solve formulations of the advection-

dispersion-reaction equation using the flow terms computed by the numerical groundwater 

flow models (Bedekar et al., 2016). A frequent concern in this practice is that transport 

simulations can easily become a computationally expensive matter (Lykkegaard et al., 2021; 
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Smith, 2013). For this reason, the characterization of the flow field has become an attractive 

method to identify the origin and fate of fluids and solutes and describe the mechanisms that 

control the dissolution, dissipation, and mixing in the subsurface (Bresciani et al., 2019; 

Hidalgo et al., 2015; Hidalgo and Dentz, 2018; Jiang et al., 2014). For instance, stagnation 

points provide information about the origin and fate of fluids and solutes (Bresciani et al., 

2019) and the location of mixing and highly reactive regions. Multi-directional variations in 

the flow field, such as reverse flow, give insights about the circulation of nutrients (Dudley-

Southern and Binley, 2015), infiltration depth of solutes and reaction rates in the subsurface 

(Trauth and Fleckenstein, 2017). Topological flow properties are a good alternative to the 

solution of the transport problem due to their relation with mixing processes in aquifers 

(Bresciani et al., 2019; de Barros et al., 2012) and porous media (de Anna et al., 2014a; 

Engdahl et al., 2014; Wright et al., 2017). One of them is the Okubo-Weiss metric (Okubo, 

1970; Weiss, 1991) that has been used to describe mixing potential and characterize 

subsurface flow in terms of dominant forces, such as vorticity, shear strain, and normal strain 

(de Barros et al., 2012; Wallace et al., 2021; Wright et al., 2017). 

On top of the physical complexity of hydrological system and the resources required for 

modeling them, there is a chaotic nature in the actual predictive modeling process. 

Uncertainties associated with input data, model parameters, model scale and discretization, 

numerical implementation, and process conceptualization may lead to a poor understanding 

of these systems and, consequently, trigger wrong decisions (Carroll and Carroll, 2006; Smith, 

2013). Besides the fundamental uncertainty from transient properties of the river stage and 

groundwater flow, extreme events, such as the aforementioned, introduce further ambiguity 

in the interpretation of the physical processes and new sources of error (Colombo et al., 2018; 

Hester et al., 2021; Jimenez-Martinez et al., 2015; Ziliotto et al., 2021). The accuracy and 

reliability of measurement devices is compromised during extreme scenarios due to design 

limitations (Mahecha et al., 2017; Saidi et al., 2014). Also, a lack of data is often 

accompanying the study of extreme events because of their inherent disruptiveness or 

unexpected quality (Barker and Haimes, 2009). A quantitative assessment of the uncertainties 

associated to these events is hence essential but also challenging. The challenges have been 

thoroughly acknowledged in the field of hydrology (Brunner et al., 2010; Di Baldassarre and 

Montanari, 2009; Götzinger and Bárdossy, 2008) and probability theory tools to address 

aleatory and epistemic uncertainties have been developed to respond (Beven and Freer, 2001; 

Ghaith and Li, 2020; Merz and Thieken, 2009; Rajabi and Ataie-Ashtiani, 2016; Ross et al., 

2009; Vrugt, 2016). Nevertheless, the effect of the uncertainty in the dynamics of flow, 

transport and mixing in river-aquifer systems in such extreme conditions indeed remains 

broadly unexplored (Deman et al., 2016; Ghaith and Li, 2020; Morris et al., 2018). Precisely, 

research gaps appear due to the lack of investigations that addressed these issues from a 

comprehensive perspective (Morris et al., 2018; Valocchi et al., 2019). Moreover, although 

numerical models have been broadly used for understanding hydrological systems, the proper 
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application of formal stochastic approaches for quantifying model uncertainty and sensitivity 

is not as extensive or rigorous as required (McMillan et al., 2018; Pfister and Kirchner, 2017; 

Saltelli et al., 2019). 

In a nutshell, the previous paragraphs describe two debates that have thrived in parallel in the 

field of hydrology: the discussion about techniques to progress in the mechanistic 

understanding and predictability of the river-aquifer dynamics (Conant et al., 2019; Krause et 

al., 2014), and the development effective methods to characterize the transport and mixing 

processes in aquifers (Chow et al., 2020; Fiori and de Barros, 2015; Valocchi et al., 2019). 

Both of them surrounded by the halo of uncertainty (Brunner et al., 2017; Cirpka and 

Valocchi, 2016; Di Baldassarre and Montanari, 2009; Sanchez-Vila and Fernàndez-Garcia, 

2016; Zhou et al., 2014). The objective of this dissertation is to characterize the uncertainty 

in the groundwater flow and subsurface transport processes due to the river boundary 

conditions during groundwater flooding and hydropeaking events. Also, the research aims to 

create methodological frameworks for the quantification of uncertainty to be applied in 

similar modeling exercises. The research pays special attention in understanding flow field 

features, such as stagnation points, reverse flow and Okubo-Weiss metric, as efficient 

alternatives for quantifying transport process and describe mixing in groundwater. The 

dissertation is divided into four different components and four academic publications were 

written correspondingly, addressing not only assessment and formal quantification of 

uncertainty but also mechanisms of communication of model uncertainty. Along these 

studies, a broad spectrum of sensitivity and uncertainty analysis techniques were evaluated 

and applied, including scenario modeling (Anderson et al., 2015), linear uncertainty analysis 

(Doherty et al., 2010), screening sensitivity analysis (Campolongo et al., 2007; Morris, 1991), 

Bayesian inference (Kaipio and Somersalo, 2005), spectral expansions (Xiu and Karniadakis, 

2002), and discrete projections (Le Maitre and Knio, 2010; Xiu, 2007). While the optimization 

of these methods was beyond the scope of the study, two rationales guided the design and 

construction of the proposed frameworks: non-intrusiveness and reduction of computational 

demand. These motivations imply to work with no solver modifications (i.e., no changes in 

the underlying hydrological model) and to assemble techniques that are efficient for the 

computational demand of typical distributed hydrological models. To make a meaningful 

contribution to research on applied stochastic hydrology, the proposed mechanisms are 

designed to be straightforwardly applied into pre-existing models and similar predictive 

modeling exercises.  

This document has been organized in the following way. Chapter 2 begins by explaining the 

outline and components of the investigation, the interrelation between articles, as well as the 

extreme events of interest and their representations. Chapter 3 presents the theory and 

concepts that support this dissertation. This chapter links the formal representation of the 

governing principles and the emergence of uncertainties in the description of river-aquifer 
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interactions. In addition, the general concepts behind the quantification of uncertainty are 

explained. Chapter 4, 5, 6, and 7 include the four academic papers of the collection. The 

dissertation concludes with Chapter 8, where major findings are restated, and the implications 

of the research outcomes are discussed. To close, the latter also looks at what can be 

investigated in the future. 
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2 Research framework 

2.1 Research scope and research questions 

The practical and theoretical matters of research have been explained and reviewed in the 

previous section but, broadly, we can summarize them in three interconnected subjects (see 

Figure 2.1): 

a) Interaction between rivers and aquifers during extreme events, specifically 

groundwater flooding and hydropeaking 

b) Effect of transient river boundary conditions in the dynamics of flow and transport in 

the subsurface in such extreme environments 

c) Quantification of uncertainty using formal stochastic approaches such as spectral 

expansions and Bayesian methods 

 

Figure 2.1. Graphical representation of the dissertation scope and main addressed subjects 
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Three research question derive from the mentioned three-fold issue and are set to answer as 

part of this dissertation: 

Q1. What is the role of highly transient river boundary conditions during extreme events, 

such as groundwater flooding and hydropeaking, on the responses of the flow and 

transport processes in the subsurface? 

Q2. How can uncertainties during extreme events, such as groundwater flooding and 

hydropeaking, propagate and affect the flow and transport processes in the 

subsurface? 

Q3. How can stochastic approaches be used to identify the spatial distribution and 

temporal variability of relevant flow conditions in the subsurface? 

2.1.1 Research components and specific objectives 

To answer these research questions, the investigations of this dissertation were divided in four 

components, which are associated to different scientific articles. Although every component 

explores each of the research questions at a certain degree, some articles spot them in detail 

and aim to explicitly contribute to answer some specific questions. Figure 2.2 includes a 

summary of these relationships and the sections within the dissertation where they are 

presented. 

2.1.1.1 Groundwater flow and solute transport simulations (Chapter 4) 

The first part of the research was the identification of changes in the solute concentration due 

to the effect of transient river boundary conditions during the flooding event. A three-

dimensional groundwater model was developed to describe the groundwater flow in the 

aquifer of the Alz valley and transport simulations of a conservative solute were performed 

to evaluate the advective and dispersive processes during the flood event. The transport 

simulation involved a single injection of a conservative tracer close to the river. To observe 

the effect of the river boundary conditions, various scenarios were created in which all the 

parameters and hydrologic conditions from the base model were fixed except for the stage 

and the riverbed conductance. In line with Q1 and Q2, the objective of this research 

component was: 

• To identify in a real case model if the temporal dynamics of the river-aquifer 

interactions during groundwater flooding can affect the advective and dispersive 

transport of solutes. 

2.1.1.2 Bayesian inference in groundwater flood risk assessment (Chapter 5) 

The second component aimed to formally quantify and decomposed in spatial and temporal 

terms the sensitivity and uncertainty from the different input variables and parameters that 
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describe the groundwater flooding event. The model used in the previous research was 

updated based on additional observational data. Also, the spatial dimension of the model were 

reduce given that the two-dimensional model structure was sufficient to represent the 

groundwater flow, keeping the same accuracy level and largely improving the computational 

efficiency. Hence, a two-dimensional numerical model was built to describe the event and the 

role of river-aquifer interactions was described as head-dependent flux boundary conditions. 

The elementary effects method and Bayesian inference were coupled for this purpose. The 

DiffeRential Evolution Adaptive Metropolis (DREAM) algorithm was used as Markov Chain 

Monte Carlo technique for the estimation of the predictive distributions of the groundwater 

heads and the estimation of the relevant parameters. The objectives of this study were related 

to Q1 and Q3 and included: 

• To understand the spatial distribution and temporal variability of groundwater flood 

events and the effect of parameter interactions. 

• To identify in probabilistic terms the regions susceptible to groundwater flooding 

acknowledging the uncertainty in the model inputs.  

2.1.1.3 Polynomial chaos expansions to understand flow field dynamics (Chapter 6) 

The third part of this dissertation is the application of polynomial chaos expansions and 

pseudo-spectral discrete collocation to understand the effect of river boundary conditions. In 

this research, a framework was proposed not only for the quantification of the uncertainty but 

also for the identification of stagnation zones and reverse flow caused by the interactions 

between rivers and aquifers in the previously calibrated model. It involves a set of 

classification criteria and kernel density estimations at every element of the numerical models 

for the temporal and spatial mapping of the aforementioned flow features. The result was a 

non-intrusive framework that can be straightforwardly applied in pre-existing models. The 

effect of the uncertain river boundary condition during the flood event is evaluated in a two-

dimensional numerical model and the hotpots of stagnation and reverse flow were identify 

and the influence of the river-aquifer interactions were also identified. This work thoroughly 

addresses Q1, Q2, and Q3. The following are the goals of this research: 

• To map the occurrence of complex flow processes, such as reverse flow and 

stagnation points hotspots, caused by stream-aquifer interactions in terms of temporal 

dynamics and spatial patterns.  

• To quantify the propagation of uncertainty in the groundwater flow field due to the 

uncertain river boundary conditions during a flood event. 
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2.1.1.4 Effect of hydropeaking waves in the flow topology (Chapter 7) 

The last research component of this dissertation was the exploration of uncertainty from 

different hydropeaking waves (i.e., triangular wave, sine wave, complex wave, and 

trapezoidal wave) in heterogeneous aquifers. The wave-shaped highly transient boundary 

conditions were specified as Dirichlet boundary conditions and a series of deterministic and 

stochastic scenarios were built to understand the effects of the wave propagation into 

groundwater flow and the flow topology. A synthetic model was built considering a two-

dimensional unconfined aquifer with one single realization of a lognormal heterogeneous 

isotropic hydraulic conductivity field. Here, once again, the focus of the research was the 

uncertainty related to highly transient river boundary conditions. The Okubo-Weiss metric 

was used as topological descriptor to understand the mechanisms controlling transport of 

solutes in the subsurface and the mixing processes. This work applies polynomial chaos 

expansions to quantify the propagation of the spatiotemporal uncertainty into the hydraulic 

head in the aquifer and the Okubo-Weiss. Therefore, the objectives of this research component 

were aligned as well to Q1, Q2, and Q3 and included: 

• To quantify and map the effect of hydropeaking waves in the groundwater heads and 

the flow field topology described by the Okubo-Weiss metric. 

• To quantify the propagation of uncertainty related to the shape of hydropeaking 

waves in the groundwater heads and the flow field topology described by the Okubo-

Weiss metric. 

Table 2.1 includes the summary of the objectives that were defined for each component of the 

research. Various techniques to understand the river-aquifer systems and the associated 

uncertainties have been revised and used in this dissertation. A brief list of the applied 

methods is included in Table 2.2. A general introduction to these concepts is included in 

Chapter 3 to improve the explanation of the relationships of the interactive variables that are 

part of this research.  
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Figure 2.2. Dependencies between research questions and the dissertation chapters that address 

each of them 
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Chapter Related publication Specific objective 
Addressed research 

question 

Chapter 4.  

Groundwater flow and solute 

transport simulations 

Merchán-Rivera et al. (2018). Surface 

water and groundwater interaction 

during flood events in the Alz Valley: 

Numerical modeling and solute 

transport simulations. 

• To identify in a real case model if the temporal 

dynamics of the river-aquifer interactions during 

groundwater flooding can affect the advective and 

dispersive transport of solutes. 

Q1, Q2 

Chapter 5.  

Bayesian inference in groundwater 

flood risk assessment 

Merchán-Rivera et al. (2022). A 

Bayesian Framework to Assess and 

Create Risk Maps of Groundwater 

Flooding.  

• To understand the spatial distribution and temporal 

variability of groundwater flood events and the 

effect of parameter interactions. 

• To identify in probabilistic terms the regions 

susceptible to groundwater flooding acknowledging 

the uncertainty in the model inputs. 

Q2, Q3 

Chapter 6.  

Polynomial chaos expansions for 

flow field dynamics 

Merchán-Rivera et al. (2021). 

Identifying Stagnation Zones and 

Reverse Flow Caused by River‐

Aquifer Interaction: An Approach 

Based on Polynomial Chaos 

Expansions. 

• To map the occurrence of complex flow processes, 

such as reverse flow and stagnation points hotspots, 

caused by stream-aquifer interactions in terms of 

temporal dynamics and spatial patterns.  

• To quantify the propagation of uncertainty in the 

groundwater flow field due to the uncertain river 

boundary conditions during a flood event 

Q1, Q2, Q3 

Chapter 7.  

Hydropeaking waves and flow 

topology 

Merchán-Rivera et al. (2022) 

Propagation of Hydropeaking Waves 

in Heterogeneous Aquifers: Effects on 

Flow Topology and Uncertainty 

Quantification. 

• To quantify and map the effect of hydropeaking 

waves in the groundwater heads and the flow field 

topology described by the Okubo-Weiss metric. 

• To quantify the propagation of uncertainty related 

to the shape of hydropeaking waves in the 

groundwater heads and the flow field topology 

described by the Okubo-Weiss metric. 

Q1, Q2, Q3 

Table 2.1. Specific objectives of the research components of the dissertation and the associated research questions 
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Chapter Keywords Summary of applied methods 

Chapter 4.  

Groundwater flow and solute 

transport simulations 

surface water-groundwater 

interaction, flooding, solute 

transport, river boundary 

conditions 

• Deterministic scenario analysis  

• 3D groundwater modeling with MODFLOW-2005 (Harbaugh, 2005) 

• Advective-dispersive transport modeling with MT3DMS (Zheng and Wang, 1999) 

• Parameter Estimation and Uncertainty Analysis with PEST (Doherty et al., 2010) 

Chapter 5.  

Bayesian inference in groundwater 

flood risk assessment 

groundwater flooding, Bayesian 

inversion, probability maps, flood 

risk, sensitivity analysis, 

uncertainty quantification 

• Probabilistic risk assessment 

• 2D groundwater modeling with MODFLOW-2005 (Harbaugh, 2005) 

• Elementary effects method (Campolongo et al., 2007; Morris, 1991) 

• Bayesian inversion using DREAM algorithm (Vrugt, 2016) 

• Kernel density estimation (Silverman, 1998) 

Chapter 6.  

Polynomial chaos expansions for 

flow field dynamics 

stagnation points, reverse flow, 

surface water-groundwater 

interaction, polynomial chaos 

expansions, probability maps, 

uncertainty quantification 

• 2D groundwater modeling with MODFLOW-2005 (Harbaugh, 2005) 

• Polynomial chaos expansions (Xiu, 2010; Xiu and Karniadakis, 2002) 

• Pseudo-spectral collocation approach (Xiu, 2007) 

• Development of flow criteria classification 

• Kernel density estimation (Silverman, 1998) 

• Quasi-Monte Carlo sampling (Halton, 1964) 

Chapter 7.  

Hydropeaking waves and flow 

topology 

uncertainty quantification, 

hydropeaking, flow field topology, 

Okubo-Weiss, periodic waves 

• Deterministic and stochastic scenario modeling 

• 2D groundwater modeling with MODFLOW-2005 (Harbaugh, 2005) 

• Polynomial chaos expansions (Xiu, 2010; Xiu and Karniadakis, 2002) 

• Pseudo-spectral collocation approach (Xiu, 2007) 

• Okubo-Weiss metrics (Okubo, 1970; Weiss, 1991) 

Table 2.2. Description of methodological contents of the articles 
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2.2 Extreme events of interest 

This dissertation addresses two types of extreme events: groundwater flooding and 

hydropeaking. As mentioned in the introduction, while groundwater flooding can be defined 

as extreme events unexpected occurrence and hazard, hydropeaking is an extreme event for 

the associated ecological disturbance. A primary inclusion criterion for these events was the 

associated disruptive fluctuations of the stream stages, which can be represented as river 

boundary conditions in a numerical model. Groundwater flooding and hydropeaking are 

occasionally referred as extreme events along this dissertation for simplicity. 

2.2.1 Groundwater flooding 

Groundwater flooding occurs when groundwater rises above the ground surface or into 

underground civil infrastructure (Macdonald et al., 2012, 2008). It can yield to a flood hazard 

and produce significant economic and social damages (Abboud et al., 2018; Colombo et al., 

2018; Gattinoni and Scesi, 2017; Morris et al., 2018; Oyedele et al., 2009; Yu et al., 2019). 

The elements that define the severity and duration of groundwater floods differ from other 

type of events. For instance, fluvial and pluvial floods can occur due to short and intense 

climatic conditions, such as storm events. In contrast, groundwater floods can occur due to 

the accumulation of water in the subsurface over long periods of time and, therefore, they 

often require different approaches for identification, assessment and mitigation (Kreibich et 

al., 2009; McKenzie et al., 2010; Yu et al., 2019). Previous studies have shown that the high 

stage of rivers can cause groundwater flooding due to the propagation of the wave and the 

rapid rising of the groundwater table (Abboud et al., 2018; Joo and Tian, 2021) and, 

consequently, affect the flow field at the meter-scale (Cardenas, 2008; Woessner, 2000). 

Figure 2.3 explains the interactions between surface water and groundwater and their effects 

on the occurrence of groundwater flooding.  
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Figure 2.3. Schematics of a groundwater flooding in a river valley. River stage effects in the wave 

propagation in the aquifer. Groundwater flooding events can be prompted by the accumulation of 

water in the aquifer as well as by rainfall events.   

The analysis of this type of event is introduced in this work by studying a real case occurred 

in the valley of the Alz River located in southeastern Bavaria, Germany. In May and June 

2013 the region was affected by heavy rainfall events that yield flood events and several 

property damages were reported due to the rise of groundwater into basements and 

underground infrastructure (Disse et al., 2015; Keilholz et al., 2015). Figure 2.4 presents a 

map of the study area and some of the most relevant morphological and hydraulic features of 

the zone.  

 

Figure 2.4. Study area. Valley of the Alz River. 
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2.2.2 Hydropeaking  

Energy demand increases rapidly around the world and hydropower plants provide is the most 

common source of renewable energy (BP p.l.c., 2021). Water from reservoirs is released to 

flows through turbines and generate energy, which produces frequent and short-term 

variations in discharge and water levels known as hydropeaking (Bruder et al., 2016; Chiogna 

et al., 2018). Figure 2.5 includes a graphical representation of hydropeaking. Various studies 

have assessed hydropeaking and explore the relationships between the affected rivers and the 

aquifers (Francis et al., 2010; Singh et al., 2019; Song et al., 2020). The hydropeaking  

fluctuations can significantly exceed the natural behavior of the hydrological regimes and 

modify the hydraulic conditions of the streams (Hauer et al., 2017; Meile et al., 2011) and 

mixing and transport processes in aquifers (Singh et al., 2019; Ziliotto et al., 2021).  

 

 

Figure 2.5. Graphical representation of hydropeaking. The operation of the hydropower plants 

depends on the electricity demand. Water is released from the reservoirs according to the demand 

leading to fluctuating discharges and water levels in the rivers. 

In this research, a synthetic case is constructed to represent the transient river stage using river 

boundary conditions and the uncertainty associated to the peak amplitude and temporal 

occurrence of the event is evaluated. The fluctuating boundary conditions are built on the 

basis of real hydropeaking scenarios occurred in numerous catchments around the world (e.g., 

the Adige catchment in Italy and the Colorado catchment in the United States), and include: 

a triangular wave, a sine wave, a complex wave (built by the superposition of two sine waves), 

and a trapezoidal wave (Chiogna et al., 2018; Ferencz et al., 2019; Li and Pasternack, 2021; 

Sawyer et al., 2009).  
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3 Governing principles and uncertainty 

This chapter introduces some of the fundamental concepts that govern the saturated fluid flow 

and transport of solutes in the subsurface and the corresponding mathematical representations. 

The components of these representations are analyzed first from the mathematical notion and 

then from the practical point of view. Since the physical principles that control the river-

aquifer interactions cannot be entirely denoted by assigning mathematical interpretations, this 

section is hereafter to highlight the propagation of the uncertainty into the groundwater flow 

field and the ambiguous character of the predictive process.  

3.1 Groundwater flow model and solute transport 

Flow in a porous medium can be described by Darcy’s law (Darcy, 1856)   

𝑞 = 𝐊 ⋅ ∇ℎ  , Eq. 3.1 

where 𝑞 = (𝑞𝑥, 𝑞𝑦, 𝑞𝑧) is a vector of the specific discharge (i.e., Darcy velocity), 𝐊 is the 

second-order tensor of hydraulic conductivity, and ∇ℎ  is the gradient of hydraulic head. 

Hence, the transient groundwater flow can be described by a differential equation  

𝑆𝑠

𝜕ℎ

𝜕𝑡
± 𝑊 = ∇ ⋅ 𝑞 , Eq. 3.2 
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where 𝑆𝑠 the specific storage, 𝑡 is the time, and 𝑊 describes the volumetric flux from source 

and sink terms (Bear, 1972; Fetter, 1999).  

Similar to the fluid flow equations, the mass transport in groundwater can be described by 

partial differential equations. The concentration of 𝑁 reactive species 𝑐𝑛 is given by  

𝜕𝑐𝑛

𝜕𝑡
= −∇ ⋅ 𝐽𝑛 ± 𝑅𝑛(𝑐1, … , 𝑐𝑁)  , 𝑛 = 1,… ,𝑁  , Eq. 3.3 

where 𝑅𝑛 represent chemical reactions (i.e., transformation, retardation or attenuation), and 

𝐽𝑛 are mass fluxes given by dispersive and advective processes to be 

𝐽𝑛 = −𝐷∇𝑐𝑛 +
𝑞

𝜂𝑒
𝑐𝑛  , Eq. 3.4 

with 𝐷 = (𝐷𝑥, 𝐷𝑦, 𝐷𝑧) being the hydrodynamic dispersion coefficient vector that involves 

molecular diffusion and mechanical dispersion (longitudinal and transverse), and 𝜂𝑒 denoting 

the effective porosity (Fetter et al., 2017). For a three-dimensional flow parallel to the 𝑥 axis, 

the longitudinal hydrodynamic dispersion coefficient is 

𝐷𝑥 = 𝛼𝐿
(𝑥)

𝑣𝑥 + 𝐷∗,  Eq. 3.5 

and the transverse hydrodynamic dispersion coefficients are 

𝐷𝑦 = 𝛼𝑇 
(𝑦)

𝑣𝑥 + 𝐷∗, 𝐷𝑧 = 𝛼𝑇
(𝑧)

𝑣𝑥 + 𝐷∗ Eq. 3.6 
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where 𝛼𝐿
(𝑥)

 is the dynamic dispersivity in the 𝑥 direction, 𝛼𝑇 
(𝑦)

 and 𝛼𝑇
(𝑧)

 are respectively the 

dynamic dispersivity in the 𝑦 and 𝑧 directions, 𝑣𝑥 = 𝑞𝑥/𝜂𝑒 is the average linear velocity in 

the 𝑥 direction, and 𝐷∗ is the effective diffusion coefficient (Fetter et al., 2017; Kitanidis and 

McCarty, 2012).    

The heterogeneous nature of the porous material comprises fundamental uncertainty in 𝑆𝑠, 𝐊, 

𝜂𝑒, and 𝐷. But also, uncertainties can propagate from the representation of rivers because, to 

solve Eq. 3.2 as a boundary value problem, we need to impose information about ℎ and/or 𝑞 

along the boundaries Γ of the model domain. The representation of river-aquifer interactions 

and the associated uncertainties are discussed immediately below. 

3.2 Boundary conditions and the representation of rivers 

The interaction between rivers and streams can be described by various types of boundary 

conditions. The choice of boundary type and its characterization depends on the contact 

between aquifer and the river (Carabin and Dassargues, 2000) and have important effects in 

the model solution (Franke et al., 1987). This is significant for river boundary conditions and 

the regions close to the boundaries because, as exposed in the introduction of this document, 

they are frequently regions of hydrological, ecological and biogeochemical relevance.  

The first-type is the Dirichlet boundary Γ𝐷 , when the boundary imposes a value to the 

dependent variable (Liu, 2018). This means it is used to directly define the hydraulic heads ℎ 

[L] from the elevation of the water level in the river on the groundwater system, so that 

ℎ = 𝑔(𝑡, 𝑠) , 𝑡, 𝑠 ∈ Γ𝐷 ,   Eq. 3.7 

being ℎ the groundwater head, 𝑔(𝑡, 𝑠) a continuous function and {𝑡, 𝑠} are the spatiotemporal 

dependencies.  

Neumann boundary conditions Γ𝑁, also known as second-type, entails that the derivative of 

the dependent variable is known (Cheng and Cheng, 2005). Mathematically, it can be 

represented by 
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𝜕ℎ

𝜕𝑛
= 𝑔(𝑡, 𝑠) , 𝑡, 𝑠 ∈ Γ𝑁  ,   Eq. 3.8 

where 𝑛 is the outward normal of the boundary. In practical terms, the normal derivative of 

the head relates to the concept of Darcy velocity, being 𝜕ℎ/𝜕𝑛 = 𝑞 [LT-1]. Hence, this type 

of boundary condition is used to define a known specific discharge in or out of the system. 

The third-type of boundary conditions Γ𝑅, known as Robin boundary condition1, is a linear 

combination of Dirichlet and Neumann conditions (Jazayeri and Werner, 2019; Liu, 2018),  

𝜕ℎ

𝜕𝑛
+ 𝜔ℎ = 𝑔(𝑡, 𝑠) , 𝑡, 𝑠 ∈ Γ𝑅 ,  Eq. 3.9 

being 𝜔 a non-zero constant weight factor. Eq. 3.9 raises once again the notion of Darcy Law 

and brings up the formulation of the conductance of the riverbed material (also referred as 

leakage coefficient). Let 𝑔(𝑡, 𝑠) have the explicit value 𝜔ℎ𝑟, to express the volumetric flux 

𝑞𝑣 [L3T-1] as 

𝑞𝑣 = −𝜔ℎ + 𝜔ℎ𝑟 , Eq. 3.10 

 

 

 

1 A common misconception in the field of hydrogeology is the notion of the third-type as Cauchy boundary conditions. Cauchy 

boundary conditions refer to imposing both Dirichlet and Neumann boundary conditions simultaneously. Hence, the function 

𝑓(𝑡, 𝑠) and the normal derivative 𝜕ℎ/𝜕𝑛 must be specified. The reader can find a more extensive treatment of this topic in 

Jazayeri and Werner (2019) and Liu (2018). 
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where ℎ𝑟 is a reference hydraulic head. The weighting factor can be used to represent the 

riverbed conductance, such that 𝜔 ≔ 𝑐𝑟. Given that 𝑐𝑟 = −𝐾𝑟𝐴/𝐿 [L2T-1] (Harbaugh, 2005), 

Eq. 3.10 yields 

𝑞𝑣 = 𝑐𝑟(ℎ − ℎ𝑟) = −
𝑘𝑟𝐴

𝐿
(ℎ − ℎ𝑟) , Eq. 3.11 

where 𝑘𝑟 is the hydraulic conductivity of the riverbed [LT-1], 𝐴 is the cross-sectional area 

[L2], and 𝐿 is the length between the two hydraulic heads [L]. This boundary condition is 

broadly used for the description of rivers and surface water bodies because one can describe 

the flux 𝑞𝑣 as a function of an imposed head ℎ.   

