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1. Introduction

The design of novel materials with unprec-
edented properties is a great challenge of 
modern science. Two types of rationally 
designed structured media for governing 
electromagnetic waves were established in 
recent decades: periodic media, referred 
to as photonic crystals (PhC),[1–4] and 
metamaterials, which are optical mate-
rials composed of photonic meta-atoms 
smaller than the optical wavelength.[5,6] 
Established design rules exist for these 
materials, but the periodicity of PhC and 
the strict size limitations of metamaterials 
limit the design space. Inverse design 
methods using numerical optimiza-
tion,[7–10] including artificial intelligence,[11] 
are another possibility. These methods 
result in complicated distributions of 

material that support the desired functionality, but they come at 
the cost of physical tangibility, making it very hard for humans 
to judge their efficiency. Disordered structures[12,13] bear a much 
higher complexity than PhCs and metamaterials, but reciprocal 
space engineering might give a hint about how to utilize this 
complexity in a rational way. In a similar way, holography tech-
niques make it possible to fabricate seemingly chaotic struc-
tures that modify a traversing wave front for a given image to 
appear. Due to the advances of 3D nanomanufacturing, many 
photonic structures utilizing tailored disorder have been dem-
onstrated: hyperuniform structures,[14] photonic glasses,[15] qua-
sicrystals,[16] Moiré lattices,[17] and Fourier surfaces.[18]

Incommensurate, quasiperiodic structures represent a spe-
cial class of disordered systems where a high degree of order is 
present in reciprocal space. Recently, novel physical phenomena 
were discovered in Moiré lattices;[17] systems composed of a pair 
of similar lattices with different orientation. In particular, a tran-
sition between localization and delocalization was reported for 
photonic Moiré lattices. A pair of graphene flakes with arbitrary 
orientation effectively form similar systems for electrons.[19,20] 
However, the design space for atomic lattices is very limited 
in contrast to their photonic counterparts. In 2D, an overlap of 
multiple optical gratings forming incommensurate patterns was 
recently demonstrated for holographic projection.[18] One might 
design a structure by merging an arbitrary number of lattices 
even in full 3D space opening up with promising opportunities 
for novel photonic materials. A particularly challenging task is 
to obtain a complete photonic bandgap (CPBG). For a bandgap 
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to be complete, the individual direction-specific gaps related to 
the reciprocal vectors need to overlap over the full solid angle. 
This requires the interplay of two conditions: first, the Brillouin 
zone of the structures should be as close as possible to a circle 
in 2D and a spherical shell in 3D, so the individual gaps open 
for similar frequencies and cover all angles.[21–23] Second, a high-
refractive-index (RI) contrast leads to wider individual gaps 
and can, therefore, compensate for residual deviations from 
the ideal circle or spherical shell shape. In this publication, we 
define the RI contrast as the ratio of the refractive indices of two 
constituent media, n1/n2, where n1 is larger than n2, so that the 
minimal contrast is 1. To increase the range of available mate-
rials for PBG applications, there have been considerable efforts 
to minimize the required RI contrast employing periodic[4,22–26] 
and aperiodic[21,27–35] structures. As aperiodic structures are not 
limited by the crystallographic theorem and thus are allowed for 
a more flexible positioning of Bragg peaks and smoother effec-
tive Brillouin zones, they are generally considered superior for 
low-contrast CPBGs.

Here we report on artificial low-refractive-index media with a 
complete photonic bandgap. The medium is engineered in recip-
rocal space by merging a large number of lattices with proper 
spatial orientation into a single quasiperiodic structure. Tens of 
lattices form a nearly homogeneous distribution of the maxima 
in reciprocal space allowing a remarkable reduction of the RI 
contrast required for a CPBG. In real space, the leveled-wave 
approach is used to obtain structures made of a single material. 
The approach is somewhat similar to the holographic dual-beam 
exposure technique[33–37] but with random phase shifts between 
the individual lattices in our case.[38,39] This randomization leads 
to isotropic structures and allows us to draw important conclu-
sions about the connection between the total RI contrast and the 
directional bandgaps. Based on that, we present a mathematical 
first-order approximation that yields two important results: there 
is a finite optimal number of gratings for any finite available RI 
contrast, and a CPBG can be obtained for any, even arbitrarily 
small, RI contrast. The predictions of the model are confirmed 
by numerical simulations in 2D. The same design rule proves 
successful in 3D where an unprecedented emission suppression 
of −10 dB is shown with an RI contrast of n1/n2 = 1.38. A strong 
suppression of light transport is also confirmed in microwave 
transmission measurements conducted on a 3D-printed struc-
ture with an RI contrast of n1/n2 = 1.59.

