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1  |  INTRODUC TION

Atlantic salmon Salmo salar L. and brown trout Salmo trutta fario 
L. are species of high socio-economic value related to human con-
sumption and recreational fisheries (Butler et al., 2009; Elliott, 1989; 
EUMOFA, 2019; Lobón-Cerviá, 2017; Pokki et al., 2018). They 
also play important ecological roles in the functioning of freshwa-
ter and marine ecosystems (Hastie & Cosgrove, 2001; Reimchen, 
2018; Taeubert & Geist, 2017; Willson & Halupka, 1995) and are 
considered indicator species in watercourse quality assessments 
and restoration (Pander & Geist, 2010; Pander et al., 2009; Soulsby 
et al., 2001; Vehanen et al., 2010a). Thus, the conservation and 

maintenance of sustainable populations of these species is of im-
portant economic and political interest.

Atlantic salmon and brown trout are representatives of the 
genus Salmo (Webb et al., 2007). Atlantic salmon is native to the 
North Atlantic area, and its indigenous distribution range in Europe 
extends from Iceland eastwards to the Baltic Sea and the Pechora 
river in the northwest of Russia, and southwards to the British Isles 
and the Douro river in northern Portugal (Figure 1; MacCrimmon & 
Grots, 1979). The species exhibits differing life strategies throughout 
its range in the North Atlantic. Depending on the degree of seaward 
migration, life strategies can be roughly classified as complete anad-
romous (Figure 2), incomplete anadromous and non-anadromous 
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(also referred to as landlocked), but uncertainties and variations with 
regard to aspects of the life cycle remain (Webb et al., 2007). The 
“classical” Salmo salar, which is the focus of this review, is the anadro-
mous form, living in the sea and migrating to its natal rivers to spawn. 
Juveniles spend up to five years in fresh water before migrating to 
sea to mature (Hutching & Jones, 1998). The time of spawning mi-
gration can vary between sexes and geographically with fish spend-
ing several winters at sea (multi-sea-winter fish) versus the so called 
grilse that only spend one winter at sea (Porter et al., 1986).

Brown trout is native to Europe with a distribution range that 
extends from Iceland eastwards to northern Scandinavia and Russia 
and southwards to the Atlas Mountains, the Ural Mountains and 
the Aral Sea basin (Figure 1; Jonsson & Jonsson, 2011; Williams & 
Aladin, 1991). Salmo trutta can be divided into several subspecies, 
morphotypes or ecophenotypes that can exhibit distinctive life his-
tories, particularly when it comes to migration directions and habi-
tat preferences of adults. Most commonly, the species is subdivided 
into Salmo trutta trutta (adults living in the sea and migrating to rivers 
for spawning), Salmo trutta lacustris (living in lakes and migrating to 
lake tributaries for spawning) and Salmo trutta fario (a resident form 
spending its whole life cycle in rivers with migrations to spawning 
grounds within the river system), which is the most common form and 
the focus of this review (Figures 2 and 3; Kottelat & Freyhof, 2007).

Atlantic salmon has experienced widespread population de-
clines and extirpations over the last century (Parrish et al., 1998). 
Throughout its range (stocks in 2359 rivers), 43% of Salmo salar 
populations are at risk, threatened or heavily declining (NASCO, 
2018, 2019). Only 14% of rivers have sustainable stocks, and no-
tably, 36% of rivers have no available data to assess stock status, 
some of which (particularly in Southern Europe) may be near extinc-
tion (NASCO, 2019). While the global IUCN conservation status of 
Atlantic salmon (least concern; last assessed 1996) is in need of an 
update (World Conservation Monitoring Centre, 1996), more recent 
assessments in Europe have classified Atlantic salmon as vulnera-
ble (Freyhof, 2014). Atlantic salmon is already considered extinct in 
Belgium, Netherlands, Germany, Czech Republic, Poland, Slovakia 
and Switzerland, and many populations have been lost from Ireland, 

Wales, Scotland, England, Iberian Peninsula, France, Denmark, 
Sweden, Norway and European Russia. Most recovery plans for 
Atlantic salmon have been running for more than 20 years and are 
still characterised by frequent stocking (ICES, 2019c; ICES, 2017a; 
Monnerjahn, 2011).

Brown trout (Salmo trutta fario) is classified “least concern” on 
the IUCN Red List in Europe (Freyhof, 2011). Decreasing population 
trends for Salmo trutta fario are reported from its southern distri-
bution range, for example Spain as vulnerable (Doadrio, 2001) and 
Andalusia as endangered (Ruíz & Rodríguez de los Santos, 2001), 
mostly due to climatic change. However, the intense and routine 
stocking of brown trout practised throughout Europe since the be-
ginning of the 20th Century may potentially be masking the real sta-
tus of natural populations (Bernaś & Wąs-Barcz, 2020).

As a result of their variable life-history strategies, the threats 
affecting the population status of Atlantic salmon and brown trout 
can also be diverse (Dudgeon, 2019), making selection of the most 
appropriate management and conservation measures complex. The 
basis for healthy, resilient and sustainable populations of brown 
trout and Atlantic salmon is already set during their critical early-
life stages (egg incubation, early development) in fresh water. The 
conditions for egg and larval development can strongly influence 
subsequent growth, survival and reproductive fitness (Russell et al., 
2012). This is a critical bottleneck for both resident freshwater and 
sea-migrating populations, since only healthy smolts are sufficiently 
robust to withstand the manifold threats that they encounter on 
their way to the sea, in estuaries and intertidal areas (Lauridsen 
et al., 2017), and within the marine environment. In these habitats, 
it is known that fish can be easily infected with fish diseases (e.g. 
complex gill diseases) and parasites (e.g. sea lice Gyrodacytlus sala-
ris) originating from salmon farming (Rosenberg, 2008) or escaped 
farmed salmon (Rozas-Serri, 2019). For more information on ma-
rine threats on salmon, see Parrish et al. (1998) and Forseth et al. 
(2017). Identifying the threats affecting the critical life stages of 
brown trout and Atlantic salmon during their early freshwater life 
stages can be hence seen as prerequisite to sustain healthy popula-
tions. In fresh water, local factors such as interruption of migration 

F I G U R E  1  Distribution range of brown trout (Salmo trutta fario) and Atlantic salmon (Salmo salar) in Europe
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F I G U R E  2  Common life cycles of Atlantic salmon and brown trout. Atlantic salmon life cycle includes the survival rates at different 
development stages and details on the required area during spawning and juvenile phase (numbers C. Wolter, pers. comm.)
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routes, habitat degradation and pollution are known to impair sus-
tainability of stocks or even cause local extinctions (Forseth et al., 
2017; Hoffmann, 1996; Jonsson & Jonsson, 2009; Lenders et al., 
2016; Wolter, 2014). While most of these threats act systemically, 
their mitigation mostly needs to be addressed locally (e.g. in rela-
tion to barriers to migration, water quality or habitat availability). 
This includes restoration measures such as the creation of spawning 
grounds and juvenile habitats or facilitating connectivity (Geist & 
Hawkins, 2016).

To address these threats effectively, it is important to under-
stand the mechanisms of how single factors and their interactions 
affect the respective life cycle stages and which mitigation mea-
sures are most effective (Geist, 2015). Due to their cultural and 
economic importance, the number of research programmes on 
the biology of Atlantic salmon and brown trout, and thus scien-
tific papers, has advanced dramatically over the years, calling for 
a systematic update on current knowledge and an assessment of 
past, present and emerging challenges related to the conservation 
of both species.

This paper aims to provide a comprehensive overview of the 
latest knowledge on: (i) the general autecological requirements of 
the critical life stages of Atlantic salmon and brown trout, namely 
spawning, egg incubation and emergence; (ii) the effects of deficient 
longitudinal connectivity, changes in discharge, high water tempera-
tures, oxygen depletion, changes in water chemistry and increasing 
loads of fine materials on those life stages; and (iii) important thresh-
olds of their physico-chemical tolerances. Based on the results of 
this review, historical, ongoing and new threats in freshwater are dis-
cussed, and implications for future conservation and management 
actions of both species in freshwater are proposed.

2  |  GENER AL HABITAT REQUIREMENTS

2.1  |  Water body connectivity

Biological connectivity relates to four dimensions in riverine eco-
systems: longitudinal, lateral, vertical and temporal (Ward, 1989). 
The linear connectivity or linear continuity of watercourses is par-
ticularly important for diadromous species like Atlantic salmon and 
sea trout (Aarestrup & Koed, 2003; Finstad et al., 2005). Migration 
between spawning areas/sites of hatching, juvenile habitats and the 
sea is crucial for the survival of these species and must be unhin-
dered. The ability to overcome an obstacle depends mainly on the 
type and height of the barrier, the tailwater depth, the body length 
of the fish, its behaviour and its life stage (Birnie-Gauvin et al., 2019; 
Kemp, 2012; Kemp & O’Hanley, 2010). For upstream movements, 
especially the tailwater depth (pool below the barrier) plays a critical 
role in enabling passage. All this information is also key for designing 
suitable mitigation (Kemp, 2012; O’Hanley, 2011; Silva et al., 2018; 
Venus et al., 2020). Ideally for adult fish, the tailwater depth should 
be 1.25 times the height of the species to allow passage (Stuart, 
1962). Atlantic salmon can jump up to 1.5 m and overcome higher 
obstacles than brown trout due to their larger size (Gerlier & Roche, 
1998). Furthermore, they have a higher swimming capacity (Peake 
et al., 1997). In steep riffles, water depths of twice to three times the 
body height are regarded as a minimum for successful passage for 
both species. Shorter distances (<2 m) can also be passed in water 
depths at body height (DWA, 2014; LfU, 2005).

Lateral connectivity, in turn, ensures a network between rivers 
and laterally located aquatic habitats such as nutrient-rich flood-
plains or backwaters, generally increasing the overall productivity of 
the riverine ecosystem (Opperman et al., 2017; Pander et al., 2018). 
This also increases the food availability for different fish species 
such as salmonids.

Vertical connection exists between the interstitial spaces, the 
riverbed, the groundwater and the open water. The hyporheic zone 
is a key habitat for successful egg and larval development of salmo-
nids (Malcolm et al., 2003a,b; Mueller et al., 2014; Sternecker et al., 
2013a,b). Eggs and yolk sac larvae find suitable hydraulic condi-
tions in the interstitial spaces, which offer them not only protection 
against predators and external influences, but also enables optimal 

F I G U R E  3  Size variation and overlap between and within 
different mature salmonid species which can co-occur in the same 
spawning habitat. Brown trout: 201–301 cm, 502 cm; lake and 
sea trout: 451–601 cm, 1302 cm; Atlantic salmon: 602–1002 cm, 
1502 cm. All sizes provided as standard length (SL). Sources: 
1Kottelat and Freyhof (2007); 2Gerstmeier and Romig (2003)
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oxygen supply and the disposal of toxic metabolites such as ammo-
nium (Brunke, 1999; Chapman, 1988; Crisp, 1993; Greig et al., 2007; 
Kondolf et al., 2008).

