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Abstract

The Internet-of-Things (IoT) paradigm comprises devices ranging from simple sensors to
servers that collect, process, and communicate information between each other. Among
them, resource-constrained devices (constrained in processor, memory and battery) are
deployed in most IoT applications due to their low cost and high availability. Commu-
nication between these devices is the highest energy consuming operation and hence,
needs to be efficient to sustain their operations in a network over long periods. Addi-
tionally, devices may join, leave or move across the network in an ad-hoc manner. IoT
devices must be adaptable to these dynamic changes and maintain a stable load on the
network. Owing to their low-cost nature and susceptibility to damage, tampering or
battery exhaustion, some devices may become faulty leading to unexpected behavior.
IoT networks need to remain functional and resilient even with the presence of such
faulty devices. Hence, this thesis identifies three major requirements for IoT networks:
energy efficiency, adaptability, and fault resilience.

It is very challenging to collectively address all three requirements as they have an
orthogonal function to each other. E.g. fault-resilient solutions use complex computa-
tions for verification of devices and data that inadvertently reduce the energy efficiency
in a resource-constrained environment. Existing solutions achieve one or at most two
of the requirements collectively, with no solution incorporating all three requirements.
Given the large-scale deployment of IoT devices and their price-sensitive nature, it is
imperative to design algorithmic solutions to meet the three requirements as this thesis
proposes. In this regard, we propose several communication algorithms to cover the
three requirements in this thesis.

In the first part of the thesis, we introduce a novel communication algorithm DeCoRIC,
that dynamically groups asynchronous devices into clusters and elects a representative
among them. DeCoRIC strikes the right balance in the communication load to reduce
energy consumption while maintaining connectivity across different devices in the net-
work. Further, unlike most existing clustering solutions which are susceptible to faults
and network partitions, we also achieve adaptability and resilience by utilizing message
gossips to inform device status among neighboring devices, allowing for alternate con-
necting paths in the event of a faulty device. We evaluate DeCoRIC on the Contiki
simulation platform and compare it against state-of-the-art clustering solutions. We
find that DeCoRIC improves the power efficiency of the network by at least 70% and
extends its lifetime by at least 42% over existing solutions while making the network
adaptable and resilient to faults.

Further, in the second part, we showcase the practical applicability of DeCoRIC with
a use-case of a clustered network of energy resources and propose a charge scheduling
algorithm to improve their utilization. In particular, we investigate resource allocation
and scheduling of devices in an electric grid network to maximize energy utilization.
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Abstract

Through experiments, we found that the mobility of devices allows them to be adaptable
by moving to different clusters (geographical location) for energy consumption if the
current cluster is overloaded. Hence, we devise an online load scheduling algorithm that
exploits different charging modes and mobility of devices to maximize the devices that
meet their energy demands. Our solution creates a feasible schedule for the devices
in a fraction of time (in the order of minutes) compared to conventional optimization
solvers (in the order of hours). We also tested our solution on a real-world electric
vehicle dataset and found a 57% improvement in the achieved utility compared to other
scheduling solutions such as earliest deadline first or highest-energy demand scheduling.

To further improve the energy efficiency and tolerance of the IoT networks, the last
part of the thesis builds on DeCoRIC to synchronize the devices and create a timed
communication. While the literature on time synchronization addresses energy efficiency
and adaptability partially, none of the solutions provide resilience to faults. Therefore, we
design a novel time synchronization solution C-sync, that is fault-resilient and adaptable
while maintaining microsecond (µs) accuracy. In addition, C-sync uses a byzantine
consensus mechanism to identify anomalies in the device communication and ensures
correct information is propagated across the network. Further, we introduce a concept of
local centers to limit the maximum number of hops a device is located from its time source
making the network adaptable. C-sync is tested on a hardware testbed and shown to
consume at least 51% lower power than existing state-of-the-art resilient synchronization
solutions. The resilience of C-sync to byzantine faults is also demonstrated by a quick
recovery of correct time information when faulty information was introduced.

The algorithms presented in this thesis collectively achieve an energy-efficient, adapt-
able and fault-resilient IoT network organically to solve the research gaps despite the
orthogonal requirements. This thesis provides the first step in advancing IoT application
domains limited by these missing requirements. Applications with a large number of IoT
devices such as smart factories and smart cities benefit from the presented adaptable
clustered network solution with its real-time monitoring and control. Resources are bet-
ter utilized and congestion is reduced by the underlying consensus mechanisms while
allowing cost-effective equipment maintenance using the fault-resilience capabilities of
our solution. Implementations on real-world data and testbeds used for experiments
elucidate the practical viability of the solutions for IoT networks.

iv



Zusammenfassung

Das Internet-der-Dinge-Paradigma (IoT) umfasst Geräte, die von einfachen Sensoren bis
hin zu Servern reichen, die Informationen sammeln, verarbeiten und miteinander kom-
munizieren. In den meisten IoT-Anwendungen werden ressourcenbeschränkte Geräte
(mit eingeschränktem Prozessor, Speicher und Akku) aufgrund ihrer geringen Kosten
und hohen Verfügbarkeit eingesetzt. Die Kommunikation zwischen diesen Geräten muss
effizient sein, um ihren Betrieb in einem Netzwerk über lange Zeiträume aufrechtzuerhal-
ten, da Funkverbindungen von allen Ressourcen die meiste Energie verbrauchen. Außer-
dem können sich Geräte ad hoc mit dem Netz verbinden, es verlassen oder sich in-
nerhalb des Netzes bewegen. IoT-Geräte müssen an diese dynamischen Veränderungen
angepasst werden können und eine stabile Belastung des Netzes gewährleisten. Aufgrund
ihrer geringen Kosten und ihrer Anfälligkeit für Beschädigungen, Manipulationen oder
erschöpfte Batterien können einige Geräte fehlerhaft werden, was zu unerwartetem Ver-
halten führt. IoT-Netzwerke müssen auch bei Vorhandensein solcher fehlerhaften Geräte
funktionsfähig und widerstandsfähig bleiben. Daher werden in dieser Arbeit drei Haup-
tanforderungen an IoT-Netzwerke identifiziert: Energieeffizienz, Anpassungsfähigkeit
und Fehlerresistenz.

Es ist eine große Herausforderung, alle drei Anforderungen gleichzeitig zu erfüllen,
da sie orthogonal zueinander funktionieren. Z.B. verwenden fehlerresistente Lösungen
komplexe Berechnungen zur Überprüfung von Geräten und Daten, die unbeabsichtigt
die Energieeffizienz in einer ressourcenbeschränkten Umgebung verringern. Bestehende
Lösungen erfüllen eine oder höchstens zwei der Anforderungen gleichzeitig, wobei keine
Lösung alle drei Anforderungen erfüllt. Angesichts des großflächigen Einsatzes von
IoT-Geräten und ihrer preissensiblen Natur ist es zwingend erforderlich, algorithmis-
che Lösungen zu entwickeln, die die drei Anforderungen erfüllen, wie sie in dieser Arbeit
vorgeschlagen werden. In diesem Zusammenhang schlagen wir in dieser Arbeit mehrere
Algorithmen zur Abdeckung der drei Anforderungen vor.

Im ersten Teil der Arbeit stellen wir einen neuartigen Kommunikationsalgorithmus
DeCoRIC vor, der asynchrone Geräte dynamisch in Clustern gruppiert und einen
Repräsentanten unter ihnen wählt. DeCoRIC sorgt für das richtige Gleichgewicht in
der Kommunikationslast, um den Energieverbrauch zu senken und gleichzeitig die Kon-
nektivität zwischen den verschiedenen Geräten im Netzwerk aufrechtzuerhalten. Im
Gegensatz zu den meisten existierenden Clustering-Lösungen, die anfällig für Fehler
und Netzwerkpartitionen sind, erreichen wir außerdem Anpassungsfähigkeit und Ausfall-
sicherheit, indem wir Nachrichten gossips verwenden, um den Gerätestatus benachbarter
Geräte mitzuteilen, was im Falle eines fehlerhaften Geräts alternative Verbindungswege
ermöglicht. Wir evaluieren DeCoRIC auf der Simulationsplattform Contiki und ver-
gleichen es mit modernen Clustering-Lösungen. Wir stellen fest, dass DeCoRIC die
Energieeffizienz des Netzwerks um mindestens 70% verbessert und seine Lebensdauer
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Zusammenfassung

um mindestens 42% im Vergleich zu bestehenden Lösungen verlängert, während das
Netzwerk anpassungsfähig und widerstandsfähig gegenüber Fehlern ist.

Im zweiten Teil zeigen wir die praktische Anwendbarkeit von DeCoRIC anhand eines
Anwendungsfalls eines gebündelten Netzwerks von Energieressourcen und schlagen einen
Algorithmus zur Gebührenplanung vor, um deren Nutzung zu verbessern. Insbesondere
untersuchen wir die Ressourcenzuweisung und -planung von Geräten in einem Stromnetz,
um die Energienutzung zu maximieren. In Experimenten haben wir herausgefunden,
dass die Mobilität der Geräte es ihnen ermöglicht, sich anzupassen, indem sie in andere
Cluster (geografische Standorte) wechseln, um Energie zu verbrauchen, wenn der aktuelle
Cluster überlastet ist. Daher entwickeln wir einen Online-Lastplanungsalgorithmus, der
verschiedene Lademodi und die Mobilität der Geräte ausnutzt, um die Geräte zu max-
imieren, die ihre Energieanforderungen erfüllen. Unsere Lösung erstellt einen praktik-
ablen Zeitplan für die Geräte in einem Bruchteil der Zeit (in der Größenordnung von
Minuten) im Vergleich zu herkömmlichen Optimierungslösungen (in der Größenordnung
von Stunden). Wir haben unsere Lösung auch an einem realen Elektrofahrzeugdatensatz
getestet und eine 57%ige Verbesserung des erzielten Nutzens im Vergleich zu Standard-
planungslösungen festgestellt.

Um die Energieeffizienz und Toleranz der IoT-Netzwerke weiter zu verbessern, baut
der letzte Teil der Arbeit auf DeCoRIC auf, um die Geräte zu synchronisieren und eine
zeitgesteuerte Kommunikation aufzusetzen. Während die Literatur zur Zeitsynchro-
nisation Energieeffizienz und Anpassungsfähigkeit teilweise anspricht, bietet keine der
Lösungen Resilienz gegenüber Fehlern. Daher entwerfen wir eine neuartige Zeitsynchro-
nisationslösung C-sync, die fehlerresistent und anpassungsfähig ist und gleichzeitig eine
Genauigkeit von Mikrosekunden (µs) beibehält. C-sync verwendet einen byzantinis-
chen Konsensmechanismus, um Anomalien in der Gerätekommunikation zu erkennen
und sicherzustellen, dass korrekte Informationen über das Netzwerk verbreitet werden.
Darüber hinaus führen wir ein Konzept der local centers ein, um die maximale Anzahl
von Hops zu begrenzen, die ein Gerät von seiner Zeitquelle entfernt ist, was das Netzw-
erk anpassungsfähig macht. C-sync wurde auf einem Hardware-Testbed getestet und es
wurde gezeigt, dass es mindestens 51% weniger Energie verbraucht als bestehende, dem
Stand der Technik entsprechende Synchronisationslösungen. Die Widerstandsfähigkeit
von C-sync gegenüber byzantinischen Fehlern wird auch durch eine schnelle Wiederher-
stellung der korrekten Zeitinformationen demonstriert, wenn fehlerhafte Informationen
eingeführt wurden.

Die in dieser Arbeit vorgestellten Algorithmen erreichen gemeinsam ein en-
ergieeffizientes, anpassungsfähiges und fehlerresistentes IoT-Netzwerk, um die
Forschungslücken trotz der orthogonalen Anforderungen organisch zu lösen. Diese Ar-
beit stellt den ersten Schritt dar, um IoT-Anwendungsbereiche voranzubringen, die durch
diese fehlenden Anforderungen eingeschränkt sind. Anwendungen mit einer großen An-
zahl von IoT-Geräten, wie z. B. intelligente Fabriken und intelligente Städte, prof-
itieren von der vorgestellten anpassungsfähigen geclusterten Netzwerklösung mit ihrer
Echtzeitüberwachung und -steuerung. Die zugrundeliegenden Konsensmechanismen sor-
gen für eine bessere Ressourcennutzung und eine geringere Überlastung, während die
Fehlerresistenz unserer Lösung eine kostengünstige Wartung der Geräte ermöglicht. Im-
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plementierungen auf realen Daten und Testbeds, die für Experimente verwendet werden,
verdeutlichen die Praxistauglichkeit der Lösungen für IoT-Netzwerke.
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1 Introduction

The Internet-of-Things (IoT) paradigm has been rapidly adopted in a plethora of ap-
plications, including but not limited to smart homes, Industry 4.0 and smart cities
amongst others. According to the definition by the International Telecommunication
Union (ITU), IoT is defined as any system comprising a network of devices, where each
device (also referred to as thing/node/end-device) has at least one transducer (sensor or
actuator) for interacting directly with the physical world, has at least one network inter-
face connecting the device to the internet/local network directly or indirectly through
a wired/wireless medium and can function independently with/without a processor [1].
However, it is not mandatory for the devices to be connected to the public internet.
Combining the sensors and actuators of the physical system with the digital capabilities
of processors establishes the cyber-physical scope of IoT.

1.1 Major requirements in designing an IoT solution

Commercial off-the-shelf (COTS) cyber-physical devices interacting over various wireless
communication standards such as Wi-Fi, Zigbee, etc., form the bulk of apparatus in most
IoT applications [2, 3]. These IoT devices are primarily low-cost and battery-operated
with limited computational (processor) and communication (radio) resources [4]. A
common challenge in devising communication strategies/algorithms for such applications
is the high proportion of energy consumption arising from data transfer [5]. Empirical
results have shown a single data communication operation from the radio translates
to hundreds of computations on the processor [6]. Data communication wakes up the
device from its sleep state coupled with processing operations to handle the data. Due
to its high energy requirement, efficient usage of radio by minimizing communication is
critical to maintaining a long operational lifetime, especially for applications that require
frequent communication among devices. For example, environmental sensing in harsh
weather locations or industrial manufacturing plants require constant monitoring of the
surroundings and communicating the sensed data frequently between devices. Finding
the right balance in the periodicity of communication enables battery conservation and
extends the lifetime of the devices.

Though energy efficiency is addressed in existing literature [5, 7], IoT applications
struggle to maintain consistent operations in the face of complex and dynamic network
topologies due to frequent device movement, additions or removals. In essence, the de-
vices may join or leave the network at any time in an ad-hoc manner which may overload
or underload other devices, thus disrupting stable operations in the network. For in-
stance, sensors in application domains such as environmental sensing, industrial plants,
etc., may be moved to other regions or damaged by natural disasters, moving parts
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or harsh operating conditions. Due to the difficulty in replacing devices under these
challenging conditions, new devices are added to the network regularly; the additional
devices must maintain a steady communication load to ensure stability in network oper-
ations. To deal with this dynamism in the network, existing solutions include having a
central device powerful enough to handle overloads through data aggregation [8], a hier-
archy of devices to disseminate and process data [9], etc. However, adaptability of IoT
networks to device dynamism in addition to being energy-efficient adds a new dimension
to the requirements.

Furthermore, IoT networks must sustain their functionality even in the presence of
faulty end-devices. A fault indicates a device behavior that does not adhere to its ex-
pected functionality. A faulty device could impact the network operation in several
ways: silent devices can partition the network resulting in connectivity issues, whereas
devices transmitting erroneous information may result in unexpected behaviors. Hence,
it is essential for IoT networks to maintain stable operations and be resilient to such
faulty devices. Referring to our examples of environmental sensing and industrial man-
ufacturing plants, IoT networks must dynamically adjust themselves to maintain their
functionality regardless of faulty devices to ensure critical events such as an earthquake
or a failed robotic arm are reported quickly and correctly. By general scientific no-
tion, resilience to faulty devices can be achieved through redundancy of end-devices,
information validation during communication, etc. [10, 11, 12]. Nonetheless, integrating
the requirements of either energy efficiency or adaptability with fault resilience poses a
non-trivial challenge.

While solutions such as increasing redundancy and battery capacity or the use of
resource-rich devices offer fault protection mechanisms, these methods are price-sensitive
and increase the complexity of network operations. These expensive devices mandate
regular maintenance that would further add to costs. Hence, in order to maintain a
long lifetime, adapt to changing network topology and ensure resilience to faulty de-
vices, the design of IoT applications has three major requirements: 1) Energy efficiency.
2) Adaptability 3) Resilience to device faults. These three requirements are essential
across various application domains with large-scale IoT networks such as environmental
monitoring (e.g. home, industry, weather), agriculture, etc.

A practical approach to avoid high costs or hardware redundancy is to dynamically
adapt any new network changes through an algorithmic solution to integrate the three
requirements. Device dynamism can be handled in an energy-efficient IoT network by
designing a communication strategy to dynamically adapt to the changes. Similarly,
neighboring end-devices must communicate the presence of faulty devices among each
other to prevent the faults from propagating through the network. In summary, a com-
munication algorithm that incorporates all the three requirements of energy efficiency,
resilience and adaptability by design is pivotal to ensuring a long and stable operation
of IoT networks.

Figure 1.1 shows the major requirements of IoT networks that are the focus of this
thesis. Very few solutions in the literature have simultaneously addressed both the
requirements of energy efficiency and adaptability represented by the grey shaded area
between the orange and green circles in Figure 1.1 [13, 14]. Similarly, the shaded areas
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Energy 
Efficiency Adaptability

Resilience
Enhanced resilience and 

configurable adaptability on 
energy-efficient clustered network

(Chapter 5)

Energy-efficient and resilient 
network clustering

(Chapter 3)

Adaptable and energy-efficient 
scheduling on a clustered network

(Chapter 4)

Goal of this thesis: 
Collectively address 

all three requirements

[15, 16]

[13, 14]

[17, 18]

Figure 1.1: Major requirements for an IoT network. Existing solutions meet at most two re-
quirements indicated by shaded area while no solution meets all the requirements.

between the resilience circle with the other two requirements, the available solutions
that produce energy-efficient and resilient networks [15, 16] or adaptable and resilient
networks [17, 18] reduce dramatically. To the best of our knowledge, there is no existing
work to date in the available body of literature that incorporates all the three major
requirements as shown by the white area at the center of the figure.

1.2 Challenges to combining the requirements

It remains a significant challenge to collectively address the three requirements of the
IoT networks. Here, we discuss the major challenges to overcome in order to meet the
requirements.

Orthogonality of the requirements. The requirements of energy efficiency, adaptability
and resilience tend to have an orthogonal function with respect to each other. For
example, improving the resilience of the network may introduce complex computations
arising from additional verification of information which reduces the network’s energy
efficiency. Similarly, adaptable solutions allow for redundancy and improve the resilience
of the network, but require more communication and energy to maintain a common
system state across all the end-devices. A fundamental change in the design of IoT
networks is necessary to tackle the three requirements collectively.

Resource-constrained devices. Typically, most devices in IoT networks are heavily
resource-constrained with processor speeds in the range of a few MegaHertz (MHz),
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memory in the range of a few kilobytes (kB) and equipped with a short-range low-power
communication standard like Zigbee, Bluetooth Low-Energy (BLE), etc. [4]. In addi-
tion, these devices are often powered by batteries with limited capacity in the range of
milliwatthours (mWh). Such constraints on resources significantly limit the complexity
and the range of communication strategies that can be run on these devices. Hence, it
is essential to consider the resource-constrained nature of IoT devices while designing
solutions that incorporate all the three requirements.

Changes to network topology. The ad-hoc nature of most IoT networks makes the
network topology malleable. Device faults cause holes in the information path - this
triggers changes in device roles to restore the information path and hence changes the
network topology (e.g. failure of the leader (information provider) in the network results
in the re-election of a new leader node). Similarly, new devices could increase the
number of messages being exchanged to achieve a consistent system state across all
devices. The network must adapt to these changes without a significant increase in
energy consumption (no. of messages) while maintaining connectivity within the network
and the functionality. Hence, a key factor in the design of energy-efficient and resilient
communication strategies is to adapt to the dynamic changes in the network.

1.3 Existing solutions address a subset of the major
requirements

Existing communication algorithms in IoT applications address one or at most two of the
requirements discussed earlier, while none of them simultaneously addresses all three of
them. Although adaptability has been addressed independently in various existing solu-
tions [12, 19], we analyze the literature on energy-efficient solutions and resilient solutions
that integrate adaptability. This allows for the comparison of existing state-of-the-art
that is closest to our proposed solution of collectively addressing all the requirements
discussed earlier. This section reviews some of the notable solutions in the literature
and their associated shortcomings.

1. Energy-efficient communication strategies. There is significant literature
on energy optimization in IoT networks. Mathematical optimizers and standard
optimization techniques such as linear programming, game theory, etc., are em-
ployed offline to adjust the device schedules to minimize cost and energy [20, 7].
These solutions involve complex computations which cannot be applied to resource-
constrained devices to handle live messages although they can achieve efficiency
and resilience. Similarly, other solutions propose time synchronization protocols
to minimize communication and, thereby, improve the energy efficiency of the
devices [21, 15, 22]. By having a common notion of time, nodes can turn on
their radios only during the communication period and keep them turned off at
other times. Most of the existing synchronization solutions use flooding to achieve
a common time among the nodes quickly [21, 22]. Flooding involves a central
(root) node disseminating the time information that is rapidly spread across the
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network, i.e., an incoming message is immediately re-transmitted to all its neigh-
boring nodes. Root nodes in the network also monitor the messages to prevent
dissemination of erroneous information, but cannot prevent faults in the root node
itself. To prevent a single-point of failure and adaptability issues (multi-hop degra-
dation) in flooding-based solutions, a decentralized synchronization solution also
exists [15]. Despite the energy savings from the synchronization, there is a sig-
nificant communication overhead. The decentralized solutions use redundancy to
achieve fault resilience leading to hardware overhead. To further reduce the energy
expenditure of the devices, under the assumption of a synchronized network, var-
ious clustering protocols were designed to minimize the nodes that communicate
frequently [23, 24, 25]. Clustering strategies group the nodes into a set of clusters
to establish a communication hierarchy; nodes communicate with an elected local
node, i.e. the cluster head, which in turn communicates with other cluster heads.
Clustered network topologies provide a positive trade-off between centralized and
decentralized solutions as they alleviate the impact of both, single-point of failure
and constant communication. However, none of the existing clustering algorithms
focus on maintaining network connectivity in the presence of faulty nodes.

2. Resilient solutions. Although decentralized networks provide basic protection
against fail-stop faults (silent devices) through redundancy, the nodes continue
to be susceptible to faults such as spikes, outliers and intermittent transmissions.
Fail-stop faults cause a node to be non-responsive permanently, while spikes cause
sudden surges in the transmitted data. Outliers are a result of the transmitted
information being outside an expected range/threshold. Similarly, transmissions
that randomly miss their scheduled intervals cause intermittent transmission faults.
Spikes, outliers and intermittent faults can be grouped as a class of byzantine faults
that exhibit behavior other than what is expected. A body of work focuses on ad-
dressing the aforementioned issues. Synchronization protocols with additional fault
handling mechanisms were introduced to minimize the impact of faulty informa-
tion [26, 27, 16]. Specialized hardware has been used to detect faults in addition
to software-based synchronization to improve the resilience of IoT networks [16].
Consensus mechanisms [26] and blockchain [27] are some of the important solu-
tions towards achieving resilience with untrusted nodes in the network. Meanwhile,
other solutions use a simple estimation for expected outputs and categorize any-
thing outside the expected result as a fault [28, 26]. Resilience to faulty nodes
in the existing solutions comes at the cost of energy efficiency - most solutions
require large amounts of processing and communication resources. The fault clas-
sification algorithms are memory-heavy while blockchain and encrpytion solutions
require significant compute and communication resources making them impractical
on resource-constrained devices.

Addressing the above shortcomings in existing literature, in this thesis, we intro-
duce a novel clustering strategy that incorporates resilience by design in addition
to providing adaptable and energy-efficient communication (Chapters 3 and 5).
Additionally, we also extract some features of our clustering solution with a use-
case from the domain of charge scheduling of electric vehicles (Chapter 4). To the
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best of our knowledge, our proposed solutions are the first to collectively address
the three major IoT requirements discussed in Section 1.1.

Thesis Statement

This thesis develops communication algorithms to dynamically create a synchronized
and clustered network topology in the presence of byzantine device faults, collectively
addressing the three major IoT requirements of energy efficiency, adaptability and fault
resilience.

1.4 Research Contributions

This thesis proposes various algorithmic solutions to meet the three requirements and
demonstrates the gains achieved over existing solutions. In this regard, we make the
following contributions:

1. Dynamic adaptability of network topologies with a resilient yet energy-
efficient communication algorithm. Firstly, a novel communication algorithm
called DeCoRIC that exploits the ad-hoc nature of IoT networks is established
to allow flexible topological changes in a decentralized network of asynchronous
nodes. DeCoRIC is the first clustering algorithm to provide resilience against the
fail-stop faults, with extensions to other faults in the following contributions. Each
node joins the network independently without any prior knowledge of the network
parameters (e.g. position in the network, neighboring nodes, etc.). The nodes
discover themselves and their neighbors through communication. Our proposed
solution elects a representative node called Cluster Head (CH) in any neighbor-
hood of nodes based on the highest degree parameter, i.e., nodes with the highest
number of connected neighboring nodes have the highest degree. Other nodes in
the neighborhood associate themselves with the nearest CH to form groups called
clusters. CH nodes oversee communication within their respective cluster and
across clusters when necessary, allowing the remaining cluster nodes to conserve
energy. The algorithm also incorporates resilience by design using gossiping [29]
and maintains the connectivity among clusters even in the presence of fail-stop
faults. DeCoRIC allows for dynamic centralization in the form of clusters based
on the instantaneous positions of the nodes while allowing each cluster to oper-
ate independently; this method strikes a balance to overcome the shortcomings of
existing centralized and decentralized networks.

2. A real-world use-case demonstrating the applicability of the clustering
solution. Secondly, to demonstrate the applicability of our DeCoRIC with energy-
efficient clusters, we examine the problem of load balancing in a smart grid with
a network of charging stations and nodes connected to it. We build on a clustered
network topology established using certain features (degree of a node) of DeCoRIC
where an energy source (aggregator) is a CH and all devices connected to it con-
sume energy within the cluster. To ensure every node gets a chance to consume
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energy to meet its energy demand, we develop a low-complexity heuristic solution
that provides a feasible charging schedule without the long wait times experienced
by optimization solvers. By exploiting the fact that mobile devices can move to
different geographic locations (clusters), we show that energy efficiency in the form
of utility can be significantly improved. The clustered network and its capability
to reconfigure itself amidst mobility of the nodes also ensure that the solution is
adaptable.

3. Accurate network synchronization with network resilience against
byzantine faults. Lastly, we recognize the need for a common notion of time
in the network as nodes tend to keep their radios on for a longer duration among
asynchronous nodes. To achieve time synchronization, we develop a clustering-
based communication algorithm called C-sync that synchronizes nodes with a sig-
nificantly lower energy consumption compared to other state-of-the-art solutions.
Every CH node communicates with other CHs to identify their positions in the
network. The CH node at the center of a neighborhood called local center is se-
lected to disseminate time information to other clusters. The maximum number
of hops to the local center is configurable and, hence, ensures that the maximum
error in the clock can be bounded. Further, special roles are assigned to the bridge
nodes that connect clusters to verify the communicated data and ensure no faulty
information is propagated across the network. The fault handling in DeCoRIC is
further extended to provide resilience against a class of byzantine faults including
spikes, outliers and intermittent communication.

1.5 Organization

The rest of the thesis is organized as follows:

• Chapter 2 provides the necessary background with respect to the communication
standards, assumptions and the fault model used for the remainder of the thesis.

• Chapter 3 presents a novel clustering algorithm, DeCoRIC, on an ad-hoc decentral-
ized IoT network to achieve connectivity and resilience against faulty nodes. Using
the principle of degree, Cluster Head (CH) nodes are elected to supervise the com-
munication within a cluster and manage the interaction with neighboring clusters.
With the aid of a gossiping mechanism to communicate nodes’ states, DeCoRIC
provides resilience against failed nodes and recovers network connectivity within
a bounded time. We demonstrate that DeCoRIC realizes an improvement of at
least 70% in power efficiency and 42% longer lifetimes of the nodes, respectively
over the state-of-the-art clustering solutions with random and density-based clus-
tering [23, 24].