2. Quasiperiodic Model Structure

The structures are generated by a superposition of sinusoidal 
1D gratings, which have their normal directions homogene-
ously distributed over the whole angular range. For the 2D case, 
this can easily be realized by a uniform distribution over the 
azimuthal angle. 3D structures need a more complex distribu-
tion of gratings, which is described later. The superposition is 
mathematically described by a gradual function

r b r φ( )( )∆ = ∑ ∆ +
=

n n
i

N

i i icos ·g
1

 (1)

where N is the total number of gratings, Δni is the amplitude 
of the RI modulation of a single grating, bi are the wave vectors 

defining the grating periods and directions, and φi are the cor-
responding phases. Since the Fourier transform is a linear 
operation, a summation of 1D gratings corresponds to a sum-
mation of the Fourier transforms of each grating. In this case, 
the cosine functions correspond to two Dirac delta functions, 
Bragg peaks, at ±bi in reciprocal space. The same period a, and 
thus, lattice vector length b = |bi| = 2π/a and amplitude Δni is 
used for each grating. The phases φi are chosen randomly. In 
this case, for a large number of gratings, the local RI pertur-
bation has a Gaussian distribution with standard deviation 
σg = Δni(N/2)1/2 (see Section S1 in the Supporting Information).

To obtain a binary structure that can be represented by two 
materials, the sum in Equation (1) is then binarized by a sign 
function[34–38]

r r·sgnb gn n n n( )( ) ( )= + ∆ ∆  (2)

where n̄ is the mean refractive index, Δn is the amplitude of 
the refractive-index perturbation from the average value n̄, thus  
n1 = n + Δn and n2 = n̄ −  Δ n. We choose the perturbation strength to 
be equal to the standard deviation of the graded structure, Δn = σg.  
Two examples of the structures in 2D and 3D are presented in 
Figure 1. In contrast to previous works,[34–37] random phases φi 
allow us to analytically evaluate the strength of original gratings 
after binarization. It can be shown that the binarized function still 
has ≈ 64% of its intensity in the original gratings (see Section S2 
in the Supporting Information). Each grating after binarization 
has an effective amplitude equal to Δni,b = 2Δn(πN)–1/2 (see Sec-
tions S1 and S2 in the Supporting Information). The binarization 
also introduces additional Bragg peaks in Fourier space that take 
the residual ≈ 36% of the intensity. However, for a large number 
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Figure 1. Quasiperiodic structures in real as well as reciprocal space.  
A,B) Examples of the investigated structures in 2D and 3D, respectively. The 
side lengths in both cases are ≈ 13 lattice constants a. The 2D image was 
generated based on an overlap of 16 gratings; the 3D image is based on 46 
gratings. C) Squared Fourier transform of a circular excerpt of a 2D structure. 
D) Schematic representation of the Bragg peaks used for the 3D structure.
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of gratings, these peaks are so densely distributed that for a 
finite structure size they cannot be differentiated anymore (see 
Figure 1C). Thus, we efficiently utilize the RI contrast of the bina-
rized structure to generate the required Bragg peak distribution.

3. CPBG Estimation

While every individual grating has a bandgap in its normal 
direction, other directions see an upshifted bandgap, cor-
responding to the Bragg condition. Thus, in the direction 
between two Bragg peaks the bandgap appears at a slightly 
larger frequency. An omnidirectional bandgap for one polariza-
tion is achieved when the directional bandgaps have a sufficient 
opening to overlap. The effective Brillouin zone of the structure 
is schematically shown in Figure 2A. We label the direction 
toward the Bragg peak of the grating with index i as ΓMi and 
the direction between the two Bragg peaks with indices i and 
i + 1 as ΓKi. Scanning the band diagram along the edge of the 
effective Brillouin zone the omnidirectional PBG opening can 
be evaluated (Figure  2B). To achieve an omnidirectional PBG 
the upper edge of the PBG in ΓMi-direction should be above 
the lower edge of the PBG in ΓKi-direction.