The temporal dimension represents the varying connectivity 
with time, for example high or low flow events during different sea-
sons (Ward, 1989). Atlantic salmon and brown trout, as with many 
other species, have developed and diversified species-specific 
life-history strategies to adapt to these temporal changes, for ex-
ample spawning in autumn or spring, migratory or resident species 
(Sternecker et al., 2014).

The required water body size between riverine ecosystems for a 
successful development of a fish population is difficult to measure. 
In general, the distance between essential habitats that need to be 
accessible during specific life stages, seasons or daytime as well as 
prey availability are seen as main factors in determining the home 
range and total distance covered by a species and can be highly vari-
able. During the spawning period, most salmonid species migrate 
upstream into their natal rivers.

The anadromous form of Atlantic salmon is considered a long-
distance migrator of up to 700  km (Cuinat & Bomassi, 1987). 
Migration distance generally depends on the life stage and season 
(e.g. rearing, feeding, overwintering, spawning migration). By con-
trast, non-anadromous freshwater-resident populations (mostly 
landlocked) or male parr can also mature in the absence of a sea-
ward migration (Hutchings et al., 2019). Such forms occur through-
out the distributional range of Atlantic salmon in North America 
(MacCrimmon & Gots, 1979; Power, 1958) and northern Europe 
(Berg, 1985; Davidsen et al., 2020; Kazakov, 1992; MacCrimmon & 
Gots, 1979). Some of these resident freshwater populations show 
deviant spawning behaviour such as spawning in lakes (Verspoor & 
Cole, 2005), or in lake inlets and outlets (Gibbins et al., 2002).

Brown trout can spawn in the main stems of a river system like 
Atlantic salmon, but generally prefer smaller streams (Crisp, 2000), 
often leading to spatial segregation of the two species (Geist et al., 
2006). The water bodies used by brown trout for spawning are usu-
ally about 3–5 m wide and about 50 cm deep, with a gradient of 
up to 5% (Crisp, 2000; Jonsson & Jonsson, 2011). Brown trout has 
also been observed in small tributaries with a width of less than 
1 m and an average annual discharge of 30–40 L/s during spawning 

(Geist et al., 2006; Jonsson et al., 2001). Landergren (2004) even 
found spawning sites in waters that periodically dry out, but only 
when juveniles could migrate to the main stem. Resident brown 
trout do not need a connection to the sea to fulfil their life cycle, in 
contrast to its ecophenotype, the sea trout. Sea trout spend their 
growth phase in coastal marine waters until they return to spawn 
in their natal river (ICES, 2013; Klemetsen et al., 2003; Thorstad 
et al., 2016). Another ecophenotype, the lake trout, typically mi-
grates from pre-Alpine lakes into tributaries for spawning (Denic 
& Geist, 2010; Klemetsen et al., 2003). Both types have similar re-
quirements for water body size and freshwater passability as the 
anadromous Atlantic salmon (Aarestrup & Koed, 2003; Finstad 
et al., 2005; Klemetsen et al., 2003). They can undertake extensive 
spawning migrations, which can exceed 100  km, or occasionally 
even >500 km, the same as recorded for sea trout (Klemetsen et al., 
2003; Thorstad et al., 2016). Resident brown trout usually under-
take smaller spawning migrations within a river or stream system, 
but if suitable spawning sites are missing in the immediate vicinity, 
spawning migrations can also reach up to 100 km (Jungwirth et al., 
2003; Olsson et al., 2006).

2.2  |  Discharge and water depth

Discharge and its dynamics are crucial for the reproduction of brown 
trout and Atlantic salmon in rivers and streams. For Atlantic salmon 
and sea trout, flow events have been described to stimulate the 
entry into their natal rivers, often coupled with other environmen-
tal factors (Banks, 1969; Clarke et al., 1991; Erkinaro et al., 1999; 
Jonsson, 1991; Jonsson et al., 2018; Smith et al., 1994; Svendsen 
et al., 2004; Thorstad et al., 1998). A rare exception to this observa-
tion is the study from Davidsen et al. (2013) conducted in Norway, 
which could not confirm that river entry of Atlantic salmon was fa-
cilitated by increased water discharge and/or ebb tide.

Atlantic salmon prefer to spawn in the main stream of rivers 
and large tributaries with an average annual discharge of >1  m3/s 
and a gradient of >3% (Bergheim & Hesthagen, 1990; Mills, 1989). 
Literature on the average runoff rates at spawning grounds of 
Atlantic salmon and brown trout was reviewed by Louhi et al. (2008). 

F I G U R E  4  Important features of Atlantic salmon and brown trout spawning grounds
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Discharge data from brown trout streams vary between <1.0 and 
350 m3/s, and data on salmon streams between 0.5 and 300m3/s 
depending on whether the fish spawn in small tributaries or in the 
main stream.

Water depth is crucial during migration and spawning, where the 
fish alternate between active swimming at various depths, spawn-
ing in rather shallow riffle stretches and resting in sheltered pools. 
Resting in a given pool can last up to 2–3 months (Webb, 1989). Low 
discharge may decrease the quantity and quality of important hab-
itat features. Spawning of Atlantic salmon and brown trout mainly 
occurs at water depths between 0.5 and 1 m (reviewed by Smialek 
et al., 2019), and resting pools should have a minimum depth of 
>0.9 m (Moreau & Moring, 1993).

3  |  SPAWNING AND RE ARING HABITAT 
REQUIREMENTS

The spawning and rearing habitat requirements of Atlantic salmon 
and brown trout overlap to a large extent (see reviews by Heggberget 
et al., 1988; Klemetsen et al., 2003; Smialek et al., 2019), so that 
spawning sites can overlap wherever both species occur together 
and suitable habitat exists.

Spawning of both species in central European latitudes takes 
place between November and January and local spawning events 
extend over two to three weeks (Armstrong et al., 2003; Crisp, 
1993). According to Heggberget et al. (1988), spawning in streams 
with sympatric populations is partly separated by timing. There, 
spawning season of brown trout starts earlier, with peak spawning 
occurring two weeks before that of Atlantic salmon (Crisp, 1993; 
Heggberget et al., 1988). Nevertheless, spawning time can vary 
locally and may overlap as evident from regular appearance of hy-
brids (Hartley, 1996; Matthews et al., 2000; Westley et al., 2011; 
Youngson et al., 1992).

Salmonids in general require spawning habitats with a gravel 
bottom and a high exchange between the open water and the in-
terstitial zone for successful reproduction (Kondolf, 2000; Malcolm 
et al., 2003a,b; Sternecker et al., 2013a,b). Thus, the spawning hab-
itats of Atlantic salmon and brown trout are typically characterised 
by a pool riffle sequence (Figure 4).

At the transition to shallow overflowing gravel riffle stretches, 
the females cut spawning redds into the riverbed (Figure 4). Before 
placing their eggs, females first use their anal fin to examine whether 
the current conditions are suitable (Crisp, 1993). Laying eggs and in-
semination by males occur at the same time. Thereby, successive fer-
tilisation by several males in both species is common (Serbezov et al., 
2010; Thompson et al., 1998). Genetic studies found that alternative 
mating strategies play a major role in Atlantic salmon populations but 
not in brown trout (Garcia-Vazquez et al., 2001). In Atlantic salmon, 
small, sexually mature males (precocious freshwater parr) can fertilise 
up to 40% of eggs with increasing success rate at decreasing abun-
dance of competitors (Thomaz et al., 1997). This alternative mating 
strategy in Atlantic salmon ensures that even if spawning occurs 

simultaneously with brown trout in sympatry, the offspring will pre-
dominantly be Atlantic salmon (Garcia-Vazquez et al., 2001).

After insemination, eggs are covered with gravel (gravel spawn-
ers, e.g. Crisp & Carling, 1989; Klemetsen et al., 2003; Louhi et al., 
2008; Ottaway et al., 1981). Salmonids are stage spawners, cutting 
several redds one after the other. On average, redds are 1–5 m2 in 
size (Barlaup et al., 2008; Pulg, 2009). Although a relationship ex-
ists between female length and redd size, with larger females pre-
paring larger redds (Heggberget et al., 1988; Ottaway et al., 1981), 
attribution of individual redds to species directly in the field is dif-
ficult (Dirksmeyer, 2008). The main reason is that the size ranges of 
Atlantic salmon and brown trout can overlap, that is smaller Atlantic 
salmon overlap in size with large brown trout (Figure 3). In this case, 
they may share spawning sites and create same redd sizes. This is 
further complicated when the spawning ground is also used by the 
other ecomorphs of Salmo trutta as they can become even larger and 
overlap even more with Atlantic salmon in size (Figure 3). In addi-
tion, factors like flow velocity, sediment density and redd superim-
position can also influence the size of the redds (Dirksmeyer, 2008). 
Therefore, only the direct identification of spawners, a genetic anal-
ysis of deposited eggs, or hatched larvae allow clear species assign-
ment in case of sympatric occurrence (Gross et al., 1996).

Brown trout lay their eggs at depths of approx. 8–25 cm, whereas 
Atlantic salmon tend to lay their eggs deeper at 15–30 cm (Crisp, 
2000). In contrast to the large quantities of small eggs released by 
gravel-spawning cyprinids (e.g. Chondrostoma nasus (L.); Duerregger 
et al., 2018; Nagel et al., 2020), salmonids release small quantities 
(on average 1600–1800 eggs/kg female) of large eggs (brown trout 
approx. Ø  5  mm; Atlantic salmon approx. Ø  6–9  mm) (Aulstad & 
Gjedrem, 1973; Bardonnet & Baglinière, 2000; Randak et al., 2006; 
Thorpe et al., 1984).

On average, salmon eggs need more time to hatch than brown 
trout under the same conditions (Crisp, 1993). The development 
time of brown trout and Atlantic salmon from egg to hatching de-
pends on the average ambient temperature. Brown trout eggs hatch 
after 1.5–5  months or 410–456  degree days, and Atlantic salmon 
eggs after 383–545 degree days (Kottelat & Freyhof, 2007; Smialek 
et al., 2019).

The larvae stay in the interstitial spaces until their yolk sac is 
nearly absorbed. This process is dependent on the ambient water 
temperature and the size of the individual (Einum & Fleming, 2000; 
Ojanguren & Braña, 2003). Afterwards, they emerge simultane-
ously at night from the gravel and drift into shallower water areas 
with moderate current velocities where they spend their juvenile 
phase and change to exogenous feeding (Bardonnet et al., 1993; 
McCormick et al., 1998).

3.1  |  Water temperature

For cold-stenothermic species such as salmonids, the temperature 
not only determines the spawning time (Klemetsen et al., 2003; 
Sternecker et al., 2014), but also has a direct effect on the survival 



    |  443SMIALEK et al.