• Chapter 4 explores the application of DeCoRIC in a real-world use-case of smart
grids. The clustered network adapts well to the distributed energy sources (repre-
sented by renewables) to manage the stochastic energy demand of stationary nodes
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(e.g. household appliances) and mobile nodes (e.g. electric vehicles). To maxi-
mize the utility (benefit) achieved by all the devices in the network, a distributed
online heuristic is proposed to establish a feasible charging schedule. The schedule
is created within a practical time (few minutes) while the standard solvers take
prohibitive time (few hours) which is impractical for most real-world applications.
Experiments on real-world charging data from an electric vehicle testbed [30] show
an improvement of over 57% in the utility over standard scheduling solutions such
as earliest deadline first and highest demand first.

• Chapter 5 develops C-sync, a novel synchronization solution based on DeCoRIC
to establish a common notion of time across all the nodes in the network. C-sync
is able to achieve µ-second accuracy through energy-efficient communication. Our
solution is also adaptable as the number of hops from any node to a time source
is bounded. Through atomic broadcasts, a consensus mechanism is introduced to
counter faulty nodes. An average reduction of over 56% in the power consump-
tion of nodes is achieved compared to the existing state-of-the-art synchronization
solution based on neighbor-clock averaging [15]. C-sync is tested on a real-world
testbed and shown to be resilient against a subset of byzantine faults (spikes,
outliers, stuck-at and intermittent communication faults) as byzantine faults en-
compasses a wide range of faults [31].

• Chapter 6 concludes the thesis by summarizing the contributions and provides
future opportunities on the presented research.
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2 Background

In this chapter, we introduce the preliminaries used for communication, assumptions,
network model and simulation platforms used throughout this thesis. We also provide the
details of all the fault models that are addressed by our fault-resilient solutions. These
details provide the foundation for the proposed solutions discussed in Chapters 3, 4
and 5.

2.1 Communication topologies

Communication topologies (architecture) can be realized in different forms based on the
design of the communication algorithm used, i.e., the rules of communication and their
available neighborhood information for each device. The arrangement of nodes (topol-
ogy) and the processing entity also influence the communication architecture. Tradi-
tionally, the communication topologies in the literature are categorized into centralized
and decentralized networks [32] and are shown in Figure 2.1.

2.1.1 Centralized network

In a centralized network, multiple devices/nodes collect data and send it to a central
node (root node) for processing. All nodes in the network communicate with each other
through the root node and take actions based on data/commands received by the root
node. During initialization, every node needs to be configured with the root node infor-
mation such that the topology is maintained. The central node in the network handles
the bulk of all data processing and communication in the network. Common topolo-
gies used in centralized networks include star and bus topologies shown in Figures 2.1a
and 2.1b, respectively. Furthermore, there is an additional overhead of a complete net-
work reconfiguration in the event of a network change (due to node failure, node mobility,
etc.). A failure of the central node in a star topology or a failure of the main communi-
cation link in the bus topology necessitates a re-setup of all the devices in the network.
Network changes are common in ad-hoc IoT networks due to their plug-and-play prop-
erty [33].

2.1.2 Decentralized network

Each node operates independently in decentralized networks with data exchange among
neighboring nodes. Network decisions are made through the collective agreement of all
nodes in the network. Nodes in a decentralized network require no prior knowledge of
other nodes in the network since they function independently and communicate with
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(a) Star Topology (b) Bus Topology (c) Mesh Topology (d) Ring Topology

Figure 2.1: Common topologies used in IoT networks.

the neighboring nodes to gather information about the network. Mesh and ring topolo-
gies are commonly used in decentralized networks as shown in Figures 2.1c and 2.1d,
respectively. Since each node operates independently, there is no necessity for network
re-configurations as seen in centralized networks. Hence, a failure results in configuration
changes only among the neighbors of the failed node, without impacting the other parts
of the network. However, since the collective decision of the nodes is made by exchang-
ing messages among each other, multiple nodes communicate in parallel. This results in
significant interference on the communication medium/channel among the nodes leading
to loss of messages [15].

2.1.3 Clustered network

Both the centralized and decentralized networks are inadequate to provide the require-
ments of energy efficiency and adaptability discusssed in Section 1.1. On the one hand,
centralized architectures offer an efficient mechanism of communication between the
nodes, but suffer from a single-point of failure and reconfiguration overheads. On the
other hand, decentralized architectures allow ad-hoc changes to the nodes and support
network adaptability, but experience a high load of communication and channel inter-
ference. To achieve an efficient operation and communication among nodes (offered
by centralized architectures), while retaining the adaptable ad-hoc capabilities of a de-
centralized network, a clustered communication network where nodes form pockets of
centralized networks within an overall decentralized network is used [23, 34, 24, 25].

To begin with, every node is independent, similar to a decentralized network. However,
a key difference is that these individual nodes communicate with their neighbors to group
themselves into clusters. Nodes across different parts of the network form multiple
clusters in their neighborhood. The nodes in each of the clusters elect a representative
node among them to oversee the communication within the cluster as well as handle
information exchange across different clusters. An example of a clustered architecture is
shown in Figure 2.2 where the nodes in orange represent the leader nodes called Cluster
Heads (CH), while the nodes in grey are Common Nodes (CM) within the cluster.
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Cluster Head (CH)

Common Node (CM)
Inter-Cluster 
Communication
Intra-Cluster 
Communication

Figure 2.2: A clustered network combining the properties of centralized and decentralized net-
works.

2.2 Communication primitives

We assume that communication across all nodes of the network is on a wireless medium
due to their low costs, high availability in the market and fast-evolving speeds that
match or exceed the wired counterparts. Unless otherwise stated, the IEEE 802.15.4
communication primitive is used as a standard for the interaction among the nodes [3].
The standard was introduced in 2003 for low data rate wireless networks which gave
rise to various protocols such as ZigBee, WirelessHART (Highway Addressable Remote
Transducer Protocol), 6LoWPAN (IPv6 over Low-Power Wireless Personal Area Net-
works), DSSS (Direct Sequence Spread Spectrum), etc., that differ in their implemen-
tations from layer 3 (Network layer) and above on the OSI stack. In this thesis, we
adopt the 802.15.4 standard with a focus on the common lower layers, operating in the
frequency range of 2.4GHz with offset-quadrature phase-shift keying (O-QPSK) modu-
lation scheme. Europe and North American regions have different frequency ranges with
the same spectrum depending on the release/version of the protocol being used.

2.2.1 Frame Structure

The frame structure with Physical and MAC (Medium access control) layers are shown
in Figure 2.3. At the physical layer, the preamble sequence identifies the IEEE 802.15.4
protocol. The start of frame delimiter is used to recognize the start of frame transmis-
sion/reception to/from the channel at the Physical layer. We use this in Chapter 5 to
find the precise time of data transmission at the physical layer. Frame length indicates
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Figure 2.3: The frame structure of the IEEE 802.15.4 protocol at the Physical and medium
access control layers.

the number of bytes present in the payload/service data unit where the payload stores
the frame from the MAC layer.

The MAC layer controls the channel access mechanisms for the physical layer. The
frame control field separates different types of frames such as a data frame, an acknowl-
edgment frame, a beacon frame or a command frame. The sequence number ensures
acknowledgment frames are associated with the correct data frames and that beacon/-
data frames are sent in a correct continuous sequence. The source and destination
addresses are specified in the addressing fields. Broadcast messages do not have any
destination address. If the frame is configured to be secure, then the associated secu-
rity data such as keying mechanism details are stored in the auxiliary security header
field. The data payload stores all the data to be sent/received to/from the destination
device. Contents stored within the payload can be configured to suit the application.
Frame Check Sequence (FCS) ensures the integrity of the frame by storing the cyclic
redundancy check (CRC) to detect any errors.

2.3 Network Model

The IoT network can be treated similar to a graph. A Graph G can be defined as a pair
given by G = 〈V,E〉 where V is the set of vertices in the graph and E ⊆ V x V is the
set of edges between the vertices. For any two nodes u, v ∈ V if the edge euv ∈ E and
evu /∈ E, indicating a unidirectional edge from u to v, such a graph is called directed
graph or digraph. If nodes u and v have an edge euv such that euv = evu∀euv ∈ E, the
edge is bi-directional; a graph all edges exhibiting this property is called an undirected
graph. If there is a path/cycle from a vertex v traversing back to itself, the resulting
graph is cyclic. Similarly, acyclic graphs do not have any cyclic paths in the graph. The
different graph types are shown in Figure 2.4.

Based on the assumptions listed in Section 2.3.1, the nodes are connected to each other
in a wireless network with duplex communication with bidirectional links. Additionally,
the nodes at the edge of the network do not have any cyclic communication links. Hence,
we consider our network to be an undirected acyclic graph. The nodes of the network
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Directed Acyclic Undirected Acyclic Directed Cyclic

Unidirectional link Bidirectional link Cyclic link

Figure 2.4: Different types of Graphs based on the direction of communication links among the
nodes.

operate independently while taking collective decisions to manage the network structure
(e.g. clustered network).

2.3.1 Model assumptions

A set of general assumptions are made that are applicable throughout this thesis. The
assumptions not only provide details on the overall network setup but also provide details
on the behavioral traits of the nodes. Any changes or additional assumptions specific
to a solution will be listed in the specific chapter (in Chapters 3, 4 or 5). The list of
assumptions are as follows:

1. An ad-hoc network of devices is assumed where each device takes independent
decisions by communicating with neighboring devices without apriori knowledge
on the network topology (i.e., fully decentralized network).

2. Nodes can join or leave the network at runtime (e.g. node failures or new node
additions)

3. Devices are heterogeneous, i.e., each device can be functionally different without
a common manufacturer, sensors, etc.

4. All devices are equipped with limited resources including a processor, clock, mem-
ory and a unique identifier (ID) for recognition and tracking.

5. All nodes transmit and receive on the same channel.

6. The communication protocol among the devices is based on IEEE 802.15.4 stan-
dard [3] unless otherwise specified.

7. Carrier-sense multiple access with collision avoidance (CSMA/CA) is used at the
MAC layer of the protocol stack to prevent interferences during communication.
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8. There are no fixed topologies or arrival/departure times of devices unless specified
with nodes moving in and out of the network at any position/time.

2.3.2 Fault model

In this section, we define the fault model adopted from the literature in this thesis [35, 36,
37]. One or more of the faults described below are addressed in the solutions described
in Chapters 3, 4 and 5. The type of faults considered in this chapter are as follows:

Fail-stop faults. Fail-Stop faults in a device render it completely non-functional, i.e.,
the device becomes silent and stops communicating. This scenario is equivalent to the
absence of the device and could create network partitions if the device has no backup in
its information path. Such faults are caused by hardware damage, environmental factors
such as earthquakes, avalanches, battery exhaustion, tampering, etc. Fail-stop faults can
be critical especially if the fault occurs on the central entity of a system as it mandates
a network-wide re-configuration of all devices to choose the new central entity.

Stuck-at faults. Stuck-at faults make the devices partially functional, where the device
transmits a constant value independent of any changes in the environment/input. The
fault could be caused due to physical damage or a software bug. Although the devices
can receive data, they are able to output only a single value. Stuck-at faults can be very
hard to detect as the constant value may match the ground truth a few times. This
leads to false data reporting and damage to the system.

Spike faults. Spike faults are sudden increases or decreases in the communicated values
and subsequent reports of normal values. Other neighboring devices could react to the
spike fault and make the system overloaded. Although spike values are important in
applications such as environment monitoring (e.g. volcanoes and earthquakes), most
applications do not expect a sudden increase in value at all times. Spike faults can be
detected by setting a threshold on expected values and comparing them against other
neighboring devices.

Outlier faults. Outliers are similar to spike faults with a distinction of less extreme
variations in its output. Outliers can be particularly hard to detect as their commu-
nicated values are typically very close to the boundary of expected values. Similar to
spikes, outliers are detected using a threshold on the expected values. However, outlier
faults consistently report values close to the threshold that can be used for detection.

Intermittent communication faults. A device with an intermittent communication
fault is unable to establish a communication channel with its neighboring devices con-
sistently. There are irregular periods when the device does not report any value while
managing to report sometimes. With synchronization in the network, the faulty device

14



2.4 Simulation Platforms

randomly misses its schedule to transmit. Any device which does not report values con-
sistently for a configured number of times can be classified to be faulty with intermittent
communication.

Byzantine faults. Byzantine faults are a broad category of faults that includes all of
the above faults and more. A device is considered as byzantine faulty if its behavior
does not follow the expected behavior [38]. This category of faults includes a faulty
device which may or may not coordinate with other faulty devices in the system. The
devices are partially functional and present different behavior to different devices and at
different times. It is very difficult to identify such faults as the coordination among the
neighbors could fail due to different observations by each device.

2.4 Simulation Platforms

2.4.1 Contiki Operating System

Contiki is an operating system designed specifically for inter-connected resource-
constrained wireless IoT devices of a network [39]. The OS has a modular design with a
TCP/IP stack as well as a lightweight proprietary Rime stack designed specifically for
resource-constrained wireless IoT devices.

Contiki MAC and X-MAC

Contiki MAC. Contiki MAC is the default MAC layer used in Contiki for low-power
operation with very low-powered listening [39]. The duty cycle of the radio can be as low
as 1% and has the highest power efficiency among all the other available MAC protocols
in Contiki. To achieve the high power efficiency, the timing for the packet transmission
must satisfy certain constraints listed as follows:

ti < tc, and

tr + tc + tr < ts

where ti is the packet transmission interval (time between two packet transmissions) ,
tc is the interval between two channel checks (channel check for availability to transmit),
tr is the time required to obtain a stable Received Signal Strength Indicator (RSSI) value
(time to get a good quality signal with low noise) and ts is the minimum transmission
time of the smallest packet (time between sender sending the last bit of packet to receiver
receiving the same).

The first inequality of the constraint ensures that the CCA can recognize at least
one packet transmission. A minimum packet size is ensured by the second inequality of
the above constraint to prevent packets from being missed in the interval between two
consecutive CCAs.

Incorporating the constant values from the IEEE 802.15.4 standard [3], we obtain,

0.352 < ti < tc < tc + 0.384 < ts (2.1)
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Contiki X-MAC. The Contiki X-MAC layer is based on the original X-MAC protocol
with improvements on phase awareness (sleep-awake cycles) of the nodes and adaptation
to the IEEE 802.15.4 protocol [40]. As there is a periodic wakeup among unsynchronized
nodes to check for incoming messages in the X-MAC protocol, the change in phase due to
lack of synchronization is used by the Contiki X-MAC to minimize power consumption
when the phases are aligned. Contiki X-MAC also allows streaming for packets to be sent
in quick succession and enables the receiver to keep the radio on for incoming packets.

In order to achieve phase awareness, Contiki X-MAC uses the rtimer, contiki’s real-
time timer module, to get the exact time stamps i.e., when a packet is received or sent,
the exact time is recorded when the counter node had its radio on. Using the time
information, the phase can be estimated to achieve a loose synchronization between the
sender and receiver. Furthermore, a function named powercycle() is used to switch the
radio on and off based on the fixed schedule created using the rtimer.

Cooja Simulator. Contiki’s Cooja Simulator (Java-based) allows development in native
C language, which can then be directly deployed on a compatible hardware platform [39].
The software elements are cross-compiled to target hardware, similar to an emulation
flow. This enables the evaluation to consider actual hardware constraints such as memory
limitations (to fit the algorithm), network errors such as packet loss and interference,
and actual bit-level transmission at the cost of slower execution time. If the memory
footprint of the algorithm is large, it will not fit within the node’s limited resources.
There is a real-world network traffic simulation with packet loss and interference, as
nodes are emulated at a hardware-level. Although the simulation might slow down due
to the hardware mapping, it gives a more precise estimation of parameters. The same
firmware can directly be loaded into physical devices.

Hardware Platform. As we assume Skymote [4] for most of our experiments, we discuss
the available timers in the hardware. The underlying MSP430 microcontroller comprises
two clock sources: a Digitally Controlled Oscillator (DCO) and a crystal oscillator. We
employ the powertrace tool in Contiki to measure the power consumption of the devices
for all our experiments [41]. Skymote uses a Texas Instruments CC2420 transceiver that
complies with the 2.4 GHz IEEE 802.15.4 6LoWPAN standard with a bit rate of 250 kbps
and a processor platform that supports sustained low-power mode. The hardware also
supports a sustained low-power operating mode for the CPU. We also tested the Z1
mote [42] as target hardware to verify the capability of the algorithm to work in a
heterogeneous environment. The crystal produces a stable output at 32,768 Hz while
the DCO produces a 524,288 Hz output that is highly susceptible to drifts from voltage
(0.38%) or temperature variations (20%). Two timers A and B are driven by one of the
two clock sources independently, with a 16-bit output register.

Timers. The crystal oscillator with a resolution of 30µs is unsuitable for WSN ap-
plications as they require accuracy in the order of microseconds or higher. DCO at a
resolution of 2µs is more suitable to achieve high accuracy applications such as clock
synchronization, etc. In an existing time synchronization protocol [22], the authors
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minimized software instructions to reduce the impact of DCO instability on the timer
output. Based on this literature, we can make use of a crystal oscillator to stable the
DCO output by mapping the ratio of frequencies between the two sources. By measuring
the difference in DCO ticks at every crystal oscillator tick, we can measure the deviation
in the clock and correct the drift.
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3 DeCoRIC: Energy-efficient, connected
and resilient clustering

As discussed in Chapter 1, information exchange between IoT nodes over a wireless
medium requires the design of energy-efficient communication strategies to ensure pro-
longed and sustainable operation of the devices under different and often challenging
conditions. Additionally, in critical systems such as industrial manufacturing plants, it
is vital to have active maintenance of the communication links so that the data can be
relayed from one part of the network to other parts reliably. The presence of safety
issues, network volatility, security flaws or energy exhaustion pose a challenge in main-
taining this end-to-end connectivity among all nodes of an ad-hoc network. IoT networks
must re-adapt communication links for any changes in the node configurations to ensure
connectivity. Hence, IoT networks not only need to be energy-efficient but be resilient
to the failure of nodes or changes in topology.

Clustering has been shown as the most effective technique to improve energy efficiency
and effectively handle device dynamism in networked systems [23]. Clustered networks
provide the necessary trade-off between centralized and decentralized networks in terms
of energy consumption and adaptability. They incorporate the energy-efficient operation
of centralized networks while avoiding the single-point of failure. Similar to decentralized
networks, clustered networks allow devices to join or leave the network in an ad-hoc
manner without impacting the network performance.

Nodes, as illustrated in Figure 3.1 (a), are grouped into clusters based on common node
properties such as residual energy, location or degree (number of communication links
of the node). Cluster sizes can be equal or unequal depending on the chosen property.
Nodes marked in blue are elected representative nodes called cluster heads (CHs), each
of which acts as the data aggregator and nodal point for multi-hop communication, as
shown in Figure 3.1 (b), allowing regular (non-CH) nodes to operate in low-power mode
more often to conserve energy.

Existing solutions in the literature have addressed the problem of clustering by utiliz-
ing various node properties such as degree, remaining energy of the node, etc. However,
the problems of overcoming network partitions due to faults and maintaining end-to-end
connectivity remain a problem to be solved. Also, static topologies (fixed roles for nodes)
lack the flexibility to deal with the ad-hoc nature of an IoT network as well as with node
failures during operation. Such networks are unable to accommodate new nodes or deal
with the failure of nodes at run-time. Hence, in addition to the capabilities of the ex-
isting clustering techniques, we believe that the following properties are essential in any
IoT clustering technique:

1. Connectivity – the clustering technique must ensure that the nodes are clustered
such that there is a path between any two nodes in the network whenever possible;
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(a) (b) (c)

Figure 3.1: Clustering operation: starting with any topology (a), the nodes align themselves
into clusters with an elected CH (b). With DeCoRIC, the clustering dynamically
adapts to changes in topology to ensure connectivity among all nodes (c).

this property ensures reliable routing of information between any two nodes in the
network.

2. Adaptability – there is no central entity managing connections across the net-
work; devices make independent decisions restore connections without impacting
the network functionality.

3. Resilience – the network must adapt to node faults or network changes at run-
time by detecting and reorganizing in a time-bound manner to ensure connectivity.

In this chapter, we present Decentralized Connected Resilient IoT Clustering
(DeCoRIC), a clustering scheme that can group nodes into connected clusters and adapt
to network changes at runtime without relying on a central node or prior information
(topology, position, etc.). Through DeCoRIC, we aim to collectively address all of the
above three properties of connectivity, adaptability and resilience in an energy-efficient
way for any IoT network. DeCoRIC starts with an ad-hoc asynchronous and decen-
tralized network where nodes do not have any prior information about their position
or the network topology. Nodes communicate with the neighboring nodes to familiar-
ize themselves with their position in the network. Based on the information gathered
from their neighbors, nodes make decisions and react to dynamic topology changes by
altering their state, as seen in Figure 3.1 (c), to ensure connectivity, while minimizing
energy overheads. While existing schemes handle failures implicitly through regular re-
clustering, DeCoRIC has an explicit failure handling mechanism and strives to achieve
connectivity in a power-efficient way. DeCoRIC can react to the failure of critical nodes
like CH’s, non-CH low-power leaf nodes or other network changes without requiring cen-
tralized management. Also, it ensures that each cluster is connected to at least one other
neighboring cluster as long as the nodes are within radio range, assuring that (critical)
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information from any node can be accessed by any other node in the system. The con-
nectivity allows the deployment of routing protocols for various applications. DeCoRIC
achieves these goals while offering improved energy efficiency to existing clustering tech-
niques.

LEACH [23] and BEEM [24] are chosen as the representative schemes for compar-
ison. LEACH is the de-facto benchmark of clustering algorithms, while BEEM is a
recent extension of another benchmark, Hybrid Energy-Efficient Distributed clustering
(HEED) [25], aimed at higher connectivity. We evaluate DeCoRIC using multiple ran-
dom network topologies to show that the above properties are achieved.

This chapter presents the following contributions:

(i) We discuss the related solutions in the literature and provide a comparison between
DeCoRIC and other prominent solutions in Section 3.1

(ii) We propose DeCoRIC, our scheme for Decentralized Connected Resilient IoT Clus-
tering and its implementation details in Section 3.2.

(iii) In Section 3.3, we have implemented the state-of-the-art techniques LEACH and
BEEM into the Contiki simulator to emulate a realistic communication environ-
ment for comparison with DeCoRIC and made the implementations open-source
for the community.

Further, we show through results that DeCoRIC converges to a resilient fully con-
nected network with bounded latency and achieves up to 110% and 70% higher
power efficiency and 109% and 42% longer lifetime compared to LEACH and
BEEM, respectively.

(iv) We summarize the contributions of DeCoRIC in Section 3.4.

3.1 Related work

Radio communication is a key component that largely influences the energy consump-
tion in IoT nodes. Clustering techniques aim at reducing this energy consumption by
grouping neighboring nodes into clusters. Each cluster has an active cluster head (CH)
as a representative node elected by either a central entity or by all the nodes in the
cluster. Clustering enables the regular (non-CH) nodes to reduce the periodicity of
transmission and operate in low-power mode, reducing the overall power consumed by
the system. The cluster head oversees the multi-hop communication and performs data
fusion resulting in minimal communication for the non-CH nodes. Clustering techniques
can be classified into centralized and decentralized methodologies, based on whether the
clustering decision and CH election are performed by a central entity or independently
by nodes of the network.

Centralized clustering. Centralized techniques rely on a central entity that has global
knowledge of the network and manages the CH election and clustering process. The clus-
tering operation can be based on the degree of a node in the network [43, 44], residual
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energy of nodes [45, 46] or other parameters. The clustering problem was formulated as
a linear programming problem in [47], representing a trade-off between energy consump-
tion and the quality of communication. A centralized version of a popular decentralized
algorithm, LEACH (described below), was developed in [34], where control decisions
are managed by a central entity, making more efficient CH selection than LEACH. Fur-
ther improvement was made in [48], where nodes are organized into a chain based on
proximity to evenly distribute the transmission energy. While there is no deterministic
polynomial algorithm that can partition a network topology into clusters [49], meta-
heuristic algorithms like particle swarm optimization and artificial bee colony have been
successfully applied in the clustering of wireless networks [50, 51]. Bee-Sensor-C [52]
implement a localized event-based clustering by grouping nodes around an event (e.g.
change in sensor value); sensors that are not in proximity to the event do not form
clusters resulting in low energy efficiency. The requirement of a central entity (often the
base station) in centralized systems results in higher clustering latency and adaptability
issues since every decision has to be relayed from the central entity. The centralized
approach also results in a single-point of failure at the central node, inhibiting effective
ways to enable resilience and connectivity. Although centralized techniques generally
offer superior energy efficiency, distributing the clustering operation among nodes aims
to mitigate some of these issues.

Decentralized clustering. HEED was one of the earliest decentralized techniques and
uses a combination of node degree and residual energy as the metric for clustering [25].
In the HEED clustering algorithm, the residual energy parameter creates a high density
of Tentative CHs which eventually become CH or non-CH nodes. BEEM [24] follows
similar steps as HEED with an exception of CH Election process that includes the degree
of a node in addition to HEED’s residual energy and probabilistic election. This improves
connectivity by letting nodes in denser areas expend higher energy. PASCAL improved
the power efficiency of HEED through multi-level sectoring [55].

Low-Energy Adaptive Clustering Hierarchy (LEACH) [23] is the most popular decen-
tralized clustering technique, that uses a probabilistic election for the CH nodes. The
role of CH is rotated among the other nodes of the cluster to ensure uniform energy
distribution across all cluster nodes. Enhancements to the LEACH protocol that enable
power optimization through two-level adaptive clustering [56], and multi-level hierarchi-
cal clustering [13] have also been proposed. More recent enhancements to the protocol
added residual energy [46] and multi-hop communication [57] in the CH election process
to achieve minor improvements in energy and throughput, respectively. [46] creates a
2-stage process with the first stage reusing LEACH and the second stage adding residual
energy information to update the CH.

Other notable works include overlapping clusters [58, 59] where nodes belong to mul-
tiple clusters simultaneously to ensure connectivity among the clusters. Research has
shown that unequal clusters tend to have better energy efficiency and can handle a large
volume of data transmissions [60]. Hence, unequal clusters [54] were used to reduce the
impact of high activity for nodes close to the base station. The work in [53] form multi-
level clustering using overhearing characteristics of the wireless medium to form clusters
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Table 3.1: Comparison of notable works in Literature.

Property/
protocol

LEACH
[23]

PEGASIS
[48]

HEED
[25]

PEACH
[53]

EEUC
[54]

BEEM
[24]

DeCoRIC

Location/
topology
data

No Yes No Yes Yes Yes No

Centralized/
Decentral-
ized

Decentra-
lized

Centra-
lized

Decentra-
lized

Decentra-
lized

Decentra-
lized

Decentra-
lized

Decentra-
lized

Complexity Low-
O(N)

High-
O(N2)

Low-
O(N)

High-
O(N2)

Low-
O(N)

Low-
O(N)

Low-
O(Degree)

Clustering
mechanism

Residual
energy

Location Residual
energy

Proximity
(over-
hearing)

Residual
energy
and Base
station
proxim-
ity

Residual
energy
and
Degree

Degree

Communica-
tion chan-
nel

TDMA CDMA TDMA TDMA TDMA TDMA CSMA

Connected
clusters

No No Yes No Yes Yes Yes

Resilience
to failures

No No No No No Yes Yes

adaptively. Algorithm for Cluster Establishment (ACE) [59] also employs an overlapping
strategy for connectivity with CH election based on the degree of node and supports for
ad-hoc network architecture creating high overlap among the clusters. Ring-Structured
Energy-Efficient Cluster Architecture (RECA) relies on pre-elected CHs to achieve en-
ergy efficiency by adding a dynamic re-clustering scheme that alters the clusters if the
energy falls below a preset threshold [61]. Few methods use multi-hop from CH to the
leaf nodes causing higher node activity. Methods such as [13] use multi-hop within the
cluster, causing high node activity and energy consumption, while also presenting chal-
lenges in reliable message delivery and clustering convergence when the network scales.
Techniques that employ overlapping for connectivity [58, 59] are susceptible to hidden
node collision faults, affecting reliable message exchange. However, most of the existing
decentralized schemes use a fixed network topology and cannot cater to dynamic ad-hoc
networks of the IoT. Further, most techniques do not consider connectivity across all
nodes and often result in isolated clusters, albeit the nodes are within the radio range
of each other. A summary of some works and their properties is shown in Table 3.1.