At the M-points we neglect the interaction between different, e.g., 
neighboring gratings in the calculation of the directional bandgap 
of the single grating. At the K-points, the neighboring gratings are 
contributing to the bandgap opening. Neglecting the influence of 
other gratings beyond the next neighbors, it can be shown that the 
PBG opening is by a factor m1/2 larger than for a single grating, 
where m is the number of interacting gratings (2 or 3 for 2D or 
3D structures, respectively; see Section S3 in the Supporting Infor-
mation). Similar to the calculation in a nonbinarized structure,[33] 
we end up with the following expression for the relative omnidirec-
tional PBG opening (Section S4, Supporting Information):
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where ωup and ωlow are the upper and lower frequency edges 
of the CPBG, ωM and ωK are the bandgap center frequencies of 

the respective directional bandgaps, Δωi,M and Δωi,K denote the 
respective directional half bandgap openings, and α is the angle 
between ΓMi- and ΓKi-directions (see Figure 2). Then α can be 
expressed in terms of the number of gratings N to arrive at a 
function of the RI contrast and the grating number only. How-
ever, the relation of these quantities is different for 2D and 3D.

The uniform distribution of the gratings in 2D is straightfor-
ward and leads to the relation α = π/(2N). The resulting expres-
sion yields the relative omnidirectional PBG opening that 
reaches a maximum for a certain number of gratings
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Significantly, the bandgap opening will converge to zero as 
the contrast goes to zero, but for finite contrast values there will 
always be a finite omnidirectional PBG width.

To find a connection between the angle α and the grating 
number N in the 3D case, we make the approximation that each 
Bragg peak has exactly six neighbors at equal distance in recip-
rocal space. In reality, the sphere cannot be covered by equal 
hexagons. The distribution close to this approximation would 
be the one with a Goldberg polyhedron as its effective Brillouin 
zone, which would also have 12 pentagonal faces and differently 
sized hexagons.[40,41] Thus, our assumption slightly underesti-
mates the maximal angle. Using this assumption, we obtain the 
connection α2 = 4π/(33/2N) (see Section S5 in the Supporting 
Information). As in the 2D case, there is an optimum grating 
number and a corresponding optimum bandgap opening
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Again, the predicted bandgap persists even for a small but 
finite RI contrast.

In order for a PBG to be complete, it needs to inhibit propa-
gation for all possible light polarizations. In 2D, the polariza-
tions are fully described by an orthogonal basis of transverse 
electric (TE) and transverse magnetic (TM) polarizations. For 
low-refractive-index media, the shift between the bandgaps 
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Figure 2. A) Schematic representation of a section of the effective Brillouin zone of the 2D quasiperiodic structure. B) Schematic band diagram showing 
the effective bandgaps in different directions. The bands depicted in gray show the band positions for the empty lattice case, when the grating con-
trast converges to zero. The orange shaded area represents the bandgap opening when a finite contrast is assumed. At the K-points, the neighboring 
gratings interact, which leads to a smoothing at the lower band edge and, thus, to a larger bandgap opening. The red shaded area represents the 
omnidirectional PBG.
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observed in TE and TM excitations is mainly caused by the 
different effective mean RI of the structure. For TM-polar-
ized light, the electric field is always tangential to the mate-
rial boundaries and therefore continuous. For TE-polarized 
light, the E and D fields can have all orientations toward the 
boundaries. However, in order to find the maximum difference 
between the effective permittivities for the two polarizations, we 
may assume that all TE fields are normal to the boundaries. For 
that case, the relative difference in the bandgap positions for 
the different polarizations depends on the RI as (see Section S6  
in the Supporting Information)
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In the 2D case, the discrepancy between the bandgap posi-
tions for TM and TE polarizations decreases faster than the 
maximal bandgap width for decreasing RI contrast. Thus, for 
low-RI contrasts a better overlap of the bandgaps and thus a 
CPBG can be expected. For 3D structures the scaling power law 
with an exponent of 2 is the same, and a better estimation is 
required to predict the existence of a CPBG. At the same time, 
the assumption that electric fields are only either parallel or 
orthogonal to interfaces represents an extreme case that will 
not be present in real field distributions. Therefore, in reality 
the birefringence will be smaller in the 3D structures, and it 
might be that obtaining a CPBG is still possible.