3.3 The emergence of uncertainty 

Dirichlet and Neumann boundary conditions face similar limitations for the practical 

implementation. The application of Dirichlet boundary conditions (Eq. 3.7) to represent rivers 

requires to assume strong connectivity between surface water and groundwater and stable 

flow rates despite groundwater fluctuations (Bear, 2012). Rapid or frequent variations in the 

river stage requires to use short intervals and, therefore, numerous time steps (Dassargues, 

2020). In practice, water level data is not always available in such short intervals and readings 

are spatially scatter. Likewise, data related to groundwater table are usually sparse for a 

comprehensive characterization (Bresciani et al., 2016). Therefore, to apply hydrometric 

information normally a preprocessing exercise is required, which poses new sources of error 

and discrepancies. To properly apply Neumann boundary conditions, we require information 

related to Darcy velocity, which is uncommon. Direct methods to estimate groundwater 

velocity in the field are rarely available. Tracer tests are the most common approach for 

measuring the velocity in the field but they are still limited by the cost, labor and time 

requirements (Essouayed et al., 2019). In addition, any point measurement to understand the 

flux between rivers and aquifers is an incomplete image of the flow field because the flux is 

scale-dependent and multi-directional (Cardenas, 2015), as well as driven by the spatial 

variability in the riverbed material and the aquifer (McCallum et al., 2014). In consequence, 

Neumann boundary conditions are normally used in the determination of the prescribed flux 

from injection and extraction wells, but they are not commonly used to represent river-aquifer 

exchanges.  
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Robin boundary conditions are a popular approach to represent the interaction between rivers 

and aquifers in coupled surface water-groundwater models. The strength of this representation 

is that one can incorporate the dynamics of the river although they fall outside the model 

domain and define the boundary as a semipervious media. This means that it is possible to 

directly coupled the groundwater domain with a hydraulic model and reduce the assumptions 

that are required in Dirichlet boundary conditions. But these variations in the conceptual 

simplifications does not avoid uncertainty. First, hydraulic models contain their own 

ambiguity for the calculation of flow, water level and velocity in rivers due to uncertainties 

and errors in the hydraulic inputs, hydraulic geometry, numerical implementation and 

measurements (Di Baldassarre and Montanari, 2009; Mohd Anuar et al., 2022; Pappenberger 

et al., 2006). Second, when imposing Robin boundary conditions, a new source of uncertainty 

is the hydraulic conductivity of the riverbed material. As shown in Eq. 3.11, the concept is 

often simplified as the riverbed conductance 𝑐𝑟 (Harbaugh, 2005). It is a lumped parameter 

that requires a series of assumptions related to the river-aquifer hydraulic connection and the 

discretization of the system that can lead to errors and model discrepancies (Brunner et al., 

2010). Similar and more sophisticated conceptualizations of the conductivity properties of the 

riverbed are included in other models, e.g., MIKE SHE (DHI, 2017, 2013) and 

HydroGeoSphere (Aquanty Inc., 2015). Nevertheless, no matter which type of 

conceptualization is applied, the flawless definition of the hydraulic conductivity properties 

of the riverbed and the river-aquifer exchange flux is infeasible. Both the conductivity and 

the reference head (see Eq. 3.11) vary in space and time. Indeed, the properties of the riverbed 

material may differ by several orders of magnitude from the properties of the underlying 

aquifer (Leek et al., 2009; Tang et al., 2017) and involve unknown preferential flow paths 

(Anderson et al., 2015). On top of this, field measurements of the hydraulic conductivity of 

the riverbed are sparse and complex to obtain and estimate (Ghysels et al., 2019; Tang et al., 

2015).  

The estimation of transport processes in the subsurface is also affected by the definition of 

boundary conditions in the flow model. The propagation of uncertainties is rather obvious in 

the advective transport (represented by the second term in the righthand side of Eq. 3.4). It 

describes the bulk motion of dissolved solids carried along with the groundwater flow (Fetter, 

1999) and it is thus conditioned by the discharge 𝑞  and the head gradients ∇ℎ  and their 

uncertainties. But also, the hydrodynamic dispersion 𝐷 (see Eq. 3.4) is a function of flow 

direction and magnitude (Dutta, 2013; Fetter, 1999). Flow field direction in the aquifer can 

be largely affected by the interaction of multiple surface water bodies, e.g., the confluence of 

two rivers or the two sections in a meandering stream. In addition, there is uncertainty due to 

the difference between the scale of the physical process to be modeled and the actual model. 

For instance, the motion of particles occurs in smaller scales than the numerical grid used for 

transport simulations. Moreover, the representation of spatial and temporal distribution of the 
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hydraulic and climatic features in the model will contain discrepancies, independent of the 

chosen discretization method. The motion of the fluid is mathematically described as a vector 

flow field, and solutes descriptors (e.g., concentration) are described with scalar fields 

(Chapman, 1981). This means that we associate a value to every discrete element of a domain, 

which partially captures the physical space of the aquifer, at a very discrete time step, which 

partially captures the temporal complexity. Hence, the accuracy of the flow field solutions is 

associated to the spatial and temporal resolutions (Roache, 1997), which is extremely 

significant when dealing with highly transient river boundary conditions. Although, the notion 

of improving the accuracy with high grid resolutions and temporal scale is often desirable, it 

becomes rapidly impractical in applied hydrological models. 

3.4 Uncertainty quantification 

To summarize what was described in the previous section, the description of the river-aquifer 

interactions is affected by experimental uncertainties, model and input uncertainties, and 

numerical errors. In general terms, the uncertainties described in the previous paragraph can 

be described as epistemic or aleatory (Smith, 2013). While epistemic uncertainty refers to the 

lack of knowledge, aleatory uncertainty refers to inherent to a variable problem or experiment 

(Sullivan, 2015). The way we address the modeling problem can vary but, generally, it can be 

classified within one of these two categories: deterministic and stochastic. The deterministic 

approach provides one solution to the partial differential equations (e.g., Eq. 3.2 and Eq. 3.3). 

Hence, there is a critical assumption that considers that the system and its variables are well-

known and they will have one specific value at a given time and space (Fetter et al., 2017). 

This is rather negative for modeling extreme events because the disruptive and unanticipated 

values characteristics of the events can easily be misestimated. On the other hand, stochastic 

approaches involve randomness. They have become popular in the study of hydrologic 

systems that are governed by complex interactions and limited observable variables (Beven, 

2016; Sivakumar, 2017). In particular, the methods that include stochasticity are pivotal for 

this dissertation because they can produce random images of the river-aquifer systems with 

enough flexibility to reasonably estimate the statistics of extreme conditions. 

As the name suggests, any predictive estimation process compromises a series of actions to 

predict or anticipate some system responses. The process may contain several activities, such 

as input representation, sensitivity analysis, uncertainty quantification, parameter estimation, 

model calibration, and surrogate modeling. Nevertheless, the main driving forces are 

frequently model calibration and uncertainty quantification (Smith, 2013). The quantification 

of uncertainty often involves the reformulation of epistemic uncertainties as aleatoric 

uncertainties with the aim of analyzing them in probabilistic terms (Rocchetta et al., 2018; 
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Smith, 2013). The next lines formally explain the general approach followed in this 

dissertation to represent the process of uncertainty quantification.  

The hydrological problems can be represented as forward process, in which a model 𝑓 

receives a set of inputs {𝑡, 𝑠} to determine a corresponding output 𝑦 to be 

𝑦 = 𝑓(𝑡, 𝑠). Eq. 3.12 

To introduce the uncertain components of the model (i.e., input variables and parameters), we 

can consider the representation of the output as a function of 𝑑 random variables on the 

probability space (Ω, ℱ, 𝑃) where Ω is a sample space, ℱ is a 𝜎-field, and 𝑃 is a probability 

measure. Therefore, 𝑦 is a function of a random vector 𝚽(𝜑) = [Φ1(𝜑), … ,Φ𝑑(𝜑)]: Ω →

ℝ𝑑 and some deterministic spatiotemporal dependencies {𝑡, 𝑠} with finite temporal horizon 

𝑡 ∈ [0, 𝑇] within the spatial domain 𝒟 ⊂ ℝ, such that, 

𝑦 ≔ 𝑓(𝑡, 𝑠; 𝜑). Eq. 3.13 

We obtain hence a random process 𝑢(𝑡, 𝑠,𝚽(𝜑)): [0, 𝑇] × 𝒟 × Ω → ℝ with a finite variance, 

where the multiple random variables Φ1(𝜑),… ,Φ𝑑(𝜑) represent the stochasticity of the 

system due to uncertainty parameters, source terms, initial or boundary conditions. Then, if 

we consider that the uncertain inputs are mutually independent random variables, the input 

variables of the river boundary conditions can be represented within the joint probability 

distribution 𝜌𝚽(𝜑), so that 

𝜌𝚽(𝜑) = ∏𝜌Φ𝑖
(𝜑𝑖)

𝑑

𝑖=1

. Eq. 3.14 



24 

This work employs two different types of univariate distributions to describe the uncertain 

inputs, which are also commonly applied in modeling exercises in hydrology. The first is the 

normal distribution 𝒩(𝜇, 𝜎) with probability density function  

𝑓Φ𝑖
(𝜑) =

1

𝜎√2𝜋
𝑒−(𝜑−𝜇)2/2𝜎2

, −∞ < 𝜑 < ∞, Eq. 3.15 

where 𝜇 denotes the mean and 𝜎 denotes the standard deviation. The second is the continuous 

uniform distribution 𝒰(𝑎, 𝑏) distributed in the interval [𝑎, 𝑏] and probability density function 

being  

𝑓Φ𝑖
(𝜑) =

1

𝑏 − 𝑎
𝜒[𝑎,𝑏](𝜑), Eq. 3.16 

where 𝜒 represents the unity of the interval [𝑎, 𝑏] (Smith, 2013). 

One of the main drivers of uncertainty quantification will then be to determine the propagation 

of randomness from the inputs 𝚽  to find the push-forward distribution (Kurowicka and 

Cooke, 2006; Texeira Parente, 2020) of the output of interest (e.g., ℎ, 𝑞 and 𝐶𝑛 in Eq. 3.2 and 

Eq. 3.3).  and obtain the statistical moments or quantity of interest 𝑄(𝚽), such as the expected 

value and standard deviation. This process is summarized in Figure 3.1. 

 

Figure 3.1. Illustration of the setup for the uncertainty quantification process 
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The components of this dissertation propose a series of schemes with various stochastic 

techniques to formally propagate the uncertainties through the models. Deterministic 

modeling is also used to understand the modeled systems and to create a base line for further 

work (Chapter 4). The most relevant stochastic techniques in the dissertation are those suitable 

for nonlinear problems and can be classified into two major groups: sampling methods, such 

as quasi-Monte Carlo sampling and Bayesian inference with Markov Chain Monte Carlo 

(Chapter 5), and spectral representations, such as polynomial chaos expansions (Chapter 6 

and 7). The reader is hence referred to the corresponding article for further detail in the theory 

and specific notions about the application of the stochastic methods.  
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4 Groundwater flow and solute transport models  

Abstract 

Extreme river stage fluctuations occurring during flood events can greatly influence the 

dynamic of groundwater flow and the interactions between streams and aquifers. In 

groundwater models, extreme events represent a transient state in the boundary conditions 

which may affect groundwater flow and transport of solutes. The objective of this research is 

to understand the influence of river boundary conditions in the interaction between surface 

water and groundwater during a flood event based on a case study (Alz River, Germany). For 

describing the groundwater responses under flood conditions, we used MODFLOW-2005 to 

develop a three-dimensional groundwater numerical model and MT3DMS to simulate the 

advective and dispersive solute transport. We simulate four additional scenarios to evaluate 

the influence of the river stage and the riverbed conductance in the groundwater flow and the 

solute transport. Strong interrelationships were observed between the aquifer and the streams 

during the simulation period. Changes in both velocity of groundwater flow and hydraulic 

gradient were detected at different phases of the flood event. The transport simulations 

showed timing differences in the solute concentrations, giving evidence that the river 

boundary conditions control the aquifer responses. These responses vary in space and time 

and affect the transport and concentration of solutes plumes. 

 

 

 

 

 

 

Material from: 

Merchán-Rivera, P., Chiogna, G., Disse, M., Bhola, P., 2018. Surface water and groundwater interaction during 

flood events in the Alz Valley: Numerical modeling and solute transport simulations, in: Agua Subterránea. XIV 

Congreso Latinoamericano de Hidrogeología, Salta, Argentina. ISBN: 978-987-633-536-2. 
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4.1 Introduction 

Interactions between surface water and groundwater (SW-GW) vary at multiple spatial and 

temporal scales (Boano et al., 2014; Cardenas, 2008; Schmadel et al., 2016) and occur in 

nearly all landscapes, from small streams, lakes and wetlands to major river valleys and 

seacoasts (Brunner et al., 2017; Castagna et al., 2015; Winter, 1999). These interactions are 

important for the management of water resources and the understanding the fate and transport 

of solutes. However, the mechanisms behind the interactions are complex and dynamic due 

to geomorphologic, hydrogeologic, and climate controls (Sophocleous, 2002). The physical, 

chemical and biological mechanisms which intervene in the migration, degradation and 

remediation of contaminants may be highly affected by these interrelationships (Derx et al., 

2010; Jaffe and Kaplan, 2017; Lamontagne et al., 2018).  

Extreme events, such as floods or droughts, can greatly influence the dynamic of groundwater 

flow fields and the interrelationships between streams and groundwater (Liang et al., 2018; 

Morris et al., 2018). Major floods may dramatically change the spatial extent of hyporheic 

zone and the direction of subsurface flow paths (Wondzell and Swanson, 1999) and induce 

both pressure and solute movement into aquifers at different scales (Welch et al., 2013). 

Moreover, the SW-GW interactions may influence groundwater flooding (Abboud et al., 

2018), which are often associated with shallow unconsolidated sedimentary aquifers. These 

aquifers are susceptible due to the high permeability of the sediments and the high hydraulic 

connectivity with adjacent river networks (Macdonald et al., 2008).  

Flood events are normally characterized by the peak of flow rate, flood elevation, flood 

volume or flood duration (Raudkivi, 2014), representing transient states in the boundary 

conditions affecting the water and solute exchange between surface water and groundwater 

(Brunner et al., 2010; Sophocleous, 2002). Considering that one approach for understanding 

the responses induced by transient river stages is the use of numerical models (Liang et al., 

2018), we used MODFLOW-2005 (Harbaugh, 2005) to develop a three-dimensional (3D) 

numerical model of the aquifer in the valley at the Alz River, where a flood event was 

registered in 2013. Groundwater flow and advective and dispersive transport of solutes were 

also simulated, including four additional scenarios varying river stage and the riverbed 

conductance. Our aim is to evaluate the impact of river boundary conditions on the SW-GW 

interaction during flood events and to investigate the effect in the transport of solutes. 
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4.2 Methods 

4.2.1 Site description and dataset  

The study area is the Alz valley (Figure 4.1) located in the municipality of Tacherting that is 

situated in the District of Traunstein, Germany. One of the main features of this village is the 

Alz River, which borders the eastern edge of the village. It originates in the south from the 

Chiemsee Lake and falls into the Inn River in the north 63 km downstream. An artificial 

waterway, the Alz canal, is situated in the southwest of the study area, and it was constructed 

in order to reroute the water of the Alz to generate electricity through the run-of-river 

operation. The heavy rainfall at the end of May and the beginning of June 2013 caused great 

damage in the municipality of Tacherting. The rising water levels and velocities of the 

streams, and the elevated groundwater levels produced damage to buildings, particularly, due 

to the seepage of groundwater (Disse et al., 2015).  

The starting point of this study is a pre-existing hydrological model developed by Keilholz et 

al. (2015). This model was developed using MIKE SHE (DHI, 2017) for evaluating the 

dynamics of the hydrological processes of the flood event. We used the model results and 

dataset of this research to define the time-variant hydraulic heads and the distribution and the 

rate of infiltration in our model.  

4.2.2 Groundwater flow numerical model  

The simulation of the groundwater flow was performed using MODFLOW-2005 (Harbaugh, 

2005) as code for solving the finite-difference flow model, and Processing Modflow version 

8.0 (Chiang, 2012) as the graphical user interface. The system was subdivided spatially into 

a finite difference grid of rectangular cells, consisting of eight layers of variable dimensions, 

220 rows (5 m each one) and 300 columns (5 m each one). The extension of the modeled area 

is 1500 m from west to east, and 1100 m form south to north. The model grid encompasses 

528000 grid cells, of which 358144 are actively simulated. The discretization in time is 

established to aim a transient simulation since the solution of the problem is assumed to be 

time dependent. Therefore, a period of 37 days is divided into 148 stress periods of six hours 

each. The model domain is delineated based on the surface topography and geological 

characteristics, which act as physical boundaries and cells out of the perimeter were defined 

as inactive cells. The bottom of the aquifer (at the bottom of layer 8) is at an elevation of 435 

m a.s.l. (above the sea level) (Figure 4.1). The elevations of confining layers were determined 

from existing geological studies of the region (Bayerisches Landesamt für Umwelt, 2017; 

Doppler et al., 2011; Traub, 1975). 
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Figure 4.1. Study area and numerical model setup (map source from Google Earth, 2017) 

The setup of the model was done by specifying the aquifer properties, which are the horizontal 

hydraulic conductivity (HK), vertical hydraulic conductivity (VK), specific yield (SY), and 

specific storage (SS). To extract the concentration changes from the transport simulation, we 

placed three concentration observation points (OB_1, OB_2 and OB_3) in the model (Figure 

4.1). Three MODFLOW packages are used to represent the boundary conditions of the model: 

the time-variant specified head package (CDH) in the north, west and south part of the model; 

the river package (RIV) to include the effects of flow between the river and the groundwater 

regime; and the recharge package (RCH) to simulate specified flux distributed over the top of 

the model due to infiltration. The stages of both river and canal were obtained interpolating a 

set of scatter points through the ordinary kriging method with spherical variogram model 

using ArcGIS (Esri, 2017). 

The calibration of the model was done by comparison of the modeled values and observed 

values of the groundwater head from three monitoring wells: Alzpitz, B1, and B3. The model 

was calibrated combining manual matching and the regularized inversion process of the 

parameter estimation code PEST (Doherty, 2010). A supplementary division for the riverbed 

conductance was done based on the different condition of the natural stream (Alz River) and 

the artificial canal (Alz canal). Therefore, the parameters included in the calibration were: 



30 

HKSA, HKSB, and HKSC (horizontal hydraulic conductivity according to the soil type); 

VKSA, VKSB, and VKSC (vertical hydraulic conductivities according to the soil type); SS; 

SY; RCR (riverbed conductance); and, RCC1 and RCC2 (streambed conductance of the 

canal). Heterogeneous hydraulic conductivity fields were generated for both horizontal and 

vertical hydraulic conductivity and were applied in each layer for stochastic modeling using 

the Field Generator of Processing Modflow version 8.0 (Chiang, 2012). The heterogeneity 

fields are also subdivided according to the three different soil types in the area: younger 

terraces of sand and gravel (SA), alluvial sand, gravel and marl (SB), and gravel (SC). They 

are assumed to be lognormally distributed with a standard deviation (log10) of 0.5 and a 

correlation length (log10) along both rows and columns of 0.1 (the mean values for each soil 

type are detailed below in the Results section). The parameters were calibrated until the model 

reached a mean Nash–Sutcliffe coefficient of efficiency and a Pearson correlation coefficient 

higher than 0.80. 

To broadly analyze the influence of river boundary conditions and the sensitivity of the 

parameters, we performed a series of simulation of scenarios. Four scenarios were executed 

as a forward run varying the riverbed conductance and the river stage. The rest of the model 

parameters (HKSA, HKSB, HKSC, VKSA, VKSB, VKSC, SS and SY) were retained 

constant, using the values from the calibrated model. The scenarios were executed considering 

variations of ±15% in the water level of the river (as percentage of the height between the 

water level of the stream and the top of the streambed), and variations ±50% in the riverbed 

conductance for both the river and the canal. The scenarios were assumed deliberately to 

observe plausible situations according to the range of variation of both stream stage and 

riverbed conductance, as well as to avoid the lack of convergence in the simulation. 

4.2.3 Solute transport 

A constant-density transport simulation was performed to recognize the behavior of a 

hypothetical solute (Solute A) under flood conditions. The simulation was performed using 

the modular 3D transport model MT3DMS (Zheng and Wang, 1999). The theoretical 

approach considered that changes in concentration were caused for advective, dispersive and 

diffusive transport, and the assumptions do not include any kinetic reactions or sorption. The 

solute transport simulation is based on the instantaneous injection of Solute A, placed between 

the monitoring wells B1 and Alzpitz, at an initial concentration of 12500 mg/m3. For solving 

the advective transport, Method of Characteristics (MOC), a Eulerian-Lagrangian method, 

was used as the solution scheme. The solute is placed in one cell (OB_1) on the upper layer 

to simulate the transport of a solute discharged near to the surface. The simulation began in 

the first stress period and the concentration changes and distributions were calculated during 

the 37 days of the flow simulation. Table 4.1 indicates the model parameters for the solute 
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transport modeling that were assumed based on chlorinated organic compounds and literature 

review (Davis, 2003). 

Table 4.1. Model parameters for solute transport modeling 

Model parameters Unit Value 

Initial concentration mg/m3 15000.00 

Effective molecular diffusion coefficient m2/s 1e-9 

Longitudinal dispersivity m 1.70 

Transverse dispersivity (horizontal and vertical) m 0.29 

Distribution coefficient m3 0.000125 

Porosity - 0.26 

Bulk density kg/m³ 2000.00 

 

4.3 Results and Discussion 

4.3.1 Groundwater numerical modeling 

The results of the model presented in this section correspond to those after the calibration 

process. Figure 4.2 shows the comparison between the calculated phreatic level and the 

observed one in the monitoring wells during the period selected. Figure 4.3 shows the 

calculated hydraulic heads at different times to illustrate the distribution of the simulated 

heads and their temporal changes, particularly during the flood event. The results of the 

quantitative evaluation are summarized in Table 4.2. These statistical measures quantify the 

error considering the distribution of the residuals rather than to represent a definition of the 

accuracy of the model. The calibrated parameters are shown in Table 4.3. 
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Figure 4.2. Hydraulic head [m] at the different stress periods 

The simulated heads were within the calibration objectives and the statistical evaluation 

suggest that the base model is reliable (Table 4.2). The monitoring wells closer to the streams 

(Alzpitz and B3) fit better than the monitoring well B1. This may occur because of the 

influence of the boundaries due to the location of the monitoring well B1 (at approximately 

150 m) from the time-variant specified head boundary. We decided to keep the spatial location 

of the boundaries based on the topography and soil conditions of the area, since the main 

interest of the model was to evaluate the effect of the river boundary conditions. Calibration 

of the model would not be possible if we do not consider a strong interconnection between 

the streams (river and canal) with the aquifer. In other words, to obtain accurate results, we 

assumed high bed permeability by defining high values of riverbed conductance for the 

streams. It should be noted that the riverbed conductance at the artificial canal is higher than 

the riverbed conductance of the river (Table 4.3). According to the simulated water budget, 

the mean flow into the domain for the period before the flood (20 first stress periods from 

May 25th to June 30th 2013) is 2.60 m3/s, whereas during the peak of the flood it is more than 

4.83 m3/s. In average the flow into the system during the whole simulated time is 2.69 m3/s. 

The water budget discrepancy was -0.013%. 

As shown in Figure 4.2 and Figure 4.3, during the peak of the flood event (stress period 36), 

the hydraulic head highly increases, particularly in the areas immediate close to the river and 

the canal. On the other hand, the simulated hydraulic heads slowly decrease from stress period 
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60 to stress period 148, once the peak time finishes, the influence of the streams on the 

hydraulic heads highly decline, the hydraulic gradient is lower, and the river effect is less 

visible in Figure 4.3. Near to the streams, the groundwater heads have similar fluctuation as 

compared to the stream stages. Near to the river, the peaks of the hydraulic heads decrease 

faster, which gives evidence of a possible flow back to the river and the canal. 

Table 4.2. Results of the statistical evaluation of the calibrated model 

Monitoring 

point 
Mean error 

Mean 

absolute 

error 

Pearson 

coefficient 

Pearson’s chi 

squared 

Nash-

Sutcliffe 

coefficient 

Alzpitz -0.001 0.116 0.962 0.007 0.909 

B1 0.083 0.238 0.880 0.023 0.686 

B3 0.015 0.105 0.951 0.005 0.889 

Mean 0.033 0.153 0.960 0.035 0.828 

Table 4.3. Calibrated model parameters 

Parameter Unit Value 

HKSA (mean) and VKSA (mean) m/s 7.4131e-03 and 2.2128e-04, resp. 

HKSB (mean) and VKSB (mean) m/s 5.8670e-03 and 7.5300e-04, resp. 

HKSC (mean) and VKSC (mean) m/s 1.2161e-02 and 8.1611e-04, resp. 

SS 1/m 3.6625e-04 

EP - 0.26 

SY - 0.18 

RCR, RCC1, and RCC2 m2/s 3.8520e-04, 3.4873e-03, 6.2461e-03, resp. 
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Figure 4.3. Simulated hydraulics heads in the upper layer and river discharge at different stress 

periods. The vertical red dashed line shows the peak time of the flood event 

4.3.2 Solute transport simulation 

The change in concentration in the observation points are plotted in Figure 4.4, which includes 

also the transport modelling of the different scenarios. It is possible to observe that the 

concentration varies spatially due to the advective and dispersive transport. Besides the solute 

concentration decreases rapidly, the plume does not travel considerably far from the initial 

location. The movement of the plume of solute is visible at 15 to 20 m from the initial location. 

The advective transport decreases considerably after the peak of the flood (from stress period 

40) because of the reduction of the groundwater flow velocity. This reduction in the velocity 

is caused by the decrease in the hydraulic head gradient, which occurs after the peak time, 

reaching values lower than at the beginning of the simulation period. During the rising flood 

stage, we observe changes in direction of the groundwater flow caused by the contribution of 

surface water into the groundwater system. Moreover, the water level of the river and the 

stream can be two strong hydraulic forces that may induce the groundwater flooding in the 

southern zone of the region. 
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The solute moves in the system mainly due to advection in the horizontal direction. Once the 

gradient is reduced, the horizontal advective transport decreases. However, it is important to 

consider the increment in the advective movement downwards that may be produced due to 

the pressure exerted by the river and the canal. Therefore, it is relevant to review the vertical 

advective transport. On the other hand, dispersion causes the spreading and dilution of the 

solute plume. Dilution increases faster when more water is introduced in the aquifer, such in 

the case of scenarios of higher stream stage and higher riverbed conductance. The simulation 

of the solute shows how low values of dilution mean higher concentration. 

 

Figure 4.4. Change in concentrations [mg/m3] for every stress period in the observation points: (a) 

OB_1, (b) OB_2 and (c) OB_3. The red dashed line shows the peak time of the flood event. 

4.4 Conclusions 

A 3D numerical model was created to describe the groundwater flow in the aquifer of the Alz 

valley, and transport simulations were performed to evaluate the solute transport under the 

flood event. The model accurately represents the conditions of the aquifer during the 

simulation period, especially in the north-central area of the domain, where the model fits 

with the calibration targets. The performed simulations give evidence about the temporal and 

spatial variability of the groundwater flow during the flood event. The groundwater heads 

near to the rivers and the canals have similar fluctuation patterns to the stream stages. 
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The medium is pervious and hydraulically conductive as it is mainly composed by gravel and 

sand, which naturally represent good conditions for allowing groundwater flow. The aquifer 

is hydraulically connected with both the Alz River and the Alz canal. The aquifer is recharged 

not only by infiltrated water from precipitation but also by river leakage. This is particularly 

relevant because it was possible to calibrate the model only if we considered strong hydraulic 

connection between aquifer and river. During the modeled period, the Alz River and the canal 

only act as influent streams contributing water to the aquifer. Furthermore, solute transport 

simulations denote the existence of strong interconnection between the aquifer and the 

streams, which vary depending on the phase of the flood event. The advective and dispersive 

transport vary for different scenarios and the influence of the flood event in the aquifer is 

particularly perceptible when we observe the different timing in the changes in concentration. 