Additionally, there is a body of literature that looks into clustering from a graph
theoretic perspective [62, 63, 64]. The network is mapped as a unit disk graph to find the
minimum connected dominating set (MCDS) for various network topologies. However,
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the literature in this direction is unrelated to the presented algorithm in this chapter as
they do not consider any radio model in the network, leading to a theoretical solution
that may not be practically viable due to different assumptions of the model.

To the best of our knowledge and as observed in the literature [32], there is no existing
clustering method that combines the three properties of decentralization, connectivity
and resilience. DeCoRIC addressed these challenges while offering comparable energy
performance to the centralized clustering schemes.

3.2 DeCoRIC strategy

In this section, we will introduce the detailed clustering states of DeCoRIC. It is im-
portant to note that the network uses a fail-stop fault failure model, i.e., a faulty node
ceases to transmit information on the network.

3.2.1 Radio primitives

3.2.1.1 CSMA-CA

The MAC layer of the communication stack ensures that the channel is sensed before
starting a transmission. Two methods used in this layer to prevent collision are Carrier
Sense Multiple Access (CSMA) in the form of Collision Detection (CSMA-CD) and
Collision Avoidance (CSMA-CA).

CSMA-CD uses a simpler implementation by detecting a collision in the channel and
achieving faster recovery time and preventing further collisions. A re-transmission is
triggered to ensure every node detected the collision and starts a back-off before sending
the next data packet. It is used primarily in wired networks like Ethernet and is a costly
operation for wireless networks in terms of power and transmission time.

CSMA-CA is used in wireless networks and uses the listening mode of a device to en-
sure the channel is available before transmission. Additionally, the handshake messages-
Request to Send (RTS) and Clear to Send (CTS) assist in collision avoidance by con-
firming a channel clearance before starting the transmission. The total time taken to
access the channel is called the clear channel assessment time (τcca).

In our case, due to the use of a wireless channel, the MAC layer uses CSMA-CA to
prevent interference during channel access. The device introduces a random delay based
on a configurable parameter called the back-off period if the channel is busy or occupied.
Before any transmission is made, a Clear Channel Assessment (CCA) is carried out with
a time τcca to ensure that the channel is available for use. The transmission is made at
the boundary of a transmission slot after a random number (capped by the configuration)
of back-off intervals. The back-off interval is configured by changing the value of the
back-off exponent (BE) parameter. Thus, the total delay for back-off (τbo,i) is in the
range [0, 2BE(i) − 1] where i indicates the count of number of retries up to a maximum
of maxR. This process prevents interference when multiple devices try to access the
channel at the same time.
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3.2.1.2 Radio duty cycling

Radio communication consumes the highest power in wireless sensor devices [23]. Due
to high energy requirements, keeping a radio on all the time for communication could
deplete the battery completely within a short period of time. To achieve a longer lifetime
for devices, the radio resource has to be used sparingly i.e., the radio must be switched
off when the device is not sending or expecting to receive a message. In this regard,
the turning the radio on/off has to be made a periodic affair since the device may not
know the exact time of reception without synchronization. The period, RDCrate, is a
configurable parameter that is set based on the activity of the radio in the network.
Synchronization among devices allows the establishment of a schedule in the duration
when the radio is turned on. Conversely, without synchronization, a periodic switch to
the radio is employed based on the neighboring devices such that the transmission and
reception of the messages are maximized.

3.2.2 Clustering state machine

DeCoRIC operates independently at each node in four states defined by a Finite State
Machine (FSM) as shown in Figure 3.2. Each state represents the operating condition
of a node in relation to its network and lasts for a pre-configured period called round
(discussed in Section 3.2.2). All nodes power up in the Discovery state and run the
same algorithm, where each node waits to receive messages from its neighboring nodes
and evaluate its environment. The transition occurs at the end of the period to the
Election state, where the node with the highest degree declares itself as a CH followed by
neighboring nodes associating themselves to nearby CHs to form clusters. The degree of a
node is defined as the number of neighbors within its radio range capable of establishing
communication. Progression to the Correction state after the Election state initiates
evaluation of the connectivity property to identify isolated clusters/nodes. Non-CH
nodes within a cluster, which can enable connectivity between two CH nodes that are
out of range, break out to form Bridge-CH nodes to prevent network partitions. The
system transitions into the Stable state at the end of the Correction state, where the
nodes periodically check the status of their neighbors by exchanging health information.
In the Stable state, a Bridge-CH could upgrade itself to a CH, if newly joining nodes
have better proximity to the Bridge-CH and affiliate themselves with the Bridge-CH,
forming new clusters. If changes are detected (i.e., failures or new nodes in the system),
the nodes go back to the Election state and follow the path to re-establish a stable
operation.

To enable this operation, DeCoRIC uses broadcast messages as payload, shown in
Figure 3.3, encapsulated in the IEEE 802.15.4 frame. The Node ID field marks the ID
of the transmitter and is always present in all messages. Only the Node ID field is valid
in the Discovery state as there is no information about the neighboring nodes. In the
subsequent states, the CH ID and degree become known to each node, which feeds into
the neighbor list (i.e., a list of all neighbors a node has received direct messages from).
In different states, parts of the frame get filled based on the information each node has
about its neighbors While the neighbor list contains all neighbors that are in the range of

25



3 DeCoRIC: Energy-efficient, connected and resilient clustering
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Figure 3.2: DeCoRIC states and transition conditions.
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DeCoRIC message format

Figure 3.3: DeCoRIC message format.

the node, the connected nodes are maintained using a second list called the connectivity
list. The connectivity list gets updated periodically with every new message received,
reflecting the activity of connected nodes. This two-level list structure allows DeCoRIC
to eliminate false positives on the propagation of the activity of the nodes during the
Stable state (discussed in Section 3.2.2). The New CH ID field is used only when a new
node determines that it has to be the CH as it attained a higher degree than its current
CH. The operation details of each node as it transitions through the DeCoRIC states
are described below.

Discovery state

The neighbor discovery state enables each node to discover the neighboring nodes that it
can communicate with and, hence, its own degree. The steps involved in the Discovery
state are listed in Algorithm 1. In this state, each node sends a DeCoRIC ping message
with only the node ID and CH-ID fields filled with its own identifier (others left as
zeros). All nodes keep their radio active during this state to receive messages from their
neighbors.

The RSSI threshold is a configurable parameter to ensure that communication links
among the nodes can offer sufficient signal-to-noise ratio (SNR) [65] for reliable commu-
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Figure 3.4: DeCoRIC on an example network (not drawn to scale).

nication. A receiving node updates its degree and the neighbor list with each received
message. Nodes that meet a received signal strength indicator (RSSI) threshold are
marked as potential neighbors that could belong to the same cluster. Nodes that fail
to meet the threshold do not belong to the same cluster and are marked as external
neighbors. In both cases, each receiving node saves the ID of the transmitter to the
neighbor list.

For the example network shown in Figure 3.4, node 3 has a communication range of
the blue shaded area while the RSSI threshold limits the cluster range to the orange
shaded area. Node 3 receives messages from nodes 1, 2, 5, 7, 8, 10 and 14 leading to a
degree of 7. Node 8 is marked as an external neighbor with its received RSSI outside the
configured threshold while nodes 1, 2, 5, 7, 10 and 14 are marked as potential neighbors
since the configured RSSI threshold is within the blue shaded region that defines the
radio range of node 3. Node 3 includes these 7 neighbors in its neighbor list at the end
of this state. Similarly, node 9 marks node 6 as a potential neighbor, while nodes 4, 10,
12, 13, 14 become external neighbors to node 9. Nodes 12 and 13 are close to node 4 and
get marked as potential neighbors, while node 9 being further away becomes an external
neighbor to node 4. Node 11 is out of the RSSI threshold range of node 8 but within
the radio range. Thus, node 8 marks node 11 as an external neighbor. The number
of neighbors determines the degree of each node, and hence its potential to become a
cluster head.

Since the nodes in the network communicate asynchronously, multiple nodes will at-
tempt to transmit during any given time, resulting in collisions. Although the use
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of CSMA-CA avoids collisions, it is important that a node is able to complete the
transmission without failures or indefinite wait times due to back-off. As discussed in
Section 3.2.1.1, to ensure that each node has at least one DeCoRIC message, the trans-
mission time window is computed based on the IEEE 802.15.4 standard [66] including
the worst-case back-off. This value is aggregated over the maximum number of nodes
supported by the network to form a time window referred to as round in DeCoRIC,
calculated using the Equation 3.1. The nodes stay in the Discovery state for a timer
value of one round as shown in Figure 3.4, ensuring that all nodes have successfully
transmitted at least one DeCoRIC ping message. Based on the CSMA-CA standard
discussed in Section 3.2.1.1, the time duration of one round is calculated as:

round = N · (
maxR∑
i=0

τbo,i + τfr + τifs + +2 · τcca) (3.1)

where, τbo,i = (2maxBE(i) − 1) · τsymb

N is the maximum number of nodes in the network, maxR, τbo,i and τcca are derived
from Section 3.2.1.1 representing the maximum retries, worst-case back-off delay at
i th re-transmission and clear channel assessment time, respectively. τfr is the frame
transmission time, τifs is the minimum inter-frame period, maxBE is the maximum
back-off parameter at the i th re-transmission, τsymb is the back-off symbol period and is
the clear channel assessment time. The parameters maxBE, N and τfr are configured
with the same value at each node (as network parameters). Due to multiple nodes
transmitting in parallel, some nodes may not be able to transmit due to interference.
Thus, the round is the fundamental time window in DeCoRIC that is configured to be
wide enough to accommodate at least one transmission with high probability based on
the maximum number of nodes in the network.

Due to the lack of synchronization among nodes, other communication protocols such
as Time Division Multiple Access (TDMA) is not used. Additionally, the use of CSMA
allows the networks to scale while mechanisms such as TDMA can only accommodate
limited slots and require the network to be synchronized. With CSMA, the transmitted
frame length is flexible along with the underlying protocol (WiFi, 6LoWPAN, etc.),
whereas, while frame length impacts the number of available slots in TDMA.

Election state

In this state, nodes transmit a DeCoRIC message with an up-to-date degree field ob-
tained from the previous state to collectively form a cluster with the neighboring nodes.
Each receiving node independently compares its degree to the received degree to keep
track of the node with the highest degree (potential CH). Once each node has received
at least one transmission from each neighbor (ensured by round configuration) at the
end of the discovery state, each node sets itself or its neighbor as the CH based on the
highest degree. Thus, every node in the system affiliates itself to a CH, and forms a
cluster following the min-cut [67] strategy, with the cut defined by the degree of each
node. If multiple nodes have the same highest degree, the node with the lower node
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Algorithm 1 Neighbor Discovery state

1: LIST: Neighbor, Conn = FALSE
2: Degree = 0, CH.ID = node.ID
3: broadcast(Msg)
4: if rcv() then
5: Msg = rcv().data
6: Neighbor[Msg.ID], Conn[Msg.ID] = TRUE
7: Degree = Degree + 1
8: if rcv().RSSI < RSSI threshold then
9: Neighbor[Msg.ID].ext = TRUE

10: end if
11: end if

Algorithm 2 Cluster Election phase

1: broadcast(Msg)
2: if rcv() then
3: Msg = rcv().data
4: if Msg.Degree > Degree then CH.ID = Msg.ID
5: else if (Msg.Degree == Degree) & (node.ID > Msg.ID) then
6: CH.ID = Msg.ID
7: end if
8: end if

ID is chosen as CH. This configuration can be altered to choose a higher ID or support
priority for specific node IDs. The elected CH oversees communication within its cluster
and acts as the gateway for inter-cluster communication. Similar to the discovery state,
all nodes keep their radios active during this state and the operation of this state is
described in Algorithm 2. Since the CH can be determined with one DeCoRIC message
from each node in the network, the clusters can be formed within one round and the
nodes transition into the next state at the end of this period. A message from a new node
(if any) will be updated into the neighbor list and the connectivity list, while messages
from existing nodes reinforce their active state in the connectivity list. If the new node’s
degree is higher than the current CH, it triggers re-clustering.

From the example system in Figure 3.4, node 3 becomes a CH with nodes 1, 2, 5, 7,
10 and 14 as its members at the end of this state. Node 9 becomes a CH with node 6 as
a member, node 4 forms the CH with nodes 12 and 13 as members, while nodes 8 and
11 become independent CHs.

Correction state

Once the clusters are established, there exists the possibility of isolated clusters, i.e.,
the Cluster Heads are not within each others’ radio range, but some common nodes of
either cluster can communicate with both CHs and connect the two clusters. To prevent
isolated clusters or partitioned networks, each non-CH node verifies the connectivity
property based on the connectivity list and root-ID fields of the received messages. Any
non-CH node satisfying the connectivity property breaks out from the affiliated cluster
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Algorithm 3 Cluster Correction state

1: broadcast(Msg)
2: if rcv() then
3: Msg = rcv().data
4: if (Msg.CHID == Msg.ID) AND (Msg.CHID != CH.ID) then
5: if Msg.Conn[CH.ID] == 0 then
6: CH.ID = node.ID /* Detach from cluster */
7: end if
8: end if
9: end if

to form a Bridge-CH. This correction process is described in Algorithm 3. If multiple
nodes can enable connectivity between the same set of CHs, the rule for CH election
is followed, i.e., node with highest ID becomes the Bridge-CH node. In the event of
Bridge-CH failure, one of the redundant nodes (bridge) assumes the role of Bridge-CH
using the same rule to warrant connectivity. Redundant bridge nodes continue to operate
as non-CH nodes, reducing interference to the existing Bridge-CH nodes during inter-
cluster communication and, thereby, minimizing their power consumption. The clusters
and CHs established are finalized after the Bridge-CH election and the network moves
to a stable execution state.

It is energy efficient for the bridge node to break out into a separate CH to facilitate
communication between two clusters rather than being a CM of two clusters at the same
time. This reduces their radio on time allowing them to be active only during inter-
cluster communication. Referring back to the example in Figure 3.4, nodes 10 and 14
identify that they can enable direct connectivity between CH node 9 and their current
CH node 3 based on information from the connectivity list. As node 10 has the same
degree as node 14, node 10 breaks out as the Bridge-CH because of its lower ID, while
node 14 continues as a cluster member. Node 14 is the redundant bridge node that
becomes a Bridge-CH in the event of node 10 failure.

The correction state ensures that non-CH nodes strictly remain in low-power mode
without involvement in inter-cluster communication while connectivity among nodes is
ensured by CH nodes. Further, this state minimizes energy overhead and latency in inter-
cluster communication by enabling single-hop connection among CHs, while lowering
congestion and error propagation at the Bridge-CH interfaces (hidden node collision
problem) [68]. Hidden node collisions are caused due to multiple nodes transmitting to
a common node in parallel while the nodes are out of each other’s radio range. A node
that breaks out from a cluster will not attempt to reintegrate into a cluster and remains
an independent cluster head unless a network change invalidates the correction. This
ensures that the algorithm converges to an stable state at each node in a time-bound
manner without frequent re-clustering.

Stable state

In the Stable state, the CH nodes broadcast a fully populated DeCoRIC frame as health
message every round. The health message informs the other nodes that the sender node

30



3.2 DeCoRIC strategy

has not exhausted its energy, allowing every node to detect node failures within its radio
range. They also serve as a re-clustering trigger if a change is detected in the network
topology. All nodes activate radio duty cycling (RDC) [39] in this state as described
in Section 3.2.1.2, keeping the receiver active only in a periodic manner to minimize
the power consumed by the radio. Thus, a successful transmission may not guarantee
reception at each node. To address this, DeCoRIC defines a configurable period called
cycle as the minimum set of rounds that will probabilistically ensure that a non-CH
node receives at least one transmission from its CH. Cycle duration is computed as:

cycle = h · LCM(txnfreq/h,RDCrate/h) (3.2)

where, h = GCD(txnfreq, RDCrate),

txnfreq is the round duration, RDCrate is the RDC frequency, i.e, the number of ON
periods per second (number of times the radio is turned on per second), GCD() and
LCM() are the greatest common divisor and least common multiple functions, respec-
tively.

Non-CH nodes aggregate the received CH health messages over a cycle and acknowl-
edge them once with a health message at the end of the cycle. The acknowledgment
message includes the ID of the leaf node and its own connectivity list (i.e., the list of
neighbors from which a direct message was received). The per-cycle message from non-
CH nodes not only reduces network traffic but also conserves energy at these nodes.
The connectivity list aids in failure detection and gets updated upon receiving health
messages.

The health messages enable the detection of failed nodes in the system and new nodes
in the vicinity. This process is explained further in the following section.

Failure detection. Following the Discovery, Election and Correction states, all the
nodes switch to the RDC mechanism and have different transmission intervals depending
on their CH/non-CH status. Each non-CH node (or leaf node) only transmits periodic
health messages every cycle to ensure that it is still active. Low transmission frequency
reduces power consumption for the leaf nodes as well as the channel interference. The
CH nodes continue to transmit a health message every round, while the non-CH nodes
aggregate the CH health messages every cycle and respond with a health message at the
end of a cycle. As the nodes are not synchronized, the sleep windows at each node might
be different. Thus, transmissions from a node may be missed by its neighbors, leading
to network instability due to false positives about a node’s state.

To overcome the above problem, DeCoRIC employs a modified gossiping scheme,
derived from [29], to spread information about node health. The gossip mechanism of
data transmission is similar to the flooding mechanism without the overhead of significant
message transmissions. Each node maintains a fail counter (counting rounds) Tfail for
every node in its neighbor list and it is incremented at every round. Any node which
receives a direct message from a neighbor node resets the corresponding fail counter
(counting rounds) to zero. Further, each node gossips about the health of the neighbor
node by including its ID in its connectivity list transmitted during its health message as
the nodes within a cluster are in each others’ radio range. Meanwhile, if a node receives
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Algorithm 4 Stable state

1: if rcv() then
2: Msg = rcv().data
3: if Msg.Degree >CH.Degree then
4: CH.ID = Msg.ID
5: State = ELECTION
6: end if
7: for each item i in Conn do
8: if (Msg.Conn[i] & Conn[i]) then
9: fail[i] = 0

10: else if (Msg.Conn[i] & !Conn[i]) then
11: fail[i] = 0.5 · fail[i]
12: end if
13: end for
14: Neighbor[Msg.ID], Conn[Msg.ID] = TRUE
15: end if
16: if round then
17: for each item i in Conn do
18: if fail[i] ≥ Tfail then Conn[i] = FALSE
19: end if
20: if fail[i] ≥ 2 · Tfail then Neighbor[i] = FALSE
21: else fail[i] = fail[i] + 1
22: end if
23: end for
24: if node.ID == CH.ID then broadcast(Msg)
25: else if cycle then broadcast(Msg)
26: end if
27: end if

a gossip message about a neighbor node (i.e., from the connectivity list of a received
message), the fail counter corresponding to that node is reduced by half and continues
to wait for a direct message from that neighbor as indicated in lines 7-13 of Algorithm 4.
When the fail counter corresponding to a neighbor reaches Tfail at a node, the neighbor
ID is removed from its connectivity list and health message. However, the gossip is only
re-initiated (the neighbor ID included in the connectivity list) upon reception of a direct
message and not based on another gossip message, preventing perpetual gossiping of a
failed node.

Assuming the fail-stop fault model, once the fail counter reaches 2 · Tfail, the corre-
sponding node’s ID is marked as failed and also removed from its neighbor list. The
stable state operation and the failure detection process are shown in Algorithm 4. The
gossiping scheme accommodates false triggers caused by missed packets or transient net-
work conditions, at the expense of increased detection time for node failures. Gossiping
also aids in establishing communication and getting updates on its neighbors in an asyn-
chronous network. In our experiments, we observed that the false negatives are virtually
non-existent while reliably detecting real failures.
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Network adaptation. A failure of a node or the addition of new nodes creates a change
in the clustered architecture of the network. The impact of the change ranges from a
few clusters (new node addition or non-CH failure) to the entire network (CH failures)
depending on the connectivity of the failed node to other clusters. Only the nodes whose
degree change is detected as a result of node failure switch to the Election state; unaf-
fected nodes/clusters continue to operate in the Stable state as long as there is no change
in the Bridge-CH node. A re-clustering could also be triggered if there are significant
network changes across multiple clusters due to dynamic changes in the network (e.g.
Mobility of nodes, change of Bridge-CH, etc.). Finally, when a new node tries to inte-
grate into the network (i.e., observing health messages), it joins into an existing cluster
and could replace the current CH based on its degree that becomes apparent over the
next cycle using the New CH ID field. If the degree of the new node is higher than CH
degree, all the nodes in the cluster undergo re-clustering to establish a new cluster with
the new node as the CH. A new node can be integrated into the cluster at run-time by
comparing the ID of the received message with its neighbor list irrespective of the state.

In our example network, when node 4 was deleted, it was observed that both nodes
12 and 13 go into the Election state after the detection of the failure. After the Election
state, node 12 declares itself as the new CH while node 13 operates as non-CH in the
new cluster. Hence in a large network, only the affected cluster elements will switch
their state, while unaffected nodes continue in a stable operating state.

3.3 Analysis & evaluation

In this section, we present the evaluation of DeCoRIC using the Cooja Simulator from
Contiki [39]. More details on the Cooja simulator can be found in Section 2.4.1. We
implemented LEACH and BEEM protocols on Contiki for comparison with DeCoRIC
as they are considered as benchmarks in the community. All the three protocols are
evaluated with multiple experiments in the same environment. We measure the average
power consumption per node of all clustering algorithms over a period of time. Further,
as the nodes exhaust their energy, we observe the time for the death (battery exhaustion)
of the first node in the network to compare the power efficiency of the protocols. The
protocol with the least power consumption and the longest time to death for the first node
would have the most power-efficient operation, assuming they offer similar connectivity.
We also show the progression of nodes exhausting their energy over time to quantify the
power distribution of the protocols among the nodes of the network. This experiment
also gives a measure of time during which the network stays intact and connected. To
further illustrate the connectivity, we reduce the transmission range of nodes in the
simulation to show the time taken and power expended by the protocols to achieve
100% connectivity. Additionally, our test scenarios analyze and evaluate the resilience
of DeCoRIC by triggering faults in the network. In this case, we quantify the worst-case
delay before the network stabilizes after the re-clustering.

LEACH and BEEM implementation. LEACH [23] and HEED [25] are used as bench-
marks in clustering by the community [32]. As BEEM [24] extends HEED ensuring
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connectivity, LEACH and BEEM are chosen as representative decentralized techniques
for comparison with DeCoRIC. The original LEACH and BEEM implementations were
done in MATLAB which abstracts away the low-level communication details (hardware
radio model). Due to a common platform, we were able to forgo the radio modeling
described in [23]. Also, the MATLAB implementations were inherently centralized since
the simulation system has an overall view of the state of each node. Hence, we imple-
mented LEACH and BEEM on Contiki based on the original protocol in MATLAB and
the description in the papers [23, 24] 1. At the lowest level, we use the Contiki radio
model as a common platform for emulating LEACH, BEEM and DeCoRIC using the
Cooja Simulator; the higher layers are the C implementations of the respective protocols.
All the protocol implementations in C are available as open-source for research use.

LEACH and BEEM also perform clustering over a series of states with a steady-state
using TDMA among the cluster nodes. The radio of the non-CH nodes on both LEACH
and BEEM implementations are turned off once the clustering is complete, except when
they have to transmit messages to the CH. Meanwhile, the radio of the CH is always kept
on to receive messages from non-CH nodes of the cluster as described by the protocols.
We use the synchronization provided by Contiki to achieve TDMA among the nodes for
LEACH and BEEM. The TDMA slots are mapped using the RDC mechanism supported
by the Contiki radio model.

Both protocols differ in their CH election process which has been implemented accord-
ing to the description in the respective papers [23, 24]. LEACH uses random probabilistic
values to elect CH nodes while BEEM uses degree, residual energy as well as probabil-
ities for the CH election. LEACH does not focus on the connectivity of the network;
BEEM uses the areas of high node density that expend more energy to retain energy in
other areas extending the connectivity of the network.

Although both protocols differ in their CH election process, they have a cyclic re-
clustering mechanism that changes the structure of the underlying clusters completely
after a period defined as an epoch. An optimal value of the epoch is paramount for
energy efficiency on both protocols. We conducted experiments to measure the power
consumption by varying different epoch values. On the one hand, it was observed that
the time to energy exhaustion decreases and power consumption increases for a smaller
epoch since there is a constant re-clustering. On the other hand, higher epoch values
yield a lower power consumption and a longer time to energy exhaustion.

Experimental setup. All the experiments were performed on the Cooja simulator with
different parameters. DeCoRIC, LEACH and BEEM were run for a group of 50, 100
and 200 nodes arranged in 100 random topologies in an area of 100 x 100 m2. The
topologies are common for all three protocols, with nodes placed at random locations
within a given area using the random placement feature of the Cooja simulator. The
packet transmission rate is 1 packet/round with a transmission range of 50 m for each
node [69]. Round in DeCoRIC, is set based on Equation 3.1 as 0.8, 1.1 and 2.2 seconds,
respectively, for 50, 100 and 200 nodes. The lower bound of 0.8 seconds is a restriction
imposed by the simulator, below which transmission overlap was observed due to in-

1First implementation of a decentralized clustering system with hardware emulation.
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Table 3.2: Parameters used in our experimental setup for evaluating DeCoRIC against LEACH
and BEEM.

Parameter Values used

Area (mˆ2) 100x100
Number of nodes (N) {50, 100, 200}
Transmission Range (m) 50
CDMA MAC Protocol CSMA-CA (CXMAC), TDMA
Radio Frequency (GHz) 2.4
Topologies {Random}
maxBE 3
Packet rate (packets/node/round) 1 round
RDC rate (activations/s) 32

complete initialization, resulting in unintended collisions and data loss. Before a frame
can complete initialization and start transmission, the timer of the simulator expires to
start a new frame initialization, losing the initial frame to be sent. One cycle is con-
figured as 6 rounds, while Tfail for CH and Tfail for non-CH nodes are computed as 6
and 36 rounds, respectively, using Equations 3.1 and 3.2. To ensure that all three pro-
tocols achieve comparable stable state duration before the cyclic re-clustering process,
the epoch was chosen to be 10 rounds. As DeCoRIC has transmissions at all nodes at
the cycle boundary, the re-clustering interval for LEACH and BEEM was configured to
6 rounds to facilitate equivalent conditions for experiments. This is in congruence with
the round configuration chosen for DeCoRIC where transmissions in all nodes occur at
the cycle boundary which is configured to be 6 rounds as elaborated in Section 3.2.2,
creating equivalent conditions for all the algorithms without any unfair advantage to any
of them. The simulation parameters used for our test setup are shown in Table 3.2.

3.3.1 Power consumption

Initially, we evaluate the change in average power consumption of the network and
the resulting number of CH nodes by varying the RSSI value in DeCoRIC. Since the
CH is primarily responsible for communication with other clusters and maintaining the
connectivity within the cluster, a lower number of CHs translates to larger clusters and
vice-versa. This trade-off influences the number of messages transmitted externally and
is reflected as power savings/expenditure. Figure 3.5 shows the results of the experiment
across different RSSI reception thresholds of -45 dBm, -65 dBm and -85 dBm represented
by the x-axis for 100 nodes. The y-axis on the left represents the number of CHs formed
while the average power consumption per node in milliWatts (mW) is shown on the
y-axis to the right. The results show that in the case of -45 dBm nodes (lower effective
radio range), less than 30% of nodes act as CH nodes on average with a worst-case of
43% CH nodes. This is a result of many nodes being marked as external neighbors in
this case due to their positions in the topology resulting in more than half the nodes
acting as CH.
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Figure 3.5: Number of CH nodes and average power consumed by the nodes running DeCoRIC
over different RSSI thresholds to form clusters.

As the RSSI threshold increases, DeCoRIC marks more nodes as potential neighbors,
with a mean and worst case of 13 and 25 CHs at -85 dBm; a mean and worst case of 17
and 33 CHs at -65 dBm. In comparison, most clustering schemes (including LEACH and
BEEM) predefine the number of CHs to be between 5–25% (see [45, 47, 34, 49]) of the
total number of nodes with no consideration for the network structure, often resulting in
disconnected clusters. The outliers in the number of CHs for DeCoRIC can be attributed
to the randomness of the topologies since nodes that are farther than the radio range of
the RSSI threshold become members of different clusters.

