
TECHNISCHE UNIVERSITÄT MÜNCHEN

TUM School of Computation, Information and Technology

Empirical Analysis of the Adoption of Large-Scale

Agile Development Methods

Ömer Uludağ

Vollständiger Abdruck der von der TUM School of Computation, Information and Technology
der Technischen Universität München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Prof. Dr. Martin Bichler

Prüfer der Dissertation: 1. Prof. Dr. Florian Matthes
2. Prof. Dr. Stefanie Rinderle-Ma

Die Dissertation wurde am 12.04.2022 bei der Technischen Universität München eingereicht und
durch die TUM School of Computation, Information and Technology am 17.11.2022 angenom-
men.

II

Zusammenfassung

Motivation: Seit der Veröffentlichung des Agilen Manifests im Jahr 2001 haben sich agile Meth-
oden zu einer erfolgreichen Vorgehensweise für Softwareprojekte entwickelt, die ständig von ex-
ternen Faktoren, wie sich ändernden Kundenanforderungen, neuen technologischen Fortschritten
und sich ändernden rechtlichen Bedingungen, beeinflusst werden. Angeregt durch die erfolgre-
iche Anwendung agiler Praktiken in kleinen Projekten, beschäftigen sich viele Softwareexperten
mit der Einführung dieser Methoden in großen Projekten und Unternehmen. Mit der steigenden
Popularität der Skalierung agiler Methoden ist in den letzten Jahren auch die wissenschaftliche
Forschung zu diesem Thema aufgeblüht. Obwohl die Zahl der wissenschaftlichen Artikel in den
letzten Jahren zugenommen hat, gibt es noch keine wissenschaftliche Arbeit, die das Wissen
über die skalierte agile Softwareentwicklung strukturiert und einen Überblick über den Stand
der Forschung in diesem Bereich gibt. Die vorliegende Dissertation bietet die erste systematis-
che Untersuchung des aktuellen Forschungsstandes im Bereich der skalierten agilen Softwareen-
twicklung. Sie liefert Forschern einen Rückblick auf die vergangenen 13 Jahre der Forschung
zu skalierten agilen Softwareentwicklungsmethoden und eine Forschungsagenda für zukünftige
Forschungen. Auf der Grundlage dieser Forschungsagenda werden Forschungsthemen aufgegrif-
fen, die in den bisherigen Studien noch nicht ausreichend untersucht wurden: fehlende Übersicht
und Analyse von agilen Skalierungsrahmenwerken, fehlende Identifikation und Dokumentation
von Mustern sowie mangelnde Untersuchungen in Bezug auf die Zusammenarbeit zwischen Ar-
chitekten und agilen Teams. Die vorliegende Dissertation kommt dieser Aufforderung durch den
Einsatz verschiedener Forschungsmethoden nach.

Forschungsdesign: In dieser Dissertation wurden verschiedene Forschungsmethoden ange-
wandt, um die vier Forschungslücken zu schließen, die sich in drei Kategorien unterteilen lassen:
primäre Forschungsmethoden (Umfragen und Fallstudien) sekundäre Forschungsmethoden (sys-
tematische Mapping-Studien und strukturierte Literaturrecherchen) und design-basierte Studi-
enmethoden (muster-basierte Designforschungsvorhaben).

Ergebnisse: Die Resultate zeigen, dass die Literatur über 150 Unternehmen berichtet, die agile
Methoden skaliert einsetzen, dass die Industrie und Wissenschaft ein wachsendes Interesse an
diesem Thema zeigen und dass die Forschung in diesem Bereich in 10 Forschungsstränge un-
terteilt werden kann. Es wurden 22 verschiedene Skalierungsrahmenwerke mit unterschiedlichen
Reifegraden ermittelt, die Standardlösungen zur Verbesserung der Agilität von Unternehmen
bieten. Die Ergebnisse verdeutlichen, dass die Interessensgruppen in skalierten agilen Softwa-
reentwicklungsprojekten mit zahlreichen Anliegen konfrontiert sind, die durch die Anwendung
verschiedener Muster adressiert werden können. Die Analyse bestätigt, dass die Einbindung von
Architekten in skalierte agile Softwareentwicklungsvorhaben von entscheidender Bedeutung ist,
um die Vorhaben mit den übergeordneten Geschäftszielen in Einklang zu bringen.

Beitrag: Die vorliegende Dissertation gibt einen systematischen Überblick über die Forschungs-
landschaft im Bereich der skalierten agilen Softwareentwicklung und stellt eine Forschungsagenda
vor, die sowohl von Novizen als auch von erfahrenen Forschern als Ausgangspunkt für ihr zukün-
ftigen Forschungsvorhaben genutzt werden kann. Darüber hinaus wird ein strukturierter Vergle-
ich verschiedener Skalierungsrahmenwerke vorgestellt und die Einführung eines Rahmenwerks

III

bei einem großen deutschen Automobilhersteller präsentiert, das Praktikern als Entscheidungs-
grundlage für die Auswahl von geeigneten Rahmenwerken dienen kann. Außerdem wird eine
Liste von Interessensgruppen-bezogenen Anliegen und Mustern vorgestellt, die Praktiker als
Leitfaden verwenden können. Schließlich werden Erkenntnissen über die Zusammenarbeit zwis-
chen Architekten und agilen Teams und die erwarteten Verantwortlichkeiten von Architekten
aufgeführt, die als Handlungsempfehlungen für Praktiker bei der Entwicklung eines Zusamme-
narbeitsmodells für Architekten und agile Teams dienen können.

Limitationen: Die enthaltenen Publikationen weisen potenzielle Limitationen hinsichtlich ihrer
internen und externen Validitäten und Konstrukt- und Schlussfolgerungsvaliditäten auf. Obwohl
die Ergebnisse aus den Publikationen mit Vorsicht zu interpretieren sind, wurden angemessene
Gegenmaßnahmen ergriffen, um potenzielle Risiken zu limitieren.

Ausblick: Da die bestehende Forschung von explorativer Evaluationsforschung dominiert
wurde, sollten zukünftige Forschungsvorhaben wissenschaftlich fundierte Rahmenwerke, Metho-
den und Instrumente kreieren, um die Bedürfnisse der Praktiker abzudecken. Da die vorliegende
Dissertation einen ersten Versuch unternommen hat, verschiedene Skalierungsrahmenwerke qual-
itativ zu analysieren, sollten Forscher diese Analyse durch quantitative Instrumente erweitern,
um ihre Stärken und Schwächen statistisch zu bewerten. Angesichts des begrenzten Umfangs der
vorliegenden Publikationen werden in dieser Dissertation nur neun Muster und Konzepte in ihrer
Gesamtheit aufgezeigt. Da die vorgestellten Muster und Konzepte nur einen Teil der gesamten
Mustersammlung darstellen, können die bisherigen Ergebnisse durch die Veröffentlichung eines
Musterkatalogs erweitert werden. Da der Reifegrad eines Unternehmens in Bezug auf agile Prak-
tiken die Arbeitsweise von Architekten und agilen Teams prägt, sollten zukünftige Forschungsar-
beiten mögliche Zusammenhänge zwischen dem agilen Reifegrad eines Unternehmens und den
Zusammenarbeitsmodellen zwischen Architekten und agilen Teams aufdecken, insbesondere in
Bezug auf die Verteilung von Verantwortlichkeiten für architekturelle Entscheidungen.

IV

Abstract

Motivation: Since the release of the Agile Manifesto in 2001, agile methods have become a
successful way in software projects being continuously affected by external determinants, such
as changing customer demands, new technological advancements, and shifting regulatory con-
ditions. Inspired by the successful adoption of agile practices in small projects, many software
practitioners are engaged in adopting these methods in large projects and companies. With the
increasing popularity of scaling agile methods, scientific research on the topic has started to
emerge during the past few years. Although the number of scientific articles has increased in
recent years, there is still no work structuring the body of knowledge on large-scale agile devel-
opment and providing a state-of-the-art overview of this research field. This dissertation offers
the first systematic exploration of the state of the art in large-scale agile development. It offers
researchers a retrospective of the past 13 years of research on the large-scale application of agile
methods and a research agenda for future research. Based on this research agenda, we address
research themes that have not been adequately investigated in existing studies: lack of overview
and analysis of scaling frameworks, missing identification and documentation of patterns, and
lack of investigation related to the collaboration between architects and agile teams. We respond
to this call through a mix of different research methods.

Research Design: This dissertation used various research methods to address the four research
gaps, which can be divided into three categories: primary research methods (surveys and case
studies), secondary research methods (systematic mapping studies and structured literature
reviews), and design-based study methods (pattern-based design research endeavors).

Results: Our findings show that the literature reports over 150 companies adopting large-
scale agile methods, the industry and academia show a growing interest in the topic, and the
research in this field can be divided into 10 research streams. We identified 22 scaling frameworks
with varying degrees of maturity that provide off-the-shelf solutions for improving the agility
of companies. Our results show that stakeholders in large-scale agile development endeavors
are confronted with numerous concerns, which can be addressed by the application of various
patterns. Our results confirm that the involvement of architects in large-scale agile development
efforts is of great importance in aligning the efforts with the overarching enterprise goals.

Contribution: We present a systematic overview of the large-scale agile development research
landscape and provide a research agenda that can be used by novices unfamiliar with the research
field as well as by experienced researchers as a starting point for their research efforts. We provide
a structured comparison of various scaling frameworks and showcase the adoption of a framework
in a large German automobile manufacturer that practitioners can use as a decision-making basis
for selecting an appropriate framework. We contribute a list of stakeholder-related concerns and
patterns that practitioners can use as a reference guide. We present lessons learned regarding the
collaboration between architects and agile teams and the anticipated responsibilities of architects
that can be used as recommended actions for practitioners to develop a collaboration model for
architects and agile teams.

V

Limitations: The embedded publications show potential limitations related to the internal,
external, construct, and conclusion validities. While the findings from the publications should
be taken with caution and should be interpreted accordingly, adequate countermeasures have
been taken to limit potential threats.

Future Research: As the existing research has been dominated by exploratory evaluation
research, future research efforts should create rigorously developed frameworks, methods, and
tools to meet the needs of practitioners. Since we made an initial attempt to analyze different
scaling frameworks qualitatively, we advise researchers to extend this analysis by quantitative
instruments to assess their strengths and weaknesses statistically. Given the limited scope of
the embedded publications, this dissertation presents only nine patterns and concepts in their
entirety. As the shown patterns and concepts represent a fraction of the entire pattern collection,
our results can be extended by publishing a pattern catalog. As the maturity of a company
towards agile practices influences the way of working of architects and agile teams, future work
should perform explanatory studies to reveal potential correlations between the agile maturity of
a company and the collaboration models between architects and agile teams, especially related
to the allocation of responsibilities for architecture-related decisions.

VI

Acknowledgment

This dissertation emerged from my work as a research assistant at the Chair for Software Engi-
neering for Business Information System (sebis) at the Technical University of Munich (TUM).
I enjoyed a pleasant time with my advisors, colleagues, and students during this period.

First and foremost, I want to express my special appreciation and gratitude to my doctoral father
and supervisor, Prof. Dr. Florian Matthes, for allowing me to work on this fascinating research
topic under the best possible conditions. I would like to thank him for encouraging my research
and allowing me to grow as a research scientist. Further, I want to express my sincere gratitude
to Prof. Dr. Stefanie Rinderle-Ma for being the second supervisor of my dissertation.

The sebis chair provided an excellent environment for my research. This dissertation would
not have been possible without the support of my colleagues. I would like to thank all my
colleagues from the sebis chair for their great support, particularly (in alphabetical order), Gloria
Bondel, Ulrich Gallersdörfer, Gonzalo Munilla Garrido, Ingo Glaser, Dr. Matheus Hauder, Dr.
Pouya Aleatrati Khosroshahi, Dr. Martin Kleehaus, Dr. Thomas Kugler, Dr. Jörg Landthaler,
Nektarios Machner, Sascha Nägele, Pascal Maurice Philipp, Phillip Schneider, and Fatih Yılmaz.
Special thanks to our administrative staff, Aline Schmidt and Jian Kong, for supporting me
regarding administrative matters, which allowed me to dedicate more time to my research.

This dissertation also profited from a great collaboration with leading researchers in the field
of large-scale agile development. Thus, I would like to thank Prof. Dr. Torgeir Dingsøyr for
offering me the opportunity to visit him and his research group at SINTEF in Trondheim and his
invaluable feedback on several research endeavors. Moreover, I want to express my appreciation
for organizing the first-ever lecture on large-scale agile development at TUM. I also would
like to express my gratitude to Prof. Dr. Maria Paasivaara, Prof. Dr. Casper Lassenius, and
Abheeshta Putta for their warm hospitality at the Aalto University in Helsinki and their valuable
feedback in numerous meetings. I want to thank them for their outstanding contributions in
jointly published articles in the field of large-scale agile development. I am profoundly grateful
to our industry partners that supported our research efforts.

I want to express my thankfulness to the students who wrote their theses under my guidance or
supported my research as student assistants.

Finally, I want to thank my family for their support. I want to express my sincere gratitude
to my partner Eda Uludağ for her unconditional love and understanding. I also would like to
thank my parents, Tercan and Adnan Uludağ, sisters, Özge Altun and Dilara Uludağ, uncle, Ali
Taştemir, and brother-in-law, Mehmet Altun, for supporting me throughout my entire life.

Garching b. München, 08.04.2022
Ömer Uludağ

VII

VIII

Table of Contents

Part A 1

1 Introduction 2
1.1 Motivation . 2
1.2 Research Questions . 4
1.3 Structure of the Dissertation . 7

2 Theoretical Background 15
2.1 Agile Software Development . 15

2.1.1 Agile Manifesto . 17
2.1.2 Agile Software Development Methods . 17
2.1.3 Scrum . 18
2.1.4 Extreme Programming . 21

2.2 Lean Software Development . 23
2.3 Large-Scale Agile Development . 26

2.3.1 Definition of Large-Scale Agile Development 27
2.3.2 Scaling Agile Frameworks . 27

2.3.2.1 Scaled Agile Framework . 28
2.3.2.2 Large-Scale Scrum . 34
2.3.2.3 Disciplined Agile Delivery . 36

2.4 Patterns . 40
2.5 Communication Networks . 41

3 Research Design 43
3.1 Research Strategy . 43
3.2 Research Methods . 44

3.2.1 Systematic Mapping Study . 44
3.2.2 Structured Literature Review . 47
3.2.3 Survey Research . 49
3.2.4 Case Study Research . 52
3.2.5 Pattern-Based Design Research . 55

Part B 57
1 Revealing the State of the Art of Large-Scale Agile Development Research: A

Systematic Mapping Study . 58
2 Investigating the Role of Architects in Scaling Agile Frameworks 59

IX

Table of Contents

3 Evolution of the Agile Scaling Frameworks . 60
4 Investigating the Adoption and Application of Large-Scale Scrum at a German

Automobile Manufacturer . 61
5 Identifying and Structuring Challenges in Large-Scale Agile Development Pro-

grams based on a Structured Literature Review 62
6 Documenting Recurring Concerns and Patterns in Large-Scale Agile Development 63
7 Identifying and Documenting Recurring Concerns and Best Practices of Agile

Coaches and Scrum Masters in Large-Scale Agile Development 64
8 Using Social Network Analysis to Investigate the Collaboration Between Archi-

tects and Agile Teams: A Case Study of a Large-Scale Agile Development Pro-
gram in a German Consumer Electronics Company 65

9 What to Expect from Enterprise Architects in Large-Scale Agile Development?
A Multiple-Case Study . 66

10 Investigating the Role of Enterprise Architects in Supporting Large-Scale Agile
Transformations: A Multiple-Case Study . 67

Part C 69

4 Discussion 70
4.1 Summary of Results . 70
4.2 Implications for Research . 98
4.3 Implications for Practice . 99

5 Limitations 101

6 Conclusion and Future Research 105
6.1 Conclusion . 105
6.2 Outlook . 107

Bibliography 109

Publications 131

Abbreviations 135

A Embedded Publications in Original Format 137

X

List of Figures

1.1 Structure of the dissertation . 8
2.1 Values and principles of the Agile Manifesto [BBvB+01] 17
2.2 Evolutionary map of agile methods [AWSR03] . 18
2.3 Overview of the Scrum framework [Scr22] . 19
2.4 Overview of the XP life-cycle process [Wel01] . 21
2.5 Kanban board [Pow16] . 25
2.6 Overview of the Full SAFe 5.1 configuration [Sca22] 30
2.7 Overview of the LeSS framework [LeS22] . 35
2.8 Overview of DAD’s program life-cycle [Pro22] . 39
2.9 Common communication network structures [Lun11] 41
3.1 Systematic mapping approach [PFMM08] . 46
3.2 Structured literature review approach [VBSN+09] 48
3.3 Survey research approach [LSMdMH15] . 49
3.4 Case study research approach [Yin15] . 52
3.5 Types of case study designs [Yin15] . 53
3.6 Pattern-based design research approach [BMSS13a] 56
4.1 Scaling and complexity factors (based on P1) . 72
4.2 Publications on large-scale agile development over time (based on P1) 73
4.3 Number studies per research stream (based on P1) 76
4.4 Number research questions per research stream (based on P1) 76
4.5 Number challenges per category (based on P5) 82
4.6 Conceptual model for documenting patterns (based on P6) 85
4.7 Overview of the large-scale agile development pattern language (based on P6) . . 86
4.8 Intra-team architecture sharing (based on P8) . 91
4.9 Inter-team architecture sharing (based on P8) . 92
4.10 Net promoter score of enterprise architects (based on P9) 96
4.11 Expectation fulfillment by enterprise architects (based on P9) 96

XI

XII

List of Tables

1.1 Overview of the embedded publications . 9
1.2 Overview of the additional publications . 13
2.1 Traditional versus agile software development [NMM05] 16
2.2 Core components of Scrum [SS20] . 19
2.3 Core components of XP [Bec00] . 22
2.4 Lean principles relevant to software development [PP03, Rei09, And10] 26
2.5 Comparison of major scaling agile frameworks [AR16, EP17, KHR18] 29
2.6 Core components of SAFe [KL20] . 31
2.7 Core components of LeSS [LV16] . 35
2.8 Core components of DAD [AL12] . 37
3.1 Overview of research methods applied in the embedded publications 45
4.1 Fact sheet publication P1 . 58
4.2 Fact sheet publication P2 . 59
4.3 Fact sheet publication P3 . 60
4.4 Fact sheet publication P4 . 61
4.5 Fact sheet publication P5 . 62
4.6 Fact sheet publication P6 . 63
4.7 Fact sheet publication P7 . 64
4.8 Fact sheet publication P8 . 65
4.9 Fact sheet publication P9 . 66
4.10 Fact sheet publication P10 . 67
4.1 Seminal studies in large-scale agile development (based on P1) 75
4.2 Overview of key findings related to RQ1 . 77
4.3 Overview of scaling agile frameworks (based on P2 and P3) 78
4.4 Reasons, benefits, and challenges of using scaling agile frameworks (based on P3) 80
4.5 Overview of key findings related to RQ2 . 81
4.6 Challenges and stakeholders in large-scale agile development (based on P5) . . . 84
4.7 Overview of large-scale agile development patterns (based on P6) 87
4.8 Overview of patterns for agile coaches and scrum masters (based on P7) 88
4.9 Overview of key findings related to RQ3 . 89
4.10 Duties, way of working, and challenges of enterprise architects (based on P10) . . 97
4.11 Overview of key findings related to RQ4 . 97
5.1 Summary of potential validity threats and primary countermeasures 102
6.1 Avenues for future research building on the embedded publications 107

XIII

XIV

Part A

1

CHAPTER 1

Introduction

“Science is the most reliable guide in life.”

Mustafa Kemal Atatürk

This dissertation empirically analyzes the large-scale adoption of agile software development
methods. It fills several research gaps by exploring the state of the art, analyzing the adoption of
scaling agile frameworks, identifying and documenting patterns, and exploring the collaboration
between architects and agile teams. Section 1.1 motivates the dissertation by introducing the
topic. Section 1.2 presents the research questions that guide this research endeavor. Section 1.3
outlines the structure of the dissertation and summarizes the embedded publications.

1.1. Motivation

Due to accelerating market dynamics, continuous development of new technological advance-
ments, and ever-changing customer demands, contemporary business environments are driven by
unpredictability [SKL07, WW15]. Thus, capabilities such as adaptability, flexibility, and learning
become critical determinants of a company’s success [OBS06, SKL07]. In today’s world, software
applications have become a centerpiece of many products and services [PW10a]. Over the past
four decades, traditional development methods, including waterfall and spiral models, have been
widely used for software projects due to their predictability and stability [BT03, FV06, Cho08].
However, these traditional methods also exhibit shortcomings, including slow adaptation to con-
stantly changing business requirements and a tendency to run over budget and behind schedule
[Boe02, Cho08]. As traditional methods require extensive planning and documentation, they
are often referred to as heavyweight development methods [Boe02]. Traditional methods cannot

2

1. Introduction

respond to changes that constantly confront software development projects, often determining
a software product’s success or failure [WC03, Ket07]. As traditional methods have increas-
ingly reached their limits, software development methods dramatically evolved from traditional
sequential approaches to more flexible and adaptive development approaches [PW10a].

This exigency sparked the agile movement in the 1990s, which led to the development of sev-
eral agile methods, including Scrum [SM02] and Extreme Programming (XP) [Bec00], and the
creation of the Agile Manifesto [BBvB+01] in 2001 [Ket07]. Over the past decades, the soft-
ware development practice has seen significant growth in the usage of agile methods [HSG18],
which have reshaped and brought unprecedented changes to software development practice
[MJ10, DNBM12]. Unlike traditional approaches that focus on upfront plans and documen-
tation, agile methods assume that software is adaptively developed based on rapid iterations
and frequent feedback loops [NMM05, ASRW17]. Companies aim to realize several benefits by
adopting agile practices, including accelerating software delivery, increasing team productivity,
improving alignment between business and IT, and improving software quality [Dig21]. Agile
methods have also received criticism in the industry [Boe02]. First, they were initially designed
for small projects with co-located teams and may not be suitable for large-scale environments
[DD09, DMFS18]. Second, agile methods do not rely solely on the appropriate application of
individual tools or practices. Instead, they often demand a holistic way of thinking and mindset,
necessitating a change in the entire culture [MKK10, KML20]. Despite these known challenges,
practitioners have paid much attention to agile methods [DNBM12, ASRW17].

Given the successful application of agile methods in small projects, companies are inspired to
apply them in large-scale projects and organizations [DFI14, AR16]. The latest State of Agile
Survey [Dig21] reflects this industry trend, stating that over half of their 1,382 respondents work
in companies where most teams are agile. Although early advice from the agile community was
that scaling agile methods to larger projects and organizations is “probably the last thing anyone
would want to do” [RME03], and advice from various fields is to decrease the size of software
projects as much as possible [And17], companies are still interested in scaling agile methods to
larger endeavors [DFP19]. One plausible explanation is that modern solutions often require too
much work for a single team or that new solutions are so complex or dependent on existing
systems that it is considered inefficient or impractical to divide the development efforts into
small projects, making agile methods a way to reduce risk at scale while facilitating innovation
[DFP19]. Despite the challenges of adopting agile methods on a large scale, the idea of scaling
permeates almost all continents and industries [UPP+22].

In recent years, the increasing popularity of the large-scale application of agile methods in the
industry also sparked an academic interest. At the International Conference on Agile Software
Development 11 years ago, industry practitioners were asked to list topics they felt should be
studied [DMFS18]. They voted “agile and large projects” as one of the most burning research
questions [FS10]. Since then, nine International Workshops on Large-Scale Agile Development at
the annual International Conferences on Agile Software Development have gathered researchers
and practitioners to discuss recent studies on large-scale agile development (cf. [DM13, MD17]).
Numerous research results have been shared at scientific conferences and journals, and the body
of knowledge on this topic has grown (cf. [DPL16, EWC21]).

Aside from the increasing number of primary studies, several secondary studies have also been

3

1. Introduction

published in recent years, most of which are systematic literature reviews [UPP+22]. Exist-
ing systematic literature reviews perform in-depth analysis on specific research questions and
topics within large-scale agile development, e.g., describing challenges and success factors of
large-scale agile transformations or depicting challenges and benefits related to the adoption of
scaling agile frameworks. However, none of the identified literature reviews provides an adequate
overview of the entire research field [UPP+22]. The number of available reports and findings
often proliferates in maturing research areas, making a summary and overview of the research
field indispensable [PFMM08]. Consequently, this observation represents a notable research gap
within the research field, which we aim to address in this dissertation.

Ever since the first study on large-scale agile development in 2007, researchers worldwide have
lavished attention on studying the large-scale application of agile methods. Since then, sev-
eral research streams have emerged in this field, e.g., agile architecture, agile practices at scale,
and scaling agile frameworks [UPP+22]. While extensive work has been done in some research
streams, other streams still show significant research gaps [UPP+22]. First, despite the on-
going research on scaling frameworks (cf. [PPL18, CC19b, TSD19]), existing studies lack a
comprehensive overview of these frameworks and an analysis of their raison d’être and claimed
benefits and challenges of their adoption. Second, compared to the rich body of agile software
development literature describing typical challenges (cf. [HBP09, ISM+15]) and best practices
(cf. [BDS+99, CH04, BCS+10, Scr21]), the documentation of stakeholder concerns and patterns
in large-scale agile development is still scarce. Third, despite the criticisms of agile meth-
ods and, in particular, of large-scale agile development for their lack of focus on architecture
[DD08, DM14, RWN+15], there is some ambiguity in the literature on the topic of agile archi-
tecture in large-scale agile development [UPP+22], primarily related to collaboration between
architects and agile teams and responsibilities of architects in such development efforts. Within
the scope of the dissertation, we also aim to address these three research gaps.

1.2. Research Questions

In the following, we motivate four research questions that guide this dissertation.

Research Gap 1: There is a lack of systematic analysis of the body of knowledge and research
gaps on large-scale agile development.

In recent years, large-scale agile development has received much attention from academics and
practitioners [DMO18], and research publications on large-scale agile development have been
published at scientific conferences and journals [DPL16, MD17]. As a result, the body of knowl-
edge on large-scale agile development has grown [UPP+22]. Although scientific articles on
large-scale agile development are mainly primary studies, several secondary studies synthesize
knowledge on specific topics related to large-scale agile development [UPP+22]. A total of 13
secondary studies were identified as simple or systematic literature reviews that examine spe-
cific research topics [UPP+22], e.g., identifying and describing challenges and success factors in
large-scale agile endeavors (cf. [DPL16, SKCK17]). None of them provide an overview of the
entire research field, which is why existing secondary studies fail to present the state of the art
[UPP+22]. Given that the steadily growing number of primary studies is a valuable indicator of

4

1. Introduction

the increasing maturity of a research field, a critical tipping point has been reached to facilitate
the aggregation of the existing literature and organize the research area [UPP+22].

We address this gap by conducting a systematic mapping study that analyzes peer-reviewed
publications and provides an overview of the state of the art. We first analyze what is referred
to in the literature as “ large-scale agile development” and then examine publication trends and
characteristics of existing research. We also reveal the seminal works in this research area, study
the field’s main research streams, and create a research agenda for future research endeavors.
Against this backdrop, we formulate the first research question as follows:

Research question 1 (RQ1)

What is the state of the art in large-scale agile development research?

Research Gap 2: Empirical evidence on the adoption of scaling agile frameworks is still limited.
The existing literature disregards providing a comprehensive overview of scaling frameworks.
There is no analysis of the rationale behind their creation and the benefits and challenges of
their adoption from their inventors’ perspective. Scientific literature providing in-depth case
studies on the adoption of scaling frameworks is still scarce.

Several scaling frameworks have been created by consultants to address issues associated with
adopting agile practices in large-scale organizations and projects [AR16, CC19b]. These frame-
works claim to provide off-the-shelf solutions to scaling and incorporate predefined workflow
patterns to deal with challenges related to a large number of teams, inter-team coordination,
and customer involvement [DMFS18]. As large companies are pressured to become more agile,
they have begun to adopt these frameworks at an increasing rate [CC19a]. Despite this growing
industrial interest [Dig21], the empirical evidence on the adoption of these frameworks is still
in its infancy [CC19a]. While a few studies compare scaling frameworks (cf. [AR16, TSD19]),
these tend to focus on the most popular ones, i.e., Scaled Agile Framework (SAFe), Large-Scale
Scrum (LeSS), or Disciplined Agile Delivery (DAD), and neglect to analyze the full spectrum
of existing frameworks. Although some papers report on the benefits and challenges of adopt-
ing these frameworks (cf. [CC19b, EWC21]), they do not provide first-hand information from
the frameworks’ creators about the key ideas behind the creation of these frameworks and the
benefits and challenges that the inventors experienced when adopting their frameworks in orga-
nizations. Current case studies primarily focus on SAFe (cf. [Paa17, PPL19]) and the number
of studies reporting on the adoption of other frameworks is still scarce.

We fill this gap by conducting a structured literature review that identifies existing scaling
frameworks and compares them and surveying their inventors regarding the main reasons behind
the creation of their frameworks and claimed benefits and challenges of adopting them. We also
provide a case study that describes the adoption of LeSS in four different products of a German
car manufacturer. In this light, we articulate the following research question:

5

1. Introduction

Research question 2 (RQ2)

What scaling agile frameworks exist, and what are the reasons, benefits, and challenges
of adopting them?

Research Gap 3: There are no studies describing the challenges stakeholders face in the context
of large-scale agile development. Existing literature neglects to provide a structured approach and
document best practices to address these challenges.

Although many companies adopt agile methods at scale to reap their benefits [DPL16], some face
unprecedented difficulties, e.g., general resistance to change and coordination issues in multi-
team environments [Ket07, DPL16]. Compared to the rich body of agile software development
literature describing challenges (cf. [HBP09, ISM+15]) and best practices (cf. [BDS+99, CH04,
BCS+10]), the existing literature on large-scale agile development fails to report the challenges
stakeholders face in this context and the best practices to address them [UKCM18, UHM19].

Inspired by the Pattern-based Approach to Enterprise Architecture Management (EAM) [Ern10,
SM15], we address this gap by conducting a structured literature review to identify stakeholders’
challenges in large-scale agile development. Following the Pattern-based Design Research (PDR)
method [BMSS13a], we first propose the concept of large-scale agile development patterns and
then present typical concerns and patterns of agile coaches and scrum masters. Accordingly, we
pose the following research question:

Research question 3 (RQ3)

What are the concerns of stakeholders in large-scale agile development, and how can
they be addressed?

Research Gap 4: The collaboration between architects and agile teams in the context of large-
scale agile development has hardly been empirically researched yet. The existing literature does
not elucidate how architects can support agile teams in this context.

Agile methods assume that the best architectures emerge from self-organizing teams as a byprod-
uct of daily code design or refactoring activities (emergent design) [Bab09, ABK10]. While emer-
gent design is effective in small projects, it is insufficient in large endeavors since it may cause ex-
cessive redesign efforts, architectural divergences, and functional redundancies [LMZ08, Moc09].
An intentional architecture is required that embraces architectural guidelines specifying inter-
team design and implementation synchronization [LMZ08, Wat14]. Hence, some degree of archi-
tectural planning and governance is vital, as “agility is enabled by architecture, and vice versa”
[LMZ08, NÖK14]. There are several crucial architectural roles in the context of large-scale ag-
ile development: solution architects, who make architectural decisions for agile teams at the
team or program level, and enterprise architects, who resolve the technical dependencies of agile
teams at the portfolio level and shape the overall strategic architectural vision of the company
[HDSD20], whose collaboration with agile teams is of great importance [LMZ08, Wat14]. While
there is growing interest from academics and practitioners who want to combine the two con-
cepts of agility and architecture (cf. [BKNÖ14, RWN+15]), empirical studies on investigating
the collaboration between architects and agile teams are still limited [HEK15, CCJ+18]. While

6

1. Introduction

a few studies present architectural tactics to support agility at scale (cf. [BNO12, NÖK14]) or
discuss integrating EAM practices and agile methods (cf. [HRSM14, HEK15, GvLG21]), they do
not observe how solution architects can be involved in large-scale agile development endeavors
and how enterprise architects can support agile teams at higher organizational levels.

We fill this gap by providing a case study of a German consumer electronics retailer to describe
how solution architects and agile teams collaborate on architectural issues. We also provide a
cross-case analysis of five German companies on the expectations of agile teams for enterprise
architects and the responsibilities and challenges of enterprise architects in supporting large-scale
agile development endeavors. Consequently, we state the following research question:

Research question 4 (RQ4)

How do architects collaborate with agile teams and support them in large-scale agile
development?

1.3. Structure of the Dissertation

This dissertation’s research endeavor resulted in ten publications to answer the four research
questions. The dissertation consists of three parts (see Figure 1.1):

Part A comprises three chapters. Chapter 1 introduces the dissertation by motivating the
large-scale agile development research field (see Section 1.1), presenting the four underlying
research questions of this dissertation (see Section 1.2), and summarizing the ten publications
(see Section 1.3). Chapter 2 recapitulates the theoretical background by providing information
on agile and lean software development (see Sections 2.1 and 2.2), large-scale agile development
(see Section 2.3), patterns (see Section 2.4), and communication networks (see Section 2.5).
These concepts were applied in the embedded publications and might avail the readers of the
dissertation. Chapter 3 provides an overview of the dissertation’s underlying research design
and describes the selected research strategy (see Section 3.1) and methods (see Section 3.2).

Part B comprises the fact sheets of the ten publications organized along with the formulated
research questions1. While the first publication analyzes existing research on large-scale agile
development to provide an overview of the state of the art and identify areas for future research
(see P1), the subsequent three publications review existing scaling agile frameworks (see P2 and
P3) and investigate the adoption of a popular scaling framework in practice (see P4). Additional
three publications focus on identifying challenges of stakeholders in large-scale agile development
(see P5), present a conceptual model for documenting patterns (see P6), and describe typical
challenges and patterns of agile coaches and scrum masters (see P7). The remaining three
publications focus on examining the phenomenon of the collaboration between architects and
agile teams in the context of large-scale agile development (see P8, P9, and P10).

Part C consists of three chapters. Chapter 4 discusses the findings of this dissertation by

1Nine publications are already published, while one publication is in the first review round (see Part B for
further details). References to the ten publications are presented, for example, as see “P1”.

7

1. Introduction

discussing the publications’ key results (see Section 4.1) and delineating their implications for
research and practice (see Sections 4.2 and 4.3). Chapter 5 discusses the limitations of the
dissertation before Chapter 6 reflects the initially formulated research questions (see Section
6.1) and outlines potential avenues for future research activities (see Section 6.2).

Pa
rt

 C

Legend

Pa
rt

 A
Pa

rt
 B

Flow of Argumentation P: Publication M: Method O: OutcomeX Chapter

Introduction
A1

Research Design
A3

Theoretical
Background

A2

P3: Evolution of the Agile Scaling Frameworks
M: Survey Research

O: List of Reasons, Benefits, and Challenges of
Adopting Agile Scaling Frameworks

B3

P4: Investigating the Adoption and Application of
Large-Scale Scrum at a German Automobile Manufacturer

M: Case Study Research

O: Lessons Learned of Adopting Large-Scale
Scrum

B4

P6: Documenting Recurring Concerns and
Patterns in Large-Scale Agile Development

M: Pattern-Based Design Research

O: Conceptual Model for Documenting Patterns in
Large-Scale Agile Development

B6

P7: Identifying and Documenting Recurring
Concerns and Best Practices of Agile Coaches and Scrum

Masters in Large-Scale Agile Development
M: Pattern-Based Design Research

O: List of Challenges and Patterns for Agile
Coaches and Scrum Masters in Large-Scale Agile

Development

B7

P9: What to Expect from Enterprise Architects in
Large-Scale Agile Development? A Multiple-Case Study

M: Case Study Research

O: Lessons Learned Regarding the Expectations of
Agile Teams for Enterprise Architects in Large-

Scale Agile Development

B9

P10: Investigating the Role of Enterprise
Architects in Supporting Large-Scale Agile
Transformations: A Multiple-Case Study

M: Case Study Research

O: Lessons Learned Regarding the
Responsibilities and Challenges of Enterprise
Architects in Large-Scale Agile Development

B10

Limitations
C2

Discussion
C1

Conclusion and
Future Research

C3

P5: Identifying and Structuring Challenges in
Large-Scale Agile Development Programs based

on a Structured Literature Review
M: Structured Literature Review

O: List of Recurring Challenges in Large-Scale
Agile Development

B5 P8: Using Social Network Analysis to Investigate
the Collaboration Between Architects and Agile Teams:

A Case Study of a Large-Scale Agile Development
Program in a German Consumer Electronics Company

M: Case Study Research
O: Social Networks of Architects and Agile Teams

in a Large-Scale Agile Program

B8P2: Investigating the Role of Architects in
Scaling Agile Frameworks

M: Structured Literature Review

O: Overview of Agile Scaling Agile Frameworks

B2

P1: Revealing the State of the Art of Large-Scale
Agile Development Research: A Systematic

Mapping Study
M: Systematic Mapping Study

B1

O: Overview of Research Activities and Research
Gaps Pertaining to Large-Scale Agile Development

Figure 1.1.: Structure of the dissertation

Table 1.1 outlines the ten publications embedded in Appendix A. For each Publication (P), we
highlight its research problem, research design, and main contribution.

P1: Revealing the State of the Art of Large-Scale Agile Development Research: A
Systematic Mapping Study Confronted with the imperatives of a rapidly changing world,
many companies that develop software by traditional means, characterized by tedious and in-
flexible development processes, are increasingly reaching their limits. Born from this necessity,
agile methods emerged in the 1990s that have transformed the software development practice
with a strong emphasis on change tolerance, continuous delivery, and customer involvement.
Due to the success of agile methods in small, co-located projects, companies are encouraged to
use these methods in larger projects and organizations. Academic interest has also increased

8

1. Introduction

Table 1.1.: Overview of the embedded publications

RQ	 No.	 Title	 Outlet	 Type	 CORE	
ranking	

RQ1	 P1	 Revealing	the	State	of	the	Art	of	Large-Scale	Agile	Development	Research:	
A	Systematic	Mapping	Study	 JSS	2022*	 JNL	 A	

RQ2	

P2	 Investigating	the	Role	of	Architects	in	Scaling	Agile	Frameworks	 EDOC	2017*	 CON	 B	

P3	 Evolution	of	the	Agile	Scaling	Frameworks	 AGILE	2021*	 CON	 B	

P4	 Investigating	the	Adoption	and	Application	of	Large-Scale	Scrum	at	a	
German	Automobile	Manufacturer	 ICGSE	2019*	 CON	 C	

RQ3	

P5	 Identifying	and	Structuring	Challenges	in	Large-Scale	Agile	Development	
Programs	based	on	a	Structured	Literature	Review	 EDOC	2018*	 CON	 B	

P6	 Documenting	Recurring	Concerns	and	Patterns	in	Large-Scale	Agile	
Development	 EPLoP	2019*	 CON	 NR	

P7	 Identifying	and	Documenting	Recurring	Concerns	and	Best	Practices	of	
Agile	Coaches	and	Scrum	Masters	in	Large-Scale	Agile	Development	 PLoP	2019*	 CON	 B	

RQ4	

P8	
Using	Social	Network	Analysis	to	Investigate	the	Collaboration	Between	
Architects	and	Agile	Teams:	A	Case	Study	of	a	Large-Scale	Agile	
Development	Program	in	a	German	Consumer	Electronics	Company	

AGILE	2019*	 CON	 B	

P9	 What to Expect from Enterprise Architects in Large-Scale Agile Development?
A Multiple-Case Study AMCIS	2019*	 CON	 A	

P10	 Investigating	the	Role	of	Enterprise	Architects	in	Supporting	Large-Scale	
Agile	Transformations:	A	Multiple-Case	Study	 AMCIS	2020*	 CON	 A	

Outlet:	
AGILE:		 	 International	Conference	on	Agile	Software	Development	
AMCIS:			 Americas	Conference	on	Information	Systems	
EDOC:		 	 International	Enterprise	Distributed	Object	Computing	Conference	
EPLoP:	 	 European	Conference	on	Pattern	Languages	of	Programs	
ICGSE:	 	 International	Conference	on	Global	Software	Engineering	
JSS:	 	 Journal	of	Systems	and	Software	
PLOP:	 	 International	Conference	on	Pattern	Languages	of	Programs	
*	All	publications	are	published	and	peer	reviewed,	except	P1	which	is	under	review.	

Type:	
CON:		 	 Conference	
CORE:		 	 Computing	Research	&	Education	
JNL:		 	 Journal	
NR:		 	 Non-ranked	

in recent years with the increasing industrial popularity. Although the body of knowledge has
grown, there is still no comprehensive overview of the large-scale agile development research
area. This publication [UPP+22] aims to provide the first systematic exploration of the research
field by employing a systematic mapping study. This article clarifies the meaning of the term
“ large-scale agile development” by performing an in-depth review of the characteristics of more
than 150 cases reported in the publications. This study frames the nature of the research field
by assessing publication trends and characteristics of the existing literature. It also explores the
intellectual structure of the research area by identifying its seminal works. This study maps the
general structure of the research field by identifying and clustering central research themes and
outlines a research agenda for future research efforts by analyzing stated research questions in
the research streams. Based on this research agenda, the latter nine embedded publications of
this dissertation aim to address three research themes that have not been sufficiently investigated
yet: the adequate analysis of scaling agile frameworks (see P2, P3, and P4), the identification
and documentation of patterns (see P5, P6, and P7), and the appropriate examination of the
collaboration between architects and agile teams (see P8, P9, and P10).

9

1. Introduction

P2: Investigating the Role of Architects in Scaling Agile Frameworks. The ideal
context for applying agile methods in software projects lies in the “agile sweet spot”, i.e., small,
co-located teams of less than 50 persons with easy access to the user and business experts that de-
velop non-life-critical software. Adopting agile methods outside the sweet spot entails significant
challenges to organizations, e.g., coordination issues in multi-team environments. Practitioners
have invented several scaling frameworks to address problems associated with the large-scale
adoption of agile methods. As large companies face growing pressures and expect to become
more agile, the adoption of scaling frameworks has proliferated in the industry. Although there is
a body of knowledge on these frameworks, research providing a comprehensive overview of these
frameworks is still scarce. Based on a structured literature review, the main objective of this
publication [UKXM17] is to present a comprehensive list of scaling agile frameworks and reveal
the most mature ones. This paper provides an analysis of 20 scaling frameworks by comparing
them with different attributes in terms of descriptive and maturity-related information, e.g.,
publication date, category, and available training courses and certifications. This study presents
an insight into the three most mature scaling frameworks by providing a description of SAFe,
LeSS, and DAD. In P3, we extend this analysis by visualizing their evolution and exploring the
reasons for their emergence and the benefits and challenges of adopting them.

P3: Evolution of the Agile Scaling Frameworks. The scaling of agile methods poses two
significant challenges. First, it entails additional scaling and complexity factors that summon
“bitter spot” conditions for agile methods. Second, agile methods do not provide sufficient guid-
ance for these scaling and complexity factors. Several scaling frameworks have been proposed
to overcome these limitations. Despite their importance in the industry, few empirical studies
report the evolution of scaling frameworks, the primary rationale behind their creation, and
their adoption’s claimed benefits and challenges. Based on surveying their inventors, this pub-
lication [UPPM21] builds on the research findings of P2 and aims to sketch the landscape of
scaling frameworks and determine their raison d’être. This publication provides an extension of
the list of scaling frameworks presented in P1 by expanding the list of identified frameworks by
two additional frameworks: Holistic Software Development (HSD) and Parallel Agile (Parallel).
This paper visualizes the evolutionary path of scaling agile frameworks by providing a chrono-
logical overview of 15 scaling frameworks from 1997 to 2021, showing development start dates,
current and intermediate versions, and relationships between frameworks. This study presents
the key reasons behind the creation of scaling frameworks by providing a list of 12 reasons,
e.g., improving the agility/adaptability of the organization and improving the collaboration of
agile teams working on the same product, grouped into four categories: complexity, customer,
market, and organization. This article reveals the benefits of adopting scaling frameworks by
showing a list of 30 benefits, e.g., enabling frequent product deliveries and enhancing employee
satisfaction/motivation/engagement, grouped into two categories: business/product and orga-
nization/culture. This paper also reports challenges of adopting these frameworks by depicting
a list of 22 challenges, e.g., using frameworks as cooking recipes and using frameworks without
understanding for what reasons they should be applied, grouped into three categories: imple-
mentation, organization/culture, and scope. While P2 and P3 offer a single-sided view from the
existing literature and their methodologists, P4 takes a more practical stance and examines the
actual experiences of companies adopting scaling frameworks.

P4: Investigating the Adoption and Application of Large-Scale Scrum at a German

10

1. Introduction

Automobile Manufacturer. Inspired by the success of agile methods at the team level, large
companies are scaling agile practices to the organizational level by adopting scaling agile frame-
works. Although the number of companies adopting these frameworks is increasing, scientific
literature reporting their adoption in the industry is still scarce. Employing a single-case study,
the main objective of this publication [UKD+19] is to shed light on the adoption of LeSS at a
German automobile manufacturer. This study reports several lessons learned in adopting LeSS
by examining the characteristics of its adoption in four different products using seven categories,
e.g., start date, duration, and reasons, and juxtaposing its actual implementation with the roles,
artifacts, and processes recommended by LeSS.

P5: Identifying and Structuring Challenges in Large-Scale Agile Development Pro-
grams based on a Structured Literature Review. Since agile methods were initially
designed for small, co-located teams, many companies are uncertain how to introduce them
at scale and encounter unprecedented challenges, e.g., coordinating multiple agile teams and
dealing with a general resistance to change. Compared to the rich body of agile software devel-
opment literature describing typical issues associated with the adoption of agile methods, the
number of studies reporting challenges observed in large-scale agile development endeavors is
still limited. This publication [UKCM18] aims to provide an overview of challenges reported
in large-scale agile development through a structured literature review. This study reports on
the issues faced by stakeholders in large-scale agile development projects by providing a list of
79 stakeholder-related challenges, e.g., dealing with doubts in people about changes, grouped
into 11 challenge categories, e.g., communication and coordination, software architecture, and
knowledge management. This paper constitutes the foundation for P6 as it not only provides
a proof of concept related to the applicability of a pattern-based approach in large-scale agile
development but also an a priori list of pattern candidates.

P6: Documenting Recurring Concerns and Patterns in Large-Scale Agile Devel-
opment. Compared to the rich body of agile software development literature, the large-scale
agile development literature lacks to report on typical concerns stakeholders face and propose
best practices for addressing them. Impelled by this research gap, this publication [UHM19]
follows the PDR method and strives to propose a pattern language for documenting recurring
concerns and patterns of stakeholders in large-scale agile development. This study proposes the
concept of large-scale agile development patterns by depicting a conceptual model comprising
three different types of patterns, namely coordination, methodology, and viewpoint patterns,
and four additional concepts, i.e., stakeholders, concerns, principles, and anti-patterns. This pa-
per demonstrates the applicability of the proposed language by exemplifying the documentation
of four patterns, e.g., Strictly Separate Build and Run Stages (principle) and Community of
Practice (CoP) (coordination pattern). It also assesses the structure and practical relevance of
the proposed pattern language by interviewing 14 experts from ten companies. In P6, we follow
the structure of the pattern language and report on typical concerns faced by agile coaches and
scrum masters and propose several patterns to address them.

P7: Identifying and Documenting Recurring Concerns and Best Practices of Agile
Coaches and Scrum Masters in Large-Scale Agile Development. As one of the key ac-
tors in the agile transformation of organizations, agile coaches and scrum masters face numerous
challenges, e.g., establishing an agile culture across the organization and fostering informa-

11

1. Introduction

tion sharing. Despite their importance, the existing literature still lacks reporting their typical
concerns and proposing patterns to assist them. Following the PDR method, this publication
[UM19] strives to reveal typical concerns and patterns of agile coaches and scrum masters. Based
on 13 interviews, this study contributes an overview of recurring concerns of agile coaches and
scrum masters by providing a list of 57 recurring concerns, 36 of which were already identified by
P6 and 21 of which were newly reported by the interviewees. This publication proposes several
practices to address the identified concerns by recommending a list of 76 pattern candidates and
15 patterns, of which five are showcased.

P8: Using Social Network Analysis to Investigate the Collaboration Between Archi-
tects and Agile Teams: A Case Study of a Large-Scale Agile Development Program
in a German Consumer Electronics Company. Scaling agile methods causes not only
managerial challenges, e.g., establishing an enterprise-wide agile mindset, but also architecture-
related deficiencies, e.g., the negligence of agile practices in assisting software architecting. Pro-
pelled by these challenges, academics and practitioners have a growing interest in combining the
two concepts of agility and architecture, as some architectural planning and governance is cru-
cial for large-scale agile development endeavors. There is still some ambiguity about the role of
architects in these efforts, so researchers have expressed several research needs related to the in-
vestigation of collaboration between architects and agile teams. Utilizing a single-case study and
social network analysis, the main aim of this publication [UKEM19] is to explore the collabora-
tion between architects and agile teams in a large-scale agile development program of a German
consumer electronics company. Based on observing two planning events and conducting seven
semi-structured interviews and an online survey with 32 participants, this study contributes a
set of social network graphs delineating the architecture-related information exchange of eight
agile teams and between solution architects and team members using social network metrics and
common communication network patterns. While P8 focuses on describing the collaboration
between solution architects and agile teams at the program level, P9 builds on the findings of
P8 and takes a more holistic stance by depicting the expectations of agile teams for enterprise
architects in supporting large-scale agile development efforts at the enterprise level.

P9: What to Expect from Enterprise Architects in Large-Scale Agile Development?
A Multiple-Case Study. In large-scale agile development, the alignment of agile teams be-
comes a key determinant for achieving desirable organization-wide effects. A crucial vehicle to
attain this objective is to establish effective EAM functions that provide a shared target vision
across the organization. Until now, many enterprise architects primarily focused on top-down
governance, exhibiting an enforcement-centric view that conflicts with the culture and mindset
of agile teams, partially driven by the lack of shared expectations between these two groups.
Despite this challenge, the existing literature lacks to provide a set of recommendations for
overcoming this issue. Employing a multiple-case study in five German companies, the main
objective of this publication [UKRM19] is to provide clarity on what expectations agile teams
have for enterprise architects. This study contributes a set of lessons learned related to the
expectation of agile teams for enterprise architects using the organization-specific agile EAM
practice model alongside its seven dimensions, e.g., communication, involvement, and support.
This publication highlights the extent to which the expectations of agile teams for enterprise
architects are met by triangulating the viewpoints of different stakeholder groups and contrast-
ing the self-perception of enterprise architects with the external perception of agile teams and

12

1. Introduction

managers. P10 represents a continuation of P9 and describes the role of enterprise architects in
supporting large-scale agile development endeavors.

P10: Investigating the Role of Enterprise Architects in Supporting Large-Scale Ag-
ile Transformations: A Multiple-Case Study. Although the EAM function has established
itself as a valuable governance mechanism to coordinate multiple large-scale agile development
endeavors, empirical studies still lack evidence on how enterprise architects can support these
efforts. Through a multiple-case study of five German companies, the primary goal of this
publication [UM20a] is to provide an insight into the enterprise architects’ responsibilities in
supporting agile teams and the challenges they face when working with agile teams. Based
on 16 semi-structured interviews, this article reveals typical tasks enterprise architects perform
when supporting large-scale agile development endeavors by reporting a list of 17 responsibilities
of enterprise architects, e.g., ensuring the reuse of enterprise assets and fostering technical ex-
cellence. This study describes the problems enterprise architects face in supporting agile teams
by providing a list of 17 recurring reported challenges, e.g., balancing short-term and long-term
planning, dealing with the loss of decision-making power, and managing technical debts.

In addition to the ten publications embedded in this dissertation, we wrote eight additional
articles (in-)directly related to the research questions (see Table 1.2). These publications – partly
led by co-authors – present additions to the topics discussed in the embedded publications.

Table 1.2.: Overview of the additional publications

RQ	 No.	 Title	 Outlet	 Type	 CORE	
ranking	

RQ2	
P11	 Benefits	and	Challenges	of	Adopting	SAFe	–	An	Empirical	Survey	 AGILE	2021*	 CON	 B	

P12	 Why	Do	Organizations	Adopt	Agile	Scaling	Frameworks?	A	Survey	of	
Practitioners	 ESEM	2021*	 CON	 A	

RQ3	 P13	 Large-Scale	Agile	Development	Patterns	for	Enterprise	and	Solution	
Architects	 EPLoP	2020*	 CON	 NR	

RQ4	

P14	 Supporting	Large-Scale	Agile	Development	with	Domain-Driven	Design	 AGILE	2018*	 CON	 B	

P15	 Improving	the	Collaboration	Between	Enterprise	Architects	and	Agile	
Teams:	A	Multiple-Case	Study	 ADT	2021*	 BCH	 NR	

P16	 Investigating	the	Establishment	of	Architecture	Principles	for	Supporting	
Large-Scale	Agile	Transformations	 EDOC	2019*	 CON	 B	

P17	 Establishing	Architecture	Guidelines	in	Large-Scale	Agile	Development	
Through	Institutional	Pressures	 AMCIS	2019*	 CON	 A	

P18	 A	Tool	Supporting	Architecture	Principles	and	Guidelines	in	Large-Scale	
Agile	Development	 ADT	2021*	 BCH	 NR	

Outlet:	
ADT:	 	 Architecting	the	Digital	Transformation	
AGILE:		 	 International	Conference	on	Agile	Software	Development	
AMCIS:			 Americas	Conference	on	Information	Systems	
EDOC:		 	 International	Enterprise	Distributed	Object	Computing	Conference	
EPLoP:	 	 European	Conference	on	Pattern	Languages	of	Programs	
ESEM:	 	 International	Symposium	on	Empirical	Software	Engineering	and	Measurement	
*	All	publications	are	published	and	peer	reviewed.	

Type:	
BCH:	 	 Book	chapter	
CON:		 	 Conference	
CORE:		 	 Computing	Research	&	Education	
NR:		 	 Non-ranked	

Related to RQ2, this study [PUPH21] examines the state of practice in adopting SAFe based on
a survey of practitioners worldwide on their perceptions of the benefits and challenges associated

13

1. Introduction

with the adoption. Based on the same survey, this study [PUH+21] investigates the reasons, the
expected benefits, and the satisfaction level of companies with adopting scaling frameworks.

Related to RQ3 and similar to P7, this publication [UM20b] follows the PDR method and
presents concerns and patterns of solution and enterprise architects.

Related to RQ4, this study [UHK+18] proposes a framework that incorporates components of
LeSS and Domain-Driven Design to demonstrate how companies can extend large-scale agile
development efforts by agile architecting activities. Based on the same multiple-case study of
P9 and P10, this publication [URM21] presents five tactics that enterprise architects can use to
enhance their collaboration with agile teams. This study [UPM19] uses the same multiple-case
study data as P9 and P10 to reveal companies’ current practices and challenges in applying ar-
chitectural principles to support large-scale agile development efforts. With a similar scope, this
publication [UNH19] suggests a collaborative approach for agile teams and enterprise architects
to establish and manage architecture principles in large-scale agile development endeavors. This
study [UNHM21] extends the approach presented in [UNH19] by proposing a prototypical web
application called “Architecture Belt” that assists the establishment of architecture principles.

Although these additional publications provide further insights into the research questions, we
selected the publications embedded in this dissertation (P1–P10) as the main building blocks.

14

CHAPTER 2

Theoretical Background

In the theoretical background, we start with a description of the fundamental concepts on
which the dissertation and all embedded publications are built, namely agile and lean software
development (see Sections 2.1 and 2.2) and large-scale agile development (see Section 2.3). In
addition, we introduce the idea of patterns in Section 2.4, which forms the basis for P5, P6, and
P7. We present the notion of communication networks in Section 2.5, on which P8 builds to
describe the collaboration between architects and agile teams.

2.1. Agile Software Development

In the mid-1980s, Takeuchi and Nonaka [TN86] already stated that a sequential phases approach
to product development is not well suited due to the lack of flexibility [STE17]. Similarly, lin-
ear and sequential methods, known as the “Waterfall Model ” [Ben83], were pervasive in soft-
ware development and generally lacked effectiveness in responding to customer needs, managing
changing project scope, and meeting delivery deadlines and costs [FSS02, LGJO17]. In these
methods, work begins with the extensive elicitation and documentation of a complete set of re-
quirements, followed by an architectural and high-level design, often delaying the starting point
of implementation [CLC04, NÖS12]. In the mid-1990s, some practitioners found these initial
development steps frustrating and even impossible [HH02]. The industry and technology were
evolving too quickly, requirements were changing at a pace that overwhelmed traditional meth-
ods, and customers were increasingly unable to articulate their needs in advance while expecting
more from their software [CLC04]. As a result, several consultants independently developed
iterative and incremental methods to respond to the inevitable changes they were experiencing
[CLC04]. The concept of “agility” for executing and organizing software development projects
emerged based on ideas from new product development (cf. [TN86]) [SH15]. Hence, agile – de-

15

2. Theoretical Background

noting “the quality of being agile, readiness for motion, nimbleness, activity, dexterity in motion”
[AWSR03] – software development can be seen as a reaction to traditional ways of developing
software and acknowledges the “need for an alternative to documentation driven, heavyweight
software development processes” [Boe02, CLC04]. The resulting trend was global, and more
than 14 lightweight methods were proposed, which later became known as agile methods after
the creation of the Agile Manifesto [BBvB+01, CS16]. In 2001, various agile proponents came
together to discuss their practices and find common ground, resulting in the formulation of the
Agile Manifesto, which still binds agile methods with a common set of values [BBvB+01].

While traditional software development builds on the fundamental assumption that informa-
tion systems are fully specifiable and are created through meticulous and extensive planning,
agile software development assumes that information systems can be created through continu-
ous design, improvement, and testing based on rapid feedback and changes [NMM05]. Hence,
agile software development views change as a persistent constant by underlining the continued
readiness “to rapidly or inherently create change, proactively or reactively embrace change, and
learn from change while contributing to perceived customer value” [Con09]. Furthermore, agile
software development differs from traditional software development in that it explicitly questions
the need for documentation and the use of methods for the sake of methods [CS16]. Table 2.1
provides a comparative summary of traditional and agile software development.

Table 2.1.: Traditional versus agile software development [NMM05]

Characteristic	 Traditional	development	 Agile	development	

Fundamental	assumption	
Systems	are	fully	specifiable,	predictable,	and	
are	built	through	meticulous	and	extensive	
planning	

High-quality	adaptive	software	is	developed	by	
small	teams	using	the	principles	of	continuous	
design	improvement	and	testing	based	on	
rapid	feedback	and	change	

Management	style	 Command	and	control	 Leadership	and	collaboration	

Knowledge	management	 Explicit	 Tacit	

Communication	 Formal	 Informal	

Development	model	 Life-cycle	model	(waterfall,	spiral	or	some	
variation)	 Evolutionary-delivery	model	

Desired	organizational	
form	/	structure	

Mechanistic	(bureaucratic	with	high	
formalization),	aimed	at	large	organizations	

Organic	(flexible	and	participative	encouraging	
cooperative	social	action),	aimed	at	small	and	
medium-sized	organizations	

Quality	control	 Heavy	planning	and	strict	control,		
late,	heavy	testing	

Continuous	control	of	requirements,	design,	
and	solutions,	continuous	testing	

 Although agile software development brought a paradigm shift in software engineering [Raj06],
agile development has also evoked a substantial amount of criticism and debates by some prac-
titioners and academics [AWSR03, DD08]:

• Agile development is not new; such practices have been around in software development
since the 1960s [MRTR05].

• The lack of focus on architecture leads to sub-optimal design decisions [McB03, RS08].

16

2. Theoretical Background

• There is scant academic evidence for many of the claims of the agile community [McB03].

• XP practices are rarely applicable [Kee02].

• Agile development is more appropriate for small teams, but other practices are better for
larger projects [CLC04].

2.1.1. Agile Manifesto

“[A] bigger gathering of organizational anarchists would be hard to find ”, Beck stated [BBvB+01]
when seventeen representatives of different agile methods and other sympathizers came together
in Utah in early 2001 to discuss the need for new software development methods as an alternative
to heavyweight software development processes [CLC04]. “What emerged was the Agile ’Software
Development’ Manifesto” as a result of this gathering [BBvB+01]. Since its articulation in
2001, the Agile Manifesto has become an essential part of the agile movement. It has brought
unprecedented changes to software engineering in that it characterizes the binding values of agile
methods and how they differ from traditional methods [CLC04, DNBM12]. The Agile Manifesto
sets in place four core values and elaborates 12 supporting principles encapsulating the ideas
underlying agile software development methods [CS16] (see Figure 2.1).

Pr
in
ci
pl
es

Va
lu
es Individuals and interactions

over processes and tools
V1 Working software

over comprehensive documentation
V2 Customer collaboration

over contract negotiation
V3 Responding to change

over following a plan
V4

Our highest priority is to satisfy the
customer through early and continuous delivery of

valuable software.

P1

Business people and developers must work
together daily throughout the project.

P4

Working software is the primary measure of
progress.

P7

Simplicity – the art of maximizing the amount
of work not done – is essential.

P10

Welcome changing requirements, even late
in development. Agile processes harness change

for the customer’s competitive advantage.

P2

Build projects around motivated individuals.
Give them the environment and support they

need, and trust them to get the job done.

P5

Agile processes promote sustainable
development. The sponsors, developers, and

users should be able to maintain a constant pace
indefinitely.

P8

The best architectures, requirements, and
designs emerge from self-organizing teams.

P11

Deliver working software frequently, from a
couple of weeks to a couple of months, with a

preference to the shorter timescale.

P3

The most efficient and effective method of
conveying information to and within a

development team is face-to-face conversation.

P6

Continuous attention to technical excellence
and good design enhances agility.

P9

At regular intervals, the team reflects on
how to become more effective, then tunes and

adjusts its behavior accordingly.

P12

Figure 2.1.: Values and principles of the Agile Manifesto [BBvB+01]

2.1.2. Agile Software Development Methods

Methods for agile software development constitute a collection of different techniques or practices
that experienced practitioners have created [CLC04, ÅF06]. These methods share common
values and principles, e.g., many are based on iterative and incremental development and best
suit collocated teams of about 50 people or fewer who are developing non-life-critical projects

17

2. Theoretical Background

[WC03, CLC04]. At the heart of these methods is the idea of self-organizing teams whose
members are collocated and work at a pace that fosters their creativity and productivity. They
accommodate changes in requirements at any stage of the development process and ensure that
customers are actively involved in the development process [DNBM12].

Various agile methods have been introduced over the past few decades [AWSR03]. Larman and
Basili [LB03] refer to the Dynamic Systems Development Method as the first agile method,
followed by XP, whose introduction is widely recognized as the starting point for the various
agile software development approaches [AWSR03]. Several other methods, adhering to varying
degrees to the tenets of the Agile Manifesto, have since followed and appeared on the landscape,
including Adaptive Software Development, Crystal Methods, and Feature-Driven Development,
to name a few [AWSR03, DD08, DNBM12]. The emergence of new agile methods has exploded
at the turn of the 21st century [AWSR03] (see Figure 2.2).

Copyright 2003 IEEE. Published in the Proceedings of the International Conference on Software Engineering, May 3-5, 2003, Portland,
Oregon, USA.

Fiction of universal methods
(Malouin and Landry, 1983)

1990

2000

Prototyping methodology
(e.g., Lantz, 1986)

Spiral model
(Boehm, 1986)Evolutionary life-cycle

(Gilb, 1988)

Rapid application
development (RAD)
(e.g., Martin, 1991)

RADical software
development (Bayer
and Highsmith, 1994)

Adaptive Software Development
(ASD) (Highsmith, 2000)

Dynamic systems
development method
(DSDM, 1995)

Object oriented
approaches

Unified modeling
language (UML)

Rational Unified
Process (RUP)
(Kruchten, 2000)

Feature-Driven
Development (FDD)
(Palmer and Felsing, 2002)

Crystal family
of methodologies
(Cockburn , 1998; 2001) Extreme Programming (XP)

(Beck, 1999)

Agile Modeling (AM)
(Ambler, 2002)

Pragmatic
Programming (PP)
(Hunt and Thomas,
2000)

Open Source
Software (OSS)
development

Internet technologies,
distributed software
development

Methodology
Engineering
(Kumar and
Welke, 1992)

Amethodological IS
development
(Baskerville, 1992;
Truex et al., 2001)

IS development in
emergent organizations
(Truex et al., 1999)

Agile manifesto
(Beck et al., 2001)

New product development game
(Takeuchi and Nonaka, 1986)

Scrum development
process
(Schwaber, 1995;
Schwaber and
Beedle , 2001)

Synch-and-stabilize
approach (Microsoft)
(Cusumano and Selby, 1995;
1997)

Internet-speed development
(Cusumano and Yoffie , 1999;
Baskerville et al., 2001;
Baskerville and Pries-Heje , 2001)

Figure 1. Evolutionary map of agile methods.

These are rules under which companies have survived in
ISD. In this context the ‘process adjustment’ means
focusing on good people instead of process, i.e., “if
people are mature and talented, there is less need for
process” [23, p. 56]. The framework for ISD is considered
as more management and business-oriented than other
related approaches. ISD draws from the “Synch-and-
stabilize” approach by Microsoft, aimed at coping with a
fast-moving, or even chaotic, software development
business [26], and from emergent organizations, which are
organizations having a fast pace of organizational change
– an opposite to stable organizations [27]. ISD’s
theoretical background stems from Amethodological IS
development [28, 29], which argues that software
development is a collection of random, opportunistic
processes driven by accident. These processes are
simultaneous, overlapping and there are gaps and the
development itself occurs in completely unique and
idiographic forms. Finally, the development is negotiated,
compromised and capricious as opposed to predefined,
planned and mutually agreed.

Pragmatic programming. Pragmatic programming (PP)
[30] introduces a set of programming “best practices”. It
puts forward techniques that concretely augment the

practices discussed in the other agile methods. PP covers
most programming practicalities. The “method” itself is a
collection of short tips that focus on day-to-day problems ;
there are a total of 70 of them. These practices take a
pragmatic perspective and place focus on incremental,
iterative development, rigorous testing, and user-centered
design.

Scrum. The Scrum [31, 32] approach has been
developed for managing the software development
process in a volatile environment. It is an empirical
approach based on flexibility, adaptability and
productivity. Scrum leaves open for the developers to
choose the specific software development techniques,
methods, and practices for the implementation process. It
involves frequent management activities aiming at
consistently identifying any deficiencies or impediments
in the development process as well as the in the practices
that are used.
3. Lenses for the analysis

In order to make sense and scrutinize the existing agile
methods, proper analytic tools are need. Many such
analytical tools have been proposed and used [e.g., 33,
34]. The following five analytical lenses were seen as

Figure 2.2.: Evolutionary map of agile methods [AWSR03]

Currently, the most widely adopted agile methods in industry are Scrum and XP [HA13], which
is why both are detailed below.

2.1.3. Scrum

The “Scrum” metaphor has its origins in new product development, initially coined by Takeuchi
and Nonaka [TN86] in 1986, describing an innovative approach called the “Rugby Approach”,

18

2. Theoretical Background

to manage commercial product development [FSOO13, Coo16]. The approach proposed by
Takeuchi and Nonaka [TN86] originally stems from rugby, where “Scrummage” (or in short
“Scrum”) refers to a formation of players packing closely together with their heads down and
attempting to gain possession of the ball [Coo16, CS16]. In product development, a Scrum is a
meeting of a self-organizing team to plan its next moves [TN86, SM02]. Intrigued by the idea of
[TN86] having a self-organized team in new product development [SVBP07], Jeff Sutherland and
Ken Schwaber jointly developed a software development process called “Scrum” and introduced
it to the public at the OOPSLA Business Object Design and Implementation Workshop in 1995
[Sch95]. Scrum assumes that analysis, design, and development processes are unpredictable due
to changing requirements and business demands. Hence, Scrum constitutes an iterative and
incremental process for building software in unpredictable environments [Sch95, RJ00].

Figure 2.3 provides a visual representation of the Scrum process, consisting of four core compo-
nents: values, roles, events, and artifacts (see Table 2.2), described in the following.

Product
Backlog

Sprint
Planning

Sprint
Retrospective

Sprint
Backlog

Increment

Daily
Scrum

Sprint
Review

1 Scrum Team

Scrum Framework © 2020 Scrum.org

SCRUM FRAMEWORK

Figure 2.3.: Overview of the Scrum framework [Scr22]

Table 2.2.: Core components of Scrum [SS20]

Scrum	values	 Scrum	roles	 Scrum	events	 Scrum	artifacts	

• Commitment	
• Focus	
• Openness	
• Respect	
• Courage	

• Scrum	team	
• Developers	
• Product	owner	
• Scrum	master	

• Sprint	
• Sprint	planning	
• Daily	scrum	
• Sprint	review	
• Sprint	retrospective	

• Product	backlog	
• Sprint	backlog	
• Increment	

 Scrum values. Scrum formulates five values that give a scrum team direction for its work,
actions, and behavior. Commitment refers to a team’s commitment to achieving its goals. Focus
pertains to a team’s primary focus being on the sprint’s work to drive the best possible progress
toward these goals. Openness signifies a team and its stakeholders being open about the work

19

2. Theoretical Background

and the challenges. Respect relates to the team’s members respecting each other. Courage means
that the team’s members dare to do the right thing and work on complex problems [SS20].

Scrum roles. A small team of people is the fundamental unit of Scrum. A Scrum Team
is typically cross-functional, meaning the team members have all the skills needed to develop
software in each sprint, and is self-managing, meaning it decides internally who does what,
when, and how [SS20]. A scrum team typically consists of 7 ± 2 team members oriented to
the number of objects an average person can hold in short-term memory [Mil56]. The scrum
team is responsible for all product-related activities and creating a valuable increment in each
sprint [SS20]. Scrum defines three distinct roles within a scrum team. First, Developers are the
people in the scrum team who do the work specified in the sprint backlog [Rub12]. They are
committed to creating an increment in each sprint [SS20]. Second, the Product Owner ensures
that the customer’s needs are understood and maintains the product backlog. The product
owner prioritizes and clarifies the backlog items, communicating to the developers what needs
to be built and ensuring that the project is economically viable [Rub12, SS20]. Third, the
Scrum Master is a servant-leader for the scrum team and is responsible for the proper execution
of Scrum. The scrum master accomplishes this by helping everyone in the team and organization
understand the theory and practice behind the framework [SS20].

Scrum events. In Scrum, an iteration is called a Sprint, a container for all other Scrum events.
A sprint is a time-boxed event, typically a month or less, in which all the work required to
create a potentially shippable product increment is performed [Rub12, SS20]. A new sprint
begins immediately after the completion of the previous sprint [SS20]. A Sprint Planning is
a time-boxed meeting, eight hours maximum for a one-month sprint, that initiates the sprint
by determining the work for the sprint. The entire scrum team attends the sprint planning
meeting and collectively determines what should be part of the sprint backlog for the next
product increment [Rub12, SS20]. Every day during a sprint, the developers gather for a short
Daily Scrum meeting that lasts 15 minutes. The team inspects the progress toward the sprint
goal and adjusts the sprint backlog as necessary by adjusting the work plan for the upcoming
day. A Sprint Review meeting is used after a sprint to review the outcome of the sprint and
determine future adaptations. Thereby, the scrum team presents the results of its work to key
stakeholders. A sprint review meeting is time-boxed to four hours for a one-month sprint [SS20].
Between the sprint review meeting and the next sprint planning meeting, the entire scrum team
holds a Sprint Retrospective meeting, which is time-boxed to three hours for a one-month sprint.
The goal of the sprint retrospective is to analyze the scrum team’s workflows and processes to
identify opportunities for improving work and collaboration [Rub12, SS20].

Scrum artifacts. Scrum defines three artifacts [SS20]. First, the Product Backlog is the first
artifact created for development [Rub12]. It is an emergent, prioritized list of all features of
the product. The product backlog is the sole source for the scrum team’s work [SS20]. Second,
the Sprint Backlog is an artifact that contains product backlog items that the scrum team is
working on during the current sprint. It consists of the sprint goal, the product backlog items
selected for the sprint, and an actionable plan for delivering the increment. Third, an Increment
is an output artifact created by developers after a sprint. It results from all sprint backlog items
completed in the current sprint. Each increment is additive to all previous increments and is
thoroughly verified to ensure that all increments function together [SS20].

20

2. Theoretical Background

2.1.4. Extreme Programming

XP is a method that helped agile software development gain public attention, being a dominant
methodology in the late 1990s through 2000 before the rise of Scrum [Fow13]. XP was developed
by Kent Beck in 1996 while working on a C3 payroll project [ABB98] and further popularized by
Beck’s book entitled “Extreme Programming Explained: Embrace Change” in 1999 [Bec00]. XP
was created as a response to the problems caused by the long development cycles of traditional
models and owes much of its popularity to developers who were disenchanted with conventional
methods and were looking for something new, something “extreme” [Bec00, HH02, CLC04]. XP
initially started as a “simple way to get the job done” [Hau01] using practices that had been
proven effective in software development processes [Bec00]. After a series of successful trials in
practice [ABB98], XP was theorized, and its fundamental principles and practices were described.
The term “extreme” comes from the exaggeration of these commonsense principles and practices
[Bec00]. Beck [Bec00] defines XP as a “software development discipline that organizes people to
create high-quality software in a more productive manner ”. XP is considered an agile method
as it is organized into multiple short development cycles to reduce the cost of changes made to
accommodate the requirements expressed by customers. XP focuses on the development aspects
at the expense of the management aspects and is designed to be fully or partially customizable
within an organization. The working teams in XP are small and aim to develop software in an
environment where requirements frequently change [GJJG11]. The life-cycle of XP consists of
six phases [Bec00] (see Figure 2.4), detailed in the following.

This is the author's version of the work. The definite version was published in: Abrahamsson, P., Salo, O.,

Ronkainen, J. & Warsta, J. (2002) Agile software development methods: Review and analysis, VTT

publication 478, Espoo, Finland, 107p. Copyright holder’s version can be downloaded from

http://www.vtt.fi/inf/pdf/publications/2002/P478.pdf.

21

started as 'simply an opportunity to get the job done' (Haungs 2001) with
practices that had been found effective in software development processes
during the preceding decades (Beck 2000). After a number of successful trials in
practice (Anderson et al. 1998), the XP methodology was "theorized" on the key
principles and practices used (Beck 2000). Even though the individual practices
of XP are not new as such, in XP they have been collected and lined up to
function with each other in a novel way thus forming a new methodology for
software development. The term 'extreme' comes from taking these
commonsense principles and practices to extreme levels (Beck 2000).

3.1.1. Process

The life cycle of XP consists of five phases: Exploration, Planning, Iterations to
Release, Productionizing, Maintenance and Death (Figure 2).

COLLECTIVE
CODEBASE

REGULAR
UPDATES

Priorities Effort
estimates

EXPLORATION
PHASE

PLANNING
PHASE

ITERATIONS TO
RELEASE PHASE

PR
O

D
U

C
TI

O
N

IZ
IN

G
PH

A
SE

STORIES

STORIES
FOR NEXT
ITERATION

TEST

ANALYSIS DESIGN
PLANNING

FOR
TESTING

TESTING

PAIR
PROGRAMMING

CONTINUOUS
REVIEW

FEEDBACK
CONTINUOUS
INTEGRATION

CUSTOMER
APPROVAL

SMALL
RELEASE

UPDATED
RELEASES

M
A

IN
TE

N
A

N
C

E
PH

A
SE

D
EA

TH
PH

A
SE

FINAL
RELEASE

Figure 2. Life cycle of the XP process

In the following, these phases are introduced according to Beck's (2000)
description:

Figure 2.4.: Overview of the XP life-cycle process [Wel01]

XP phases. In the Exploration Phase, the customer writes the user stories to describe the
features he/she wishes to have in the system’s first release. In parallel, the project team famil-
iarizes itself with the tools, technology, and practices it will use. The technology to be used is

21

2. Theoretical Background

tested, and architectural possibilities for the system are explored by building a prototype. The
exploration phase lasts from a few weeks to a few months. The customer determines the priority
order for user stories in the Planning Phase. The programmers estimate the effort required to
implement each user story, followed by an agreement on the content of the first release. While
the period for the schedule of the first release does not exceed two months, the phase itself takes
a few days. The Iterations to Release Phase comprises several iterations before the system’s
first release. The schedule set in the planning phase is decomposed into several iterations that
take one to four weeks to implement. In the first iteration, an architecture of the whole system
is created. The customer decides which stories are selected for each iteration. The functional
tests specified by the customer are performed at the end of each iteration. The system is ready
for production at the end of the last iteration. The Productionizing Phase comprises additional
testing and verification of the system’s performance before it is handed over to the customer.
In the Maintenance Phase, the project runs the system in production while developing new
features. The Death Phase begins when the customer no longer has stories to implement, when
the system is not delivering the desired results, or when it becomes too expensive for further
development. The necessary documentation for the system is written in this phase, as no more
changes are made to the architecture, design, or code [Bec00, ASRW17].

XP comprises four core components [Bec00]: values, principles, practices, and roles (see Table
2.3), outlined below.

Table 2.3.: Core components of XP [Bec00]

XP	values	 XP	principles	 XP	practices	 XP	roles	

• Communication	
• Simplicity	
• Feedback	
• Courage	
• Respect	

• Rapid	feedback	
• Assume	simplicity	
• Incremental	change	
• Embracing	change	
• Quality	work	

• Planning	game	
• Small	releases	
• Metaphor	
• Simple	design	
• Testing	
• Refactoring	
• Pair	programming	
• Collective	ownership	
• Continuous	integration	
• 40-hours	work	week	
• On-site	customer	
• Coding	standards	

• Programmer	
• Customer	
• Tester	
• Tracker	
• Coach	
• Consultant	
• Manager	

	

 XP values. There are five XP values [Bec00]. Communication fosters active and continuous
communication among team members instead of documentation [AASW17]. Simplicity pertains
to keeping things simple, e.g., creating a simple plan, design, code, or solution. Feedback relates
to regular feedback spanning various time scales from seconds to months. Courage signifies
that XP practices require courage, e.g., refactoring a code completed after great effort. Respect
stands for the importance of self-respect and respect for other members [Bec00, AASW17].

XP principles. In tandem with XP values, XP defines five principles. Rapid Feedback implies
getting feedback as often as possible [Bec00]. Assume Simplicity means treating every problem
simple until proven otherwise. Incremental Change indicates decomposing each change into a
series of small steps. Embracing Change refers to accepting changes in design, project, or plan.
Quality Work suggests that the team produces a valuable product [Bec00, HOV05].

22

2. Theoretical Background

XP practices. XP proposes a set of practices to improve productivity while maintaining qual-
ity [Bec00]. The Planning Game represents the meeting between the customer and programmers
and takes place once per iteration. It consists of two steps. First, programmers estimate the ef-
fort required to implement the user stories. Then, the customer decides on the scope and timing
of the releases. Small Releases encourage programmers to create small and workable parts of the
system for the customer in a short time and even release them daily, or at least monthly. Instead
of traditional architecture, XP uses the Metaphor as a simple shared vision that describes how
the system works. Simple Design recommends programmers design the most straightforward
solution that is implementable at the moment. In XP, Testing is accomplished by continuously
implementing and running unit tests. It also foresees that the customer writes test plans and
functional tests before implementation. Refactoring envisages programmers restructuring the
system at the end of each iteration by removing duplicates, improving communication, simpli-
fying, and adding flexibility. Pair Programming involves two programmers working side-by-side
on the same code on a single computer. The Collective Ownership states that the code pro-
duced does not belong to a specific person but to everyone on the team, which is why anyone
can change any part of the code. Continuous Integration envisions that a new piece of code is
integrated into the code base as soon as it is ready. A 40-Hour Week limits the working hour for
programmers to a maximum of 40 hours per week. The On-site Customer requires the customer
to be present and available to the team full-time and sit with programmers to answer questions,
resolve disputes, and set priorities. Coding Standards recommend programmers specify coding
rules that make the code easier to understand [Bec00, ASRW17].

XP roles. XP defines seven roles for different tasks and purposes [Bec00]. The Programmer
is responsible for the project’s main deliverable and writes the source code and tests for the
system under development. Since there are no analysts, designers, or architects in an XP
team, the programmer must perform all of these tasks. The Customer creates the stories and
functional tests and decides when a requirement is met. The customer sets the priority for
the implementation of the requirements. The Tester assists the customer in creating functional
tests, regularly running the functional tests, broadcasting the test results, and maintaining the
testing tools. The Tracker monitors the project’s metrics and evaluates whether the goal can
be achieved within the given time constraints or whether changes in the process are needed.
The Coach is responsible for the development process and guides the other team members to
follow the XP process. The Consultant is an external member with extra expertise hired by the
team temporarily when the team needs support. The consultant shares his or her knowledge so
that the team can solve the problem on its own. The Manager is the project coordinator and
provides the necessary resources, equipment, and tools for the XP project [Bec00, ASRW17].

2.2. Lean Software Development

“Lean Thinking” was born as part of the industrial renaissance in Japan after the Second World
War [RMO+19]. Its origins are traced back to the Toyota Production System (TPS) in the 1950s
[Ohn88, Lik03], which did not significantly impact the mainstream literature until researchers
from the Massachusetts Institute of Technology (MIT) began research under the International
Motor Vehicle Program [RMO+19]. Intending to study the differences among the world’s au-

23

2. Theoretical Background

tomobile industries, researchers discovered that Japan’s automobile industry was far ahead of
the American one. By carefully studying Japanese methods, particularly those of Toyota, they
conceived an entirely different production system [WJR90]. At that time, Toyota was widely
regarded as the most efficient and highest quality manufacturer of motor vehicles in the world
[MJ11]. The term “ lean” refers to the fact that Toyota required less space, workforce, materials,
and time to manufacture its products than its Western competitors [WJ97]. According to MIT
researchers, lean thinking is about “doing more with less” by ideally producing “the right things,
at the right time and in the right place” [WJR90]. Lean thinking is a school of thought that em-
powers companies to “specify value, line up value-creating actions in the best sequence, conduct
these activities without interruption whenever someone requests them, and perform them more
and more effectively” [WJ97]. Based on the fundamental principles of industrial engineering,
lean thinking is grounded in the philosophy of maximizing value and minimizing waste that is
guided by five interrelated key traits [WCC12, RMO+19]:

• Value is defined as everything a customer is willing to pay for.

• Value Stream is an optimized end-to-end collection of actions required to take a product
from customer order to customer support.

• Flow means that production activities are organized as a continuous flow that eliminates
discontinuities.

• Pull indicates that products are produced only when they are needed.

• Perfection, or “Kaizen” in Japanese, refers to pursuing perfection by continuously identi-
fying and eliminating waste.

TPS is a form of what Womack et al. [WJ97] coined as “Lean Manufacturing” [WJR90]. Lean
manufacturing can be summarized under two headings: the removal of waste and continuous
flow [PW11]. Lean thinking divides work into value-adding, required non-value-adding, and non-
value-adding activities [WJ97]. Non-value-adding activities should be reduced or eliminated as
they are considered waste and are referred to as “Muda” (garbage in Japanese). Other types
of waste include over-production, over-processing or incorrect processing, excess inventories, or
unused employee creativity, to name a few [Ohn88, Lik03]. Lean thinking enables to achieve
a smooth flow of inventory through the production process [PW10b]. By linking disjointed
operations, quality problems can be identified early [Lik03]. As a consequence of this linkage,
the generation and delivery of inventory to downstream processes can be scheduled just-in-time
[Lik03, Ohn88]. A technique by which this smooth flow can be achieved is called “Kanban”.

A Kanban system is: “[a] production control system for just-in-time production and making full
use of workers’ capabilities” [SKCU77]. Taiichi Ohno, who developed the TPS, initially concep-
tualized Kanban, drawing inspiration from how American supermarkets operated in the 1950s
[Ohn88]: customers purchased goods in the quantities they needed, after which the “upstream”
process produced what was taken. The signal passed from a downstream to an upstream pro-
cess is Kanban, which means signboard or tag [Ohn88]. Since the customer initiates this process
by making a request, this cascading system of signals going upstream results in a pull sys-
tem. Once a task is completed, a downstream process pulls a new work item from an upstream
process. On the Kanban board, the various processes are depicted as states on which the Work-

24

2. Theoretical Background

in-Progress (WIP) products pass from one state to the following [FMS14]. By restricting the
number of Kanban tickets, the number of WIP products can also be limited [FMS14]. Reducing
the WIP level also shortens cycle-time, which in turn helps to improve the flow of a process
[Rei09]. The Kanban method typically uses a wall of cards, i.e., a Kanban board, as a visual
control system [FMS14]. This form of visualization helps to identify bottlenecks as soon as they
occur that need to be addressed before a new task can begin. Figure 2.5 depicts an exemplary
visual representation of a Kanban board with numbers in brackets representing WIP limits.

Backlog To Do (4)

I

Doing (2) Done

J

K L

M N

O P

E

F

G

H

C

D

A

B

Figure 2.5.: Kanban board [Pow16]

Given the major success of the lean approach in the automotive industry, lean thinking has
penetrated many sectors, including the software industry [PP03, EAO12, AMO13]. The first
ideas on lean software development were developed by Mary and Tom Poppendieck [PP03] and
Middleton and Sutton [MS05]. These books examined how lean thinking could be transferred
from manufacturing to the more intangible world of software development [MJ11]. Lean software
development, suggested by Bob Charette, draws on the success that lean manufacturing had
in the automotive industry in the 1980s [CLC04]. Lean software development can be viewed
as an approach applying traditional lean manufacturing [WJR07] philosophies, principles, and
tools to software development [KMI15]. The term “Lean Software Development” has started
to become a household name within the software engineering vernacular, especially in agile
software development [CWR13]. In fact, when Mary and Tom Poppendieck wrote their first
book on lean software development in 2003 [PP03], it was tightly connected to agile software
development [EAO12]. While retaining the core intent of lean thinking, various lean principles
for software development have been proposed by practitioners [WCC12]. Table 2.4 lists several
lean principles that largely overlap with the core and essence of lean approaches [WCC12].

Lean and agile software development are often considered interchangeable or synonymous and
appear compatible, e.g., “ScrumBan”, a software production model based on Scrum and Kanban
[Lad09], and very similar [Pet11]. For instance, both share the same people management and
leadership principles and focus on quality, technical excellence, and frequent and rapid deliv-
ery of value to the customer [Pet11]. However, lean and agile software development can also
be distinguished along several dimensions [Pet11, BF12]. While lean thinking focuses on the
organization as a whole and aims to improve software development processes from a broader
perspective [PP03, MNS12], agile methods have a single-product view, as they were initially
designed for small teams [DD08]. While Lean thinking focuses on reducing costs by eliminating

25

2. Theoretical Background

Table 2.4.: Lean principles relevant to software development [PP03, Rei09, And10]

Lean	software	development	
principles	[PP03]	

Principles	of	product	development	
flow	[Rei09]	 Kanban	principles	[And10]	

• Optimize	the	whole	
• Focus	on	customers	
• Energize	workers	
• Reduce	friction	
• Enhance	learning	
• Increase	flow	
• Build	quality	in	
• Keep	getting	better	

• Use	an	economic	view	
• Manage	queues	
• Exploit	variability	
• Reduce	batch	size	
• Apply	work-in-progress	constraints	
• Control	flow	under	uncertainty	
• Use	fast	feedback	
• Decentralize	control	

• Visualize	the	workflow	
• Limit	work-in-progress	
• Manage	flow	
• Make	process	policies	explicit	
• Improve	collaboratively	

 waste and inefficiencies, agile methods treat leanness, i.e., reducing costs by eliminating waste,
as a constraint to create effective responses and valuable outcomes. Hence, lean thinking can be
perceived as efficiency-oriented, while agile methods involve lean processes focusing on achiev-
ing effective results [AST06, DNBM12]. Despite these differences, there is a growing interest in
finding ways to marry both worlds [DNBM12, RMO+19].

2.3. Large-Scale Agile Development

Over the past decade, agile methods have attracted considerable attention from practitioners and
academics [CC19a]. It was initially believed that the benefits of agile methods were best realized
in their traditional form, i.e., in small and co-located single-team projects with evolving needs
[BT05, DD08, ACW09, WCP12]. Given the success of conventional agile methods at the team
level, many large companies attempt to mimic this success by adopting these methods in a large-
scale context [LSA11, CC19a]. However, the large-scale adoption of agile practices has proven
very challenging [DD08, DPL16]. Challenges emerge due to organizational size, as difficulties in
adopting agile practices increase with the growing size of the organization, i.e., products are more
complex in large organizations and inter-dependencies between teams are more significant than
in smaller enterprises [Amb07, DD08]. Agile methods can be introduced top-down (management-
driven) or bottom-up (team-driven), making it difficult to understand the rationale for starting
the change process [DPL16, CC19a]. Another challenge arises from the need for coordination
and communication between multiple teams and between different organizational units that
often do not operate in an agile manner, requiring additional coordination mechanisms between
teams and organizational units [LMD+04]. While agile methods primarily focus on intra-team
practices that work well in small projects, agile methods do not provide sufficient guidance
on how agile teams should interact in large environments [Map09]. Hence, companies need to
adapt the practices to their specific needs, which require additional formal communication and
might compromise their agility [LMD+04]. As agile teams are often globally spread and agile
methods rely primarily on frequent collaboration and communication [HC01, DPL16], applying
agile practices to globally distributed projects can be difficult [HvM11].

26

2. Theoretical Background

2.3.1. Definition of Large-Scale Agile Development

While some researchers use the term “Large-Scale Agile Development” to describe projects with
many members in a single team or projects with multiple teams over several years or a combi-
nation of size, distribution, and specialization [BBS10, DFI14], there is little agreement on what
the term actually means [DM13, DFI14]. Several researchers made a first attempt and proposed
several definitions of the term. Suggested definitions typically comprise the number of people
or agile teams involved in the effort, the associated costs, or the project duration [DFI14]. For
instance, Berger and Beynon-Davies [BBD09] categorize an agile project as large-scale whenever
costs surpass 10 million GBP. Another example is provided by Bjarnason et al. [BWR11], using
the project duration of more than two years as an indicator for classifying a project as large-
scale. According to Paasivaara et al. [PDL08], a project with more than 40 people and seven
participating agile teams can be deemed large-scale. To bring more conceptual clarity, Dingsøyr
et al. [DFI14] provide a taxonomy that relies on the number of collaborating teams to define
the scale of an agile project. The suggested taxonomy consists of three categories:

• Small-scale agile projects with one team that applies traditional agile practices, e.g., daily
meetings, for intra-team coordination.

• Large-scale agile projects with two to nine agile teams that utilize new forums for inter-
team coordination, e.g., Scrum-of-Scrums (SoS).

• Very large-scale agile projects with at least ten agile teams requiring several forums for
inter-team coordination, e.g., multiple SoS.

Based on Dingsøyr et al. [DFI14], a project can be regarded as large-scale with at least two
collaborating agile teams. Fuchs and Hess [FH18] extend this definition, noting that the term
“ large-scale agile development” can be interpreted in multiple ways: (i) the usage of agile methods
in large teams, (ii) the employment of agile methods in large organizations, (iii) the adoption
of agile methods in large multi-team settings, i.e., “ large agile multi-team settings”, or (iv) the
application of agile practices in organizations as a whole, i.e., “organizational agility”. Alike to
Fuchs and Hess [FH18], we focus on the latter two options and use the below definition:

Definition: Large-Scale Agile Development

The term “ large-scale agile development” is defined as the adoption of agile methods in
large agile multi-team settings with at least two teams or the adoption of agile methods

at the organizational level comprising multiple large agile multi-team settings.

2.3.2. Scaling Agile Frameworks

Many companies face increasing pressures and expectations to scale and there is a natural ten-
dency to ensure team coherence by scaling agile methods to leverage the advantage of cost savings
and dynamism at scale [CC19a]. Consequently, several scaling frameworks, e.g., SAFe, LeSS,
and DAD, have been proposed by some custodians of existing agile methods and consultants
to address issues associated with the large-scale adoption of agile practices [DMFS18, CC19a].

27

2. Theoretical Background

These frameworks incorporate several predefined workflow patterns and routines to address chal-
lenges related to large numbers of teams, inter-team coordination, and customer involvement
[DPL16, CC19b]. Scaling frameworks are increasingly prevalent in contemporary large compa-
nies [LSE+13, DPL16, KHR18] as confirmed by Digital.ai’s annual State of Agile survey [Dig21].
While consultants have actively promoted numerous frameworks [UKXM17, UPPM21], six of
them have gained ground in practice and academia [EP17, KHR18, EWC21] (see Table 2.5).

The adoption of scaling agile frameworks not only promises benefits but has also proven to
be difficult, with only a few successful cases to date [Paa17, EWC21]. This is because scaling
frameworks struggle to deal with more significant complexities and inter-dependencies of large-
scale, organization-wide software development efforts [EWC21]. The difficulties encountered
typically center around complexities and ambiguities resulting from: (i) a large number of teams,
roles, and personalities, (ii) an often unknown composition of teams and projects at the outset,
(iii) abstract, epistemic, and often poorly structured work processes, (iv) multiple and often
competing agendas among teams that sometimes contradict the organization itself, and (v)
abstract, complex, and often unknown results and goals [RFDS16, Paa17, CC19b, EWC21].

In what follows, we will describe the three most commonly used [HPLE13] and mature [UKXM17]
scaling agile frameworks, namely SAFe, LeSS, and DAD.

2.3.2.1. Scaled Agile Framework

SAFe was released in 2011 by Dean Leffingwell and was designed to bring agile methods to
large enterprises. SAFe is a living framework that is continuously updated and has now reached
version 5.1 [AR16, KL20]. SAFe is built on lean and agile principles and includes a collection
of best practices for large enterprises [KL20]. SAFe provides companies a smooth entry into
the agile world by establishing several prescriptive guidelines that are often needed to transition
from a more traditional environment [KL20, RB21]. It supports companies of varying sizes, from
small companies with fewer than a hundred employees to larger enterprises with thousands of
employees [KHR18]. SAFe has optional extensions to enable such a degree of flexibility for large
companies [KL20]. SAFe’s organizational structure is large and has multiple hierarchical layers
with many predefined roles and responsibilities [KHR18, KL20]. Some practitioners consider
SAFe too cumbersome and complex due to its prescriptive nature, and some even say that SAFe
adds complexity to bureaucracy and is becoming “the new waterfall ” [EP17]. Four pre-built
SAFe configurations allow companies to tailor SAFe to their business needs [KL20, RB21]:

• Essential SAFe is the most basic form of SAFe. It contains a minimal set of roles, events,
and artifacts applicable at a team and program level required to transition an organization
to a modern, lean way of working. It is the basic building block for all the other SAFe
configurations and is the most straightforward starting point for implementation.

• Large Solution SAFe describes additional roles, practices, and guidance to build complex
solutions. It includes Essential SAFe and extends it by a large solution level.

• Portfolio SAFe entails a set of competencies and practices that can fully enable business
agility. It includes the components of the Essential SAFe configuration and extends it by a
superior portfolio level and additional features, e.g., lean portfolio management and orga-

28

2. Theoretical Background
T
ab

le
2.

5.
:C

om
pa

ri
so

n
of

m
aj

or
sc

al
in

g
ag

ile
fr

am
ew

or
ks

[A
R

16
,E

P
17

,K
H

R
18

]
 As

pe
ct
	

D
AD

	
Le
SS
	

N
ex
us
	

SA
Fe
	

So
S	

Sp
ot
ify
	

Te
am
	/
	p
ro
gr
am
	

si
ze
	

20
0	
pe
op
le
	o
r	m

or
e	

Le
SS
:	2
-8
	te
am
s	

Le
SS
	H
ug
e:
	>
	8
	te
am
s	

3-
9	
te
am
s	

50
-1
20
	p
eo
pl
e	
in
	re
le
as
e	

tr
ai
ns
	

5-
10
	te
am
s	

An
y	
la
rg
e	
pr
oj
ec
t,	
25
0	

to
	3
00
	p
eo
pl
e	
at
	

Sp
ot
ify
	(3
0	
te
am
s)
		

Tr
ai
ni
ng
	/
	

ce
rt
ifi
ca
tio
n	

Ye
s,	
m
ul
ti-
le
ve
l	

ce
rt
ifi
ca
tio
ns
	

Tr
ai
ni
ng
	a
nd
	co
ac
hi
ng
	

ne
tw
or
k	
av
ai
la
bl
e	

Sc
al
ed
	p
ro
fe
ss
io
na
l	

Sc
ru
m
	tr
ai
ni
ng
	&
	

ce
rt
ifi
ca
tio
n	
is
	a
va
ila
bl
e	

Ye
s,	
m
ul
ti-
le
ve
l	t
ra
in
in
g	
&
	

ce
rt
ifi
ca
tio
ns
	

N
on
e	
kn
ow
n	

N
on
e	
kn
ow
n	

Su
pp
or
te
d	

fr
am
ew
or
ks
	

Sc
ru
m
,	K
an
ba
n	

Sc
ru
m
	

Sc
ru
m
	

Sc
ru
m
,	K
an
ba
n,
	E
xt
re
m
e	

Pr
og
ra
m
m
in
g	

Sc
ru
m
	

Sc
ru
m
,	K
an
ba
n	

Re
qu
ir
ed
	te
ch
ni
ca
l	

pr
ac
tic
es
	

H
ig
h	

M
ed
iu
m
	

M
ed
iu
m
	

H
ig
h	

Lo
w
	

M
ed
iu
m
	

Or
ga
ni
za
tio
n	
ty
pe
	

Di
ve
rs
e	
co
m
pa
ni
es
	

La
rg
e	
co
m
pa
ni
es
	

Tr
ad
iti
on
al
	a
nd
	a
gi
le
	

co
m
pa
ni
es
	

Tr
ad
iti
on
al
	a
nd
	la
rg
e	

co
m
pa
ni
es
	

Tr
ad
iti
on
al
	a
nd
	a
gi
le
	

co
m
pa
ni
es
	

On
ly
	in
te
nd
ed
	fo
r	

Sp
ot
ify
;	p
er
ha
ps
	fi
ts
	

ot
he
r	a
gi
le
	co
m
pa
ni
es
	

Co
m
pl
et
en
es
s	o
f	

co
ve
ra
ge
	o
f	l
ev
el
s	

H
ig
h	

M
ed
iu
m
	

M
ed
iu
m
	

H
ig
h	

Lo
w
	

M
ed
iu
m
	

M
at
ur
ity
	le
ve
l	

H
ig
h	

H
ig
h	

M
ed
iu
m
	

H
ig
h	

M
ed
iu
m
	

Lo
w
	

Co
m
pl
ex
ity
	

M
ed
iu
m
	

M
ed
iu
m
	

M
ed
iu
m
	

H
ig
h	

Lo
w
	

M
ed
iu
m
	

Co
st
	o
f	a
do
pt
io
n	

M
ed
iu
m
	

M
ed
iu
m
	

M
ed
iu
m
	

H
ig
h	

Lo
w
	

Lo
w
	

St
re
ng
th
s	/
	

w
ea
kn
es
se
s	

R
 L
ot
s	o
f	c
on
te
nt
	

R
 S
tr
on
g	
in
	a
re
as
	su
ch
	

as
	a
rc
hi
te
ct
ur
e,
	

de
si
gn
,	a
nd
	D
ev
Op
s	

R
 I
nc
or
po
ra
te
s	m

an
y	

go
od
	m
od
el
s	

T
 V
ag
ue
	in
	so
m
e	
ar
ea
s	

ab
ou
t	t
he
	“h
ow
”	

T
 C
an
	co
m
e	
ac
ro
ss
	a
s	a
	

bi
t	d
is
jo
in
te
d	

R
 N
on
-p
re
sc
ri
pt
iv
e	

R
 G
iv
es
	su
gg
es
tio
ns
	ra
th
er
	

cl
ea
r	g
ui
de
lin
es
	

R
 F
oc
us
	o
n	
pr
od
uc
t	

de
ve
lo
pm

en
t	b
as
ed
	o
n	

Sc
ru
m
's	
co
re
	id
ea
s	

T
 A
	“r
ad
ic
al
ly
	a
gi
le
”	

ap
pr
oa
ch
	th
at
	m
ay
	b
e	
a	

ha
rd
	to
	in
tr
od
uc
e	
in
	la
rg
e	

tr
ad
iti
on
al
	co
m
pa
ni
es
	

T
 R
eq
ui
re
s	p
er
fe
ct
	a
gi
le
	

se
tu
p	
an
d	
ex
pe
ri
en
ce
d	

ag
ile
	so
ftw

ar
e	
de
ve
lo
pe
rs
	

R
 F
oc
us
	o
n	
in
te
gr
at
io
n	

is
su
es
	

T
 S
om

e	
of
	th
e	
pa
rt
s	

ar
e	
“s
ec
re
t”
	

T
 S
ca
rc
e	
re
so
ur
ce
s	

an
d	
in
fo
rm
at
io
n	

av
ai
la
bl
e	

	

R
 “
Bi
g	
pi
ct
ur
e"
	a
nd
	

co
m
pl
et
en
es
s	

R
 “
So
ftl
y”
	in
tr
od
uc
in
g	

ag
ile
	a
t	l
ar
ge
	co
m
pa
ni
es
	

R
 A
ct
iv
el
y	
ev
ol
vi
ng
	

R
 A
da
pt
ab
le
	to
	d
iff
er
en
t	

co
m
pa
ny
	st
ru
ct
ur
es
	

T
 V
er
y	
pr
es
cr
ip
tiv
e	

T
 N
ot
	“a
gi
le
	e
no
ug
h”
	in
	it
s	

st
ru
ct
ur
es
	

T
 T
op
-d
ow
n	
dr
iv
en
	

R
 S
im
pl
e,
	st
an
da
rd
	

Sc
ru
m
	

R
 F
oc
us
	o
n	
de
pe
nd
en
-

ci
es
	&
	re
so
lu
tio
ns
	

T
 L
im
ite
d	
sc
al
in
g	

T
 L
im
ite
d	

do
cu
m
en
ta
tio
n	

T
 N
ot
	li
ke
ly
	“s
uf
fic
ie
nt
”	

fo
r	l
ar
ge
-s
ca
le
	a
gi
le
	

de
ve
lo
pm

en
t	

R
 V
er
y	
ag
ile
	

R
 S
up
po
rt
s	

di
st
ri
bu
te
d	
te
am
s	

R
 L
ow
	a
do
pt
io
n	

ov
er
he
ad
	

T
 V
er
y	
lim

ite
d	
de
ta
il	

ab
ou
t	t
he
	“h
ow
”	

T
 N
ot
	re
al
ly
	a
	

fr
am
ew
or
k	

T
 M

ay
	o
nl
y	
fit
	

ce
rt
ai
n	
cu
ltu
re
s	

Le
ge
nd
:	

DA
D:
		

	
Di
sc
ip
lin
ed
	A
gi
le
	D
el
iv
er
y	

Le
SS
:		

	
La
rg
e-
Sc
al
e	
Sc
ru
m
	

SA
Fe
:		

	
Sc
al
ed
	A
gi
le
	F
ra
m
ew
or
k	

So
S:
		

	
Sc
ru
m
-o
f-S
cr
um

s	

	 Sp
ot
ify
:			

Sp
ot
ify
	M
od
el
	d
:	

R
:		

	
St
re
ng
th
	

T
:		

	
W
ea
kn
es
s	

	

29

2. Theoretical Background

nizational agility. The Portfolio SAFe configuration aligns portfolio execution to enterprise
strategy and organizes development around one or more value streams.

• Full SAFe represents the most comprehensive configuration and includes all the other
configurations (see Figure 2.6). It is used to maintain portfolios of large and complex
solutions that typically require hundreds of people.

Figure 2.6.: Overview of the Full SAFe 5.1 configuration [Sca22]

Depending on the selected configuration, different layers are added. Each level integrates agile
and lean practices, performs its activities, and is aligned with the other levels [AR16]. In SAFe,
there are four organizational levels. The Team Level is the lowest level and describes how
agile teams work, e.g., it suggests agile teams to use Scrum, Kanban, and XP techniques or a
combination of them [KL20]. At the team level, SAFe recommends two-week iteration cycles.
At the Program Level, all teams are part of an Agile Release Train (ART), a group of agile
teams that deliver incremental releases. An ART typically consists of 5 to 12 teams or 50 to
125 individuals [PL16]. The ART develops and delivers one or more solutions in a Program
Increment (PI). A PI is a time-box during which an ART produces incremental value. PIs are
typically 8 to 12 weeks long [KL20]. The team and program levels are present in each SAFe
configuration [RB21]. SAFe further introduces a Large Solution Level with additional events,
roles, and artifacts. At this level, several ARTs are incorporated into a Solution Train that
coordinates the efforts of the ARTs to deliver large and complex systems. At the Portfolio Level,
the enterprise oversees multiple programs and guides the strategic direction of the organization

30

2. Theoretical Background

by applying lean principles. This allows executives and leaders to identify and prioritize epics
and features that can be broken down and scheduled for an ART at the program level [KL20].

SAFe comprises four core components [KL20]: principles, roles, events, and artifacts (see Table
2.6), described below.

Table 2.6.: Core components of SAFe [KL20]

SAFe	principles	 SAFe	roles	 SAFe	events	 SAFe	artifacts	

• Take	an	economic	view	
• Apply	systems	thinking	
• Assume	variability;	preserve	

options	
• Build	incrementally	with	fast,	

integrated	learning	cycles	
• Base	milestones	on	objective	

evaluation	of	working	systems	
• Visualize	and	limit	work-in-

progress,	reduce	batch	sizes,	
and	manage	queue	lengths	

• Apply	cadence,	synchronize	
with	cross-domain	planning	

• Unlock	the	intrinsic	
motivation	of	knowledge	
workers	

• Decentralize	decision-making	
• Organize	around	value	

• Agile	team	
• Scrum	master	
• Product	owner	
• Product	manager	
• System	architect	
• Release	train	engineer	
• Business	owner	
• Solution	manager	
• Solution	architect	
• Solution	train	engineer	
• Epic	owner	
• Enterprise	architect	

• Iteration	planning	
• Daily	stand-up	
• Iteration	review	
• Iteration	retrospective	
• Program	increment	

planning	
• Agile	release	train	sync	
• Scrum-of-scrums	
• Product	owner	sync	
• System	demo	
• Inspect	and	adapt	

workshop	
• Pre-	and	post-program	

increment	planning	
• Solution	demo	
• Lean	budget	review	
• Communities	of	practice	
• Portfolio	sync	
• Roadshow	

• Story	
• Enabler	story	
• Iteration	goals	
• Team	backlog	
• Feature	
• Enabler	feature	
• Program	increment	

objectives	
• Program	board	
• Program	backlog	
• Solution	intent	
• Capability	
• Enabler	capability	
• Solution	backlog	
• Strategic	themes	
• Portfolio	vision	
• Portfolio	epic	
• Lean	business	case		
• Portfolio	backlog	

 SAFe principles. SAFe is built on ten principles that have evolved from agile and lean prac-
tices, systems thinking, and observations from successful enterprises. Take an Economic View
promotes practices of applying an economics framework to make better decisions when building
products. Apply System Thinking is about simplifying the solution, the enterprise building of
the system, and the value streams to obtain a holistic view of solution development. Assume
Variability; Preserve Options encourages managing the variability of agile software projects and
maintaining and evaluating multiple design options and requirements during the development
lifecycle. Build Incrementally with Fast, Integrated Learning Cycles stresses the importance of
incrementally developing solutions in short iterations to allow for faster customer feedback and
mitigating risk. Base Milestones on Objective Evaluation of Working Systems intends to provide
objective milestones which evaluate the solution during the development cycle to ensure that
used resources offer economic benefits. Visualize and Limit Work-In-Progress, Reduce Batch
Sizes, and Manage Queue Lengths enables the improvement of the workflow by recommending
the usage of a Kanban Board, creating smaller batches, and improving the processing rate.
Apply Cadence, Synchronize with Cross-Domain Planning is about reducing the complexity of
the development by providing a rhythmic pattern of events, adding routine and structure to
the development process. Unlock the Intrinsic Motivation of Knowledge Workers propagates
the idea of creating a better work environment to motivate workers and unleash their potential.
Decentralize Decision-Making stresses the importance of decentralizing the decision-making pro-
cess to deliver business value quickly. Organize Around Value encourages enterprises to organize
around value to deliver and react to changing customer demands more quickly [KL20].

31

2. Theoretical Background

SAFe roles. SAFe suggests various roles depending on the scaling level. SAFe uses standard
Scrum roles at the team level. An Agile Team is a cross-functional group of 5 to 11 people
that has all the skills to define, build, test, and deliver a product in a short period. Each agile
team has two specialty roles: a scrum master and a product owner. While the Product Owner
defines stories (along with other team members) and prioritizes the team’s backlog, the Scrum
Master coaches the team, facilitates the removal of impediments, and fosters an environment
for continuous improvement. SAFe proposes four roles at the program level. The Product
Manager defines and supports the building of products. The product manager serves as the
content authority for the ART and is responsible for prioritizing the program backlog. The
System Architect defines and communicates a shared technical and architectural vision for an
ART. The Release Train Engineer (RTE) is a servant-leader at the program level, coaching
the ART, facilitating the ART events and processes, and assisting the teams in delivering value.
The RTE communicates closely with stakeholders, escalates impediments, helps to manage risks,
and fosters a culture of continuous improvement. The Business Owner bears the business and
technical accountability for compliance, governance, and return on investment for a solution
built by an ART. SAFe proposes three roles at the large solution level. The Solution Manager
is in charge of defining and supporting the development of complex business solutions. The
Solution Architect defines and communicates a shared technical and architectural vision within
a solution train. The Solution Train Engineer is responsible for coaching the solution train and
facilitating and guiding the work of all ARTs in the value stream. SAFe introduces two roles
at the portfolio level. The Epic Owner defines and coordinate portfolio epics and facilitates
their implementation. The Enterprise Architect specifies a technology strategy that enables a
portfolio to support current and future business capabilities [KL20].