The influence of the flood event in the aquifer is particularly noticeable during the higher 

stages of the flood event and in areas near to the streams. Summing up, the conditions of both 

the river and the canal affect the groundwater flow velocity and direction. River boundary 

conditions in the model control the aquifer responses in the proximities of the streams. To 

evaluate these responses and their temporal variation, it is necessary to evaluate the flood 

event before, during and after the peak of the event. As this study demonstrate, the aquifer 

behavior can widely vary from one of these phases to the next one. Certainly, the relative 

importance and utility of this evaluation will rely on temporal and spatial conditions and the 

hydrogeological characteristics of the evaluated system. 
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5 Bayesian inference in groundwater flood risk 

assessment  

Abstract 

Groundwater flooding can cause severe damages to homes, utilities, and infrastructure and 

yield significant economic and social costs. Numerical models are used to understand these 

events and are the basis to produce imagery products for risk management and 

communication. However, such maps are generally produced using forward model 

simulations, and most of the mapping products are still deterministic. In contrast to pluvial 

and fluvial floods, an open issue in the analysis of susceptibility to groundwater flooding is 

the lack of probabilistic assessment and mapping products recognizing parametric 

uncertainty. Hence, we propose a Bayesian-based framework to create probabilistic risk maps 

and to identify the susceptibility to groundwater flood events. We aim to assess the spatial 

distribution and temporal variability of groundwater flooding by decomposing the uncertainty 

and the sensitivity of distributed groundwater numerical models. The scheme involves the use 

of the elementary effects method, the DiffeRential Evolution Adaptive Metropolis (DREAM) 

algorithm, and the exploration of the predictive posterior distributions of the groundwater 

heads to evaluate the susceptibility according to exceedance levels. We use the proposed 

Bayesian framework with a numerical model that simulates the groundwater flood event that 

occurred in the valley of the Alz River in 2013. This study developed two types of 

susceptibility maps based on the exceedance probability of certain groundwater levels and 

specific cellar depths. The Bayesian inference supports the parameter estimation and thereby 

increases the spatial confidence of the areas susceptible to inundation. This study shows that 

maps of susceptibility to groundwater flooding can be built over one single event models and 

acknowledge the inherent spatial and temporal uncertainty of such events. 

 

 

Material from: 

Merchán-Rivera, P., Geist, A., Disse, M., Huang, J., Chiogna, G., 2022. A Bayesian Framework to Assess and 

Create Risk Maps of Groundwater Flooding. Journal of Hydrology. 
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5.1 Introduction 

The increasingly frequent occurrence of extreme weather events has raised attention about 

flood events (Kaiser et al., 2020; Tabari, 2020; Winsemius et al., 2016). Although the focus 

of flood risk assessment often tends to be on the fluvial and pluvial floods (Ascott et al., 2017; 

Collins et al., 2020), groundwater flooding can yield significant economic and social damages 

and disruptions, such as sewer backups (Abboud et al., 2018; Morris et al., 2018), roads and 

property inundation (Abboud et al., 2018; Keilholz et al., 2015; Morris et al., 2018; Soren, 

1976), foundation failures and corrosion (Colombo et al., 2018; Oyedele et al., 2009), 

damages to underground structures and infrastructure (Gattinoni and Scesi, 2017; Preene and 

Fisher, 2015), underground pollution transport (González-Quirós and Fernández-Álvarez, 

2019), and crop damage (Booth et al., 2016). This type of flood event refers to the 

groundwater emergence at the ground surface and the rising groundwater level into 

underground civil infrastructure (Macdonald et al., 2012, 2008). Unlike other types of floods, 

groundwater flooding can be difficult to identify and assess (Kreibich et al., 2009; McKenzie 

et al., 2010), and traditional flood protection systems may not be effective (Yu et al., 2019).  

Similar to traditional flood risk management, a large number of studies applies numerical 

modeling at different scales and with a varying degree of complexity to understand 

groundwater flood events (Abboud et al., 2018; González-Quirós and Fernández-Álvarez, 

2019; Morrissey et al., 2020; Yu et al., 2019). These models are typically posed as forward 

problems, which involve predicting “error-free” model states based on a prior 

parameterization of the model (Tarantola, 2005). One disadvantage in this type of strategy is 

that it requires specifying a variety of parameters, which are impossible to characterize 

exhaustively (Zhou et al., 2014). Another drawback of forward problems is that, once 

calibrated, the model ignores the equifinality thesis (Beven and Freer, 2001) and the 

uncertainties, which may imply to adopt strong and questionable assumptions about its 

forecast reliability (Di Baldassarre et al., 2010). Consequently, probability theory tools, such 

as inverse methods (Helton et al., 2004; Kaipio and Somersalo, 2005), have evolved to address 

aleatory and epistemic uncertainties (Merz and Thieken, 2009; Ross et al., 2009). In contrast 

to forward models, inverse methods were developed to support parameter identification and 

consequently to improve predictions (Zhou et al., 2014). Bayesian approaches solve inverse 

problems considering parameters as random variables and providing posterior probabilities 

by incorporating known data (Smith, 2013). Due to their inferential and predictive properties, 

Bayesian methods are considered one of the most appropriate techniques for uncertainty 

analysis (Heße et al., 2019). In spite of the progress in the field of uncertainty quantification, 

the temporal and spatial uncertainties of the models are often declared but not quantified in 

groundwater flooding studies. A limited number of studies includes a formal quantification 

of the uncertainty (Colombo et al., 2018; Fürst et al., 2015; Jimenez-Martinez et al., 2015), 
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and, to the best of the authors’ knowledge, the explicit application of Bayesian inference on 

groundwater flooding modeling remains unexplored. 

Flood risk mapping is a fundamental tool for flood risk management and communication 

(Demeritt and Nobert, 2014; Henstra et al., 2019). Accordingly, a lot of effort has been made 

to generate groundwater flood maps for planning, damage assessment, and insurance purposes 

(Morris et al., 2018). Maps of groundwater flooding susceptibility are regularly constructed 

on the basis of lumped parameter models (Upton and Jackson, 2011) or by analyzing 

geological and hydrogeological data (British Geological Survey, 2006; Mancini et al., 2020; 

Yu et al., 2019). Recent studies employ this type of data with machine learning techniques to 

create spatially distributed maps of susceptibility to groundwater flood events (Allocca et al., 

2021). Still, the lack of probabilistic and inverse methods in groundwater flooding models has 

been transferred to the groundwater flooding imagery, which often does not include formal 

likelihood quantification. This partially occurs due to the computational challenge from 

distributed models and high-dimensional inverse problems (Boyce and Yeh, 2014; Merz and 

Thieken, 2009; Xu et al., 2017; Zhou et al., 2014), and to limitations derived from data quality 

and availability (McKenzie et al., 2010; Merz and Thieken, 2009; Morris et al., 2018). 

Alternatives to overcome these problems are the reduction of the dimension of the input 

parameter space (Bittner et al., 2021; Boyce and Yeh, 2014; Erdal and Cirpka, 2019; Mara et 

al., 2017; Stanko et al., 2016; Teixeira Parente et al., 2019), and the optimization of the 

problem design by changing the spatial and temporal scaling (i.e., simulation period and 

model extension) and resolution (i.e., time and space discretization) (Guillaume et al., 2016; 

Scheibe et al., 2015). Assembling these alternatives can be useful to assess groundwater 

flooding in a probabilistic manner. As explained by Teng et al. (2017) and Di Baldassarre et 

al. (2010), probabilistic flood risks maps are preferable to single deterministic maps of 

inundation because they acknowledge the inherent uncertainty. In comparison to pluvial and 

fluvial flooding, there is less detail for hazard and risk management in groundwater flood 

mapping (Morris et al., 2018). As the demand for probabilistic maps in pluvial and fluvial 

flood risk analysis increases (Bhola et al., 2020; Teng et al., 2017), the need for groundwater 

flooding analysis is not expected to behave differently.  

This study introduces a framework to recognize the susceptibility of residential property areas 

to groundwater flooding acknowledging the uncertainty in the model input parameters. We 

aim to create mapping products with the estimation of the probability of groundwater flood 

inundations by targeting one groundwater flood event as the basis of the problem design. We 

propose to decompose cell-by-cell the uncertainty and the sensitivity of a distributed 

groundwater numerical model to understand the spatial distribution and temporal variability 

of groundwater flood events. The framework involves three components: 1) elementary 

effects method to identify influential input factors and reduce the problem dimensionality, 2) 

Bayesian inference using the DiffeRential Evolution Adaptive Metropolis (DREAM) 
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algorithm to estimate statistics of the relevant uncertain parameters and to quantify the output 

uncertainty incorporating evidence data, and 3) exploration of the predictive posterior 

distributions to assess the susceptibility to groundwater flooding according to exceedance 

probability levels. To demonstrate the relevance and feasibility of the application, the 

framework is applied to evaluate a groundwater flood event that occurred in the valley of the 

Alz River in Germany in 2013. The event is simulated using a numerical model built on 

MODFLOW-2005 (Harbaugh, 2005). The posterior probability distributions of the 

groundwater heads are then explored against groundwater depth thresholds and registered 

cellar depths.  

5.2 Methods 

5.2.1 Groundwater flow equation 

Groundwater flow in a heterogeneous unconfined aquifer can be described by coupling the 

continuity equation with Darcy’s law (Fetter, 1999), such that 

𝜕

𝜕𝑥
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𝜕𝑥
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𝜕

𝜕𝑦
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𝜕𝑦
 ) +

𝜕

𝜕𝑧
(𝑘𝑧𝑧

𝜕ℎ

𝜕𝑧
 ) + 𝑊 = 𝑠

𝜕ℎ

𝜕𝑡
  , Eq. 5.1 

where ℎ is the piezometric groundwater head [L], 𝑘𝑥𝑥 , 𝑘𝑦𝑦 , and 𝑘𝑧𝑧  denote the hydraulic 

conductivity values [LT-1] along the 𝑥, 𝑦, and 𝑧 coordinate axes, 𝑠 is the specific storage [L-

1], and 𝑊 represents the sources and sinks [T-1]. MODFLOW-2005 (Harbaugh, 2005) solves 

the groundwater flow equation in a finite difference form. The rate of change in storage within 

each cell is equal to the sum of flows into and out of the cell so that 

∑𝑄𝑖 = 𝑠
∆ℎ

∆𝑡
∆𝑉  , Eq. 5.2 

where 𝑄𝑖 is the 𝑖 component of the flow rate into the cell [L3T-1], ∆𝑉 is the cell volume [L3], 

and ∆ℎ [L] is the change in the groundwater head over a time interval ∆𝑡 [T]. External sources 

or stressors, such as the infiltration into the saturated zone and the river-aquifer fluxes, can be 
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represented as 𝑄𝑖 elements. Hence, the forward problem is driven to predict the groundwater 

head distributions at successive times as a function of an uncertain set of model inputs 𝜃 (i.e., 

uncertain parameters, source terms, initial or boundary conditions).  

5.2.2 Sensitivity analysis 

Sensitivity analysis is used to quantify how the uncertainty in the output of a model can be 

apportioned to the different uncertainties in the model inputs (Saltelli, 2002; Smith, 2013). 

We use the elementary effects method, also known as Morris method, to identify the sensitive 

parameters through basic statistical moments (Campolongo et al., 2007; Morris, 1991). Due 

to its sampling strategy, this technique is advantageous for quantifying the sensitivity in 

computationally expensive models with many uncertain inputs (Campolongo et al., 2007; 

Jaxa-Rozen and Kwakkel, 2018; Smith, 2013). In our research, the purpose of its application 

is to identify which input factors are non-influential and therefore negligible, as well as to 

recognize the input factors that are non-linear or involved in interactions. Those input factors 

that are non-influential are fixed to reduce the problem dimensionality, which is an essential 

step to define an affordable experimental design and proceed with the subsequent Bayesian 

analysis. 

The elementary effect method considers that each model input 𝑞 = [𝑞1, … , 𝑞𝑘] varies across 

𝑝 selected levels, forming a 𝑘-dimensional 𝑝-level finite grid of experimentation Γ𝑝. Then, 𝑝 

represents the number of partitions of the model parameter space at which the model can be 

evaluated. Assuming that the input terms are scaled to the interval [0,1], the elementary effect 

associated with the input 𝑞𝑖 is defined as 

𝑑𝑖(𝑞) =
𝑓(𝑞1, … , 𝑞𝑖−1, 𝑞𝑖 + ∆, 𝑞𝑖+1, … , 𝑞𝑘) − 𝑓(𝑞) 

∆
=

𝑓(𝑞 + ∆𝑒𝑖) − 𝑓(𝑞)

∆
 , Eq. 5.3 

with a jump size ∆ ∈ {1/(𝑝 − 1),… ,1 − 1/(𝑝 − 1)} and transformed point 𝑞 + ∆𝑒𝑖, where 

𝑞 = (𝑞1, … , 𝑞𝑘) is any selected value in Γ𝑝 , and 𝑒𝑖  is a vector of zeros with one in the 𝑖th 

component. Then, 𝑑𝑖(𝑞) quantifies the local sensitivity behavior at the point 𝑞. The global 

sensitivity measure requires to approximate the statistical moments from the associated finite-

dimensional distribution 𝐺𝑖 by randomly sampling 𝑞 from the grid points in Γ𝑝. Morris (1991) 

proposed the mean 𝜇𝑖  and the standard deviation 𝜎𝑖  of the distribution 𝐺𝑖 . By sampling 𝑚 

points, these metrics associated with the 𝑖th parameter and 𝑗th samples can be expressed as  
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𝜇𝑖 =
1

𝑚
∑𝑑𝑖

𝑗
(𝑞)

𝑚

𝑗=1

  , 
Eq. 5.4 

𝜎𝑖 = √  
1

𝑚 − 1
∑(𝑑𝑖

𝑗(𝑞) − 𝜇𝑖)
2

𝑚

𝑗=1

  . Eq. 5.5 

Campolongo et al. (2007) introduced an additional sensitivity metric 𝜇∗ to avoid the problems 

associated to non-monotonic models that may contain effects with opposite signs. This refined 

version estimates the mean of the absolute values of the elementary effects and can be written 

as 

𝜇𝑖
∗ =

1

𝑚
∑|𝑑𝑖

𝑗
(𝑞)|

𝑚

𝑗=1

  . 
Eq. 5.6 

The elementary effects method proposes to construct 𝜇𝑖
∗ and 𝜎𝑖 with 𝑚 trajectories of (𝑘 +

1)  points in the input space, which provide 𝑘  elementary effects. The total number of 

realizations is defined by (𝑘 + 1) × 𝑚. The sampling strategy employs the orientation matrix 

𝐁∗ to obtain random samples from 𝐺𝑖, so that 

𝐁∗ = (𝐉𝑘+1,1𝑞
∗ +

∆

2
[(2𝐁 − 𝐉𝑘+1,𝑘)𝐃

∗ + 𝐉𝑘+1,𝑘]) 𝐏∗  , Eq. 5.7 

where 𝑞∗ is a random initial point, 𝐉𝑘+1,𝑘 is a (𝑘 + 1) × 𝑘 matrix of ones, 𝐁 is a (𝑘 + 1) × 𝑘 

strictly lower triangular matrix of ones, 𝐃∗ is a 𝑘 × 𝑘 diagonal matrix formed by randomly 

chosen elements from the set {−1,1}, and 𝐏∗ is a 𝑘 × 𝑘 random permutation matrix. 
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5.2.3 Bayesian inference and sampling algorithm 

5.2.3.1 Bayesian inference 

Bayesian inference is derived from the Bayes’ theorem to explicitly introduce in the analysis 

assumptions about evidence data and prior knowledge of the model inputs (Box and Tiao, 

2011; Smith, 2013). Let 𝑦 represent a given set of observations or evidence data and 𝜃 denote 

a set of parameters. Following the Bayesian formulation, the posterior probability of the 

parameter set 𝑃(𝜃|𝑦) can be obtained with the prior probability of the parameter set 𝑃(𝜃), 

the observed data 𝑃(𝑦), and the likelihood function 𝑃(𝑦|𝜃) ≡ 𝐿(𝜃|𝑦), such that 

𝑃(𝜃|𝑦) =  
𝑃(𝑦|𝜃) × 𝑃(𝜃)

𝑃(𝑦)
  . Eq. 5.8 

Given that all statistical inferences of 𝑃(𝜃|𝑦) can be made from the unnormalized density, 

𝑃(𝑦) can be omitted (Vrugt, 2016), and the Bayes equation is simplified as  

𝑃(𝜃|𝑦) ∝ 𝐿(𝜃|𝑦) × 𝑃(𝜃) . Eq. 5.9 

𝐿(𝜃|𝑦)  summarizes the distance between the observation and the simulated quantity of 

interest (groundwater heads for the sake of our research). Our formulation of the Bayesian 

inference problem assumes that the error residuals are homoscedastic and normally 

distributed 𝜀𝑡~𝒩(0, 𝜎2), and it employs the log-likelihood ℒ(𝜃|𝑦) for numerical stability 

(Vrugt, 2016). Then, considering 𝑛-vector of error residuals at times 𝑡𝑠 = {1,… , 𝑛}, the log-

likelihood function applied in this study can be written as  

ℒ(𝜃|𝑦) =  −
𝑛

2
× 𝑙𝑜𝑔 [ ∑ 𝜀𝑡(𝜃)2

𝑛

𝑡𝑠=1

 ] . Eq. 5.10 
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For further debate about mathematical definitions of the likelihood function and details in 

their derivation process, we refer the readers to the corresponding literature (Kaipio and 

Somersalo, 2005; Schoups and Vrugt, 2010; Vrugt, 2016) 

5.2.3.2 Sampling algorithm 

To estimate the probability density function of the parameters, Markov Chain Monte Carlo 

(MCMC) sampling is implemented using the differential evolution adaptive metropolis 

(DREAM) scheme (Vrugt et al., 2009, 2008; Vrugt and Ter Braak, 2011). In general, MCMC 

techniques consist of the iterative sampling of a probabilistic space to find areas of a high 

likelihood of the posterior distribution of the parameter space. The DREAM algorithm is an 

efficient MCMC-based method. It runs multiple chains of simulations simultaneously and 

adjusts the scale and orientation of the proposal distribution during the run. Candidate points 

are created by sampling the prior parameter distribution for each chain, and the Metropolis-

Hastings ratio is used to decide if a candidate point is accepted or not. The convergence of 

each chain is evaluated using the Gelman-Rubin diagnostic (Gelman and Rubin, 1992). 

Extensive theoretical descriptions of the DREAM algorithm implementation can be found in 

the literature (Houska et al., 2015; Vrugt, 2016; Vrugt et al., 2009, 2008; Vrugt and Ter Braak, 

2011).  

5.2.4 Exceedance probability and susceptibility maps 

The final step of the framework involves extracting information from the posterior 

distributions of the groundwater heads at each element of the model and at different time steps 

to analyze the spatial and temporal conditions of the event. We characterize the associated 

groundwater flooding risk by computing the probability of the groundwater table of exceeding 

a certain threshold value (i.e., exceedance probability). For convenience, this can be explained 

from the cumulative distribution function of the predicted groundwater heads 𝐹(ℎ)  for 

𝐹:ℝ → [0,1], that can be described by 

𝐹(ℎ) ≔ 𝑃(𝐻 ≤ ℎ) . Eq. 5.11 

The exceedance probability �̅�  can then be estimated with the complementary cumulative 

distribution function of Eq. 5.11, expressed as 
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�̅� = 𝑃(𝐻 > ℎ) = 1 − 𝐹(ℎ) . Eq. 5.12 

Consequently, we create the maps of susceptibility to groundwater flooding considering the 

probability �̅�𝑖,𝑗
(𝑡)

 of exceeding a threshold Κ𝑖,𝑗, computed at the time step 𝑡 = [𝑡1, . . . , 𝑡𝑛] and 

the discrete point 𝑖 = 1,… , 𝑛𝑐  and 𝑗 = 1,… , 𝑛𝑟 , where 𝑛𝑐  and 𝑛𝑟  are, respectively, the 

number of columns and rows used for the spatial discretization. Thus,  

�̅�𝑖,𝑗
(𝑡)

 = 1 − 𝐹𝑖,𝑗
(𝑡)

(Κ𝑖,𝑗)  . Eq. 5.13 

We propose two types of thresholds in this work. The first one is the groundwater depth 

threshold 𝜅𝑖,𝑗, which represents a specified distance 𝑑 between the surface elevation and the 

groundwater table at the cell 𝑖, 𝑗. Hence, it can be defined according to a two-dimensional 

array of a digital elevation model 𝑇𝑖,𝑗, that is, 

𝜅𝑖,𝑗 = 𝑇𝑖,𝑗 − 𝑑 .      
Eq. 5.14 

The second threshold is defined according to the cellar depths �̂�𝑖,𝑗  at a specific house, 

property, or building. Hence, �̂�𝑖,𝑗  is the reported depth of the underground infrastructure 

located at the cell 𝑖, 𝑗. Therefore, Κ𝑖,𝑗 can be equal to 𝜅𝑖,𝑗 or �̂�𝑖,𝑗 depending on the assessment. 

5.2.5 Practical application 

5.2.5.1 Case study 

The study area is located in southeastern Bavaria, Germany. During heavy rainfall events at 

the beginning of June 2013, the region was affected by flood events that caused several 

damages in the residential properties (Disse et al., 2015; Keilholz et al., 2015). The study 
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region is characterized by an unconsolidated shallow sedimentary aquifer formed by gravels 

and sands (Doppler et al., 2011; Keilholz et al., 2015; Merchán-Rivera et al., 2018). The 

groundwater flow is very dynamic due to the high permeability of the porous material of the 

aquifer, the relatively rapid groundwater recharge, and the hydraulic connection with the Alz 

River and the Alz Canal. The flood event in 2013 in the Alz River valley and the 

hydrogeological features of the region were the subjects of previous studies. Doppler et al. 

(2011) and Bayerisches Landesamt für Umwelt (2017) describe the geological properties and 

the morphological features of the valley. Further studies also estimate the uncertainty in the 

discharge and stage of the Alz River (Willems, 2011; Willems and Stricker, 2012) and 

quantify the propagation of uncertainty due to the representation of the river boundary 

conditions (Merchán‐Rivera et al., 2021). Figure 5.1 includes details of the study area and the 

flood event. 
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Figure 5.1. Study case implementation: a) study area location and model setting with groundwater 

monitoring wells (circles) and the selected surveyed houses (squares); b) event description and 

representative stress periods (SP) for the different event phases; and, c) digital elevation model 

(DEM) used to represent the surface elevation 

5.2.5.2 Model description 

A two-dimensional model was built using MODFLOW-2005 (Harbaugh, 2005) to describe 

the event. The model simulates 300 stress periods at intervals of six hours to cover a total of 

75 days (from May 02, 2013 to July 15, 2013). The spatial discretization is a finite-difference 

grid formed by one layer, 260 rows, and 260 columns. The initial and boundary conditions 

were defined based on the preexisting regional model built by Keilholz (2015). Three types 

of boundary conditions are used in the model: 1) specified head boundaries, using time-variant 
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specified head package (Harbaugh et al., 2000; Leake and Prudic, 1991) to simulate the 

variation in the water table at the borders of the domain, 2) recharge into the saturated zone, 

using the recharge package (Harbaugh, 2005; Harbaugh et al., 2000) to simulate the 

distributed infiltration flux, and 3) river interactions, using the river package (Harbaugh, 

2005; Harbaugh et al., 2000) to simulate the interaction between the streams and the aquifer. 

The spatial distribution of the specified head and river boundaries are illustrated in Figure 

5.1a. Given that the initial conditions of the groundwater heads and the specified-head 

boundaries were extracted from the regional model (Keilholz et al., 2015), which include a 

larger simulation period, there was no need to include a warm up period. Three hydraulic 

conductivity values (𝑘𝐴, 𝑘𝐵, and 𝑘𝐶) are defined based on the geological studies (Bayerisches 

Landesamt für Umwelt, 2017; Doppler et al., 2011), and, accordingly, three specific storage 

values (𝑠𝐴, 𝑠𝐵, and 𝑠𝐶) and three specific yield values (𝛾𝐴, 𝛾𝐵, and 𝛾𝐶). These parameters were 

assumed to be homogeneous within each soil section (SA, SB and SC). Recharge into the 

saturated zone values (𝑄𝑖,𝑗
(𝑡)

) are defined according to the deterministic estimations from the 

hydrological model made by Keilholz et al. (2015). Finally, the streams are parameterized 

considering two streambed conductance values for the canal (𝑐1 and 𝑐2), three streambed 

conductance values for the river (𝑟1, 𝑟2, and 𝑟3), which are outlined according to observed 

differences in the morphology of the streams, and stream stage values (𝜉𝑖,𝑗
(𝑡)

) based on the 

previous estimations made by Merchán-Rivera et al. (2021). Groundwater field measurements 

were registered every six hours during the simulation period in four groundwater monitoring 

wells: Alzpitz, B1, B3, and B4 (Keilholz et al., 2015). These observations were used as the 

evidence for the Bayesian inference. Although we computed the hydraulic head values for the 

entire simulation period, we chose four simulation time steps to be representative of different 

phases of the event to present the results: before the event at stress period 86 (May 23, 2013), 

peak-flow at stress period 127 (June 02, 2013), recession phase at stress period 145 (June 07, 

2013), and after the flood event at stress period 290 (July 13, 2013). We define the recession 

phase as the stage that immediately follows the peak-flow, whereas after the event refers to 

the phase where the declining period has ended. These separate periods were used along with 

the results and discussion to understand the temporal variation of the outcomes. Figure 5.1 

includes details of the study, the model settings and the digital elevation model.  

5.2.5.3 Scheme implementation 

The hydraulic properties are summarized in Table 5.1, where 𝒰(𝑎, 𝑏) denotes the prior belief 

distributed uniformly between 𝑎 and 𝑏. Except for 𝑄𝑖,𝑗
(𝑡)

 and 𝜉𝑖,𝑗
(𝑡)

, the uncertainty analysis 

considers the parameters as random variables that are simply sampled from a uniform 

distribution and used in the realizations of the scheme. The choice to set the prior beliefs to 

be uniform (i.e., non-informative) is a conservative assumption at costs of computational 

efficiency. In practice, this means that we need a larger sample size to obtain better estimates 
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of the posterior distribution during Bayesian inversion. More informative prior distributions 

would require a smaller sample size to reach a similar precision. Note that the sampling 

strategy in the elementary effect method should be modified if non-uniform distributions are 

considered (Feng et al., 2019).  

Table 5.1. Distribution properties of the stochastic input variables 

Parameter Zone Notation Distribution Units 

Hydraulic conductivity SA 𝑘𝐴 𝒰(1𝑒−4, 1𝑒−1) 𝑚/𝑠 

SB 𝑘𝐵 𝒰(1𝑒−4, 1𝑒−1) 𝑚/𝑠 

SC 𝑘𝐶  𝒰(1𝑒−6, 1𝑒−3) 𝑚/𝑠 

Specific storage SA 𝑠𝐴 𝒰(1𝑒−7, 1𝑒−3) 1/𝑠 

SB 𝑠𝐵 𝒰(1𝑒−7, 1𝑒−3) 1/𝑠 

SC 𝑠𝐶 𝒰(1𝑒−7, 1𝑒−3) 1/𝑠 

Specific yield SA 𝛾𝐴 𝒰(0.10, 0.40) − 

SB 𝛾𝐵 𝒰(0.10, 0.40) − 

SC 𝛾𝐶 𝒰(0.10, 0.40) − 

Recharge multiplier − 𝑅 𝒰(0.00, 2.00) − 

Conductance of the canal S1 𝑐1 𝒰(1𝑒−5, 9𝑒−1) 𝑚2/𝑠 

S2 𝑐2 𝒰(1𝑒−5, 9𝑒−1) 𝑚2/𝑠 

Conductance of the river S1 𝑟1 𝒰(1𝑒−7, 9𝑒−4) 𝑚2/𝑠 

S2 𝑟2 𝒰(1𝑒−7, 9𝑒−4) 𝑚2/𝑠 

S3 𝑟3 𝒰(1𝑒−7, 9𝑒−4) 𝑚2/𝑠 

Stream stage variation − 𝜓 𝒰(−0.145, 0.145) 𝑚 

 

The recharge influx into the saturated zone 𝑄𝑖,𝑗
(𝑡)

 is spatially distributed over the domain and 

varies at every stress period 𝑡 of the simulation. Keilholz et al. (2015) estimated deterministic 

values for recharge into the saturated zone �̃�𝑖,𝑗
(𝑡)

 in a regional hydrologic model using MIKE 

SHE (DHI, 2013). In our research, the uncertainty in these recharge values is introduced as a 

single multiplier 𝑅 for all the grid cells affected by recharge at all time steps, similarly to the 

approach employed by Mustafa et al. (2018). Hence, the random variable 𝑅~𝒰(𝑎, 𝑏) is used 

in combination with �̃�𝑖,𝑗
(𝑡)

 to obtain the corrected spatial distributed recharge 𝑄𝑖,𝑗
(𝑡)

, such that 
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𝑄𝑖,𝑗
(𝑡)

= �̃�𝑖,𝑗
(𝑡)

× 𝑅  .      Eq. 5.15 

Similarly, Keilholz et al. (2015) provided scatter stage information for the river and the canal. 