Changing the RSSI results in a change of the cluster size, with higher RSSI leading to
bigger clusters and lower RSSI leading to smaller ones. Larger clusters expend higher
energy on CHs while reducing the overall network power consumption; smaller clusters
result in higher network power consumption with many CH nodes as seen in Figure 3.5.
The change in power consumption is more pronounced as the number of nodes scales.

Better clustering in DeCoRIC results in the reduced average power consumption across
nodes in the network, as shown by the downward trend in the average power consump-
tion. Further, the outliers in the average power can be attributed to the fact that
DeCoRIC employs Bridge-CHs to facilitate connectivity in the network, which increases
the average power consumption. The topologies with spatially separated regions of high
node density observe a higher number of Bridge-CHs to ensure connectivity between the
regions.

The RSSI threshold of -65 dBm is chosen for the rest of the experiments for DeCoRIC.
To demonstrate the power saving in DeCoRIC, first, we compare average power per node
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Figure 3.6: Average Power Consumption vs Time of first node death in the network for
DeCoRIC compared against LEACH and BEEM.

in milliWatts (mW) along with the time of their first node death (exhaust nodes’ power
completely) over a simulated duration of 1000 seconds for 50, 100 and 200 nodes in the
network across LEACH, BEEM and DeCoRIC.

The results of the first comparison experiment are shown in Figure 3.6, where the
x-axis and y-axis represent the time for the first node death in seconds and the average
power consumption per node in mW, respectively. The colors represent the number
of nodes in the network, while the different shapes represent the protocols. From the
results, it is seen that our proposed method has the least power consumption per node,
thereby prolonging the time for the first node death. It offers a best-case of 70% and
110% improved power efficiency over LEACH and BEEM for 50 nodes. Similarly, the
best-case improvement for the time of first node death is 42% and 109% over LEACH
and BEEM for 200 nodes, respectively.

The energy savings in LEACH can be attributed to the proactive load distribution
strategy with periodic re-clustering. Hence, the first node exhausts its energy much later
compared to BEEM as the power distribution is balanced. Besides, LEACH requires
significantly more messages as each node exchanges information about its residual energy
to elect the next CH. On the contrary, BEEM adopts a strategy where CH nodes remain
unchanged during re-clustering to retain connectivity, while non-CH nodes are retained in
a low-power mode during the periodic re-clustering. Due to this strategy, the CH nodes
exhaust their power rapidly due to prolonged radio on-time. The periodic clustering
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Figure 3.7: Battery drain of the network of DeCoRIC, LEACH and BEEM. The gray area
indicates the variation between the minimum and maximum number of alive nodes
with the solid line representing the average number of alive nodes.

in LEACH and BEEM forces the nodes to keep their radios on regularly, resulting in
higher power consumption for all the nodes. The plot reflects the decrease in total
average power as the number of nodes scales while the death of the first node happens
faster.

By contrast, DeCoRIC uses a reactive strategy, reducing the activity of the nodes
in the Stable state and re-clustering only for node failures. As there is no TDMA,
all the nodes experience similar radio activity subject to the density of nodes in the
network. Similar to LEACH and BEEM, there is a decrease in power consumption
and faster depletion of node power as the network scales. Both BEEM and DeCoRIC
retain the CH to ensure connectivity. However, DeCoRIC balances the radio activity
efficiently with RDC, re-clustering only if node failures are detected and strives to achieve
maximum connectivity. From Figure 3.6, we observe that the power consumption and
the active time of nodes are inversely related. The power efficiency of DeCoRIC can
be significantly improved with synchronization through lower activity and adapting (re-
clustering) only to node/network failures when detected. This makes DeCoRIC ideally
suited for critical low-energy IoT systems that need to ensure that the network can adapt
to ad-hoc conditions. The synchronization over DeCoRIC will be discussed in Chapter 5.

To maintain connectivity over a longer period, the power dissipation has to be managed
efficiently among all the nodes. To quantify the rate of power consumption and the
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time of connectivity, we show the time at which the nodes exhaust their energies in
a simulation of 1000 seconds. To identify residual energy in the Contiki framework,
the power model in [70] was integrated with Powertrace to detect the complete drain of
energy in the nodes. To begin with, all nodes start with a 2000 µAh (micro Ampere hour)
battery capacity. The time at which nodes exhaust their remaining power progressively
is shown in Figure 3.7. The y-axis of the plot represents the number of nodes in the
network at the start of the simulation while the x-axis represents the time in seconds.

The variation of node lifetime in the three algorithms across different simulations
is due to the random placement of nodes in different topologies, resulting in different
clusters in each run. The energy exhaustion rate of nodes is higher in LEACH than
BEEM and DeCoRIC, as most nodes would have expended similar energies. LEACH
has frequent re-clustering where CHs are rotated among different nodes balancing the
load of CHs, resulting in an abrupt drop in active nodes when the remaining power is
depleted. BEEM has certain nodes in a denser area that start consuming energy after
the death of some CH nodes, leading to longer battery life for these nodes. However,
since nodes exhaust their energy at an early stage in BEEM, some key bridge nodes
could exhaust energy quicker than the other nodes, leading to a disconnected network.
DeCoRIC manages power more efficiently with a balanced use of radio and longer sleep
times of non-CH nodes using RDC, providing a longer time for the network to stay
connected before the nodes exhaust their powers. Since both DeCoRIC and BEEM
aim to achieve connectivity, we see that the number of active nodes at the end of the
experiment is similar for both algorithms.

3.3.2 Connectivity

We compare the clustering algorithms for their ability to achieve connectivity among the
nodes. Connectivity property is paramount in safety-critical applications where data at
one part of the network has to be relayed to other parts quickly. In a network of N
nodes, there are NC2 combinations of nodes; some pairs among these establish connec-
tivity across the network through different clusters. CHs and their cluster members form
pairs for routing within a cluster while multiple neighboring CHs form a path to route
messages across clusters. To test connectivity among nodes of the network, we reduce
the transceiver range to 20m, as a larger transmission range in a denser network enables
all the nodes to be in communication range with each other. This is a common strategy
in dense networks for mitigating collisions, thereby reducing re-transmissions [71]. Re-
duction in range enables a reduction in transmission power which is the goal for most
wireless sensors and IoT devices.

We measure connectivity as the ratio of the number of connected nodes over the total
N nodes in the network. Non-CH nodes of a cluster form a connected pair with its CH.
Similarly, neighboring CH nodes form a connected path among the clusters. Combining
such pairs, we get all the connected nodes in the network (where a routing path exists).
Depending on the topology, the maximum connectivity could vary from a single cluster
covering a few nodes to multiple clusters covering all N nodes of the network. The former
is a result when CHs are not in range of each other, forming independent clusters, and
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Figure 3.8: Power consumed and time taken for the network clustering normalized by connec-
tivity among all the nodes in the network.

the latter is formed when all CHs are in the range of one another to form a path among
all N nodes.

While DeCoRIC and BEEM strive to achieve 100% connectivity, DeCoRIC completes
the clustering with less power and a slightly longer time than BEEM. DeCoRIC dy-
namically determines the number of CHs through node activity and configures RSSI
thresholds in a decentralized manner. The Correction state in the DeCoRIC protocol
inspects the cluster nodes to check for cases where connectivity can be established. In
contrast, LEACH consumes the least time and power for clustering but does not en-
sure connectivity. Hence, to compare the performance of all the clustering schemes,
we normalize both the power (power/connectivity) and time (time/connectivity) in the
clustered network by the connectivity achieved by the algorithms.

The results of the comparison are shown in Figure 3.8. The x-axis represents the
number of nodes in the network. The y-axis of the left sub-plot represents the ratio of
clustering power over connectivity in milliWatts while the y-axis of the right sub-plot
indicates the ratio of clustering time over connectivity in seconds. As seen from the
left sub-plot, DeCoRIC expends the least power to achieve 100% connectivity, followed
by BEEM and LEACH. In contrast to the clustering power, DeCoRIC needs slightly
longer to complete clustering compared to BEEM as shown in the right sub-plot. The
variations are attributed to the randomness of the topologies yielding different extents
of connectivity.

When the size of the network scales up within the same area, the density of nodes
increases and consequently, the nodes achieve better connectivity. Although LEACH
consumes the least power and time to complete clustering, the results normalized over
connectivity (connected nodes/total nodes) show that LEACH would need much higher
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time to move towards 100% connectivity. Additionally, with probabilistic CH election
and cyclic re-clustering in LEACH, the connectivity varies in the clustered networks over
different clustering repetitions. BEEM includes the cyclic re-clustering but retains the
same CH to maintain connectivity leading to faster energy exhaustion of these nodes. As
we saw in the previous experiment, BEEM has the fastest first node death, leading to a
faster loss in connectivity. The 100 randomly sampled topologies prevent any sampling
bias and are representative of the changes in connectivity due to the change of CHs
resulting from re-clustering changes.

Similarly, the CHs are retained after the clustering is complete in DeCoRIC. However,
over multiple epochs, the power consumption reduces significantly for DeCoRIC due
to better radio management of the nodes. The longer time of clustering in DeCoRIC
is attributed to the Correction state where the number of CH nodes is reduced while
striving to attain 100% connectivity. The slightly longer clustering of DeCoRIC creates
optimal clusters for better power and node failure management, and hence, sustains the
connectivity for a longer time. BEEM is faster as it does not consider the number of
CH nodes active while achieving connectivity, thereby expending additional energy and
leading to faster node deaths as seen in Figure 3.7. Hence, overall connected time for
BEEM is significantly lower than DeCoRIC, where DeCoRIC achieves over 2x longer
connected time.

3.3.3 Evaluation of resilience

The round/cycle period in DeCoRIC aims to compensate for the lack of synchronization
between the nodes, as explained in Section 3.2.2. Since each round specifies a peri-
odic set of actions (i.e., CH transmission, non-CH nodes receiving without any sequence
order), the timing drift between nodes can be bounded to one round. RDC also in-
fluences successful message reception as the sleep time of a node may be aligned with
the transmission window for the second node. DeCoRIC employs gossiping to overcome
this challenge, which allows a node’s active state to be propagated by other nodes that
receive a direct message. As explained in Section 3.2.2, the failure window (Tfail) covers
the uncertainties caused due to the asynchronous RDC periods and transmission times,
by defining Tfail as the least common multiple of the respective time periods.

If a transmission is not received at its neighbor and the neighbor receives a late gossip
before its fail counter expires (at Tfail), then the counter is halved as it waits to see if
it was a transient fault. In an actual system, a health message can be received possibly
anywhere within the Tfail window at a receiving node. Thus, in the worst-case, there
can be an additional half period (of Tfail) that a neighbor waits for before declaring the
node to have failed. In the case of a node failure, no direct message is received within
Tfail at receivers, and they stop gossiping about the active state of the node.

To evaluate resilience, we start with a stable network condition that allows us to
model the best and worst-case node failures: a Bridge-CH node failure affecting multiple
clusters, CH node failure, non-CH node failure and addition of a new node. In each case,
we quantified the time taken by the network to detect the change, adapt and restart
communication using our simulations. The computed results are shown in Table 3.3.
The fail period depends on the activity rate of the node; for CH nodes, their failure
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Table 3.3: Best and worst-case reaction time at each node with DeCoRIC in case of
network changes.

Network change
Detection time

Recovery time
Best-Case Worst-Case

Fail: nCH node 2 ·T nCH
fail 2.5 ·T nCH

fail immediate
Fail: CH node 2 ·TCH

fail 2.5 ·TCH
fail 2 rounds

Fail: Bridge-CH node 2 ·TCH
fail 2.5 ·TCH

fail 2 rounds
Add: New node 3 rounds 1 cycle [0 or 3] rounds

can be detected within a shorter window (TCH
fail ) compared to non-CH nodes since CH

nodes transmit more often than non-CH nodes. The constant time taken to detect the
failure of a node or the presence of a new node in the radio range is ensured by the
activity window approach in DeCoRIC (Section 3.2.2). Once a failure of CH or Bridge-
CH node is detected, the nodes switch to the Election state immediately and complete
the recovery process over the next 2 rounds. In the case of a non-CH node failure, the
recovery is immediate as there are no changes triggered in the cluster itself.

When a new node integrates into the cluster, it can start following a CH within three
rounds by listening to its broadcast messages. However, the new node can only determine
its degree over the next cycle when other non-CH nodes transmit. If the new node has a
higher degree than the current CH, it will transition as the CH by setting the New CH
ID field of the message frame, causing affiliated nodes to switch to the election state to
complete recovery. Otherwise, the recovery is completed immediately, and the new node
integrates as a regular non-CH node.

In order to demonstrate the failure detection and update mechanism of DeCoRIC, we
measure the time needed to start re-clustering (failure detection) for a CH node and non-
CH node failure. During the simulation, a node is randomly deleted from the network
during the Stable state. Nodes identify themselves with CH/non-CH status after the
clustering is complete. We access the detection time for such random failures in CH
(could be a Bridge-CH node) and non-CH nodes. In DeCoRIC, a CH death is detected
within 2.5 · TCH

fail and a non-CH death is detected after 2.5 · T nCH
fail including gossiping

as described in Table 3.3. We simulated the time for detection of a failure in case of
removal of a CH node and a non-CH in DeCoRIC. and the detection time is measured
in seconds.

The measured bound was tested and compared with the established theoretical bounds
as shown Figure 3.9. As seen in the figure, we observe the detection time in DeCoRIC
is in agreement with the theoretical bounds described earlier. As an example for 100
nodes in the network, we observed that the failure was detected at a theoretical bound
of 15 rounds in the case of CH failures and 90 rounds in the case of non-CH failures.
From Figure 3.9, we notice the worst-case detection was 14 rounds (15.32s) for CH nodes
while 75 rounds (81.78s) for non-CH nodes, thus recovering to a stable operating state
in a time-bound manner. In case of a non-CH node failure, the stability of the network
and the clusters are not impacted even though the detection time is longer than for a
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Figure 3.9: Time taken for the network to re-cluster and stabilize in case of a node death.

CH node. Re-clustering occurs if the detected dead/dying node was a CH, triggering a
state change to the election state. This operation could be local or extend to a global
scale based on the dependencies with other nodes of the network.

Meanwhile, LEACH and BEEM do not have a failure detection mechanism within the
protocol. Clustering operation repeats after every epoch, providing a fixed upper bound
for the time to re-cluster as there is no explicit failure detection mechanism. Hence, there
is no direct comparison between DeCoRIC and these protocols. This property results in
a constant recovery time for any CH node independent of the topology changes in the
network.

3.4 Summary

In this chapter, we proposed a power-efficient decentralized clustering technique that can
dynamically detect and adapt to node failures at runtime while ensuring connectivity
among the nodes. The protocol enables the identification of nodes that enable connec-
tivity and strives to create clusters that are connected while consuming minimal power
in the process. DeCoRIC provides a resilient and reliable communication framework in a
network of any topological structure. We show that the network can re-organize to form
new clusters while maintaining connectivity even in case of critical CH failures, with de-
terministic latency. We implemented the state-of-the-art benchmark clustering protocol
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LEACH as well as BEEM, the protocol for connectivity, in the Contiki simulator for
comparison with DeCoRIC.

We demonstrate that the number of CHs that are elected independently in DeCoRIC is
similar to the number of CHs decided apriori in centralized schemes. We also showed that
DeCoRIC achieves up to 70% better power efficiency and 42% longer lifetime compared
to LEACH while achieving up to 110% better power efficiency and 109% longer network
lifetime in comparison to BEEM. Connectivity is achieved among nodes even in sparse
networks using less power by accepting a slightly longer time for the clustering compared
to BEEM. DeCoRIC takes the first step towards designing a communication strategy that
incorporates all the three requirements of energy efficiency, adaptability and resilience
into the IoT network.
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Mobile devices

In the previous chapter (Chapter 3), we introduced an energy-efficient and resilient
clustering scheme DeCoRIC to establish a clustered architecture on which applications
can be deployed. To utilize DeCoRIC on a real-world application, we deploy the clustered
architecture atop an electric charging infrastructure to achieve demand response in a
dynamic load environment. Smart devices and electric vehicles (EVs) form a skewed
load amidst existing devices/appliances of the grid due to their variable consumption
profiles and geographic mobility.

The current growth in IoT has expanded the communication infrastructure between
devices and the grid. IoT-enabled devices can also measure and adjust the energy de-
mand requested from the grid. From the perspective of the grid, scheduling demand
requests from all the devices could result in outages and/or prohibitive costs during
times when demand exceeds the available peak capacity of the grid [72]. At a 50%
higher fuel efficiency than their gasoline counterparts, EVs can consume power of up to
7 average North American households [73, 74]. For a user, the price difference between
excess usage and normal usage can be up to a factor of 200 or more [75]. Further, the
arrival and the demand of mobile devices such as Electric Vehicles (EVs) is generally
not known apriori, leading to uncertainty in demand planning.

At the grid, the penetration of renewables has created prosumers (consumers who are
producers) who sell their excess energy to other consumers. Renewable sources have al-
leviated the supply with distributed energy resources (DERs) in the form of aggregators
that can supply additional energy in the form of aggregators (micro-and nano-grids) [76].
The additional resources at the supply bridge the disparity between the exponential rise
in the number of EVs and the limited charging stations. Traditional demand-response
involves devices receiving power from a specific (geographically limited) location of the
grid. These solutions aim to ensure that the peak capacity of the aggregator does not
exceed while maximizing the number of devices that satisfy their demand at the same ge-
ographic location. However, with the availability of multiple aggregators from prosumers,
EVs and other mobile devices (EVs being the representative mobile device) communi-
cate with the aggregators and move to different locations to improve the demand-side
management (DSM) [33].

The primary goal of DSM is to efficiently utilize the existing grid capacity to meet
the demands of the devices without any grid enhancements [77, 78]. Demand satisfac-
tion entails fulfilling the energy demand within a specified time (deadline). Existing
works [79, 80] perform DSM by utilizing the day-ahead schedule such that the demand
for some devices can be shifted either to an earlier or later time. Additionally, most of the
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Figure 4.1: The grid aggregator and the devices (including mobile devices formed into clusters)

existing solutions consider only a single mode of operation (unique energy consumption
value) for the energy demand of the device during scheduling [33, 77].

Most electrical devices are heterogeneous devices that operate in multiple power
modes, e.g., a refrigerator can operate in modes such as defrost, quick freeze, etc. [81].
With mobile devices, the demand can be shifted not only in time but geographically as
well. In addition to the demand and deadline parameters, we model the device character-
istics such as multiple power modes and mobility. The model’s objective is to maximize
the utility/benefit of the devices obtained by fulfilling their demanded energy within the
deadline.

We consider a two-tier hierarchical network consisting of an aggregator at the higher
level (supplier) and devices at the lower level (consumer) as shown in Figure 4.1. Using
concepts of connectivity and clustering from the previous chapter, we establish the clus-
tered topology where the CH nodes are the aggregators that manage communication and
energy supply. Owing to the geographically-fixed nature of existing grid infrastructure,
the aggregators/CH are fixed within a cluster. An aggregator interfaces with the grid
and manages the demand from a group of devices within its cluster as CM nodes based
on its maximum capacity. Note that this chapter uses the terms CH and aggregators
interchangeably. In contrast to DeCoRIC, the aggregators are assumed to be connected
to each other using links of a backhaul network similar to existing grids. Devices can
turn on/arrive at any time and request their demand to the associated cluster’s aggre-
gator. The power supply is realized through an electrical transmission line while the
communication is either through a wired or wireless channel.
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4.1 Device mobility evaluation

In this chapter, we develop an efficient scheduling algorithm to maximize the utility of
the devices while not exceeding the aggregator’s peak capacity at any point. Initially, we
demonstrate through a hardware testbed the feasibility of device mobility across different
clusters. We consider heterogeneous devices having a different power consumption profile
(e.g., EVs, Washing machine, etc.) and various modes of operation (e.g., low-power
mode, sleep mode, etc.). Based on the device parameters such as requested demand,
deadline, operating modes, etc., the aggregator assigns priorities to devices and schedules
them to maximize their utility. To summarize, we make the following contributions:

• Demonstrate device mobility through a simple experiment and establish the foun-
dation for clustered architecture for the load balancing application.

• Generic device modeling: We integrate various device attributes in a model to
maximize device utility (benefit).

• Model formulation and solution: We formulate the model and propose an online
low complexity heuristic to perform the optimization.

• The model is also implemented in a solver to show the impact of runtime on the
solution.

• Experimental verification: We experimentally show the performance of our heuris-
tic for runtime improvement over a solver and a utility loss improvement of over
57.23% over standard scheduling mechanisms such as earliest deadline first, etc.
on an unbiased synthetic dataset.

Organization. The rest of the chapter is organized as follows: Section 4.3.1 provides
assumptions specific to the use-case of device mobility and charging stations. An experi-
mental study is done to demonstrate the effectiveness of device mobility using decentral-
ized metering in Section 4.1. A discussion on existing state-of-the-art solutions and their
shortcomings are made in Section 4.2. Section 4.3 provides the detailed model of the
network, devices and the aggregators and translates them into an optimization problem.
Sections 4.4 and 4.5 present the proposed heuristic solution and the evaluation of the
heuristic solution with a standard solver. Section 4.6 summarizes the contributions of
this chapter.

4.1 Device mobility evaluation

A decentralized metering architecture was developed to test the potential of device mo-
bility and current consumption across different geographic locations as a proof of con-
cept. Each device could measure and report its consumption values to its respective
CH/aggregator. To ensure data integrity and resilience against faulty data, the reported
measurements were stored on a blockchain.

For the demonstration, two Raspberry Pis were used to serve as aggregators for two dif-
ferent clusters [82]. ESP32 Thing boards were used as resource-constrained devices [83].
A current sensor and a battery were connected to one of the ESP32s to measure the
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Figure 4.2: Device movement between two clusters and current consumption from different
aggregators.

energy consumption and allow mobility (consumption energy for/during movement),
respectively [84]. The setup is pictorially represented in Figure ??.

Membership registration. At the start, devices register themselves with the nearest
cluster as a member using the membership request. As a response, the aggregator sends
its address which the device registers itself as a membership ID and starts transmitting
the consumption data. In the event of a change in the cluster due to mobility, the
consumption data is temporarily stored locally within the device before registering with a
new cluster. The new aggregator gets updated for sending the consumption information.
Furthermore, a device registration with the first cluster can be retained as ownership
of the device with the first cluster. The ownership allows the aggregator of the second
cluster to transmit the information back to the first cluster using the backhaul network.
The messages exchanged during the membership and mobility are shown in Figure 4.3.

Mobility test. The above process is tested with a simple network of two clusters and
allowing a mobile device to migrate from cluster 1 to cluster 2. This experiment is hence
designed to validate the claim that the device consumption can be monitored even when
it is operated at different grid locations. The consumption data of the device during
the network transition obtained from Aggregator 1 is shown in Figure 4.4. The device
is initially registered with Cluster 1 and reports its consumption value to Aggregator 1.
The reported values (until it gets disconnected from Cluster 1) are shown in the left half
of the figure. The pre-configured measurement interval for the device, Tmeasure, was set
to 10 times per second i.e., the device consumption is reported to the aggregator every
100 milliseconds. The time interval is achieved using the RDC feature of the device
(RDCrate) discussed in the previous chapter. If the device is disconnected before the
reporting time, the data is stored locally until the network is restored. As discussed
earlier, the consumption during mobility is feasible due to the availability of battery
power within the devices. After a short wait time of an hour, the device is moved from
Cluster 1 to Cluster 2.
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Figure 4.3: Device registration and handshake messages for mobility between two clusters.

When the device is moving across different clusters the power is derived from the
battery with no consumption from the grid (as it is not connected to the transmission
line) and this duration is denoted as Idle time in the figure. Once the device establishes
an electrical connection with a different aggregator cluster, it continuously scans the
cluster messages to determine its reporting aggregator address (Aggregator 2 in our
case). The device stores its consumption (marked by the blue line in the figure) where
the logging is rerouted to the onboard storage during the handshake process to local
storage. The energy consumed from the battery will be added to the energy demand
of the device that will be fulfilled by the aggregator. After establishing a connection
with the new cluster (i.e., temporary membership registration), the device transmits
consumption data and any locally stored data to Aggregator 2. Additionally, based on
the previous membership/ownership of the device, Cluster 1 is informed of the consumed
energy using the transmission link between clusters 1 and 2, allowing consolidated billing
for the device in Cluster 1. The time to register a temporary membership in Cluster 2,
Thandshake, is found to be 6 seconds on average with a variation between 5.5−6.5 seconds
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Figure 4.4: Device transition of current consumption and reporting after moving from cluster
1 to 2.

over 15 runs. The data communication between aggregators does not incur much delay
(1 millisecond) as the backhaul network is assumed to have high bandwidth.

4.2 Related Work

Load scheduling for DSM in electric grids is a well-studied problem in literature [77].
The existing works in DSM can be categorized broadly based on devices being grid-
powered and devices being both grid and battery-powered. The former analyzes the
energy demand from stationary devices, while the latter addresses the demand from
battery-powered mobile devices such as EVs.

Various solutions in DSM exploit load flexibility to shift the demand to a later time
to minimize the peak consumption at any given time [79]. Yu and Hong [85] aim to
balance the demand and supply by formulating the interaction between the aggregator
and devices as a Stackelberg game where both entities maximize their utility until an
equilibrium is reached. Noor et. al. [86] introduced blockchain to the game-theoretic
framework for a trustless peer-to-peer consensus mechanism between aggregator and
the devices. Zhao et. al. [87] proposed augmenting central energy storage to the grid
and virtually distributing its capacity to the devices at different time steps to maximize
the operational profit. Kim and Dvorkin [88] extended the concept of [87] with mobile
energy storage that provisions for additional capacity in emergencies such as natural
disaster services to minimize the investment and operational cost. To overcome the
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computational issue of game theory-based solutions, Newton method [89] and proximal
decomposition algorithm [90] were used to accelerate the run-time convergence to the
Nash equilibrium, and to find the optimal EV schedule that reduces the gap between
peak load to average load. Roh and Lee [91] categorize and model devices based on the
flexibility of their preemption, scheduling and causality to maximize their utility using
generalized bender’s decomposition. Based on a similar categorization of load and to
minimize peak load, a water-filling algorithm was used to provide an exact solution [92].
Adika and Wang[20] designed a scheduling mechanism using linear programming (LP) for
grid-powered and battery-storage devices to exploit charging and discharging in off-peak
and peak times respectively, to minimize the consumption cost. Chiu et.al. [93] not only
maximize device utility but also minimize the consumption cost and carbon emissions
at the grid in a multi-objective formulation and provide a distributed solution using
Lagrange decomposition. Restructuring the smart grid network into multiple layers for
faster bring-up of the network in case of failure [17] and estimating the grid parameters
to compare and detect faulty information are some of the measures taken by works
focused on network resilience [28]. Meta-heuristics such as genetic algorithm [94] etc.
are utilized to model and maximize device utility and obtain a schedule for load-shifting.
Although the above works minimize the aggregators’ peak load, devices are restricted to
only a single mode of operation and do not account for the stochastic arrival of mobile
devices. Practically, devices have multiple modes of operation that can be exploited to
serve power to more devices within their deadlines [95].