4. Simulation of the 2D Case

Simulations were done using the time domain solver of CST 
Studio Suite.[42] A line dipole emitter was placed in the center 
of the proposed structure. Several other positions next to 
the center were also checked. While this changes the overall 
emission level depending on the local environment of the 
dipole, the relative suppression inside the bandgap itself is 
hardly influenced. The orientation of the dipole was changed 
to excite either TE (dipole in-plane) or TM (dipole out-of-
plane) polarization. The lateral directions are terminated 
by open boundaries acting as perfect absorbers. To probe 
the local density of states (LDOS), we evaluate the emitted 
power of the dipole P by measuring the real part of its radia-
tion impedance.[43–45] The results are then normalized to the 
dipole emission P0 into a homogeneous medium with the 
mean refractive index of the structure. A suppression of the 
LDOS, and therefore of the power emission, is expected for 
frequencies inside the PBG. It is also expected that the LDOS 
at these frequencies decreases exponentially with the lateral 
side length L of the simulation volume.[32,46] As the results 
are scale independent, the side lengths are normalized to the 
grating period, L/a.

The normalized TM power emission spectrum of the dipole 
for four different structure sizes with 16 gratings and a small 
RI contrast of n1/n2 = 1.58/1.42 ≈ 1.11 is shown in Figure 3. An 
emission suppression band is seen in the spectra at a normal-
ized frequency of about 0.493. The maximal suppression shows 
the expected exponential decay with increasing side length of 
the square-shaped simulated structure (inset in Figure 3).

Additionally, for a CPBG the suppression experienced by 
different polarizations should coincide spectrally. Although a 
slight spectral shift between the TM and TE positions of the 
emission gap is observed (Figure  3), there is a clear overlap 
region corresponding to a polarization-independent CPBG. 
The overlap should further improve for smaller index contrast 
as the polarization shift (Equation (6)) converges more rapidly 
than the individual bandgap openings (Equation (4)). In combi-
nation, these results unambiguously confirm the opening of a 
CPBG.

The predicted and simulated bandgap sizes were compared 
for several grating numbers (Section S7, Supporting Informa-
tion). We find deviations from our model in three aspects: i) for 
large grating numbers the bandgap vanishes. ii) The optimum 
grating number is slightly shifted toward smaller grating num-
bers. iii) The bandgaps are narrower than expected in nearly all 
simulations. However, the results confirm that there is indeed 
an optimum condition for the number of gratings and that our 
model does predict the overall trend of the dependence.

5. Simulation of the 3D Case

The gratings for the 3D structures need to be arranged such 
that the Bragg peaks are homogeneously distributed as points 
on the spherical surface with radius b = 2π/a, and the maximal 
distance from any point on the sphere to the closest Bragg peak 
is minimized. This task is a special type of a sphere covering 
problem where no exact solution exists for an arbitrary number 
of points.[41] There are, however, solutions available in table 
form that are putatively optimal.[47] Since each grating produces 
two Bragg peaks on opposite sides of the sphere, a point sym-
metric distribution is necessary. The arrangements used for this 
work were the icosahedral solutions to the covering problem 
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Figure 3. Normalized power emission P/P0 of a dipole placed inside a 
square-shaped 2D quasiperiodic structure. The L/a values specifying the 
side length of the structure are rounded to integer values. The structure 
size is varying from 91 to 227 lattices constants. The solid lines represent 
emission for TM excitation; the dashed line represents TE excitation. The 
structure has an RI contrast n1/n2 = 1.58/1.42 ≈ 1.11 and N = 16 underlying 
gratings. Inset: Semilogarithmic plot of the minima of the normalized TM 
power emission over the edge length. The black line is an exponential fit 
showing as a straight line in the semi-logarithmic plot.
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calculated in ref. [47]. For the results shown here the distribu-
tions of 92 and 162 points were used, corresponding to 46 and 
81 gratings, respectively. The former value corresponds to the 
optimum for the used RI values as calculated by Equation (5).  
The latter is slightly adjusted to a lower grating number in 
accordance with the deviations seen between the 2D theoretical 
model and the simulation results (Section S7, Supporting Infor-
mation). The point distributions are listed in Tables S1 and S2 
(Supporting Information).

The simulation of low-contrast 3D structures requires large 
simulation volumes, which quickly leads to unbearable com-
puting efforts. We have therefore limited our consideration 
to structures with relatively large RI contrasts of n1/n2 = 1.6/1 
and 1.38/1 with a maximum cube side length of 125 lattice 
constants. The simulation yields a clear gap in the emission 
spectrum of the dipole (see Figure 4). We did not observe an 
exponential decay of the emitted power over the side length L. 
Instead, based on extrapolation of the structure size, the emis-
sion suppression in both cases saturates at ≈ −10 dB relative to 
the low-frequency level. The normalized power emission P/P0 
at low frequency is different for the two structures due to dif-
ferent local dipole positions and orientations. These local prop-
erties do not change the relative suppression scaling with the 
size of the structure.