SAFe events. SAFe recommends various ceremonies at different levels. At the team level,
SAFe suggests typical Scrum events. An Iteration Planning aims to organize the work and
define a realistic scope for the upcoming iteration. All team members participate in this event
and determine how much of the team backlog they can implement in the next iteration. A Daily
Stand-Up is used to coordinate the team’s work by answering three questions: what was done
yesterday, what is being done today, and what impediments prevent completing the tasks? An
Iteration Review is a cadence-based event where each team reviews the increment at the end
of each iteration to assess its progress and adjust its backlog for the upcoming iteration. An
Iteration Retrospective is an event where each team discusses the iteration results, reviews its
practices, and identifies ways for improvement. SAFe recommends six events at the program
level that primarily aim to achieve alignment between teams working on the same ART. A PI
Planning is a two-day event where all members in the ART come together to agree on team
and PI objectives. This event is used to predict which features in the program backlog will
be completed and identify and manage inter-dependencies between the teams. Various roles,
e.g., scrum masters and business owners, gather in an ART Sync and discuss the program’s
progress. A SoS is a time-boxed event that lasts between 30 to 60 minutes and usually takes
place every week. During this event, the RTE and team representatives (often scrum masters)
come together and coordinate the ART’s dependencies and discuss the program’s progress and
impediments. A Product Owner Sync is often held by the product owners and product manager
to discuss the progress toward meeting the PI objectives, discuss issues, and evaluate any scope
adjustments. A System Demo is a bi-weekly event that provides feedback from the stakeholders

32

2. Theoretical Background

on the effectiveness and usability of the system under development. This event ensures that the
integration between teams on the same ART occurs regularly. An Inspect and Adapt Workshop
takes place at the end of the PI and is made up of three parts. First, a PI System Demo shows
the current state of the solution and highlights the work that has been done throughout the PI.
Second, during a Quantitative and Qualitative Measurement, the RTE presents various program
metrics to the ART members. In a Problem-Solving Workshop, agile teams conduct a brief
retrospective on the PI to identify root causes for problems and actions to address these root
causes. At the large solution level, SAFe suggests two events. A Pre- and Post-PI Planning
is used to prepare for and coordinate the PI Planning across multiple ARTs and suppliers in
a solution train. This event aims to create a shared vision and mission and align on a set of
features and capabilities that drive the solution. During the Solution Demo, the solution train’s
development efforts are made visible to customers and other stakeholders. At the portfolio level,
SAFe recommends four events. A Lean Budget Review is a periodic meeting, usually taking place
twice per year, to discuss how the portfolio budget should be distributed across different value
streams. A CoP is an organized group of people who share a common interest in a particular
technical or business area. A Portfolio Sync usually takes place monthly and provides insight
into how well the portfolio progresses toward its goals. Topics discussed at this event typically
include reviewing epic implementation, addressing dependencies, and removing impediments. A
Roadshow is an enterprise-wide demonstration of work completed across several solution trains
to gather feedback and input in advance of a lean budget review [KL20].

SAFe artifacts. SAFe suggests four artifacts at the team level. A Story is a short description
of a small part of the desired functionality written in the user’s language. An Enabler Story
represents work elements that need to be done but do not directly benefit a system user, e.g.,
exploration, architecture, infrastructure, and compliance-related work elements. Iteration goals
summarize business and technical goals that an agile team wants to achieve in an iteration. A
Team Backlog contains user and enabler stories from the program backlog and stories from the
team’s local context. At the program level, SAFe proposes five artifacts. A Feature is a service
fulfilling stakeholder needs. Each feature comprises a benefit hypothesis and acceptance criteria
and is sized or partitioned as required to be produced by a single ART in a PI. An Enabler Fea-
ture is a specific work item related to exploration, architecture, infrastructure, and compliance
and must be scoped to fit within a single PI. PI Objectives summarize the business and technical
goals that an agile team or ART intends to achieve in the upcoming PI, typically created in
the PI Planning. A Program Board is created during the PI Planning, which highlights delivery
dates of the new features, dependencies of the features among the teams, and relevant milestones.
A Program Backlog is a repository for upcoming features to address user needs for a single ART.
At the large solution level, SAFe suggests four artifacts. A Solution Intent is a repository for
storing, managing, and communicating the knowledge about the current and intended solution
behavior, e.g., fixed and variable specifications and designs, references to applicable standards,
and system models. A Capability is a higher-level solution behavior that usually spans multiple
ARTs. Capabilities are split into several features to facilitate implementation in a single PI. An
Enabler Capability is a higher-level work element that does not directly benefit the customer
but completes work necessary for one or more capabilities to be subsequently implemented. A
Solution Backlog is a repository for upcoming capabilities and enablers, each of which can span
multiple ARTs. At the portfolio level, SAFe suggests six artifacts. Strategic Themes are busi-

33

2. Theoretical Background

ness objectives that connect a portfolio to the company’s strategy. They influence the portfolio
strategy and provide the business context for a portfolio’s decision-making. A Portfolio Vision
describes the future state of a portfolio’s value streams and solutions. It further explains how
both aim to achieve the portfolio’s objectives and the broader aim of the company. A Portfolio
Epic is a container for a significant solution development initiative and is typically cross-cutting
and spanning multiple value streams and PIs. A Lean Business Case results from an epic analy-
sis and is used to make a go/no-go decision for a portfolio epic. A Portfolio Backlog is a top-level
backlog for upcoming business and enabler epics to create and evolve solutions [KL20].

2.3.2.2. Large-Scale Scrum

LeSS was published in 2008 by two agile practitioners, Craig Larman and Bas Vodde [CL13].
LeSS builds on Scrum and extends it with additional rules and guidelines for scaling agile
practices without losing sight of Scrum’s original goals. Larman and Vodde [CL13] describe
LeSS as being “Scrum applied to many teams working together on one product”, which is why
it includes all roles, events, and artifacts recommended by Scrum. LeSS specifies additional
organizational changes, e.g., cross-functional, cross-component, end-to-end feature teams, and
eliminates traditional team lead and project manager roles. While SAFe takes a more prescriptive
approach for completeness and guidance, LeSS takes a more lightweight and less strict approach
with its “More with LeSS” tenet [KHR18]. LeSS specifies barely sufficient guidance needed for
large-scale development and stays as agile as possible, focusing on mindset, values, and principles,
while avoiding introducing too many roles, artifacts, or practices. Larman and Vodde [CL13]
propose two variants of LeSS based on the size of the project. The basic LeSS framework provides
guidelines and techniques for software projects that need up to eight agile teams. The LeSS Huge
framework is recommended for enterprises that require more than eight teams [Vai14, KHR18]. It
introduces further scaling elements needed to manage hundreds of developers, e.g., the concept of
Requirement Areas. Requirement areas encompass major customer areas concerns from a product
point of view. They may grow or shrink over time to match product needs and are organized
around customer-centric requirements. All Requirement Areas follow the same cadences and
strive for continuous integration across the entire project [CL13].

Figure 2.7 provides a visual representation of the basic LeSS framework. Although LeSS aims
to work on principles solely, it encompasses four core components: principles, roles, events, and
artifacts (see Table 2.7), described below.

LeSS principles. The ten LeSS principles provide the basis for applying LeSS in a specific
organizational context. Large-Scale Scrum is Scrum underlines that LeSS is not a new and
improved Scrum but rather is about applying the purpose, principles, and elements of Scrum in
a large-scale context. More with LeSS indicates that LeSS is a descaling framework attempting
to remove organizational complexity by solving problems in product development differently and
more simply. Systems Thinking points out understanding and optimizing the grand scheme of
the system and exploring system dynamics while avoiding local and sup-optimizations. Lean
Thinking implies (i) creating an organizational system in which managers apply and teach
systems and lean thinking and base decisions on this philosophy, and (ii) adding the two pillars
of respect for people and continuous improvement toward the goal of perfection. Empirical

34

2. Theoretical Background

Figure 2.7.: Overview of the LeSS framework [LeS22]

Table 2.7.: Core components of LeSS [LV16]

LeSS	principles	 LeSS	roles	 LeSS	events	 LeSS	artifacts	

• Large-Scale	Scrum	is	Scrum	
• More	with	LeSS	
• Systems	thinking	
• Lean	thinking	
• Empirical	process	control	
• Transparency	
• Continuous	improvement	

towards	perfection	
• Customer-centric	
• Whole	product	focus	
• Queueing	theory	

• Teams	
• (Area)	product	owner	
• Scrum	master	
• Managers	

• (Initial)	product	backlog	
refinement	

• Sprint	
• Sprint	planning	one	
• Sprint	planning	two	
• Daily	scrum	
• Coordination	and	

integration	
• Sprint	review	
• Sprint	retrospective	
• Overall	retrospective	

• (Area)	product	backlog	
• Sprint	backlog	
• Potentially	shippable	

product	increment	

 Process Control is about inspecting and adapting the project, processes, organizational design,
and practices based on Scrum, rather than following an exact formula. Transparency is about
providing an unfiltered insight into project development status for all participants based on
tangible done items, short cycles, and common definitions. Continuous Improvement Towards
Perfection is about creating and delivering a product that satisfies the customer. Customer-
Centric emphasizes the identification of value and waste in the eyes of the paying customer,
reduction of the cycle-time from his/her perspective, and enhancement of feedback loops with
the customer. As the customer wants the product and not parts of it, Whole Product Focus
is about having one product backlog, one product owner, one potentially shippable product
increment, and one sprint. Queuing Theory suggests understanding how queued systems behave
and applying these insights to managing queue sizes, WIP limits, and work packages [LV16].

LeSS roles. LeSS includes three standard roles of Scrum with some additional duties and the
manager’s role [LV16, AR16]. A Team in LeSS is the same as a team in single-team Scrum. The
team works closely with the customer and the product owner and coordinates and integrates

35

2. Theoretical Background

its work with other teams so that by the end of the Sprint, they have collectively produced an
entire product increment. In the basic LeSS framework, a single Product Owner is responsible
for a central product backlog and several teams. In LeSS Huge, an Area Product Owner focuses
on one requirement area and is responsible for an area product backlog. The area product owner
acts essentially the same way as the product owner in the basic LeSS framework, but with a
more limited, yet still customer-centric, perspective. While the Scrum Master in LeSS has the
same tasks as in Scrum, he/she assists one to three teams. According to LeSS, the Manager
sees the big picture and builds the organization’s capability to develop products. The manager
helps the team and the scrum master remove obstacles [LV16].

LeSS events. While LeSS builds on standard Scrum events, it offers some slight modifications.
An Initial Product Backlog Refinement is a workshop where a product’s vision is defined. In
this workshop, product backlog items are discovered, large items are split and refined, risks are
identified, acceptance criteria are defined, and items are estimated. The initial product backlog
refinement is done once a new project is started. Subsequent refinements in the upcoming Sprints
are made in regular product backlog refinement workshops. A Sprint in LeSS is no different
from a single-team Scrum and is a container for all other events. In LeSS, there is a change in
the sprint planning meeting, divided into two parts. Sprint Planning One is a meeting for all
teams to decide which team works on which part of the product backlog. Two members and
the product owner represent each team to determine what part of the product backlog items to
work on [LV16, AR16]. Sprint Planning Two is essentially the same as in single-team Scrum,
where each team does its sprint planning and creates its plan for completing its tasks during the
sprint. A Daily Scrum is held per team where it spends 15 minutes and each member answers
three questions: what was done yesterday, what will is being done today, and what is in progress
[LV16]. A Coordination and Integration between teams aims to improve the information sharing
and collaboration, which can be done regularly during the Sprint in various formats, e.g., open
spaces, town halls, or SoS [LV16, AR16]. A Sprint Review is a single occasion for all teams to
review the product increment. At the end of the sprint, all teams have their individual Sprint
Retrospective. During each sprint retrospective, the teams brainstorm about obstacles impeding
them and all the other teams. An Overall Retrospective is a new event in LeSS whose purpose
is to discuss the project’s cross-team, organizational, and systemic issues [LV16].

LeSS artifacts. In LeSS, except for a small extension of the product backlog in LeSS Huge,
there are no differences to Scrum. In the basic LeSS framework, multiple teams work on a single
Product Backlog defining all work items on the product. In LeSS Huge, an Area Product Backlog
is created for each requirement area, which the area product owner manages. An area product
backlog is a view into the product backlog based on the requirement area. A Sprint Backlog is a
list of work that the team needs to do to complete the selected product backlog items. The sprint
backlog is per team. The result of each sprint is a Potentially Shippable Product Increment. The
work of all teams must be integrated before the end of each sprint [LV16].

2.3.2.3. Disciplined Agile Delivery

In 2009, Scott Ambler and Mark Lines began developing DAD, officially introduced in 2012
with the book “Disciplined Agile Delivery: A Practitioner’s Guide to Agile Software Delivery

36

2. Theoretical Background

in the Enterprise” [AL12]. DAD is a hybrid process that extends Scrum to cover the entire
delivery life-cycle while adopting further proven agile and lean practices, e.g., XP and Kanban
[AL12, AR16]. Comparing DAD to other scaling frameworks shows that it gives teams the
freedom to customize processes depending on their needs. DAD is handy for having guidance
related to architecture and design [AR16].

DAD entails four core components [AL12]: principles, phases, life-cycles, and roles (see Table
2.8), described in the following.

Table 2.8.: Core components of DAD [AL12]

DAD	principles	 DAD	phases	 DAD	life-cycles	 DAD	roles	

• Delight	customers	
• Be	awesome	
• Be	pragmatic	
• Context	matters	
• Optimize	flow	
• Choice	is	good	
• Enterprise	awareness	

• Inception	phase	
• Construction	phase	
• Transition	phase	

• Agile	life-cycle	
• Lean	life-cycle	
• Continuous	delivery:	

agile	life-cycle	
• Continuous	delivery:	

lean	life-cycle	
• Exploratory	(lean	

startup)	life-cycle	
• Program	life-cycle	

• Stakeholder	
• Product	owner	
• Team	member	
• Team	lead	
• Architecture	owner	

 DAD principles. The seven principles of DAD provide a philosophical foundation for business
agility based on lean and flow concepts. Delight Customers aspires to go beyond satisfying
customer needs and meeting their expectations. Be Awesome is about striving to be the best
and always getting better. Be Pragmatic states that the main goal is not just to be agile but to
achieve continuous improvement by applying agile, lean, or traditional strategies when they make
the most sense in a given context. Context Matter is about choosing the way of working that
reflects the given context and evolves as the context evolves. Optimize Flow targets optimizing
the flow across the value stream to meet customer needs. Choice is Good states that different
techniques should be considered and chosen according to the situation, rather than obsessively
sticking to practices that are not helpful in a given context. Enterprise Awareness appeals to
looking beyond local needs and considering the organization’s long-term needs [AL20].

DAD phases. DAD covers three project life-cycle phases. In the Inception Phase, the team
performs lightweight visioning activities, e.g., defining the scope and goal of the project. In the
Construction Phase, the team develops a product that provides business value and addresses
any issues in the early development phase of the product by improving quality and testing the
architecture early. In the Transition Phase, the team makes arrangements to get the product
into the hands of the customer [AL12, AR16].

DAD life-cycles. DAD offers six different life-cycles based on a company’s needs as its basic
assumption is that one process size does not fit all. The Agile Life-Cycle builds on Scrum and
XP. Typical scenarios for applying this life-cycle include situations related to improvements
or new features or where work can be identified, prioritized, and estimated early. The Lean
Life-Cycle promotes lean principles, e.g., maximizing flow and reducing bottlenecks. In this
life-cycle, a team pulls new work from the work item pool when it has capacity. While Scrum
mandates the usage of a series of events, e.g., sprint planning, daily scrum, and sprint review,
lean principles do not prescribe this and suggest that they only be done as needed. The lean

37

2. Theoretical Background

life-cycle is appropriate when work can be broken down into smaller items of roughly the same
size or is difficult to predict in advance. The main difference between this and the agile life-cycle
is that new features are released at the end of each sprint rather than after several sprints. In
this life-cycle, teams need a mature stage of continuous integration and delivery practices. The
Continuous Delivery: Lean Life-Cycle enables the goal of delivering increments of the solution
more frequently than the other life-cycles. It demands a mature stage of technical infrastructure
and continuous integration and deployment practices. This life-cycle is best suited when solutions
can be delivered frequently and incrementally or when the team is long-lived and works on
several releases over time. The Exploratory (Lean Startup) Life-Cycle builds on lean startup
principles and extends them with ideas from complexity theory to increase its effectiveness. The
philosophy of this life-cycle is to minimize up-front investments in solutions and instead conduct
small experiments. The exploratory (lean startup) life-cycle is useful when the solution targets
a very uncertain case, e.g., a new, unexplored market or a new product, or when the team is
willing to experiment and evolve its idea. The Program Life-Cycle organizes the workflow of
multiple teams and provides an organizational structure to support their coordination within the
program. In this life-cycle, teams are free to choose their ways of working. Similar to SAFe and
LeSS, the Program Life-Cycle can be applied to support many agile teams working together. The
Program Life-Cycle is helpful when developing complex solutions that require work of multiple
teams or when the solution is a platform or collection of related solutions [AL12, AL18].

DAD roles. DAD includes five primary roles, three of which are similar to roles in Scrum. DAD
adds the role of the Stakeholder, who is significantly affected by the outcome of the solution.
The stakeholder is more than an end-user, e.g., a senior manager, an operations staff member,
a person funding the project, an auditor, or a program manager. The team ideally works with
its stakeholders on a daily basis throughout the project. The Team Member focuses on creating
the solution for the stakeholders and performs various construction activities, e.g., analysis,
architecture, design, programming, testing. The team member is sometimes referred to as the
developer or the programmer in core agile practices. However, DAD recognizes that not every
team member necessarily writes code. The Product Owner represents the voice of the customer
speaking to the team. The product owner advocates the needs of the stakeholder community.
The product owner clarifies all details related to the solution and maintains a prioritized list of
work items that the team implements. Each team, or team of teams in the case of large programs,
has a single product owner. The product owner is responsible for organizing demonstrations of
the evolving solution and communicating the project’s status to key stakeholders. The Team
Lead is comparable to a scrum master and supports the team in executing technical management
activities. The team lead is a servant-leader and creates and maintains the conditions that enable
the team to succeed. The team lead is also an agile coach, helping the team focus on delivering
work items and meeting sprint goals and commitments made to the product owner. The team
lead facilitates communication, empowers the team to self-optimize its processes, ensures that
the team has the resources it needs, and removes any obstacles. The Architecture Owner is
responsible for the team’s architecture decisions and supports the creation and evolution of the
overall solution design. In smaller agile teams, the person in the team lead role often takes
over the role of the architecture owner. Although the architecture owner is usually the senior
developer, it is not a hierarchical position. In addition to the five primary roles, DAD proposes

38

2. Theoretical Background

five supporting roles that are temporarily introduced to address scaling issues, i.e., the role of
the Specialist, Domain Expert, Technical Expert, Independent Tester, and Integrator [AL18].

Due to the similarity of the program life-cycle to other scaling frameworks, we briefly describe
it below. A visual representation of it is shown in Figure 2.8.

Figure 2.8.: Overview of DAD’s program life-cycle [Pro22]

There is an explicit inception phase in the program life-cycle, as some up-front time needs to
be invested in getting organized, especially for large teams. In this life-cycle, teams choose and
evolve their ways of working, including selecting their life-cycles and practices. The teams may
have some arrangements to align within the program, e.g., following common guidelines and
strategies. A team can be either a feature team or a component team. While a feature team
works on vertical functionality pieces, implements user stories, or handles change requests, a
component team works on a specific aspect of the system, e.g., security features, transaction
processing, or logging. The teams have to coordinate at three levels: coordinating the work,
technical/architectural issues, and people issues. This coordination is done by product owners,
architecture owners, and team leads. Product owners address work/requirements issues to ensure
that each team is doing the right work at the right time. Similarly, architecture owners evolve
the architecture over time, and team leads resolve cross-team issues. In the program life-cycle,

39

2. Theoretical Background

system integration and testing occur in parallel. This life-cycle envisages a separate team to
perform system integration and cross-team testing [AL12, AL18].

2.4. Patterns

The documentation of best practices to recurring problems in a specific context by so-called
“patterns” is a widely accepted way of facilitating knowledge abstraction and dissemination in
design-intensive domains [Buc11]. The primordial idea of using patterns originated from the
architecture discipline and was initially introduced by Alexander et al. [Ale64, AIS77], coining
the following definition of a pattern [AIS77]:

Definition: Pattern

Each pattern describes a problem which occurs over and over again in our environment,
and then describes the core of the solution to that problem, in such a way that you

can use this solution a million times over, without ever doing it the same way twice.

Alexander et al. [Ale64, AIS77] laid the foundation for the use of patterns in computer science.
Since then, related fields have successfully adopted the idea of patterns, e.g., software engineering
by Gamma et al. [GHJV94], software architectures by Buschmann et al. [BMR+96], or project
management by DeMarco et al. [DHL+08]. In all these disciplines, patterns describe operational
knowledge gained from practice, which are neither invented nor create new knowledge but rather
represent observations [Kel12]. Instead, patterns describe solutions from practice that are not
captured in full detail as they are observed but in an appropriate abstraction to make the
solutions accessible to a broader range of people [Cop96, Kel12]. Coplien [Cop96] posits the so-
called “rule of three”, which states that an observed solution must refer to at least three known
uses to be called a pattern. Before that, an observed solution represents a pattern candidate.

Various ways of pattern documentation, known as pattern forms, have been proposed. Popular
pattern forms include the Alexandrian Form, Gang of Four Form, and Coplien Form, to name
a few [Fow06, Ern10]. All pattern forms have specific advantages and limitations depending on
the context in which they are applied [Ern10]. Since there is no ideal pattern form, authors
must consider their experiences, intentions, and target audience when choosing an existing form
or creating a new one [BHD07, Ern10]. According to Fowler [Fow06], this choice is a personal
one and should also consider one’s writing style and the ideas to be conveyed. Although various
pattern forms exist, five essential elements are present in all of them. Buschmann et al. [BHD07]
provide an overview of these elements and their purpose:

• A pattern name identifying the pattern and making it memorable, usable, and distinct.

• A context description representing the surrounding situations leading to a problem to
which the pattern applies.

• A problem description specifying the problem the pattern should address.

• A solution description entailing the elements of the solution design, their responsibilities,
relationships, and collaborations.

40

2. Theoretical Background

• A consequences description representing the results and trade-offs of applying the pattern,
including its advantages and disadvantages.

Usually, patterns are not developed individually but as part of a pattern language [CH04],
as applying single patterns is insufficient to build complex real-world systems or organizations
[DSRB00]. In situations where a solution to a single problem is too complex to be documented by
a single pattern, or the resulting pattern would be too intricate, a pattern language can be used
as an alternative. A pattern language breaks down the complex problem/solution description
into multiple self-contained patterns [MD97]. Pattern languages connect different patterns and
help understand the collection of patterns as a whole [AIS77, Kel12]. As each pattern solves
a specific problem within a pattern language, references between the independent patterns are
necessary. Such references can be used to identify a smaller pattern used by a larger pattern,
define variants of patterns, or define a sequence of elaborations [Nob98].

2.5. Communication Networks

Communication can be understood as a means of transmitting information, e.g., thoughts, ideas,
and emotions, between sender(s) and receiver(s) [GS05]. The communication flows connecting
senders and receivers are called communication networks [Lun11]. To understand communica-
tions networks, researchers often analyze the structure of these networks and the locations of
nodes in these networks [AAH11]. Figure 2.9 shows five commonly observed communication net-
work structures that differ in the degree to which they are centralized or decentralized [Ram11].
These communication network structures are explained below [Lun11]:

Circle

A

C

D E

B

All-Channel

A

C

D E

B

Wheel

A

C

D E

B

A

B

C

D

Chain Y

A

C

D

E

B

Degree of CentralityHigh Low

Figure 2.9.: Common communication network structures [Lun11]

• The wheel network represents a two-level hierarchy and is the most centralized and struc-
tured communication network pattern, as each member can only communicate with one
other member. The superintendent C receives all information from his subordinates A, B,
D, and E and sends information back, usually in the form of decisions.

• The chain network is the second-highest centralized communication network pattern. In

41

2. Theoretical Background

this network, only two members communicate with each other, and they, in turn, have
only one member with whom they communicate. Information is usually transmitted in
such a network in the form of relays.

• The Y network is comparable to the chain network pattern, except two members are not
in the chain. Members A and B can send information to C in the Y network, but they
cannot receive information from anyone else. Members C and D can exchange information.
Member E can exchange information with member D.

• The circle network represents a three-level hierarchy and stands for horizontal and decen-
tralized communication that provides equal communication opportunities for each member.
Each member can communicate with the members to their right and left in this network.
The members have the same constraints, but the circle network is less constrained than
the wheel, chain, or Y networks.

• The all-channel network represents an extension of the circle network in that it connects all
members of the circle network. The all-channel network allows members to communicate
freely with all other members (decentralized communication). The all-channel network has
no central position, and there are no communication restrictions for any member.

Another method besides analyzing the structure of communication networks is to evaluate the
location of nodes in these networks. Measuring the network location is about determining the
centrality of a node that, in turn, helps to assess the importance of a node in the network
[Fre78, AAH11]. A node can be central from a local or global perspective. A node is locally
central if it has a sizeable direct neighborhood of nodes [AAH11]. If a node is globally central,
it has a position of strategic significance in the overall structure of the network [Sco91]. A way
of measuring node centrality is to measure the degree of the node in the graph. A node’s degree
is the number of other nodes directly connected to that node [AAH11]. Since the degree of a
node is calculated based on the number of its neighboring nodes, the degree can be viewed as a
measure of local centrality [Sco91]. The degree centrality of node 𝑝𝑘 is given by [AAH11]:

𝐶𝐷(𝑝𝑘) =
𝑛∑︁

𝑖=1

𝑎(𝑝𝑖, 𝑝𝑘) (2.1)

where 𝑛 is the number of nodes in the network and 𝑎(𝑝𝑖, 𝑝𝑘) is a distance function. 𝑎(𝑝𝑖, 𝑝𝑘) = 1,
if node 𝑝𝑖 and node 𝑝𝑘 are connected, otherwise 𝑎(𝑝𝑖, 𝑝𝑘) = 0 [AAH11].

A drawback of the regular degree centrality measure is that it only allows the comparison of
nodes in networks of the same size [AAH11]. To have a more general measure for comparing the
degree centrality of nodes of different networks with different sizes, Freeman [Fre78] suggests a
relative measure. This measure normalizes the actual number of links by the maximum number
of connections it can have. The normalized degree centrality of node 𝑝𝑘 is given by [AAH11]:

𝐶 ′
𝐷(𝑝𝑘) =

𝑛∑︁
𝑖=1

𝑎(𝑝𝑖, 𝑝𝑘)

𝑛− 1
(2.2)

42

CHAPTER 3

Research Design

The research design of a research endeavor represents a blueprint for research activities to be
undertaken to fulfill the research objectives and answer the research questions satisfactorily
[Bha12]. Two crucial aspects of the research design include selecting a research strategy (see
Section 3.1) and research methods (see Section 3.2) properly [Bha12].

3.1. Research Strategy

Depending on a researcher’s interest, a scientific inquiry can take two possible forms. First, in
inductive research, the goal is to derive theoretical concepts and patterns from observed data.
Second, in deductive research, the goal is to test concepts and patterns known from theory using
new empirical data [Bha12]. Following the goals above, an adequate strategy of inquiry, i.e.,
research method, has to be selected that moves from the underlying philosophical assumptions
to the research design and collection of data [Mye97]. The choice of the inquiry strategy highly
affects the way the researcher collects data. Three different inquiry strategies exist in behavioral
research: quantitative strategies, qualitative, and mixed strategies [CC18].

• Quantitative strategies strive to understand and interpret quantitative data and test the-
ories by examining the relationship between variables [Yıl13, CC18]. These variables can
be measured, usually with instruments, so that the data can be analyzed using statistical
techniques. Surveys and experiments are examples of quantitative methods [CC18].

• Qualitative strategies aim to comprehend and explain complex social and organizational
phenomena. Due to the phenomena’s complexity, qualitative research is often limited to
specific units of analysis that do not aim at generalizing results [SC90]. Case studies and
expert interviews are famous examples of qualitative methods [Bha12].

43

3. Research Design

• Mixed strategies target to combine the strengths of quantitative and qualitative strategies
by collecting both quantitative and qualitative data, integrating the two types of data, and
applying different designs that may incorporate philosophical assumptions and theoretical
frameworks [JOT07, CC18]. The basic assumption of this form of inquiry is that inte-
grating qualitative and quantitative data yields further insights beyond the information
provided by either the quantitative or qualitative data alone [CC18].

This dissertation follows an inductive research strategy [Bha12] using a five-fold approach com-
bining evidence-based research (structured literature review and systematic mapping study),
qualitative research (case study), quantitative research (survey), and design science research
(PDR research). Through this mixed-methods approach, we intend to derive unique and rich
insights [VBB13] regarding the large-scale adoption of agile methods. First, we applied an
evidence-based approach, namely a systematic mapping study, to explore the state of the art
in large-scale agile development and reveal research gaps (see P1). Second, we first conducted
a structured literature review to compile a list of existing scaling frameworks (see P2) and sur-
veyed their inventors to examine their raison d’être and the benefits and challenges of their
adoption (see P3). We then conducted a single-case study to gain additional insights into the
real-world adoption of a well-known scaling framework (see P4). Third, we performed a struc-
tured literature review to create a list of typical challenges stakeholders face in large-scale agile
development (see P5) and then used the PDR method to propose solution artifacts to address
these reported challenges (see P6 and P7). Fourth, we conducted a single-case study (see P8)
and a multiple-case study (see P9 and P10) to explore the collaboration between architects and
agile teams in large-scale agile development endeavors.

3.2. Research Methods

This section elaborates on the five used research methods: systematic mapping study (see Sec-
tion 3.2.1), structured literature review (see Section 3.2.2), survey research (see Section 3.2.3),
case study research (see Section 3.2.4), and PDR research (see Section 3.2.5). Thereby, we
briefly introduce these methods by describing their general information and characteristics, the
necessary steps for conducting them, and how their usage contributed to the results of this dis-
sertation. The application of these methods is described in detail in each publication in Part
B of the dissertation. Table 3.1 shows the mapping between the embedded publications in the
dissertation and the underlying research methods.

3.2.1. Systematic Mapping Study

Inspired by the evidence-based paradigm in medical research [KDJ04], [Kit04] adapted the con-
cept of evidence-based research to the field of software engineering. According to Kitchenham et
al. [KDJ04], evidence-based software engineering aims “to provide the means by which current
best evidence from research can be integrated with practical experience and human values in the
decision-making process regarding the development and maintenance of software.” The system-
atic literature review is the primary instrument for achieving this goal [KBB15]. The systematic

44

3. Research Design

Table 3.1.: Overview of research methods applied in the embedded publications

RQ	 No.	 Title	 PRS	 SES	 MCS	 PDR	 SCS	 SLR	 SMS	 SUR	

RQ1	 P1	 Revealing	the	State	of	the	Art	of	Large-Scale	Agile	Development	
Research:	A	Systematic	Mapping	Study	

	 •	 	 	 	 	 •	 	

RQ2	

P2	 Investigating	the	Role	of	Architects	in	Scaling	Agile	Frameworks	 	 •	 	 	 	 •	 	 	
P3	 Evolution	of	the	Agile	Scaling	Frameworks	 •	 	 	 	 	 	 	 •	

P4	 Investigating	the	Adoption	and	Application	of	Large-Scale	Scrum	
at	a	German	Automobile	Manufacturer	 •	 	 	 	 •	 	 	 	

RQ3	

P5	 Identifying	and	Structuring	Challenges	in	Large-Scale	Agile	
Development	Programs	based	on	a	Structured	Literature	Review	

	 •	 	 	 	 •	 	 	

P6	 Documenting	Recurring	Concerns	and	Patterns	in	Large-Scale	
Agile	Development	 •	 	 	 •	 	 	 	 	

P7	
Identifying	and	Documenting	Recurring	Concerns	and	Best	
Practices	of	Agile	Coaches	and	Scrum	Masters	in	Large-Scale	
Agile	Development	

•	 	 	 •	 	 	 	 	

RQ4	

P8	

Using	Social	Network	Analysis	to	Investigate	the	Collaboration	
Between	Architects	and	Agile	Teams:	A	Case	Study	of	a	Large-
Scale	Agile	Development	Program	in	a	German	Consumer	
Electronics	Company	

•	 	 	 	 •	 	 	 	

P9	 What to Expect from Enterprise Architects in Large-Scale Agile
Development? A Multiple-Case Study •	 	 •	 	 	 	 	 	

P10	 Investigating	the	Role	of	Enterprise	Architects	in	Supporting	Large-Scale	Agile	Transformations:	A	Multiple-Case	Study	 •	 	 •	 	 	 	 	 	
Legend:	
PRS:		 	 Primary	study	
SES:		 	 Secondary	study	
MCS:	 	 Multiple-case	study	
PDR:	 	 Pattern-based	design	research	

	
SCS:		 	 Single-case	study	
SLR:		 	 Structured	literature	review	
SMS:		 	 Systematic	mapping	study	
SUR:		 	 Survey	

mapping study is relatively new in software engineering and can be considered an alternative
[KBB15]. The systematic mapping study represents a second tool for evidence-based software
engineering and a secondary study that aims to obtain a comprehensive overview of a specific
research topic, identify research gaps, and gather evidence to guide future research endeavors
[KC07, KBB15]. Systematic mapping studies are similar to systematic literature reviews in that
they use many methodological elements of systematic literature reviews. There are also some
notable differences between those two methods. First, systematic mapping studies are conducted
at a higher level of granularity and can deal with research areas that are broad and poorly de-
fined [KBB15]. Hence, systematic mapping studies differ from systematic literature reviews in
that they are less complex, examining broader research questions that do not require in-depth
but high-level analysis [KBB10]. Second, systematic literature reviews [KC07, BKB+07] are typ-
ically applied to identify, evaluate, and compare all available research on a particular research
question. However, systematic mapping studies aim to map the research undertaken rather
than answering a detailed research question [BKB+07]. A well-established five-step approach
for conducting systematic mapping studies in the software engineering context is proposed by
Petersen et al. [PFMM08] (see Figure 3.1), detailed below.

Scope definition phase. The first phase of the systematic mapping study begins with the

45

3. Research Design
Pr

oc
es

s
St

ep
s

O
ut

co
m

es

Systematic Mapping Process

Definition of
Research Question Conduct Search Screening of

Papers
Keywording Using

Abstracts
Data Extraction and
Mapping Process

Review Scope All Papers Relevant Papers Classification
Scheme Systematic Map

Figure 3.1.: Systematic mapping approach [PFMM08]

formulation of the systematic mapping study’s research objectives, e.g., providing an overview
of a research area or mapping the frequencies of publications over time to identify trends, which
are then reflected in the defined research questions [PFMM08].

Literature search phase. The literature search phase is an iterative process. It is dedicated
to defining a relevant search string based on the elicited research questions and automatically
searching for relevant studies using search strings in scientific databases or manually searching
relevant conference proceedings or journals [PFMM08]. A suitable method for creating the
search strings is to structure them in terms of population, intervention, comparison, and outcome
[KC07]. Of course, the formulated research questions should drive their structure [PFMM08]. In
the next step, the most complete scientific databases and indexing systems should be selected and
exercised to collect all publications relevant to the study. Factors such as accessibility, ability to
export search results, indexing of peer-reviewed publications, and reputation can be used to select
adequate scientific databases and indexing systems [BKB+07]. Relevant conference proceedings
and journals should also be selected and manually searched for related studies [PFMM08].

Paper screening phase. In the paper screening phase, the retrieved papers are first filtered by
removing possible duplicates and then screened based on their relevancy using inclusion and ex-
clusion criteria to exclude studies not relevant to answering the research questions [PFMM08].

Abstract keywording phase. This phase is about classifying relevant papers by reading
their abstracts and performing keywording. Keywording is a way to reduce the time required
to develop a classification scheme and ensure that the scheme considers existing studies. The
keywording process involves two steps. The first step comprises reading the abstracts and
searching for keywords and concepts that reflect the contributions of the studies. In the second
step, keywords from the various papers are combined to develop a high-level understanding of
the nature and contribution of the research. Once a final set of keywords is selected, they can
be clustered and used to form the categories for the systematic maps [PFMM08].

Data extraction and mapping phase. In this phase, the information and relations contained
in the search results are analyzed to extract relevant information. The data extraction process
involves classifying the relevant articles into a classification scheme that may evolve during the

46

3. Research Design

process. The extracted data can be presented in systematic maps that visualize the results with
graphs, tables, or other graphical representations [PFMM08].

In P1, we use a systematic mapping study approach to analyze existing research on large-scale
agile development, provide an overview of the state of the art, and reveal future research areas.

3.2.2. Structured Literature Review

Literature reviews are vital and appropriate means for scientists to summarize and progress the
current state of knowledge in a structured and replicable way on a specific area of interest [Coo88,
Bak00, WW02, RS04]. A literature review is more than simply searching for relevant studies
and collecting summaries of many papers [LE06]. Instead, a literature review strives to assess,
structure, and reveal the most relevant scientific publications within a specific domain [TDS03].
According to Webster and Watson [WW02], good literature reviews create a solid foundation
for advancing knowledge and facilitating theory development. They also close areas where an
abundance of research exists and uncover areas where further research is needed. Consequently,
the process of identifying sources for relevant and high-quality literature, searching for relevant
literature, and then analyzing and synthesizing the findings from the selected literature must be
made as transparent as possible by researchers to demonstrate credibility [VBSN+09]. Hence,
reliable literature reviews follow a systematic process to increase rigor, validity, and relevance
[TDS03, VBSN+09]. Although several articles have been published that provide guidelines for
conducting systematic literature reviews (cf. [WW02, KC07]), we opted for the structured
literature research approach proposed by Brocke et al. [VBSN+09] in two publications, P2 and
P5, since its recipe-alike structure covers all the essential stages of a literature review. This
approach comprises five phases [VBSN+09] (see Figure 3.2), which are further detailed below.

Scope definition phase. An essential part of any literature review is defining its scope and
purpose [VBSN+09]. For this purpose, a taxonomy proposed by Cooper [Coo88] can be used,
which comprises six constituent characteristics:

• Focus is the key area of interest to the reviewer. This area can involve the following:
research outcomes, research methods, theories, practices, or applications.

• Goal refers to the reviewer’s expectations that the review should fulfill.

• Organization concerns the way the reviewer organizes his or her search study. The litera-
ture review may be organized chronologically, conceptually, or methodologically.

• Perspective is the reviewer’s point of view in discussing the literature. The reviewer might
introduce the study with a neutral position or an espousal position.

• Audience refers to the groups of people to whom the review is directed.

• Coverage regards how the reviewer searches the literature and how he or she makes deci-
sions about the appropriateness and quality of documents.

Topic conceptualization phase. According to Torraco [Tor05], a literature review should
start by getting a broad idea of what is known about the topic and what areas may still need
knowledge. Therefore, the topic conceptualization phase aims to narrow down potential expres-

47

3. Research Design

St
ru

ct
ur

ed
 L

ite
ra

tu
re

 R
ev

ie
w

 P
ro

ce
ss

(I) Definition of
Review Scope

(II)
Conceptualization

of Topic

(III) Literature
Search

(IV) Literature
Analysis and

Synthesis

(V) Research
Agenda

Figure 3.2.: Structured literature review approach [VBSN+09]

sions, terms, and search phrases to the most relevant key terms, representing the key deliverables
of this phase. Working definitions [ZC06], seminal textbooks, encyclopedias, handbooks [Bak00],
and concept mapping can be used to identify key terms [VBSN+09]. Concept mapping also pro-
vides the opportunity to uncover relevant search terms, mainly related concepts or synonyms
and homonyms, that can be used in the subsequent literature search [VBSN+09].

Literature search phase. This phase includes database, keyword, backward, and forward
searches, and an ongoing evaluation of sources [VBSN+09]. The following four steps are per-
formed in the literature search process [VBSN+09]: (i) accumulating related research outlets
that may cover relevant papers, (ii) selecting adequate databases containing these outlets, (iii)
conducting keyword searches by modifying the identified search algorithms in each of the selected
databases, and (iv) executing a forward and backward search based on the derived articles.

Literature analysis and synthesis phase. After collecting a sufficient number of papers,
the literature analysis and synthesis phase embraces the systematic analysis of the identified
papers [VBSN+09]. The identified articles are first reviewed based on their titles, keywords, and
abstracts as part of the assessment. The final bulk of relevant and promising articles are then
examined using full-text analysis. Finally, key findings, commonalities, and insights are derived
from the analysis during this phase [VBSN+09].

Research agenda phase. In the last phase, a research agenda is created by collecting and

48

3. Research Design

summarizing future research questions descended from the found papers and conclusions drawn
by the researcher [WW02, VBSN+09].

In P2, we use a structured literature review approach to compile a list of existing scaling agile
frameworks and to assess their maturity based on information deduced from the literature. In
P5, we again employ a structured literature review approach to reveal typical challenges of
stakeholders in large-scale agile development reported in the literature.

3.2.3. Survey Research

Researchers conduct and validate their solutions using empirical research as the need for em-
pirical investigations in software engineering increases [GPRN18]. Survey research is one of the
empirical research methods. It aims to obtain information by gathering data from a specific
sample of a large population through personal or impersonal means to study its characteristics
[IM95, Kas05]. Since researchers encounter issues when conducting surveys in software engineer-
ing [GPRN18], Linåker et al. [LSMdMH15] propose an approach consisting of eight steps (see
Figure 3.3), depicted below.

Su
rv

ey
 R

es
ea

rc
h

Pr
oc

es
s

(I) Definition of
Research Objectives

(II) Identification
of Target Audience

(III) Sampling
Plan Design

(IV) Survey
Instrument

Design

(V) Survey
Instrument
Evaluation

(VI) Survey Data
Analysis

(VII) Drawing
Conclusions

(VIII) Docu-
menting and

Reporting

Figure 3.3.: Survey research approach [LSMdMH15]

Scope definition phase. The scope definition phase is about defining the research objectives,
which describe the issue of interest and assist the establishment of the research scope and
context for formulating the research questions [LSMdMH15, GPRN18]. As part of the research

49

3. Research Design

objectives, not only should the research questions be defined, but they also should: (i) explain
the motivation behind the survey [CLVB03], (ii) consider the required resources to achieve the
objectives [KP08], (iii) consider the targeted respondent population of the survey [CLVB03,
Kas05], (iv) discuss the way the data obtained from the survey should be used [Kas05], and (v)
consider possible areas close to the research objectives that were left unstudied [KP08]. Related
work should also be considered when defining the survey’s research objectives [CLVB03, Kas05].
The aim of a survey can be either exploratory, descriptive, or explanatory [WRH+12]:

• Exploratory surveys support researchers in breaking new ground and discovering new in-
sights into an area that is unknown to some degree.

• Descriptive surveys help researchers to make statements or assertions about a particular
population.

• Explanatory surveys assist researchers om explaining trends, phenomena, or problems ob-
served in the population.

Target audience identification phase. This phase is concerned with defining the target pop-
ulation and audience [LSMdMH15]. According to Linåker et al. [LSMdMH15], the selection of
the target audience must be guided by the research objectives. In this sense, the survey instru-
ment must be designed from the respondents’ perspective [LSMdMH15]. In addition, the choice
of survey method, e.g., interview or web questionnaire, must be chosen, taking into account
which of them might be more accessible to the target audience [LSMdMH15]. The target audi-
ence in a software engineering survey can be characterized by some primary attributes, usually
related to the respondents’ background or including demographic attributes, e.g., organizational
size, responsibilities, gender, age, and relevant experience [Kas05, LSMdMH15].

Sampling plan design phase. This phase is about selecting a sample to study the character-
istics of the population. Sampling is needed to characterize a large population when selecting
all units from a sampling frame is not feasible [HATB95]. Sampling can be mainly divided into
two types [KPP+02], namely non-probabilistic and probabilistic sampling. Non-probabilistic
sampling refers to all sampling approaches in which randomness cannot be observed in selecting
the units, i.e., the units from a sampling frame do not have the same probability of being se-
lected [Kas05, FJ13, Tho14]. There are four non-probabilistic sampling techniques: convenience
sampling, judgment sampling, quota sampling, and snowball sampling. All units in a sampling
frame must have the same probability of being selected in probabilistic sampling, which can
be supported by random sampling [Tho14]. There are three probabilistic sampling techniques
[HATB95]: simple random sampling, clustered sampling, and stratified sampling.

Survey instrument design phase. This phase concerns the rigorous design of the survey
questionnaire and the development of the internal and survey questions [LSMdMH15]. While
the internal questions represent open-ended questions that are later transformed into survey
questions, the internal questions represent the research’s primary goals [LSMdMH15]. To ob-
tain solid results from the survey research, the design of the survey questionnaire is of utmost
importance. Kasunic [Kas05] suggests several factors that should be considered when designing
the survey questionnaire, e.g., determining the data to be measured, selecting the questionnaire
type, selecting the execution method, and questionnaire length.

50

3. Research Design

Survey instrument evaluation phase. After the survey instrument has been designed, this
phase involves evaluating it to determine whether it has any deficiencies [LSMdMH15]. The
evaluation can be done by conducting a pretest or a pilot survey. The survey evaluation primarily
assesses the survey for clarity, understandability, acceptability, effectiveness, reliability, and
validity [KPP+02, RP14]. A survey instrument can be evaluated using expert interviews, focus
groups, pilot surveys, cognitive interviews, or experiments [PCL+04].

Survey data analysis phase. This phase comprises the analysis of the obtained survey data
[LSMdMH15]. The data analysis depends on the type of questions used in the survey. Common
methods to analyze the results of open-ended questions include content analysis, discourse anal-
ysis, grounded theory, phenomenology, and thematic analysis [GPRN18]. Common methods to
analyze the results of closed-ended questions include statistical analysis, hypothesis testing, and
data visualization [WRH+12]. In terms of the analysis process, Kitchenham et al. [KPP+02]
suggest the following activities:

• Data validation involves checking the consistency and completeness of answers before an-
alyzing survey results.

• Partitioning of responses comprises partitioning replies into subgroups prior to data anal-
ysis, e.g., through demographic questions.

• Data coding entails converting character string answers to nominal and ordinal scale data.

Drawing conclusions phase. This phase concludes the analysis of the survey data and presen-
tation of the results [LSMdMH15]. The entire survey process must be evaluated and reviewed
from a critical perspective. As part of the critical reflection, the two notions of validity and
reliability must be addressed to understand the thoroughness and trustworthiness of the survey
[LSMdMH15]. While the validity in its broadness refers to whether the questionnaire measured
what it was intended to measure, reliability refers to whether the results can be generalized. The
main motive is to identify potential threats early and reduce them. Research design decisions can
completely mitigate threats while other threats remain open or partially reduced [GPRN18].

Documenting and reporting phase. The last phase is concerned with documenting the
survey process and reporting the findings [LSMdMH15]. Documenting the survey process helps
to enhance the survey’s acceptance and quality. The documentation begins with specifying the
research objectives and is iteratively updated as the research process continues. The various
elements of the documentation should include research objectives and research questions, ac-
tivity planning, sample method design, data collection methods, and data analysis methods
[LSMdMH15]. Reporting the results might vary depending on the expectations and interests of
the target audience. Because the target audience’s interests may differ, Kasunic [Kas05] proposes
conducting an audience analysis. Although the structure of the report is dependent on the target
audience, the following seven topics should be considered for inclusion [CLVB03]: (i) abstract
and/or executive summary, (ii) research objectives and problem statement, (iii) methodology
and survey process, (iv) findings from data analysis, (v) discussion of results, threats to validity,
and reliability, (vi) conclusions and acknowledgments, and (vii) eventual appendices.

In P3, we use a non-probabilistic, web-based survey to ask creators of scaling frameworks to
study the reasons for their creation and the benefits and challenges related to their adoption.

51

3. Research Design

3.2.4. Case Study Research

Case study research is one of several forms of social science research. A case study investigates
a contemporary phenomenon, i.e., “the case”, in its real-world context [Yin15]. The distinctive
need for case study research stems from the desire to understand contemporary and complex
social phenomena [BGM87, ESSD08]. Case study research enables researchers to focus on a
“case” and maintain a holistic and real-world perspective [Yin15]. Case studies are employed
in numerous situations to advance the knowledge of individual, group, organizational, social,
political, and related phenomena. Case studies are commonly applied in areas like psychology,
sociology, political science, and anthropology [Yin15]. Case study research is likewise well suited
for software engineering research since the objects of study are contemporary phenomena that
are difficult to study in isolation [RH09]. Case studies can be classified into four types [RH09]:

• Exploratory case studies aim to discover what is happening, gain new insights, and develop
ideas and hypotheses for further research.

• Descriptive case studies seek to portray a situation or phenomenon if the generality of the
situation or phenomenon is of secondary importance.

• Explanatory case studies strive to explain a situation or a problem, mostly but not neces-
sarily in the form of a causal relationship.

• Improving case studies try to enhance a specific aspect of the studied phenomenon, similar
to action research.

To inquire about a contemporary phenomenon, Yin [Yin15] proposes an iterative six-step ap-
proach (see Figure 3.4), described in the following.

C
as

e
St

ud
y

R
es

ea
rc

h
Pr

oc
es

s

Plan Design Collect

AnalyzeShare

Prepare

Figure 3.4.: Case study research approach [Yin15]

Planning phase. The planning phase is about evaluating the appropriateness of case study
research, i.e., determining the rationale for conducting a case study, choosing the case study

52

3. Research Design

method over other research approaches, and understanding its strengths and limitations [Yin15].
Case study research is appropriate when (i) a natural setting or a focus on contemporary events
is needed, (ii) a solid theoretical base does not support the research phenomena, (iii) a rich
natural setting can be fertile ground for generating theories, and (iv) subjects or events must
not be controlled or manipulated in the course of a research project [BGM87]. According to
Runeson and Höst [RH09] and Yin [Yin15], good planning for a case study and defining the
research objectives are crucial to the entire research project. Any case study should begin with
a comprehensive literature review and carefully consider the research questions and study objec-
tives. A plan for a case study should include at least the following elements: an objective, the
case, related theories, research questions, collection methods, and a selection strategy [Rob02].

Design phase. This phase is concerned with activities related to the research design, which
include: (i) defining the unit(s) of analysis and the case(s) to be studied, (ii) developing and
articulating theories and propositions, (iii) identifying issues underlying the anticipated study,
(iv) determining the case study design, and (v) developing procedures to maintain the case study
quality [Yin15]. The research design can be considered a “blueprint” for the research project.
It links the research questions to the research conclusions through the steps undertaken during
data collection and analysis [Yin15]. As shown in Figure 3.5, there are four types of specific
designs for case studies: (i) single-case with a single unit of analysis (holistic), (ii) single-case
with multiple units of analysis (embedded), (iii) multiple-case with a single unit of analysis
(holistic), and (iv) multiple-case with multiple units of analysis (embedded).

H
ol

is
tic

(S
in

gl
e-

U
ni

t o
f A

na
ly

si
s)

Em
be

dd
ed

 (M
ul

tip
le

-U
ni

ts
 o

f
A

na
ly

si
s)

Multiple-Case DesignsSingle-Case Designs

Context

Case

Embedded Unit of Analysis 1

Embedded Unit of Analysis 2

Context

Case

Context

Case

Context

Case

Context

Case

Context

Case

Context

Case
Embedded Unit of Analysis 1

Embedded Unit of Analysis 2

Context

Case
Embedded Unit of Analysis 1

Embedded Unit of Analysis 2

Context

Case
Embedded Unit of Analysis 1

Embedded Unit of Analysis 2

Context

Case
Embedded Unit of Analysis 1

Embedded Unit of Analysis 2

Figure 3.5.: Types of case study designs [Yin15]

Preparation phase. The preparation phase is concerned with preparing the case study, includ-

53

3. Research Design

ing procedures for protecting human subjects, developing a case study protocol, and obtaining
relevant approvals [Yin15]. The preparation phase also comprises determining the data sources
for the case and potential embedded unit(s) of analysis, and preparing the data collection process
[Yin15]. Even though the context of the phenomenon is defined, researchers must also decide
on the data sources that will help answer the research questions. Decisions must be made about
which people, places, events, and documents to observe, interview, or collect [Sta95a].

Data collection phase. The main objective of the data collection phase is to gather evidence
from various data sources [Yin15]. Yin [Yin15] distinguishes between six sources: documents,
archival records, interviews, direct observations, participant observations, and physical artifacts.
To take advantage of these six sources, Yin [Yin15] proposes adhering to four principles of
data collection: (i) using multiple sources of evidence, (ii) creating a case study database,
(iii) maintaining a chain of evidence, and (iv) carefully using data from electronic sources.
Regarding the first principle, Runeson and Höst [RH09] recommend using multiple data sources
to limit the impact of an interpretation of a single data source and verify the repeatability of
observations within the case, referred to as data triangulation [Fli92, Sta95a]. According to
Yin [Yin15], the case study database compiles all collected documents and materials, e.g., audio
recordings, interview protocols, and internal documents. To ensure a proper chain of evidence,
Yin [Yin15] suggests using citations and footnotes in the report to refer to the relevant sources
and maintaining a link between the protocol questions and the original study questions.

Data analysis phase. This phase deals with examining, categorizing, tabulating, testing,
or otherwise recombining evidence to draw empirically-based conclusions while at the same
time ensuring the rigor of the analysis [MH94, Yin15]. To achieve these goals and reduce
potential analytical difficulties, Yin [Yin15] distinguishes four general analytic strategies. The
first strategy, theoretical propositions, deals with theoretical propositions that guide the case
study’s analysis and help explain contextual conditions and explanations. The second strategy,
working the data from the ground up, encourages to “play with the data” to identify patterns
for describing the phenomenon of interest. The third strategy, developing a case description,
aims to organize the case according to a descriptive framework. This strategy can be seen as
complementary to other strategies by explaining the context and mechanisms of the phenomenon.
The fourth strategy, examining plausible rival explanations, tries to define and test plausible rival
explanations, which works in combination with the previous three strategies [Yin15]. Besides
these four strategies, there are also five main analyzing techniques for case studies: pattern
matching, explanation building, time-series analysis, logic models, and cross-case synthesis that
can be applied to ensure the reliability of the findings [Yin15].

Sharing phase. The sharing phase is about publishing the case study findings based on the
demand and expectations of the targeted audience [Yin15]. For adequate reporting, Walsham
[Wal06] and Locke et al. [LSS13] recommend identifying the target audience of the case study
report, developing the case study’s compositional structure, and creating drafts of the report
that peers and case study participants should review. Regardless of the form of the report, the
compilation of the case study should include textual and visual materials and an ample case
description, embedding the reader into the context of the phenomenon and displaying enough
evidence for the reader to draw his or her conclusions [Yin15].

In P4, we use an embedded single-case design to compare different occurrences of LeSS adoption

54

3. Research Design

inside a German automobile manufacturer, with the four investigated products representing
the multiple units of analysis. In P8, we employ a holistic single-case design to investigate
the collaboration between architects and agile teams within a large-scale agile development
program of a consumer electronics retailer. Here, the program of the case company represents
the single unit of analysis. In P9 and P10, we use a holistic multiple-case design to explore the
expectations of enterprise architects and their role in supporting large-scale agile development
endeavors within five German companies. The endeavors under study represent the single unit
of analysis for each case company.

3.2.5. Pattern-Based Design Research

Design science approaches aim to create novel artifacts, i.e., solutions to relevant problems
[HMPR04, PTRC07]. Researchers designing artifacts need to account for two critical criteria:
rigor and relevance [HMPR04, RV08]. On the one hand, rigor can be achieved by using sound
methods [BW96]. On the other hand, relevance can be obtained by considering the needs
of the practitioners using these artifacts. In this sense, balancing both rigor and relevance
remains a challenging task [Sta95b]. As early-stage design artifacts, patterns enable researchers
to develop innovative artifacts that solve current and anticipated problems of practitioners in
an organizational context. The creation of the patterns must also rely on sound methodologies
and close collaboration with one or more industry partners to ensure their rigor and relevance
[BMSS13a, BMSS13b]. Buckl et al. [BMSS13a] propose the iterative PDR method that balances
rigor and relevance in creating patterns as early design artifacts. The PDR method consists of
four phases (see Figure 3.6) and is described in the following.

Observation and conceptualization phase. In this phase, good practices from the indus-
try are observed and documented following a typical pattern structure. At a minimum, the
researcher describes the following concepts [BMSS13a]: the problem to be addressed, the solu-
tion that has proven to work well, the context in which the solution can be applied, and the
forces that frame the solution space. The researcher can refine the documentation of the pattern
candidates with the industry partner if required [BMSS13a].

Theory building and nexus instantiation phase. In this phase, the pattern candidates
evolve into a pattern through three successful known uses, i.e., by fulfilling the rule of three
[Cop96]. Here, the researcher integrates the new patterns into the organized pattern collection,
i.e., pattern language, by defining relationships to the already existing patterns [BMSS13a].

Solution design and application phase. This phase is concerned with constructing a situated
design artifact that can be applied in the context of an organization [BMSS13a]. In doing
so, the solution design must be configured and adapted to the terminology of the applying
organization, resulting in a so-called configured solution design. The resulting configured design
serves as a blueprint implemented as a new solution by the organization under consideration
[BMSS13a, BMSS13b]. The actual implementation of the configured solution design is referred
to as an instantiated solution design [BMSS13b].

Evaluation and learning phase. While time passes, the instantiated solution design may be
subject to evolution. For example, the organization may find a better solution over time, result-

55

3. Research Design

Pa
tte

rn
-B

as
ed

 D
es

ig
n

R
es

ea
rc

h
Pr

oc
es

s

Establish

Theory
(Academics)

Practice
(Industry)

Select

Δ Deviations

Observations

Configure

Learn

Observe & Conceptualize

Ground Theories

Guide & Structure

Organized Collection of Reusable
Practice-Proven Solutions

Pa
tte

rn
-B

as
ed

 T
he

or
y

Bu
ild

in
g Design

Theories

Pattern
Language

Pattern
Candidates

Solution
Design

Configured
Design

Instantiated
Solution

Figure 3.6.: Pattern-based design research approach [BMSS13a]

ing in potential deviations from the initially configured solution design [BMSS13a, BMSS13b].
These deviations represent the artifact’s evolution and can be ascribed to the ongoing change
in the organization’s environments, contexts, and goals [BMSS13a]. Hence, the evaluation and
learning phase aims to detect and document deviations between the actual and initially instan-
tiated solution design. These deviations can be used as a basis to extend the existing knowledge
basis or identify new best practices [BMSS13a, BMSS13b]. Thereby, two main types of deviations
can be distinguished, leading to different learning types [BMSS13a]:

• Deviations in the instantiated solution design representing minor changes from the config-
ured design can be attributed to the corresponding organizational context or problem.

• Major changes in the instantiated solution design not matching the configured solution’s
organizational context or problem represent newly observed best practices.

When new best practices are observed, they must be documented as pattern candidates, as
described in the observe and conceptualize phase. Minor changes usually lead to revising existing
patterns related to their documentation and relationships to other patterns [BMSS13a].

In P6, we use the PDR approach to observe and conceptualize a pattern language consisting of
patterns and concepts that can be used to address typical concerns of stakeholders in large-scale
agile development. In P7, we employ the same approach to identify typical concerns of agile
coaches and scrum masters in large-scale agile development and propose patterns and concepts
that can be applied to solve their concerns.

56

Part B

57

1. Revealing the State of the Art of Large-Scale Agile
Development Research: A Systematic Mapping Study

Table 4.1. Fact sheet publication P1

Authors Uludağ, Ömer*

Philipp, Pascal*

Putta, Abheeshta

Paasivaara, Maria

Lassenius, Casper

Matthes, Florian*

*Technische Universität München,

Chair of Software Engineering for Business Information Systems,

Boltzmannstraße 3,

D-85748 Garching, Germany

Outlet Journal of Systems and Software (JSS)

Status Published

Contribution of
first author

Problem definition, research design, data collection, data analysis,
interpretation, reporting

Abstract. Context: Success with agile methods in the small scale has led to an increasing
adoption also in large development undertakings and organizations. Recent years have also seen
an increasing amount of primary research on the topic, as well as a number of systematic liter-
ature reviews. However, there is no systematic overview of the whole research field. Objective:
This work identifies, classifies, and evaluates the state of the art of research in large-scale agile
development. Method: We conducted a systematic mapping study and rigorously selected 136
studies. We designed a classification framework and extracted key information from the studies.
We synthesized the obtained data and created an overview of the state of the art. Results: This
work contributes with (i) a description of large-scale agile endeavors reported in the industry,
(ii) a systematic map of existing research in the field, (iii) an overview of influential studies,
(iv) an overview of the central research themes, and (v) a research agenda for future research.
Conclusion: This study portrays the state of the art in large-scale agile development and offers
researchers and practitioners a reflection of the past thirteen years of research and practice on
the large-scale application of agile methods.

58

2. Investigating the Role of Architects in Scaling Agile
Frameworks

Table 4.2. Fact sheet publication P2

Authors Uludağ, Ömer*

Kleehaus, Martin*

Xu, Xian*

Matthes, Florian*

*Technische Universität München,

Chair of Software Engineering for Business Information Systems,

Boltzmannstraße 3,

D-85748 Garching, Germany

Outlet 21st International Enterprise Distributed Object Computing Confer-
ence (EDOC)

Status Published

Contribution of
first author

Problem definition, research design, data collection, data analysis,
interpretation, reporting

Abstract. This study describes the roles of architects in scaling agile frameworks with the help
of a structured literature review. We aim to provide a primary analysis of 20 identified scaling
agile frameworks. Subsequently, we thoroughly describe three popular scaling agile frameworks:
Scaled Agile Framework, Large Scale Scrum, and Disciplined Agile 2.0. After specifying the
main concepts of scaling agile frameworks, we characterize roles of enterprise, software, solution,
and information architects, as identified in four scaling agile frameworks. Finally, we provide a
discussion of generalizable findings on the role of architects in scaling agile frameworks.

59

3. Evolution of the Agile Scaling Frameworks

Table 4.3. Fact sheet publication P3

Authors Uludağ, Ömer*

Putta, Abheeshta

Paasivaara, Maria

Matthes, Florian*

*Technische Universität München,

Chair of Software Engineering for Business Information Systems,

Boltzmannstraße 3,

D-85748 Garching, Germany

Outlet 22nd International Conference on Agile Software Development
(AGILE)

Status Published

Contribution of
first author

Problem definition, research design, data collection, data analysis,
interpretation, reporting

Abstract. Over the past decade, agile methods have become the favored choice for projects
undertaken in rapidly changing environments. The success of agile methods in small, co-located
projects has inspired companies to apply them in larger projects. Agile scaling frameworks, such
as Large Scale Scrum and Scaled Agile Framework, have been invented by practitioners to scale
agile to large projects and organizations. Given the importance of agile scaling frameworks,
research on those frameworks is still limited. This paper presents our findings from an empirical
survey answered by the methodologists of 15 agile scaling frameworks. We explored (i) framework
evolution, (ii) main reasons behind their creation, (iii) benefits, and (iv) challenges of adopting
these frameworks. The most common reasons behind creating the frameworks were improving
the organization’s agility and collaboration between agile teams. The most commonly claimed
benefits included enabling frequent deliveries and enhancing employee satisfaction, motivation,
and engagement. The most mentioned challenges were using frameworks as cooking recipes
instead of focusing on changing people’s culture and mindset.

60

4. Investigating the Adoption and Application of Large-Scale
Scrum at a German Automobile Manufacturer

Table 4.4. Fact sheet publication P4

Authors Uludağ, Ömer*

Kleehaus, Martin*

Dreymann, Niklas*

Kabelin, Christian

Matthes, Florian*

*Technische Universität München,

Chair of Software Engineering for Business Information Systems,

Boltzmannstraße 3,

D-85748 Garching, Germany

Outlet 14th International Conference on Global Software Engineering
(ICGSE)

Status Published

Contribution of
first author

Problem definition, research design, data collection, data analysis,
interpretation, reporting

Abstract. Over the last two decades, agile methods have been adopted by an increasing number
of organizations to improve their software development processes. In contrast to traditional
methods, agile methods place more emphasis on flexible processes than on detailed upfront plans
and heavy documentation. Since agile methods have proved to be successful at the team level,
large organizations are now aiming to scale agile methods to the enterprise level by adopting
and applying so-called scaling agile frameworks such as Large-Scale Scrum (LeSS) or Scaled
Agile Framework (SAFe). Although there is a growing body of literature on large-scale agile
development, literature documenting actual experiences related to scaling agile frameworks is
still scarce. This paper aims to fill this gap by providing a case study on the adoption and
application of LeSS in four different products of a German automobile manufacturer. Based on
seven interviews, we present how the organization adopted and applied LeSS, and discuss related
challenges and success factors. The comparison of the products indicates that transparency,
training courses and workshops, and change management are crucial for a successful adoption.

61

5. Identifying and Structuring Challenges in Large-Scale Agile
Development Programs based on a Structured Literature
Review

Table 4.5. Fact sheet publication P5

Authors Uludağ, Ömer*

Kleehaus, Martin*

Caprano, Christoph*

Matthes, Florian*

*Technische Universität München,

Chair of Software Engineering for Business Information Systems,

Boltzmannstraße 3,

D-85748 Garching, Germany

Outlet 22nd International Conference on Enterprise Distributed Object Com-
puting (EDOC)

Status Published

Contribution of
first author

Problem definition, research design, data collection, data analysis,
interpretation, reporting

Abstract. Over the last two decades, agile methods have transformed and brought unique
changes to software development practice by strongly emphasizing team collaboration, customer
involvement, and change tolerance. The success of agile methods for small, co-located teams
has inspired organizations to increasingly apply agile practices to large-scale efforts. Since these
methods are originally designed for small teams, unprecedented challenges occur when introduc-
ing them at larger scale, such as inter-team coordination and communication, dependencies with
other organizational units or general resistances to changes. Compared to the rich body of agile
software development literature describing typical challenges, recurring challenges of stakehold-
ers and initiatives in large-scale agile development has not yet been studied through secondary
studies sufficiently. With this paper, we aim to fill this gap by presenting a structured literature
review on challenges in large-scale agile development. We identified 79 challenges grouped into
eleven categories.

62

6. Documenting Recurring Concerns and Patterns in Large-Scale
Agile Development

Table 4.6. Fact sheet publication P6

Authors Uludağ, Ömer*

Harders, Nina*

Matthes, Florian*

*Technische Universität München,

Chair of Software Engineering for Business Information Systems,

Boltzmannstraße 3,

D-85748 Garching, Germany

Outlet 24th European Conference on Pattern Languages of Programs
(EPLoP)

Status Published

Contribution of
first author

Problem definition, research design, data collection, data analysis,
interpretation, reporting

Abstract. The introduction of agile methods at scale entails unique concerns such as inter-
team coordination, dependencies to other organizational units, or distribution of work without
a defined architecture. Compared to the rich body of agile software development literature
describing typical challenges and best practices, recurring concerns and patterns in large-scale
agile development are not yet documented extensively. We aim to fill this gap by presenting
a pattern language for large-scale agile software development as part of our larger research
initiative in close collaboration with 10 companies. The structure and practical relevance of
the proposed language were evaluated by 14 interviews. In this paper, we showcase our pattern
language by presenting four patterns.

63

7. Identifying and Documenting Recurring Concerns and Best
Practices of Agile Coaches and Scrum Masters in Large-Scale
Agile Development

Table 4.7. Fact sheet publication P7

Authors Uludağ, Ömer*

Matthes, Florian*

*Technische Universität München,

Chair of Software Engineering for Business Information Systems,

Boltzmannstraße 3,

D-85748 Garching, Germany

Outlet 26th International Conference on Pattern Languages of Programs
(PLoP)

Status Published

Contribution of
first author

Problem definition, research design, data collection, data analysis,
interpretation, reporting

Abstract. Ever since the release of the agile manifesto in 2001, agile methods have received
widespread interest in industry and academia. Agile methods have transformed and brought
unique changes to software development practices by strongly emphasizing team collaboration,
change tolerance, and active customer involvement. Their proven benefits have also inspired
organizations to apply them in large-scale settings. However, the adoption of agile methods
at scale entails unique challenges such as coordinating and aligning multiple large-scale agile
activities, dealing with internal silos, and establishing an agile culture & mindset throughout the
organization. In particular, agile coaches and scrum masters are confronted with unprecedented
concerns in large-scale agile development. Notwithstanding their importance for large-scale agile
endeavors, extant literature still lacks an overview of their typical concerns and a collection of
patterns to address them. Against this backdrop, we provide an overview of typical concerns and
present five best practices of agile coaches and scrum masters in large-scale agile development.

64

8. Using Social Network Analysis to Investigate the Collaboration
Between Architects and Agile Teams: A Case Study of a
Large-Scale Agile Development Program in a German
Consumer Electronics Company

Table 4.8. Fact sheet publication P8

Authors Uludağ, Ömer*

Kleehaus, Martin*

Erçelik, Soner*

Matthes, Florian*

*Technische Universität München,

Chair of Software Engineering for Business Information Systems,

Boltzmannstraße 3,

D-85748 Garching, Germany

Outlet 20th International Conference on Agile Software Development
(AGILE)

Status Published

Contribution of
first author

Problem definition, research design, data collection, data analysis,
interpretation, reporting

Abstract. Over the past two decades, agile methods have transformed and brought unique
changes to software development practice by strongly emphasizing team collaboration, customer
involvement, and change tolerance. The success of agile methods for small, co-located teams
has inspired organizations to increasingly use them on a larger scale to build complex software
systems. The scaling of agile methods poses new challenges such as inter-team coordination,
dependencies to other existing environments or distribution of work without a defined architec-
ture. The latter is also the reason why large-scale agile development has been subject to criticism
since it neglects detailed assistance on software architecting. Although there is a growing body
of literature on large-scale agile development, literature documenting the collaboration between
architects and agile teams in such development efforts is still scarce. As little research has been
conducted on this issue, this paper aims to fill this gap by providing a case study of a German
consumer electronics retailer’s large-scale agile development program. Based on social network
analysis, this study describes the collaboration between architects and agile teams in terms of
architecture sharing.

65

9. What to Expect from Enterprise Architects in Large-Scale
Agile Development? A Multiple-Case Study

Table 4.9. Fact sheet publication P9

Authors Uludağ, Ömer*

Kleehaus, Martin*

Matthes, Florian*

*Technische Universität München,

Chair of Software Engineering for Business Information Systems,

Boltzmannstraße 3,

D-85748 Garching, Germany

Outlet 25th Americas Conference on Information Systems (AMCIS)

Status Published

Contribution of
first author

Problem definition, research design, data collection, data analysis,
interpretation, reporting

Abstract. In modern times, traditional enterprises are confronted with rapidly changing cus-
tomer demands, increasing market dynamics, and continuous emergence of technological ad-
vancements. Confronted with the imperatives of a digital world, companies are striving to
adopt agile methods on a larger scale to meet these requirements. In recent years, enterprise
architecture management has established itself as a valuable governance mechanism for coordi-
nating large-scale agile transformations by connecting strategic considerations to the execution
of transformation projects. Our research is motivated by the lack of empirical studies on the
collaboration between enterprise architects and agile teams. Against this backdrop, we present
a multiple-case study of five leading German companies that aims to shed light on this field of
tension. Based on our results from 20 semi-structured interviews, we present the expectations
of agile teams for enterprise architects and how they are fulfilled.

66

10. Investigating the Role of Enterprise Architects in Supporting
Large-Scale Agile Transformations: A Multiple-Case Study

Table 4.10. Fact sheet publication P10

Authors Uludağ, Ömer*

Matthes, Florian*

*Technische Universität München,

Chair of Software Engineering for Business Information Systems,

Boltzmannstraße 3,

D-85748 Garching, Germany

Outlet 26th Americas Conference on Information Systems (AMCIS)

Status Published

Contribution of
first author

Problem definition, research design, data collection, data analysis,
interpretation, reporting

Abstract. In today’s competitive environments, companies must cope with changing customer
demands, regulatory uncertainties, and new technological advances. To this end, companies in-
creasingly undergo large-scale agile transformations to meet these requirements. In recent years,
enterprise architecture management has established itself as a valuable governance mechanism
for coordinating large-scale agile transformations by connecting strategic considerations to the
execution of transformation projects. Empirical studies investigating the role of enterprise ar-
chitects (EAs) in this context are still scarce. We present a multiple-case study of five major
German companies that aims to shed light on the role of EAs in supporting large-scale agile
transformations. Based on our results from eighteen interviews, we present a set of typical re-
sponsibilities of EAs. We also describe the expectations of various stakeholders towards EAs
and the challenges they face.

67

68

Part C

69

CHAPTER 4

Discussion

This chapter discusses the key results of the embedded publications (see Section 4.1) and de-
scribes the implications of the results for research and practice (see Sections 4.2 and 4.3).

4.1. Summary of Results

We published ten research articles to substantially contribute toward answering the four research
questions formulated in Section 1.2. We present the main findings of the ten publications
alongside the research questions and relate them to the existing literature.

Key findings related to RQ1. Over the past years, many studies on large-scale agile develop-
ment have appeared in scientific conferences and journals, leading to a large body of knowledge
[UPP+22]. Although several secondary studies were published (cf. [DPL16, EWC21]), none
provide an overview of the entire research field. Against this research gap, we formulated the
first research question as follows:

Research question 1 (RQ1)

What is the state of the art in large-scale agile development research?

To answer the first research question, we conducted a systematic mapping study, covering 136
publications from 2007 to 2019 (see P1). In the scope of this research question, we (i) analyzed
what has been referred to as “ large-scale agile development”, (ii) examined publication trends
and characteristics of existing research, (iii) revealed seminal works, and (iv) identified central
research streams and open research gaps.

70

4. Discussion

Although several researchers have made an initial attempt to define the term “ large-scale agile
development” (cf. [DFI14, DPL16, FH18]), there is some ambiguity about the meaning of this
term, inhibiting effective collaboration and progress in the research area [DFI14]. Departing
from this issue, we examined the reported case companies and analyzed their endeavors that
were described as “ large-scale agile development” (see P1).

We identified 158 companies reported in the existing literature, of which 137 were anonymized,
and 21 were explicitly mentioned. Ericsson was the most frequently studied company, followed by
the Norwegian Public Service Pension Fund (see P1). Although the reported case companies were
spread across the globe, we found several companies coming from Europe and North America.
This observation is consistent with Digital.ai’s State of Agile survey [Dig20], confirming a topic
concentration in Europe and North America (see P1). While the reported companies came from
ten different sectors, almost a third were from the Information Technology (IT) sector, followed
by the financial and public sectors. Again, our findings are in line with Digital.ai’s State of Agile
survey [Dig20], stating that most companies adopting (large-scale) agile methods come from the
IT and financial sectors (see P1). While most of the reported companies had more than 20,000
employees, we observed that companies with fewer than 1,000 employees also adopt agile methods
at scale. Our findings and Digital.ai’s survey results [Dig20] indicate that companies adopt agile
methods at scale, regardless of their size. However, our results show that most companies
have more than 5,000 employees, accounting for nearly 70% of all identified companies. This
phenomenon is likely more relevant for large companies than for small companies (see P1).

To understand what has been reported as “ large-scale agile development”, we used the classifica-
tion by Fuchs and Hess [FH18] to categorize the reported large-scale agile development efforts.
Almost half of all companies applied agile practices as a whole, i.e., “organizational agility”, fol-
lowed by companies using agile methods in large multi-team settings, i.e., “ large agile multi-team
settings” (see Section 2.3.1). While both categories were reported in four companies, we could
not determine the type for 16 companies due to superficial context information (see P1).

We revealed 110 development efforts with multiple agile teams. We uncovered several companies
with multiple efforts, such as SAP having five large agile multi-team settings involving between
4 and 13 teams (see P1). Most reported settings were large, employing between 11 and 100
people or 2 to 9 teams, followed by very large settings, involving between 101 and 8,000 people
or 10 to 40 teams. When comparing our results with Digital.ai’s survey findings [Dig20], we
found several differences: most settings we identified had fewer than 100 people. In contrast,
the survey indicated about a third of their respondents with the same size. While 36% of State of
Agile survey respondents reported sizes between 101 and 1,000 employees [Dig20], this accounted
for 46.67% of agile multi-team settings from our study. While 31% of the survey respondents
indicated sizes greater than 1,000 employees [Dig20], we identified only one very large agile
multi-team setting at Cisco with 8,000 employees (see P1).

To acquire a more in-depth understanding of what the authors of the selected studies meant by
“scaling agile methods”, we examined the case descriptions for possible scaling and complexity
factors (see P1). As a result, we identified six factors (see Figure 4.1). Organizational size, i.e.,
the number of agile teams working together or the number of people involved in the development
effort, was the most frequently cited factor, followed by organizational distribution, i.e., number
of sites or geographic distribution. The complexity of the developed systems, i.e., product size

71

4. Discussion

(measured in lines of code), number of subsystems, and number of requirements and features,
was the third most reported factor, followed by the number of companies working together,
the number of customers, and the available budget (see P1). Ambler [Amb07] has already
provided some scaling and complexity factors. In accordance with Ambler [Amb07], we believe
that organizational size is the primary scaling and complexity factor for characterizing the
term “scaling agile methods”. Like Ambler [Amb07], we are also convinced that organizational
distribution and system complexity are likewise important factors to consider. In addition to
Ambler [Amb07], we uncovered the number of collaborating companies, the number of customers,
and the available budget for development efforts as further factors (see P1).

1

2

11

14

17

56

94

0 10 20 30 40 50 60 70 80 90 100

Budget

Number of customers

Number of collaborating companies

Not stated

System complexity

Organizational distribution

Organizational size

Number of large agile multi-team settings

As
so

ci
at

ed
 s

ca
lin

g
an

d
co

m
pl

ex
ity

 fa
ct

or
s

of

la
rg

e-
sc

al
e

ag
ile

 e
nv

iro
nm

en
ts

Figure 4.1.: Scaling and complexity factors (based on P1)

To reveal potential publication trends and characteristics, we selected a set of variables that
focused on each study’s publication and bibliographic data, e.g., publication year, contribution
type, and research approach (see P1). Below, we detail the key facts drawn from our analysis.

Figure 4.2 indicates increasing attention from the research community on the topic, as the num-
ber of studies has been steadily increasing with slight fluctuations (see P1). In particular, after
2013, almost 85% of the studies were published. The increasing trend on the topic culminated in
2018 and 2019, when publications doubled compared to previous years (see P1). A possible ex-
planation for this observation could be the initiation of two workshops contributing to large-scale
agile development research, namely the International Workshop on Autonomous Agile Teams in
2018 and the International Workshop on Agile Transformation in 2019.

A total of 22 states worldwide contributed to research, of which the most were from Europe,
accounting for almost 90% of all publications. The research theme received considerable interest
from Scandinavia, i.e., Finland, Norway, and Sweden, followed by Germany.

We investigated each study’s publication types, venues, and domains to examine pertinent pub-
lication channels for large-scale agile development research. Almost 50% of the studies were
published in conferences, followed by journals. Such a high number of journal and conference
papers may indicate that the research field matures (see P1). While the prominent systematic
literature review by Dikert et al. [DPL16] in 2016 mainly included experience and opinion re-

72

4. Discussion

1

4 2 2 3
2

7
13 9 12 16

32 33

1 5 7 9 12 14
21

34
43

55

71

103

136

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

N
um

be
r o

f s
tu

di
es

Year

 Number of publications per year Cummulative number of publications over time period

Figure 4.2.: Publications on large-scale agile development over time (based on P1)

ports from practitioners with a lack of scientific rigor, nearly 80% of the studies we selected were
published in scientific journals and conferences, signaling a shift in the scientific basis of the
research field. We believe this academic traction is triggered by the ubiquitous industrial rele-
vance of the topic, requiring scientific assistance by researchers (cf. [DPL16, DFP19]). Research
on large-scale agile development was published in eight different domains. Unsurprisingly, most
publications were covered by publication venues from the software engineering domain, followed
by the information systems research discipline (see P1). Although most of the studies came
from the software engineering field, we witnessed a growing interest from other research commu-
nities, e.g., information systems, project management, and enterprise computing (see P1). The
136 selected studies were published in 46 venues, including 17 journals, 23 conferences, and six
workshops. The International Conference on Agile Software Development and the International
Workshop on Large-Scale Agile Development are the top-2 venues (see P1). We also noted that
several studies were also present in leading software engineering journals, e.g., Information and
Software Technology and Empirical Software Engineering (see P1).

To characterize the research that has been conducted, we further investigated the research types,
methods, research outcomes, and research data types (see P1). About 80% of the studies eval-
uated the large-scale adoption of agile methods in the industry, typically through exploratory
case studies, mixed methods, surveys, or similar empirical methods. About 11% of the studies
presented novel solutions or significant extensions of existing solutions identified in practice,
followed by philosophical papers that framed the research field through conceptual frameworks
or taxonomies (see P1). The fact that evaluation research is widely used in large-scale agile
development research positively impacts transferring current research results to the industry.
The prevalence of evaluation research studies is natural for phenomena such as large-scale agile
development since it is mainly practice-driven (see P1). The majority of the selected publica-
tions were empirical and qualitative, including mainly case studies. About 85% of the studies
contributed to lessons learned and guidelines and were observational, analyzing and describing

73

4. Discussion

the industry’s large-scale application of agile methods. While only 15% of the studies con-
tributed models, frameworks/methods, and theories, none of the studies contributed to creating
new or improved tools. Based on this finding, we conclude that further research is required to
develop conceptual models and theories to strengthen the research field’s theoretical foundations
and create rigorously developed frameworks, methods, and tools to support practitioners (see
P1). Comparing the selected studies with those from the agile software development research
area (cf. [DNBM12]), we revealed that existing studies on large-scale agile development did not
pay enough attention to establishing theoretical underpinnings. Analogous to the agile soft-
ware development research field and agreeing with Dingsøyr et al. [DNBM12], we believe that
the large-scale agile development research area can only mature if adequate efforts are made
to provide a solid theoretical scaffold. Like Batra [Bat20], we also observed an apparent lack
of quantitative studies that use surveys as data collection instruments to conduct quantitative
investigations and assessments. We revealed that almost 90% of the publications were primary
and the remainder secondary. We did not find any tertiary studies (see P1).

To better understand the intellectual structure of the research field, we identified seminal works
as recommended by Dingsøyr et al. [DNBM12] and Nerur et al. [NRN08]. To this end, and
similar to Herbold et al. [HATG21], we extracted data on citation counts from Google Scholar
and considered studies with the top 10% citations as influential (see P1). Table 4.1 provides an
overview of the identified seminal studies.

To assess the state of the art and maturity of the research field, we explored central research
themes and existing research gaps. Using a systematic keywording process [PFMM08], we re-
vealed clusters to identify pertinent research topics and categorized the selected studies according
to the main research themes. We identified ten research streams (see P1):

• The Agile architecture research stream addresses how companies unite the at first glance
conflicting topics of agility and architecture to develop complex products and how agile
teams are architecturally aligned at the enterprise level.

• The Agile planning research stream provides scientific insights into how large-scale agile
projects and organizations conduct agile planning activities.

• The Agile portfolio management research stream covers how companies tailor their tradi-
tional portfolio management approaches to agile environments.

• The Agile practices at scale research stream investigates how companies tailor genuine
agile practices to fit large-scale projects.

• The Communication and coordination research stream tackles the issue of how agile teams
effectively coordinate and communicate with each other.

• The Global and distributed software engineering research stream studies how companies
apply agile methods in large, globally distributed projects.

• The Large-scale agile transformations research stream centers on how companies undertake
these transformations to meet the imperatives of agile companies.

• The Scaling agile frameworks research stream concentrates on studying the introduction
of scaling frameworks in organizations.

74

4. Discussion

Table 4.1. Seminal studies in large-scale agile development (based on P1)

Title	 Authors	 Publication	
type	 year	 No.	of	

citations	
Citations	
per	year	

Challenges	and	success	factors	for	large-scale	agile	
transformations:	a	systematic	literature	review	

Kim	Dikert,	
Maria	Paasivaara,	
Casper	Lassenius	

Journal	 2016	 273	 68	

A	framework	to	support	the	evaluation,	adoption	and	
improvement	of	agile	methods	in	practice	

Asif	Qumer,	
Brian	Henderson-Sellers	 Journal	 2008	 256	 21	

A	comparison	of	issues	and	advantages	in	agile	and	
incremental	development	between	state	of	the	art	and	
an	industrial	case	

Kai	Petersen,	
Claes	Wohlin	 Journal	 2009	 229	 21	

Agile	methods	rapidly	replacing	traditional	methods	at	
nokia:	a	survey	of	opinions	on	agile	transformation	

Maarit	Laanti,	
Outi	Salo,		
Pekka	Abrahamsson	

Journal	 2011	 227	 25	

The	effect	of	moving	from	a	plan-driven	to	an	
incremental	software	development	approach	with	agile	
practices:	an	industrial	case	study	

Kai	Petersen,		
Claes	Wohlin	 Journal	 2010	 166	 17	

Agile	portfolio	management:	an	empirical	perspective	
on	the	practice	in	use	

Christoph	J.	Stettina,	
Jeanette	Hörz	 Journal	 2015	 126	 25	

Distributed	agile	development:	using	scrum	in	a	large	
project	

Maria	Paasivaara,	
Sandra	Durasiewicz,	
Casper	Lassenius	

Conference	 2008	 119	 10	

Using	scrum	in	a	globally	distributed	project:	a	case	
study	

Maria	Paasivaara,	
Sandra	Durasiewicz,	
Casper	Lassenius	

Journal	 2008	 101	 8	

Communities	of	practice	in	a	large	distributed	agile	
software	development	organization	-	case	ericsson	

Maria	Paasivaara,		
Casper	Lassenius	 Journal	 2014	 98	 16	

Inter-team	coordination	in	large-	scale	globally	
distributed	scrum:	do	scrum-of-scrums	really	work?	

Maria	Paasivaara,		
Casper	Lassenius,	
Ville	T.	Heikkilä	

Conference	 2012	 91	 11	

A	case	study	on	benefits	and	side-effects	of	agile	
practices	in	large-scale	requirements	engineering	

Elizabeth	Bjarnason,	
Krzysztof	Wnuk,		
Björn	Regnell	

Workshop	 2012	 87	 10	

Combining	agile	software	projects	and	large-scale	
organizational	agility	

Petri	Kettunen,		
Maarit	Laanti	 Journal	 2008	 86	 7	

Exploring	software	development	at	the	very	large-scale:	
a	revelatory	case	study	and	research	agenda	for	agile	
method	adaptation	

Torgeir	Dingsøyr,		
Nils	B.	Moe,		
Tor	E.	Fægri,		
Eva	A.	Seim	

Journal	 2018	 83	 42	

• The Taxonomy research stream tackles the issue of how to create more conceptual clarity
around large-scale agile development.

• The Team autonomy research stream deals with how complex organizational structures
impact team autonomy and how companies strike a balance between self-organizing teams
focused on their own goals and those of the broader organization.

While some research streams, i.e., taxonomy and agile portfolio management, received little
interest, scholars intensively contributed to the agile practices at scale, communication and co-
ordination, and scaling agile frameworks research streams (see P1). While early research started
with contributions related to the agile practices at scale, global and distributed software engi-
neering, and scaling agile frameworks research streams, we noted a recent interest by researchers
in the team autonomy and large-scale agile transformations research streams (see P1).

75

4. Discussion

Following Kitchenham et al. [KBB11], we derived an agenda for future research that scholar
can build upon. Although researchers made considerable efforts to close research gaps in various
research streams, we identified 81 research questions. We identified the most research questions
in the communication and coordination research stream, followed by the agile architecture and
agile planning research streams (see P1).

An overview of the number of studies assigned to research streams and the number of research
questions identified in the research streams is shown in Figure 4.3 and Figure 4.4.

15 (9.49%)

16 (10.13%)

5 (3.16%)

30 (18.99%)

28 (17.72%)

13 (8.23%)

16 (10.13%)

25 (15.82%)

3 (1.90%)

7 (4.43%)

0

5

10

15

20

25

30
Agile architecture

Agile planning

Agile portfolio management

Agile practices at scale

Communication and coordination

Global and distributed
software engineering

Large-scale agile transformations

Scaling agile frameworks

Taxonomy

Team autonomy

Figure 4.3.: Number studies per research
stream (based on P1)

12 (14.81%)

11 (13.58%)

6 (7.41%)

10 (12.35%)

13 (16.05%)

5 (6.17%)

9 (11.11%)

8 (9.88%)

1 (1.23%)

6 (7.41%)

0

2

4

6

8

10

12

14
Agile architecture

Agile planning

Agile portfolio management

Agile practices at scale

Communication and coordination

Global and distributed
software engineering

Large-scale agile transformations

Scaling agile frameworks

Taxonomy

Team autonomy

Figure 4.4.: Number research questions per re-
search stream (based on P1)

Table 4.2 summarizes the key results of the embedded publications related to RQ1.

Key findings related to RQ2. Several scaling frameworks were proposed by consultants to
assist practitioners in the adoption of agile practices in large-scale organizations and projects
[Vai14, EWC21]. Despite this industrial interest [Dig21], empirical evidence on their adoption
is still very much in its infancy [CC19a] since they neglect to provide (i) a comprehensive
overview of the frameworks, (ii) first-hand information from their inventors, and (iii) report on
the adoption of other frameworks besides SAFe. Motivated by this backdrop, we articulated the
second research question as follows:

Research question 2 (RQ2)

What scaling agile frameworks exist, and what are the reasons, benefits, and challenges
of adopting them?

To address the second research question, we conducted a structured literature review covering
146 publications from 2001 to 2017. We compiled a list of scaling frameworks and compare
them using descriptive and maturity-related information (see P2). Using the list of the identified
frameworks, we surveyed their inventors to learn about the main reasons for their development
and the benefits and challenges of their usage (see P3). Finally, we conducted a single-case study
on a German car manufacturer to study how LeSS was adopted (see P4).

In previous studies, several researchers attempted to compare scaling frameworks based on dif-
ferent criteria. For instance, Vaidya [Vai14] reviewed the three most widely known scaling
frameworks: SAFe, LeSS, and DAD, by analyzing their recommended roles, processes, and other

76

4. Discussion

Table 4.2. Overview of key findings related to RQ1

RQ	 No.	 Key	findings	

RQ1	 P1	

• Large-scale	agile	development	refers	to	bringing	agile	practices	to	more	people,	even	to	entire	companies	
• The	idea	of	adopting	agile	methods	at	scale	permeates	many	companies	of	different	sizes,	almost	on	all	

continents	and	in	all	industries	
• The	term	“large-scale	agile	development”	entails	the	application	of	agile	practices	in	organizations	as	a	

whole	and/or	their	application	in	large	multi-team	settings	
• While	various	scaling	and	complexity	factors	have	been	suggested	to	denote	the	term	“scaling	agile	

methods”,	organizational	size,	i.e.,	the	number	of	agile	teams	or	people	involved	in	the	development	
endeavors,	is	the	primary	factor	for	characterizing	this	term	

• The	topic	of	large-scale	agile	development	has	been	lavished	attention	by	researchers	worldwide	
• Academic	interest	has	steadily	increased,	while	the	number	of	publications	started	to	accelerate	in	2013	
• While	the	topic	is	domicile	in	the	software	engineering	domain,	it	met	considerable	interest	in	various	

publication	channels	and	research	disciplines	
• The	research	field	is	mainly	characterized	by	empirical	and	qualitative	research,	signaling	an	apparent	

lack	of	quantitative	studies	
• Identification	of	13	seminal	studies	on	large-scale	agile	development	

• Most	seminal	publications	discuss	implications,	issues,	benefits,	and	success	factors	associated	with	the	
large-scale	adoption	of	agile	practices	in	plan-driven	organizations	

• The	systematic	literature	review	by	Dikert	et	al.	[DPL16]	is	the	most	influential	study	
• Research	on	large-scale	agile	development	is	clustered	into	ten	research	streams	

• While	early	research	started	with	contributions	related	to	the	agile	practices	at	scale,	global	and	
distributed	software	engineering,	and	scaling	agile	frameworks	research	streams,	we	noted	a	recent	
interest	by	researchers	in	the	team	autonomy	and	large-scale	agile	transformations	research	streams	

• Although	researchers	made	considerable	efforts	to	close	research	gaps	in	various	research	streams	of	
large-scale	agile	development,	a	total	of	81	research	questions	have	been	identified	

salient features. Alqudah and Razali [AR16] contrasted DAD, LeSS, Nexus, RAGE, SAFe, and
the Spotify Model (Spotify) based on various criteria, e.g., supported team sizes, available train-
ing and certificates, and underlying agile methods and practices. Since studies often examined
varying frameworks and simple literature searches revealed additional frameworks, we attempted
in P2 to obtain a complete overview of existing frameworks. The structured literature review
identified 20 scaling frameworks, of which several were sparsely investigated in previous studies,
e.g., Continuous Agile Framework and Enterprise Transition Framework. Using various crite-
ria, e.g., the number of contributions citing them or the number of known companies adopting
them, we assessed the maturity of the identified frameworks. While our results indicate that
most frameworks had a low to medium maturity, the three most often discussed frameworks
in the literature, i.e., SAFe, LeSS, and DAD, had the highest maturity (see P2). This finding
aligns with Digital.ai’s annual State of Agile survey [Dig20], stating that SAFe, LeSS, and DAD
are among the most widely adopted frameworks.

To deepen our primary analysis of scaling frameworks in P2 and extend the existing literature
that provides a one-sided analysis of frameworks mainly in the form of single-case studies (cf.
[Paa17, Gus18]), we used the list of the identified frameworks to survey their creators (see P3).
We extended the initial list of 20 scaling frameworks by additional two frameworks, namely HSD
and Parallel, as their methodologists approached us during two agile conferences (see P3). A
comprehensive overview of the 22 identified scaling frameworks is presented in Table 4.31.

1The names of scaling frameworks whose methodologists participated in our survey are set in bold.

77

4. Discussion

Table 4.3. Overview of scaling agile frameworks (based on P2 and P3)

Framework Methodologist Organization
Publication

date
Category Scaling level Maturity

Dynamic Systems Development

Method Agile Project Framework for

Scrum (DSDM)

Arie van Bennekum DSDM Consortium 1997 Framework Portfolio

Crystal Family (Crystal) Alistair Cockburn - 1998 Set of methods Team

Scrum-of-Scrums (SoS)
Jeff Sutherland and Ken

Schwaber
Scrum Inc. 2001 Mechanism Program

Large-Scale Scrum (LeSS) Craig Larman and Bas

Vodde
LeSS Company B.V. 2008 Framework Enterprise

Gill Framework (Gill) Asif Qumer and

Brian Henderson-Sellers
Adapt Inn 2008 Framework Enterprise

Enterprise Transition Framework
(ETF) - agile42 2011 Framework Enterprise

Mega Framework (Mega)
Rafael Maranzato, Marden

Neubert, and Paula

Heculano

Universo Online

S.A.
2011 Framework Portfolio

Scaled Agile Framework (SAFe) Dean Leffingwell Scaled Agile Inc. 2011 Framework Enterprise

Disciplined Agile Delivery (DAD) Scott Ambler
Disciplined Agile

Consortium
2012 Framework Enterprise

Enterprise Agile Delivery and Agile

Governance Practice (EADAGP)
Erik Marks AgilePath 2012 Set of practices Enterprise

Spotify Model (Spotify)
Henrik Kniberg, Anders

Ivarsson, and Joakim

Sundén

Spotify 2012 Model Enterprise

Recipes for Agile Governance in the

Enterprise (RAGE)
Kevin Thompson Cprime 2013 Framework Portfolio

Continuous Agile Framework (CAF) Andy Singleton Maxos LLC. 2014 Framework Program

Enterprise Scrum (eScrum) Mike Beedle
† Enterprise Scrum

Inc.
2014 Framework Enterprise

eXponential Simple Continuous
Autonomous Learning Ecosystem

(XSCALE)
Peter Merel Xscale Alliance 2014 Set of principles Enterprise

Holistic Software Development
(HSD)

Mike MacDonagh and Steve

Handy

Holistic Software

Consulting Ltd.
2014 Framework Enterprise

ScALeD Agile Lean Development

(SALD)

Peter Beck, Markus Gärtner,

Christoph Mathis, Stefan

Roock, and Andreas Schliep

- 2014 Set of principles Enterprise

FAST Agile (FAST) Ron Quartel Cron Technologies 2015 Set of methods Program

Lean Enterprise Agile Framework

(LEAF)
-

LeanPitch

Technologies
2015 Framework Enterprise

Nexus (Nexus) Ken Schwaber Scrum.org 2015 Framework Program

Parallel Agile (Parallel)

Doug Rosenberg, Brarry

Boehm; Matt Stephens,

Charles Suscheck, Shobha

Dhalipathi, and Bo Wang

Parallel Agile Inc. 2016 Set of methods Enterprise

Scrum at Scale (S@S) Jeff Sutherland and Alex

Brown
Scrum Inc. 2018 Framework Enterprise

78

4. Discussion

To better understand the dynamics of the scaling frameworks movement, we recorded the version
history of the participating frameworks and their inter-dependencies and plotted them in an
evolution map (see P3). While the first framework, namely Crystal Family, was created in 1997,
the real big breakthrough started after 2010, culminating in recent years (see P3). By comparing
our results with Abrahamsson et al. [AWSR03], we observed two notable parallels between
the movement of conventional agile methods and scaling frameworks. First, both movements
emerged from parallel innovation by consultants aiming to support organizations in adopting or
scaling agile methods. Second, similar to agile methods, scaling frameworks have continuously
emerged and evolved since the movement started. This trend is expected to continue as the
methodologists seemed to be committed to improving their frameworks in the future (see P3).

As part of the survey, we asked the creators of the frameworks what their intentions were in
creating those. We identified 12 reasons grouped into four categories: complexity, customer,
market, and organization (see P3). Most of the reasons fall into either the category of im-
proving the organization’s current state or dealing with the organization’s prevalent challenges,
which look similar to causes that trigger organizational changes [Sca21]. The most frequently
cited reasons were to improve the agility/adaptability of organizations and to improve collabo-
ration/coordination/synchronization among agile teams working on the same product (see P3).
While several reasons, e.g., dealing with increased complexity or scaling agile practices to more
people, were already described in previous studies (cf. [Paa17, PHK17]), we identified two rea-
sons not reported by the existing literature: descaling large product organizations into smaller
independent entities and improving customer involvement (see P3).

The survey also revealed 30 benefits of adopting scaling frameworks grouped into two categories:
business/product and organization/culture (see P3). The most commonly mentioned benefits
of adopting these frameworks were enabling frequent product deliveries, enhancing employee
satisfaction/motivation/engagement, and providing customer/business value. The majority of
the claimed benefits, e.g., enabling shorter feedback cycles or improving customer satisfaction,
were similar to benefits associated with the adoption of conventional agile methods and already
cited in previous studies (cf. [Dig20]). However, the creators did not mention general benefits
of adopting agile practices, e.g., improved productivity [Dig20]. We extended the literature by
two additional benefits, i.e., reducing headcount and fostering servant-leadership (see P3).

The survey resulted in the identification of 22 challenges grouped into three categories: im-
plementation, organization/culture, and scope (see P3). The two most commonly mentioned
threats associated with the adoption of scaling frameworks were: using scaling frameworks as
cooking recipes and not understanding the reasons why they should be applied, which at the
same time have also not yet been identified in the existing literature (see P3). Most of the
identified challenges, e.g., change resistance, moving away from agile, implementation is difficult
due to remaining power structures, and lack of management buy-in, were already reported in
previous studies (cf. [DPL16, KHR18, CC19b]). Since the usage of these frameworks is not a
silver bullet for scaling agile methods in large organizations or projects [PPL19], several creators
pointed out that leaders and change agents should focus on changing the culture and mindset
of the people instead of using these frameworks as cooking recipes (see P3).

An overview of the top-5 most cited reasons, benefits, and challenges is presented in Table 4.4.

79

4. Discussion

Table 4.4. Reasons, benefits, and challenges of using scaling agile frameworks (based on P3)

Top-5	reasons	 Top-5	benefits	 Top-5	challenges	

• Improving	the	agility/adaptability	of	
the	organization	

• Improving	the	collaboration/coordi-
nation/synchronization	of	agile	
teams	working	on	the	same	product	

• Dealing	with	increased	complexity	
• Descaling	large	product	organiza-

tions	in	smaller	independent	entities	
• Enabling	the	information/commu-

nication	flow	between	agile	teams	

• Enhancing	employee	satisfac-
tion/motivation/engagement	

• Enabling	frequent	product	
deliveries	

• Improving	software	quality	
• Providing	customer/business	

value	
• Fostering	the	creation	of	

autonomous	teams	

• Using	frameworks	as	cooking	
recipes	

• Using	frameworks	without	
understanding	for	what	reasons	
they	should	be	applied	

• Lack	of	management	buy-in	
• Moving	back	from	agile	to	tradi-

tional	management	approaches	
• Implementing	is	difficult	due	to	

framework	complexity	

Most case studies on scaling frameworks investigate the adoption of SAFe (cf. [PHK17, Paa17,
Gus18]). The empirical analysis of other frameworks, such as LeSS, has mainly been disregarded,
so we searched for potentially relevant cases to provide insightful findings regarding the adoption
of LeSS. Finally, we identified a German automobile manufacturer as a valuable case study
partner because it provided us with four different LeSS adoptions to study (see P4). While the
case company’s IT department had historically focused primarily on standardizing and cost-
optimizing to run its IT, its management decided to transform the department into an agile
product organization to improve its performance and agility. As part of the transformation, the
department committed to converting all ongoing projects to agile projects and fully aligning the
department with agile principles (see P4). Based on the success stories of their autonomous
driving department, many IT projects decided to implement LeSS. We selected four of these
projects for further investigation. While the four products comprised 3 to 15 agile teams, or 40 to
600 persons, mainly distributed over multiple locations, three adopted the basic LeSS framework,
and one of them the LeSS Huge framework (see Section 2.3.2.2). As part of the investigation,
we were primarily interested in (i) the reasons for adopting LeSS, (ii) the adaptations of the
framework to fit their organizational context, (iii) the challenges they faced during its adoption,
and (iv) the lessons learned they derived from its adoption (see P4).

The main reasons for adopting LeSS were handling the coordination between the teams and com-
pensating for the shortcomings of adopting Scrum in large-scale projects (see P4). Additional
reasons included LeSS’s moderate degree of complexity with its “more with LeSS” tenet (see Sec-
tion 2.3.2.2) while maintaining sufficient guidance for coordinating multiple agile teams working
on the same product. The products selected LeSS to transform from traditional project thinking
to product thinking and customer orientation (see P4). These reasons were also cited by the
inventors of scaling frameworks in P3 and identified in previous studies (cf. [TSD19, EWC21]).

Confirming previous studies that companies typically tailor scaling frameworks to their
structures and supplement these with additional practices to close their shortcomings (cf.
[EP17, RRN+18, SB19]), the studied products also made some adjustments (see P4). For
instance, they combined LeSS with existing lean and agile methods, e.g., Kanban, to man-
age features and track their progress using Kanban boards. They extended the standard LeSS
framework to include a higher domain level to coordinate all products on a higher organizational
level and align them with the organization’s strategic objectives (see P4).

80

4. Discussion

Although LeSS is minimalistic regarding providing additional guidance compared with other
scaling frameworks [KHR18], the observed products had concerns regarding additional inter-
team coordination meetings. Due to the shift of responsibilities of the middle management,
managers feared they would be obsolete in the future (see P4). These challenges are common in
scaling agile methods and were reported in previous studies (cf. [KHR18, TFW18]).

The studied products showed that clear communication of the overall picture could make the
LeSS adoption smoother by obtaining the commitment of all stakeholders and allaying their
fears. They reported that supplementary available training courses could facilitate the adoption
of LeSS (see P4). In line with our findings, Dikert et al. [DPL16] also noted that communicating
the goals of the transformation can help to remove confusion and make people understand the
purpose of the change. Similarly, Dikert et al. [DPL16] identified the provision of additional
training courses as a success factor in helping people become more positively inclined towards
the new way of working and making them enthusiastic about change.

Table 4.5 summarizes the key findings of the embedded publications related to RQ2.

Table 4.5. Overview of key findings related to RQ2

RQ	 No.	 Key	findings	

RQ2	

P2	

• Consultants	have	initiated	a	large	movement	of	scaling	agile	frameworks	
• Identification	of	22	scaling	frameworks	which	are	continuously	emerging	and	evolving	
• SAFe,	LeSS,	and	DAD	are	one	of	the	most	widely	adopted	as	well	as	mature	frameworks	

• Identification	of	twelve	key	reasons	behind	the	creation	of	scaling	agile	frameworks	
• The	creators	mainly	intend	with	creating	scaling	frameworks	to	improve	the	agility/adaptability	of	

organizations	and	the	collaboration	of	agile	teams	working	on	the	same	product	
• Identification	of	30	benefits	and	22	challenges	of	adopting	scaling	agile	frameworks	

• Enhancing	employee	satisfaction/motivation/engagement	and	enabling	frequent	product	deliveries	are	
the	most	cited	benefits	of	adopting	scaling	frameworks	

• The	most	indicated	challenges	associated	with	adopting	scaling	frameworks	are	using	them	as	cooking	
recipes	and	not	understanding	the	reasons	why	they	should	be	applied	

• The	adoption	of	LeSS	promises	several	benefits	but	should	be	performed	with	caution	
• With	the	adoption	of	LeSS,	the	German	automotive	manufacturer's	products	aim	to	enable	the	

transformation	from	temporary	projects	to	long-lasting	products	
• Standard	practices	of	LeSS	are	extended	to	tailor	it	to	the	organization	and	close	its	shortcomings	
• LeSS	adoption	may	result	in	having	dissatisfied	managers	retain	their	status	and	powers,	which	is	why	

clear	communication	of	the	big	picture	of	the	adoption	is	crucial	for	a	successful	adoption	

P3	

P4	

Key findings related to RQ3. Although early advice is that scaling agile methods is “probably
the last thing anyone would want to do” [RME03], companies still try to do this [DFP19],
which is why several face new challenges, e.g., dealing with a general resistance to changes or
coordinating several large-scale agile activities [Ket07, DPL16]. Compared to the rich body
of agile software development literature describing challenges (cf. [HBP09, ISM+15]) and best
practices (cf. [BDS+99, CH04, BCS+10]), literature on large-scale agile development neglects to
report challenges stakeholders face and adequate solutions to address them [UKCM18, UHM19].
Spurred by this research gap, we phrased the third research question as follows:

81

4. Discussion

Research question 3 (RQ3)

What are the concerns of stakeholders in large-scale agile development, and how can
they be addressed?

To answer the third research question, we conducted a structured literature review to identify
typical challenges stakeholders face in large-scale agile development (see P5). We created a
conceptual model to document best practices following the PDR method (see P6). Using the
proposed conceptual model, we identified typical challenges of agile coaches and scrum masters
and documented patterns to assist them (see P7).

In previous studies, several scholars have already endeavored to identify and describe the chal-
lenges of adopting agile methods at scale. For instance, Dikert et al. [DPL16] conducted a
systematic literature review and identified 35 challenges, e.g., general resistance to change, lack
of coaching, or internal silos kept, grouped into ten categories, e.g., agile difficult to implement
or lack of investment. Another example is Shameem et al. [SCKK18], who performed a sys-
tematic literature review to reveal challenges related to the scaling of agile methodologies, e.g.,
lack of communication and lack of commitment. Since the problems identified were not directly
linked to stakeholders, we attempted in P5 to obtain a complete overview of typical challenges
of stakeholders. Using a structured literature review, we identified 79 challenges (see P5). While
we identified 38 challenges that were reported in agile projects, e.g., managing technical debts
or establishing self-organization, we uncovered 41 challenges that were novel, e.g., sharing a
shared vision between the agile teams or managing dependencies to other existing environments
(see P5). This finding confirms the early advice from the agile community stating that scaling
agile methods is “probably the last thing anyone would want to do” [RME03]. Organizations not
only struggle with challenges arising from adopting agile methods at the team level but also
with issues emerging from scaling agile methods to higher organizational levels. The identified
challenges were later grouped into 11 categories, as shown in Figure 4.5.

14 (17.72%)

8 (10.13%)

8 (10.13%)

6 (7.59%)

5 (6.33%)

3 (3.80%)9 (11.39%)

4 (5.06%)

9 (11.39%)

10 (12.66%)

3 (3.80%)

0

2

4

6

8

10

12

14
Communication and coordination

Culture and mindset

Enterprise architecture

Geographical distribution

Knowledge management

MethodologyProject management

Quality assurance

Requirements engineering

Software architecture

Tooling

Figure 4.5.: Number challenges per category (based on P5)

We recorded many challenges regarding communication and coordination (see P5). This is not
surprising since most companies have difficulties coordinating multiple agile teams. Thus, a
large portion of the research conducted strives to understand and describe these issues (see P1).

82

4. Discussion

Consultants developed various scaling frameworks to assist organizations in solving coordination
issues (see P3). Comparing our results findings with those of Dikert et al. [DPL16], Shameem
et al. [SCKK18], and Kalenda et al. [KHR18], we made interesting observations. All studies
highlighted geographical distribution challenges. According to Shameem et al. [SCKK18], com-
munication is a significant factor that may negatively influence large-scale agile development
endeavors in geographically distributed environments. Similarly, Kalenda et al. [KHR18] stated
that having development teams spread across several sites may experience significant challenges
with agile development, as agile development emphasizes constant communication and team
spirit. A distributed environment makes these close relationships hard to obtain. According
to Dikert et al. [DPL16], coordination problems may occur when scaling agile methods over
many geographically dispersed sites. The distribution of the teams may have adverse effects,
e.g., reduced feelings of proximity when telecommunication is necessary or difficulties in arrang-
ing frequent meetings due to time zone differences. Moreover, Dikert et al. [DPL16] reported
the problem of coordinating several agile teams’ work as a central challenge. We had similar
findings, as we identified six challenges related to geographical distribution, e.g., the working
hours of cross-shore agile teams having to be synchronized or that companies have to deal with
lacking team cohesion at different locations (see P5). Two studies highlighted challenges related
to resistance to change and attachment to previous processes. While Kalenda et al. [KHR18]
argued that the opposition could occur at all organizational levels, including development teams
and middle and upper management, Dikert et al. [DPL16] stated that people are unwilling
to change unless the change is perceived easy enough. Similarly, we revealed that people have
doubts about changes, and obtaining buy-in, especially from the upper management, is essential
(see P5). However, none of the studies mentioned any architectural challenges that accounted
for about 20% of our identified challenges, e.g., integration issues and dependencies with other
subsystems and teams, and finding the right balance between architectural improvements and
business value (see P5). This observation is also in line with the general criticism that agile
development and particular large-scale development have received as both lack focus on archi-
tecture [DM14, RWN+15]. On top of the previous studies, we could directly link the challenges
to stakeholders facing them. For instance, while creating a proper upfront architecture design
of the system might be complicated for software architects, agile coaches might have the duties
to deal with incorrect practices of agile development. We created a list of stakeholders typi-
cally involved in large-scale agile development endeavors to do this mapping. We identified 14
stakeholders, e.g., agile coaches, enterprise architects, and scrum masters (see P5).