These scatter data were post-processed by Merchán-Rivera et al. (2021) to obtain the stream 

head 𝜉𝑖,𝑗
(𝑡)

 at every cell that represents the river and the canal. Hence, the streams are 

represented as time-variant and spatially distributed inputs. The uncertainty in the stage is 

included by the error 𝜓~𝒰(𝑎, 𝑏), where the bounds 𝑎 and 𝑏 are approximated according to 

the works by Willems (2011) and Willems and Stricker (2012). This means that 𝜓 increases 

or reduces the stream stage 𝜉𝑖,𝑗
(𝑡)

, for all of the stress periods 𝑡 at each cell 𝑖, 𝑗 that represent 

the streams to obtain 

𝜉𝑖,𝑗
(𝑡)

= 𝜉𝑖,𝑗
(𝑡)

+ 𝜓  .      Eq. 5.16 

The implementation of the elementary effects considers all parameters mentioned in Table 

8.1 as input factors. Given that the values of 𝑝 and 𝑚 are primarily an experimental choice 

(Saltelli et al., 2004), we performed an extensive exploration of different factor levels and 

sampling size by constructing various experimental combinations using 𝑝 = 4, 6, 8 and 10, 

and 𝑚 = 10, 20 and 30. The elementary effects approach reduces the dimensionality of our 

problem and provide a list of influential factors that are later used in the Bayesian inversion 

with the DREAM algorithm. The posterior distributions are calculated from the last 50% of 

the samples generated with the DREAM algorithm from 10000 realization. We explore the 

posterior predictive distributions of the groundwater heads at every element of the domain 

and every stress period. To compute the threshold 𝜅𝑖,𝑗, we define 𝑇𝑖,𝑗 with the digital elevation 

model (DEM) of the region (Bayerisches Landesamt für Umwelt, 2017) and the groundwater 

depth 𝑑 to be equal to 0.5 and 1.5. Note that 𝑑 values are arbitrarily selected, and they can 

simply be modified once the posterior predictive distributions are quantified. The DEM 

resolution is 5×5 m cell size.  Finally, we define the threshold �̂�𝑖,𝑗  using the cellar depth 

records from the household survey run by Disse et al. (2015) in April 2014: �̂�𝐻1 = 459.0 m 

a.s.l. (above sea level), �̂�𝐻2 = 458.6 m a.s.l., �̂�𝐻3 = 459.4 m a.s.l.,  �̂�𝐻4 = 461.1 m a.s.l.,  �̂�𝐻5 

= 460.1 m a.s.l., �̂�𝐻6 = 461.0 m a.s.l.,  �̂�𝐻7 = 460.3 m a.s.l.  
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We employ the SALib Python library (Herman and Usher, 2017) to compute the elementary 

effect indices with the efficient sampling strategy introduced by Campolongo et al. (2007). 

The DREAM algorithm was implemented using the SPOTPY framework (Houska et al., 

2015). The probability maps in the results were created by arranging the output data in matrix 

arrays using the Numpy library (Harris et al., 2020) and plotting them with the Matplotlib 

library (Hunter, 2007) in Python 3. The algorithm for implementing the exposed approach 

was written in Python 3, and the files are available in the research dataset (Merchán-Rivera, 

2021).   

5.3 Results and discussion 

5.3.1 Sensitivity analysis 

Based on the values of 𝜇∗ , we obtain a ranking of model sensitivity that can be easily 

interpreted (see Figure 5.2). A high absolute measure of central tendency 𝜇∗ denotes an input 

with a significant overall influence on the output. Hence, the most sensitive parameters are 

𝑘𝐴, 𝑘𝐵, 𝛾𝐴, 𝑅, 𝑐2, and 𝑟2. Also, there are spatial and temporal variabilities in the results of the 

elementary effects. The positions in the ranking change depending on the location and the 

phase of the event. We observe higher values of the elementary effects metrics at the peak-

flow. Similarly, we can see more significant differences between the minimum and maximum 

values of 𝜇∗ at this phase. The spatial variation in the sensitivity of the recharge multiplier 𝑅 

occurs due to the heterogeneous distribution of the recharge into the saturated zone �̃�𝑖,𝑗
(𝑡)

. The 

parameters that describe the streams (𝑐1, 𝑐2, 𝑟1, 𝑟2, 𝑟3, and 𝜓) gain relevance close to the 

streams at the monitoring wells Alzpitz and B3. The sensitivity of the canal conductance 𝑐2 

is also large at B1 and H1.  

The second sensitivity measure that we obtain is the spread 𝜎. A high value of 𝜎 indicates 

input factors with a non-linear effect in the model output, the existence of parameter 

interactions, or both. The ratio 𝜎/𝜇∗ is an indicator of model linearity (if 𝜎/𝜇∗ = 0), or non-

linearity (if 𝜎/𝜇∗ > 0). Also, this indicator can occasionally give evidence of monotonic and 

non-monotonic model responses, when 0 < 𝜎/𝜇∗ < 0.5  and 𝜎/𝜇∗ > 0.5 , respectively 

(Garcia Sanchez et al., 2014). In Figure 5.3, we display all the outcomes of 𝜇∗ and 𝜎 from 

every combination of 𝑝 and 𝑚 and classify them based on the event phase in a scatter plot. 

Overall, the model behavior is subject of non-linearities, non-monotonicities, or interactions 

between model parameters. The results also show temporal variation in this behavior. While 

the functional relationships between the input factors and the outputs are highly non-linear, 

interactive, or non-monotonic during the peak and the recession phase, the relationships tend 

to reduce these qualities before and after the event. Non-monotonic responses can occur with 
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respect to the input factors associated to the hydraulic conductivity, particularly 𝑘𝐴 and 𝑘𝐵. 

The effect of the parameter interactions can increase due to the increased influx from the high 

staged-river seen in the peak-flow and the recession phase, which would also influence the 

non-monotonicity from 𝑘𝐴 and 𝑘𝐵. Notice that the non-linearity of the model responses is not 

affected directly by variations in the influx from the streams and the recharge but by the effect 

that these have on the hydraulic gradient magnitude. Five parameters can be considered non-

influential factors: 𝑘𝐶 , 𝑠𝐴 , 𝑠𝐵 , 𝑠𝐶 , and 𝛾𝐶 . As expected, the specific storage values are 

negligible because we study an unconfined aquifer and their contribution to the storativity is 

orders of magnitude lower than the specific yield. In the case of 𝑘𝐶 and 𝛾𝐶, the low values of 

𝜇∗ are determined by the spatial location of the soil type SC. Hence, these five parameters are 

fixed to reduce the problem dimensionality for the Bayesian inversion from 16 to 11 

calibration parameters. Even if a further reduction of the parameter space could be assumed 

and be quite useful for the application of the Bayesian inversion, we want to retain the 

properties of the original model for the scope of the study at the cost of higher computational 

demand.  
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Figure 5.2. Elementary effects results per parameter at different location. The colored bars represent 

the mean value of 𝜇∗ at the different phases of the event. The upper end and lower end of the black 

whiskers show the maximum and minimum value of 𝜇∗, respectively. 
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Figure 5.3. Covariance of 𝜇∗and 𝜎 at different phases of the flood event. Colored lines show a simple 

linear regression to illustrate the responses at the different phases. Gray lines delimit the referential 

areas that describe nonlinear, almost monotonous, monotonous and linear interactions, according to 

the ratio 𝜎/𝜇∗. 

5.3.2 Bayesian inversion 

In Figure 5.4, we can observe the prior and posterior discrete distributions of the sensitive 

parameters. These results show that the algorithm updated the distributions of the sensitive 

parameters, reducing their uncertainty. We also observe that most of the parameters tend to 

unimodality, except 𝜓, whose posterior distribution is only slightly updated in comparison to 

the prior distribution. This can be reasonably explained by the sensitivity analysis that shows 

low scores for this parameter. The statistical moments of the posterior distribution of the 

uncertain parameters can be found in Table 5.2. The expected values of the conductance from 

the river sections 𝑟1 and 𝑟2 range within the same order of magnitude. The latter suggests that 

the bed conductance of the river may be overparameterized, considering the location of the 

observation wells used for the inversion. Given these results and the outcomes of the 

sensitivity analysis, an additional reduction of the model dimensionality could be possible by 

grouping 𝑟1 and 𝑟2 in one parameter.  We observe a high frequency of samples in the lower 

end of 𝑅 that reduces the revised infiltration 𝑄𝑖,𝑗
(𝑡)

 used in the model evaluations. This implies 

that the deterministic values of the infiltration into the saturated zone extracted from the 
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regional model �̃�𝑖,𝑗
(𝑡)

 do not represent accurate the system, whether by overestimating the 

inflow rates or the recharge extension. This remarks the importance of quantifying the 

uncertainty in the analysis of risk of these events. Still, note that 𝑅 and 𝜓 are random variables 

that aim to catch the uncertainty in model parameters that are fundamentally transient: 

recharge into the saturated zone 𝑄𝑖,𝑗
(𝑡)

 and river stage 𝜉𝑖,𝑗
(𝑡)

. This means that a single random 

sample per evaluation may not exhaustively capture the temporal variability and the 

uncertainty of these parameters. Also, it is important to point out that the Bayesian approach 

relies in the information fed by the empirical evidence. Therefore, the location of the 

observation wells plays a fundamental role. Some parameters may not be adequately 

represented due to the location of the monitoring wells, such as 𝑅, 𝑐1, 𝑟1 and 𝑟3. 

 

Figure 5.4. Prior and posterior discrete representation of the distributions for the classified sensitive 

parameters. The orange histogram shows the prior parameter distribution sampled from the Halton 

uniform distribution, while the blue histogram shows the posterior parameter distribution. 
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Table 5.2. Statistical moments of the posterior parameter distributions (mean 𝜇𝜃, the standard 

deviation 𝜎𝜃, the skewness 𝛾𝜃, and kurtosis 𝛽𝜃), and best set of parameters 

Parameter Parameter units 𝝁𝜽 𝝈𝜽 𝜸𝜽 𝜷𝜽 Best set 

𝑘𝐴 [m/s] (log scale) -1.7742 0.3093 -1.1121 5.0517 -1.9021 

𝑘𝐵 [m/s] (log scale) -2.8872 0.3952 0.4756 1.0179 -3.2105 

𝛾𝐴 [ - ] 0.2111 0.0858 0.4965 -0.9822 0.1015 

𝛾𝐵 [ - ] 0.2794 0.0783 -0.4364 -0.8639 0.1866 

𝑅 [ - ] 0.5662 0.4745 0.9019 0.0115 0.1304 

𝑐1 [m2/s] (log scale) -3.9211 0.9285 1.6027 2.7368 -4.8203 

𝑐2 [m2/s] (log scale) -2.3905 0.7497 -1.2957 3.8439 -2.3908 

𝑟1 [m2/s] (log scale) -4.7159 1.0344 -0.3018 -0.8592 -5.1017 

𝑟2 [m2/s] (log scale) -4.5951 1.0739 -0.747 -0.7445 -4.2346 

𝑟3 [m2/s] (log scale) -4.005 1.0621 -0.898 -0.2509 -3.0910 

𝜓 [m] -0.0225 0.0791 0.1594 -1.0402 -0.0924 

 

The reduction of the model parametric uncertainty is evident after taking into consideration 

the observed data with the Bayesian approach (see Table 5.3 and Figure 5.5). In Figure 5.5, 

we can see the probability distribution of the groundwater heads considering the prior and 

posterior distribution of the sensitive parameters. A lower standard deviation 𝜎𝑜  in the 

hydraulic head distribution indicates that the values tend to be close to the central tendency 

metric 𝜇𝑜  (see Table 5.3). Figure 5.5 shows the approximation of the probability density 

function of the groundwater heads from the prior and the posterior predictive simulations at 

different locations and different phases of the event. The kernel density plot was calculated 

using Scott’s Rule (Scott, 2010) over the finite output data of the groundwater heads located 

at the different monitoring wells. This plot is helpful to identify the position and relative 

amplitude of the density distributions and to recognize if the distribution is multimodal. The 

groundwater heads at Alzpitz, located immediately next to the river, display a bimodal 

distribution with the parameterization of the model using the prior distribution of the 

parameters. This distribution is later updated with the posterior to a unimodal distribution. 

The spread of the groundwater heads is evidence of significant uncertainty in the prior beliefs, 

which is driven by the interconnection with the river, especially during the peak-flow 

discharges. The interquartile range between the first and third quartile (Q3 – Q1 range) shows 

the variability around the median of 50% of the predictive values of the groundwater heads 

using the prior distribution of the parameters. We see that the Q3 – Q1 range is larger than 

one meter at Alzpitz and B3 for the model considering the prior distribution of the parameters. 



57 

Lastly, we can observe the skewness of the prior predictive distributions, which depict 

positive asymmetry about their mean. Figure 5.6 shows the final results of the predictive 

groundwater heads after applying the Bayesian inference. We use the mean and the interval 

[𝜇𝑜 + 𝜎𝑜, 𝜇𝑜 − 𝜎𝑜] of the predictive posterior distribution as a measure of the uncertainty. We 

observe that these metrics properly capture the observations, particularly in the wells Alzpitz 

and B3. At B4, the predictive uncertainty does not include the peak observations. Also, we 

observe disagreements in the responses at B1 that may occur due to the influence of the 

southern time-variant specified heads boundary conditions. 

 

Figure 5.5. Violin plot of the probability density function of the groundwater heads from the prior 

(orange) and the posterior (blue) predictive distributions at observation wells and at different phases 

of the event. The second quartile (i.e., median) of the distribution is illustrated with the dashed line. 

First (Q1) and third quartiles (Q3) are represented by the continuous line. Probability distributions 

are scaled to obtain prior and posterior violins with the same width, so that the differences in their 

shapes are easily perceptible. 
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Figure 5.6. Predictive uncertainty for the groundwater flood event at different monitoring wells. the 

blue shade in the plots represents the interval [𝜇
𝑜
+ 𝜎𝑜, 𝜇𝑜

− 𝜎𝑜]. The solid blue line indicates the 

mean of the posterior predictive distribution of the groundwater heads and the dotted line indicates 

the groundwater head observations. 

Table 5.3. Statistical moments of the prior and posterior predictive uncertainty (mean 𝜇𝑜 and 

standard deviation 𝜎𝑜) at the different monitoring wells during different phases of the event  

Flood 

phase 
Dist. 

Alzpitz B1 B3 B4 

𝜇𝑜 𝜎𝑜 𝜇𝑜 𝜎𝑜 𝜇𝑜 𝜎𝑜 𝜇𝑜 𝜎𝑜 

Before the 

flood 

Prior 461.7874 1.1424 461.702 1.0063 461.1344 1.1659 458.4919 0.9965 

Posterior 461.8520 0.2225 461.5965 0.0923 460.7141 0.1851 458.1167 0.1211 

Peak-flow Prior 463.4296 1.5545 462.9069 1.3847 462.6298 1.8316 459.4000 1.4593 

Posterior 463.4992 0.3978 462.7843 0.1890 461.8404 0.3655 458.9123 0.1704 

Recession 

phase 

Prior 462.7484 1.1706 462.6818 1.1090 462.1369 1.2520 459.3888 1.0565 

Posterior 462.7654 0.2065 462.5491 0.0951 461.6666 0.1879 459.0749 0.1191 

After the 

flood 

Prior 461.6083 1.1259 461.7917 1.0442 460.9604 1.1409 458.4946 1.0216 

Posterior 461.6909 0.2146 461.5675 0.0938 460.5780 0.1749 458.0773 0.1225 
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5.3.3 Probability maps 

The Bayesian approach allows us to study groundwater flood events considering the posterior 

distribution of the groundwater levels, which can be used for subsequent analysis, such as 

transport modeling, scenario modeling, or assembling more complex model structures. In our 

case, the posterior distributions at every cell of the domain can be used to create probability 

maps of susceptibility to groundwater flooding based on limit exceedances. We present two 

types of maps in this section. The first one is a distributed map based on the water depth levels 

in relation to the topographic level (Figure 5.7 and Figure 5.8). The second type is a graduated 

symbol map, where the size of the circles indicates the probability of exceedance given the 

depth of a specific house cellar (Figure 5.9). 

Figure 5.7 and Figure 5.8 show the probability of having groundwater tables rising at the 

defined thresholds 𝜅𝑖,𝑗(𝑑 = 1.5)  and 𝜅𝑖,𝑗(𝑑 = 0.5) , respectively. The maps include the 

outcomes of simulations with the prior uncertainty (Figure 5.7a and Figure 5.8a) and the 

revised uncertainty from the Bayesian inversion (Figure 5.7b and Figure 5.8b). Areas with a 

low probability of exceedance are reduced in the maps built with the posterior distributions, 

thanks to the reduced variability in the sensitive parameters. Many zones are highly 

susceptible to groundwater flooding, even before and after the peak-flow. This agrees with 

reports of cellar inundations out of the peak-flow event and the high groundwater levels that 

can also be observed during non-flood seasons (Bayerisches Landesamt für Umwelt, 2020). 

The heavy precipitation at the end of May and the beginning of June 2013 (between stress 

period 115 and stress period 130) could have been the inundation catalyst, but the results show 

a high groundwater table at every phase of the event regardless of the heavy rainfall. Indeed, 

initial conditions, such as soil saturation before the event can influence recharge from rainfall. 

The underground infrastructure and properties can hence be exposed during longer periods to 

groundwater flooding and not only during specific hydrological events. The uncertainty in the 

soil saturation, parametrized using the recharge multiplier in this study, is essential because 

the occurrence, duration and severity of groundwater flooding will be determined by both the 

antecedent water table and groundwater recharge rate. 

During the peak-flow and the recession phase, the probability of having groundwater depths 

above 1.5 m reaches maximum values. This shows the relatively slow decrease in the 

hydraulic head in the recession phase in comparison with fluvial floods. Groundwater 

flooding can last for an extended period, and infrastructure and property damage can be 

associated with long-lasting exposure. By comparing the outcomes from prior and posterior 

evaluations, we observe cells where the prior beliefs overestimate the exceedance 

probabilities while others underestimate them. In such cases, preconceptions based on one 

single forward simulation could be misleading. Maps over the basis of a distributed model 

help to avoid such biases and identify spatial responses that may be overlooked otherwise. 
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Also, creating the maps with a Bayesian approach increases the spatial confidence of the 

groundwater flooding susceptibility. We mainly assign this improvement to the updated 

posterior distributions of the hydraulic conductivity (𝑘𝐴 and 𝑘𝐵), which are very sensitive 

parameters and describe the ability of the material to transmit the fluid through the pore space 

within significant regions of the domain. Comparing Figure 5.7 and Figure 5.8, we can 

observe that the choice in the threshold value d is very important for the delineation of the 

areas affected by groundwater flooding. Hence, it should be carefully chosen according to 

site-specific problematics or different values of d should be investigated to have a clear picture 

of the possibly inundated areas. 

 

Figure 5.7. Probability maps of groundwater depth equal to or below 1.5 m at different phases of the 

event. Maps are created with a) prior predictive distribution and b) posterior predictive distribution. 
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Figure 5.8. Probability maps of groundwater depth equal to or below 0.5 m at different phases of the 

event. Maps are created with a) prior predictive distribution and b) posterior predictive distribution. 

Based on the household survey, we define the threshold �̃�𝑖,𝑗 at different residential properties 

and the resulting maps can be observed in Figure 5.9. The properties selected in this analysis 

are far enough from the boundary conditions such that they are not influenced by the time-

variant specified heads. We observe that the probability of reaching the cellar depth is 

unrelated to the distance to the river (see probabilities of building H2 and H3). Given the high 

groundwater table of the simulated period, it is very likely to reach the cellar depths at H1, 

H2, H3, and H6 even before and after the peak event. The probability of groundwater levels 

reaching the cellar is higher at the recession phase at H2, H5, H6, and H7. These results may 

imply a delayed propagation of the flood wave from the river into the aquifer.  
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Figure 5.9. Probability of groundwater levels rising to or above the depths of the cellars. Graduated 

symbols (red circles) indicate the probability. The image displays a specific section of the model 

domain. 

A drawback of the presented scheme is the memory requirement to store the element-wise 

data to construct the probability density functions. Still, in practice, it is possible to cluster the 

output data in relation to their spatial and temporal relevance and build maps of smaller 

regions. This means, once the zones and periods of major importance are identified, there is 

no need to keep in memory the simulation data that is out of the cluster. The presented results 

are obtained from a groundwater flow model that evaluates one actual event, which involves 

a relatively short timeframe of simulation, compared to mapping products that measure 

susceptibility to groundwater flooding from the description of the return period. However, the 

approach can be easily extended considering appropriate design parameters (e.g., changing 

the return period of the precipitation event, of the peak river discharge and/or of the volume 

of the event). This single event approach could be informative for industries, property 

managers, or insurance companies to evaluate the susceptibility to groundwater flooding of 

underground structures.  
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5.4 Conclusions 

The broad implication of this research is the presentation of a Bayesian-based framework to 

create probability maps of susceptibility to groundwater flooding in order to incorporate the 

parameter uncertainties in the risk imagery. The scheme proposes to break down the 

uncertainty and sensitivity of one flood event into spatial and temporal terms and compute the 

statistics of interest at each domain element. The elementary effects method is used to reduce 

the problem dimensionality by quantifying the model sensitivity with a relatively low number 

of model evaluations. We use the DREAM algorithm as an MCMC-based technique to 

estimate the posterior distributions of the relevant uncertain parameters and reduce the 

uncertainty in the predicted groundwater heads. Finally, we propose to explore the posterior 

probability distribution of the groundwater heads to compute the exceedance probability 

based on the groundwater depths and cellar depths. Two types of maps are created to describe 

the susceptibility to groundwater flooding: a distributed map using the groundwater depth 

threshold, and a graduated symbol map given the depth of a specific house cellar.  

The approach is illustrated with an application in a numerical model that describes the 

groundwater flood event in the Alz River valley in 2013. We are able to increase the spatial 

confidence of the results thanks to the reduction in the uncertainty during the inference 

process. By using a relatively large temporal scale, we are able to employ accurate temporal 

resolutions to detect the exposure to groundwater inundation at particular properties and areas. 

The framework can be applied over one flood event and this may be considered a promising 

aspect due to the reduced amount of data and the low computational demand. The posterior 

probabilities of the groundwater head and the exceedance evaluation help us distinguish 

highly exposed zones from those exposed only during peak-flow and the recession phase. 

This is relevant in practical applications because definitions of the susceptible zones can be 

easily constructed from a probabilistic perspective, and the accuracy of the simulations can 

be updated with new evidence data. In addition, these findings provide additional information 

about the incidence of groundwater flooding beyond the flood season. In this specific case 

study, the results indicate that infrastructure and property can be long-lastingly exposed to 

inundation hazards.   

Finally, we stress the importance of opting for a Bayesian approach to understand 

groundwater flood events and create risk imagery. The temporal and spatial nature of 

groundwater flow confirms that the problem can be presented from a different perspective 

than the view of traditional flood events. Besides the exposure of the assets, groundwater 

flooding risk depends on temporal and spatial details from hydrological, climatic, and 

geomorphological elements. Ultimately, this level of detail makes flood mapping the crucial 

tool for flood risk management employed by a wide variety of partakers (such as planners, 
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developers, insurance companies, and property owners). But it is not possible to characterize 

the hydrogeological systems in such detail without being affected by uncertainty, and an 

explicit quantification is therefore required. Probability maps built over inverse methods can 

be relevant not only for incorporating the uncertainty and improving the reliability of the 

model but also for the accuracy of the message that is transmitted to different actors.  
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6 Polynomial chaos expansions for flow field 

dynamics 

Abstract 

Fluctuating stream stages and peak-flow events can significantly influence the interactions 

between streams and aquifers and modify the hydraulic gradient, the flux exchange and the 

subsurface flow paths. As a result, stagnation zones and reverse flow may appear in different 

parts of an aquifer and at different times. These features of the flow field play a relevant role 

in the transport, transformation, and residence time of solutes, pollutants, and nutrients in the 

subsurface. However, their identification using numerical models is complex not only because 

of highly non-linear dynamics, but also due to significant uncertainties in the model input data 

which propagate into the quantities of interest. In this work, we use an approach based on 

polynomial chaos expansions to map the probability of occurrence of stagnation zones and 

reverse flow during a flood event. We quantify the propagation of uncertainty into the 

groundwater flow field due to the applied river boundary conditions. Then, we evaluate the 

responses of the posterior probabilities in an element-wise fashion using a set of flow 

classification criteria and kernel density estimations. The proposed methodology is flexible 

because it employs a non-intrusive pseudo-spectral technique and, consequently, it can be 

applied straightforwardly in pre-existing models. The regions near the confluence of two 

streams in the studied area are prone to present transient stagnation and reverse flow. 

 

 

 

 

Material from: 

Merchán‐Rivera, P., Wohlmuth, B., Chiogna, G., 2021. Identifying Stagnation Zones and Reverse Flow Caused 

by River‐Aquifer Interaction: An Approach Based on Polynomial Chaos Expansions. Water Resources Research. 

https://doi.org/10.1029/2021WR029824 
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6.1 Introduction 

There is a long-standing scientific awareness of the importance of the interactions between 

streams and aquifers (Brunner et al., 2017; Krause et al., 2014; Lewandowski et al., 2020, 

2019; Magliozzi et al., 2018; Stanford and Ward, 1988; Winter, 1999, 1998). Many 

investigations describe the role of the dynamics of these interactions in the transport, 

degradation, and residence time of solutes and pollutants (Boano et al., 2014; Elliott and 

Brooks, 1997; Singh et al., 2020; Trauth and Fleckenstein, 2017), the transport of nutrients, 

the ecosystem metabolism and the biogeochemical transformations at the interface (Boano et 

al., 2014; Findlay, 1995; Jones and Holmes, 1996; Pinay et al., 2015), as well as the 

modulation of temperature (Arrigoni et al., 2008; Bhaskar et al., 2012; Gerecht et al., 2011; 

Marzadri et al., 2013). Mass and energy exchange are defined by the distribution of the 

hydraulic heads, the flow path directions, the canal bed conditions and the stream hydraulics 

(Lewandowski et al., 2019; Woessner, 2000). Thus, the stream-aquifer interaction is a 

function of space and time that may vary not only due to the geomorphologic and 

hydrogeologic controls, but also due to the occurrence, magnitude and distribution of 

hydrologic conditions (e.g., flood events) and anthropogenic impacts (e.g., hydropeaking). 

Numerous studies have also reported that rapid and fluctuating stages and peak-flow events 

can significantly affect the stream-aquifer interaction and modify the water flux, the residence 

times and the flow paths in the subsurface flow (Bernard-Jannin et al., 2016; Boano et al., 

2013; Cardenas, 2008; Casas-Mulet et al., 2015; Malzone et al., 2016b; Singh et al., 2020; 

Trauth and Fleckenstein, 2017; Wu et al., 2018). Still, as recognized by Conant et al. (2019) 

and Krause et al. (2017, 2014), we need to develop new methods to describe the stream-

aquifer dynamics in spatial and temporal terms to advance in the mechanistic understanding 

and predictability of these systems. 

Irregular flow paths may affect fluid mixing and transport (Zhang et al., 2009) and 

consequently, reactive solute transport in geophysical flows (Chiogna et al., 2012; Sund et al., 

2015). For instance, fluctuating head gradients change the rates of the groundwater flow and 

can create stagnation zones (Anderson and Munter, 1981; Cardenas, 2008; Tóth, 1963; 

Winter, 1976), regions associated with stagnation or equilibrium points (Jiang et al., 2011), 

where the groundwater velocity is zero (Bear, 1972). Non-trivial flow patterns can be 

observed near the stagnation points, which are relevant to the identification of the origin and 

fate of fluids and solutes (Bresciani et al., 2019). These points can allocate mixing and highly 

reactive regions, control the behavior of dissolution, dissipation, and reaction rates (Hidalgo 

et al., 2015; Hidalgo and Dentz, 2018; Jiang et al., 2014), and promote biogeochemical 

transformations (Krause et al., 2014; Pinay et al., 2015; Singh et al., 2020). Moreover, the 

location of stagnation points supports the description of the groundwater flow patterns in 

regimes that are driven by topographical and morphological configurations (Gomez and 
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Wilson, 2013; Jiang et al., 2011; Ren and Zhao, 2020; Wang et al., 2017). Additionally, 

transient stages in the stream-aquifer interactions can be relevant to the evaluation of multi-

directional variations in the flow field. The rise of stream stages may reverse the dominant 

direction of the groundwater flow regime (Hunt et al., 2006) and affect the circulation of 

nutrients and solutes (Dudley-Southern and Binley, 2015). Additionally, the reversals in the 

hydraulic gradient can switch between losing and gaining stream conditions, and influence 

the infiltration depth of solutes and the reaction rates in the subsurface (Trauth and 

Fleckenstein, 2017).  