Other works in the literature focus on EV scheduling to minimize the peak load on
the aggregators. In contrast to grids where good estimates of daily, weekly or monthly
schedules are available, there is more uncertainty with mobile devices such as EVs due
to their stochastic arrivals and demands. The authors of [96] alleviate this issue and
minimize the consumption cost by letting devices estimate the day-ahead load and play a
game with aggregators to minimize the deviation between actual load and estimated load.
Other methods adjust the generation of renewable resources depending on the demand
from EVs [97, 80]. Zhang and Cai [80] focus on increasing the profit for aggregators by
utilizing Model Predictive Control (MPC) to estimate renewable generation to adjust
the EV schedule whereas, Schuller et.al. [97] focus on reducing reliance on the grid using
empirical EV data and LP to maximize renewable utilization and optimal EV scheduling.
Zheng et.al. [98] propose a distributed solution at the aggregator-level using MPC and
fuzzy logic to compute the optimal EV schedule to minimize the computational overhead
of centralized solutions. Similar to grid-powered devices, a Stackelberg game was used
between aggregators and EVs to set prices proportional to the demand to maximize the
aggregator utilization and hence, the number of EVs served [72]. However, the authors
only use price-based arrival probabilities for EVs and do not track the EVs’ arrival at
different aggregators. Game theory was also used to mitigate anomalous EVs consuming
the bulk of power and aim to achieve a minimum utility for any EV by committing an
energy budget upon arrival and re-distributing the remaining energy budget to decide
on the admittance of all the new incoming EVs [99]. A priority function is introduced
based on the demand and deadline of the EVs and formulated as a binary optimization
problem by relaxing the standard form of linear optimization [100]. Rassaei et. al. [101]
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consider stochastic static loads (non-mobile) as well as EVs (mobile) to minimize the cost
of consumption for devices and peak load for aggregator through a decentralized game-
theoretic solution and a centralized interior-point solution, respectively. A probabilistic
threshold was used for price comparison to decide whether to provide energy to an EV
for unknown pricing while using a combinatorial search method for known pricing [102].
Zhu et.al. [7] formulate a multi-stage optimization with EV scheduling followed by fixed
device scheduling consider the possibility of changing the EV aggregator at arrival time if
the aggregator is fully loaded. Although they consider multiple modes of charging, they
are linked to the time of the day rather than instantaneous demand. Based on the fact
that price information is not available for EVs to schedule their charging in real-time,
Yi et. al. [103] propose deterministic online algorithms based on the charging rate and
prove a bounded performance. They also provide an optimal offline algorithm when the
pricing information is known. The above works on EVs are focused on optimizations to
obtain EV schedules assuming EVs cannot change their geographical location. EVs can
move to different geographical locations to fulfill their energy demand if there is time-
bound or a lack of supply. However, by exploiting the mobility property of the EVs,
movement across different aggregators can alleviate the peak load and achieve higher
utility for EVs. Load scheduling of heterogeneous devices (mobile and non-mobile) with
different energy consumption profiles is the novelty of our proposed solution.

To the best of our knowledge, no work in the literature exploits device mobility while
considering multiple modes of operation of devices.

4.3 System model

In this section, we introduce the model formulation and the objective function. The
important notations used in this chapter are listed in Table 4.1.

4.3.1 Use-case-specific assumptions

We make the following assumptions for formulating our model and objective:

• The network is reliable and trustworthy, i.e., the underlying communication frame-
work from DeCoRIC prevents message loss or tampered data.

• Each device is connected only to one aggregator at any time

• For every device dk every available power mode (except αk,0 = 0) and the total
requested energy are positive integer multiples of αk,1, i.e., ∀αk,z ∈ αk \ {0}, Ek +
Ik = Etotalk , n ∈ N : αk,z = nαk,1, E

total
k = nαk,1

• The devices dik of cluster i can directly communicate to other devices within the

same cluster but cannot communicate to devices djk of a different cluster j.

• Serving a portion of the total energy Edk of a device increases its utility by the
same proportion since it is normalized by Etotalk .
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Table 4.1: Notations and associated description used for modeling.

Notation Description

Network parameters:
A = {a1...j...J} Set of J aggregators
α̂j Power capacity of aggregator aj
caj→aĵ

Cost per unit time for movement
from aj to aĵ

δaj→aĵ
Time for movement from aj to aĵ

C = {caj→aĵ
, . . .} Set of all movement costs across all

aggregators
T Time horizon with τ slots indexed

by t
T0 Length of one time slot
τ Number of time slots
Device parameters:
D = {d1...k...K} Set of K devices
{dk,j} Set of devices in the cluster associ-

ated to aggregator aj
Ek Energy demanded of dk
Ik Initial energy of dk
Tk Deadline of dk
Rk Arrival/Release time of dk
mk Binary variable denoting if dk is mo-

bile
αk = {αk,0 . . . αk,i . . . αk,n} Set of n charging modes of dk
κk Criticality of dk indicating the util-

ity loss rate
γmk[aj , aĵ , t] Decision variable if device dk moves

from aj to aĵ
γpk[i, aj , t] Decision variable if device dk re-

ceives its ith power mode from ag-
gregator aj

Pk(t) Total accumulated utility up to t for
dk

pk(t) Utility achieved at t for dk
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4.3.2 Network-level parameters

The network architecture comprises J aggregators, each with its own cluster and K
devices connected to each other as shown in Figure 4.1. All the devices in the network
are in the set D = {d1, d2, . . . , dk, . . . dK} and all aggregators are represented in the
set A = {a1, a2, . . . , aj , . . . aL}. A device dk and aggregator aj are represented by their
unique IDs k and j, respectively. Every device in dk ∈ D receives power from one of the
aggregators aj ∈ A by communicating information such as demand, deadline, available
power at the aggregator, etc. {dk,j} denotes the set of all devices (including new/mobile
device arrivals) in the cluster associated to aj .

Every aggregator aj has a fixed power budget α̂j used for serving power demands of
devices {dk,j}. Every aggregator aj is assumed to be connected to every other aggregator
in set A using a backhaul network.

4.3.3 Device-level parameters

Devices request energy with a timing constraint/deadline (e.g., Tk for dk) to fulfill their
demand. They are heterogeneous with each device having a different power consumption
profile (e.g., EVs, Washing machine, etc.) and various modes of operation (e.g., low-
power mode, sleep mode, etc.). Each device makes use of one of its power modes at
every time instant to fulfill its energy demand of Ek. Few devices have an additional
property of mobility where they can move across different clusters if power is unavailable
at the aggregator of the incumbent cluster. Each device dk has a deadline Tk associated
with its task before which it has to fulfill its energy demand. Devices that have sufficient
time before their deadline to receive power can be treated as flexible loads since they
can receive power at a later time, increasing the elasticity on the demand side. Hence,
a device request θk is represented as:

θk = (Rk, Tk,mk, Ik, Ek, κk, αk) (4.1)

where Rk denotes the arrival time slot when the device requests power. The arrival
slot implies that either a new device switches on at Rk or an existing device moves from
one aggregator and arrives at the new aggregator at Rk. Ik is the initial energy available
with the device at the time of arrival (e.g. a battery’s State-of-Charge). The total energy
Etotalk is the total energy capacity of a device which is the sum of its initial charge Ik
and the demanded energy Ek. The positive constant κk is used to implement different
criticality among devices, e.g., emergency light (high κ) vs reading light (medium κ)
vs washing machine (low κ). κk also ensures that devices with higher demand do not
always translate to a higher priority. We assume that the devices’ energy demand is
feasible within Tk with one of its power modes, i.e., Ek ≤ pk(t) · (Tk − Rk) where pk(t)
is the chosen power mode at time t from the set αk, i.e., pk(t) ∈ {αk}. mk denotes
whether the device is mobile (mk = 1), or non-mobile (mk = 0).

Each device dk has a power mode αk,0 = 0 when the device is not served any power,
as well as up to n ∈ N power modes in increasing order of consumption, i.e., αk,0 <
αk,1 < . . . < αk,n. The number of power modes and the values for each mode are
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specific to each device. Hence, the set of all power modes of device dk is given as
αk = {αk,0, αk,1, . . . , αk,n}.

Mobility. Mobile devices can move across different clusters as they are equipped with
energy storage such as batteries that facilitate energy required for movement. Any device
dk that moves from its current cluster with the aggregator aj to another (target) cluster
with the aggregator aĵ has a delay δaj→aĵ

and an associated cost caj→aĵ
per unit delay

to pay for the movement represented by the tuple < δaj→aĵ
, caj→aĵ

>. The delay δaj→aĵ
from current time tc is the arrival time of dk at aggregator aĵ , i.e., Rk of dk at aĵ is
tc + δaj→aĵ

. Movement delays are representative of the distance of the aggregators from
each other and the movement costs are proportional to the distance. E.g., an EV that
moves for a longer distance consumes higher cost and incurs a higher delay and vice-
versa. The movement option for any mobile device to move between any two aggregators
j and ĵ are given by,

Caj→aĵ
= {< δaj→aĵ

, caj→aĵ
> . . . . . .} (4.2)

Depending on the movement option chosen, the cost and the time vary. The total cost
(energy needed) of a movement combination is given by the product, i.e., caj→aĵ

=
δaj→aĵ

· caj→aĵ
. The demanded energy Ek is the sum of the demand requested in θk and

the energy consumed during the movement of the device caj→aĵ
.

Without loss of generality, movement times are ordered in increasing order of move-
ment time. Since the above tuple specifies the movement options only between two
clusters, a matrix C is defined to include all movement options across any two clusters
aj and aĵ in the network and is given by:

C =


0 . . . (1→ ĵ)

(2→ 1) 0
...

...
. . . (j − 1→ ĵ)

(j → 1) . . . 0

 (4.3)

The number of available movement options and hence, the costs, may differ across
different clusters (aj , aĵ pairs). Mobile devices are limited by their initial/available
energy while choosing the movement options, i.e., the movement cost cannot be greater
than their available energy. However, the chosen movement cost is an additional energy
derived from the aggregator along with its demand Ek.

4.3.4 Utility function

Assuming a discrete-time system, the total time T is divided into τ time slots of length
T0 and denoted as T = {1, . . . , τ}. Each device achieves a certain utility (benefit) when
it is served power at any time slot. A utility pk(t) is achieved by a device at any given
time slot t for a duration T0 when it is served with power αk,i that is among the power
modes αk i.e., pk(t) = αk,i at time t. The utility pk(t) of each time slot is appended to
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the set of accumulated utility {pk(0), pk(1), . . . , pk(t)}. Hence, at the current time slot
tc, Pk(tc) is the sum over the utility pk(t) of all the previous time steps leading to tc.

Pk(tc) =

tc∑
t=0

pk(t)γpk[i, aj , t] (4.4)

where γpk[i, aj , t] indicates that ith power mode was served at cluster with aggregator
aj at time t. In an ideal case, all devices are scheduled before their Tk and served with
the corresponding energy demand Ek, yielding a utility of Ek without any loss. However,
in practice, due to congestion and devices with higher demand, scheduling all devices
without deadline misses or movement is not feasible. Devices incur a utility loss when
it moves (as described earlier) or misses its deadline that is time-dependent. The total
utility loss function for devices per time slot t is given by:

uk(t) = βdk(t) + 2 · βmk (t)

+ (1−mk)(1− δaj→aĵ
(t))βmax

(4.5)

The utility loss function in Equation (4.5) consists of three terms: loss due to mobility,
loss for missing the deadline and penalty for moving stationary devices across clusters.

Utility loss due to deadline violation

The first term in Equation (4.5) incorporates the penalty for missing the deadline. It is
given as

βdk(t) =

{
f(t), (t > Tk) ∧ (Pk(t) ≤ Ek)
0 otherwise

(4.6)

where f(t) is given by (Pk(tc)−Ek) · [exp(κk(tc−Tk))]. Pk(t) is the accumulated utility
(consumed energy) up to the current time slot tc as defined in Equation (4.4). The
expression in Equation (4.6) is the loss factor per time slot equivalent to αk,n after
the deadline is missed. κk provides a measure of criticality in devices to signify how
imperative it is to serve a device dk to minimize the significant losses in utility. A higher
value for κk translates to a higher rate of loss for exceeding the deadline.

Permanent utility loss due to mobility

Mobile devices consume additional energy than their initial demand to finish their tasks
owing to energy loss during movement. This loss in energy translates to utility loss.
In order to compensate the additional energy for mobility, the total demand of the
device is updated to include the energy for mobility, and consequently, increases the
energy consumption from the aggregator. This additional energy (new energy demand)
supplied by the aggregator due to mobility on top of the initial energy demand of all the
devices leads to a utility loss on the grid which cannot be compensated. Hence, there
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is a factor of two for the second term for utility loss due to mobility. The loss due to
mobility is given as:

βmk (t) = caj→aĵ
· γmk[aj , aĵ , t] (4.7)

where, caj→aĵ
(t) is the cost per time slot derived from Equation (4.3) and γmk[aj , aĵ , t]

represents the binary variable that indicates if a device is chosen to move (= 1) or not
(= 0) between clusters with aggregators aj and aĵ at time t. It is important to note
that if a mobile device with an initial charge moves to another cluster before consuming
power, it results in a negative utility that is capped at −Ik as it is the maximum supply
from the battery.

Utility loss for moving stationary devices

The third term in Equation (4.5) prevents the stationary devices to move from their
parent cluster by imposing a very high penalty on those devices. If a device dk belongs
to a cluster aj and it moves to a different cluster aĵ , then the penalty is given by

(1−mk)(1− δaj→aĵ
)βmax (4.8)

with δaj→aĵ
is 0 if (aj = aĵ), and 1 otherwise. βmax is the maximum penalty constant

configured to a very high value.

4.3.5 Objective function and constraints

Given all devices dk ∈ D and the utility function in Equation (4.5), the objective is
to minimize the cumulative utility loss across all devices over all the time slots in the
system. It is important to note that the objective is to allow a device with high criticality
to consume power at the earliest to reduce the penalty in utility rather than maximizing
the devices to meet their deadlines. Hence, there could be a higher number of deadline
violations while minimizing the utility loss.

Since the progress Pk(t) remains the same independent of the mobility or the time
of receiving power, we can translate the maximization of utility into a minimization of
utility loss. As the stationary devices do not move, the utility loss term is given by the
combination of terms one and two in Equation (4.5), i.e., uk(t) = 2 · βmk (t) + βdk(t). The
decision variables are the choice of each device dk to receive power (γpk) and the choice
to move to another cluster (γmk).

The objective function and the constraints are given as:

min
∑
t∈T

∑
dk∈D

uk(t) (4.9)
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s.t.
∑
j∈A

∑
i∈αk

γpk[i, aj , t] ≤ 1, ∀t, ∀dk ∈ D (i)

caj→aĵ
∈ C, ∀t, ∀{aj , aĵ} ∈ A (ii)∑

aj∈A

∑
aĵ∈A

γmk[aj , aĵ , k] = 1, ∀t, ∀dk ∈ D (iii)

∑
i∈αk

((1−mk) · pk(t) · γpk[i, aj , t] +mk · pk(t) · γpk[i, aj , t]·

γmk[aj , aĵ , t]) ≤ α̂j ,∀t, ∀{aj , aĵ} ∈ A, ∀dk ∈ D (iv)

γmk[aj , aĵ , t] + γmk[aĵ , aĵ , t]− γmk[aj , aĵ , t− 1] ≥ 0,

∀dk ∈ D, ∀{aj , aĵ} ∈ A, ∀t, ∀aj ! = aĵ (v)

γmk[aj , aĵ , t] +
∑
aĵ∈A

γmk[aj , aĵ , t]− γmk[aj , aj , t− 1] ≥ 0,

∀dk ∈ D, ∀{aj , aĵ} ∈ A, ∀t, ∀aj ! = aĵ (vi)

γmk[aj , aĵ , t] · δaj→aĵ
+

(
γmk[aj , aĵ , t− 1]·

( δaj→a
ĵ∑

tm=1

(γm,k[aj , aĵ , t− t0])− δaj→aĵ

))
≥ 0,

∀dk ∈ D, ∀{aj , aĵ} ∈ A, ∀t, ∀aj ! = aĵ (vii)

δaj→a
ĵ∑

tm=1

γmk[aj , aĵ , t− t0] ≤ 0,

∀dk ∈ D, ∀{aj , aĵ} ∈ A, ∀t, ∀aj ! = aĵ (viii)∑
t∈T

(1−mk) · pk(t) · γpk[i, aj , t] +mk · pk(t)·

γpk[i, aj , t] · γmk[aj , aĵ , t] ≤ Ek, ∀dk ∈ D (ix)

where Constraints (i) and (ii) ensure that the power mode chosen in any time slot
is from the set of available power modes at only one of the aggregators and movement
options, respectively. The state of a device can either be stationary or in motion as
indicated by Constraint (iii). Constraint (iv) restricts the power used by all devices of
a cluster to not exceed the maximum power budget α̂j of its aggregator aj for all time
slots. Constraints (v) and (vi) shows the behavioral constraint on the state of the device
in the current time slot based on the state in the previous time slot, i.e, a device has
a mutually exclusive state of being stationary or moving and a device cannot consume
power during movement. The movement of a device for at least δaj→aĵ

between clusters

with aggregators aj and aĵ is specified as a constraint in Constraints (vii) and (viii). The
total accumulated energy of a device across all time slots is bounded by Ek as shown
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by Constraint (ix). The utility loss due to mobility results in an updated (increased)
energy demand to compensate for the energy spent on movement.

The objective function in Equation (4.9) has integer constraints and binary decision
variables γmk and γpk with the choice of power modes of a device and is formulated for
a discrete-time. Hence, the problem is a mixed-integer non-linear programming problem
(MINLP). For this problem, we try to serve the device with the best utility within the
constrained power budget of the aggregator. The optimization in Equation (4.9) with
its constraints is an NP-hard problem due to the combinatorial nature of picking one
of many power modes and aggregators and its similarity to multiple-choice multiple-
knapsack problem [104] which is known to be NP-hard.

Theorem 1. The optimization in Equation (4.9) with constraints is an NP-hard prob-
lem.

Proof. In a typical 0-1 knapsack problem, items are picked from an available list to
maximize the value of the items under a constrained weight. If there are multiple options
for a single item available as a set to uniquely pick one item (e.g., different colors of the
same item), the problem is called a multiple-choice knapsack problem. With multiple
such knapsacks, the problem is transformed as a multiple-choice multi-knapsack problem
(MCMKP) [105] which is proven to be NP-hard. Formally, MCMKP problem can be
expressed as:

max.

m∑
i=1

ni∑
j=1

pijxij (4.10)

s.t.
m∑
i=1

ni∑
j=1

wijkxij ≤ ck, k = 1, . . . , l (4.11)

ni∑
j=1

xij = 2, i = 1, . . . ,m (4.12)

xij ∈ {0, 1} i = 1, . . . ,m, j = 1, . . . , ni (4.13)

Equation 4.10 is the objective function where pij is the profit to be maximized by
picking j items among ni of i different classes among m class of items. wijk indicates
the k-dimension weight among l dimensions while xij indicates the binary decision of
picking an item under the constraints listed in Equations 4.11, 4.12 and 4.13.

This is similar to our combinatorial problem in Equation (4.9) with multiple power
modes (classes) in devices (items) that need to be chosen (binary decision) under con-
strained aggregator capacity to maximize the utility (profit) of the devices. Additionally,
the multiple aggregators (multiple knapsacks) concept can be directly mapped as mul-
tiple knapsacks. Hence, it can proved that the problem in Equation (4.9) is NP-hard.
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4.4 Low-complexity heuristic solution

Due to the nature of the problem, obtaining an optimal solution leads to high complexity
since the problem scales exponentially with the number of devices and aggregators. To
overcome this issue, we propose an online distributed low-complexity algorithm that can
scale well at an aggregator-level.

Aggregators are responsible to handle the scheduling of devices to minimize utility
loss. Devices submit their requests to their respective cluster’s aggregator in the form
of Equation (4.1) and aggregators schedule these requests to minimize the utility loss.
Each aggregator computes the priority for every device within its cluster using the re-
maining time and power to meet the device demand (Equation (4.14)) and sorts them
in descending order. Additionally, the power mode for each device is also decided for
the time slot and the schedule gets disseminated to all devices within the same cluster
indicating the order in which the devices receive power. Using this information, each
device computes its corresponding utility loss.

Furthermore, mobile devices that cannot fulfill their demand within the deadline sub-
mit their requests to move to another aggregator. Since the aggregators are connected
using a backhaul network, each aggregator can compute the cost and the associated time
of movement to other aggregators. The backhaul network contains electrical connections
to the grid as well as network connections with the grid operator to facilitate load data
analysis. Hence, using the cost and computed utility loss for movement provided by
the aggregator, mobile devices are able to take independent decisions on making a move
to a different aggregator. It is important to note that aggregators do not have any in-
formation on the future arrivals of devices and computes a schedule only based on the
information in the current time slot.

Priority function. At every time slot, devices get assigned a priority order from the
aggregator using a priority function that uses the remaining time to deadline and re-
maining power to fulfill the demand. Each aggregator computes the utility loss for each
device at a given time slot and orders them in decreasing order of loss, i.e., the device
with the highest loss gets the highest priority. The priority function prk is defined for
all devices with Pk(tc) ≤ ET as:

prk =



(Ek − Pk(tc))
Ek

· (tc − Tk), (tc > Tk)

Ek − Pk(tc)
Ek

· 1

(Tk − tc)
, (tc < Tk)

Ek − Pk(tc)
Ek

, (tc = Tk)

(4.14)

where tc is the current time slot when the priority is computed. With tc significantly
lower than Tk, devices can sustain waiting without incurring utility loss. Alternatively,
when tc is greater than Tk, dk has to be served power at the earliest to prevent utility
loss. With tc at Tk, the priority function is the ratio of the remaining demand to
complete over the total demand of the device. The priority function is a function of the
remaining power and the remaining time to the deadline. Intuitively, this translates to
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the penalty from βm and βd which yield higher losses due to an increase of demand due
to movement and deadline misses, respectively. In case two devices have the same prk,
the tie is broken using other parameters such as κk (higher κk gets priority) and feasible
αk (higher feasible αk gets priority) based on the available aggregator supply.

We also implement a couple of other scheduling algorithms as a baseline: highest
power-based scheduling and earliest finish time-based scheduling. The highest power
scheduling allows the device with the highest power requirement to be served first. Hence,
the priority is a direct function of αk,n at every time slot and is given as:

prk = (Ek − Pk(tc)) · (αk,n), (Ek − Pk(tc)) > 0 (4.15)

In contrast to the highest power, the earliest finish time assumes the devices are
provided power to maximize the utilization of the aggregator power budget. Hence, it
is computed as the ratio of sum of all the remaining energy demand of the devices over
the aggregator’s power budget, given as:

prk =

∑
dk∈djk

(Ek − Pk(tc))

α̂j
, , (Ek − Pk(tc)) > 0 (4.16)

The distributed low-complexity algorithm that is executed at every time slot is shown
in Algorithm 5. At a network-level (lines 1-6), the aggregators (re-)initialize the devices
in their cluster based on device arrival requests and the associated priority list. They also
initialize the status list variable to an empty set that is later populated with aggregator
utilizations (load). Each aggregator computes the priority for each of the devices within
its cluster based on Equation (4.14) and sorts them in descending order. After computing
the remaining time and power to meet the device demand, the parameters are passed to
the priority function shown in Equation (4.14). Devices in the list are assigned power
with the lowest of their feasible power modes since few modes may not be feasible based
on the progress, i.e., starting from the highest priority with the least feasible power mode.
Subsequently, any available power at the aggregator is used to upgrade the devices to
higher power modes in the same order of priority. Lastly, the status list is updated
by communicating the utilization among the aggregators and shared with the devices
for mobility. Aggregator steps are illustrated from lines 7-17 of Algorithm 5. At the
device-level (lines 18-24), mobile devices that did not receive power use the information
from the status list to compute the loss due to movement. If the loss can be minimized
at a neighboring aggregator, it sends a request to join the neighboring cluster. Any
received requests are served in the same order - if the existing requests consume the
available supply, no new requests are accepted. The above steps are common to all
devices independent of their mobility capabilities shown in steps 1-11 in Algorithm 5.

The time complexity of the heuristic is O(n log n). log n is the complexity of the
sorting algorithm used for prioritizing devices while repeating it for n devices.
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Algorithm 5 Distributed Algorithm to minimize utility loss of devices (static and
mobile) with multiple power modes

. //Network-Level:
1: for aj ∈ A do
2: Initialize status list ← []
3: Rcv(θk) ∀dkinaj
4: Initialize djk
5: Initialize pr listj ← []
6: end for

. //Aggregator-Level:
7: for dk ∈ D do
8: Compute Pk(tc)
9: Compute prk ← priority(Pk(tc), Ek, tc, Tk)

10: Sort descending (pr listj(prk))
11: end for
12: pk(tc)← αk,i∀dk ∈ pr list
13: if (α̂j -

∑
dk∈djk

pk(tc)) > 0 then

14: pk(tc)← αk,i+1 ∀dkinpr list
15: end if
16: status list ← get agg status(A \ aj)
17: Send (status list) ∀djk

. //Device-Level:
18: caj→aĵ

, α̂ĵ ← Rcv(status list)

19: if (γpk == 0)&&(mk == 1) then
20: for c ∈ C do
21: Compute βmk (tc)← calc move(caj→aĵ

,α̂ĵ)

22: Compute βdk(tc)
23: end for
24: if (βdk(tc) > βmk (tc)) then
25: Send(θk)
26: end if
27: end if
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4.5 Experiments

4.5.1 Optimization platforms

We test a real-world problem of load balancing among electric vehicles involving schedul-
ing and resource allocation to validate the efficacy of our proposed clustered architecture.
To ensure the practicality of the experiments and the solutions to the above problems,
we test the optimization problem in a python-based simulator as well as a standard
solver.

Gurobi simulator. The formulated model is implemented using the Gurobi simula-
tor [106]. Gurobi is a standard solver that is well accepted throughout the academic and
industry communities. It is available on various implementation platforms including C,
C++, C#, Java, MATLAB, Python, VB and R. We adopted Python to conduct our
experiments and used multi-objective optimization to solve mixed-integer, non-linear
programming.

Python simulator. Although the solver can produce an optimal/near-optimal solution,
the runtime of the solver is prohibitive. To mitigate this issue, a heuristic is proposed
to solve the optimization and is implemented on a Python simulation [107]. Python
3.7 was used for both Gurobi and the proposed heuristic. An object-oriented approach
using classes was adopted to allow future expansion for easier integration of additional
elements.

Background on synthetic data generation. The UUnifast algorithm [108] has been
widely used for processor task set generation with uniform distribution for computation
in real-time systems. The purpose of the UUnifast is to generate unbiased exhaustive
tasksets across the range of input parameters. UUnifast in its simplest form generates n
different utility values given a total utility U in the range of 0, U . In our example of smart
grids, Uunifast can be used for a single source (aggregator) with n devices. However, for
our model that uses distributed energy resources (DERs), we would also need to specify
constraints on each energy source. Hence, the synthetic data for device demand taskset
in our experiments was generated using the Dirichlet rescale (DRS) algorithm [109].
DRS can get generate a variety of tasksets with different utilization proportions. For
example, if there are 12 tasks to be generated with 25% high utilization [1-1.2], 25%
medium utilization [0.75,1] and 50% low utilization [0.25-0.5] with total utilization of
6.5 or more (sum of lower bounds), DRS is able to generate 3, 3 and 6 tasks for the
corresponding utilization bounds, respectively. The generated tasks conform to the
specified bounds and are uniformly distributed across the range of bounds (unbiased).

Experimental setup. In this section, we evaluate our heuristic solution in minimizing
the utility loss with a synthetic and a real-world dataset. As discussed in Chapter 2, we
compare the performance of the proposed algorithm with a solution of the optimization
problem in the Gurobi solver as a baseline [106]. The synthetic data was generated using
the DRS algorithm [109] based on the parameters defined in Table 4.2. The parameters
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Table 4.2: Parameters used in our experimental setup for evaluating the proposed
algorithm.

Parameter Value

A 5
α̂l 500kWh
No. of Devices {20, 40, 60, 80, 100}
No. of Timeslots (τ) 50
Deadlines/Periodicity {6,12,24,48}
Classes of aggregator load { [0.5-1] (L), [1-1.25] (M), [1.25-1.5] (H) }
Aggregator load combinations [L,L,L,M,H],[L,L,M,M,H],[L,M,M,M,H],[L,L,M,H,H]
T0 0.5h
(δaj→aĵ

, taj→ahatj ) {(0,0), (1,0.15), (2,0.15), (3,0.15), (4,0.15)} (slots, kWh)

αmin 1kW
{|αk} {1,2,3,5,10,20,50}kW
Proportion of Mobile Devices {25%, 50%, 75%, 100%}
κk {1.6, 1.8, 2.0}

used in Table 4.2 are derived from the real-world datasets to mimic devices such as
HVACs [110] and EVs [111].

Each cluster load was split into three classes: Lightly loaded, medium loaded and
heavily loaded with utilizations shown in Table 4.2. This indicates that the devices
use up the corresponding utilization of the aggregator capacity, i.e., for 0.8 utilization
and 500kWh as aggregator capacity, devices consume 80% (400kWh) of the aggregator
capacity throughout the time horizon (T ). Increasing the utilization to the higher end
(H) on all aggregators leads to a non-feasible schedule since each device would have high
demand, leading to some devices (low-criticality) never getting scheduled. Devices are
generated to achieve utilization by taking into consideration the maximum consumption
capacity of various device classes (HVAC, EV, etc.). For example, devices such as
iron consume 1kWh, airconditioners consume about 3kWh and EVs can consume up to
50kWh. A deadline is randomly chosen to create a periodic demand (new arrivals after
a period, i.e., arrival = deadline) from the devices and corresponding power modes are
assigned to ensure that demand can be met. Mobility costs and movement time between
the clusters are inversely related to distance i.e., the farthest cluster incurs the highest
mobility cost and time for movement (4, 0.15) and vice-versa (1, 0.15). Distances are
proportional to the movement time between the clusters.