Table 4.6 shows the top-5 most reported challenges, challenge categories, and stakeholders.

We followed the recommendations by Meszaros and Doble [MD97] and analyzed several related
pattern languages to get an idea of the state of the art regarding the documentation of best
practices in large-scale agile development. We identified several pattern languages related to
agile software development that practitioners and researchers have proposed (see P6). For in-
stance, Coplien and Harrison [CH04] suggested more than 90 organizational patterns identified
in successful agile projects and presented them in a concise, written form. These patterns can
be applied to create new organizations from scratch or used to already existing organizations
[CH04]. Another example is provided by Beedle et al. [BCS+10], compiling a collection of es-
sential best practices for Scrum consisting of 11 patterns. The proposed pattern language can
be applied by agile teams that want to start implementing Scrum. It also provides a way to

83

4. Discussion

Table 4.6. Challenges and stakeholders in large-scale agile development (based on P5)

Top-5	challenges	 Top-5	challenge	categories	 Top-5	stakeholders	

• Coordinating	multiple	agile	teams	
that	work	on	the	same	product	

• Considering	integration	issues	and	
dependencies	with	other	subsystems	
and	teams	

• Coordinating	geographically	
distributed	agile	teams	

• Facilitating	shared	context	and	
knowledge	

• Managing	technical	debts	

• Communication	and	coordination	
• Software	architecture	
• Project	management	
• Requirements	engineering	
• Culture	and	mindset	

• Development	team	
• Product	owner	
• Scrum	master	
• Software	architect	
• Test	team	

organize the overall body of literature on Scrum, serving as a key entry point for beginners and
experts looking for more knowledge about Scrum and related disciplines [BCS+10]. After the
analysis of the pattern languages, we concluded the following shortcomings (see P6): (i) only a
small fraction of the more than 500 identified patterns may be applicable to large-scale agile de-
velopment (cf. [Scr21]), (ii) none of the proposed pattern languages categorized patterns in the
way they should be executed, and (iii) none of them included the concept of stakeholders which
practitioners highly desire (see P6). To address these deficiencies, in P6, we (i) created a concep-
tual model for documenting patterns in large-scale agile development, (ii) developed a pattern
language, consisting of multiple patterns and concepts, and (iii) exemplified four patterns that
can be applied to address concerns in large-scale agile development.

Inspired by the pattern language for EAM proposed by Ernst [Ern10] and further developed by
Schneider and Matthes [SM15], we adopted the idea of creating a pattern language, including
categorized patterns and stakeholders, and developed a conceptual model for documenting best
practices in large-scale agile development. The proposed conceptual model includes three pattern
types and four additional concepts (see P6):

• Stakeholders are persons who are actively involved in, have an interest in, or are in some
way affected by large-scale agile development endeavors.

• Concerns can manifest themselves in many forms, e.g., goals, responsibilities, challenges,
or risks.

• Principles are enduring and represent general guidelines that address given concerns by
providing a common direction for action.

• Coordination patterns define proven coordination mechanisms to address recurring coor-
dination concerns, i.e., managing dependencies between activities, tasks, or resources.

• Methodology patterns define concrete actions to be taken to address given concerns.

• Viewpoint patterns define proven ways to visualize information in form of documents,
boards, metrics, models, and reports to address recurring concerns.

• Anti-patterns describe typical pitfalls and present revised solutions, which help pattern
users to prevent these mistakes.

84

4. Discussion

• identifier
• name
• alias

Stakeholder

• identifier
• name
• category
• scaling level

Concern

• identifier
• name
• alias
• summary
• type
• binding nature
• example
• context
• problem
• forces
• variants
• consequences
• other standards
• known uses

Principle

• identifier
• name
• alias
• summary
• example
• context
• problem
• forces
• solution
• variants
• consequences
• other standards
• known uses

Pattern

• identifier
• name
• alias
• summary
• example
• context
• problem
• forces
• general form
• consequences
• revised solution
• other standards

Anti-Pattern

Methodology PatternCoordination Pattern

• type
• data collection

Viewpoint Pattern

* * *

*

*
has

is addressed by is addressed by
is addressed by

*

*

*

*

*

*

*
see also see also see also

see also see also
* * * *

Figure 4.6.: Conceptual model for documenting patterns (based on P6)

According to Buschmann et al. [BHD07] and Fowler [Fow06], there is no ideal pattern form,
and selecting a pattern form is a personal decision. It should also consider one’s writing style
and the ideas to be conveyed. Hence, we followed a similar template to document patterns in
large-scale agile development to Buschmann et al. [BMR+96] and Ernst [Ern10] (see P6). Figure
4.6 depicts the conceptual model, including the proposed patterns types and concepts and the
attributes used to document them.

To assess the structure and practical relevance of the conceptual model, we interviewed 14
experts from ten companies. In general, the proposed pattern types and concepts were found very
valuable. Most respondents indicated that they would use patterns to address their concerns,
helping them in their daily work (see P6). While the idea of patterns was met with positive
feedback, several experts pointed out some risks. First, patterns are context-specific and may
work very well in some organizations but not in others. Second, employees may focus too much
on applying a pattern correctly rather than understanding the problem and intentions behind the
pattern, similar to the over-reliance on scaling frameworks (see P3). We believe that the former
risk can be mitigated by applying the PDR method, in which researchers could help companies
select appropriate patterns and help them configure the patterns for their context. The second
risk can be mitigated by using patterns to guide decision-making and not prejudging decisions.
Some interviewees suggested using patterns for pedagogical purposes (see P6 and P7).

Based on observations and interviews as part of our research, we developed an initial version of
a pattern language. We visualized it in a pattern graph within a prototypical web application

85

4. Discussion

called “Scaling Agile Hub”2. Figure 4.7 provides the current version of the pattern language3,
which shows the different pattern types and concepts as nodes as well as their inter-relationships
as edges. The four emphasized nodes in Figure 4.7 were exemplified in P6 (see Table 4.7).

Figure 4.7.: Overview of the large-scale agile development pattern language (based on P6)

While the presented Strictly Separate Build and Run Stages principle aims to assist companies
in releasing stable and reliable cloud-native platforms in large-scale agile development, the ex-
emplified Community of Practice coordination pattern describes how organizations can build a
platform for knowledge sharing about a specific domain, e.g., agile coaching, front-end architec-
ture, information security. The Iteration Dependency Matrix viewpoint pattern provides a visual
board that organizations can use to display the dependencies of agile teams working on the same
product for upcoming iterations. The Don’t Use Agile as a Golden Hammer anti-pattern points
out the typical pitfall that companies obsessively tend to apply agile methods to all types of
software projects, even when traditional methods would suffice, i.e., for simple projects with
known technological implementation and requirements (see P6).

Since agile coaches and scrum masters are key facilitators of large-scale agile development en-
deavors [UM19] and are confronted with major difficulties in establishing an agile mindset across
organizations [DPL16], we used in P7 the list of challenges compiled in P5 and the conceptual
model proposed in P6. We interviewed 13 agile coaches and scrum masters to learn about their
challenges and to reveal best practices they can use to address their problems.

Out of the 79 challenges revealed based on the literature in P5, 36 of them were mentioned
by the interviewees, and additional 21 challenges were newly cited by the agile coaches and
scrum masters, resulting in the identification of 57 challenges. While previous challenges, e.g.,
forming and managing autonomous teams and dealing with internal silos, were confirmed by the

2https://scaling-agile-hub.sebis.in.tum.de/#/patterns
3We conducted more than 100 semi-structured interviews with various roles from more than 20 industry

partners. As a result, we identified 60 different patterns, which we plan to publish in a newer version of the
presented pattern language and a pattern catalog.

86

https://scaling-agile-hub.sebis.in.tum.de/#/patterns

4. Discussion

Table 4.7. Overview of large-scale agile development patterns (based on P6)

Pattern	name	 Pattern	summary	 Pattern	type	 Addressed	challenge(s)	 Known	uses	

Strictly	Separate	
Build	and	Run	Stages	

Separate	Build	and	Run	Stages	
ensures	that	an	application’s	
deployment	phases	are	clearly	
separated.	

Principle	
• How	can	a	cloud-native	

application	be	developed	in	a	
stable	and	timely	manner?	

5	

Community	of	
Practice	

A	Community	of	Practice	are	groups	
of	people	who	share	a	concern,	a	set	
of	problems,	or	a	passion	about	a	
topic,	and	who	deepen	their	
knowledge	and	expertise	in	this	area	
by	interacting	on	an	ongoing	basis.

Coordination	
pattern	

• How	to	create	a	platform	for	
active	knowledge	sharing	and	
discussion?	

5	

Iteration	
Dependency	Matrix	

Iteration	Dependency	Matrix	
visualizes	dependencies	among	
teams	for	the	upcoming	iterations.	

Viewpoint	
pattern	

• How	to	visualize	dependencies	
between	agile	teams?	

• How	to	coordinate	multiple	
agile	teams	that	work	on	the	
same	product?	

• How	to	consider	integration	
issues	and	dependencies	with	
other	subsystems	and	teams?	

4	

Don’t	Use	Agile	as	a	
Golden	Hammer	

Don’t	Use	Agile	as	a	Golden	Hammer	
shows	why	it	is	not	advisable	to	use	
agile	methods	in	order	to	solve	
many	kinds	of	problems.	

Anti-pattern	

• How	to	choose	the	correct	
software	development	
approach?	

• How	to	decide	whether	agile	
methods	should	be	used	for	a	
given	project?	

–	

interviewees, they cited demonstrating the value of add of agile methods and the coaching of
the higher management as significant challenges (see P7).

Based on the list of challenges, the interviewees were asked to outline practices to address them.
We revealed 76 pattern candidates and 15 patterns after applying the “rule of three” [Cop96]:

• 21 Methodology pattern candidates =⇒ 5 Methodology patterns, e.g., Piloting and Ob-
jectives and Key Results.

• 18 Viewpoint pattern candidates =⇒ 2 Viewpoint patterns, i.e., Global Impediment Board
and Good Practices Newsletter.

• 14 Coordination pattern candidates =⇒ 2 Coordination patterns, i.e., Supervision and
Community of Practice.

• 12 Principle candidates =⇒ 4 Principles, e.g., Celebrate Every Success and Consensus-
Based Decisions.

• 10 Anti-pattern candidates =⇒ 2 Anti-patterns, i.e., Don’t Use Frameworks as Recipes
and Don’t Overshoot Coordination Meetings.

Similar to P6, we showcased five patterns in P7 that are summarized in Table 4.8.

The presented Publish Good Practices principle strives to assist companies in communicating
experienced success stories and fostering a culture of continuous improvement. The showcased
Supervision coordination pattern describes how organizations can build a platform for discussing

87

4. Discussion

Table 4.8. Overview of patterns for agile coaches and scrum masters (based on P7)

Pattern	name	 Pattern	summary	 Pattern	type	 Addressed	challenge(s)	 Known	uses	

Publish	Good	
Practices	

Publish	Good	Practices	to	enable	a	
culture	of	open	communication	and	
continuous	improvement.	By	
applying	Publish	Good	Practices,	agile	
teams	are	encouraged	to	talk	about	
things	that	what	went	well	and	to	
share	their	achievements	with	other	
agile	teams		
	

Principle	

• How	to	deal	with	doubts	in	people	
about	changes?	

• How	to	facilitate	shared	context	
and	knowledge?	

• How	to	build	trust	of	stakeholders	
in	agile	practices?	

• How	to	establish	a	culture	of	
continuous	improvement?	

• How	to	establish	a	common	
understanding	of	agile	thinking	
and	practices?	

5	

Supervision	

A	Supervision	offers	agile	teams	a	
platform	to	discuss	their	current	
problems	in	a	small	and	closed	circle	
of	participants	and	jointly	find	and	
evaluate	solutions	to	these	problems.

Coordination	
pattern	

• How	to	encourage	development	
teams	to	talk	about	tasks	and	
impediments?	

3	

Global	
Impediment	
Process	

The	Global	Impediment	Process	
describes	a	structured	process	for	
identifying,	documenting,	and	
solving	impediments	that	affect	
multiple	agile	teams.	

Methodology	
pattern	

• How	to	establish	a	culture	of	
continuous	improvement?	

• How	to	encourage	development	
teams	to	talk	about	tasks	and	
impediments?		

5	

Global	
Impediment	
Board	

Global	Impediment	Board	shows	all	
impediments	of	an	organization	
which	are	ether	not	solvable	by	an	
agile	team	itself	or	are	relevant	for	
several	teams	in	a	company.	

Viewpoint	
pattern	

• How	to	encourage	development	
teams	to	talk	about	tasks	and	
impediments?	

5	

Don’t	Use	
Scaling	Agile	
Frameworks	as	
a	Recipe	

Don’t	Use	Scaling	Agile	Frameworks	
as	a	Recipe	shows	why	it	is	not	
advisable	to	over	rely	on	scaling	agile	
frameworks	without	training	people	
in	agile	values	and	principles	and	
tailoring	these	frameworks	to	the	
specific	needs	of	the	organization.	

Anti-pattern	 • How	to	deal	with	incorrect	
practices	of	agile	development?	 –	

current problems and solutions in small and closed circles of participants. The Global Impedi-
ment Process methodology pattern describes a structured process that organizations can use to
identify, document, solve, or escalate impediments that affect multiple agile teams. The Global
Impediment Board viewpoint pattern can be applied in combination with the Global Impediment
Process methodology pattern. It provides organizations with a visual representation of a board
that they can use to document global impediments in a uniform format and central manner
accessible to the employees. The Don’t Use Scaling Agile Frameworks as a Recipe anti-pattern
hints at the typical fallacy of companies over-relying on agile frameworks without questioning
whether they are helpful for addressing the actual problems of the company (see P6). The latter
was of particular interest because most respondents used scaling frameworks to support their
product developments. In the interviews, we noticed that the importance of scaling frameworks
to companies varied widely. While some interviewees saw the proper implementation as critical,
others viewed these frameworks as a means to an end and generally used them as inspiration (see
P6). The former concentrated too much on properly implementing a framework and tended to
use the frameworks as recipes (see Don’t Use Scaling Agile Frameworks as a Recipe anti-pattern).

88

4. Discussion

Although many creators suggest using their framework entirely and without modification, sev-
eral interviewees mentioned that their companies did not adopt the frameworks one-to-one but
adapted them to their needs (see P6). We observed two types of agile coaches during the in-
terviews: process-oriented and mindset-oriented agile coaches. The process-oriented coaches
mainly focused on the teams’ proper application of agile practices and methods. They proposed
best practices in the form of methodology patterns, e.g., Objectives and Key Results and Global
Impediment Process. The mindset-oriented coaches often explained concerns about adopting an
agile mindset across the company or creating an ideal working environment for agile teams. The
mindset-oriented coaches typically named principles, workshops, and visualizations for resolving
their concerns, e.g., Publish Good Practices principle and Supervision coordination pattern (see
P6). Our observations align with Kelly’s [Kel12] findings of two different coaching approaches:
directive and non-directive coaching. While process-oriented coaches often use a directive ap-
proach, mindset-oriented coaches mostly use non-directive coaching. In directive coaching, agile
coaches have extensive domain knowledge and train agile teams in the correct application of
agile practices. In contrast, the non-directive approach does not require coaches to be domain
experts. Instead, coaches seek to assist agile teams in focusing on their own goals and working
towards achieving them. While non-directive coaching is more appropriate for teams already
familiar with agile practices, the directive approach is more suited for new teams [Kel12].

Table 4.9 summarizes the key results of the embedded publications related to RQ3.

Table 4.9. Overview of key findings related to RQ3

RQ	 No.	 Key	findings	

RQ3	

P5	

• Identification	of	79	challenges	that	stakeholders	face	in	large-scale	agile	development	
• The	most	cited	challenges	are	coordinating	multiple	agile	teams	that	work	on	the	same	product	and	

considering	integration	issues	and	dependencies	with	other	subsystems	and	teams	
• Around	20%	of	the	identified	challenges	are	related	to	communication	and	coordination	between	agile	

teams	as	well	as	with	other	non-agile	units	
• Creation	of	a	conceptual	model	for	documenting	pattern	in	large-scale	agile	development	

• Using	a	combination	of	three	pattern	types	and	four	concepts	is	perceived	valuable	by	practitioners	
• Using	a	pattern	language	and	pattern	graph	can	enable	practitioners	to	quickly	identify	role-specific	

challenges	and	appropriate	patterns	
• Identification	of	57	challenges,	76	pattern	candidates,	and	15	patterns	for	agile	coaches	and	scrum	masters	

• A	significant	part	of	the	challenges	for	agile	coaches	and	scrum	masters	described	in	the	literature	is	also	
encountered	by	them	in	practice	

• The	five	showcased	patterns	can	assist	agile	coaches	and	scrum	masters	in	addressing	challenges	related	
to	encouraging	agile	teams	to	talk	about	their	impediments,	establishing	a	culture	of	continuous	
improvement,	and	dealing	with	incorrect	agile	development	practices	

P6	

P7	

Key findings related to RQ4. The collaboration between agile teams and architects is
crucial as “agility is enabled by architecture, and vice versa” [NÖK14, Wat14]. This topic has
been disregarded in existing studies, as they do not provide sufficient recommendations on (i)
how solution architects can be involved and (ii) how enterprise architects can support agile teams
at higher levels. In this light, we formulated the fourth research question as follows:

89

4. Discussion

Research question 4 (RQ4)

How do architects collaborate with agile teams and support them in large-scale agile
development?

To address the fourth research question, we conducted a single-case study to investigate the
collaboration between solution architects and agile teams on architectural issues in a large-scale
agile development program of a German consumer electronics retailer (see P8). We conducted
a multiple-case study to study the expectations of agile teams for enterprise architects and the
responsibilities and challenges of enterprise architects (see P9 and P10).

Previous studies have already indicated that the role of architects is demanding [DMFS18] and
that large-scale agile development endeavors without any form of architectural guidance can
hardly be successful [UHK+18]. Existing studies pointed out that architects face numerous
challenges in these environments, e.g., poor communication with agile teams and a lack of un-
derstanding of the value of architecture complicating the advancement of architectural topics
[Wat14, AMG16]. Although some studies presented tactics to incorporate architecture in large-
scale agile development (cf. [BNO12, NÖK14]), they still lack a concrete description of how
architects can be involved and how they communicate with agile teams. Against this back-
drop, we searched for a case study partner to support us in answering the questions mentioned
above. We identified a German consumer electronics retailer as a valuable case study partner.
It provided us with a large-scale agile development program involving multiple architects and
allowed us to perform social network analysis (see P8). In 2016, the German consumer electron-
ics retailer decided to relaunch a failed customer relationship management project using agile
methods. Due to the project’s complexity, the company’s management decided to relaunch the
project using SAFe because of its proven track record in large enterprises and comprehensive
documentation. The implementation of SAFe was initiated with a pilot project. After a few
PIs, the responsible management team realized that SAFe did not provide sufficient guidance for
coordinating agile teams, so they decided to combine SAFe with Spotify (see P8). At the time of
observation, the program included 62 employees and consisted of eight teams, one responsible for
coordination (Team A), four for actual development (Team B – Team E), and three belonging
to the company’s suppliers who provided external support for their third-party systems (Team
F – Team H). In addition to typical SAFe roles, the program also included two architect roles,
namely seven solution architects and four business process architects (see P8). As part of the
study, we were mainly interested in (i) how the architects were integrated into the program and
(ii) how they communicated with the agile teams (see P8).

Each team included 9 to 16 members from different areas of expertise, e.g., product owner,
scrum master, developer, and solution and business process architect. The architects were actual
members of the agile teams, which typically included one solution architect and one business
process architect, except Team A with no architects and Team B with four solution architects
(see P8). While each solution architect took care of the team’s system architecture with its
subsystems and interfaces, each business process architect was in charge of its team’s business

90

4. Discussion

architecture4. Both roles were responsible for making architectural decisions and guiding their
teams to fulfill the required architectural standards (see P8).

To understand the communication of the architects with the teams, we explored how they
exchanged architecture-related information both within the team and with other teams in the
large-scale agile development program (see P8). To this end, we used social network analysis to
visualize the information exchange and identify communication patterns (see Section 2.5).

Figure 4.8 visualizes the communication networks of each team, with team members represented
as nodes and their architecture-related interactions represented as edges, which are shorter the
more frequent they are5. An analysis of the intra-team communication networks in Figure 4.8
shows an all-channel network pattern in all teams, meaning that architecture-related interactions
within the teams were decentralized and non-hierarchical, allowing all team members, regardless
of their roles, to communicate freely and directly with all other members. This communication
also coincides with the values and principles of agile development. The analysis also indicates
that the solution and business process architects usually were located in the center of the commu-
nication networks, forming the leading role in architecture-related topics. They communicated
with all team members, usually daily (except in Team B) (see P8). The comparison between
solution and business process architects reveals that the former shared much more frequently
in their teams about architecture topics than the latter. This finding is consistent with our
observations that business process architects were newly introduced to the program, and their
specific roles remained unclear (see P8). This finding is confirmed by calculating the normalized
degree centrality 𝐶 ′

𝐷 for all solution and business process architects. While the average normal-
ized degree centrality 𝐶 ′

𝐷 for all solution architects was 0.9775, the average normalized degree
centrality 𝐶 ′

𝐷 for all business process architects was 0.4825 (see P8). An interesting observation
could be made for Team B (see Figure 4.8a) as it was the only team having four solution ar-
chitects. A centralized wheel network pattern was observed among the four solution architects,
three of whom were externally and led by the internal solution architect (see P8).

(a) Team B (b) Team C (c) Team D (d) Team E

Solution Architect Business Process Architect Other Roles

Figure 4.8.: Intra-team architecture sharing (based on P8)

4At the time of observation, business process architects were new to the program.
5Team A is not included in this analysis because it had no architects.

91

4. Discussion

Figure 4.9 displays the communication networks in the large-scale agile development program in
chronological order. While Figure 4.9a indicates interactions that occur at least every PI (two
and a half months), Figure 4.9e implies constant exchanges that occur several times a day. A
general inspection of Figure 4.9 shows that Team A, which has the coordinating role for the
program, is located in the center of the graphs, indicating that this team frequently exchanged
information with all other teams related to architectural topics (see P8). Furthermore, a close
collaboration was observed between Team B and Team E, and between Team B and Team D,
due to architectural dependencies between the systems they worked on. Figure 4.9 also shows
that the solution and business process architects were intensely involved in the architectural
exchange, indicated by large nodes. This observation suggests that they were not only sharing
information within their teams but also with others outside their teams, especially with other
architects. The normalized degree centrality 𝐶 ′

𝐷 of the solution and business process architects
shows that solution architects from Team D and Team E and the business process architect from
Team E were very actively involved in the inter-team architecture exchange, as they are also
represented as large nodes (see P8). A temporal analysis of Figure 4.9 shows that all individuals
were involved in architecture-related interactions between the teams on an occasional basis (see
Figure 4.9a). At the same time, the solution and business process architects constantly facilitated
the exchange of architecture-related information between the agile teams (see Figure 4.9e).

Chief Product Owner

Test Manager

IT Project Manager

Delivery Manager

Test Analyst

QA & Test Manager

Test Analyst

Test Analyst

Test Analyst

Developer

Solution Architect

Solution Architect

Developer

Solution Architect

Data Analyst

Test Analyst

Product Owner

Solution Architect

Scrum Master

Business Process Architect

Developer

QA & Test Manager

Developer

Scrum Master

Scrum Master

Product Reliability Engineer

Developer
Developer

Solution Architect

IT Project Manager

Business Process Architect

Developer
Product Owner

Solution Architect

Data Analyst

DeveloperDeveloper

Developer

Scrum Master

Product Owner

Product Reliability Engineer
Business Process Architect

Developer

Product Reliability Engineer

Data Analyst

QA & Test Manager

Developer

Developer

Developer

Product Reliability EngineerTest Analyst

Developer

Developer

Business Process Architect

Solution Architect

Product Owner

Scrum Master

Scrum Master

Developer

Product Owner

Product Owner

IT Project Manager

Team C

Team B

Team E

Team A

Team D

(a) Minimum 1x PI

Chief Product Owner

Test Manager

IT Project Manager

Delivery Manager

Test Analyst

QA & Test Manager

Test Analyst

Test Analyst

Test Analyst

Developer

Solution Architect

Solution Architect

Developer

Solution Architect

Data Analyst

Test Analyst

Product Owner

Solution Architect

Scrum Master

Business Process Architect

Developer

QA & Test Manager

Developer

Scrum Master

Scrum Master

Product Reliability Engineer

Developer
Developer

Solution Architect

IT Project Manager

Business Process Architect

Developer
Product Owner

Solution Architect

Data Analyst

DeveloperDeveloper

Developer

Scrum Master

Product Owner

Product Reliability Engineer
Business Process Architect

Developer

Product Reliability Engineer

Data Analyst

QA & Test Manager

Developer

Developer

Developer

Product Reliability EngineerTest Analyst

Developer

Developer

Business Process Architect

Solution Architect

Product Owner

Scrum Master

Scrum Master

Developer

Product Owner

Product Owner

IT Project Manager

Team C

Team B

Team E

Team A

Team D

(b) Minimum 1x iteration

Chief Product Owner

Test Manager

IT Project Manager

Delivery Manager

Test Analyst

QA & Test Manager

Test Analyst

Test Analyst

Test Analyst

Developer

Solution Architect

Solution Architect

Developer

Solution Architect

Data Analyst

Test Analyst

Product Owner

Solution Architect

Scrum Master

Business Process Architect

Developer

QA & Test Manager

Developer

Scrum Master

Scrum Master

Product Reliability Engineer

Developer
Developer

Solution Architect

IT Project Manager

Business Process Architect

Developer
Product Owner

Solution Architect

Data Analyst

DeveloperDeveloper

Developer

Scrum Master

Product Owner

Product Reliability Engineer
Business Process Architect

Developer

Product Reliability Engineer

Data Analyst

QA & Test Manager

Developer

Developer

Developer

Product Reliability EngineerTest Analyst

Developer

Developer

Business Process Architect

Solution Architect

Product Owner

Scrum Master

Scrum Master

Developer

Product Owner

Product Owner

IT Project Manager

Team C

Team B

Team E

Team A

Team D

(c) Minimum 2-3 x iteration

Chief Product Owner

Test Manager

IT Project Manager

Delivery Manager

Test Analyst

QA & Test Manager

Test Analyst

Test Analyst

Test Analyst

Developer

Solution Architect

Solution Architect

Developer

Solution Architect

Data Analyst

Test Analyst

Product Owner

Solution Architect

Scrum Master

Business Process Architect

Developer

QA & Test Manager

Developer

Scrum Master

Scrum Master

Product Reliability Engineer

Developer
Developer

Solution Architect

IT Project Manager

Business Process Architect

Developer
Product Owner

Solution Architect

Data Analyst

DeveloperDeveloper

Developer

Scrum Master

Product Owner

Product Reliability Engineer
Business Process Architect

Developer

Product Reliability Engineer

Data Analyst

QA & Test Manager

Developer

Developer

Developer

Product Reliability EngineerTest Analyst

Developer

Developer

Business Process Architect

Solution Architect

Product Owner

Scrum Master

Scrum Master

Developer

Product Owner

Product Owner

IT Project Manager

Team C

Team B

Team E

Team A

Team D

(d) Minimum daily stand-up

Chief Product Owner

Test Manager

IT Project Manager

Delivery Manager

Test Analyst

QA & Test Manager

Test Analyst

Test Analyst

Test Analyst

Developer

Solution Architect

Solution Architect

Developer

Solution Architect

Data Analyst

Test Analyst

Product Owner

Solution Architect

Scrum Master

Business Process Architect

Developer

QA & Test Manager

Developer

Scrum Master

Scrum Master

Product Reliability Engineer

Developer
Developer

Solution Architect

IT Project Manager

Business Process Architect

Developer
Product Owner

Solution Architect

Data Analyst

DeveloperDeveloper

Developer

Scrum Master

Product Owner

Product Reliability Engineer
Business Process Architect

Developer

Product Reliability Engineer

Data Analyst

QA & Test Manager

Developer

Developer

Developer

Product Reliability EngineerTest Analyst

Developer

Developer

Business Process Architect

Solution Architect

Product Owner

Scrum Master

Scrum Master

Developer

Product Owner

Product Owner

IT Project Manager

Team C

Team B

Team E

Team A

Team D

(e) Constant

Solution Architect Business Process Architect Other Roles

Figure 4.9.: Inter-team architecture sharing (based on P8)

92

4. Discussion

Although some articles are available that describe the role of enterprise architects (cf.
[CCJ+18, HDSD20]), they still lack to provide a cross-case analysis of how enterprise archi-
tects should support large-scale agile development endeavors. We agree with Hanschke et al.
[HEK15] and Canat et al. [CCJ+18] that more empirical research is needed in this context.
Motivated by this backdrop, we sought out case study partners, having several ongoing large-
scale agile development endeavors and well-established EAM functions, helping us to answer the
above questions. We selected five cases from different industries that were based in Germany,
i.e., a global insurance company (with 140,000+ employees), an automobile manufacturer (with
130,000+ employees), an IT company (with 7,000+ employees), a consumer electronics retailer
(with 50,000+ employees), and a public sector insurance company (with 6,700+ employees) (see
P9 and P10). We conducted 38 interviews with various roles, e.g., developers, enterprise ar-
chitects, and managers. All case companies started enterprise-wide change processes between
2015 and 2017. The main reasons for these change processes were to create modern working
environments for employees, improve the time-to-market of new products, and increase customer
satisfaction, to name a few. Some change processes started with large pilot projects, others with
large pilots in entire business units. All cases used a combination of different scaling frameworks
to support their change processes, most notably SAFe, LeSS, Spotify, and a customized and
scaled version of Scrum. As part of the study, we were primarily interested in (i) agile teams’
expectations of enterprise architects and the extent to which these are met, (ii) enterprise ar-
chitects’ responsibilities and ways of working in supporting agile teams, (iii) the challenges of
enterprise architects in supporting agile teams (see P9 and P10).

We used the organization-specific agile EAM practice model proposed by Hauder et al.
[HRSM14] to identify the agile teams’ expectations for enterprise architects and how these are
met. We used the agile EAM model and focused on the activities, which are relevant for the col-
laboration that consist of seven aspects, namely (i) models, (ii) availability, (iii) communication,
(iv) involvement, (v) support, (vi) feedback, and (vii) recommendation (see P9).

While enterprise architects provided a wide range of architectural models for agile teams, e.g.,
application landscape diagrams, business capability maps, and data models, the agile teams’
primary expectations were that the models should be provided timely, include a description of
their binding nature, have an appropriate level of quality and consistency, and reflect details
relevant to the agile teams. Other mentioned expectations were that the models should provide
clear added value for the agile teams and be applicable (see P9). The interviewees felt that the
architecture models provisioned by the enterprise architects only partially met the agile teams’
expectations. The agile teams generally considered the models too abstract or too unspecific
and therefore judged them irrelevant. Some respondents also indicated that the models were
not provided on time. Interestingly, enterprise architects perceived the models most negatively,
acknowledging that the models did not provide sufficient guidance for implementation by agile
teams and were therefore mainly considered impractical (see P9).

In all companies, the general statement from the interviewees was that enterprise architects
should not be part of agile teams and should remain in their overarching role. Agile teams
expected enterprise architects to be available when needed to support and consult them on
architecture issues. However, primarily due to capacity constraints, this expectation was only
partially met as agile teams reported having difficulty finding enterprise architects. The commu-

93

4. Discussion

nication between agile teams and enterprise architects mainly occurred indirectly through third
roles, e.g., solution and domain architects (see P9). Some agile teams were able to communicate
directly with enterprise architects via phone, email, or face-to-face meetings. In some companies,
enterprise architects and agile teams were co-located in the same building, improving their com-
munication due to shorter physical and communication distances. In instances where enterprise
architects were directly involved in large-scale agile development projects, the communication
between enterprise architects and agile teams was mainly facilitated via agile events, e.g., daily
scrums, sprint plannings, or sprint retrospectives (see P9).

In all cases, the agile teams expected more frequent and personal contact with the enterprise
architects and considered communication via third parties sub-optimal (see P9). Several agile
teams indicated that their expectations for communication with the enterprise architects were
not met. They argued that enterprise architects had less time, lacked technological expertise,
and did not provide appropriate communication channels, affecting the speed and quality of the
communication. They also indicated that direct communication channels were lacking and that
they had to put a lot of effort into finding the right persons. Similar observations were made
by Canat et al. [CCJ+18], stating that the communication between enterprise architects and
agile teams is a major issue. Some agile teams found communication with enterprise architects
valuable through the existence of direct communication channels and open dialogues (see P9).

We noticed that the involvement of agile teams in relevant architectural processes differed across
the cases and that agile teams expected to be involved in the creation of intentional architectures.
Although agile teams follow the emergent design principle of the Agile Manifesto [BBvB+01],
most of them felt left out regarding their involvement in the architecture process because of weak
collaboration. They called for greater participation in the creation of an intentional architecture.
Interestingly, they did not insist on full autonomy as long as they were involved in architectural
decision-making (see P9). Several enterprise architects shared this view and stated that they
could not involve agile teams due to their fully exhausted capacity. Some managers indicated
that not all agile teams could be involved in architecture processes as this would constitute a
scaling issue, and they lack an overarching view of the company (see P9).

Enterprise architects supported agile teams by providing architectural principles, tools, technol-
ogy stacks, technical roadmaps, and architectural advice and support. In some cases, enterprise
architects even experimented with new technologies and collaborated with agile teams on a
code basis. Agile teams primarily expected enterprise architects to provide practical solutions
and support in selecting new tools and personal support and guidance in realizing architectural
target states (see P9). We agree with Drews et al. [DSHT17] and Kulak and Li [KL17] and
believe that enterprise architects should also focus on technologies and keep their technological
knowledge up-to-date to provide adequate support for agile teams. We noticed that most agile
teams were not satisfied with the current circumstances. They complained about the lack of
support from enterprise architects due to capacity problems and a lack of technological know-
how. Interestingly, enterprise architects had similar perceptions and stated that they could not
provide adequate support due to time restrictions and missing technological know-how. Several
observed EAM initiatives tried to address these challenges by adopting agile and lean methods.
This observation is consistent with Hauder et al. [HRSM14] and Hanschke et al. [HEK15], stat-
ing that the number of EAM initiatives using agile and lean practices to improve their efficiency

94

4. Discussion

and productivity is increasing. Most managers had a positive perception and praised that their
enterprise architects received positive feedback and were demanded by agile teams (see P9).

We observed that no formal feedback processes between agile teams and enterprise architects
existed. Agile teams were only able to provide feedback informally and as needed. In this respect,
agile teams could use typical communication media, e.g., e-mail, face-to-face meetings, or CoPs.
Agile teams expected to have regular appointments with enterprise architects or continue to use
the CoPs or personal dialogues for feedback purposes. In all case companies, the interviewees
appreciated the enterprise architects’ reflection on the feedback of agile teams. They stated that
the enterprise architects reflected the input from agile teams, e.g., by providing new or revised
architecture artifacts or attempting to work more closely with agile teams (see P9). Some agile
teams stated that their expectations were not fulfilled due to the lack of a feedback culture
and mechanisms. The majority of the enterprise architects felt that the expectations of the
agile teams for the opportunity to provide feedback were met and explained this by listing some
feedback opportunities, e.g., workshops, e-mail, or personal face-to-face meetings (see P9).

We used the Net Promoter Score (NPS) and asked the three stakeholder groups: agile teams,
enterprise architects, and managers, the question: How likely would you recommend an enter-
prise architect to an agile team? Figure 4.10 shows the results of the NPS calculations for
the three stakeholder groups (see P9). While all interviewed managers would recommend en-
terprise architects (𝑁𝑃𝑆 = 100.00%), agile teams were not satisfied with the current support
(𝑁𝑃𝑆 = −37.50%). Interestingly, while most of the interviewed enterprise architects would
recommend themselves and seemed satisfied with how they support agile teams, some were also
critical of their current support (𝑁𝑃𝑆 = 76.92%) (see P9). We deduced that managers had a
positive perception and agile teams had a negative attitude towards enterprise architects. This
observation indicates that the added value of enterprise architects has not reached the team
level, which is a similar result to that of Canat et al. [CCJ+18].

Figure 4.11 provides an aggregated overview of each stakeholder group’s assessment of how
enterprise architects met agile teams’ expectations alongside the seven investigated aspects.
Our results reconfirm that the added value of enterprise architects has not reached agile teams.
In addition, we observed that enterprise architects’ self-perceptions and the external perceptions
of others differed. Enterprise architects seemed confident about their support, agile teams had
a rather negative perception and seemed less satisfied with the provided support (see P9).

We were interested in determining what responsibilities enterprise architects had and how
they changed their working methods. We identified 17 responsibilities of enterprise architects
(see P10). In addition to typical tasks, e.g., developing architectural artifacts like standards,
roadmaps, and principles, enterprise architects were also expected to discover and test new
technologies or identify and manage dependencies between agile teams (see P10). Enterprise
architects were responsible for developing a shared understanding of architecture across the
company, e.g., organizing training on architecture fundamentals or CoPs to facilitate sharing
information and insights on architecture topics. With the ongoing change processes in the case
companies, the architectural decision-making authority shifted from the enterprise architects to
the agile teams. Enterprise architects were responsible for supporting the architectural decision-
making process of the agile teams (see P10). Along with this change, enterprise architects worked
with agile teams and argumentatively convinced them so that they worked toward the envisaged

95

4. Discussion

1

10

4

15

3

3

6

4

4

0

5

10

15

20

25

30

Agile Teams Enterprise Architects Managers Total

Promoters Passives Detractors

NPS = -37.50% NPS = 76.92% NPS = 100.00% NPS = 44.00%

Figure 4.10.: Net promoter score of enterprise
architects (based on P9)

1
2
3
4
5
6
7
8
9
10

Models

Availability

Communication

InvolvementSupport

Feedback

Recommendation

Enterprise Architects Agile Teams Managers

1

2

3

45

6

7

Figure 4.11.: Expectation fulfillment by enter-
prise architects (based on P9)

architectural direction. Enterprise architects were viewed as service providers and consultants
responsible for providing tools, offering consultation for architectural issues, or assisting agile
teams in resolving architectural impediments (see P10). Similar observations were made by
Babar et al. [BBM13], stating that agile teams are increasingly empowered to make local archi-
tectural decisions. This change entails a paradigm shift of mindsets, i.e., enterprise architects
take on the role of “advisory servant” rather than a “command and control ” philosophy. Like
Drews et al. [DSHT17], we witnessed that enterprise architects consulted agile teams to realize
architectural standards and acted as facilitators for inter-team architecture exchange.

We observed several changes in the enterprise architects’ working with the changing responsi-
bilities. We identified 15 changes in the working methodology of enterprise architects (see P10).
The most notable changes were regarding weaning the two typical anti-patterns of enterprise ar-
chitects, namely “Big Design Upfront” and “Ivory Tower ” [UM20b]. Instead of excessive efforts
to create “perfect” and “outdated ” architecture models that typically involve tedious conceptu-
alization phases, enterprise architects adopted agile and lean practices to create evolving and
simple architecture models. Instead of working in isolation and creating artifacts that do not
address genuine concerns of agile teams, enterprise architects spent most of their time commu-
nicating and collaborating with agile teams. For instance, they enabled a collaborative process
to create target architectures with agile teams (see P10).

The interviewees cited 17 challenges that enterprise architects faced (see P10). Across all com-
panies, the interviewees cited the challenge of enterprise architects having to deal with the agile
teams’ lack of understanding of the value of enterprise architecture. Originating from this dif-
ficulty, agile teams tended to view external recommendations from enterprise architects with
skepticism. As a result, enterprise architects without decision-making authority had problems
driving the case companies’ architecture strategies (see P10). The interviewees pointed out some
challenges that arose from the tension between agile and architecture, similar to those reported
by Hanschke et al. [HEK15]. For example, while agile teams were under pressure to deliver new
features and had less time for architectural improvements, enterprise architects were responsible
for building sustainable architectures that reflected companies’ long-term strategies. Because of

96

4. Discussion

this tension, the case companies reported the accumulation of new technical debts. This obser-
vation is consistent with the findings of Dingsøyr et al. [DMFS18], stating that the pressure
of agile teams to deliver business functionality can lead to negligence of long-term architectural
improvements. Other reported challenges emerged from the high frequency of changes made in
the solutions, which required the enterprise architects to do more continuous architectural work
(see P10). Enterprise architects’ lack of capacity was also reported as a challenge, wherefore
they had difficulties tracking and evaluating the progress of agile teams in achieving predefined
architecture goals. The impact of the change processes on architectural decision-making led to
confusion regarding the distribution of responsibilities for architectural issues (see P10).

Table 4.10 shows the top-5 most reported responsibilities, changes in the way of working, and
challenges of enterprise architects.

Table 4.10. Duties, way of working, and challenges of enterprise architects (based on P10)

Top-5	responsibilities	 Top-5	way	of	working	 Top-5	challenges	

• Collaborating	with	stakeholders	to	
develop	the	company's	
architectural	roadmap		

• Collaborating	with	agile	teams	to	
guide	them	through	architectural	
requirements	and	roadmaps		

• Facilitating	architectural	decision-
making	process	of	agile	teams	

• Creating	and	communicating	
architecture	principles	and	
ensuring	their	compliance		

• Organizing	communities	of	
practices	and	architecture	boards	

• Avoiding	big	design	upfront	by	
creating	the	simplest	architecture	
that	can	possibly	work		

• Leaving	the	'ivory	tower'	by	closely	
collaborating	with	agile	teams	

• Involving	agile	teams	in	the	
architectural	decision-making	
process	instead	of	deciding	over	
their	heads		

• Using	new	tools	such	as	
collaboration	tools	of	agile	teams	

• Creating	architecture	roadmaps	
with	shorter		

• Dealing	with	a	lacking	
understanding	of	enterprise	
architecture	

• Balancing	short-term	and	long-
term	planning	

• Balancing	upfront	and	emergent	
architecture	

• Dealing	with	acceptance	issues	by	
agile	teams	

• Dealing	with	the	loss	of	decision-
making	power	

Table 4.11 summarizes the main results of the embedded publications related to RQ4.

Table 4.11. Overview of key findings related to RQ4

RQ	 No.	 Key	findings	

RQ4	

P8	
• Solution	and	business	process	architects	are	actively	involved	in	large-scale	agile	development	endeavors	

• Both	roles	are	team	members	of	agile	teams,	taking	care	of	the	teams’	system	and	business	architectures	
• Both	intra-team	and	inter-team	architectural	exchanges	are	driven	primarily	by	the	two	architect	roles,	

allowing	all	members	of	the	teams	to	communicate	freely	and	directly	with	each	other	
• Enterprise	architects	are	expected	to	take	both	a	coordinating	and	overarching	role	as	well	as	an	advisory	

and	servant	leadership	role	in	supporting	agile	teams	
• Agile	teams	have	multifaceted	expectations	for	enterprise	architects,	including	providing	up-to-date	

architectural	models,	having	direct	and	frequent	communication,	providing	technical	guidance,	and	
establishing	an	open	feedback	culture	

• While	managers	have	a	very	positive	perception	of	enterprise	architects	and	consider	expectations	to	be	
met,	agile	teams	have	a	rather	negative	perception	

• Apart	from	traditional	architectural	duties,	enterprise	architects	facilitate	the	architectural	decision-
making	process	of	agile	teams	and	organize	communities	of	practices	for	architecture	

• The	daily	work	of	enterprise	architects	shows	a	dramatic	shift,	with	them	adopting	agile	and	lean	
practices	and	spending	most	of	their	time	collaborating	with	agile	teams	on	architectural	matters	

• Due	to	the	lack	of	decision-making	power,	enterprise	architects	have	difficulties	driving	architectural	
issues	with	agile	teams	

P9	

P10	

97

4. Discussion

4.2. Implications for Research

The results of this dissertation have several implications for theory. Below, we summarize the
theoretical contribution of the dissertation and its embedded publications, along with the four
research questions (see Section 1.2) that guided the dissertation.

Implications for research related to RQ1. Leveraging the advantages of systematic map-
ping studies that provide a broad overview of research landscapes [PFMM08], our results help
researchers to get a sound introduction to the current state of research by providing researchers
(i) an overview of the most popular publication venues where the research community meets to
discuss research findings, interests, and possible future research collaborations, (ii) a list of in-
fluential studies that researchers can use as foundational literature to build their research efforts
upon, and (iii) an outline of the central research themes to more easily situate their research in
the landscape and find researchers with similar research interests (see P1). Based on the analysis
of various research facets, e.g., research types and research approaches, our findings comprise a
classification of the current literature that researchers can use to identify and address research
gaps, e.g., developing conceptual models and theories to strengthen the theoretical foundations
of large-scale agile development research or creating rigorously developed frameworks, methods,
and tools to assist practitioners (see P1). Our findings outline a research agenda consisting of
a thorough description of research gaps alongside the identified open research questions that
researchers can use as a starting point for their new research efforts (see P1).

Implications for research related to RQ2. While most studies either focus on a specific
framework or provide a comparison of the most popular ones [EWC21], our results comprise
a comparative list of 20 scaling frameworks whose real-world application can be explored by
researchers (see P2). Unlike previous works, our results include a breakdown of the benefits
and challenges for each scaling framework, which researchers can build upon to quantitatively
assess and validate their inventors’ claimed benefits and challenges, providing complete evidence
on scaling frameworks that can be useful to practitioners (see P3). Because we conducted an
exploratory single-case study due to the lack of detailed prior research, researchers can use our
findings to build and strengthen theories about the application of scaling frameworks in industry
and explain their adoption in organizations (see P4).

Implications for research related to RQ3. The large-scale adoption of agile methods entails
various difficulties for companies [DPL16]. Hence, our findings comprise a list of 79 challenges
that researchers can use to determine which of the listed challenges are occurring in practice
and the most serious ones that must be addressed as they could harm large-scale agile endeavors
(see P5). To address the observed challenges in practice, researchers can help organizations
in selecting and adopting our proposed patterns and derive a set of lessons learned from their
practical application, which researchers can, in turn, share with the research community (see P6
and P7). Researchers can also use our proposed conceptual model to document their own best
practices, which can be adopted in organizations to address their issues (see P6).

Implications for research related to RQ4. Although there is rising interest from academia
and industry to connect the two concepts of agility and architecture [BKNÖ14, RWN+15],
empirical studies on exploring the collaboration between architects and agile teams are still
scarce [HEK15, CCJ+18]. Thus, our results include a description and several communication

98

4. Discussion

network graphs of how business process and solution architects collaborate with agile teams,
which scholars can build upon to assess the effects of communication patterns on the performance
of agile teams (see P8). As we performed an exploratory multiple-case study due to the lack
of previous research, scholars can use our results to explain the role of enterprise architects in
assisting large-scale agile development efforts and in developing new theories (see P9 and P10).

4.3. Implications for Practice

In addition to the implications for theory, this dissertation also has several implications for
practice, providing practitioners with actionable insights into the emerging phenomenon of large-
scale agile development. In what follows, we will discuss the practical implications based on the
four research questions that guided the dissertation.

Implications for practice related to RQ1. The lack of shared understanding of the term
“ large-scale agile development” can lead to misunderstandings and conflicts among stakeholders
involved in large-scale agile development endeavors, making it challenging to collaborate with
others. Our findings enable practitioners to have a common terminology and perspective on
large-scale agile development by describing how the existing literature characterizes this term
based on reported case characteristics (see P1). Practitioners can use our results to identify (i)
relevant venues where scientific knowledge is created to take inspiration for solving problems
that researchers have already addressed and (ii) researchers who contribute to this area to catch
future collaboration opportunities (see P1). We also present a logical organization of the research
field utilizing a topic map that practitioners can use to effectively locate research results that
can be used to address their problems related to large-scale agile development (see P1).

Implications for practice related to RQ2. Selecting a particular scaling framework is prob-
lematic for companies due to the lack of assessment models to guide critical decisions about
adopting a specific framework [CC19b]. As a result, the selection is often not done systemati-
cally but merely based on a framework’s popularity, the recommendations of consultants, or an
ad hoc decision based on reading a book or attending a talk [DST18, CC19b]. Our results sup-
port practitioners to make informed decisions when selecting scaling frameworks by providing
a comprehensive list of these frameworks and their key characteristics (see P2). Our findings
furnish practitioners with the main factors they should consider when deciding on adopting
scaling frameworks by providing a thorough description of the relative strengths, weaknesses,
and challenges they might face when adopting these frameworks (see P3). Practitioners can use
our findings as decision support by learning how a German automobile manufacturer adopted
LeSS and what challenges and success factors were encountered during the adoption to ensure
a successful implementation of a scaling framework in their companies (see P4).

Implications for practice related to RQ3. Although adopting agile practices at scale has
proven to be very difficult, and companies are facing unprecedented challenges [DD08, DPL16],
companies still try to adopt these methods in larger projects and organizations [DFP19]. Ac-
cordingly, our findings provide a single resource for practitioners, guiding them on the challenges
they can expect to face when scaling agile methods, and a link to empirical research, providing
further information about the challenges and potential approaches to resolving them (see P5).

99

4. Discussion

Our findings include a comprehensive list of patterns and several detailed pattern descriptions,
particularly related to agile coaches and scrum masters, that practitioners can use as a reference
book to address their challenges (see P6 and P7)). Practitioners can use the proposed conceptual
model as a template for the structured documentation of their proven solutions (see P6).

Implications for practice related to RQ4. In large-scale agile development, agile teams
and architects need to work together, which does not always work smoothly due to the two
stakeholder groups’ antithetic ways of thinking and mindsets [KL17]. Practitioners looking
for a suitable way to involve enterprise architects in their multi-team environments can use
our findings to compare their current setups with the presented cases to learn how a fruitful
collaboration between architects and agile teams can be achieved (see P7). Our findings help
practitioners become aware of the responsibilities of enterprise architects and the expectations
of agile teams so that they can be more tolerant of each other and work better together (see P7
and P8). Practitioners can use our results related to the enterprise architects’ way of working
to learn how their architects should act in a large-scale agile context and provide appropriate
training to educate them in this direction (see P8).

100

CHAPTER 5

Limitations

This dissertation is subject to several limitations, which we discuss in the following, along with
the four major characteristics that express the validity of a research study [Bha12, WRH+12,
Yin15]: internal, external, construct, and conclusion validity. Table 5.1 summarizes the potential
validity threats and the measures taken to counteract them.

Internal validity is concerned with factors affecting the relationship between the research
process and the obtained results [RH09]. In the secondary studies, P1, P2, and P5, internal
validity primarily focuses on the analysis of the extracted data [ESSD08], which a researcher’s
biased analysis may threaten. Multiple researchers performed all data analyses to mitigate
this risk. The initial data analysis to create the solution artifacts in P6 and P7 may also be
subjectively biased, which was remedied by multiple researchers performing the data analyses.
Respondents’ bias may threaten the internal validity of the survey in P3. We counteracted
this threat by contacting the creators of the frameworks via emails and ensuring that the right
persons answered the survey. This threat is irrelevant for P4, P8, P9, and P10 because all case
studies are exploratory and refrain from theory building and making causal relationships.

External validity examines to what extent the obtained results can be generalized [RH09].
For the secondary studies, P1, P2, and P5, external validity refers to the representativeness of
the selected papers regarding the overall goals of the secondary studies [ESSD08]. We followed
comprehensive search processes to counteract this threat and designed the secondary studies to
be as inclusive as possible. To mitigate risks related to the external validity of the survey in P3,
we sought to collect responses from all existing scaling frameworks. We received responses from
15 creators and could not gather responses from seven creators, despite contacting them several
times. Thus, this threat could not be eliminated. However, we did receive responses from the
most widely adopted scaling frameworks, e.g., SAFe, LeSS, and DAD [Dig21]. The single-case
studies in P4 and P8 focused on analytical generalization [RH09] by thoroughly describing the

101

5. Limitations

Table 5.1. Summary of potential validity threats and primary countermeasures

RQ	 No.	 Internal	validity	 External	validity	 Construct	validity	 Conclusion	validity	

RQ1	 P1	

T Subjective	biased	
data	analysis	

R Data	analysis	by	
multiple	researchers	

T Unrepresentativeness	
of	selected	studies	

R Inclusive	and	compre-
hensive	search	process	

T Missing	relevant	
studies	

R Usage	of	common	
electronic	databases	

T Incorrect	data	
extraction	

R Applying	best	practices	
and	guidelines	

RQ2	 P2	

T Subjective	biased	
data	analysis	

R Data	analysis	by	
multiple	researchers	

T Unrepresentativeness	
of	selected	studies	

R Inclusive	and	compre-
hensive	search	process	

T Missing	relevant	
studies	

R Usage	of	common	
electronic	databases	

T Incorrect	data	
extraction	

R Applying	best	practices	
and	guidelines	

RQ2	 P3	
T Respondent	bias	
R Selective	addressing	

of	the	methodologists	

T Non-generalizability	of	
the	results	

R Responses	from	most	
popular	frameworks	

T Inadequate	
questionnaire	design	

R Compilation	of	ques-
tionnaire	based	on	
previous	studies		

T Drawing	incorrect	
conclusions	

R Data	interpretation	by	
multiple	researchers	

RQ2	 P4	 • Not	relevant	as	study	
is	exploratory	

T Non-generalizability	of	
the	results	

R Analytical	
generalization	

T Inaccurate	descript-	
ion	of	the	reality	

R Triangulation	of	data	
sources	and	observers	

T Drawing	incorrect	
conclusions	

R Creation	of	a	case	
study	database	

RQ3	 P5	

T Subjective	biased	
data	analysis	

R Data	analysis	by	
multiple	researchers		

T Unrepresentativeness	
of	selected	studies	

R Inclusive	and	compre-
hensive	search	process	

T Missing	relevant	
studies	

R Usage	of	common	
electronic	databases	

T Incorrect	data	
extraction	

R Applying	best	practices	
and	guidelines	

RQ3	 P6	

T Subjective	biased	
data	analysis	

R Data	analysis	by	
multiple	researchers	

T Impracticality	of	the	
solution	artifacts	

R Feedback	from	
practitioners	

T Improper	design	of	
the	solution	artifacts	

R Usage	of	existing	
documentation	
formats	

T Inconsistency	of	the	
solution	artifacts	

R Creation	of	solution	
artifacts	by	multiple	
researchers	

RQ3	 P7	

T Subjective	biased	
data	analysis	

R Data	analysis	by	
multiple	researchers	

T Impracticality	of	the	
solution	artifacts	

R Feedback	from	
practitioners	

T Improper	design	of	
the	solution	artifacts	

R Usage	of	existing	
documentation	
formats	

T Inconsistency	of	the	
solution	artifacts	

R Creation	of	solution	
artifacts	by	multiple	
researchers	

RQ4	 P8	 • Not	relevant	as	study	
is	exploratory	

T Non-generalizability	of	
the	results	

R Analytical	
generalization	

T Inaccurate	descript-	
ion	of	the	reality	

R Triangulation	of	data	
sources	and	observers	

T Drawing	incorrect	
conclusions	

R Creation	of	a	case	
study	database	

RQ4	 P9	 • Not	relevant	as	study	
is	exploratory	

T Non-generalizability	of	
the	results	

R Literal	and	analytical	
generalization	

T Inaccurate	descript-	
ion	of	the	reality

R Triangulation	of	data	
sources	and	observers

T Drawing	incorrect	
conclusions

R Creation	of	a	case	
study	database

RQ4	 P10	 • Not	relevant	as	study	
is	exploratory	

T Non-generalizability	of	
the	results	

R Literal	and	analytical	
generalization	

T Inaccurate	descript-	
ion	of	the	reality	

R Triangulation	of	data	
sources	and	observers	

T Drawing	incorrect	
conclusions

R Creation	of	a	case	
study	database	

Legend:	
T:		 	 Limitation	
R:		 	 Countermeasure	

102

5. Limitations

cases to mitigate potential threats to external validity. The multiple-case studies in P9 and
P10 focused on the cases’ literal replication and analytical generalization. The external validity
of the created solution artifacts in P6 and P7 may be threatened by the impracticality of the
proposed pattern language, patterns, and concepts. To mitigate this risk, we interviewed 14
experts from ten companies to assess the practical relevance of the proposed pattern language.
After creating the solution artifacts, the experts were contacted again and asked for feedback
on the designed patterns and concepts.

Construct validity reflects what degree operational measures are studied represent what the
researcher has in mind [RH09]. The secondary studies, P1, P2, and P5, may suffer from the
potential incompleteness of the search results [ESSD08]. To mitigate construct validity threats,
we searched in the common electronic databases to identify relevant studies, e.g., ACM Dig-
ital Library and IEEE Xplore, being the most prominent scientific databases in the software
engineering field [KB13, PVK15], Science Direct, Web of Science, and Scopus, providing broad
coverage of diverse research fields [RHL+17], and AIS eLibrary, containing articles from the pri-
mary information systems research outlets [Oat11]. The construct validity of the survey in P3
refers to whether the questionnaire’s questions represent the attributes being measured. Thus,
the inadequate design of the questionnaire may pose a significant risk to construct validity.
Hence, the questions were compiled based on previously published studies. In case study re-
search, construct validity concerns how well the description of the case represents reality [Yin15].
The construct validity of the case studies conducted in P4, P8, P9, and P10 may be threatened
by an inaccurate description of the observed phenomena. As suggested by Stake [Sta95a], we
improved the construct validity of the case studies by triangulating the data sources, i.e., collect-
ing data by several methods and interviewing various persons and roles, and triangulating the
investigators, i.e., involving multiple researchers in the data collection process. The construct
validity of the solution artifacts in P6 and P7 may be threatened by an improper design. The
proposed pattern and concept types were inspired by Ernst [Ern10], and the documentation of
the patterns and concepts followed a template similar to Buschmann et al. [BMR+96] and Ernst
[Ern10] to improve their construct validity.

Conclusion validity concerns to what extent the data and the analysis are dependent on the
specific researcher [RH09]. In the case of the secondary studies, P1, P2, and P5, this threat
refers to factors such as incorrect data extraction [ACS13]. We mitigated potential threats to
conclusion validity by applying various best practices and guidelines on systematic mapping
studies and structured literature reviews (cf. [KC07, PFMM08, VBSN+09, PVK15]). The con-
struct validity of the survey in P3 deals with the ability to conclude from survey data which
may be threatened by drawing incorrect conclusions. To mitigate this type of threat, multi-
ple researchers coded the data independently and subsequently compared the codes and drew
conclusions together to avoid misinterpretation and misunderstanding of the data. Similar to
the survey, the conclusion validity of the case studies conducted in P4, P8, P9, and P10 may
be threatened by drawing incorrect conclusions. Hence, to mitigate risks related to the conclu-
sion validity, we created a case study database comprising case study documents, e.g., audio
recordings, interview protocols, and slide decks. The conclusion validity of P6 and P7 may be
threatened by designing inconsistent solution artifacts. Multiple researchers were involved in
their conceptualization by applying the recommendations by Buckl et al. [BMSS13a] to improve
the conclusion validity of the proposed pattern language, patterns, and concepts.

103

104

CHAPTER 6

Conclusion and Future Research

This chapter concludes this dissertation and provides an outlook on future research. Specifically,
Section 6.1 recapitulates the research questions raised in Section 1.2, and Section 6.2 outlines
potential future research paths that are enabled by the dissertation’s findings.

6.1. Conclusion

Driven by the distress of traditional software methods being unable to respond in a timely and
flexible manner to changes that software projects are constantly facing [WC03, Ket07], the agile
movement emerged in the 1990s, leading to the creation of various agile methods and the Agile
Manifesto in 2001 [Ket07]. Given the successful application of agile methods in small projects,
companies are encouraged to scale them to larger endeavors [DFI14, AR16]. As is often the case
with emerging phenomena in software engineering, the practice has led to research in the field
of large-scale agile development, primarily due to the efforts of practitioners and consultants
[Paa17, EWC21]. While this practice-driven phenomenon certainly has its merits [EWC21],
the nascent state of empirical studies [DPL16, DFP19] and the presence of several research gaps
[UPP+22] do not provide the anticipated assistance that practitioners expect. Motivated by this
backdrop, the purpose of this dissertation was to contribute to the existing body of knowledge
by empirically analyzing the large-scale adoption of agile methods and addressing four research
gaps: (i) missing overview of the state of research, (ii) lack of overview and analysis of scaling
agile frameworks, (iii) missing identification and documentation of patterns, and (iv) lack of
investigation related to the collaboration between architects and agile teams.

Conclusions related to RQ1. This dissertation provides an analysis of existing research on
large-scale agile development, covering 136 publications from 2007 to 2019, and sheds light on
the meaning of “ large-scale agile development” by investigating the development efforts of the

105

6. Conclusion and Future Research

reported companies. This dissertation provides a better understanding of the nature of the
research field by examining research trends and systematically classifying existing studies. It
also reveals the intellectual structure of the research area by exposing its seminal works. This
dissertation also assesses the state of the art and maturity level of the research field by identifying
central research themes and outlining a research agenda for future research efforts. The obtained
results allow researchers to get a sound introduction to the present research and serve as a
starting point for their new research efforts. The gathered findings enable practitioners to
develop a common terminology, understanding, and perspective on large-scale agile development
and identify research they can use to solve their specific real-world problems.

Conclusions related to RQ2. This dissertation compiles a list of 22 scaling frameworks and
assesses their maturity using common comparison criteria. This dissertation improves the overall
understanding of these frameworks by exploring the main reasons for their emergence and identi-
fying their adoption’s main benefits and challenges from the perspective of their inventors. This
dissertation also provides empirical evidence of the adoption of scaling frameworks in practice
by describing the application of the mature scaling framework LeSS in four different products
of a German automotive manufacturer. In addition to empirically studying the most popular
frameworks, SAFe, LeSS, and DAD, researchers can use our results to explore the real-world
application of the remaining frameworks that have not been sufficiently studied. Researchers can
build on our results to quantitatively assess and validate the benefits and challenges of adopting
scaling frameworks and use our results to develop and strengthen theories about applying these
frameworks in the industry. As practitioners find choosing a particular framework problematic
due to the lack of evaluation models for comparing these frameworks, they can use our results
to make informed decisions when selecting scaling frameworks. Our results offer practitioners
several lessons learned to consider when adopting these frameworks.

Conclusions related to RQ3. This dissertation points to a wide range of challenges that
companies have to reckon with when scaling agile methods by providing a list of 79 challenges.
In this light, this dissertation proposes a set of patterns, particularly for agile coaches and scrum
masters, to address their typical challenges. Researchers can use our findings to determine which
identified difficulties are encountered in practice and accordingly suggest new best practices for
tackling them. Researchers can also utilize our results to assist companies in selecting and
adopting our proposed patterns to solve their concerns. Practitioners can use the identified
problems as a single resource for guidance and employ the suggested patterns as a reference for
addressing their challenges in adopting agile methods at scale.

Conclusions related to RQ4. This dissertation sheds light on the tension between architec-
ture and agility by providing insights related to the collaboration between architects and agile
teams in large-scale agile development efforts. Researchers can use our results to develop new
theories and explain observed phenomena related to the collaboration between architects and
agile teams. Practitioners can use our findings to compare their current setups with the cases
presented and explore how to achieve a fruitful collaboration between architects and agile teams.
Practitioners can learn from our results and become aware of the responsibilities of enterprise
architects and what agile teams expect from enterprise architects so that both can be more
tolerant of each other and collaborate better together.

106

6. Conclusion and Future Research

6.2. Outlook

In the following, we outline several avenues for future research for each of the research questions
scientists can use as a starting point for new research efforts (see Table 6.1).

Table 6.1. Avenues for future research building on the embedded publications

RQ	 No.	 Potential	research	avenues	

RQ1	 P1	

• Creation	of	rigorously	developed	frameworks,	methods,	and	tools	
• Development	of	conceptual	models	and	theories	
• Performing	research	on	new	emerging	research	themes	
• Using	the	research	agenda	to	address	open	research	gaps	

RQ2	

P2	
• Usage	of	quantitative	tools	to	assess	strengths	and	weaknesses	of	scaling	frameworks	
• Performing	cross-case	analyses	to	compare	the	adoption	scaling	frameworks	
• Conducting	explanatory	studies	on	how	contextual	factors	affect	the	selection	of	a	scaling	framework	

P3	

P4	

RQ3	

P5	
• Publication	of	a	pattern	catalog	comprising	stakeholder-related	concerns	and	patterns	
• Implementation	of	the	proposed	patterns	in	the	industry	P6	

P7	

RQ4	

P8	
• Performing	explanatory	studies	on	the	relations	between	a	company’s	agile	maturity	and	the	collaboration	

between	architects	and	agile	teams	
• Conducting	longitudinal	studies	on	how	agile	teams’	expectations	for	enterprise	architects	change	over	time	

P9	

P10	

Future research avenues related to RQ1. The current state of research in large-scale agile
development shows that most studies tend to be observational, describing how companies apply
agile practices at scale. None of the existing studies have contributed to developing new or im-
proved tools [UPP+22]. Based on this observation, we encourage researchers to create rigorously
developed frameworks, methods, and tools to meet practitioners’ needs. There is also an ap-
parent lack of the meaning of the term “ large-scale agile development” [UPP+22], which hinders
effective collaboration and progress in the research discipline. We recommend that scientists
should provide more conceptual clarity on this term, which plays a crucial role in advancing
the research field [DFI14]. While most case studies on large-scale agile development tend to
be exploratory and less theoretical, future studies should establish a solid theoretical scaffold
for the observed phenomena, similar to those on agile software development (cf. [DNBM12]).
Early research started with contributions to global and distributed software engineering and
scaling agile frameworks and continued with investigations related to the communication and
coordination of agile teams [UPP+22]. Recently, themes such as team autonomy and large-scale
agile transformations have gained scholarly interest, as they are still highly neglected but of
great importance. We recommend that future studies should use our research agenda (cf. P1)
to address research gaps in these two emerging research topics. We have compiled a list of 81
research questions (cf. P1) that researchers can use to address the outstanding research gaps.

Future research avenues related to RQ2. As most studies related to scaling frameworks
are primarily qualitative and descriptive (cf. P2, P3, P4), and there is a lack of quantitative

107

6. Conclusion and Future Research

and explanatory studies [UPP+22], we made the first attempt with two additional publications.
These quantitatively assess the reasons, expected benefits, and satisfaction levels of practition-
ers of adopting scaling frameworks (cf. [PUH+21]) and measure the benefits and challenges of
adopting SAFe (cf. [PUPH21]). We encourage researchers to build on these results and conduct
further studies to evaluate the strengths and weaknesses of scaling frameworks quantitatively.
Adopting a scaling framework may require some time and effort [EWC21] and high initial in-
vestment costs before it pays off [CC19b]. Given the absence of comparison models to guide
practitioners in adopting a particular framework [CC19b], we encourage researchers to examine
how contextual factors affect framework selection and conduct cross-case analyses to compare
their adoption across companies using common comparative criteria. The insights gained can
lead to a comparison model that practitioners can use to select a framework.

Future research avenues related to RQ3. Due to the limited scope of scientific papers, two
embedded publications presented only four patterns for demonstrating the proposed pattern
language and another five patterns for agile coaches and scrum masters in their entirety (cf. P6,
P7). One additional publication outside this dissertation’s scope presented five other patterns
for enterprise and solution architects (cf. [UM20b]). Since the given patterns represent only
a fraction of the entire collection, the dissertation can be further extended by publishing a
pattern catalog comprising 60 patterns based on the current knowledge base. While the proposed
patterns currently reflect a conceptualization of the observations made by the researcher, future
research endeavors should select and configure them for their application in companies, as well as
observe their actual instantiations and identify possible deviations from their initial adoption. In
this way, future research efforts can close the research activity cycle of the pattern-based design
research method [BMSS13a] and enrich the current collection with new or revised patterns.

Future research avenues related to RQ4. Since a company’s agile maturity has a decisive
impact on its stakeholders’ way of working [vMvV14, Laa17, SvECV21], researchers should con-
duct explanatory studies to show potential interrelations between a company’s agile maturity
and the collaboration between agile teams and architects. These studies would be a meaningful
extension of our research as the companies that participated in our case studies tended to be
more traditional and therefore sought to acquire an agile mindset as part of their agile trans-
formations. Future studies should contrast both research results and compare how architects
and agile teams work together in both more agile-mature companies and traditional companies.
As large-scale agile transformations represent extensive episodic change processes [FH18], agile
teams’ expectations of enterprise architects may fluctuate over time. Although we followed and
observed the participating companies in our case studies over a period, future studies should
conduct longitudinal studies and observe how agile teams’ expectations of enterprise architects
change over time. For example, researchers should describe which stages of the transformations
agile teams typically have which expectations to enterprise architects, e.g., at the beginning of
these transformations, enterprise architects might be expected to outline the overall direction of
the ongoing efforts and then be expected to support the endeavors in making technology- and
architecture-related decisions during the ongoing change process.

108

Bibliography

[AAH11] Alireza Abbasi, Jörn Altmann, and Liaquat Hossain. Identifying the effects of co-
authorship networks on the performance of scholars: A correlation and regression
analysis of performance measures and social network analysis measures. Journal
of Informetrics (JOI), 5(4):594–607, 2011.

[AASW17] Faiza Anwer, Shabib Aftab, Muhammad Shah, and Usman Waheed. Comparative
analysis of two popular agile process models: Extreme programming and scrum.
International Journal of Computer Science and Telecommunications (IJCST),
8(2):1–7, 2017.

[ABB98] Alison Anderson, Ralph Beattie, and Kent Beck. Chrysler goes to ”extremes”.
Distributed Computing, 1(10):24–28, 1998.

[ABK10] Pekka Abrahamsson, Muhammad Ali Babar, and Philippe Kruchten. Agility and
architecture: Can they coexist? IEEE Software, 27(2):16–22, 2010.

[ACS13] Apostolos Ampatzoglou, Sofia Charalampidou, and Ioannis Stamelos. Research
state of the art on gof design patterns: Mapping study. Journal of Systems and
Software (JSS), 86(7):1945–1964, 2013.

[ACW09] Pekka Abrahamsson, Kieran Conboy, and Xiaofeng Wang. ’lots done, more to
do’: The current state of agile systems development research. European Journal
of Information Systems (EJIS), 18(4):281–284, 2009.

[ÅF06] Pär Ågerfalk and Brian Fitzgerald. Old petunias in new bowls? Communications
of the ACM, 49(10):27–34, 2006.

[AIS77] Christopher Alexander, Sara Ishikawa, and Murray Silverstein. A Pattern Lan-
guage: Towns, Buildings, Construction. Oxford University Press, Oxford, Eng-
land, UK, 1977.

[AL12] Scott Ambler and Mark Lines. Disciplined Agile Delivery: A Practitioner’s Guide
to Agile Software Delivery in the Enterprise. Pearson Education, Boston, MA,
USA, 2012.

109

Bibliography

[AL18] Scott Ambler and Mark Lines. Introduction to Disciplined Agile Delivery: A
Small Agile Team’s Journey from Scrum to DevOps. CreateSpace, Scotts Valley,
CA, USA, 2 edition, 2018.

[AL20] Scott Ambler and Mark Lines. Choose your WoW: a Disciplined Agile Delivery
Handbook for Optimizing your Way of Working. Project Management Institute,
Newtown Square, PA, USA, 2020.

[Ale64] Christopher Alexander. Notes on the Synthesis of Form. Harvard University
Press, Cambridge, MA, USA, 1964.

[Amb07] Scott Ambler. Agile software development at scale. In Proceedings of the 2nd Cen-
tral and East European Conference on Software Engineering Techniques (CEE-
SET), pages 1–12, Berlin, Heidelberg, Germany, 2007. Springer Berlin Heidelberg.

[AMG16] Samuil Angelov, Marcel Meesters, and Matthias Galster. Architects in scrum:
What challenges do they face? In Proceedings of the 10th European Conference on
Software Architecture (ECSA), pages 229–237, Cham, Switzerland, 2016. Springer
International.

[AMO13] Muhammad Ovais Ahmad, Jouni Markkula, and Markku Oivo. Kanban in soft-
ware development: A systematic literature review. In Proceedings of the 39th Eu-
romicro Conference on Software Engineering and Advanced Applications (SEAA),
pages 9–16, New York, NY, USA, 2013. IEEE.

[And10] David Anderson. Kanban: Successful Evolutionary Change for your Technology
Business. Blue Hole Press, Sequim, WA, USA, 2010.

[And17] Stephen Andriole. The death of big software. Communications of the ACM,
60(12):29–32, 2017.

[AR16] Mashal Alqudah and Rozilawati Razali. A review of scaling agile methods in large
software development. International Journal on Advanced Science, Engineering
and Information Technology (IJASEIT), 6(6):828–837, 2016.

[ASRW17] Pekka Abrahamsson, Outi Salo, Jussi Ronkainen, and Juhani Warsta. Ag-
ile software development methods: Review and analysis. arXiv Preprint
arXiv:1709.08439, 2017.

[AST06] Ashish Agarwal, Ravi Shankar, and Manoy Kumar Tiwari. Modeling the metrics
of lean, agile and leagile supply chain: An anp-based approach. European Journal
of Operational Research (EJOR), 173(1):211–225, 2006.

[AWSR03] Pekka Abrahamsson, Juhani Warsta, Mikko Siponen, and Jussi Ronkainen. New
directions on agile methods: A comparative analysis. In Proceedings of the 25th
International Conference on Software Engineering (ICSE), pages 244–254, New
York, NY, USA, 2003. IEEE.

110

Bibliography

[Bab09] Muhammad Ali Babar. An exploratory study of architectural practices and chal-
lenges in using agile software development approaches. In Proceedings of the Joint
8th Working Conference on Software Architecture & 3rd European Conference on
Software Architecture (WICSA/ECSA), pages 81–90, New York, NY, USA, 2009.
IEEE.

[Bak00] Michael Baker. Writing a literature review. The Marketing Review (TMR),
1(2):219–247, 2000.

[Bat20] Dinesh Batra. Research challenges and opportunities in conducting quantita-
tive studies on large-scale agile methodology. Journal of Database Management
(JDM), 31(2):64–73, 2020.

[BBD09] Hilary Berger and Paul Beynon-Davies. The utility of rapid application devel-
opment in large-scale, complex projects. Information Systems Journal (ISJ),
19(6):549–570, 2009.

[BBM13] Muhammad Ali Babar, Alan Brown, and Ivan Mistrík. Agile Software Architec-
ture: Aligning Agile Processes and Software Architectures. Elsevier, Amsterdam,
Netherlands, 2013.

[BBS10] Jan Bosch and Petra Bosch-Sijtsema. Coordination between global agile teams:
From process to architecture. In Agility Across Time and Space: Implement-
ing Agile Methods in Global Software Projects, pages 217–233. Springer Berlin
Heidelberg, Berlin, Heidelberg, Germany, 2010.

[BBvB+01] Kent Beck, Mike Beedle, Arie van Bennekum, Alistair Cockburn, Ward Cunning-
ham, Martin Fowler, James Grenning, Jim Highsmith, Andrew Hunt, Ron Jeffries,
et al. Manifesto for agile software development. https://agilemanifesto.org/,
2001. [Online; accessed 03-04-2022].

[BCS+10] Mike Beedle, James Coplien, Jeff Sutherland, Jens Østergaard, Ademar Aguiar,
and Ken Schwaber. Essential scrum patterns. In Proceedings of the 14th European
Conference on Pattern Languages of Programs (EuroPLoP), pages 1–17, Munich,
Germany, 2010. The Hillside Group.

[BDS+99] Mike Beedle, Martine Devos, Yonat Sharon, Ken Schwaber, and Jeff Sutherland.
Scrum: An extension pattern language for hyperproductive software development.
In Pattern Languages of Program Design, volume 4, pages 637–651. Addison-
Wesley, Boston, MA, USA, 1999.

[Bec00] Kent Beck. Extreme Programming Explained: Embrace Change. Addison-Wesley,
Boston, MA, USA, 2000.

[Ben83] Herbert Benington. Production of large computer programs. Annals of the History
of Computing (AHC), 5(4):350–361, 1983.

[BF12] Marie-Joëlle Browaeys and Sandra Fisser. Lean and agile: an epistemological
reflection. The Learning Organization, 19(3):207–218, 2012.

111

https://agilemanifesto.org/

Bibliography

[BGM87] Izak Benbasat, David Goldstein, and Melissa Mead. The case research strategy
in studies of information systems. MIS Quarterly (MISQ), pages 369–386, 1987.

[Bha12] Anol Bhattacherjee. Social Science Research: Principles, Methods, and Practices.
CreateSpace, Scotts Valley, CA, USA, 2012.

[BHD07] Frank Buschmann, Kevlin Henney, and Schmidt Douglas. Pattern Oriented Soft-
ware Architecture: On Patterns and Pattern Languages, volume 5. John Wiley &
Sons, Hoboken, NJ, USA, 2007.

[BKB+07] Pearl Brereton, Barbara Kitchenham, David Budgen, Mark Turner, and Mo-
hamed Khalil. Lessons from applying the systematic literature review process
within the software engineering domain. Journal of Systems and Software (JSS),
80(4):571–583, 2007.

[BKNÖ14] Stephany Bellomo, Philippe Kruchten, Robert Nord, and Ipek Özkaya. How to
agilely architect an agile architecture. Cutter IT Journal, 27(2):12–17, 2014.

[BMR+96] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and
Michael Stal. Pattern-Oriented Software Architecture: A System of Patterns,
volume 1. John Wiley & Sons, Hoboken, NJ, USA, 1996.

[BMSS13a] Sabine Buckl, Florian Matthes, Alexander Schneider, and Christian Schweda.
Pattern-based design research – an iterative research method balancing rigor and
relevance. In Proceedings of the 8th International Conference on Design Sci-
ence Research in Information Systems and Technology (DESRIST), pages 73–87,
Berlin, Heidelberg, Germany, 2013. Springer Berlin Heidelberg.

[BMSS13b] Sabine Buckl, Florian Matthes, Alexander Schneider, and Christian Schweda.
Pattern-based design research in enterprise architecture management. In Pro-
ceedings of the 25th International Conference on Advanced Information Systems
Engineering Workshops (CAiSEW), pages 30–42, Berlin, Heidelberg, Germany,
2013. Springer Berlin Heidelberg.

[BNO12] Felix Bachmann, Robert Nord, and Ipek Ozakaya. Architectural tactics to support
rapid and agile stability. CrossTalk, 8:20–25, 2012.

[Boe02] Barry Boehm. Get ready for agile methods, with care. Computer, 35(1):64–69,
2002.

[BT03] Barry Boehm and Richard Turner. Using risk to balance agile and plan-driven
methods. Computer, 36(6):57–66, 2003.

[BT05] Barry Boehm and Richard Turner. Management challenges to implementing agile
processes in traditional development organizations. IEEE Software, 22(5):30–39,
2005.

[Buc11] Sabine Buckl. Developing Organization-Specific Enterprise Architecture Manage-
ment Functions Using a Method Base. Dissertation, Technical University of Mu-
nich, Munich, Germany, 2011.

112

Bibliography

[BW96] Izak Benbasat and Ron Weber. Research commentary: Rethinking "diversity" in
information systems research. Information Systems Research (ISR), 7(4):389–399,
1996.

[BWR11] Elizabeth Bjarnason, Krzysztof Wnuk, and Björn Regnell. A case study on ben-
efits and side-effects of agile practices in large-scale requirements engineering. In
Proceedings of the 1st Workshop on Agile Requirements Engineering (AREW),
pages 1–5, New York, NY, USA, 2011. ACM.

[CC18] John Creswell and David Creswell. Research Design: Qualitative, Quantitative,
and Mixed Methods Approaches. SAGE, Thousand Oaks, CA, USA, 2018.

[CC19a] Noel Carroll and Kieran Conboy. Applying normalization process theory to ex-
plain large-scale agile transformations. In Proceedings of the 14th International
Research Workshop on IT Project Management (IRWITPM), pages 1–11, Atlanta,
GA, USA, 2019. AIS.

[CC19b] Kieran Conboy and Noel Carroll. Implementing large-scale agile frameworks:
Challenges and recommendations. IEEE Software, 36(2):44–50, 2019.

[CCJ+18] Mert Canat, Núria Pol Català, Alexander Jourkovski, Svetlomir Petrov, Martin
Wellme, and Robert Lagerström. Enterprise architecture and agile development:
Friends or foes? In Proceedings of the 22nd International Enterprise Distributed
Object Computing Workshop (EDOCW), pages 176–183, New York, NY, USA,
2018. IEEE.

[CH04] James Coplien and Neil Harrison. Organizational Patterns of Agile Software De-
velopment. Addison-Wesley, Boston, MA, USA, 2004.

[Cho08] Juyun Cho. Issues and challenges of agile software development with scrum.
Issues in Information Systems, 9(2):188–195, 2008.

[CL13] Bas Vodde Craig Larman. Scaling agile development. CrossTalk, 9:8–12, 2013.

[CLC04] David Cohen, Mikael Lindvall, and Patrícia Costa. An introduction to agile meth-
ods. In Advances in Computers, volume 62, pages 1–66. Elsevier, Amsterdam,
Netherlands, 2004.

[CLVB03] Marcus Ciolkowski, Oliver Laitenberger, Sira Vegas, and Stefan Biffl. Practical
experiences in the design and conduct of surveys in empirical software engineer-
ing. In Empirical Methods and Studies in Software Engineering, pages 104–128.
Springer Berlin Heidelberg, Berlin, Heidelberg, Germany, 2003.

[Con09] Kieran Conboy. Agility from first principles: Reconstructing the concept of
agility in information systems development. Information Systems Research (ISR),
20(3):329–354, 2009.

[Coo88] Harris Cooper. Organizing knowledge syntheses: A taxonomy of literature re-
views. Knowledge in Society, 1(1):104–126, 1988.

113

Bibliography

[Coo16] Robert Cooper. Agile-stage-gate hybrids: The next stage for product development
blending agile and stage-gate methods can provide flexibility, speed, and improved
communication in new-product development. Research-Technology Management
(RTM), 59(1):21–29, 2016.

[Cop96] James Coplien. Software Patterns: Management Briefs. Cambridge University
Press, Cambridge, England, UK, 1996.

[CS16] Robert Cooper and Anita Sommer. The agile-stage-gate hybrid model: a promis-
ing new approach and a new research opportunity. Journal of Product Innovation
Management (JPIM), 33(5):513–526, 2016.

[CWR13] Oisín Cawley, Xiaofeng Wang, and Ita Richardson. Lean software development –
what exactly are we talking about? In Proceedings of the 4th International Con-
ference on Lean Enterprise Software and Systems (LESS), pages 16–31, Berlin,
Heidelberg, 2013. Springer Berlin Heidelberg.

[DD08] Tore Dybå and Torgeir Dingsøyr. Empirical studies of agile software development:
A systematic review. Information and Software Technology (IST), 50(9):833–859,
2008.

[DD09] Tore Dybå and Torgeir Dingsøyr. What do we know about agile software devel-
opment? IEEE Software, 26(5):6–9, 2009.

[DFI14] Torgeir Dingsøyr, Tor Erlend Fægri, and Juha Itkonen. What is large in large-
scale? a taxonomy of scale for agile software development. In Proceedings of the
15th International Conference on Product-Focused Software Process Improvement
(PROFES), pages 273–276, Cham, Switzerland, 2014. Springer International.

[DFP19] Torgeir Dingsøyr, Davide Falessi, and Ken Power. Agile development at scale:
the next frontier. IEEE Software, 36(2):30–38, 2019.

[DHL+08] Tom DeMarco, Peter Hruschka, Tim Lister, Suzanne Robertson, James Robert-
son, and Steve McMenamin. Adrenaline Junkies and Template Zombies: Un-
derstanding Patterns of Project Behavior. Dorset House, New York, NY, USA,
2008.

[Dig20] Digital.ai. 14th State of Agile Survey. https://www.qagile.pl/wp-content/
uploads/2020/06/14th-annual-state-of-agile-report.pdf, 2020. [Online;
accessed 03-04-2022].

[Dig21] Digital.ai. 15th State of Agile Survey. https://digital.ai/resource-center/
analyst-reports/state-of-agile-report, 2021. [Online; accessed 03-04-
2022].

[DM13] Torgeir Dingsøyr and Nils Brede Moe. Research challenges in large-scale agile
software development. ACM SIGSOFT Software Engineering Notes, 38(5):38–39,
2013.

114

https://www.qagile.pl/wp-content/uploads/2020/06/14th-annual-state-of-agile-report.pdf
https://www.qagile.pl/wp-content/uploads/2020/06/14th-annual-state-of-agile-report.pdf
https://digital.ai/resource-center/analyst-reports/state-of-agile-report
https://digital.ai/resource-center/analyst-reports/state-of-agile-report

Bibliography

[DM14] Torgeir Dingsøyr and Nils Brede Moe. Towards principles of large-scale agile de-
velopment. In Proceedings of the 15th International Conference on Agile Software
Development Scientific Workshops (AGILESW), pages 1–8, Cham, Switzerland,
2014. Springer International.

[DMFS18] Torgeir Dingsøyr, Nils Brede Moe, Tor Erlend Fægri, and Eva Amdahl Seim.
Exploring software development at the very large-scale: a revelatory case study
and research agenda for agile method adaptation. Empirical Software Engineering
(EMSE), 23(1):490–520, 2018.

[DMO18] Torgeir Dingsøyr, Nils Brede Moe, and Helena Holmström Ohlsson. Towards
an understanding of scaling frameworks and business agility: A summary of the
6th international workshop at xp2018. In Proceedings of the 19th International
Conference on Agile Software Development Scientific Workshops (AGILESW),
pages 1–4, New York, NY, USA, 2018. ACM.

[DNBM12] Torgeir Dingsøyr, Sridhar Nerur, Venugopal Balijepally, and Nils Brede Moe. A
decade of agile methodologies: Towards explaining agile software development.
Journal of Systems and Software (JSS), 85(6):1213–1221, 2012.

[DPL16] Kim Dikert, Maria Paasivaara, and Casper Lassenius. Challenges and success fac-
tors for large-scale agile transformations: A systematic literature review. Journal
of Systems and Software (JSS), 119:87–108, 2016.

[DSHT17] Paul Drews, Ingrid Schirmer, Bettina Horlach, and Carsten Tekaat. Bimodal
enterprise architecture management: The emergence of a new eam function for
a bizdevops-based fast it. In Proceedings of the 21st International Enterprise
Distributed Object Computing Workshop (EDOCW), pages 57–64, New York, NY,
USA, 2017. IEEE.

[DSRB00] Schmidt Douglas, Michael Stal, Hans Rohnert, and Frank Buschmann. Pattern-
Oriented Software Architecture: Patterns for Concurrent and Networked Objects,
volume 2. John Wiley & Sons, Hoboken, NJ, USA, 2000.

[DST18] Philipp Diebold, Anna Schmitt, and Sven Theobald. Scaling agile: How to select
the most appropriate framework. In Proceedings of the 19th International Con-
ference on Agile Software Development Scientific Workshops (AGILESW), pages
1–4, New York, NY, USA, 2018. ACM.

[EAO12] Christof Ebert, Pekka Abrahamsson, and Nilay Oza. Lean software development.
IEEE Software, 29(05):22–25, 2012.

[EP17] Christof Ebert and Maria Paasivaara. Scaling agile. IEEE Software, 34(6):98–103,
2017.

[Ern10] Alexander Ernst. A Pattern-based Approach to Enterprise Architecture Manage-
ment. Dissertation, Technical University of Munich, Munich, Germany, 2010.

115

Bibliography

[ESSD08] Steve Easterbrook, Janice Singer, Margaret-Anne Storey, and Daniela Damian.
Selecting empirical methods for software engineering research. In Guide to Ad-
vanced Empirical Software Engineering, pages 285–311. Springer London, London,
England, UK, 2008.

[EWC21] Henry Edison, Xiaofeng Wang, and Kieran Conboy. Comparing methods for
large-scale agile software development: A systematic literature review. IEEE
Transactions on Software Engineering (TSE), pages 1–23, 2021. in press.

[FH18] Christoph Fuchs and Thomas Hess. Becoming agile in the digital transformation:
The process of a large-scale agile transformation. In Proceedings of the 39th
International Conference on Information Systems (ICIS), pages 1–17, Atlanta,
GA, USA, 2018. AIS.

[FJ13] Floyd Fowler Jr. Survey Research Methods. SAGE, Thousand Oaks, CA, USA,
2013.

[Fli92] Uwe Flick. Triangulation revisited: Strategy of validation or alternative? Journal
for the Theory of Social Behaviour (JTSB), 22(2):175–197, 1992.

[FMS14] Brian Fitzgerald, Mariusz Musiał, and Klaas-Jan Stol. Evidence-based decision
making in lean software project management. In Proceedings of the 36th Interna-
tional Conference on Software Engineering Workshops (ICSEW), pages 93–102,
New York, NY, USA, 2014. ACM.

[Fow06] Martin Fowler. Writing software patterns. https://www.martinfowler.com/
articles/writingPatterns.html, 2006. [Online; accessed 03-04-2022].

[Fow13] Martin Fowler. Extreme programming. https://martinfowler.com/bliki/
ExtremeProgramming.html, 2013. [Online; accessed 03-04-2022].

[Fre78] Linton Freeman. Centrality in social networks conceptual clarification. Social
Networks, 1(3):215–239, 1978.

[FS10] Sallyann Freudenberg and Helen Sharp. The top 10 burning research questions
from practitioners. IEEE Software, 27(5):8–9, 2010.

[FSOO13] Brian Fitzgerald, Klaas-Jan Stol, Ryan O’Sullivan, and Donal O’Brien. Scaling
agile methods to regulated environments: An industry case study. In Proceedings
of the 35th International Conference on Software Engineering (ICSE), pages 863–
872, New York, NY, USA, 2013. IEEE.

[FSS02] Robert Futrell, Donald Shafer, and Linda Shafer. Quality Software Project Man-
agement. Prentice-Hall, Hoboken, NJ, USA, 2002.

[FV06] Ann Fruhling and Gert-Jan De Vreede. Field experiences with extreme pro-
gramming: Developing an emergency response system. Journal of Management
Information Systems (JMIS), 22(4):39–68, 2006.

116

https://www.martinfowler.com/articles/writingPatterns.html
https://www.martinfowler.com/articles/writingPatterns.html
https://martinfowler.com/bliki/ExtremeProgramming.html
https://martinfowler.com/bliki/ExtremeProgramming.html

Bibliography

[GHJV94] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Pat-
terns: Elements of Reusable Object-Oriented Software. Addison-Wesley, Boston,
MA, USA, 1994.

[GJJG11] Cristina Venera Geambaşu, Iulia Jianu, Ionel Jianu, and Alexandru Gavrilă. In-
fluence factors for the choice of a software development methodology. Journal
of Accounting and Management Information Systems (JAMIS), 10(4):479–494,
2011.

[GPRN18] Ahmad Nauman Ghazi, Kai Petersen, Sri Sai Vijay Raj Reddy, and Harini
Nekkanti. Survey research in software engineering: Problems and mitigation
strategies. IEEE Access, 7:24703–24718, 2018.

[GS05] Christina Guo and Yesenia Sanchez. Workplace communication. In Organizational
Behavior in Health Care, volume 2, pages 77–110. Jones and Bartlett Publishers,
Sudbury, MA, USA, 2005.

[Gus18] Tomas Gustavsson. Practices for vertical and horizontal coordination in the scaled
agile framework. In Proceedings of the 27th International Conference on Infor-
mation Systems Development (ISD), pages 1–12, Atlanta, GA, USA, 2018. AIS.

[GvLG21] Hong Guo, Darja Šmite, Jingyue Li, and Shang Gao. Enterprise architecture and
agility: A systematic mapping study. In Proceedings of the 11th International
Symposium on Business Modeling and Software Design (BMSD), pages 296–305,
Cham, Switzerland, 2021. Springer International.

[HA13] Amani Mahdi Mohammed Hamed and Hisham Abushama. Popular agile ap-
proaches in software development: Review and analysis. In Proceedings of the
2013 International Conference on Computing, Electrical and Electronic Engineer-
ing (ICCEEE), pages 160–166, New York, NY, USA, 2013. IEEE.

[HATB95] Joseph Hair, Rolph Anderson, Ronald Tatham, and William Black. Multivariate
Data Analysis. Prentice-Hall, Hoboken, NJ, USA, 4 edition, 1995.

[HATG21] Steffen Herbold, Aynur Amirfallah, Fabian Trautsch, and Jens Grabowski. A sys-
tematic mapping study of developer social network research. Journal of Systems
and Software (JSS), 171:1–20, 2021.

[Hau01] Jim Haungs. Pair programming on the c3 project. Computer, 34(2):118–119,
2001.

[HBP09] Emam Hossain, Muhammad Ali Babar, and Hye-Young Paik. Using scrum in
global software development: A systematic literature review. In Proceedings of
the 4th International Conference on Global Software Engineering (ICGSE), pages
175–184, New York, NY, USA, 2009. IEEE.

[HC01] Jim Highsmith and Alistair Cockburn. Agile software development: the business
of innovation. Computer, 34(9):120–127, 2001.

117

Bibliography

[HDSD20] Bettina Horlach, Andreas Drechsler, Ingrid Schirmer, and Paul Drews. Everyone’s
going to be an architect: Design principles for architectural thinking in agile
organizations. In Proceedings of the 53rd Hawaii International Conference on
System Sciences (HICSS), pages 1–10, Honolulu, HI, USA, 2020. ScholarSpace.

[HEK15] Sebastian Hanschke, Jan Ernsting, and Herbert Kuchen. Integrating agile soft-
ware development and enterprise architecture management. In Proceedings of the
48th Hawaii International Conference on System Sciences (HICSS), pages 4099–
4108, New York, NY, USA, 2015. IEEE.

[HH02] James Highsmith and Jim Highsmith. Agile Software Development Ecosystems.
Addison-Wesley, Boston, MA, USA, 2002.

[HMPR04] Alan Hevner, Salvatore March, Jinsoo Park, and Sudha Ram. Design science in
information systems research. MIS Quarterly (MISQ), 28(1):75–105, 2004.

[HOV05] Richard Hightower, Warner Onstine, and Paul Visan. Professional Java Tools for
Extreme Programming. John Wiley & Sons, Hoboken, NJ, USA, 2005.

[HPLE13] Ville Heikkilä, Maria Paasivaara, Casper Lassenius, and Christian Engblom. Con-
tinuous release planning in a large-scale scrum development organization at er-
icsson. In Proceedings of the 14th International Conference on Agile Software
Development (AGILE), pages 195–209, Berlin, Heidelberg, 2013. Springer Berlin
Heidelberg.

[HRSM14] Matheus Hauder, Sascha Roth, Christopher Schulz, and Florian Matthes. Agile
enterprise architecture management: An analysis on the application of agile prin-
ciples. In Proceedings of the 4th International Symposium on Business Modeling
and Software Design (BMSD), pages 38–46, Setúbal, Portugal, 2014. SciTePress.

[HSG18] Rashina Hoda, Norsaremah Salleh, and John Grundy. The rise and evolution of
agile software development. IEEE Software, 35(5):58–63, 2018.

[HvM11] Geir Hanssen, Darja Šmite, and Nils Brede Moe. Signs of agile trends in global
software engineering research: A tertiary study. In Proceedings of the 6th Inter-
national Conference on Global Software Engineering Workshop (GSEW), pages
17–23, New York, NY, USA, 2011. IEEE.

[IM95] Stephen Isaac and William Michael. Handbook in Research and Evaluation: A
Collection of Principles, Methods, and Strategies useful in the Planning, Design,
and Evaluation of Studies in Education and the Behavioral Sciences. Edits Pub-
lishers, 3 edition, 1995.

[ISM+15] Irum Inayat, Siti Salim, Sabrina Marczak, Maya Daneva, and Shahaboddin
Shamshirband. A systematic literature review on agile requirements engineer-
ing practices and challenges. Computers in Human Behavior, 51:915–929, 2015.

[JOT07] Burke Johnson, Anthony Onwuegbuzie, and Lisa Turner. Toward a definition of
mixed methods research. Journal of Mixed Methods Research (JMMR), 1(2):112–
133, 2007.

118

Bibliography

[Kas05] Mark Kasunic. Designing an effective survey. Technical report, Carnegie-Mellon
University, Pittsburgh, PA, USA, 2005.

[KB13] Barbara Kitchenham and Pearl Brereton. A systematic review of systematic
review process research in software engineering. Information and Software Tech-
nology (IST), 55(12):2049–2075, 2013.

[KBB10] Barbara Kitchenham, David Budgen, and Pearl Brereton. The value of map-
ping studies – a participant-observer case study. In Proceedings of the 14th In-
ternational Conference on Evaluation and Assessment in Software Engineering
(EASE), pages 1–9, Swindon, England, UK, 2010. BCS Learning & Development.

[KBB11] Barbara Kitchenham, David Budgen, and Pearl Brereton. Using mapping studies
as the basis for further research – a participant-observer case study. Information
and Software Technology (IST), 53(6):638–651, 2011.

[KBB15] Barbara Ann Kitchenham, David Budgen, and Pearl Brereton. Evidence-based
Software Engineering and Systematic Reviews, volume 4. CRC Press, Boca Raton,
FL, USA, 2015.

[KC07] Barbara Kitchenham and Stuart Charters. Guidelines for performing systematic
literature reviews in software engineering. Technical report, Keele University,
Keele, England, UK, 2007.

[KDJ04] Barbara Kitchenham, Tore Dybå, and Magne Jorgensen. Evidence-based software
engineering. In Proceedings of the 26th International Conference on Software
Engineering (ICSE), pages 273–281, New York, NY, USA, 2004. IEEE.

[Kee02] Gerold Keefer. Extreme programming considered harmful for reliable software
development. Technical report, AVOCA GmbH, Kapellen-Drusweiler, Germany,
2002.

[Kel12] Allan Kelly. Business Patterns for Software Developers. John Wiley & Sons,
Hoboken, NJ, USA, 2012.

[Ket07] Petri Kettunen. Extending software project agility with new product develop-
ment enterprise agility. Software Process: Improvement and Practice (SPIP),
12(6):541–548, 2007.

[KHR18] Martin Kalenda, Petr Hyna, and Bruno Rossi. Scaling agile in large organizations:
Practices, challenges, and success factors. Journal of Software: Evolution and
Process (JSEP), 30(10):1–25, 2018.

[Kit04] Barbara Kitchenham. Procedures for performing systematic reviews. Technical
report, Keele University, Keele, England, UK, 2004.

[KL17] Daryl Kulak and Hong Li. The Journey to Enterprise Agility: Systems Thinking
and Organizational Legacy. Springer Nature, Cham, Switzerland, 2017.

119

Bibliography

[KL20] Richard Knaster and Dean Leffingwell. SAFe 5.0 Distilled: Achieving Business
Agility with the Scaled Agile Framework. Addison-Wesley, Boston, MA, USA,
2020.

[KMI15] Eetu Kupiainen, Mika Mäntylä, and Juha Itkonen. Using metrics in agile and
lean software development–a systematic literature review of industrial studies.
Information and Software Technology (IST), 62:143–163, 2015.

[KML20] Dina Koutsikouri, Sabine Madsen, and Nataliya Berbyuk Lindström. Agile trans-
formation: How employees experience and cope with transformative change. In
Proceedings of the 21st International Conference on Agile Software Development
Scientific Workshops (AGILESW), pages 155–163, Cham, Switzerland, 2020.
Springer International.

[KP08] Barbara Kitchenham and Shari Pfleeger. Personal opinion surveys. In Guide to
Advanced Empirical Software Engineering, pages 63–92. Springer London, Lon-
don, England, UK, 2008.

[KPP+02] Barbara Kitchenham, Shari Lawrence Pfleeger, Lesley Pickard, Peter Jones, David
Hoaglin, Khaled El Emam, and Jarrett Rosenberg. Guidelines for empirical
research in software engineering. IEEE Transactions on Software Engineering
(TSE), 28(8):721–734, 2002.

[Laa17] Maarit Laanti. Agile transformation model for large software development orga-
nizations. In Proceedings of the 18th International Conference on Agile Software
Development Scientific Workshops (AGILESW), pages 1–5, New York, NY, USA,
2017. ACM.

[Lad09] Corey Ladas. Scrumban-Essays on Kanban Systems for Lean Software Develop-
ment. Modus Cooperandi Press, Seattle, WA, USA, 2009.

[LB03] Craig Larman and Victor Basili. Iterative and incremental developments: A brief
history. Computer, 36(6):47–56, 2003.

[LE06] Yair Levy and Timothy Ellis. A systems approach to conduct an effective lit-
erature review in support of information systems research. Informing Science
Journal (InformingSciJ), 9:181–212, 2006.

[LeS22] LeSS Company. Less framework. https://less.works/less/framework, 2022.
[Online; accessed 03-04-2022].

[LGJO17] Howard Lei, Farnaz Ganjeizadeh, Pradeep Kumar Jayachandran, and Pinar Oz-
can. A statistical analysis of the effects of scrum and kanban on software de-
velopment projects. Robotics and Computer-Integrated Manufacturing (RCIM),
43:59–67, 2017.

[Lik03] Jeffrey Liker. The Toyota Way. McGraw-Hill Professional, New York, NY, USA,
2003.

120

https://less.works/less/framework

Bibliography

[LMD+04] Mikael Lindvall, Dirk Muthig, Aldo Dagnino, Christina Wallin, Michael Stup-
perich, David Kiefer, John May, and Tuomo Kahkonen. Agile software develop-
ment in large organizations. Computer, 37(12):26–34, 2004.

[LMZ08] Dean Leffingwell, Ryan Martens, and Mauricio Zamora. Principles of agile archi-
tecture. Technical report, Leffingwell and Rally Software Development, Boston,
MA, USA, 2008.

[LSA11] Maarit Laanti, Outi Salo, and Pekka Abrahamsson. Agile methods rapidly replac-
ing traditional methods at nokia: A survey of opinions on agile transformation.
Information and Software Technology (IST), 53(3):276–290, 2011.

[LSE+13] Lina Lagerberg, Tor Skude, Pär Emanuelsson, Kristian Sandahl, and Daniel Ståhl.
The impact of agile principles and practices on large-scale software development
projects: A multiple-case study of two projects at ericsson. In Proceedings of the
7th International Symposium on Empirical Software Engineering and Measure-
ment (ESEM), pages 348–356, New York, NY, USA, 2013. IEEE.

[LSMdMH15] Johan Linåker, Sardar Muhammad Sulaman, Rafael Maiani de Mello, and Martin
Höst. Guidelines for conducting surveys in software engineering. Technical report,
Lund University, Lund, Sweden, 2015.

[LSS13] Lawrence Locke, Waneen Wyrick Spirduso, and Stephen Silverman. Proposals
that work: A Guide for Planning Dissertations and Grant Proposals. SAGE,
Thousand Oaks, CA, USA, 2013.

[Lun11] Fred Lunenburg. Network patterns and analysis: Underused sources to improve
communication effectiveness. National Forum Of Educational Administration and
Supervision Journal (NFEASJ), 28(4):1–27, 2011.

[LV16] Craig Larman and Bas Vodde. Large-Scale Scrum: More with LeSS. Addison-
Wesley, Boston, MA, USA, 2016.

[Map09] Chuck Maples. Enterprise agile transformation: The two-year wall. In Proceedings
of the 2009 Agile Conference, pages 90–95, New York, NY, USA, 2009. IEEE.

[McB03] Pete McBreen. Questioning Extreme Programming. Pearson Education, Boston,
MA, USA, 2003.

[MD97] Gerard Meszaros and Jim Doble. A pattern language for pattern writing. In
Pattern Languages of Program Design, volume 3, pages 529–574. Addison-Wesley,
Boston, MA, USA, 1997.

[MD17] Nils Brede Moe and Torgeir Dingsøyr. Emerging research themes and updated
research agenda for large-scale agile development: A summary of the 5th interna-
tional workshop at xp2017. In Proceedings of the 18th International Conference on
Agile Software Development Scientific Workshops (AGILESW), pages 1–4, New
York, NY, USA, 2017. ACM.

[MH94] Matthew Miles and Michael Huberman. Qualitative Data Analysis: An Expanded
Sourcebook. SAGE, Thousand Oaks, CA, USA, 1994.

121

Bibliography

[Mil56] George Miller. The magical number seven, plus or minus two: Some limits on our
capacity for processing information. Psychological Review, 63(2):81–97, 1956.

[MJ10] Neil Maiden and Sara Jones. Agile requirements can we have our cake and eat it
too? IEEE Software, 27(3):87–88, 2010.

[MJ11] Peter Middleton and David Joyce. Lean software management: Bbc world-
wide case study. IEEE Transactions on Engineering Management (IEEE-TEM),
59(1):20–32, 2011.

[MKK10] Subhas Chandra Misra, Vinod Kumar, and Uma Kumar. Identifying some critical
changes required in adopting agile practices in traditional software development
projects. International Journal of Quality & Reliability Management (IJQRM),
27(4):451–474, 2010.

[MNS12] Andrey Maglyas, Uolevi Nikula, and Kari Smolander. Lean solutions to software
product management problems. IEEE Software, 29(5):40–46, 2012.

[Moc09] Martin Mocker. What is complex about 273 applications? untangling application
architecture complexity in a case of european investment banking. In Proceedings
of the 42nd Hawaii International Conference on System Sciences, pages 1–14,
New York, NY, USA, 2009. IEEE.

[MRTR05] Hilkka Merisalo-Rantanen, Tuure Tuunanen, and Matti Rossi. Is extreme pro-
gramming just old wine in new bottles: A comparison of two cases. Journal of
Database Management (JDM), 16(4):41–61, 2005.

[MS05] Peter Middleton and James Sutton. Lean Software Strategies: Proven Techniques
for Managers and Developers. CRC Press, Boca Raton, FL, USA, 2005.

[Mye97] Michael Myers. Qualitative research in information systems. MIS Quarterly
(MISQ), 21(2):241–242, 06 1997.

[NMM05] Sridhar Nerur, RadhaKanta Mahapatra, and George Mangalaraj. Challenges of
migrating to agile methodologies. Communications of the ACM, 48(5):72–78,
2005.

[Nob98] James Noble. Classifying relationships between object-oriented design patterns.
In Proceedings of the 11th Australian Software Engineering Conference (ASWEC),
pages 98–107, New York, NY, USA, 1998. IEEE.

[NÖK14] Robert Nord, Ipek Özkaya, and Philippe Kruchten. Agile in distress: Architec-
ture to the rescue. In Proceedings of the 15th International Conference on Agile
Software Development Scientific Workshops (AGILESW), pages 43–57, Cham,
Switzerland, 2014. Springer International.

[NÖS12] Robert Nord, Ipek Özkaya, and Raghvinder Sangwan. Making architecture visi-
ble to improve flow management in lean software development. IEEE Software,
29(5):33–39, 2012.

122

Bibliography

[NRN08] Sridhar Nerur, Abdul Rasheed, and Vivek Natarajan. The intellectual struc-
ture of the strategic management field: An author co-citation analysis. Strategic
Management Journal (SMJ), 29(3):319–336, 2008.

[Oat11] Briony Oates. Evidence-based information systems: A decade later. In Pro-
ceedings of the 19th European Conference on Information Systems (ECIS), pages
1–11, Atlanta, GA, USA, 2011. AIS.

[OBS06] Eric Overby, Anandhi Bharadwaj, and Vallabh Sambamurthy. Enterprise agility
and the enabling role of information technology. European Journal of Information
Systems (EJIS), 15(2):120–131, 2006.

[Ohn88] Taiichi Ohno. Toyota Production System: Beyond Large-scale Production. CRC
Press, Boca Raton, FL, USA, 1988.

[Paa17] Maria Paasivaara. Adopting safe to scale agile in a globally distributed organi-
zation. In Proceedings of the 12th International Conference on Global Software
Engineering (ICGSE), pages 36–40, New York, NY, USA, 2017. IEEE.

[PCL+04] Stanley Presser, Mick Couper, Judith Lessler, Elizabeth Martin, Jean Martin,
Jennifer Rothgeb, and Eleanor Singer. Methods for testing and evaluating survey
questions. Public Opinion Quarterly (POQ), 68(1):109–130, 2004.

[PDL08] Maria Paasivaara, Sandra Durasiewicz, and Casper Lassenius. Using scrum in a
globally distributed project: a case study. Software Process: Improvement and
Practice (SPIP), 13(6):527–544, 2008.

[Pet11] Kai Petersen. Is lean agile and agile lean? a comparison between two software
development paradigms. In Modern Software Engineering Concepts and Practices:
Advanced Approaches, pages 19–46. IGI Global, Hershey, PA, USA, 2011.

[PFMM08] Kai Petersen, Robert Feldt, Shahid Mujtaba, and Michael Mattsson. System-
atic mapping studies in software engineering. In Proceedings of the 12th In-
ternational Conference on Evaluation and Assessment in Software Engineering
(EASE), pages 68–77, Swindon, England, UK, 2008. BCS Learning & Develop-
ment.

[PHK17] Jan Pries-Heje and Malene Krohn. The safe way to the agile organization. In
Proceedings of the 18th International Conference on Agile Software Development
Scientific Workshops (AGILESW), pages 1–4, New York, NY, USA, 2017. ACM.

[PL16] Maria Paasivaara and Casper Lassenius. Challenges and success factors for large-
scale agile transformations: A research proposal and a pilot study. In Proceedings
of the 17th International Conference on Agile Software Development Scientific
Workshops (AGILESW), pages 1–5, New York, NY, USA, 2016. ACM.

[Pow16] Daryl Powell. Lean engineer-to-order manufacturing. In The Routledge Compan-
ion to Lean Management, pages 308–323. Routledge, Milton Park, Abingdon-on-
Thames, Oxfordshire, England, UK, 2016.

123

Bibliography

[PP03] Mary Poppendieck and Tom Poppendieck. Lean Software Development: An Agile
Toolkit. Addison-Wesley, Boston, MA, USA, 2003.

[PPL18] Abheeshta Putta, Maria Paasivaara, and Casper Lassenius. Benefits and chal-
lenges of adopting the scaled agile framework (safe): Preliminary results from a
multivocal literature review. In Proceedings of the 19th International Conference
on Product-Focused Software Process Improvement (PROFES), pages 334–351,
Cham, Switzerland, 2018. Springer International.

[PPL19] Abheeshta Putta, Maria Paasivaara, and Casper Lassenius. How are agile re-
lease trains formed in practice? a case study in a large financial corporation. In
Proceedings of the 20th International Conference on Agile Software Development
(AGILE), pages 154–170, Cham, Switzerland, 2019. Springer International.