TA B L E  1  Literature overview on the optimum, lower critical range (LCR), upper critical range (UCR) and lethal limit of temperature for 
three critical life stages of Atlantic salmon (AS) and brown trout (BT)

Stage Species

Temperature (°C)

ReferenceOptimum LCR UCR Lethal limit

Spawners AS 6–8* Vernidub (1963) cited in EIFAC (1969)

Spawners AS >21 EIFAC (1969)

Spawners AS 1–6* Reviewed by Alabaster and Lloyd (1982)

Spawners AS 6–10* Piper et al. (1982)

Spawners AS 10–17 Piper et al. (1982)

Spawners AS 0–7 22–33 <0 or >27.8 Reviewed by Elliott (1994)

Spawners AS 27–28 Garside (1973)

Spawners AS 9–17 Mantelman (1958) cited by EIFAC (1969)

Spawners AS 6–20 20–34 Elliott (1981)

Spawners AS 0–8* Elliott (1981)

Spawners AS 13–15 Nikiforov (1953) cited in EIFAC (1969)

Spawners AS 16–17 <7 22 25–28 Crisp (1993)

Spawners BT 1–2* Vernidub (1963) cited in EIFAC (1969)

Spawners BT >21 EIFAC (1969)

Spawners BT 4–19 0–4 19–25 23–30 Elliott (1981)

Spawners BT 1–10* Elliott (1981)

Spawners BT 2–6* reviewed by Alabaster and Lloyd (1982)

Spawners BT 9–13* Piper et al. (1982)

Spawners BT 9–16 Piper et al. (1982)

Spawners BT 7–9* Mansell (1966) cited in Raleigh et al. (1986)

Spawners BT 7–13* 25 Hunter (1973)

Spawners BT 0–4 19–30 <0 or >24.7 Reviewed by Elliott (1994)

Spawners BT 13–14 <4 19 21–25 Crisp (1993)

Eggs AS <0 or >16 Elliott (1981)

Eggsinc AS 4–11 <12 Poxton (1991)

Eggs AS 4–12 Crisp (1993)

Eggsinc AS 16 Ojanguren et al. (1999)

Eggs BT <0 or >13 Elliott (1981)

Eggs BT 7 12–13 Jungwirth and Winkler (1984)

Eggs BT 0–10 Crisp (1993)

Eggsinc BT 12 15.5 Crisp (1993)

Eggsinc BT 2–13 <0 >15 Raleigh et al. (1986)

Eggsinc BT 8–10 14–16 16–18 Ojanguren and Braña (2003)

Larvae AS 4–12 Crisp (1993)

Larvae AS 22 Ojanguren et al. (1999)

Larvae BT >22 Hunter (1973)

Larave BT 0–10 Crisp (1993)

Fry BT >25.46 Spaas (1960) cited in Raleigh et al. (1984)

Fry BT 6.7–12.8 <4.5 Markus (1962) cited in Raleigh et al. (1984)

Fry BT 7–15 Brown (1973) cited in Raleigh et al. (1984)

Note: Optimum for spawners divides into “preferred” temperature, which is the value fish choose freely when moving within a thermal gradient, and 
temperature range at spawning, marked with a “*”.
Abbreviation: Eggsinc, eggs incubating.
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and development of eggs, juveniles and adults (Crisp, 1993; Crisp, 
1996). The metabolic rate, growth or oxygen supply, as well as many 
other vital physiological processes, depend on the ambient tempera-
ture. Temperature and the ionic environment, among other factors, 
are particularly important for the duration and quality of egg mat-
uration and thus, for the reproductive success of salmonids (Atse 
et al., 2002; Jobling, 1997). In addition, sexual maturity and fertil-
ity are also influenced by temperature (Jonsson & Jonsson, 2009). A 
general literature overview on thermal limits for salmon and brown 
trout during their critical life stages is given in Table 1. The optimum 
temperature range for Atlantic salmon spans from 7–20℃ (Table 1), 
within which maximal growth occurs at 16–17℃ (Jensen et al., 1989). 
The optimum range for brown trout is 4–19℃ (Table 1).

The development of eggs and larvae in brown trout and Atlantic 
salmon occurs in winter. Low temperatures ensure a high solubility 
of oxygen in the water and thus, an optimal supply for the brood 
(Crisp, 1993). The early-life stages are more sensitive to temperature 
fluctuations and high temperatures than emergent larvae and adult 
fish as temperature tolerance increases with fish age (Elliott & Elliott, 
2010; Hayes, 1949; Rombough, 1988). During winter, temperature 
in the redds is often several degrees higher than in the open water 

(Witzel & MacCrimmon, 1983). However, this can be strongly de-
pendent on interstitial water exchange or possible groundwater 
upwelling at the spawning site (Kondolf & Wolman, 1993; Malcolm 
et al., 2003a). For example, Clark (1998) found a vertical temperature 
gradient of −3.7℃/m in the river bottom. For brown trout, tempera-
tures between 0 and 10℃ are considered ideal for egg and larval de-
velopment at a survival rate of 95% (Crisp, 1993). According to Crisp 
(1993), the optimal temperature range for salmon is very similar, but 
slightly higher at 4–12℃ (>95% survival rate) (Crisp, 1993; Jensen 
et al., 1989; Smialek et al., 2019; Table 1).

3.2  |  Oxygen saturation

Salmonids are highly dependent on a sufficient oxygen supply for 
successful egg and larval development (Chapman, 1988; Eklöv 
et al., 1999). Minimum required oxygen demands of the early-life 
stages can vary widely, depending on which endpoint is considered. 
According to Rubin and Glimsäter (1996), a minimum of 10  mg/L 
should be available to achieve >50% egg-to-fry survival. However, 
most authors agree that the eggs of brown trout and salmon can 

TA B L E  2  Literature overview on the optimum, lower critical limit (LCL) and lethal limit of oxygen levels for three critical life stages of 
Atlantic salmon (AS), brown trout (BT) and reported for both species (both)

Stage Species

Oxygen (mg/L)

Additional information ReferenceOptimum LCL
Lethal 
limit

Spawners AS <6.5 Johansson et al. (2006)

Spawners BT ≥9 <3 ≥10℃ Raleigh et al. (1986)

Spawners BT <4.5 20℃ Hunter (1973)

Spawners both >9 7 EU (1978)

Eggsinc AS <5 Gibson (1993)

Eggsinc BT 10 <10 <9 Egg-to-fry survival Rubin and Glimsäter (1996)

Eggsinc BT <2.7 At 5 cm depth; 43% 
hatching success

Sternecker et al. (2013a)

Eggsinc BT >6.9 Ingendahl (2001)

Eggsinc both <5 Everest et al. (1987)

Eggsinc both >7 Crisp (1996)

Eggsinc both >7 <12.5℃ Crisp (2000)

Eggsinc both <5 Crisp (1993)

Eggsinc AS <6 Lacroix (1985a)

Embryos AS <3.7 5℃, 77 days, LC50
Hamor and Garside (1976)

Embryos AS <3.9 10℃, 43 days, LC50
Hamor and Garside (1976)

Fry AS > 8 80% to 100% saturation Liao & Mayo (1972)

Embryos BT 7–10 at hatching Louhi et al. (2008)

Fry BT >7 <3 <15℃ Raleigh et al. (1984)

Fry BT >9 <5 >15℃ Raleigh et al. (1984)

Fry both <3 15℃ Bishai, 1962

Abbreviation: Eggsinc, eggs incubating.
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tolerate oxygen concentrations as low as 5 mg/L, at least for a short 
time (Crisp, 1993; Niepagenkemper et al., 2003). Generally, 7.0 mg/L 
oxygen at an incubation temperature of 12.5℃ and a flow veloc-
ity of >100  cm/h (Crisp, 1996; Ingendahl, 2001; Sternecker et al., 
2013a) are recommended for a successful development. The oxy-
gen demand during egg development depends on the development 
stage, size, carotene content and blood vessel density of the embryo 
(Hayes et al., 1951; Ingendahl, 1999; Rubin & Glimsäter, 1996). An 
overview of the different literature values on oxygen demands dur-
ing different stages of development is presented in Table 2. In gen-
eral, the oxygen demand is highest shortly before hatching is highest 
(Crisp, 1993).

3.3  |  pH effects

Brown trout and Atlantic salmon occur in silicate and carbonate 
waters with pH values varying between 7 and 8.5. Maximum fish 
productivity is expected at pH values between 6.5 and 8.5, and the 
safe range of 6–9 proposed by ORSANCO (1955) has found world-
wide acceptance in national recommended water quality criteria for 
aquatic life (EPA, 2019; EU, 2006). The pH furthermore determines 
the solubility of ammonia or aluminium, which in high concentra-
tions can be toxic to aquatic organisms (Crisp, 1993; Finn, 2007; 
Gensemer & Playle, 1999; Wauer et al., 2004).

Ammonium (NH4
+) in aqueous solution is in equilibrium with 

free ammonia (NH3). Rising pH values and temperatures shift the 
equilibrium towards ammonia. For salmonids, a general guide value 
of <0.03 mg/L for ammonium and <0.004 mg/L for ammonia (EU, 
1978; Directive 78/659/EEC) applies. Various other references place 
the recommended threshold values for ammonia between 0.015 and 
0.001 mg/L (IWB & IDUS, 2012).

Aluminium can be dissolved and mobilised from terrestrial soils, 
river sediments or mining at pH values below 4.5 (Eriksson, 1981; 
Forseth et al., 2017). High concentrations of aluminium in fresh water 
often occur after heavy rainfall or during snow melting (Henriksen 
et al., 1984). A pH value < 6 and total aluminium concentrations of 
>0.1 mg/L are mentioned as critical for the vitality and reproduction 
of fish in weakly mineralised waters (Lenhart & Steinberg, 1984).

3.4  |  Substrate composition

Brown trout and Atlantic salmon favour similar substrate composi-
tions for spawning, egg and larval development (Louhi et al., 2008; 
Ottaway et al., 1981; Walker & Bayliss, 2007). The average grain size 
at the spawning grounds of brown trout and Atlantic salmon is about 
10% of their body length (Kondolf & Wolman, 1993). The formula 
provided by Crisp (1993) can be used to determine the maximum 
average grain size in which a female can still spawn, where P is the 
median grain size in mm and L the fish length in cm:

Crisp (1993) generally referred to a high tolerance to different 
substrate compositions and reported 20–30 mm average grain size 
as particularly suitable for brown trout and Atlantic salmon. In con-
trast, Louhi et al. (2008) reported an average use of grain sizes of 
16–64 mm taking most available literature values into account. The 
values are understood to apply equally to both species, but with a 
distinction between large (>  10  m3/s) and small rivers (<10  m3/s) 
where in the latter the salmon show a slight preference for larger 
substrates of 32–128 mm.

Another important characteristic determined by substrate com-
position is the storage density. To enable successful egg develop-
ment, the interstitial pore spaces must be large enough to provide 
sufficient space for the eggs and later the hatched larvae to be sup-
plied with fresh water. On the other hand, the spaces should be small 
enough to fix the eggs for undisturbed incubation. Optimum storage 
densities for successful egg and larval development are achieved 
with grain size fractions of 16–32 mm (Pulg et al., 2013; Sternecker 
& Geist, 2010) with less than 5% fines (particles <4 mm in diameter; 
Raleigh et al., 1986).