4.5.2 Heuristic performance

To test the performance of the heuristic in an unbiased way, an exhaustive synthetic
dataset was generated using the DRS algorithm [109]. Based on parameters from Ta-
ble 4.2, 50 samples of each aggregator class combination with different device utilizations
are generated and simulated. The simulation results are shown in Figure 4.5. Axes of
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Figure 4.5: The difference of utility loss achieved with and without mobility

the violin plot represent the utility loss plotted as a function of the number of devices
utilizing the aggregator capacity as listed in Table 4.2. Each violin in the plot represents
the difference of utility loss difference between device mobility enabled and disabled,
i.e., uk(t)(mobility)− uk(t)(non−mobility). The former allows devices to move across
different clusters while the latter restricts all devices to their original cluster. The length
of the violin indicates the variance while the average value is indicated by the white dot
at the center; the sharp peaks represent the outliers.

The observed loss with mobility-enabled was higher than that of mobility-disabled for
a lower number of devices and a reversed pattern was observed for a higher number of
devices. For a fixed capacity of the aggregator, a lower number of devices translates to
devices with higher demand (e.g. electric buses, etc.) while a higher number of devices
have devices with lower demand (e.g. HVACs, e-scooters, etc.). In the case of fewer
devices, movement may not be effective to reduce the utility loss as the higher demand
from the devices may not be available at any aggregator. Scheduling a mobile device
with high demand (and associated power modes) is difficult at the aggregator as devices
within its cluster also have a high demand resulting in long wait times. Consequently,
there is a higher utility loss due to mobility and deadline misses at the devices based on
the resulting schedule.

As seen from Figure 4.5, with limited devices, the demand reduces from each of the
devices, giving a higher probability of allocating the residual power to a new device.
This can be seen by the reduction in utility loss for mobility enabled in the plot for a
higher number of devices. The scheduling can be realized practically as electric buses
are more difficult to schedule than a low-power EV or electric scooter.

65



4 DeCoRIC use-case: Load Balancing for Mobile devices

4.5.3 Comparison with solver

Typically, optimization problems are solved with a solver since a “near-optimal” solution
can be obtained. Although a solver can produce an optimal solution in practice, the
runtime to complete the simulation is prohibitive. In this experiment, we compared
the performance of the proposed heuristic with the solutions obtained from the Gurobi
solver. In our tests, even with a runtime upwards of 10 hours, the solver could not find
a solution for some parameters due to large number of parameters.

As the solver takes a prohibitive time to complete the simulation, a time limit is set
to the maximum time taken by the heuristic solution to terminate the simulation to
obtain a feasible solution. Additionally, we randomly picked 10 out of 50 samples across
all classes in the previous experiment to test the performance of the solver. Configuring
the solver with the heuristic timing allows for a practically feasible time that aids in
managing wait times (to obtain a schedule) for the devices. We compare solver and
heuristic solutions with the difference in the utility loss of solver and heuristic with
mobility enabled, i.e., uk(t)(solver) − uk(t)(heuristic). With each time slot mapping
to 30 minutes, the maximum observed time from the heuristic allows for a schedule
computation from the solver without incurring a long wait time for devices.
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Figure 4.6: Comparison of solver performance with the heuristic for the same runtime.

From Figure 4.6, it can also be seen that the increase in number of devices also increases
the losses from the solver. On an average, the utility loss from the solver is worse off by a
factor 1039 than the heuristic solution. Since the solver needs to compute several stages
such as pre-solve, barrier, etc. before the start of optimization, the limited runtime
restricts the solver depending on the number of variables. Table 4.3 lists the number
of samples that could produce at least one feasible schedule for the different number of
devices along with the proportion of mobile devices among them. With a lower number
of devices and a lower proportion of mobile devices among them, the model is able to
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Table 4.3: Number of samples generated for the solver.

No. of devices
No. of Samples (% mobile devices)
25% 50% 75%

20 40 40 5
40 40 13 0
60 40 6 0
80 40 7 0
100 40 9 0

Table 4.4: Utility loss for EV dataset with different strategies.

Proposed Heuristic Earliest Deadline Highest Power

1606.63 3939.27 3757.18

produce at least one solution due to lower complexity. As the proportion of mobile
devices increase, the number of solver variables and the resulting losses are exacerbated.
This is seen from Table 4.3 when 75% of all devices were mobile, only 20 devices had
a few samples that could complete. No sample for 100% mobile devices could complete
the run as the time limit expired before finding a solution.

4.5.4 Evaluation on a real-world dataset

We also simulated the heuristic and the solver on a real-world dataset derived from
the EV testbed at Caltech [30]. The complete charging dataset of the year 2020 was
extracted from the testbed data along with data from Table 3.2 for missing parameters
such as power modes, etc. The arrival times were mapped to a single day (48 time slots)
as there was no congestion found with a limited number of vehicles.

The results are shown in Table 4.4. We also tested the dataset with two standard
scheduling algorithms: earliest deadline schedules devices with the nearest deadline to
the current time slot while highest power schedules devices with the highest demand.
The solution of the proposed heuristic is 59.21% and 57.23% better than the earliest
deadline and highest power scheduling algorithms, respectively. The solver could not
produce a solution even after 8 hours while the slot time duration (τ) is 30 minutes.
This duration (8+ hours) is impractical for any device arriving with a deadline to know
if it can be scheduled, e.g., an EV charging overnight waits without a schedule. The
heuristic produced a solution in one minute with a per slot average time of 1.25 seconds
showing the practicality of our proposed solution.

4.6 Summary

In this chapter, we show the feasibility of device mobility between clusters managed
by aggregators. We exploit the device properties such as power modes and mobility to
address the issue of load balancing and scheduling. Existing demand response solutions

67



4 DeCoRIC use-case: Load Balancing for Mobile devices

in smart grids do not integrate different power modes of the devices as well as their
mobility property. Our model integrates these properties to estimate the utility loss
incurred due to delays in receiving the power. We proposed an online low-complexity
heuristic to minimize the utility loss with a practically feasible runtime compared to a
solver with similar runtime. A real-world testbed data was also used to verify the model
and obtain a feasible schedule. Our solution also performed better by over 57.23% on a
real-world dataset compared to existing scheduling solutions.
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5 C-sync: Energy-efficient and resilient
time synchronization using clustered
networks

Chapter 3 introduced an energy-efficient clustered architecture for IoT nodes as commu-
nication among these nodes forms the bulk of their operation to exchange information [5].
However, the use of RDC and CSMA-CA require an exchange of multiple messages till a
message is successfully delivered across the neighboring nodes. To minimize the number
of messages exchanged, a common notion of time is essential among the nodes. Time
synchronization is an efficient and effective method to minimize communication signif-
icantly, allowing nodes to operate in a low power mode except during transmission.
Synchronizing all the nodes’ local hardware clocks to a common global time facilitates
communication at specific instances and, thereby, provides an infrastructure for schedul-
ing. Applications such as real-time systems start with a time-synchronized network as
the foundation for communication among the nodes. Additionally, with limited commu-
nication during time synchronization, the information exchange among the nodes must
be trustworthy. In this chapter, we present C-sync, a novel clustering-based resilient
time synchronization protocol.

A time synchronization protocol needs to ensure stability in synchronization through-
out the network. Wireless sensor networks are often plagued by error-prone nodes that
can result in faults including, but not limited to, selective forwarding and tampered data
(spikes, outliers, etc.) [35]. These faults form a sub-class of byzantine faults observed in
radio communication and could result in major deadline misses and power dissipation
due to erroneous time information, leading to destabilization of the network and signifi-
cant message losses. A faulty node with incorrect information can jeopardize the entire
network with false information if not addressed [112]. Most importantly, synchronization
protocols must be resilient to such faults and ensure functional correctness to minimize
potential network downtimes.

A faulty node with incorrect information could influence the network in existing syn-
chronization solutions, albeit providing the basic deterrence against faults since there is
no verification of the data. For example, a critical sensing application with distributed
logging of events may be rendered useless if an event’s timestamp is recorded differently
by a few devices in the neighborhood of the event. Erroneous information disrupts the
analysis and debugging of data. Hence, there is a need to integrate fault tolerance while
designing a synchronization protocol to ensure that the error from the time source/con-
necting node does not impact the entire network.

Some of the existing protocols handle node failures by switching to a different node
to provide a reference clock [21, 14, 22]. Although reference node switching could work
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Figure 5.1: Time Synchronization in C-sync using a clustered architecture for power efficiency
and fault resilience.

as a tentative solution, an adequate fault handling mechanism is absent. For example,
faults such as selective forwarding in a reference node could send all but critical messages
resulting in desynchronization without any means to fix the issue. Generally, protocols
reliant on a reference node require additional measures to mitigate the impact of a
compromised reference node. In the absence of reference nodes, some protocols adopt
a decentralized design that has inherent fault resilience [15, 113, 114, 26]. Faulty nodes
are excluded from information transmission during synchronization if their information
is substantially different from those of other neighboring nodes. However, managing the
faulty nodes in a decentralized network exponentially increases the messages exchanged
and consequently, the power consumption.

From Chapter 1, we have seen the requirement of three primary goals: energy effi-
ciency, adaptability and fault resilience. While all three properties are needed in time
synchronization solutions, the current solutions mostly focus only on the energy efficiency
and adaptability aspects with an additional property of synchronization accuracy. We
aim to fulfill the standard requirements of synchronization protocols as well as ensure
resilience to faults in the network. To achieve energy efficiency, these solutions min-
imize communication (radio ”ON” time) such that the least number of messages are
exchanged to achieve and maintain synchronization. Synchronization accuracy varies
from a few seconds [115] to a few microseconds [22, 14, 15], depending on the type of
protocol and application used. For sensors in real-time systems, the expected accuracy
is in the order of microseconds [5]. Typically, achievable accuracy is bounded by the
resolution and the stability of the clock used by the node. Adaptability ensures that the
functionality and the performance of the protocol are not impacted by the growth in
network size when new nodes are added. Although existing solutions minimize the im-
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pact of adaptability through flooding, decentralized averaging, etc., the synchronization
error remains directly proportional to the number of hops between the time source and
the synchronizing node. It is desirable to minimize the distance of nodes to the source
of time information such that the error between the source and the synchronizing node
does not scale with the network size.

Another important attribute required for a synchronization protocol is the ability to
ensure reliable time information is transmitted by the nodes so that a stable synchroniza-
tion is maintained throughout the network. A node that shares an incorrect/faulty clock
value at any given time slot can jeopardize the entire network causing significant message
losses and power dissipation. Some of the existing protocols make provision for node
failures by switching to a different node to provide a reference clock [22] or excluding
them during synchronization [15]. However, this leads to a delay in re-synchronization
and a temporary reduction in synchronization accuracy. Hence, it is vital to factor in
the resilience to faults while designing the protocol to ensure that the error between the
source of the clock and the receiving node does not impact the entire network.

In this chapter, we propose a decentralized clustering-based time synchronization pro-
tocol as shown in Figure 5.1 (referred to as C-sync) to ensure fault resilience of the
network in addition to the standard three metrics of synchronization protocols. The
nodes, also referred to as Common nodes (CM) elect a representative node called the
Cluster Head (CH), to which the nodes associate to form clusters based on properties
such as the degree of a node (number of communicating neighbors). The CH node is
connected to other CH nodes of neighboring clusters through a few Cluster Bridge (CB)
nodes that ensure information propagation between clusters. Further, to prevent all the
CB nodes from communicating (i.e., to avoid channel interference), a representative CB
node called the Cluster Bridge Head (CBH) is elected to manage the communication.
The other CB nodes are used in the event of a fault in the network. We address CB and
CBH interchangeably for all scenarios except for fault handling. C-sync leverages the
clustered architecture to contain the faults (fail-stop and a subset of byzantine faults)
from spreading beyond a cluster and to let nodes remain in sleep mode for a longer
time, thereby reducing the power consumption due to the radio significantly. As CH
and CB nodes wield greater influence on the information propagated within and across
clusters, it is critical to identify faulty nodes quickly to prevent erroneous information
from spreading across the network. We design a consensus mechanism among a group of
nodes in the neighborhood to verify the sender and its information to ensure correctness
and integrity in the transmitted data. More information on the fault model and the
fault handling in C-sync is explained in Section 5.3.

In C-sync, a concept called Local Centers (LC) is introduced to effectively handle
device dynamism, where some CH nodes within the network are elected as reference
nodes. LCs introduce a parametric (deterministic) restraint on the hops any node has
to go through to obtain time information from the source node. These nodes coordinate
the distribution of time information to maintain synchronization throughout the network
such that the synchronization error is limited by restricting the number of hops between
LCs and other nodes. The resilient design of C-sync coupled with low power consumption
and adaptability enables the design of real-time applications in decentralized systems.
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Table 5.1: Comparison of prominent synchronization solutions in the literature.

Characteristics/
Solutions

FTSP
[21]

PulseSync
[14]

Consensus
[116]

Glossy
[22]

GTSP
[15]

C-sync

Central refer-
ence node

Yes Yes No Yes No No

Messages
transferred

High High High High High Low

Complexity High High Low High Low High
Robustness
to network
changes

Low Low High Low High High

Accuracy Low High Low High High High
Time to Syn-
chronize

High Low High Low Low High

LCs are further explained in detail in Section 5.2.2. To summarize, the contributions of
this chapter are as follows:

1. We propose C-sync, a decentralized fault-resilient clustering-based time synchro-
nization protocol suited for large-scale IoT networks. C-sync introduces multiple
time sources in the network to constrain the error between any node and its refer-
ence.

2. We show that the proposed protocol achieves synchronization with significantly
lower power consumption while ensuring accuracy is not compromised.

3. Through extensive experiments on a real testbed and theoretical analysis, we show
the fault recovery mechanism of C-sync and show the performance with power
efficiency and synchronization accuracy.

Organization. A comparison of the current solutions for fault-tolerant time synchro-
nization is presented in Section 5.1. A detailed description of the C-sync protocol is
provided in Section 5.2. Section 5.3 outlines the considered fault model and the fault
handling mechanism of C-sync. The experimental setup and the experimental results
are discussed in Section 5.4. Section 5.5 concludes this chapter.

5.1 Related work

The existing literature can be classified based on the availability of fault handling mech-
anisms in the protocols. Protocols with dedicated fault-tolerant features are described
under secure synchronization solutions while the rest of the protocols are grouped to-
gether as generic synchronization solutions. We discuss different works of literature
classified into these two categories:
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Secure synchronization solutions

Ganeriwal et. al. investigated the problem of secure time synchronization using shared
key encryption and delay threshold-based detection [117], i.e., the delay between the
estimated and the actual time. However, synchronization is done only when the de-
lay between the estimated and the actual message falls below a threshold and assumes
that key sharing is in a secure environment. Li and Rus counter byzantine faults by
adding a layer of cryptographic encoding and decoding during message exchanges but
suffer from long convergence times [118]. Blockchain-based protocols [27, 119] achieve
resilience against byzantine faults at the cost of low accuracy (in the order of seconds)
and high computation overhead. Max-consensus was used to estimate the clock differ-
ence to a threshold value to detect byzantine nodes but achieves a low synchronization
accuracy [26]. Sundial [16] was proposed for fault-resilient synchronization between data
centers by combining a hardware-based detection and software-based reconfiguration for
hardware to handle faults. However, Sundial requires resource-rich hardware for fault
detection while taking substantial time for reconfiguration change transmission from the
reference node to an actual change in hardware. Temporal correlation of messages was
used between neighboring nodes to correct synchronization errors [18]. However, error
detection and correction require the exchange of a significant number of messages result-
ing in communication overhead. While assuming a trusted resource-rich reference node,
digital signatures and message filters were used as validation tools [12]. Secure synchro-
nization protocols focus on ensuring resilience to faults but do not cater to accuracy and
energy efficiency due to complex fault handling mechanisms. Additionally, most of the
works on secure synchronization solutions are centralized with the assumption that the
reference node cannot be faulty. Furthermore, they have not been hardware-proven.

Generic synchronization solutions

Historically, the Global Positioning System (GPS) or Network-Time Protocol (NTP)
[115] has been used for time synchronization in networks. However, these protocols
are not applicable for resource-constrained nodes. Although recent protocols make use
of these techniques for synchronization [120], their applicability is highly restricted in
resource-constrained environments. Although recent protocols and hardware with long-
range communication are able to utilize these resources for synchronization [120], access
to GPS or internet time is highly limited in resource-constrained environments. Ref-
erence Broadcast Synchronization (RBS) [121] and Time-sync Protocol for Sensor Net-
works (TPSN) [5] were one of the first works achieving receiver-side and peer-to-peer
synchronization. Reference Broadcast Synchronization (RBS) [121] synchronized a set of
receivers to minimize sender-side uncertainties while Time-sync Protocol for Sensor Net-
works (TPSN) used peer-to-peer synchronization with MAC-layer timestamps for both
sender and receiver nodes [5]. However, both protocols cannot handle ad-hoc networks
and have no compensation for clock drifts. The absence of clock drift compensation and
high communication overhead in TPSN was addressed by Flooding Time Synchroniza-
tion Protocol (FTSP) [21] using periodic network flooding of synchronization messages
originating from the reference node. Flooding is a process of rapid dissemination of
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messages through the network. Receiving nodes in FTSP use linear regression on the re-
ceived messages to compute clock drift to minimize errors. Yildirim and Kantarci [122]
leverage FTSP to improve the accuracy of flooding by restricting linear regression to
messages received only from single-hop neighbors for offset compensation while using
the least-squares method for clock drift compensation. Offset is the difference in clocks
between the sending and the receiving node. The time to complete synchronization and
adaptation to changing topologies are drawbacks of their contribution. Pulsesync [14]
uses fast flooding by immediately sending a synchronization message upon receiving one,
to reduce the flooding latency and the synchronization error for the farthest node using
a breadth-first-search tree. Meanwhile, Glossy protocol achieves synchronization using
constructive interference of modulated signals with a temporal displacement within a
threshold [22]. This necessitates nodes to be equipped with high-quality radios with
low noise and distance between nodes to achieve the synchronization threshold. All
the above flooding synchronization schemes require a large number of messages from a
central reference node that distributes the time information to the rest of the network.
Additionally, centralized solutions have a single-point failure when the reference node
fails, leading to some downtime before a new reference node gets elected. It is important
to note that the inherent reliance on the reference node by all nodes of the network leads
to a single-point of failure and constant re-configuration in presence of faults. The delay
due to regular re-configurations could be catastrophic in critical real-time applications
such as electric grids, etc. [112]. Decentralized solutions do not rely on a single reference
node to achieve time synchronization. To this end, Gradient Time Synchronization Pro-
tocol (GTSP) [15] synchronizes precisely among the neighbors by estimating a global
clock formed by an average of drift and offset among 1-hop neighbors. Based on the
network topology and placement of nodes, clustering coupled with consensus has been
proposed to synchronize the nodes [113, 114]. Wu et. al. use the LEACH [23] clustering
protocol which assumes a synchronized network for communication while Wang et. al.
assume a fixed topology with a fixed state for all nodes without any communication
delays. Both cluster-based protocols are not resilient against faults and cannot adapt to
dynamic changes in the network. Emergency Broadcast Slot (EBS) [123] synchronizes
decentralized networks but has a high dependency on a minimum set of neighbors to be
active to achieve and maintain synchronization.

Other synchronization solutions include the method of average consensus from con-
trol theory [124] was used to individually estimate the clock drift and the offset [116].
The use of two individual consensus mechanisms is compute-intensive and has a high
power consumption. [125] uses max-consensus multiple times for reduction in compu-
tation. The number of iterations depends on the diameter of the network. [126] seeks
to solve average consensus which does not have a linear consensus function. It limits
the maximum value transmitted to improve energy efficiency by using the derivative of
the non-linear function and achieves convergence. Although the message size is reduced
due to derivatives, there is an increase of computational complexity than the standard
consensus. However, assumptions such as zero transmission delay and lossless medium
are not practical and cannot be translated to hardware. [127] and [116] use consensus
to arrive at a global skew and offset. They use average consensus to estimate a global
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logical clock that all the network nodes adhere to. Xie et. al. aim to achieve consensus
in finite time using the geometric mean of local clock drifts to compute the global clock
drift and subsequent offset compensation [128]. Since a tree topology is assumed, it
takes a long time to complete synchronization for the last leaf node. Although synchro-
nization in the consensus mechanism completes in a fixed period, there is a continuous
correction of the clock leading to high communication overhead. Authors in [129, 125]
conclude that consensus can be reached if the underlying directed graph has at least one
spanning tree at every synchronization cycle. Although the method is optimized in com-
putation and memory, for all consensus methods above, the time to converge and power
consumption are high due to continuous transmission of messages. In addition, the net-
work is also expected to be static with no changes in topology. Authors in [130] aim to
reduce the number of messages exchanged in the network during consensus. Since the
error in average consensus among the nodes converges to zero asymptotically over time,
the messages exchanged are reduced as the error inches towards zero. Each node has
a threshold of the difference between current and previous values beyond which nodes
stop broadcasting messages. The reduced messages are at a cost of reduced accuracy in
synchronization. Although synchronization in the consensus mechanism completes in a
fixed period, they are compute-intensive with a growing consensus convergence time as
the network scales.

Alternate synchronization solutions

In [131], Cho et al. follows a two-level hierarchical structure with a master node sending
controlling the synchronization operation. Synchronization takes place with a central
node sending messages frequently to have all nodes follow a common clock. The hard-
ware testbed is a Field-Programmable Gate Array (FPGA), a resource-rich hardware.
Viswanathan et al. [132] rely on the availability of electric grid voltage signals and utilize
the time information in signal fluctuations of periodic voltage signals. The availability
of grid voltage signals is restricted to industry-grade devices since it is not applicable
for battery-powered or DC voltage nodes. The use of grid voltage signals enables the
solution to achieve good accuracy as well as scale for long distances. A combination of
a high-speed and low-speed clock called VHT (Virtual High-resolution Timer) is used
to achieve synchronization of the high-speed clock with the low-speed one [133]. The
authors propose to selectively turn off the high-speed clock during sleep and as the
low-speed clock is always turned on. The methods incur additional overhead in hard-
ware. An issue of combined skew surfaces when there are multiple clock interferences
during communication between nodes. For all the methods described above, there is a
common source of the clock to achieve synchronization. A failure of the source would
lead to the failure of the overall synchronization. Other solutions add to hardware over-
head with specialized circuits and timers to reduce the jitter from the existing hardware
clocks [133, 134].

A summary of some of the prominent works in literature classified based on different
properties is provided in Table 5.1. A qualitative comparison is shown as it is challeng-
ing to establish an evaluation environment for every protocol to provide a quantitative
comparison. Among the available synchronization solutions, the GTSP protocol has an
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inherent fault tolerance due to averaging of individual time information, i.e., a single
faulty node does not impact the overall average. Additionally, GTSP is the only decen-
tralized protocol with high accuracy for generic wireless networks that had been proven
on hardware. However, GTSP suffers from high power consumption due to the con-
tinuous exchange of messages with every neighbor during synchronization with a wider
network impact in presence of faults. Our proposed solution, C-sync, has a slightly longer
initial convergence time due to the overhead of establishing the clustered architecture
from a completely decentralized structure as discussed in Section 5.2.1. Exploiting this
network structure, C-sync can achieve significant energy savings by a limited exchange
of messages for maintaining synchronization and handling faults. A fault in C-sync gets
isolated to the specific cluster/clusters within which nodes can operate without a ref-
erence or get a new reference node without impacting the rest of the network. Hence,
we chose to compare C-sync against GTSP as the state-of-the-art decentralized protocol
for the synchronization accuracy and energy efficiency on a hardware platform as pre-
sented in Section 5.4.3. To the best of our knowledge, no time synchronization solution
achieves similar fault resilience with energy efficiency as C-sync. C-sync also exploits
clustered architecture to limit the synchronization error of any node in the network to
the reference time source.

5.2 C-sync protocol

In this section, we introduce our protocol C-sync and discuss the synchronization mech-
anism. We provide a pseudo-code to demonstrate its operation and show the election
process of local centers with an example network shown in Algorithms 6 and 7. C-sync
also provides a unique feature that limits the distance of any node from the time source
that is further explained in Section 5.2.2.
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Figure 5.2: The two phases of the C-sync protocol represented as a state machine.
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5.2 C-sync protocol

The C-sync protocol follows a 2-phase process as described in the state machine in
Figure 5.2. Clustering is the first phase of C-sync derived from the existing clustering
scheme DeCoRIC discussed in Chapter 3. DeCoRIC uses a clustering scheme based on
the degree of a node, i.e., the node with the highest degree forms the representative CH
node that facilitates routing information within and across clusters. The degree of a node
is the number of active communication links of a node with its neighbors. DeCoRIC is
adapted to the synchronization process to establish the underlying architecture in the
network. The state machine from DeCoRIC is transformed with additional states to
integrate scheduling between the states upon achieving a loose synchronization after the
Discovery state by utilizing the time information in the messages. Once the clusters are
formed, the consensus phase maintains synchronization among the clusters by adopting
specific time slots for all the CHs and CBs to exchange time information periodically
among each other.

5.2.1 Clustering phase

The clustering phase comprises five states to establish the clustered architecture among
the nodes. The clustering phase is a process of establishing a loosely synchronized
clustered architecture using DeCoRIC (discussed in Chapter 3) while adding time infor-
mation to the messages transmitted. Since we assume an ad-hoc network with the same
wireless channel, any node that joins the network in the midst of the state machine is
able to join the nearest cluster and jump to the associate time from the CH. The new
node may become a CH/CB node depending on its position in the subsequent clustering
phase.

Discovery state. In the discovery state, each node broadcasts messages with the time
information derived from its hardware clock and listens to other nodes in the neighbor-
hood to discover its environment. In this state, the logical (i.e., global) clock is the
same as the hardware clock and the degree of every node is set to 0. The logical clock
L(t) and its parameters (rate and offset) is derived from the hardware clock value h(t)
compensated by the rate parameter and an offset value as in [15]:

L(t) =

∫ t

τ=0
h(τ)l(τ) dτ + θ(t) (5.1)

where l(τ) is the logical clock rate relative to hardware clock (logical clock rate in short)
and θ(t) is the logical clock offset. The logical clock rate is the average of relative rates
to all its neighbors, whereas the logical offset is the average of relative offsets to all its
neighbors.

For a node i with ni neighbors, the clock rate li and offset θi is computed using

li(t+ 1) =

∑
j∈ni

lj(t) + li(t)

ni + 1
and (5.2)

θi(t+ 1) = θi(t) +

∑
j∈ni

Lj(t)− Li(t)
ni + 1

. (5.3)
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Clock rate represents the rate of change of clock offset over time. However, it is
important to note that the absolute logical clock rate for one’s own logical clock is the
ratio of the relative logical clock rate and the hardware clock.

Upon reception of a message from a new neighbor, the receiving node increments its
degree and stores the time information (rate and offset) from both logical and hardware
clocks of the sender. The information of the neighbor includes its degree, clock offset and
clock rate of the logical clock relative to its hardware clock. It also stores the sender’s
logical and hardware clocks for computing the logical clock value at a later time. All the
messages in this state are asynchronous since there is no reference clock. The MAC layer
uses CSMA-CA with message timestamps i.e., MAC-Layer timestamps to minimize the
collision and interference in the network as the nodes are asynchronous at the start.
The logical clock rate and offset of a node are derived from averaged relative clock rates
and offsets of its neighbors. Since all nodes perform averaging for the offset and rate,
the nodes are loosely synchronized. The average network delay gets factored into the
offset as the logical clock offset gets calculated independently at each node based on the
neighbor offsets. If a node can achieve both the offset and rate of its logical clock within
a pre-defined threshold, that node creates a reference time (delay) for a state transition
to the election revelation state for all nodes in the neighborhood. The threshold is set
based on worst-case CSMA backoff to ensure that nodes are able to receive messages
even if they are loosely synchronized. The threshold also allows nodes with large offsets
to jump to the transition interval based on a synchronized neighbor, preventing long
convergence times. Lines 1-18 of Algorithm 6 show the operation of the discovery state
and the transition to the election revelation state. Hence, the discovery state allows the
nodes to get information on their neighboring nodes.