[Pro22] Project Management Institute. Full Delivery Life Cycles. https:
//www.pmi.org/disciplined-agile/process/introduction-to-dad/
full-delivery-lifecycles-introduction, 2022. [Online; accessed 03-04-
2022].

[PTRC07] Ken Peffers, Tuure Tuunanen, Marcus Rothenberger, and Samir Chatterjee. A
design science research methodology for information systems research. Journal of
Management Information Systems (JMIS), 24(3):45–77, 2007.

[PVK15] Kai Petersen, Sairam Vakkalanka, and Ludwik Kuzniarz. Guidelines for conduct-
ing systematic mapping studies in software engineering: An update. Information
and Software Technology (IST), 64:1–18, 2015.

[PW10a] Kai Petersen and Claes Wohlin. The effect of moving from a plan-driven to
an incremental software development approach with agile practices. Empirical
Software Engineering (EMSE), 15(6):654–693, 2010.

[PW10b] Kai Petersen and Claes Wohlin. Software process improvement through the
lean measurement (spi-leam) method. Journal of Systems and Software (JSS),
83(7):1275–1287, 2010.

[PW11] Kai Petersen and Claes Wohlin. Measuring the flow in lean software development.
Software: Practice and Experience (SPE), 41(9):975–996, 2011.

[Raj06] Vaclav Rajlich. Changing the paradigm of software engineering. Communications
of the ACM, 49(8):67–70, 2006.

[Ram11] Pedro Pablo Ramos. Network Models for Organizations: The Flexible Design of
21st Century Companies. Palgrave Macmillan, New York, NY, USA, 2011.

[RB21] Daniel Remta and Alena Buchalcevova. Product owner’s journey to safe – role
changes in scaled agile framework. Information, 12(3):1–18, 2021.

[Rei09] Donald Reinertsen. The Principles of Product Development Flow: Second Gen-
eration Lean Product Development. Celeritas, Redondo Beach, CA, USA, 2009.

124

https://www.pmi.org/disciplined-agile/process/introduction-to-dad/full-delivery-lifecycles-introduction
https://www.pmi.org/disciplined-agile/process/introduction-to-dad/full-delivery-lifecycles-introduction
https://www.pmi.org/disciplined-agile/process/introduction-to-dad/full-delivery-lifecycles-introduction

Bibliography

[RFDS16] Knut Rolland, Brian Fitzgerald, Torgeir Dingsøyr, and Klaas-Jan Stol. Prob-
lematizing agile in the large: Alternative assumptions for large-scale agile de-
velopment. In Proceedings of the 37th International Conference on Information
Systems (ICIS), pages 1–21, Atlanta, GA, USA, 2016. AIS.

[RH09] Per Runeson and Martin Höst. Guidelines for conducting and reporting case
study research in software engineering. Empirical Software Engineering (EMSE),
14(2):131–164, 2009.

[RHL+17] Pilar Rodríguez, Alireza Haghighatkhah, Lucy Ellen Lwakatare, Susanna Tep-
pola, Tanja Suomalainen, Juho Eskeli, Teemu Karvonen, Pasi Kuvaja, June
Verner, and Markku Oivo. Continuous deployment of software intensive prod-
ucts and services: A systematic mapping study. Journal of Systems and Software
(JSS), 123:263–291, 2017.

[RJ00] Linda Rising and Norman Janoff. The scrum software development process for
small teams. IEEE Software, 17(4):26–32, 2000.

[RME03] Donald Reifer, Frank Maurer, and Hakan Erdoğmuş. Scaling agile methods. IEEE
Software, 20(4):12–14, 2003.

[RMO+19] Pilar Rodríguez, Mika Mäntylä, Markku Oivo, Lucy Ellen Lwakatare, Pertti Sep-
pänen, and Pasi Kuvaja. Advances in using agile and lean processes for software
development. In Advances in Computers, volume 113, pages 135–224. Elsevier,
Amsterdam, Netherlands, 2019.

[Rob02] Colin Robson. Real World Research: A Resource for Social Scientists and
Practitioner-Researchers. Wiley-Blackwell, Hoboken, NJ, USA, 2002.

[RP14] Louis Rea and Richard Parker. Designing and Conducting Survey Research: A
Comprehensive Guide. John Wiley & Sons, Hoboken, NJ, USA, 2014.

[RRN+18] Mohammad Abdur Razzak, Ita Richardson, John Noll, Clodagh Nic Canna, and
Sarah Beecham. Scaling agile across the global organization: An early stage
industrial safe self-assessment. In Proceedings of the 13th International Conference
on Global Software Engineering (ICGSE), pages 116–125, New York, NY, USA,
2018. IEEE.

[RS04] Jennifer Rowley and Frances Slack. Conducting a literature review. Management
Research News (MRN), 27(6):31–39, 2004.

[RS08] Don Rosenberg and Matt Stephens. Extreme Programming Refactored: the Case
Against XP. Apress, New York, NY, USA, 2008.

[Rub12] Kenneth Rubin. Essential Scrum: A Practical Guide to the Most Popular Agile
Process. Addison-Wesley, Boston, MA, USA, 2012.

[RV08] Michael Rosemann and Iris Vessey. Toward improving the relevance of information
systems research to practice: the role of applicability checks. MIS Quarterly
(MISQ), 32(1):1–22, 2008.

125

Bibliography

[RWN+15] Dominik Rost, Balthasar Weitzel, Matthias Naab, Torsten Lenhart, and Hartmut
Schmitt. Distilling best practices for agile development from architecture method-
ology. In Proceedings of the 9th European Conference on Software Architecture
(ECSA), pages 259–267, Cham, Switzerland, 2015. Springer International.

[SB19] Abdallah Salameh and Julian Bass. Spotify tailoring for promoting effectiveness
in cross-functional autonomous squads. In Proceedings of the 20th International
Conference on Agile Software Development Scientific Workshops (AGILESW),
pages 20–28, Cham, Switzerland, 2019. Springer International.

[SC90] Anselm Strauss and Juliet Corbin. Basics of Qualitative Research. SAGE, Thou-
sand Oaks, CA, USA, 1990.

[Sca21] Scaled Agile. Reaching the Tipping Point. https://www.
scaledagileframework.com/reaching-the-tipping-point/, 2021. [Online;
accessed 03-04-2022].

[Sca22] Scaled Agile. SAFe 5 for Lean Enterprises. https://www.
scaledagileframework.com/safe-for-lean-enterprises/, 2022. [Online;
accessed 03-04-2022].

[Sch95] Ken Schwaber. Scrum development process. In Proceedings of the 10th Confer-
ence on Objected-Oriented Programming, Systems, Languages, and Applications
Workshops (OOPSLAW), pages 117–134, London, England, UK, 1995. Springer
London.

[SCKK18] Mohammad Shameem, Bibhas Chandra, Rakesh Ranjan Kumar, and Chiranjeev
Kumar. A systematic literature review to identify human related challenges in
globally distributed agile software development: Towards a hypothetical model
for scaling agile methodologies. In Proceedings of the 4th International Conference
on Computing Communication and Automation (ICCCA), pages 1–7, New York,
NY, USA, 2018. IEEE.

[Sco91] John Scott. Social Network Analysis: A Handbook. SAGE, Thousand Oaks, CA,
USA, 1991.

[Scr21] ScrumPLoP. Published patterns. https://sites.google.com/a/scrumplop.
org/published-patterns/, 2021. [Online; accessed 03-04-2022].

[Scr22] Scrum.org. The Scrum Framework Poster. https://www.scrum.org/resources/
scrum-framework-poster, 2022. [Online; accessed 03-04-2022].

[SH15] Christoph Johann Stettina and Jeannette Hörz. Agile portfolio management: An
empirical perspective on the practice in use. International Journal of Project
Management (IJPM), 33(1):140–152, 2015.

[SKCK17] Mohammad Shameem, Chiranjeev Kumar, Bibhas Chandra, and Arif Ali Khan.
Systematic review of success factors for scaling agile methods in global software
development environment: A client-vendor perspective. In Proceedings of the 24th

126

https://www.scaledagileframework.com/reaching-the-tipping-point/
https://www.scaledagileframework.com/reaching-the-tipping-point/
https://www.scaledagileframework.com/safe-for-lean-enterprises/
https://www.scaledagileframework.com/safe-for-lean-enterprises/
https://sites.google.com/a/scrumplop.org/published-patterns/
https://sites.google.com/a/scrumplop.org/published-patterns/
https://www.scrum.org/resources/scrum-framework-poster
https://www.scrum.org/resources/scrum-framework-poster

Bibliography

Asia-Pacific Software Engineering Conference Workshops (APSEC), pages 17–24,
New York, NY, USA, 2017. IEEE.

[SKCU77] Yutaka Sugimori, Kaneyoshi Kusunoki, Fujio Cho, and Sjtijopr Uchikawa. Toy-
ota production system and kanban system materialization of just-in-time and
respect-for-human system. International Journal of Production Research (IJPR),
15(6):553–564, 1977.

[SKL07] Bohdana Sherehiy, Waldemar Karwowski, and John Layer. A review of enterprise
agility: Concepts, frameworks, and attributes. International Journal of Industrial
Ergonomics (IJIE), 37(5):445–460, 2007.

[SM02] Ken Schwaber and Beedle Mike. Agile Software Development With Scrum.
Prentice-Hall, Hoboken, NJ, USA, 2002.

[SM15] Alexander Schneider and Florian Matthes. Evolving the eam pattern language. In
Proceedings of the 20th European Conference on Pattern Languages of Programs
(EuroPLoP), pages 1–11, New York, NY, USA, 2015. ACM.

[SS20] Ken Schwaber and Jeff Sutherland. The scrum guide. https://scrumguides.
org/scrum-guide.html, 2020. [Online; accessed 03-04-2022].

[Sta95a] Robert Stake. The Art of Case Study Research. SAGE, Thousand Oaks, CA,
USA, 1995.

[Sta95b] Barry Staw. Repairs on the road to relevance and rigor. In Publishing in the
Organizational Sciences, volume 2, pages 85–97. SAGE, Thousand Oaks, CA,
USA, 1995.

[STE17] Eva-Maria Schön, Jörg Thomaschewski, and María José Escalona. Agile require-
ments engineering: A systematic literature review. Computer Standards & Inter-
faces, 49:79–91, 2017.

[SVBP07] Jeff Sutherland, Anton Viktorov, Jack Blount, and Nikolai Puntikov. Dis-
tributed scrum: Agile project management with outsourced development teams.
In Proceedings of the 40th Hawaii International Conference on System Sciences
(HICSS), pages 1–10, New York, NY, USA, 2007. IEEE.

[SvECV21] Christoph Johann Stettina, Victor van Els, Job Croonenberg, and Joost Visser.
The impact of agile transformations on organizational performance: A survey of
teams, programs and portfolios. In Proceedings of the 22nd International Confer-
ence on Agile Software Development (AGILE), pages 86–102, Cham, Switzerland,
2021. Springer International.

[TDS03] David Tranfield, David Denyer, and Palminder Smart. Towards a methodology
for developing evidence-informed management knowledge by means of systematic
review. British Journal of Management (BJM), 14(3):207–222, 2003.

127

https://scrumguides.org/scrum-guide.html
https://scrumguides.org/scrum-guide.html

Bibliography

[TFW18] Helena Tendedez, Maria Angela Felicita Cristina Ferrario, and Jonathan
Nicholas David Whittle. Software development and cscw: Standardization and
flexibility in large-scale agile development. Proceedings of the ACM on Human-
Computer Interaction, 2(CSCW):1–23, 2018.

[Tho14] Steven Thompson. Sampling. John Wiley & Sons, Hoboken, NJ, USA, 2014.

[TN86] Hirotaka Takeuchi and Ikujiro Nonaka. The new new product development game.
Harvard Business Review (HBR), 64(1):137–146, 1986.

[Tor05] Richard Torraco. Writing integrative literature reviews: Guidelines and examples.
Human Resource Development Review (HRDR), 4(3):356–367, 2005.

[TSD19] Sven Theobald, Anna Schmitt, and Philipp Diebold. Comparing scaling agile
frameworks based on underlying practices. In Proceedings of the 20th International
Conference on Agile Software Development Scientific Workshops (AGILESW),
pages 88–96, Cham, Switzerland, 2019. Springer International.

[Vai14] Aashish Vaidya. Does dad know best, is it better to do less or just be safe?
adapting scaling agile practices into the enterprise. In Proceedings of the 40th
Pacific NW Software Quality Conference (PNSQC), pages 828–837, Porland, OR,
USA, 2014. Pacific NW Software Quality Conference (PNSQC).

[VBB13] Viswanath Venkatesh, Susan Brown, and Hillol Bala. Bridging the qualitative-
quantitative divide: Guidelines for conducting mixed methods research in infor-
mation systems. MIS Quarterly (MISQ), 37(1):21–54, 2013.

[VBSN+09] Jan Vom Brocke, Alexander Simons, Bjoern Niehaves, Kai Riemer, Ralf Plattfaut,
and Anne Cleven. Reconstructing the giant: On the importance of rigour in
documenting the literature search process. In Proceedings of the 17th European
Conference on Information Systems (ECIS), pages 2206–2217, Atlanta, GA, USA,
2009. AIS.

[vMvV14] Hidde van Manen and Hans van Vliet. Organization-wide agile expansion re-
quires an organization-wide agile mindset. In Proceedings of the 15th International
Conference on Product-Focused Software Process Improvement (PROFES), pages
48–62, Cham, Switzerland, 2014. Springer International.

[Wal06] Geoff Walsham. Doing interpretive research. European Journal of Information
Systems (EJIS), 15(3):320–330, 2006.

[Wat14] Michael Waterman. Reconciling Agility and Architecture: A Theory of Agile
Architecture. Dissertation, Victoria University of Wellington, Wellington, New
Zealand, 2014.

[WC03] Laurie Williams and Alistair Cockburn. Guest editors’ introduction: Agile soft-
ware development: It? s about feedback and change. Computer, 36(6):39–43,
2003.

128

Bibliography

[WCC12] Xiaofeng Wang, Kieran Conboy, and Oisin Cawley. “leagile” software develop-
ment: An experience report analysis of the application of lean approaches in agile
software development. Journal of Systems and Software (JSS), 85(6):1287–1299,
2012.

[WCP12] Xiaofeng Wang, Kieran Conboy, and Minna Pikkarainen. Assimilation of agile
practices in use. Information Systems Journal (ISJ), 22(6):435–455, 2012.

[Wel01] Don Wells. Extreme Programming: A Gentle Introduction. http://www.
extremeprogramming.org/map/project.html, 2001. [Online; accessed 03-04-
2022].

[WJ97] James Womack and Daniel Jones. Lean thinking—banish waste and create wealth
in your corporation. Journal of the Operational Research Society, 48(11):1144–
1150, 1997.

[WJR90] James Womack, Daniel Jones, and Daniel Roos. The Machine That Changed the
World: How Lean Production Revolutionized the Global Car Wars. Simon and
Schuster, New York, NY, USA, 1990.

[WJR07] James Womack, Daniel Jones, and Daniel Roos. The Machine that Changed the
World: The Story of Lean Production–Toyota’s Secret Weapon in the Global Car
Wars that Is now Revolutionizing World Industry. Simon and Schuster, New York,
NY, USA, 2007.

[WRH+12] Claes Wohlin, Per Runeson, Martin Höst, Magnus Ohlsson, Björn Regnell, and
Anders Wesslén. Experimentation in Software Engineering. Springer Berlin Hei-
delberg, Berlin, Heidelberg, Germany, 2012.

[WW02] Jane Webster and Richard Watson. Analyzing the past to prepare for the future:
Writing a literature review. MIS Quarterly (MISQ), 26(2):13–23, 2002.

[WW15] Peter Weill and Stephanie Woerner. Thriving in an increasingly digital ecosystem.
MIT Sloan Management Review (MIT SMR), 56(4):27–34, 2015.

[Yıl13] Kaya Yılmaz. Comparison of quantitative and qualitative research traditions:
Epistemological, theoretical, and methodological differences. European Journal
of Education (EJE), 48(2):311–325, 2013.

[Yin15] Robert Yin. Case Study Research: Design and Methods. SAGE, Thousand Oaks,
CA, USA, 2015.

[ZC06] Ted Zorn and Nittaya Campbell. Improving the writing of literature reviews
through a literature integration exercise. Business Communication Quarterly
(BCQ), 69(2):172–183, 2006.

129

http://www.extremeprogramming.org/map/project.html
http://www.extremeprogramming.org/map/project.html

130

Publications

[PUH+21] Abheeshta Putta, Ömer Uludağ, Shun-Long Hong, Maria Paasivaara, and Casper
Lassenius. Why do organizations adopt agile scaling frameworks? a survey of practi-
tioners. In Proceedings of the 15th International Symposium on Empirical Software
Engineering and Measurement (ESEM), pages 1–12, New York, NY, USA, 2021.
ACM.

[PUPH21] Abheeshta Putta, Ömer Uludağ, Maria Paasivaara, and Shun-Long Hong. Benefits
and challenges of adopting safe-an empirical survey. In Proceedings of the 22nd
International Conference on Agile Software Development, Cham, Switzerland, 2021.
Springer International.

[UHK+18] Ömer Uludağ, Matheus Hauder, Martin Kleehaus, Christina Schimpfle, and Florian
Matthes. Supporting large-scale agile development with domain-driven design. In
Proceedings of the 19th International Conference on Agile Software Development
(AGILE), pages 232–247, Cham, Switzerland, 2018. Springer International.

[UHM19] Ömer Uludağ, Nina-Mareike Harders, and Florian Matthes. Documenting recur-
ring concerns and patterns in large-scale agile development. In Proceedings of the
24th European Conference on Pattern Languages of Programs (EuroPLoP), New
York, NY, USA, 2019. ACM. https://doi.org/10.1145/3361149.3361176. The
published version of this paper is included in Appendix A of the dissertation.

[UKCM18] Ömer Uludağ, Martin Kleehaus, Christoph Caprano, and Florian Matthes. Identify-
ing and structuring challenges in large-scale agile development based on a structured
literature review. In Proceedings of the 22nd International Enterprise Distributed
Object Computing Conference (EDOC), pages 191–197, New York, NY, USA, 2018.
IEEE. https://doi.org/10.1109/EDOC.2018.00032. The accepted version of this
paper is included in Appendix A of the dissertation.

[UKD+19] Ömer Uludağ, Martin Kleehaus, Niklas Dreymann, Christian Kabelin, and Florian
Matthes. Investigating the adoption and application of large-scale scrum at a german
automobile manufacturer. In Proceedings of the 14th International Conference on
Global Software Engineering (ICGSE), pages 22–29, New York, NY, USA, 2019.

131

https://doi.org/10.1145/3361149.3361176
https://doi.org/10.1109/EDOC.2018.00032

Publications

IEEE. https://doi.org/10.1109/ICGSE.2019.00019. The accepted version of this
paper is included in Appendix A of the dissertation.

[UKEM19] Ömer Uludağ, Martin Kleehaus, Soner Erçelik, and Florian Matthes. Using social
network analysis to investigate the collaboration between architects and agile teams:
A case study of a large-scale agile development program in a german consumer
electronics company. In Proceedings of the 20th International Conference on Agile
Software Development (AGILE), pages 137–153, Cham, Switzerland, 2019. Springer
International. https://doi.org/10.1007/978-3-030-19034-7_9. The published
version of this paper is included in Appendix A of the dissertation.

[UKRM19] Ömer Uludağ, Martin Kleehaus, Niklas Reiter, and Florian Matthes. What to expect
from enterprise architects in large-scale agile development? A multiple-case study.
In Proceedings of the 25th Americas Conference on Information Systems (AMCIS),
pages 2683 – 2692, Atlanta, GA, USA, 2019. AIS. The published version of this
paper is included in Appendix A of the dissertation.

[UKXM17] Ömer Uludağ, Martin Kleehaus, Xian Xu, and Florian Matthes. Investigating the
role of architects in scaling agile frameworks. In Proceedings of the 21st Interna-
tional Enterprise Distributed Object Computing Conference (EDOC), pages 123–132,
New York, NY, USA, 2017. IEEE. https://doi.org/10.1109/EDOC.2017.25. The
accepted version of this paper is included in Appendix A of the dissertation.

[UM19] Ömer Uludağ and Florian Matthes. Identifying and documenting recurring con-
cerns and best practices of agile coaches and scrum masters in large-scale agile
development. In Proceedings of the 26th International Conference on Pattern Lan-
guages of Programs (PLoP), pages 191–197, Munich, Germany, 2019. The Hillside
Group. https://dl.acm.org/doi/10.5555/3492252.3492271. The published ver-
sion of this paper is included in Appendix A of the dissertation.

[UM20a] Ömer Uludağ and Florian Matthes. Investigating the role of enterprise architects in
supporting large-scale agile transformations: A multiple-case study. In Proceedings
of the 26th Americas Conference on Information Systems (AMCIS), Atlanta, GA,
USA, 2020. AIS. The published version of this paper is included in Appendix A of
the dissertation.

[UM20b] Ömer Uludağ and Florian Matthes. Large-scale agile development patterns for en-
terprise and solution architects. In Proceedings of the 25th European Conference on
Pattern Languages of Programs (EuroPLoP), New York, NY, USA, 2020. ACM.

[UNH19] Ömer Uludağ, Sascha Nägele, and Matheus Hauder. Establishing architecture guide-
lines in large-scale agile development through institutional pressures: A single-case
study. In Proceedings of the 25th Americas Conference on Information Systems
(AMCIS), pages 551 – 560, Atlanta, GA, USA, 2019. AIS.

[UNHM21] Ömer Uludağ, Sascha Nägele, Matheus Hauder, and Florian Matthes. A tool sup-
porting architecture principles and guidelines in large-scale agile development. In Ar-
chitecting the Digital Transformation, pages 327–344. Springer International, Cham,
Switzerland, 2021.

132

https://doi.org/10.1109/ICGSE.2019.00019
https://doi.org/10.1007/978-3-030-19034-7_9
https://doi.org/10.1109/EDOC.2017.25
https://dl.acm.org/doi/10.5555/3492252.3492271

Publications

[UPM19] Ömer Uludağ, Henderik A Proper, and Florian Matthes. Investigating the estab-
lishment of architecture principles for supporting large-scale agile transformations.
In Proceedings of the 23rd International Enterprise Distributed Object Computing
Conference (EDOC), pages 41–50, New York, NY, USA, 2019. IEEE.

[UPP+22] Ömer Uludağ, Pascal Philipp, Abheeshta Putta, Maria Paasivaara, Casper Lasse-
nius, and Florian Matthes. Revealing the state of the art of large-scale agile devel-
opment research: A systematic mapping study. Journal of Systems and Software
(JSS), 194:1–43, 2022. https://doi.org/10.1016/j.jss.2022.111473. The ac-
cepted version of this paper is included in Appendix A of the dissertation.

[UPPM21] Ömer Uludağ, Abheeshta Putta, Maria Paasivaara, and Florian Matthes. Evolution
of the agile scaling frameworks. In Proceedings of the 22nd International Confer-
ence on Agile Software Development (AGILE), pages 123–139, Cham, Switzerland,
2021. Springer International. https://doi.org/10.1007/978-3-030-78098-2_8.
The published version of this paper is included in Appendix A of the dissertation.

[URM21] Ömer Uludağ, Niklas Reiter, and Florian Matthes. Improving the collaboration
between enterprise architects and agile teams: A multiple-case study. In Archi-
tecting the Digital Transformation, pages 347–366. Springer International, Cham,
Switzerland, 2021.

133

https://doi.org/10.1016/j.jss.2022.111473
https://doi.org/10.1007/978-3-030-78098-2_8

134

Abbreviations

AGILE International Conference on Agile Software Development

AMCIS Americas Conference on Information Systems

ART Agile Release Train

CoP Community of Practice

DAD Disciplined Agile Delivery

EAM Enterprise Architecture Management

EDOC International Enterprise Distributed Object Computing Conference

EPLoP European Conference on Pattern Languages of Programs

ICGSE International Conference on Global Software Engineering

IT Information Technology

HSD Holistic Software Development

JSS Journal of Systems and Software

LeSS Large-Scale Scrum

MIT Massachusetts Institute of Technology

NPS Net Promoter Score

P Publication

Parallel Parallel Agile

135

Publications

PDR Pattern-based Design Research

PI Program Increment

PLoP International Conference on Pattern Languages of Programs

RAGE Recipes for Agile Governance in the Enterprise

RTE Release Train Engineer

SAFe Scaled Agile Framework

sebis Chair for Software Engineering for Business Information System

SoS Scrum-of-Scrums

Spotify Spotify Model

TPS Toyota Production System

TUM Technical University of Munich

WIP Work-in-Progress

XP Extreme Programming

136

APPENDIX A

Embedded Publications in Original Format

137

Revealing the State of the Art of Large-Scale Agile Development Research:
A Systematic Mapping Study

Ömer Uludağa, ,̊ Pascal Philippa, Abheeshta Puttab, Maria Paasivaarab,c, Casper Lasseniusb,d, Florian Matthesa

aTechnical University of Munich, Department of Informatics, Munich, Germany
bAalto University, Department of Computer Science, Espoo, Finland

cLUT University, Finland
dSimula Research Laboratory, Oslo, Norway

Abstract

Context: Success with agile methods in the small scale has led to an increasing adoption also in large development undertakings and
organizations. Recent years have also seen an increasing amount of primary research on the topic, as well as a number of systematic
literature reviews. However, there is no systematic overview of the whole research field. Objective: This work identifies, classifies,
and evaluates the state of the art of research in large-scale agile development.
Method: We conducted a systematic mapping study and rigorously selected 136 studies. We designed a classification framework
and extracted key information from the studies. We synthesized the obtained data and created an overview of the state of the art.
Results: This work contributes with (i) a description of large-scale agile endeavors reported in the industry, (ii) a systematic map
of existing research in the field, (iii) an overview of influential studies, (iv) an overview of the central research themes, and (v) a
research agenda for future research.
Conclusion: This study portrays the state of the art in large-scale agile development and offers researchers and practitioners a
reflection of the past thirteen years of research and practice on the large-scale application of agile methods.

Keywords: Agile software development, large-scale agile development, systematic mapping study

1. Introduction

Contemporary business environments are characterized by
high unpredictability due to rapidly shifting customer de-
mands and technological advancements, implying that flexibil-
ity, adaptability, and learning are crucial to business success
[76]. Over the past decades, software has become an integral
part of many products and services [81]. To react quickly to
changing environments and fluctuating customer requirements,
the agile movement emerged in the 1990s, leading to the cre-
ation of the Agile Manifesto1 and many agile methods, e.g.,
Extreme Programming (XP) [14] and Scrum [94] [54, 81]. Ag-
ile methods were originally designed for small, co-located, and
self-organizing teams that produce software in close collabora-
tion with business customers, using regular feedback and rapid
development iterations [32, 36]. The successful application of
agile methods in small projects inspired companies to increas-
ingly adopt agile methods also in large-scale projects and or-
ganizations [35]. During the last decade, agile methods have
been extended to better fit large-scale settings. Several scaling
frameworks have been created both by some custodians of ex-
isting agile methods and by others who have worked with com-
panies in scaling agile methods to their settings [101]. As the

˚Corresponding author
Email address: oemer.uludag@tum.de (Ömer Uludağ)

1https://agilemanifesto.org/, last accessed on: 19-04-2022.

frameworks claim to provide off-the-shelf solutions to the prob-
lems of scaling, their adoption has rapidly increased in practice,
as confirmed by the latest State of Agile survey [31]. The sur-
vey shows that many large software-intensive companies have
adopted scaling frameworks to address challenges accompanied
by the scaling of agile methods [5, 24]. While there are more
than 20 available frameworks [101], the most popular ones are
[31]: Scaled Agile Framework (SAFe) [51], Large-Scale Scrum
(LeSS) [23], and Disciplined Agile Delivery (DAD) [8].

As the popularity of applying agile methods at scale has
increased in the industry, scientific research on the topic has
emerged in recent years. Eleven years ago, at the International
Conference on Agile Software Development, industrial prac-
titioners were asked to create a backlog of topics they think
should be studied. They voted “Agile and large projects” as
a top burning research question [41]. After that, nine Inter-
national Workshops on Large-Scale Agile Development at the
yearly International Conferences on Agile Software Develop-
ment have gathered researchers and practitioners to discuss re-
cent large-scale agile development studies and create research
agendas for future research on that area (cf. [33, 70]). In recent
years, research publications on large-scale agile have been pub-
lished at scientific conferences and journals, and the body of
knowledge has grown immensely (cf. [32, 40]). Although sci-
entific articles on large-scale agile development are mainly pri-
mary studies, we also identified several secondary studies that
synthesize the scientific knowledge on large-scale agile devel-

Preprint submitted to Journal of Systems and Software December 9, 2022138

opment related to specific topics, e.g., the systematic literature
review on “challenges and success factors for large-scale agile
transformations” [32]. A steadily growing number of primary
studies is a valuable indicator of the increasing maturity of a re-
search field. It leads to a critical tipping point when secondary
studies can be conducted, which then facilitates the aggregation
of the results of the primary studies. As the research area of
large-scale agile development matures and the number of stud-
ies increases, there is a need to systematically identify, analyze,
and classify the state of the art of this research field. While the
number of primary studies is sufficient, so far, no systematic
mapping study has been published to provide a comprehensive
overview of the state of research in this area. This mapping
study aims to close this gap and provide an overview of the
research activities pertaining to large-scale agile development.
The main contributions of this study are as follows:

• A description of large-scale agile endeavors and their char-
acteristics reported in the industry,
• A systematic map classifying, comparing, and evaluating

existing research on large-scale agile development,
• An overview of the most influential studies on large-scale

agile development,
• An overview of the central research themes and main find-

ings on large-scale agile development, and
• A research agenda consisting of a detailed description of

research gaps and a list of open research questions in large-
scale agile development.

The remainder of this paper is structured as follows. Section
2 presents background and related work. Section 3 portrays the
procedure of the systematic mapping study. Section 4 shows
the results of this study. Section 5 discusses the results. Section
6 describes the threats to validity. Section 7 concludes the paper
along with remarks on future research.

2. Background and related work

This section provides the background on agile software de-
velopment and large-scale agile development and gives an
overview of related work, including other secondary studies.

2.1. Agile software development

Software development methods have undergone a dramatic
evolution from traditional sequential development approaches
to more flexible and adaptive development approaches due to
the market’s increasing demands and customer requirements
volatility [81]. To address these needs, many companies have
started to adopt agile software development methods [80]. Var-
ious software practitioners introduced several agile methods
in recent years, e.g., the Crystal Method, the Dynamic Sys-
tem Development Method, and the Feature-Driven Develop-
ment Method, that comprise a set of iterative and incremental
methods based on specific values and principles defined in the
Agile Manifesto [1]. Currently, the most widely adopted agile
methods in industry are Scrum and XP [44]. These methods
have aroused great interest both in practice and academia [3].

Agile methods have received both acceptance and criticism
in the industry [20]. On the one hand, they have proven to be
successful in improving quality [93], productivity [39], and cus-
tomer satisfaction [39]. On the other hand, there is concern that
these methods may not be suitable for large-scale environments
[39]. Dybå and Dingsøyr [39] note that there is evidence that
suggests combining agile and traditional methods, i.e., hybrid
methods, in large undertakings and recommends that practi-
tioners should carefully examine and compare project charac-
teristics with the required characteristics of the suitable agile
method(s). Previous literature has also reported on the suc-
cess of hybrid approaches [67], e.g., recent research by Klünder
et al. [59] concludes that projects devising hybrid methods have
about a 5% better chance of achieving their goals.

According to Digital.ai [31], companies adopt agile methods
to accelerate software delivery, manage changing priorities, in-
crease productivity, improve alignment between business and
IT, and enhance quality, to name a few. However, adopting ag-
ile methods is not easy, as agile methods do not rely solely on
the appropriate application of individual tools or practices but
rather often demand a holistic way of thinking and mindset.
Thus, the adoption of agile methods often requires a change
in the entire organizational culture [69]. Developing an agile
mindset and changing the company’s culture takes time and ef-
fort, and if this effort is neglected, the organization can fall back
into old habits and fail to reap the full benefits of agility [61].

2.2. Large-scale agile development
The success of agile methods for small, co-located teams has

incited companies to increasingly apply agile practices to large-
scale projects [32, 36, 84]. However, the large-scale adoption
of agile methods has proven to be very challenging [38]. The
challenges of adopting agile practices at large-scale are partly
related to the organization’s size, as the difficulties of adopt-
ing agile methods increase with the size of the organization,
i.e., in large organizations, products are more complex, and the
inter-dependencies between teams are greater than in smaller
organizations [7, 38], leading to inertia and slowing down the
change process [66]. Another challenge in large organizations
is the need for coordination and communication between mul-
tiple teams and also between different organizational units that
often do not work in an agile manner, requiring additional co-
ordination mechanisms between teams and also organizational
units [65]. While agile methods primarily focus on intra-team
practices that work well in small organizations, agile methods
do not provide sufficient guidance on how agile teams should
interact in large environments [68]. Hence, large organizations
must adapt the practices to their specific needs. As a result,
practices may need to be put in place that require additional
formal communication, which might reduce their agility [65].
As often large organizations are globally distributed and agile
methods are primarily based on frequent internal and external
collaboration and communication [49], the use of agile prac-
tices in globally distributed projects can be challenging [46].

To address issues associated with adopting agile practices in
large-scale organizations and projects, consultants and software
practitioners have proposed several scaling agile frameworks,

2 139

e.g., SAFe, LeSS, and DAD, which include predefined work-
flow patterns to deal with concerns related to large numbers
of teams, inter-team coordination, and customer involvement
[5, 36]. As large organizations are increasingly pressured and
expected to become more agile, and scaling frameworks claim
to provide off-the-shelf solutions to scaling, companies have be-
gun to adopt these frameworks at an increasing rate in recent
years [24]. This trend is also confirmed by the annual non-
scientific survey on the State of Agile by Digital.ai [31].

2.2.1. Definition of large-scale agile development
“When can a company be said to be adopting agile meth-

ods at scale rather than just at a smaller scale?” Several re-
searchers have already tried to answer this question and have
proposed several definitions on what “large-scale agile devel-
opment” means. These definitions usually include the number
of people or agile teams engaged in the effort or associated costs
or duration of a project [35]. Berger and Beynon-Davies [18],
for example, classify a project as a large-scale agile project if
the project costs exceed 10 million GBP. Bjarnason et al. [19]
use the project duration of more than two years as an indicator
for classifying a project as large-scale. According to Paasivaara
et al. [78], a project with more than 40 people or seven agile
teams involved can be considered large-scale. To bring a con-
ceptual clarity of what “large-scale agile development” means,
Dingsøyr et al. [35] have identified several different interpreta-
tions and proposed a taxonomy for large-scale agile develop-
ment that uses the number of collaborating and coordinating
teams to define the scale of an agile project. The taxonomy
developed by Dingsøyr et al. [35] consists of three categories:
(i) small-scale agile projects with one team that can use tradi-
tional agile practices, e.g., daily meetings, sprint planning, re-
view, and retrospective meetings, for intra-team coordination,
(ii) large-scale agile projects with 2–9 agile teams that use new
forums, e.g., a Scrum-of-Scrums (SoS) for cross-team coordi-
nation, and (iii) very large-scale agile projects with at least 10
agile teams that require several forums for inter-team coordi-
nation, e.g., multiple SoS. According to Dingsøyr et al. [35],
a project can be considered a large-scale project if it has at
least two coordinating agile teams. Fuchs and Hess [42] ex-
tend this definition and state that the term “large-scale agile
development” has multiple interpretations: (i) the use of agile
methods in large teams, (ii) the employment of agile methods
in large organizations, (iii) the application of agile methods in
large multi-team settings, i.e., “large agile multi-team settings”,
or (iv) the usage of agile practices in organizations as a whole,
i.e., “organizational agility”2. Like Fuchs and Hess [42], we fo-
cus on the latter two definitions and understand the large-scale
agile adoption of agile methods in large agile multi-team set-
tings with at least two teams or the large-scale adoption of agile

2The term “organizational agility” should not be confused with the term
“enterprise agility”, which constitutes a research direction for itself. Accord-
ing to our understanding, the term “enterprise agility” comprises the adoption
of agile methods at the company level. In contrast, the term “organizational
agility” insinuates the adoption of agile methods in large organizational units
of companies, e.g., departments, divisions, or units. Hence, the term “organi-
zational agility” can be seen as a subset of the term “enterprise agility”.

methods on the organizational level comprising multiple large
agile multi-team settings.

2.3. Secondary studies on large-scale agile development

Several secondary studies have systematically analyzed the
literature on specific topics related to large-scale agile devel-
opment. We identified 13 secondary studies (see Table 1), of
which 10 were systematic literature reviews, and three were ei-
ther structured or simple literature reviews. Systematic litera-
ture reviews have addressed several topics, e.g., the identifica-
tion and description of challenges (cf. [32, 95, 100]), success
factors (cf. [32, 95]), and typical roles involved in large-scale
agile endeavors (cf. [43, 99]). Various researchers also con-
ducted systematic literature reviews and multi-vocal literature
reviews on scaling frameworks to identify challenges, benefits,
and success factors related to the adoption of scaling frame-
works (cf. [40, 53, 84]). We also identified simple literature
reviews comparing various scaling frameworks (cf. [5, 77]).

Existing secondary studies cover and analyze specific re-
search topics on large-scale agile development in-depth, e.g.,
large-scale agile transformations, scaling agile frameworks, or
global and distributed software engineering. For instance, Dik-
ert et al. [32] deal with the research topic of large-scale agile
transformations and explore the challenges and success factors
reported for these transformations. For example, Edison et al.
[40] address the research topic of scaling agile frameworks by
analyzing and comparing them based on their principles, prac-
tices, tools, and metrics, as well as identify gaps in the literature
and proposing needs for future research. Shameem et al. [95]
deal with the research topic of global and distributed software
engineering by identifying key success factors for scaling agile
methods in these environments.

While existing studies focus on specific research topics in
large-scale agile development and analyze them in-depth, we
could not identify any systematic mapping studies that would
provide an overview of the overall state of research in the field,
structuring the body of knowledge in large-scale agile develop-
ment. Hence, this paper aims to fill this gap by providing an
overview of the research activities in large-scale agile develop-
ment based on a systematic mapping study. As a systematic
mapping study, the scope is broader than any existing system-
atic literature review, and the goals differ. While there is some
overlap between this study and the systematic literature reviews
of Dikert et al. [32] and Edison et al. [40], we provide a broader
overview of the overall field of large-scale agile development
than any single systematic literature review.

3. Research process

While systematic literature reviews [21, 56] are a common
means for identifying, evaluating, interpreting, and comparing
all available research related to a particular research question, a
systematic mapping study maps out the existing research rather
than answering a detailed research question [22, 82]. Hence, we
opted to conduct a systematic mapping study, as it is capable of
dealing with broad research areas and provides a systematic and

3140

Table 1: Secondary studies on large-scale agile development

Year Study No. of
studies

Topic

2014 [86] 75 This study provides an understanding of research problems and themes in large-scale, distributed agile development environ-
ments based on IEEE publications between 2005 and 2014.

2015 [92] 51 This paper identifies research issues related to the scalability of agile methods for large-scale projects. Moreover, this study
unveils existing methods, approaches, frameworks, and practices that can facilitate the application of agile methods for large-
scale agile projects, as well as their limitations.

2016 [32] 52 This article answers the question of how large organizations or projects adopt agile and/or lean methods at scale by focusing
on the reported challenges and success factors encountered in large-scale agile transformations.

2017 [43] 42 This work provides an analysis of roles assigned with the responsibility for inter-team coordination of large-scale agile
development settings.

2017 [6] 60 This paper presents challenges when developing quality requirements in large-scale distributed agile projects and reveals
agile practices that have contributed to the emergence of these challenges. This work also summarizes solutions proposed in
the literature to address challenges associated with developing quality requirements in large-scale distributed agile projects.

2017 [95] 20 This study presents key factors that can positively impact agile development activities in large-scale, globally distributed
software development environments.

2017 [99] 146 This paper gives an overview of 20 identified scaling agile frameworks and describes the responsibilities of different architects
in these frameworks.

2018 [100] 76 This work presents different stakeholders and their recurring challenges in large-scale agile projects.

2018 [96] 18 This article shows an overview of human-related factors that can negatively impact agile practices in large-scale, globally
distributed software development environments and proposes a hypothetical model of the identified challenges related to the
scaling of agile methods.

2018 [84] 88 This study provides an analysis of the scientific and grey literature describing the challenges and benefits encountered by
organizations when adopting SAFe.

2018 [53] 12 This work examines practices, challenges, and success factors for scaling agile methods in large companies, reported in the
literature and within a large software company.

2019 [4] 58 This paper shows a set of motivators for the large-scale adoption of agile methods from a management perspective.

2021 [40] 191 This article compares five scaling methods based on each method’s principles, practices, tools, and metrics. It also presents
the challenges and success factors described in the literature when applying these methods.

objective procedure for identifying, categorizing, and analyzing
the existing literature [22, 56, 82].

3.1. Objectives and research questions

We used the Goal-Question-Metric paradigm [11] to formu-
late the objective of this study: to analyze peer-reviewed litera-
ture for the purpose of providing an overview of the state of the
art with respect to the characterization of the topic, the avail-
able research on the topic, salient publications and researchers,
well-established research streams, and potential research gaps
from the point of view of scholars and practitioners in the
context of large-scale agile development. The overall research
question of this study is:

Research Question: What is the state of the art of the
literature pertaining to large-scale agile development?

To answer this question, we further decomposed it into four
specific questions:

RQ1: How is large-scale agile development characterized in
the literature?

Currently, there is no consensus on the actual meaning of
the term “large-scale agile development” [90] which is why the
lack of conceptual clarity regarding this term inhibits effective

collaboration and progress in the research area of large-scale
agile development [35]. Thus, this research question strives to
explore how the extant literature characterizes this term based
on the reported case characteristics.

RQ2: What are the publication trends and characteristics of
existing research on large-scale agile development?

A valuable instrument for understanding the nature of a re-
search area is the investigation of research trends and the sys-
tematic classification of extant studies [22, 82]. Accordingly,
this research question intends to map the frequency of publica-
tions over time to identify research trends and strives to catego-
rize and aggregate extant studies to structure the research area.

RQ3: What are the seminal studies in large-scale agile
development?

There is perhaps no better way to understand and explore the
intellectual structure of a research field than to identify its sem-
inal works [34, 71]. Therefore, this research question aims to
identify the protagonists and salient publications in the research
field by employing bibliometric analysis.

RQ4: Which research streams and promising future research
directions exist in large-scale agile development?

4 141

One approach to assess the state of the art and maturity level
of a research area is to identify main research streams and re-
veal potential research gaps [58, 82]. Hence, this research ques-
tion strives to map the general structure of the research field by
identifying central research themes. This research question also
aims to outline a research agenda for future research efforts by
analyzing existing gaps in the research streams.

3.2. Mapping study execution
When conducting this study, we followed the guidelines for

performing systematic mapping studies [82] and systematic lit-
erature reviews [56]. We decided to combine both approaches
[55] since two of our research questions, namely RQ1 and
RQ4, could not be answered by mappings alone. The execu-
tion procedure of this systematic mapping study consisted of
three phases: (i) study search, (ii) study selection, (iii) and data
extraction, as described in the following.

3.2.1. Study search
In the first phase, we conducted a two-step study search

procedure, which included the definition of a search strategy
and the screening of related studies consisting of a preliminary
search and main search, as described subsequently.

Study search strategy. Defining a proper search strategy is es-
sential to ensure that the literature review results are complete
[105]. Various researchers have proposed several techniques to
develop appropriate search strategies (cf. [83, 105]). We fol-
lowed the recommendations by Zhang et al. [105] to elaborate
on our search strategy, which we describe in the following.
Search approach. Our search comprised two main steps: pre-
liminary search and main search. The purpose of the prelimi-
nary search was two-fold. First, we wanted to use the prelimi-
nary search to construct and evaluate different search strings for
the main search. Second, we used the preliminary search as a
“sanity check” to identify a set of relevant papers that the actual
main search should also retrieve. Following the preliminary
search, we performed a database keyword search during the
main search to retrieve relevant studies in electronic databases
listed in Table 2. Afterward, we merged the search results from
the preliminary and main searches and excluded duplicate stud-
ies. We then included the resulting collection of potentially rel-
evant papers for the study selection phase.

Table 2: Databases used in the main search

Search engine Website

DB1 IEEE Xplore http://ieeexplore.ieee.org/

DB2 ACM Digital Library http://dl.acm.org/

DB3 Science Direct http://www.sciencedirect.com/

DB4 Web of Science https://www.webofknowledge.com/

DB5 Scopus https://www.scopus.com/home.uri

DB6 AIS eLibrary https://aisel.aisnet.org/

Data sources. According to Brereton et al. [21], many different
electronic sources should be searched since no single source
can find all relevant primary studies. Therefore, as suggested
by Kitchenham and Brereton [55], we selected six electronic

databases (see Table 2) as the primary sources for the system-
atic mapping study for covering as many potentially relevant
studies as possible. The selection of the electronic databases
was guided by: (i) the fact that two of them, i.e., ACM Digi-
tal Library and IEEE Xplore, are the largest scientific databases
in the field of software engineering [55, 83], (ii) the fact that
three of them offer broad coverage of diverse research fields,
i.e., Science Direct, Web of Science, and Scopus [89], (iii) and
the fact that one of them, i.e., AIS eLibrary, contains articles
from the primary information systems research dissemination
outlets [74]. We excluded Google Scholar as the results tend to
overlap with ones from the included electronic databases [25].
Search terms. To identify all relevant studies, we used a five-
step strategy [57] for constructing the search terms:

1. deriving main search terms from the study topic and the
formulated research questions based on the PICO (Popu-
lation, Intervention, Comparison, Outcomes) criteria,

2. identifying synonyms and alternative spellings for the
main search terms,

3. checking the keywords in relevant papers,
4. incorporating synonyms and alternative words using the

Boolean OR operator, and
5. linking the search terms using the Boolean AND operator.

We only used the first two components of the PICO approach,
i.e., population and intervention, and omitted the outcome and
context facets from the search structure since our research ques-
tions did not warrant a restriction of the results to a specific
outcome or context. Similar to Yang et al. [104], the popu-
lation facet represents the first search set of the overall search
string and contains the terms of agile methods that are popularly
used in various systematic literature reviews and surveys on ag-
ile software development (cf. [38, 88, 98]). Following Dikert
et al. [32], we extended the first search set by explicitly stating
that the application of agile methods outside of software en-
gineering, e.g., agile manufacturing, should be excluded. The
intervention comprises two search sets. The first set includes
terms related to the objective of applying agile methods on a
larger scale, namely “large-scale” and “scaling”. These two
terms are often used within titles and as keywords in related
publications on large-scale agile development (cf. [36, 53]).
Inspired by Yang et al. [104], the second intervention search
set entails terms of large-scale agile development methods and
frameworks. We used the results of Uludağ et al. [99] to ob-
tain a list of these methods and frameworks. Following this
strategy, we conducted a series of tests and refinements in the
preliminary search. The blending of the search sets resulted in
the generic search string for the main search. The final generic
search string used was:

Agile software development AND (Large-scale development
OR Scaling agile frameworks)

Table 3 lists the final list of applied search sets and strings.
As each electronic database has a specific syntax for search
terms, we adapted our search string to the particular syntax re-
quirements of the search engines.
Time span. We cover the period from February 2001, when the

5142

Table 3: Overview of search sets and corresponding terms

Set Search term

Agile software
development

((agile OR agility OR extreme programming OR XP
OR feature driven development OR FDD OR scrum OR
crystal OR pair programming OR test-driven develop-
ment OR TDD OR leanness OR lean software develop-
ment OR lean development OR LSD) AND NOT man-
ufacturing)

AND

Large-scale
development

((large-scale OR scaling)

OR

Scaling agile
frameworks

(Crystal Family OR Dynamic Systems Development
Method Agile Project Framework for Scrum OR Scrum
of Scrums OR Enterprise Scrum OR Agile Software So-
lution Framework OR Large-Scale Scrum OR Scaled
Agile Framework OR Disciplined Agile OR Spotify
Model OR Mega Framework OR Enterprise Agile Deliv-
ery and Agile Governance Practice OR Recipes for Ag-
ile Governance in the Enterprise OR Continuous Agile
Framework OR Scrum at Scale OR Enterprise Transition
Framework OR ScALeD Agile Lean Development OR
eXponential Simple Continuous Autonomous Learning
Ecosystem OR Lean Enterprise Agile Framework OR
Nexus OR FAST Agile))

Agile Manifesto was proposed, to the end of December 2019,
when we started this systematic mapping study.

Preliminary and main search. Figure 1 shows the study search
process and the individual results obtained in each of both
phases of the study search. In the preliminary search, we re-
trieved 693 studies. After removing duplicate studies, 631 pa-
pers were left. The main search returned 2,090 publications.
After removing duplicate papers, we ended up with 1,643 pa-
pers from the main search. After merging the search results
from the preliminary and main search and removing duplicates,
we retrieved a total of 2,144 articles that serve as input for the
subsequent study selection process (see Section 3.2.2).

Ph
as

e
1

Perform study search

Preliminary
search

Main search

Remove
duplicates693

2090

631

Ph
as

e
2 Combine search results

Merge
results

Remove
duplicates2274 2144

Legend

Main task Sub-task
Sequence of
main tasks

In-/output
association

Selected
studies

Remove
duplicates 1643

Figure 1: Overview of the study search process

3.2.2. Study selection
After the study search process, we considered all 2,144 stud-

ies for the subsequent study selection consisting of three screen-
ing phases: (i) selection of relevant articles based on their meta-
data (incl. title, keywords, publication year, and publication
type), (ii) selection of relevant studies based on their abstract,
and (iii) selection of relevant papers based on their full-text.
The study selection was based on explicit inclusion and exclu-
sion criteria and was conducted by two researchers in parallel.
Following the individual decisions, the researchers harmonized
their selection results and resolved conflicts. To ensure that the
study selection results were objective, we created a set of well-
defined inclusion and exclusion criteria employed in the selec-
tion process to filter relevant articles for our study.

Selection criteria. We defined selection criteria to reduce the
likelihood of bias and to assess the relevance of the studies [56].
Before the study selection process, two researchers discussed
and reached an understanding of the inclusion and exclusion
criteria (see Table 4). We included an article if it satisfied all
specified inclusion criteria and discarded it if it met any exclu-
sion criterion. We only included peer-reviewed papers (see I3)
that describe completed research results (see I4) and cover the
large-scale application of agile methods (see I1 and I2), i.e.,
the application of agile methods in large multi-team settings or
the usage of agile practices in organizations as a whole (see
Section 2.2.1). Besides articles meeting any of the exclusion
criteria (see E1 – E7), we also excluded papers that did not in-
dicate large-scale considerations or described the single team
adoption of agile methods, not fulfilling I2.

Table 4: Inclusion and exclusion criteria

ID Criteria Assessment criteria

I1 Inclusion Describe the application of agile methods in software
development.

I2 Inclusion Cover the application of agile methods on a large scale
and meet the requirements of being large-scale based
on our understanding and definition of large-scale agile
development in Section 2.2.

I3 Inclusion Peer-reviewed, i.e., published in journals, conference or
workshop proceedings.

I4 Inclusion Papers that describe completed research results.
E1 Exclusion Related to agile manufacturing.
E2 Exclusion Published in the form of abstracts, book chapters, book

and conference reviews, grey literature, magazines,
newsletter, short communications, talks, technical re-
ports, and tutorials.

E3 Exclusion Articles that are not written in English language.
E4 Exclusion Published before the creation of the Agile Manifesto.
E5 Exclusion Not available as a full-text.
E6 Exclusion Experience reports and opinion papers.
E7 Exclusion Previous version(s) of extended papers.

Selection process. The selection process consisted of three
phases (see Figure 2). By the end of the third phase, the first
researcher marked 269 studies as relevant, while the second re-
searcher marked 145 studies as related. By the end of the fourth
phase, 136 studies were characterized by both researchers as
pertinent after resolving conflicts (inclusion rate of 6.34%).

6 143

Researcher 1 Researcher 2

Ph
as

e
1

Ph
as

e
2

Ph
as

e
3

Ph
as

e
4

925
Selection by

metadata 584
Selection by

metadata

511
Selection by

abstract 332
Selection by

abstract

269
Selection by

full-text 145
Selection by

full-text

136Conflict
resolution

Legend

Task Sequence of
tasks

Output
association

Selected
Studies

Figure 2: Overview of the study selection process

3.2.3. Data extraction
To facilitate data extraction and simplify management of the

extracted data, we adopted the approach of categorizing studies
into facets [82] and designed a rigorous classification frame-
work based on these facets. Similar to study selection, we used
a spreadsheet to record the extracted data. To reduce bias in the
data extraction results, two researchers performed the data ex-
traction independently. Before the formal data extraction pro-
cess, two researchers discussed the definitions of the data items
to be extracted to ensure that both researchers had a common
understanding. After both scientists completed the data extrac-
tion, they discussed their results together and resolved conflicts
to reach a consensus on the results. Figure 3 shows the result-
ing classification framework, which consists of four facets and
several subordinate data items.

Characterization of large-scale agile development (RQ1). To
compile information about the characterization of large-scale
agile development, we collected information from the reported
case characteristics regarding the four data items: large-scale
agile development category, case company characteristics, or-
ganizational agility characteristics, and large agile multi-team
setting characteristics. We extracted data for the large-scale
agile development category data item to bring more conceptual
clarity regarding the actual meaning of the term “large-scale
agile development”. To this end, we used the classification by
Fuchs and Hess [42] to categorize the large-scale agile efforts
of the reported companies. To get a better picture of companies
adopting agile methods at scale, we divided the case company
characteristics data item into four sub-data items, namely com-
pany name, location of company headquarter, sector, and com-
pany size. To obtain information on the four sub-data items,
we combed through the case descriptions. In cases where the
name of the company was provided but no other information

about the company’s location, sector, or size was available, we
used the information on the company’s website to complete the
data. To classify the extracted data related to the sector sub-
data item, we used the leading Global Industry Classification
Standard3 from MSCI. We used the categorization of Digital.ai
[31] for classifying the reported case companies according to
their company size. Using this categorization also helped us to
compare our results more easily with those of Digital.ai [31].
To understand the trend of organizational agility and compile
information related to the organizational agility characteristics
data item, we read the case descriptions of the selected papers to
determine the start date of the large-scale agile transformations
of the reported case companies. To characterize the reported
large agile multi-team settings, we split the large agile multi-
team setting characteristics data item into three sub-data items,
namely scaling and complexity factors, organizational size, and
applied development and scaling approaches. We used an inte-
grated approach [28] to extract data related to the scaling and
complexity factors sub-data item. In doing so, we used the scal-
ing and complexity factors reported by Ambler [7] as a starting
list and iteratively expanded it as we identified new factors. For
the organizational size sub-data item, we read the case descrip-
tions and looked for information on the number of agile teams
and people involved in the agile multi-team settings. We used
the taxonomy of Dingsøyr et al. [35] to determine whether a set-
ting was small-scale, large-scale, or very large-scale. To extract
data related to the applied development and scaling approaches
sub-data item, we applied an integrated approach [28] and used
the lists of Abrahamsson et al. [3] and Uludağ et al. [99] for ag-
ile development and scaling approaches and refined the initial
lists as new approaches were identified in the studies.

Publication trends and research characteristics (RQ2). Figure
3 shows the data items we used to collect data about publication
trends and research characteristics. The publication year, coun-
try of authorship, and publication venue were retrieved directly
from the studies’ metadata. Based on the publication venue, we
derived the publication type with a classification scheme con-
sisting of the three categories: journal, conference, and work-
shop. To classify the publication domain, we read the website
information of the publication venues and categorized them into
one of eight primary publication domains: enterprise comput-
ing, information systems, IT project management, human com-
puter interaction, marketing, multidisciplinary, project man-
agement, and software engineering. To classify the research
types, we adopted a framework consisting of six categories
based on Wieringa et al. [103] (see Table 5). For the research
approach data item, we used a combination of three taxonomies
and definitions of Berg et al. [17], Rodrı́guez et al. [89], and
Unterkalmsteiner et al. [102] to have a complete list of research
methods consisting of nine categories (see Table 6). For the
contribution type data item, we used two existing taxonomies
of Shaw [97] and Paternoster et al. [79] to have a complete list
of research outcomes consisting of seven categories (see Table

3https://www.msci.com/our-solutions/indexes/gics, last ac-
cessed on: 11-13-2021.

7144

Main findings

Research topic

Citation count study

Author listPublication year

Country of authorship

Publication type

Publication domain

State-of-the-art in large-
scale agile development

Research type

Research approach

Contribution type

Research data type

Publication venue

RQ2 – Publication trends &
research characteristics RQ3 – Salient studies RQ4 – Research streams

and research directions
RQ1 – Characterization of

large-scale agile development

Large-scale agile
development category

Case company
characteristics

Organizational agility
characteristics

Large-agile multi-team
setting characteristics

Research agenda

Figure 3: Classification framework

7). The research data type consists of three categories indicat-
ing whether a study is primary, secondary, or tertiary.

Table 5: Classification scheme for research types based on Wieringa et al. [103]

Research type Description

Evaluation research The implementation of existing techniques and so-
lutions are evaluated in practice.

Experience reports Practitioners report their own experiences from one
or more real-life projects without discussing the ar-
ticle’s underlying research method.

Opinion papers Express the author’s personal experience regarding
a technique’s suitability without relying on related
work and research methods.

Philosophical papers These articles sketch a new perspective on looking
at existing things by structuring the field using a
taxonomy or conceptual framework.

Solution proposal A new or significant extension of an existing tech-
nique is shown by demonstrating its benefits and
applicability.

Validation research Focus on the investigation of novel techniques that
have not yet been implemented in practice.

Seminal studies (RQ2). To compile information about influen-
tial studies, we used two data items: author list and citation
count study. We obtained the author list from the metadata of
the selected papers. We collected data for the citation count
study data item via Google Scholar.

Research streams and research directions (RQ4). To identify
central research themes and future research directions, we col-
lected data on research topics and agendas in the selected pa-
pers. We followed a systematic process called keywording [82]
to define the categories of the research topic facet. The purpose

Table 6: Classification scheme for research approaches based on Berg et al.
[17], Rodrı́guez et al. [89], and Unterkalmsteiner et al. [102]

Research approach Description

Action research Applies action research to solve a real-world prob-
lem while simultaneously scrutinizing the experi-
ence of solving the problem.

Case study Uses a case study to provide an in-depth under-
standing of a real-life situation and contemporary
phenomenon or evaluates a theoretical concept by
empirically implementing it in a case study.

Design and creation Creates a new IT product, artifact, model, or
method.

Grounded theory Uses a systematic process to generate theory from
the data obtained based on grounded theory.

Mixed methods Applies more than one research methodology.
Systematic literature
review/Systematic
mapping study

Collects and analyzes primary data to address a
specific research question or topic using a system-
atic literature review or systematic mapping study.

Survey Collects quantitative and/or qualitative data in
a standardized, systematic way to find patterns
through a questionnaire or interviews.

Theoretical A theoretical study not mentioning grounded the-
ory as the research methodology.

Not stated Does not state the research method, nor can it be
derived or interpreted by reading the paper.

of the keywording process is to effectively develop a classifi-
cation framework that fits the selected studies and takes their
research focus into account [82]. The keywording process con-
sists of the following three steps:

1. Identifying keywords and concepts: Two researchers col-
lected keywords and concepts by reading the full-text of
each starting study.

2. Clustering keywords and concepts: Two researchers per-

8 145

Table 7: Classification scheme for contribution types based on Shaw [97] and
Paternoster et al. [79]

Contribution type Description

Advice/Implication Discursive and general recommendation based on
personal opinions.

Framework/Method Framework or method to facilitate the construction
and management of software-intensive systems.

Guideline List of advice or recommendations based on the
synthesis of the research results obtained.

Lessons learned Set of outcomes which are analyzed from the re-
search results obtained.

Model Representation of an observed reality using con-
cepts resulting from a conceptualization process.

Theory Construct of cause-effect relationships from deter-
mined results.

Tool Technology, program, or application developed to
support various aspects of software engineering.

formed a clustering operation on the collected keywords
and concepts into a set of categories and sub-categories.

3. Refining classification: Four researchers discussed the
preliminary categories and sub-categories. This discussion
resulted in the refinement of the classifications to fit them
better with the selected studies.

The above-described process ended when no study was left
to analyze. During the extraction process, some studies could
be classified into more than one research topic. We read the
results, discussion, and conclusion sections of the studies to
identify their main findings and mapped them to the main re-
search topic categories. We used a deductive approach [28] to
categorize the research agenda of the selected studies based
on the final classification of the research topic facet. Two re-
searchers read the selected studies’ future work sections and
mapped the corresponding text fragments to the identified main
research topic categories. In addition to the selected studies,
we read and mapped relevant data from nine related workshop
summaries. They provide a list of important future research
topics proposed by researchers and practitioners familiar with
large-scale agile development. Following the coding procedure,
two researchers merged and aggregated related codes and refor-
mulated the final codes as research questions.

4. Study results

In this section, we provide a review of the state of the art of
large-scale agile development research and present our answers
to the formulated research questions (see Section 3.1). This
section is arranged according to the research questions.

4.1. Characterization of large-scale agile development
Although we discussed the term “large-scale agile develop-

ment” in Section 2.2.1 and stated our understanding of it, we
were curious to learn what other authors refer to as large-scale
agile development. In what follows, we provide an overview
of case companies we studied and identify which category of
large-scale agile development, i.e., large agile multi-team set-
tings or organizational agility, was reported. We then highlight
our key findings for each category.

4.1.1. General overview of the case companies
We identified 158 case companies, of which 137 remained

unnamed in 67 studies4. A total of 21 companies were ex-
plicitly named in 41 studies. Table 8 shows an overview of
the identified companies and the number of studies reporting
them. The most frequently identified company was Ericsson
(cf. [S1], [S3], [S26]), followed by the Norwegian Public Ser-
vice Pension Fund (cf. [S28], [S31], [S43]). Other compa-
nies repeatedly studied were F-Secure (cf. [S8], [S68]) and
Nokia (cf. [S2], [S79]). The remaining 17 companies were
mentioned only in one study. As a result, we notice that re-
search on large-scale agile development is mainly empirical and
practice-oriented, as almost 80% of the studies examine com-
panies in their respective analyses. We note that a significant
portion of the research was conducted with Ericsson, account-
ing for nearly 17% of all selected studies. We notice that many
studies provide superficial case descriptions, making it difficult
to generalize and compare results.

Table 8: Overview of the identified case companies

Company No. of studies

Anonymous 67
Ericsson 23
Norwegian Public Service Pension Fund 8
F-Secure 2
Nokia 2
ABB 1
Apontador 1
BBC 1
Caelum 1
Cisco 1
Comptel 1
Dell 1
Information Mosaic 1
Intel 1
Kentico 1
Paf.com 1
Rovsing 1
SAP 1
SimCorp 1
Spotify 1
ThoughtWorks 1
Universo Online 1

Figure 4 shows the countries where the headquarters of re-
ported companies are located, with circles indicating the num-
ber of companies in a given country. We identified the geo-
graphic location of 58 companies. Although most companies
are located in Europe, large-scale agile development is a rele-
vant practical topic on all continents. Most companies come
from Germany, followed by the United States, Norway, and
Sweden. Like the State of Agile survey [31], we note a concen-
tration of industry relevance of the topic in Europe and North
America. Based on our selection criteria (see Section 3.2.2),
we identified fewer companies from North America compared
to the State of Agile survey [31] as we excluded many experi-
ence reports and opinion articles from North America.

4There is some likelihood that some unnamed companies are duplicates.
Many case descriptions were too superficial to allow clear identification.

9146

United	States
8

	Brazil
3

Australia
1

Finland
4

Switzerland
3

Czech	Republic
1

Sweden
7

Norway
7

Germany
12

Denmark
2

United	Kingdom
4

Ireland
2

Japan
1

South	Africa
1

Liechtenstein
1Spain

1

©	2021	Mapbox	©	OpenStreetMap

Blatt	14

Figure 4: Geographical distribution of the case companies

Figure 5 shows the distribution of the companies across their
sectors. While 146 companies come from 10 different sec-
tors, we could not identify the respective sectors for 12 com-
panies. Almost a third of all reported companies come from the
information technology sector, followed by the financial and
public sectors. Our findings align with the State of Agile sur-
vey [31] stating that a large proportion of the companies using
(large-scale) agile methods come from the information technol-
ogy and financial sectors. Notably, 44% of the companies sur-
veyed come from the information technology and finance sec-
tors, while 46.84% of our companies are from these sectors.

1

1

1

5

12

14

16

16

18

29

45

0 5 10 15 20 25 30 35 40 45 50

Real estate

Materials

Health care

Energy

Not stated

Industrials

Consumer discretionary

Communication services

Public sector

Financials

Information technology

Number of case companies

S
ec

to
rs

Figure 5: Distribution of the case companies according to their sectors

Figure 6 shows the distribution of the reported companies
over their sizes. While we were able to determine the organi-
zational size of 89 companies, we could not reveal the size of
69 companies. Most companies employ ą20, 000 employees,
followed by companies with ď1, 000 employees. Comparing
our results to those of the State of Agile survey [31], we can see
some similarities and differences. Like the survey [31], the ma-
jority of reported companies are small (ď1, 000 employees) or
very large (ą20, 000 employees). While these two groups ac-
count for 66% of survey respondents, they account for 65.17%

of the reported companies in this study. The majority of the
companies in our sample are very large, followed by small com-
panies, which is precisely the opposite of the survey [31]. One
reason for this could be that the survey [31] covers both the
small- and large-scale adoption of agile methods. Our research
exclusively considers the large-scale application of agile prac-
tices, which may be more relevant for large companies than for
small companies with fewer scaling issues.

69

24

17

14

34

0 10 20 30 40 50 60 70

Not stated

Small-sized company
(≤ 1,000 people)

Medium-sized company
(1,001 - 5,000 people)

Large-sized company
(5,001 - 20,000 people)

Very large-sized company
(≥ 20,001 people)

Number of companies

C
om

pa
ny

 s
iz

e

Figure 6: Distribution of the case companies according to their sizes

4.1.2. Understanding of large-scale agile development
Since there are several definitions of large-scale agile devel-

opment in the literature (see Section 2.2.1) and there is no con-
sensus on the actual meaning of the term [35, 90], we were cu-
rious what is meant by “large-scale agile development” in the
literature. To this end, we used the classification by Fuchs and
Hess [42], i.e., the adoption of agile methods in large multi-
team settings (“large agile multi-team settings”) with at least
two agile teams working on a single product or the usage of
agile practices in organizations as a whole (“organizational
agility”), to analyze the large-scale agile efforts of the reported
companies. Figure 7 shows the categories that have been re-
ported. Nearly half of all companies applied agile practices
in organizations as a whole, while 39.24% of all companies
used agile methods in large multi-team settings. An example

10 147

for organizational agility is provided by Fuchs and Hess [S21]
who conceptualize the agile transformation process through the
lens of socio-technical systems theory by analyzing the large-
scale agile transformations of two companies from the financial
and consumer discretionary sectors. An example for large ag-
ile multi-team settings is shown by Šāblis and Šmite [S16] who
study inter-team coordination mechanisms of a large-scale ag-
ile development program of the Norwegian Public Service Pen-
sion Fund with eight teams. In four companies, both categories
were reported. For instance, Power [S7] explains the notion of
“agile at scale” by showing an example of Cisco using agile
practices in the whole organization and having multiple devel-
opment efforts with several agile teams working together. For
16 companies (cf. [S107], [S117]), we did not determine the
category due to superficial context information.

4

16

62

76

0 10 20 30 40 50 60 70 80

Both

Not stated

Large agile multi-team settings

Organizational agility

Number of case companies

Ty
pe

 o
f l

ar
ge

-s
ca

le
 a

gi
le

 d
ev

el
op

m
en

t

Figure 7: Type of reported large-scale agile development

In the following, we delve into the selected studies and pro-
vide more in-depth information in light of both categories of
large-scale agile development reported in the companies.

4.1.3. Organizational agility
To understand the trend of organizational agility, we ana-

lyzed when the case companies started their large-scale agile
transformations. Figure 8 shows the distribution of when case
companies started their large-scale agile transformations. We
derived information on the agile transformations of 20 case
companies. The first two observed transformations towards
organizational agility began in 2006 at F-Secure (cf. [S68])
and Paf.com (earlier Eget) (cf. [S88]), when the company-wide
adoptions of Scrum were initiated. While nine transformations
started between 2006 and 2012, 11 transformations began be-
tween 2014 and 2017, indicating a growing number of trans-
formations in recent years. Comparing these numbers with the
number of studies published (see Section 4.2.1), we perceive
the congruent interest from industry and academia in the topic.

4.1.4. Large agile multi-team settings
We identified 110 agile development efforts5 with multiple

teams. There were also some companies with more than one
effort. For instance, we uncovered 11 efforts with 6–40 agile
teams at Ericsson, reported in 20 studies (cf. [S1], [S3], [S26]).

5There is some likelihood that some large-scale agile development efforts
are duplicates, e.g., same settings at different times. Some case descriptions
were too superficial to allow unambiguous identification.

2

1

2

3

1

2 2

5

2

0

1

2

3

4

5

6

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

N
um

be
r o

f c
om

pa
ni

es

Start of agile transformation

Figure 8: Start of the agile transformations of the case companies

Another example is provided by Bick et al. [S51], who de-
scribe the inter-team coordination of five large agile multi-team
settings at SAP, involving 4–13 teams.

Based on our ambition to gain a deeper understanding of
what the authors of the selected studies mean by the “scaling
of agile methods”, we examined the case descriptions in terms
of possible scaling and complexity factors of large agile multi-
team settings. Figure 9 provides an overview of the identified
factors. We identified six scaling and complexity factors asso-
ciated with large agile multi-team settings, i.e., organizational
size, organizational distribution, product size, number of col-
laborating companies, number of customers, and budget. Orga-
nizational size, i.e., the number of agile teams working together
or the number of people in the development effort, was the most
frequently observed factor. For instance, Paasivaara and Lasse-
nius [S79] present a case study of scaling Scrum in a large glob-
ally distributed software project at Nokia. The study expresses
the scale and complexity of the case project by describing that
it scaled from two collocated Scrum teams to 20 teams, i.e., the
number of agile teams working together, and now employs 170
people, i.e., the number of involved persons in the development
effort. Organizational distribution of large agile multi-team set-
tings was the second most frequently identified factor. Here,
the studies specify the number of sites a development effort has
and provide information regarding the geographic distribution
of the development effort. For example, Usman et al. [S37]
examine how a large-scale distributed agile project at Erics-
son performs effort estimation. The study further delineates the
project’s organizational distribution by stating that the project
is distributed across Sweden, India, Italy, the United States,
Poland, and Turkey. The third most frequently cited factor is
related to the complexity of the developed system, i.e., product
size (measured in lines of code), number of subsystems, and
number of requirements and features. For instance, Moe et al.
[S67] investigate the intra- and inter-team knowledge sharing
in a large-scale distributed agile project at Ericsson, developing
a product with 10–12 million lines of code and 30 subsystems.
In the case of 14 large agile multi-team settings, the studies
did not provide information on scaling and complexity factors.
For instance, a multiple case study of five software-intensive
companies by Olsson and Bosch [S98] reveals challenges asso-
ciated with collecting and using customer feedback. Although
we can infer from the context of the study that it analyzes large
agile multi-team settings of five companies, we did not find fur-

11148

ther descriptions of their characteristics. Moreover, the number
of companies working together was an additional factor. For
example, Uludağ et al. [S104] investigate the collaboration be-
tween architects and agile teams of a large-scale agile devel-
opment program at a German consumer electronics company.
The reported large-scale agile program includes 62 persons em-
ployed in four companies, i.e., consumer electronics and three
suppliers providing external support for their third-party sys-
tems. In two large agile multi-team settings, the number of cus-
tomers/users of the developed software product was cited as a
factor. For example, a large-scale agile program at Ericsson
creates a complex system used by over 300 operators around
the world (cf. [S3], [S38], [S50]). For instance, a large-scale
agile endeavor implements a new office automation system for
the Norwegian Public Service Pension Fund serving 950,000
customers with various types of services (cf. [S43], [S52]).
Budget was reported in one setting, namely at the Norwegian
Public Service Pension Fund, which is one of the most exten-
sive IT programs in Norway with a budget of about 140 million
EUR (cf. [S28], [S31], [S43]). Comparing our findings with the
scaling and complexity factors of Ambler [7], we note some
similarities and differences. Like Ambler [7], we believe that
organizational size is the primary scaling and complexity fac-
tor for characterizing the term “scaling of agile methods”. Like
Ambler [7], we believe that other important factors are orga-
nizational distribution and system complexity. Unlike Ambler
[7], we identified the number of collaborating companies, the
number of customers, and the available budget for development
efforts as additional scaling and complexity factors.

1

2

11

14

17

56

94

0 10 20 30 40 50 60 70 80 90 100

Budget

Number of customers

Number of collaborating companies

Not stated

System complexity

Organizational distribution

Organizational size

Number of large agile multi-team settings

A
ss

oc
ia

te
d

sc
al

in
g

an
d

co
m

pl
ex

ity
 fa

ct
or

s
of

la

rg
e-

sc
al

e
ag

ile
 e

nv
iro

nm
en

ts

Figure 9: Scaling and complexity factors of large-scale agile environments

Since organizational size was the main reported factor, we
were curious to analyze the sizes of the agile multi-team set-
tings. Figure 10 shows the distribution of the number of people
and teams involved in the agile multi-team settings. Of the 110
reported agile multi-team settings, we determined the number
of people involved for 70 settings and the number of teams for
62 settings. We could not determine the number of people en-
gaged for 40 settings and the number of teams for 48 settings.
Most of the reported agile multi-team settings were large and
included 11–100 people or 2–9 teams, followed by very large
settings that involved 101–8,000 people or 10–40 teams. Based
on our understanding of large-scale agile development (see Sec-
tion 2.2.1) and excluding projects with ă2 teams, we found no
small-scale projects. Our results show some notable differences
from the State of Agile survey [31]. While 70% of the set-
tings (excluding settings without numbers) had ď100 employ-

ees, 33% of all survey respondents reported that their software
organizations had ă100 employees. While 36% of the survey
respondents indicated software organization sizes with 101–
1,000 employees, this was the case for 46.67% of agile multi-
team settings in this study. A significant difference between
this study and the survey is observed for software organization
sizes with ą1, 001 employees. While 31% of the survey re-
spondents reported software organization sizes of ą1, 001 peo-
ple, we identified only one very large agile multi-team setting at
Cisco with 8,000 employees (cf. [S7]). This discrepancy may
be due to our selection criteria related to experience reports and
opinion papers (see Section 3.2.2) led to the exclusion of com-
panies in North America with likely larger sizes.

Finally, we were interested in exploring the applied develop-
ment and scaling approaches reported in the large agile multi-
team settings, visualized in Figure 11. SoS is the most com-
monly used scaling approach reported, followed by SAFe and
LeSS. The Spotify Model was described in three settings, fol-
lowed by DAD in one setting. Comparing our numbers with
those from the State of Agile survey, we see some similarities
and differences. While the survey showed SAFe as the most
commonly used scaling approach among respondents (35% of
their respondents), only 8.18% of the large agile multi-team set-
tings reported using SAFe. For SoS, the numbers are similar as
18.18% of all settings used this scaling approach, while 16% of
the survey participants applied it. In addition, 4% of the survey
participants reported using LeSS, while 7.27% of the settings
in this study used LeSS. While we identified the adoption of
DAD in only one setting, 4% of all survey participants adopted
it. Scrum was the most frequently cited development approach,
followed by Kanban and XP. Re-comparing our results with the
survey data confirms that Scrum is by far the most frequently
used development approach, i.e., 58% of the survey respondents
mentioned Scrum. In contrast, Scrum was used in 72.7% of all
large agile multi-team settings reported in this study. While
10.91% of the settings reported using Kanban, that number ac-
counted for 7% of all survey respondents. About half of the set-
tings stated the combined usage of development and scaling ap-
proaches. For instance, a large multi-team project at F-Secure,
which included ą10 teams and ą140 stakeholders, used a com-
bination of Scrum, SoS, and an early version of SAFe (cf. [S8],
[S68]). Uludağ et al. [S87], for example, describe a unit with
three agile teams who worked with other groups to develop an
integrated sales platform for multiple sale distribution channels,
using LeSS extended with some XP practices.

4.2. Publication trends and characteristics of existing research
on large-scale agile development

To map publication trends and characteristics of extant re-
search on large-scale agile development, we chose a set of vari-
ables focusing on each study’s publication and bibliographic
data. Below, we detail the key facts drawn from our analysis.

4.2.1. Distribution of studies over time
Figure 12 presents the distribution and cumulative sum of

selected studies, providing a clear message on an apparent in-
creasing trend in publications on large-scale agile development.

12 149

48

0

39

23

0 5 10 15 20 25 30 35 40 45 50
Number of agile multi-team settings

40

0

42

28

05101520253035404550
Number of agile multi-team settings

Very large-scale
(101 - 8,000 people || 10 - 40 teams)

Not stated

Large-scale
(11 - 100 people || 2 - 9 teams)

Small-scale
(≤ 10 people || ≤ 1 team)

Organizational size based on number of involved persons Organizational size based on number of agile teams

Figure 10: Distribution of organizational sizes of the large agile multi-team settings in terms of number of involved persons and agile teams

1

2

3

8

12

80

1

3

8

9

20

0 10 20 30 40 50 60 70 80 90

Rapid Application Development

Feature-Driven Development

Rational Unified Process

Extreme Programming

Kanban

Scrum

Disciplined Agile Delivery

Spotify Model

Large-Scale Scrum

Scaled Agile Framework

Scrum-of-Scrums

Number of large agile multi-team settings

U
se

d
sc

al
in

g
ap

pr
oa

ch
es

U
se

d
de

ve
lo

pm
en

t
ap

pr
oa

ch
es

Figure 11: Applied development and scaling approaches in the large agile
multi-team settings

In general, the number of selected studies on this topic has in-
creased from 2007 to 2019, with slight fluctuation. This trend
indicates that the large-scale application of agile methods is re-
ceiving increasing attention from the research community. Ex-
cept for 2007, at least two studies were published during the ob-
servation period. From 2013 onwards, a growing trend can be
observed with at least seven studies published per year, which
is a giant leap compared to the years before 2013. Two reasons
for this could be that the agile software development commu-
nity initiated an increasing paradigm shift towards the adop-
tion of agile methods in large projects in 2013 [33, 41] and that
the International Workshop on Large-Scale Agile Development
was held for the first time in 2013. After 2013, 84.55% of the
selected studies were published in the last six years, indicat-
ing that the topic of large-scale agile development is relatively
infancy when compared to the history of the software engineer-
ing discipline and is becoming increasingly attractive from a
scientific perspective. The growing trend towards the topic cul-
minated in 2018 and 2019 when the number of publications
doubled compared to previous years, accounting for a total of
47.79% of the selected studies. One possible explanation for
this is that additional workshops contributing to large-scale ag-
ile development research were initiated, e.g., the International
Workshop on Autonomous Agile Teams in 2018 and the Inter-
national Workshop on Agile Transformation in 2019. Based on
these observations, we expect this trend to continue.

4.2.2. Most active countries in large-scale agile development
research

Figure 13 shows the countries that are most active in large-
scale agile development research. We identified 22 states con-

1

4 2 2 3

2
7

13
9 12

16

32 33

1
5 7 9 12 14

21

34

43

55

71

103

136

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

N
um

be
r o

f s
tu

di
es

Year

 Number of publications per year Cummulative number of publications over time period

Figure 12: Publications on large-scale agile development from 2007 to 2019

tributing to large-scale agile development research. The major-
ity of the articles are from Europe, accounting for 88.97% of
all publications. The research theme of large-scale agile devel-
opment received considerable interest in Scandinavia, with 74
papers. Accordingly, the most actives countries in this research
area are Finland, Norway, and Sweden. The fourth and fifth
most active countries are Germany and the United Kingdom.
The remaining 17 states have fewer than 10 publications and
contributed only 32 articles. From the available data, we con-
clude that large-scale agile development is a globally relevant
research topic. Although Dingsøyr et al. [34] revealed that the
United States and Canada contributed to research on agile soft-
ware development with 448 out of 1,551 selected studies, we
identified only three studies on large-scale agile development.
A plausible explanation for this phenomenon is that we identi-
fied numerous experience reports and opinion papers from both
countries that were excluded by our selection criteria (see Sec-
tion 3.2.2) (cf. [50], [60], [85]). Comparing the map of most
active countries in large-scale agile development research (see
Figure 13) with the geographic location of the reported com-
panies (see Figure 4), a considerable overlap can be observed.
A logical reason for this observation is that researchers tend to
work with companies that are located in closer proximity.

4.2.3. Publication channels
To examine the pertinent publication channels for large-scale

agile development research, we collected data on publication
types, venues, and domains for each selected study. Figure 14
shows the proportion of publication types for the 136 selected

13150

Canada
2

United	States
1

	Brazil
1

Australia
1

New	Zealand
1

Malaysia
2

India
3

Pakistan
2

Turkey
1

Greece
1

Finland
24

Serbia
1

Switzerland
2

Czech	Republic
1

Sweden
24

Norway
24

Germany
22

Netherlands
6

Denmark
2

United	Kingdom
10

Ireland
4

©	2021	Mapbox	©	OpenStreetMap

Blatt	14

Figure 13: Map of most active countries in large-scale agile development research

studies. The predominant publication type is that of conference
papers, being almost as much as the combination of journal ar-
ticles and workshop papers. Such a high number of journal
and conference papers may indicate that large-scale agile de-
velopment is becoming a more mature research area despite its
relatively young age. The relatively small number of workshop
papers suggests that researchers prefer more scientifically re-
warding publication types, e.g., journals and conferences.

30

39

67

0 10 20 30 40 50 60 70 80

Workshop

Journal

Conference

Number of studies

P
ub

lc
at

io
n

Ty
pe

Figure 14: Distribution of publication types

Figure 15 shows an annual distribution of the publication
type facet. After 2013, an increasing trend can be observed
for all publication types, culminating in 2018 and 2019. This
observation may further confirm that large-scale agile devel-
opment is turning into a more mature field, with more funda-
mental and comprehensive studies published in recent years.
Although journals were the predominant publication type be-
tween 2007 and 2011, we can observe that conferences and
workshops became increasingly prevalent from 2012 onwards,
as more venues on the topic were initiated or existing venues in-
cluded large-scale agile development in their research program.

Figure 16 presents the distribution of selected studies across
publication domains. We identified eight publication domains
that cover research related to large-scale agile development.

3 2 1 1 1
4 4

7
9

7

1

1
1 1 2

7
8 3 3

5

19

16

1

4

2
5

4

4
10

0

5

10

15

20

25

30

35

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

N
um

be
r o

f s
tu

di
es

Year

Journal Conference Workshop

Figure 15: Distribution of publication types over time

Unsurprisingly, most of the publications are covered by publi-
cation venues from the software engineering research domain,
followed by the information system and project management
research areas. Nine articles were published in venues covering
various research topics, e.g., IEEE Access embracing all IEEE
fields of interest or Procedia Computer Science containing con-
ference proceedings on all computer science topics. Although
most of the studies stem from the software engineering field, we
recognize a growing interest in large-scale agile development
research from further research communities, e.g., information
systems, project management, and enterprise computing.

To corroborate this observation, we show in Figure 17 how
the number of publications has evolved across the identified
publication domains. Large-scale agile development is primar-
ily and expectedly domicile in the software engineering field,
with at least one published study per year and a peak in 2019
with 22 publications. Research on large-scale agile develop-
ment has also aroused an early interest in publication venues
related to information systems. After 2013, we observe a grow-

14 151

1

1

1

3

4

9

18

99

0 10 20 30 40 50 60 70 80 90 100

Marketing

IT project management

Human computer interaction

Enterprise computing

Project management

Multidisciplinary

Information systems

Software engineering

Number of studies

P
ub

lic
at

io
n

do
m

ai
n

Figure 16: Distribution of publication domains

ing interest in the topic outside of software engineering. While
only two articles were published in venues unrelated to soft-
ware engineering between 2007 and 2012, further 35 articles
were published between 2014 and 2019, representing 94.59%
of all studies outside of software engineering. These numbers
are coherent with our observations. We notice a general interest
in the topic in various academic fields in recent years, as the
large-scale adoption of agile methods has far-reaching implica-
tions for companies, which in turn is very interesting for many
scientists to investigate from an empirical point of view.

A look at the specific targeted publications venues shows that
research on large-scale agile development is published in vari-
ous venues. The 136 selected studies are distributed across 46
publication venues (see Appendix A), including 17 journals,
23 conferences, and six workshops, indicating that research on
large-scale agile development is receiving wide attention in the
research community. Table 9 presents the top-10 venues with
the highest number of publications. While eight of the top-
10 publication venues belong to the software engineering re-
search field, two conferences are from the information systems
research field. The top six venues account for 50% of all publi-
cations, while the remaining 40 venues cover half of all studies.
The top venues are the International Conference on Agile Soft-
ware Development, followed by the International Workshop on
Large-Scale Agile Development. Both venues have at least
twice as many publications as the third-largest contributor, the
International Conference on Global Software Engineering. The
top contributing journals are IEEE Software and Information
and Software Technology. The publication venues’ distribution
indicates that contributions are published primarily at the Inter-
national Conference on Agile Software Development and Inter-
national Workshop on Large-Scale Agile Development, which
is unsurprising as they deal exclusively with this topic. Re-
searchers and practitioners can consider these venues as an en-
try point to explore the state of the art in large-scale agile de-
velopment research and gain easier access to the community.
We note that several studies are present in leading software en-
gineering journals, e.g., IEEE Software, Information and Soft-
ware Technology, and Empirical Software Engineering. Since
six publication venues cover half of all publications, we assume
that researchers primarily submit their research to a few specific
venues. The publication venues’ distribution shows a long tail

of 27 venues, each with one published study.

4.2.4. Research types and methods
Figure 18 shows the distribution of selected studies against

their research types. We only identified three research types
of the six research types specified by Wieringa et al. [103]
(see Table 5), namely evaluation research, solution proposal,
and philosophical papers. We note that 110 articles report on
evaluating solutions applied in practice, typically through case
studies, mixed methods, surveys, or similar empirical methods.
Solution proposals were the next most frequently covered re-
search type presenting either novel solutions or significant ex-
tensions of existing solutions. Philosophical papers that of-
fer new perspectives on existing things by framing the large-
scale agile development field using conceptual frameworks or
taxonomies were the third most commonly identified research
type. Based on our selection criteria (see Section 3.2.2), we
could not identify any experience and opinion papers since they
were excluded during our selection process. We could also not
identify any validation research studies in which researchers in-
vestigate novel techniques that have not yet been implemented
in practice. This observation would also have been atypical as
most of the selected articles are concerned with identifying, de-
scribing, and evaluating the practical application of agile meth-
ods on a larger scale. The fact that evaluation research is widely
used positively impacts the potential for transferring current re-
search findings to the industry. The prevalence of evaluation
research studies is natural in a phenomenon such as large-scale
agile development, which is driven primarily by industry in-
stead of resulting from the context of a research lab.

Figure 19 shows the evolution of research types over time.
We notice that evaluation research studies dominate large-scale
agile development research throughout the period considered,
especially before 2013, when 12 out of 14 papers belong to this
category. Accordingly, before 2013, only two articles were pub-
lished from the solution proposal research type. After 2013, an
increasing tendency towards all three identified research types
can be observed. While between 2014 and 2019, at least six
evaluation research papers were published each year, at least
three articles per year were published combining philosoph-
ical papers and solution proposals. As a result, we observe
a promising development in large-scale agile development re-
search, i.e., researchers evaluate existing techniques in prac-
tice and develop new solutions based on their observations and
frame the observed phenomena using conceptual models.

To investigate research methods applied in large-scale ag-
ile development, we visualize the research approaches used in
the selected studies in Figure 20. Most studies are empiri-
cal and include case studies, mixed methods, ground theory,
survey, design and creation, and action research. By far, the
most prevalent research method in large-scale agile develop-
ment is case study research, followed by (systematic) litera-
ture review/(systematic) mapping study, mixed methods, and
grounded theory. We could not identify the applied research
method in seven articles, as it was neither described nor deriv-
able. Only three papers are theoretical, mainly in the form of
conceptual models. For instance, Carroll and Conboy [S113]

15152

1 3

6

25 113

1 43

22118

7

10 2210 1111

6

10

7

5 8 108

3

11

1

1

3

85

4

7

20 222020

7

3 20711

7

4

1

6

228 10 202 11 22

11

2010 2010 2011 22

3

1

11 78 20

6

20

1

7 2210 20201011 10

1

11 222211 20

1

11 22112

1

7 11

1 5

711 11

2

4 2211

6

7 222211

11

1

20 222211 2220 222220201

2

206 11

1

11

2007
1 (0.74%)

2008
4 (2.94%)

2009
2 (1.47%)

2010
2 (1.47%)

2011
3 (2.21%)

2012
2 (1.47%)

2013
7 (5.15%)

2014
13 (9.56%)

2015
9 (6.62%)

2016
12 (8.82%)

2017
16 (11.76%)

2018
32 (23.53%)

2019
33 (24.26%)

Software
Engineering
99 (72.79%)

Project
management

4 (2.94%)

Multidisciplinary
9 (6.62%)

Marketing
1 (0.74%)

IT project
management

1 (0.74%)

Information systems
18 (13.24%)

Human computer
interaction
1 (0.74%)

Enterprise computing
3 (2.21%)

P
ub

lic
at

io
n

do
m

ai
n

Year

Figure 17: Number of studies per publication domain over time

Table 9: Top-10 publication venues ranked by number of submitted studies

Publication source Type Domain No. %

1 International Conference on Agile Software Development Conference Software engineering 21 15.44
2 International Workshop on Large-Scale Agile Development Workshop Software engineering 20 14.71
3 International Conference on Global Software Engineering Conference Software engineering 9 6.62
4 IEEE Software Journal Software engineering 6 4.41
5 Information and Software Technology Journal Software engineering 6 4.41
6 International Workshop on Autonomous Teams Workshop Software engineering 6 4.41
7 Empirical Software Engineering Journal Software engineering 5 3.68
8 Hawaii International Conference on System Sciences Conference Information systems 5 3.68
9 Americas Conference on Information Systems Conference Information systems 4 2.94
10 Journal of Systems and Software Journal Software engineering 4 2.94

11

15

110

0 20 40 60 80 100 120

Philosophical papers

Solution proposal

Evaluation research

Number of studies

R
es

ea
rc

h
ty

pe

Figure 18: Distribution of research types

apply normalization process theory to theorize the process of
large-scale agile transformations by identifying existing as-
sumptions about these transformations and explaining what fac-
tors enable their normalization. Sweetman and Conboy [S127]
use the complex adaptive systems lens to critically appraise
current thinking on portfolio management in an agile context.
We identified only one action research paper, namely the from
Pries-Heje and Krohn [S95], that describes the adoption of
SAFe at SimCorp and the resulting implementation challenges
using a participatory action research project. The results show
that the body of knowledge on large-scale agile development
is mainly empirical and is still at an exploratory stage. A high
percentage of articles are case studies that are sparsely based on

1 2 2 2 3 2

7 8
6

9
13

27 28

3

3

2

2 1

2

2 1

3

3 4

0

5

10

15

20

25

30

35

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

N
um

be
r o

f s
tu

di
es

Year

Evaluation research Philosophical papers Solution proposal

Figure 19: Number of studies per research type over time

grounded theory or theory-building methods.
To reveal trends, we visualize the annual distribution of ap-

plied research approaches over time in Figure 21. Figure 21
confirms the prevalence of case study research from a tempo-
ral perspective, i.e., case study research was applied throughout
the entire observation period and shows a nearly constant in-
crease over time, peaking in 2018 and 2019. Between 2007 and
2013, 76.19% of the studies were based on case study research.
At the same time, only four out of the eight identified research
approaches, i.e., case study, design and creation, grounded the-
ory, and survey. As of 2014, the remaining four research meth-

16 153

1

3

6

7

7

9

10

15

78

0 10 20 30 40 50 60 70 80

Action research

Theoretical

Design and creation

Not stated

Survey

Grounded theory

Mixed methods

(Systematic) literature review/
(Systematic) mapping study

Case study

Number of studies

R
es

ea
rc

h
ap

pr
oa

ch

Figure 20: Distribution of applied research approaches

ods, i.e., action research, mixed methods, (systematic) litera-
ture review/(systematic) mapping study, and theoretical, were
applied. The most diverse usage of research approaches was
observed in 2019, when seven different research methods were
used. The increasing use of various research methods validates
our view that large-scale agile development is a multifaceted
research field necessitating the investigation of the observation
object from different scientific angles. This trend demonstrates
the increasing demand from companies for academic support,
which fuels the growing research interest of scholars.

4.2.5. Research outcomes
Figure 22 shows the distribution of research contributions of

the 136 selected studies. A total of 115 papers contribute in
the form of lessons learned and guidelines. They are rather ob-
servational by analyzing and describing the application of ag-
ile practices in large-scale projects. Conversely, the remain-
ing studies contribute models, frameworks/methods, and the-
ories. For instance, Qumer and Henderson-Sellers [S6] pro-
pose a new framework called Agile Software Solution Frame-
work to support the adoption and improvement of agile meth-
ods in large-scale software projects. Using the human systems
dynamics model, Power [S7] presents a new model to deter-
mine when scaling agile practices is appropriate for large orga-
nizations. Bass [S18] provides another example and uses the
Glaserian grounded theory approach to study and explain arti-
fact inventories used in large-scale agile offshore software pro-
grams. None of the selected studies contribute to developing
new or improved tools. This observation suggests that further
research is needed that develop conceptual models and theo-
ries to strengthen the theoretical foundations of large-scale agile
development research and create rigorously developed frame-
works, methods, and tools to assist practitioners.

Figure 23 shows an annual distribution of the contribution
type facet. Most articles focused on deriving lessons learned
from observations made on large-scale agile endeavors between
2007 and 2019. During this period, at least one lessons learned
study was published annually, peaking in 2018 and 2019. Start-
ing in 2014, with at least two published studies per year, a clear
tendency towards creating frameworks/methods, models, and
theories can be observed. This observation indicates growing
empirical evidence owing to the rising interest in the research

community and the growing body of knowledge.
To spot possible patterns between the publications domains’

preference for made contribution types and applied research
approaches, Figure 24 displays the relationship between these
three data items. We can see that in almost all domains, ex-
cept for IT project management, deriving lessons learned from
observations made is the most common contribution type. We
note that most diverse contributions have been made in the soft-
ware engineering field, confirming its multidisciplinary nature
(cf. [45]) even in the context of large-scale agile development.
Concerning the relationship between publication domains and
research methods, we notice that case study research is pre-
ferred in most domains. Although case study research is the
most commonly used approach in the information systems and
software engineering domains, we realize that these two do-
mains use a wide variety of research methods.

To better understand the relation between the research out-
come and the applied research type and approach of each study,
we visualize the relationship between these three data items in
Figure 25. The predominance of the selected articles applies
case study research to evaluate the usage of agile methods in
large-scale projects and derive a set of lessons learned based
on the analysis of the research findings. In terms of evaluation
research, the remaining articles apply various research meth-
ods, mainly (systematic) literature reviews/(systematic) map-
ping studies, mixed methods, and surveys, to draw some lessons
learned. Further 17 papers use case study research, design
and creation research, grounded theory, and mixed methods re-
search to make contributions in the form of taxonomies, con-
ceptual frameworks, and theories. For instance, by applying
grounded theory, Santos et al. [S44] create a conceptual model
that aims to explain the dependence of adequate knowledge
sharing across agile teams on the purposeful application of agile
practices and organizational conditions and stimuli. Turetken
et al. [S19] propose a maturity model to assess the degree of
adopting SAFe in companies using design science research.
Rolland et al. [S73] employ a mixed methods research de-
sign consisting of a literature review and case study to create
a conceptual model for examining the underlying assumptions
of large-scale agile development. By comparing contribution
types and research types and methods, the under-representation
of the usage of systematic literature reviews/systematic map-
ping studies and surveys becomes apparent. Only 16.18%
of the studies use (systematic) literature reviews/(systematic)
mapping studies and surveys to contribute in terms of lessons
learned. These approaches are non-existent in other contribu-
tion types. This observation indicates a research gap in creating
new conceptual models or adapting existing theoretical models
from different research domains to explain the various aspects
of large-scale agile development based on quantitative surveys
and statistical analyses.

4.2.6. Research data types
While 121 of the selected papers are primary studies and

another 15 articles are secondary studies, we did not find any
tertiary studies. Six secondary studies provide ad hoc (sys-
tematic) literature reviews on challenges and success factors

17154

1

6

1

2

2 3

7

2

3

2

3

2

1

4

19

1

5

2

2

2

2

2

1

1

5

1

196

4

3

2

1

2

1

1

2

1

1

1

1

1

Not stated
7 (5.15%)

Theoretical
3 (2.21%)

Survey
7 (5.15%)

(Systematic) literature review/
(Systematic) mapping study

15 (11.03%)

Mixed methods
10 (7.35%)

Grounded theory
9 (6.62%)

Design and creation
6 (4.41%)

Case study
78 (57.35%)

Action research
1 (0.74%)

2007
1 (0.74%)

2008
4 (2.94%)

2009
2 (1.47%)

2010
2 (1.47%)

2011
3 (2.21%)

2012
2 (1.47%)

2013
7 (5.15%)

2014
13 (9.56%)

2015
9 (6.62%)

2016
12 (8.82%)

2017
16 (11.76%)

2018
32 (23.53%)

2019
33 (24.26%)

R
es

ea
rc

h
ap

pr
oa

ch

Year

1

1

1

2

3

Figure 21: Number of studies per research approach over time

106

9

9

8

4

0 20 40 60 80 100 120

Lessons learned

Guideline

Model

Framework/Method

Theory

Number of studies

C
on

tri
bu

tio
n

ty
pe

Figure 22: Distribution of research outcomes

2 1 2 33 1
2

3

1

2

2 2 3 2

7

8

7
9

12

25

26

2

2

2

1

2

1

1

1
1

0

5

10

15

20

25

30

35

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

N
um

be
r o

f s
tu

di
es

Year

Framework/Method Guideline Lessons learned Model Theory

Figure 23: Distribution of research outcomes over time

of applying agile methods in large (and distributed) software
projects (cf. [S10], [S22], [S47], [S89], [S135], [S136]). Four
secondary studies compare and analyze various scaling agile
frameworks based on (systematic) literature reviews (cf. [S9],
[S17], [S57], [S108]). Based on a literature review, one sec-
ondary study identifies roles responsible for inter-team coordi-
nation of agile teams (cf. [S20]). One secondary study reveals a
set of motivators for large-scale adoption of agile methods from
a management perspective (cf. [S65]). One secondary study
provides a multi-vocal literature review describing the benefits
and challenges of adopting SAFe (cf. [S132]). One secondary

study conceptualizes coordination in large-scale agile develop-
ment from a multi-team systems perspective (cf. [S30]). One
secondary study provides a set of challenges that harm quality
requirements in large-scale distributed agile projects and pro-
poses a set of solutions to overcome them (cf. [S134]).

Figure 26 shows an annual distribution of the research data
type facet. Alongside the sharp increase in the number of pub-
lished studies over the past decade, secondary studies have also
increased in recent years. Specifically, all secondary studies
were published after 2013. The increase of secondary studies
indicates the growing body of knowledge and maturity of the
large-scale agile development research field.

4.3. Seminal studies
As suggested by Dingsøyr et al. [34] and Nerur et al. [71],

we identified seminal works as they facilitate understanding and
exploration of the intellectual structure of the large-scale agile
development research field. Like Herbold et al. [48], we ex-
tracted data on citation numbers from Google Scholar to define
our criterion for seminal publications and consider the top 10%
of the studies with the most citations as influential (see Table
10). The 13 seminal publications:

1. discuss effects, issues, benefits, and success factors related
to the large-scale introduction of agile practices in plan-
driven organizations (cf. [S1], [S2], [S5], [S22], [S92]),

2. describe experiences in applying agile practices based on
Scrum to large, globally distributed software development
programs (cf. [S34], [S103]),

3. present the role of communities of practices and the asso-
ciated challenges and success factors as part of large-scale
agile transformations (cf. [S3]),

4. propose a scaling framework for creating new agile soft-
ware development processes to develop large and complex
software applications (cf. [S6]),

5. propose a framework for guiding software process im-
provement activities concerning agility in large software
product development organizations (cf. [S24]),

18 155

5151

15

51515 8

777

85151

15

7 5151 35

15

8

15

515 5151

3

51

1

7

15

851

7

1

51515151

15

5 5151 8

15

2

3

15

7 515151515151

33

515151 8515151

7

1

515151 3

15

51

1

5151517 51515151

1

517 51515

15

51517 51

2

5151

1515

851 351

15

5151 8

15

5151517

33

1

5151517 515151515151515151

1

515151515151

7

76 37 6

10

3737 437

2 55

373737

2

4 7 674

2

3737 63737

2

37

5

10

3737

1

37373737

10

73737 7

10

1

2

6373737373737

1

6 637 7373737

5

1

737 737

10

7

1

37 637 6737 737

1

37 7373737

10

673737

1

371

10

3737 737

10

3737 6

10

37 637 6

1

1

373737 437 6373737 637 737

1

37 63762 6

1

6

5

6

Lessons
learned

106 (77.94%)

Model
9 (6.62%)

Action
research
1 (0.74%)

Case study
78 (57.35%)

Design and
creation

6 (4.41%)

Grounded
theory

9 (6.62%)

Mixed
methods

10 (7.35%)

(Systematic)
literature review/

(Systematic)
mapping study

15 (11.03%)

Survey
7 (5.15%)

Theoretical
3 (2.21%)

Not stated
7 (5.15%)

Contribution type Research approach

Multidisciplinary
9 (6.62%)

Marketing
1 (0.74%)

Information systems
18 (13.24%)

Project management
4 (2.94%)

Software
engineering
99 (72.79%)

Publication domain

1

IT project management
1 (0.74%)

Human computer
interaction
1 (0.74%)

Enterprise computing
3 (2.21%)

Framework/
Method

8 (5.88%)

Guideline
9 (6.62%)

Theory
4 (2.94%)

Figure 24: Mapping of publication domains against contribution types and research approaches

6. elucidate the adaption of agile methods in terms of cus-
tomer involvement, software architecture, and inter-team
coordination in a large-scale agile program (cf. [S43]),

7. report the application of the scaling approach SoS and its
associated challenges and success factors in large-scale
distributed Scrum projects (cf. [S53]), and

8. describe the adoption of portfolio management practices
and the associated benefits and side-effects in organiza-
tions applying agile methods at large-scale (cf. [S112]).

4.4. Research streams and research agenda in large-scale agile
development

As a common goal of systematic mapping studies is to assess
the state of the art and maturity level of a research area [58,
82], we present the general structure, central research themes,
and research gaps of the large-scale agile development research
field. Below we present our key findings related to the identified
research streams and gaps before discussing each of them.

4.4.1. General overview
We explored research clusters to identify pertinent research

themes and structured the selected studies according to these
themes. Figure 27 provides an overview of the identified re-
search streams and shows the number of studies assigned to
each stream. We identified 10 research streams, namely Agile
architecture, Agile planning, Agile portfolio management, Ag-
ile practices at scale, Communication and coordination, Global
and distributed software engineering, Large-scale agile trans-
formations, Scaling agile frameworks, Taxonomy, and Team au-
tonomy. While some research streams have enjoyed very lit-
tle research interest, e.g., Taxonomy or Agile portfolio manage-
ment, researchers have devoted a great deal of attention to in-
vestigating the scaling of agile practices, i.e., Agile practices at

scale, studying the coordination of large agile multi-team set-
tings, i.e., Communication and coordination, and analyzing the
adoption of scaling frameworks, i.e., Scaling agile frameworks.

Table 11 shows a tabular representation of the research
streams, including their sub-topics. While most research
streams exhibit numerous endeavors and clusters dealing with
specialized sub-topics, some research streams scarcely show
any specific sub-research cluster. For instance, in the research
stream Communication and coordination, we identified sev-
eral sub-topics, e.g., Communication mechanisms, Team perfor-
mance, and Knowledge networks, while we did not observe any
specialized sub-themes in the Team autonomy and Taxonomy
research streams. In almost all research streams (except Tax-
onomy), we observe several studies that derived several lessons
learned in the form of challenges and success factors based on
their investigations. The complexity and the number of sub-
clusters identified per research stream are logically reflected in
the number of studies assigned to a stream. While only three
papers were assigned to the Taxonomy research stream with no
specialized sub-topic, nine sub-streams were identified in the
Agile practices at scale research stream.

Figure 28 visualizes how the number of studies assigned to
the research streams has developed over time. The earliest re-
searches on large-scale agile development were conducted be-
tween 2007 and 2008 and are related to the Agile practices at
scale, Global and distributed software engineering, and Scaling
agile frameworks research streams. Tessem and Maurer [S126]
represent the first reported paper on large-scale agile develop-
ment belonging to Agile practices at scale research stream and
describing the adaptation of Scrum for a project involving 70
people. The initial contributions to the four research streams:
Agile architecture, Team autonomy, Communication and co-
ordination, and Taxonomy were published between 2013 and
2016, when a great interest in the large-scale agile development
research topic emerged. After 2013, there has been a general

19156

104104104104104

11

10

104104104

10

104104

6

104

5

11

104

10

104104

11

104104104104

9

5104

5

104104

11

104104104104104

11

104104

10

104

11

104104

9

104104104104104104104104104104104

2

104104104104104104104104

5

104104

10

104104104

9

104104104104104104

9

104104

8

104104104

9

104 2104104104104

10

104

2

104104104104

7

104104104104

6

104104

2

104104104

3

104104104104104104104

6

104104104104104

8

104104104 70 10707070

7

8

70 1818

8

7070 7

5

10 18

5

7

18

8

1870

1

70707070

1

18707070

7

70707070707070

5

70

4

18

6

707070707070 18 10 170

2

7070 1870 1070 7

1

70 10

1

70 1070

6

107070 1070

1

7070

1

70 94

1

70 1701 70

5

70

2

70707070

1

707070

3

10

1

707070

2

70 1070707070 770

1

70 77070 18

2

181815

Evaluation
research

110 (80.88%)

Philosophical
papers

11 (8.09%)

Solution
proposal

15 (11.03%)

Action
research
1 (0.74%)

Case
study

78 (57.35%)

Design and
creation

6 (4.41%)

Grounded
theory

9 (6.62%)

Mixed
methods

10 (7.35%)

(Systematic)
literature review/

(Systematic)
mapping study

15 (11.03%)

Survey
7 (5.15%)

Theoretical
3 (2.94%)

Research type Research approach

Contribution type

Lessons learned
106 (77.94%)

Guideline
9 (6.62%)

Framework/Method
8 (5.88%)

Model
9 (6.62%)

Theory
4 (2.94%)

1111

Not stated
7 (5.15%)

Figure 25: Mapping of contribution types against research types and approaches

1
4

2 2 3 2

7

11
8

10
12

29 30

2

1

2

4

3
3

0

5

10

15

20

25

30

35

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

N
um

be
r o

f s
tu

di
es

Year

Primary Study Secondary Study

Figure 26: Distribution of used research data types over time

increase in research interest in all research streams (except Tax-
onomy). The Scaling agile frameworks research stream shows
a steady research interest between 2016 and 2019, with a peak
in 2019, accounting for almost one-third of all published stud-
ies in 2019. This observation is congruent with Uludağ et al.
[101] stating that many scaling frameworks were created and
published between 2011 and 2018, confirming the increasing
industry interest in scaling frameworks and sparking a growing
interest in analyzing the adoption of these frameworks. Further-
more, 56.25% of all studies published between 2018 and 2019
were related to Agile practices at scale, Communication and co-
ordination, and Scaling agile frameworks, while the remaining
seven streams accounted for 43.75% of all studies.

Following Kitchenham et al. [58], we derive a research
agenda that scholars can use. Figure 29 shows the number of
research questions identified for each research stream. We iden-
tified 81 research questions that were mapped to the respective
streams (see Table 12). Most research questions were identi-
fied in the Communication and coordination, Agile architec-
ture, and Agile planning research streams.

Next, we discuss the research streams and gaps reported in

15 (9.49%)

16 (10.13%)

5 (3.16%)

30 (18.99%)

28 (17.72%)

13 (8.23%)

16 (10.13%)

25 (15.82%)

3 (1.90%)

7 (4.43%)

0

5

10

15

20

25

30
Agile architecture

Agile planning

Agile portfolio management

Agile practices at scale

Communication and coordination

Global and distributed
software engineering

Large-scale agile transformations

Scaling agile frameworks

Taxonomy

Team autonomy

Figure 27: Distribution of the studies in the different research streams

the selected studies.

4.4.2. Agile architecture
Agile methods imply that architecture emerges from the sys-

tem rather than being imposed by some direct structuring force
[10]. The practice of emergent design is effective at the team
level but insufficient when agile methods are applied at a larger
scale, as large-scale agility is enabled by architecture, and vice
versa [64], [S106]. The topic of agile architecture is gaining
attraction among agilists and researchers (cf. [41, 73, 91]). The
Agile architecture research stream aims to address the questions
of how companies can combine the at first glance contradictory
topics of agility and architecture to build complex products and
how agile teams can be jointly architecturally aligned at the en-
terprise level. As the topic of agile architecture is multi-faceted,
we identified six sub-topics in the Agile architecture stream.
The first two sub-topics address agile architecture research at
different organizational levels, e.g., at product level, i.e., soft-
ware architecture, and enterprise level, i.e., enterprise archi-
tecture (cf. [S25], [S81], [S102]). Due to the multitudinous-

20 157

Table 10: Top 10% of publications ranked by number of citations according to Google Scholar (data collected on 2019-12-31)

Study Title Authors Publication
type

Year No. of
citations

Citations
per year

[S22]
Challenges and success factors for large-scale agile transformations:
a systematic literature review

Kim Dikert,
Maria Paasivaara,
Casper Lassenius

Journal 2016 273 68

[S6]
A framework to support the evaluation, adoption and improvement
of agile methods in practice

Asif Qumer,
Brian Henderson-Sellers Journal 2008 256 21

[S1]
A comparison of issues and advantages in agile and incremental de-
velopment between state of the art and an industrial case

Kai Petersen,
Claes Wohlin Journal 2009 229 21

[S2]
Agile methods rapidly replacing traditional methods at nokia: a sur-
vey of opinions on agile transformation

Maarit Laanti,
Outi Salo,
Pekka Abrahamsson

Journal 2011 227 25

[S92]
The effect of moving from a plan-driven to an incremental software
development approach with agile practices: an industrial case study

Kai Petersen,
Claes Wohlin Journal 2010 166 17

[S112]
Agile portfolio management: an empirical perspective on the prac-
tice in use

Christoph J. Stettina,
Jeanette Hörz Journal 2015 126 25

[S34] Distributed agile development: using scrum in a large project
Maria Paasivaara,
Sandra Durasiewicz,
Casper Lassenius

Conference 2008 119 10

[S103] Using scrum in a globally distributed project: a case study
Maria Paasivaara,
Sandra Durasiewicz,
Casper Lassenius

Journal 2008 101 8

[S3]
Communities of practice in a large distributed agile software deve-
lopment organization – case ericsson

Maria Paasivaara,
Casper Lassenius Journal 2014 98 16

[S53]
Inter-team coordination in large- scale globally distributed scrum:
do scrum-of-scrums really work?