Groundwater numerical models are frequently used to understand stream-aquifer interactions 

(Anderson et al., 2015; Peyrard et al., 2008). Major uncertainties may propagate into the 

model outcomes due to the error in the observed hydrological variables, the parameterization 

and structure of the model, as well as the conceptual assumptions and simplifications (Brunner 

et al., 2010; Di Baldassarre and Montanari, 2009; Götzinger and Bárdossy, 2008). In the field 

of hydrology, the propagation of the uncertainty has often been quantified by implementing 

Monte Carlo methods and related ensemble techniques (Beven and Binley, 1992; Kuczera 

and Mroczkowski, 1998; Vrugt et al., 2003). The main drawbacks of these approaches are 

typically the high number of simulations to cover the stochastic space of the uncertain 

parameters accordingly (Cools and Nuyens, 2016). Spectral expansion methods, such as 

generalized Polynomial Chaos (gPC), are suitable options to tackle these issues, particularly, 

to solve low-dimensional stochastic problems (Le Maitre and Knio, 2010; Smith, 2013). By 

using gPC expansions, we can represent different stochastic processes based on a suitable 

orthogonal polynomial basis (Rajabi, 2019; Xiu, 2009; Xiu and Karniadakis, 2002) and 

represent the full randomness of the system responses with expansion coefficients (Rajabi et 

al., 2015).  

Previous investigations have properly implemented polynomial expansion methods to solve 

simplified analytical problems associated with hydrology, hydrogeology and hydraulics 

(Esfandiar et al., 2015; Francis et al., 2010; Gibson et al., 2014; Litvinenko et al., 2020; Maina 

and Guadagnini, 2018; Meng and Li, 2017; Oladyshkin et al., 2012; Rajabi, 2019; Sochala 

and Le Maître, 2013; Zhang and Lu, 2004). Yet, the application of polynomial expansion 

techniques in hydrological field studies have received less attention (Deman et al., 2016; 

Ghaith and Li, 2020; Laloy et al., 2013; Rajabi and Ataie-Ashtiani, 2016). In addition, 

evaluation of the polynomial expansions performance in groundwater applications is still an 

open matter (Rajabi, 2019), and its application for the quantification of the uncertainty caused 

by stream-aquifer interactions remains unexplored. In fact, the efficiency of spectral methods 

is problem-dependent (Le Gratiet et al., 2017). Therefore, to benefit from the application of 

these tools and to produce appropriate conclusions, we need to examine a large number of 

hydrological case studies.  
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This work aims to map the occurrence of complex flow processes caused by stream-aquifer 

interactions in terms of temporal dynamics and spatial patterns. By exploiting the strengths 

of gPC expansions, we want to distinguish reverse flow and stagnation hotspots and describe 

them in terms of probability of occurrence. We use gPC expansions to quantify the 

propagation of uncertainty in the groundwater flow field due to the uncertain river boundary 

conditions during a flood event. We define the evaluation criteria to classify flow types and 

explore the posterior probabilities in an element-wise fashion (i.e., cell-by-cell) of a 

distributed model using kernel density estimations. The approach that we propose aims to 

assess the randomness of the input uncertainty of parameters that are variable in time and 

hence are commonly unknown in the parameterization of stream-aquifer relations, such as the 

streambed conductance and the stream stages. These parameters are often used to fine-tune, 

recalibrate, and update the hydrogeologic models. Then, hydraulic conductivity, specific 

storage, specific yield and effective porosity are excluded from our set of stochastic 

parameters. Even if these aquifer properties are uncertain and can be evaluated using gPC 

theory, once a numerical model is developed, they are assumed as constant input parameters 

over time (Bachmat et al., 1978; Osman, 2013). On the other hand, variation of the streambed 

conductance as a function of time has been largely reported (Cui et al., 2020; Hatch et al., 

2010; Hubbs, 2006; Stewardson et al., 2016), and the stream stage is, by definition, a 

fluctuating attribute of the streamflow (Reddy, 2005). Furthermore, by using pseudo-spectral 

expansions, the groundwater model does not require to be modified and can be treated as a 

black box in the computational procedure. Hence, this method can be applied to pre-existing 

models where the spatial and temporal implications of the stream-aquifer interactions play a 

relevant role. 

6.2 Methods 

6.2.1 Groundwater flow and river boundary conditions 

Transient groundwater flow in a heterogeneous unconfined aquifer, when the coordinate 

system is oriented parallel to the major axes of anisotropy, can be expressed by a partial 

differential equation (Fetter, 1999):  

𝜕

𝜕𝑥
(𝑘𝑥𝑥

𝜕ℎ

𝜕𝑥
 ) +

𝜕

𝜕𝑦
(𝑘𝑦𝑦

𝜕ℎ

𝜕𝑦
 ) +

𝜕

𝜕𝑧
(𝑘𝑧𝑧

𝜕ℎ

𝜕𝑧
 ) + 𝑊 = 𝑆𝑠

𝜕ℎ

𝜕𝑡
  , Eq. 6.1 
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where ℎ is the piezometric head [L], 𝑘𝑥𝑥, 𝑘𝑦𝑦, and 𝑘𝑧𝑧 represent the hydraulic conductivity 

along the 𝑥, 𝑦, and 𝑧 coordinate axes [LT-1], 𝑆𝑠  is the specific storage [L-1], and 𝑊 is the 

volumetric flux per unit volume to represent the sources and sinks [T-1]. For practical 

applications, Eq. 6.1 is often solved by numerical methods as a set of spatially discrete points 

in the center of a cell. So, the rate of change in storage within each cell is equal to the sum of 

flows into and out of the cell, as follows (Harbaugh, 2005): 

∑𝑄𝑖 = 𝑆𝑠

∆ℎ

∆𝑡
∆𝑉   , Eq. 6.2 

where 𝑄𝑖 is the 𝑖 component of the flow rate into the cell that includes the source and sink 

terms [L3T-1], ∆𝑉 is the cell volume [L3], and ∆ℎ [L] is the change in the groundwater head 

over a time interval ∆𝑡 [T]. External sources or stressors (e.g., rivers, artificial waterways and 

lakes) can be represented as 𝑄𝑖 elements to predict head distributions at successive times for 

transient simulations. The interaction between surface water and groundwater is frequently 

conceptualized as a boundary condition for the head-dependent flux (Anderson et al., 2015; 

Brunner et al., 2010; Di Ciacca et al., 2019). Hence, the flux exchange between streams and 

aquifers, 𝑄𝑒, is represented as follows: 

𝑄𝑒 = {
  𝑐𝑟(ℎ𝑟 − 𝑏𝑟), ℎ𝑎 ≤ 𝑏𝑟

𝑐𝑟(ℎ𝑟 − ℎ𝑎), ℎ𝑎 > 𝑏𝑟
  , Eq. 6.3 

where 𝑐𝑟 is the streambed conductance [L2T-1], ℎ𝑟 is the water level or stream stage [L], 𝑏𝑟 is 

the bottom of the streambed [L], and ℎ𝑎 represents the hydraulic head at the node in the cell 

underlying the stream reach [L]. The term 𝑐𝑟 in the river package of MODFLOW-2005 is a 

resistance factor defined by the stream width 𝑤𝑟 [L], the length of the conductance block 𝑙𝑟 

[L], the thickness of the streambed 𝑚𝑟  [L], and the vertical hydraulic conductivity of the 

streambed material 𝑘𝑟 [LT-1] (Harbaugh, 2005): 



70 

𝑐𝑟 =
 𝑘𝑟 𝑙𝑟 𝑤𝑟 

𝑚𝑟
  . Eq. 6.4 

Streambed conductance is a broadly applied approach in hydrogeologic modeling (Morel-

Seytoux, 2019). Nonetheless, it is a very simplified conceptualization of the stream-aquifer 

interactions that assumes homogeneity and isotropy of the streambed hydraulic conductivity 

within the cell (Cardenas and Zlotnik, 2003; Ghysels et al., 2019, 2018). Furthermore, the 

river package is not able to represent flow in the unsaturated zone (Brunner et al., 2010; 

Ghysels et al., 2019). In our application, the unsaturated flow under the stream can be 

neglected due to the active hydraulic connection during the simulated period. On the other 

hand, major roles are played by 𝑐𝑟 and ℎ𝑟, and they are included in the uncertainty analysis 

accordingly. Overall, these parameters can show large spatial and temporal variability, and 

they are frequently uncertain, hardly accessible, or even unknown. In practice, 𝑐𝑟 is a lumped 

parameter that cannot be easily measured in the field, that comprises various properties of the 

streambed (Cousquer et al., 2017; Mehl and Hill, 2010), and that is often estimated by 

calibration (Morel-Seytoux et al., 2017). The uncertainty in the estimation of ℎ𝑟 originates 

from the stream flow data (Di Baldassarre and Montanari, 2009) and the model structure 

(Georgakakos et al., 2004). 

To define the velocity distribution, transient simulations can be represented as a series of 

discrete steady-state flow periods (Pollock, 2012). The stationary version of Eq. 6.1 can be 

rewritten in terms of the average linear groundwater velocity as: 

𝜕

𝜕𝑥
(𝜂𝑣𝑥) +

𝜕

𝜕𝑦
(𝜂𝑣𝑦) +

𝜕

𝜕𝑧
(𝜂𝑣𝑧 ) = 𝑊  , Eq. 6.5 

where 𝑣𝑥, 𝑣𝑦, and 𝑣𝑧 represent the principal components of the averaged linear velocity [L/T], 

and 𝜂 is the effective porosity [-]. Then, to obtain the averaged linear velocity component 

across one face of the cell, we can represent the volumetric flow rates across the finite-sized 

cell within a structured aligned grid in this fashion: 
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(𝜂𝑣𝑥2
− 𝜂𝑣𝑥1

)

∆𝑥
+

(𝜂𝑣𝑦2
− 𝜂𝑣𝑦1

)

∆𝑦
+

(𝜂𝑣𝑧2
− 𝜂𝑣𝑧1

)

∆𝑧
=

𝑄𝑠

∆𝑥 ∆𝑦 ∆𝑧
  . Eq. 6.6 

Eq. 6.6 is formed by 𝑄𝑠 as the internal sources or sinks within the cell, ∆𝑥, ∆𝑦, and ∆𝑧 as the 

dimensions of the cell in the respective coordinate directions, and the components 𝑣𝑥1
, 𝑣𝑥2

, 

𝑣𝑦1
, 𝑣𝑦2

, 𝑣𝑧1
, and 𝑣𝑧2

 that represent the velocities perpendicular to the respective coordinate 

direction at the six faces of the cell. Eq. 6.6 can be solved using the values of the groundwater 

heads 𝛥ℎ at a given distance 𝛥𝑙 [L] by substituting each of the flow terms by Darcy’s law. 

For instance, Eq. 6.7 exemplifies the definition of the velocity perpendicular to the 𝑥-direction 

at one face (Pollock, 2012): 

𝑣𝑥1
=

𝑄𝑥1

𝜂ΔyΔ𝑧
=

−𝑘𝑥𝑥Δℎ𝑥1

𝜂Δ𝑙𝑥1

 . Eq. 6.7 

6.2.2 Polynomial chaos expansion and pseudo-spectral approach 

Within the context of uncertainty quantification, generalized Polynomial Chaos theory (Xiu 

and Karniadakis, 2002) refers to the representation of random spaces by spectral expansions 

(Smith, 2013; Xiu, 2009). Following the generalized Cameron-Martin theorem (Cameron and 

Martin, 1947), we define a second-order random (finite variance) process (Smith, 2013) by a 

general polynomial approximation: 

𝑓(𝑠, 𝑡; 𝛷) = ∑�̂�𝑖(𝑠, 𝑡)𝛹𝑖(𝛷) ,

∞

𝑖=0

 Eq. 6.8 

where 𝑓(𝑠, 𝑡; 𝛷) is the output function defined by both the deterministic spatio-temporal 

dependencies {𝑠, 𝑡} , and the stochastic dependencies 𝛷 = (𝜑1, … , 𝜑𝑑) , �̂�𝑖(𝑠, 𝑡)  are 

deterministic coefficients, and 𝛹𝑖(𝛷) are orthogonal polynomials that form the basis for the 

stochastic component of the solution. The random events 𝛷 represent the stochasticity in the 

system due to uncertain parameters, source terms, initial or boundary conditions, etc. For the 
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case of this study, this is the uncertainty related to the parameterization of the river boundary 

conditions: 𝑐𝑟 and ℎ𝑟. In practice, the series in Eq. 6.8 must be truncated after 𝑁 terms, to 

obtain a finite approximation: 

𝑓(𝑠, 𝑡; 𝛷)  ≈ ∑�̂�𝑖(𝑠, 𝑡)𝛹𝑖(𝛷)  .

𝑁

𝑖=0

 Eq. 6.9 

In Eq. 6.8 and Eq. 6.9, we observe that the polynomial approximation separates the 

deterministic and the stochastic components. The polynomial basis functions 𝛹𝑖(𝛷) must be 

properly specified according to the probability density function of the random variables (Xiu 

and Karniadakis, 2002). The basis construction of a single random variable 𝜓𝑖(𝜑) will satisfy 

the orthogonality condition with respect to the density 𝜌𝛷(𝜑), such that: 

𝔼[𝜓𝑖(𝛷)𝜓𝑗(𝛷)] = ∫𝜓𝑖(𝜑)𝜓𝑗(𝜑)𝜌𝛷(𝜑)𝑑𝜑
Γ

= 〈𝜓𝑖, 𝜓𝑗〉𝜌 = 𝛾𝑖𝛿𝑖𝑗   , 
Eq. 6.10 

where 〈𝜓𝑖, 𝜓𝑗〉𝜌  is the inner product of 𝜓𝑖  and 𝜓𝑗  on the interval Γ  with the weighting 

function 𝜌𝛷(𝜑) , 𝛾𝑖 = 𝔼[𝜓𝑖
2(𝛷)] = 〈𝜓𝑖〉

2  is a normalization factor, and 𝛿𝑖𝑗  denotes the 

Kronecker delta. As described later in section 6.2.5, to construct the orthogonal polynomials 

in this study, the uniform distributions of the river and canal conductance lead to the 

Legendre-chaos polynomials, while the Hermite-chaos polynomials correspond to normal 

distribution of the stream stages.  

As stated by Smith (2013), the representation of random processes that are functions of 𝑑 

multiple independent random variables is analogous to the univariate case and the 

multidimensional basis can be constructed as tensor products of univariate polynomials. Since 

the underlying 𝛹𝑖(𝛷) in Eq. 6.9 are known and previously defined, we only need to compute 

�̂�𝑖(𝑠, 𝑡) to obtain the gPC expansion. In this work, we apply a non-intrusive expansion known 

as the pseudo-spectral approach (Xiu, 2007). We use this method because it applies a set of 

deterministic model resolutions using specific realizations of 𝛷 to construct approximations 

(Le Maitre and Knio, 2010). Therefore, we can treat the solver as a black box in the 

computational procedure. This process requires numerical integration. In this work, we use 

an optimal Gaussian quadrature (Gautschi, 1968; Golub and Welsch, 1968) over a full tensor 
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product of integration order 𝐾 to achieve order 𝑛 polynomials. This specifies a set of gaussian 

quadrature nodes 𝑞𝑘 = (𝑞1, … , 𝑞𝐾) and weights 𝑤𝑘 = (𝑤1, … , 𝑤𝐾), following the method 

defined by Gautschi (1968). Then, the number of model evaluations 𝑃 is equal to (𝐾 + 1)𝑑. 

The calculation of �̂�𝑖(𝑠, 𝑡) then follows: 

�̂�𝑖(𝑠, 𝑡) = 〈𝑓(𝑠, 𝑡, 𝜑), 𝜓𝑖(𝜑)〉𝜌  = ∫ 𝑓(𝑠, 𝑡, 𝜑)𝜓𝑖(𝜑)𝜌𝛷(𝜑)𝑑𝜑
Γ

  , Eq. 6.11 

�̂�𝑖(𝑠, 𝑡) ≈  ∑ 𝑓(𝑠, 𝑡, 𝑞𝑘)𝜓𝑖(𝑞𝑘)

𝐾

𝑘=0

𝑤𝑘   . Eq. 6.12 

The number of nodes 𝐾 can be defined by (𝑛 + 𝑑)!/𝑛! 𝑑! − 1 (Smith, 2013; Xiu, 2010) to 

represent the 𝑛 interaction terms optimally, or by using experimental combinations such as 

the empirical rule 𝐾 = (𝑑 − 1)𝑁 , where 𝑁 = 𝑛 + 1  (Sudret, 2008). Once the forward 

deterministic evaluations are run and �̂�𝑖(𝑠, 𝑡)  are approximated, we can compute the 

polynomial expansions 𝑓(𝑠, 𝑡; 𝛷). We can also straightforwardly obtain the first and second 

statistical moments by the following equations: 

𝔼[𝑓(𝑠, 𝑡; 𝛷)] = 𝜇𝑓 = �̂�0(𝑠, 𝑡)  , Eq. 6.13 

𝕍[𝑓(𝑠, 𝑡; 𝛷)] = 𝜎𝑓
2 = ∑ �̂�𝑘

2(𝑠, 𝑡)  .

𝐾

𝑘=1

 Eq. 6.14 
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6.2.3 Kernel density estimation 

The statistics of the quantity of interest, 𝜇𝑓 (expected value) and 𝜎𝑓 (standard deviation), are 

point estimates because they represent a single value in the parameter space. However, for 

understanding the uncertainty and extending the analysis to the spatial and temporal 

variations, computing the underlying probability density function may be quite informative, 

and also practical to estimate the probability of occurrence of stagnation points and reverse 

flow. We apply a non-parametric estimation technique known as kernel density estimation 

(Silverman, 1998; Wand and Jones, 1995). This method calculates the density function by 

weighting the distances of the realizations from a point 𝑥 . The kernel estimator 𝑓(𝑥) is 

defined by: 

𝑓(𝑥) =
1

𝑛𝑏𝜉
∑𝜉 (

𝑥 − 𝑋𝑖

𝑏𝜉
) .

𝑛

𝑖=1

 Eq. 6.15 

where 𝑋𝑖  are independent data points drawn from the actual gPC expansions, 𝑏𝜉  is the 

window width or bandwidth, 𝜉 is the window function that determines the shape of the kernel, 

and 𝑛  is the sample size. For this study, 𝑏𝜉  is defined following Scott's Rule as 𝑏𝜉 ≡

3.5𝜎𝑛−1/3 (Scott, 2014), and 𝜅 is a Gaussian kernel defined as: 

𝜅(𝑥, 𝑏𝜉) ∝ 𝑒
− 

𝑥2

2𝑏𝜉 
2
  .   Eq. 6.16 

Once we define the quadrature degree 𝐾  that is able to represent the randomness of the 

uncertain inputs at a low computational cost and with a small error in relation to the observed 

heads, we replicate the method in an element-wise operation to find 𝑓(𝑥) and obtain the point 

estimates and posterior probability distributions for each cell of the domain. 

6.2.4 Flow criteria classification 

The posterior probability distributions can be evaluated according to a set of criteria that 

reflect the occurrence of particular flow types (i.e., stagnation points and flow reversal) at 

different phases of the event. The first criterion states the probability of finding stagnation 

cells, which are cells where the local magnitude of the flow field can be equal to zero. We can 
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explain this condition by defining the cumulative distribution function �̂�𝑉(𝑣)  from the 

previous kernel estimator, as follows:  

�̂�𝑉(𝑣) = 𝑃(𝑉 ≤ 𝑣)   , Eq. 6.17 

where the right-hand side is the probability that the magnitude of the flow field 𝑉 takes on a 

value less than or equal to 𝑣. Then, the probability of finding stagnation cells can be written 

as: 

𝑃(𝑉 = 0) = �̂�𝑉(0)   .   Eq. 6.18 

To identify the probability of occurrence of reverse flow, we need to define a flow field 

direction of reference with an angle �̅�. Based on this reference direction, we define a flow as 

reverse when the angle of the evaluated flow direction 𝜃 is within the interval [𝛼, 𝛽], where: 

𝛼 = �̅� − 135°  ,           𝛽 =  �̅� + 135°  . Eq. 6.19 

Figure 6.1 shows an example of these criteria for a hypothetical reference direction with 

an angle �̅� = 135° (red arrow), which means that the flow runs from southeast to northwest. 

We assume a flow reversal when the angle 𝜃 varies between 𝛼 = 0° and 𝛽 = 270° (gray area), 

because the flow is no longer flowing to the north nor to the west. In practice, we need to find 

the angles of the reference directions for every cell in order to map the probability. Notice 

that the reference flow field direction can be adapted to the requirements of the study, the 

temporal span and discretization of interest, and the hydraulic responses of the system. For 

instance, in this study, we use the mean as measurement of central tendency to define �̅�: 
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�̅� =
1

𝑛𝑠
∑ 𝜇𝜃𝑖

𝑡𝑓

𝑖=𝑡𝑠

  , 𝑛𝑠 = 1 + (𝑡𝑓 − 𝑡𝑠) ,     Eq. 6.20 

with 𝜇𝜃𝑖
 representing the expected values of the flow field angle computed with the 

polynomial expansions, with 𝑡𝑠 and 𝑡𝑓 representing the first and last stress periods between 

two flood events or, in our study, the beginning of the simulation and the flood event, and 

with 𝑛𝑠 denoting the number of stress periods between 𝑡𝑠 and 𝑡𝑓. Finally, we can define the 

probability of finding reverse flow and express it in terms of a cumulative density function: 

𝑃(𝛼 ≤ 𝜃 ≤ 𝛽) = {  
�̂�𝜃(𝛼) − �̂�𝜃(𝛽)  ,                𝛼 > 𝛽

�̂�𝜃(𝛼) + (1 − �̂�𝜃(𝛽))  ,     𝛼 < 𝛽
   .    Eq. 6.21 

 

Figure 6.1. Reverse flow criteria representation: the red arrow represents the reference flow 

direction before a flood event, the gray area represents the interval within which the directions are 

considered reversal flows. 

6.2.5 Case study and algorithm implementation 

We applied the exposed approach to a real case model. The study area is in the Alz valley in 

Tacherting, Germany. Figure 6.2a shows the site location and the schematics of the numerical 

model. The Alz river flows from south to north along the valley. We can also observe an 
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artificial waterway, the Alz canal, that acts as a tributary of the river. The river and the canal 

are hydraulically connected to an unconsolidated shallow sedimentary aquifer (Keilholz et 

al., 2015; Merchán-Rivera et al., 2018). The bottom of the aquifer is located at 430 m a.s.l 

(above sea level) and it has an average depth of ~30 m (Doppler et al., 2011). As shown in 

Figure 6.2b, the region was affected by a flood event due to heavy rainfall events at the 

beginning of June 2013. 

 

Figure 6.2. Flood event in 2013 in the Alz valley description: a) study area location and numerical 

model settings, and b) measured discharge in the river Alz and precipitation rate. 

To describe the interaction between the streams and the aquifer, we built a groundwater 

numerical model using MODFLOW-2005 (Harbaugh, 2005). This model is based on the 

model presented in Merchán-Rivera et al. (2018) and the data collected in Keilholz et al. 

(2015). The spatial domain of the model is subdivided into a finite-difference grid formed by 

one layer (vertical representation), 260 rows, and 260 columns (horizontal representation). 
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The simulation period covers 75 days from 02-May-2013 00:00:00 to 15-Jul-2013 18:00:00, 

and it is discretized in 300 stress periods of six hours intervals. The number of stress periods 

used to define 𝑛𝑠 is equal to 100 (from 02-May-2013 to 26-May-2013). The aquifer properties 

of the model were defined according to the underlying geological features presented in 

previous studies (Bayerisches Landesamt für Umwelt, 2017; Doppler et al., 2011). These 

studies identified three main soil types in the area: a younger floodplain underneath the Alz 

river formed by gravel and sand (SA), an alluvial terrace formed by gravel and sand (SB), and 

a low terrace mainly formed by gravel (SC) (Figure 6.2a). The soil properties allow a very 

dynamic behavior of the groundwater flow due to the high permeability of the porous media, 

the good hydraulic connection with the adjacent streams, and the relatively high rainfall 

recharge. The hydraulic conductivity, the specific storage, the specific yield of the three soil 

types and the effective porosity are not considered calibration parameters in this study, since 

we are using a model that has already been calibrated, and we do not consider these parameters 

as time dependent. The groundwater responses are field measurements that were registered 

every six hours in four groundwater monitoring wells: Alzpitz, B1, B3, and B4 (Keilholz et 

al., 2015). The hydraulic conductivity, specific storage, specific yield and effective porosity 

for each soil zone were calibrated in previous studies (Keilholz et al., 2015; Merchán-Rivera 

et al., 2018) and are based on the soil properties (Bayerisches Landesamt für Umwelt, 2017; 

Doppler et al., 2011). Table 6.1a summarizes the parameterization of the numerical model.  

Three boundary conditions were imposed in the model. Firstly, time-variant specified-heads 

(CHD) were used to simulate the variation in the water table at the borders of the domain. By 

applying this option, transient heads were adjusted at every stress period. Secondly, we 

included recharge into the saturated zone to simulate the distributed flux from the top of the 

domain due to infiltration. Thirdly, we used the river package (Harbaugh, 2005), the 

streambed conductance and hydraulic head in the stream to simulate the interaction between 

surface water and the aquifer. A regional hydrologic model built in MIKE SHE (DHI, 2013) 

by Keilholz et al. (2015) was used to obtain the scatter stage information for the river and the 

canal, the recharge into the saturated zone, and the groundwater heads to define the time-

variant specified-heads, which change in time and space. 

The uncertainty in the river boundary conditions is introduced by the experimental error in 

the stream stage 𝜀  and the streambed conductance 𝑐𝑟 , which are assumed to be random 

variables. The uncertainty related to stream discharges of the region has been previously 

quantified by Willems (2011) and Willems and Stricker (2012). These works extensively 

study the uncertainty in the physical measurements of the rivers of the region and describe a 

normal distribution for the uncertainty in the discharges and the head measurements of the 

river Alz. This choice considers that the normal distribution is the best limiting distribution 

for a parameter that is defined from a finite set of physical measurements (Fornasini, 2008). 

Based on these settings, we then computed the rating curve and the corresponding propagation 
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of the uncertainty in the stream stage. The spectral expansions introduce the stochasticity of 

this parameter by using the quadrature node values as a noise value 𝜀. This means that 𝜀 

increases or reduces the stream stage ℎ𝑟, for all of the stress periods of the model at each cell 

that represent the streams. Hence, the stream stages ℎ̂𝑟 used in the deterministic evaluations 

are defined using a random variable 𝜀~𝒩(𝜇𝜀 , 𝜎𝜀) to represent the stage error, where 𝜇𝜀 = 0, 

as follows: 

ℎ̂𝑟 = ℎ𝑟 + 𝜀   .   Eq. 6.22 

For the definition of prior parameter distributions of the conductance, we consider physically 

suitable ranges according to the streambed material. In addition, given the lack of prior 

information related to the conductance properties of the streambed, we assume uniform 

density distributions to maximize the entropy for both the canal and the river conductance 

𝒰(𝑎, 𝑏) (Cousquer et al., 2017; Zeng et al., 2016). Table 6.1b includes the actual values that 

were applied for the prior distributions. 

Table 6.1. Model parameters: a) deterministic hydraulic parameters and b) stochastic stream 

parameters. 

Model parameters Value Unit 

a) Deterministic parameters 

Hydraulic conductivity SA 7.0131e-03 𝑚 𝑠⁄  

Hydraulic conductivity SB 1.0617e-03 𝑚 𝑠⁄  

Hydraulic conductivity SC 1.3068e-04 𝑚 𝑠⁄  

Specific storage SA 2.2475e-05 1/𝑚 

Specific storage SB 1.9938e-06 1/𝑚 

Specific storage SC 2.8263e-05 1/𝑚 

Specific yield SA 1.6561e-01 − 

Specific yield SB 1.6057e-01 − 

Specific yield SC 2.0543e-01 − 

Effective porosity 0.3500 − 

b) Stochastic parameters 

Stream stage error Normal ~ 𝒩(0, 0.145) 𝑚 

Conductance of the river Uniform ~ 𝒰(1𝑒−7, 9𝑒−4) 𝑚2 𝑠⁄  

Conductance of the canal Uniform ~ 𝒰(1𝑒−5, 9𝑒−1) 𝑚2 𝑠⁄  
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The magnitude and direction of the flow fields were calculated at the center of the cell by 

computing the flow face-to-face from the MODFLOW outputs and applying the same 

semianalytical algorithm described in a previous section and defined by Pollock (2012). We 

implemented the polynomial expansions, the non-intrusive pseudo-spectral projection, and 

the kernel density estimation using the Chaospy library (Feinberg, 2019; Feinberg and 

Langtangen, 2015) and the SciPy library (Virtanen et al., 2020).  

The simulated groundwater heads were evaluated in relation to the set of observed values. 

Also, we validated the results obtained from the gPC method by comparing the simulated 

groundwater heads with the results from the application of a quasi-Monte Carlo method 

(qMC) with 𝑆 = 1000 samples. The sampling points for the qMC were generated using 

Halton sequences (Halton, 1964) as a low-discrepancy arrangement to reduce the variance in 

the samples and considering that the convergence rate of quasi-random sequences is 

𝒪(ln𝑁𝑑/𝑁) (Smith, 2013). Further explanations of how the collocation of the uncertain 

values differs between the methods are provided in Annex A of the Supplementary Material 

for illustrative purposes. 