In the event of a late-discovered node due to the dynamic nature (new/mobile nodes) of
the network, the new node listens to messages from the neighboring nodes and associates
itself with the nearest CH node as a Common node (CM) of its cluster. Upon receiving
the state transition announcement, the CM node directly jumps to the current state of
the network. However, it is important to note that the subsequent discovery state may
elevate the status of the CM node to a CB or a CH depending on its position in the
network to form more optimal clusters.

Election revelation state. The election revelation state facilitates the exchange of de-
gree information from all nodes for the election of Cluster Heads (CHs). The configura-
tion could be changed to use residual energy of the nodes to ensure uniform distribution
of energy among the cluster nodes. CHs are representative nodes with the highest de-
gree in their neighborhood and facilitate routing of messages from within its cluster to
other parts of the network. CH nodes retain the CM nodes in sleep mode except dur-
ing transmission, thereby significantly reducing energy. All the nodes are active during
this state and update their neighbors’ degrees based on received messages. Beyond the
creation of reference time from the previous state, all nodes transition to further states
at a pre-defined interval of time called the state transition (ST) interval. The ST in-
terval is a combination of the error threshold used in the discovery phase and frame
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length to ensure reduction in the wireless channel interference and a successful message
transmission. All nodes transition to the election declaration state after the ST interval.

Note that the slotted ST intervals are based only on the synchronized time without
any dependency on the channel parameters. Additionally, the ST intervals are generated
based on the hardware timers of a node without any dependency on software time slots.
Although integrating channel information would allow the use of C-sync in Time Slotted
Channel Hopping (TSCH) networks, we focus on time synchronization on the same
channel for all nodes. The use of the same channel enables a plug-and-play interface
with greater network flexibility in contrast to configuring every node.

Election declaration state. Nodes with the highest degree declare their CH status and
form clusters. If a node receives a message with a higher degree from its neighbor, it
cancels its broadcast and associates itself to the CH node as a common node (CM). CH
nodes are consolidated in this state and they form clusters together with their associated
CM nodes. All nodes have their radios on in this state and transition to the next state
after the ST interval. Operations of election revelation and election declaration states
are shown in lines 19-31 of Algorithm 6.

Connection revelation state. Connectivity among the clusters is established through
the election of Cluster Bridge (CB) nodes that connect two or more CH nodes. In
this state, nodes that have more than one CH in their neighbor list transmit while all
other nodes remain in sleep mode. The degree information (number of CH neighbors)
of CB nodes is extracted by other CB nodes from the received messages. CB nodes play
an important role to ensure fault-free dissemination of messages during the consensus
phase. Hence, to authenticate and prevent nodes to falsely declare themselves as CB,
the messages in this state use AES encryption with the IDs of the CH nodes as the key
as shown in Figure 5.1. This encryption is in addition to the already encrypted messages
of IEEE 802.15.4 standard to ensure the authenticity of CB nodes [3]. This prevents any
non-CB nodes from falsely electing themselves as CBs. The elected CB nodes aid fault
detection of all node types even if a few faulty nodes are elected as CH. The ST interval
transitions the network to the connection declaration state upon its expiry.

Connection declaration state. Similar to the election declaration, CB nodes (CM
nodes with multiple CH connections) declare their status to the CH nodes in the connec-
tion declaration state. As with the CH election, CBs with the highest degree or highest
address (in case of the same degree) declare themselves as the representative Cluster
Bridge Head (CBH) and disclose their neighboring CH nodes. The other CB nodes
ensure that the declaration is made by the legitimate CB node by checking the IDs of
the CH nodes in the AES encrypted message. The CH nodes discover their neighboring
CH nodes through their CB(s). This information is used in the consensus phases to
identify the slots during which a CH/cluster synchronizes. All nodes have their radio on
from discovery till the connection revelation states, while only the CH and CB nodes are
active in the connection revelation and declaration states. The steps involved in connec-
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Algorithm 6 Pseudo-code representing the operation of Clustering phase in C-sync.

1: INITIALIZE Neighbors← ∅
2: my state← DISCOVERY

3: Msg.Id← my addr; Msg.time← my time

4: my CH count← 0; consensus count← 0
5: broadcast(Msg)
6: if rcv() then
7: for n in Neighbor.list() do
8: n.time← rcv().time
9: if n.synced() then

10: my time← n.time

11: my state← ELECTION REVELATION

12: end if
13: end for
14: if n /∈ Neighbor.list() then
15: my degree← my degree + 1
16: Neighbor.list().Append(n)
17: end if
18: end if
19: if (my time ≥ ST ) and (rcv()) then
20: Neighbor.degree← rcv().degree
21: my state← ELECTION DECLARATION

22: end if
23: if (my time ≥ 2 · ST ) and (rcv()) then
24: if (my degree > rcv().degree) or (my degree == rcv().degree) and

(my addr > rcv().addr) then
25: my role← CH
26: else
27: my CH count← my CH count + 1
28: my role← CM
29: end if
30: my state← CONNECTION REVELATION

31: end if
32: if (my time ≥ 3 · ST ) and (rcv()) then
33: for n in Neighbor.list() do
34: if (n.role == CH) and (my CH count ≤ 2) then
35: my CH count← my CH count + 1
36: my CH list← n

37: else
38: my role← CB
39: end if
40: end for
41: end if
42: my state← CONNECTION DECLARATION

43: if (my time ≥ 4 · ST ) and (rcv()) then
44: if (my degree > rcv().degree) or (my degree == rcv().degree) and

(my addr > rcv().addr) then
45: my role← CBH
46: end if
47: my state← CONSENSUS CONVERGENCE

48: end if . //End of clustering
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tion revelation and connection declaration states are shown in lines 32-48 of Algorithm 6
with a transition to the consensus phase after the ST interval.

The clustering phase concludes with the connection declaration state and transitions
to the consensus phase upon the expiration of the subsequent ST interval. It is important
to note that the consensus phase starts with a new reference time (common across the
network) and less contention on the network as message transmission is restricted only
to CHs and CBs to finalize the time slots. The CM nodes listen to the information from
CH transmissions and update their clocks. All nodes transmit in the discovery phase
continuously while only the CH and CB nodes transmit beyond the election phase in a
time-slotted manner. Consequently, the contention on the channel as well as the power
expenditure of the nodes are minimized. In contrast, most flooding-based protocols
experience constant channel contention among nodes leading to significant packet and
energy losses.

The topology/status of all nodes (CH/CB/CM) of the clustered architecture remains
intact for the consensus phases. However, any network changes (node mobility or unsta-
ble communication links) are reflected in the subsequent discovery phase, where different
nodes may get elected as CH/CB depending on the change. The discovery phase gets
triggered after the configured number of repetitions (MAX COUNT) to the consensus
synchronization phase are complete. The configuration is set based on the frequency of
changes in the network, i.e., dynamic networks with higher node failures/mobility have
shorter repetitions and vice-versa. New nodes become CMs and listen to the nearest CH
for the time information while missing nodes are treated as fail-stop faults and handled
according to the steps discussed in Section 5.3. Discussion on the impact of mobility of
nodes is presented in a later section.

5.2.2 Consensus phase

The consensus phase is a stable repetitive phase after clustering for maintenance of
synchronization and the clustered architecture. There are two states in this phase:
consensus convergence and consensus synchronization.

Consensus convergence state. In this state, a pre-configured number of time slots are
available for the CH nodes to transmit their messages. The slot of a CH is decided based
on the number of its CH neighbors obtained in the connection declaration state. For
example, a CH with only one CH neighbor node transmits first, followed by CHs with
two neighboring CH nodes and so on. Generally, CH nodes with a lower number of CH
neighbors (one or two CH neighbors) tend to be at the edge of the network while CH
nodes with a higher number of CH neighbors (two or more CH neighbors) are located
towards the center of the network. This fact is exploited by our protocol to find one
or more local center (LC) nodes depending on the size of the network that can act as
a time source to synchronize different parts of the network, leading to localized time
distribution. LCs are CH nodes that have the highest neighboring CH connections and
are typically located towards the center of the network. Lines 1-11 describe the consensus
convergence state in Algorithm 7.
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Algorithm 7 Pseudo-code representing the operation of Consensus phase in C-sync.

1: for slot in MAX SLOTS do
2: for CH neighb in CH neighbors do
3: if my CH degree ≤ CH neighb then
4: my slot← slot

5: else if slot == MAX SLOTS then
6: my slot←MAX SLOTS
7: end if
8: my state← CONSENSUS SYNCHRONIZA- -TION

9: end for
10: end for
11: my slot = MAX SLOTS − my slot

12: while consensus count ≤ MAX COUNT do
13: for slot in MAX SLOTS + 1 : 2 ·MAX SLOTS do
14: if my slot == slot then
15: increment(consensus count)
16: my time← rcv().time
17: if my role == CB or CH then
18: broadcast(Msg)
19: end if
20: end if
21: end for
22: end while
23: my state← DISCOVERY . //End of consensus

The number of time slots is proportional to the number of hops a node at the edge
of the network traverses to an LC node. Additionally, in the case of special network
topologies like a chain or a ring, where most nodes have the same set of CH neighbors,
the configurable number of time slots can be set to limit the maximum number of hops
to reach the LC node. If a CB receives a message from a CH, the CB node acknowledges
and confirms the CH’s time slot (say slot 1). A CB that receives messages with different
time slots from neighboring CHs chooses to acknowledge the higher slot number by
convention. This is because a CH node with a higher time slot tends to be closer to the
central node than its lower counterpart (nodes with lower timeslots transmit first and
are located at the end of the network). Similarly, a CH node updates its time slot to a
higher value if its neighbor slot is higher than its initial slot (in the case of chain/ring
topologies). The transmission continues until all the CH nodes in the neighborhood have
a confirmed time slot. Similar to slot selection, if there are multiple nodes with the same
number of neighboring CH and time slots, the node with a higher ID is chosen as the
LC. This property can be also configured to take the average of the time information
received from both nodes. The culminating CHs in different parts of the network are
known as the local centers of the network. Multiple LCs are found depending on the size
of the network and these nodes disperse the time information back to the CH nodes.

Figure 5.3 shows an example of CH nodes in a network of randomly distributed nodes.
Note that the CM nodes are not shown for better readability while CB nodes are assumed
to be embedded within the links connecting the nodes shown in Figure 5.3. The CH
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C2

C3

C1

Figure 5.3: The process of finding LCs from the edge CHs and their associated nodes which
receive time information.

nodes at the edge of the network with a lower number of CH neighbors start transmission
until the LCs - C1, C2 and C3 are found. Further, the LCs transmit the time information
back to the CH at the edge of the network in the consensus synchronization state. The
colors indicate the nodes associated with the corresponding LCs. As seen from the figure,
some CH nodes receive time information from two LCs. In this case, such nodes can
choose to associate themselves with either of the LCs. All CM nodes during this state
are in sleep mode during the convergence and wake up for 1 slot to receive their slot
numbers for the synchronization state to receive the time information. An example with
10 slots for the convergence and synchronization state is shown in Figure 5.4.

A notable caveat is that the minimization of hops is adaptive to the network and
the topology, i.e., a network could have multiple LCs (within a distance of 1-2 hops)
or a single LC (configured maximum hops). This novel method of limiting the number
of hops to the time source achieves a simplistic solution eliminating the requirement
of any additional hardware/timing adjustment. Although existing solutions are able to
limit the error significantly, it is functional only up to a certain number of hops and the
problem repeats upon further scaling the network.

Consensus synchronization state. In this state, LC transmits time information to the
CH nodes and further to the CM nodes of their respective clusters. The time slots
for this state are the modulo time slot proportionate to the pre-configured time slots,
i.e., if a CH node transmitted at slot 4 in a 10-time slot window during convergence,
it receives its time information at slot 6 (10-4) during synchronization. CM nodes are
awake to receive their slot numbers from CH (same as their associated CH’s slot) and
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Figure 5.4: Example of consensus states with 10 slots.

go into sleep mode. Since the time information is passed from the local center, the clock
rate and offset are updated relative to the LC. This operation is shown in lines 12-23 of
Algorithm 7.

Synchronization errors accumulate at every node starting from the LC until the CM
nodes along the path. In the case of an ideal clock, offset compensation would be
sufficient to synchronize every node to the LC by computing the difference. As practical
clocks have variations in both offset and drift, both parameters need to be compensated.
The logical clock rate of a receiving node (r), from Equation (5.1), is defined as the
ratio of a logical clock (global clock value) of a node to its hardware clock after offset
compensation and is given by:

lr(t) = Lr(t)/hr(t). (5.4)

Since the rate is dependent on the hardware clocks of each node along the multi-hop
path, it is important to adjust the rate only to the logical clock of the LC as the reference
clock. The relative clock rate of receiving node (r) relative to the sending node (s) is
the ratio of the logical clock of the sender (Ls(t)) to the hardware clock of the receiver
(hr(t)), given as:

lrs(t) =
Ls(t)

hr(t)
. (5.5)

If a node is directly connected to the LC, the relative rate would be sufficient to
compute the logical clock. However, for any non-direct neighboring node to the LC, this
relationship causes dependency of hardware clocks of all the nodes on the path from its
LC. Hence, for non-direct neighbors, we compute the logical clock rate with reference to
LC (lLC) as the ratio of the relative rate to the current clock rate of the receiver:

lLC = lrs(t)/lr(t). (5.6)

This new rate is computed and transmitted at every node along the path to the edge
of the network. Each node can synchronize to the LC by utilizing the product of the
relative rate to the sender and the lLC .

CH nodes turn on only in their respective slots while CB nodes remain active for two
slots to receive and send information to their CH neighbors respectively. The clock rates
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of two LCs are averaged to establish a uniform clock synchronization across the network
if a CH node in any path is also an LC. The nodes move into an idle phase after synchro-
nization where they are in sleep mode and no messages are being exchanged. C-sync
switches to consensus synchronization periodically for LC to distribute time informa-
tion for maintaining synchronization. The idle phase conserves power and prevents the
constant exchange of messages to maintain synchronization. They re-synchronize when
they wake up after the sleep cycle to correct the clocks that are drifted apart during the
idle phase.

C-sync also switches back to the discovery phase after a few consensus phases to
accommodate ad-hoc networks where new nodes may join in or existing nodes may be
removed (due to energy exhaustion, movement or faulty nodes) through a periodic switch
back to the discovery state to create more efficient clusters. Due to the periodic switch
to the discovery phase, C-sync can adapt well to dynamic networks with regular failure
or mobility of the nodes. However, the switching frequency to discovery phase must
be carefully configured as to minimize energy expenditure. In stable networks with a
low probability of movement/faults, the number of consensus phase repetitions can be
configured to a large number to prevent unnecessary re-clustering. This process allows
the protocol to make the cluster structure more efficient when there are network changes.

C-sync overhead. Existing synchronization solutions have an overhead to cover the
entire network diameter with a lack of backup mechanisms to handle a dynamically
changing network. On the contrary, the diameter in C-sync ranges from a single cluster
to distance (hops) to the LC, yielding a much lower overhead. C-sync employs re-
clustering to ensure an efficient clustered architecture and has a fault detection and
correction mechanism in place to handle changes in the network. Additionally, since the
protocol starts with a completely decentralized network, the computational complexity
of the protocol is O(n), where n is the number of clusters.

Lemma 1. The maximum synchronization error between any node to its nearest LC is
a parameterized value.

The synchronization error in most time synchronization protocols is dependent on the
propagation time, frequency of messages exchanged and the number of hops required
to communicate. Due to MAC-layer time-stamping, the propagation time can be safely
ignored assuming no channel contention and interference[21]. This is because the prop-
agation delay roughly amounts to 0.3 µs for 100m distance between the nodes while the
resolution of hardware timer is about 1.9 µs. It is important to note that the computa-
tion applies to the consensus synchronization state. If the delay between two consecutive
messages exchanged is τ and the minimum achievable synchronization error for an ideal
“zero”-delay is δ, the accumulated error due to delay in message exchange is τ · δ. In C-
sync, τ is the idle-time delay between two synchronization messages, and the maximum
number of hops to an LC is represented by η. As the synchronization error increases at
each hop, the total error from any node to its LC is given by η · τ · δ. This configurable
parameterized limit restricts the synchronization error for any node in the network to
its LC.
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5.3 Resilience in C-sync

As stated earlier, resilience to faults is one of the important features of C-sync. In this
section, we use the categories discussed in Chapter 2 and list the fault handling-specific
assumptions made by C-sync. Further, we prove by induction that any fault in our
described categories can be handled by C-sync if the assumptions are met and discuss
the fault detection and correction process.

Fault model for byzantine faults. As discussed in Chapter 2, the fault models in IoT
networks range from a simple fail-stop fault to a byzantine fault. In this chapter, we
consider all the faults types discussed in Chapter 2. With a fail-stop fault, the node
is non-responsive due to battery exhaustion, hardware/software damage and/or envi-
ronmental factors, etc. We also consider byzantine faulty nodes where the nodes could
behave erratically making it difficult and expensive in terms of communication to detect
them. The subset of byzantine faults considered in this chapter includes spikes, outliers,
stuck-at and intermittent communication faults [35, 36, 37] as discussed in Chapter 2.
Spike fault is a sudden surge in reported values that may or may not return subsequently
return to normal values. When the reported values are beyond the boundary of the ex-
pected values, the resulting fault is an outlier. If reported values are constantly stuck at
the same value, then a stuck-at fault is observed. It is important to note that the stuck-
at faults can only be identified when the reported value is either an outlier or a spike
and remains stuck at those values. With intermittent faults, the message transmission
from a node is sporadic with periods of inactivity.

Typically, in cluster-based network architectures, the faults described above can be
translated as selective forwarding, discovery flooding and altered information [37]. Selec-
tive forwarding is prevalent in multi-hop networks where faulty nodes selectively forward
some messages while dropping the other messages. Fail-stop faults and intermittent
communication mimic a potential temporary loss of communication resulting in selec-
tive forwarding. Additionally, nodes may send sudden variation (spikes, outliers) in the
information due to a fault (E.g. False perception of the environment, routing changes,
etc.) leading to altered information. A threshold on the acceptable range for the re-
ceived data can prevent the altered information faults such as spikes and outliers. A
node with a faulty radio could end up in a high transmit power resulting in discovery
floods (also called HELLO floods) and consequently could end up with more neighbors
than the normal range, leading to a higher degree. The high-powered transmission could
lead to the false election of these nodes as one of the critical routing nodes (CB or CH).
For discovery floods, it is important to verify the bi-directionality of the links between
the nodes, i.e., to verify that the link has the same properties in both directions. The
above faults are the observable faults through radio communication and constitute a
subset of the generic byzantine faults. Additionally, we assume that the faulty nodes
can cooperate with each other independent of their node type. The impact of the faults
observed in both phases of C-sync described in Section 5.2 is studied.

86



5.3 Resilience in C-sync

Impact of faults. As seen in DeCoRIC [135], the hard faults can be handled within
a bounded time even with the absence of synchronization. With C-sync, it is expected
that the CH and CBH nodes transmit at a specific time slot and the impact is more
pronounced for CH and CB nodes. During the clustering phase, a faulty node tries to
be a routing node (such as a CH or CB node) as common nodes cannot influence the
messages beyond their own cluster. A faulty node can report an erroneous degree and/or
use discovery flooding with a high-powered (damaged) radio to become a CH/CB node
during the clustering phase. When a node becomes a routing node (such as a CH or CB
node), it could have a wider impact during the consensus phase transmitting erroneous
time information across clusters. Since CB plays a critical role in the fault detection
and correction process, an additional authentication using AES cipher is used with a
combination of communicating CH nodes’ ID as the key to prevent non-neighboring
nodes of CHs from getting promoted to a CB. Replicating a MAC address of 8 bytes in
the ID through brute-force is a highly difficult and energy-intensive task for a resource-
constrained node. Encryption provides an additional layer of defense as it is also assumed
that nodes cannot change their addresses or the reference address. The AES cipher is
used atop the existing message encryption mechanism of IEEE 802.15.4 [3] to authenti-
cate the CB nodes and verify the bi-directionality of the links [37]. Authentication of CB
nodes allow for a simple majority consensus (agreement) among the correct nodes [136].
The Byzantine consensus (agreement) mechanism can detect and correct all the other
faulty nodes (CH/CB/CM).

The byzantine consensus (i.e., fault handling) mechanism is described in detail below.
Prior to that, the assumptions and broadcast primitive required for byzantine consensus
are also discussed.

5.3.1 Network assumptions to achieve byzantine fault resilience

Let ni denote the number of neighbors of any node i in a cluster within its communication
range, nCB denotes the set of CB nodes between two clusters with cluster heads CH1 and
CH2 such that CH1, nCB and CH2 are at an increasing number of hops from the local
center respectively. The assumptions and broadcast primitives required for byzantine
consensus are:

Assumption 1. No node can fake its address or the reference address in a message as
it is a hardware-based MAC address.

Assumption 2. Every node in a cluster has at least bni
2 c+1 neighbors that are fault-free.

Assumption 3. There are at least bnCB
2 c+ 1 CB nodes that are fault-free between any

two clusters. In the event of a fault, every node expects ni
2 + 1 correct messages and

re-transmits any received messages till the expected number of messages are met.

Assumption 4. There are at least two clusters in the network without any network
partitions/isolated clusters.
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Atomic broadcasts

Typical byzantine agreements require significant energy to perform computations and
communication [38]. Sensor nodes are resource-constrained and require an energy-
efficient way to achieve a byzantine agreement. Atomic broadcasts were introduced
in [137] to achieve byzantine consensus if they meet the following criteria:

• Every message from a correct sender is received by all correct receivers within a
time-bound.

• Every message is received by the correct receiver in the same order as it was sent
by the correct sender.

The byzantine agreement is concluded if all the correct nodes have the correct informa-
tion that was propagated.

In C-sync, atomic broadcasts are initiated by the CB nodes if the CBH or CH nodes
are non-responsive or send incorrect information. To understand further, we take a look
at both types of faults and present the fault handling mechanisms.

5.3.2 Fault detection and correction

As discussed in Chapter 3, DeCoRIC handles hard faults within a bounded time even in
the absence of synchronization [135]. In most IoT networks, due to high density of nodes,
the minimum number of nodes based on the assumptions can be achieved. With C-sync,
it is expected that the CH and CBH nodes’ synchronization messages are transmitted
at a scheduled time slot. If there is a missing broadcast due to a damaged node or
selective forwarding, it is treated as a fail-stop fault. Byzantine faults arise when the
time information is modified to destabilize the cluster and network. Both the faults are
handled through byzantine consensus among nodes of the cluster.

All CBH and CB nodes schedule a byzantine consensus message at a delay of two
message transmissions time after the transmission of the synchronization message and
monitor the information within the cluster to verify its authenticity. Two transmission
times account for message transmission from CBH to CH and, further, from the CH
to all the cluster nodes. CB nodes monitor the information shared by the CBH and
CH nodes to verify the authenticity of the information shared. The CB nodes drop
the scheduled message upon correct information from CBH and CH nodes in their re-
spective time slots. Alternatively, if the shared time information exceeds a configurable
threshold (synchronization error > threshold) or a missing/failed transmission causes a
timeout, a fault is recorded and atomic broadcasts for byzantine agreement are initiated
immediately. Note that a consensus message can be configured to trigger after a certain
number of repetitive misses/violations. The detected faulty node is added to a blacklist
where messages originating from the blacklisted nodes are ignored by the other nodes
and are excluded from forming new clusters. The blacklisted nodes are excluded when
protocol moves into the discovery phase and new clusters are formed without the black-
listed nodes. Upon receiving the atomic broadcast, all the CM nodes and/or CH nodes
(non-faulty) re-transmit this information till every node in the cluster receives at least
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bni
2 c + 1 correct messages so that all the nodes in the cluster receive the information.

The above condition is both necessary and sufficient to achieve a successful byzantine
consensus (agreement).

A faulty CM node can only assert its influence by sending a false byzantine consensus
message. However, this message is not replicated by all of the other CM nodes as it was
not sent by any of the CB nodes directly/indirectly (as reference). Thus, the minimum
number of messages will not be received by any of the other nodes of the cluster, leading
to the failure of atomic broadcasts. The clustered architecture and byzantine consensus
mechanism established in C-sync can handle all the aforementioned fault types and can
further be extended to handle other fault types and even certain attacks. The extensions
are left as a future work of the presented algorithm.

The flooding of messages within the cluster leads to a temporary increase in power
consumption. However, it is a small price to pay to contain faults within a cluster
and achieve resilience against faulty nodes. It is important to note that the byzantine
consensus completes within the same time slot when the time information has to be
distributed and hence, does not impact accuracy.

Theorem 2. Any faulty node in the network can be detected and corrected in C-sync if
the stated assumptions are satisfied.

Proof. We prove the theorem using the principle of induction. The proof is provided
with reference to a single cluster as a representative case consisting of a cluster head CH
that connects to other clusters through CB nodes and the associated CM nodes such
that every node meets Assumption 2. The cluster is connected to other clusters through
CB nodes. Let CB1 and CB2 denote the set of CB nodes of CH and its neighboring
clusters, with CB1 located closer to the LC and CB2 located farther away from LC, such
that the information chain traverses from LC to CB1 to CH to CB2. Multiple nodes
are present within the sets CB1 and CB2 to ensure that Assumption 3 is met. Without
loss of generality, the same proof applies to every cluster in the network independently.
Also, the proof for the CB1 set applies to the CB2 set as well.

For the base case, let us assume there is only one fault in the cluster. If CH is the
faulty node, the information from CB1 is either dropped or modified before distributing
it to CB2 and its CM nodes. CB1 nodes including CB1H (CBH in the set of CB1) send
a byzantine consensus message immediately (modified time information) or as scheduled
(selective forwarding) such that it gets re-transmitted across the cluster upon reception.
Based on Assumptions 2 and 3, the fault-free bni

2 c+ 1 neighbors propagate the correct
information from the received byzantine consensus messages to reach an agreement.
Hence, the faulty information gets detected and corrected. Similarly, if the CB1H node
or one of the CB1 nodes skip sending the synchronization message or send faulty time
information, the remaining CB1 nodes initiate the byzantine consensus. A faulty CM
node can directly trigger a byzantine consensus message with incorrect time information.
However, since the CB1H address cannot be used as a reference, the fault-free neighbors
do not re-transmit this message. By Assumption 2, byzantine consensus for the faulty
CM node will not be reached.
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Let us assume that the C-sync protocol can detect and correct up to k faults that
satisfy assumptions 1, 2 and 3, i.e., k < ni

2 for all the cluster nodes including CH and
k < nCB1

2 for the set CB1.

Consider k + 1 faults that satisfy the assumptions 1, 2 and 3 and the assumption
of k faults as stated above. If the additional faulty node in the k + 1 faults is a CM
node and assumption 1 holds, this CM node can trigger a byzantine consensus message
without CBH or any of CB1 as reference nodes. Additionally, with assumption 2, we can
infer that (k + 1) < ni

2 . Thus, the fault will not be propagated and consensus on faulty
information will not be reached i.e., correct nodes are not impacted. With CH as the
faulty node, CB1 nodes initiate byzantine consensus messages immediately if the error
from the CH node exceeds the threshold. Since (k + 1) < nCB1

2 and (k + 1) < ni
2 hold,

then the messages with correct information from the ni
2 + 1 nodes (CB1 and CM) of the

cluster dominate the faulty byzantine messages (k + 1) leading to successful detection
and correction of the fault. Lastly, if either CB1H or any of the other CB1 nodes is the
additional faulty node, and (k+ 1) < nCB1

2 holds, the messages from the k+ 1 nodes are
not sufficient to reach the byzantine agreement. Thus, the correct CB nodes are able to
disseminate the information within the cluster.

Theorem 2 holds for any k such that assumptions 1, 2 and 3 are satisfied. Hence, with
the C-sync protocol, wireless networks can achieve resilience to faults.

Discussion

An exception to the fault handling in C-sync is the case of node mobility during message
transmission. A mobile node could initiate a transition from one cluster to another clus-
ter during the synchronization message transmission (consensus synchronization state),
mimicking a fail-stop fault/selective forwarding. Consequently, the node gets blacklisted
although movement was a legitimate action. However, there is no impact if the mobile
node never returns to the original cluster. This exception can be addressed through an
exchange of membership information in addition to time information among different
CH nodes of the network in the consensus convergence state and is beyond the scope of
this thesis. Additionally, small networks that result in a single cluster without a CB are
also an exception to the fault handling mechanism of C-sync. To handle faults in this
scenario, the CM nodes would be awake for a longer duration to initiate a consensus
flooding (if required) resulting in a power efficiency vs fault tolerance trade-off.