Maria Paasivaara,
Casper Lassenius,
Ville T. Heikkilä

Conference 2012 91 11

[S5]
A case study on benefits and side-effects of agile practices in large-
scale requirements engineering

Elizabeth Bjarnason,
Krzysztof Wnuk,
Björn Regnell

Workshop 2011 87 10

[S24]
Combining agile software projects and large-scale organizational
agility

Petri Kettunen,
Maarit Laanti Journal 2008 86 7

[S43]
Exploring software development at the very large-scale: a revelatory
case study and research agenda for agile method adaptation

Torgeir Dingsøyr,
Nils B. Moe,
Tor E. Fægri,
Eva A. Seim

Journal 2018 83 42

ness of the agile architecture topic, we also identified several
sub-topics related to software and enterprise architecture sub-
topics. Within the software architecture sub-topic, extant liter-
ature aims to describe how software reuse can be facilitated in
large-scale agile endeavors (cf. [S25]) and how technical debts
can be managed in large-scale agile projects (cf. [S64]). Several
studies also aim to clarify the roles and responsibilities of soft-
ware architects in large-scale agile projects (cf. [S43], [S81],
[S104]). In the enterprise architecture sub-topic, we identified
two additional sub-topics that aim to answer the questions on
how enterprise architecture efforts can be effectively adopted
in agile environments (cf. [S11], [S102]) and how enterprise
architects can support agile teams (cf. [S57], [S106]). The
remaining four sub-topics introduce commonly applied archi-
tectural toolboxes, i.e., architecture principles, domain-driven
design, models, and patterns (cf. [S39], [S87], [S107], [S110]).
Notable results of the Agile architecture research stream are:

• Observations indicating that an upfront architecture pro-
vides agile teams with a stable working environment con-

tributes to team efficiency and that the role of architects is
demanding, requiring continuous coordination with many
stakeholders [S43].
• An organizational framework, including roles, teams, and

practices, to address challenges related to agile architect-
ing in large-scale agile projects [S107].
• A set of architectural tactics for addressing architectural

concerns in large-scale agile projects, e.g., the runway-
building tactic, which can be used when architecture is
needed that is sufficient to meet near-term needs without
causing delays or additional work [S110].

Observations suggesting that an upfront architecture pro-
vides agile teams with a stable working environment that likely
contributes to team efficiency, and that the role of architects in
large-scale agile development is challenging and requires ongo-
ing coordination and negotiation among many stakeholders

Agile methods have been criticized for their lack of focus on
architecture [38], assuming that the best architectures emerge
from self-organizing teams [2, 10]. For instance, the incremen-

21158

Ta
bl

e
11

:T
ab

ul
ar

ov
er

vi
ew

of
re

se
ar

ch
st

re
am

s
on

la
rg

e-
sc

al
e

ag
ile

de
ve

lo
pm

en
t

R
es

ea
rc

h
st

re
am

In
flu

en
tia

ls
tu

di
es

To
pi

c
le

ve
l1
/

St
ud

y
To

pi
c

le
ve

l2
/

St
ud

y
To

pi
c

le
ve

l3
/

St
ud

y
A

gi
le

ar
ch

ite
ct

ur
e

[S
43

]
So

ft
w

ar
e

ar
ch

ite
ct

ur
e

So
ft

w
ar

e
re

us
e

[S
25

]
R

ol
e

of
so

ft
w

ar
e

ar
ch

ite
ct

s
[S

43
],

[S
57

],
[S

81
],

[S
10

4]
Te

ch
ni

ca
ld

eb
ts

[S
64

]
E

nt
er

pr
is

e
ar

ch
ite

ct
ur

e
C

ha
lle

ng
es

an
d

su
cc

es
s

fa
ct

or
s

[S
11

],
[S

10
2]

R
ol

e
of

en
te

rp
ri

se
ar

ch
ite

ct
s

[S
57

],
[S

10
6]

A
rc

hi
te

ct
ur

e
pr

in
ci

pl
es

[S
39

],
[S

41
],

[S
56

]
-

D
om

ai
n-

dr
iv

en
de

si
gn

[S
87

]
-

M
od

el
s

[S
10

7]
-

Pa
tte

rn
s

[S
11

0]
-

A
gi

le
pl

an
ni

ng
[S

5]
,[

S4
3]

E
ff

or
te

st
im

at
io

n
[S

37
]

-
R

el
ea

se
pl

an
ni

ng
pr

oc
es

s
[S

8]
,[

S2
7]

,[
S6

3]
,[

S6
8]

-
C

ha
lle

ng
es

an
d

su
cc

es
s

fa
ct

or
s

[S
5]

,[
S2

6]
,[

S6
9]

,[
S9

1]
,[

S1
01

],
[S

12
5]

,[
S1

34
]

-
C

us
to

m
er

in
vo

lv
em

en
t

[S
33

],
[S

43
],

[S
98

],
[S

11
4]

-
N

ot
sp

ec
ifi

ed
[S

74
]

-
A

gi
le

po
rt

fo
lio

m
an

ag
em

en
t

[S
11

2]
C

ha
lle

ng
es

an
d

su
cc

es
s

fa
ct

or
s

[S
88

],
[S

11
2]

,[
S1

27
],

[S
12

8]
-

Pa
tte

rn
s

[S
15

]
-

A
gi

le
pr

ac
tic

es
at

sc
al

e
[S

1]
,[

S3
],

[S
24

]
Ta

ilo
ri

ng
[S

14
],

[S
18

],
[S

61
],

[S
80

],
[S

90
]

-
K

an
ba

n
[S

13
1]

-
R

et
ro

sp
ec

tiv
es

[S
62

]
-

C
om

m
un

iti
es

of
pr

ac
tic

es
[S

3]
,[

S3
8]

,[
S8

4]
,[

S1
18

]
-

R
ap

id
ap

pl
ic

at
io

n
de

ve
lo

pm
en

t
[S

96
]

-
C

ha
lle

ng
es

an
d

su
cc

es
s

fa
ct

or
s

[S
35

],
[S

46
],

[S
47

],
[S

78
],

[S
12

6]
,[

S1
35

]
-

M
od

el
s

[S
19

],
[S

24
],

[S
32

],
[S

41
],

[S
87

],
[S

13
3]

-
Pa

tte
rn

s
[S

35
],

[S
46

]
-

N
ot

sp
ec

ifi
ed

[S
1]

,[
S7

5]
,[

S9
4]

,[
S1

11
],

[S
11

9]
-

C
om

m
un

ic
at

io
n

an
d

co
or

di
na

tio
n

[S
43

]
In

te
r-

te
am

co
or

di
na

tio
n

M
ul

tit
ea

m
sy

st
em

s
[S

30
],

[S
51

],
[S

52
],

[S
93

]
C

oo
rd

in
at

io
n

m
ec

ha
ni

sm
s

[S
20

],
[S

28
],

[S
31

],
[S

36
],

[S
43

],
[S

54
],

[S
70

],
[S

71
],

[S
85

],
[S

97
],

[S
11

5]
Te

am
pe

rf
or

m
an

ce
[S

48
],

[S
58

]
C

ha
lle

ng
es

an
d

su
cc

es
s

fa
ct

or
s

[S
29

],
[S

11
7]

So
ft

w
ar

e
ec

os
ys

te
m

s
[S

13
0]

K
no

w
le

dg
e

sh
ar

in
g

K
no

w
le

dg
e

bo
un

da
ri

es
[S

76
]

K
no

w
le

dg
e

ne
tw

or
ks

[S
16

],
[S

67
],

[S
83

],
[S

10
4]

N
ot

sp
ec

ifi
ed

[S
44

],
[S

59
],

[S
84

]
G

lo
ba

la
nd

di
st

ri
bu

te
d

so
ft

w
ar

e
en

gi
ne

er
in

g
[S

34
],

[S
10

3]
C

ha
lle

ng
es

an
d

su
cc

es
s

fa
ct

or
s

[S
10

],
[S

34
],

[S
66

],
[S

72
],

[S
89

],
[S

99
],

[S
10

3]
,

[S
13

6]
-

O
ff

sh
or

in
g

an
d

ou
ts

ou
rc

in
g

[S
14

],
[S

18
],

[S
61

],
[S

80
]

-
N

ot
sp

ec
ifi

ed
[S

37
]

-
L

ar
ge

-s
ca

le
ag

ile
tr

an
sf

or
m

at
io

ns
[S

2]
,[

S2
2]

,[
S9

2]
C

ha
lle

ng
es

an
d

su
cc

es
s

fa
ct

or
s

[S
2]

,[
S4

],
[S

21
],

[S
22

],
[S

40
],

[S
50

],
[S

60
],

[S
65

],
[S

92
],

[S
10

0]
,[

S1
21

],
[S

12
2]

,[
S1

23
]

-

A
gi

le
m

in
ds

et
[S

46
],

[S
86

]
-

T
he

or
y

bu
ild

in
g

[S
11

3]
-

Sc
al

in
g

ag
ile

fr
am

ew
or

ks
[S

6]
,[

S5
3]

C
ha

lle
ng

es
an

d
su

cc
es

s
fa

ct
or

s
[S

49
]

-
L

ar
ge

-S
ca

le
Sc

ru
m

[S
42

],
[S

55
],

[S
79

]
-

Sc
al

ed
A

gi
le

Fr
am

ew
or

k
[S

13
],

[S
19

],
[S

36
],

[S
71

],
[S

95
],

[S
11

5]
,[

S1
16

],
[S

12
4]

,[
S1

29
],

[S
13

2]
-

Sc
ru

m
-o

f-
Sc

ru
m

s
[S

53
]

-
Sp

ot
if

y
M

od
el

[S
12

],
[S

45
],

[S
84

]
-

A
gi

le
So

ft
w

ar
e

So
lu

tio
n

Fr
am

ew
or

k
[S

6]
-

D
is

ci
pl

in
ed

A
gi

le
D

el
iv

er
y

[S
40

]
-

Fr
am

ew
or

k
co

m
pa

ri
so

ns
[S

9]
,[

S1
7]

,[
S5

7]
,[

S7
7]

,[
S1

08
]

-
Ta

xo
no

m
y

N
ot

sp
ec

ifi
ed

[S
7]

,[
S7

3]
,[

S1
05

]
-

Te
am

au
to

no
m

y
C

ha
lle

ng
es

an
d

su
cc

es
s

fa
ct

or
s

[S
23

],
[S

39
],

[S
10

9]
,[

S1
16

]
-

G
ov

er
na

nc
e

[S
16

],
[S

82
],

[S
12

0]
-

22 159

Ta
bl

e
12

:T
ab

ul
ar

ov
er

vi
ew

of
op

en
re

se
ar

ch
qu

es
tio

ns
fo

rl
ar

ge
-s

ca
le

ag
ile

de
ve

lo
pm

en
t

A
gi

le
ar

ch
ite

ct
ur

e
1.

H
ow

ca
n

te
ch

ni
ca

ld
eb

ts
be

m
an

ag
ed

an
d

m
in

im
iz

ed
in

la
rg

e-
sc

al
e

ag
ile

pr
oj

ec
ts

?
2.

H
ow

is
th

e
ro

le
of

en
te

rp
ri

se
ar

ch
ite

ct
s

pr
ac

tic
ed

in
la

rg
e-

sc
al

e
ag

ile
de

ve
lo

pm
en

t?
3.

H
ow

do
ar

ch
ite

ct
s

co
lla

bo
ra

te
w

ith
ag

ile
te

am
s

in
la

rg
e-

sc
al

e
ag

ile
de

ve
lo

pm
en

t?
4.

H
ow

ca
n

ar
ch

ite
ct

ur
e

dr
iv

e
la

rg
e-

sc
al

e
ag

ile
tr

an
sf

or
m

at
io

ns
?

5.
H

ow
ca

n
th

e
de

ci
si

on
-m

ak
in

g
po

w
er

be
tw

ee
n

ar
ch

ite
ct

s
an

d
ag

ile
te

am
s

be
ba

la
nc

ed
?

6.
H

ow
ca

n
so

ft
w

ar
e

ar
ch

ite
ct

ur
e

su
pp

or
tt

he
co

or
di

na
tio

n
of

ag
ile

te
am

s?
7.

H
ow

ca
n

co
or

di
na

tio
n

m
ec

ha
ni

sm
s

im
pr

ov
e

ar
ch

ite
ct

ur
e

sh
ar

in
g

at
in

tr
a-

an
d

in
te

r-
te

am
le

ve
l?

8.
H

ow
ca

n
em

er
ge

nt
an

d
in

te
nt

io
na

la
rc

hi
te

ct
ur

e
be

ba
la

nc
ed

?
9.

H
ow

ca
n

th
e

co
m

pl
ia

nc
e

of
ag

ile
te

am
s

w
ith

ar
ch

ite
ct

ur
e

pr
in

ci
pl

es
au

to
m

at
ic

al
ly

de
te

rm
in

ed
?

10
.

W
ha

ti
s

th
e

eff
ec

to
fa

pp
ly

in
g

ar
ch

ite
ct

ur
e

pr
in

ci
pl

es
on

th
e

ou
tc

om
e

of
la

rg
e-

sc
al

e
ag

ile
tr

an
sf

or
m

at
io

ns
?

11
.

W
ha

ta
re

go
od

pr
ac

tic
es

fo
ra

dd
re

ss
in

g
ch

al
le

ng
es

re
la

te
d

to
th

e
es

ta
bl

is
hm

en
to

fa
rc

hi
te

ct
ur

e
pr

in
ci

pl
es

?
12

.
W

hi
ch

ty
pi

ca
lc

ha
lle

ng
es

do
ar

ch
ite

ct
s

fa
ce

in
la

rg
e-

sc
al

e
ag

ile
de

ve
lo

pm
en

t?

A
gi

le
pl

an
ni

ng
1.

H
ow

do
or

ga
ni

za
tio

ns
th

at
ha

ve
ad

op
te

d
ag

ile
m

et
ho

ds
im

pl
em

en
t

re
le

as
e

pl
an

ni
ng

?
2.

H
ow

do
pr

od
uc

to
w

ne
rs

an
d

cu
st

om
er

s
co

lla
bo

ra
te

w
ith

de
ve

lo
pe

rs
in

la
rg

e-
sc

al
e

ag
ile

pr
oj

ec
ts

?
3.

W
ha

tl
eg

al
lim

ita
tio

ns
ex

is
ti

n
co

nt
ra

ct
s

th
at

re
du

ce
ag

ili
ty

in
la

rg
e

sc
al

e
pr

oj
ec

ts
?

4.
H

ow
ca

n
te

ch
ni

ca
ld

ep
en

de
nc

ie
s

be
tw

ee
n

ag
ile

te
am

s
be

m
in

im
iz

ed
?

5.
H

ow
ca

n
th

e
pr

io
ri

tiz
at

io
n

be
tw

ee
n

fu
nc

tio
na

la
nd

no
n-

fu
nc

tio
na

l
re

qu
ir

em
en

ts
be

ba
la

nc
ed

in
la

rg
e-

sc
al

e
ag

ile
pr

oj
ec

ts
?

6.
W

ha
ta

re
go

od
co

nt
ra

ct
in

g
m

od
el

s
fo

ro
rg

an
iz

at
io

ns
w

ith
ex

te
rn

al
cu

st
om

er
s?

7.
W

ha
ta

re
ty

pi
ca

lr
eq

ui
re

m
en

ts
en

gi
ne

er
in

g
ch

al
le

ng
es

in
la

rg
e-

sc
al

e
ag

ile
de

ve
lo

pm
en

t?
8.

W
hi

ch
ce

re
m

on
ie

s
ca

n
be

us
ed

to
im

pr
ov

e
th

e
re

le
as

e
pl

an
ni

ng
pr

oc
es

s?
9.

W
ha

ta
re

fa
ct

or
s

th
at

im
pa

ct
th

e
ac

cu
ra

cy
of

eff
or

te
st

im
at

io
ns

in
la

rg
e

sc
al

e
ag

ile
pr

oj
ec

ts
?

10
.

H
ow

ca
n

cu
st

om
er

re
pr

es
en

ta
tiv

es
an

d
ag

ile
te

am
s

be
al

ig
ne

d
in

la
rg

e-
sc

al
e

ag
ile

pr
oj

ec
ts

?
11

.
H

ow
ca

n
hi

gh
-l

ev
el

pl
an

ni
ng

el
em

en
ts

be
in

co
rp

or
at

ed
in

ag
ile

da
ily

ro
ut

in
es

of
la

rg
e-

sc
al

e
ag

ile
pr

oj
ec

ts
?

A
gi

le
po

rt
fo

lio
m

an
ag

em
en

t
1.

W
ha

ta
re

be
st

pr
ac

tic
es

in
ag

ile
po

rt
fo

lio
m

an
ag

em
en

t?
2.

H
ow

is
po

rt
fo

lio
m

an
ag

em
en

ti
nt

er
re

la
te

d
w

ith
ot

he
rg

ov
er

na
nc

e
fu

nc
tio

ns
in

an
ag

ile
co

nt
ex

t?
3.

H
ow

ca
n

tr
ad

iti
on

al
po

rt
fo

lio
m

an
ag

em
en

tt
ec

hn
iq

ue
s

be
ap

pl
ie

d
in

an
ag

ile
en

vi
ro

nm
en

t?
4.

H
ow

is
th

e
ne

w
ro

le
of

pr
oj

ec
tm

an
ag

er
s

pr
ac

tic
ed

in
la

rg
e-

sc
al

e
ag

ile
de

ve
lo

pm
en

t?
5.

H
ow

do
ag

ile
m

et
ho

ds
aff

ec
tp

ro
gr

am
an

d
po

rt
fo

lio
m

an
ag

em
en

t?
6.

H
ow

to
en

ab
le

th
e

st
ra

te
gi

c
al

ig
nm

en
ta

nd
m

an
ag

em
en

to
fa

gi
le

pr
oj

ec
tp

or
tf

ol
io

s?

A
gi

le
pr

ac
tic

es
at

sc
al

e
1.

W
ha

ta
re

ch
al

le
ng

es
,b

en
efi

ts
,a

nd
su

cc
es

s
fa

ct
or

s
of

sc
al

in
g

ag
ile

pr
ac

tic
es

in
or

ga
ni

za
tio

ns
?

2.
W

ha
ta

re
re

cu
rr

in
g

co
nc

er
ns

an
d

go
od

pr
ac

tic
es

of
ty

pi
ca

ls
ta

ke
ho

ld
er

s
in

la
rg

e-
sc

al
e

ag
ile

de
ve

lo
pm

en
t?

3.
W

ha
ta

re
ch

al
le

ng
es

,b
en

efi
ts

,a
nd

su
cc

es
s

fa
ct

or
s

of
es

ta
bl

is
hi

ng
co

m
m

un
iti

es
of

pr
ac

tic
e

in
la

rg
e-

sc
al

e
ag

ile
pr

oj
ec

ts
?

4.
H

ow
ca

n
th

e
on

-b
oa

rd
in

g
of

ne
w

ag
ile

te
am

m
em

be
rs

be
fa

ci
lit

at
ed

in
la

rg
e-

sc
al

e
ag

ile
pr

oj
ec

ts
?

5.
W

ha
ti

s
th

e
im

pa
ct

of
ap

pl
yi

ng
ag

ile
pr

ac
tic

es
to

th
e

ov
er

al
lp

er
fo

rm
an

ce
of

th
e

or
ga

ni
za

tio
n?

6.
W

ha
ta

re
ap

pr
op

ri
at

e
m

et
ri

cs
to

m
on

ito
rt

he
pr

og
re

ss
of

ag
ile

te
am

s
an

d
to

su
pp

or
tt

ra
ns

pa
re

nc
y

in
la

rg
e-

sc
al

e
ag

ile
pr

oj
ec

ts
?

7.
H

ow
ca

n
ag

ile
pr

ac
tic

es
be

sc
al

ed
in

or
ga

ni
za

tio
ns

fr
om

th
e

pu
bl

ic
se

ct
or

?
8.

H
ow

ca
n

co
nt

in
uo

us
im

pr
ov

em
en

ta
ti

nt
ra

-a
nd

in
te

r-
te

am
le

ve
lb

e
fa

ci
lit

at
ed

?
9.

W
hi

ch
is

su
es

ar
is

e
w

he
n

ar
e

re
tr

os
pe

ct
iv

es
ar

e
or

ga
ni

ze
d

at
in

te
r-

te
am

le
ve

l?
10

.
H

ow
ca

n
ag

ile
pr

ac
tic

es
be

ad
ap

te
d

to
m

ee
ti

nt
er

-o
rg

an
iz

at
io

na
ln

ee
ds

?

C
om

m
un

ic
at

io
n

an
d

co
or

di
na

tio
n

1.
H

ow
ca

n
co

or
di

na
tio

n
m

ec
ha

ni
sm

s
be

ap
pl

ie
d

eff
ec

tiv
el

y
in

la
rg

e-
sc

al
e

ag
ile

de
ve

lo
pm

en
t?

2.
H

ow
ca

n
eff

ec
tiv

e
kn

ow
le

dg
e

ne
tw

or
ks

be
cr

ea
te

d
in

la
rg

e-
sc

al
e

ag
ile

pr
oj

ec
ts

?
3.

W
hi

ch
to

ol
s

ca
n

be
us

ed
to

su
pp

or
ti

nt
er

-t
ea

m
co

or
di

na
tio

n
in

la
rg

e-
sc

al
e

ag
ile

pr
oj

ec
ts

?
4.

H
ow

ca
n

th
e

nu
m

be
ro

fm
ee

tin
gs

in
la

rg
e-

sc
al

e
ag

ile
pr

oj
ec

ts
be

re
du

ce
d?

5.
H

ow
ca

n
m

ee
tin

gs
in

la
rg

e-
sc

al
e

pr
oj

ec
ts

be
de

si
gn

ed
to

in
cr

ea
se

th
e

eff
ec

tiv
en

es
s

of
co

or
di

na
tio

n?
6.

H
ow

is
in

tr
a-

te
am

co
or

di
na

tio
n

aff
ec

te
d

by
in

cr
ea

se
d

fo
cu

s
on

in
te

r-
te

am
co

or
di

na
tio

n
or

vi
ce

ve
rs

a?
7.

B
as

ed
fr

om
a

m
ul

ti-
te

am
pe

rs
pe

ct
iv

e,
ho

w
is

co
or

di
na

tio
n

in
la

rg
e-

sc
al

e
ag

ile
de

ve
lo

pm
en

tp
er

fo
rm

ed
?

8.
W

ha
ta

re
eff

ec
tiv

e
or

ga
ni

za
tio

na
ls

tr
uc

tu
re

s
an

d
co

lla
bo

ra
tio

n
m

od
el

s
in

la
rg

e
pr

oj
ec

ts
?

9.
W

hi
ch

eff
ec

td
o

cu
ltu

ra
ld

iff
er

en
ce

s
ha

ve
on

in
te

r-
te

am
co

or
di

na
tio

n
la

rg
e-

sc
al

e
ag

ile
pr

oj
ec

ts
?

10
.

H
ow

ca
n

fo
cu

se
d

w
or

k
an

d
kn

ow
le

dg
e

be
ba

la
nc

ed
in

la
rg

e-
sc

al
e

ag
ile

pr
oj

ec
ts

?
11

.
H

ow
do

es
co

-l
oc

at
io

n
of

ag
ile

te
am

s
aff

ec
tk

no
w

le
dg

e
sh

ar
in

g
in

la
rg

e-
sc

al
e

ag
ile

pr
oj

ec
ts

?
12

.
W

hi
ch

ch
al

le
ng

es
ar

e
ca

us
ed

by
in

te
r-

te
am

de
pe

nd
en

ci
es

w
ith

in
la

rg
e-

sc
al

e
ag

ile
pr

oj
ec

ts
?

13
.

H
ow

ca
n

da
ily

st
an

d-
up

m
ee

tin
gs

be
or

ga
ni

ze
d

in
a

w
ay

th
at

th
ey

en
ab

le
in

te
r-

te
am

co
or

di
na

tio
n?

G
lo

ba
la

nd
di

st
ri

bu
te

d
so

ft
w

ar
e

en
gi

ne
er

in
g

1.
W

ha
ta

re
ch

al
le

ng
es

,b
en

efi
ts

,a
nd

su
cc

es
s

fa
ct

or
s

of
ap

pl
yi

ng
ag

ile
pr

ac
tic

es
in

di
st

ri
bu

te
d

pr
oj

ec
ts

?
2.

H
ow

ca
n

vi
rt

ua
la

gi
le

te
am

s
be

su
pp

or
te

d
in

di
st

ri
bu

te
d

so
ft

w
ar

e
de

ve
lo

pm
en

tp
ro

je
ct

s?
3.

H
ow

is
kn

ow
le

dg
e

sh
ar

in
g

pe
rf

or
m

ed
in

di
st

ri
bu

te
d

la
rg

e-
sc

al
e

ag
ile

pr
oj

ec
ts

?
4.

W
hi

ch
hu

m
an

re
la

te
d

fa
ct

or
s

ca
n

po
si

tiv
el

y
aff

ec
tg

lo
ba

lly
di

st
ri

bu
te

d
so

ft
w

ar
e

pr
oj

ec
ts

?
5.

H
ow

is
fr

eq
ue

nt
co

m
m

un
ic

at
io

n
in

di
st

ri
bu

te
d

pr
oj

ec
ts

en
ab

le
d

to
ov

er
co

m
e

th
e

ch
al

le
ng

es
of

di
st

an
ce

?

L
ar

ge
-s

ca
le

ag
ile

tr
an

sf
or

m
at

io
ns

1.
W

ha
ta

re
ch

al
le

ng
es

,b
en

efi
ts

,a
nd

su
cc

es
s

fa
ct

or
s

of
pe

rf
or

m
in

g
la

rg
e-

sc
al

e
ag

ile
tr

an
sf

or
m

at
io

ns
?

2.
H

ow
ca

n
no

n-
ag

ile
un

its
be

in
te

gr
at

ed
w

ith
ag

ile
or

ga
ni

za
tio

na
lu

ni
ts

to
su

pp
or

ta
gi

le
tr

an
sf

or
m

at
io

ns
?

3.
W

ha
ta

re
re

as
on

s
an

d
co

ns
eq

ue
nc

es
of

co
nd

uc
tin

g
la

rg
e-

sc
al

e
ag

ile
tr

an
sf

or
m

at
io

ns
on

th
e

or
ga

ni
za

tio
ns

?
4.

H
ow

ca
n

hi
er

ar
ch

ic
al

an
d

or
ga

ni
za

tio
na

ls
tr

uc
tu

re
s

be
re

du
ce

d
to

fa
ci

lit
at

e
la

rg
e-

sc
al

e
ag

ile
tr

an
sf

or
m

at
io

n?
5.

H
ow

ar
e

ag
ile

st
ru

ct
ur

es
ad

op
te

d
in

bu
si

ne
ss

un
its

th
at

ar
e

no
te

ng
ag

ed
in

IT
de

ve
lo

pm
en

to
rd

el
iv

er
y?

6.
H

ow
ca

n
lo

ca
lo

pt
im

iz
at

io
n

of
ag

ile
te

am
s

be
al

ig
ne

d
w

ith
th

e
en

te
rp

ri
se

st
ra

te
gy

?
7.

W
hi

ch
K

PI
s

ex
is

tt
o

m
ea

su
re

th
e

en
te

rp
ri

se
ag

ili
ty

?
8.

H
ow

ar
e

ag
ile

m
et

ho
ds

ad
op

te
d

at
la

rg
e-

sc
al

e
in

hi
gh

ly
re

gu
la

te
d

en
vi

ro
nm

en
ts

?
9.

H
ow

do
ag

ile
te

am
s

ad
op

tc
om

m
on

va
lu

es
w

ith
in

la
rg

e-
sc

al
e

ag
ile

tr
an

sf
or

m
at

io
ns

?

Sc
al

in
g

ag
ile

fr
am

ew
or

ks
1.

W
hi

ch
sc

al
in

g
ag

ile
fr

am
ew

or
ks

ar
e

us
ed

in
or

ga
ni

za
tio

ns
an

d
w

ha
ta

re
th

ei
rb

en
efi

ts
an

d
ch

al
le

ng
es

?
2.

H
ow

ca
n

sc
al

in
g

ag
ile

fr
am

ew
or

ks
be

se
le

ct
ed

th
at

ar
e

su
ita

bl
e

fo
rs

pe
ci

fic
co

nt
ex

ts
?

3.
H

ow
is

th
e

Sc
al

ed
A

gi
le

Fr
am

ew
or

k
ad

op
te

d
in

or
ga

ni
za

tio
ns

an
d

w
ha

ta
re

re
sp

ec
te

d
ch

al
le

ng
es

an
d

ri
sk

s
w

he
n

ad
op

tin
g

it?
4.

H
ow

an
d

w
he

n
sh

ou
ld

be
sc

al
in

g
ag

ile
fr

am
ew

or
ks

us
ed

in
la

rg
e-

sc
al

e
ag

ile
pr

oj
ec

ts
?

5.
H

ow
ar

e
sc

al
in

g
ag

ile
fr

am
ew

or
ks

ta
ilo

re
d

to
m

ee
tt

he
ne

ed
s

of
th

e
or

ga
ni

za
tio

ns
in

w
hi

ch
th

ey
ar

e
ad

op
te

d?
6.

H
ow

is
th

e
L

ar
ge

-S
ca

le
Sc

ru
m

fr
am

ew
or

k
ad

op
te

d
in

di
ff

er
en

tt
yp

es
of

or
ga

ni
za

tio
ns

?
7.

W
hi

ch
pe

rf
or

m
an

ce
im

pr
ov

em
en

ts
ca

n
be

ob
se

rv
ed

w
he

n
ad

op
tin

g
sc

al
in

g
ag

ile
fr

am
ew

or
ks

?
8.

H
ow

ca
n

ag
ile

re
le

as
e

tr
ai

ns
an

d
va

lu
e

st
re

am
s

be
fo

rm
ed

in
co

m
pl

ex
or

ga
ni

za
tio

ns
?

Ta
xo

no
m

y
1.

H
ow

ca
n

ag
ile

in
th

e
la

rg
e

be
co

nc
ep

tu
al

iz
ed

be
si

de
s

th
e

di
m

en
si

on
of

nu
m

be
ro

ft
ea

m
s?

Te
am

au
to

no
m

y
1.

H
ow

ca
n

te
am

au
to

no
m

y
in

la
rg

e-
sc

al
e

ag
ile

de
ve

lo
pm

en
tb

e
in

cr
ea

se
d?

2.
H

ow
ca

n
in

te
r-

te
am

co
or

di
na

tio
n

an
d

te
am

au
to

no
m

y
be

ba
la

nc
ed

in
la

rg
e-

sc
al

e
ag

ile
pr

oj
ec

ts
?

3.
W

ha
ta

re
eff

ec
tiv

e
in

tr
a-

an
d

in
te

r-
te

am
co

or
di

na
tio

n
m

ec
ha

ni
sm

s
fo

ra
ut

on
om

ou
s

ag
ile

te
am

s?
4.

H
ow

ca
n

au
to

no
m

ou
s

te
am

s
be

de
si

gn
ed

,s
up

po
rt

ed
,a

nd
co

ac
he

d?
5.

W
ha

ta
re

ba
rr

ie
rs

to
te

am
au

to
no

m
y

in
la

rg
e-

sc
al

e
ag

ile
de

ve
lo

pm
en

t?
6.

H
ow

do
go

ve
rn

an
ce

st
ru

ct
ur

es
in

flu
en

ce
te

am
au

to
no

m
y

in
la

rg
e-

sc
al

e
ag

ile
de

ve
lo

pm
en

t?

23160

1 2 4

2 1

1 2 2 4 4 12

1 1 1 1 1 1 5 5

2 1 4 2 1 3

3 2 4 5 8 6

1 1 2 2 2 2 2 3 7 8

1 1 2 1

1 1 3 1 3 1 2 4

1 1 1 1 2 4 5

Team autonomy
7 (4.43%)

Taxonomy
3 (1.90%)

Scaling agile frameworks
25 (15.82%)

Large-scale agile
transformations

16 (10.13%)

Global and distributed
software engineering

13 (8.23%)

Communication
and coordination

28 (17.72%)

Agile practices at scale
30 (18.99%)

Agile portfolio management
5 (3.16%)

Agile planning
16 (10.13%)

Agile architecture
15 (9.49%)

2010
2 (1.27%)

2009
2 (1.27%)

2007
1 (0.63%)

2008
4 (2.53%)

2012
2 (1.27%)

2013
8 (5.06%)

2014
14 (8.86%)

2015
9 (5.70%)

2016
15 (9.49%)

2011
3 (1.90%)

2017
18 (11.39%)

2018
39 (24.68%)

2019
41(25.95%)

R
es

ea
rc

h
st

re
am

Year

Figure 28: Number of studies per research stream over time

12 (14.81%)

11 (13.58%)

6 (7.41%)

10 (12.35%)

13 (16.05%)

5 (6.17%)

9 (11.11%)

8 (9.88%)

1 (1.23%)

6 (7.41%)

0

2

4

6

8

10

12

14
Agile architecture

Agile planning

Agile portfolio management

Agile practices at scale

Communication and coordination

Global and distributed
software engineering

Large-scale agile transformations

Scaling agile frameworks

Taxonomy

Team autonomy

Figure 29: Distribution of research questions in the different research streams

tal design practice of XP asserts that architecture emerges in
daily design [10, 13]. Apart from verbal discussions of design
decisions, Scrum does not emphasize architecture-related prac-
tices as the architecture of a single-project application can al-
ways be re-factored and repackaged for a higher level of reuse
[10]. There is growing interest from academics and practition-
ers who wish to combine the two concepts of agility and archi-
tecture as some degree of architectural planning and governance
becomes increasingly crucial for large-scale agile projects [64].
Due to the existing ambiguity on agile architecture in large-
scale agile development, researchers have formulated 12 open
research questions on this topic. The first two research ques-
tions aim to study the collaboration between architects and
agile teams (cf. [W5], [S81], [S87]) and to analyze the ten-
sion between architects with decision-making power and self-
organizing agile teams (cf. [W5], [S104]). Three studies (cf.
[W2], [W6], [S64]) mention the issue of managing technical
debts as a research question.

4.4.3. Agile planning
Many large agile organizations struggle to implement effi-

cient requirements management processes. Moreover, research
on agile planning practices in large organizations is scarce [47],
[S2]. The Agile planning research stream aims to provide sci-

entific evidence on how large-scale agile projects and organi-
zations perform agile planning activities. We identified four
sub-topics in this stream. While a lot of research has covered
effort estimation in software development projects [52], little
research has been conducted on effort estimation in large-scale
distributed projects [S22]. Thus, the first sub-topic aims to in-
vestigate how large-scale agile projects perform effort estima-
tion (cf. [S37]). Given the importance of release planning to the
success of a development project and the lack of solid empirical
evidence in the research of release planning in large-scale ag-
ile organizations [S68], the second sub-topic aims to describe
how these organizations perform release planning. Similar to
other research streams, the third sub-topic aims to report on
challenges and success factors in adopting agile planning prac-
tices (cf. [S5], [S101], [S134]). While agile methods strongly
emphasize customer involvement, companies struggle to meet
the needs of customers as very large programs encompass many
requirements, stakeholders and developers [34], [S33]. Hence,
the last sub-topic aims to reveal how large-scale agile projects
can actively involve customers (cf. [S33], [S43], [S98]). No-
table results pertaining the Agile planning research stream are:

• Observations showing that incorporating agile practices
into requirements engineering can overcome existing chal-
lenges, e.g., communication gaps and over-scoping, but
can also introduce new challenges, e.g., balancing agility
and stability and ensuring sufficient competencies in cross-
functional teams (see [S5]).
• Observations indicating that the scale of a large-scale agile

project, e.g., the number of sites, the number of stakehold-
ers, the size and complexity of the legacy code, and the
coordination between different types of stakeholders make
estimation and planning very challenging (see [S37]).
• A list of ten benefits, e.g., improved communication, trans-

parency, and dependency management, and nine chal-
lenges, e.g., lack of preparation and prioritization of re-
quirements, unrealistic schedules, and inadequate archi-
tectural planning, when using a release iteration planning
method in large-scale agile projects (see [S68]).

We identified 11 research questions for future studies. Al-

24 161

though release planning is a critical success factor in agile soft-
ware projects [26], there is little research on large-scale agile
release planning [S27]. Researchers call for studying how com-
panies that have adopted agile methods implement release plan-
ning (cf. [W1], [S8], [S27]). They suggest analyzing how com-
panies can use agile ceremonies in the release planning process
and how companies can incorporate high-level planning ele-
ments into daily routines of large-scale agile projects (cf. [S26],
[S51]). As large-scale agile programs often have a large number
of stakeholders and users, and their needs have to be commu-
nicated to a large number of developers, customer engagement
can be a major challenge [S43]. Thus, scientists suggest further
research on customer-developer collaboration in large-scale ag-
ile projects (cf. [W1], [W2]). They also call for research on
identifying appropriate contracting models for companies with
external customers (cf. [W6]) and how companies can facilitate
alignment between customer representatives and agile teams in
large-scale agile projects (cf. [S43]). Researchers should ex-
amine legal constraints in contracts limiting the agility of large-
scale projects (cf. [W1], [W2]).

4.4.4. Agile portfolio management
While the concept of portfolio management is not new [S88]

and is established in the traditional project management litera-
ture, the iterative nature of agile methods poses new challenges
to the current management practice [S112], e.g., the need for
portfolio management to be able to respond quickly to changes
while connecting agile teams to strategy [S15]. The Agile port-
folio management research stream deals with the question of
how companies can adapt their traditional portfolio manage-
ment approaches to agile environments. This stream can be
divided into two sub-topics, namely identifying challenges and
success factors of agile portfolio management approaches (cf.
[S88], [S112], [S127]) and creating patterns for agile portfo-
lio management (cf. [S15]). Stettina and Hörz [S112] provide
an overview of portfolio management practices of 14 large Eu-
ropean companies affected by agile methods and describe the
challenges, implications, and benefits of agile methods on port-
folio management practices. Horlach et al. [S15] propose four
design goals for an effective agile portfolio management and six
design principles for achieving these goals. Interesting findings
of the Agile portfolio management research stream include:

• Observations indicating that implementing a structured
portfolio management process can help reduce time-to-
market, improve project visibility, and coordinate the work
of agile teams (see [S88]).
• Observations suggesting that most challenges associated

with agile portfolio management are process-related and
that an alignment with the customer and involvement of
the business is beneficial (see [S112]).
• Formulation of 16 propositions for the effective manage-

ment of agile projects portfolios, e.g., that portfolio man-
agers need to find the right balance between control and
autonomy in agile projects, and that agile project portfo-
lios require mechanisms for simple, fast, and collective
decision-making (see [S127]).

Within the Agile portfolio management research stream, we
identified six open research questions. As existing best prac-
tices for portfolio management are more suited for stable en-
vironments [S15], two studies (cf. [W6], [S15]) suggest re-
searchers identifying best practices for agile portfolio manage-
ment. Hobbs and Petit [S111] suggest further research on the
impact of adopting large-scale agile methods on portfolio man-
agement. Rautiainen et al. [S88] recommend exploring how
companies can apply traditional portfolio management tech-
niques in agile environments.

4.4.5. Agile practices at scale
Adopting and scaling agile practices outside of their ideal

context requires rethinking the original underlying assumptions
of agile practices [S73]. The Agile practices at scale research
stream aims to explore how companies tailor genuine agile
practices to fit large-scale projects. We identified eight sub-
topics in this research stream. The first sub-topic mainly an-
alyzes how companies tailor Scrum-related roles and artifacts
in large projects (cf. [S61], [S80], [S90]). The next four sub-
topics describe the application of different agile and lean prac-
tices in large agile projects, namely Kanban (cf. [S131]), Retro-
spectives (cf. [S62]), Community of Practices (cf. [S3], [S84],
[S118]), and Rapid Application Development (cf. [S96]). The
sixth sub-topic, like other research streams, deals with identify-
ing challenges and success factors for applying agile practices
in large-scale projects (cf. [S47], [S78], [S135]). The seventh
sub-topic mainly generalizes and conceptualizes observations
from case studies in the form of models related to applying ag-
ile practices in large-scale projects (cf. [S32], [S41], [S133]).
Inspired by existing pattern languages on agile software devel-
opment, the eighth sub-topic aims to provide best practices for
large-scale agile endeavors (cf. [S35], [S46]). Notable findings
of the Agile practices at scale research stream are:

• Observations showing that adopting agile practices in
large-scale projects brings several benefits, e.g., increased
control and transparency over the project and better learn-
ing and understanding through direct communication, but
also raises new issues, e.g., administrative overhead and
coordination, and limited focus on architecture (see [S1]).
• Observations pointing that organizational culture, previous

agile experience, and management support are key suc-
cess factors in scaling agile practices and that resistance to
change, an overly aggressive time-frame for adoption, and
integration with existing non-agile business processes are
critical challenges in scaling agile methods (see [S78]).
• A study showing that medium and large software projects

using agile methods perform better on average than
projects using non-agile methods and that agile methods
are more likely to succeed compared to traditional meth-
ods as project size increases (see [S119]).

The use of agile methods on large-scale projects brings un-
precedented challenges [S43]. We identified 10 related research
questions, of which the unveiling the challenges, benefits, and
success factors of scaling agile practices in organizations was
the most frequently stated (cf. [S2], [S78], [S125]). Although

25162

several pattern languages documenting best practices for agile
projects have been published in agile software development re-
search (cf. [15, 16, 27]), the body of knowledge about best prac-
tices in large-scale agile development is still emerging. Several
studies suggest identifying best practices for large-scale agile
endeavors (cf. [S1], [S35], [S78]). Given the importance of
communities of practices for knowledge sharing, inter-team co-
ordination, and technical work [63], [S3], several researchers
recommend future studies to investigate the challenges, bene-
fits, and success factors of establishing communities of prac-
tices in large-scale agile projects (cf. [W3], [W6], [S3]). Since
onboarding newcomers in large-scale agile projects might be
challenging [W3], three studies propose as future work to in-
vestigate how companies can facilitate the onboarding process
of new agile team members in these projects (cf. [W3], [W6],
[W9]). Several studies suggest identifying metrics to quantify
the impact of applying agile practices on overall organizational
performance and to monitor the progress of agile teams in large-
scale agile projects (cf. [W2], [S26], [S63]).

4.4.6. Communication and coordination
Coordinating work is critical when managing large projects

with multiple teams [S97]. This circumstance is also true for
large-scale agile projects, as work is performed by many devel-
opers and development teams simultaneously, and the frequent
and iterative delivery of results requires work and knowledge
coordination at different levels [S43, S54]. Achieving effec-
tive coordination in large-scale agile projects is difficult due to
the complexity of these projects [S54]. The Communication
and coordination research stream tackles the issue of how agile
teams can effectively coordinate and communicate with each
other. The Communication and coordination stream covers
multiple topic levels consisting of two sub-topics, namely inter-
team coordination and knowledge sharing, and another seven
subordinate sub-topics. Since coordination between teams is
critical in managing large-scale endeavors [S31], the inter-team
coordination sub-topic mainly aims to identify and describe dif-
ferent coordination mechanisms and coordination modes for
aligning agile teams (cf. [S28], [S31] [S54]). Within the inter-
team coordination sub-topic, we identified five additional sub-
topics that aim (i) to advance the conceptual understanding of
inter-team coordination through the lens of multi-team systems
(cf. [S30], [S52], [S93]), (ii) describe different mechanisms and
modes for coordinating agile teams (cf. [S31], [S85], [S97]),
(iii) reveal factors that influence the performance of agile teams
(cf. [S48], [S58]), (iv) identify challenges and success factors
related to the coordination of agile teams (cf. [S29], [S117]),
and (v) describe the adoption of agile methods beyond organi-
zational boundaries (cf. [S130]). Since resource availability in
a team’s knowledge network and the effective knowledge coor-
dination between agile teams become paramount in large-scale
agile projects [S83], the knowledge sharing sub-topic mainly
aims to describe how agile teams can share their knowledge and
expertise with other teams. We identified two sub-topics in the
knowledge sharing sub-topic that aim to answer the questions
on how companies tailor agile practices to enable scaling across
different knowledge boundaries (cf. [S76]) and how compa-

nies can build effective knowledge networks in large-scale ag-
ile projects (cf. [S16], [S67], [S83]). Notable results of the
Communication and coordination research stream are:

• Observations suggesting that the combination of tradi-
tional planning at an inter-team level and agile develop-
ment at a team level leads to ineffective coordination in
large-scale agile development, as a lack of dependency
awareness is hampered by misaligned planning activities
at the team and inter-team levels (see [S29]).
• Observations indicating that group mode coordination is

central for achieving effective inter-team coordination in
large-scale agile projects, using scheduled and unsched-
uled meetings, e.g., product owner meetings and sponta-
neous discussions in the open work area (see [S83]).
• Observations pointing that networking is essential in solv-

ing complex tasks in large-scale agile projects and that
several mechanisms can support the creation of knowledge
networks, e.g., introducing formal technical experts and
facilitating communities of practice (see [S97]).

Due to the high number of articles in the Communication and
coordination research stream, we identified 13 research ques-
tions that were most frequently for a given stream. Because the
coordination of many agile teams is a key challenge [S28], sev-
eral researchers emphasize further research to investigate how
companies can design and apply coordination mechanisms for
increasing the effectiveness of coordination (cf. [S18], [S28],
[S70]). They also call for research to analyze how companies
can reduce the number of meetings in large-scale agile projects
(cf. [W5], [S70]) and identify tools that companies can use for
inter-team coordination (cf. [W6], [W8], [S70]).

4.4.7. Global and distributed software engineering
Given the benefits to both customer and vendor companies

in terms of low cost, early product delivery, and high-quality
products, companies are increasingly deploying virtual teams
that operating across geographical boundaries to develop soft-
ware [72, 75]. The competitive advantages and business prof-
its of agile methods motivate companies to adopt agile meth-
ods in large, globally distributed projects [S89]. Agile methods
are more difficult to scale in distributed projects due to addi-
tional challenges, e.g., communication and coordination issues,
cultural differences, and temporal issues [S22], [S103]. The
Global and distributed software engineering research stream
deals with how companies can use agile methods in large, glob-
ally distributed projects. Studies mainly focus on two sub-
topics, namely identifying challenges and success factors in
adopting agile methods in large, globally distributed projects
(cf. [S72], [S89], [S103]) and the tailoring of agile methods
to meet the needs of these projects (cf. [S18], [S61], [S80]).
As an example for the first sub-topic, Shameem et al. [S89]
describe critical factors that positively impact the adoption of
agile methods in large, globally distributed projects based on a
systematic literature review. Related to the second sub-topic,
Bass [S14] uses 46 interviews with eight companies to inves-
tigate how companies adapt the role of the product owner to
the needs of large, geographically distributed software projects.

26 163

Noteworthy findings related to the Global and distributed soft-
ware engineering research stream include:

• A list of 11 challenges identified in large, globally dis-
tributed agile projects, of which 6 were evaluated as criti-
cal: lack of requirements analysis, customer involvement,
communication, roles and responsibilities, management
commitments, and knowledge sharing (see [S10]).
• A classification model for large, globally distributed ag-

ile projects contrasting solution focused development and
execution focused development (see [S61]).
• Observations indicating that adopting agile practices based

on Scrum in a large, globally distributed agile project
helps mitigate the biggest problem of large, globally dis-
tributed projects, namely communication, by creating fre-
quent possibilities to communicate across distributed sites,
e.g., through Daily Scrum meetings (see [S103]).

We identified five open research questions in the Global and
distributed software engineering stream. As many companies
scale agile methods to distributed environments due to fast de-
velopment rates and low development costs [S72], identifying
challenges, benefits, and success factors when scaling agile to
distributed organizations was the most frequently cited research
question (cf. [W1], [S72], [S103]).

4.4.8. Large-scale agile transformations
Companies are striving to become agile to respond to dy-

namic environments and sustain their survival. As a result,
many companies are extensively introducing agile methods
leading to large-scale agile transformations [S4], [S21], [S22].
These transformations entail new managerial challenges, e.g.,
lack of top management engagement [S21], skepticism towards
the new way of working [S22] or establishing an enterprise-
wide agile culture and mindset [S46]. The Large-scale ag-
ile transformations research stream aims to shed light on how
companies undergo these transformations to meet the impera-
tives of agile companies. We identified three sub-topics in this
research stream. Like other streams, the first sub-topic deals
with identifying a set of observed success factors and chal-
lenges when companies undertake large-scale agile transforma-
tions (cf. [S2], [S4], [S100]. As these transformations represent
large episodic change processes that have a large impact on the
employees [S21] and changing the peoples’ mindset is more
difficult than teaching new practices [S46], the second sub-
topic discusses various ways in which companies can establish
an agile mindset and define common values among employees
(cf. [S46], [S86]). The third sub-topic takes a more theoretical
stance and aims to theorize the process behind large-scale agile
transformations (cf. [S113]). Fuchs and Hess [S21] provide
an example for the first sub-topic and captures the interplay
of challenges, coping, and scaling actions in the execution of
large-scale agile transformations through socio-technical sys-
tems theory. Relating to the second sub-topic, Paasivaara et al.
[S86] report how Ericsson established value workshops to align
different sites and teams as part of its large-scale agile transfor-
mation. Carroll and Conboy [S113] provide an example for the
third sub-topic, applying normalization process theory to exam-

ine the normalization of these transformations. Notable results
of the Large-scale agile transformations research stream are:

• A survey indicating that while a large-scale agile transfor-
mation poses new challenges, e.g., agile deployment and
adaptation of agile methods to fit the organization and re-
quirements management and planning in a flexible and it-
erative manner, it also brings several benefits, e.g., higher
satisfaction, a feeling of effectiveness, and increased trans-
parency and autonomy, which is why most respondents do
not want to return to the old way of working (see [S2]).
• A list of 35 challenges, e.g., agile difficult to implement

and integrating non-development functions, and 29 suc-
cess factors, e.g., management support and choosing and
customizing the agile model, were reported for large-scale
agile transformations (see [S22]).
• Observations stating introducing agile practices in an orga-

nization that has been working in a plan-driven way leads
to several improvements, e.g., increased release frequency
and better reflection of the customers’ needs, but also
raises several challenges, e.g., support for coordinating a
high number of teams and integration of release projects
in the overall development process (see [S92]).

As the Large-scale agile transformations research stream has
flourished in recent years, especially in the last two years, sev-
eral studies formulated important research questions as avenues
for future research. The most frequently asked research ques-
tion aims to identify challenges, benefits, and success factors in
conducting large-scale agile transformations (cf. [S24], [S45],
[S100]). As “agile breaks everything” and adopting agile prac-
tices may have far-reaching implications for companies [62],
[S4], several researchers call for examining the reasons for per-
forming large-scale agile transformations and their impact on
companies (cf. [S5], [S45], [S65]). Since companies often en-
counter challenges when agile units need to collaborate with
non-agile departments [62], some studies propose to investigate
how companies have overcome these challenges from a longitu-
dinal perspective (cf. [W7], [S4], [S45]). From an integrational
perspective, three studies suggest further research on how com-
panies can adopt agile structures in business units that are not
engaged in software development or delivery (cf. [W4], [W6],
[S45]). Hierarchical control and bureaucracy mechanisms can
act as barriers for the successful performance of large-scale
agile transformations [S122], researchers should explore how
companies can dissolve their hierarchical structures to facilitate
these transformations (cf. [W4], [W6], [W7]).

4.4.9. Scaling agile frameworks
Some custodians of existing agile methods and practitioners

have created several scaling frameworks that claim to provide
off-the-shelf solutions for solving issues related to the large-
scale adoption of agile methods [101], [S43], [S113]. As there
is a increasing interest in adopting scaling frameworks from
a practical perspective [31], there is also a growing academic
interest in studying the adoption of these frameworks within
the Scaling agile frameworks research stream. We identified
eight sub-topics in this stream. As empirical evidence on the

27164

adoption of scaling frameworks is still very much in its infancy
[S49], the first sub-topic aims to highlight challenges and rec-
ommendations for companies seeking to adopt scaling frame-
works (cf. [S49]). The other six sub-topics mainly analyze
how popular scaling frameworks are adopted (cf. [S12], [S36],
[S40]). The last sub-topic aims to provide a comparison of these
frameworks (cf. [S9], [S17], [S77]). Conboy and Carroll [S49]
provide an example for the first sub-topic and unveils nine chal-
lenges associated with implementing scaling frameworks and a
set of recommendations to address these challenges adequately.
Relating to the six sub-topics analyzing the adoption of popular
frameworks, Petit et al. [S12] present a case study of how a
large company adapted Spotify practices to promote the effec-
tiveness of team autonomy in a mission-critical project. Lal
and Clear [S40] provide another example, presenting a case
study on how a global software vendor transitioned to an ag-
ile company by adopting DAD. Related to the last sub-topic,
Alqudah and Razali [S9] compare six scaling frameworks, e.g.,
DAD, LeSS, and SAFe, based on various criteria, e.g., team
size and available training. Noteworthy results of the Scaling
agile frameworks research stream are:

• A maturity model consisting of levels, principles, and
practices for defining a roadmap for SAFe adoption and
assessing the level of adoption (see [S19]).
• A list of nine challenges, e.g., comparing scaling frame-

works and top-down vs. bottom-up implementation, and
a set of recommendations to overcome these challenges,
e.g., using a small number of metrics to compare frame-
works and determining whether a framework promotes a
top-down or bottom-up implementation approach, when
implementing scaling frameworks (see [S49]).
• A survey indicating that the SAFe adoption leads to several

benefits, e.g., improved transparency, cooperation, and ca-
dence, but also entails several obstacles, e.g., old mindset
and culture, SAFe has not correctly fitted to the organiza-
tion, and missing fluency when using SAFe (see [S129]).

The selected studies within the Scaling agile frameworks re-
search stream named eight research questions for further inves-
tigation by researchers. The most frequently stated research
question on scaling agile frameworks deals with the observa-
tion of adopting specific scaling frameworks in companies and
the associated benefits and challenges (cf. [W6], [S40], [S60]).
As scaling frameworks are often not selected systematically but
merely based on the popularity of the framework or recommen-
dation of consultants, future work should identify contextual
factors and comparison criteria that companies can use to se-
lect scaling frameworks systematically (cf. [W3], [S79], [S92]).
Since many companies also adapt scaling frameworks to their
organizations, two studies (cf. [S22], [S60]) call for future re-
search on how companies tailor scaling frameworks to meet
their needs. There is also a call for research on the two most
widely adopted scaling frameworks, namely SAFe and LeSS,
to study their adoption in companies (cf. [S19], [S55], [S124]).

4.4.10. Taxonomy
The Taxonomy research stream deals with providing more

conceptual clarity related to large-scale agile development, as
well as the scale and implications for scalability of agile meth-
ods. Power [S7] explores when scaling approaches are appro-
priate in large organizations and discusses three contexts for
agility at scale. Rolland et al. [S73] take a more theoretical
stance to clarify the meaning of large-scale agile development
by examining its underlying assumptions in existing studies.
Dingsøyr et al. [S105] provide a taxonomy for characterizing
large-scale agile projects based on the number of agile teams.
Noteworthy results of the Taxonomy research stream are:

• Three contexts for agility at scale: (i) being agile in a team
inside a large organization, (ii) using agile approaches in
a large development effort inside a large organization, (iii)
and the large organization being itself agile (see [S7]).
• A comparison of 10 prevailing assumptions in existing

studies with a set of alternative assumptions better suited
to the characteristics of large-scale agile projects, e.g., col-
lective code ownership vs. transferring, translating, and
transforming knowledge across boundaries (see [S73]).
• A taxonomy of scale, consisting of three categories: (i)

small-scale (1 team), (ii) large-scale (2–9 teams), and very
large-scale (ě10 teams) (see [S105]).

We identified one research question in the Taxonomy stream.
Two articles (cf. [S73], [S105]) suggest further research verify-
ing the current taxonomy of scaling, which is currently merely
based on the number of teams involved in large-scale agile
projects [S105], and identifying other adequate scaling dimen-
sions for classifying the scale of agile development projects.

4.4.11. Team autonomy
In large-scale agile development, the effective functioning of

team autonomy is challenged as a certain amount of autonomy
has to be sacrified to reach consensus on common standards and
align work with other teams [S109], [S116]. The Team auton-
omy research stream is primarily concerned with how complex
organizations affect team autonomy and how they can strike a
balance between self-organizing teams focused on their own
goals and those of the broader organization. We identified two
sub-topics in Team autonomy stream related to identifying chal-
lenges and success factors in establishing team autonomy in
large-scale agile endeavors (cf. [S23], [S109], [S116]) and in
the context of the interplay between governing and autonomiz-
ing agile teams (cf. [S16], [S82], [S120]). For instance, Moe
et al. [S23] analyze large-scale projects and presents barriers
that reduce the extent of team autonomy. Concerning the sec-
ond sub-topic, Šāblis and Šmite [S16] investigate the interplay
between governance and team autonomy by identifying gover-
nance roles that support teams. Interesting findings related to
the Team autonomy research stream include:

• Observations indicating that there are two barriers to team
autonomy in large-scale agile development: overarching
goals that are often set by management without team in-
volvement and organizational dependencies that result in
teams having to manage additional tasks (see [S23]).

28 165

• Observations suggesting that reliance on resources outside
of the large-scale agile program, e.g., shared IT resources,
creates external dependencies and reduces the autonomy
of agile teams (see [S109]).
• A model for assessing the autonomy of agile teams in

large-scale agile development (see [S120]).

We identified six research questions in the Team autonomy
research stream. The most frequently cited research questions
relate to how to improve team autonomy in large-scale agile
endeavors (cf. [W4], [S16], [S29]) and how to balance coordi-
nation between agile teams and their autonomy in large-scale
agile projects (cf. [W8], [S16], [S43]), as the need for coordi-
nation and control can restrict a team’s autonomy [S16].

5. Discussion

In this section, we discuss our general observations on the
start-of-the-art on large-scale agile development.
Reflection on the research of the past 13 years. Since the
first publication in 2007, researchers worldwide have lavished
attention to study the application of agile methods in large
projects and organizations. While the number of published
studies started to accelerate in 2013, the academic interest has
been steadily growing. The maturation of the research field can
be seen both in the increasing number of published studies, as
well as in increasing number of articles in top journals. While
the 52 included papers from the most prominent systematic lit-
erature review on large-scale agile development by Dikert et al.
[S22] comprised mostly experience reports indicating a lack of
sound academic research, the 136 included studies in this study
covered only research papers excluding personal opinion and
experience papers from practitioners and scientists signaling a
tremendous shift of the scientific foundation of large-scale agile
development. We believe that this academic traction is sparked
by the omnipresent industrial relevance of the topic demand-
ing scientific assistance by researchers (cf. [37], [S22]). While
almost 60% of the papers represent case studies mainly being
exploratory and less theoretical, they do not pay enough atten-
tion to establish theoretical underpinnings as similar to studies
on agile software development [34]. Analogous to agile soft-
ware development and agreeing with Dingsøyr et al. [34], we
believe that the area of large-scale agile development can ma-
ture as a research discipline only if adequate efforts are made to
provide a solid theoretical scaffold.
Current structure of the research landscape. Research on
large-scale agile development has been conducted mainly em-
pirically and qualitatively to describe and explain how com-
panies adopt large-scale agile methods. Consequently, extant
research has been dominated by evaluation research assessing
the large-scale adoption of agile methods and deriving a set of
lessons learned instead of creating solution artifacts in the form
of models, frameworks/methods, and tools. Like Batra [12],
we can further observe an apparent lack of quantitative studies
using surveys as data collection instruments to provide quan-
titative investigations and assessments, e.g., quantitatively as-
sessing the strengths and weaknesses of scaling frameworks or

performance of agile teams in large agile multi-team settings.
Outlook for future research undertakings. We encountered
some intriguing observations, which is why we believe that
large-scale agile development will continue to be a relevant
topic in practice as well as in academia. An analysis of the past
State of Agile surveys conducted by Digital.ai (cf. [29–31])
reveals an ever-increasing adoption of agile methods in orga-
nizations, including the adoption of scaling agile frameworks.
According to Digital.ai [31], this trend will likely continue and
also intensify, especially concerning the more significant ex-
pansion and scaling of agile methods beyond software devel-
opment, namely across the whole company. Parallel to this de-
velopment, the number of scaling agile frameworks proposed
by software practitioners is still flourishing and likely to further
grow as the creators of these frameworks feel committed to de-
velop their frameworks further [101]. The number of published
studies in the last years (see Figure 4.2) and the increasing inter-
est of various publication venues (see Appendix A) from differ-
ent research domains (see Figure 17) indicate that the growing
industrial interest in large-scale agile development is backed by
a growing scientific interest across diverse research communi-
ties. Although researchers made considerable efforts to close
research gaps in various research streams of large-scale agile
development, a high number of open research questions (see
Table 12) are still waiting to be addressed by researchers.
Contemplation of the current phenomenon. Although the
early advice from the agile community was that scaling agile
methods to larger projects and organizations is “probably the
last thing anyone would want to do” [87], and the advice from
several fields is to reduce the size of software projects as much
as possible [9], why are companies still trying to adopt agile
methods outside of their sweet spot in larger projects and or-
ganizations? One plausible explanation is that solutions often
demand too much work for a single team, or that new solutions
are so complex or so dependent on existing systems that it is
considered inefficient or impractical to split the development ef-
forts into small projects, making agile methods a way to reduce
risk at scale while also facilitating innovation [37]. Despite the
challenges of large-scale adoption of agile methods, we observe
that the idea permeates almost every continent and industry sec-
tor. We revealed more than 150 companies distributed over the
globe across various sectors make the use of agile methods in
larger projects and organizations (see Section 4.1.1). Our find-
ings and the survey results of Digital.ai [31] indicate that, re-
gardless of their organizational size, companies are adopting
agile methods at scale. However, our results show that most of
the adopting companies have more than 5,000 employees, ac-
counting for almost 70% of all identified case companies with
stated size, indicating that this phenomenon is probably more
relevant for large companies than for small companies.
New emerging research themes. Early research on large-scale
agile development started with contributions related to the Ag-
ile practices at scale, Global and distributed software engi-
neering, and Scaling agile frameworks research streams (see
Section 4.4.1). Themes recently receiving more focus include
team autonomy and large-scale agile transformations. For in-
stance, as large-scale agile transformations can be characterized

29166

as episodic organizational change processes [S21], there is a
need to conduct longitudinal case studies that accompany these
transformations to investigate their long-lasting effects.

6. Threats to validity

Although we employed a rigorous study design and paid par-
ticular attention to the selection and analysis of published stud-
ies, our study has some limitations. The results of this sys-
tematic mapping study may be affected by various threats to
validity, which are (i) study search incompleteness, (ii) study
selection bias, (iii) study distribution imbalance, and (iv) data
extraction inaccuracy, which we will discuss in the following.

6.1. Incompleteness of study search

There may be some relevant publications that we did not re-
trieve by our search, which may affect the completeness of our
study. To mitigate this risk, we searched the most common elec-
tronic databases in which a large number of journals as well as
conference and workshop proceedings in the fields of software
engineering and information systems are indexed. We also per-
formed a preliminary search before the main search to improve
the correctness and completeness of the search results. These
measures reduced the probability of missing relevant studies.

6.2. Bias on study selection

The selection of relevant studies largely depends on the per-
sonal knowledge of the researchers, which may lead to a bias
in the results of the study selection. To mitigate this bias, we
created a set of selection criteria (see Section 3.2.2). As the
researchers of this study may have different understandings of
the selection criteria, we conducted a preliminary search be-
fore the main search to ensure that the researchers had a consis-
tent understanding of the selection criteria. Two reviewers also
performed the study selection process in parallel and indepen-
dently and then discussed and resolved any conflicts between
their results to mitigate personal bias in study selection. A po-
tential bias may arise from excluding the grey literature, e.g.,
white papers, technical reports, or editorials. This potential bias
is inherent to our study design and did not significantly impact
our study. We wanted to focus exclusively on state of the art
presented in high-quality scientific papers that have undergone
rigorous peer-reviewed publication processes.

6.3. Imbalance of study distribution

Around one-third of the selected publications come from the
proceedings of the International Conference on Agile Software
Development and International Workshop on Large-Scale Ag-
ile Development (see Appendix A). These studies may, to some
extent, carry the bias of conference and workshop organizers
and committee members. However, we did not address this
type of bias as there is no effective way to determine whether
such bias exists. Hence, we were not able to mitigate this kind
of bias. Moreover, conferences and workshops, by definition,
allow the publication of immature results that may distort the
level of evidence of the selected studies.

6.4. Inaccuracy of data extraction

Data extraction bias may negatively affect the accuracy of
data extraction results, affecting the classification results of
the selected publications. Two researchers specified a list of
extracted data items to mitigate this risk and reduce possible
misunderstandings on the data items to be extracted. Two re-
searchers also performed a pilot data extraction process before
the formal data extraction. Further, two researchers conducted
the main data extraction process in parallel and independently.
Two researchers discussed and resolved conflicts arising from
the data extraction results in several workshop sessions.

7. Conclusions and future work

Large-scale agile development is on the verge of becoming a
mature research area, as many publications on large-scale agile
development have appeared in scientific conferences and jour-
nals, leading to a growing body of knowledge. However, un-
til now, no systematic mapping study has been published that
systematically identifies, analyzes, and classifies the state of re-
search. This mapping study aims to fill this gap and provide
an overview of the research activities in large-scale agile devel-
opment. Based on this objective, we selected 136 studies as a
result of the systematic mapping process.

Our findings show that the adoption of agile methods has in-
deed inspired large companies around the world and in vari-
ous sectors to apply these methods to larger projects and orga-
nizations. Our results suggest that this industrial interest has
sparked significant academic interest in the topic of large-scale
agile development, as a total of 136 articles were published in
46 publication venues by more than 200 authors worldwide be-
tween 2007 and 2019. In addition, our results show that re-
search on large-scale agile development is mainly empirical and
observational rather than solution-oriented, as most studies con-
tribute in the form of lessons learned through case studies. Our
results reveal that 10 research streams have emerged over time
that focus on different aspects of large-scale agile development,
e.g., agile architecture, scaling agile frameworks or team au-
tonomy. Our findings show that the identified research streams
raise many open research questions.

We hope that this mapping study will serve as a starting point
for new research efforts that address previously neglected or
emerging research topics and assist practitioners in the field
of large-scale agile development. Based on our findings, we
suggest that future research endeavors should pay greater at-
tention to building a solid theoretical scaffold for the observed
phenomena in large-scale agile development and should create
rigorously developed frameworks, methods, and tools to meet
practitioners’ needs. Moreover, we recommend researchers to
provide more conceptual clarity on the meaning of large-scale
agile development, which has not received much attention but
plays a crucial role in advancing the research field. We en-
courage researchers to use the compiled research questions to
address the still open research gaps.

30 167

Appendix A. Distribution of selected studies by publication channels

Publication source Type Domain No. %
1 International Conference on Agile Software Development Conference Software engineering 21 15.44
2 International Workshop on Large-Scale Agile Development Workshop Software engineering 20 14.71
3 International Conference on Global Software Engineering Conference Software engineering 9 6.62
4 IEEE Software Journal Software engineering 6 4.41
5 Information and Software Technology Journal Software engineering 6 4.41
6 International Workshop on Autonomous Teams Workshop Software engineering 6 4.41
7 Empirical Software Engineering Journal Software engineering 5 3.68
8 Hawaii International Conference on System Sciences Conference Information systems 5 3.68
9 Americas Conference on Information Systems Conference Information systems 4 2.94
10 Journal of Systems and Software Journal Software engineering 4 2.94
11 Euromicro Conference on Software Engineering and Advanced Applications Conference Software engineering 3 2.21
12 International Conference on Enterprise Distributed Object Computing Conference Enterprise computing 3 2.21
13 International Symposium on Empirical Software Engineering and Measurement Conference Software engineering 3 2.21
14 Journal of Software: Evolution and Process Journal Software engineering 3 2.21
15 Project Management Journal Journal Project management 3 2.21
16 European Conference on Information Systems Conference Information systems 2 1.47
17 International Conference on Information Systems Conference Information systems 2 1.47
18 International Conference on Product-Focused Software Process Improvement Conference Software engineering 2 1.47
19 Software Process: Improvement and Practice Journal Software engineering 2 1.47
20 Bled eConference Conference Multidisciplinary 1 0.74
21 CIRP Design Conference Conference Multidisciplinary 1 0.74
22 European Conference on Pattern Languages of Programs Conference Multidisciplinary 1 0.74
23 Human Computer Interaction Journal Human computer interaction 1 0.74
24 IEEE Access Journal Multidisciplinary 1 0.74
25 IEEE Transactions on Software engineering Journal Software engineering 1 0.74
26 Information Systems Journal Journal Information systems 1 0.74
27 International Conference on Advanced Information Systems Engineering Conference Information systems 1 0.74
28 International Conference on Computing Communication and Automation Conference Multidisciplinary 1 0.74
29 International Conference on Information Systems Development Conference Information systems 1 0.74
30 International Conference on Pattern Languages of Programs Conference Multidisciplinary 1 0.74
31 International Conference on Perspectives in Business Informatics Research Conference Information systems 1 0.74
32 International Conference on Strategic Innovative Marketing Conference Marketing 1 0.74
33 International Journal of Information Systems and Project Management Journal Information systems 1 0.74
34 International Journal of Advanced Computer Science and Applications Journal Multidisciplinary 1 0.74
35 International Journal of Project Management Journal Project management 1 0.74
36 International Journal on Advanced Science, Engineering and Information Technology Journal Multidisciplinary 1 0.74
37 International Requirements Engineering Conference Conference Software engineering 1 0.74
38 International Research Workshop on IT Project Management Workshop IT project management 1 0.74
39 International Systems and Software Product Line Conference Conference Software engineering 1 0.74
40 International Working Conference on Requirements Engineering Conference Software engineering 1 0.74
41 International Workshop on Evidential Assessment of Software Technologies Workshop Software engineering 1 0.74
42 International Workshop on Requirements Engineering in Agile Development Workshop Software engineering 1 0.74
43 Malaysian Software Engineering Conference Conference Software engineering 1 0.74
44 Procedia Computer Science Journal Multidisciplinary 1 0.74
45 Software Quality Professional Journal Software engineering 1 0.74
46 Workshop on Agile Requirements Engineering Workshop Software engineering 1 0.74

Total 136 100

31168

Appendix B. Systematic map overview

Study Publication type Research type Research approach Contribution type Research data type

[S1] Journal Evaluation research Case study Lessons learned Primary study
[S2] Journal Evaluation research Survey Lessons learned Primary study
[S3] Journal Evaluation research Case study Lessons learned Primary study
[S4] Conference Evaluation research Case study Lessons learned Primary study
[S5] Workshop Evaluation research Case study Lessons learned Primary study
[S6] Journal Solution proposal Design & creation Framework/Method Primary study
[S7] Workshop Philosophical papers Case study Model Primary study
[S8] Conference Evaluation research Case study Lessons learned Primary study
[S9] Journal Evaluation research (Systematic) literature review Lessons learned Secondary study
[S10] Conference Evaluation research (Systematic) literature review Lessons learned Secondary study
[S11] Conference Philosophical papers Case study Model Primary study
[S12] Workshop Evaluation research Case study Lessons learned Primary study
[S13] Conference Evaluation research Case study Lessons learned Primary study
[S14] Conference Evaluation research Grounded theory Lessons learned Primary study
[S15] Conference Solution proposal Design & creation Guideline Primary study
[S16] Workshop Evaluation research Mixed methods Lessons learned Primary study
[S17] Workshop Evaluation research (Systematic) literature review Lessons learned Primary study
[S18] Journal Philosophical papers Grounded theory Theory Primary study
[S19] Journal Solution proposal Design & creation Framework/Method Primary study
[S20] Workshop Evaluation research (Systematic) literature review Lessons learned Secondary study
[S21] Conference Philosophical papers Case study Model Primary study
[S22] Journal Evaluation research (Systematic) literature review Lessons learned Secondary study
[S23] Conference Evaluation research Case study Lessons learned Primary study
[S24] Journal Solution proposal Not stated Framework/Method Primary study
[S25] Conference Evaluation research Case study Lessons learned Primary study
[S26] Conference Evaluation research Case study Lessons learned Primary study
[S27] Conference Evaluation research Case study Lessons learned Primary study
[S28] Journal Evaluation research Case study Lessons learned Primary study
[S29] Journal Evaluation research Grounded theory Guideline Primary study
[S30] Conference Philosophical papers (Systematic) literature review Lessons learned Primary study
[S31] Journal Evaluation research Case study Lessons learned Primary study
[S32] Conference Solution proposal Case study Model Primary study
[S33] Conference Evaluation research Case study Lessons learned Primary study
[S34] Conference Evaluation research Case study Lessons learned Primary study
[S35] Conference Solution proposal Design & creation Framework/Method Primary study
[S36] Conference Evaluation research Case study Lessons learned Primary study
[S37] Journal Evaluation research Case study Lessons learned Primary study
[S38] Journal Evaluation research Case study Lessons learned Primary study
[S39] Workshop Evaluation research Case study Lessons learned Primary study
[S40] Conference Evaluation research Case study Lessons learned Primary study
[S41] Conference Solution proposal Mixed methods Framework/Method Primary study
[S42] Conference Evaluation research Case study Lessons learned Primary study
[S43] Journal Evaluation research Case study Lessons learned Primary study
[S44] Journal Philosophical papers Grounded theory Model Primary study
[S45] Conference Evaluation research Case study Lessons learned Primary study
[S46] Conference Solution proposal Design & creation Framework/Method Primary study
[S47] Conference Evaluation research (Systematic) literature review Lessons learned Secondary study
[S48] Conference Evaluation research Survey Lessons learned Primary study
[S49] Journal Evaluation research Not stated Guideline Primary study
[S50] Conference Evaluation research Case study Lessons learned Primary study
[S51] Workshop Evaluation research Case study Lessons learned Primary study
[S52] Conference Evaluation research Case study Lessons learned Primary study
[S53] Conference Evaluation research Case study Lessons learned Primary study
[S54] Workshop Evaluation research Case study Lessons learned Primary study
[S55] Conference Evaluation research Case study Lessons learned Primary study
[S56] Conference Evaluation research Case study Lessons learned Primary study
[S57] Conference Evaluation research (Systematic) literature review Lessons learned Secondary study
[S58] Conference Evaluation research Survey Lessons learned Primary study
[S59] Workshop Evaluation research Not stated Lessons learned Primary study
[S60] Journal Evaluation research Case study Lessons learned Primary study
[S61] Workshop Solution proposal Grounded Theory Model Primary study
[S62] Conference Evaluation research Case study Lessons learned Primary study
[S63] Journal Evaluation research Case study Lessons learned Primary study
[S64] Workshop Evaluation research Case study Lessons learned Primary study
[S65] Journal Evaluation research (Systematic) literature review Lessons learned Secondary study
[S66] Conference Evaluation research Case study Lessons learned Primary study
[S67] Conference Evaluation research Mixed methods Lessons learned Primary study
[S68] Journal Evaluation research Case study Lessons learned Primary study

32 169

Study Publication type Research type Research approach Contribution type Research data type

[S69] Conference Evaluation research Grounded theory Lessons learned Primary study
[S70] Workshop Solution proposal Case study Theory Primary study
[S71] Conference Evaluation research Case study Lessons learned Primary study
[S72] Journal Evaluation research Mixed methods Lessons learned Primary study
[S73] Conference Philosophical papers Mixed methods Model Primary study
[S74] Workshop Evaluation research Case study Lessons learned Primary study
[S75] Journal Evaluation research Survey Lessons learned Primary study
[S76] Workshop Evaluation research Case study Lessons learned Primary study
[S77] Workshop Evaluation research Not stated Guideline Primary study
[S78] Journal Evaluation research Mixed methods Lessons learned Primary study
[S79] Conference Evaluation research Case study Lessons learned Primary study
[S80] Conference Evaluation research Grounded theory Lessons learned Primary study
[S81] Journal Evaluation research Case study Lessons learned Primary study
[S82] Journal Evaluation research Mixed methods Lessons learned Primary study
[S83] Journal Evaluation research Case study Lessons learned Primary study
[S84] Journal Evaluation research Mixed methods Guideline Primary study
[S85] Conference Evaluation research Case study Lessons learned Primary study
[S86] Workshop Evaluation research Case study Lessons learned Primary study
[S87] Conference Solution proposal Case study Framework/Method Primary study
[S88] Conference Evaluation research Case study Lessons learned Primary study
[S89] Workshop Evaluation research (Systematic) literature review Lessons learned Secondary study
[S90] Journal Evaluation research Grounded theory Lessons learned Primary study
[S91] Conference Evaluation research Case study Guideline Primary study
[S92] Journal Evaluation research Case study Lessons learned Primary study
[S93] Conference Philosophical papers Theoretical Lessons learned Primary study
[S94] Conference Evaluation research Case study Lessons learned Primary study
[S95] Workshop Evaluation research Action research Lessons learned Primary study
[S96] Journal Evaluation research Case study Lessons learned Primary study
[S97] Journal Evaluation research Case study Lessons learned Primary study
[S98] Workshop Philosophical papers Case study Model Primary study
[S99] Conference Evaluation research Case study Lessons learned Primary study
[S100] Journal Solution proposal Grounded Theory Theory Primary study
[S101] Conference Evaluation research Case study Lessons learned Primary study
[S102] Conference Evaluation research Case study Lessons learned Primary study
[S103] Journal Evaluation research Case study Lessons learned Primary study
[S104] Conference Evaluation research Case study Lessons learned Primary study
[S105] Conference Philosophical papers Not stated Model Primary study
[S106] Conference Evaluation research Case study Lessons learned Primary study
[S107] Conference Evaluation research Case study Lessons learned Primary study
[S108] Journal Evaluation research (Systematic) literature review Lessons learned Secondary study
[S109] Workshop Evaluation research Case study Lessons learned Primary study
[S110] Workshop Solution proposal Not stated Guideline Primary study
[S111] Journal Evaluation research Mixed methods Lessons learned Primary study
[S112] Journal Evaluation research Case study Lessons learned Primary study
[S113] Workshop Philosophical papers Theoretical Theory Primary study
[S114] Workshop Evaluation research Case study Lessons learned Primary study
[S115] Workshop Evaluation research Case study Lessons learned Primary study
[S116] Workshop Evaluation research Case study Lessons learned Primary study
[S117] Workshop Solution proposal Design & creation Guideline Primary study
[S118] Conference Evaluation research Case study Lessons learned Primary study
[S119] Conference Evaluation research Survey Lessons learned Primary study
[S120] Workshop Evaluation research Case study Lessons learned Primary study
[S121] Conference Evaluation research Case study Lessons learned Primary study
[S122] Conference Evaluation research Case study Lessons learned Primary study
[S123] Workshop Evaluation research Survey Lessons learned Primary study
[S124] Conference Evaluation research Case study Lessons learned Primary study
[S125] Conference Evaluation research Mixed methods Lessons learned Primary study
[S126] Conference Evaluation research Case study lessons learned Primary study
[S127] Journal Evaluation research Theoretical Guideline Primary study
[S128] Conference Evaluation research Case study Lessons learned Primary study
[S129] Workshop Evaluation research Survey Lessons learned Primary study
[S130] Conference Evaluation research Case study Lessons learned Primary study
[S131] Conference Evaluation research Case study Lessons learned Primary study
[S132] Conference Evaluation research (Systematic) literature review Lessons learned Secondary study
[S133] Conference Evaluation research Not stated Framework/Method Primary study
[S134] Conference Evaluation research (Systematic) literature review Lessons learned Secondary study
[S135] Journal Evaluation research (Systematic) literature review Lessons learned Secondary study
[S136] Conference Evaluation research (Systematic) literature review Lessons learned Secondary study

33170

References

[1] Pekka Abrahamsson, Juhani Warsta, Mikko T Siponen, and Jussi
Ronkainen. New directions on agile methods: A comparative analysis. In
Proceedings of the 25th International Conference on Software Engineer-
ing, pages 244–254. IEEE, May 2003.

[2] Pekka Abrahamsson, Muhammad Ali Babar, and Philippe Kruchten.
Agility and architecture: Can they coexist? IEEE Software, 27(2), 2010.

[3] Pekka Abrahamsson, Outi Salo, Jussi Ronkainen, and Juhani Warsta. Ag-
ile software development methods: Review and analysis. arXiv preprint
arXiv:1709.08439, 2017.

[4] Muhammad Faisal Abrar, Muhammad Sohail Khan, Sikandar Ali, Umar
Ali, Muhammad Faran Majeed, Amjad Ali, Bahrul Amin, and Nasir
Rasheed. Motivators for large-scale agile adoption from management per-
spective: A systematic literature review. IEEE Access, 7:22660–22674,
2019.

[5] Mashal Alqudah and Rozilawati Razali. A review of scaling agile meth-
ods in large software development. International Journal on Advanced
Science, Engineering and Information Technology, 6(6):828–837, 2016.

[6] Wasim Alsaqaf, Maya Daneva, and Roel Wieringa. Quality requirements
in large-scale distributed agile projects – a systematic literature review. In
Requirements Engineering: Foundation for Software Quality, pages 219–
234, Cham, February 2017. Springer.

[7] Scott W. Ambler. Agile software development at scale. In IFIP Central and
East European Conference on Software Engineering Techniques, pages 1–
12. Springer, 2007.

[8] Scott W. Ambler and Mark Lines. Disciplined agile delivery: A prac-
titioner’s guide to agile software delivery in the enterprise. IBM Press,
2012.

[9] Stephen J Andriole. The death of big software. Communications of the
ACM, 60(12):29–32, 2017.

[10] Muhammad Ali Babar. An exploratory study of architectural practices
and challenges in using agile software development approaches. In Soft-
ware Architecture, 2009& European Conference on Software Architecture.
WICSA/ECSA 2009. Joint Working IEEE/IFIP Conference on, pages 81–90.
IEEE, 2009.

[11] Victor Basili, Gianluigi Caldiera, and Dieter Rombach. The goal question
metric approach. Encyclopedia of Software Engineering, pages 528–532,
1994.

[12] Dinesh Batra. Research challenges and opportunities in conducting quan-
titative studies on large-scale agile methodology. Journal of Database
Management (JDM), 31(2):64–73, 2020.

[13] Kent Beck. Extreme programming explained: embrace change. addison-
wesley professional, 2000.

[14] Kent Beck. Extreme programming explained: embrace change. Addison-
Wesley Professional, 2000.

[15] Mike Beedle, Martine Devos, Yonat Sharon, Ken Schwaber, and Jeff
Sutherland. Scrum: An extension pattern language for hyperproductive
software development. Pattern Languages of Program Design, 4:637–651,
1999.

[16] Mike Beedle, James O. Coplien, Jeff Sutherland, Jens C. Østergaard, Ade-
mar Aguiar, and Ken Schwaber. Essential scrum patterns. In 14th Euro-
pean Conference on Pattern Languages of Programs, pages 1–17, Irsee,
2010. The Hillside Group.

[17] Vebjørn Berg, Jørgen Birkeland, Anh Nguyen-Duc, Ilias O. Pappas, and
Letizia Jaccheri. Software startup engineering: A systematic mapping
study. Journal of Systems and Software, 144:255–274, 2018.

[18] Hilary Berger and Paul Beynon-Davies. The utility of rapid application
development in large-scale, complex projects. Information Systems Jour-
nal, 19(6):549–570, 2009.

[19] Elizabeth Bjarnason, Krzysztof Wnuk, and Björn Regnell. A case study
on benefits and side-effects of agile practices in large-scale requirements
engineering. In Proceedings of the 1st Workshop on Agile Requirements
Engineering (AREW), pages 1–5. Association for Computing Machinery
(ACM), July 2011.

[20] Barry Boehm. Get ready for agile methods, with care. Computer, 35(1):
64–69, 2002.

[21] O. Pearl Brereton, Barbara A. Kitchenham, David Budgen, Mark Turner,
and Mohamed Khalil. Lessons from applying the systematic literature re-
view process within the software engineering domain. Journal of Systems
and Software, 80(4):571–583, 2007.

[22] David Budgen, Mark Turner, O. Pearl Brereton, and Barbara A. Kitchen-
ham. Using mapping studies in software engineering. In Psychology of
Programming Interest Group, volume 8, pages 195–204, 2008.

[23] The LeSS Company B.V. Large Scale Scrum. https://less.works/

case-studies, 2022. [Online; accessed 18-APR-2022].
[24] Noel Carroll and Kieran Conboy. Applying normalization process theory

to explain large-scale agile transformations. In Proceedings of the 14th In-
ternational Research Workshop on IT Project Management, January 2019.

[25] Lianipng Chen, Muhammad Ali Babar, and He Zhang. Towards an
evidence-based understanding of electronic data sources. In Proceedings of
the 14th International Conference on Evaluation and Assessment in Soft-
ware Engineering (EASE), pages 1–4. BCS Learning & Development Ltd,
April 2010.

[26] Tsun Chow and Dac-Buu Cao. A survey study of critical success factors
in agile software projects. Journal of systems and software, 81(6):961–971,
2008.

[27] James O. Coplien and Neil B. Harrison. Organizational Patterns of Agile
Software Development. Addison-Wesley, Boston, 2004.

[28] Daniela S. Cruzes and Tore Dybå. Recommended steps for thematic syn-
thesis in software engineering. In Proceedings of the 2011 International
Symposium on Empirical Software Engineering and Measurement, pages
275–284. Institute of Electrical and Electronics Engineers (IEEE), Septem-
ber 2011.

[29] Digital.ai. 12th State of Agile Survey. https://stateofagile.com/

#ufh-i-613553652-12th-annual-state-of-agile-report/

7027494, 2018. [Online; accessed 21-JUL-2021].
[30] Digital.ai. 13th State of Agile Survey. https://stateofagile.com/

#ufh-i-613553418-13th-annual-state-of-agile-report/

7027494, 2019. [Online; accessed 21-JUL-2021].
[31] Digital.ai. 14th State of Agile Survey. https://stateofagile.com/

#ufh-i-615706098-14th-annual-state-of-agile-report/

7027494, 2020. [Online; accessed 21-JUL-2021].
[32] Kim Dikert, Maria Paasivaara, and Casper Lassenius. Challenges and

success factors for large-scale agile transformations: A systematic litera-
ture review. Journal of Systems and Software, 119:87–108, 2016.

[33] Torgeir Dingsøyr and Nils Brede Moe. Research challenges in large-scale
agile software development. ACM SIGSOFT Software Engineering Notes,
38(5):38–39, 2013.

[34] Torgeir Dingsøyr, Sridhar Nerur, Venugopal Balijepally, and Nils Brede
Moe. A decade of agile methodologies: Towards explaining agile software
development. Journal of Systems and Software, 85(6):1213 – 1221, 2012.
ISSN 0164-1212. Special Issue: Agile Development.

[35] Torgeir Dingsøyr, Tor Erlend Fægri, and Juha Itkonen. What is large in
large-scale? a taxonomy of scale for agile software development. In Pro-
ceedings of the 15th International Conference on Product-Focused Soft-
ware Process Improvement (PROFES), pages 273–276. Springer, Decem-
ber 2014.

[36] Torgeir Dingsøyr, Nils Brede Moe, Tor Erlend Fægri, and Eva Amdahl
Seim. Exploring software development at the very large-scale: a revelatory
case study and research agenda for agile method adaptation. Empirical
Software Engineering, 23(1):490–520, 2018.

[37] Torgeir Dingsøyr, Davide Falessi, and Ken Power. Agile development at
scale: the next frontier. IEEE Software, 36(2):30–38, 2019.

[38] Tore Dybå and Torgeir Dingsøyr. Empirical studies of agile software
development: A systematic review. Information and Software Technology,
50(9):833 – 859, 2008. ISSN 0950-5849.

[39] Tore Dybå and Torgeir Dingsøyr. What do we know about agile software
development? IEEE Software, 26(5):6–9, 2009.

[40] Henry Edison, Xiaofeng Wang, and Kieran Conboy. Comparing methods
for large-scale agile software development: A systematic literature review.
IEEE Transactions on Software Engineering, 2021.

[41] Sallyann Freudenberg and Helen Sharp. The top 10 burning research
questions from practitioners. Ieee Software, 27(5):8–9, 2010.

[42] Christoph Fuchs and Thomas Hess. Becoming agile in the digital trans-
formation: The process of a large-scale agile transformation. In Proceed-
ings of the 39th International Conference on Information Systems (ICIS),
December 2018.

[43] Tomas Gustavsson. Assigned roles for inter-team coordination in large-
scale agile development: A literature review. In Proceedings of the 5th
International Workshop on Large-Scale Agile Development (XP), pages 1–
5. Association for Computing Machinery (ACM), May 2017.

34 171

[44] Amani Mahdi Mohammed Hamed and Hisham Abushama. Popular agile
approaches in software development: Review and analysis. In Proceedings
of the 2013 International Conference on Computing, Electrical and Elec-
tronic Engineering (ICCEEE), pages 160–166. Institute of Electrical and
Electronics Engineers (IEEE), August 2013.

[45] Jo E. Hannay, Dag I. K. Sjoberg, and Tore Dybå. A systematic review
of theory use in software engineering experiments. IEEE Transactions on
Software Engineering, 33(2):87–107, 2007.

[46] Geir K. Hanssen, Darja Smite, and Nils Brede Moe. Signs of agile trends
in global software engineering research: A tertiary study. In 2011 IEEE
Sixth International Conference on Global Software Engineering Workshop,
pages 17–23, 2011.

[47] Ville Heikkilä, Daniela Damian, Casper Lassenius, and Maria Paasivaara.
A mapping study on requirements engineering in agile software develop-
ment. In 2015 41st Euromicro conference on software engineering and
advanced applications, pages 199–207. IEEE, 2015.

[48] Steffen Herbold, Aynur Amirfallah, Fabian Trautsch, and Jens Grabowski.
A systematic mapping study of developer social network research. Journal
of Systems and Software, 171:110802, 2021. ISSN 0164-1212.

[49] Jim Highsmith and Alistair Cockburn. Agile software development: the
business of innovation. Computer, 34(9):120–127, 2001.

[50] Peter Hodgkins and Luke Hohmann. Agile program management:
Lessons learned from the verisign managed security services team. In Agile
2007 (AGILE 2007), pages 194–199. Institute of Electrical and Electronics
Engineers (IEEE), August 2007.

[51] Scaled Agile Inc. Scaled Agile Framework. http://www.

scaledagileframework.com/case-studies/, 2022. [Online; ac-
cessed 18-APR-2022].

[52] Magne Jorgensen and Martin Shepperd. A systematic review of software
development cost estimation studies. IEEE Transactions on software engi-
neering, 33(1):33–53, 2006.

[53] Martin Kalenda, Petr Hyna, and Bruno Rossi. Scaling agile in large orga-
nizations: Practices, challenges, and success factors. Journal of Software:
Evolution and Process, 30(10):e1954, 2018.

[54] Petri Kettunen. Extending software project agility with new product de-
velopment enterprise agility. Software Process: Improvement and Practice,
12(6):541–548, November 2007.

[55] Barbara A. Kitchenham and O. Pearl Brereton. A systematic review of
systematic review process research in software engineering. Information
and Software Technology, 55(12):2049–2075, 2013.

[56] Barbara A. Kitchenham and Stuart Charters. Guidelines for performing
systematic literature reviews in software engineering. Technical report,
Keele University and University of Durham, EBSE, 2007.

[57] Barbara A. Kitchenham, Emilia Mendes, and Guilherme H. Travassos.
Cross versus within-company cost estimation studies: A systematic review.
IEEE Transactions on Software Engineering, 33(5):316–329, 2007.

[58] Barbara A. Kitchenham, David Budgen, and O. Pearl Brereton. Using
mapping studies as the basis for further research - a participant-observer
case study. Information and Software Technology, 53(6):638–651, 2011.

[59] Jil Klünder, Regina Hebig, Paolo Tell, Marco Kuhrmann, Joyce
Nakatumba-Nabende, Rogardt Heldal, Stephan Krusche, Masud Fazal-
Baqaie, Michael Felderer, Marcela Fabiana Genero Bocco, et al. Catch-
ing up with method and process practice: An industry-informed baseline
for researchers. In 2019 IEEE/ACM 41st International Conference on Soft-
ware Engineering: Software Engineering in Practice (ICSE-SEIP), pages
255–264. IEEE, 2019.

[60] Harry Koehnemann and Mark Coats. Experiences applying agile prac-
tices to large systems. In Agile Conference, pages 295–300, 2009.

[61] Dina Koutsikouri, Sabine Madsen, and Nataliya Berbyuk Lindström. Ag-
ile transformation: How employees experience and cope with transforma-
tive change. In International Conference on Agile Software Development,
pages 155–163. Springer, Cham, 2020.

[62] Daryl Kulak and Hong Li. The journey to enterprise agility: Systems
thinking and organizational legacy. Springer, 2017.

[63] Craig Larman. Practices for scaling lean & Agile development: large,
multisite, and offshore product development with large-scale scrum. Pear-
son Education India, 2010.

[64] Dean Leffingwell, Ryan Martens, and Mauricio Zamora. Principles of ag-
ile architecture. Leffingwell, LLC. and Rally Software Development Corp,
2008.

[65] Mikael Lindvall, Dirk Muthig, Aldo Dagnino, Christina Wallin, Michael

Stupperich, David Kiefer, John May, and Tuomo Kahkonen. Agile soft-
ware development in large organizations. Computer, 37(12):26–34, 2004.

[66] Jeffrey A Livermore. Factors that significantly impact the implementation
of an agile software development methodology. Journal of Software, 3(4):
31–36, 2008.

[67] Aniket Mahanti. Challenges in enterprise adoption of agile methods-a
survey. Journal of Computing and Information technology, 14(3):197–206,
2006.

[68] Chuck Maples. Enterprise agile transformation: The two-year wall. In
Proceedings of the 2009 Agile Conference, pages 90–95. IEEE, August
2009.

[69] Subhas Chandra Misra, Vinod Kumar, and Uma Kumar. Identifying some
critical changes required in adopting agile practices in traditional software
development projects. International Journal of Quality & Reliability Man-
agement, 2010.

[70] Nils Brede Moe and Torgeir Dingsøyr. Emerging research themes and
updated research agenda for large-scale agile development: a summary of
the 5th international workshop at xp2017. In Proceedings of the XP2017
Scientific Workshops, pages 1–4. Association for Computing Machinery
(ACM), May 2017.

[71] Sridhar P Nerur, Abdul A Rasheed, and Vivek Natarajan. The intellectual
structure of the strategic management field: An author co-citation analysis.
Strategic Management Journal, 29(3):319–336, 2008.

[72] Mahmood Niazi, Sajjad Mahmood, Mohammad Alshayeb, Mo-
hammed Rehan Riaz, Kanaan Faisal, Narciso Cerpa, Siffat Ullah Khan,
and Ita Richardson. Challenges of project management in global software
development: A client-vendor analysis. Information and Software Tech-
nology, 80:1–19, 2016.

[73] Robert L Nord, Ipek Ozkaya, and Philippe Kruchten. Agile in distress:
Architecture to the rescue. In International Conference on Agile Software
Development, pages 43–57. Springer, 2014.

[74] BJ Briony Oates. Evidence-based information systems: A decade later.
In Proceedings of the 19th European Conference on Information Systems
(ECIS). Association for Information Systems, June 2011.

[75] Helena Holmström Olsson, Eoin Ó. Conchúir, Pär J. Ågerfalk, and Brian
Fitzgerald. Global software development challenges: A case study on
temporal, geographical and socio-cultural distance. In 2006 IEEE Inter-
national Conference on Global Software Engineering (ICGSE’06), pages
3–11. IEEE, 2006.

[76] Wanda J. Orlikowski. Improvising organizational transformation over
time: A situated change perspective. Information Systems Research, 7(1):
63–92, 1996.

[77] Necmettin Ozkan and Ayca Tarhan. A review of scaling approaches to
agile software development models. Software Quality Professional, 21(4):
11–20, 2019.

[78] Maria Paasivaara, Sandra Durasiewicz, and Casper Lassenius. Using
scrum in a globally distributed project: a case study. Software Process:
Improvement and Practice, 13(6):527–544, 2008.

[79] Nicolò Paternoster, Carmine Giardino, Michael Unterkalmsteiner, Tony
Gorschek, and Pekka Abrahamsson. Software development in startup com-
panies: A systematic mapping study. Information and Software Technol-
ogy, 56(10):1200–1218, 2014.

[80] Kai Petersen and Claes Wohlin. A comparison of issues and advantages
in agile and incremental development between state of the art and an in-
dustrial case. Journal of Systems and Software, 82(9):1479–1490, 2009.

[81] Kai Petersen and Claes Wohlin. The effect of moving from a plan-driven
to an incremental software development approach with agile practices. Em-
pirical Software Engineering, 15(6):654–693, 2010.

[82] Kai Petersen, Robert Feldt, Shahid Mujtaba, and Michael Mattsson. Sys-
tematic mapping studies in software engineering. In Proceedings of the
12th International Conference on Evaluation and Assessment in Software
Engineering (EASE), pages 68–77, Swindon, UK, June 2008. BCS Learn-
ing & Development Ltd.

[83] Kai Petersen, Sairam Vakkalanka, and Ludwik Kuzniarz. Guidelines for
conducting systematic mapping studies in software engineering: An up-
date. Information and Software Technology, 64:1–18, 2015.

[84] Abheeshta Putta, Maria Paasivaara, and Casper Lassenius. Benefits and
challenges of adopting the scaled agile framework (safe): Preliminary re-
sults from a multivocal literature review. In Product-Focused Software Pro-
cess Improvement, pages 334–351, Cham, November 2018. Springer.

[85] Mark Rajpal. Lessons learned from a failed attempt at distributed ag-

35172

ile. In Proceedings of the 17th International Conferences XP 2016: Agile
Processes in Software Engineering and Extreme Programming, pages 235–
243, Cham, May 2016. Springer.

[86] Abbas Moshref Razavi and Rodina Ahmad. Agile development in large
and distributed environments: A systematic literature review on organiza-
tional, managerial and cultural aspects. In Proceedings of the 2014 8th.
Malaysian Software Engineering Conference (MySEC), pages 216–221.
Institute of Electrical and Electronics Engineers (IEEE), September 2014.

[87] Donald J Reifer, Frank Maurer, and Hakan Erdogmus. Scaling agile meth-
ods. IEEE software, 20(4):12–14, 2003.

[88] Pilar Rodrı́guez, Jouni Markkula, Markku Oivo, and Kimmo Turula. Sur-
vey on agile and lean usage in finnish software industry. In Proceedings
of the ACM-IEEE International Symposium on Empirical Software Engi-
neering and Measurement (ESEM), pages 139–148, New York, NY, USA,
September 2012. Association for Computing Machinery (ACM). ISBN
9781450310567.

[89] Pilar Rodrı́guez, Alireza Haghighatkhah, Lucy Ellen Lwakatare, Susanna
Teppola, Tanja Suomalainen, Juho Eskeli, Teemu Karvonen, Pasi Kuvaja,
June M. Verner, and Markku Oivo. Continuous deployment of software
intensive products and services: A systematic mapping study. Journal of
Systems and Software, 123:263–291, 2017.

[90] Knut H. Rolland, Brian Fitzgerald, Torgeir Dingsøyr, and Klaas-Jan Stol.
Problematizing agile in the large: Alternative assumptions for large-scale
agile development. In Proceedings of the 37th International Conference
on Information Systems (ICIS), December 2016.

[91] Dominik Rost, Balthasar Weitzel, Matthias Naab, Torsten Lenhart, and
Hartmut Schmitt. Distilling best practices for agile development from ar-
chitecture methodology. In European Conference on Software Architec-
ture, pages 259–267. Springer, 2015.

[92] Hina Saeeda, Hannan Khalid, Mukhtar Ahmed, Abu Sameer, and Fahim
Arif. Systematic literature review of agile scalability for large scale
projects. International Journal of Advanced Computer Science and Ap-
plications (IJACSA), 6(9):63–75, 2015.

[93] Christoph Tobias Schmidt, Srinivasa Ganesha Venkatesha, and Juergen
Heymann. Empirical insights into the perceived benefits of agile software
engineering practices: A case study from sap. In Companion Proceedings
of the 36th International Conference on Software Engineering, pages 84–
92. Association for Computing Machinery (ACM), May 2014.

[94] Ken Schwaber and Mike Beedle. Agile software development with Scrum,
volume 1. Prentice Hall Upper Saddle River, 2002.

[95] Mohammad Shameem, Chiranjeev Kumar, Bibhas Chandra, and Arif Ali
Khan. Systematic review of success factors for scaling agile methods in
global software development environment: A client-vendor perspective.
In Proceedings of the 24th Asia-Pacific Software Engineering Conference
Workshops (APSEC), pages 17–24. Institute of Electrical and Electronics
Engineers (IEEE), December 2017.

[96] Mohammad Shameem, Bibhas Chandra, Rakesh Ranjan Kumar, and Chi-
ranjeev Kumar. A systematic literature review to identify human related
challenges in globally distributed agile software development: towards a
hypothetical model for scaling agile methodologies. In Proceedings of the
2018 4th International Conference on Computing Communication and Au-
tomation (ICCCA), pages 1–7. Institute of Electrical and Electronics Engi-
neers (IEEE), December 2018.

[97] Mary Shaw. Writing good software engineering research papers. In Pro-
ceedings of the 25th International Conference on Software Engineering,
2003., pages 726–736. Institute of Electrical and Electronics Engineers
(IEEE), May 2003.

[98] Stavros Stavru. A critical examination of recent industrial surveys on
agile method usage. Journal of Systems and Software, 94:87 – 97, 2014.
ISSN 0164-1212.

[99] Ömer Uludağ, Martin Kleehaus, Xian Xu, and Florian Matthes. Investi-
gating the role of architects in scaling agile frameworks. In Proceedings
of the 21st IEEE International Enterprise Distributed Object Computing
Conference (EDOC), pages 123–132. Institute of Electrical and Electron-
ics Engineers (IEEE), October 2017.

[100] Ömer Uludağ, Martin Kleehaus, Christoph Caprano, and Florian
Matthes. Identifying and structuring challenges in large-scale agile devel-
opment based on a structured literature review. In Proceedings of the 22nd
IEEE International Enterprise Distributed Object Computing Conference
(EDOC), pages 191–197. Institute of Electrical and Electronics Engineers
(IEEE), October 2018.

[101] Ömer Uludağ, Abheeshta Putta, Maria Paasivaara, and Florian Matthes.
Evolution of the agile scaling frameworks. In Proceedings of the 22nd In-
ternational Conference on Agile Software Development, Cham, June 2021.
Springer.

[102] Michael Unterkalmsteiner, Tony Gorschek, A. K. M. Moinul Islam,
Chow Kian Cheng, Rahadian Bayu Permadi, and Robert Feldt. Evaluation
and measurement of software process improvement—a systematic litera-
ture review. IEEE Transactions on Software Engineering, 38(2):398–424,
2011.

[103] Roel Wieringa, Neil Maiden, Nancy Mead, and Colette Rolland. Re-
quirements engineering paper classification and evaluation criteria: A pro-
posal and a discussion. Requirements engineering, 11(1):102–107, 2006.

[104] Chen Yang, Peng Liang, and Paris Avgeriou. A systematic mapping
study on the combination of software architecture and agile development.
Journal of Systems and Software, 111:157–184, 2016.

[105] He Zhang, Muhammad Ali Babar, and Paolo Tell. Identifying relevant
studies in software engineering. Information and Software Technology, 53
(6):625–637, 2011.

Selected studies

[S1] Kai Petersen and Claes Wohlin. A comparison of issues and advantages
in agile and incremental development between state of the art and an
industrial case. Journal of Systems and Software, 82(9):1479 – 1490,
2009.

[S2] Maarit Laanti, Outi Salo, and Pekka Abrahamsson. Agile methods
rapidly replacing traditional methods at nokia: A survey of opinions
on agile transformation. Information and Software Technology, 53(3):
276 – 290, 2011.

[S3] Maria Paasivaara and Casper Lassenius. Communities of practice in a
large distributed agile software development organization – case erics-
son. Information and Software Technology, 56(12):1556 – 1577, 2014.

[S4] Daniel Gerster, Christian Dremel, and Prashant Kelker. ”agile meets
non-agile”: Implications of adopting agile practices at enterprises. In
Proceedings of the 24th Americas Conference on Information Systems
(AMCIS), pages 836 – 845.

[S5] Elizabeth Bjarnason, Krzysztof Wnuk, and Björn Regnell. A case
study on benefits and side-effects of agile practices in large-scale re-
quirements engineering. In Proceedings of the 1st Workshop on Agile
Requirements Engineering (AREW), page 3. Association for Comput-
ing Machinery (ACM), July 2011.

[S6] Asif Qumer and Brian Henderson-Sellers. A framework to support the
evaluation, adoption and improvement of agile methods in practice.
Journal of Systems and Software, 81(11):1899–1919, 2008.

[S7] Ken Power. A model for understanding when scaling agile is ap-
propriate in large organizations. In Proceedings of the 2nd Interna-
tional Workshop on Large-Scale Agile Development (XP), pages 83–
92. Springer, 2014.

[S8] Ville Heikkilä, Kristian Rautiainen, and Slinger Jansen. A revelatory
case study on scaling agile release planning. In Proceedings of the 36th
EUROMICRO Conference on Software Engineering and Advanced Ap-
plications (EUROMICRO-SEAA), pages 289–296. Institute of Electri-
cal and Electronics Engineers (IEEE), September 2010.

[S9] Mashal Alqudah and Rozilawati Razali. A review of scaling agile
methods in large software development. International Journal on Ad-
vanced Science, Engineering and Information Technology, 6(6):828–
837, 2016.

[S10] Mohammad Shameem, Bibhas Chandra, Rakesh Ranjan Kumar, and
Chiranjeev Kumar. A systematic literature review to identify human
related challenges in globally distributed agile software development:
towards a hypothetical model for scaling agile methodologies. In Pro-
ceedings of the 4th International Conference on Computing Communi-
cation and Automation (ICCCA), pages 1–7. Institute of Electrical and
Electronics Engineers (IEEE), December 2018.

[S11] Robin Duijs, Pascal Ravesteyn, and Marlies van Steenbergen. Adapta-
tion of enterprise architecture efforts to an agile environment. In Pro-
ceedings of the 31st Bled eConference, pages 389–400, June 2018.

[S12] Abdallah Salameh and Julian M. Bass. Spotify tailoring for promoting
effectiveness in cross-functional autonomous squads. In Proceedings

36 173

of the 2nd International Workshop on Autonomous Teams (XP), pages
20–28. Springer, May 2019.

[S13] Maria Paasivaara. Adopting safe to scale agile in a globally distributed
organization. In Proceedings of the 12th IEEE International Confer-
ence on Global Software Engineering (ICGSE), pages 36–40. Institute
of Electrical and Electronics Engineers (IEEE), May 2017.

[S14] Julian M. Bass. Agile method tailoring in distributed enterprises: Prod-
uct owner teams. In Proceedings of the 8th IEEE International Con-
ference on Global Software Engineering (ICGSE), pages 154–163. In-
stitute of Electrical and Electronics Engineers (IEEE), August 2013.

[S15] Bettina Horlach, Ingrid Schirmer, and Paul Drews. Agile portfolio
management: Design goal and principles. In Proceedings of the 27th
European Conference on Information Systems (ECIS). AIS Electronic
Library (AISeL), June 2019.

[S16] Aivars Šāblis and Darja Šmite. Agile teams in large-scale distributed
context: Isolated or connected? In Proceedings of the Scientific Work-
shop of XP2016, pages 1–5. Association for Computing Machinery
(ACM), May 2016.

[S17] Sven Theobald, Anna Schmitt, and Philipp Diebold. Comparing scal-
ing agile frameworks based on underlying practices. In Proceedings
of the 7th International Workshop on Large-Scale Agile (XP), pages
88–96. Springer, May 2019.

[S18] Julian M. Bass. Artefacts and agile method tailoring in large-scale
offshore software development programmes. Information and Software
Technology, 75:1–16, 2016.

[S19] Oktay Turetken, Igor Stojanov, and Jos JM Trienekens. Assessing the
adoption level of scaled agile development: a maturity model for scaled
agile framework. Journal of Software: Evolution and Process, 29(6):
e1796, 2017.

[S20] Tomas Gustavsson. Assigned roles for inter-team coordination in large-
scale agile development: A literature review. In Proceedings of the
5th International Workshop on Large-Scale Agile Development (XP),
pages 1–5. Association for Computing Machinery (ACM), May 2017.

[S21] Christoph Fuchs and Thomas Hess. Becoming agile in the digital trans-
formation: The process of a large-scale agile transformation. In Pro-
ceedings of the 39th International Conference on Information Systems
(ICIS), December 2018.

[S22] Kim Dikert, Maria Paasivaara, and Casper Lassenius. Challenges and
success factors for large-scale agile transformations: A systematic lit-
erature review. Journal of Systems and Software, 119:87–108, 2016.

[S23] Nils Brede Moe, Bjørn Dahl, Viktoria Stray, Lina Sund Karlsen, and
Stine Schjødt-Osmo. Team autonomy in large-scale agile. In Proceed-
ings of the 52nd Hawaii International Conference on System Sciences
(HICSS). Hawaii International Conference on System Sciences, Jan-
uary 2019.

[S24] Petri Kettunen and Maarit Laanti. Combining agile software projects
and large-scale organizational agility. Software Process: Improvement
and Practice, 13(2):183–193, 2008.

[S25] Antonio Martini, Lars Pareto, and Jan Bosch. Communication fac-
tors for speed and reuse in large-scale agile software development. In
Proceedings of the 17th international software product line conference
(SPLC), pages 42–51. Association for Computing Machinery (ACM),
August 2013.