6.3 Results and Discussion 

To present some of the results clearly, we extracted them at specific time steps to understand 

the responses of the system at the following time steps: before the event at stress period 86 

(23-May-2013), peak-flow at stress period 127 (02-Jun-2013), recession phase at stress period 

145 (07-Jun-2013) and after the flood event at stress period 290 (13-Jul-2013).  

We performed various tests to define 𝐾 and 𝑛, which included the application of the empirical 

rule presented by Sudret (Sudret, 2008), the full factorial design (Smith, 2013; Xiu, 2010), 

and a series of experimental combinations. We calculated the mean absolute error [L] of the 

expected values of the groundwater head [L] from the gPC expansions and the qMC sampling 

[L] in relation to the observed values at the monitoring wells. The results from these 

evaluations are displayed in Table 6.2. As mentioned by Debuscherre (2017), in practical 

applications of the polynomial expansions, the selection of the order of representation of the 

expansions is an experimental choice that depends on the problem. We observed that low 

quadrature degrees were able to capture the dependence between the solution and the 

stochastic spaces. Indeed, the convergence of the results does not significantly improve by 

using 𝐾 > 4. Consequently, we applied 𝐾 = 4 and 𝑛 = 4 to proceed with the quantification of 

uncertainty and the creation of probability maps. In addition, to validate this choice against 

the qMC results, we performed a comparison of the spatial distribution of the statistical 
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moments of the hydraulic heads at different phases of the flood event that can be found in the 

Annex B of the Supplementary Material. 

Table 6.2. Mean absolute error (in meters) of the expected values at the monitoring wells using 

different values of quadrature degree and qMC validation with 1000 samples. 

Method K n P 
Monitoring well 

Average 
Alzpitz B1 B3 B4 

gPC 

2 2 27 0.0971 0.1999 0.1836 0.0952 0.1440 

3 1 64 0.1262 0.1876 0.1590 0.0919 0.1412 

3 3 64 0.1262 0.1876 0.1590 0.0919 0.1412 

4 1 125 0.1165 0.1916 0.1663 0.0926 0.1417 

4 2 125 0.1165 0.1916 0.1663 0.0926 0.1417 

4 4 125 0.1165 0.1916 0.1663 0.0926 0.1417 

5 2 216 0.1187 0.1905 0.1649 0.0925 0.1416 

5 3 216 0.1187 0.1905 0.1649 0.0925 0.1416 

5 5 216 0.1187 0.1905 0.1649 0.0925 0.1416 

6 2 343 0.1184 0.1907 0.1650 0.0925 0.1417 

6 3 343 0.1184 0.1907 0.1650 0.0925 0.1417 

8 3 729 0.1184 0.1907 0.1650 0.0925 0.1417 

9 2 1000 0.1184 0.1907 0.1650 0.0925 0.1416 

10 4 1331 0.1184 0.1907 0.1650 0.0925 0.1417 

12 5 2197 0.1184 0.1907 0.1650 0.0925 0.1417 

qMC - - 1000 0.1205 0.1896 0.1628 0.0922 0.1413 

 

Figure 6.3 includes the observed groundwater heads and the statistical moments that we 

obtained using the gPC method along the whole simulation period. The expected value and 

the standard deviation are represented by 𝜇ℎ  and 𝜎ℎ, respectively. Notice that the colored 

shade in the plots represents the interval [𝜇ℎ + 𝜎ℎ, 𝜇ℎ − 𝜎ℎ]. Overall, the model responses 

are more accurate in the monitoring wells close to the streams. The expected values at Alzpitz, 

the closest monitoring well to the streams, represent the observed values properly and mimic 

the responses of the aquifer during the flood event. The Alzpitz monitoring well is placed in 

the riverbank and the discrepancies observed between modeled and measured data may be a 

consequence of the inability of the model to replicate the propagation of the overbank flow 

on the flood plain. This would lead to the underestimation of the exchange flow at the peak 
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of the event. Similarly, the responses at B3 are well characterized, even though there is a bias 

in relation to the expected value of the heads. Regarding the uncertainty bounds, we see that 

the prediction intervals of one standard deviation cover the ranges of the observed values in 

the monitoring wells located immediately close to the streams. On the other hand, the results 

at B1 and B4 are less accurate than the results at Alzpitz and B3 and do not properly match 

the values of the observations. We attribute these outcomes to inaccuracies in the time-variant 

specified-head boundary conditions that mainly control the groundwater flow at these points 

and were extracted from the pre-existing regional model (Keilholz et al., 2015). In our 

research, we primarily relied on the evaluation of Alzpitz and B3, because these are in the 

vicinity of the streams and the main drivers are the boundary conditions imposed in the canal 

and the river. 

 

Figure 6.3. Simulated groundwater heads (colored line), observed values of the groundwater head at 

the monitoring wells (black line) and uncertainty bounds of the groundwater head (colored shade). 

The uncertainty at the peak-flow of the flood event is higher than the uncertainty before the 

event and at the recession phase (see Table 6.3). Therefore, despite the fact that the uncertainty 

in the stream stage has the same statistical distribution over time, the highest uncertainties are 

observed during the peak-flow event. The deviation for the stage uncertainty was defined 

based on the uncertainties calculated by Willems (2011) for high discharge conditions, but 



83 

not for extreme event conditions. Notice that the uncertainty in discharge and head 

observation during exceptional flow conditions (e.g. during flood events) can be higher than 

the uncertainty under ordinary flow conditions (Di Baldassarre and Montanari, 2009). 

Table 6.3. Predictive uncertainty represented by the standard deviation results (in meters) at different 

phases of the flood event computed at the monitoring wells. 

Monitoring 

well 

Before flood 

Stress period: 86 

Peak-flow 

Stress period: 127 

Recession phase 

Stress period: 145 

After flood 

Stress period: 290 

Alzpitz 0.5744 1.0737 0.5765 0.5326 

B1 0.2510 0.4489 0.2548 0.2225 

B3 0.4254 0.6987 0.4580 0.4032 

B4 0.1522 0.1796 0.1697 0.1420 

 

The propagation of uncertainty in the groundwater flow field was also quantified and the 

results were extracted at six different points (from E1 to E6), which are shown in Figure 6.2a. 

Since the magnitude and direction of the flow fields respond to the hydraulic gradients, the 

different evaluation points show the behavior of the subsurface system depending on the river 

and the canal behavior. The high stages in the streams increase the steepness of the gradients 

and raise the expected value of the velocity 𝜇𝑣 in the vicinity of the streams (see Figure 6.4). 

This effect and the large hydraulic conductivity of the gravel and sand in the alluvial plain 

allow a rapid increase of the magnitude of the flow field. Therefore, it is possible to see the 

highest average velocities at the peak-flow in all six monitoring points. During the recession 

phase of the flood, the velocity not only decreases but the uncertainty, which is represented 

by the standard deviation 𝜎𝑣 , also drops because of the reduction in the head difference 

between streams and aquifer at this phase. The highest velocities are registered at E3 due to 

the hydraulic gradients and the hydraulic conductivity of the alluvial terrace.  
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Figure 6.4. Simulated expected value of the flow field magnitude (black line) and uncertainty bounds 

of the flow field (gray shade). 

As observed in E4 and E5, the velocity and the uncertainty south of the joining streams vary 

highly at short distances (~40 m between E4 and E5). In this region, the intensity of the signals 

is controlled by the conductance and the stage of both the canal and the river. The response at 

E4 may be a consequence of the dominance of the signal coming from the stream stage. 

Conversely, at E5, rather than one hydraulic pulse, more signals may affect the head 

variability and the propagated uncertainty in a similar magnitude due to the relative distance 

of both of the streams and their interaction with the regular groundwater flow regime. As 

observed, the standard deviations at E3 and E5 are higher than the standard deviation at the 

other evaluation points.  

As seen in Figure 6.4, the results give evidence of a complex dynamic of the groundwater 

flow in the region where the streams converge. A limitation of our study is certainly the lack 

of field information from south of the convergence of the streams. This emphasizes the need 

and significance of quantifying the uncertainty due to surface water and groundwater 

interaction. To see the behavior south of the junction of the streams in detail, we extracted the 
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results of the flow fields to display the velocity vectors in Figure 6.5. Figure 6.5a includes the 

expected value of the flow fields at the different phases of the flood event, and Figure 6.5b 

shows the spatial distribution of the standard deviation of the velocity. Notice that Figure 6.5a 

and Figure 6.5b display the results in a logarithmic scale to facilitate the examination. With 

the same purpose, the vector arrows in Figure 6.5a only show the direction of the vector and 

were upscaled applying an interpolation that queries the nearest cell values.  

 

 

Figure 6.5. Statistics of the flow field at the river and canal confluence: a) expected value of the 

velocity (colored cells) and expected value of the direction (black arrows), and b) standard deviation 

of the velocity (colored cells). The river and canal locations are referenced by the white dashed line. 

During the peak-flow, we observed major variations in the magnitude and direction of the 

flow field. The eastern side of the river shows slow flow due to the convergence of fluxes, 

while the flow velocity below the canal reaches its maximum. In the recession phase, we can 

observe a dominant orientation of the flow from southeast to northwest. The magnitude and 

direction almost recover to the initial state after the flood. In Figure 6.5b, we observe major 

uncertainties before and after the event. This may occur because there is not a single signal 

that independently controls the flow field in the selected domain during this period. Therefore, 



86 

small changes in the values of the stream parameters may imply significant modifications of 

the magnitude of the flow field at the meter-scale. Lower values of the standard deviation are 

found below the streams and also the recession phase is the least uncertain. 

The probability density functions of the directions were obtained from the kernel density 

estimation. In Figure 6.6, we represent the probability density function of the flow field 

direction within a two-dimensional polar coordinate system labeled in degrees. In this 

reference system, the direction is defined by the angular coordinate in degrees, and the 

frequency is represented by the radial coordinate [-] as the distance from the origin. We 

observed variations in the direction of the flow field at every stage of the flood event. The 

significance of these variations depends on the spatial location and the underlying 

geomorphological and hydrological features. The evaluation points located west of the 

streams (E1, E2, and E3) present small changes in the expected value of the direction. 

However, the uncertainty is higher at E1 than at E2 and E3. South of the confluence of the 

streams, the orientations fluctuate considerably. As mentioned above, the flow fields depend 

on two diverse hydraulic pulses from different sources. One is the river, where the wave 

propagates without any immediate anthropogenic intervention. The second one is the canal, 

where the discharge is modulated by the upstream infrastructure. The E4, E5, and E6 

evaluation points show major changes in the mean direction at every stage of the flood event. 

Similarly, the values of the standard deviation are higher, and the uncertainty varies highly at 

every stage of the event. The highest values of standard deviation of the direction can be 

observed at the peak of the event, particularly at E1, E4, E5, and E6. At the E5 evaluation 

point, we observe the most critical change in the orientation of the flow fields. Before the 

flood, we can observe the usual groundwater flow regime from southeast to northwest. At the 

peak of the flood event, the expected direction points towards the southeast. Afterward, during 

the recession of the flood, the flow follows the general reach regime in direction to the 

northeast. Observing E4 and E5 in Figure 6.6, and given the morphological conditions of the 

streams, we may expect to find reverse flow. However, we can also observe that, although the 

evaluation points are relatively close, the standard deviation and the mean of the direction can 

change considerably in short distances. This behavior is similar to the one observed in the 

velocity calculations. These substantial distinctions underline the need to define the effects of 

the uncertainties due to river boundary conditions in terms of space and time, particularly 

considering the limited field observations in this zone. 
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Figure 6.6. Propagation of uncertainty in the flow field direction. The probability density function of 

the flow field direction is represented within a two-dimensional polar coordinate system labeled in 

degrees. 

The probability maps of the stagnation zones are presented in Figure 6.7a. We can distinguish 

different spots in space and time with higher sensitivity to the uncertainty in the river 

boundary conditions. In this case, we observe the probability of finding points where the local 

velocity is zero. Before and after the flood, we can observe black dots along the canal that 

show a relatively high probability of occurrence of stagnation points (~25%). This occurs in 

the places where different signals from the canal, the river and the aquifer meet. Also, at the 

junction of the canal and the river, it is possible to observe a stable stagnation region with a 

probability of occurrence from 10 to 15% for all the phases of the flood. This can occur due 

to the immediate counterflow that depends on the pressure heads of the streams that could 

produce the cancellation of the hydraulic pulses. The occurrence of stagnation zones decreases 
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highly during the peak-flow event because of the high hydraulic gradients, which increase the 

groundwater flow velocities. Nevertheless, at the peak-flow event, one can observe a fringe 

of a probable stagnation zone along the eastern border of the canal. 

The second flow feature that we analyzed is the occurrence of reverse flows. We can observe 

the extracted results in Figure 6.7b. The probability of finding reverse flows in the domain 

dramatically increases during the peak-flow event, reaching a value of ~75%. One of the 

reasons for this is the high streambed conductance in the canal, which allows the exchange of 

flow during maximum discharge. At this phase, we have the highest hydraulic heads of the 

stage in the canal, which changes the regular hydraulic gradient and produces flows against 

the regional flow at the meter-scale. During the recession phase, the probability of finding 

reverse flows drops considerably. At this phase, the flood event starts a contraction defined 

by an extensive drop of the hydraulic gradients. It is also interesting to observe a spot of 

constantly high reverse probability allocated east of the junction of the streams. We attribute 

the high probabilities in this spot to the encounter of the discharges from the river and canal 

that increases the hydraulic pressure in the aquifer after the confluence of the two water 

bodies. The mean direction at this zone can be highly affected by the input uncertainty of 

stream stage and the conductance. Variations in these inputs can change the ordinary south-

north flow to a lateral east-west flow due to the degree of flow exchange and can even affect 

the losing and gaining stream conditions. Regions near the confluence of the streams are prone 

to the presence of both stagnation points and reverse flow at different phases of the flood 

event. This area is very dynamic due to the interaction of the streams and the aquifer. Despite 

the apparent spatial correlation, there is a temporal difference in the responses. At peak-flow, 

the probability of stagnation zones increases and the probability of reverse flow decreases. In 

terms of fluid mixing, transport of solutes and temperature fluxes, these zones may play a 

meaningful role and may be highly affected by the uncertainties in the river boundary 

conditions. In our opinion, this is evidence of the importance of quantifying the uncertainty 

in the river boundary conditions and properly representing stream-aquifer interactions in 

numerical models.  
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Figure 6.7. Probability of occurrence of flow features: a) stagnation zones at different phases of the 

flood event, and b) reverse flow at different phases of the flood event. The river and canal locations 

are referenced by the black dotted line. 



90 

6.4 Conclusions 

In this study, we computed the probability of occurrence of stagnation zones and reverse flow 

in a numerical model based on the prior uncertainty of the river boundary conditions. The 

framework consists of the application of gPC expansions solved by a pseudo-spectral 

approach to obtain point estimates of the statistical information. We subsequently used kernel 

density estimations to take advantage of the information stored in the probability density 

functions of the quantities of interest. Finally, the flow fields were assessed according to a 

series of criteria that allowed us to identify hotspots of stagnation zones and reverse flow. A 

key feature of this work is the use of these techniques at every single cell of a distributed 

groundwater model. This allows us to explicitly map the flow field magnitude and direction 

in terms of statistical moments and the probability of occurrence in terms of spatial 

distribution and temporal variation.  

This approach does not require further work for setting up pre-existing models, because the 

pseudo-spectral approach is a non-intrusive technique, and the solutions are achieved using a 

relatively low number of model evaluations (125 evaluations in this study). This means that 

a model can be treated as a black-box solver to calculate the expansion coefficients. This is 

quite practical considering that groundwater models that include river boundary conditions 

are often calibrated by tweaking the streambed conductance, which is a model parameter that 

can vary over time. Additionally, hydrogeological models are usually updated by adding time-

variant processes, such as streamflow information and stream stages, for forecasting purposes. 

At the same time, we find this framework beneficial due to the flexibility to choose the 

precision and the computational cost. Due to the smooth dependence between the solution 

and the random spaces, a low quadrature degree may be sufficient to get accurate responses 

and other quantities of interest can be computed at a low marginal cost. Considering that the 

deterministic calculation at every element of a distributed model is usually the expensive part 

of the groundwater numerical simulations, an affordable approach is convenient for 

constructing spatial maps. 

We validate the generalized polynomial chaos expansion as a method for quantifying the 

uncertainty in a real case study with a model that simulates flood events on surface water-

groundwater interaction. The highest posterior uncertainties are found at the peak-flow phase, 

while the lowest uncertainties are observed at the recession phase of the flood. This occurs 

despite the fact that we used the same stream stage prior distribution over the whole simulation 

time to compute the expansion coefficients. The outcomes of this work give evidence of the 

complex hydrodynamic features occurring during the flood event due to the convergence of 

separate surface streams and their exchange flow with the aquifer. In consequence, there is 

significant uncertainty in the flow dynamics at the river boundaries that should be properly 
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quantified. This is reflected in the probability of finding stagnation and reverse flow at the 

meter and reach scale, despite the groundwater regime flowing predominantly along-valley. 

We can observe that the regions near the confluence of the streams are very dynamic and 

prone to exhibit stagnation zones and reverse flow. However, the probabilities of occurrence 

clearly vary at different phases of the flood event. At the peak-flow, the probability of 

occurrence of stagnation zones increases, while the probability of occurrence of reverse flow 

decreases. The major effects on the water flux and the flow paths are transitory and relative 

to the spatial location and the hydrogeological conditions of the stream-aquifer system. 

Although the methodology was applied to one specific case study, it can be more broadly 

stated that flow reversal and stagnation points can appear at the river confluence, where 

streams and highly permeable aquifers are well connected. 

6.5 Annexes 

6.5.1 Annex A: Collocation Method 

Figure 6.8 illustrates how the collocation of the uncertain values differs between the gPC and 

the qMC methods. Figure 6.8a shows the abscissas of the quadrature nodes that define the 

three stochastic parameters in the full tensor grid of the gPC expansions when 𝐾 = 4, while 

Figure 6.8b shows an equivalent number of sampled points (i.e. 125 samples) from the Halton 

sequences for the qMC method.  

 

 

Figure 6.8. Evaluated parameter values using a) quadrature nodes for gPC expansions, and b) 

samples from Halton sequences for qMC simulations. 
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6.5.2 Annex B: Comparison between gPC and qMC methods 

To evaluate the choice of the number of quadrature nodes that is used for generating the 

probability maps, we performed a comparison of the expected values and standard deviations 

of the hydraulic heads from the gPC approach using 𝐾 = 4 and 𝑛 = 4, and the qMC method 

with 500 samples. The responses of the methods at different phases of the flood event are 

evaluated through the difference in the expected value of the groundwater heads 𝐷𝑖,𝑗 [L] (Eq. 

6.23) and the relative difference of the standard deviation of the groundwater heads 𝑅𝑖,𝑗 [-] 

(Eq. 6.24): 

𝐷𝑖,𝑗 = (𝜇𝑔𝑃𝐶)𝑖,𝑗  −  (𝜇𝑞𝑀𝐶)𝑖,𝑗   ,   Eq. 6.23 

𝑅𝑖,𝑗 =
(𝜎𝑔𝑃𝐶)𝑖,𝑗 − (𝜎𝑞𝑀𝐶)𝑖,𝑗

(𝜎𝑞𝑀𝐶)𝑖,𝑗
   .   Eq. 6.24 

In Eq. 6.23, 𝜇𝑔𝑃𝐶  and 𝜇𝑞𝑀𝐶 are the simulated means of the groundwater heads [L] at the cell 

𝑖, 𝑗 from the gPC and the qMC approaches, respectively. In Eq. 6.24, 𝜎𝑔𝑃𝐶 and 𝜎𝑞𝑀𝐶 are the 

standard deviation values [L] at the cell 𝑖, 𝑗. The results of the validation are shown in Figure 

6.9a and Figure 6.9b. Figure 6.9c shows the first and second statistical moments of the 

groundwater heads [L] from the gPC and qMC approaches along the whole simulation time 

at the monitoring wells. It also includes the interval  [𝜇𝑔𝑃𝐶 + 𝜎𝑔𝑃𝐶, 𝜇𝑔𝑃𝐶 − 𝜎𝑔𝑃𝐶] for the gPC 

method and the interval [𝜇𝑞𝑀𝐶 + 𝜎𝑞𝑀𝐶, 𝜇𝑞𝑀𝐶 − 𝜎𝑞𝑀𝐶] for the qMC approach. Overall, we 

observe that both methods produce equivalent statistical moments for the groundwater heads. 

Due to this rapid convergence of the polynomial expansions, the use of a low number of 

deterministic model evaluations with the gPC approach does not imply major drawbacks. The 

highest difference in both the expected values and the standard deviations are found during 

the peak-flow event. The maximum difference in the expected head value is ~1.5 cm while 

the maximum relative difference in the standard deviation of the head distribution is ~1.5%.  
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Figure 6.9. Comparison between gPC and qMC methods: a) difference of hydraulic head expected 

values at different stages of the flood event, and b) relative difference of the hydraulic head standard 

deviation at different stages of the flood event, and c) expected value and uncertainty intervals along 

the simulation period at the observation points. 
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7 Hydropeaking waves and flow topology 

Abstract 

Topological flow properties are proxies for mixing processes in aquifers and allow us to better 

understand the mechanisms controlling transport of solutes in the subsurface. However, 

topological descriptors, such as the Okubo-Weiss metric, are affected by the uncertainty in 

the solution of the flow problem. While the uncertainty related to the heterogeneous properties 

of the aquifer has been widely investigated in the past, less attention has been given to the one 

related to highly transient boundary conditions. We study the effect of different transient 

boundary conditions associated with hydropeaking events (i.e., artificial river stage 

fluctuations due to hydropower production) on groundwater flow and the Okubo-Weiss 

metric. We define deterministic and stochastic modeling scenarios applying four typical 

settings to describe river stage fluctuations during hydropeaking events: a triangular wave, a 

sine wave, a complex wave that results of the superposition of two sine waves, and a 

trapezoidal wave. We use polynomial chaos expansions to quantify the spatiotemporal 

uncertainty that propagates into the hydraulic head in the aquifer and the Okubo-Weiss. The 

wave-shaped highly transient boundary conditions influence not only the magnitude of the 

deformation and rotational forces of the flow field but also the temporal dynamics of 

dominance between local strain and rotation properties. Larger uncertainties are found in the 

scenario where the trapezoidal wave was imposed due to sharp fluctuation in the stage. The 

statistical moments that describe the propagation of the uncertainty highly vary depending on 

the applied boundary condition. 

 

 

 

Material from: 

Merchán-Rivera, P., Basilio Hazas, M., Marcolini, G., Chiogna, G., 2022 (submitted). Propagation of 

Hydropeaking Waves in Heterogeneous Aquifers: Effects on Flow Topology and Uncertainty Quantification. 

International Journal on Geomathematics  
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7.1 Introduction 

Mixing plays a critical role in describing solute transport in aquifers (de Anna et al., 2014b; 

Rolle and Le Borgne, 2019). Understanding mixing-limited reactions in the subsurface is 

particularly relevant to recognize biogeochemical transformations (Boisson et al., 2013; Kang 

et al., 2019; Pinay et al., 2015), operate and design engineering remediation techniques (Cho 

et al., 2019; Mays and Neupauer, 2012; McCarty and Criddle, 2012; Neupauer et al., 2014), 

and understand hyporheic processes (Boano et al., 2014). A variety of methods have been 

developed to understand the transport dynamics in the subsurface and the effect that 

heterogeneous hydraulic properties have on spreading, dilution, and reactive mixing, 

(Valocchi et al., 2019). However, transport simulations are often computationally expensive 

and the quantification of uncertainties may result in a very time-consuming exercise 

(Lykkegaard et al., 2021; Smith, 2013). The relation between topological flow properties and 

mixing processes in aquifers (Bresciani et al., 2019; de Barros et al., 2012) and porous media 

(de Anna et al., 2014a; Engdahl et al., 2014; Wright et al., 2017) provides an interesting 

alternative to the solution of the transport problem. One advantage of investigating such 

relations is that the calculation of topological features of the flow field requires only the 

solution of the flow problem, which is much cheaper from the computational point of view 

than the solution of the flow and transport equations.  

A topological quantity known as the Okubo-Weiss metric (Okubo, 1970; Weiss, 1991) was 

shown to be a good proxy for mixing potential (de Barros et al., 2012; Wright et al., 2017). 

This metric is commonly used in geophysics to identify filament from vortex structures 

(Casella et al., 2011; Roullet and Klein, 2010) and characterize them in terms of dominant 

forces of the flow field, such as vorticity, shear strain, and normal strain (de Barros et al., 

2012; Wallace et al., 2021). Still, the quantification of such topological descriptors of the flow 

field is affected by the uncertainty that is caused by the heterogeneous nature of the aquifer 

(Geng et al., 2020; Valocchi et al., 2019). Significant efforts have been made to quantify the 

uncertainty affecting the predictions of solute concentration values caused by the generally 

unknown hydraulic conductivity field (Moslehi and de Barros, 2017; Nowak et al., 2010). 

However, in this work, we assume the hydraulic conductivity field as properly characterized 

and well known in order to focus on a different source of uncertainty, which did not receive 

comparable attention in the literature, i.e., highly transient boundary conditions. 

In fact, transient boundary conditions can also be uncertain and affect the estimation of the 

topological properties of the flow field and, consequently, the understanding of mixing and 

transport processes in aquifers (Hester et al., 2021; Ziliotto et al., 2021). This is particularly 

the case of the aquifer area close to surface water bodies (Dudley-Southern and Binley, 2015; 

Merchán‐Rivera et al., 2021; Santizo et al., 2020; Singh et al., 2020). In this work, we focus 
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on a river reach that is affected by hydropeaking, i.e., sudden changes in the hydraulic head 

of the river caused by the operation of hydropower plants. Such fluctuations display some 

typical periodicity (Pérez Ciria et al., 2020) and modify the natural hydrological behavior and 

hydraulic conditions of the streams (Hauer et al., 2017; Meile et al., 2011), which can impact 

the hyporheic zone (Sawyer et al., 2009; Singh et al., 2019) and propagate to the groundwater 

(Francis et al., 2010; Song et al., 2020). Moreover, since hydropeaking may depend on 

hydrological conditions (Li and Pasternack, 2021) and the dynamic behavior of the energy 

market (Chiogna et al., 2018; Pérez Ciria et al., 2019; Wagner et al., 2015), the stream head 

fluctuations entail uncertainty related to the peak amplitude and the temporal occurrence of 

the event.  

The question that we aim at answering in this work is to what extent the shape and the 

uncertainty of hydropeaking waves affect the topology of the groundwater flow field 

quantified through the Okubo-Weiss parameter. To achieve our aim, we define one single 

realization of a two-dimensional heterogeneous aquifer and build modeling scenarios based 

on four typical settings for the stream fluctuations of the boundary conditions: a triangular 

wave, a sine wave, a complex wave (realized as the superposition of two sine waves), and a 

trapezoidal wave (Ferencz et al., 2019; Li and Pasternack, 2021; Sawyer et al., 2009). 

Moreover, we apply polynomial chaos expansion (Xiu and Karniadakis, 2002) to quantify the 

uncertainty due to the oscillatory boundaries and quantify the mean and standard deviation of 

the temporal and spatial values of the Okubo-Weiss metric.  

The paper is structured as follows. Section 2 presents the synthetic case study, the 

deterministic and stochastic modeling scenarios, the polynomial chaos expansion method, and 

the topological metric that we use to describe the flow field. In Section 3, we present and 

discuss the results and findings related to the groundwater flow and the Okubo-Weiss metric 

and the quantification of the spatiotemporal uncertainty. We conclude this work in Section 4 

by restating major findings and discussing the environmental implications of our results.  