4  |  THRE ATS TO ATL ANTIC SALMON AND 
BROWN TROUT

4.1  |  Lack of longitudinal connectivity

To date, many efforts have been made to restore river connectiv-
ity, for example in the context of the targets set by the EU Water 
Framework Directive (WFD; EU, 2000). However, Grill et al. (2019) 
demonstrated that out of 29,688 European rivers, 60% are still con-
sidered non free flowing (considering rivers >10 km). Further, consid-
ering only rivers connected to the sea (n=3726), 15% are considered 
non free flowing. Grill et al. (2019) argued that the percentage of 
disconnected rivers may be even higher as small dams are often not 
reported in the global river impoundment datasets. This would be 
in line with Belletti et al. (2020) who described that more than one 
billion barriers fragment European rivers.

The interruption of longitudinal connectivity through transverse 
structures (e.g. weirs, power plants and culverts) or consumptive 
water use can cause (i) interruption or prevention of movement and 
migration of aquatic organisms and (ii) habitat change or degrada-
tion. The consequences are manifold (Benejam et al., 2016). The lack 
of access to adequate spawning grounds can have a negative impact 
on the reproductive success and the stability of populations (Gosset 
et al., 2006; Johnsen et al., 2011). Lack of genetic exchange due to 
spatial separation may lead to genetic impoverishment of popula-
tions and limited adaptability to environmental stress (Bijlsma & 
Loeschcke, 2012; Klütsch et al., 2019). A high risk of being injured or 
dying is present during downstream passage as fish enter turbines, 
bypass devises, trash racks, spill or trash gates or after passage of 
overflowed weirs (e.g. Rytwinski et al., 2017 for review; Mueller 
et al., 2017; Bierschenk et al., 2018; Knott et al., 2019; Pflugrath 
et al., 2019; Geist, 2021).P = L × 0.5 + 4.6
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In addition, there can be cumulative effects in waters with a 
number of transverse structures that need to be passed (Gowans 
et al., 2003; Peter, 1998). Further, obstacles, interrupted flow pat-
terns in rivers or turbine passage may disorient migrating fish, and 
thereby delay migration and increase the risk of predation (Baisez 
et al., 2011; Jepsen et al., 1998; Poe et al., 1991). A delay in migra-
tion is often associated with exhaustion due to prolonged search 
times for suitable migration routes, which could negatively affect 
reproductive success (Caudill et al., 2007; Hinch & Bratty, 2000; 
McLaughlin et al., 2013). Furthermore, temporal mismatch situations 
can occur in the time of larval development, where suitable habi-
tat conditions do not match the time of larval occurrence (Cushing, 
1975; Cushing, 1990). Hence, interrupted migration routes can lead 
to a severe thinning of the migrating populations in the long term 
(Aarestrup & Koed, 2003; Lundqvist et al., 2008), with the risk of 
depressing them below the minimum viable size (Courchamp et al., 
2008). However, it has to be noted that not all migration barriers 
are of anthropogenic origin. The reintroduction of, for example, 
Canadian and European beavers, which are known to build wooden 
dams into small- to medium-sized rivers, cause local conflicts with 
management actions to restore fish migration and habitat, particu-
larly spawning grounds (Gaywood, 2018). Negative effects of river 
fragmentation on movements of fish were already recognised in 
the mid-18th century when the first fish pass in northern Europe 
was built (Birnie-Gauvin et al., 2019; Johnsen et al., 2011). Today, 
it is well-known that mitigation measures need to be adjusted to 
site-specific conditions and species-specific requirements to be 
functional. Practically, most equations on how to build suitable fish 
passes exist for salmonids (Birnie-Gauvin et al., 2019; Noonan et al., 
2012). Fish passage efficiency reviewed from articles from 1960 to 
2011 by Noonan et al. (2012) revealed that on average salmonid pas-
sage success was 61.7% for upstream and 74.6% for downstream 
movement. Best predictors for passage efficiency included type of 
fish pass and its length. Birnie-Gauvin et al. (2019) argued that low 
efficiencies resulted from trying to “fit fish into equations” whereby 
essential factors such as natural variations on species and ecosys-
tem level are not considered. Further, effective monitoring is seldom 
standard procedure, and thus, restrictions in connectivity are often 
overlooked.

van Puijenbroek et al. (2019) found that viable populations of 
Atlantic salmon occurred mainly in rivers that were at least 85% ac-
cessible. In rivers where the population was extinct or restocking 
of juvenile salmon was practised, accessibility averaged only 25%. 
Restocking of Atlantic salmon in European rivers often occurs in 
high numbers and repeatedly over several years (HELCOM, 2011; 
ICPR, 2015; Wolter, 2014). However, van Puijenbroek et al. (2019) 
pointed out that reintroduction of the species has happened in in-
accessible rivers and thus was insufficient as a measure on its own 
to re-establish a viable population. Indeed, facilitating longitudinal 
connectivity will not have any long-term effects, unless all essen-
tial requirements for the different life stages are taken into account, 
for example appropriate habitats for spawning, rearing and foraging 

(Bond & Lake, 2003; Dynesius & Nilsson, 1994; Pander & Geist, 
2013; Poff et al., 1997; Ward & Wiens, 2001).

Habitat degradation can lead to increased competition for 
the limited resources, for example high-quality spawning sites 
(Essington et al., 1998; Gortázar et al., 2012). Possible consequences 
of a competition for spawning ground are overlapping redds, washed 
out or destroyed eggs by overcutting of redds by other conspecifics 
or competitors from the sister species, which can result in high re-
productive losses (Bardonnet & Baglinière, 2000; Rubin & Glimsäter, 
1996).

At which point spawning site capacity is reached depends on dif-
ferent factors such as number of females ready to spawn and the 
quality of the location. However, it is possible to outline the approxi-
mate space or habitat capacity required using the following formula:

Asp is the required spawning site space, Nt is the number of eggs 
to reach the desired target of returning spawners, Nn is the number 
of eggs per nest, Anest is the area of one nest and α is a factor consid-
ering the distance between nests, and nests and shore.

If, for example, 10,000 returnees from an Atlantic salmon popu-
lation are considered as the desired target, the number of eggs orig-
inally laid at the spawning site would be approximately 10,822,511 
(Nt) (see Figure 2). Taking a conservative approach by assuming a 
redd size of 4 m2 (Anest) and 500 eggs (Nn) per redd and a space fac-
tor  =  5, the resulting redd area would be 432,900  m2 containing 
10,822,511 eggs (C. Wolter, pers. comm.).

4.2  |  Discharge change

The increase in managed flows and water levels in freshwater sys-
tems (e.g. to optimise hydropower production) can impair the highly 
adapted strategies of fish species to natural occurring flow regimes. 
A threat from changes in runoff dynamics usually prevails wherever 
most of the natural runoff is used for hydropower, industry, irriga-
tion or fish hatcheries (Bunn & Arthington, 2002; Forseth et al., 
2017; Haag et al., 2010; Nilsson et al., 2005). The runoff in a diver-
sion channel of hydropower plants can be greatly reduced, especially 
during dry periods, as a higher proportion of water is guided to the 
turbine. Limited water in the diversion channel can negatively af-
fect certain key habitats such as overwintering habitats and spawn-
ing grounds and, in addition, reduce the ability to migrate through 
the channel (Crisp, 1993; LfU, 2005; Webb et al., 2001). Both, rapid 
increasing or decreasing water discharge, for example in response 
to the power demand (hydropeaking), can have detrimental conse-
quences for fish populations and communities, especially if the river 
shows a low level of heterogeneity where transition into alternative 
habitats is not possible (Boavida et al., 2015; Harby & Noack, 2013; 
Lobón-Cerviá & Rincón, 2004; Schmutz et al., 2015). For less mobile 

Asp =
Nt

Nn

× Anest × �
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life stages, such as eggs and larvae, a rapid decrease in water poses 
the risk of stranding (Casas-Mulet et al., 2015; Saltveit et al., 2001).

Successful spawning migration and spawning can be impaired if 
water levels are lower than the fish body height and if flow or hy-
draulic conditions over barriers (natural or artificial) are not optimal. 
Flow events, which are considered to trigger migration behaviour of 
Atlantic salmon (Clarke et al., 1991), may not take place during low 
discharge. Without this initiation, river entry will be delayed or even 
prevented (Solomon & Sambrook, 2004; Tetzlaff et al., 2008). The 
migration itself may lead to a faster exhaustion or higher risk of pre-
dation (Quinn & Buck, 2001) as shallow areas need to be overcome 
and access to resting pools may be strongly limited. At the spawning 
site, the fish are very unlikely to spawn if the water depth and flow 
velocity are insufficient (Louhi et al., 2008; Webb et al., 2001). In 
addition, the washing out of fine material during redd cutting and the 
successful insemination of the eggs and their deposition into the in-
terstitial zone can be impaired if the water levels and flow velocities 
are too low. There is furthermore a higher risk of desiccation of the 
spawning sites during the period of egg incubation, which can result 
in recruitment failure (Casas-Mulet et al., 2015; Saltveit & Brabrand, 
2013). Other risks posed on eggs and larvae include the insufficient 
vertical exchange between the hyporheic zone and open water, 
which may lead to lower oxygen contents and accumulation of toxic 
metabolites. Parry et al. (2018) investigated the impact of flow on the 
overall distribution and density of redds along a river and found that 
under low flow conditions redds tended to be more aggregated in 
the middle river reaches. On the one hand, this may minimise the risk 
of desiccation or insufficient oxygen supply, but on the other hand, 
it can result in a highly competitive environment for the emerging 
fry (Jonsson et al., 1998). Wedekind and Mueller (2005) found that 
brown trout hatched earlier when there was an increased risk of des-
iccation. This behaviour could be beneficial as the larvae can move 
away from the risk of drying out, freezing, predation or being dam-
aged by UV radiation (Battini et al., 2000; Crisp, 1993; Kouwenberg 
et al., 1999). Flow dynamics can also affect the timing and success of 
emergence, with potential consequences for population dynamics of 
0+ juveniles (Bergerot & Cattanéo, 2017), if, for example, emerged 
fry do not reach suitable rearing habitats or are predated on.

Conversely, strong runoff peaks (flooding or reservoir flush-
ing) may expose spawning sites to increased erosion (Barlaup et al., 
2008; Crisp, 1989). Discharge peaks can lead to the seasonal un-
availability of these habitats, particularly in isolated spawning 
grounds. If, in addition, these areas have only very limited fish pass-
ability such as spawning sites in the headwaters of dams, which can 
naturally be affected by reservoir flushing and short-term strong 
runoff fluctuations, entire generations may be absent from the pop-
ulation structure. This may ultimately contribute to the instability 
of the overall population. Such runoff fluctuations also pose a high 
risk to incubated eggs such as redd stranding. Barlaup et al. (1994) 
reviewed a 100-year data series on stranded Atlantic salmon and 
brown trout redds and found a relationship between the high pro-
portions of stranded redds (23%) and the random occurrence of low 
water discharge rates at high frequencies (27% of the year). Further, 

strong runoff peaks can lead to a destabilisation and mobilisation of 
substrate and thus flush eggs or larvae out of the interstitial zone 
or mechanically damage them by moving material between them 
(Crisp, 1989; Crisp, 1993; Elliott, 1976; Mills, 1971). Immediately 
after deposition, the eggs of brown trout and Atlantic salmon are 
very sensitive to physical shock (Crisp, 1990): drifting over a distance 
of 10 m can lead to a mortality rate of 50% (Crisp, 1990). Sensitivity 
gradually decreases after the eyed stage. When eggs and larvae are 
washed out, they can either become easy prey for predators or may 
reach unsuitable sites for further development (Crisp, 1990).