[S26] Felix Evbota, Eric Knauss, and Anna Sandberg. Scaling up the plan-
ning game: Collaboration challenges in large-scale agile product de-
velopment. In Helen Sharp and Tracy Hall, editors, Proceedings of the
17th International Conference on Agile Software Development (XP),
pages 28–38. Springer, May 2016.

[S27] Ville Heikkilä, Maria Paasivaara, Casper Lassenius, and Christian Eng-
blom. Continuous release planning in a large-scale scrum development
organization at ericsson. In Proceedings of the 14th International Con-
ference of Agile Software Development (XP), pages 195–209. Springer,
June 2013.

[S28] Torgeir Dingsøyr, Nils Brede Moe, and Eva Amdahl Seim. Coordinat-
ing knowledge work in multi-team programs: Findings from a large-
scale agile development program. Project Management Journal, 49(6):
64––77, 2018.

[S29] Saskia Bick, Kai Spohrer, Rashina Hoda, Alexander Scheerer, and
Armin Heinzl. Coordination challenges in large-scale software devel-
opment: A case study of planning misalignment in hybrid settings.
IEEE Trans. Software Eng., 44(10):932–950, 2018.

[S30] Alexander Scheerer, Tobias Hildenbrand, and Thomas Kude. Coordi-
nation in large-scale agile software development: A multiteam systems
perspective. In Proceedings of the 47th Hawaii International Confer-
ence on System Sciences (HICSS), pages 4780–4788. Institute of Elec-
trical and Electronics Engineers (IEEE), January 2014.

[S31] Torgeir Dingsøyr, Knut Rolland, Nils Brede Moe, and Eva Amdahl
Seim. Coordination in multi-team programmes: An investigation of
the group mode in large-scale agile software development. Procedia
Computer Science, 121:123–128, 2017.

[S32] Sina Katharina Weiss and Philipp Brune. Crossing the boundaries –
agile methods in large-scale, plan-driven organizations: A case study
from the financial services industry. In Eric Dubois and Klaus Pohl,
editors, Proceedings of the 29th International Conference Advanced
Information Systems Engineering (CAiSE), pages 380–393. Springer,
June 2017.

[S33] Helena Holmström Olsson, Jan Bosch, and Hiva Alahyari. Customer-
specific teams for agile evolution of large-scale embedded systems. In
Proceedings of the 39th Euromicro Conference on Software Engineer-
ing and Advanced Applications (EUROMICRO-SEAA), pages 82–89,
September 2013.

[S34] Maria Paasivaara, Sandra Durasiewicz, and Casper Lassenius. Dis-
tributed agile development: Using scrum in a large project. In Pro-
ceedings of the 3rd IEEE International Conference on Global Software
Engineering, (ICGSE), pages 87–95. Institute of Electrical and Elec-
tronics Engineers (IEEE), August 2008.

[S35] Ömer Uludağ, Nina-Mareike Harders, and Florian Matthes. Docu-
menting recurring concerns and patterns in large-scale agile develop-
ment. In Proceedings of the 24th European Conference on Pattern
Languages of Programs (EuroPLoP), July 2019.

[S36] Tomas Gustavsson. Dynamics of inter-team coordination routines in
large-scale agile software development. In Proceedings of the 27th
European Conference on Information Systems (ECIS), June 2019.

[S37] Muhammad Usman, Ricardo Britto, Lars-Ola Damm, and Jürgen
Börstler. Effort estimation in large-scale software development: An
industrial case study. Information and Software Technology, 99:21–40,
2018.

[S38] Maria Paasivaara and Casper Lassenius. Empower your agile organi-
zation: Community-based decision making in large-scale agile devel-
opment at ericsson. IEEE Software, 36(2):64–69, 2019.

[S39] Jan Henrik Gundelsby. Enabling autonomous teams in large-scale agile
through architectural principles. In Proceedings of the 1st International
Workshop on Autonomous Agile Teams (XP Companion), page 17. As-
sociation for Computing Machinery (ACM), May 2018.

[S40] Ramesh Lal and Tony Clear. Enhancing product and service capability
through scaling agility in a global software vendor environment. In
Proceedings of the 13th Conference on Global Software Engineering
(ICGSE), pages 59–68. Association for Computing Machinery (ACM),
May 2018.

[S41] Ömer Uludağ, Sascha Nägele, and Matheus Hauder. Establishing ar-
chitecture guidelines in large-scale agile development through insti-
tutional pressures: A single-case study. In Proceedings of the 25th
Americas Conference on Information Systems (AMCIS), pages 551 –
560, August 2019.

[S42] Maria Paasivaara, Ville Heikkilä, and Casper Lassenius. Experiences
in scaling the product owner role in large-scale globally distributed
scrum. In Proceedings of the 7th International Conference on Global
Software Engineering (ICGSE), pages 174–178. Institute of Electrical
and Electronics Engineers (IEEE), August 2012.

[S43] Torgeir Dingsøyr, Nils Brede Moe, Tor Erlend Fægri, and Eva Am-
dahl Seim. Exploring software development at the very large-scale: a
revelatory case study and research agenda for agile method adaptation.
Empirical Software Engineering, 23(1):490–520, 2018.

[S44] Viviane Santos, Alfredo Goldman, and Cleidson RB De Souza. Fos-
tering effective inter-team knowledge sharing in agile software devel-
opment. Empirical Software Engineering, 20(4):1006–1051, 2015.

[S45] Daniel Gerster, Christian Dremel, Walter Brenner, and Prashant Kelker.
How enterprises adopt agile structures: A multiple-case study. In Pro-
ceedings of the 52nd Hawaii International Conference on System Sci-
ences (HICSS), pages 1–10, January 2019.

[S46] Ömer Uludağ, Martin Kleehaus, Christoph Caprano, and Florian
Matthes. Identifying and structuring challenges in large-scale agile

37174

development based on a structured literature review. In Proceedings of
the 22nd IEEE International Enterprise Distributed Object Computing
Conference (EDOC), pages 191–197. Institute of Electrical and Elec-
tronics Engineers (IEEE), October 2018.

[S47] Ömer Uludağ and Florian Matthes. Identifying and documenting recur-
ring concerns and best practices of agile coaches and scrum masters in
large-scale agile development. In Proceedings of the 26th International
Conference on Pattern Languages of Programs (PLoP), volume 26,
pages 191–197. Hillside Group, 2019.

[S48] Tomas Gustavsson. Impacts on team performance in large-scale agile
software development. In Proceedings of the 2018 Joint of the 17th
Business Informatics Research Short Papers, Workshops and Doctoral
Consortium (BIC), pages 421–431. CEUR-WS, September 2018.

[S49] Kieran Conboy and Noel Carroll. Implementing large-scale agile
frameworks: Challenges and recommendations. IEEE Software, 36
(2):44–50, 2019.

[S50] Maria Paasivaara, Casper Lassenius, Ville Heikkilä, Kim-Karol Dik-
ert, and Christian Engblom. Integrating global sites into the lean and
agile transformation at ericsson. In Proceedings of the 8th IEEE Inter-
national Conference on Global Software Engineering, (ICGSE), pages
134–143. Institute of Electrical and Electronics Engineers (IEEE), Au-
gust 2013.

[S51] Saskia Bick, Alexander Scheerer, and Kai Spohrer. Inter-team coor-
dination in large agile software development settings: Five ways of
practicing agile at scale. In Proceedings of the Scientific Workshops of
XP2016, page 4. Association for Computing Machinery (ACM), May
2016.

[S52] Finn Olav Bjørnson, Julia Wijnmaalen, Christoph Johann Stettina, and
Torgeir Dingsøyr. Inter-team coordination in large-scale agile devel-
opment: A case study of three enabling mechanisms. In Proceedings
of the 19th International Conference on Agile Software Development
(XP), pages 216–231. Springer, May 2018.

[S53] Maria Paasivaara, Casper Lassenius, and Ville T Heikkilä. Inter-team
coordination in large-scale globally distributed scrum: Do scrum-of-
scrums really work? In Proceedings of the 6th ACM-IEEE inter-
national symposium on Empirical software engineering and measure-
ment (ESEM), pages 235–238. Association for Computing Machinery
(ACM), September 2012.

[S54] Helga Nyrud and Viktoria Stray. Inter-team coordination mechanisms
in large-scale agile. In Proceedings of the Scientific Workshops of
XP2017, pages 1–6. Association for Computing Machinery (ACM),
May 2017.

[S55] Ömer Uludağ, Martin Kleehaus, Niklas Dreymann, Christian Kabelin,
and Florian Matthes. Investigating the adoption and application of
large-scale scrum at a german automobile manufacturer. In Proceed-
ings of the 14th International Conference on Global Software Engi-
neering (ICGSE), pages 22–29. Institute of Electrical and Electronics
Engineers (IEEE), May 2019.

[S56] Ömer Uludağ, Henderik A Proper, and Florian Matthes. Investigating
the establishment of architecture principles for supporting large-scale
agile transformations. In Proceedings of the 23rd IEEE International
Enterprise Distributed Object Computing Conference (EDOC), pages
41–50. Institute of Electrical and Electronics Engineers (IEEE), Octo-
ber 2019.

[S57] Ömer Uludağ, Martin Kleehaus, Xian Xu, and Florian Matthes. In-
vestigating the role of architects in scaling agile frameworks. In Pro-
ceedings of the 21st IEEE International Enterprise Distributed Object
Computing Conference (EDOC), pages 123–132. Institute of Electrical
and Electronics Engineers (IEEE), October 2017.

[S58] Yngve Lindsjørn, Gunnar R. Bergersen, Torgeir Dingsøyr, and Dag
I. K. Sjøberg. Teamwork quality and team performance: Exploring dif-
ferences between small and large agile projects. In Proceedings of the
19th International Conference on Agile Software Development (XP),
pages 267–274. Springer, 2018.

[S59] Finn Olav Bjørnson and Kathrine Vestues. Knowledge sharing and pro-
cess improvement in large-scale agile development. In Proceedings of
the Scientific Workshops of XP2016, page 7. Association for Comput-
ing Machinery (ACM), May 2016.

[S60] Maria Paasivaara, Benjamin Behm, Casper Lassenius, and Minna Hal-
likainen. Large-scale agile transformation at ericsson: a case study.
Empirical Software Engineering, 23(5):2550–2596, 2018.

[S61] Julian M. Bass. Large-scale offshore agile tailoring: Exploring product
and service organisations. In Proceedings of the Scientific Workshops
of XP2016, page 8. Association for Computing Machinery (ACM),
May 2016.

[S62] Torgeir Dingsøyr, Marius Mikalsen, Anniken Solem, and Kathrine
Vestues. Learning in the large - an exploratory study of retrospectives
in large-scale agile development. In Proceedings of the 19th Interna-
tional Conference on Agile Software Development (XP), pages 191–
198. Springer, May 2018.

[S63] Ville T. Heikkilä, Maria Paasivaara, Casper Lassenius, Daniela E.
Damian, and Christian Engblom. Managing the requirements flow
from strategy to release in large-scale agile development: a case study
at ericsson. Empirical Software Engineering, 22(6):2892–2936, 2017.

[S64] Antonio Martini, Viktoria Stray, and Nils Brede Moe. Technical-,
social- and process debt in large-scale agile: An exploratory case-
study. In Rashina Hoda, editor, Proceedings of the 7th International
Workshop on Large-Scale Agile (XP), pages 112–119, Cham, May
2019. Springer.

[S65] Muhammad Faisal Abrar, Muhammad Sohail Khan, Sikandar Ali,
Umar Ali, Muhammad Faran Majeed, Amjad Ali, Bahrul Amin, and
Nasir Rasheed. Motivators for large-scale agile adoption from man-
agement perspective: A systematic literature review. IEEE Access, 7:
22660–22674, 2019.

[S66] Georgios Papadopoulos. Moving from traditional to agile software de-
velopment methodologies also on large, distributed projects. Procedia-
Social and Behavioral Sciences, 175:455–463, 2015.

[S67] Nils Brede Moe, Darja Šmite, Aivars Šāblis, Anne-Lie Börjesson, and
Pia Andréasson. Networking in a large-scale distributed agile project.
In Proceedings of the 8th ACM/IEEE International Symposium on Em-
pirical Software Engineering and Measurement (ESEM), pages 1–8.
Association for Computing Machinery (ACM), September 2014.

[S68] Ville Heikkilä, Maria Paasivaara, Kristian Rautiainen, Casper Lasse-
nius, Towo Toivola, and Janne Järvinen. Operational release planning
in large-scale scrum with multiple stakeholders - A longitudinal case
study at f-secure corporation. Information and Software Technology,
57:116–140, 2015.

[S69] Deepika Badampudi, Samuel A Fricker, and Ana M Moreno. Per-
spectives on productivity and delays in large-scale agile projects. In
Proceedings of the 14th International Conference on Agile Software
Development (XP), pages 180–194. Springer, June 2013.

[S70] Viktoria Stray. Planned and unplanned meetings in large-scale projects.
In Proceedings of the 6th International Workshop on Large-scale Agile
Development (XP Companion), pages 1–5. Association for Computing
Machinery (ACM), May 2018.

[S71] Tomas Gustavsson. Practices for vertical and horizontal coordination
in the scaled agile framework. In Proceedings of the 27th International
Conference on Information Systems Development (ISD), August 2018.

[S72] Mohammad Shameem, Rakesh Ranjan Kumar, Chiranjeev Kumar,
Bibhas Chandra, and Arif Ali Khan. Prioritizing challenges of agile
process in distributed software development environment using ana-
lytic hierarchy process. Journal of Software: Evolution and Process,
30(11), 2018.

[S73] Knut H. Rolland, Brian Fitzgerald, Torgeir Dingsøyr, and Klaas-Jan
Stol. Problematizing agile in the large: Alternative assumptions for
large-scale agile development. In Proceedings of the 37th International
Conference on Information Systems (ICIS), December 2016.

[S74] Tor Erlend Fægri and Nils Brede Moe. Re-conceptualizing require-
ments engineering: findings from a large-scale, agile project. In Pro-
ceedings of the 1st International Workshop on Requirements Engineer-
ing in Agile Development (READ), page 4. Association for Computing
Machinery (ACM), May 2015.

[S75] Magne Jørgensen. Relationships between project size, agile practices,
and successful software development: Results and analysis. IEEE Soft-
ware, 36(2):39–43, 2019.

[S76] Knut H. Rolland. Scaling across knowledge boundaries: A case study
of A large-scale agile software development project. In Proceedings of
the Scientific Workshops of XP2016, page 5. Association for Comput-
ing Machinery (ACM), May 2016.

[S77] Philipp Diebold, Anna Schmitt, and Sven Theobald. Scaling agile: how
to select the most appropriate framework. In Proceedings of the 6th In-
ternational Workshop on Large-scale Agile Development (XP Compan-

38 175

ion), pages 1–4. Association for Computing Machinery (ACM), May
2018.

[S78] Martin Kalenda, Petr Hyna, and Bruno Rossi. Scaling agile in large
organizations: Practices, challenges, and success factors. Journal of
Software: Evolution and Process, 30(10):e1954, 2018.

[S79] Maria Paasivaara and Casper Lassenius. Scaling scrum in a large glob-
ally distributed organization: A case study. In Proceedings of the
11th IEEE International Conference on Global Software Engineering
(ICGSE), pages 74–83. Institute of Electrical and Electronics Engi-
neers (IEEE), August 2016.

[S80] Julian M. Bass. Scrum master activities: Process tailoring in large en-
terprise projects. In Proceedings of the 9th IEEE International Confer-
ence on Global Software Engineering (ICGSE), pages 6–15. Institute
of Electrical and Electronics Engineers (IEEE), August 2014.

[S81] Ricardo Britto, Darja Šmite, and Lars-Ola Damm. Software architects
in large-scale distributed projects: An ericsson case study. IEEE Soft-
ware, 33(6):48–55, 2016.

[S82] Helena Tendedez, Maria Angela MAF Ferrario, and Jon Whittle. Soft-
ware development and cscw: Standardization and flexibility in large-
scale agile development. pages 1–23. Association for Computing Ma-
chinery (ACM), November 2018.

[S83] Darja Šmite, Nils Brede Moe, Aivars Šāblis, and Claes Wohlin. Soft-
ware teams and their knowledge networks in large-scale software de-
velopment. Information and Software Technology, 86:71–86, 2017.

[S84] Darja Šmite, Nils Brede Moe, Georgiana Levinta, and Marcin Floryan.
Spotify guilds: How to succeed with knowledge sharing in large-scale
agile organizations. IEEE Software, 36(2):51–57, 2019.

[S85] Marthe Berntzen, Nils Brede Moe, and Viktoria Stray. The product
owner in large-scale agile: An empirical study through the lens of
relational coordination theory. In Proceedings of the 20th Interna-
tional Conference on Agile Software Development (XP), pages 121–
136. Springer, May 2019.

[S86] Maria Paasivaara, Outi Väättänen, Minna Hallikainen, and Casper
Lassenius. Supporting a large-scale lean and agile transformation by
defining common values. In Proceedings of the XP 2014 International
Workshops (XP), pages 73–82. Springer, May 2014.

[S87] Ömer Uludağ, Matheus Hauder, Martin Kleehaus, Christina Schimpfle,
and Florian Matthes. Supporting large-scale agile development with
domain-driven design. In Proceedings of the 19th International Con-
ference on Agile Software Development (XP), pages 232–247. Springer,
May 2018.

[S88] Kristian Rautiainen, Joachim von Schantz, and Jarno Vähäniitty. Sup-
porting scaling agile with portfolio management: Case paf.com. In
Proceedings of the 44th Hawaii International Conference on System
Sciences (HICSS), pages 1–10. Institute of Electrical and Electronics
Engineers (IEEE), January 2011.

[S89] Mohammad Shameem, Chiranjeev Kumar, Bibhas Chandra, and
Arif Ali Khan. Systematic review of success factors for scaling ag-
ile methods in global software development environment: A client-
vendor perspective. In Proceedings of the 24th Asia-Pacific Software
Engineering Conference Workshops (APSEC), pages 17–24. Institute
of Electrical and Electronics Engineers (IEEE), December 2017.

[S90] Julian M. Bass and Andy Haxby. Tailoring product ownership in large-
scale agile projects: Managing scale, distance, and governance. IEEE
Software, 36(2):58–63, 2019.

[S91] Nelson Sekitoleko, Felix Evbota, Eric Knauss, Anna Sandberg, Michel
Chaudron, and Helena Holmström Olsson. Technical dependency chal-
lenges in large-scale agile software development. In Proceedings of the
15th International Conference on Agile Software Development (XP),
pages 46–61. Springer, May 2014.

[S92] Kai Petersen and Claes Wohlin. The effect of moving from a plan-
driven to an incremental software development approach with agile
practices: An industrial case study. Empirical Software Engineering,
15(6):654–693, 12 2010.

[S93] Alexander Scheerer, Saskia Bick, Tobias Hildenbrand, and Armin
Heinzl. The effects of team backlog dependencies on agile multiteam
systems: A graph theoretical approach. In Proceedings of the 48th
Hawaii International Conference on System Sciences (HICSS), pages
5124–5132. Institute of Electrical and Electronics Engineers (IEEE),
January 2015.

[S94] Lina Lagerberg, Tor Skude, Pär Emanuelsson, Kristian Sandahl, and

Daniel Stahl. The impact of agile principles and practices on large-
scale software development projects: A multiple-case study of two
projects at ericsson. In Proceedings of the 7th ACM / IEEE Interna-
tional Symposium on Empirical Software Engineering and Measure-
ment (ESEM), pages 348–356. Institute of Electrical and Electronics
Engineers (IEEE), October 2013.

[S95] Jan Pries Heje and Malene M Krohn. The safe way to the agile orga-
nization. In Proceedings of the 5th International Workshop on Large-
Scale Agile Development (XP), page 18, May 2017.

[S96] Hilary Berger and Paul Beynon-Davies. The utility of rapid applica-
tion development in large-scale, complex projects. Information Sys-
tems Journal, 19(6):549–570, 2009.

[S97] Nils Brede Moe, Torgeir Dingsøyr, and Knut Rolland. To schedule or
not to schedule? an investigation of meetings as an inter-team coordi-
nation mechanism in large-scale agile software development. IJISPM
- International Journal of Information Systems and Project Manage-
ment, 6(3):45–59, 2018.

[S98] Helena Holmström Olsson and Jan Bosch. Towards continuous valida-
tion of customer value. In Proceedings of the 3rd International Work-
shop on Large-Scale Agile Development (XP), page 3. Association for
Computing Machinery (ACM), May 2015.

[S99] Maria Paasivaara, Benjamin Behm, Casper Lassenius, and Minna Hal-
likainen. Towards rapid releases in large-scale xaas development at
ericsson: A case study. In Proceedings of the 9th IEEE International
Conference on Global Software Engineering (ICGSE), pages 16–25.
Institute of Electrical and Electronics Engineers (IEEE), August 2014.

[S100] Miloš Jovanović, Antònia Mas, Antoni-Lluı́s Mesquida, and Bojan
Lalić. Transition of organizational roles in agile transformation pro-
cess: A grounded theory approach. Journal of Systems and Software,
133:174–194, 2017.

[S101] Wasim Alsaqaf, Maya Daneva, and Roel Wieringa. Understanding
challenging situations in agile quality requirements engineering and
their solution strategies: Insights from a case study. In Proceedings
of the 26th IEEE International Requirements Engineering Conference
(RE), pages 274–285. Institute of Electrical and Electronics Engineers
(IEEE), August 2018.

[S102] B Veeresh Thummadi, Vishal D. Khapre, and Rosalie J. Ocker. Un-
packing agile enterprise architecture innovation work practices: A
qualitative case study of a railroad company. In Proceedings of the 23rd
Americas Conference on Information Systems (AMCIS), pages 3782 –
3791, August 2017.

[S103] Maria Paasivaara, Sandra Durasiewicz, and Casper Lassenius. Using
scrum in a globally distributed project: a case study. Software Process:
Improvement and Practice, 13(6):527–544, 2008.

[S104] Ömer Uludağ, Martin Kleehaus, Soner Erçelik, and Florian Matthes.
Using social network analysis to investigate the collaboration between
architects and agile teams: A case study of a large-scale agile develop-
ment program in a german consumer electronics company. In Proceed-
ings of the 20th International Conference on Agile Software Develop-
ment (XP), pages 137–153, May 2019.

[S105] Torgeir Dingsøyr, Tor Erlend Fægri, and Juha Itkonen. What is large
in large-scale? a taxonomy of scale for agile software development. In
Proceedings of the 15th International Conference on Product-Focused
Software Process Improvement (PROFES), pages 273–276. Springer,
December 2014.

[S106] Ömer Uludağ, Martin Kleehaus, Niklas Reiter, and Florian Matthes.
What to expect from enterprise architects in large-scale agile develop-
ment? A multiple-case study. In Proceedings of the 25th Americas
Conference on Information Systems (AMCIS), pages 2683 – 2692, Au-
gust 2019.

[S107] Antonio Martini, Lars Pareto, and Jan Bosch. Towards introducing
agile architecting in large companies: The caffea framework. In Pro-
ceedings of the 16th International Conference on Agile Software De-
velopment (XP), pages 218–223. Springer, May 2015.

[S108] Necmettin Ozkan and Ayca Tarhan. A review of scaling approaches to
agile software development models. Software Quality Professional, 21
(4):11–20, 2019.

[S109] Marius Mikalsen, Magne Næsje, Erik André Reime, and Anniken
Solem. Agile autonomous teams in complex organizations. In Proceed-
ings of the 2nd International Workshop on Autonomous Teams (XP),
pages 55–63. Springer, May 2019.

39176

[S110] Robert L. Nord, Ipek Ozkaya, and Philippe Kruchten. Agile in distress:
Architecture to the rescue. In Proceedings of the XP 2014 International
Workshops, pages 43–57. Springer, May 2014.

[S111] Brian Hobbs and Yvan Petit. Agile methods on large projects in large
organizations. Project Management Journal, 48(3):3–19, 2017.

[S112] Christoph Johann Stettina and Jeannette Hörz. Agile portfolio manage-
ment: An empirical perspective on the practice in use. International
Journal of Project Management, 33(1):140 – 152, 2015.

[S113] Noel Carroll and Kieran Conboy. Applying normalization process the-
ory to explain large-scale agile transformations. In Proceedings of the
14th International Research Workshop on IT Project Management (IR-
WITPM), January 2019.

[S114] Yngve Lindsjørn and Roza Moustafa. Challenges with lack of trust in
agile projects with autonomous teams and fixed-priced contracts. In
Proceedings of the 1st International Workshop on Autonomous Agile
Teams (XP Companion), pages 1–5, May 2018.

[S115] Tomas Gustavsson. Changes over time in a planned inter-team coor-
dination routine. In Proceedings of the 7th International Workshop on
Large-Scale Agile (XP), pages 105–111. Springer, May 2019.

[S116] Tomas Gustavsson. Voices from the teams - impacts on autonomy in
large-scale agile software development settings.

[S117] Jaana Nyfjord, Sameer Bathallath, and Harald Kjellin. Conventions
for coordinating large agile projects. In Proceedings of the XP 2014
International Workshops (XP), pages 58–72. Springer, May 2014.

[S118] Darja Šmite, Nils Brede Moe, Jonas Wigander, and Hendrik Esser.
Corporate-level communities at ericsson: Parallel organizational struc-
ture for fostering alignment for autonomy. In Proceedings of the 20th
International Conference on Agile Software Development (XP), pages
173–188. Springer, May 2019.

[S119] Magne Jørgensen. Do agile methods work for large software projects?
In Juan Garbajosa, Xiaofeng Wang, and Ademar Aguiar, editors, Pro-
ceedings of the 19th International Conference on Agile Software De-
velopment (XP), pages 179–190. Springer, May 2018.

[S120] Yvan Petit and Carl Marnewick. Earn your wings: A novel approach to
deployment governance. In Rashina Hoda, editor, Proceedings of the
2nd International Workshop on Autonomous Teams (XP), pages 64–71.
Springer, May 2019.

[S121] Leonor Barroca, Helen Sharp, Torgeir Dingsøyr, Peggy Gregory, Katie
Taylor, and Raid AlQaisi. Enterprise agility: A balancing act - a lo-
cal government case study. In Proceedings of the 20th International
Conference on Agile Softeware Development (XP), pages 207–223.
Springer, May 2019.

[S122] Teemu Karvonen, Helen Sharp, and Leonor Barroca. Enterprise agility:
Why is transformation so hard? In Proceedings of the 19th Interna-
tional Conference on Agile Softeware Development (XP), pages 131–
145. Springer, May 2018.

[S123] Petri Kettunen, Maarit Laanti, Fabian Fagerholm, Tommi Mikkonen,
and Tomi Männistö. Finnish enterprise agile transformations: A survey
study. In Proceedings of the 7th International Workshop on Large-
Scale Agile (XP), pages 97–104. Springer, May 2019.

[S124] Abheeshta Putta, Maria Paasivaara, and Casper Lassenius. How are
agile release trains formed in practice? a case study in a large finan-
cial corporation. In Proceedings of the 20th International Conference
on Agile Software Development (XP), pages 154–170. Springer, May
2019.

[S125] Sven Theobald and Philipp Diebold. Interface problems of agile in a
non-agile environment. In Proceedings of the 19th International Con-
ference on Agile Software Development (XP), pages 123–130. Springer,
May 2018.

[S126] Bjørnar Tessem and Frank Maurer. Job satisfaction and motivation in a
large agile team. In Proceedings of the 8th International Conference on
Agile Software Development (XP), pages 54–61. Springer, June 2007.

[S127] Roger Sweetman and Kieran Conboy. Portfolios of agile projects: A
complex adaptive systems’ agent perspective. Project Management
Journal, 49(6):18–38, 2018.

[S128] Christoph Johann Stettina and Lennard Schoemaker. Reporting in agile
portfolio management: Routines, metrics and artefacts to maintain an
effective oversight. In Proceedings of the 19th International Confer-
ence on Agile Software Development (XP), pages 199–215. Springer,
May 2018.

[S129] Maarit Laanti and Petri Kettunen. Safe adoptions in finland: A survey

research. In Proceedings of the 7th International Workshop on Large-
Scale Agile (XP), pages 81–87. Springer, May 2019.

[S130] Iris Figalist, Christoph Elsner, Jan Bosch, and Helena Holmström Ols-
son. Scaling agile beyond organizational boundaries: Coordination
challenges in software ecosystems. In Proceedings of the 20th Inter-
national Conference on Agile Software Development (XP), pages 189–
206. Springer, May 2019.

[S131] Nirnaya Tripathi, Pilar Rodrı́guez, Muhammad Ovais Ahmad, and
Markku Oivo. Scaling kanban for software development in a multi-
site organization: Challenges and potential solutions. In Proceedings
of the 16th International Conference on Agile Software Development
(XP), pages 178–190. Springer, May 2015.

[S132] Abheeshta Putta, Maria Paasivaara, and Casper Lassenius. Benefits and
challenges of adopting the scaled agile framework (safe): Preliminary
results from a multivocal literature review. In Product-Focused Soft-
ware Process Improvement, pages 334–351, Cham, November 2018.
Springer.

[S133] Günther Schuh, Eric Rebentisch, Christian Dölle, Christian Mattern,
Georgiy Volevach, and Alexander Menges. Defining scaling strategies
for the improvement of agility performance in product development
projects. Procedia CIRP, 70:29–34, May 2018. 28th CIRP Design
Conference 2018, 23-25 May 2018, Nantes, France.

[S134] Wasim Alsaqaf, Maya Daneva, and Roel Wieringa. Quality require-
ments in large-scale distributed agile projects – a systematic literature
review. In Requirements Engineering: Foundation for Software Qual-
ity, pages 219–234, Cham, February 2017. Springer.

[S135] Hina Saeeda, Hannan Khalid, M. Ahmed, Abu Sameer, and Fahim
Arif. Systematic literature review of agile scalability for large scale
projects. International Journal of Advanced Computer Science and
Applications, 6(9):63–75, 2015.

[S136] Abbas Moshref Ravazi and Rodina Ahmad. Agile development in large
and distributed environments: A systematic literature review on or-
ganizational, managerial and cultural aspects. In Proceedings of the
8th Malaysian Software Engineering Conference (MySEC), pages 216–
221. Institute of Electrical and Electronics Engineers (IEEE), Septem-
ber 2014.

Selected workshop summaries

[W1] Torgeir Dingsøyr and Nils Brede Moe. Research challenges in large-
scale agile software development. ACM SIGSOFT Software Engineer-
ing Notes, 38(5):38–39, 2013.

[W2] Torgeir Dingsøyr and Nils Brede Moe. Towards principles of large-
scale agile development - A summary of the workshop at XP2014 and
a revised research agenda. In Proceedings of the XP 2014 Interna-
tional Workshops (XP), pages 1–8. Springer, May 2014.

[W3] Nils Brede Moe, Helena Holmström Olsson, and Torgeir Dingsøyr.
Trends in large-scale agile development: A summary of the 4th work-
shop at XP2016. In Proceedings of the Scientific Workshop of XP2016,
page 1. Association for Computing Machinery (ACM), May 2016.

[W4] Nils Brede oe and Torgeir Dingsøyr. Emerging research themes and
updated research agenda for large-scale agile development: a sum-
mary of the 5th international workshop at XP2017. In Proceedings
of the 5th International Workshop on Large-Scale Agile Development
(XP), pages 1–4. Association for Computing Machinery (ACM), May
2017.

[W5] Torgeir Dingsøyr, Nils Brede Moe, and Helena Holmström Olsson.
Towards an understanding of scaling frameworks and business agility:
a summary of the 6th international workshop at XP2018. In Proceed-
ings of the 6th International Workshop on Large-scale Agile Devel-
opment (XP Companion), pages 1–4. Association for Computing Ma-
chinery (ACM), May 2018.

[W6] Julian M. Bass. Future trends in agile at scale: A summary of the 7th
international workshop on large-scale agile development. In Proceed-
ings of the 7th International Workshop on Large-Scale Agile (XP),
pages 75–80. Springer, May 2019.

[W7] Leonor Barroca, Torgeir Dingsøyr, and Marius Mikalsen. Agile trans-
formation: A summary and research agenda from the first interna-
tional workshop. In Proceedings of the 1st International Workshop on
Agile Transformation (XP), pages 3–9. Springer, May 2019.

40 177

[W8] Viktoria Stray, Nils Brede Moe, and Rashina Hoda. Autonomous ag-
ile teams: challenges and future directions for research. In Proceed-
ings of the 1st International Workshop on Autonomous Agile Teams
(XP Companion), pages 1–5. Association for Computing Machinery
(ACM), May 2018.

[W9] Nils Brede Moe, Viktoria Stray, and Rashina Hoda. Trends and up-
dated research agenda for autonomous agile teams: A summary of
the second international workshop at XP2019. In Proceedings of the
2nd International Workshop on Autonomous Teams (XP), pages 13–
19. Springer, May 2019.

41178

Investigating the Role of Architects in Scaling Agile Frameworks

Ömer Uludağ, Martin Kleehaus, Xian Xu, Florian Matthes
Chair for Informatics 19

Technische Universität München (TUM)
D-85748, Garching

{oemer.uludag,martin.kleehaus,xian.xu,matthes}@tum.de

Abstract—This study describes the roles of architects in
scaling agile frameworks with the help of a structured literature
review. We aim to provide a primary analysis of 20 iden-
tified scaling agile frameworks. Subsequently, we thoroughly
describe three popular scaling agile frameworks: Scaled Agile
Framework, Large Scale Scrum, and Disciplined Agile 2.0.
After specifying the main concepts of scaling agile frame-
works, we characterize roles of enterprise, software, solution,
and information architects, as identified in four scaling agile
frameworks. Finally, we provide a discussion of generalizable
findings on the role of architects in scaling agile frameworks.

Keywords-scaling agile frameworks; agile software develop-
ment; application architecture;

I. INTRODUCTION

Enterprises struggle to deal with unpredictable compet-
itive environments due to rapidly changing customer de-
mands, regulatory changes, and technological advancements
that can lead to the enterprise’s success [1], [2]. Thus,
the ability to detect relevant changes and respond in a
timely and effective manner becomes an important determi-
nant of the enterprise’s survival [3]. Software development
projects in such environments face changes either directly
or indirectly. In order to face these challenges, the agile
movement emerged in the 1990s, leading to the development
of agile manifesto and many agile software development
methods, including extreme programming (XP), kanban, and
scrum [4]. With these agile methods, small, co-located, self-
organizing teams work closely with the business customer
on a single-project context, maximizing the customer value
and quality of the delivered software product through rapid
iterations and frequent feedback loops [4].

Since the initial application of these methods are tai-
lored for small teams, large enterprises are interested in
extending agile methods to include larger teams and inter-
team coordination and communication [5]. Various scaling
agile frameworks, e.g., the Scaled Agile Framework (SAFe),
Disciplined Agile 2.0 (DA 2.0), and Large-Scale Scrum
(LeSS), were proposed to resolve issues associated with
team size, customer involvement, and project constraints [6].

Agile methods imply that the architecture should evolve
incrementally and constantly be tested with known require-
ments rather than being imposed by some direct structur-
ing force (emergent architecture design) [7]. The practice

of emergent architecture design is effective at the team
level but insufficient when developing large systems. It
causes excessive redesign efforts, architectural divergence,
and functional redundancy increasing the complexity of
application architectures [7], [8]. Therefore, an intentional
architecture design is required, which embraces architectural
initiatives and guidance for inter-team design and implemen-
tation synchronization [7], [9]. The effective evolution of
an application’s architecture requires the right balance of
emergent and intentional architecture design. This balance
is an essential determinant for addressing the complexity of
large applications architectures and large-scale agile projects
[7], [9].

However, literature documenting the influences of scal-
ing agile frameworks on application architectures and the
involvement of architects in large-scale agile projects is still
scarce. The main objective of this study is to investigate the
role of architects in scaling agile frameworks. Based on this
objective, three research questions (RQ) were formulated

• RQ1: What are the types of scaling agile frameworks?
• RQ2: What are the roles of architects in scaling agile

frameworks?
• RQ3: What are the generalizable findings about the role

of architects in scaling agile frameworks?

A. Research methodology

To identify material relevant to stated goal of this study,
we applied a structured literature review approach as recom-
mended by Brocke et al. [10]. In the first phase, we defined
the scope of the review and identified suitable research
questions about the role of architects in scaling agile frame-
works. In the second phase, key concepts were identified by
concept mapping, which also provided the opportunity to
identify additional relevant search terms: Scaled Agile Or-
ganization, Enterprise Architecture, Scaled Agile Enterprise
Architecture, Scaled Agile Framework, Software Engineer-
ing, and Scaled Agile Software Engineering, together with
a variety of related concepts, synonyms, and homonyms.
These were applied to the subsequent literature search in the
third phase. We examined a range of different Information
Systems journals, conference proceedings, documentations,
and books using EBSCOhost, ScienceDirect, Scopus, ACM
Digital Library, IEEExplore, SpringerLink, Emerald Insight,

179

and Google Scholar. Having compiled the aforementioned
list of search terms, we then used them in electronic full-text
search queries. In total, we obtained 146 relevant sources.
In the fourth phase, we created a concept matrix juxtaposing
the different architect roles with the identified scaling agile
frameworks to investigate their roles within the scaling agile
frameworks. In the last phase, the comparative analysis of
architect roles resulted in generalizable findings on the role
of architects in scaling agile frameworks.

The remainder of this paper is structured as follows.
In Section II, we define large-scale agile developments,
providing a primary analysis of the scaling agile frameworks
we identified in the literature and describing thoroughly the
three most mature frameworks. In Section III, we analyze
architect roles identified in scaling agile frameworks. We
analyze and discuss these findings in Section IV before
concluding the paper with remarks on future research.

II. SCALING AGILE FRAMEWORKS

The origin of agile ideas in business started with the
creation of the Agile Consortium in 1994 [11]. These ideas
were discovered independently in software engineering, cul-
minating in the creation of the Agile Manifesto [12] but have
exactly the same guiding principles as those in business.

The development of scaling agile frameworks dates back
to 1992, with the Crystal Family [13], and has increasingly
gained in popularity in the last few years. The main purpose
of such frameworks is to manage large agile teams with more
than 50 developers distributed across multiple geographical
locations in an agile way. Traditional agile methods such
as Scrum are not capable of managing this number of
developers. However, scaling agile methods introduce new
challenges, such as inter-team coordination and distribution
of work without a defined architecture or properly defined
requirements [14]. We further define the term large-scale ag-
ile development and provide a discussion of the frameworks
that currently attract the most attention.

A. Definition of large-scale agile development

The difficulty of introducing agile methods increases
with organization size [15]. The adoption of agile frame-
works often requires changing the entire organizational cul-
ture. Larger organizations have more dependencies between
projects and teams, which slows down any organizational
change. Large size also increases the need for formal doc-
umentation, which in turn reduces agility [16]. In addition
to inter-team coordination, agile teams also have to interact
with other organizational units, which are typically non-agile
in nature. Therefore, several companies have devised new
approaches to scaling agile methods to projects wherein a
lot of people are involved. Hence, the term large-scale agile
development1. refers to agile development in everything

1A primary systematic literature review on the challenges and success
factors for large-scale agile development was conducted by [17].

from large teams to large multi-team projects that want to
make use of agile development principles at the portfolio or
enterprise level [18]. Dingsøyr et al. [18] identified that large
scale agile projects had been regarded in terms of the number
of people or teams, project budget, code base size, or project
duration. Examples of cases that were described as large-
scale covered projects costing over $10 million with teams
of more than 50 people, code bases consisting of over half a
million lines of code [19], durations of 2 years, and scopes
of 60–80 features [20]. Based on their findings, Dingsøyr
et al. [18] measured large-scale projects by the number of
collaborating and coordinating teams as large-scale projects
with 2–9 collaborating teams and very large-scale projects
with over 10 collaborating teams.

B. Introduction to the most popular frameworks
The structured literature review described in Section I-A

revealed 20 scaling agile frameworks listed in Table I. Most
of the frameworks emerged from very basic approaches
to agile development, namely XP and Scrum, and were
enhanced as necessary in order to be applicable to very
large multi-team projects. In Table I, we summarize our
findings and provide primary information about the method-
ologists who invented and published the frameworks, the
organizations which were built upon them, and the scaling
agile approaches involved. The maturity section of Table I
indicates how well-established the particular framework is.
Here, we calculate the maturity2 of a framework based on

• the number of paper contributions that we found in the
literature search;

• the number of case studies described on the homepage
of the regarded framework;

• the available documentation that could be found either
on its homepage or in other sources;

• the training courses and certifications offered by the
organization; and

• the content of the community forums and blogs wherein
the companies shared their knowledge and other infor-
mation about the framework.

The LeSS, SAFe, and DA 2.0 frameworks are especially
mature, as they are cited very often in the literature, de-
scribing many real-world use cases, and also fulfill the other
adoption criteria. Therefore, we will subsequently provide
more details about these popular frameworks:

LeSS was released in 2008 by Craig Larman and Bas
Vodde and extends Scrum with scaling rules and guidelines
without losing sight of Scrums’s original goals. LeSS spec-
ifies additional organizational changes, which are not ad-
dressed in traditional Scrum. For instance cross-functional,

2The maturity is calculated based on the sum of the equally weighted
maturity criteria. Particularly, ’Yes’ values are coded as ’1’, whereas ’No’
values are coded as ’0’. Contributions and cases values of each framework
are divided by the max. values of contributions and cases. For instance, the
maturity rating of Crystal Family is calculated as follows:
17
35

· 0.2 + 1
35

· 0.2 + 1 · 0.2 + 0 · 0.2 + 1 · 0.2 = 0.503 → .

180

Table I
PRIMARY ANALYSIS OF SCALING AGILE FRAMEWORKS.

Methodologist Organization
Publication

Date
Category

Contri-
butions

Cases
Docu-

mentation

Training
Courses and

Certifications

Community,
Forum or

Blog
Rating

Crystal Family Alistair Cockburn - 1992 Set of Methods 17 1 Yes No Yes

Dynamic Systems Development Method
Agile Project Framework for Scrum

Arie van Bennekum DSDM Consortium 1994 Framework 28 4 Yes Yes Yes

Scrum-of-Scrums Jeff Sutherland and Ken Schwaber Scrum Inc. 2001 Mechanism 27 2 Yes No Yes

Enterprise Scrum Mike Beedle Enterprise Scrum Inc. 2002 Framework 4 - Yes Yes Yes

Agile Software Solution Framework
Asif Qumer and

Brian Henderson-Sellers
University of
Technology

2007 Framework 2 2 No No No

Large Scale Scrum Craig Larman and Bas Vodde LeSS Company B.V. 2008 Framework 29 22 Yes Yes Yes

Scaled Agile Framework Dean Leffingwell Scaled Agile Inc. 2011 Framework 35 35 Yes Yes Yes

Disciplined Agile 2.0 Scrott Ambler
Disciplined Agile

Consortium
2012 Framework 27 4 Yes Yes Yes

Spotify Model
Henrik Kniberg, Anders Ivarsson,

and Joakim Sundén
Spotify 2012 Model 11 1 Yes No Yes

Mega Framework
Rafael Maranzato, Marden

Neubert, and Paula Heculano
Universo Online S.A 2012 Framework 2 1 No No No

Enterprise Agile Delivery and Agile
Governance Practice

Erik Marks AgilePath 2012 Set of Practices 1 - Yes No Yes

Recipes for Agile Governance in the
Enterprise

Kevin Thompson Cprime 2013 Framework 4 1 Yes Yes No

Continuous Agile Framework Andy Singleton Maxos LLC 2014 Framework 3 - Yes No Yes

Scrum at Scale Jeff Sutherland and Alex Brown Scrum Inc. 2014 Framework 9 - Yes Yes Yes

Enterprise Transition Framework - agile42 2014 Framework 1 2 Yes Yes Yes

ScALeD Agile Lean Development
Peter Beck, Markus Gärtner,

Christoph Mathis, Stefan Roock
and Andreas Schliep

- 2014 Set of Principles 2 - Yes No Yes

eXponential Simple Continuous
Autonomous Learning Ecosystem

Peter Merel Xscale Alliance 2014 Set of Principles 3 - Yes Yes Yes

Lean Enterprise Agile Framework - LeanPitch Technologies 2015 Framework 0 - Yes Yes Yes

Nexus Ken Schwaber Scrum.org 2015 Framework 5 - Yes Yes Yes

FAST Agile Ron Quartel Cron Technologies 2015 Set of Methods 2 - Yes No Yes

Descriptive Information Maturity

cross-component, end-to-end feature teams are introduced
by LeSS through the elimination of traditional team lead
and project manager roles [21].

Larman and Vodde proposed two different frameworks
depending on the size of the project. The basic LeSS
framework provides guidelines and techniques for agile
development with less than ten teams [6].

In basic LeSS, a single product owner (PO) is common to
all ten teams, but no other special roles are specified com-
pared with standard Scrum. The LeSS framework changes
the structure of sprint planning meetings compared with the
traditional Scrum approach. Here, each of the agile teams,
represented by two members per team, plus the one overall
PO decide which chunk of product backlog items to work on.
This is in contrast with standard Scrum wherein the rest of
the agile team also participates. When contention occurs over
a backlog item, the PO mediates between teams. Likewise,
sprint review changes to a single meeting for all agile teams.
However, it is limited to two team members per agile team.
In addition, three more changes are established [6]

• The inter-team coordination meeting is designed to

increase information sharing and coordination. It can
be conducted frequently during the week and can take
various forms, including open space, town hall meeting,
multi-team daily Scrum, or Scrum of Scrums formats.

• The joint light product backlog refinement meeting
focuses on refining product backlog items for upcoming
sprints. It is restricted to two representatives per team
and should not exceed 5% of the sprint duration.

• Finally, a joint retrospective is added that aims to iden-
tify and plan improvement experiments for the overall
product or organization. The PO, scrum master, and one
representative from each team attend this meeting.

Agile development with more than ten teams is guided by the
second LeSS framework, named LeSS Huge. It introduces
additional scaling elements, which are required to manage
hundreds of developers in large enterprises. LeSS Huge
introduces a new concept, namely, requirement areas (RAs).
RAs encompass major areas of customer concern from a
product point of view and may grow or shrink over time
in order to match product needs. All RAs follow the same
sprint cadence and aim for continuous integration across the

181

entire product. Adding the RA as an attribute in the product
backlog creates an area product backlog (APB) view for
each RA. This represents a new feature in LeSS Huge. Each
product backlog item belongs to one area backlog. Area
backlog items are defined, prioritized, and split, as needed,
by the area product owner (APO). The APO focuses on one
APB and is usually a specialist in that area. The APO acts
similar as the PO would in the smaller LeSS framework.

SAFe was released in 2011 by Dean Leffingwell and
is now at version 4.0. SAFe builds on existing lean and
agile principles that are combined into a method for large-
scale agile projects. SAFe provides a soft introduction to
the agile world as it specifies many structured patterns.
This is often needed for those who are transitioning from
a more traditional environment, particularly in the context
of a large project. A common problem with agile adoption
is the difficulty in introducing such a major cultural change
to an organization. Thus, SAFe provides the structure needed
to make the transition more predictable, even though it
follows agile practices and stresses autonomy and decision-
making for knowledge workers. SAFe highlights four levels
of organization: team, program, value stream, and portfolio.
Each level integrates agile and lean practices, manages its
own activities, and is aligned with the other levels.

At the team level, the techniques outlined are those used in
Scrum, and two-week sprint cycles are recommended. Each
team comprises 5–9 members and has a scrum master and
a PO, similar to standard Scrum. All SAFe teams are part
of one agile release train (ART), a team of agile teams that
delivers a continuous flow of incremental releases of value.
Each agile team is responsible for defining, building, and
testing stories from its team backlog in a series of iterations
using common iteration cadences and synchronization to
align its activities with other teams so that the entire system
is iterating in unison. Teams use ScrumXP or Kanban to
deliver prototypes every two weeks [22].

At the program level, SAFe extends Scrum using the same
ideas but on a higher level. The program level is based on
an ART, which is composed of five sprint cycles. There
is also a sixth innovation planning sprint, which allows
teams to innovate, inspect, and adapt. Teams, roles, and
activities are organized around the ART [22]. At this level,
a product manager (PM) serves as the content authority for
the ART and is accountable for identifying program backlog
priorities. In addition, the PM works with POs to optimize
feature delivery and direct the work of POs at the team level.
A release train engineer (RTE) facilitates program level
processes and execution, escalates impediments, manages
risk, and helps to drive continuous improvement.

At the optional value stream level, the value stream
engineer (VSE) plays a similar role, facilitating and guiding
the work of all ARTs and suppliers. Further important roles,
such as business owner, DevOps team member, release
manager, and solution manager have been described in [22].

SAFe also specifies processes at one higher level, the
portfolio level, using lean principles, such as optimizing
value streams, which are long-lived series of steps used to
deliver value. These help executives and leaders identify and
prioritize epics and features that can be broken down at the
program level and scheduled for ARTs [22].

The DA 2.0 framework, previously kwown as Disciplined
Agile Delivery, was released in 2012 by Scott Ambler and
Mark Lines [23]. In comparison with SAFe, DA 2.0 aims
to address areas that are not thoroughly covered in smaller
scaling agile frameworks and recommends three phases:
inception, construction, and transition. While many agile
frameworks address what DA 2.0 calls the construction
phase, DA 2.0 provides recommendations for processes
that come both earlier in the project (inception) and as
teams prepare for delivery (transition). DA 2.0 also provides
flexibility by suggesting different process guidelines for
four categories of life cycles: agile/basic, lean/advanced,
continuous delivery, and exploratory.

The construction phase of agile/basic is Scrum, whereas
the lean/advanced life cycle uses processes similar to Kan-
ban. The inception phase is used to stock a work item
pool that is organized to achieve business values, fixed
delivery dates, expedited delivery, or some other intangible
goal. During the transition phase, planning, retrospection,
prototyping, stand up meetings, and other activities are
undertaken. The continuous delivery life cycle focuses on
mature DevOps, continuous integration, and deployment
processes for projects that require frequent delivery to stake-
holders. The exploratory life cycle minimizes early planning
in favor of fast delivery, gaining feedback, and incorporating
that feedback into the next delivery [23].

In the third continuous delivery life cycle, the inception
phase is explicit and has a very brief transition period. In
this life cycle, products are produced on a very regular basis:
daily, weekly, or monthly [23].

The last life cycle, the exploratory life cycle, aims to
encourage agile teams to put themselves in start-up or
research situations wherein the stakeholders have clear ideas
for a new product but do not yet understand the needs of
their user base [23].

Table II
IDENTIFIED ARCHITECT ROLES IN SCALING AGILE FRAMEWORKS.

Enterprise
Architect

Software
Architect

Solution
Architect

Information
Architect

DSDM - X X -

SAFe X X X X

DA 2.0 X X X -

EADAGP X - - X

182

III. THE ROLE OF ARCHITECTS IN SCALING AGILE
FRAMEWORKS

Since traditional agile methods, such as XP or Scrum, do
not include the role of architects, we recognize that this is
no longer valid for scaling agile frameworks. In particular,
we have seen that several scaling agile frameworks involve
various architect roles. We have selected a set of predom-
inant architect roles relevant to the realm of enterprise
architecture (EA) from refs. [24] and [25] to describe their
function in scaling agile frameworks. These roles comprise
the enterprise architect, software architect, solution archi-
tect, and information architect3. We have searched each
relevant source for these architect roles and related them
to the different scaling agile frameworks. The results are
summarized in Table II.

Only 4 out of 20 scaling agile frameworks include archi-
tect roles, namely Dynamic Systems Development Method
Agile Project Framework for Scrum (DSDM), SAFe, DA
2.0, and Enterprise Agile Delivery and Agile Governance
Practice (EADAGP). The findings also reveal that no frame-
work describes all architect roles in detail. The frameworks
predominantly consider the roles of enterprise, software, and
solution architects. In addition, the results show that more
mature frameworks are more likely than others to describe
architect roles. However, due to limited information and
unavailable documentation, further analyses are required to
emphasize this assumption.

We have created the following role description template,
based on refs. [24], [26], [27] to describe architect roles

• Key concerns describe the key interests of the architect
role.

• Area of interests describes the area of interests of the
architect role, e.g., special project tasks.

• Contributions describe the contributions of the architect
role, e.g., resources like work, financial capital, or other
types of engagements.

• Strategies describes the appropriate strategies for work-
ing with the architect role from management view.

• Responsibilities describes the responsibilities of the
architect role.

• Commitments describes the commitments of the archi-
tect role, which can be either active opposition, passive
opposition, neutral, passive support, or active support.

The following sections present our results about the role of
architects in various scaling agile frameworks.

A. The role of enterprise architect

The role of enterprise architect is only considered by
SAFe, DA 2.0, and EADAGP.

In SAFe, an enterprise architect works with business
stakeholders and software and solution architects to drive

3We have also considered synonyms for each architect role, e.g., domain
architect denotes the same role as solution architect.

holistic technology implementation across value streams.
The enterprise architect is concerned with driving EA strat-
egy, which comprises five key aspects, namely choice of
technology, software and solution strategy, development and
deployment infrastructure strategy, inter-program collabora-
tion, and implementation strategy. This is communicated,
along with other key business drivers of architecture, to
system architects and nontechnical stakeholders.
The main contributions of the enterprise architect are provid-
ing strategic technical directions and driving collaboration of
programs and teams around a common technical vision.
The portfolio level represents the enterprise architect’s area
of interest.
The strategy for working with enterprise architects is to
involve them actively in the portfolio level by ensuring the
presence of enterprise-wide architectural systems, platforms,
and infrastructures.
The key responsibilities of the enterprise architect are

• maintaining a high-level and holistic vision of enter-
prise solutions and development initiatives;

• understanding and communicating strategic themes and
other key business drivers for architecture to system
architects and nontechnical stakeholders;

• working with business stakeholders and software and
solution architects to drive holistic technology imple-
mentation across value streams;

• working closely with software and solution architects
to ensure that individual program and product strategies
align with enterprise objectives;

• participating in the strategy for building and maintain-
ing the enterprise architectural runway; and

• facilitating the reuse of ideas, components, and patterns.

The commitment of the enterprise architect is the active
support of agile teams [22].

Enterprise awareness is one of the key aspects of the DA
2.0 framework. Enterprise awareness motivates agile teams
to consider the overall needs of the organization and to
leverage existing assets in alignment with an enterprise-level
strategy. DA 2.0 recommends that agile teams work closely
with enterprise professionals, such as enterprise architects.
Within DA 2.0, the enterprise architect has both a primary
role as a stakeholder and a secondary role as a specialist
for assisting agile teams. The key concerns of enterprise
architects are addressing strategies for supporting delivery
teams and other stakeholders, evolving and capturing the
EA, and governing the EA efforts.
The inception, construction, and ongoing process goals of
the DA 2.0 framework form the area of interest of the enter-
prise architect. In the inception phase, the enterprise architect
works closely with agile teams to align them with enterprise
goals and to provide non-functional requirements (NFRs).
Further, the enterprise architect supports agile teams during
the initial architectural envisioning and modeling efforts and

183

the initial technical strategy definition phase by ensuring
that they leverage as much of the existing infrastructure as
possible. In the construction phase, the enterprise architect
collaborates with agile teams to ensure that their solution
reflects the overall strategy of the organization. Within the
ongoing process goal, the enterprise architect holds regular
coordination meetings with product management teams to
ensure consistency and manage dependencies across teams.
The enterprise architect contributes to software development
by providing guidance to agile teams by producing high-
level technology and business roadmaps, which capture
the organization’s vision and by helping agile teams to
understand the overall vision. The strategy for working
with enterprise architects is to involve them passively in
development projects.
The key responsibilities of the enterprise architect are

• supporting and collaborating closely with stakeholders
on a regular basis to understand their needs and to
develop the organization’s roadmap;

• supporting and collaborating closely with agile teams
on a regular basis to guide them through the business
and technical roadmaps and help them to identify
potentially reusable assets and technical debts;

• negotiating technical dependencies between solutions;
• exploring architectural views; and
• adopting and tailoring architectural frameworks.

The commitment of the enterprise architect is the passive
support of agile teams by providing guidance and roadmaps
[23], [28], [29], [30], [31], [32].

The EADAGP framework includes an event-driven gov-
ernance model, which provides a lightweight, lean, and
virtual governance model design. EADAGP introduces a
governance buffer zone, which aims to protect agile teams
from the slowness, friction, and rigidity of traditional IT
governance models. The agile governance buffer zone is a
subtractive layer that is realized by combining three different
styles of governance, namely top-down prescriptive gover-
nance (traditional IT governance), community governance,
and self-governance. The enterprise architect forms, along
with scrum master(s), PO(s), and the agile governance owner
the agile community team (ACT). This is a community
governance construct, responsible for governing multiple
agile teams that are aligned with one or more releases.
Within the ACT, the enterprise architect is concerned with
governance requirements that span multiple sprints or re-
leases and cross-sprint team coordination and collaboration.
Community governance, in particular the ACT, represents
the area of interest of the enterprise architect.
The main contributions of the enterprise architect are ad-
dressing governance requests, escalating them to IT gover-
nance if they cannot be addressed, and notifying agile teams
and IT governance for their agreement and/or approval.
The strategy for working with enterprise architects is to

involve them passively within the ACT so they can make
appropriate governance decisions and provide guidance.
The key responsibilities of the enterprise architect are

• escalating governance issues to IT governance;
• supporting agile teams by making appropriate gover-

nance decisions and providing guidance;
• communicating governance decisions to enterprise IT

governance for their agreement;
• supporting the governance backlog grooming process;
• harmonizing governance requirements across sprints

and agile teams;
• reporting technology and architecture require-

ments/issues to EA oversight for alignment and issue
resolution;

• identifying security requirements and challenges that
may not have been pre-determined; and

• raising potential compliance and risk requirements that
have to be reviewed and signed off by governance, risk
and compliance bodies, and EA sign offs.

The commitment of the enterprise architect is the passive
support of agile teams by protecting them from the slowness
and rigidity of traditional IT governance [33], [34].

B. The role of software architect

DSDM, SAFe, and DA 2.0 include the role of software
architects.

DSDM does not explicitly prescribe the role of software
architect but it does specify the role of a technical coordina-
tor, whose responsibilities can be allocated to more than one
person, e.g., a system architect. Thus, we will concentrate
on describing the role of the technical coordinator, which is
relevant to the role of a software architect.
As the project’s technical authority, the software architect’s
key concern is to ensure that the project is technically
coherent and meets the desired technical standards. The
software architect holds the business and technical visions
for the project.
The project level constitutes the area of interest of the
software architect. Therein, the software architect may be a
part of a project board or steering committee for the project.
Technical development and direction of the solution and
system architecture definitions are the software architect’s
main contributions.
The strategy for working with software architects is to
involve them as technical coordinators.
The responsibilities of the software architect are

• agreeing and controlling the technical architecture;
• identifying and owning architectural and other techni-

cally based risks;
• working with business analysts to evaluate the technical

options and decide on the best way to turn the high-
level business requirements into a technical solution;

• promoting standards for technical best practice;

184

• acting as the final arbiter of technical differences be-
tween agile team members; and

• defining the system architecture that constitutes the
technical framework within which the solution will be
developed and providing a high-level description of the
structure of that solution.

The commitment of the software architect is passive support
of agile teams [11], [35], [36].

SAFe’s key roles at the program level include the RTE,
product management, and system architect/engineer, here-
after the software architect. The software architect role is
filled by an individual or small team that has technical
responsibility for the overall architectural and engineering
design of the system and aligns ARTs with the common
technical and architectural vision for the solution under de-
velopment. The software architect participates in defining the
system, as well as any subsystems and interfaces, validating
technology assumptions, and evaluating alternatives. The
software architect works at a higher level of abstraction than
the teams and supports system development by providing,
communicating, and evolving the larger technological and
architectural view of the solution.
The system architect is concerned with executing the upfront
architecture design, guiding the emergent architecture for
all program teams, and defining the architectural runway
that supports new feature development, as well as providing
guidance for common solution behaviors, shared compo-
nents, and separation of concerns.
The program level, particularly the ART, represents the
software architect’s main area of interest.
The software architect contributes to software development
by working with agile teams and providing technical enable-
ment with respect to subsystems and capability areas under
the purview of the ART.
The strategy for working with software architects is to
involve them at program level.
The key responsibilities of the software architect are

• defining NFRs, major system elements, subsystems,
and interfaces;

• preparing the architecture vision briefing within the
program increment (PI) planning event;

• presenting the architecture vision, which may include
descriptions of new architectural epics for common
infrastructure, any large-scale refactors under consid-
eration, and system-level NFRs; and

• supporting the PO by refining the team backlog.
In addition, the software architect shares several common
responsibilities with the solution architect, which are

• defining and refining NFRs, subsystems, and interfaces
to ensure that the solution meets relevant standards and
other system quality requirements;

• defining subsystems and their interfaces, allocating
responsibilities to subsystems, understanding solution

deployment, and communicating requirements for in-
teractions with the solution context;

• preparing for the PI planning event by updating enabler
definitions and models;

• assisting with decision-making and sequencing of the
key technological infrastructures that will host the new
business functionality;

• creating and supporting enabler epics by steering them
through the Kanban system, providing both the guid-
ance needed to analyze them and the information
needed to estimate and implement them;

• working with portfolio stakeholders, particularly the en-
terprise architect, to develop, analyze, split, and realize
the implementation of enabler epics; and

• planning and developing the architectural runway in
support of upcoming business features and capabilities.

The commitment of the software architect is the active
support of agile teams within the program level [22].

As already mentioned in Section II-B, DA 2.0 introduces
the AM role of architecture owner, which is typically the
software or solution architect, hereafter the software archi-
tect4. The software architect is concerned with owning ar-
chitecture decisions for the team and facilitating the creation
and evolution of the overall solution design.
The first two phases, namely the inception and transition
phases, as well as the ongoing process goals that occur
throughout the delivery life cycle represent the area of
interest of the software architect. The software architect
is involved during the inception phase by contributing to
exploration of the initial solution requirements, alignment of
the solution with both the business and technical directions
of the organization, and identification of the initial technical
strategy. During the construction phase of the solution, the
software architect updates the architectural handbook in the
iteration in which the features are delivered. The software
architect contributes to the goal of activity coordination
within the ongoing process goal by having regularly sched-
uled information meetings with the PO to share information
about work details, priorities, dependencies, and issues. The
software architect mainly contributes to the identification of
the initial technical strategy, definition of the architecture,
and development of technical aspects of the overall solution
architecture. The strategy for working with software archi-
tects is to involve them during the two first life cycle phases
and with ongoing process goals of DA 2.0.
The key responsibilities of the software architect are

• guiding the creation and evolution of the solution
architecture that the team is working on;

• mentoring and coaching other team members with best
practices of architecture;

• understanding the architectural direction and standards

4Since DA 2.0 does not differentiates between the roles of software
architect and solution architect, we have merged the findings for both roles.

185

of the organization and helping to ensure that the agile
team adheres to them appropriately;

• understanding existing enterprise assets such as frame-
works, patterns, and subsystems and ensuring that the
team uses them where appropriate;

• ensuring that the solution will be easy to support by
encouraging good design and refactoring to minimize
technical debt;

• ensuring that the solution is integrated and tested on a
regular basis, ideally via continuous integration;

• working closely with the team lead to identify tech-
nical risks in the project and determining strategies to
mitigate them; and

• leading the initial architecture envisioning effort at
the beginning of the project and supporting the initial
requirements envisioning effort.

The commitment of the software architect is the active
support of agile teams [23], [31], [32].

C. The role of solution architect

The role of solution architects is supported by DSDM,
SAFe, and DA 2.0.

As discussed previously in Section III-B, DSDM does not
include the architect roles explicitly. However, a solution
architect can also be allocated to the role of a technical
coordinator. Thus, we will describe the technical coordinator
characteristics that are relevant to the solution architect role.
The solution architect is concerned with definition of the
solution architecture.
Thus, the solution architecture represents the solution archi-
tect’s area of interest. Within DSDM, the solution archi-
tecture is set during the foundation phase, which makes a
preliminary investigation of the feasibility of the solution
and establishes a fundamental understanding of the business
rationale for the project and the potential solution. The solu-
tion architecture constitutes an evolutionary product, which
provides a high-level design framework for the solution. It
covers both business and technical aspects of the solution.
The main contribution of the solution architect is in the
definition of the solution architecture during the foundation
phase of the project.
The strategy for working with solution architects is to
involve them actively in defining the solution architecture
during the feasibility, foundation, evolutionary development,
and deployment phases.
The solution architect is responsible for the overall design
and integrity of the technical aspects of the solution, which
comprise the solution architecture.
The commitment of the solution architect is the active
support of agile teams by providing the definition of the
solution architecture [11], [35], [36].

At the value stream level, SAFe introduces additional
roles, namely solution management, VSE, and solution
architect/engineer, hereafter solution architect. The role of

solution architect is filled by cross-disciplinary teams that
take a systemwide view of solution development.
The solution architect is concerned with the overall archi-
tectural design of the solution, definition of the higher-level
functional and NFRs, determination of major components
and subsystems, and definition of interfaces.
The primary area of interest of the solution architect is the
value stream level.
As a technical leader, the solution architect contributes to the
entire solution under development by communicating and
evolving the larger technological and architectural view of
the solution and aligning the value stream and ARTs to a
common technological and architectural vision.
The strategy for working with solution architects is to
involve them actively and to enable their close collaboration
with business stakeholders, teams, customers, suppliers, and
third-party stakeholders.
Since the solution architect shares several common respon-
sibilities with the software architect in SAFe, we will only
describe responsibilities, which are exclusive to the solution
architect (see Section III-B for common responsibilities).
The exclusive responsibilities of the solution architect are

• supporting the solution management by managing the
value stream kanban;

• discussing upcoming enabler capabilities and epics with
the solution management;

• defining the overarching architecture that connects the
solution across ARTs;

• working with the system architect to guide the archi-
tecture developed by the ARTs;

• ensuring technical alignment with the solution context,
including interfaces and constraints;

• attending to the value stream and ART PI planning
events; and

• updating progress toward milestones, program PI ob-
jectives, and dependencies among the ARTs

The commitment of the solution architect is the active
support of agile teams at value stream level [22].

D. The role of information architect

The role of information architect is only supported by
SAFe and EADAGP.

Within SAFe, the key concern of the information architect
is to participate in a shared services role in order to support
development by quickly bringing specialized expertise to
bear on areas of the system or solution that require unique
knowledge and skills.
The area of interest of the information architect is the ART
and value stream.
The main contribution of the information architect is to
support agile teams on the ART and to contribute to the
architectural runway. Along with a system architect, a scrum
master and one or two agile teams. They create the techno-
logical infrastructure to support the highest-priority features

186

in a near-term PI and the intentional architecture that guides
cross-team design and implementation synchronization.
The strategy for working with information architects is to
involve them actively in the project and to embed them
periodically in agile teams.
The responsibilities of the information architect are

• participating in PI planning as well as in pre- and post-
PI planning;

• driving requirements and taking ownership of depen-
dent backlog items;

• collaborating with agile teams to fulfill dependencies
during PI executions; and

• participating in system and solution demos.
The commitment of the information architect is the active
support of agile teams [22].

Within the EADAGP framework, the key concerns of the
information architect is participation within the ACT. The
information architect works on governance requirements that
cut cross multiple sprint teams or releases.
The area of interest of the information architect is the ACT.
The main contributions of the information architect is
providing information architecture governance requirements
that span multiple sprints or releases.
The strategy for working with information architects is to
involve them passively in the project.
The key responsibilities of the information architect are

• escalating and communicating governance issues and
decisions to IT governance;

• supporting agile teams by making appropriate gover-
nance decisions and providing guidance;

• supporting the governance backlog grooming process;
• harmonizing governance requirements across sprints

and agile teams;
• surfacing technology and architecture requirements;
• identifying security requirements and challenges that

may not have been pre-determined; and
• raising potential compliance and risk issues.

The commitment of the information architect is the passive
support of agile teams and, thus, of software development
since the information architect is only responsible for im-
posing governance requirements on agile teams [33].

IV. DISCUSSION

We now discuss the main outcomes of our findings.
Increasing development speed by balancing emergent and
intentional architecture design. While some scaling agile
frameworks, e.g., LeSS, are against upfront architecture
design, other frameworks, such as DA 2.0 and SAFe,
endorse upfront architecture design and planning. While
they highlight the dangers of traditional architectural habits,
e.g., heavyweight documentations, tedious upfront design
approaches, and imposed architectural guidelines, they also
realize that some initial envisioning performed at the be-
ginning of the project can increase effectiveness and reduce

excessive redesign efforts as the teams are steered in the
intended direction. Only a close collaboration between agile
teams, software, solution, and enterprise architects can en-
able an optimal interplay of emergent design and intentional
architecture.

Finding the right balance between centralized and
decentralized architectural decision-making. Escalating any
type of architectural decision to higher levels of authority
increases delay and decreases the usefulness of the decision.
A balanced combination of centralized and decentralized
decision-making provides many benefits, e.g., faster time to
market and higher-quality products and services.

Sparing agile development from traditional IT gover-
nance. Some scaling agile frameworks, such as DSDM and
DA 2.0, recognize the real value of agility in terms of project
productivity and solution quality while acknowledging and
accepting necessary constraints, e.g., governance, architec-
ture, and infrastructure strategies, which often exist when
working in a corporate environment. However, traditional
governance models are slowing down agile teams in large
organizations. SAFe, EADAGP, and DA 2.0 recommend new
governance models that are collaborative, decentralized, and
light-weight. These new models allow teams to decentralize
their decision making and to govern themselves.

Ensuring the reuse of enterprise assets. Architects are
aware of existing enterprise assets, e.g., patterns and stan-
dards, which are available for reuse, and ensure that agile
teams utilize them where applicable. This accelerates the
development process and reduces time to market.

V. CONCLUSION AND FUTURE WORK

In this study, we have motivated the need for scaling
existing agile methods to large-scale agile development due
to their deficiencies in inter-team coordination and commu-
nication. We have then presented a primary analysis of the
identified scaling agile frameworks. Based on our maturity
assessment, we have identified LeSS, SAFe, and DA 2.0 as
the most mature frameworks. Finally, we have extensively
characterized the different architect roles that have been
identified in scaling agile frameworks. Our findings indicate
that architects both actively and passively support agile
teams by driving architectural initiatives, participating in ar-
chitectural runways, harmonizing governance requirements,
and ensuring technical alignment in solution contexts. Future
research may analyze the challenges faced by architects
in scaling agile environments by conducting case studies
in organizations that can provide practical experience of
adopting scaling agile frameworks.

REFERENCES

[1] P. Weill and S. Woerner, “Thriving in an increasingly digital
ecosystem,” MIT Sloan Management Review, vol. 56, no. 4,
p. 27, 2015.

187

[2] B. Sherehiy, W. Karwowski, and J. Layer, “A review of
enterprise agility: Concepts, frameworks, and attributes,” In-
ternational Journal of industrial ergonomics, vol. 37, no. 5,
pp. 445–460, 2007.

[3] E. Overby, A. Bharadwaj, and V. Sambamurthy, “Enterprise
agility and the enabling role of information technology,”
European Journal of Information Systems, vol. 15, no. 2, pp.
120–131, 2006.

[4] P. Kettunen, “Extending software project agility with new
product development enterprise agility,” Software Process:
Improvement and Practice, vol. 12, no. 6, pp. 541–548, 2007.

[5] M. Alqudah and R. Razali, “A review of scaling agile methods
in large software development,” International Journal on
Advanced Science, Engineering and Information Technology,
vol. 6, no. 6, pp. 28–35, 2016.

[6] A. Vaidya, “Does dad know best, is it better to do less or just
be safe? adapting scaling agile practices into the enterprise,”
PNSQC. ORG, pp. 828–837, 2014.

[7] “Agile architecture,” http://www.scaledagileframework.com/
agile-architecture/, accessed: 2017-04-26.

[8] M. Mocker, “What is complex about 273 applications? un-
tangling application architecture complexity in a case of
european investment banking,” in System Sciences, 2009.
HICSS’09. 42nd Hawaii International Conference on. IEEE,
2009, pp. 1–14.

[9] M. Waterman, “Reconciling agility and architecture: A theory
of agile architecture,” Ph.D. dissertation, Victoria University
of Wellington, 2014.

[10] J. Vom Brocke, A. Simons, B. Niehaves, K. Riemer, R. Plat-
tfaut, and A. Cleven, “Reconstructing the giant: On the
importance of rigour in documenting the literature search
process,” in ECIS, vol. 9, 2009, pp. 2206–2217.

[11] A. B. Consortium, The DSDM Agile Project Framework
Handbook. Agile Business Consortium, 2014.

[12] M. Fowler and J. Highsmith, “The agile manifesto,” Software
Development, vol. 9, no. 8, pp. 28–35, 2001.

[13] P. Abrahamsson, O. Salo, J. Ronkainen, and J. Warsta, “Agile
software development methods: review and analysis,” VTT
Technical report, Tech. Rep., 2002.

[14] D. Leffingwell, Scaling Software Agility: Best Practices for
Large Enterprises (The Agile Software Development Series).
Addison-Wesley Professional, 2007.

[15] T. Dybå and T. Dingsøyr, “Empirical studies of agile soft-
ware development: A systematic review,” Inf. Softw. Technol.,
vol. 50, no. 9-10, pp. 833–859, Aug. 2008.

[16] M. Lindvall, D. Muthig, A. Dagnino, C. Wallin, M. Stup-
perich, D. Kiefer, J. May, and T. Kahkonen, “Agile soft-
ware development in large organizations,” Computer, vol. 37,
no. 12, pp. 26–34, 2004.

[17] K. Dikert, M. Paasivaara, and C. Lassenius, “Challenges and
success factors for large-scale agile transformations: A sys-
tematic literature review,” Journal of Systems and Software,
vol. 119, pp. 87–108, 2016.

[18] T. Dingsøyr and N. Moe, Towards Principles of Large-
Scale Agile Development. Cham: Springer International
Publishing, 2014, pp. 1–8.

[19] K. Petersen and C. Wohlin, “The effect of moving from a
plan-driven to an incremental software development approach
with agile practices,” Empirical Softw. Engg., vol. 15, no. 6,
pp. 654–693, Dec. 2010.

[20] E. Bjarnason, K. Wnuk, and B. Regnell, “A case study on
benefits and side-effects of agile practices in large-scale re-
quirements engineering,” in Proceedings of the 1st Workshop
on Agile Requirements Engineering, ser. AREW ’11. New
York, NY, USA: ACM, 2011, pp. 31–35.

[21] B. V. Craig Larman, “Scaling agile development,” CrossTalk,
pp. 8–12, 2013.

[22] D. Leffingwell, A. Yakyma, R. Knaster, D. Jemilo,
and I. Oren, SAFe® 4.0 Reference Guide: Scaled Agile
Framework® for Lean Software and Systems Engineering.
Addison-Wesley Professional, 2016.

[23] S. Ambler and M. Lines, Disciplined agile delivery: A prac-
titioner’s guide to agile software delivery in the enterprise.
IBM Press, 2012.

[24] V. Haren, TOGAF Version 9.1. Van Haren Publishing, 2011.
[25] P. A. Khosroshahi, M. Hauder, A. Schneider, and F. Matthes,

“Enterprise architecture management pattern catalog version
2.0,” Technische Universität München, Tech. Rep., 2015.

[26] E. Andersen, K. Grude, and T. Haug, Goal directed project
management: effective techniques and strategies. Kogan
Page Publishers, 2009.

[27] J. R. Turner, People in project management. Gower Publish-
ing Company, 2003.

[28] S. Ambler and M. Lines, “Scaling agile software develop-
ment: Disciplined agility at scale,” Disciplined Agile Consor-
tium, Tech. Rep., 2014.

[29] ——, “The disciplined agile process decision framework,”
in International Conference on Software Quality. Springer,
2016, pp. 3–14.

[30] ——, “Going beyond scrum disciplined agile delivery,” Dis-
ciplined Agile Consortium, Tech. Rep., 2013.

[31] ——, “Scaling agile software development tactically: Disci-
plined agile delivery at scale,” Disciplined Agile Consortium,
Tech. Rep., 2016.

[32] “Disciplined agile 2.x: A process decision framework,” http:
//www.disciplinedagiledelivery.com/, accessed: 2017-04-26.

[33] E. Marks, “Governing enterprise agile development without
slowing it down: Achieving friction-free scaled agile gover-
nance via event- driven governance,” AgilePath Corporation,
Tech. Rep., 2014.

[34] ——, “A lean non-functional requirements (nfr) framework:
A common framework for governance, risk and compliance as
well as traditional nfrs,” AgilePath Corporation, Tech. Rep.,
2017.

[35] A. B. Consortium, DSDM Atern Handbook. Agile Business
Consortium, 2008.

[36] A. Craddock, K. Richards, D. Tudor, B. Roberts, and J. God-
win, “The dsdm agile project framework for scrum,” DSDM
Consortium, Tech. Rep., 2012.

188

Evolution of the Agile Scaling
Frameworks

Ömer Uludağ1(B), Abheeshta Putta2, Maria Paasivaara2,3,
and Florian Matthes1

1 Technische Universität München, München, Germany
{oemer.uludag,matthes}@tum.de

2 Aalto University, Espoo, Finland
{abheeshta.putta,maria.paasivaara}@aalto.fi

3 LUT University, Lappeenranta, Finland
maria.paasivaara@lut.fi

Abstract. Over the past decade, agile methods have become the favored
choice for projects undertaken in rapidly changing environments. The
success of agile methods in small, co-located projects has inspired com-
panies to apply them in larger projects. Agile scaling frameworks, such
as Large Scale Scrum and Scaled Agile Framework, have been invented
by practitioners to scale agile to large projects and organizations. Given
the importance of agile scaling frameworks, research on those frame-
works is still limited. This paper presents our findings from an empirical
survey answered by the methodologists of 15 agile scaling frameworks.
We explored (i) framework evolution, (ii) main reasons behind their cre-
ation, (iii) benefits, and (iv) challenges of adopting these frameworks.
The most common reasons behind creating the frameworks were improv-
ing the organization’s agility and collaboration between agile teams. The
most commonly claimed benefits included enabling frequent deliveries
and enhancing employee satisfaction, motivation, and engagement. The
most mentioned challenges were using frameworks as cooking recipes
instead of focusing on changing people’s culture and mindset.

Keywords: Agile scaling frameworks · Large-scale agile · Survey

1 Introduction

Ever since the creation of the Agile Manifesto in 2001, practitioners and
academics have devoted a great deal of attention to agile software develop-
ment methods [1]. Initially, they were designed for small, co-located, and self-
organizing teams that develop software in close collaboration with business cus-
tomers using short iterations [2]. Hence, agile methods have been primarily
applied to projects within the so-called ‘agile sweet spot’, i.e., small and co-
located teams of less than 50 persons with easy access to the user and business

c© The Author(s) 2021
P. Gregory et al. (Eds.): XP 2021, LNBIP 419, pp. 123–139, 2021.
https://doi.org/10.1007/978-3-030-78098-2_8

189

124 Ö. Uludağ et al.

experts and that develop non-life-critical software [3]. Given the successful adop-
tion of agile methods in small organizations and projects, also many large soft-
ware organizations have begun to adopt these methods [4]. However, the adop-
tion of agile methods outside the agile sweet spot poses significant challenges to
organizations, such as coordination challenges in multi-team environments [5].
To resolve issues associated with the adoption of agile methods in large-scale
organizations and projects, several agile scaling frameworks, such as Large Scale
Scrum (LeSS)1 and Scaled Agile Framework (SAFe)2, have been created both by
some custodians of existing agile methods and by others who have worked with
companies to scale agile methods to their settings [4,6,7]. As large organizations
face growing pressures and expectations to become more agile, and the agile scal-
ing frameworks claim to provide off-the-shelf solutions to scaling, their adoption
has rapidly increased in industry, as confirmed by the yearly non-scientific survey
on the state of agile development conducted by VersionOne [6–8].

Not only is there a growing interest in adopting agile scaling frameworks
from an industrial perspective [8], but there is also a growing academic inter-
est to study the adoption of these frameworks [6]. A systematic mapping study
by Uludağ et al. [6] uncovered the topic of agile scaling frameworks as a major
research stream in the field of large-scale agile development, with a total of 16%
of all published studies related to large-scale agile development. The existing
literature on the scaling frameworks mainly investigates how individual frame-
works are adopted based on case studies (cf. [9]) followed by a comparison of
the frameworks based on their underlying characteristics based on literature
reviews (cf. [10]). However, the existing literature on agile scaling frameworks
disregards the following topics: (i) providing a comprehensive overview of agile
scaling frameworks and their evolution, (ii) studying the reasons behind creat-
ing these frameworks, and (iii) investigating the benefits and (iv) challenges of
adopting these frameworks. To address this research gap, we conducted a survey
with the creators/methodologists of known agile scaling frameworks and aim to
answer the following research questions (RQs):

– RQ1: How did the agile scaling frameworks evolve over the years?
– RQ2: What are key reasons behind creating of agile scaling frameworks?
– RQ3: What are the claimed benefits of adopting agile scaling frameworks?
– RQ4: What are the claimed challenges of adopting of agile scaling frame-

works?

The remainder of this paper is structured as follows. In Sect. 2, we provide
an overview of related work. In Sect. 3, we portray the research design of our
paper. Section 4 presents the result of our survey. In Sect. 5, we discuss our main
findings and limitations and conclude our study with a summary of our results
and remarks on future research.

1 https://less.works/, last accessed on: 03-10-2021.
2 https://www.scaledagileframework.com/, last accessed on: 03-10-2021.

190

Evolution of the Agile Scaling Frameworks 125

2 Background and Related Work

The successful adoption of agile methods in small teams ignited a new passion
among firms to start using agile methods in large projects, even beyond software
development, across the enterprise [11]. This phenomenon is often referred as
‘large-scale agile development’ [12]. In line with Dikert et al. [5], we understand
the term ‘large-scale agile development’, as the application of agile methods in
large multi-team settings consisting of 50 persons or more, or at least six teams.

Over the past two decades, software engineers and researchers have devoted
a great deal of attention to agile software development [13]. Within few years,
various agile methods appeared on the landscape, such as Extreme Programming
and Scrum, to name a few [1]. Figure 1 presents the various agile methods, their
interrelationships, and their evolutionary paths [13].

Fiction of universal methods
(Malouin and Landry, 1983)

1990

2000

Prototyping methodology
(e.g., Lantz, 1986)

Spiral model
(Boehm, 1986)Evolutionary life-cycle

(Gilb, 1988)

Rapid application
development (RAD)
(e.g., Martin, 1991)

RADical software
development (Bayer
and Highsmith, 1994)

Adaptive Software Development
(ASD) (Highsmith, 2000)

Dynamic systems
development method
(DSDM, 1995)

Object oriented
approaches

Unified modeling
language (UML)

Rational Unified
Process (RUP)
(Kruchten, 2000)

Feature-Driven
Development (FDD)
(Palmer and Felsing, 2002)

Crystal family
of methodologies
(Cockburn , 1998; 2001) Extreme Programming (XP)

(Beck, 1999)

Agile Modeling (AM)
(Ambler, 2002)

Pragmatic
Programming (PP)
(Hunt and Thomas,
2000)

Open Source
Software (OSS)
development

Internet technologies,
distributed software
development

Methodology
Engineering
(Kumar and
Welke, 1992)

Amethodological IS
development
(Baskerville, 1992;
Truex et al., 2001)

IS development in
emergent organizations
(Truex et al., 1999)

Agile manifesto
(Beck et al., 2001)

New product development game
(Takeuchi and Nonaka, 1986)

Scrum development
process
(Schwaber, 1995;
Schwaber and
Beedle , 2001)

Synch-and-stabilize
approach (Microsoft)
(Cusumano and Selby, 1995;
1997)

Internet-speed development
(Cusumano and Yoffie , 1999;
Baskerville et al., 2001;
Baskerville and Pries-Heje , 2001)

Fig. 1. Evolutionary map of agile methods [13]

Agile methods adhering to varying degrees to the tenets of the Agile Mani-
festo3 share some common characteristics, e.g., iterative and incremental devel-
opment and focus on small releases [1]. The ideal context of applying agile meth-
ods in software projects lies within the so-called ‘agile sweet spot’, i.e., small and
co-located teams of less than 50 persons with easy access to the user and business
experts and that develop non-life-critical software [3]. However, applying agile
methods both for larger projects or in larger companies [5], i.e., scaling agile

3 http://agilemanifesto.org/, last accessed on: 03-10-2021.

191

126 Ö. Uludağ et al.

methods, involves two significant challenges. First, the scaling of agile methods
entails additional scaling and complexity factors that summon ‘bitter spot’ con-
ditions for agile methods, such as a large number of teams, geographical distri-
bution, entrenched culture, or formal governance structures [14]. Second, present
agile methods do not provide sufficient guidance on dealing with these scaling
and complexity factors [15]. Thus, custodians of existing agile methods and con-
sultants that have worked with companies in scaling agile to their settings have
proposed several agile scaling frameworks over the last years to address the lim-
itations of the agile methods in large organizations and projects [6,7,10]. These
frameworks incorporate predefined workflow patterns to deal with issues related
to large number of teams, inter-team coordination, and customer involvement
[10,16].

Due to the importance of this topic to companies, researchers have started
to study the frameworks’ adoption [6]. Based on a structured literature review,
Uludağ et al. [17] identified 20 different agile scaling frameworks presented in
Table 14. Secondary studies on the scaling frameworks compare some of them
based on different criteria. For instance, Alqudah and Razali [10] juxtapose DAD,
LeSS, Nexus, RAGE, SAFe, and Spotify based on, e.g., team size, available train-
ing and certificates, and the underlying agile methods and practices. Diebold
et al. [18] provide a map visualizing underlying agile practices of different frame-
works, such as DAD, LeSS, and Nexus, to support organizations in the selection
of appropriate frameworks. Based on 13 agile transformation cases, Conboy and
Carroll [16] provide nine challenges and a set of recommendations associated
with agile scaling frameworks, such as LeSS, Nexus, S@S, and Spotify.

Although agile scaling frameworks have received some attention from aca-
demics [6], to the best of our knowledge, there is no other work that provides an
overview of agile scaling frameworks, their evolution, and reasons, as well as the
benefits and challenges of these frameworks.

3 Research Methodology

Survey Design. To answer the research questions, we created a survey follow-
ing the guidelines suggested by Lin̊aker et al. [19]. We opted to conduct a survey
as it often aims to provide a state-of-the-art overview on particular methods [20],
such as agile scaling frameworks. As a large part of our survey consists of closed-
ended questions to quantitatively analyze the agile scaling frameworks, we used
a survey as it is a suitable means to provide a quantitative description of the data
[20]. The questionnaire consisted of four sections with a total of 22 questions5.
The first section included questions on the framework background, e.g., reasons

4 We extended the table by Uludağ et al. [17] by adding a column to show the scaling
levels of the frameworks and expanded the list of the frameworks by two additional
frameworks: HSD and Parallel as their methodologists approached us during two
agile conferences (see Sect. 3). We set the names of agile scaling frameworks whose
methodologists participated in our survey in bold.

5 Questionnaire link: https://bit.ly/2ZPl69S.

192

Evolution of the Agile Scaling Frameworks 127

T
a
b
le

1
.
O

v
er

v
ie

w
o
f
a
g
il
e

sc
a
li
n
g

fr
a
m

ew
o
rk

s
b
a
se

d
o
n

[1
7
]

F
ra

m
e
w

o
rk

M
e
th

o
d
o
lo

g
is

t
O

rg
a
n
iz

a
ti

o
n

P
u
b
l.

d
a
te

C
a
te

g
o
ry

S
c
a
li
n
g

le
v
e
l

D
y
n
a
m

ic
S
y
st

e
m

s
D

e
v
e
lo

p
m

e
n
t

M
e
th

o
d

A
g
il
e

P
ro

je
c
t

F
ra

m
e
w

o
rk

fo
r

S
c
ru

m
(D

S
D

M
)

A
ri

e
v
a
n

B
e
n
n
e
k
u
m

D
S
D

M
C

o
n
so

rt
iu

m
1
9
9
7

F
ra

m
e
w

o
rk

P
o
rt

fo
li
o

C
r
y
s
t
a
l
F
a
m

il
y

(
C

r
y
s
t
a
l)

A
li
st

a
ir

C
o
c
k
b
u
rn

1
9
9
8

S
e
t

o
f
m

e
th

o
d
s

T
e
a
m

S
c
ru

m
o
f
S
c
ru

m
s

(S
o
S
)

J
e
ff

S
u
th

e
rl

a
n
d
;
K

e
n

S
c
h
w

a
b
e
r

S
c
ru

m
In

c
2
0
0
1

M
e
c
h
a
n
is

m
P
ro

g
ra

m

L
a
r
g
e

S
c
a
le

S
c
r
u
m

(
L
e
S
S
)

C
ra

ig
L
a
rm

a
n
;
B

a
s

V
o
d
d
e

L
e
S
S

C
o
m

p
a
n
y

B
.V

2
0
0
7

F
ra

m
e
w

o
rk

E
n
te

rp
ri

se

G
il
l
F
r
a
m

e
w

o
r
k

(
G

il
l)

A
si

f
Q

u
m

e
r;

B
ri

a
n

H
e
n
d
e
rs

o
n
-S

e
ll
e
rs

A
d
a
p
t

In
n

2
0
0
8

F
ra

m
e
w

o
rk

E
n
te

rp
ri

se

E
n
t
e
r
p
r
is

e
T
r
a
n
s
it

io
n

F
r
a
m

e
w

o
r
k

(
E
T

F
)

–
a
g
il
e
4
2

2
0
1
1

F
ra

m
e
w

o
rk

E
n
te

rp
ri

se

M
e
g
a

F
r
a
m

e
w

o
r
k

(
M

e
g
a
)

R
a
fa

e
l
M

a
ra

n
z
a
to

;
M

a
rd

e
n

N
e
u
b
e
rt

;
P
a
u
la

H
e
c
u
la

n
o

U
n
iv

e
rs

o
O

n
li
n
e

S
.A

2
0
1
1

F
ra

m
e
w

o
rk

P
o
rt

fo
li
o

S
c
a
le

d
A

g
il
e

F
r
a
m

e
w

o
r
k

(
S
A

F
e
)

D
e
a
n

L
e
ffi

n
g
w

e
ll

S
c
a
le

d
A

g
il
e

In
c

2
0
1
1

F
ra

m
e
w

o
rk

E
n
te

rp
ri

se

D
is

c
ip

li
n
e
d

A
g
il
e

D
e
li
v
e
r
y

(
D

A
D

)
S
c
o
tt

A
m

b
le

r
D

is
c
ip

li
n
e
d

A
g
il
e

C
o
n
so

rt
iu

m
2
0
1
2

F
ra

m
e
w

o
rk

E
n
te

rp
ri

se

E
n
te

rp
ri

se
A

g
il
e

D
e
li
v
e
ry

a
n
d

A
g
il
e

G
o
v
e
rn

a
n
c
e

P
ra

c
ti

c
e

(E
A

D
A

G
P
)

E
ri

k
M

a
rk

s
A

g
il
e
P
a
th

2
0
1
2

S
e
t

o
f
p
ra

c
ti

c
e
s

E
n
te

rp
ri

se

S
p
o
t
if
y

M
o
d
e
l
(
S
p
o
t
if
y
)

H
e
n
ri

k
K

n
ib

e
rg

;
A

n
d
e
rs

Iv
a
rs

so
n
;
J
o
a
k
im

S
u
n
d
é
n

S
p
o
ti

fy
2
0
1
2

M
o
d
e
l

E
n
te

rp
ri

se

R
e
c
ip

e
s

fo
r

A
g
il
e

G
o
v
e
rn

a
n
c
e

in
th

e

E
n
te

rp
ri

se
(R

A
G

E
)

K
e
v
in

T
h
o
m

p
so

n
C

p
ri

m
e

2
0
1
3

F
ra

m
e
w

o
rk

P
o
rt

fo
li
o

C
o
n
ti

n
u
o
u
s

A
g
il
e

F
ra

m
e
w

o
rk

(C
A

F
)

A
n
d
y

S
in

g
le

to
n

M
a
x
o
s

L
L
C

2
0
1
4

F
ra

m
e
w

o
rk

P
ro

g
ra

m

E
n
t
e
r
p
r
is

e
S
c
r
u
m

(
e
S
c
r
u
m

)
M

ik
e

B
e
e
d
le

†
E
n
te

rp
ri

se
S
c
ru

m
In

c
2
0
1
4

F
ra

m
e
w

o
rk

E
n
te

rp
ri

se

e
X

p
o
n
e
n
t
ia

l
S
im

p
le

C
o
n
t
in

u
o
u
s

A
u
t
o
n
o
m

o
u
s

L
e
a
r
n
in

g
E
c
o
s
y
s
t
e
m

(
X

S
C

A
L
E
)

P
e
te

r
M

e
re

l
X

sc
a
le

A
ll
ia

n
c
e

2
0
1
4

S
e
t

o
f
p
ri

n
c
ip

le
s

E
n
te

rp
ri

se

H
o
li
s
t
ic

S
o
ft

w
a
r
e

D
e
v
e
lo

p
m

e
n
t

(
H

S
D

)
M

ik
e

M
a
c
D

o
n
a
g
h
;
S
te

v
e

H
a
n
d
y

H
o
li
st

ic
S
o
ft

w
a
re

C
o
n
su

lt
in

g
L
td

2
0
1
4

F
ra

m
e
w

o
rk

E
n
te

rp
ri

se

S
c
A

L
e
D

A
g
il
e

L
e
a
n

D
e
v
e
lo

p
m

e
n
t

(S
A

L
D

)
P
e
te

r
B

e
c
k
;
M

a
rk

u
s

G
ä
rt

n
e
r;

C
h
ri

st
o
p
h

M
a
th

is
;
S
te

fa
n

R
o
o
c
k
;
A

n
d
re

a
s

S
c
h
li
e
p

–
2
0
1
4

S
e
t

o
f
p
ri

n
c
ip

le
s

E
n
te

rp
ri

se

F
A

S
T

A
g
il
e

(
F
A

S
T

)
R

o
n

Q
u
a
rt

e
l

C
ro

n
T
e
c
h
n
o
lo

g
ie

s
2
0
1
5

S
e
t

o
f
m

e
th

o
d
s

P
ro

g
ra

m

L
e
a
n

E
n
te

rp
ri

se
A

g
il
e

F
ra

m
e
w

o
rk

(L
E
A

F
)

–
L
e
a
n
P
it

c
h

T
e
c
h
n
o
lo

g
ie

s
2
0
1
5

F
ra

m
e
w

o
rk

E
n
te

rp
ri

se

N
e
x
u
s

(
N

e
x
u
s
)

K
e
n

S
c
h
w

a
b
e
r

S
c
ru

m
.o

rg
2
0
1
5

F
ra

m
e
w

o
rk

P
ro

g
ra

m

P
a
r
a
ll
e
l
A

g
il
e

(
P
a
r
a
ll
e
l)

D
o
u
g

R
o
se

n
b
e
rg

;
B

ra
rr

y
B

o
e
h
m

;
M

a
tt

S
te

p
h
e
n
s;

C
h
a
rl

e
s

S
u
sc

h
e
c
k
;
S
h
o
b
h
a

D
h
a
li
p
a
th

i;
B

o
W

a
n
g

P
a
ra

ll
e
l
A

g
il
e

In
c

2
0
1
6

S
e
t

o
f
m

e
th

o
d
s

E
n
te

rp
ri

se

S
c
r
u
m

a
t

S
c
a
le

(
S
@

S
)

J
e
ff

S
u
th

e
rl

a
n
d
;
A

le
x

B
ro

w
n

S
c
ru

m
In

c
2
0
1
8

F
ra

m
e
w

o
rk

E
n
te

rp
ri

se

193

128 Ö. Uludağ et al.

behind the framework creation and the claimed benefits and challenges. The
second section presented questions about framework evolution, e.g., the frame-
work version history. In the third section, we aimed to capture the lean and
agile foundations behind the framework, e.g., agile practices adopted to develop
the framework. In the final section, we collected information on compatibility
between the frameworks. The questions were compiled based on previous studies
[8,17] and the Ask Matrix6.

Survey Validation. Two experienced researchers validated the questionnaire
from the software engineering research group at TU Munich. Their suggestions
on length, language, and the order of questions were incorporated.

Data Collection. We collected data between August 2017 and September 2019
using the online tool Unipark7. We used various approaches to reach out to
the inventors or organizations, i.e., methodologists, that created the frameworks
shown in Table 1. First, we sent out the questionnaire link to 22 methodologists
by email. Second, we contacted some of the methodologists in two of the leading
agile conferences: XP 20198 and Agile 20199, and emailed them the survey link.
Third, we reached a few methodologists via LinkedIn10 by sending a personal
message with the survey link. We received responses from 15 creators.

Data Analysis. We imported the survey data related to our four research
questions to excel sheets. The first two authors analyzed data for all research
questions individually by following Corbin and Strauss’s coding guidelines [21].
We started with breaking down the data into meaningful entities, i.e., open
codes. Later, based on the constant comparison of similarities and differences,
we grouped the open codes into higher categories of codes called axial codes.
Finally, both authors had a few discussions to compare the open and axial codes
from their analysis. The majority of the codes matched between the two authors,
and only a few adjustments were made by mutual agreement.

4 Results

4.1 RQ1: Evolution of the Agile Scaling Frameworks

Figure 2 shows a time-based overview of the 15 agile scaling frameworks whose
methodologists participated in our survey. Grey rectangles () indicate the
start of development of a framework, whereas green rectangles () show current
versions and blue rectangles () symbolize intermediate versions. Figure 2 also
shows two types of dependencies between the frameworks and their versions:
Dashed arrows indicate the influence between different frameworks, whereas solid
arrows show a predecessor relationship.

6 http://www.agilescaling.org/ask-matrix.html, last accessed on: 03-10-2021.
7 https://www.unipark.com/en/, last accessed on: 03-10-2021.
8 https://www.agilealliance.org/xp2019/, last accessed on: 03-10-2021.
9 https://www.agilealliance.org/agile2019/, last accessed on: 03-10-2021.

10 https://www.linkedin.com/, last accessed on: 03-10-2021.

194

Evolution of the Agile Scaling Frameworks 129

Fig. 2. Evolution of agile scaling frameworks

195

130 Ö. Uludağ et al.

According to our survey data, Crystal is the first created agile scaling frame-
work which development started in 1997. Nexus, eScrum, and S@S were also rela-
tively early designed compared to most other agile scaling frameworks. However,
it took the methodologists almost ten years to publish these frameworks, e.g., by
publishing their official guides. Although nine frameworks were created before
2010, only three of them went public before 2010. Whereas, between 2011 and
2018, twelve frameworks were published. None of the methodologists indicated
stopping the further development of their frameworks. Most frameworks have
multiple versions, whereas four frameworks have only one version, namely Nexus,
LeSS, Spotify, and XSCALE. Gill was initially created as the ASSF framework
(2005-2008), which then evolved into Gill in 2012. The methodologists of Mega
indicated that Mega 1.0 was a derivative of SoS. They also stated that Mega
2.0 was influenced by Spotify including the idea to extend the adoption of agile
practices to other parts of the organization. The methodologists of Spotify found
inspiration from Craig Larman’s and Bass Vodde’s two books (cf. [22,23]), that
later became LeSS. Spotify was also influenced by the Program Increment Plan-
ning events of SAFe (cf. [24]).

4.2 RQ2: Key Reasons Behind Creating Agile Scaling Frameworks

Table 2 presents 12 reasons behind creating scaling frameworks based on our
survey. These reasons were grouped into four categories: complexity, customer,
market, and organization. The most commonly stated reasons were: improving
the agility/adaptability of the organization, improving the collaboration of agile
teams working on same product, improving the coordination of agile teams work-
ing, and improving the synchronization of agile teams working on same product.

196

Evolution of the Agile Scaling Frameworks 131

Table 2. Reasons behind the creation of agile scaling frameworks

Reason category Reason Reported in

Complexity Dealing with increased complexity ETF, SAFe

Descaling large product organizations

in smaller independent entities

eScrum, XSCALE

Customer Delivering higher business value LeSS

Improving customer involvement eScrum

Market Improving the agility/adaptability of

the organization

DAD, Gill, HSD, SAFe, S@S, Spotify

Dealing with changing environments LeSS

Organization Improving the collaboration of agile

teams working on same product

Nexus, Parallel, SAFe, S@S

Improving the coordination of agile

teams working on same product

Crystal, Nexus, S@S

Improving the synchronization of

agile teams working on same product

FAST, Nexus, SAFe

Enabling the

information/communication flow

between agile teams

Crystal, Mega

Scaling agile to more

people/teams/higher organizational

levels

LeSS, SAFe

Managing dependencies between agile

teams

eScrum

4.3 RQ3: Benefits of Adopting Agile Scaling Frameworks

Table 3 presents 30 claimed benefits of adopting scaling frameworks based on
our survey. These benefits were grouped into two categories, namely: busi-
ness/product and organization/culture. The most commonly mentioned ben-
efits were: enabling frequent product deliveries, enhancing employee satisfac-
tion/motivation/engagement, improving software quality, providing customer/
business value, improving the collaboration of agile teams working on same prod-
uct, improving the coordination of agile teams working on same product, improv-
ing the synchronization of agile teams working on same product.

4.4 RQ4: Challenges of Adopting Agile Scaling Frameworks

Table 4 presents 22 challenges of adopting scaling frameworks based on our sur-
vey. These challenges were grouped into three categories: implementation, orga-
nization/culture, and scope. The most commonly mentioned challenges were:
using frameworks as cooking recipes and using frameworks without understand-
ing for what reasons they should be applied.

197

132 Ö. Uludağ et al.

T
a
b
le

3
.
C

la
im

ed
b
en

efi
ts

o
f
a
d
o
p
ti

n
g

a
g
il
e

sc
a
li
n
g

fr
a
m

ew
o
rk

s

B
e
n
e
fi
t

c
a
te

g
o
ry

B
e
n
e
fi
t

R
e
p
o
rt

e
d

in

B
u
si

n
e
ss

/
P
ro

d
u
c
t

E
n
a
b
li
n
g

fr
e
q
u
e
n
t

p
ro

d
u
c
t

d
e
li
v
e
ri

e
s

F
A

S
T

,
P
a
ra

ll
e
l,

S
A

F
e
,
S
@

S
,
S
p
o
ti

fy

Im
p
ro

v
in

g
so

ft
w

a
re

q
u
a
li
ty

M
e
g
a
,
P
a
ra

ll
e
l,

S
A

F
e

P
ro

v
id

in
g

c
u
st

o
m

e
r/

b
u
si

n
e
ss

v
a
lu

e
L
e
S
S
,
M

e
g
a
,
S
@

S

E
n
a
b
li
n
g

c
o
n
ti

n
u
o
u
s

im
p
ro

v
e
m

e
n
t

E
T

F
,
S
p
o
ti

fy

E
n
a
b
li
n
g

c
o
n
ti

n
u
o
u
s

in
te

g
ra

ti
o
n

M
e
g
a
,
N

e
x
u
s

E
n
a
b
li
n
g

sh
o
rt

e
r

fe
e
d
b
a
c
k

c
y
c
le

s
F
A

S
T

,
N

e
x
u
s

E
n
a
b
li
n
g

b
e
tt

e
r

a
d
a
p
ta

b
il
it
y

to
c
h
a
n
g
in

g
m

a
rk

e
t

c
o
n
d
it

io
n
s

S
@

S

E
n
a
b
li
n
g

fa
st

e
r

ti
m

e
-t

o
-m

a
rk

e
t

S
A

F
e

E
n
a
b
li
n
g

th
e

re
le

a
se

o
f
w

o
rk

in
g

p
ro

d
u
c
ts

e
v
e
ry

S
p
ri

n
t

N
e
x
u
s

Im
p
ro

v
in

g
c
u
st

o
m

e
r

sa
ti

sf
a
c
ti

o
n

e
S
c
ru

m

Im
p
ro

v
in

g
e
ffi

c
ie

n
c
y

G
il
l

M
in

im
iz

in
g

so
ft

w
a
re

p
ro

d
u
c
ti

o
n

c
o
st

s
P
a
ra

ll
e
l

O
rg

a
n
iz

a
ti
o
n
/

C
u
lt
u
re

E
n
h
a
n
c
in

g
e
m

p
lo

y
e
e

sa
ti

sf
a
c
ti

o
n
/
m

o
ti

v
a
ti

o
n
/
e
n
g
a
g
e
m

e
n
t

e
S
c
ru

m
,
F
A

S
T

,
M

e
g
a
,
S
A

F
e
,
S
@

S
,
S
p
o
ti

fy

F
o
st

e
ri

n
g

th
e

c
re

a
ti

o
n

o
f
a
u
to

n
o
m

o
u
s

te
a
m

s
e
S
c
ru

m
,
F
A

S
T

,
S
@

S

Im
p
ro

v
in

g
th

e
c
o
ll
a
b
o
ra

ti
o
n

o
f
a
g
il
e

te
a
m

s
w

o
rk

in
g

o
n

sa
m

e
p
ro

d
u
c
t

C
ry

st
a
l,

M
e
g
a
,
S
@

S

Im
p
ro

v
in

g
th

e
c
o
o
rd

in
a
ti

o
n

o
f
a
g
il
e

te
a
m

s
w

o
rk

in
g

o
n

sa
m

e
p
ro

d
u
c
t

C
ry

st
a
l,

M
e
g
a
,
S
@

S

Im
p
ro

v
in

g
th

e
sy

n
c
h
ro

n
iz

a
ti

o
n

o
f
a
g
il
e

te
a
m

s
w

o
rk

in
g

o
n

sa
m

e
p
ro

d
u
c
t

C
ry

st
a
l,

M
e
g
a
,
S
@

S

E
n
a
b
li
n
g

e
n
te

rp
ri

se
a
g
il
it
y

L
e
S
S
,
S
@

S

F
o
st

e
ri

n
g

in
n
o
v
a
ti

o
n

F
A

S
T

,
G

il
l

Im
p
ro

v
in

g
a
g
il
e

m
in

d
se

t
a
n
d

u
n
d
e
rs

ta
n
d
in

g
D

A
D

,
E
T

F

Im
p
ro

v
in

g
a
c
c
o
u
n
ta

b
il
it
y

N
e
x
u
s

Im
p
ro

v
in

g
o
rg

a
n
iz

a
ti

o
n
a
l
p
e
rf

o
rm

a
n
c
e

S
p
o
ti

fy

Im
p
ro

v
in

g
te

a
m

c
o
h
e
si

o
n

M
e
g
a

Im
p
ro

v
in

g
tr

a
n
sp

a
re

n
c
y

N
e
x
u
s

Im
p
ro

v
in

g
w

o
rk

fl
o
w

s
H

S
D

E
n
a
b
li
n
g

b
e
tt

e
r

u
n
d
e
rs

ta
n
d
in

g
o
f
th

e
o
rg

a
n
iz

a
ti

o
n

a
n
d

it
s

v
is

io
n

D
A

D

E
n
a
b
li
n
g

th
e

p
ri

o
ri

ti
z
a
ti

o
n

o
f
c
o
m

p
a
n
y

b
o
tt

le
n
e
c
k
s

X
S
C

A
L
E

F
o
st

e
ri

n
g

se
rv

a
n
t

le
a
d
e
rs

h
ip

F
A

S
T

R
e
d
u
c
in

g
h
e
a
d
c
o
u
n
t

F
A

S
T

R
e
so

lv
in

g
o
rg

a
n
iz

a
ti

o
n
a
l
im

p
e
d
im

e
n
ts

S
@

S

198

Evolution of the Agile Scaling Frameworks 133

T
a
b
le

4
.
C

la
im

ed
ch

a
ll
en

g
es

o
f
a
d
o
p
ti

n
g

a
g
il
e

sc
a
li
n
g

fr
a
m

ew
o
rk

s

C
h
a
ll
e
n
g
e

c
a
te

g
o
ry

C
h
a
ll
e
n
g
e

R
e
p
o
rt

e
d

in

Im
p
le

m
e
n
ta

ti
o
n

Im
p
le

m
e
n
ti

n
g

is
d
iffi

c
u
lt

d
u
e

to
fr

a
m

e
w

o
rk

c
o
m

p
le

x
it
y

e
S
c
ru

m
,
H

S
D

M
is

si
n
g

fa
m

il
ia

ri
z
a
ti

o
n

w
it

h
fr

a
m

e
w

o
rk

e
S
c
ru

m
,
N

e
x
u
s

Im
p
le

m
e
n
ta

ti
o
n

o
v
e
rh

e
a
d

S
A

F
e

M
is

c
o
n
c
e
p
ti

o
n

d
u
e

to
u
n
c
o
n
v
e
n
ti

o
n
a
l
a
g
il
e

p
ra

c
ti

c
e
s

F
A

S
T

In
su

ffi
c
ie

n
t

g
u
id

a
n
c
e

C
ry

st
a
l

In
su

ffi
c
ie

n
t

g
u
id

a
n
c
e

re
g
a
rd

in
g

le
a
n

p
ra

c
ti

c
e
s

M
e
g
a

O
rg

a
n
iz

a
ti
o
n
/
C
u
lt
u
re

U
si

n
g

fr
a
m

e
w

o
rk

s
a
s

c
o
o
k
in

g
re

c
ip

e
s

D
A

D
,
H

S
D

,
S
A

F
e
,
S
p
o
ti

fy

U
si

n
g

fr
a
m

e
w

o
rk

s
w

it
h
o
u
t

u
n
d
e
rs

ta
n
d
in

g
fo

r
w

h
a
t

re
a
so

n
s

th
e
y

sh
o
u
ld

b
e

a
p
p
li
e
d

E
T

F
,
N

e
x
u
s,

S
p
o
ti

fy

L
a
ck

o
f
m

a
n
a
g
e
m

e
n
t

b
u
y
-i
n

S
A

F
e
,
S
@

S

M
o
v
in

g
a
w

a
y

fr
o
m

a
g
il
e

P
a
ra

ll
e
l,

S
A

F
e

M
o
v
in

g
b
a
ck

fr
o
m

a
g
il
e

to
tr

a
d
it

io
n
a
l
m

a
n
a
g
e
m

e
n
t

a
p
p
ro

a
ch

e
s

E
T

F
,
L
e
S
S

C
h
a
n
g
e

re
si

st
a
n
c
e

L
e
S
S

Im
p
le

m
e
n
ta

ti
o
n

is
d
iffi

c
u
lt

in
c
o
m

m
a
n
d

a
n
d

c
o
n
tr

o
l-
st

y
le

o
rg

a
n
iz

a
ti

o
n
s

F
A

S
T

Im
p
le

m
e
n
ta

ti
o
n

is
d
iffi

c
u
lt

in
tr

a
d
it

io
n
a
l
o
rg

a
n
iz

a
ti

o
n
s

F
A

S
T

In
v
o
lv

in
g

n
o
n
-d

e
v
e
lo

p
m

e
n
t

u
n
it

s
is

d
iffi

c
u
lt

G
il
l

Im
p
le

m
e
n
ta

ti
o
n

is
d
iffi

c
u
lt

d
u
e

to
re

m
a
in

in
g

p
o
w

e
r

st
ru

c
tu

re
s

L
e
S
S

C
h
a
n
g
in

g
th

e
m

in
d
se

t
o
f
th

e
o
rg

a
n
iz

a
ti

o
n

is
d
iffi

c
u
lt

E
T

F

S
co

p
e

Im
p
le

m
e
n
ta

ti
o
n

is
li
m

it
e
d

to
te

a
m

le
v
e
l

M
e
g
a

Im
p
le

m
e
n
ta

ti
o
n

is
n
o
t

su
it

a
b
le

fo
r

m
o
n
o
li
th

ic
a
p
p
li
c
a
ti

o
n
s

M
e
g
a

In
su

ffi
c
ie

n
t

g
u
id

a
n
c
e

re
g
a
rd

in
g

p
ro

d
u
c
t

b
a
ck

lo
g

m
a
n
a
g
e
m

e
n
t

M
e
g
a

In
su

ffi
c
ie

n
t

g
u
id

a
n
c
e

re
g
a
rd

in
g

m
a
n
a
g
e
rs

a
n
d

sp
e
c
ia

li
st

p
o
si

ti
o
n
s

L
e
S
S

R
e
q
u
ir

in
g

c
o
-l
o
c
a
ti

o
n

o
f
a
g
il
e

te
a
m

s
F
A

S
T

199

134 Ö. Uludağ et al.