7.2 Methods 

7.2.1 Groundwater flow equation 

The governing equation of the two-dimensional transient groundwater flow in a 

heterogeneous, isotropic, and unconfined aquifer can be written as  
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𝜕

𝜕𝑥
(𝐾𝑥ℎ

𝜕ℎ

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝐾𝑦ℎ

𝜕ℎ

𝜕𝑦
) = 𝑠𝑦

𝜕ℎ

𝜕𝑡
± 𝑄 , Eq. 7.1 

where ℎ is the hydraulic head [L], 𝐾𝑥 and 𝐾𝑦 are values of the hydraulic conductivity along 

the 𝑥 and 𝑦 coordinate axis [LT-1], 𝑠𝑦 is the specific yield of the porous medium [-], and 𝑄 

describes the volumetric flux from source and sink terms [LT-1] (Anderson et al., 2015; Bear, 

1979). The initial conditions and Dirichlet boundary conditions can be denoted as  

ℎ(𝑥, 𝑦, 0) = ℎ0(𝑥, 𝑦), 𝑥, 𝑦 ∈ Λ, Eq. 7.2 

ℎ(𝑥, 𝑦, 𝑡) = ℎ1(𝑥, 𝑦, 𝑡), 𝑥, 𝑦 ∈ 𝜕Λ, Eq. 7.3 

respectively, where ℎ0(𝑥, 𝑦) is the initial hydraulic head [L] in the domain in the flow region 

Λ; ℎ1(𝑥, 𝑦, 𝑡) is the known hydraulic head value of the boundary head [L], and 𝜕Λ denotes the 

boundary region (Bear and Cheng, 2010; Cheng and Cheng, 2005). 
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7.2.2 Model description 

 

Figure 7.1. Model description: a) wave-shaped time-variant specified head boundary conditions, b) 

spatial domain and hydraulic conductivity field, and c) aquifer depth and initial groundwater head 

conditions 

In our system, we consider a two-dimensional unconfined aquifer with lognormal 

heterogeneous isotropic hydraulic conductivity field 𝑔(𝑥) = ln[𝐾(𝑥)]  defined by the 

geometric mean 𝜇𝑔 = 1 × 10−3 m/s, the geometric standard deviation 𝜎𝑔 = 1.5 m/s and the 

correlation length 𝜆 = 10 m, equivalent to porous medium formed by sands and gravels 

(Coduto, 1999). The area of the squared domain is ℒ1 × ℒ2 = 10𝜆 × 10𝜆  with cell size 

0.1𝜆 × 0.1𝜆 (see Figure 7.1b). The distance between the ground surface and the bottom of the 

aquifer is 𝑧 = 𝑑(−𝑧/2, 𝑧/2), the reference datum is the middle point 𝑧0 = 0. The initial 

groundwater level conditions ℎ0 are set to a uniform water level in the domain, which matches 

the reference datum, so that ℎ0 = 𝑧0 (see Figure 7.1c) and any simulation output ℎ represents 

the relative movement of the groundwater head with respect to 𝑧0. The time discretization of 

the simulation is 𝜏/𝑇, where 𝑇 represents the simulation time length, and it is related to the 

wave frequency 𝑓 such that 𝑓 = 1/(80𝜏).  

The discontinuous release of water from hydropeaking events tends to follow a periodicity. 

Hence, the stage fluctuation in the stream can be described by a periodic function 𝑦(𝑡 + 𝐹) =

𝑦(𝑡), where 𝐹 = 1/𝑓 is a nonzero value defined as the period [T]. We introduce the periodic 
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waves as specified-head boundary conditions, i.e., Dirichlet boundary conditions (Bear and 

Cheng, 2010), by fixing head values at the left border of the domain. The wave-shaped time 

series of heads represent the stream stage and the values at the boundary are time-dependent 

and updated as the simulation progresses. This setup assumes that the stage changes for the 

entire river reach considered simultaneously (i.e., no hydraulic model is used to describe the 

wave propagation along the reach) and strong connectivity between surface water and 

groundwater. These assumptions are consistent, for example, with the study of Sawyer (2009) 

focusing on the Colorado River in Texas. The top, bottom and right boundaries are defined as 

no-flow boundaries. We define the following periodic functions (see Figure 7.1a) to represent 

the effect of the hydropeaking on the left boundary conditions: 

• Triangular wave: 

𝑦𝑉(𝑡) = 4𝐴𝑓 | {(𝑡 −
1

4𝑓
)mod (

1

𝑓
)} −

1

2𝑓
 | − 𝐴 , Eq. 7.4 

• Sine wave:  

𝑦𝑆(𝑡) = 𝐴 sin(2𝜋𝑓(𝑡 − 𝑝)) , Eq. 7.5 

• Complex wave: 

𝑦𝐶(𝑡) = 𝑦𝑆
𝛼(𝑡) + 𝑦𝑆

𝛽(𝑡) 

= 𝐴𝛼 sin(2𝜋𝑓𝛼(𝑡 − 𝑝𝛼)) + 𝐴𝛽 sin(2𝜋𝑓𝛽(𝑡 − 𝑝𝛽)) , 
Eq. 7.6 

• Trapezoidal wave: 

𝑦𝑍(𝑡) ≔ {

−𝐴, if  𝑦𝑉
∗(𝑡) < 𝐴;

𝐴, if  𝑦𝑉
∗(𝑡) > 𝐴;

 𝑦𝑉
∗(𝑡), otherwise,

 Eq. 7.7 

𝑦𝑉
∗(𝑡) = 4𝑏𝑍𝐴𝑓 | {(𝑡 −

1

4𝑓
) mod (

1

𝑓
)} −

1

2𝑓
 | − 𝑏𝑍𝐴 . Eq. 7.8 
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Then, 𝑦𝑉(𝑡), 𝑦𝑆(𝑡), 𝑦𝐶(𝑡) and 𝑦𝑍(𝑡) represent the time-variant specified-head boundaries for 

the triangular, sine, complex and trapezoidal wave scenario, respectively, 𝑡 is the evaluation 

time step, 𝐴 is the amplitude of the wave, 𝑝 is the phase shift and 𝑓 is the frequency. We 

shaped the trapezoidal wave using the stepwise function 𝑦𝑍(𝑡) to remove the values that 

exceed the minimum and maximum limits defined by 𝐴, which depends on the outcomes of 

a triangular function 𝑦𝑉
∗(𝑡). A coefficient 𝑏𝑍 is introduced to this triangular function to extend 

the amplitude 𝐴, which will determine the interval between minimum and maximum stage to 

be equal to 4/𝑏𝑍 given the slope of the trapezoid legs with base angles 𝜃 = arctan(4𝑏𝑍𝐴𝑓). 

The complex waveform is the result of combining two different sine waves (𝑦𝑆
𝛼(𝑡) and 𝑦𝑆

𝛽(𝑡)) 

shaped by two different amplitudes (𝐴𝛼  and 𝐴𝛽), two phase shifts (𝑝𝛼  and 𝑝𝛽) and two 

frequencies (𝑓𝛼 and 𝑓𝛽). 

7.2.2.1 Deterministic problem 

As starting point, we want to observe the responses of the aquifer and the flow field topology 

assuming that all model inputs are known. Hence, there are four deterministic scenarios of 

one single deterministic transient flow problem, each applying one of the wave-shaped 

boundary conditions. The complex wave is defined by 𝐴𝛽 = 2𝐴𝛼/5, 𝑝𝛽 = 3𝑝𝛼 and 𝑓𝛽 = 3𝑓𝛼 

to satisfy symmetry relations between the periodic waves to match maximum (i.e., wave 

crest), minimum (i.e., wave through), temporal axis interceptions, and lag between two 

events. The trapezoidal wave is shaped considering 𝑏𝑍 = 6, so that the interval between 

minimum and maximum is equivalent to 1/12𝑓.  

The spatial and temporal distribution of the groundwater heads and the Okubo-Weiss are 

analyzed with two-dimensional arrays. We are also interested in the variability of the 

groundwater head and the Okubo-Weiss metric at a certain distance 𝑥1/ℒ1 from the transient 

boundary conditions. Hence, we compute the variance in time at each discrete cell, and then 

the arithmetic mean of the variance relative to the distance 𝑥1/ℒ1. For simplicity we call 𝑐𝑡
𝑖,𝑗

 

the output of interest (i.e., groundwater heads or Okubo-Weiss metric) at a discrete cell with 

row 𝑖, and column 𝑗, at the time 𝑡, and follow 

𝜎𝑖,𝑗
2 =

1

𝑇
∑(𝑐𝑡

𝑖,𝑗
− 𝜇𝑐

𝑖,𝑗
)
2

𝑇

𝑡=1

, 𝜇𝑐
𝑖,𝑗

=
1

𝑇
∑𝑐𝑡

𝑖,𝑗

𝑇

𝑡=1

 , Eq. 7.9 
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where 𝜇𝑐
𝑖,𝑗

 is the mean of the output of interest at a discrete cell {𝑖, 𝑗} along all the evaluation 

time 𝑇. Then, the arithmetic mean of the variances at the distance 𝑥1/ℒ1 can be computed 

along column 𝑗 ≈ 𝑥1/ℒ1, such that, 

�̅�𝑗
2 =

1

𝑛𝑖
∑𝜎𝑖,𝑗

2

𝑛𝑖

𝑖=1

 , Eq. 7.10 

being 𝑛𝑖 the number of the discrete rows.  

7.2.2.2 Stochastic problem 

We consider the amplitude 𝐴 and phase 𝑝 as uncertain parameters and we assume them as 

mutually independent random variables. On one hand, 𝐴 represents the maximum water level 

in the stream, which fluctuates due to the variable discharges from the power plant, which in 

turn depends on market and seasonal conditions. The uncertainty is defined from a minimum 

and maximum stage fluctuation that follows a uniform distribution 𝐴~𝒰(𝑎𝐴, 𝑏𝐴), where 𝑎𝐴 =

0.9 and 𝑏𝐴 = 1.1. On the other hand, 𝑝 represents the shift in the stage signal. This random 

variable then introduces the temporal uncertainty due to changes in the gate management, 

turbine control and discharge duration. The random variable 𝑝 is uniformly distributed, such 

that 𝑝~𝒰(𝑎𝑝, 𝑏𝑝). The parameters 𝑎𝑝 and 𝑏𝑝 describe the phase difference and relates the 

offset with 𝑓 using a factor 𝑜𝑝, so that 𝑎𝑝 = −1/(𝑜𝑝𝑓) and 𝑏𝑝 = 1/(𝑜𝑝𝑓). This arrangement 

simplifies the application at multiple hydropeaking scale events (e.g., sub-daily, daily, and 

weekly) because any shift in the phase is a ratio of the periodicity. In our problem setup, we 

set 𝑜𝑝 = 8, which is equivalent to a phase difference of 1/8𝑓. 

In the case of the complex wave, the problem increases to 4 stochastic dimensions given that 

it is formed by the superposition of two sine waves 𝑦𝑆
𝛼(𝑡) and 𝑦𝑆

𝛽(𝑡). Like in the deterministic 

problem, we keep the proportional relations between the two waves 𝑦𝑆
𝛼(𝑡) and 𝑦𝑆

𝛽(𝑡) that 

form the complex wave and the random variables that are assumed mutually independent. 

Hence, two random variables 𝐴𝛼~𝒰(𝑎𝐴
𝛼 , 𝑏𝐴

𝛼) and 𝐴𝛽~𝒰(𝑎𝐴
𝛽
, 𝑏𝐴

𝛽
) represent the amplitudes, 

where 𝑎𝐴
𝛼 = 𝑎𝐴 , 𝑏𝐴

𝛼 = 𝑏𝐴 , 𝑎𝐴
𝛽

= 2𝑎𝐴
𝛼/5  and 𝑏𝐴

𝛽
= 2𝑏𝐴

𝛼/5 . Also, two random variables 

𝑝𝛼~𝒰(𝑎𝑝
𝛼 , 𝑏𝑝

𝛼) and 𝑝𝛽~𝒰(𝑎𝑝
𝛽
, 𝑏𝑝

𝛽
) represent the phase differences, where 𝑎𝑝

𝛼 = 𝑎𝑝 , 𝑏𝑝
𝛼 =

𝑏𝑝, 𝑎𝑝
𝛽

= 𝑎𝑝
𝛼/3 and 𝑏𝑝

𝛽
= 𝑏𝑝

𝛼/3 .  
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In this work, we represent the dynamic system of the groundwater heads and flow topology 

as stochastic processes with uncertain boundary conditions using generalized polynomial 

chaos expansions. The statistical moments computed with the expansions and explained in 

the following section are also analyzed computing their arithmetic mean, analogous to Eq. 

7.10. A summary of the specific parameters used in the deterministic and stochastic scenarios 

can be found in Table 7.1. 

Table 7.1. Parameters used in the construction of the transient boundary conditions: a) deterministic 

scenarios, and b) stochastic scenarios. 

Scenario 
Triangular  

wave 

Sine  

wave 

Complex  

wave 

Trapezoidal  

wave 

a) Deterministic 

Amplitude 𝐴 = 1 𝐴 = 1 𝐴𝛼 = 1, 𝐴𝛽 =
2𝐴𝛼

5
 𝐴 = 1 

Phase 𝑝 = 0 𝑝 = 0 𝑝𝛼 = 0,  𝑝𝛽 = 3𝑝𝛼 𝑝 = 0 

Frequency 𝑓 =
1

80
 𝑓 =

1

80
 𝑓𝛼 =

1

80
, 𝑓𝛽 = 3𝑓𝛼 𝑓 =

1

80
 

Trapezoid shape 

coefficient 
− − − 𝑏𝑍 = 6 

b) Stochastic 

Amplitude 𝐴~𝒰(0.9,1.1) 𝐴~𝒰(0.9,1.1) 𝐴𝛼~𝒰(0.9,1.1), 

𝐴𝛽~𝒰(
2(0.9)

5
,
2(1.1)

5
) 

𝐴~𝒰(0.9,1.1) 

Phase 

 

 

𝑝~𝒰(−
1

8𝑓
,
1

8𝑓
) 𝑝~𝒰(−

1

𝑜𝑝𝑓
,

1

𝑜𝑝𝑓
) 𝑝𝛼~𝒰(−

1

𝑜𝑝𝑓𝛼
,

1

𝑜𝑝𝑓𝛼
) , 

𝑝𝛽~𝒰(−
1

3𝑜𝑝𝑓𝛽
,

1

3𝑜𝑝𝑓𝛽
) 

𝑝~𝒰(−
1

𝑜𝑝𝑓
,

1

𝑜𝑝𝑓
) 

Frequency 𝑓 =
1

80
 𝑓 =

1

80
 𝑓𝛼 =

1

80
, 𝑓𝛽 = 3𝑓𝛼 𝑓 =

1

80
 

Trapezoid shape 

coefficient 
− − − 𝑏𝑍 = 6 

Phase coefficient 𝑜𝑝 = 8 𝑜𝑝 = 8 𝑜𝑝 = 8 𝑜𝑝 = 8 
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7.2.3 Polynomial chaos expansion 

7.2.3.1 Stochastic formulation 

Let (Ω, ℱ, 𝑃) be a probability space, where Ω is a sample space, ℱ is a 𝜎-algebra on Ω, and 𝑃 

is a probability measure on Ω . Consider a function 𝑢(𝑡, 𝑥,𝚽)  on the probability space 

(Ω, ℱ, 𝑃), where 𝚽 = [Φ1, … ,Φ𝑑]: Ω → ℝ is a random vector with a finite set of 𝑑 mutually 

independent random variables with marginal probability density functions {𝜌Φi
(𝜑𝑖), 𝑖 =

1,… , 𝑑}, and {𝑡, 𝑥} represent the deterministic temporal and spatial dependencies with a finite 

temporal horizon 𝑡 ∈ [0, 𝑇] within the spatial domain 𝒟 ⊂ ℝ2 formed by fixed grid points 

𝑥 = (𝑥1, 𝑥2). Since each parameter Φ𝑖(𝜔): Ω → ℝ is associated to a density 𝜌Φ𝑖
(𝜑𝑖) and 

𝜔 ∈ Ω is a realization in the underlying probability space, we reformulate the problem in the 

image probability space (Γ, ℬ(Γ), 𝜌𝚽(𝜑)𝑑𝜑), where Γ = ∏ Φ𝑖(Ω)𝑑
𝑖=1  is the sample space for 

the range of Φ𝑖, ℬ(Γ) is the Borel 𝜎-algebra on Γ, and 𝜌𝚽(𝜑) is the joint density associated 

with 𝚽, described by  

𝜌𝚽(𝜑) = ∏𝜌Φ𝑖
(𝜑𝑖)

𝑑

𝑖=1

 . Eq. 7.11 

The output function is then a random process 𝑢(𝑡, 𝑥,𝚽): [0, 𝑇] × 𝒟 × Γ → ℝ with a finite 

variance. Following the generalized Cameron-Martin theorem (Cameron and Martin, 1947), 

we can represent it as an infinite series expansion of polynomials, which can be truncated to 

order 𝐾, such that 

𝑢(𝑡, 𝑥,𝚽) = ∑ �̂�𝛋(𝑡, 𝑥)𝚿𝛋(𝚽)

∞

𝛋=0

 

≈ ∑ �̂�𝛋(𝑡, 𝑥)𝚿𝛋(𝚽)

𝐾

𝛋=0

 , 

Eq. 7.12 

 

where �̂�𝛋(𝑡, 𝑥) are deterministic expansion coefficients, 𝚿𝛋(𝚽) represent the multivariate 

orthogonal polynomial basis function, and 𝛋 = {𝜅1, … , 𝜅𝑑} ∈ ℕ0
𝑑  is a multi-index of non-

negative integers of size 𝑑 to identify the degree of the polynomials for the input variable Φ𝑖. 

To achieve 𝑛  order of polynomials, 𝐾  can be optimally defined by [(𝑛 + 𝑑)!/𝑛! 𝑑!] −
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1 (Smith, 2013; Xiu, 2010), or by using experimental designs, such as the empirical rule 𝐾 =

(𝑑 − 1) × (𝑛 + 1) (Sudret, 2008), to reduce the computational demand of the experiment. In 

this research, we define 𝐾 = 9 and 𝑛 = 3 for the triangular, sine and trapezoidal stochastic 

scenarios. The expansions in the complex scenario are calculated considering 𝐾 = 9 and 𝑛 =

2.  

The orthogonal basis 𝚿𝛋 must be accordingly specified to 𝜌Φ𝑖
(𝜑𝑖) (Xiu and Karniadakis, 

2002). In this work, the uncertain input parameters associated to the boundary conditions 𝚽 

are considered random variables uniformly distributed in the interval [𝑎, 𝑏], denoted by 

Φ𝑖~𝒰(𝑎, 𝑏). An appropriate basis is formed by the family of Legendre polynomials, which 

are an orthogonal basis with respect to the weight function 𝜌Φi
(𝜑𝑖) = 1/2 for all normalized 

𝜑𝑖 ∈ [−1,1]. Given the assumption that the random variables are mutually independent, the 

multivariate Legendre polynomial basis function 𝚿𝛋(𝚽) can be defined as the tensor product 

of the associated univariate orthogonal polynomials 𝜓𝜅𝑖
, such that 

𝚿𝛋(𝚽) = ∏𝜓𝜅𝑖
(𝜑𝑖)

𝑑

𝑖=1

 , Eq. 7.13 

which satisfies orthonormality conditions given that 

𝔼[𝜓𝜅𝑖
, 𝜓𝜏𝑖

] = ∫𝜓𝜅𝑖
(𝜑𝑖)𝜓𝜏𝑖

(𝜑𝑖)𝜌Φi
(𝜑𝑖)𝑑𝜑𝑖

Γ

 

= 〈𝜓𝜅𝑖
, 𝜓𝜏𝑖

〉𝜌 

= 𝛿𝜅𝑖𝜏𝑖
 , 

Eq. 7.14 

where 〈⋅,⋅〉 denotes the inner product of the sequence of two polynomials {𝜓𝜅𝑖
, 𝜓𝜏𝑖

} of degree 

𝜅𝑖  and 𝜏𝑖  in the 𝑖 th variable, 𝛿𝜅𝑖𝜏𝑖
 represents the Kronecker delta. The deterministic 

coefficients �̂�𝛋(𝑡, 𝑥)  can be approximated by exploiting the orthonormality of the basis 

function and projecting 𝑢(𝑡, 𝑥,𝚽)  onto each basis function 𝚿𝑘(𝚽)  to obtain the 

representation 
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�̂�𝛋(𝑡, 𝑥) = 〈𝑢(𝑡, x,𝚽),𝚿𝛋(𝚽)〉𝜌 = ∫𝑢(𝑡, 𝑥,𝚽)𝚿𝛋(𝚽)𝜌𝚽(𝜑)𝑑𝜑
Γ

 . Eq. 7.15 

7.2.3.2 Pseudospectral collocation approach 

We use the pseudospectral approach as a solution technique to estimate multidimensional 

integral that describes �̂�𝛋(𝑡, 𝑥). It is a discrete collocation method that relies on quadrature 

techniques to calculate �̂�𝛋(𝑡, 𝑥)  at selected quadrature nodes 𝐠𝐪 = {𝑔1
𝑞1  , … , 𝑔𝑑

𝑞𝑑} ∈ ℝ 

defined on Γ  with the associated weights 𝑤𝐪 = {𝑤𝑞1
, … , 𝑤𝑞𝑑

} ∈ ℝ . Therefore, the 

deterministic solvers that describe the groundwater flow and the topological responses of the 

aquifer are not modified (i.e., non-intrusive spectral projection) because it is only required to 

evaluate 𝑢(𝑡, 𝑥, 𝐠𝐪)  at the given 𝐠𝐪 . We employ Gaussian quadrature rules (Golub and 

Welsch, 1968) over a full tensor product grid to distribute 𝐠𝐪 according to the probability 

density functions 𝜌Φi
(𝜑𝑖). Using 𝒬 to represent the quadrature integration, the extension of 

the univariate Gaussian quadrature yields to the summation over all possible combinations 

over 𝑚𝑖 nodes 

𝒬[𝑢(𝑡, 𝑥,⋅)] = (𝒬𝑚1
⊗ …⊗ 𝒬𝑚𝑑)[𝑢(𝑡, 𝑥,⋅)] 

= ∑ …

𝑚1

𝑞1=1

∑ 𝑢(𝑡, 𝑥, 𝑔1
𝑞1  , … , 𝑔𝑑

𝑞𝑑)

𝑚𝑑

𝑞𝑑=1

𝑤𝑞1
…𝑤𝑞𝑑

 , 
Eq. 7.16 

that can be recast for the sake of simplicity to the multi-index approximation 

�̂�𝛋(𝑡, 𝑥) ≍ 𝒬[𝑢(𝑡, 𝑥,⋅)𝚿𝛋(⋅)] = ∑ 𝑢(𝑡, 𝑥, 𝐠𝐪)𝚿𝛋(𝐠
𝐪)𝑤𝐪

𝑀

𝐪=1

 , Eq. 7.17 

where the total number of grid points is 𝑀 = 𝑚𝑑 given that we opt for 𝑚1 = ⋯ = 𝑚𝑑 = 𝑚.  

The expected value of 𝑢(𝑡, 𝑥,𝚽) can be estimated from the polynomial chaos coefficients 

�̂�0(𝑡, 𝑥), given that 
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𝜇 = 𝔼[𝑢(𝑡, 𝑥,𝚽)] ≈ 𝔼 [∑ �̂�𝛋(𝑡, 𝑥)𝚿𝛋(𝚽)

𝐾

𝛋=0

] 

= �̂�0(𝑡, 𝑥)𝔼[𝚿0(𝚽)] + ∑ �̂�𝛋(𝑡, 𝑥)𝔼[𝚿𝛋(𝚽)]

𝐾

𝛋=1

 

= �̂�0(𝑡, 𝑥) . 

Eq. 7.18 

Similarly, the variance 𝜎2 = 𝕍[𝑢(𝑡, 𝑥,𝚽)] and the standard deviation 𝜎 = √𝕍[𝑢(𝑡, 𝑥,𝚽)]
2

 

are quantified following 

𝜎2 = 𝕍[𝑢(𝑡, 𝑥,𝚽)] = 𝔼[(𝑢(𝑡, 𝑥,𝚽) − 𝔼[𝑢(𝑡, 𝑥,𝚽)])2] 

≈ 𝔼 [(∑ �̂�𝛋(𝑡, 𝑥)𝚿𝛋(𝚽)

𝐾

𝛋=0

− �̂�0(𝑡, 𝑥))

2

] 

= 𝔼 [(∑ �̂�𝛋(𝑡, 𝑥)𝚿𝛋(𝚽)

𝐾

𝛋=1

)

2

] 

= ∑ �̂�𝛋
2(𝑡, 𝑥)𝚿𝛋

𝐾

𝛋=1

 . 

Eq. 7.19 

7.2.4 Okubo-Weiss 

We consider a flow deformation metric based on a two-dimensional velocity gradient tensor 

𝜖, to be 

𝜖(𝑡) = ∇𝑣(𝑥, 𝑦, 𝑡), Eq. 7.20 
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where 𝑣(𝑥, 𝑦, 𝑡) is the velocity at the space coordinates 𝑥 and 𝑦 at time 𝑡 and it is estimated 

with the calculated head gradient by solving Eq. 7.1. 

The Okubo-Weiss function (Okubo, 1970; Weiss, 1991) is defined by  

 𝜉 = −4det(𝜖), Eq. 7.21 

which in the horizontal plane with coordinates 𝑥 and 𝑦 is written as  

𝜉 = −4det

[
 
 
 
 
𝜕𝑣𝑥

𝜕𝑥

𝜕𝑣𝑥

𝜕𝑦
𝜕𝑣𝑦

𝜕𝑥

𝜕𝑣𝑦

𝜕𝑦 ]
 
 
 
 

 . Eq. 7.22 

We take the definition used by Okubo (1970) for stretching deformation �̂� , vorticity �̂�, and 

shear deformation �̂� 

�̂� =
𝜕𝑣𝑥

𝜕𝑥
−

𝜕𝑣𝑦

𝜕𝑦
, �̂� =

𝜕𝑣𝑦

𝜕𝑥
−

𝜕𝑣𝑥

𝜕𝑦
, �̂� =

𝜕𝑣𝑦

𝜕𝑥
+

𝜕𝑣𝑥

𝜕𝑥
 . Eq. 7.23 

By substituting Eq. 7.23 into Eq. 7.22, and following de Barros et al. (2012), in which for a 

two-dimensional transport scenario 
𝜕𝑣𝑥

𝜕𝑥
= −

𝜕𝑣𝑦

𝜕𝑦
 , and therefore stretching deformation �̂� =

2
𝜕𝑣𝑥

𝜕𝑥
, the deformation tensor can be then rewritten as 

𝜖 =
1

2
(

�̂� �̂� − �̂�
�̂� + �̂� −�̂�

) , Eq. 7.24 

and the Okubo-Weiss function 𝜉 [1/T2] is calculated by 
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𝜉 = (�̂�2 + �̂�2) − �̂�2 . Eq. 7.25 

Positive Okubo-Weiss values, 𝜉 > 0, correspond to regions where shear and stretching forces 

dominate, and are associated to mixing hotspots (Engdahl et al., 2014; Wright et al., 2017). 

On the other hand, negative values, 𝜉 < 0, correspond to regions dominated by vorticity and 

local mixing potential is low.  

7.2.5 Algorithm implementation 

We use MODFLOW-2005 as groundwater flow equation solver, and the time-variant 

specified-head boundary package (i.e., CHD package) was used to set the Dirichlet boundaries 

(Harbaugh, 2005). The model was built using FloPy (Bakker et al., 2016) and the polynomial 

chaos expansion approach was implemented using the Chaospy library (Feinberg, 2019). The 

Okubo-Weiss calculations, random field generator, wave functions, postprocessing scripts, 

and the code for coupling the polynomial expansions and the MODFLOW-2005 model were 

written in Python 3. The scripts and results are available in the online repository of the 

research (Merchán-Rivera et al., 2022).  

7.3 Results and discussion 

7.3.1 Deterministic scenarios 

Figure 7.2 shows the spatial effect of the waveform on the groundwater heads at specific time 

steps 𝜏/𝑇 ∈ {60,80,86,100}. Steeper hydraulic gradients are observed in the trapezoidal 

wave, which significantly impact the flow field magnitude. These gradients occur in the 

trapezoidal wave due to two reasons. First, this wave exposes longer intervals of constant 

head at the wave crest and wave through. Second, the trapezoidal wave presents a sharp 

fluctuation from minimum to maximum stage. Furthermore, the behavior of the sine scenario 

is very similar to the triangular one. As expected, the porous medium acts as a damper that 

gradually moderates the propagation of groundwater head signals, converting all of them to 

sinusoidal patterns after travelling a certain distance and later vanishing them (see Figure 7.3). 

The dampening depends on the value of the hydraulic conductivity in accordance with the 

analytical solution for the head response in the semi-infinite aquifer presented by Singh (2004) 

and Sawyer et al., (2009) for the case of a homogeneous porous medium. 
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Figure 7.2. Groundwater head responses at different time steps: a) 𝜏/𝑇=60, a) 𝜏/𝑇=80, a) 𝜏/𝑇=86, 

and d) 𝜏/𝑇=100. The colored maps show the distribution of the groundwater heads, and the graph 

plot shows the imposed boundary conditions. The red dots show the time steps at which the snapshots 

were taken. 



110 

 

Figure 7.3. Dampening of the head signals from the different scenarios. The groundwater head 

values are extracted at various distances from the wave-shaped boundaries, 𝑥1/ℒ1  ∈

{5,10,15,30,45,60,75,90}, at the middle of the domain 𝑥2/ℒ2 = 50 

The outcomes from the deterministic scenarios show some remarkable differences in the mean 

variance of the groundwater heads and the Okubo-Weiss. In Figure 7.4a, we observe a larger 

�̅�ℎ
2 from the trapezoidal wave scenario, followed by the complex wave scenario, which is also 

very similar to the sine one. This occurs due to the flux variations and the groundwater 

gradient differences among the cases. We also observe that the behavior of the four scenarios 

is very similar after 𝑥1/ℒ1 = 40 and that �̅�ℎ
2 → 0 after 𝑥1/ℒ1 = 60. Figure 7.4b shows the 

mean variance in the results of the Okubo-Weiss metric. We see that 𝜉 may vary by several 

orders of magnitude depending on the wave used as boundary condition. Similar to �̅�ℎ
2, we 

see larger variations in �̅�𝜉
2 in the trapezoidal and complex scenarios.  