4.3  |  High water temperatures

In small- and medium-sized watercourses, increased or critical water 
temperatures may occur due to discharges of domestic and indus-
trial waste waters (Cairns, 1970; Kinouchi et al., 2007). Another fac-
tor that can lead to higher water temperatures is global warming. 
Rising water temperatures can affect fish at all levels of biological 
organisation through either direct or indirect changes in physiologi-
cal and ecological processes (Graham & Harrod, 2009). In view of 
ongoing climate changes, Jonsson and Jonsson (2009) expected that 
the thermal niche of cold adapted species, such as brown trout and 
Atlantic salmon, will result in a shift in distribution further to the 
north and that species in the southern part of their distributional 
areas are likely to go extinct (Ellender et al., 2016). In Europe, this 
means the disappearance of these species from Portugal and Spain 
and their spread north and east along the north coast of the Russian 
continent (Jonsson & Jonsson, 2009). However, a growth model sce-
nario for brown trout under possible future climate conditions by 
Elliott and Elliott (2010) revealed negative effects on trout growth 
would not be experienced until a water temperature increase of 4℃ 
in winter/spring and 3℃ in summer/autumn is reached. This study 
further suggested that small increases of temperatures in winter and 
spring can lead to an increase in mean-mass of pre-smolts and be 
beneficial for smolt growth. Larger smolts are considered more re-
silient and, according to Gregory et al. (2019), have a higher chance 
of return to their natal rivers after maturation at sea. By contrast, 
faster growth can also result in seaward-migrating younger and thus 
smaller smolts, as has been observed over recent decades, which is 
expected to result in higher marine mortality (Russell et al., 2012).

Since both species are winter spawners, an increase in water tem-
perature can lead to a delayed spawning migration. Further, more ex-
treme weather events are expected, which will cause large fluctuations 
in runoff rates, making river accessibility and spawning migration more 
difficult (Harrod et al., 2009; Jonsson & Jonsson, 2009). In addition, 
sexual maturity and fertility of Atlantic salmon and brown trout de-
crease with rising temperatures (Jonsson & Jonsson, 2009). Significant 
reduced fertility (<70% and 45%, respectively) and survival (40% and 
13%, respectively) of ova were observed from fish exposed to 22℃ for 
4 and 12 weeks (King et al., 2003, 2007; Pankhurst et al., 2011).

Crisp (1993) reported that during egg incubation at tempera-
tures above 12℃, 50% of the eggs die and that no eggs survive 
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at temperatures above 15.5℃. Similar findings were reported by 
Ojanguren et al. (1999) where 16℃ was established as the thermal 
limit for pre-hatching stages and 22℃ for hatched larvae. Moreover, 
high water temperatures can lead to premature consumption of the 
yolk sac (Ojanguren et al., 1999). Further, the transition of the larvae 
from endogenous to exogenous food intake may not coincide with 
the time of occurrence of the prey (mismatch), and the larvae would 
not find suitable food after emergence and could starve (Arevalo 
et al., 2018; Cushing, 1990).

In addition, temperature, together with salinity, determines the 
physical properties of water, the amount of dissolved oxygen, the 
crystalline structure of various substances and the solubility proper-
ties of water. This in turn can influence the biochemical and toxico-
logical effects of dissolved gases, solids, antibiotics and xenobiotics 
with probably negative consequences for the development of sal-
monids (Arias et al., 2002; Cousins & Jensen, 1994; Honkanen et al., 
2001; Oppen-Berntsen et al., 1990).

4.4  |  Lack of oxygen

Oxygen deficiency can be caused by various factors, including 
oxygen-depleting microbial processes and algae blooms as a result 
of eutrophication and excessive temperatures, low discharge and 
clogged pores in the hyporheic zone. As the solubility of oxygen is 
directly related to the ambient water temperature, the concentra-
tion decreases when the temperature rises. At an air saturation in 
water of 80% and a water temperature of 5℃, approx. 10 mg/L of 
oxygen is dissolved in water. At 20℃, there is only 7  mg/L oxy-
gen (Crisp, 1993). Hypoxic conditions (<7 mg/L dissolved oxygen) 
can cause die-off events of spawning salmonid species if high fish 
densities and low stream flows occur simultaneously, even in rivers 
with cold thermal regimes (Sergeant et al., 2017; Tillotson & Quinn, 
2017).

The oxygen concentration in the hyporheic interstitial depends 
strongly on temperature, flow velocity, permeability of the sediment 
and consumption by organic processes. Embryo mortality can also 
occur by dominant ascending hypoxic groundwater (Malcolm et al., 
2008). Long-term hypoxia (<3.7 mg/L oxygen) can lead to egg death 
or significant delays in development and thus to malformations and 
metabolic disorders (Hamor & Garside, 1976). Larvae are less prone 
to oxygen deficiency than eggs, as they are mobile and able to relo-
cate to oxygen-rich areas (Crisp, 1993) or adjust their breathing fre-
quency (Quinn, 2005). However, premature hatching of larvae may 
occur (Czerkies et al., 2001).

4.5  |  Extreme values in pH, 
aluminium and ammonium

Aquatic ecosystems can become acidified through natural processes 
in the bio- and geosphere (e.g. volcanism or natural pyrite oxidation) 
as well as through anthropogenic sources (atmospheric deposition 

of acidity “acid rain” or pyrite oxidation from mining, agriculture and 
forestry) (Cresser & Edwards, 1987; Geller & Schultze, 2009). Spring 
floods, heavy rainfall events or snow melting can further promote 
acid discharges into water bodies (Serrano et al., 2008). Areas that 
are prone to water acidification due to their low buffer capacity 
include siliceous, low calcareous aquatic systems, which are often 
populated by Atlantic salmon and brown trout.

Extreme pH values below 6 or above 9 are particularly harmful 
as they can mobilise or activate other toxic substances (Crisp, 1993; 
Finn, 2007; Gensemer & Playle, 1999; Wauer et al., 2004). Both, am-
monia in combination with high pH values, and dissolved aluminium 
in combination with low pH values, are particularly toxic to salmo-
nids and other fish (Gensemer & Playle, 1999; Havas & Rosseland, 
1995; Henriksen et al., 1984; Parkhurst et al., 1990; Wood & 
McDonald, 1987). The optimum pH range for adult brown trout and 
Atlantic salmon is between pH 6 and 9 (Table 3). Lethal limits are 
reached below pH 5 for all life stages. However, eggs, alevins and fry 
of Atlantic salmon and brown trout are considered more susceptible 
to the negative effects of low pH than adult fish (Jensen & Snekvik, 
1972). The uptake of high H+ levels disturb the ion-regulation in 
transcellular processes with its key toxic mechanisms occurring on 
the gills. It hinders the active uptake of sodium and stimulates efflux 
leading to an excessive production of mucus. (Leivestad & Muniz, 
1976) and net losses of important electrolytes such as Na+ and Cl− 
through the gills (Booth et al., 1988; Weatherley et al., 1989). The 
intracellular accumulation of aluminium affects transcellular pro-
cesses, alters the carrier properties of the gill epithelium and re-
duces gill diffusion capacity causing respiratory distress (Exley et al., 
1991; Havas & Rosseland, 1995). Increased aluminium uptake can 
thus lead to an imbalance in the body's metabolism (water–mineral 
and acid–base balance) and/or to suffocation (Wauer et al., 2004).

Both field and laboratory studies showed that a change in pH, 
especially in the early-life stages of salmonids, lead to high mor-
tality rates (Grande et al., 1978; Schofield, 1976; Sternecker et al., 
2013a,b). At pH values above 9, the egg stages of salmonids die be-
fore hatching (Crisp, 1993). The lower limit is 4.5 for Atlantic salmon, 
brown trout and lake trout (Crisp, 1993; Jensen & Snekvik, 1972). 
Peterson et al. (1980) found that salmon eggs in the ocular stage, 
which were kept at pH values between 4.0 and 5.5, hatched later or 
not at all because the low pH value probably inhibited the important 
hatching enzyme chorionase. Similar results were obtained earlier 
by Lacroix (1985a) and Lacroix et al. (1985b), who found the LL50 to 
be reached at pH of 4.7 (lethal loading causing 50% mortality = LL50) 
in the interstitial water. Daye and Garside (1979) report that LL50 for 
embryos is reached at pH 3.9, and for alevins at pH 4.3. They further 
claimed that long-term exposure of Atlantic salmon to pH < 4.5 will 
lead to a substantial decrease of populations or even extirpation in 
freshwater habitats.

Exposure to low pH leads to sublethal effects in vital organs such 
as the skin, liver, spleen and damage to blood vessels, gills, brain 
and retina (Daye & Garside, 1980). In general, at chronically low pH 
values of 4.7–5.4 in the water, annual juvenile fish productivity of 
Atlantic salmon is significantly lower than in waters with pH values 
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above 5.6–6.3 (Daye & Garside, 1979). The critical threshold for 
first-year juvenile brown trout is 4.8–5.4 in streams rich in dissolved 
organic carbon (Serrano et al., 2008).

Recently hatched salmonids are regarded as particularly sen-
sitive to ammonium (Table 3). A growth depression occurs at sub-
lethal concentrations of 0.35–10 µM, while long-term exposure to 
1.4–5.3 µM can lead to a reduction in the number of erythrocytes 

and leukocytes as well as haematocrit and haemoglobin concen-
trations (Vosylinie & Kazlauskiene, 2004). A mortality rate of 50% 
(LC50) was observed in adult brown trout at a concentration of 
0.6–0.7  mg/L after 96  h (Environment Canada & Health Canada, 
2001) and in Atlantic salmon at 0.2–0.5 mg/L after 24 h (Alabaster 
et al., 1979). Effects on growth were observed in Atlantic salmon 
at a concentration of 0.037–0.065  mg/L NH3 (28  days, NOEC) 

TA B L E  3  The optimum, critical and lethal concentrations of pH, aluminium, ammonium and ammonia for critical life stages of Atlantic 
salmon (AS), brown trout (BT) and reported for both species (both)

Stage Species Optimum Additional information References

Critical limits

Spawners BT 4.5–9.2 Crisp (1993)

Spawners BT 6.8–7.8 Heacox (1974) cited in Raleigh et al. (1986)

Spawners both 6–9 EU (1978)

Spawners both NH4
+ < 0.03 mg/L and 

NH3 < 0.005 mg/L
EU (1978)

Eggseye BT pH < 4.0, no Ali correlation 
observed

Mortality > 40%; field Serrano et al. (2008)

Eggsinc BT NH4
+ < 1.5 mg/L Mortality > 40%; field Sternecker et al. (2013a)

Fry BT pH < 4.0, no Ali correlation 
observed

Mortality > 40%; field Serrano et al. (2008)