5 Discussion and Conclusions

5.1 Key Findings

RQ1: How did agile scaling frameworks evolve over the years?
By comparing the evolution map of agile scaling frameworks in Fig. 2 with the
evolutionary map of agile methods by Abrahamsson et al. [13], we observed two
notable parallels. First, similar to the movement of agile methods, the movement
to agile scaling frameworks emerged from parallel innovation both by some inven-
tors of existing agile methods and by consultants who supported organizations
in scaling the agile methods. Second, likewise to agile methods, agile scaling
frameworks have been continuously emerging and evolving after the movement
started. This trend will likely continue as the methodologists of agile scaling
frameworks seem to be committed to improving them in the future. Although
the evolution map visualizes several agile scaling frameworks, users have concen-
trated on a few frameworks [25], particularly on SAFe and SoS [8]. The most
recent State of Agile survey [8] confirms this by stating that 35% of their respon-
dents adopted SAFe and 16% used SoS. A similar observation can be made for
agile methods, as 58% of the respondents of the State of Agile survey use Scrum,
making it the most commonly used agile method [8].

RQ2: What are key reasons behind creating of agile scaling frameworks?
In total, we found 12 reasons behind the creation of 15 agile scaling frameworks.
The reasons identified in our survey fall into either the category of improving
the current state of the organization or dealing with the organization’s prevalent
challenges. Both look similar to reasons that trigger an organizational change
[26]. Several reasons, e.g., improving the collaboration and coordination agile
teams working on same product and dealing with changing environments were
found in previous studies on large-scale agile development [27,28]. Other reasons
related to the scaling of agile methods, such as dealing with increased complexity
and scaling agile to more people, were also reported in [9,29–31]. However, to our
knowledge, two reasons found in our survey related to descaling large product
organizations into smaller independent entities and improving customer involve-
ment were not reported by the extant literature on agile development. Surpris-
ingly, several popular reasons for agile, e.g., improving productivity, improving
visibility, and improving predictability, were not reported as reasons [8]. As the
questionnaire’s question was about the main reasons of creating a framework,
these earlier mentioned reasons can be some of the implicit reasons behind the
creation of the 15 agile scaling frameworks.

RQ3: What are the claimed benefits of adopting agile scaling frameworks?
In total, we identified 30 claimed benefits. The majority of these claimed benefits
were similar to the benefits of agile adoption in general found from recent studies
on agile method, e.g., State of Agile survey [8]. However, the most common
benefit of agile, namely improved productivity [8], was not mentioned by any
methodologists. We also identified benefits related to reducing headcount and
fostering servant leadership, which were not found in the previous literature on

200

Evolution of the Agile Scaling Frameworks 135

large-scale agile development. More research on benefits is needed to establish
scientific evidence of using these frameworks in the industry. It is also crucial to
understand which practices have contributed to these benefits.

RQ4: What are the challenges of adopting agile scaling frameworks?
We identified 22 challenges from 15 scaling frameworks. To our knowledge, none
of the framework’s official websites has given information related to the diffi-
culties encountered while adopting these frameworks. The most common chal-
lenges identified in our study, i.e., using frameworks as cooking recipes and using
frameworks without understanding for what reasons they should be applied, were
not reported by previously published empirical studies. The majority of the
challenges found in our study, e.g., change resistance, moving away from agile,
implementation is difficult due to remaining power structures, and lack of man-
agement buy-in, were already reported in previously published studies on scaling
frameworks [16,32–34] and large-scale agile development [5,35]. The challenges
look similar to agile transformation challenges in general. Hence, using an agile
scaling framework is not a silver bullet for scaling agile in large organizations,
but a starting point for an agile transformation [33]. Several methodologists men-
tioned that leaders and change agents should focus on changing people’s culture
and mindset, rather than using frameworks only as cooking recipes.

5.2 Limitations

We discuss the limitations of our study through the threats, as suggested by
Wohlin et al. [36].

Construct Validity. This threat is concerned whether the questions presented
in the questionnaire represent the attributes being measured. Two survey experts
thoroughly checked the questionnaire and evaluated its’ understandability, clar-
ity, and readability to counteract this threat. Moreover, the questions were com-
piled based on previously published studies in the realm of agile software devel-
opment.

External Validity. This threat is about the generalizability of the results. We
aimed to collect responses from all existing scaling frameworks. Out of 22 frame-
works, we received responses from 15 methodologists. We could not get responses
from the methodologists of seven frameworks despite contacting them several
times via email. Thus, this threat could not be completely mitigated. However,
we received responses from the most widely adopted scaling frameworks, such
as SAFe, LeSS, DAD, and Spotify [8].

Internal Validity. This threat is concerned with factors that can affect the
relationship between the research process and survey results, i.e., the cause and
effect relationship. We contacted the methodologists via emails found from the
frameworks’ official websites. We received confirmation from most methodolo-
gists after they filled in the survey, which ensured that the right persons answered
the survey. We also met some methodologists during the agile conferences per-
sonally and asked them to answer the survey.

201

136 Ö. Uludağ et al.

Conclusion Validity. This threat deals with the ability to conclude from survey
data. The data was coded independently by two researchers. Both researchers
compared the codes and drew conclusions together to avoid misinterpretation
and misunderstanding of the data.

5.3 Conclusions

Large-scale agile development has received significant interest by practitioners
and academics over the last years [37]. As organizations are driven by pressures
to scale and to react fast, agile scaling frameworks are increasingly prevalent in
contemporary software organizations [7,8], sparking a growing academic interest
in studying the adoption of these frameworks [6]. Although there is a body
of knowledge on agile scaling frameworks, less research has been conducted to
provide an overview of these frameworks and their evolution, study the reasons
behind creating these frameworks, and investigate the benefits and challenges
of adopting these frameworks. We surveyed the methodologists behind the agile
scaling frameworks to address this research gap.

Our study provides an overview of 22 agile scaling frameworks of which 15
were covered by our survey. Our study extends extant literature by providing a
map on agile scaling frameworks with their evolutionary paths. Although many
methodologists started creating their first frameworks between 2001 and 2011,
most guides on these frameworks were published later on. Our findings show a
cluster of framework publications between 2011 and 2018, confirming the rising
industry interest in scaling the agile methods. We identified 12 reasons behind
the creation of the agile scaling frameworks. We revealed two new reasons which
were not reported by the existing literature on agile development: descaling large
product organizations into smaller independent entities and improving customer
involvement. Further, the methodologists claimed 30 different benefits of adopt-
ing their frameworks related to business, product, organizational, and cultural
aspects. The methodologists also reported two new benefits which were not
described in the previous literature: reducing headcount and fostering servant
leadership. The methodologists recognized 22 challenges in the adoption of the
frameworks of which two were newly discovered in our study, i.e., using frame-
works as cooking recipes and using frameworks without understanding for what
reasons they should be applied.

We encourage researchers to investigate further how contextual factors, such
as complexity, multi-product development, or agile maturity, impact a scaling
framework’s selection. We call for cross-case analyses to compare the adoption
of agile scaling frameworks based on common comparison characteristics.

References

1. Dingsøyr, T., Nerur, S., Balijepally, V., Moe, N.B.: A decade of agile methodologies:
Towards explaining agile software development. J. Syst. Softw. 85(6), 1213–1221
(2012). Special Issue: Agile Development

202

Evolution of the Agile Scaling Frameworks 137

2. Kettunen, P.: Extending software project agility with new product development
enterprise agility. Softw. Process Improv. Practice 12(6), 541–548 (2007)

3. Boehm, B.: Get ready for agile methods, with care. Computer 35(1), 64–69 (2002)
4. Dingsøyr, T., Moe, N.B., Fægri, T.E., Seim, E.A.: Exploring software development

at the very large-scale: a revelatory case study and research agenda for agile method
adaptation. Empir. Softw. Eng. 23(1), 490–520 (2017). https://doi.org/10.1007/
s10664-017-9524-2

5. Dikert, K., Paasivaara, M., Lassenius, C.: Challenges and success factors for large-
scale agile transformations: a systematic literature review. J. Syst. Softw. 119,
87–108 (2016)

6. Uludag, Ö., Philipp, P., Putta, A., Paasivaara, M., Lassenius, C., Matthes, F.:
Revealing the state-of-the-art in large-scale agile development: A systematic map-
ping study. arXiv preprint arXiv:2007.05578 (2021)

7. Carroll, N., Conboy, K.: Applying normalization process theory to explain large-
scale agile transformations. In: Proceedings of the 14th International Research
Workshop on IT Project Management, January 2019

8. VersionOne: 14th Annual State of Agile Survey (2020). https://stateofagile.com/#
ufh-i-615706098-14th-annual-state-of-agile-report/7027494. Accessed 03 Oct 2021

9. Pries-Heje, J., Krohn, M.M.: The safe way to the agile organization. In: Proceedings
of the XP2017 Scientific Workshops, pp. 1–4. ACM, May 2017

10. Alqudah, M., Razali, R.: A review of scaling agile methods in large software devel-
opment. Int. J. Adv. Sci. Eng. Inf. Technol. 6(6), 828–837 (2016)

11. Paasivaara, M., Behm, B., Lassenius, C., Hallikainen, M.: Large-scale agile trans-
formation at ericsson: a case study. Empir. Softw. Eng. 23(5), 2550–2596 (2018)

12. Dingsøyr, T., Fægri, T.E., Itkonen, J.: What is large in large-scale? A Taxon-
omy of Scale for Agile Software Development. In: Jedlitschka, A., Kuvaja, P.,
Kuhrmann, M., Männistö, T., Münch, J., Raatikainen, M. (eds.) PROFES 2014.
LNCS, vol. 8892, pp. 273–276. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-13835-0 20

13. Abrahamsson, P., Warsta, J., Siponen, M.T., Ronkainen, J.: New directions on
agile methods: a comparative analysis. In: Proceedings of the 25th International
Conference on Software Engineering, pp. 244–254. IEEE, May 2003

14. Ambler, S.W.: agile software development at scale. In: Meyer, B., Nawrocki, J.R.,
Walter, B. (eds.) CEE-SET 2007. LNCS, vol. 5082, pp. 1–12. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-85279-7 1

15. Maples, C.: Enterprise agile transformation: the two-year wall. In: Proceedings of
the 2009 Agile Conference, pp. 90–95. IEEE, August 2009

16. Conboy, K., Carroll, N.: Implementing large-scale agile frameworks: challenges and
recommendations. IEEE Softw. 36(2), 44–50 (2019)

17. Uludağ, Ö., Kleehaus, M., Xu, X., Matthes, F.: Investigating the role of architects
in scaling agile frameworks. In: Proceedings of the 21st International Enterprise
Distributed Object Computing Conference, IEEE, pp. 123–132, October 2017

18. Diebold, P., Schmitt, A., Theobald, S.: Scaling agile: how to select the most appro-
priate framework. In: Proceedings of the 19th International Conference on Agile
Software Development: Companion, pp. 1–4. ACM, May 2018

19. Lin̊aker, J., Sulaman, S.M., Maiani de Mello, R., Höst, M.: Guidelines for conduct-
ing surveys in software engineering (2015)

20. Punter, T., Ciolkowski, M., Freimut, B., John, I.: Conducting on-line surveys in
software engineering. In: International Symposium on Empirical Software Engi-
neering, pp. 80–88. IEEE (2003)

203

138 Ö. Uludağ et al.

21. Corbin, J.M., Strauss, A.L.: Basics of Qualitative Research: Techniques and Pro-
cedures for Developing Grounded Theory, 3rd edn. Sage Publications Inc., Los
Angeles, Calif (2008)

22. Larman, C.: Scaling lean & agile development: thinking and organizational tools
for large-scale Scrum. Pearson Education India (2008)

23. Larman, C., Vodde, B.: Practices for scaling lean & Agile development: large, mul-
tisite, and offshore product development with large-scale scrum. Pearson Education
(2010)

24. Scaled Agile Inc.: PI Planning (2021). https://www.scaledagileframework.com/pi-
planning/. Accessed 03 Oct 2021

25. Putta, A., Paasivaara, M., Lassenius, C.: Benefits and challenges of adopting the
scaled agile framework (SAFe): preliminary results from a multivocal literature
review. In: Kuhrmann, M., et al. (eds.) PROFES 2018. LNCS, vol. 11271, pp.
334–351. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03673-7 24

26. Scaled Agile Inc.: Reasons for SAFe Adoption (2021). https://www.
scaledagileframework.com/reaching-the-tipping-point/. Accessed 03 Oct 2021

27. Paasivaara, M.: Adopting safe to scale agile in a globally distributed organization.
In: Proceedings of the 12th International Conference on Global Software Engineer-
ing, pp. 36–40. IEEE, May 2017

28. Gustavsson, T.: Dynamics of inter-team coordination routines in large-scale agile
software development. In: Proceedings of the 27th European Conference on Infor-
mation Systems, pp. 1–6, June 2019

29. Heikkilä, V.T., Paasivaara, M., Rautiainen, K., Lassenius, C., Toivola, T.,
Järvinen, J.: Operational release planning in large-scale scrum with multiple
stakeholders-a longitudinal case study at f-secure corporation. Inf. Softw. Tech-
nol. 57, 116–140 (2015)

30. McMunn, D., Manketo, P.: Building strong foundations... underwriting fannie
mae’s agile transformation. In: International Conference on Agile Software Devel-
opment, Agile Alliance, August 2017

31. Michelson, C., Adolph, S.: Bias from the bottom: A different way to bootup a safe
train. In: International Conference on Agile Software Development, Agile Alliance
(2019)

32. Putta, A., Paasivaara, M., Lassenius, C.: Benefits and Challenges of Adopting the
Scaled Agile Framework (SAFe): preliminary results from a multivocal literature
review. In: Kuhrmann, M., et al. (eds.) PROFES 2018. LNCS, vol. 11271, pp.
334–351. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03673-7 24

33. Putta, A., Paasivaara, M., Lassenius, C.: How are agile release trains formed in
practice? a case study in a large financial corporation. In: Kruchten, P., Fraser, S.,
Coallier, F. (eds.) XP 2019. LNBIP, vol. 355, pp. 154–170. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-19034-7 10

34. Kalenda, M., Hyna, P., Rossi, B.: Scaling agile in large organizations: Practices,
challenges, and success factors. Journal of Software: Evolution and Process 30,
(2018)

35. Uludağ, Ö., Kleehaus, M., Dreymann, N., Kabelin, C., Matthes, F.: Investigating
the adoption and application of large-scale scrum at a German automobile manu-
facturer. In: Proceedings of the 14th International Conference on Global Software
Engineering, pp. 22–29. IEEE, May 2019

204

Evolution of the Agile Scaling Frameworks 139

36. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Exper-
imentation in Software Engineering. Springer, Cham (2012)

37. Dingsøyr, T., Falessi, D., Power, K.: Agile development at scale: the next frontier.
IEEE Softw. 36(2), 30–38 (2019)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

205

Investigating the Adoption and Application of
Large-Scale Scrum at a German Automobile

Manufacturer
Ömer Uludağ*, Martin Kleehaus*, Niklas Dreymann*, Christian Kabelin†, Florian Matthes*

*Chair for Informatics 19, Technische Universität München (TUM), D-85748, Garching
Email:{oemer.uludag,martin.kleehaus,niklas.dreymann,matthes}@tum.de

†Ventum Consulting, D-80797, München
Email:{christian.kabelin}@ventum.de

Abstract—Over the last two decades, agile methods have been
adopted by an increasing number of organizations to improve
their software development processes. In contrast to traditional
methods, agile methods place more emphasis on flexible processes
than on detailed upfront plans and heavy documentation. Since
agile methods have proved to be successful at the team level,
large organizations are now aiming to scale agile methods to the
enterprise level by adopting and applying so-called scaling agile
frameworks such as Large-Scale Scrum (LeSS) or Scaled Agile
Framework (SAFe). Although there is a growing body of liter-
ature on large-scale agile development, literature documenting
actual experiences related to scaling agile frameworks is still
scarce. This paper aims to fill this gap by providing a case
study on the adoption and application of LeSS in four different
products of a German automobile manufacturer. Based on seven
interviews, we present how the organization adopted and applied
LeSS, and discuss related challenges and success factors. The
comparison of the products indicates that transparency, training
courses and workshops, and change management are crucial for
a successful adoption.

Index Terms—large-scale agile development, scaling agile
frameworks, large-scale scrum, case study

I. INTRODUCTION

Emerging in the 1990s, agile software development methods
such as Extreme Programming [1] and Scrum [2] have trans-
formed and brought unprecedented advancements to software
development practice by emphasizing change tolerance, team
collaboration, and customer involvement [3], [4]. With these
methods, small, co-located, self-organizing teams work closely
with the business customer on a single-project context, max-
imizing customer value and software product quality through
rapid iterations and frequent feedback loops [3]. Since agile
methods have proved to be successful at the team level, large
organizations are now aiming to scale agile methods to the
enterprise level [5]. Version One’s 12th survey on the state
of agile [6] also reflects this industry trend towards adopting
agile methods in-the-large. The survey shows that 52% of the
1492 respondents work in companies where the majority of
teams are agile. However, the adoption entails new challenges,
such as inter-team coordination, dependencies to other existing
environments or general resistances to changes [7], [8]. Mainly
promoted by consultants, scaling agile frameworks such as the
Scaled Agile Framework (SAFe), Disciplined Agile Delivery

(DAD), and Large-Scale Scrum (LeSS) [4], [5] pledge to
resolve the aforementioned issues. Although the number of
organizations using scaling agile frameworks is increasing,
scientific literature providing in-depth case studies on the
adoption and application is still scarce [6], [7]. We aim to
fill this gap by presenting a case study on the adoption and
application of LeSS in four different products of a German
automobile manufacturer. Based on these objectives, our two
research questions are:

• Research Question 1 (RQ 1): How has LeSS been adopted
in different products?

• Research Question 2 (RQ 2): How is LeSS applied in
different products?

The remainder of this paper is structured as follows. In Section
II, we present the background of our paper and provide an
overview of related works. In Section III, we present the
research approach of this paper. We briefly describe the case
organization and present the results of our case study in
Section IV. We discuss the main findings in Section V before
concluding the paper with a summary of our results and
remarks on future research in Section VI.

II. BACKGROUND AND RELATED WORK

A. Large-Scale Scrum

The LeSS framework (see Figure I) was released in 2008
based on the experiences of Craig Larman and Bas Vodde [9].
It extends Scrum with scaling rules and guidelines without
losing sight of Scrum’s original goals. Unlike traditional
Scrum, LeSS specifies organizational changes. Furthermore, it
aims to facilitate coordination between multiple Scrum teams
by having a product owner (PO) responsible for a central
backlog and several teams. Coordination between teams is
done similarly to Scrum where they perform a sprint planning
and sprint review. For smaller products, all product members
join the same sprint planning and review. For bigger products,
a team representative should be sent to the meetings. Although
LeSS aims to solely work on principles, it still comprises the
following four components [10]:

• Rules: Rules define the foundation of LeSS. Similar to
Scrum, the focus lies on the structure of teams, roles

206

Fig. I: Overview of the LeSS framework [10].

within the team, definition of the requirements of the
product, and the development process.

• Principles: Principles provide answers on how to apply
LeSS in specific enterprise contexts.

• Guides: Guides support the adaptation of the rules and
a subset of the experiments by providing tips and best
practices.

• Experiments: LeSS encourages teams to experiment,
fail, and learn new concepts.

When organizations aim to scale over eight teams, LeSS Huge
should be used. LeSS Huge introduces additional elements
that are necessary to manage hundreds of people, such as
the concept of requirements areas (RAs). RAs are organized
around customer-centric requirements. All RAs follow the
same sprint cadence and aim for continuous integration across
the entire product. An area PO (APO) focuses on one RA and
is responsible for an area product backlog (APB). The APO
acts essentially the same way as the PO would in the smaller
LeSS framework.

B. Related Work

According to Version One’s 12th survey on the state of
agile, 29% of 1,492 respondents reported using SAFe and
5% LeSS. Although the number of organizations using scaling
agile frameworks is increasing, there exists only a handful of
papers documenting reported usages [7]. However, some liter-
ature reviews have been conducted by academics for studying
scaling agile frameworks scientifically. For instance, Alqudah
and Razalo [5] provide a literature review on scaling agile
frameworks. Therein, they compare seven identified scaling
agile frameworks such as DAD, LeSS, Nexus, SAFe, and Spo-
tify based on five criteria: team size, training and certification,
adopted methods and practices, required technical practices,
and organization type. Based on a structured literature review,
Uludağ et al. [11] give a primary analysis of 20 identified
scaling agile frameworks such as DAD, Enterprise Scrum,
LeSS, Nexus, SAFe, Scrum at Scale, and Spotify. Last but
not least, Putta et al. [12] provide a multivocal literature
review, which includes both peer-reviewed and non-peer re-
viewed case studies and experience reports on organizations
that have adopted SAFe. Besides these secondary studies,
some researchers also present primary studies in the form
of case studies on the adoption of scaling agile frameworks.

For example, Pries-Heje and Krohn [13] describe a case
study from the financial software company SimCorp on how
they adopted SAFe. Further, Paasivaara [14] provides a case
study highlighting success factors and challenges of the SAFe
adoption in the globally distributed software development
company Comptel. Moreover, Paasivaara and Lassenius [15],
[16] describe a case-study on scaling Scrum in a large globally
distributed software development project at the global telecom-
munications company Nokia. Therein, the authors describe
significant challenges the project faced when applying LeSS.
Last, Uludağ et al. [17] present a case study from a large
insurance company on how they combined domain-driven
design with LeSS to support a large-scale agile development
program with three agile teams. Although there are some
primary and secondary studies, they merely mention LeSS in
passing. To the best of our knowledge, literature documenting
in-depth case studies on the adoption and application of LeSS
in a real-life context is still scarce.

III. CASE STUDY DESIGN

A case study is a suitable research methodology for this
paper as we aim to study a contemporary unexplored phe-
nomenon, namely the adoption and application of LeSS, in a
complex, real life context [18]. We followed the guidelines
described by Runeson and Höst [18] for the case study
research process.
Case study design: The main objective of this paper is
to study the adoption and application of LeSS in a large
IT organization. Based on stated objective, we defined two
research questions (see Section I). Our single-case study is of
exploratory nature as we analyze an unexplored phenomenon
[18]. The case organization was purposefully selected as it
provides a unique opportunity to compare different occur-
rences of LeSS inside a single company and as it represents
an information-rich case [19]. Our units of analysis are four
products at the car manufacturer’s IT department which use
LeSS to develop complex software.
Preparation for data collection: We focused on first degree
data collection techniques according to Lethbridge et al. [20].
Hence, we collected data by conducting seven semi-structured
interviews with one feature team (FT) member, one PO, one
agile coach (AC), one scrum master (SM), and three different
architects (EA - enterprise architect, SA - solution architect
and IA - IT enterprise architect) in four different products of
which all adopted and applied the LeSS framework (see Table
I). All interviews lasted between 45 minutes to one hour each.
The interviews followed a semi-structured questionnaire and
were rather conversational in nature to maintain adaptability
to the roles and individual experiences of the interviewees. We
interviewed seven different roles from four different products
to enable triangulation of data sources [18].
Analysis of collected data: All interviews were transcribed
and coded using open coding as suggested by Miles et al. [21].
After creating preliminary codes, we refined and consolidated
our codes by merging related ones and removing duplicates.
Based on that, we looked at groups of code phrases and merged

207

TABLE I: Overview of interviewed roles and their assigned
products.

Role MPN OTD PPM PFS

PO - - - 1

FT - - - 1

AC / SM 1 1 - -

EA / SA / IA - - 3 -

Total 1 1 3 2

them into concepts, which were later related to our formulated
research questions.

IV. RESULTS

A. Case Description

The case under investigation concerns a German multina-
tional company that currently manufactures luxury cars and
motorcycles and employs more than 120,000 people within
the whole organization and around 4500 people in its IT
department. In the past, the IT department focused mainly
on standardization and cost optimization of the running IT.
Driven by digitalization, the IT management saw the increase
in agility of the IT department as an essential improvement for
its performance and flexibility. At the end of 2016, the IT man-
agement decided to transform the IT department into an agile
product organization over the next two to three years following
the slogan ”100 % agile”. It committed itself to the goal of
transforming all current IT projects to agile and aligning the
IT organization completely with agile principles by the end of
2019. Contemporaneously, the autonomous driving department
of the case organization chose LeSS as its new working
model with the aim of achieving easier communication and
coordination, more transparency and shorter decision-making
paths throughout the entire department. Success stories of the
autonomous driving department with LeSS reached the IT
department. In parallel the IT management allowed individual
IT projects to choose an appropriate scaling agile framework
for themselves, which is why many IT projects decided to
adopt LeSS at the beginning of 2017. Still, a large part
of software development activities is outsourced to external
partners working partly plan-driven.
The four investigated IT projects (from now on products):
”Material Part Number” (MPN), ”Order-to-Delivery” (OTD),
”Product & Price Master Data” (PPM), and ”Price Finding
Service” (PFS) also decided to adopt LeSS for their product
development (see Figure II). MPN aimed to replace the case
organization’s old legacy system for managing and storing its
bills of materials. OTD developed, maintained, and improved
IT systems for the case organization’s intra-plant logistics.
PPM was responsible for the sustainable design of the case
organization’s master data application. PFS was responsible
for the development of a new pricing software.

B. LeSS Adoption

We used exploratory questions for the following categories:
(1) timing and duration, (2) reasons and to-be-addressed
problems, (3) combined frameworks, (4) training, (5)
adaptations, (6) challenges, and (7) lessons learned to
evaluate the adoption of the framework.
All four products had recently adopted LeSS for no longer
than two years. However, the duration of the adoptions
varied between three months to one year because of different
complexities. LeSS was introduced to handle inter-team
coordination and to balance the limitations of Scrum in
large-scale projects. Additional reasons were its moderate
degree of complexity while maintaining sufficient guidance
for the coordination of multiple agile teams working on the
same product. Before the adoption, the products had problems
with synchronizing teams, managing their dependencies, and
information loss between teams. LeSS was also selected
to enable the transition from traditional project thinking
to product and customer orientation. During the adoption,
LeSS was combined with preexisting lean and agile methods
such as Kanban and DevOps. For instance, MPN and PPM
adopted LeSS in combination with Kanban to manage epics
and features and to track the progress of tasks using Kanban
boards. In all products, the adoption was accompanied by a
comprehensive training of all employees which range from
one single presentation by the SM / AM to a two-days
individually adjusted workshop with external experts since
employees possess varying levels of prior knowledge in agile
software development. The adoption of LeSS in each product
led to individual adjustments, e.g., all products extended
LeSS by a domain level with a superordinate portfolio layer
to coordinate all products within the IT department and align
them with the organization’s strategic objectives. A so-called
”one-calendar” approach, centrally managed by the sub-units
of the IT department, eased the adoption by enabling common
sprint cadences across products. Although this approach was
perceived as contradicting agile values, especially in terms of
self-organization, one interviewee stressed its importance:

“Actually, it’s about self-organization in agile. But with
a few hundred teams, it’s difficult if one has a meeting
there or the other one has the daily at other time. Somehow
they have to synchronize. Then this one-calendar was our
approach to bring structure into it.”

— SM, OTD

We identified four common problems during the adoption
of LeSS. First, although LeSS is minimalist and tries to
define roles, artifacts, or processes that are at least needed for
large-scale agile development [10], the products had concerns
regarding numerous coordination meetings. The SM of OTD
described the problem as follows:

“Many people are simply arrested in thousands of other
meetings and if the PO is missing at a meeting such as sprint
planning, this is quite sub-optimal.”

208

TABLE II: Overview of interviewed products and general information.

MPN OTD PPM PFS

Start of Adoption April 2017 Early 2017 End 2017 March 2018

Number of involved Employees ∼600 ∼70 ∼90 ∼40

Sites Germany Germany,
South Africa

Germany, Poland,
Portugal, Russia

Germany, Portugal,
Russia

Number of Feature Teams 15 5 6 3

Sprint Lengths (in weeks) 3 3 3 3

LeSS Adoption LeSS LeSS LeSS Huge LeSS

— SM, OTD

Having too many meetings can reduce the productivity of the
employees:

“The PO attends so many meetings that he doesn’t have time
to write user stories himself. . . . And if you haven’t written
them yourself, it’s incredibly difficult to accept them.”

— PO, PFS

Second, due to the currently organizational structure, each
product had two POs, one from the specialist department and
one from the IT department, which led to the so-called ”dual
leadership” (see Section IV-C). Third, the employees feared
losing status and power. This problem affected primarily
middle management employees that were partly retrained to
POs during the adoption. Fourth, the adoption was hampered
by the lack of agile mindset and understanding about LeSS.
Last but not least, we asked all interviewees about lessons
learned. Ex post, clear communication of the big picture
of the adoption can increase transparency and sharpen
awareness of involved stakeholders. In addition, one FT
member mentioned that practical exercises in training courses
can ease the adoption:

“At first glance, it makes the adoption of LeSS easier
when practicing and understanding the theory in small
projects, preferably in a playful way.”

— FT, PFS

A summarizing comparison of the four LeSS adoptions can
be found in Table III.

C. LeSS Application

We asked the interviewees how their products applied:
roles, artifacts, and processes.
Roles: All three standard roles, namely FT, PO, and SM are
included in the respective products (see Table IV). In contrast
to Scrum, the number of FTs (development teams in Scrum)
is two to eight within LeSS. In LeSS Huge, this number
can be scaled even higher. Although MPN has 15 FTs, it
decided to use multiple LeSS implementations because the
subordinate products do not have an overarching product
character. FTs of OTD, PPM, and PFS were spread across

the world. According to the SM in OTD, one problem was
that FTs were still too heavily controlled by external factors
and therefore were not entirely self-organized. For PPM, it
appeared to be less of a problem. PFS’ FTs were already 90
– 95% self-organized. For this reason, there is great potential
for improvement by allowing FTs to act as self-organized
units. As already indicated in Section IV-B, the role of the PO
was shared by several persons, i.e., one PO was responsible
for the business side and one for the IT side. This arose
from the fact that one person alone did not have the required
knowledge to manage the product properly, so the products
decided to split the responsibilities. The ”dual leadership”
created difficulties in coordination for external and internal
teams.

“. . . there still exists one PO on the business and one
PO one the IT side but then in the form of a dual leader. If
you look at LeSS or Scrum then I have to say having a dual
leader is the worst thing to do.”

— EA, PPM

The suggested improvement was to remove dual leadership
by bundling responsibilities into one PO. The EA of PPM
suggested that the IT PO should work more with FTs and
act as a substituting PO where he could collect valuable
insights. In addition, PPM had six product owners who were
responsible for subareas, representing APOs as suggested by
LeSS Huge [10]. Last but not least, all products introduced
the role of the Domain PO (DPO) with more traditional
project management functions. Their responsibility included
synchronization of the FTs and planning the budget and
capacities. They also took overall responsibility for the
products and coordinated at portfolio level with each other.

“They [DPOs] are actually only responsible for the budget
and capacities and should not be involved in the actual
work.”

— EA, PPM

Figure II provides an overview of the different PO roles in
the respective products. In OTD, the role of the SM did not
exist per se, but instead the role of the agile master (AM).
The AM of OTD was not only responsible for helping FTs

209

TABLE III: Comparison of the LeSS adoptions in the four products.

MPN OTD PPM PFS

Reasons for
Adoption

• Simplicity of LeSS
• Optimizing product cut
• Dealing with high

project complexity
• Enabling change from

project to product

• System optimization
goals from LeSS

• Success stories of the
autonomous driving
department

• Three-day introduction
to LeSS by Craig Larman

• Enabling change from
project to product

• Dealing with high
project complexity

• Enabling change from
project to product

• Reducing dependencies
between agile teams

• Minimizing loss of infor-
mation between agile teams

• Handling inter-team
coordination

Combined
Frameworks

• Combined LeSS with SAFe
to have a superordinate
portfolio level

• Combined LeSS with Kanban
to manage epics and features

• Combined LeSS with
DevOps so that FTs
have the required skill-
set and the full respon-
sibility to release software

• Combined LeSS Huge
with Kanban to track and
monitor the progress
of tasks

–

LeSS
Training

• 2-day training program
for each employee
extended with LeSS

• SM coaching
• External agile coaches

train internal employees
who in-turn coach FTs

• 2-day training program
for each employee
extended with LeSS Huge

• External agile coaches
train internal employees

• External agile coaches
train internal employees

Adaptations

• LeSS extended by
a domain level

• Common sprint cadences
are facilitated by a
one-calendar approach

• LeSS extended by
a domain level

• Common sprint cadences
are facilitated by a
one-calendar approach

• LeSS Huge extended by
a domain level

• LeSS extended by
a domain level

Challenges

• Sharing a common vision
• Fear of losing power
• Communication gaps

between products
• High complexity

of the product
• Correct product cuts
• Balancing up-front plan-

ning vs. emergent design
• Dual leadership

of the PO role

• Numerous coordination
meetings

• High complexity due to
the number of FTs

• Low prior knowledge
of agile methods

• Traditional line respon-
sibilities of employees
complicate their focus on
agile working

• Dual leadership
of the PO role

• Numerous coordination
meetings

• Splitting large requirements
into smaller requirements

• APOs keeping own APBs
• Synchronizing APBs
• Dealing with cultural

differences between FTs
• Missing transparency

regarding roles
and responsibilities

• Dual leadership
of the PO role

• Numerous coordination
meetings

• Fear of losing power
• Specialist departments have

low knowledge of LeSS
• Establishing agile mindset
• Changing roles and

responsibilities due to
agile working

• Dual leadership
of the PO role

Lessons
Learned

• Communicating the big
picture of the adoption
to obtain the commitment
of all stakeholders

• Performing Inspect and
Adapt at regular intervals

• Performing Inspect and
Adapt at regular intervals

• Reducing responsibilities
to a few people to increase
decision-making speed

• Practical exercises in
training courses deepen the
understanding of LeSS

TABLE IV: Identified results for the application of roles within
the products.

Role MPN OTD PPM PFS

FT 3 3 3 3

PO 3 3 3 3

SM 3 3 3 3

Additional Roles 3 3 3 3

to apply LeSS and self-organize, but also for the change
management and people management:

“The agile master is responsible for the methodology,
i.e., method training, shielding the team from stakeholders
who want something, eliminating impediments, and organizing
events.”

— SM, OTD

All products involved additional roles which go beyond
LeSS. For instance, PFS included the role of the PO support,
who was responsible for creating user stories, as the PO
had no time for this. PFS also introduced the business
analyst (BA) role, who was responsible for dealing with
the problems and requirements of FTs. He was also the
first point of contact for external parties. Each product was

210

Do
m

ai
n

Le
ve

l
Pr

od
uc

t L
ev

el
Domain PO

Feature
Teams

Product
Backlog

IT POBusiness
PO

MPN

Domain PO

Feature
Teams

Product
Backlog

IT POBusiness
PO

OTD

Domain PO

Feature
Teams

Product
Backlog

IT POBusiness
PO

PFS

Domain PO

Product
Backlog

IT POBusiness
PO

PPM

Su
b

Pr
od

uc
t L

ev
el

Area Product
Backlog

Area PO

Feature
Team

Requirement Area

Area Product
Backlog

Area PO

Feature
Team

Requirement Area

Area Product
Backlog

Area PO

Feature
Team

Requirement Area

Area Product
Backlog

Area PO

Feature
Team

Requirement Area

Area Product
Backlog

Area PO

Feature
Team

Requirement Area

Area Product
Backlog

Area PO

Feature
Team

Requirement Area

Fig. II: Overview of the different PO roles in the four products.

accompanied by different types of architects, such as IT
architects, enterprise architects, and solution architects that
mainly acted as external consultants for various architectural
topics. Such topics include: showing the positioning of the
product in the overall organization context, guiding FTs in
the realization of the to-be architecture of the product, and
ensuring that FTs adhere to architectural standards. In this
context, the EA of PPM also stated that:

“My personal opinion is that when somebody does not
know how to continue they call the architects. They are really
just ad-hoc fire extinguishers, who have to come quickly.”

— EA, PPM

Artifacts: Table V provides an overview of used artifacts.
In general, there existed a product backlog for all products.
The main difference was that MPN, OTD, and PFS had one
product backlog, whereas PPM had one common and six RA-
specific product backlogs, so-called area product backlogs.
According to one interviewee, this caused the following
problem: if there is only one common product backlog on
product level for several sub areas, the sole prioritization
based on importance becomes difficult, as it cannot generally
be said that one sub product is more important than another
one. In general, all products had a sprint backlog, sprint
goal, and product increments as artifacts. The definition of
done (DoD) was implemented by all products and has been
discussed at a great deal as they were not fully used. The PO
of PFS described the DoD as particularly important, since
it defines clear expectations regarding user stories towards
external partners. However, PFS was the only product that
had a finished DoD. Instead, the interviewee in MPN stated:

“Basic artifacts as the DoD do exist in every product,
however are not used.”

TABLE V: Identified results for the application of artifacts
within the products.

Artifacts MPN OTD PPM PFS

Product Backlog 3 3 3 3

Sprint Backlog 3 3 3 3

Sprint Goal 3 3 3 3

Product Increment 7 3 3 7

Definition of Done 3 3 3 3

Additional Artifacts 3 7 3 3

— AC, MPN

This was validated by the IA of PPM:

“Probably it [the DoD] was introduced once in the beginning
and now it is in some corner, somewhere in Confluence on
some subordinated page, which nobody has accessed for a
long time. This sounds very plausible to me.”

— IA, PPM

The respondents considered the lack of use of the DoD to
be problematic, as the product increment was not assessed
according to predefined criteria. OTD followed a different
approach. An external team developed a general DoD, and
then the PO adapted it for his respective features to fit
individual requirements. Some interviewees mentioned two
additional artifacts. PPM and PFS also used the definition of
entry (DoE) which was created by the PO. The DoE was used
to describe rough requirements for individual user stories. In
addition, MPN, PPM, and PFS used the definition of ready
(DoR) as the last step prior to implementation. The DoR was

211

utilized to describe user stories ready for implementation.
However, one interviewee (SA) in PPM stated that the DoE
eventually vanished.

TABLE VI: Identified results for the application of processes
within the products.

Processes MPN OTD PPM PFS

Sprint 3 3 3 3

Product Backlog Refinement 3 7 3 3

Sprint Planning (1 & 2) 3 3 3 3

Daily Scrum 3 3 3 3

Sprint Review 3 3 3 3

Retrospective (Team & Overall) 3 3 3 7

Additional Processes 3 3 3 3

Processes: In general, all LeSS events were widely adopted
in all products (see Table VI). According to the SA of
PPM, it was difficult to get all relevant people to attend
meetings. Meetings were planned in the products at the
same time (one-calendar approach), which made cooperation
and coordination between people in different meetings very
difficult. In addition, retrospectives within PFS were not
implemented yet:

“Well, we haven’t been following the retro so closely
so far, but we have decided to do more.”

— FT, PFS

All products organized communities of practices (CoPs)
for collaboration and information exchange within technical
and business domains across products. One interviewee also
added that:

“Communities of practices are very helpful for the
coordination of processes, methods, and tools as well
as for comprehensive harmonization and standardization.”

— SM, OTD

The architecture CoP was the most outstanding CoP within
all products as they were implemented by all products. There,
architects and other stakeholders discuss architecture-related
topics, make decisions, and design architecture guidelines
which also affect FTs:

“There is an architecture community that not only discusses,
but can also make decisions. . . . You have to be able to
provide input to the teams, but ideally through a community
approach and not through strong external roles.”

— AC, MPN

Additional CoPs were organized for POs and SMs as well as
for the testing domain. The former enables DPOs and POs
to coordinate and to find a common direction on enterprise
level. At regular intervals, MPN and OTD also have organized

inspect and adapt events to check where they are in the
adoption process, what to improve, and how to adjust their
behavior respectively. Last but not least, PPM and PPM
organized big events that took place once or twice a year in
one of the sites to facilitate team coherence and trust.

V. DISCUSSION

A. Key findings

We now discuss the main outcomes of our findings.
Key findings RQ1: After analyzing different adoptions of
LeSS in four products, we identified following five success
factors. First, the adoption must be 100% transparent as higher
transparency incentivizes FTs to deliver software in higher
quality.

Second, comprehensive training courses and workshops
ease the adoption since they provide a shared understanding
of new practices, roles, and responsibilities. Third, employees
should be involved as early as possible in order to minimize
change resistance. Fourth, managers should be aware of
dissatisfied employees to retain their status and power.
Accordingly, managers should raise awareness regarding the
value of change to the organization. Fifth, the motivation
behind LeSS should be properly promoted, advertised, and
communicated.
Key findings RQ2: Based on the four LeSS applications,
the following six key findings emerge. First, although the
self-organization of FTs were acknowledged within the
organization, sprint cadences were centrally organized using a
so-called ”one-calendar” approach. Second, all four products
were extended by a domain level and supported by a DPO
as the products were not necessarily independent from each
other. Third, due to the present organization structure, the
role of the PO was shared by two or three people resulting
in the so-called ”dual or even triple leadership”. Many
interviewees complained about this situation since it slowed
down processes and hampered what LeSS wants to achieve:
fast and agile decisions. Fourth, all products extended LeSS
by involving additional roles such as BAs, PO support,
shared services, and solution and enterprise architects.
Fifth, all four products extended LeSS with additional
processes to facilitate the exchange of shared knowledge
between the products. These events included various types
of communities of practices such as architecture, SM &
PO or testing communities. Sixth, the interviewed products
organized large team-building events that took place once
or twice a year in one of the sites. With those, they aimed
at building trust between FTs and overcoming cultural barriers.

B. Threats to validity

We discuss potential threats to validity along with an assess-
ment scheme as suggested by Runeson and Höst [18]. First,
we address construct validity by interviewing multiple roles
across four different products. We also transcribed, coded,
and analyzed the interviews. Second, internal validity is not
relevant, as this research was neither explanatory nor causal

212

[18]. Third, we address external validity by providing a
detailed description of the case and focusing on analytical
generalization [18]. This paper provides empirical insights
that allow for a profound understanding of the adoption and
application of LeSS. The presented findings should be viewed
as valuable insights for other organizations that aim to adopt
and apply LeSS. Last, we ensure the reliability of our results
by using a case study protocol with detailed procedures for
data collection and analysis. We also collected data from
different sources by multiple interviewers to allow data and
observer triangulation [18].

VI. CONCLUSION AND FUTURE WORK

The success of agile methods for small teams inspired
large organization to apply them at large-scale by using
scaling agile frameworks [4], [5]. Although the number of
organizations using these frameworks is increasing, scientific
literature providing in-depth analysis is still scarce [6], [7]. We
aimed to fill this gap by providing a case study regarding the
adoption and application of LeSS in four different products
of a German automobile manufacturer. Our findings indicate
that a transparent adoption incentivizes teams to deliver high-
quality software and that comprehensive training courses and
workshops ease the adoption. We also found out that the
case organization extended LeSS with additional roles and
processes to facilitate the exchange of shared knowledge
between products, to build trust between teams, and to adapt
it to the current organizational structure.
While we are confident that our findings will contribute
to the existing body of knowledge on actual experiences
related to LeSS, we encourage other researchers to conduct
further in-depth case studies on LeSS and other scaling agile
frameworks. For instance, it would be interesting to study
to what extent companies have to adapt their organizational
structures and processes in order to use LeSS. In future
studies, researchers should also conduct cross-case analyses
with the goal to compare the adoption and application of
LeSS in different types of organizations, e.g., digital natives
vs. traditional companies.

REFERENCES

[1] K. Beck, Extreme programming explained: embrace change. Addison-
Wesley, 2000.

[2] K. Schwaber and J. Sutherland, “The scrum guide,” Scrum.org, Tech.
Rep., 2017.

[3] P. Kettunen, “Extending software project agility with new product
development enterprise agility,” Software Process: Improvement and
Practice, vol. 12, no. 6, pp. 541–548, 2007.

[4] T. Dingsøyr and N. B. Moe, “Towards principles of large-scale agile
development,” in Agile Methods. Large-Scale Development, Refactoring,
Testing, and Estimation, T. Dingsøyr, N. B. Moe, R. Tonelli, S. Counsell,
C. Gencel, and K. Petersen, Eds. Springer, 2014, pp. 1–8.

[5] M. Alqudah and R. Razali, “A review of scaling agile methods in large
software development,” International Journal on Advanced Science,
Engineering and Information Technology, vol. 6, no. 6, pp. 828–837,
2016.

[6] VersionOne, “12th annual state of agile report,” VersionOne, Tech. Rep.,
2018.

[7] K. Dikert, M. Paasivaara, and C. Lassenius, “Challenges and success
factors for large-scale agile transformations: A systematic literature
review,” Journal of Systems and Software, vol. 119, pp. 87–108, 2016.

[8] Ö. Uludağ, M. Kleehaus, C. Caprano, and F. Matthes, “Identifying
and structuring challenges in large-scale agile development based on
a structured literature review,” in 22nd International Conference on
Enterprise Distributed Object Computing Conference (EDOC). IEEE,
2018, pp. 191–197.

[9] C. Larman and B. Vodde, Scaling Lean & Agile Development: Thinking
and Organizational Tools for Large-Scale Scrum. Addison-Wesley,
2008.

[10] ——, Large-Scale Scrum: More with LeSS. Addison-Wesley, 2016.
[11] Ö. Uludağ, M. Kleehaus, X. Xu, and F. Matthes, “Investigating the

role of architects in scaling agile frameworks,” in 21st International
Conference on Enterprise Distributed Object Computing Conference
(EDOC). IEEE, 2017, pp. 123–132.

[12] A. Putta, M. Paasivaara, and C. Lassenius, “Benefits and challenges of
adopting the scaled agile framework (safe): Preliminary results from a
multivocal literature review,” in International Conference on Product-
Focused Software Process Improvement. Springer, 2018, pp. 334–351.

[13] J. Pries-Heje and M. M. Krohn, “The safe way to the agile organization,”
in Proceedings of the XP2017 Scientific Workshops. ACM, 2017, p. 18.

[14] M. Paasivaara, “Adopting safe to scale agile in a globally distributed or-
ganization,” in IEEE 12th International Conference on Global Software
Engineering. IEEE, 2017, pp. 36–40.

[15] M. Paasivaara and C. Lassenius, “Scaling scrum in a large distributed
project,” in International Symposium on Empirical Software Engineering
and Measurement (ESEM). IEEE, 2011, pp. 363–367.

[16] ——, “Scaling scrum in a large globally distributed organization: A
case study,” in 11th International Conference on Global Software
Engineering (ICGSE). IEEE, 2016, pp. 74–83.

[17] Ö. Uludağ, M. Hauder, M. Kleehaus, C. Schimpfle, and F. Matthes,
“Supporting large-scale agile development with domain-driven design,”
in International Conference on Agile Software Development. Springer,
2018, pp. 232–247.

[18] P. Runeson and M. Höst, “Guidelines for conducting and reporting case
study research in software engineering,” Empirical Software Engineer-
ing, vol. 14, no. 2, p. 131, 2009.

[19] M. Q. Patton, Qualitative evaluation and research methods. SAGE
Publications, 1990.

[20] T. C. Lethbridge, S. E. Sim, and J. Singer, “Studying software engi-
neers: Data collection techniques for software field studies,” Empirical
Software Engineering, vol. 10, no. 3, pp. 311–341, 2005.

[21] M. B. Miles, A. M. Huberman, and J. Saldana, Qualitative Data
Analysis: A Methods Sourcebook. SAGE Publications, 2014.

213

Identifying and Structuring Challenges in
Large-Scale Agile Development based on a

Structured Literature Review
Ömer Uludağ, Martin Kleehaus, Christoph Caprano, Florian Matthes

Chair for Informatics 19
Technische Universität München (TUM)

D-85748, Garching
{oemer.uludag,martin.kleehaus,christoph.caprano,matthes}@tum.de

Abstract—Over the last two decades, agile methods have trans-
formed and brought unique changes to software development
practice by strongly emphasizing team collaboration, customer
involvement, and change tolerance. The success of agile methods
for small, co-located teams has inspired organizations to in-
creasingly apply agile practices to large-scale efforts. Since these
methods are originally designed for small teams, unprecedented
challenges occur when introducing them at larger scale, such as
inter-team coordination and communication, dependencies with
other organizational units or general resistances to changes.
Compared to the rich body of agile software development
literature describing typical challenges, recurring challenges of
stakeholders and initiatives in large-scale agile development has
not yet been studied through secondary studies sufficiently. With
this paper, we aim to fill this gap by presenting a structured
literature review on challenges in large-scale agile development.
We identified 79 challenges grouped into eleven categories.

I. INTRODUCTION

Emerging in the 1990s, agile software development meth-
ods, such as Extreme Programming (XP), Feature-Driven
Development, and Scrum, have transformed and brought un-
precedented changes to software development practice by
strongly emphasizing change tolerance, continuous delivery,
and customer involvement [1], [2]. Many enterprises are
already using agile methods to maximize customer value and
quality of delivered software products, but are uncertain how to
introduce them at scale, since they are originally designed for
small, co-located teams [1], [3]. This problem is exacerbated
by the fact that the adoption of agile methods at larger scale
entails new challenges, such as inter-team coordination and
communication, dependencies with other organizational units
or general resistances to changes [3], [4]. Despite these known
challenges, there is an industry trend towards adopting agile
methods in-the-large [3], [5].

Compared to the rich body of agile software development
literature describing typical challenges (cf. [6], [7] or [8]),
challenges in large-scale agile development has not yet been
studied through secondary studies sufficiently [3]. Dikert et al.
[3] made a first attempt to solve this problem by presenting
a systematic literature review of large-scale agile transforma-
tions. They identified 35 reported challenges and 29 success
factors for large-scale agile transformations. However, the

presented challenges are not directly related stakeholders in
order to provide appropriate proven solutions for addressing
them. In our larger study, we aim to fill this gap by introducing
the concept of large-scale agile development patterns and to
provide best practices for recurring challenges of stakeholders
and initiatives in large-scale agile development. Our study is
inspired by the pattern-based approach to Enterprise Archi-
tecture Management (EAM) [9]. As a starting point of our
study, we present our qualitative findings on stakeholder- and
initiative-related challenges in large-scale agile development
with the help of a structured literature review. Based on this
objective, three research questions (RQ) were formulated

• RQ1: Which stakeholders exist in large-scale agile devel-
opment?

• RQ2: What are challenges of stakeholders and initiatives
in large-scale agile development?

• RQ3: What are generalizable findings on stakeholder-
and initiative-related challenges in large-scale agile de-
velopment?

A. Research methodology

The goal of the literature review is to identify challenges of
stakeholders and initiative in large-scale agile development.
In order to achieve this goal and to ensure the rigor and
relevance of the research, we applied a structured literature
review approach as recommended by Brocke et al. [10] that
consists of four phases. In the first phase, we defined the re-
view scope and formulated adequate research questions about
challenges in large-scale agile development. In the second
phase, we identified key concepts by concept mapping, which
also provided us the opportunity to obtain relevant search
terms: Agile and Lean Software Engineering, Large-Scale
Agile Development, Agile Transformation, and Challenges,
challenges and Problems. These search terms were used in the
subsequent literature search in the third phase. We examined
a range of different Information Systems journals, conference
proceedings using ACM Digital Library, IEEExplore, Scopus,
and Web of Science. Having compiled the aforementioned
list of search terms, we then used them in electronic full-
text search queries. Initially, 67 sources were identified as

214

relevant, given their focus on the topic, after analyzing a total
of 560 sources (title, abstract, and outline). Additionally, we
conducted a backward search, resulting in additional 6 sources.
In total, we obtained 73 relevant sources. In the fourth phase,
we coded the primary studies using a deductive approach as
proposed by Cruzes and Dybå [11]. We established an a priori
list of codes inspired by the EAM pattern language elements
[9], which includes stakeholders, challenges, methodology
patterns, architecture principles, viewpoint patterns, and anti-
patterns. In the initial step, we started with the actual coding
of the data structured by the aforementioned code categories.
During the coding, we also identified the relationships between
the codes of the different code families. Particularly, we related
challenges to respective stakeholders and solutions, such as
methodology patterns or architecture principles. For instance,
we can determine typical challenges of solution architects and
how they are trying to address them based on this structure.
After creating preliminary codes, we refined and consolidated
our codes by merging related ones and removing duplicates.
In the final step, we grouped related challenges into eleven
categories: culture & mindset, communication & coordination,
enterprise architecture, geographical distribution, knowledge
management, methodology, project management, quality as-
surance, requirements engineering, Software Architecture, and
tooling. Table I presents a description of the codes families and
the final state of the coding. Note that in this paper, we only
discuss the results related to challenges and stakeholders, and
that it as such forms a part of a larger study. In our larger
study, we aim to introduce the concept of large-scale agile
development patterns, which builds on and extends the idea
of the proven pattern-based approach to EAM [9]. The aim
of this new pattern language is to address typical problems of
stakeholders and initiatives in large-scale agile development.

The remainder of this paper is structured as follows. In
Section II, we provide an overview of related works describing
challenges and success stories in large-scale agile develop-
ment. In Section III, we present our findings on large-scale
agile development challenges identified in the literature. We
discuss the main findings in Section IV before concluding the
paper with a summary of our results and remarks on future
research in Section V.

II. RELATED WORK

Dikert et al. [3] conducted a systematic literature review
of industrial large-scale agile transformations focusing on
reported challenges and success factors in the transformation.
47 out of 117 relevant papers were selected to obtain 35
challenges and 29 success factors for agile adoption. They
grouped the challenges in nine categories and the success
factors in eleven categories. Paasivaara and Lassenius [12]
validated and deepened these findings with a pilot study. The
result is an improved and weighted version of the success
factors and challenges. However, there is no relationship to
stakeholders that are affected by these challenges. Viswanath
[13] observed more than 400 employees in a company during
their five years long lean transformation. The employees were

analyzed while facing challenges, pitfalls and success factors
according to three dimensions: Process, Product and People.
Viswanath [13] showed that every stakeholder in a company
is involved in the lean transformation. Nevertheless, detailed
relations of challenges to stakeholders is also not existing in
this paper. Bjarnason et al. [14] reported that agile transforma-
tions does not affect only software developers but also other
disciplines like requirements engineering. The challenges of
over-scoping and communication gaps can be addressed with
agile approaches. Some of the to be faced challenges are
similar to the traditional way but the transformation cause also
new challenges like finding the right balance between agility
and stability. Bjarnason et al. [14] also presented that require-
ments engineering is affected by the agile transformation and
have to face new challenges. Unfortunately, there is right now
no collection of stakeholder specific challenges that directly
mention stakeholders like requirement engineers.

III. CHALLENGES IN LARGE-SCALE AGILE DEVELOPMENT

A. Stakeholders in large-scale agile development

In our structured literature review, we identified 40 stake-
holder roles that are involved in large-scale agile development.
Many of them are either already present in traditional software
development or are used as a synonym for another role. We
consolidated the 40 roles to 14 stakeholder roles. One example
of this consolidation is the role of the Chief Architect [15]
which has been merged with the Enterprise Architect because
of their similar areas of responsibilities. The following 14
stakeholders were obtained in large-scale agile development:

• Development Team (47)1,
• Product Owner (33),
• Scrum Master (30),
• Software Architect (21),
• Test Team (18),
• Product Manager (13),
• Program Manager (4),
• Agile Coach (4),
• Enterprise Architect (3),
• Business Analyst (3),
• Solution Architect (2),
• Portfolio Manager (2),
• Support Engineer (2), and
• UX Expert (1).

B. Challenges in large-scale agile development

In total, we identified 79 challenges of which 41 newly arose
by large-scale agile development and 38 are strengthened by
large-scale agile development (see Table II and Table III).

IV. DISCUSSION

A. Key findings

Let us now reflect on the three research questions described
in Section I. RQ1: Which stakeholders exist in large-scale

1The number in parentheses stands for the number of documents that
mention the respective role.

215

TABLE I
OVERVIEW OF CODE FAMILIES AND CODES

Code family Description Examples # Identified
elements Codes

Stakeholders A person with a challenge in
a large-scale agile development

Product Owner, Scrum Master,
Software Architect 14 770

Challenges
Stakeholders or initiatives are confronted
with challenges that have to be addressed in
large-scale agile development

Ensuring that non-functional requirements are
considered by the Development Team 79 286

M-Patterns
Methodology patterns (M-Patterns) are defined
as concrete steps that are performed to address
recurring challenges in large-scale agile development

Scrum of scrums, community of practices,
creating an architectural runway 88 196

Architecture Principles
Architecture principles define the underlying general
rules and guidelines for the use and deployment
of all IT resources and assets across the enterprise

Loose coupling of systems or services,
reuse of functionalities,
buy before make

4 5

V-Patterns

Viewpoint patterns (V-Patterns) are defined as
documentations of proven practices to recurring
problems for specific contexts in form of viewpoints
for the creation of views

Burndown chart, context map,
pulse chart 9 12

Anti-Patterns

Anti-patterns detail on typical mistakes in
large-scale agile development, and present
revised solutions, which help pattern users
to prevent these pitfalls

Do not put individual goals over team goals,
do not adopt all agile practices in one go,
do not overshoot coordination meetings

17 68

Total 1378

agile development? In the literature review, we observed 40
different stakeholder roles in large-scale agile development.
We consolidated them to 14 final stakeholder roles. The stake-
holder roles include roles from agile software development
as well as new roles, like Software Architects or portfolio
managers.

RQ2: What are challenges of stakeholders and initiatives
in large-scale agile development? We identified 79 challenges
for large-scale agile development (see Table II and Table III).
These challenges can be either program-specific or related
to specific stakeholders. Thereby, we assigned the challenges
either to the in RQ1 observed stakeholder roles or marked
them as program-specific.

RQ3: What are generalizable findings on stakeholder-
and program-related challenges in large-scale agile de-
velopment? Architecture becomes more important the more
complex the task or system is. Although, Software Architects
are not included in many agile methods, such as XP or Scrum,
they face several challenges in large-scale agile development.
Furthermore, more than 20% of the challenges are related
to architecture-related topics. All of these challenges newly
arose with large-scale agile development. New stakeholder
roles are involved when scaling agile development. Although,
the role of the architect was not intended in agile software
development, because it only contains the role of a Prod-
uct Owner, Scrum Master and the Development Team and
additional ones are not mentioned [65]. Nevertheless, we
observed in the literature analysis further roles like software
and enterprise architects or product managers. Scaling agile
development entails new communication and coordination
challenges. Additional stakeholder roles help to manage big

software programs. This includes also the management of
multiple agile teams. In the literature review, we identified
eight communication and coordination challenges and 75%
of them newly arose from large-scale agile development.
Challenges in agile development may still exist in large-scale
agile development. 38 of 79 identified challenges still exist
in large-scale agile development. These challenges are typical
for agile development and are reinforced by large-scale agile
development. Stakeholders that are successfully isolated by the
Scrum Master from external influences have less challenges
in large-scaled agile development. Only 7% of the observed
challenges are either challenges for the Development or Test
Team. Furthermore, the top challenge topics are inter-team
coordination and communication problems as well as archi-
tecture related issues. Stakeholders that are isolated by the
Scrum Master from external influences are not affected by
these challenges and face less challenges in large-scale agile
development.

B. Limitations

This paper has a few limitations, which should be mentioned
at this point: First, although, we spent much time and effort
into developing a suitable search string and conducted a
structured database search, there is still a certain chance that
not all important contributions have been identified. We found
additional literature through a backward search of the analyzed
papers in the literature search process. Some relevant studies
might have evaded our attention in spite of our best efforts.
Second, the initial coding procedure was conducted by only
one researcher, which might have led to biased classifications.
It might have been better if two researchers had been involved
working on a pair coding mode from the beginning.

216

TABLE II
LARGE-SCALE AGILE DEVELOPMENT CHALLENGES

Name Challenge Category Novelty Relationship to Stakeholders Number Sources

Coordinating multiple agile teams that work on
the same product

Communication & Coor-
dination

yes Program Manager 15 [3], [16], [17], [18], [19],
[20], [21], [22], [23],
[24], [25], [26], [27],
[28], [29]

Considering integration issues and dependencies
with other subsystems and teams

Software-Architecture yes Solution Architect 14 [3], [12], [18], [20], [23],
[24], [26], [28], [30],
[31], [32], [33], [34],
[35]

Coordinating geographically distributed agile
teams

Geographical
Distribution

yes Scrum Master 8 [3], [12], [19], [25], [29],
[33], [36], [37]

Facilitating shared context and knowledge Knowledge Management no Initiative-Related 7 [13], [21], [31], [33],
[38], [39], [40]

Managing technical debts Software-Architecture no Software Architect 7 [13], [28], [29], [33],
[41], [42]

Dealing with incorrect practices of agile develop-
ment

Methodology no Agile Coach 7 [12], [21], [25], [32],
[33], [41], [43],

Dealing with doubts in people about changes Culture & Mindset no Agile Coach 7 [13], [21], [31], [33],
[38], [39], [40]

Ensuring that non-functional requirements are
considered by the Development Team

Software-Architecture yes Software Architect, Solution
Architect

6 [3], [12], [26], [30], [33],
[44]

Finding the right balance between architectural
improvements and business value

Software-Architecture yes Software Architect 6 [26], [28], [30], [31],
[33], [45]

Creating precise requirement specifications for the
Development Team

Requirements Engineer-
ing

no Product Owner 5 [3], [12], [37], [44], [46]

Obtaining management buy-in Culture & Mindset no Initiative-Related 5 [3], [12], [42], [47], [48]
Providing sufficient tools and infrastructure for
remote communications

Tooling no Initiative-Related 5 [27], [36], [39], [49],
[50]

Sharing common vision Knowledge Management yes Program Manager, Product
Owner

5 [3], [13], [31], [51], [52]

Creating a proper upfront architecture design of
the system

Software-Architecture yes Software Architect 5 [28], [30], [32], [47],
[53]

Eliciting and refining requirements of end users Requirements Engineer-
ing

no Product Owner 5 [3], [12], [25], [26], [37]

Establishing self-organization Communication & Coor-
dination

no Development Team 5 [3], [21], [29], [33], [54]

Splitting large and complex requirements into
smaller requirements

Requirements Engineer-
ing

yes Product Owner, Program
Manager

5 [3], [12], [13], [33], [55]

Dealing with internal silos Knowledge Management yes Initiative-Related 5 [3], [12], [25], [28], [56]
Dealing with increasing workload of key stake-
holders

Project Management yes Initiative-Related 4 [3], [31], [33], [34]

Facilitating communication between agile teams
and other teams using traditional practices

Communication & Coor-
dination

yes Product Owner 4 [3], [37], [42], [48]

Managing dependencies to other existing environ-
ments

Enterprise Architecture yes Enterprise Architect 4 [3], [26], [37], [42]

Balancing short-term and long-term goals Requirements Engineer-
ing

no Product Manager 4 [3], [12], [25], [57]

Establishing a common scope for different stake-
holder groups

Knowledge Management yes Initiative-Related 4 [29], [34], [39], [49]

Creating team spirit and trust among agile teams Culture & Mindset yes Initiative-Related 4 [19], [29], [33], [41]
Managing and integrating heterogenous subsys-
tems of different Development Teams

Software-Architecture yes Solution Architect 3 [3], [28], [44]

Aligning and communicating architectural deci-
sions

Software-Architecture yes System Architect, Solution
Architect

3 [3], [28], [58]

Managing and sharing knowledge about system
components and their dependencies with stake-
holders

Enterprise Architecture yes Enterprise Architect 3 [3], [21], [28]

Communicating business requirements to Devel-
opment Teams

Requirements Engineer-
ing

no Product Owner 3 [25], [26], [59]

Facilitating agile teams to participate at cross-
shore meetings

Geographical
Distribution

yes Scrum Master 3 [3], [39], [50]

Synchronizing working hours of cross-shore agile
teams

Geographical
Distribution

yes Scrum Master 3 [3], [36], [39]

Dealing with geographical distance between agile
teams

Geographical
Distribution

yes Initiative-Related 3 [19], [36], [39]

Dealing with lacking team cohesion at different
locations

Geographical
Distribution

yes Scrum Master 3 [33], [36], [39]

Building trust of stakeholders in agile practices Culture & Mindset no Scrum Master 3 [3], [41], [52]
Ensuring the reuse of enterprise assets Enterprise Architecture yes Enterprise Architect 3 [28], [47], [53]
Definining clear and visible priorities Requirements Engineer-

ing
no Product Owner 3 [29], [46], [54]

Establishing automated testing Quality Assurance no Test Team 3 [3], [12], [13]
Creating lightweight documentation Knowledge Management no Development Team 3 [26], [37], [47]

217

TABLE III
LARGE-SCALE AGILE DEVELOPMENT CHALLENGES (CONTINUED)

Name Challenge Category Novelty Relationship to Stakeholders Number Sources

Facilitating standardization across agile teams Enterprise Architecture yes Enterprise Architect 3 [3], [12], [60]
Establishing a culture of continuous improvement Culture & Mindset no Scrum Master, Agile Coach 3 [25], [56], [61]
Applying agile practices for developing or main-
taining legacy systems

Software-Architecture yes Software Architect 3 [13], [44], [47]

Dealing with unplanned requirements and risks Project Management no Program Manager, Product
Owner, Product Manager

3 [31], [33], [37]

Rearranging physical spaces Tooling no Scrum Master 3 [3], [12], [50]
Enforcing customer involvement Culture & Mindset no Product Owner 3 [26], [47], [46]
Dealing with communication gaps with stakehold-
ers

Communication & Coor-
dination

yes Initiative-Related 3 [26], [49], [56]

Dealing with black and white mindsets Culture & Mindset no Agile Coach 2 [3], [42]
Dealing with closed mindedness Culture & Mindset no Agile Coach 2 [3], [42]
Dealing with higher-level management interfer-
ences

Culture & Mindset no Scrum Master 2 [28], [58]

Demonstrating the value of architecting Software-Architecture yes Software Architect 2 [45], [58]
Dealing with increased efforts by establishing
inter-team communication

Communication & Coor-
dination

yes Initiative-Related 2 [20], [31]

Dealing with lacking sense of ownership respon-
sibilities for developed services

Culture & Mindset yes Initiative-Related 2 [20], [33]

Ensuring that agile teams adhere to architecture-
related activities

Enterprise Architecture yes Enterprise Architect 2 [28], [53]

Providing agile teams appropriate automation and
scalable infrastructure

Tooling no Enterprise Architect 2 [17], [33]

Ensuring traceability of tests and requirements Quality Assurance no Test Team 2 [3], [62]
Making a cost and schedule estimation Project Management no Product Owner, Product Man-

ager, Program Manager
2 [26], [34]

Creating a teamwork centric rewarding model Project Management no Initiative-Related 2 [3], [12]
Defining clear roles and responsibilities Project Management no Initiative-Related 2 [12], [46]
Decomposing agile teams in smaller independent
teams

Enterprise Architecture yes Program Manager, Enterprise
Architect

2 [34], [56]

Dealing with loss of management control Culture & Mindset no Initiative-Related 2 [31], [47]
Establishing a common understanding of agile
thinking and practices

Methodology yes Agile Coach 2 [3], [12]

Creating and estimating user stories Requirements Engineer-
ing

no Product Owner, Development
Team

2 [3], [12]

Dealing with cultural differences between cross-
shore agile teams

Geographical
Distribution

yes Scrum Master 2 [19], [49]

Dealing with fixed price contracts in agile software
development

Project Management no Product Manager, Program
Manager

2 [47], [63]

Explaining requirements to stakeholders Communication & Coor-
dination

no Development Team 2 [25], [51]

Defining a lightweight formal review process for
new technologies

Enterprise Architecture yes Enterprise Architect 1 [42]

Dealing with office politics Culture & Mindset no Initiative-Related 1 [42]
Fostering technical excellence Software-Architecture yes Software Architect 1 [58]
Encouraging Development Teams to talk about
tasks and impediments

Culture & Mindset no Agile Coach, Scrum Master 1 [39]

Writing understandable automated tests Quality Assurance no Test Team 1 [62]
Establishing requirements verification Requirements Engineer-

ing
no Product Owner 1 [26]

Defining high-level requirements a.k.a. epics Requirements Engineer-
ing

yes Portfolio Manager, Product
Owner

1 [12]

Measuring the success of the large-scale agile
development program

Project Management yes Product Owner 1 [47]

Considering required competencies when assign-
ing teams to tasks

Project Management yes Initiative-Related 1 [31]

Dealing with decreased predictability Project Management no Initiative-Related 1 [47]
Empowering agile teams to make decisions Culture & Mindset no Initiative-Related 1 [29]
Forming and managing autonomous teams Communication & Coor-

dination
yes Initiative-Related 1 [12]

Coordinating tests and deployment with external
parties

Quality Assurance no Test team, Development Team 1 [31]

Establishing a lightweight review process for
adopting new technologies

Enterprise Architecture yes Enterprise Architect 1 [17]

Building an effective coaching model Methodology no Agile Coach 1 [64]
Synchronizing sprints in the large-scale agile de-
velopment program

Communication & Coor-
dination

yes Scrum Master 1 [60]

218

V. CONCLUSION AND FUTURE WORK

In this study, we presented a structured literature review on
recurring challenges of stakeholders and initiatives in large-
scale agile development. We analyzed 73 papers, in order to
describe reported challenges for large-scale agile development.
In total, 79 challenges were identified and grouped into eleven
challenge categories. We will extend our preliminary study
by collecting data from our large-scale agile development
workshops and case studies with industry partners. In paral-
lel, we will perform a structured survey among companies
in Germany to demonstrate the applicability of our large-
scale agile pattern language, which provides the structure for
documenting practice-proven solutions to recurring large-scale
agile development challenges. After a huge data collection
and evaluating the new pattern language, we will publish
the Large-Scale Agile Pattern Catalog containing patterns and
challenges.

REFERENCES

[1] P. Kettunen, “Extending software project agility with new product
development enterprise agility,” Software Process: Improvement and
Practice, vol. 12, no. 6, pp. 541–548, 2007.

[2] T. Dingsøyr, S. Nerur, V. Balijepally, and N. B. Moe, “A decade of agile
methodologies: Towards explaining agile software development,” 2012.

[3] K. Dikert, M. Paasivaara, and C. Lassenius, “Challenges and success
factors for large-scale agile transformations: A systematic literature
review,” Journal of Systems and Software, vol. 119, pp. 87–108, 2016.

[4] M. Alqudah and R. Razali, “A review of scaling agile methods in large
software development,” International Journal on Advanced Science,
Engineering and Information Technology, vol. 6, no. 6, pp. 28–35, 2016.

[5] VersionOne, “12th annual state of agile report,” VersionOne, Tech. Rep.,
2018.

[6] E. Hossain, M. A. Babar, and H.-y. Paik, “Using scrum in global soft-
ware development: a systematic literature review,” in Global Software
Engineering, 2009. ICGSE 2009. Fourth IEEE International Conference
on. Ieee, 2009, pp. 175–184.

[7] I. Inayat, S. S. Salim, S. Marczak, M. Daneva, and S. Shamshirband, “A
systematic literature review on agile requirements engineering practices
and challenges,” Computers in human behavior, vol. 51, pp. 915–929,
2015.

[8] W. R. Fitriani, P. Rahayu, and D. I. Sensuse, “Challenges in agile
software development: A systematic literature review,” in Advanced
Computer Science and Information Systems (ICACSIS), 2016 Interna-
tional Conference on. IEEE, 2016, pp. 155–164.

[9] A. W. Schneider and F. Matthes, “Evolving the eam pattern language,”
in Proceedings of the 20th European Conference on Pattern Languages
of Programs. ACM, 2015, p. 45.

[10] J. Vom Brocke, A. Simons, B. Niehaves, K. Riemer, R. Plattfaut, and
A. Cleven, “Reconstructing the giant: On the importance of rigour in
documenting the literature search process,” in ECIS, vol. 9, 2009, pp.
2206–2217.

[11] D. S. Cruzes and T. Dyba, “Recommended steps for thematic synthesis
in software engineering,” in Empirical Software Engineering and Mea-
surement (ESEM), 2011 International Symposium on. IEEE, 2011, pp.
275–284.

[12] M. Paasivaara and C. Lassenius, “Scaling scrum in a large globally
distributed organization: A case study,” in Global Software Engineering
(ICGSE), 2016 IEEE 11th International Conference on. IEEE, 2016,
pp. 74–83.

[13] U. Viswanath, “Lean transformation: Adapting to the change, factors for
success and lessons learnt during the journey: A case study in a multi
location software product development team,” in Proceedings of the 9th
India Software Engineering Conference. ACM, 2016, pp. 156–162.

[14] E. Bjarnason, K. Wnuk, and B. Regnell, “A case study on benefits and
side-effects of agile practices in large-scale requirements engineering,”
in Proceedings of the 1st Workshop on Agile Requirements Engineering,
ser. AREW ’11. New York, NY, USA: ACM, 2011, pp. 31–35.

[15] A. Martini, J. Bosch, and M. Chaudron, “Architecture technical debt:
Understanding causes and a qualitative model,” in 2014 40th EUROMI-
CRO Conference on Software Engineering and Advanced Applications,
Aug 2014, pp. 85–92.

[16] K. Rautiainen, J. von Schantz, and J. Vahaniitty, “Supporting scaling
agile with portfolio management: Case paf.com,” in 2011 44th Hawaii
International Conference on System Sciences, Jan 2011, pp. 1–10.

[17] R. P. Maranzato, M. Neubert, and P. Herculano, “Moving back to scrum
and scaling to scrum of scrums in less than one year,” in Proceedings
of the ACM international conference companion on Object oriented
programming systems languages and applications companion. ACM,
2011, pp. 125–130.

[18] T. Dybå and T. Dingsøyr, “Agile project management: From self-
managing teams to large-scale development,” in Proceedings of the 37th
International Conference on Software Engineering - Volume 2, ser. ICSE
’15. Piscataway, NJ, USA: IEEE Press, 2015, pp. 945–946.

[19] R. Vivian, H. Tarmazdi, K. Falkner, N. Falkner, and C. Szabo, “The
development of a dashboard tool for visualising online teamwork discus-
sions,” in Proceedings of the 37th International Conference on Software
Engineering - Volume 2, ser. ICSE ’15. Piscataway, NJ, USA: IEEE
Press, 2015, pp. 380–388.

[20] E. Moore and J. Spens, “Scaling agile: Finding your agile tribe,” in Agile
2008 Conference, Aug 2008, pp. 121–124.

[21] N. B. Moe, H. H. Olsson, and T. Dingsøyr, “Trends in large-scale
agile development: A summary of the 4th workshop at xp2016,” in
Proceedings of the Scientific Workshop Proceedings of XP2016, ser. XP
’16 Workshops. New York, NY, USA: ACM, 2016, pp. 1:1–1:4.

[22] T. Dingsøyr, K. Rolland, N. B. Moe, and E. A. Seim, “Coordination in
multi-team programmes: An investigation of the group mode in large-
scale agile software development,” Procedia Computer Science, vol. 121,
pp. 123–128, 2017.

[23] K. Crowston, K. Chudoba, M. B. Watson-Manheim, and P. Rahmati,
“Inter-team coordination in large-scale agile development: A test of
organizational discontinuity theory,” in Proceedings of the Scientific
Workshop Proceedings of XP2016, ser. XP ’16 Workshops. New York,
NY, USA: ACM, 2016, pp. 2:1–2:5.

[24] S. Bick, A. Scheerer, and K. Spohrer, “Inter-team coordination in
large agile software development settings: Five ways of practicing agile
at scale,” in Proceedings of the Scientific Workshop Proceedings of
XP2016, ser. XP ’16 Workshops. New York, NY, USA: ACM, 2016,
pp. 4:1–4:5.

[25] M. Paasivaara, “Adopting safe to scale agile in a globally distributed
organization,” in Proceedings of the 12th International Conference on
Global Software Engineering, ser. ICGSE ’17. Piscataway, NJ, USA:
IEEE Press, 2017, pp. 36–40.

[26] K. H. Rolland, “’desperately’ seeking research on agile requirements
in the context of large-scale agile projects,” in Scientific Workshop
Proceedings of the XP2015, ser. XP ’15 workshops. New York, NY,
USA: ACM, 2015, pp. 5:1–5:6.

[27] H. Nyrud and V. Stray, “Inter-team coordination mechanisms in large-
scale agile,” in Proceedings of the XP2017 Scientific Workshops, ser. XP
’17. New York, NY, USA: ACM, 2017, pp. 16:1–16:6.

[28] A. Martini and J. Bosch, “The danger of architectural technical debt:
Contagious debt and vicious circles,” in 2015 12th Working IEEE/IFIP
Conference on Software Architecture, May 2015, pp. 1–10.

[29] R. K. Gupta, P. Manikreddy, and K. Arya, “Pragmatic scrum transfor-
mation: Challenges, practices & impacts during the journey a case study
in a multi-location legacy software product development team,” in Pro-
ceedings of the 10th Innovations in Software Engineering Conference.
ACM, 2017, pp. 147–156.

[30] M. A. Babar, “An exploratory study of architectural practices and
challenges in using agile software development approaches,” in 2009
Joint Working IEEE/IFIP Conference on Software Architecture European
Conference on Software Architecture, Sept 2009, pp. 81–90.

[31] J. E. Hannay and H. C. Benestad, “Perceived productivity threats in
large agile development projects,” in Proceedings of the 2010 ACM-
IEEE International Symposium on Empirical Software Engineering and
Measurement, ser. ESEM ’10. New York, NY, USA: ACM, 2010, pp.
15:1–15:10.

[32] B. Murphy, C. Bird, T. Zimmermann, L. Williams, N. Nagappan, and
A. Begel, “Have agile techniques been the silver bullet for software
development at microsoft?” in 2013 ACM / IEEE International Sympo-
sium on Empirical Software Engineering and Measurement, Oct 2013,
pp. 75–84.

219

[33] M. S. Roopa, C. Sankarasubbiah, and V. S. Mani, “Usable software
at the end of each takt: A milestone in the lean transformation of
a globally distributed software development team,” in Proceedings of
the 12th International Conference on Global Software Engineering, ser.
ICGSE ’17. Piscataway, NJ, USA: IEEE Press, 2017, pp. 116–120.

[34] M. Kircher and P. Hofman, “Combining systematic reuse with agile de-
velopment: Experience report,” in Proceedings of the 16th International
Software Product Line Conference - Volume 1, ser. SPLC ’12. New
York, NY, USA: ACM, 2012, pp. 215–219.

[35] D. Rosenberg, B. Boehm, B. Wang, and K. Qi, “Rapid, evolutionary,
reliable, scalable system and software development: The resilient agile
process,” in Proceedings of the 2017 International Conference on
Software and System Process, ser. ICSSP 2017. New York, NY, USA:
ACM, 2017, pp. 60–69.

[36] R. Sindhgatta, B. Sengupta, and S. Datta, “Coping with distance: An
empirical study of communication on the jazz platform,” in Proceedings
of the ACM International Conference Companion on Object Oriented
Programming Systems Languages and Applications Companion, ser.
OOPSLA ’11. New York, NY, USA: ACM, 2011, pp. 155–162.

[37] M. Budwig, S. Jeong, and K. Kelkar, “When user experience met agile:
A case study,” in CHI ’09 Extended Abstracts on Human Factors in
Computing Systems, ser. CHI EA ’09. New York, NY, USA: ACM,
2009, pp. 3075–3084.

[38] F. O. Bjørnson and K. Vestues, “Knowledge sharing and process
improvement in large-scale agile development,” in Proceedings of the
Scientific Workshop Proceedings of XP2016, ser. XP ’16 Workshops.
New York, NY, USA: ACM, 2016, pp. 7:1–7:5.

[39] M. Paasivaara, S. Durasiewicz, and C. Lassenius, “Distributed agile de-
velopment: Using scrum in a large project,” in 2008 IEEE International
Conference on Global Software Engineering, Aug 2008, pp. 87–95.

[40] K. H. Rolland, “Scaling across knowledge boundaries: A case study of
a large-scale agile software development project,” in Proceedings of the
Scientific Workshop Proceedings of XP2016, ser. XP ’16 Workshops.
New York, NY, USA: ACM, 2016, pp. 5:1–5:5.

[41] I. Therrien and E. LeBel, “From anarchy to sustainable development:
Scrum in less than ideal conditions,” in 2009 Agile Conference, Aug
2009, pp. 289–294.

[42] A. Mahanti, “Challenges in enterprise adoption of agile methods,” 2006.
[43] M. Paasivaara, C. Lassenius, and V. T. Heikkilä, “Inter-team coordination

in large-scale globally distributed scrum: Do scrum-of-scrums really
work?” in Proceedings of the ACM-IEEE international symposium on
Empirical software engineering and measurement. ACM, 2012, pp.
235–238.

[44] B. Boehm and R. Turner, “Management challenges to implementing ag-
ile processes in traditional development organizations,” IEEE Software,
vol. 22, no. 5, pp. 30–39, Sept 2005.

[45] P. Abrahamsson, M. A. Babar, and P. Kruchten, “Agility and architecture:
Can they coexist?” IEEE Software, vol. 27, no. 2, pp. 16–22, March
2010.

[46] H. Ayed, B. Vanderose, and N. Habra, “Supported approach for agile
methods adaptation: An adoption study,” in Proceedings of the 1st
International Workshop on Rapid Continuous Software Engineering, ser.
RCoSE 2014. New York, NY, USA: ACM, 2014, pp. 36–41.

[47] P. Rodrı́guez, J. Markkula, M. Oivo, and K. Turula, “Survey on agile
and lean usage in finnish software industry,” in Empirical Software
Engineering and Measurement (ESEM), 2012 ACM-IEEE International
Symposium on. IEEE, 2012, pp. 139–148.

[48] J. Pries-Heje and M. M. Krohn, “The safe way to the agile organization,”
in Proceedings of the XP2017 Scientific Workshops, ser. XP ’17. New
York, NY, USA: ACM, 2017, pp. 18:1–18:3.

[49] P. Lous, M. Kuhrmann, and P. Tell, “Is scrum fit for global software
engineering?” in Proceedings of the 12th International Conference on
Global Software Engineering, ser. ICGSE ’17. Piscataway, NJ, USA:
IEEE Press, 2017, pp. 1–10.

[50] M. Hallikainen, “Experiences on agile seating, facilities and solutions:
Multisite environment,” in 2011 IEEE Sixth International Conference on
Global Software Engineering, Aug 2011, pp. 119–123.

[51] O. Ktata and G. Lévesque, “Agile development: Issues and avenues
requiring a substantial enhancement of the business perspective in large
projects,” in proceedings of the 2nd Canadian conference on computer
science and software engineering. ACM, 2009, pp. 59–66.

[52] D. Wilby, “Roadmap transformation: From obstacle to catalyst,” in 2009
Agile Conference, Aug 2009, pp. 229–234.

[53] M. Rizwan and J. Qureshi, “Agile software development methodology
for medium and large projects,” IET Software, vol. 6, no. 4, pp. 358–363,
August 2012.

[54] D. Talby and Y. Dubinsky, “Governance of an agile software project,”
in Proceedings of the 2009 ICSE Workshop on Software Development
Governance, ser. SDG ’09. Washington, DC, USA: IEEE Computer
Society, 2009, pp. 40–45.

[55] R. Vallon, C. Dräger, A. Zapletal, and T. Grechenig, “Adapting to
changes in a project’s dna: A descriptive case study on the effects of
transforming agile single-site to distributed software development,” in
2014 Agile Conference, July 2014, pp. 52–60.

[56] B. Sheth, “Scrum 911! using scrum to overhaul a support organization,”
in 2009 Agile Conference, Aug 2009, pp. 74–78.

[57] M. Laanti, “Implementing program model with agile principles in a
large software development organization,” in 2008 32nd Annual IEEE
International Computer Software and Applications Conference, July
2008, pp. 1383–1391.

[58] S. Angelov, M. Meesters, and M. Galster, “Architects in scrum: What
challenges do they face?” 11 2016, pp. 229–237.

[59] D. Broschinsky and L. Baker, “Using persona with xp at landesk
software, an avocent company,” in Agile 2008 Conference, Aug 2008,
pp. 543–548.

[60] V. Sithole and F. Solms, “Synchronized agile,” in Proceedings of the
Annual Conference of the South African Institute of Computer Scientists
and Information Technologists, ser. SAICSIT ’16. New York, NY, USA:
ACM, 2016, pp. 39:1–39:9.

[61] P. Rodrı́guez, K. Mikkonen, P. Kuvaja, M. Oivo, and J. Garbajosa,
“Building lean thinking in a telecom software development organization:
Strengths and challenges,” in Proceedings of the 2013 International
Conference on Software and System Process, ser. ICSSP 2013. New
York, NY, USA: ACM, 2013, pp. 98–107.

[62] T. M. King, G. Nunez, D. Santiago, A. Cando, and C. Mack, “Legend:
An agile dsl tot booktitle = Proceedings of the 2014 International
Symposium on Software Testing and Analysis, series = ISSTA 2014,
year = 2014, isbn = 978-1-4503-2645-2, location = San Jose, CA,
USA, pages = 409–412, numpages = 4, acmid = 2628048, publisher =
ACM, address = New York, NY, USA, keywords = Agile Development,
Behavior-Driven Development, Domain-Specific Languages, Software
Testing, Test Automation,.”

[63] P. Mohagheghi and M. Jørgensen, “What contributes to the success of
it projects? success factors, challenges and lessons learned from an
empirical study of software projects in the norwegian public sector,”
in Software Engineering Companion (ICSE-C), 2017 IEEE/ACM 39th
International Conference on. IEEE, 2017, pp. 371–373.

[64] S. Hanly, L. Wai, L. Meadows, and R. Leaton, “Agile coaching in british
telecom: making strawberry jam,” in AGILE 2006 (AGILE’06), July
2006, pp. 9 pp.–202.

[65] “The scrum guide,” http://www.scrumguides.org/scrum-guide.html, ac-
cessed: 2017-04-12.

220

Documenting Recurring Concerns and Patterns in Large-Scale
Agile Development

Ömer Uludağ
Technische Universität München
Garching bei München, Germany
oemer.uludag@tum.de

Nina-Mareike Harders
Technische Universität München
Garching bei München, Germany

nina.harders@tum.de

Florian Matthes
Technische Universität München
Garching bei München, Germany

matthes@tum.de

Abstract
The introduction of agile methods at scale entails unique concerns
such as inter-team coordination, dependencies to other organiza-
tional units, or distribution of work without a defined architecture.
Compared to the rich body of agile software development literature
describing typical challenges and best practices, recurring concerns
and patterns in large-scale agile development are not yet docu-
mented extensively. We aim to fill this gap by presenting a pattern
language for large-scale agile software development as part of our
larger research initiative in close collaboration with 10 companies.
The structure and practical relevance of the proposed language
were evaluated by 14 interviews. In this paper, we showcase our
pattern language by presenting four patterns.

CCS Concepts
• Software and its engineering → Agile software develop-
ment.

Keywords
concerns, large-scale agile development, patterns
ACM Reference Format:
Ömer Uludağ, Nina-Mareike Harders, and Florian Matthes. 2019. Document-
ing Recurring Concerns and Patterns in Large-Scale Agile Development. In
Proceedings of ACM Conference (EuroPLoP’19). ACM, New York, NY, USA,
17 pages. https://doi.org/10.1145/3361149.3361176

1 Introduction
Over the past two decades, software development has experienced
substantial growth in the use of agile methods [Maiden and Jones
2010]. Unlike traditional methods that focus on upfront plans and
documentation, agile methods such as Extreme Programming and
Scrum strongly encourage team collaboration, change tolerance,
evolutionary delivery, and active customer involvement [Dingsøyr
and Moe 2014; Kettunen 2007]. The fundamental assumptions are
that small, self-organizing teams develop adaptive software using
the principles of continuous design improvement and testing based
on rapid iterations and frequent feedback loops [Nerur et al. 2005].
Hitherto, agile methods were mostly applied within the so-called
"agile sweet spot": small, co-located teams of less than 15 people
doing greenfield development for non-safety-critical systems in

a volatile environment [Kruchten 2013; Nord et al. 2014]. Their
proven and potential benefits made them also attractive for projects
outside of the sweet spot [Dikert et al. 2016]. Thus, there is an indus-
try trend towards introducing agile methods at scale [Dikert et al.
2016; VersionOne 2018]. The term ’large-scale agile development’
is used to describe multi-team development efforts that make use
of agile principles involving a high number of actors and interfaces
with existing systems [Dingsøyr and Moe 2014; Rolland et al. 2016].
However, the adoption of agile methods at larger scale entails orga-
nizations with unprecedented challenges such as general resistance
to change, coordination challenges in multi-team environments,
and dependencies to other existing environments [Dikert et al. 2016;
Uludağ et al. 2018]. Compared to the rich body of agile software de-
velopment literature describing typical challenges (cf. [Hossain et al.
2009; Inayat et al. 2015]) and best practices (cf. [Beedle et al. 2010,
1999; Coplien and Harrison 2004; ScrumPLoP 2019]), the documen-
tation of concerns and patterns in large-scale agile development is
still scarce. Our study is inspired by the pattern-based approach to
Enterprise Architecture Management (EAM) [Ernst 2010; Schneider
and Matthes 2015] and aims to fill this gap by providing best prac-
tices for recurring concerns of stakeholders in large-scale endeavors.
As a starting point, we introduce the concept of large-scale agile
development patterns and present four patterns that exemplarily
demonstrate the proposed language.
The remainder of this paper is structured as follows. In Section 2,
we present the research approach that follows the pattern-based
design research (PDR) method. In Section 3, we provide an overview
of related works in the field of large-scale agile development and
describe related pattern languages. We elaborate the proposed large-
scale agile development pattern language in Section 4. In Section 5,
we present four patterns. Section 6 shows corresponding evaluation
results. In Section 7, we conclude our paper with a summary of our
results and remarks on future research.

2 Research Approach
Our research initiative aims to document best practices that ad-
dress concerns in large-scale agile development. To balance the
rigor and relevance of the research, we followed the pattern-based
design research (PDR) method as recommended by [Buckl et al.
2013]. The PDR method enables researchers to theorize and learn
from the intervention at the industry partners while performing
rigorous and relevant design science research. It builds on estab-
lished concepts such as patterns and design theories. As depicted
in Fig. 1, the PDR method consists of four phases: observe & concep-
tualize, pattern-based theory building & nexus instantiation, solution
design & application, and evaluation & learning. Within the observe
& conceptualize phase, good practices for recurring concerns are

Permission to make digital or hard copies of all or part of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from Permissions@acm.org.
EuroPLoP '19, July 3–7, 2019, Irsee, Germany
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6206-1/19/07…$15.00
https://doi.org/10.1145/3361149.3361176

221

EuroPLoP’19, July 2019, Kloster Irsee, Bavaria, Germany Uludağ, Ö. et al

Figure 1: Pattern-based design research [Buckl et al. 2013]

observed and documented following a typical pattern structure (see
Section 4). These pattern candidates are then conceptualized by
using grounding theories and evolve into actual patterns by ful-
filling the rule of three1 [Coplien 1996], which are then integrated
into the large-scale agile development pattern language. Design
theories can be developed by documenting appropriate context and
problem descriptions. Pattern candidates, patterns, the pattern lan-
guage, and design theories together form an organized collection of
reusable, proven solutions. Within the solution design & application
phase, typical stakeholders in large-scale agile development use
this knowledge base and select patterns based on their individual
concerns. The selected pattern must be configured and adapted
to the terminology of the company. After its configuration, the
pattern can be established within the case company. During the
evaluation & learning phase, deviations between the actual and
original pattern configuration are detected and documented, which
can be used to identify new best practices.

3 Related Work and Pattern Languages
According to Version One’s 12th survey on the state of agile, compa-
nies are increasingly applying agile methods to large-scale projects
[VersionOne 2018]. 52% of all respondents worked in organizations
where more than half of the development teams worked with agile
methods [VersionOne 2018]. Despite the relevance of this topic
for practitioners, sound academic research is lacking, especially re-
garding to challenges and success factors [Dikert et al. 2016]. Some
researchers recognized this gap and started to publish scientific
papers, which are described below.
[Dikert et al. 2016] made a first attempt by conducting a system-
atic literature review of industrial large-scale agile transformations.
They presented qualitative findings describing 35 reported chal-
lenges and 29 success factors from 42 different organizations. Chal-
lenge categories that received most attention were agile difficult
to implement, integrating non-development functions, change resis-
tance, and requirements engineering challenges. The most salient
success factors weremanagement support, choosing and customizing
the agile model, training and coaching, and mindset and alignment.
By means of a literature review, [Kalenda et al. 2018] identified

1The rule of three states that a documented pattern must refer to at least three known
uses in practice to ensure the re-usability of the provided solution.

practices, challenges, and success factors of large companies adopt-
ing agile methods. These findings were then compared and used
to study a software company that was in the process of scaling
agile methods. They identified four challenges, namely resistance
to change, quality assurance issues, integrating with non-agile parts
of the organization, and too fast roll-out. In addition, they deter-
mined four success factors: unification of views and values, executive
sponsorship and management support, company culture, and prior
agile and lean experience. In a previous study, we identified typ-
ical concerns of stakeholders and initiatives in large-scale agile
development based on a structured literature review [Uludağ et al.
2018]. Based on the analysis of 73 papers, we identified 14 typical
stakeholders in large-scale agile development, e.g., development
team, scrum master, and software architect. In a subsequent step, we
revealed typical concerns of respective stakeholders. In total, 79
challenges were identified and grouped into eleven challenge cate-
gories, which include culture and mindset, enterprise architecture,
and geographical distribution, to name a few [Uludağ et al. 2018].
Our previous work constitutes the foundation of this paper since it
also identified pattern candidates of some of our pattern language
elements: stakeholders, challenges, and candidates for methodology
patterns, architecture principles, viewpoint patterns, and anti-patterns
[Uludağ et al. 2018]. Speaking of which, [Meszaros and Doble 1997]
recommend reading other related pattern languages while writing
patterns. By doing that, we identified some related pattern lan-
guages (see Table 1). Based on the comparison of related pattern
languages, we identified the following shortcomings, which we aim
to address with our proposed large-scale agile development pattern
language:

• Only 10 out of 507 identified "potentially relevant" patterns
focus on large-scale agile development.

• Our evaluation results in Section 6 show that practitioners
ask for pattern languages that categorize patterns in the way
they are executed. However, the analyzed pattern languages
do not necessarily meet these expectations.

• The results of our evaluation in Section 6 show that a pat-
tern language should include related stakeholders who apply
patterns to address their concerns. Nevertheless, the con-
cept of stakeholders is yet neglected, making the pattern
language less practical for practitioners as they try to find
relevant patterns for their specific roles as quickly and easily
as possible.

4 Large-Scale Agile Development Pattern
Overview

The application of agile methods on a large scale brings along
unique challenges and difficulties [Boehm and Turner 2005; Dikert
et al. 2016], e.g., increased number of stakeholders and, coordina-
tion complexity, and difficult architectural integration [Badampudi
et al. 2013; Paasivaara and Lassenius 2014]. Tackling these is the
key to reap the full benefits of agility in large-scale settings [Ket-
tunen and Laanti 2008]. There are several scaling agile frameworks
that pledge to resolve the aforementioned issues but are still in a
nascent state [Alqudah and Razali 2016; Dingsøyr et al. 2019]. But
even valuable research studies that provide explanations of how
to address the challenges of large-scale agile development remain

222

Documenting Recurring Concerns and Patterns in Large-Scale Agile DevelopmentEuroPLoP’19, July 2019, Kloster Irsee, Bavaria, Germany

Table 1: Overview of Related Pattern Languages

Source Scope & goal Focus on agile
development

Number of
patterns Pattern categories Pattern examples

[Coplien 1995]
Collection of patterns for
shaping a new organization
and its development processes

Partially 42 (1) Process patterns;
(2) Organizational patterns

- Code Ownership
- Gatekeeper
- Fire Walls

[Harrison 1996]
Collection of patterns for
creating effective software
development teams

No 4 –
- Unity of Purpose
- Diversity of Membership
- Lock ’Em Up Together

[Beedle et al. 1999] Collection of Scrum patterns Yes 3 –
- Sprint
- Backlog
- Scrum Meetings

[Taylor 2000]
Collection of patterns for
creating product software
development environments

No 9
(1) Establishing a Production Potential;
(2) Maintaining a Production Potential;
(3) Preserving a Production Potential

- Deliverables to Go
- Pulse
- Bootstrapping

[Coplien and Harrison 2004]

Collection of organizational
patterns that are combined
into a collection of four
pattern languages

Yes 94

(1) Project Management;
(2) Piecemeal Growth;
(3) Organizational Style;
(4) People and Code

- Skill Mix
- Demo Prep
- Few Roles

[Elssamadisy 2008]
Collection of patterns for
successfully adopting
agile practices

Yes 38
(1) Feedback Practices; (2) Technical
Practices; (3) Supporting Practices;
(4) The Clusters

- Refactoring
- Continuous Integration
- Simple Design

[Beedle et al. 2010]
Collection of the most
essential best practices
of Scrum

Yes 11 –
- Daily Scrum
- Sprint Backlog
- Sprint Review

[Välimäki 2011]

Enhancing performance
of project management
work through improved
global software project
management practice

Partially 18

(1) Directing a Project; (2) Starting
up a Project; (3) Initiating a Project;
(4) Controlling a Stage; (5) Managing
Stage Boundaries; (6) Closing a Project;
(7) Managing Product Delivery; (8) Planning

- Collocated Kick-Off
- Choose Roles in Sites
- Iteration Planning

[Mitchell 2016]
Collection of patterns to
address agile transformation
problems

Yes 54
(1) Patterns of Method; (2) Patterns of
Responsibility; (3) Patterns of
Representation; (4) Anti-Patterns

- Limited WIP
- Kanban Sandwich
- Controlled Failure

[ScrumPLoP 2019]
Body of pattern literature
around agile and Scrum
communities

Yes 234 (10)

(1) Value Stream; (2) Team; (3) Sprint;
(4) Process Improvement; (5) Product
Organization; (6) Distributed Scrum;
(7) Scaling Scrum; (8) Scrum Core; (9) Misc

- Scrum Master
- Scrum of Scrums
- Portfolio Standup

scarce [Bick et al. 2018]. Thus, following the idea of [Alexander
1977], the identification of recurring concerns and documentation
of best practices in this context seems to be useful. Subsequently,
we will introduce the structure of our pattern language (see Fig. 2).
The pattern language distinguishes between three different types
of patterns:

• Coordination Patterns (C-Patterns) define coordination
mechanisms to address recurring coordination concerns,
i.e., managing dependencies between activities, tasks or re-
sources.

• MethodologyPatterns (M-Patterns) define concrete steps
to be taken to address given concerns.

• Viewpoint Patterns (V-Patterns) define proven ways to
visualize information in form of documents, boards, metrics,
models, and reports in order to address recurring concerns.

In addition, the pattern language includes four additional concepts:

• Stakeholders (in our context) are all persons who are ac-
tively involved in, have an interest in or are in some way
affected by large-scale agile development [Uludağ et al. 2018].

• Concerns can manifest themselves in many forms, e.g.,
goals, responsibilities or risks [42010:2011(E) 2011].

• Principles are enduring and general guidelines that address
given concerns by providing a common direction for action.

• Anti-Patterns (A-Patterns) describe typical mistakes and
present revised solutions, which help pattern users to pre-
vent these pitfalls.

!

Figure 2: Conceptual overview of the proposed pattern lan-
guage

Fig. 3 depicts the current version of our large-scale agile develop-
ment pattern language, which can also be found on our prototypical
web application2. The four highlighted nodes in Fig. 3 represent the
four patterns that will be presented in Section 5. A detailed listing
of the large-scale agile development patterns and concepts can be
2https://scaling-agile-hub.sebis.in.tum.de/#/patterns

223

EuroPLoP’19, July 2019, Kloster Irsee, Bavaria, Germany Uludağ, Ö. et al

Figure 3: Current version of the large-scale agile development pattern language *

found in Appendix B.
Popular pattern forms include, among others, the Alexandrian Form,
Gang of Four Form, Coplien Form, and Fowler Form [Ernst 2010;
Fowler 2006]. All have specific benefits and limitations depending
on the context [Ernst 2010]. Since there is no ideal pattern form, the
author must consider his / her experience, the intention, and target
audience when selecting either an existing form or creating a new
one [Buschmann et al. 2007b; Ernst 2010]. According to [Fowler
2006], this choice is a personal decision and should also consider
one’s writing style and the ideas to be conveyed. Large-scale agile
development patterns follow a template similar to [Buschmann
et al. 1996; Ernst 2010]. Fig. 4 depicts the meta-model and the key

C-Pattern V-Pattern

type
data collection

M-Pattern

Pattern

identifier
name
alias
summary
example
context
problem
forces
solution
variants
consequences
other standards
known uses

Concern

identifier
name
category
scaling level

Principle

identifier
name
alias
summary
type
binding nature
example
context
problem
forces
variants
consequences
other standards
known uses

Anti-Pattern

identifier
name
alias
summary
example
context
problem
forces
general form
consequences
revised solution
other standards

Stakeholder

identifier
name
alias

see also
* *

see also
* *

see also

*

*

see also

*

*

see also

*

*

is addressed by

*

*
is addressed by
*

*is addressed by

*

*

has
*

*

Figure 4: Meta-model of the proposed pattern language

elements used to document the concepts and patterns of the pattern

language. All elements have an identifier and name which simplify
referencing. A stakeholder has an additional section called alias
that contains a list of synonyms and related role names. A concern
has two additional sections called category and scaling level which
denote the category and at which organizational level a concern
occurs. Besides identifiers and names, principles, patterns, and anti-
patterns consist of eight common sections: the problem and context
sections describe problems and situations to or in which they apply.
The forces section describes why the problem is difficult to solve.
summary shortly recapitulates the solution. The consequences sec-
tion contains associated benefits and liabilities, while the optional
other standards and see also sections provide references to other
solutions and frameworks. The alias section provides a list of syn-
onyms. The example section illustrates the problem to be addressed.
Principles and patterns consist of variants and known uses sections
showing variants and alternatives as well as proven applications in
practice. The type and binding nature sections are unique to princi-
ples and indicate their topic and whether they are recommended or
mandatory. The solution section explains the recommended solution
for a pattern. Specific to anti-patterns, the general form and revised
solution sections include the recurring, not working solution and
a revised solution presented. V-Patterns have type and data collec-
tion sections which show the visualization concept and collection
processes required for their creation. Similar to [Buschmann et al.
2007a], we label our patterns with the star notation to denote our
level of confidence in the pattern’s maturity. Two stars mean that
the pattern effectively addresses a genuine problem in its current
form. One star denotes that the pattern addresses a real problem
but needs to mature. No stars indicate that the pattern is a useful
solution to an observed problem but requires significant revision.
Wewill showcase in the following four patterns in order to highlight
the differences between the presented pattern types and concepts,
namely Strictly Separate Build and Run Stages (representing
Principles), Community of Practice (showing C-Patterns), Itera-
tion Dependency Matrix (demonstrating (V-Patterns), and Don’t
Use Agile as a Golden Hammer (illustrating A-Patterns).

224

Documenting Recurring Concerns and Patterns in Large-Scale Agile DevelopmentEuroPLoP’19, July 2019, Kloster Irsee, Bavaria, Germany

5 Exemplifying the Large-Scale Agile Development Pattern Language
5.1 Principle: Strictly Separate Build and Run Stages (P-1) *

Principle Overview
Alias Build and Run
Summary Strictly Separate Build and Run Stages ensures that an application’s

deployment phases are clearly separated.
Type Software Architecture
Binding Nature Recommended

5.1.1 Example
For one and a half years, four agile teams of RetailCo have been developing a cloud-based e-commerce platform. However, over the last few
iterations, the operability and stability of the e-commerce platform of RetailCo have deteriorated dramatically. The agile teams of RetailCo
have difficulties in delivering new versions of the platform in time. The platform also shows long downtimes due to massive traffic at bigger
shopping-events such as Black Friday. Moreover, the product owner of the e-commerce platform receives customer complaints due to several
bugs in the purchasing process.

5.1.2 Context
The release of stable and reliable cloud-native platforms in large-scale agile development is difficult because multiple agile teams work in
parallel on the same software in complex setups aiming to release it as quickly and frequently as possible.

5.1.3 Problem
The following concern is addressed by Strictly Separate Build and Run Stages:

• How can a cloud-native application be developed in a stable and timely manner?

5.1.4 Forces
The following forces influence Strictly Separate Build and Run Stages:

• The code of a cloud-native application is changed at run-time, thus, is not reproducible.
• The build, run, and release phases of the deployment process of a cloud-native application are not self-contained, so the entire
deployment workflow must be triggered.

• Deviations between the codes in the execution and staging environment are not traceable.
5.1.5 Variants
A possible variant for Strictly Separate Build and Run Stages would be to add a design step before the build stage. Within the design
step, a high-level design of the upcoming small feature is created with every iteration. This can help to understand the dependencies of the
application such as existing libraries the application is going to use.

5.1.6 Consequences
The following benefits of Strictly Separate Build and Run Stages are known:

• Traceability and reproducibility of releases
• Rollback to previous releases
• Faster releases of codebases to production
• Building a stable and reliable application
• No code is deployed without testing

The following liabilities of Strictly Separate Build and Run Stages are known:
• High degree of automation
• Deployment process is complicated

5.1.7 See Also
In order to measure the level of adherence of agile teams with Strictly Separate Build and Run Stages, the following V-Patterns should
be considered:

• Deployment Time
• Deployment Freqency
• Change Freqency
• Mean Time to Change

225

EuroPLoP’19, July 2019, Kloster Irsee, Bavaria, Germany Uludağ, Ö. et al

5.1.8 Other Standards
Strictly Separate Build and Run Stages is also suggested by the Twelve-Factor App [Wiggins 2017].
Strictly Separate Build and Run Stages is extended by the Beyond the Twelve-Factor App [Hoffman 2016].

5.1.9 Known Uses
The following uses of Strictly Separate Build and Run Stages are known:

• GlobalInsureCo
• CarCo
• ITCo
• RetailCo
• PublicInsureCo

226

Documenting Recurring Concerns and Patterns in Large-Scale Agile DevelopmentEuroPLoP’19, July 2019, Kloster Irsee, Bavaria, Germany

5.2 C-Pattern: Community of Practice (C-1) *

C-Pattern Overview
Alias Community, Guild
Summary A Community of Practice are groups of people who share a concern, a set of problems,

or a passion about a topic, and who deepen their knowledge and expertise in this area by
interacting on an ongoing basis [Wenger et al. 2002].

5.2.1 Example
A vehicle dynamics development department of CarCo aims to transform its current traditional matrix organization to an agile organization by
launching a large-scale endeavor with seven agile teams and more than 100 involved stakeholders. During this transformation process, CarCo
has difficulties in aligning the agile teams working in the same department as they have no regular meetings on discussing common topics.
Furthermore, the software architects of the large-scale agile endeavor recognize that the agile teams use some tools that are incompatible
with each other making the integration of their sub products nearly impossible.

5.2.2 Context
Traditional agile approaches such as Scrum do not offer support large-scale cross-team coordination. Thus, establishing efficient coordination
and knowledge sharing mechanisms between agile teams as well as between the experts in the teams might be difficult without having
suitable knowledge sharing forums.

5.2.3 Problem
The following concern is addressed by Community of Practice:

• How to create a platform for active knowledge sharing and discussion?

5.2.4 Forces
The following forces influence Community of Practice:

• Facilitating shared context and knowledge across the organization is difficult
• Internal silos create gaps in knowledge and communication between agile teams

5.2.5 Solution
A Community of Practice meet regularly for knowledge sharing about a specific domain [Wenger et al. 2002]. The focus is to talk about
practices that are applied and not to discuss theories. The participants of a Community of Practice are typically not from the same team,
but from many different teams all across the organization. In the best case, many different practices can be presented and discussed, leading
to a wide knowledge base. The participation in a Community of Practice is usually voluntary. In contrast to the M-Pattern Empowered
Community of Practice, a traditional Community of Practice is not able to make binding decisions for the organization.

5.2.6 Variants
A Community of Practice can be set up for a variety of domains. A Community of Practice have been identified in the following domains:
Architecture, Testing, Interfaces, Deployments, Leadership, and Infrastructure. In addition, a Community of Practice can also have some
decision-making power for different topics, which is described in the M-Pattern Empowered Community of Practice.

5.2.7 Consequences
The following benefits of Community of Practice are known:

• Encouraging knowledge sharing for diverse topics
• Breaking up silos
• Enabling a culture of continuous improvement

The following liabilities of Community of Practice are known:
• Requiring an active involvement of participants
• Topics in the agenda could be too diverse and broad
• Providing right incentives to the participants is challenging

5.2.8 See Also
Community of Practice may be utilized in combination with the following M-Patterns:

• Consensus-Based Decision Making
• Empowered Community of Practice

227

EuroPLoP’19, July 2019, Kloster Irsee, Bavaria, Germany Uludağ, Ö. et al

5.2.9 Other Standards
Community of Practice is also recommended and practiced by the following scaling agile frameworks:

• Disciplined Agile Delivery [Ambler and Lines 2012]
• Large-Scale Scrum [Larman and Vodde 2016]
• Scaled Agile Framework [Scaled Agile 2019b]
• Spotify Model [Kniberg and Ivarsson 2012]

In addition, the Community of Practice is also described by [Coplien and Harrison 2004] as Community of Trust.