5.4 Experiments and results

To test the performance of the C-sync protocol, we introduce a fault in a CH node of a
simple representative network to show that the fault detection, correction and contain-
ment within the cluster are achieved. Further, we conduct experiments to compare the
power consumption to achieve synchronization and the resulting accuracy of synchro-
nization. Finally, we demonstrate through a chain topology that the synchronization
error for any node to its nearest time source is restricted. In Section 5.4.1, we explain
the details of the experimental setup used to conduct our experiments. We discuss the
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Figure 5.5: Software architecture of Contiki OS integrated with C-sync.

results from our experiments for energy efficiency, synchronization error propagation,
and fault detection and correction in Sections 5.4.3, 5.4.4 and 5.4.2, respectively.

5.4.1 Experimental setup

The C-sync protocol was implemented on the Contiki 3.0 operating system [138], with
Tmote Sky [4] boards utilizing the IEEE 802.15.4 communication standard. While nodes
with the same capabilities are used for testing purposes, C-sync can be used in networks
having nodes with heterogeneous capabilities. Tmote Sky consists of MSP430 [139]
micro-controller and CC2420 [140] radio communication chip from Texas Instruments.
The experiments were conducted on the Indriya [31] testbed at the National University of
Singapore, where there are over 50 Tmote Skys deployed on different floors of a building.
The implementation has been made available publicly for use by the community.

The software architecture of C-sync is shown in Figure 5.5. Starting from the lowest
layer, the network stack maps the bottom three layers of the Open Systems Intercon-
nection (OSI) protocol stack whose output is passed to the upper layers. The network
stack handles the radio communication including physical layer control, link-layer se-
curity features such as AES, CSMA-CA, and MAC-layer features such as MAC-layer
timestamping. It also provides link-layer security features among which AES encryption
is used in the connection declaration phase for the CB election. The output of the net-
work layer is the received packet buffer that is passed to the upper layers. Chameleon
is a header transformation layer that adds or removes the header component from the
packet buffer.

Rime stack is a versatile layer that provides various implementations of communication
primitives such as periodic broadcasts, etc. This layer handles the packet buffer queuing
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in case the channel is busy due to CSMA-CA. Rime also offers a variant of the broadcast
primitive called polite announcement that reduces the messages within the radio range
of a node by monitoring the channel for any duplicate messages. If a duplicate message is
received, the scheduled transmission packet is dropped; and the transmission continues
once the channel is free or if a different message is received.

C-sync runs concurrently over the Rime stack, i.e., C-sync uses the communication
stack when other applications are idle and vice-versa. Applications that require energy-
efficient and resilient time synchronization for their application may use C-sync, while
other applications can directly communicate using the Rime stack. During the idle phase
of C-sync, the applications directly take over the network stack till the next scheduled
consensus synchronization/discovery state using interrupts and function callbacks with
time synchronization as a feature that facilitates applications. After C-sync completes
the consensus synchronization phase, the idle phase takes over. It is important to note
that all the layers operate on the same packet buffer and it is passed among the lay-
ers every time it is populated or depopulated depending on the direction of the packet.
For comparison purposes, we have also implemented the Gradient Time Synchronization
Protocol (GTSP) [15] on Contiki. GTSP was chosen for comparison as the representative
protocol among the class of decentralized solutions since it forms the basis of averaging
and consensus features used in the other recent solutions. GTSP is also the only de-
centralized synchronization protocol that has shown feasibility for hardware testing for
generic wireless sensor networks.

Rtimer. A software wrapper is implemented to sample the clock from the registers at
regular intervals such that a stable clock output is obtained. As seen in Chapter 2,
two clock sources can be combined to produce a low-resolution stable output from the
timers. In our implementation, we configure the crystal oscillator frequency to be 512
Hz using the clock divider registers. With Timer A sampling the crystal oscillator and
Timer B sampling the DCO, at 512 Hz, every 4 samples of crystal produces 4096 ticks
of DCO clock.

The deviation of the DCO from the ideal value of 4096 ticks is captured as the clock
drift. To get a high-resolution stable clock, the crystal oscillator is used to sample
the DCO at regular intervals and obtain the DCO drift factor as shown in Figure 5.6.
Every 4 ticks of timer-A correspond to 4096 ticks of timer-B: this definition is used to
compute the correct value of timer-B independent of any variation of the DCO as seen
in Figure 5.6(a). Ideally, timer-B has to follow the timer-A value without any variation.
Ideal clock and DCO variations cause timer-B variations as shown in Figure 5.6 (b). The
drift of DCO is computed as the ratio of the estimated value tbe over the actual value
of timer-B tba as:

drift = tbe/tba (5.7)

This drift factor is multiplied with the current timer-B value to obtain the exact
hardware clock value. With the example shown in Figure 5.6, the drift factor is
4096/3904 = 1.04918. The product of drift with clock value would provide the ex-
act clock value as 1.04918∗3904 = 4096. This provides a drift compensated stable DCO
output clock from Timer B at a resolution of 2µ s.
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Figure 5.6: DCO time drift compensation using the stable low-frequency crystal oscillator.

Since Timer A operates at 512 Hz, the register overflows every 128 seconds incre-
menting a variable coarse count. Similarly, when Timer B overflows, a variable called
fine count gets incremented. Hence, a timestamp reads 4 values - coarse count, Timer
A, fine count and Timer B. As the variables are 32-bits in size, the entire timestamp
overflows roughly once in 17,432 years. Given the long duration, the rtimer setup is also
UTC compatible.

Boot time. The initial boot time of the C-sync to switch from discovery state and
achieve loose synchronization is dependent on the density of the network as denser
networks take longer to converge due to a larger set of unsynchronized neighbors. Em-
pirically, in our setup, we found the initial transition to the election phase was roughly
10x the ST interval. Hence, the time to complete the consensus phase from the start of
the discovery phase is 10+4 ST intervals.

5.4.2 Fault detection and correction

The fault detection and correction steps in C-sync are tested by introducing a fault into
one of the nodes. Since the fault handling mechanism is similar across all node types (CH,
CB or CM), fault at one type of node is representative of all the other types of nodes.
With the CB nodes monitoring the flow and correctness of the information, the fault
detection at either of three node types follows a similar pattern with exceptions discussed
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Figure 5.7: The synchronization error of different nodes within a cluster having a faulty CH.
The error remains within one logical time slot without any impact on network
synchronization.

in Section 5.3.2. Additionally, the fault handling in a single cluster is representative of
the fault handling in the entire network as each cluster counters the fault the same way
as any other cluster.

We consider an example of three clusters with CH nodes CH1, CH2 and CH3 connected
by the bridge node CB1H and CB2H similar to Figure 5.1. CH1, CH2 and CH3 are
cluster heads of the clusters and the information flow goes in the order of CH1, CB1H,
CH2, CB2H and CH3 from left to right. Let us suppose CH2 is a faulty node in the
network. Since only nodes of the CH2 cluster are impacted by the fault, we consider
only the common nodes in the CH2 cluster denoted as CM. The threshold for an error
to initiate byzantine consensus is set to 500µs. Synchronization error is measured as
the difference between the clock ticks in the logical clocks of the receiving node and
the neighbor node. CH2 introduces a synchronization error of 10000µs in its time slot
(slot 2) after receiving a message from LC, as seen in Figure 5.7. The CB2H node
tries to synchronize to this initially resulting in a high error. The high error is shown
with a broken axis on the plot where both CB and CM are impacted by faulty time
information. The vertical lines on the plot for CH2-CB2H and CM-CH2 converge to the
point in the upper half of the plot. However, byzantine consensus messages with the
correct clock value are flooded within the cluster by the CB1H node of the first cluster
as shown in Figure 5.7. Both the CM and CBH nodes reset their clocks to the new value
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in the received information in the byzantine consensus messages. It is important to note
that the consensus completes within the same slot 2. The logical timeslot represents
the duration of a synchronization slot, i.e., a combination of consensus synchronization
state and the idle state.

CB2H transmits the updated correct clock information to CH3 in the next time slot.
As seen from Figure 5.7, the neighboring cluster head CH3 is not impacted by the
fault in the cluster with CH2. Hence, the fault is contained within a single cluster and
recovers with byzantine consensus as expected from the discussion in Section 5.3.2. It
is important to note that a fault (if any) in the clustering phase, gets detected in the
consensus phase as the errors and fault tolerance are a consequence of nodes elected in
the clustering phase.

5.4.3 Energy efficiency for fault-tolerance

To demonstrate the efficient operation of C-sync, we conducted experiments to measure
the synchronization error and the power consumed for achieving neighbor synchroniza-
tion as shown in Figure 5.8. Neighbor nodes are a part of the clustered architecture,
including, but not limited to communication between CM-CH, CB-CH and CH-CB-CH.
A scatter plot of average neighbor synchronization error in µs on the y-axis against
average power consumption of each node in mW on the x-axis after the protocols move
to the idle phase is plotted. Each point on the plot represents an averaged value of
power and synchronization error for each node in the network over the entire duration
of the experiment. Measured values of synchronization error are plotted without taking
an absolute value, i.e., the offset can be both positive or negative.

Although the error and the power are not correlated, they provide an intuition on the
synchronization protocol performance to achieve low synchronization error and power
consumption. The power and synchronization error is measured after the protocol moves
onto the idle phase. Ideally, a probe is needed to measure the offset physically at each
node. Alternatively, in Figure 5.8, synchronization errors of nodes with respect to their
neighboring nodes are measured through a message exchange in the idle phase to only
compute the offset with no rate/offset compensation. Hence, no power expenditure is
recorded for these messages. Similar to C-sync, the GTSP idle phase begins at the end
of the discovery phase since GTSP does not employ a state machine in its protocol.

The scatter plot consists of tests conducted in three different topologies formed by
utilizing different configurations of the testbed. The average synchronization error across
all nodes in the network is not shown in Figure 5.8 for better readability. The summary of
the results of average neighbor synchronization error (offset) and average network power
consumption (power) with corresponding standard deviations is shown in Table 5.2.

The dense distribution of nodes is formed by using the different pockets of nodes
closely grouped together on each floor of the building (denoted as dense n/w in the
figure). GTSP performs best in a dense environment due to the closeness of the nodes
and, hence, converges quickly with a synchronization error of 7.05µs. However, due to
the continuous exchange of messages, there is a high power consumption of 0.98mW .
C-sync forms larger clusters with more CM nodes in a denser environment. Hence, more
nodes remain in sleep mode while achieving a similar synchronization error of 7.52µs and
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sparsely distributed and using the entire testbed compared for C-sync and GTSP.
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Table 5.2: Results of average neighbor synchronization error and power consumption measured
(with associated standard deviation) over 30 minutes across different topologies.

Dense Network Sparse Network Full Network

GTSP sync. error (µs) 7.05 (24.51) 7.67 (3.73) 10.13 (11.64)

C-sync sync. error (µs) 7.52 (7.22) 10.05 (6.78) 12.24 (9.35)

GTSP Power (mW ) 0.98 (0.24) 1.98 (0.97) 0.89 (0.48)

C-sync Power (mW ) 0.43 (0.1) 0.48 (0.07) 0.43 (0.06)

low power consumption of 0.43mW , having a reduction of power by 56.12% compared
to GTSP.

The sparse distribution of nodes is formed by utilizing a few nodes from each floor to
communicate with each other (denoted as sparse n/w in the figure). Due to the sparse
distribution, the convergence speed of the 1-hop synchronization algorithm is impacted
while multi-hop synchronization performs better [141]. Hence, due to the neighbor-only
synchronization, GTSP incurs a longer convergence time with a synchronization error of
7.67µs and power consumption of 1.98mW . However, C-sync synchronizes to the closest
neighbors to form smaller clusters while letting farther nodes become CB nodes to other
similar clusters. Hence, there is a multi-hop synchronization across multiple clusters
yielding a synchronization error of 10.05µs and power consumption of 0.48mW which
is 75.75% lower than GTSP. This way, there is a faster convergence, yielding significant
power reduction.

Combining both the above environments, utilizing all the nodes of the testbed provides
us the results for a full network (denoted as full n/w in the figure). GTSP synchronizes
to the mixed environment yielding an average synchronization error of 10.13µs and
consuming 0.89mW . C-sync forms multiple clusters with a mixture of large and small
clusters connected via cluster bridges. C-sync achieves an average power consumption of
0.43mW which is roughly 51.68% of the power consumption of GTSP in the full network
topology. The synchronization error is similar to GTSP with C-sync having an average
synchronization error of 10.13µs. Both protocols take a longer time than the dense and
sparse configurations to achieve synchronization due to the higher number of nodes in
the network.

The difference in average synchronization error between C-sync and GTSP across
various topologies is at a maximum of about 2.4µs. This is equivalent to one tick of
the clock at a resolution of 1.9µs. This difference can be attributed to the measurement
error and hence, can be concluded that the accuracy of both the protocols are similar.

Since a small change in ticks could result in a larger change in the synchronization
error, we observe that the standard deviation is higher during the measurement of the
synchronization error. C-sync consistently achieves the roughly same deviation in syn-
chronization error, whereas GTSP experiences a larger deviation depending on the topol-
ogy. The fixed set of states and the leader-follower synchronization in C-sync ensures
that the protocol converges and moves into the idle state faster, leading to lower variation
in power consumption.
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Figure 5.9: Chain of Cluster Heads and Cluster Bridge ignoring the Common nodes to demon-
strate a multi-hop network.

5.4.4 Synchronization error to local center

As described in the protocol, C-sync is able to restrain the distance of any node to
the time source within a pre-defined parametric threshold. In order to demonstrate
this experimentally, we constructed a chain topology to emulate a multi-hop network as
shown in Figure 5.9. Ignoring all the CM nodes except for the ones on the corner CH
nodes, there are 13 nodes in the chain.

Letting C-sync run on every node, a chain of CH and CB was established, with each
node (except the CM nodes) connected to two neighbors. The synchronization error
from the LCs to each of the nodes associated with the LCs is plotted over the number of
hops it receives the time information. In the consensus convergence phase, starting with
the CH at both ends, every node starts to transmit and increment its slots. Once the
slot count reaches the maximum number of slots or reaches a CH node with the highest
neighbors in the neighbor, the Local Center (LC) is found. LC is responsible to distribute
time information to its neighborhood and the CH nodes receive this information in the
reverse order of convergence. As seen in the example, LC is reached from both ends and
the edge nodes synchronize to the time information sent by their associated LC over
multiple hops.

The CB node connecting both LC receives information from both but synchronizes to
only one of them based on the address of the LC (since both LC have the same hop count).
This can be configured to average the time information and further transmitting it for
synchronization among LCs when LCs have different slots of transmission. Generally,
CB nodes synchronize to one of the CH neighbors and pass the information to the other
CH neighbor. Since both LCs have the same hop count in our example, both LCs are
active in the same time slot. Hence, the CB information is not received by the LC in
the next time slot. The entire network gets re-synchronized at the next discovery phase.

For our example network, the maximum number of hops from any node to its LC was
observed to be five. Each slot in the synchronization phase is 300ms and the idle phase
is configured to be ten such slots. Computing the periodicity of messages received where
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Figure 5.10: Synchronization error is bounded by the established the maximum number of hops
from the local center.

every node is active only for 1 slot, each node receives a synchronization message once
every 10+(5−1) slots, i.e., a periodicity of 14 slots. The ideal minimum synchronization
error to the LC in the case of C-sync is the duration of 1 instruction (1 tick) of recording
MAC-layer timestamping. Based on the resolution of the clock, it is approximately
1.9µs. Using the information of maximum hop count and the minimum synchronization
error, the worst-case calculated synchronization error to the LC can be calculated from
our previous definition of η · τ · δ as (1.9 · 14 · 5) = 133µs. However, this limit reduces
if the number of hops of a node is lower than five. The experimental measurement for
the synchronization error to the LC over multiple hops is plotted against the estimated
value as shown in Figure 5.10.

At the LC, the error is zero since its own clock is the reference clock. As seen from the
plot, both the cumulative error and the absolute cumulative error (converting negative
offset to positive) were measured and found to stay below the computed theoretical
value.

5.5 Summary

In this chapter, we presented C-sync, a clustering-based decentralized time synchro-
nization protocol that is both resilient to faults and energy-efficient. C-sync maintains
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suitable accuracy and uses the clustered architecture to enable more nodes of the network
to remain in sleep mode. The clustered architecture of C-sync paves way for resilient
design and adaptability of real-time applications on decentralized networks. C-sync can
remain in a consensus-idle phase loop as long as there are no network changes, signif-
icantly reducing the messages exchanged to maintain synchronization in the network.
The implementation has been done on Contiki and a hardware testbed.

The fault handling mechanism with byzantine consensus was described and demon-
strated experimentally by introducing a fault in a simple network topology that can
be scaled. We illustrated through experiments that C-sync achieves significantly lower
power consumption compared to GTSP while attaining similar accuracy. Additionally,
the concept of local centers was introduced and their role in restricting the synchroniza-
tion error in the network was demonstrated.
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6.1 Thesis Summary

Internet-of-Things devices are being used in a growing number of applications due to
their low cost and plug-and-play nature. Ensuring the reliability of a network of such
devices is crucial for applications in critical services (e.g. fire sensor in a building has
to reliably detect heat). To that end, this thesis focused on designing communication
algorithms that dynamically adapt the network topology to minimize energy consump-
tion and improve fault handling in such networks. Existing approaches were investigated
and found to fall short in integrating all the major requirements discussed in Chapter 1.
Without any prior knowledge of the network structure, each node exploits its position
in the network to assume versatile roles such that the overall energy consumption and
impact of faults in the network are minimized. To successfully develop communication
solutions with all the three requirements, i.e., energy efficiency, adaptability and fault
resilience, the following major contributions have been presented in this thesis:

Clustering strategy: DeCoRIC. Given a completely decentralized ad-hoc IoT network,
establishing communication with no synchronization among nodes results in very high
power consumption and network interference as the devices keep their radios on contin-
uously to send and receive messages. Additionally, the unstable nature of low-cost and
resource-constrained devices leads to device failures that disrupt the connectivity among
nodes and in turn affect the network functionality. Existing solutions to improve power
efficiency include clustering and synchronization [23, 24, 22, 15]. However, these solu-
tions only provide disparate properties such as adaptability and fault tolerance without
an inclusive design of all the properties together.

We focused on clustering to establish a network structure that can aid in synchro-
nization and improve fault tolerance. Existing clustering mechanisms used various pa-
rameters such as degree [44], residual energy [25], randomization [23], etc. to achieve
a clustered architecture among the nodes. However, to maintain connectivity and en-
sure reliable routing for critical applications, the position of a node in the network is
very important. We proposed DeCoRIC, a clustering mechanism that uses the degree
of a node to identify nodes enabling connectivity and strives to cluster the neighboring
nodes together such as that the end-to-end connectivity is maintained in a power-efficient
process. DeCoRIC assumes an asynchronous ad-hoc network and utilizes the radio prop-
erties such as CSMA-CA and RDC to minimize the radio on-time while ensuring reliable
message transmission. Furthermore, each node gossips its neighbor information to al-
low other nodes in the neighborhood to know the status of the nodes. The gossiping
process ensures that the node failures are detected reliably within a bounded time and
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transmitted to other nodes in the neighborhood to allow for re-routing/re-clustering.
Additionally, any node’s missed transmission is accounted for in this process as the ra-
dio on times of all the nodes may not be aligned. We compared the performance of
our proposed solution with the state-of-the-art protocols LEACH and BEEM. DeCoRIC
achieves up to 70% better power efficiency and 42% longer lifetime compared to LEACH
while achieving up to 110% better power efficiency and 109% longer network lifetime
in comparison to BEEM, respectively. To the best of our knowledge, DeCoRIC is the
only clustering scheme that combines the properties of connectivity and resilience in an
energy-efficient manner.

DeCoRIC use-case: Energy optimization with device mobility. Clustered architec-
tures were typically tested on wireless sensor networks with limited applications on prac-
tical problems. We deployed an application with distributed energy resources and elec-
tric vehicles atop the clustered architecture generated using some features of DeCoRIC.
While most works in the literature [79, 20, 98] focus on load shifting at the grid-level
to minimize peak load and achieve load balancing, the device-level parameters have not
been explored well. Due to load unpredictability and high skew, scheduling all devices
at one location or time results in exceeding the peak load and blackouts. The flexibility
of letting the devices decide the amount and location of power consumption based on
the information from the grid allows significant improvement of benefit/utility for the
devices.

In Chapter 4, we modeled a system of grid supply in the form of aggregators and
devices with properties including different power consumption modes and mobility. An
optimization problem was formulated with an objective to minimize the loss of utility
incurred due to deadline misses and mobility, i.e., additional power consumption due
to movement between different aggregators. Synthetic data was generated to cover an
exhaustive range of values for the input parameters. A low-complexity heuristic was
proposed to solve the MINLP which can produce a feasible schedule within a practically
viable runtime. The model was tested with a solver for a duration equivalent to the
worst-case runtime of the heuristic and found that the utility loss was significantly high
for the solver due to the large number of variables to optimize. A real-world EV dataset
was used to test our proposed heuristic against standard scheduling algorithms and
found that our solution achieved over 57.23% lower utility loss. Based on the existing
literature, our solution is the first to optimize energy by utilizing device mobility and
multiple modes of devices.

C-sync. Beyond the energy efficiency achieved by DeCoRIC, introducing time synchro-
nization would further improve energy efficiency through the use of slotted communica-
tion, TDMA and extended sleep cycles. Most of the available synchronization solutions
focus on accuracy and energy efficiency [22, 15, 23] but do not take into account the
impact of faults in the network. To address the resilience and integrate the requisite
properties discussed in Chapter 1, a synchronized clustered architecture with minimum
power consumption and resilience against various faults in Section 2.3.2 was designed.
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Building on DeCoRIC, we proposed C-sync, a resilient and energy-efficient synchro-
nization solution for IoT devices in Chapter 5. The synchronization was done in two
phases: clustering to establish the clustered architecture and the roles of every node and
consensus phase to maintain synchronization and detect any faults in the network. A
fault introduced in a CH node was detected successfully using the byzantine consensus
mechanism. Theoretically, we proved the detection of faults in all scenarios as long as the
assumptions were met. The performance of C-sync was compared with the state-of-the-
art decentralized synchronization protocol GTSP. It was found that C-sync consumes at
least 51% lower power than GTSP while having the same accuracy. Furthermore, using
the concept of local centers, nodes at the center of the network were chosen to distribute
time information such that the distance of any node to the time source is bounded.
Through experiments, we showed that the measured synchronization error is lower than
the worst-case estimated synchronization error due to multi-hop communication. To the
best of our knowledge, C-sync is the only time synchronization solution that provides
resilience against byzantine faults and has a configurable mechanism to limit hop count
for a device from its time source.

To conclude, this thesis identified and described the problem of energy efficiency,
adaptability, and fault resilience in networks of IoT devices. With growing adoption
of resource-constrained devices in IoT applications, the three requirements are imper-
ative for the stability and robustness of the network. Through solutions proposed in
Chapters 3, 4 and 5, for the first time, we addressed these research gaps by developing a
clustering scheme validated on both a wireless sensor network and an energy distribution
network to be energy-efficient, adaptable, and resilient to faults concurrently.

Our proposed solution has wide-ranging implications for various IoT applications.
For example, environmental sensing and industrial plants experience frequent failure of
devices due to the harsh conditions in which the devices are deployed. Our resilient
solution can adapt to these failures by switching to other devices in an energy-efficient
way at scale.

6.2 Future work

While this thesis is the first to collectively combine all three major requirements of
energy efficiency, adaptability and resilience, there is further potential to explore relevant
research problems for the scientific community. In this section, we discuss some of the
potential research topics that stem from this thesis.

6.2.1 DeCoRIC:

Multi-parameter clustering. In chapter 3, we proposed DeCoRIC which grouped nodes
into clusters and elected cluster heads based on the degree of a node. The degree param-
eter ensured connectivity between the clusters and resilience in the clustered network.
However, there are various other parameters such as residual energy of the nodes or
position of a node within the network that can be used for clustering. Each of these
parameters creates a different clustered network topology optimized for certain require-
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ments such as energy efficiency, throughput, etc. As future work of DeCoRIC, multiple
parameters for clustering can be combined and optimized to further improve the energy
efficiency, adaptability and resilience of the network.

Alternate radio optimizations for energy-efficient communication. As we have seen
in Chapter 3 and Chapter 5, clustering operation consumes the bulk of energy during
communication between asynchronous devices. Radio duty cycling (RDC) provided a
means to turn on/off the radio with different periods to conserve energy while ensuring
successful transmission. However, RDC follows a fixed schedule for radio without consid-
ering communication patterns from neighboring devices. RDC can be further optimized
to exploit the neighbor communication patterns and increase/decrease the on-period of
the radio. The inclusion of a transmission window and/or enhancing the CSMA-CA
with additional constraints reduces the interferences on the channel and minimizes the
neighbor node detection time. Further, other radio-based optimizations such as trans-
mission power and range, among others can be used to improve the energy efficiency of
the devices.

6.2.2 Use-case of DeCoRIC - Load balancing for mobile devices:

Applications. With the exception of generic sensor networks which include homoge-
neous nodes, most applications comprise nodes with heterogeneous capabilities. For
example, environment monitoring uses nodes not only with different sensing capabilities
but also different connectivity (wireless/wired connectivity) and power sources (bat-
tery/electric line connections). The modular nature of the implementation can be used
to expand the future applicability of the clustered architecture to accommodate such
heterogeneous platforms.

Although the solution obtained from the proposed heuristic in Chapter 4 is fast and
feasible, the quality of the solution is far from optimal. Standard optimization solvers
produce optimal solutions at the cost of significant runtime. Hence, as future work,
partial integration of the heuristic with the solver can speed up the solver and improve
the utility loss closer to the optimal solution. To elaborate, the heuristic can generate
an initial feasible solution and feed it to the solver for further optimization. This process
makes away with the significant runtime needed for steps such as pre-solve.

6.2.3 C-sync:

Collision recovery. We observed through experiments in the previous chapters that
interference between devices causes collisions and loss of messages. Although synchro-
nization and slotted communication alleviate interference significantly, there is a limita-
tion on the number of devices that can be supported with time slots. By utilizing the
collided packets based on existing solutions on collision recovery [142], information can
be extracted and recovered to minimize re-transmissions. Any reduction in transmission
translates directly into a reduction in energy consumption of the nodes.
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Enhanced resilience. As seen in Chapter 5, C-sync was able to detect a class of byzan-
tine faults mostly observed in clustered architectures. However, the process of byzantine
consensus is robust to achieve a more comprehensive fault tolerance beyond the type of
faults discussed in Chapter 2. Additionally, improvements to the authentication mech-
anism of every node type (e.g. AES encryption applied to all messages) enhance the
reliability of information transmitted from every node. The above changes coupled with
improvements to the byzantine consensus expand the fault tolerance to the standard
Byzantine Fault Tolerance (BFT) used in distributed systems. BFT not only detects
and corrects faults but also enables the network to be resilient against malicious actors
with targeted attacks.

Ground truth validation. A natural extension to improve the robustness of our solu-
tions is the verification of ground truth. Fault resilience coupled with data verification
can improve the detection of anomalous data by faulty/compromised IoT devices. Since
we use a broadcast medium to transmit information across neighboring nodes, properties
of the channel and the radio protocols (IEEE 802.15.4, 802.11, etc.) can be exploited to
validate the data. Before utilizing the transmitted data, every node in the neighborhood
can use the existing consensus to verify if the same changes to the radio and channel
properties were observed. Furthermore, every node is equipped with a few sensors that
can provide a context of the environment. The addition of sensing data with the exist-
ing broadcast medium can enhance the available modalities to improve the validation.
Thus, anomalies observed in the broadcast data can be verified with any anomalies in
the non-radio data from the sensing elements of the node.

As a long-term research direction, incorporating machine learning techniques help to
understand the impact of various network parameters such as network size, commu-
nication frequency, etc., on the requirements of the IoT network. A comprehensively
designed model can establish a self-organizing network by utilizing the structure of the
network and communication primitives discussed in Chapter 2. Additionally, securing
resource-constrained devices against malicious attacks with cryptographic hashing and
multi-modal sensing can replace complex encryption techniques while preserving energy
efficiency.
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