Juvenile BT 6.7–7.8 pH < 5.0 or >9.5 Raleigh et al. (1984)

Lethal limits

Spawners AS NH4
+ 0.2–0.5 mg/L LC50 after 24 h Alabaster et al. (1979)

Spawners BT NH4
+ 0.6–0.7 mg/L LC50 after 96 h Environment Canada and Health Canada 

(2001)

Spawners BT pH < 5 and Altot > 100 µg/L Field Barlaup and Åtland (1996)

Eggseye AS pH = 4.0–4.5 Mortality 50%; >30 days Peterson et al. (1980)

Eggsinc AS pH = 4.7 LL50; field Lacroix (1985a)

Eggsinc AS pH = 3.9 LL50; lab Daye and Garside (1979)

Eggs AS pH < 4.8–5.6 and 
Ali > 20–310 µg/L

Egg-to-alevin 
mortality > 93%; lab

Skogheim and Rosseland (1984)

Eggsinc AS pH = 3.5 Mortality 100%; lab Carrick (1979)

Eggsinc BT pH = 3.5 Mortality 100%; lab Carrick (1979)

Eggs BT pH < 4.8–5.6 and 
Ali > 20–310 µg/L

Egg-to-alevin 
mortality > 86%; lab

Skogheim and Rosseland (1984)

Eggseye BT pH < 4.5 Mortality > 90%; lab Brown and Lynam (1981)

Eggsinc both pH < 4.5 and pH > 9 Die before hatching Crisp (1993)

Alevins AS pH = 4.3 LL50; lab Daye and Garside (1979)

Alevins BT <20 Altot µg/L LC50; field Weatherley et al. (1990)

Fry AS pH < 5 Sublethal effects; lab Daye and Garside (1979)

Fry AS pH < 5 Mortality >70%; field Lacroix (1985a)

Fry BT Altot = 15 µg/L LC50; 42 days; field Weatherley et al. (1990)

Fry BT pH = 4.5 and 
Ali = 323 µg/L

Mortality > 50%; 
>108 days; lab

Reader et al. (1991)

Fry BT pH = 4.5 and Ali = 324 µg/L Mortality > 50%; lab Çalta (2002)

Fry BT pH = 4.5 and 
Ali = 600 nmol/L and 
Ca = 20 µmol/L

Mortality > 90%; lab Sayer et al. (1991)

Abbreviations: Ali, inorganic monomeric aluminium; Altot, total aluminium; eggseye, eggs eyed stage; eggsinc, eggs incubating; LC50, lethal 
concentration with 50% mortality; LL50, lethal loading causing 50% mortality.



450  |    SMIALEK et al.

(Fivelstad et al., 1993). The critical limits and lethal limits reported 
in the literature for pH, ammonium and aluminium for both species 
and their critical life stages are summarised in the overview Table 3.

Even though acidification continues to be a problem, for exam-
ple in parts of Scandinavia, recognition of the problem, measures 
of source control (e.g. flue gas desulphurisation) and targeted miti-
gation measures (e.g. liming), has resulted in a slow recovery today 
(Geller & Schultze, 2009).

4.6  |  Increased inputs of fine materials

The type, size and composition of the substrate determine whether 
the female can cut a suitable spawning redd, how deep and large it 
becomes, and how stable it remains for the period of egg ripening 
and larval development.

Anthropogenic influences, such as catchment land use with 
erosion-prone crops, forestry practices or overgrazing, can cause 
significantly increased levels of fine material inputs and the associ-
ated sedimentation rates of substances. In general, the introduction 
of anthropogenic fine material into freshwater systems are mainly 
caused by agriculture, logging and discharges from urban areas (Greig 
et al., 2005a; Hendry et al., 2003; Mueller et al., 2020; Zimmermann 
& Lapointe, 2005). Also, climate change and the change in cultivation 
to “energy crops” such as maize particularly promote soil erosion 
in agriculture and can cause fine sediment input into water bodies 
(Bierschenk et al., 2019). Net inputs from agriculture can be as high 
as 35–46.5 kg/m2 (Denic et al., 2014; Pander et al., 2015). In addi-
tion, changes of flow regimes can facilitate deposition of fines and 
degradation of spawning grounds (Auerswald & Geist, 2018).

Accumulating fine material causes compaction and colmation of 
the river bed at spawning sites. Consequently, fish need more ef-
fort in relocating the strongly solidified substrate during redd cut-
ting, which, under certain circumstances, may no longer be possible. 
Consequences include interrupted or completely lost spawning pro-
cesses or superficially laid eggs, with a higher risk to drift away or 
being preyed upon (Crisp, 1990).

In evolutionary terms, Atlantic salmon and brown trout have 
adapted their spawning behaviour to natural deposition of fines 
by cutting a redd into the gravel, which cleans the substrate nat-
urally from fines (Kondolf & Wolman, 1993). After egg deposition, 
new arriving fine material ideally continues to be removed by the 
current as the loosely backfilled gravel is permeable to a certain ex-
tent. However, in case of high fine material loads, the substrate can 
quickly colmate again. Since winter spawning salmonids have a long 
egg development time (up to five months) (Acornley & Sear, 1999; 
Mueller et al., 2014; Soulsby et al., 2001; Sternecker et al., 2014), it 
can happen that the gravel cleaned by the female prior to egg depo-
sition does not remain so through the development time of the eggs. 
Eggs of other salmonids, such as grayling or Danube salmon, which 
are laid in spring (Northcote, 1995; Sternecker et al., 2014), develop 
faster due to the higher ambient water temperature and thus have a 
shorter exposure time (Sternecker et al., 2014).

Embryonic growth can be influenced both directly and indirectly 
by the complex interaction of interstitial permeability, oxygen avail-
ability, temperature and rising groundwater (Greig et al., 2007) by 
fine materials. Due to these complex interactions, most studies do 
not distinguish between the exact physical and chemical effects of 
fine materials on the success of egg development and emergence 
(Heywood & Walling, 2007; Malcolm et al., 2003a,b; Pander et al., 
2009; Rubin, 1998; Witzel & MacCrimmon, 1983), but rather rep-
resent the overall survival rates in different fine material fractions 
(Mueller et al., 2014). However, there are two main processes that 
need to be considered. Sand fractions can lead to a superficial sealing 
of the river bed (Beschta & Jackson, 1979; Sternecker & Geist, 2010) 
and thus build a physical barrier at the boundary layer between open 
water and hyporheic zone (Everest et al., 1987). The colmation of 
this upper most layer is most important in determining exchange of 
water and matter between the two compartments of open water 
and interstitial habitat (Geist & Auerswald, 2007). Additionally, col-
mation can change the chemical composition of the interstitial water 
and foster oxygen depletion with negative effects on hatching and 
emergence success (Everest et al., 1987; Sternecker et al., 2013a; 
Sternecker & Geist, 2010). Other indirect, sublethal or lethal effects 
can be evoked by toxic chemicals (e.g. heavy metals, pesticides, 
pharmaceuticals) or nutrients potentially bound to the fines (Kemp 
et al., 2011). Fine material falling through the upper, coarser, gravel 
layers fills the spawning redd from the bottom up (Acornley & Sear, 
1999; Einstein, 1968; Pander et al., 2015; Turnpenny & Williams, 
1980). In such a case, shallower spawning redds can replenish faster, 
which was often observed after gravel bed restoration (e.g. gravel 
addition) (Mueller et al., 2014; Pander et al., 2015). Eggs laid near the 
surface laying in deeper spawning redds would have a buffer, and 
thus, the eggs and larvae would be less prone to suffocate (Everest 
et al., 1987).

Mortality rates for eggs caused by high loads of fine material 
in the hyporheic zone can reach 86% (Soulsby et al., 2001) and 
more (Mueller et al., 2014). Greig et al. (2005b) found that particles 
D < 4 µm can block the micro pores of the egg membrane and thus 
strongly impair the oxygen supply, which led to a weaker growth rate 
of the embryos. Larvae of brown trout and Atlantic salmon exposed 
to a high fine material rate had larger yolk sacs than the control 
group that was not exposed to fine material. Larvae with larger yolk 
sacs are poorer swimmers and therefore more susceptible to preda-
tors or drifting, because, due to their size, they are mostly located in 
larger-pored areas of the interstitial zone and thus mostly near the 
gravel surface (Louhi et al., 2011).

The larvae emerge from the sediment after absorption of their 
yolk sac and drift to shallow near-bank habitats. This necessary 
process is only possible if the larvae are able to ascend through the 
gravel gaps. Hence, sand-sized particles often hinder the emergence 
of larvae (Crisp, 1993; Hartman & Hakala, 2006; Kondolf, 2000; 
Sternecker & Geist, 2010). Furthermore, high loads of fine sediment 
may exert size-selective effects (Sternecker & Geist, 2010). In a lab-
oratory experiment, Beschta and Jackson (1979) found that sand 
(D50 = 0.5 mm) tends to settle in the upper 10 cm of a stable gravel 



    |  451SMIALEK et al.

bed and forms a physical barrier. Sternecker and Geist (2010) also 
found the same effect in their emergence experiment with brown 
trout at substrate sizes of 5–8 mm.

5  |  CURRENT STATUS OF THRE ATS TO 
SALMONID POPUL ATIONS IN FRESH 
WATER

In addition to the already well-characterised threats in the marine 
environment, such as exploitation (ICES, 2019 a,b; NASCO, 2019), 

disease and introduced parasites (e.g. Gyrodactylus salaris [Johnsen 
& Jenser, 1991] and salmon lice Lepeophtheirus salmonis [Thorstad 
et al., 2015]), as well as genetical mixing with escaped farmed salmon 
(Karlsson et al., 2016), this review highlights the importance of con-
sidering the early-life stages in fresh water for sustainable manage-
ment of the populations of both Salmo salar and Salmo trutta fario.