The theory predicts a CPBG, and thus an unlimited LDOS 
suppression, which is not seen in the 3D simulations. Appar-
ently in the presented 3D structure, some channels are still pre-
sent where energy propagates without evanescent decay. In the 
far-field emission pattern, we also observe some emission direc-
tions that are not predicted by the theory. The far-field results 
are presented in Section S8 (Supporting Information). These 
deviations could be due to several reasons: first, the chosen 
RI contrast might still be too large for the analytical approxi-
mation to be applicable. Second, the interaction between grat-
ings might not be negligible. A higher-order theory is required 
to take these effects into account. Third, it might also be that 
polarization effects are the limiting factor. According to the 
estimation, the polarization effects can close the PBG as the 
bandgap opening and the polarization splitting both scale with 

the square of the RI contrast in 3D structures (Equations (5) 
and (6)). The effect of polarization should be further studied by 
simulations using the scalar wave approximation and therefore 
eliminating the influence of polarization effects in the proposed 
structures.

6. Experimental Realization

The 3D structures were also realized and measured experimen-
tally in the microwave range. The structures were produced by 
3D printing of polylactide (PLA) plastic, which has a permit-
tivity of ≈ 2.54 (n ≈ 1.59) and nearly no losses (tan(δ) ≈ 10–2) in 
the microwave range.[48] The scaling of the structures was done 
such that the theoretically predicted CPBG lies at 40 GHz. For a 
mean refractive index of ≈ 1.3, the corresponding period of the 
structure is a = 2.825 mm. The relative size of the structure is 
about 50 × 50 × 25 lattice constants, and the underlying grating 
distribution is the same as in the simulation for 1.6 RI contrast. 
The printing procedure is described in Section S9 (Supporting 
Information). A photograph of the printed structure is shown 
in the inset in Figure 5A.

Transmission instead of emission was measured as in pre-
vious publications.[21,27,28] Emission measurements require an 
antenna to be placed inside the structure and a corresponding 
feed line. This is difficult to achieve without creating additional 
channels for emission. The transmissivity of the structure was 
measured in the solid angle range of ±30° in azimuth and eleva-
tion (corresponding to ≈ ±22° inside the structure, corrected for 
refraction) and a frequency range of 30–50 GHz (Section S10,  
Supporting Information).

Figure 5A shows an average transmission spectrum, where 
for each frequency point the transmission was averaged over 
the full angular range. By this we get a representative average 
over different crystallographic directions. The graph shows a 
clear edge at ≈ 38 GHz, which is close to the expected bandgap 
position. The transmission does not have a peak close to the 
transmission gap and does not recover at higher frequencies, 
which is different to the emission spectra. This is an important  

Adv. Optical Mater. 2022, 10, 2100785

Figure 4. Normalized emitted power spectrum of a dipole placed inside a 3D quasiperiodic structure based on an icosahedral distribution of the under-
lying gratings. A) For the simulation, an RI contrast of n1/n2 = 1.6/1 and a grating number of N = 46 were used. B) For the simulation, the contrast was 
1.38/1 and the grating number was 81. The structure size is varying from 50 to 125 lattice constants. The spectra are normalized to the dipole emission 
in a homogeneous medium with the mean refractive index, n̅ = 1.3 in panel (A) and 1.19 in panel (B). Insets: Semilogarithmic plot of the minima of the 
normalized power emission over the edge length.
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and expected difference between transmission and emission 
results. Emission is sensitive to the density of states in the 
structured material. It increases at the band edges due to slow 
light propagation and decreases in the bandgaps. Transmis-
sion is low in the bandgap, too, but in contrast to emission it 
is also low when the group velocity is small or when light is 
deflected by the structure. Thus, there is no peak at the lower 
and upper frequency band edges. On the high-frequency side 
of the bandgap, there is reflection due to higher-order bandgaps 
and reflection and deflection due to group velocity effects. This 
behavior can equivalently be observed in transmission simula-
tions (Section S11, Supporting Information).