We show the spatial and temporal pattern of the Okubo-Weiss metric in Figure 7.5. We 

observe regions where the Okubo-Weiss metric is very high 𝜉 > 0.1𝑒−6, when the flow is 

dominated by stretching and strain and very low 𝜉 < −0.1𝑒−6, when vorticity dominates. 

These regions correspond to areas of high hydraulic conductivity and high conductivity 

contrasts (see Figure 7.1b), where also flow focusing may occur. Hence, the location of these 

spots is fully controlled by the configuration of heterogeneous field in all the scenarios. In 

temporal terms, the most remarkable discrepancies in 𝜉 among the four scenarios occur during 

the sharp ramp upwards and the sharp drop of the trapezoidal wave. In a lower magnitude, 

this is also visible in the complex wave. Highest positive and lower negative values of 𝜉 are 

found in these two scenarios. Furthermore, it is possible to observe cells changing from 

positive 𝜉 to negative 𝜉, and vice versa, in all the scenarios. This can be observed before and 



111 

after the apexes of the trapezoidal wave (Figure 7.5b and Figure 7.5c), the peak of the 

triangular wave (Figure 7.5c and Figure 7.5d), the local maximum and local minimum of the 

complex wave (Figure 7.5b and Figure 7.5c). This swap of dominance is transitory and can 

be repeatedly observed in all the scenarios at critical points of the wave-shaped boundaries, 

such as stationarity points (i.e., constant value), inflection points, local maxima, and local 

minima. This could occur due to flow reversal caused by the deacceleration of the transient 

boundary signal into the aquifer. Overall, this behavior gives evidence of the waveform's role 

in the temporal dynamics of the topology of the flow field.  

 

Figure 7.4. Spread of deterministic results at different distances 𝑥1/ℒ1 from the boundary conditions: 

a) mean variance of the groundwater heads 𝜎ℎ
2, and b) logarithm of the mean variance of the Okubo-

Weiss 𝜎𝜉
2 



112 

 

Figure 7.5.  Okubo-Weiss values at different time steps: a) 𝜏/𝑇 = 60, b) 𝜏/𝑇 = 80, c) 𝜏/𝑇 = 86, and 

d) 𝜏/𝑇 = 100. The colored maps show the distribution of the groundwater heads, and the graph plot 

shows the imposed boundary conditions. The red dots show the time steps at which the snapshots 

were taken. 
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7.3.2 Stochastic scenarios 

 

Figure 7.6. Propagation of the uncertainty into the groundwater head responses represented by the 

expected value 𝜇ℎ and the standard deviation 𝜎ℎ into the groundwater head responses at a) 𝜏/𝑇 =

60, and b) 𝜏/𝑇 = 80 
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The uncertainty in the amplitude and phase of the waves propagates in the groundwater head 

following different patterns (see Figure 7.6). The results of 𝜇ℎ are similar to the results of ℎ 

in the deterministic scenarios. Regarding the standard deviation, in Figure 7.6a, we see at 

𝜏/𝑇 = 60 that all scenarios present similar snapshots, with slightly higher 𝜎ℎ close to the left 

boundary for the triangular wave. In contrast, in Figure 7.6b, a significant difference in 𝜎ℎ 

can be observed at 𝜏/𝑇 = 80  in the complex and trapezoidal wave as compared to the 

triangular and sine waves. This time step corresponds to the change between low and high 

river stage.  

 

Figure 7.7. Posterior probability density functions of the groundwater heads at 𝜏/𝑇 ∈ {60,80,100} 

at specific location 𝑥1/ℒ1 = 5 and  𝑥2/ℒ2 = 50  

We also computed the probability density functions from the output expansions of the 

groundwater heads. The results are shown in Figure 7.7. We observe small uncertainties at 

high and low values of the groundwater heads, which are depicted by the high occurrence 

values in the probability density functions, when 𝜏/𝑇 = 60 and 𝜏/𝑇 = 100 (see Figure 7.7a 

and Figure 7.7c). Larger uncertainties are observed when 𝜇ℎ ≈ 0, when 𝜏/𝑇 = 80 (see Figure 

7.7b). These behaviors occur in all the scenarios. However, two peaks of high probability are 

observed in Figure 7.7b in the trapezoidal scenario due to the rapid fluctuation of the heads 

in the transient boundary conditions. The trapezoidal scenario also shows the smallest 

uncertainty at 𝜏/𝑇 = 60  and 𝜏/𝑇 = 100 , because of the low influence of the phase 

uncertainty in the points where the heads in the boundaries are constant (i.e, minimum and 

maximum).  
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Figure 7.8. Propagation of the uncertainty into the Okubo-Weiss metric represented by the expected 

value 𝜇ℎ and the standard deviation 𝜎ℎ into the groundwater head responses at different times. 
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The influence of the uncertain transient boundary conditions is also reflected in the Okubo-

Weiss values shown in Figure 7.8. As expected, the spots with large uncertainty appear in the 

regions with high hydraulic conductivity contrast and large hydraulic conductivity. 

Specifically, we allocate large uncertainties in the complex and trapezoidal scenarios at 

𝜏/𝑇 = 80 (Figure 7.8b). This is a consequence of the large uncertainty in the groundwater 

heads observed previously (Figure 7.6b), which occur due to the effect of the phase shift over 

the sharp movements in the boundary conditions. The steepness of the slopes in these waves 

creates a wide range of variability when we introduced the offset uncertainty. Moreover, the 

magnitude of the 𝜇𝜉  values vary depending on the scenario, finding larger values in the 

trapezoidal and complex scenarios. Similar to the outcomes of the deterministic scenarios, the 

results of 𝜇𝜉 also reveal spots with variable dominances of the deformation and rotational 

forces of the flow field.  

 

Figure 7.9. Uncertainty propagation into the groundwater heads and the Okubo-Weiss metric at a 

distance 𝜆/2 from the boundary conditions (𝑥1/ℒ1 = 5): a) mean expected value of the groundwater 

heads and interval [�̅�ℎ − 𝜎ℎ , �̅�ℎ + 𝜎ℎ], and b) mean expected value of the Okubo-Weiss metric and 

interval [�̅�𝜉 − 𝜎𝜉 , �̅�𝜉 + 𝜎𝜉]. 

The responses of both ℎ and 𝜉, as well as the statistics that define their uncertainty, follow 

periodic patterns. To evaluate the average behavior of the statistics of ℎ and 𝜉 at a certain 

distance from the boundaries and their differences, we chose a relatively close distance to the 



117 

stream, at distance 𝜆/2 (i.e., 𝑥1/ℒ1 = 5), where the propagation of the signal is clear. We 

computed the arithmetic means of the uncertainty statistics at a distance 𝑥1/ℒ1 = 5, which 

are shown in Figure 7.9. We see that �̅�ℎ  is highly fluctuating in the trapezoidal and the 

complex scenario. Moreover, according to the interval [�̅�𝜉 − �̅�𝜉 , �̅�𝜉 + �̅�𝜉], the trapezoidal 

scenario exhibits the highest uncertainty in 𝜉, followed by the complex wave. The results also 

indicate that it is more likely to find rotation properties dominating in the flow field under the 

trapezoidal scenario conditions than to find them under the conditions of the other scenarios. 

On the other hand, we see smaller variability of �̅�ℎ and �̅�𝜉 in the sine wave scenario, showing 

a similar spread in the outputs along the whole simulation period. While the behavior of the 

triangular wave is similar to the sine wave, the complex wave is comparable with the 

trapezoidal wave.  

Overall, our results from the deterministic and stochastic scenarios show that wave-shaped 

boundary conditions can influence not only the magnitude of the deformation and rotational 

forces of the flow field (i.e., shear, stretching, and vorticity) but also the temporal dynamics 

of dominance between local strain and rotation properties. Although our results show that 

their location is determined by the areas with high hydraulic conductivity contrast, as can be 

seen in Figure 7.1b, we provide evidence that the mixing potential in these areas is 

significantly affected by highly transient boundary conditions. This occurs due to the variety 

of hydraulic gradient responses as a consequence of the highly fluctuating head boundary 

conditions. To observe in detail the temporal variation and the two-dimensional distribution 

of the groundwater heads, the Okubo-Weiss values, and the statistical moments that describe 

the uncertainty, we refer to a series of videos included as part of the Supplementary Material 

of this research. 

7.4 Conclusions 

We studied the effect of the periodic stage conditions due to hydropeaking events on the 

groundwater flow topology in terms of the Okubo-Weiss metric. We imposed Dirichlet 

boundary conditions in the form of wave-shaped specified-heads with four types of 

waveforms: triangular, sine, complex, and trapezoidal. The formulation of the system 

considers a deterministic solution of the heterogeneous hydraulic conductivity field for all the 

scenarios. The first part of our analysis was done assuming no input uncertainty over the four 

waves that define the transient boundary conditions. The second part of the study approached 

the problem as a stochastic system with uncertainty in the parameterization of the transient 

boundary conditions. Here, the wave amplitude and phase were considered uncertain and 

treated as mutually independent random variables. These variables introduced the uncertainty 
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related to unknown fluctuations in the discharge volume and discharge duration and temporal 

uncertainty due to energy market demands and powerplant management. The application of 

polynomial expansions and pseudo-spectral collocation method allowed us to estimate the 

statistical moments (i.e., mean, and standard deviation) of the outputs of interest (i.e., 

groundwater heads and Okubo-Weiss metric). The method was convenient to extract the 

required spatial and temporal detail with low computational effort. 

One of the main messages that the Okubo-Weiss metric can provide us is the identification of 

reaction hotspots. The spatial distribution of the Okubo-Weiss responses is fundamentally 

controlled by the hydraulic conductivity. In accordance, our results show that their location is 

determined by the areas with high hydraulic conductivity contrast. However, we also provide 

evidence that the mixing potential in these areas is significantly affected by the highly 

transient boundary conditions. The magnitude and temporal behavior of this topological 

indicator of mixing significantly vary according to the impose boundary conditions. Different 

highly transient boundary conditions influenced in different degree the temporal dynamics of 

dominance between local strain and rotation properties and the magnitude of the deformation 

and rotational forces of the flow field. Therefore, given the dynamic responses of the flow 

field to the time-variant head boundary conditions, the detailed temporal characterization of 

this metric is important to reliably predict, for instance, mixing-driven reactions.  

The evaluation of hydropeaking impacts on subsurface flow requires to characterize the 

management of the surface water system and the intensity of the impact (e.g., shape, 

amplitude, and periodicity of the wave). Hence, we think it is essential to estimate 

hydropeaking effects on flow and transport processes in aquifers using a stochastic approach, 

not only due to the essential uncertainty in the aquifer heterogeneity but also due to the 

uncertain stream stages. The statistical moments that describe the propagation of the 

uncertainty show a periodic behavior and a varying degree of uncertainty depending on the 

applied wave-shaped boundary. Further work should focus on the characterization of real 

hydropeaking events to explicitly acknowledge the inherit uncertainty of these systems and 

its effect in the estimation of topological descriptors.  
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8 Conclusions 

This dissertation addressed the interaction between rivers and aquifers during extreme events. 

The main objective was to characterize flow and transport processes in the groundwater under 

the effect of the uncertain river boundary conditions that arise during extreme events. The 

analyzed river-aquifer interactions involved morphological, climatic, and anthropogenic 

approximations that describe the events of groundwater flooding and hydropeaking. These 

extreme events were selected due to the highly fluctuating river stages and the associated 

uncertainty in the water level and the riverbed properties. Overall, this dissertation covered 

comprehensively the following areas:  

• The quantification of uncertainty employing deterministic scenario modeling and 

formal stochastic approaches, specifically Bayesian inference and spectral 

expansions; 

• The spatial and temporal responses of the groundwater flow and the flow field to the 

dynamics of the river boundary conditions and the description of the spatiotemporal 

evolution of the uncertainty; and,  

• The characterization of flow and transport processes in the subsurface in probabilistic 

terms by creating stochastic frameworks for the identification of non-trivial flow 

features and the description of mixing predictors. 

For clarity, Table 8.1 includes a summary of the answers to the research questions defined in 

this dissertation. In addition, the specific conclusive remarks are articulated in the following 

sections. Deeper explanations of the responses and findings related to Q1 are presented in 

Section 8.1, while those related to Q2 and Q3 are developed together in Section 8.2. 
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Table 8.1. Summary of answers to the research questions 

Research Question Answer   

Q1. What is the role of highly 

transient river boundary 

conditions during extreme 

events, such as groundwater 

flooding and hydropeaking, 

on the responses of the flow 

and transport processes in the 

subsurface? 

• Changes between low and high river stages modifies the dynamics 

of the groundwater introducing variations in the hydraulic gradients 

and the exchange flux between the rivers and the aquifer. 

• Responses in the flow field can significantly vary depending on the 

evolution of the wave that represents the river boundary conditions, 

particularly in the regions close to the streams. A detailed temporal 

and spatial characterization of the metrics that described the flow 

field is hence important to reliably predict mixing-driven reactions. 

• Fluctuations in the river stage substantially influenced the 

dynamics of the flow field, including the magnitude and direction 

of the flow, the dominance between local strain and rotation 

properties and the magnitude of the deformation and rotational 

forces. 

Q2. How can uncertainties during 

extreme events, such as 

groundwater flooding and 

hydropeaking, propagate and 

affect the flow and transport 

processes in the subsurface? 

• Uncertainty in the river boundary conditions affects the water flux 

and the flow paths in the stream-aquifer system. The propagation is 

relative to the spatial location, the temporal evolution of the wave 

and the hydrogeological conditions. The shape, peak amplitude, 

and periodicity of the river stage during the extreme events affect 

the propagation of the uncertainty due to the fluctuations on the 

hydraulic gradients.  

• The propagation of uncertainty significantly varies in space and 

time, which is reflected in the understanding and predictability of 

the groundwater flow, the transport of solutes and the description 

of mixing processes. The quantification of the flow field magnitude 

and direction may be affected in various orders of magnitude and 

several degrees, respectively, with a consequently major impact in 

the description of transport processes and mixing conditions in the 

subsurface at the meter-scale.  

• Due to the large propagation of uncertainty, the description of river-

aquifer systems and the responses of the flow field demands the 

application of formal stochastic methods not only for improving the 

model reliability but also for assessing risk accurately.  

Q3. How can stochastic 

approaches be used to 

identify the spatial 

distribution and temporal 

variability of relevant flow 

conditions in the subsurface? 

• Stochastic frameworks can assess the flow field characteristics for 

the identification of non-trivial flow features (i.e., stagnation zones 

and reverse flow) and the description of topological metrics (i.e., 

Okubo-Weiss) in probabilistic terms. Model outputs can be 

represented in terms of probabilities to identify subsurface flow 

features that can would be unfeasible to recognize from a pure 

deterministic approach. 

• The definitions of the susceptible zones and the evolution in spatial 

and temporal terms can be easily constructed from a probabilistic 

perspective, and the accuracy of the simulations can be updated 

with new evidence data. 

• Polynomial chaos expansions techniques are efficient methods to 

quantify uncertainty due to river boundary conditions, particularly 

in pre-existing models, where the dimensionality of the models can 

be enclosed to the river description. 
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8.1 Spatiotemporal responses due to river-aquifer dynamics  

Along all the components of this dissertation, we have seen the importance of evaluating the 

extreme events at the different temporal phases that characterize them. The changes between 

low and high river stages modifies the dynamics of the groundwater introducing variations in 

the hydraulic gradients and the exchange flux between the river and the aquifer. Therefore, a 

single temporal snapshot can be fairly imprecise for a general diagnosis of the groundwater 

flow and flow field responses. Likewise, the results of this dissertation strengthen the idea 

that the description of the flow field requires to consider the spatial characteristics of the area 

of study. The influence of transient boundary conditions in the aquifer also depends on the 

specific geological and hydrological settings of the case study, doing the mapping of the 

spatial distribution of the inputs and the responses a valuable subject when complex 

hydrodynamic features, such as various surface streams, are involved. In these regards, these 

works provided a deeper insight to characterize the flow and transport processes in the 

subsurface because all of them considered these temporal and spatial complexity.  

For analyzing the groundwater flooding event, it was convenient to separate the different 

phases of the flood events in order to recognize the temporal effect of the river-aquifer 

interactions. Four specific time steps were used to represent the model responses before the 

event, at the peak-flow, at the recession phase, and after the flood event. The surface streams 

are hydraulically connected to the aquifer and infiltration occurs from precipitation ad river 

leakage. As consequence, different groundwater head gradients and different river discharges 

into the saturated zone were observed. All the modeling exercises described in Chapter 4, 5, 

and 6 gave evidence of the temporal influence of the input variables (i.e., river stage and 

riverbed conductance) that describe the river boundary conditions on the groundwater 

responses. Indeed, the flow responses in the proximities of the streams are driven by the river 

boundary conditions. The hydraulic conductivity plays a fundamental role by itself as well as 

a factor of interaction with other model variables. In the particular case of the valley of the 

Alz River, due to the high hydraulic conductivity of the alluvial plain (formed by gravels and 

sands), the groundwater heads near to the river and the canal showed rapid responses and 

similar fluctuation patterns to the stream stages. To what concerns the risk assessment of 

groundwater flooding event, heavy rainfall precipitation may trigger the affections from 

groundwater flooding, but they can occur due to the accumulation of water in the aquifer for 

long periods.  
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For the study of hydropeaking, it was required to use a high temporal resolution to understand 

the dynamic effect of the river boundary conditions. Thanks to this temporal discretization, 

the variations and progression of the hydraulic heads from the different wave-shaped 

boundaries were clearly distinguished. In addition, the high temporal resolution support to 

avoid numerical and convergence errors. In Chapter 7, we observe that the characterization 

of hydropeaking impacts on the groundwater flow implies the management of the energy 

infrastructure and the market demand. Due to the steepness of the hydraulic gradients and the 

exposure to different intervals of constant heads at the wave crest and wave through, the 

responses in the aquifer can dramatically vary depending on the wave-shaped boundary 

conditions. The Okubo-Weiss responses are primarily controlled by the hydraulic 

conductivity and the model outcomes are sensitive to the field, analogous to what is observed 

in the evaluation of the groundwater flooding case. However, the evidence observed in 

Chapter 7 suggests that mixing potential is also significantly affected by the highly transient 

boundary conditions. The study showed that the magnitude and temporal behavior of this 

topological indicator of mixing significantly vary according to the boundary condition that 

represent the river. The fluctuation in the river stage substantially influenced the dynamics of 

dominance between local strain and rotation properties and the magnitude of the deformation 

and rotational forces of the flow field. 

8.2 The role of uncertainty 

The driving premise undergirding this dissertation is truly straightforward: river boundary 

conditions contain uncertainties because they attempt to capture the complexity river-aquifer 

interactions and these uncertainties can be particularly significant due to disruptive and/or 

unexpected conditions during events of groundwater flooding and hydropeaking. Hence, the 

uncertainty in the river-aquifer continuum is primarily introduced in the predictive modeling 

process because the numerical representation of the rivers under extreme conditions contains 

largely unknown parameters and imprecise approximations of the physical processes 

underlying the aforementioned events. Although the aftermath of groundwater flooding may 

not be as hazardous as fluvial or pluvial floods, the events are harmful and the occurrence is 

unanticipated. Hydropeaking events may have a tendency to recur at certain interval, and they 

can indeed be described in terms of their periodicity. However, these events are disruptive 

because they break the usual behavior of the hydrological system and the significance in the 

aquifer responses is hard to anticipate. In addition, the magnitude of the impact is largely 

unknown, particularly when deviations from the average tendency occur due to the 

dependency on energy market factors.  
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Initial and boundary conditions are meant to obtain a unique solution to the differential 

equations that govern the groundwater flow. The application of basic uncertainty analysis 

techniques then suggests to combine the relevant parameters using the minimum and 

maximum expectation values or the best- and worst-case states to catch the uncertainty of 

extreme events. The theory behind them is relatively simple and their implementation is 

extremely cheap with regard to computational demand. Unfortunately, they neglect the 

existence of equifinal models and assume absolute confidence in the base model. This 

approach can still be valuable under simple circumstances with relatively stable systems with 

not highly fluctuating boundary conditions. However, it may be reckless to describe extreme 

events with explicit deterministic valuations because, by definition, extreme events are 

disruptive or unexpected. In the deterministic scenarios in Chapter 4, we observed that the 

variation in the stage and riverbed conductance can highly affect the transport of the solute. 

The influence of the temporality flood wave propagation within the aquifer is particularly 

perceptible in the advective-dispersive transport when we observe the different timing in the 

changes in concentration. Chapter 4 was a first approximation to the understanding of the 

temporal and spatial effects of the uncertain river boundary conditions, as seen in the 

outcomes of the breakthrough curve of the solute concentration. This study was an initial 

interpretation of the system and showed that the event in the valley of the Alz River was a 

suitable groundwater flooding case for the further experimentation, later done in the research 

presented in Chapter 5 and Chapter 6.  

8.2.1 Embracing the unknown 

The most noteworthy contributions of this dissertation indeed derive from the application of 

probabilistic techniques and the creation of various products built over the representation of 

the problems as stochastic systems. These contributions include:  

1) The formal quantification of spatiotemporal propagation of uncertainty in the flow 

field components and flow topological descriptors during the selected extreme events 

(Chapter 6 and 7); 

2) The application of a Bayesian framework for assessing risk of groundwater flooding 

(Chapter 5); and,  

3) The definition of a stochastic framework for identifying elusive and non-trivial flow 

features and mixing descriptors (Chapter 6 and 7). 

The findings of this dissertation provide spatially and temporally distributed probabilistic 

information from groundwater models. In this line, the results characterize the uncertainty in 

hydrogeological systems affected by extreme events with a high level of temporal and spatial 

detail. Overall, the results of the dissertation show that the propagation of uncertainty also 

vary in space and time, which is reflected in the understanding and predictability of the 
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groundwater flow and the transport of solutes. The temporal and spatial dependencies of the 

uncertainty are reflected in the functional relations of model inputs (Chapter 5), in the 

temporal and spatial uncertainties in the groundwater flow (Chapter 5 and 6), in the flow field 

magnitude and direction (Chapter 6), in the appearance of stagnation points and reverse flow 

(Chapter 6), and in the responses of the Okubo-Weiss metric (Chapter 7). Then, a general 

remark of these studies is that the explicit quantification of uncertainty in river-aquifer 

systems should embrace the temporal and spatial detail for understanding the transport and 

fate of solutes. This remark is important given that some properties of the input variables that 

define the boundaries of the modeled system are going to be unavoidably unknown and there 

is a strict spatiotemporal dependency in the aquifer responses.  

A broader image of the parameter uncertainty is captured in Chapter 5, where the 

quantification of uncertainty involves not only the river boundary conditions but also 

hydraulic parameters such as hydraulic conductivity, specific yield, specific storage, and 

recharge into the saturated zone. In this study, the sensitivity in the input variables and the 

parameters also presents temporal variations. This means that the allocation of uncertainties 

in the output of the models vary depending on the evaluation time steps. The omission of the 

temporality of the fluctuating events will reveal an incomplete image of the reality and affect 

the understanding of the system’s dynamics. This study also identified that the non-linearity, 

non-monotonicity, and interactions between model parameters vary depending on the phase 

of the groundwater flood event. It was observed that the functional relationships between the 

inputs and outputs tend to high non-linearity, high non-monotonicity, and larger interactions 

during the peak-flow and the recession phase while these relationships decrease before and 

after the event. One of the advantages of addressing the problem from the notion of 

stochasticity is found in this study. The susceptibility to groundwater flooding is explained 

and communicated with probability maps. Such strategy gives not only a clear impression of 

the model reliability but also improves the accuracy of the message that is communicated to 

part-takers. Due to the nature of groundwater flooding, the presented Bayesian framework 

seem to be a viable method to assess exposure over one single event models and to efficiently 

create imagery products of flood risk.  

The quantification of uncertainty is used to represent the model outputs in terms of 

probabilities, which supports the identification subsurface flow features that can be unfeasible 

to recognize from a pure deterministic perspective. This is clearly observed in Chapter 6. In 

a dynamic system, points where the velocity is equal to zero are likely to occur, but extremely 

complicated to identify by specific realizations of numerical models. In this work, the 

identification of stagnation points is actually possible because the method is constructed over 

the probability of occurrence. Here, the maps of probability are created with the statistical 

moments of the flow field magnitude, which are obtained from the quantification of 

uncertainty with polynomial expansions. Similarly, in Chapter 7, we observe that the 
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dynamics of dominance between local strain and rotation properties can be identified by 

mapping the statistical moments of the outputs that define the flow field. This supportive 

probabilistic approach is important because the uncertainty that propagates from 

hydropeaking waves, which depend on operation and management of hydropower plants, can 

largely vary from one wave shape to another. 

8.3 Recommendations and outlook 

It is worth noting that the quantification of uncertainties is more challenging in coupled 

system, such as river-aquifer models and transport simulations, in comparison to single 

system solvers. This occurs due to the multiple interacting phenomena and the multiple scale 

representations required to assemble different systems. In practice, the challenge is reflected 

in the propagation of uncertainty through several linked simulations. A series of simulation 

codes must be coupled to connect the hydrological models with the mathematical tools that 

are required to quantify the uncertainty. Although this creates a multi-compound system, there 

is no need of any edition of the internal workings of the elementary hydrological solvers. 

Furthermore, the success of the techniques applied in Chapter 5, 6, and 7 will also depend on 

the proper prior representation of the probability density function. Any interpretation of the 

resulting posterior probabilities of the models should be attached to the understanding initial 

parameterization of the uncertainties. Furthermore, parameters can be correlated or not follow 

a Gaussian or uniform distribution. This can be a major issue in applying the methods because 

the efficiency can be compromised by the construction of the joint probability distribution. 

However, it is reasonable to assume that the river stage and the hydraulic conductivity of the 

riverbed material are mutually independent parameters, which makes possible the direct 

application of the marginal distributions for sampling methods or spectral expansions. 

Similarly, the wave amplitude and phase that describe the dynamics of the water level in 

hydropeaking events can be treated as mutually independent random variables. This is an 

important reflection of this work because it may motivate and ease the application of these 

techniques in similar models where uncertain river boundary conditions play a major. 

Additional applications of polynomial chaos expansions can be developed for the 

hydrological modeling of real case scenarios. Although, spectral techniques are an attractive 

option for quantifying uncertainty, the literature review of this dissertation revealed that most 

of the implementations of spectral expansions had been done in simplified analytical 

problems. New applications will spread the knowledge to the hydrological community and 

facilitate the process of learning. Furthermore, a similar exercise with polynomial chaos 

expansions can be applied to study the boundary conditions for the solution of the advection-

dispersion-reaction equation for the solute transport. Stochastic methods have been largely 
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used for the understanding of solute transport. Naturally, they mainly focus on the variation 

of the hydraulic conductivity values due to their significant influence on the solute spreading. 

However, similar to the groundwater flow, mass transport requires fixed concentration, fixed 

gradient, or variable flux boundary conditions, which may be considerably uncertain and can 

be analyzed by spectral expansions with a relatively low number of model realizations. The 

latter is one of the most attractive potentials of spectral applications because transport model 

simulations regularly require a long time.  

The application of formal stochastic methods can be extended to understand groundwater 

flooding and hydropeaking. The susceptibility to inundation due to the rising of the 

groundwater table can be identified in other regions affected by these events. Studies with this 

purpose can be valuable and suitable for other regions that have been affected by groundwater 

flooding in the past. With these applications, the use of single-event groundwater models with 

large temporal scales and high spatial resolution can be validated to detect exposure to 

groundwater. Uncertainty quantification in real hydropeaking cases is still an open matter. 

Probability density functions related to the periodic behavior of these events can be derived 

from field data to construct the basis for quantifying uncertainties. The explicit computation 

of the uncertainty of the hydrological systems affected by hydropeaking can also be used to 

estimate and understand topological descriptors beyond the Okubo-Weiss metric. 

Finally, several issues remain open for study concerning the representation of the river 

boundary conditions in numerical models. The representation of the spatial extent and river 

geometry, which is often represented within the limits of modeling grids, often requires details 

at the meter-scale. Additionally, the conceptual representations of the rivers often neglect the 

complexity of the river geometry and the effect of lateral fluxes. Systematic errors in the 

estimation of exchange fluxes can emerge due to these inadequate representations, 

introducing uncertainties in the simulation of solute fate and transport. Then, research 

addressing the epistemic uncertainty in the river geometry representation can be characterized 

and quantified to understand its impact on solute transport and mixing processes in the 

subsurface.   
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