The different threats described herein impact spawning, egg 
development and emergence of both species by acting on the 
structural, chemical and physical levels (Figure 5). The intensity 
and interactions of the different environmental variables also de-
pend on whether they affect the critical life stages solely, additively, 

F I G U R E  5  Risk scheme presenting levels of impact by six predominant environmental risks representing impacts acting on the structural, 
chemical and physical level in fresh water on the three critical life stages spawning, egg development and emergence of Atlantic salmon and 
brown trout. Displayed by arrows are also the individual effects of each risk on the three life stages: straight line = high negative impact, 
dashed line = medium negative impact, dotted line = low negative impact. Further, these risks can also act additively, synergistically and 
antagonistically. (1) The longitudinal connection is crucial for spawners to reach their spawning ground as they have a greater range of 
movement between habitats and during migration than stationary eggs and less mobile fry. (2) Discharge has a strong influence on all life 
stages. This is particularly true for spawners and fry, as it triggers natural processes such as the onset of spawning migration or the time 
of drift of emergent larvae. Furthermore, the runoff rate determines habitat features such as presence of riffle-pool structures, lentic 
areas or the persistence of redds during incubation important for Atlantic salmon and brown trout survival. (3) The temperature influence 
can be observed on multiple levels. It has direct effects on body condition (e.g. growth, metabolic rate, maturity), on food availability (e.g. 
plankton growth, hatching time) and the solubility of substances in water (e.g. oxygen, chemicals). Mobile life stages can change to other 
areas if ambient water temperature reaches unsuitable conditions. Eggs have a relatively high temperature tolerance and are more robust. 
However, they are directly affected by synergistic effects related to temperature. (4) A high oxygen availability is essential for the survival 
and successful development of Atlantic salmon and brown trout. Eggs are directly dependent on the local conditions in the hyporheic zone 
and thus more vulnerable to hypoxic events. (5) The shift of pH in water to more acid conditions has been a major problem in the 80s. 
Nowadays, a recovery from acidification in European waters is evident but may emerge again in light of climate change with increasing CO2 
concentrations (Evans et al., 2001; Skjelkvåle et al., 2003). Since a change in pH can lead to growth depression, sublethal effects in vital 
organs or high mortality rates in the early-life stages of salmonids (eggs and larvae) are considered more vulnerable than spawners. On the 
other hand, eutrophication resulting in high pH values and increased ammonia toxicity needs to be considered. (6) Fine material has a high 
impact on the permeability of the hyporheic zone, and therefore, high loads can have detrimental consequences for eggs and fry. Spawning 
individuals may need to put more energy into redd cutting, but the overall negative impact is comparatively low
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synergistically or antagonistically (Figure 5). Based on this review, 
the environmental threats for Atlantic salmon and brown trout can 
be classified into three categories: (i) prominent threats from the 
past against which actions have been taken; (ii) long-known threats 
that have further accelerated and lack action; and (iii) emerging 
threats holding unknown consequences for the future.

5.1  |  Prominent threats from the past

In the 1970s and 1980s, freshwater acidification was one of the 
major environmental threats to aquatic biota, especially in northern 
Europe and eastern North America in calcium-poor rivers where 
the buffering capacity of the ecosystems naturally is rather low 
(Overrein et al., 1980). Through the application of suitable mitigation 
measures (e.g. liming; Hultberg & Andersson, 1982) and introduc-
tion of new laws and regulations affecting the sources of acidifying 
gases (e.g. Convention on Long-range Transboundary Air Pollution 
in 1979; UN/ECE, 1999), freshwater systems across Europe are 
now slowly recovering (Evans et al., 2001; Geller & Schultze, 2009; 
Skjelkvåle et al., 2001; Stoddard et al., 1999). In the course of this 
recovery, it was also possible to re-establish lost Atlantic salmon and 
brown trout populations in previously acidified rivers (Degerman 
& Appelberg, 1992; Hesthagen et al., 2017; Howells et al., 1992). 
However, chemical and especially biological recovery can be costly 
and slow, and other threats (e.g. climate change, land-use practises, 
habitat degradation) may negatively affect the recovery process 
(Austnes et al., 2018; Skjelkvåle et al., 2003). Climate change, for 
instance, may bring back acidification through increased dissolution 
of carbonic acid in fresh water (Weiss et al., 2018).

5.2  |  Long-known threats further accelerating

The negative impacts of missing longitudinal connectivity and habi-
tat functionality due to structural deficits on riverine fish are well 
documented and continue to be the major challenge for the future 
of freshwater conservation (Geist, 2011, 2015; Grill et al., 2015; Grill 
et al., 2019). Analogously to other cold-water adapted species, ac-
cess to cold-water patches and refugia during extended hot peri-
ods becomes a crucial factor of population resilience in the light of 
global warming (Kuhn et al., 2021). For Atlantic salmon and brown 
trout, both factors are considered key management objectives to re-
establish self-sustainable populations in fresh water (Birnie-Gauvin 
et al., 2017; ICES, 2019a,2019b,2019c). On one hand, the difficulty 
is finding a compromise between river ecosystem conservation and 
human demands for green energy, flood protection, shipping routes 
and land use (Geist, 2021; Jackson, 2011; Poff et al., 2003). On the 
other hand, there is a lack of action for already existing solutions. 
While the implementation of the EU Water Framework Directive 
(WFD; 2000/60/EC) was meant to force action on the member 
states of Europe to improve the state of river ecosystems including 
connectivity, only 41% of all rivers in the European Union match the 

formulated goal of a good ecological status (Kristensen et al., 2018). 
It is widely considered that the implementation of the respective 
management plans as a basis for the restoration of surface waters 
cannot meet the deadlines set by the EU to reach the goals of the 
WFD. More than two decades after implementation of the WFD, 
many experts claimed that these goals were “over-ambitious” result-
ing in several extensions of deadlines to match the good ecological 
status of surface waters (Hering et al., 2010).

Another remaining problem is the re-establishment of hab-
itat functionality. Of key importance for the early-life stages of 
salmonids is the quality of the spawning ground, particularly the 
well-characterised problem of siltation and colmation of salmonid 
spawning sites through land use (agriculture, forestry, urban and 
industrial wastewater) resulting in egg and larval die offs. Now, 
this knowledge has been complemented by the observation that 
the problem of colmation can only be solved if combined with ap-
proaches of re-establishing flow regimes and mitigation of in-stream 
modifications of geomorphic structure through carbonate precipi-
tation and internal biomass production (Auerswald & Geist, 2018; 
Geist & Hawkins, 2016). Some measures such as local, small-scale 
in-stream spawning site restorations (e.g. gravel supplementation 
or substrate loosening by raking, power hosing or excavation) seem 
quick, cheap and effective, but their effects often persist for less 
than one year, especially in catchments with intense agricultural and 
forest land use (Mueller et al., 2014; Pander et al., 2015; Sternecker 
et al., 2013b). Hence, despite the economic investment, long history 
and volumes of literature, considerable uncertainties and contro-
versial debates about the biological effectiveness of such measures 
remain (Birnie-Gauvin et al., 2019; Louhi et al., 2016; Mueller et al., 
2014; Pander & Geist, 2016; Roni et al., 2015; Szałkiewicz et al., 
2018; Vehanen et al., 2010b), causing delays in their implementation.

5.3  |  Emerging threats

It should be acknowledged that many European countries made 
great progress in reducing chemical pollution and nutrient inputs to 
freshwater ecosystems in the past 30 years. The implementation of a 
tertiary phase in sewage water treatment as well as the replacement 
or reduction in chemicals and nutrients in industrial production, land 
use and household disposal significantly decreased loads of nitrate, 
phosphate and airborne acidification (Geist & Hawkins, 2016). In 
addition, laws and regulations have been implemented to further 
improve the ecological status of surface waters in all European 
countries, including threshold limits for specific priority substances 
and nutrient loads (WFD; 2000/60/EC). While the overall chemical 
and nutrient status of European surface waters is slowly recovering, 
some countries (e.g. England, Germany, Sweden) are currently failing 
to meet the limits, largely due to agricultural inputs (e.g. pesticides, 
fertilisers; Kristensen et al., 2018).

There are many chemicals of which the effects on the early-life 
stages of Atlantic salmon and brown trout are not well understood. 
There are arguably three main reasons. The first is that most research 



    |  453SMIALEK et al.

on the effects of chemicals on biologic systems is conducted on one 
specific chemical of interest at a time, while in the real-world most 
organisms are exposed to mixtures of multiple chemicals at the same 
time. There can be additive or non-additive, synergistic or antagonis-
tic effects, sometimes also referred to as “cocktail effects” (Connon 
et al., 2012). The second reason is that most studies tend to focus on 
acute (i.e. short-term) effects, whereas more realistic chronic expo-
sure scenarios can have cumulative detrimental consequences for 
organisms (Spromberg & Meador, 2005). The third reason is that the 
bioavailability of substances in reality may differ from test results of 
standard toxicity testing (Beggel et al., 2010). Generally, the young 
life stages tend to be more susceptible to negative effects than adult 
fish, but chronic exposure and potential cumulative effects of es-
pecially persistent chemicals can also affect reproductive output 
(Mohammed, 2013). An effect assessment is further complicated 
by the effects of these chemicals on the entire food web (Malaj 
et al., 2014). Insecticides may be particularly harmful to non-target 
species, including terrestrial and freshwater insects, which both 
can make an important contribution to the diet of brown trout and 
Atlantic salmon during their freshwater life stages.

Another threat becoming increasingly prominent during the last 
decade is climate change (for review see Harrod et al., 2009; Jonsson 
& Jonsson, 2009). The most likely scenarios for the main distribu-
tion areas of Atlantic salmon and brown trout include higher tem-
peratures, wetter winters, dryer summers and more extreme events 
of flooding and drought (ICES, 2017b; IPCC, 2007, 2014) affecting 
all components of the freshwater ecosystem (Wilby et al., 2006). 
Models and predictions of the consequences of climate change have 
focussed on the adaptability of Atlantic salmon and brown trout to 
rising temperatures during different life stages (Casas-Mulet et al., 
2020; Sternecker et al., 2014). The likelihood for future losses of 
salmonid populations is considered high, especially in their lower 
latitude distribution range. However, there is still a lack of knowl-
edge on the extent of climate change impacts (Jonsson & Jonsson, 
2009; Skjelkvåle et al., 2003) and the possible interaction with ex-
isting or emerging stressors. For example, extreme climatic events 
(drought followed by extreme rainfall) in combination with changed 
flow regimes (e.g. hydropower) and erosion-prone land use can lead 
to higher loads of fine material and nutrients being washed into 
the waterbody. The combination of all or some of these factors will 
most likely result in unfavourable conditions for egg development 
and subsequent recruitment. Gregory et al. (2020) found that the 
2016  salmon recruitment crash in Wales was most likely caused 
by the unfavourable combination of warm spawning temperatures, 
which can inhibit spawning, and higher flood frequencies during egg 
incubation and emergence, resulting in washouts of eggs and alev-
ins. Such inclement conditions could become more common under 
future climate change. The predicted increase in the average tem-
perature in the next years is suspected to facilitate the spread of 
parasites (Bruneaux et al., 2017), invasive species (Bean, 2020) and 
increase the toxic effects of pollutants (Dar et al., 2020) with neg-
ative consequences for all life stages of Atlantic salmon and brown 
trout. From the perspective of research and management, it is thus 

particularly important to (i) understand and predict the effects of 
climate change on habitat suitability for both species; (ii) identify and 
ensure access to cold-water refugia as a key to improving population 
resilience (Kuhn et al., 2021); and (iii) understand and manage the 
interactions with other stressors, especially those that are also tem-
perature dependent.

In addition to these large-scale impacts, local biological interac-
tions following (re-) introductions of species that interact with the 
life cycles of Atlantic salmon and brown trout must be considered. 
This includes stocking with non-native rainbow trout as well as (re-) 
introductions of ecosystem engineers such as beavers, for which 
effects remain controversial. In contrast to the potential structural 
enrichment of stream habitats by beavers, their reintroduction is 
sometimes also seen as an emerging threat to salmonid popula-
tions as beaver activities (i.e. the creation of dams) generally have 
the potential to impair fish migration and alter spawning grounds. 
For example, Mitchell and Cunjak (2007) suggested that the cumula-
tive effect of several beaver dams may have reduced salmon move-
ments and spawning upstream the obstacles in Canadian streams in 
some years. By contrast, Parker and Rønning (2007) concluded in 
their Norwegian study that the presence of beavers is likely to have 
an insignificant negative impact on the reproduction of salmonids. 
Further, a review of beaver activity impacts on fish populations by 
Collen and Gibson (2001) suggested more positive than negative im-
pacts, but the size of the stream should be considered as well as the 
location of the beaver activity and size of the dams constructed. In 
small, narrow streams beaver activity can have a greater influence 
on habitat quality and fish communities as these streams get more 
easily dammed (Rosell et al., 2005). Hence, more research is needed 
to monitor possible consequences of beaver reintroduction on sal-
monid populations.