The relative suppression at the bandgap frequency in emis-
sion simulations and transmission measurements is found 
by comparison to the corresponding values at lower frequen-
cies. From Figure  5A a transmission suppression of about 
−6 dB is seen at 41 GHz as compared to 30 GHz. In emission 
simulations, we expect a comparable suppression by taking a 
volume with a distance between the dipole and the boundary 
of the simulation volume, which equals the slab thickness in 
the transmission measurement. This is the case for the struc-
ture with L/a = 50 in Figure 4A. A comparable suppression of 
about −6 dB in the minimum is observed relative to the emis-
sion level at a normalized frequency of 0.46. The quasiperiodic 
structure constitutes an almost angle-independent low-pass 
filter for microwave radiation.

The residual angle dependence in the stop band can be traced 
back to the neighboring Bragg peaks (Figure  5B). The dashed 
black lines represent the Bragg condition of the several Bragg 
peaks close to normal direction. They fit the measured data very 
well for an assumed mean refractive index of 1.34. This is slightly 
above the expected value of ≈ 1.3. We assign this deviation to a 
slightly higher solid filling fraction of the structure caused by the 
model preparation during the 3D printing procedure.

The angle-resolved measurement also confirms the effec-
tive Bragg gratings underlying the seemingly disordered struc-
ture. When measuring the transmission at frequencies slightly 
below and above the CPBG range, it is expected that light is 
transmitted only in certain identifiable directions. At frequen-
cies slightly below the CPBG (below ωlow, see Figure 2B), trans-
mission in the Bragg grating directions (corresponding to the 
M-directions, see Figure 2A) is already blocked, while light can 
still propagate in the directions in between the Bragg peaks 
(K-directions). At frequencies slightly above the CPBG (above 
ωup) this behavior is inverted. In between the Bragg peaks, 
transmission should now be blocked, while in the grating direc-
tions no bandgap is available. This behavior is well visible in 
measurements at 39 and 40.5  GHz, respectively. The meas-
urement data in comparison to the Bragg peak positions are 
shown in Figure 6A,D. For frequencies inside the bandgap, the 
transition between these two cases can be seen (Figure 6B,C). 
The incidence angles displayed in Figure 6 were corrected for 
the refraction in the quasicrystal structure using the average 
refractive index.

7. Conclusion

We have proposed a distributed quasiperiodic structure with 
an efficient utilization of the RI contrast to block emission 
in all directions. In contrast to previous studies, an analytical 
model has been presented, which predicts optimum conditions 
for the maximum bandgap opening for both the 2D and the 
3D case. At these optimum conditions, a bandgap opening for 
an arbitrarily small RI contrast is expected. We have shown 
numerically that it is possible to obtain a 2D CPBG with an 
RI contrast as low as 1.11. This is the smallest RI contrast pro-
ducing a CPBG that was demonstrated so far. Even a typical RI 
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Figure 5. Transmission measurements over frequency. A) Transmission of the structure averaged over the full measured angular range of ±30°  in 
azimuth and elevation. A transmission suppression of about −6 dB is seen at the transition of around 40 GHz. Inset: Photography of the 3D-printed 
structure. B) Measured transmission at θ = 0 over frequency and φ. The φ values inside the structure are shown, corrected for refraction at the interface. 
The dashed black lines represent the Bragg condition of neighboring gratings for an assumed mean refractive index of n̅ = 1.34.
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contrast in the order of 1.1 between the ordinary and extraor-
dinary polarizations of a typical liquid crystal[49] would be suf-
ficient to open a CPBG.

In 3D simulation, we have demonstrated almost −10  dB 
suppression of emission at contrasts of 1.6 and 1.38 that 
could be realized with low-index materials such as polymers 
and glasses. This, by far, exceeds the suppression shown in 
previous works investigating 3D structures at similar con-
trasts.[50,51] Further adjustment of the theory might lead to the 
design of structures with even higher suppression. We have 
also manufactured the 3D structures by additive manufac-
turing with standard 3D-printing techniques and conducted 
transmission measurements in the microwave range. Thereby, 
we were able to confirm a strong and nearly direction-inde-
pendent transmission suppression at the expected CPBG 
position and verify the quasiperiodic nature of the investi-
gated structures. We envisage our approach to pave the way 
for further artificial low-index materials with unprecedented 
properties.
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Figure 6. Measured transmission for different angles inside the structure at frequencies A) 39 GHz, B) 39.5 GHz, C) 40 GHz, and D) 40.5 GHz, which 
is slightly A) below, B,C) inside, and D) slightly above the expected CPBG frequency range. The black circles show the expected Bragg peaks of the 
gratings underlying the measured structure. Angles inside the structure are shown, corrected for refraction at the interface.
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