5.4  |  Cumulative effects

Although all threats have been described individually in their ef-
fects on the critical life stages of Atlantic salmon and brown trout 
(Figure 5), it is important to highlight that it is their diversity and 
complexity combined with these stressors often acting in concert 
and in a non-linear way, which complicates a mechanistic under-
standing of their exact modes of action as well as a translation into 
effective mitigation measures (Armstrong et al., 1998; Bierschenk 
et al., 2019; Mueller et al., 2020; Mueller et al., 2017; Ormerod et al., 
2010). The complex interactions between the stressors are not yet 
fully understood but are increasingly being addressed (e.g. Brook 
et al., 2008; Jackson et al., 2015; Bouraï et al., 2020).

There is also increasing evidence of negative indirect effects 
of stressors on fish. For example, when pollutants exert direct ef-
fects on keystone species or induce changes in nutrient and ox-
ygen dynamics, they may alter ecosystem functions essential for 
the critical life stages of Atlantic salmon and brown trout (Fleeger 
et al., 2003). Nutrient enrichment (eutrophication) and rise in 
water temperature act additively and can influence fish community 
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dynamics (Jackson et al., 2015; Bouraï et al., 2020). A meta-analysis 
conducted on net effects of cumulative impacts of multiple stress-
ors (novel and extreme environmental changes) in freshwater eco-
systems by Jackson et al. (2015) revealed that the net effects of 
stressor pairs were frequently more antagonistic (41%) than syn-
ergistic (28%), additive (16%) or reversed (15%). Furthermore, they 
suggested that “a possible explanation for the more antagonistic 
responses of freshwater biota to stressors is that the inherently 
greater environmental variability of smaller aquatic ecosystems 
promotes a greater potential for acclimatisation and co-adaptation 
to multiple stressors.”

6  |  IMPLIC ATIONS FOR RESE ARCH AND 
MANAGEMENT

Despite some uncertainties related to the emerging threats, the 
current knowledge of Atlantic salmon and brown trout is consid-
ered sufficient to mitigate current environmental risks in a way that 
populations could quickly recover their strength (Lobón-Cerviá, 
2009) and increase their general resilience against stressors. For 
long-lasting solutions, a “stopping at the source” strategy is consid-
ered most promising. This includes river restoration measures to re-
establishing connectivity and improve habitat quality in particular 
as these threats have the greatest impact on all life stages today 
(Dudgeon, 2019; Figure 5), and as they are particularly crucial in the 
light of climate change increasing the relevance of access to cold-
water patches and minimising combined effects of temperature and 
fines on interstitial habitats important for egg development. There is 
strong evidence that with approximately one barrier every two kilo-
metres of river, Europe has the most fragmented rivers in the world 
(AMBER, 2020; Grill et al., 2019). Yet, 13% of these barriers are ob-
solete obstacles (approx. 156,000), which do not serve any purpose 
and could be removed. Dam removals can have an extremely posi-
tive influence on the abundance of salmonid species (Birnie-Gauvin 
et al., 2017). Where obstacle removal is not possible, measures to 
restore fish migration by considering the individual requirements of 
species (e.g. water depth, discharge, behaviour) should be obligatory 
(Silva et al., 2018).

Further, there is no way around an appropriate adjustment of 
land use in terms of a selection of low erosion cultivation methods, 
crop rotation and suitable cultivation strategies at the catchment 
scale. In addition, buffer strips and field wetlands can be a prom-
ising mitigation measure not only preventing diffuse input of sed-
iments and associated pollutants into fresh waters, which directly 
affect processes relevant for early-life stages of salmonids (Knott 
et al., 2019; Ockenden et al., 2012), but also enhancing biodiversity 
and aesthetics (Barling & Moore, 1994; Cole et al., 2020). Up to 
now, fine sediment input in surface waters is a key factor affecting 
trout and salmon from spawning to emergence but is barely con-
sidered in WFD monitoring, which should implement a new stan-
dard for the monitoring of fine sediment input in surface waters as 
soon as possible.

The WFD has already set limits for nutrient and chemical inputs 
into fresh waters, but most European countries have not complied 
with these standards (Brack et al., 2019). More regular controls and 
stricter penalties for non-compliance could improve the situation. 
In addition, scientists from the EU-funded project “SOLUTIONS 
for present and future emerging pollutants in land and water re-
sources management” (https://www.solut​ions-proje​ct.eu) call for an 
improvement of the WFD and current water laws through a more 
holistic approach of protection from and monitoring of chemical pol-
lution. The status assessments should not only address the selected 
priority pollutants (currently set by the WFD), but all chemicals that 
pose a risk, as well as assessing mixture effects and considering 
mitigation options at an early stage of the assessment (Brack et al., 
2019).

In addition to “stopping at the source,” some preventive actions 
can minimise the impact of some current and emerging threats. 
For example, Switzerland upgraded existing wastewater treatment 
plants to reduce micropollutants and toxicities from wastewater 
effluents (Eggen et al., 2014). Further, the reintroduction of more 
structures in habitats, shading vegetation and natural groundwa-
ter inflows would offer valuable thermal refugia for salmonid fish, 
which may help to counteract some of the negative effects of cli-
mate change (Kuhn et al., 2021).

Already established measures such as stocking can, properly 
applied, stabilise depressed populations. However, long-term stock-
ing has often been associated with stocking different genetic back-
grounds (Aas et al., 2018; Bernaś & Wąs-Barcz, 2020; Finnegan 
& Stevens, 2008) and this can lead to negative genetic effects on 
extant populations when stocked and wild fish interbreed (e.g. 
Machordom et al., 1999; Nielsen et al., 2001; Marzano et al., 2003; 
McGinnity et al., 2003; Ferguson, 2006). This relates to both Salmo 
salar and Salmo trutta fario. Interbreeding of distant genetic lines can 
result in outbreeding depression or lowered survival in subsequent 
generations, as non-local stocks tend to have reduced survival rates 
compared with natural populations (McGinnity et al., 2003; Araki 
et al., 2008; Ågren et al., 2019). In addition, genetic mixing can re-
sult in the reduction of local adaptations (McGinnity et al., 1997; 
Wang et al., 2002; Bourret et al., 2011). Salmo salar in particularly 
is known to exhibit distinctive adaptions to single rivers or catch-
ments (Ikediashi et al., 2018; Ozerov et al., 2012; Verspoor, 1997) 
and is therefore particularly prone to loss of genetic diversity at the 
metapopulational level (Griffiths et al., 2010). Due to its popularity 
as a game fish, Salmo trutta fario has been introduced to rivers for 
fishing for example in New Zealand, India and South Africa (Aass, 
1982). Stocked fish usually originate from hatcheries that are able to 
produce large numbers of juvenile Atlantic salmon and brown trout. 
Hence, hatcheries have a responsibility to develop stocks that more 
closely resemble wild stocks in their genetics and behaviour and only 
use appropriate close relative stocks in rebuilding Atlantic salmon 
and brown trout populations. This way unique stocks can be bet-
ter conserved and protected. Before stocking, however, river resto-
ration (improving water quality, river access and structure) should be 
prioritised (Ikediashi et al., 2012).

https://www.solutions-project.eu
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When mitigating freshwater threats, it is further necessary to 
take a holistic approach considering all environmental stressors 
connected to the health of the critical life stages of Atlantic salmon 
and brown trout (Calles & Greenberg, 2009; Pander & Geist, 2013; 
Tummers et al., 2016). Stocking of fish, for example, cannot support 
a local population if the migration rate or mortality rate due to un-
suitable habitat conditions, turbine mortality, predation or disease 
exceed stock recruitment (Aarts et al., 2004; Cowx, 1994). Further, 
habitat restoration should consider the catchment scale and should 
include a functional perspective on hydrogeomorphic, biogeochem-
ical and ecological processes that may significantly improve the un-
derstanding of in-stream processes and how threats affect habitats 
(Pander & Geist, 2016).

Despite a long research history on Atlantic salmon and brown 
trout, knowledge gaps on some autecological requirements and 
population development still exist, which should be addressed. This 
includes knowledge on minimum viable population size in different 
habitat types, general spatial requirements of all life stages, syner-
gistic effects between environmental factors and physiological re-
sponse, and short-term and long-term adaptability to rapid changing 
environmental conditions (Jonsson & Jonsson, 2011; Smialek et al., 
2019). In contrast to physical habitat characteristics (e.g. current 
speed, sediment composition, water depth and oxygen levels), this 
information is difficult to obtain and depends on complex synergis-
tic effects or sometimes unpredictable factors. In cases where data 
are missing for one species, it might be feasible to attribute findings 
from another well-studied species to its less studied related species 
to have a starting point for action. For Atlantic salmon and brown 
trout, the habitat requirements and their sensitivities to the envi-
ronmental risks during the three critical life stages spawning, egg 
development and emergence discussed are almost identical, cre-
ating synergies in conservation and restoration. This is mainly due 
to similarities in their spawning behavior (e.g. gravel spawners) and 
morphology (e.g. body shape, overlapping range in size spectrum). 
This is also underlined by both species being found together in key 
habitats, such as spawning grounds with the same hydromorpho-
logical characteristics, where they may hybridise with each other 
(Matthews et al., 2000; Youngson et al., 1992). Differences in the 
choice of habitat between Atlantic salmon and brown trout are only 
found to a limited extent and can essentially be attributed to two 
factors: (i) the overall size spectrum of both species; and (ii) the dif-
ferent life strategy after the juvenile stage. Hence, mitigation mea-
sures undertaken for Atlantic salmon will most likely be profitable 
for brown trout and vice versa.

7  |  CONCLUSIONS

It is important to emphasise that improving freshwater conditions 
for the early-life stages of both species is essential in securing 
population resilience yet can only contribute in part to their con-
servation. As mentioned earlier, especially seaward-migrating forms 
are exposed to further stressors at sea (e.g. overfishing, sea lice 

infestation, interbreeding with escaped farmed salmon) at a later 
stage of their life cycle. However, improving the starting conditions 
for these individuals (i.e. good conditions for early-life stages in fresh 
water) can also greatly improve their resilience in the later life stages 
(e.g. sending the healthiest smolts to sea) and their chance to face 
future risks with fewer losses. Furthermore, Atlantic salmon and 
brown trout inherit an admirable degree of adaptation themselves. 
The great plasticity in their life strategies is one key factor to their 
survival, and thus, it is important to protect this plasticity by con-
serving the genetical diversity between stocks.
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