5.2.10 Known Uses
The following uses of Community of Practice are known:

• GlobalInsureCo
• CarCo
• ITCo
• RetailCo
• PublicInsureCo

228

Documenting Recurring Concerns and Patterns in Large-Scale Agile DevelopmentEuroPLoP’19, July 2019, Kloster Irsee, Bavaria, Germany

5.3 V-Pattern: Iteration Dependency Matrix (V-1) *

V-Pattern Overview
Alias Sprint Dependency Matrix, Program Board
Summary Iteration Dependency Matrix visualizes dependencies among teams for the upcoming

iterations.
Type Board

5.3.1 Example
The program manager and solution architect of RetailCo’s e-commerce platform of RetailCo want to coordinate four agile teams for the five
upcoming iterations. Thereby, they need a clear idea of which features or enablers will be done by which agile team in which iteration. In
addition, they want to identify cross-team dependencies which might impact their delivery.

5.3.2 Context
In a Common Planning, cross-team dependencies between agile teams has to be detected and managed.

5.3.3 Problem
The following concerns are addressed by Iteration Dependency Matrix:

• How to visualize dependencies between agile teams?
• How to coordinate multiple agile teams that work on the same product?
• How to consider integration issues and dependencies with other subsystems and teams?

5.3.4 Forces
The following forces influence Iteration Dependency Matrix:

• Agile teams that work in the same large-scale agile development program have to be coordinated, i.e., delivering on the same cadence,
timing the release of different features, and managing dependencies.

• Some dependencies between agile teams are not immediately visible.
5.3.5 Solution
Iteration Dependency Matrix visualizes dependencies between agile teams working on the same product for future iterations. The
exemplary visualization in Fig. 5 shows team names as vertical headings, while iteration names are shown as horizontal headings. The
blue rectangles represent features, while enablers are depicted as yellow rectangles. Important program milestones or events are depicted
as orange rectangles. Each enabler or feature belongs to one team and one iteration. A feature may depend on other enablers. These
dependencies are indicated by red strings.

Figure 5: Exemplary view for Iteration Dependency Matrix

The underlying information model of Iteration Dependency Matrix is shown in Fig. 6.

229

EuroPLoP’19, July 2019, Kloster Irsee, Bavaria, Germany Uludağ, Ö. et al

EnablerFeature

Work Item
name: String

Implementation
Relationship

Team
name: String

Iteration
id: Integer

dependency

0..*

0..*

with

1..1

1..*

i n

1..1

1..*

by
1..1 1..*

Figure 6: Underlying information model of Iteration Dependency Matrix

5.3.6 Variants
Additional variants exist for IterationDependencyMatrix. First, enablers may be omitted if the organization does not make a differentiation
between enablers and features, i.e., for budgetary reasons (see Fig. 7(b)). However, this variant is not advised as the importance of architectural
improvements might be neglected. In addition, the Iteration Dependency Matrix could be simplified by omitting milestones or events
that would happen in the upcoming iterations (see Fig. 7(b)). The Iteration Dependency Matrix can also be visualized digitally by the use
of software development team collaboration tools. This variant has the advantage that useful information is stored in a digital format and
that it can also be used in a distributed Common Planning.

5.3.7 Consequences
The following benefits of Iteration Dependency Matrix are known:

• Visualizing and tracking inter-team dependencies
• Revealing unplanned risks and dependencies
• Providing a visual overview of work to be done
• Optimizing development flow

The following liabilities of Iteration Dependency Matrix are known:
• High manual effort during its creation
• After the Common Planning, it might be abandoned
• Less effective when agile teams are remote

5.3.8 Data Collection

• Frequency: Features, enablers, and goals are usually written throughout the development process.
• Responsible person: Responsible persons are e.g., the business analyst, product manager, product owner, program manager or solution
architect.

• Data source: Software development team collaboration tools.
• Classes to be documented: Team, enabler, feature, and iteration.

5.3.9 See Also
Iteration Dependency Matrix is used by the following C-Pattern:

• Common Planning
5.3.10 Other Standards
Iteration Dependency Matrix is also known as the Program Board in the Scaled Agile Framework [Scaled Agile 2019a].

5.3.11 Known Uses
The following uses of Iteration Dependency Matrix are known:

• CarCo
• RailCo
• BankingITCo
• RetailCo

230

Documenting Recurring Concerns and Patterns in Large-Scale Agile DevelopmentEuroPLoP’19, July 2019, Kloster Irsee, Bavaria, Germany

• IndustryCo

(a) BankingITCo (b) RetailCo

Figure 7: Two observed Iteration Dependency Matrices

5.4 A-Pattern: Don’t Use Agile as a Golden Hammer (A-13) *

A-Pattern Overview
Alias Law of the Instrument, Law of the Hammer, Maslow’s Hammer, One Size Fits All
Summary Don’t Use Agile as a Golden Hammer shows why it is not advisable to use agile methods

in order to solve many kinds of problems.

5.4.1 Example
Success stories of the autonomous driving department with the application of agile methods reached the IT department of LuxCarsCo. The
IT management decided to transform all current IT projects to agile.

5.4.2 Context
Agile methods have become very popular in the last few years. Deciding when agile methods are appropriate for a particular project is a
difficult task as different aspects have to be considered, e.g., project size, project objectives and requirements, project team, technological
realization, and so on.

5.4.3 Problem
The following concerns are addressed by Don’t Use Agile as a Golden Hammer:

• How to choose the correct software development approach?
• How to decide whether agile methods should be used for a given project?

5.4.4 Forces
The following forces occur in the context of Don’t Use as a Golden Hammer:

• Several successes tempt the organization to solely use agile methods
• Large investment has been made in agile training
• Lack of motivation to explore alternative methods

5.4.5 General Form
A software development team has gained a lot of attention within the organization due to its success by using agile methods. As a result, the
organization believes that every new product should be developed by the use of agile methods. In some cases, the use of agile methods will
not solve the problem.

5.4.6 Variants
A possible variant for Don’t Use Agile as a Golden Hammer is that not only the management of an organization forces the use of agile
methods for software projects, but also existing software development teams obsessively operate use of agile methods.

231

EuroPLoP’19, July 2019, Kloster Irsee, Bavaria, Germany Uludağ, Ö. et al

5.4.7 Consequences
The following benefits of Don’t Use Agile as a Golden Hammer are known:

• Management-Buy-In
The following liabilities of Don’t Use Agile as a Golden Hammer are known:

• Failed projects
5.4.8 Revised Solution
The most important aspect of the revised solution is: Try to avoid Don’t Use Agile as a Golden Hammer. This can be done by using evidence
why the use of agile methods might not be appropriate, i.e., in simple projects in which the technological realization and requirements
are known (see Fig. 8). Don’t Use Agile as a Golden Hammercan also be avoided when a conscious effort towards the exploration of
alternative software development methods is made. Use Community of Practice to facilitate the exchange of ideas and experiences and to
understand their rationale for applying agile methods.

Complicated

Co
m

pl
ic

at
ed

un
kn

ow
n

unknownknown

kn
ow

n
Re

qu
ire

m
en

ts

Technological Realization

Chaotic

Complex

Simple

people

(Agile)(A
gi

le
)

(Agile)
(Traditional
Waterfall)

Figure 8: Stacey Matrix [Stacey 1996] adapted to software development

232

Documenting Recurring Concerns and Patterns in Large-Scale Agile DevelopmentEuroPLoP’19, July 2019, Kloster Irsee, Bavaria, Germany

6 Evaluation
We interviewed 14 large-scale agile development experts from 10
organizations to assess the structure and practical relevance of the
proposed pattern language. The companies are mainly headquar-
tered in Germany, predominantly active in the IT, insurance, and
retail sector, and employ around 2,000 to 200,000 people. Most of
them started with large-scale agile development a few years ago.
We prepared a questionnaire (see Appendix A) containing scale
response (on a five-point Likert scale) and open-ended questions to
collect expert feedback on our proposed pattern language. Table
2 lists the roles and professional experiences of all interviewed
experts with large-scale agile development. During the interviews,

Table 2: Interview partners for evaluating the proposed pat-
tern language

No Alias Main role Professional experience
(in years)

1 EA1 Enterprise Architect 1-3
2 PM1 Project Manager 1-3
3 AD1 Agile Developer 3-6
4 AC1 Agile Coach 3-6
5 EA2 Enterprise Architect 3-6
6 EA3 Enterprise Architect 3-6
7 SA1 Solution Architect 3-6
8 PA1 Platform Architect >6
9 PKE1 Principal Key Expert 3-6
10 AC2 Agile Coach 3-6
11 AC3 Agile Coach >6
12 PO1 Product Owner >6
13 EA4 Enterprise Architect 3-6
14 AD2 Agile Developer <1

we provided a definition of each concept and presented the overall
structure of the pattern language by demonstrating five examples
(including their relationships to recurring concerns and other con-
cepts) using our prototypical web application. In the following, we
present the results of our evaluation3 (see Fig. 9).
Overall evaluation of the pattern language concepts: Stake-
holders were rated as the most valuable concept of the pattern
language (μ = 1.00; σ = 0.0). Concerns were rated the second most
valuable concept (μ = 1.14; σ = 0.18). The inclusion of V-Patterns
was considered very valuable (μ = 1.43; σ = 0.41). The usefulness
of M-Patterns was received high (μ = 1.50; σ = 0.37). The concept
of C-Patterns was considered very useful (μ = 1.71; σ = 0.44).
Interviewees broadly agreed that principles should be included in
the pattern language (μ = 1.79; σ = 0.60). A-patterns received a
positive feedback (μ = 2.00; σ = 0.42). Initiatives were rated less
useful (μ = 2.50; σ = 0.65)
Stakeholders: The concept of stakeholders was rated indispens-
able (AD1), as it provides transparency about relevant roles and
their concerns (EA1, EA3, PM1). One interviewee also stated that:

3In this paper, we do not present the evaluation results of the relationships between the
pattern concepts, because their usefulness was mainly influenced by the importance
the interviewees associated with the respective pattern concepts.

"patterns are developed for stakeholders" (EA2).
Concerns:Main arguments for including concerns in the pattern
language were that they provide a good starting point for decision
making (EA1) and that users can directly access relevant patterns
by navigating stakeholder-specific concerns (EA1, PM1). AC1 also
stated that "concerns are one of the best ways for describing stake-
holder roles". Other respondents expressed concerns as the central
motivation of the pattern language (AC1, AD2, EA2, EA3, SA1).
Downsides were that concerns are too detailed (AC2), and should
bemade less specific (EA4). AC3 added that some concern categories
such as coaching, training, human resources, etc. were missing.
V-Patterns: The interviewees mentioned the following benefits of
including V-Patterns in the pattern language: they can be used as a
communication medium (EA1), create a common ground between
stakeholders (PO1), help with decision-making (EA4), and provide
early feedback and transparency (PA1). EA2 considers V-Patterns
in large-scale agile development to be as important as V-Patterns
in the EAM pattern catalog, which he uses regularly [Ernst 2010;
Khosroshahi et al. 2015]. AD1 and AC2 added that V-Patterns are
useful as a reference book since they provide a wide-ranging toolkit
for solving recurring concerns. EA3 recommended that V-Patterns
should be extended by an additional section to document underly-
ing data collection processes required for their creation.
M-Patterns:Main arguments for including M-Patterns in the pat-
tern language were that they provide concrete guidance on how to
solve problems (AC1, AD2 EA3, SA1) and that they "represent the
core of the pattern language" (SA1). According to PO1, M-Patterns
can be used as change vehicles within the organization and depend
on the organizational maturity level to be applied. AD1 and EA2
claimed that the application could be difficult and may require some
adaptions to be used. EA4 proposed to merge the concepts of C-
and M-Patterns as "they are very similar". In contrast, 71.43% of
the interviewees regarded the separation of C- and M-Patterns as
helpful.
C-Patterns: Interviewees stated that C-Patterns provide best prac-
tices and proven mechanisms to common coordination and com-
munication concerns (AD2, EA2, PA1, PM1). They also show which
persons have to meet and enable subject-related alignment and
coordination (EA1). PKE1 added that the variants section of C-
Patterns could be helpful to document alternative meetings formats.
Although AD1 and EA3 perceived C-Patterns as very relevant in
practice, they claimed that the content discussed in meetings are
very complex and highly context specific, thus, making them diffi-
cult to generalize.
Principles: Positive arguments for including principles in the pat-
tern language were that they reduce the complexity of large-scale
agile development endeavors (AD2) and provide a common direc-
tion and guidance for agile teams (AD2, EA1, EA3, PO1). Intervie-
wees highlighted that principles should be stated explicitly (AC2,
PA1) as they are helpful for new employees and improve under-
standability (AC2). PO1 added that principles foster mindset control
without prescribing concrete methodologies, thus stimulating un-
derstanding and empowerment of agile teams (P01). In this context,
EA4 perceived architecture principles as essential for the success of
large-scale agile development endeavors. The relationship between
principles and V-Patterns was considered valuable (AC2, EA1) as
the compliance of agile teams with principles can be ensured by

233

EuroPLoP’19, July 2019, Kloster Irsee, Bavaria, Germany Uludağ, Ö. et al

Figure 9: Evaluation results of the large-scale agile development pattern language

the use of KPIs (EA1). Although other participants acknowledged
the usefulness, they rated them less applicable in this context (AD1,
EA2, PM1, SA1). AC1 and EA3 had two recommendations. First, the
binding nature should be included indicating mandatory or recom-
mended principles. Second, principles should not have a solution
section as this is the task of an M-Pattern.
A-Patterns: A-Patterns prevent pattern users from running into
the same traps (EA1), show what not to do (PM1), and raise aware-
ness of failed approaches (EA2). AD2 added that A-Patterns save
time because "you don’t have to relive the same problem". PO1 per-
ceived them as important but noted that "people still make these
mistakes". EA4 mentioned the potential disadvantage that "everyone
must understand how it is meant". Some interviewees questioned the
usefulness of A-Patterns as they are not connected with other con-
cepts of the pattern language (AD1, EA3, SA1). We asked whether
A-Patterns should be connected with other concepts and 92.68% of
interviewees replied positive. They agreed that A-Patterns should
have a problem section, thus, being connected with concerns and
stakeholders, to provide A-Patterns with more context. This enables
more usability, as users can find stakeholder-relevant A-Patterns
faster in comparison to other pattern languages without this con-
nection. They also stated that the revised solution section should
refer to C-Patterns, M-Patterns, and V-Patterns, to find appropriate
solutions.
Initiatives: Some respondents said initiatives are helpful when
concerns cannot be directly related to stakeholders (AC1, AD1) and
if concerns occur on different organizational levels (EA1, PKE1).
On the other hand, they were considered redundant (PM1) since
they do not provide additional information or value (AC1, PM1,
SA1). Two respondents found this concept too abstract (AC1) or not

relevant for industry (EA2). In addition, they were also confused
about the denotation of initiatives (AC2, AC3, PA1). Several intervie-
wees recommended removing initiatives from the pattern language
structure as it increases complexity (EA2, PKE1, PO1, SA1).
Usefulness and Support of Patterns: The majority of respon-
dents indicated that they would use patterns to address recurring
concerns in large-scale agile development.
Based on the evaluation, we made the following adjustments to the
large-scale agile development pattern language structure:

• Initiatives are removed and are instead represented by the
scaling level attribute of concerns.

• Principles are extended by a binding nature attribute to indi-
cate recommended or mandatory principles.

• The solution section of principles is removed so that they
remain generic and refer to related M-Patterns.

• A-Patterns are connected with concerns, stakeholders, C-,
M-, and V-Patterns.

• V-Patterns are extended by an optional data collection at-
tribute so that recommended data collection processes are
described.

As already indicated in Section 4, the mentioned adjustments are
already incorporated in the overview andmeta-model of the pattern
language shown in Fig. 2 and Fig. 4.

7 Conclusion and Outlook
Given the heterogeneity of large-scale projects, the nascent state of
scaling agile frameworks and empirical studies [Dikert et al. 2016;
Dingsøyr et al. 2019], large-scale agile development is a field sus-
ceptible to practice-driven design research. The proposed language
provides the structure for documenting practice-proven solutions

234

Documenting Recurring Concerns and Patterns in Large-Scale Agile DevelopmentEuroPLoP’19, July 2019, Kloster Irsee, Bavaria, Germany

to recurring large-scale agile development concerns. The pattern
language includes typical stakeholders, their concerns, principles,
M-Patterns, V-Patterns, C-Patterns, and A-Patterns. It also links
to other standards to allow easy integration and comparison. This
pattern language was evaluated by interviewing 14 large-scale agile
experts from 10 organizations and by observing and documenting
new patterns, four of which were presented in this paper.
The results of this paper provide compelling directions for future
research. We will continue to collect data from our large-scale agile
development workshops [Uludağ 2019] and case studies with indus-
try partners. In parallel, we will conduct structured interviews with
different types of stakeholders, such as agile coaches, enterprise
architects or product owners, to identify role-specific concerns and
pattern candidates. Based on a structured survey among companies
worldwide, we will publish the Large-Scale Agile Development Pat-
tern Catalog containing concerns and patterns. In future work, we
will assist our industry partners to select relevant patterns and to
introduce them in their organizations. This will help us to evaluate
the pattern implementations in practice and to observe changing
pattern implementations. With this, we also aim to close the re-
search activity cycle of the PDR method [Buckl et al. 2013].

Acknowledgements
This work has been sponsored by the German Federal Ministry of
Education and Research (BMBF) via the Software Campus Project
SaM-IT 01IS17049 project.

References
ISO/IEC/IEEE 42010:2011(E). 2011. Systems and software engineering – Architecture

description. Technical Report. ISO/IEC/IEEE.
Christopher Alexander. 1977. A Pattern Language: Towns, Buildings, Construction.
Oxford University Press, New York.

Mashal Alqudah and Rozilawati Razali. 2016. A review of scaling agile methods in
large software development. International Journal on Advanced Science, Engineering
and Information Technology 6, 6 (2016), 828–837.

Scott Ambler and Mark Lines. 2012. Disciplined agile delivery: A practitioner’s guide to
agile software delivery in the enterprise. IBM Press.

Deepika Badampudi, Samuel A. Fricker, and Ana M. Moreno. 2013. Perspectives on
Productivity and Delays in Large-Scale Agile Projects. In Agile Processes in Software
Engineering and Extreme Programming, Hubert Baumeister and Barbara Weber
(Eds.). Springer, Berlin, 180–194.

Mike Beedle, James O. Coplien, Jeff Sutherland, Jens C. Østergaard, Ademar Aguiar,
and Ken Schwaber. 2010. Essential Scrum Patterns. In 14th European Conference on
Pattern Languages of Programs. The Hillside Group, Irsee, 1–17.

Mike Beedle, Martine Devos, Yonat Sharon, Ken Schwaber, and Jeff Sutherland. 1999.
SCRUM: An Extension Pattern Language for Hyperproductive Software Develop-
ment. Pattern Languages of Program Design 4 (1999), 637–651.

Saskia Bick, Kai Spohrer, Rashina Hoda, Alexander Scheerer, and Armin Heinzl. 2018.
Coordination Challenges in Large-Scale Software Development: A Case Study of
Planning Misalignment in Hybrid Settings. IEEE Transactions on Software Engineer-
ing 44, 10 (2018), 932–950.

Barry W. Boehm and Richard Turner. 2005. Management challenges to implementing
agile processes in traditional development organizations. IEEE Software 22, 5 (2005),
30–39.

Sabine Buckl, Florian Matthes, Alexander W. Schneider, and Christian M. Schweda.
2013. Pattern-Based Design Research – An Iterative Research Method Balancing
Rigor and Relevance. In 8th International Conference on Design Science Research in
Information Systems. Springer, Berlin, 73–87.

Frank Buschmann, Kevlin Henney, and C. Schmidt Douglas. 2007a. Pattern Oriented
Software Architecture Volume 4: A Pattern Language for Distributed Computing. John
Wiley & Sons, Chichester.

Frank Buschmann, Kevlin Henney, and C. Schmidt Douglas. 2007b. Pattern Oriented
Software Architecture Volume 5: On Patterns and Pattern Languages. John Wiley &
Sons, Chichester.

Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael Stal.
1996. Pattern-Oriented Software Architecture Volume 1: A System of Patterns. John
Wiley & Sons, Chichester.

James O. Coplien. 1995. A Generative Development-process Pattern Language. In
Pattern Languages of Program Design, James O. Coplien and Douglas C. Schmidt
(Eds.). ACM, New York, 183–237.

James O. Coplien. 1996. Software Patterns: Management Briefs. Cambridge university
Press, Cambridge.

James O. Coplien and Neil B. Harrison. 2004. Organizational Patterns of Agile Software
Development. Addison-Wesley, Boston.

Kim Dikert, Maria Paasivaara, and Casper Lassenius. 2016. Challenges and Success
Factors for Large-Scale Agile Transformations: A Systematic Literature Review.
Journal of Systems and Software 119 (2016), 87–108.

Torgeir Dingsøyr, Davide Falessi, and Ken Power. 2019. Agile Development at Scale: The
Next Frontier. IEEE Software (2019). Special Issue: Large-Scale Agile Development.

Torgeir Dingsøyr and Nils Moe. 2014. Towards Principles of Large-Scale Agile Develop-
ment. Springer, Berlin, 1–8.

Amr Elssamadisy. 2008. Agile Adoption Patterns: A Roadmap to Organizational Success.
Addison-Wesley, Boston.

Alexander M. Ernst. 2010. A Pattern-based Approach to Enterprise Architecture Manage-
ment. Dissertation. Technische Universität München, München.

Martin Fowler. 2006. Writing Software Patterns. https://www.martinfowler.com/
articles/writingPatterns.html. Accessed: 2019-02-02.

Neil B. Harrison. 1996. Organizational Patterns for Teams. In Pattern Languages of
Program Design 2, John M. Vlissides, James O. Coplien, and Norman L. Kerth (Eds.).
Addison-Wesley, Boston, 345–352.

Kevin Hoffman. 2016. Beyond The Twelve-Factor App. O’Reilly Media, Sebastopol.
Emam Hossain, Muhammad A. Babar, and Hye-Young Paik. 2009. Using Scrum in
Global Software Development: A Systematic Literature Review. In 4th International
Conference on Global Software Engineering. IEEE, Limerick, 175–184.

Irum Inayat, Siti S. Salim, Sabrina Marczak, Maya Daneva, and Shahaboddin Shamshir-
band. 2015. A systematic literature review on agile requirements engineering
practices and challenges. Computers in human behavior 51 (2015), 915–929.

Martin Kalenda, Petr Hyna, and Bruno Rossi. 2018. Scaling agile in large organizations:
Practices, challenges, and success factors. Journal of Software: Evolution and Process
30, 10 (2018), e1954. https://doi.org/10.1002/smr.1954

Petri Kettunen. 2007. Extending Software Project Agility with new Product Develop-
ment Enterprise Agility. Software Process: Improvement and Practice 12, 6 (2007),
541–548.

Petri Kettunen and Maarit Laanti. 2008. Combining agile software projects and large-
scale organizational agility. Software Process: Improvement and Practice 13, 2 (2008),
183–193.

Pouya A. Khosroshahi, Matheus Hauder, Alexander W. Schneider, and Florian Matthes.
2015. Enterprise Architecture Management Pattern Catalog Version 2.0. Technical
Report. Chair of Software Engineering for Business Information Systems (sebis),
Technical University of Munich.

Henrik Kniberg and Anders Ivarsson. 2012. Scaling Agile @ Spotify.
Philippe Kruchten. 2013. Contextualizing Agile Software Development. Journal of

Software: Evolution and Process 25, 4 (2013), 351–361.
Craig Larman and Bas Vodde. 2016. Large-Scale Scrum: More with LeSS. Addison-Wesley
Professional.

Neil Maiden and Sara Jones. 2010. Agile Requirements Can We Have Our Cake and
Eat It Too? IEEE Software 27, 3 (2010), 87–88.

Gerard Meszaros and Jim Doble. 1997. A Pattern Language for Pattern Writing. In
Pattern Languages of Program Design 3, Robert C. Martin, Dirk Riehle, and Frank
Buschmann (Eds.). Addison-Wesley, Boston, 529–574.

Ian Mitchell. 2016. Agile Development in Practice. TamaRe House, London.
Sridhar Nerur, RadhaKanta Mahapatra, and George Mangalaraj. 2005. Challenges of
Migrating to Agile Methodologies. Commun. ACM 48, 5 (2005), 72–78.

Robert L. Nord, Ipek Ozkaya, and Philippe Kruchten. 2014. Agile in Distress: Architec-
ture to the Rescue. In 15th International Conference on Agile Software Development.
Springer, Berlin, 43–57.

Maria Paasivaara and Casper Lassenius. 2014. Communities of practice in a large
distributed agile software development organization âĂŞ Case Ericsson. Information
and Software Technology 56, 12 (2014), 1556 – 1577. Special issue: Human Factors
in Software Development.

Knut H. Rolland, Brian Fitzgerald, Torgeir Dingsøyr, and Klaas-Jan Stol. 2016. Prob-
lematizing Agile in the Large: Alternative Assumptions for Large-Scale Agile De-
velopment. In 37th International Conference on Information Systems. Association for
Information Systems, Dublin.

Scaled Agile. 2019a. PI Planning. https://www.scaledagileframework.com/pi-planning.
Accessed: 2019-02-02.

Scaled Agile. 2019b. Scaled Agile Framework. https://www.scaledagileframework.com.
Accessed: 2019-02-02.

Alexander W. Schneider and Florian Matthes. 2015. Evolving the EAM Pattern Lan-
guage. In 20th European Conference on Pattern Languages of Programs. ACM, New
York, 45:1–45:11.

ScrumPLoP. 2019. Published Patterns. https://sites.google.com/a/scrumplop.org/
published-patterns/. Accessed: 2019-02-02.

235

EuroPLoP’19, July 2019, Kloster Irsee, Bavaria, Germany Uludağ, Ö. et al

Ralph Stacey. 1996. Strategic Management & Organizational Dynamics: The Challenge
of Complexity. Pitman Publishing, London.

Paul Taylor. 2000. Capable, productive, and satisfied: Some organizational patterns for
protecting productive people. In Pattern Languages of Program Design 4, John M.
Vlissides, James O. Coplien, and Norman L. Kerth (Eds.). Addison-Wesley, Boston,
611–636.

Ömer Uludağ. 2019. Scaling Agile Practices Workshops. https://wwwmatthes.in.tum.
de/pages/1lihu1sjq8jpk/Scaling-Agile-Practices-Workshops. Accessed: 2019-02-02.

Ömer Uludağ, Martin Kleehaus, Christoph Caprano, and Florian Matthes. 2018. Identi-
fying and Structuring Challenges in Large-Scale Agile Development Based on a
Structured Literature Review. In 22nd International Enterprise Distributed Object
Computing Conference. IEEE, Stockholm, 191–197.

Antti Välimäki. 2011. Pattern Language for Project Management in Global Software
Development. Tampere University of Technology, Tampere.

VersionOne. 2018. 12th Annual State of Agile Report. Technical Report. VersionOne.
Etienne Wenger, Richard Arnold McDermott, and William Snyder. 2002. Cultivating

communities of practice: A guide to managing knowledge. Harvard Business Press.
Adam Wiggins. 2017. The Twelve-Factor App. https://12factor.net/. Accessed:
2019-02-20.

A Questionnaire
A.1 General questions
Name, Organization, Role description, Personal large-scale agile de-
velopment experience level, Organizational large-scale agile devel-
opment experience level, Operation level, Country of headquarters,
Sector, Number employees

A.2 Pattern language concepts
In your opinion, how useful is the integration of the concepts:
"Stakeholder", "Initiative", "Concern", "Principle", "Coordination
Pattern", "Methodology Pattern", "Viewpoint Pattern", and "Anti-
Pattern" into the pattern language? (five-point Likert scale question)

Why is the concept: "Stakeholder", "Initiative", "Concern", "Prin-
ciple", "Coordination Pattern", "Methodology Pattern", "Viewpoint
Pattern", and "Anti-Pattern" useful / not useful for you? (open-ended
question)

Does the differentiation between "Coordination Pattern" and "Method-
ology Pattern" help you? (yes-no question + open-ended question)

In your opinion, should the "Anti-Pattern" concept be connected
to another concept from the pattern language? (yes-no question)
If yes, with which concept from the pattern language should the
concept "Anti-Pattern" be connected? (open-ended question)

A.3 Relationship between pattern language
concepts

In your opinion, how useful is the relationship between the con-
cepts: "Stakeholder" and "Concern", "Initiative" and "Concern", "Con-
cern" and "Principle", "Concern" and "Coordination Pattern", "Con-
cern" and "Methodology Pattern", "Concern" and "Viewpoint Pat-
tern", "Principle" and "Viewpoint Pattern", "Coordination Pattern"
and "Viewpoint Pattern", "Methodology Pattern" and "Viewpoint
Pattern", and "Coordination Pattern" and "Methodology Pattern"?
(five-point Likert scale question + open-ended question)

A.4 Discussion
Is there another concept you would like to see in the pattern lan-
guage? (open-ended question)

Would you use patterns to address recurring concerns in large-
scale agile development? (five-point Likert scale question)

Would large-scale agile development patterns help you with your
daily work? (five-point Likert scale question)

B Current patterns and concepts in the pattern
language *

B.1 Stakeholders
• S-1: Development Team
• S-2: Product Owner
• S-3: Scrum Master
• S-4: Software Architect
• S-5: Test Team
• S-6: Product Manager
• S-7: Program Manager
• S-8: Agile Coach
• S-9: Enterprise Architect
• S-10: Business Analyst
• S-11: Solution Architect
• S-12: Portfolio Manager
• S-13: Support Engineer
• S-14: UX Expert

B.2 Concerns
• C-1: How to coordinate multiple agile teams that work on the
same product?

• C-2: How to consider integration issues and dependencies with
other subsystems and teams?

• C-6: How to manage technical debts?
• C-8: How to ensure that non-functional requirements are con-
sidered by the development team?

• C-9: How to find the right balance between architectural im-
provements and business value?

• C-13: How to share common vision?
• C-14: How to create a proper upfront architecture design of
the system?

• C-21: How to manage dependencies to other existing environ-
ments?

• C-26: How to align and communicate architectural decisions?
• C-34: How to ensure the reuse of enterprise assets?
• C-41: How to deal with unplanned requirements and risks?
• C-56: How to define clear roles and responsibilities?
• C-64: How to define a lightweight formal review process for
new technologies?

• C-67:How to encourage development teams to talk about tasks
and impediments?

• C-78: How to synchronize sprints in the large-scale agile de-
velopment program?

• C-79: How to ensure that the development phases are clearly
separated and executed in an iterative fashion?

• C-80: How to ensure that development teams comply with
architecture principles?

236

Documenting Recurring Concerns and Patterns in Large-Scale Agile DevelopmentEuroPLoP’19, July 2019, Kloster Irsee, Bavaria, Germany

B.3 A-Patterns
• A-1: Don’t Force Traditional Project Management
Concepts to Agile Software Development

• A-2: Don’t Adopt All Agile Practices in One Go
• A-3:Don’tMisinterpret theMeaning ofWorking Soft-
ware Over Comprehensive Documentation

• A-4: Don’t Spare Expenses on Agile Mindset Education
• A-5: Don’t Assume a Tacit, Implicit Understanding of
Architecture, its Scope, and the Architect’s Role and
Responsibility

• A-6: Don’t Build an Ivory Tower
• A-7: Don’t Overshoot Coordination Meetings
• A-8: Don’t Force Traditional Job Behaviors to Agile
Software Development

• A-9: Don’t Put Individual Goals Over Team Goals
• A-10: Don’t Creep Old Bureaucracy in Agile Software
Development

• A-11: Don’t Mix Old Approaches with Agile Software
Development Approaches

• A-12: Don’t Use Agile Practices out-of-the-box with-
out Adapting to your Own Needs

• A-13: Don’t Use Agile as a Golden Hammer
• A-14: Don’t Try to Reduce the Amount of Communica-
tion in Large-Scale Agile Development Programs by
Documentation

• A-15: Don’t Consider Knowledge Sharing Strategies
and Projects in Isolation

• A-16: Don’t Add New Developers into New Teams, In-
stead Add Them into Existent Ones

• A-17: Don’t Develop a Single Reqirement Involved
Multiple Agile Teams in Different Locations

B.4 Principles
• P-1: Strictly Separate Build and Run Stages

B.5 M-Patterns
• M-1: Cadence-Based Development
• M-2: Collaborative Establishment of Architecture
Principles

• M-3: Continuous Delivery Pipeline
• M-4: DevOps
• M-5: Kanban
• M-6: Scrum
• M-7: Architectural Runway
• M-8: Extreme Programming
• M-9: ScrumXP
• M-10: ScrumBan
• M-11: Capturing NFRs in Definition of Done
• M-12: Architecture Spike
• M-13:Weighted Shortest Job First Prioritization
• M-14: Collaborative Adoption of new Technologies

B.6 C-Patterns
• C-1: Community of Practice
• C-2: Common Planning
• C-3: Scrum-of-Scrums

• C-4: Center of Excellence
• C-5: Sprint Planning
• C-6: Common Retrospective
• C-7: Sprint Review
• C-8: Backlog Refinement
• C-9: System Demo
• C-10: Inspect and Adapt
• C-11: Sprint
• C-12: Daily Standup
• C-13: Sprint Retrospective
• C-14: Supervision

B.7 V-Patterns
• V-1: Iteration Dependency Matrix
• V-2: Responsibility Assignment Matrix
• V-3: Architecture Solution Space
• V-4: Business Capability Map
• V-5:Weightest Shortest Job First
• V-6: Global Impediment Board
• V-7: SoS Board
• V-8: Kanban Board
• V-9: Portfolio Canvas
• V-10: SWOT Analysis
• V-11: ROAM Board
• V-12: Objectives Board
• V-13: Business Object Model
• V-14: Application Interface Map
• V-15: Solution Context Map
• V-16: Value Stream Map
• V-17: Persona
• V-18: Burndown Chart
• V-19: Technical Debt Backlog
• V-20: Speed to Market
• V-21: Impediment Board
• V-22: Starfish
• V-23: Run the Sail Boat

237

Identifying and Documenting Recurring Concerns and Best
Practices of Agile Coaches and Scrum Masters in
Large-Scale Agile Development
ÖMER ULUDAĞ, Technische Universität München
FLORIAN MATTHES, Technische Universität München

Ever since the release of the agile manifesto in 2001, agile methods have received widespread interest in industry and academia. Agile
methods have transformed and brought unique changes to software development practices by strongly emphasizing team collaboration,
change tolerance, and active customer involvement. Their proven benefits have also inspired organizations to apply them in large-scale
settings. However, the adoption of agile methods at scale entails unique challenges such as coordinating and aligning multiple large-scale
agile activities, dealing with internal silos, and establishing an agile culture & mindset throughout the organization. In particular, agile coaches
and scrum masters are confronted with unprecedented concerns in large-scale agile development. Notwithstanding their importance for large-
scale agile endeavors, extant literature still lacks an overview of their typical concerns and a collection of patterns to address them. Against
this backdrop, we provide an overview of typical concerns and present five best practices of agile coaches and scrum masters in large-scale
agile development.

Categories and Subject Descriptors: A.0 [General] Conference proceedings; K.6.3 [Software Management] Software Development

Additional Key Words and Phrases: agile coaches, concerns, large-scale agile development, patterns, scrum masters

ACM Reference Format:

Uludağ, Ö. and Matthes, F. 2019. Identifying and Documenting Recurring Concerns and Best Practices of Agile Coaches and Scrum Masters
in Large-Scale Agile Development. HILLSIDE Proc. of Conf. on Pattern Lang. of Prog. 26 (October 2019), 25 pages.

1 Introduction

Emerging in the 1990s, agile software development methods such as Extreme Programming [Beck 2000] and
Scrum [Schwaber and Beedle 2001] have transformed and brought unprecedented advancements to software
development practice by emphasizing change tolerance, team collaboration, and customer involvement [Kettunen
2007; Dingsøyr and Moe 2014]. With these methods, small, co-located, self-organizing teams work closely with the
business customer on a single-project context, maximizing customer value and software product quality through
rapid iterations and frequent feedback loops [Kettunen 2007]. Since agile methods have proved to be successful
at the team level, large organizations are now aiming to scale agile methods to the enterprise level [Alqudah
and Razali 2016]. Version One’s 12th survey on the state of agile [VersionOne 2018] also reflects this industry
trend towards adopting agile methods in-the-large. The survey shows that 52% of the 1492 respondents work in
companies where the majority of teams are agile. However, the adoption of agile methods at larger scale entails

Author’s address: Ö. Uludağ, Boltzmannstrasse 3, D-85748 Garching b. München; email: oemer.uludag@tum.de; F. Matthes, Boltzmannstrasse
3, D-85748 Garching b. München; email: matthes@tum.de

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on
the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission. A
preliminary version of this paper was presented in a writers’ workshop at the 26th Conference on Pattern Languages of Programs
(PLoP). PLoP’19, OCTOBER 7-10, Ottawa, Ontario Canada. Copyright 2019 is held by the author(s). HILLSIDE 978-1-941652-14-5

238

new challenges such as coordinating several large-scale agile activities, establishing an agile culture & mindset,
and dealing with general resistances to changes [Dikert et al. 2016; Uludağ et al. 2018]. Especially agile coaches
and scrum master are confronted with a number of unprecedented concerns in large-scale agile development
[Uludağ et al. 2018]. Notwithstanding the significance of agile coaches and scrum masters for the success of
large-scale agile endeavors, extant literature disregards an overview of their concerns and a collection of best
practices to address them. Against this backdrop, we provide an overview of typical concerns of agile coaches and
scrum masters and present five best practices.
The remainder of this paper is structured as follows. In Section 2, we portray the research design of our paper.
In Section 3, we report on related works and describe related pattern languages. In Section 4, we elaborate the
conceptual overview of the underlying pattern language to document recurring concerns and patterns. In Section
5, we give an overview of identified concerns and best practices. In Section 6, we discuss our main findings before
concluding our paper with a summary of our results and remarks on future research in Section 7.

2 Research Approach

Our larger research initiative strives to document best practices that address recurring concerns of stakeholders in
large-scale agile development. To balance the rigor and relevance of our research, we followed the pattern-based
design research (PDR) method [Buckl et al. 2013]. The PDR method encourages researchers to theorize and learn
from their intervention at industry partners while conducting rigorous and relevant design science research. The
PDR method consists of four phases: observe & conceptualize, pattern-based theory building & nexus instantiation,
solution design & application, and evaluation & learning (see Fig. 1).
During the observe & conceptualize phase, good practices for recurring concerns are observed and documented
based on a typical pattern structure (see Section 4). These pattern candidates are then conceptualized by using
grounding theories and evolve into genuine patterns by meeting the rule of three1 [Coplien 1996], which are then
integrated into the large-scale agile development pattern language. Pattern candidates, patterns, and the pattern
language form an organized collection of reusable, proven solutions. In the solution design & application phase,
stakeholders in large-scale agile development make the use of this knowledge base and select patterns based on
their concerns. Selected patterns have to be configured and adjusted to the terminology of the company. After
their configuration, adapted patterns can be used within the case organization. During the evaluation & learning
phase, deviations between the actual and original pattern configuration are identified and documented. These
deviations can be used to identify new best practices.

3 Related Work

Despite the industry trend towards adopting agile methods in-the-large [VersionOne 2018], sound academic
research is lagging, especially regarding challenges and success factors [Dikert et al. 2016; Alsaqaf et al. 2019;
Uludağ et al. 2018]. Some researchers witnessed this gap and started to publish academic papers, which are
described in the following.
[Dikert et al. 2016] made a first attempt and reported 35 challenges and 29 success factors from 42 different
organizations by conducting a systematic literature review of industrial large-scale agile transformations. The
most salient challenge categories were agile difficult to implement, integrating non-development functions, change
resistance, and requirements engineering challenges. The most important success factors weremanagement
support, choosing and customizing the agile model, training and coaching, and mindset and alignment. By means
of a literature review and case study, [Kalenda et al. 2018] reported challenges and success factors of large
companies adopting agile methods. They identified the following four challenges, namely resistance to change,
quality assurance issues, integrating with non-agile parts of the organization, and too fast roll-out. Moreover, they

1The rule of three suggests that a documented pattern must refer to at least three known uses in practice to guarantee the re-usability of the
given solution.

Identifying and Documenting Recurring Concerns and Best Practices of Agile Coaches and Scrum Masters in Large-Scale Agile Development — Page 2

239

Fig. 1: Pattern-based design research [Buckl et al. 2013]

discovered four success factors, namely unification of views and values, executive sponsorship and management
support, company culture, and prior agile and lean experience. In a previous study, we identified typical concerns
of stakeholders and initiatives in large-scale agile development based on a structured literature review [Uludağ
et al. 2018]. In total, we identified 79 concerns that were grouped into eleven challenge categories. Our previous
work forms the basis for this paper, as it also included concerns and pattern candidates of agile coaches and
scrum masters. [Meszaros and Doble 1997] recommend reading other related pattern languages when writing
patterns. By doing that, we identified some related pattern languages as shown in Table I.

Table I. : Overview of Related Pattern Languages

Source Scope & goal
Focus on agile
development

Number of
patterns

Pattern examples

[Coplien 1995]

Collection of patterns for
shaping a new organi-
zation and its develo-
pment processes

Partially 42
- CODE OWNERSHIP

- GATEKEEPER

- FIRE WALLS

[Harrison 1996]
Collection of patterns for
creating effective software
development teams

No 4
- UNITY OF PURPOSE

- DIVERSITY OF MEMBERSHIP

- LOCK ’EM UP TOGETHER

[Beedle et al. 1999]
Collection of Scrum
patterns

Yes 3
- SPRINT

- BACKLOG

- SCRUM MEETINGS

[Taylor 2000]
Collection of patterns for
creating product software
development environments

No 9
- DELIVERABLES TO GO

- PULSE

- BOOTSTRAPPING

Identifying and Documenting Recurring Concerns and Best Practices of Agile Coaches and Scrum Masters in Large-Scale Agile Development — Page 3

240

Table I – Continued from previous page

Source Scope & goal
Focus on agile
development

Number of
patterns

Pattern examples

[Coplien and Harrison 2004]

Collection of organizational
patterns that are combined
into a collection of four
pattern languages

Yes 94
- SKILL MIX

- DEMO PREP

- FEW ROLES

[Elssamadisy 2008]
Collection of patterns for
successfully adopting
agile practices

Yes 38
- REFACTORING

- CONTINUOUS INTEGRATION

- SIMPLE DESIGN

[Beedle et al. 2010]
Collection of the most
essential best practices
of Scrum

Yes 11
- DAILY SCRUM

- SPRINT BACKLOG

- SPRINT REVIEW

[Välimäki 2011]

Enhancing performance
of project management
work through improved
global software project
management practice

Partially 18
- COLLOCATED KICK-OFF

- CHOOSE ROLES IN SITES

- ITERATION PLANNING

[Mitchell 2016]
Collection of patterns to
address agile transfor-
mation problems

Yes 54
- LIMITED WIP
- KANBAN SANDWICH

- CONTROLLED FAILURE

[ScrumPLoP 2019]
Body of pattern literature
around agile and Scrum
communities

Yes 234 (10)
- SCRUM MASTER

- SCRUM OF SCRUMS

- PORTFOLIO STANDUP

[Uludağ et al. 2019]

Collection of recurring
concerns and patterns
of typical stakeholders
in large-scale agile
development

Yes 70

-
STRICTLY SEPARATE BUILD

AND RUN STAGES

- COMMUNITY OF PRACTICE

- ITERATION DEPENDENCY MATRIX

-
DON’T USE AGILE

AS A GOLDEN HAMMER

4 Large-Scale Agile Development Pattern Language

The application of agile methods on a large scale also entails unique concerns for agile coaches and scrum
masters such as establishing an agile culture & mindset across the organization, facilitating coordination and
communication of multiple large-scale agile endeavors, and creating information sharing and knowledge networks
[Uludağ et al. 2018; Dikert et al. 2016; Alsaqaf et al. 2019; Šmite et al. 2017]. Valuable research studies providing
explanations of how to address these concerns remain still scarce.
Following the idea of [Alexander 1977], the documentation of recurring concerns and best practices of agile
coaches and scrum masters seems to be useful in this context. In the following, we will present the structure of our
pattern language [Uludağ et al. 2019] which forms the basis for documenting of recurring concerns and patterns of
agile coaches and scrum masters (see Fig. 2).
The pattern language consists of three types of patterns [Uludağ et al. 2019]:

— Coordination Patterns (C-Patterns) document proven coordination mechanisms to address recurring coordi-
nation concerns, i.e., managing dependencies between activities, resources or tasks.

— Methodology Patterns (M-Patterns) document concrete steps to be taken to address given concerns.
— Viewpoint Patterns (V-Patterns) document proven ways to visualize information in the form of boards,

documents, metrics, models, and reports to address recurring concerns.

In addition, the pattern language comprises the following four concepts [Uludağ et al. 2019]:

Identifying and Documenting Recurring Concerns and Best Practices of Agile Coaches and Scrum Masters in Large-Scale Agile Development — Page 4

241

!

? ???

Fig. 2: Conceptual overview of the Large-Scale Agile Development Pattern Language [Uludağ et al. 2019]

— Stakeholders are all persons who are actively involved in, have an interest in or are in some way affected by
large-scale agile development.

— Concerns can manifest themselves in many forms, e.g., expectations, goals, needs or responsibilities.

— Principles are general rules and guidelines that address given concerns by providing a common direction for
action. In comparison to patterns, they do not provide any descriptions on ‘how’ to address concerns.

— Anti-Patterns (A-Patterns) document typical mistakes and present revised solutions, which help pattern users
to prevent these pitfalls.

Fig. 3 shows the attributes used to document patterns and concepts similar to those of [Buschmann et al. 1996;
Ernst 2010; Coplien 1996]. All elements have an identifier and name sections to simplify referencing. Except for
concerns, all elements of the pattern language have an alias section that contains a list of synonyms. A concern
has two additional sections called category and scaling level which describe the category and the organizational
level at which a concern occurs. Further, principles, patterns, and anti-patterns comprise eight common sections:
the (1) problem and (2) context sections describe problems and situations to or in which they apply. The (3) forces
section describes why the problem is tough to solve. The (4) summary section briefly describes the principle,
pattern or anti-pattern. The (5) consequences section provides a list of related advantages and liabilities, while the
optional (6) other standards and (7) see also sections point to other solutions and frameworks. The (8) example
section demonstrates the problem to be addressed. Principles and patterns also have variants and known uses
sections that show variants and alternatives as well as proven applications in practice. The type and binding nature
sections are specific to principles and indicate their topic and whether they are recommended or mandatory. The
solution section describes the recommended solution for a pattern. The general form and revised solution sections
specific to A-Patterns delineate the not working solution and a revised solution. V-Patterns have the type and data
collection sections which show the visualization concepts and collection processes necessary for their creation
[Uludağ et al. 2019].
Like [Buschmann et al. 2007], we label our patterns with the star notation to denote our confidence in the maturity
of a pattern. Two stars indicate that the pattern effectively solves a genuine problem in its current form. One star

Identifying and Documenting Recurring Concerns and Best Practices of Agile Coaches and Scrum Masters in Large-Scale Agile Development — Page 5

242

C-Pattern V-Pattern

type
data collection

M-Pattern

Pattern

identifier
name
alias
summary
example
context
problem
forces
solution
variants
consequences
other standards
known uses

Concern

identifier
name
category
scaling level

Principle

identifier
name
alias
summary
type
binding nature
example
context
problem
forces
variants
consequences
other standards
known uses

Anti-Pattern

identifier
name
alias
summary
example
context
problem
forces
general form
consequences
revised solution
other standards

Stakeholder

identifier
name
alias

see also
* *

see also
* *

see also

*

*

see also

*

*

see also

*

*

is addressed by

*

*
is addressed by
*

*is addressed by

*

*

has
*

*

Fig. 3: Conceptual model of the Large-Scale Agile Development Pattern Language [Uludağ et al. 2019]

means that the pattern addresses a genuine problem but needs to mature. No stars denote that the pattern is a
useful solution to an observed problem but requires a major revision.

5 Recurring Concerns and Best Practices

We used an integrated approach to identify recurring concerns and best practices [Cruzes and Dyba 2011]. In
the first step, we created an a priori list of concerns and pattern candidates identified by a structured literature
review [Uludağ et al. 2018]. In the second step, we used semi-structured interviews to prove the practical relevance
of our previously identified elements as well as to extend our initial list by new concerns and best practices. All
questions within the semi-structured interviews contained a combination of open and closed questions and were
conversational to allow interviewees to explore their experiences and views in detail [Yin 2008]. Each interview
was primarily conducted by two researchers in face-to-face meetings to facilitate observer triangulation [Runeson
and Höst 2009]. A total of 13 interviews were conducted with agile coaches and scrum masters (see Table II).
In total, we observed 57 recurring concerns of agile coaches and scrum master, 36 of which were already identified
by the literature review [Uludağ et al. 2018] and 21 of which were newly mentioned by the interviewees. A detailed
list of identified concerns can be found in Appendix A.
We identified a total of 76 pattern candidates consisting of 21 M-Patterns, 18 V-Patterns, 14 C-Patterns, 12
Principles, and 10 A-Patterns as shown in Fig. 4. After applying the rule of three [Coplien 1996], we identified a
total of 15 patterns comprising 5 M-Patterns, 2 V-Patterns, 2 C-Patterns, 4 Principles, and 2 A-Patterns. A detailed
list of identified patterns can be found in Appendix B.

Identifying and Documenting Recurring Concerns and Best Practices of Agile Coaches and Scrum Masters in Large-Scale Agile Development — Page 6

243

Table II. : Overview of interview partners

No Role
Professional experience

(in years)
Organization’s experience

(in years)
Industry

1 Agile Coach 3-6 years > 6 years IT / Technology
2 Agile Coach 3-6 years 1-3 years Production
3 Agile Coach 1-3 years 3-6 years Consulting
4 Agile Coach > 6 years 1-3 years IT / Technology
5 Agile Coach 3-6 years < 1 year Consulting

6
Agile Coach /
Scrum Master

> 6 years 3-6 years IT / Technology

7 Agile Coach 3-6 years 3-6 years Consulting

8 Agile Coach 1-3 years 1-3 years
Finance / Insurance /

Real Estate
9 Agile Coach 1-3 years 1-3 years Retail

10 Agile Coach > 6 years 1-3 years Production
11 Agile Coach 3-6 years 1-3 years Consulting
12 Agile Coach 3-6 years 3-6 years Retail
13 Agile Coach 3-6 years 3-6 years Consulting

Fig. 4: Overview of identified patterns and pattern candidates

Identifying and Documenting Recurring Concerns and Best Practices of Agile Coaches and Scrum Masters in Large-Scale Agile Development — Page 7

244

Fig. 5 depicts the current version of our pattern language, which visualizes the relationships2 between recurring
concerns and patterns of agile coaches and scrum masters. Hereafter, we present five best practices that showcase

C-4

P-1 P-2 P-4

M-22

Don’t Use
Frameworks
As Recipes

A-1

V-1 V-2

C-56 C-59 C-67 C-74 C-81 C-87 C-88 C-90 C-91 C-94 C-96 C-
110

C-1

Supervision

C-2

Community
of

Practice

Global
Impediment

Board
Good

Practice
Newsletter

Publish
Good

Practices

Explain
Meeting
Purpose

Celebrate
Every

Success

Consensus-
Based

Decisions

PilotingObjectives
And Key
Results

Empowered
Community
of Practice

Global
Impediment

Process

C-5 C-46C-45C-39C-33C-19C-7

A-6

Don’t
Overshoot

Coordination
Meetings

C-49

P-3

M-2 M-6

Role Focus

M-1 M-3

Fig. 5: Pattern language for agile coaches and scrum masters *

the different pattern types and concepts of our pattern language:

(1) P-1: PUBLISH GOOD PRACTICES (showing Principles),
(2) C-1: SUPERVISION (representing C-Patterns),
(3) M-6: GLOBAL IMPEDIMENT PROCESS (highlighting M-Patterns),
(4) V-6: GLOBAL IMPEDIMENT BOARD (illustrating (V-Patterns), and
(5) A-1: DON’T USE SCALING AGILE FRAMEWORKS AS A RECIPE (demonstrating A-Patterns).

2The arrows between the orange and other circles indicate the is addressed by relationship between concerns and pattern types/concepts. For
instance, the concern C-19: How to deal with internal silos? is addressed by the C-Pattern C-2: COMMUNITY OF PRACTICE. The relationships
between pattern types and/or concepts represent the uses or the can be used in combination relationship (cf. [Buschmann et al. 1996]). For
example, the M-Pattern M-2: GLOBAL IMPEDIMENT PROCESS can be used in combination with the V-Pattern V-1: GLOBAL IMPEDIMENT

BOARD to address the concern C-67: How to encourage development teams to talk about tasks and impediments?.

Identifying and Documenting Recurring Concerns and Best Practices of Agile Coaches and Scrum Masters in Large-Scale Agile Development — Page 8

245

5.1 Principle: Publish Good Practices (P-1) *

Principle Overview
Alias
Summary PUBLISH GOOD PRACTICES to enable a culture of open communication and

continuous improvement. By applying PUBLISH GOOD PRACTICES, agile
teams are encouraged to talk about things that what went well and to share
their achievements with other agile teams.

Type Agile Principle
Binding Nature Recommended

5.1.1 Example
A scrum master at RetailCo successfully built a culture of kudos within his team. Although the team’s motivation
was highly increased by the kudos-giving culture, the scrum master did not share his success story with other
scrum masters due to missing communication channels for organizational learning as well as and due to the lack
of a continuous improvement culture at RetailCo.

5.1.2 Context
In the course of large-scale agile transformations, agile teams learn new practices and quickly achieve remarkable
achievements in their new way of working. Although their achievements can also be of great importance to other
agile teams, their success stories are not further communicated and the valuable knowledge remains inaccessible
to the organization.

5.1.3 Problem
The following concerns are addressed by PUBLISH GOOD PRACTICES:

— C-4: How to deal with doubts in people about changes?
— C-5: How to facilitate shared context and knowledge?
— C-33: How to build trust of stakeholders in agile practices?
— C-39: How to establish a culture of continuous improvement?
— C-59: How to establish a common understanding of agile thinking and practices?
— C-91: How to demonstrate the value add of agile methods?
— C-94: How to understand the demand for becoming agile?
— C-110: How to establish an agile mindset?

5.1.4 Forces
The following forces influence PUBLISH GOOD PRACTICES:

— Agile teams are not conscious about the importance of sharing their achievements with other agile teams.
— There are no communication channels to share good practices across the organization.

5.1.5 Consequences
The following benefits of PUBLISH GOOD PRACTICES are known:

— A culture of continuous learning is established.
— Open communication is facilitated.
— People get informed about good practices within and outside their organization.
— People are engaged to try out new things.

Identifying and Documenting Recurring Concerns and Best Practices of Agile Coaches and Scrum Masters in Large-Scale Agile Development — Page 9

246

The following liabilities of PUBLISH GOOD PRACTICES are known:

— Applying this principle can lead to a higher tolerance to make mistakes and trying out things that are not suitable
for the organization or the team.

— An excessive use of this principle could make it difficult for agile teams to distinguish between important and
unimportant good practices and to identify practices that are relevant to them.

5.1.6 See Also
Publish Good Practices can be used in combination with the following V-Pattern:

— V-2: GOOD PRACTICE NEWSLETTER

5.1.7 Known Uses
The following uses of PUBLISH GOOD PRACTICES are known:

— AgileConsultCo
— CarCo
— InsureCo
— ITConsultCo
— RetailCo

Identifying and Documenting Recurring Concerns and Best Practices of Agile Coaches and Scrum Masters in Large-Scale Agile Development — Page 10

247

5.2 C-Pattern: Supervision (C-1) **

C-Pattern Overview
Alias
Summary A SUPERVISION offers agile teams a platform to discuss their current problems in a small

and closed circle of participants and jointly find and evaluate solutions to these problems.

5.2.1 Example
A scrum master at ConglomerateCo is assigned to an agile team that has an over-cautious product owner that
delays the start time of the first sprint. The scrum master is overwhelmed with this situation and looks for suitable
solutions to deal with this problem. At ConglomerateCo, the scrum master does not have suitable platforms to
discuss his problem with other scrum master and to ask for their personal experience on similar situations.

5.2.2 Context
Agile teams face a variety of problems in their daily work that go beyond actual implementation challenges that are
not addressed in the retrospectives for time or confidentiality reasons. Furthermore, retrospectives do not provide
a suitable platform to discuss domain-specific challenges with the same agile roles.

5.2.3 Problem
The following concern is addressed by SUPERVISION:

— C-67: How to encourage development teams to talk about tasks and impediments?

5.2.4 Forces
The following forces influence SUPERVISION:

— Some employees do not like to talk openly about their problems in front of their colleagues.
— Some people do not want to raise problems with their colleagues when the people concerned are present to

avoid bigger escalations.
— No suitable platforms are existing for discussing domain-specific problems with colleagues having equal roles.

5.2.5 Solution
Set up a SUPERVISION meeting with four to eight participants for at maximum three hours. A typical agenda of a
SUPERVISION is structured as follows:

(1) Casting: Every participant thinks of one to two problems he wants to discuss. Every problem is shortly
introduced by each participant. Afterwards, the participants vote on which of the problems are going to be
discussed in the current SUPERVISION. The two most frequently chosen problems are discussed in the later
part of SUPERVISION.

(2) Telling: The person who introduced the problem, called the storyteller, has to explain his problem in more detail.
The other participants are not allowed to talk or to ask questions as long as the storyteller depicts his problem.

(3) Asking: At this stage, participants can ask comprehension questions to better understand the problem.
(4) Hypothesis: During this stage, The participants state some hypothesis on the problem. Here, the storyteller

should be physically away from the other participants, e.g., by leaving the room or staying behind a flip chart,
so that an intervention of the brainstorming participants is not possible. At this stage, the creativity process
should not be disturbed by the storyteller.

(5) Feedback: The storyteller evaluates the hypotheses.
(6) Solution: The participants present solutions for addressing the stated problem.
(7) Feedback: The storyteller evaluates the proposed solutions and explains which of them are feasible and which

are not.

Identifying and Documenting Recurring Concerns and Best Practices of Agile Coaches and Scrum Masters in Large-Scale Agile Development — Page 11

248

5.2.6 Variants
A SUPERVISION can be done within an agile team or on a cross-team level with people from the same domain. A
domain-specific SUPERVISION can focus on typical problems of agile coaches, product owners, and architects.

5.2.7 Consequences
The following benefits of SUPERVISION are known:

— It provides a secure environment to talk about sensitive issues.
— Based on the experiences of the collective, well-structured solutions are proposed for the problems discussed.
— Participants can reflect on the problems and solutions addressed for their own work.
— Solutions to the problems are gathered by different people, resulting in a wider range of possible solutions with

each different benefits and drawbacks.

The following liabilities of SUPERVISION are known:

— Problems that are irrelevant to the participants can be neglected.
— Participants might not feel valued if their problem is not discussed.
— In the case of communicating the discussed problems with other employees outside of this circle, it can lead to

a breach of trust.

5.2.8 Known Uses
The following uses of SUPERVISION are known:

— ConglomerateCo
— RetailCo
— SoftwareConsultCo

Identifying and Documenting Recurring Concerns and Best Practices of Agile Coaches and Scrum Masters in Large-Scale Agile Development — Page 12

249

5.3 M-Pattern: Global Impediment Process (M-6) *

M-Pattern Overview
Alias
Summary The GLOBAL IMPEDIMENT PROCESS describes a structured process for identifying, docu-

menting, and solving impediments that affect multiple agile teams.

5.3.1 Example
A large-scale agile development program of RetailCo consisting of seven agile teams are about to finish their first
two-week sprint. The scrum masters of these teams request access rights from the infrastructure team to use
the testing environment. However, the infrastructure team is not able to process these requests since all virtual
machines are already used by other teams. Consequently, the first sprint of the agile teams cannot be completed
because they could not test the software sufficiently. In the respective team retrospectives, this impediment is
raised by the developers. Since this is impediment is a big issue at RetailCo, the scrum masters are not able to
solve it themselves. Also, RetailCo does not have a pre-defined process for escalating this impediment at the
enterprise level.

5.3.2 Context
In agile software development, scrum masters are primarily responsible for removing impediments that may slow
the development progress of their respective teams. However, in complex software development endeavors, in
which multiple agile teams are involved in, these impediments are more difficult to solve as not only one agile team
is affected by it but multiples. Since large-scale agile development endeavors also include other organizational
units in the development process, the scrum masters do not have sufficient instruction authorities to induce other
employees outside of their teams to perform specific tasks for resolving impediments of their teams.

5.3.3 Problem
The following concerns are addressed by GLOBAL IMPEDIMENT PROCESS:

— C-39: How to establish a culture of continuous improvement?
— C-67: How to encourage development teams to talk about tasks and impediments?

5.3.4 Forces
The following forces influence GLOBAL IMPEDIMENT PROCESS:

— Impediments in large-scale agile development typically affect multiple agile teams.
— Scrum masters lack mechanisms to escalate larger impediments to higher organizational levels so that these

are resolved by middle management or even by the executive board.
— Scrum masters do not have sufficient instruction authorities of employees outside of their teams that should

take actions in order to resolve the impediments.
— Scrum masters have difficulties in identifying relevant employees outside of their teams that should own and

resolve the impediments.

5.3.5 Solution
Implement a GLOBAL IMPEDIMENT PROCESS to tackle impediments that scrum masters cannot solve on their own.
Each impediment of a team is included within the GLOBAL IMPEDIMENT PROCESS if the team cannot solve the
impediment by its own. The process is structured according to Fig. 6.
The process includes a Global Impediment Working Group that consists of people having an overarching view
of the organization, therefore knowing the right people to solve a global impediment. The Global Impediment
Working Group meets every two weeks and discusses and prioritizes new impediments. They add them to the

Identifying and Documenting Recurring Concerns and Best Practices of Agile Coaches and Scrum Masters in Large-Scale Agile Development — Page 13

250

Global Impediment Board and try to solve the impediments. Because of their knowledge about the company, the
probability that they know people who can solve the impediment is very high.

Fig. 6: Event-Driven GLOBAL IMPEDIMENT PROCESS

5.3.6 Variants
The following variants are known for the GLOBAL IMPEDIMENT PROCESS:

— Each impediment has an ’owner’, who is someone from the Working Group who also knows about the difficulty
of the impediment.

— Each impediment has a ’supporter’, who is someone who as a major influence on the solution of the impediment.
— An impediment can be documented by using the A3 format [Sobek and Jimmerson 2004].

5.3.7 Consequences
The following benefits of GLOBAL IMPEDIMENT PROCESS are known:

— Impediments get solved.
— Prioritization enables calculation of real cost caused by an impediment. This may increase resolution speed.
— The process enables transparency.
— The process minimized local applications and workarounds.
— By resolved impediments, the velocity of agile teams is not hampered.

The following liabilities of GLOBAL IMPEDIMENT PROCESS are known:

— The process requires increased effort for the participants of the Global Impediment Working Group.

5.3.8 See Also
The GLOBAL IMPEDIMENT PROCESS uses the following V-Pattern:

— V-1: GLOBAL IMPEDIMENT BOARD

5.3.9 Known Uses
The following uses of GLOBAL IMPEDIMENT PROCESS are known:

— AutonomousDrivingCo
— ConglomerateCo
— RetailCo
— SoftwareCo
— SoftwareConsultCo

Identifying and Documenting Recurring Concerns and Best Practices of Agile Coaches and Scrum Masters in Large-Scale Agile Development — Page 14

251

5.4 V-Pattern: Global Impediment Board (V-6)*

V-Pattern Overview
Alias Global Impediment Backlog
Summary A GLOBAL IMPEDIMENT BOARD shows all impediments of an organization which are ether

not solvable by an agile team itself or are relevant for several teams in a company.
Type Board

5.4.1 Example
RetailCo has established a GLOBAL IMPEDIMENT PROCESS to handle impediments that scrum masters cannot
solve on their own or are relevant for multiple agile teams. Although RetailCo has established a Global Impediment
Working Group for resolving these type of impediments, it neither uses a structured format for documenting global
impediments nor stores them in a central database. In addition, the Global Impediment Working Group does not
prioritize global impediments. Thus, it does not directly addressed urgent impediments that can have a significant
impact on agile teams.

5.4.2 Context
The organization has already implemented the M-Pattern GLOBAL IMPEDIMENT PROCESS. The resolution of
impediments is neither documented in a uniform format nor stored centrally so that employees have difficulties
in identifying current or historical global impediments. In addition, the organization does not know which of the
impediments are important or urgent to resolve.

5.4.3 Problem
The following concern is addressed by GLOBAL IMPEDIMENT BOARD:

— C-67: How to encourage development teams to talk about tasks and impediments?

5.4.4 Forces
The following forces influence GLOBAL IMPEDIMENT BOARD:

— Global Impediments need to be centrally managed and tracked so that they are actually resolved by the
impediment owners.

— Different employees may have different styles of documenting impediments that would make it difficult to
compare impediments.

— Due to numerous tools in the area of large-scale agile development, it can be difficult to find global impediments
in the right place.

— Due to vast numbers of global impediments, it can be difficult to distinguish important/urgent impediments from
unimportant/non-urgent impediments.

5.4.5 Solution
Set up a GLOBAL IMPEDIMENT BOARD to manage all global impediments throughout the GLOBAL IMPEDIMENT

PROCESS. In large-scale agile development, a list with the following structure is frequently used:
The ID is a consecutive, unique integer value that is used to identify an impediment. The prioritization is done by
the Global Impediment Working Group and indicates the urgency of the impediment. Impediments with higher
prioritization should be solved first. ’Handed in by’ refers to the team or individual who handed in the impediment.
The owner is someone from the Working Group, who is responsible for solving the impediment. The ’A3’-attribute
is optional if the GLOBAL IMPEDIMENT PROCESS requires the submission of an impediment in the A3 format.
The underlying information model of the GLOBAL IMPEDIMENT BOARD can be found in Fig. 8.

Identifying and Documenting Recurring Concerns and Best Practices of Agile Coaches and Scrum Masters in Large-Scale Agile Development — Page 15

252

Global Impediment Board

ID Prioritization Name Handed in by Description Date Owner A3 Status

100

...

...

3

Customer cannot
access development
environment due to
security guidelines

06/05/2019 John Doe Link to A3 OngoingTeam ADev Access

Fig. 7: Exemplary view for GLOBAL IMPEDIMENT BOARD

WorkingGroupMember

A3Report
+ background: String
+ current_conditions: String
+ goals_targets: String
+ root_causes: String
+ proposed_countermeasures: String
+ plan: String
+ followup: String

OrganizationalMember
+ name: String
+ email_address: String
+ organizational_unit: String

Status
submitted
ongoing
solution found
closed

GlobalImpedimentBoard
+ id: int
+ prioritization: int
+ name: String
+ description: String
+ date: Date
+ status: Status

handed in by

Owner, Supporter

Fig. 8: Underlying information model of GLOBAL IMPEDIMENT BOARD

5.4.6 Variants
Depending on the organization, different attributes can be added or removed.

5.4.7 Consequences
The following benefits of GLOBAL IMPEDIMENT BOARD are known:

— Everyone within the organization can view current global impediments and see if anyone else has a similar
problem.

— Prioritization enables faster solving of emerging impediments that have a large impact on a team’s organization.

— Global impediments can be compared more easily with each other.

The following liabilities of GLOBAL IMPEDIMENT BOARD are known:

— It requires effort to manage the GLOBAL IMPEDIMENT BOARD.

5.4.8 Data Collection
The GLOBAL IMPEDIMENT BOARD can be digitally administrated in any digital collaboration tool by the Global
Impediment Working Group. It is updated whenever an impediment occurs by a member of the Working Group.
Only these members have writing permissions. It depends on the organization if the board should be public or kept
private to the Working Group.

Identifying and Documenting Recurring Concerns and Best Practices of Agile Coaches and Scrum Masters in Large-Scale Agile Development — Page 16

253

5.4.9 See Also
GLOBAL IMPEDIMENT BOARD is used by the following M-Pattern:

— M-8: GLOBAL IMPEDIMENT PROCESS

5.4.10 Known Uses
The following uses of GLOBAL IMPEDIMENT BOARD are known:

— AutonomousDrivingCo
— ConglomerateCo
— RetailCo
— SoftwareCo
— SoftwareConsultCo

Identifying and Documenting Recurring Concerns and Best Practices of Agile Coaches and Scrum Masters in Large-Scale Agile Development — Page 17

254

5.5 A-Pattern: Don’t Use Scaling Agile Frameworks as a Recipe (A-1) *

A-Pattern Overview
Alias Scaling Agile Frameworks Aren’t Silver Bullets
Summary The A-Pattern DON’T USE SCALING AGILE FRAMEWORKS AS A RECIPE shows why it is not

advisable to over rely on scaling agile frameworks without training people in agile values
and principles and tailoring these frameworks to the specific needs of the organization.

5.5.1 Example
The executive board of RetailCo decides to revive a failed customer relationship project by using agile methods.
Due to the complexity of the project, the management decide to relaunch it with the help of a scaling framework.
After a short internet research and discussion with external agile coaches, the management decides to relaunch
the project by adopting the Scaled Agile Framework3 (SAFe). In order not to fail, the management decides to use
the most comprehensive configuration of the SAFe framework, namely the Full SAFe configuration. After hiring
several external agile coaches and offering one-day SAFe training courses for the employees, the large-scale agile
development program consisting with three agile teams starts with the first program increment. The management
of RetailCo stipulated the large-scale agile development program that all practices, artefacts and roles specified by
Full SAFe are to be applied. After a few program increments the large-scale agile development program notices
that the used framework is causing some problems such as additional workload or complexity. Consequently, the
large-scale agile development program compulsively tries to solve the problems arising from the use of Full SAFe
and neglects to address the actual problems of the project.

5.5.2 Context
As today’s competitive environments become increasingly turbulent and the software systems to be developed
become more complex, traditional companies increasingly decide to adopt scaling agile frameworks for their
software development endeavors. Thus, several scaling agile frameworks, such as DAD4, LeSS5, and SAFe6

were proposed by practitioners to resolve issues associated with team size, customer involvement, and project
constraints that are mostly applied by traditional organizations.

5.5.3 Problem
The following concern is addressed by DON’T USE SCALING AGILE FRAMEWORKS AS A RECIPE:

— C-7: How to deal with incorrect practices of agile development?

5.5.4 Forces
The following forces occur in the context of DON’T USE SCALING AGILE FRAMEWORKS AS A RECIPE:

— The vendors of scaling agile frameworks promise organizations that the full potential of scaling agile frameworks
will only be achieved when companies implement the frameworks exactly as they require.

— Companies are tempted by the fact that the frameworks have already been successfully implemented in
other organizations and therefore automatically assume that these will also solve current problems in their
organization.

— Due to the lack of an agile mindset, companies believe that the mere use of scaling agile frameworks is sufficient
to realize the benefits of agile development, neglecting the importance of agile principles and values.

3https://www.scaledagileframework.com/
4https://disciplinedagiledelivery.com/
5https://less.works/
6https://www.scaledagileframework.com/

Identifying and Documenting Recurring Concerns and Best Practices of Agile Coaches and Scrum Masters in Large-Scale Agile Development — Page 18

255

— Due to their previous way of thinking, traditional organizations tend to think in terms of predefined templates
and processes, thus limiting the ability to discover new ideas and ways of working.

5.5.5 General Form
Traditional organizations that worked for a long period in hierarchical structures and plan-driven software devel-
opment methods tend to over-rely on predefined structures, processes, and rules. However, this mindset is also
exercised when organizations decide to adopt scaling agile frameworks as a basis for their complex software
development endeavors. Thus, these type of organizations adopt the practices, artefacts, and roles proposed
by the frameworks without to question whether they are useful for the addressing the actual problems of the
organization. In this context, organizations focus more on the appropriate implementation of the adopted scaling
agile framework than on understanding the values and principles behind the framework. This phenomenon is also
known as ’method prison’.

5.5.6 Consequences
The following benefits of DON’T USE SCALING AGILE FRAMEWORKS AS A RECIPE are known:

— Scaling agile frameworks provide detailed guidance for applying agile practices.
— Scaling agile frameworks constitute an entry point for hierarchical organizations to establish an agile culture

across the company.
— The usage of scaling agile frameworks increases the productivity of the organization.
— Scaling agile frameworks provide quick answers for typical software process problems.

The following liabilities of DON’T USE SCALING AGILE FRAMEWORKS AS A RECIPE are known:

— By relying too much on scaling agile frameworks, employees are not encouraged to understand the values and
principles behind these frameworks and do not develop an agile mindset.

— Not all practices, roles, and artefacts of scaling agile frameworks apply to an enterprise, so wasting time, money,
and effort is put into their application.

— Since scaling agile frameworks represent a simplified representation of reality, they are not designed to address
more complex problems from reality.

5.5.7 Revised Solution
Don’t adopt an agile framework one-to-one. Always analyze which practices are relevant to the organization
and which are not. Start a small-scale pilot first, and scale it to the whole organization after a successful pilot.
Constantly inspect the organization and react to inefficiency accordingly.
Additionally, teach the organization to not only apply agile methods but to act and work according to agile values
and principles. This requires extensive training and continuous review and improvement. Values and principles are
the basis for an efficient and value-creating organization.

5.5.8 See Also
The A-Pattern DON’T USE SCALING AGILE FRAMEWORKS AS A RECIPE can be avoided by using the following
principle:

— P-17: SEPARATE OBSERVATION FROM SOLUTION

Identifying and Documenting Recurring Concerns and Best Practices of Agile Coaches and Scrum Masters in Large-Scale Agile Development — Page 19

256

6 Discussion

In the following, we discuss the main findings of our study.

(1) Adaptation of scaling agile frameworks to company contexts
The majority of the interviewed organizations adopted a variety of scaling agile frameworks for supporting their
product development such as Large-Scale Scrum7, Scaled Agile Framework8, Scrum of Scrums9, and Scrum at
Scale10. Some of the interviewed companies invented their frameworks mainly for scaling agile practices over mul-
tiple teams. In larger companies, we observed that various scaling agile frameworks were used in different product
development units. Furthermore, we noticed that the importance of the frameworks for the companies differed
significantly. While in some organizations the correct implementation of a certain framework was regarded as very
important for the success of the product development, other companies considered scaling agile frameworks as a
means to an end. Typically, the latter type of organizations used the frameworks as inspiration for their product
development. Organizations concentrating too much on the proper implementation of a specific framework tended
to fall into the pitfall of using frameworks as recipes (see A-Pattern DON’T USE SCALING AGILE FRAMEWORKS AS

A RECIPE). Although many framework vendors strongly recommend the complete and unmodified use of their
frameworks, the interviewees mentioned that their organizations have not adopted the scaling of agile frameworks
one-to-one, but have tailored them to their context and needs. These adaptations included: (1) renaming of
roles, practices, and artifacts, (2) introducing new roles based on the current organizational unit, (3) initiating new
coordination meetings due to increased coordination needs, and (4) omitting recommended roles, events, and
artifacts in order not to further increase the complexity of product development.

(2) Risk of patterns being used as cooking recipes
Our decision to document best practices in the form of patterns received positive feedback by the agile and
scrum masters as well as by the interviewees from our previous study (cf. [Uludağ et al. 2019]). On the one hand,
the interviewees asked themselves how these patterns could be used pedagogically to train new employees in
the field of large-scale agile development. On the other hand, other participants considered using the patterns
for upcoming projects. Similar to scaling agile frameworks, the usage of patterns also harbors some risks that
must be mentioned here. First, patterns are context-specific signifying that some patterns may work very well in
some companies, while the same patterns may not be suitable for other organizations. For instance, while some
organizations preferred to introduce change teams (see M-Pattern AGILE TRANSITION TEAM) aiming to lead the
agile transformations within the organizations, others stated that establishing change teams might not work, and
thus should be avoided (see A-Pattern DON’T ESTABLISH CHANGE MANAGEMENT TEAMS). One way to mitigate
this risk is by applying the PDR method presented in Section 2. According to the PDR method, a researcher should
support organizations in the selection of suitable patterns and their configuration for the organizational context. In
addition, the researcher should document possible deviations and, if necessary, revise the initial pattern, e.g., by
updating the consequences or variants sections of a pattern. Second, similar to the application of scaling agile
frameworks, employees may focus excessively on the correct application of a pattern rather than understanding
the actual problem and intentions behind the pattern. Thus, we highly recommend that patterns should be used as
decision-support and should not anticipate decisions.

(3) Agile values and principles vs. agile practices
During the interviews, many agile coaches and scrum master pointed out that many employees wrongly equate

7https://less.works/less/framework/index.html
8https://www.scaledagileframework.com/
9https://www.scruminc.com/scrum-of-scrums/
10https://www.scrumatscale.com/scrum-at-scale-guide/

Identifying and Documenting Recurring Concerns and Best Practices of Agile Coaches and Scrum Masters in Large-Scale Agile Development — Page 20

257

agility by using agile practices without understanding the underlying values and principles, e.g., moving cards on
Kanban boards or replacing ‘old and boring’ software development terminologies with ‘new and fancy’ agile devel-
opment terminologies without knowing ‘why’ these practices are important. As a consequence, many companies
become ‘pseudo agile’ which increasingly encounter cultural problems, since the agile mindset of the employees
is still very immature. Also, the interviewed agile coaches and scrum masters indicated that learning new practices
is much easier than understanding the underlying values and principles. They explained this problem by using the
metaphor of an iceberg, i.e., the visible part of an iceberg represents agile practices and the important part of the
iceberg, which is underwater, is made of agile principles and values. Influencing values and principles which are
not visible is more difficult than influencing the visible practices.

(4) Process-oriented agile coaches vs. mindset-oriented agile coaches
We observed two types of agile coaches in our interviews, namely process-oriented and mindset-oriented agile
coaches. The process-focused coaches were mainly concerned about the proper application of agile practices
and methods by the teams. To this end, they mainly proposed best practices in the form of M-Patterns such as
OBJECTIVES AND KEY RESULTS and GLOBAL IMPEDIMENT PROCESS. On the other hand, the mindset-focused
coaches often explained concerns about the adoption of an agile mindset across the organization or the cre-
ation of an ideal working environment for agile teams to foster team communication and collaboration. The
mindset-oriented coaches named typically principles, workshops, and visualizations for resolving their concerns,
such as the Principle PUBLISH GOOD PRACTICES and the C-Pattern SUPERVISION. These observations are
consistent with the concept of [Kelly 2008], according to which there are two different approaches to coaching:
directive and non-directive coaching. The process-focused coaches often applied a directive approach, while
the mindset-focused coaches mostly used a non-directive coaching approach. With directive coaching, the agile
coach has extensive knowledge of the domain and mostly trains a team in the application of agile practices. Thus,
directive coaching can be used to adopt agile practices and help teams to work in new ways. In contrast, the
non-directive approach does not necessarily require the coach to be an expert in the field. Instead, the coach tries
to help the teams focus on their own goals and work towards achieving them. This form of coaching helps the
teams to grow on their own and to improve their performance. Non-directive coaching is more suitable for teams
that are already familiar with agile practices, while the directive approach is more suited for new teams [Kelly 2008].

7 Conclusion and Outlook

The success of agile methods for small teams has inspired large enterprises to apply them on a larger scale to
build complex software systems [Dingsøyr and Moe 2014; Alqudah and Razali 2016]. The scaling of agile methods
entails key managerial challenges such as coordinating multiple large-scale agile endeavors, establishing an agile
mindset across the organization, and facing general resistances to changes [Uludağ et al. 2018; Dikert et al. 2016;
Alsaqaf et al. 2019]. Especially agile coaches and scrum master are confronted with a number of unprecedented
concerns in large-scale agile development [Uludağ et al. 2018]. Notwithstanding the significance of agile coaches
and scrum masters for the success of large-scale agile endeavors, extant literature disregards an overview of
their concerns and a collection of best practices to address them. Against this backdrop, we interviewed 13
agile coaches and scrum masters and identified 57 recurring concerns and 15 best practices, five of which were
presented in this paper.
Finally, this paper leaves some room for future research. First, we aim to conduct more interviews with other typical
stakeholders in large-scale agile development, such as product owners, solution architects, and developers. These
interviews will help us to identify new role-specific concerns, patterns, and pattern candidates. Second, by means
of a structured questionnaire among companies worldwide, we will publish the Large-Scale Agile Development
Pattern Catalog containing concerns and patterns. Third, we will assist agile coaches and scrum masters of our
industry partners in selecting relevant patterns and introducing them into their organizations. This will allow us to

Identifying and Documenting Recurring Concerns and Best Practices of Agile Coaches and Scrum Masters in Large-Scale Agile Development — Page 21

258

observe actual pattern instantiations and to identify possible deviations from the originally introduced patterns.
Thereby, we also intend to close the research activity cycle of the PDR method [Buckl et al. 2013].

Acknowledgements

This work has been sponsored by the German Federal Ministry of Education and Research (BMBF) via the
Software Campus Project SaM-IT 01IS17049 project.

REFERENCES
Christopher Alexander. 1977. A Pattern Language: Towns, Buildings, Construction. Oxford University Press, New

York.
Mashal Alqudah and Rozilawati Razali. 2016. A review of scaling agile methods in large software development.

International Journal on Advanced Science, Engineering and Information Technology 6, 6 (2016), 828–837.
Wasim Alsaqaf, Maya Daneva, and Roel Wieringa. 2019. Quality requirements challenges in the context of

large-scale distributed agile: An empirical study. Information and Software Technology 110 (2019), 39 – 55.
Kent Beck. 2000. Extreme programming explained: embrace change. Addison-Wesley.
Mike Beedle, James O. Coplien, Jeff Sutherland, Jens C. Østergaard, Ademar Aguiar, and Ken Schwaber. 2010.

Essential Scrum Patterns. In 14th European Conference on Pattern Languages of Programs. The Hillside Group,
Irsee, 1–17.

Mike Beedle, Martine Devos, Yonat Sharon, Ken Schwaber, and Jeff Sutherland. 1999. SCRUM: An Extension
Pattern Language for Hyperproductive Software Development. Pattern Languages of Program Design 4 (1999),
637–651.

Sabine Buckl, Florian Matthes, Alexander W. Schneider, and Christian M. Schweda. 2013. Pattern-Based Design
Research – An Iterative Research Method Balancing Rigor and Relevance. In 8th International Conference on
Design Science Research in Information Systems. Springer, Berlin, 73–87.

Frank Buschmann, Kevlin Henney, and C. Schmidt Douglas. 2007. Pattern Oriented Software Architecture Volume
4: A Pattern Language for Distributed Computing. John Wiley & Sons, Chichester.

Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael Stal. 1996. Pattern-Oriented
Software Architecture Volume 1: A System of Patterns. John Wiley & Sons, Chichester.

James O. Coplien. 1995. A Generative Development-process Pattern Language. In Pattern Languages of Program
Design, James O. Coplien and Douglas C. Schmidt (Eds.). ACM, New York, 183–237.

James O. Coplien. 1996. Software Patterns: Management Briefs. Cambridge university Press, Cambridge.
James O. Coplien and Neil B. Harrison. 2004. Organizational Patterns of Agile Software Development. Addison-

Wesley, Boston.
Daniela S Cruzes and Tore Dyba. 2011. Recommended steps for thematic synthesis in software engineering. In

Empirical Software Engineering and Measurement (ESEM), 2011 International Symposium on. IEEE, 275–284.
Kim Dikert, Maria Paasivaara, and Casper Lassenius. 2016. Challenges and Success Factors for Large-Scale

Agile Transformations: A Systematic Literature Review. Journal of Systems and Software 119 (2016), 87–108.
Torgeir Dingsøyr and Nils Moe. 2014. Towards Principles of Large-Scale Agile Development. Springer, Berlin,

1–8.
Amr Elssamadisy. 2008. Agile Adoption Patterns: A Roadmap to Organizational Success. Addison-Wesley,

Boston.
Alexander M. Ernst. 2010. A Pattern-based Approach to Enterprise Architecture Management. Dissertation.

Technische Universität München, München.
Neil B. Harrison. 1996. Organizational Patterns for Teams. In Pattern Languages of Program Design 2, John M.

Vlissides, James O. Coplien, and Norman L. Kerth (Eds.). Addison-Wesley, Boston, 345–352.

Identifying and Documenting Recurring Concerns and Best Practices of Agile Coaches and Scrum Masters in Large-Scale Agile Development — Page 22

259

Martin Kalenda, Petr Hyna, and Bruno Rossi. 2018. Scaling agile in large organizations: Practices,
challenges, and success factors. Journal of Software: Evolution and Process 30, 10 (2018), e1954.
DOI:https://doi.org/10.1002/smr.1954

Allan Kelly. 2008. Changing software development: Learning to become agile. John Wiley & Sons.
Petri Kettunen. 2007. Extending Software Project Agility with new Product Development Enterprise Agility. Software

Process: Improvement and Practice 12, 6 (2007), 541–548.
Gerard Meszaros and Jim Doble. 1997. A Pattern Language for Pattern Writing. In Pattern Languages of Program

Design 3, Robert C. Martin, Dirk Riehle, and Frank Buschmann (Eds.). Addison-Wesley, Boston, 529–574.
Ian Mitchell. 2016. Agile Development in Practice. TamaRe House, London.
Per Runeson and Martin Höst. 2009. Guidelines for conducting and reporting case study research in software

engineering. Empirical Software Engineering 14, 2 (2009), 131.
Ken Schwaber and Mike Beedle. 2001. Agile Software Development with Scrum (1st ed.). Prentice Hall, Upper

Saddle River.
ScrumPLoP. 2019. Published Patterns. https://sites.google.com/a/scrumplop.org/
published-patterns/. (2019). Accessed: 2019-02-02.

Darja Šmite, Nils Brede Moe, Aivars Šāblis, and Claes Wohlin. 2017. Software teams and their knowledge
networks in large-scale software development. Information and Software Technology 86 (2017), 71–86.

Durward K. Sobek and Cindy Leduc Jimmerson. 2004. A 3 Reports : Tool for Organizational Transformation.
Industrial Engineering Research Conference.

Paul Taylor. 2000. Capable, productive, and satisfied: Some organizational patterns for protecting productive
people. In Pattern Languages of Program Design 4, John M. Vlissides, James O. Coplien, and Norman L. Kerth
(Eds.). Addison-Wesley, Boston, 611–636.

Ömer Uludağ, Nina Harders, and Florian Matthes. 2019. Documenting Recurring Concerns and Patterns in
Large-Scale Agile Development. In 24th European Conference on Pattern Languages of Programs. ACM, New
York.

Ömer Uludağ, Martin Kleehaus, Christoph Caprano, and Florian Matthes. 2018. Identifying and Structuring
Challenges in Large-Scale Agile Development Based on a Structured Literature Review. In 22nd International
Enterprise Distributed Object Computing Conference. IEEE, Stockholm, 191–197.

Antti Välimäki. 2011. Pattern Language for Project Management in Global Software Development. Tampere
University of Technology, Tampere.

VersionOne. 2018. 12th Annual State of Agile Report. Technical Report. VersionOne.
Robert K. Yin. 2008. Case Study Research: Design and Methods. Sage Publications, London.

Identifying and Documenting Recurring Concerns and Best Practices of Agile Coaches and Scrum Masters in Large-Scale Agile Development — Page 23

260

A Recurring Concerns of Agile Coaches and Scrum Masters

Fig. 9: Overview of identified concerns of agile coaches and scrum masters

Identifying and Documenting Recurring Concerns and Best Practices of Agile Coaches and Scrum Masters in Large-Scale Agile Development — Page 24

261

B Pattern Language for Agile Coaches and Scrum Masters *

B.1 Concerns

— C-4: How to deal with doubts in people about
changes?

— C-5: How to facilitate shared context and knowl-
edge?

— C-19: How to deal with internal silos?
— C-33: How to build trust of stakeholders in agile prac-

tices?
— C-39: How to establish a culture of continuous im-

provement?
— C-46: How to deal with closed mindedness?
— C-49: How to deal with increased efforts by estab-

lishing inter-team communication?
— C-56: How to define clear roles and responsibilities?
— C-59: How to establish a common understanding of

agile thinking and practices?
— C-67: How to encourage development teams to talk

about tasks and impediments?
— C-74: How to empower agile teams to make deci-

sions?
— C-81: How to enable the change from process to

product orientation?
— C-87: How to ensure patience during the agile trans-

formation?
— C-88: How to build an agile organization around

norms and standards?
— C-90: How to deal with the lack of objective measur-

ing methods?
— C-91: How to demonstrate the value add of agile

methods?
— C-94: How to understand the demand for becoming

agile?
— C-96: How to ensure that decisions on higher levels

reach lower levels?
— C-110: How to establish an agile mindset?

B.2 A-Patterns

— A-1: DON’T USE FRAMEWORKS AS RECIPES

— A-6: DON’T OVERSHOOT COORDINATION MEETINGS

B.3 Principles

— P-1: PUBLISH GOOD PRACTICES

— P-2: EXPLAIN MEETING PURPOSE

— P-3: CELEBRATE EVERY SUCCESS

— P-4: CONSENSUS-BASED DECISIONS

B.4 M-Patterns

— M-1: ROLE FOCUS

— M-2: OBJECTIVES AND KEY RESULTS

— M-3: EMPOWERED COMMUNITY OF PRACTICE

— M-6: GLOBAL IMPEDIMENT PROCESS

— M-22: PILOTING

B.5 C-Patterns

— C-1: SUPERVISION

— C-2: COMMUNITY OF PRACTICE

B.6 V-Patterns

— V-1: GLOBAL IMPEDIMENT BOARD

— V-2: GOOD PRACTICE NEWSLETTER

PLoP’19, OCTOBER 7–10, Ottawa, Ontario, Canada. Copyright 2015 is held by the author(s). HILLSIDE 978-1-941652-03-9

Identifying and Documenting Recurring Concerns and Best Practices of Agile Coaches and Scrum Masters in Large-Scale Agile Development — Page 25

262

Using Social Network Analysis
to Investigate the Collaboration Between

Architects and Agile Teams: A Case
Study of a Large-Scale Agile Development

Program in a German Consumer
Electronics Company

Ömer Uludağ(B), Martin Kleehaus, Soner Erçelik, and Florian Matthes

Technische Universität München (TUM),
85748 Garching bei München, Germany

{oemer.uludag,martin.kleehaus,soner.ercelik,matthes}@tum.de

Abstract. Over the past two decades, agile methods have transformed
and brought unique changes to software development practice by strongly
emphasizing team collaboration, customer involvement, and change tol-
erance. The success of agile methods for small, co-located teams has
inspired organizations to increasingly use them on a larger scale to build
complex software systems. The scaling of agile methods poses new chal-
lenges such as inter-team coordination, dependencies to other existing
environments or distribution of work without a defined architecture. The
latter is also the reason why large-scale agile development has been sub-
ject to criticism since it neglects detailed assistance on software architect-
ing. Although there is a growing body of literature on large-scale agile
development, literature documenting the collaboration between archi-
tects and agile teams in such development efforts is still scarce. As little
research has been conducted on this issue, this paper aims to fill this gap
by providing a case study of a German consumer electronics retailer’s
large-scale agile development program. Based on social network analy-
sis, this study describes the collaboration between architects and agile
teams in terms of architecture sharing.

Keywords: Large-scale agile development · Social network analysis ·
Agile architecture

1 Introduction

Emerging in the 1990s, agile methods have transformed and brought unprece-
dented changes to software development practice by strongly emphasizing change
tolerance, continuous delivery, and customer involvement [1,2]. With these agile
methods, self-organizing teams work closely with business customers in a single-
project context, maximizing customer value and quality of delivered software
c© The Author(s) 2019
P. Kruchten et al. (Eds.): XP 2019, LNBIP 355, pp. 137–153, 2019.
https://doi.org/10.1007/978-3-030-19034-7_9

263

138 Ö. Uludağ et al.

product through rapid iterations and frequent feedback loops [1]. The success of
agile methods for small, co-located teams has inspired enterprises to increasingly
apply agile practices to large-scale endeavors [2,3]. Since the initial application of
agile methods was originally intended for small, co-located teams, many organi-
zations are uncertain how to introduce them at scale and therefore face new chal-
lenges such as inter-team coordination, dependencies to other existing environ-
ments or distribution of work without a defined architecture [1,4,5]. The latter
is also the reason why large-scale agile development has been subject to criticism
since it neglects detailed assistance on software architecting [2,6]. Agile methods
assume that architecture should evolve incrementally rather than being imposed
by some direct structuring force (emergent architecture) [7]. However, the prac-
tice of this design is effective at team level but insufficient at large-scale. It causes
excessive redesign efforts, architectural divergence, and functional redundancy
increasing a system’s complexity [7,8]. Therefore, an intentional architecture is
required, which embraces architectural guidelines that specify inter-team design
and implementation synchronization [7,9]. The effective evolution of a system’s
architecture requires the right balance of emergent and intentional architecture
and a close collaboration between architects and agile teams [7,9,10].

Literature describing the collaboration between architects and agile teams in
large-scale agile development is still scarce. This paper aims to fill this gap by
providing a case study of a German consumer electronics retailer’s large-scale
agile development program. Based on this objective, our research question is:

How does the collaboration take place between architects and agile teams in a
large-scale agile development program?

The remainder of this paper is structured as follows. In Sect. 2, we provide
an overview of foundations and related works. In Sect. 3, we present the research
approach of this paper. Section 4 describes the case study on the collaboration
between architects and agile teams in the large-scale agile development program.
We discuss our lessons learned in Sect. 5 before concluding the paper with a
summary of our results and remarks on future research in Sect. 6.

2 Background and Related Work

In the following, the Scaled Agile Framework and Spotify Model are introduced,
as the observed program has adopted these two scaling frameworks. Thereafter,
the concept of communication networks is presented, which is essential for inter-
preting the results of the social network analysis in Sect. 4.

2.1 Scaled Agile Framework

The Scaled Agile Framework (SAFe), a widely used scaling framework [11], was
first published by Dean Leffingwell in 2011. SAFe builds on existing lean and
agile principles that are combined into a method for large-scale agile projects.

264

Collaboration Between Architects and Agile Teams 139

It provides a soft introduction to the agile world as it specifies many structured
patterns. This introduction is needed for organizations moving from traditional
to agile development environment [7]. The latest SAFe 4.6 version supports four
out-of-the-box configurations: Essential SAFe, Large Solution SAFe, Portfolio
SAFe, and Full SAFe. As the observed program uses Essential SAFe, we will
subsequently focus on this. Essential SAFe is the simplest entry point for imple-
menting SAFe and consists of team and program levels [7]. At team level, the
techniques outlined are those used in Scrum. Each team consists of five to nine
members, one scrum master (SM), and one product owner (PO). All teams are
part of an agile release train (ART), a team of agile teams that delivers a contin-
uous flow of incremental releases. Each team is responsible for defining, building,
and testing stories from its team backlog in a series of two-week iterations using
common iteration cadences [7]. At program level, the product management (PM)
serves as the content authority for the ART and is accountable for identifying
program backlog priorities. The PM works with POs to optimize feature delivery
and direct their work at team level. A release train engineer (RTE) facilitates
program execution, escalates impediments, manages risk, and helps to drive con-
tinuous improvement [7]. The system architect has the technical responsibility
for the overall architectural design of the system and aligns the ART with the
common technical and architectural vision [7].

2.2 Spotify Model

In 2012, Kniberg and Ivarsson [12] published Spotify’s approach to scale agile
methods over 30 teams across three cities. The Spotify Model emphasizes the
importance of “aligned autonomy”, i.e. the autonomy of agile teams with simul-
taneous collaboration and coordination to achieve the same goals. The basic
unit of development is called a Squad, which is similar to an agile team in SAFe.
Squads are self-organizing and autonomous teams that have all the skills to
design, develop, test, and release for production. A Tribe is designed as a col-
lection of squads working in related areas (correspondents to an ART in SAFe).
Squads within a tribe are co-located. People with similar skills in the same com-
petency area within the same tribe form a Chapter. A Guild is a community of
people that share same interests and often includes all chapters working in this
area (complies with a community of practice in SAFe) [12].

2.3 Communication Networks

According to Guo and Sanchez [13], communication is understood as the cre-
ation or exchange of thoughts, ideas, and emotions between senders and receivers.
Communication can be decomposed into two types: inter-team and intra-team
communication. The former stands for communication between several teams,
the latter for communication within a team [14]. The flow of communication con-
necting senders and receivers are called communication networks [15]. Figure 1
depicts five common communication networks. The wheel network is the most
centralized network pattern. In this network, each member communicates with

265

140 Ö. Uludağ et al.

Fig. 1. Common communication networks [15]

only one other person. The superintendent C receives all the information from
his subordinates A, B, D, and E and sends back information, usually in the form
of decisions. The chain network is the second highest in centralization. Only two
people communicate with each other, and they have only one other person to
communicate with. The Y network is similar to the chain network except that
two members are out of the chain. In the Y network, members A and B can
send information to C but they cannot receive information from anyone else.
Members C and D can exchange information. Member E can exchange informa-
tion with member D. The circle network stands for horizontal and decentralized
communication, which offers equal communication possibilities for every mem-
ber. Each can communicate with one other to his right and left. Members have
identical restrictions but the circle is a less restricted condition than the wheel,
chain, or Y network. The all-channel network is an extension of the circle net-
work and connects everyone in the circle network, as it permits each member to
communicate freely with all other persons [15].

2.4 Agile Architecture

Angelov et al. [16] describe the role of architects and challenges they face in
Scrum such as insufficient collaboration, lack of understanding of the value of
architecture, and poor communication between team architects [16]. Bachmann
et al. [17] and Nord et al. [18] present four tactics to achieve agility at scale
by aligning the system architecture, organization structures and product infras-
tructures. These include vertical and horizontal system decomposition, matrix
and augmented team structures, architecture and infrastructure runway, and
deployability tactics and can be used in different phases in a system’s life cycles.
Uludağ et al. [10] describes how the adoption of domain-driven design supported
a large-scale agile development program with three agile teams at a large insur-
ance company. Uludağ et al. [10] report that agile teams and project managers
involved in the program conceived that without any form of architectural guid-
ance, large-scale agile development programs can hardly be successful. Dingsøyr
et al. [19] investigated a large-scale development program with an extensive use

266

Collaboration Between Architects and Agile Teams 141

of Scrum and a focus on customer involvement, inter-team coordination, and
software architecture. Two key findings related to software architecture are the
tension between up-front and emergent architecture and the demanding role of
architects in large-scale agile development.

3 Case Study Design

A case study is a suitable research methodology for this paper, since it helps
to study contemporary phenomena in a real life context [20]. We followed the
guidelines described by Runeson and Höst [20].

Case Study Design: The main objective of this paper is to investigate the
collaboration between architects and agile teams in large-scale agile development
in terms of architecture sharing. Based on this objective, we defined one research
question (see Sect. 1). The study is a an exploratory single case study, since
this paper looks into an unexplored phenomenon and aims to seek new insights
and generate ideas for future research [20]. The case was purposefully selected,
because the studied company has successfully adopted SAFe for building complex
software for the last one and a half years. The unit of analysis is the consumer
electronics retailer’s large-scale agile development program.

Data Collection: We used a mixed methods approach with three levels of data
collection techniques [21]. As direct methods, we observed two Program Incre-
ment (PI) Planning events [7] with low degree of interaction by the researcher
and low awareness of being observed [20]. These observations provided a deep
understanding of the overall structure. With the help of seven semi-structured
interviews, roles and practices related to architecture were identified and doc-
umented. Quantitative data was collected by the online-survey tool Questback
for building the social networks and revealing the collaboration between archi-
tects and agile teams (see Sect. 4). Therein, we asked respondents how often they
exchange architectural advice and decisions with their colleagues, how often they
see their colleagues, and if they have suggestions on how to improve the exchange
among team members (using a Likert scale). A total of 32 out of 62 available
people from eight teams took part in the survey. Three persons were removed
from the analysis because no clear assignment to these persons could be made.
The response rate for the remaining 29 program members from eight teams is
47% with 758 connections for architecture sharing.

Data Analysis: Interviews and observation protocols were coded using a deduc-
tive approach as proposed by Cruzes and Dyb̊a [22]. Qualitative data collected
in interviews form the theoretical foundation for interpreting social relations
between architects and agile teams. After initial coding, codes were refined and
consolidated by merging related ones and removing duplicates. Quantitative data
was analyzed through the use of social network analysis, which comprises a set
of methodological techniques that aim to describe and explore patterns in rela-
tionships that individuals and groups form with each other [23].

267

142 Ö. Uludağ et al.

4 Results

4.1 Case Description

In 2016, the case organization decided to relaunch a failed CRM project using
agile methods. Due to the complexity of the project, the management decided to
relaunch it with the help of a scaling framework. During early stages of research,
the reasons for using Essential SAFe (from now on SAFe) became more appar-
ent and convincing to the management. One reason for choosing SAFe was that
it has proven itself in large organizations and offers comprehensive documenta-
tion. The adoption was initiated with a pilot project, which was geographically
distributed. At the beginning, the pilot project faced a lot of problems. Thus,
all involved employees were trained upon agile methods and SAFe by exter-
nal agile coaches. After a few PIs, the responsible management team perceived
that SAFe did not provide sufficient guidance on the coordination of their agile
teams. Thus, the organization decided to combine SAFe with the Spotify Model.
Within the transformation process, program members were divided into tribes,
chapters, squads, and guilds. Figure 2 shows the current organizational structure
of the observed program. Figure 2 also shows all 62 members forming a tribe.
This tribe consists of a “scaled” team (Team A), which does not play a hier-
archical superior, but a more coordinating role without personnel management,
and four squads (Team B, Team C, Team D, and Team E). Team F, Team G,
and Team H, which are not shown in Fig. 2 constitute representatives of three
suppliers that provide external support for their third-party systems. The tribe
is divided horizontally into nine chapters for: (1) the chief product owner (CPO)
and POs, (2) RTE and SMs, (3) IT project managers (IT-PMs), (4) quality
analysts and test managers (QAs & TMs), (5) data analysts (DAs), (6) solution
architects (SAs)1, (7) business process architects (BPAs), (8) product reliability
engineers (PRE), and (9) developers (Devs). Each SA is assigned to a squad and
takes care of the overall system architecture with its subsystems and interfaces.
The team concentrates on the cross-system data flows and processes related to
the integration of the architecture. These data flows and processes are used to
define minimum interface requirements that all teams must meet. In contrast
to SAs, who represent technical architects, BPAs are functional architects that
are also dedicated to squads. The responsibilities of BPAs are not really known
yet, as their role has been added to the program just recently. However, both
architect roles should play a dual role within their squads by making architec-
tural decisions and guiding them to fulfill the required architectural standards.
Due to ongoing transformation, guilds have not yet been established but will be
organized soon. In the following two sections, the inter- and intra-team exchange
of architecture-related information of the observed program will be presented.

1 The role of the SA in the case organization correspondents to the role of the system
architect as described by SAFe [7]. For reasons of consistency, we use the same
terminology as the case organization.

268

Collaboration Between Architects and Agile Teams 143

4.2 Inter-Team Architecture Sharing

Figure 3 provides an overview of how architecture-related information is shared
across all teams. An interesting finding here is that the scaled team is located in
the center of the graph. This indicates continuous communication and coordina-
tion between the scaled team and the four squads on architectural topics. Figure 3
also shows a close collaboration between Team B and Team E and between Team
B and Team D, which is due to architectural dependencies between the systems
on which they work. Figure 3 also provides an overview of roles that are inten-

Fig. 2. Organizational structure of the observed large-scale agile development program

269

144 Ö. Uludağ et al.

Fig. 3. Social network of eight teams including salient roles that are intensively involved
in inter- and intra-team architecture-sharing

sively involved (large nodes) in architecture sharing. First, it shows that the CPO
of Team A (CPOA) is the most outstanding node in the inter- and intra-team
exchange of architecture-related information. Second, SAs also form relatively
large nodes compared to other roles. This observation confirms the importance of
SAs for the exchange of inter- and intra-team architectural information. Figure 3
also shows that the TMA also plays an important role in architecture sharing.
Table 1 presents top 10 stakeholders involved in inter-team sharing based on
the normalized degree centrality2 measure. Table 1 shows that the CPOA has a
normalized degree centrality value of 1,0, which indicates that he/she is sharing
information with all stakeholders involved in the observed program. The SAE

2 The normalized degree centrality is defined as the number of links of an stakeholder
divided by the maximal possible number.

270

Collaboration Between Architects and Agile Teams 145

Table 1. Top 10 stakeholders involved in inter-team architecture sharing based on
normalized degree centrality

and SAD have normalized degree centrality values of 0,92 and 0,90 indicating
high involvement in inter-team sharing.
The PI planning event of SAFe is a face-to-face event [7] that aims to align all
agile teams within the ART to share the common mission and vision by creating
iteration plans and team objectives for the upcoming PI. It is conducted every
two and a half months and offers a platform for the exchange of general and archi-
tectural information across teams, since all members of the ART are present in
one location. Figure 4(a) shows that SAs and BPAs have a very strong sharing
with other teams during the PI planning. Figure 4(d) reveals a chain communi-
cation between the SAB , SAC, SAD, and SAE on a daily basis. In particular,
the chain is composed as follows: SAE exchanges information with SAB, who
exchanges information with SAD, who shares information with SAC. This com-
munication pattern characterizes a centralized communication between SAs. The
chain communication pattern can also be observed with SAB, SAD, and SAE.
Figure 4(e) shows that SAB, SAD, and SAE constantly3 exchange information
and that the SAC is no longer involved in an exchange with other SAs. Figure 4
shows that SAs form a decentralized all-channel communication pattern. This
means that each SA speaks with all other SAs. The overall comparison also shows
that the three external SA of Team B are less participating in the inter-team
exchange than the rest of internal SAs involved in the program. Other roles such
as SM, TM, PO, and CPO are also heavily involved in exchange of information
within the PI planning. The shorter the observed time intervals become, the
more dominant the SA becomes with regards to the inter-team sharing.

4.3 Intra-Team Architecture Sharing

The exchange of architectural information in Team B shows a central wheel com-
munication pattern between SAs, since external SAs are guided by the internal
SA, who represents the intra-team lead architect (see Fig. 5(a)). Figure 5(a) also
shows that SAs form the core of the team. Moreover, Fig. 5(a) shows that BPAB

only exchanges information with another role. A decentralized all-channel com-
munication pattern can be observed in Team C (see Fig. 5(b)). This means that
other non-architectural roles exchange information without necessarily involving
SAC. Nevertheless, SAC plays the most central role, since the SA frequently com-
municates with all team members. Compared to BPAB, BPAC plays a more cen-
tral role, as he/she shows a close collaboration and communication with his/her
3 Constant exchange means that it takes place more than once a day.

271

146 Ö. Uludağ et al.

Fig. 4. Social networks focusing on SAs and BPAs with regards to the frequency of
inter- and intra-team architecture sharing

squad (see Fig. 5(a) and (b)). The comparison of the two figures also shows that
SAC and BPAC exchange information more frequently than SAB and BPAB.
Figure 5(b) shows a decentralized all-channel communication pattern between
architects and other team members of Team D. Similar to BPAC, BPAD often

272

Collaboration Between Architects and Agile Teams 147

Fig. 5. Social network of the four squads focusing on SAs and BPAs involved in intra-
team architecture-sharing

Table 2. Normalized degree centralities of architects in intra-team architecture sharing

Fig. 6. Social network of Team B focusing on SAs and BPAs with regards to the
frequency of intra-team architecture sharing

273

148 Ö. Uludağ et al.

Fig. 7. Social network of Team C focusing on SAs and BPAs with regards to the
frequency of intra-team architecture sharing

exchanges architecture information with team members. Table 2 shows the nor-
malized degree centrality values of SAs and BPAs involved in intra-team archi-
tecture sharing. 75% of the SAs possess a normalized degree centrality value of
1,0 indicating that they share information with all squad members. Comparing
SAs with BPAs, Table 2 shows that SAs have a stronger exchange of information
with their squad members than BPAs (except Team E).

Figure 6 shows how Team B’s intra-team sharing changes at four distinct time
intervals. For instance, Fig. 6(a) shows that BPAB only exchanges information
with one DevB once per iteration. Figure 6(b) shows that the exchange of infor-
mation between SAs and non-architectural roles mostly takes place two to three

274

Collaboration Between Architects and Agile Teams 149

Fig. 8. Social network of Team D focusing on SAs and BPAs with regards to the
frequency of intra-team architecture sharing

Fig. 9. Social network of Team E focusing on SAs and BPAs with regards to the
frequency of intra-team architecture sharing

times per iteration, while the sharing between SAs takes place constantly (see
Fig. 6(d)). Similar to Figs. 6, 7 shows Team C’s intra-team architecture sharing.
The exchange in the team usually takes place two to three times per itera-
tion (see Fig. 7(c)). Sharing between architects and non-architectural roles takes
place on a daily basis (see Fig. 7(d)). In contrast to Team B, Fig. 7(e) shows that
SAC and BPAC constantly communicate together. Figure 8(a) shows that the
exchange between architects and non-architectural roles as well as among archi-
tects mainly takes place on a daily basis. SAD and BPAD constantly exchange
architectural information (see Fig. 8(b)). Figure 8(b) also shows that other mem-

275

150 Ö. Uludağ et al.

bers such as DAD, QA & TMD, PRED, and POD constantly exchange architec-
tural information. The intra-team exchange of Team E takes place mainly on
a daily basis (see Fig. 9(a)). SAE and BPAE communicate on a daily basis (see
Fig. 9(b)). Architecture sharing between architects and non-architectural roles
takes place on a daily basis. Figure 9(b) shows that two groups are formed during
the constant exchange of information. The first group includes SAE, SME, DevE,
and POE, while the second group constitutes DevE, BPAE, and PREE. Table 3
provides a summary of the social network analysis with identified communication
patterns and frequencies.

5 Discussion

5.1 Key Findings

Both architectural roles, i.e. SAs and BPAs, and other roles, e.g. TMs, SMs,
and POs, are involved in inter- and intra-team architecture sharing. In particu-
lar, the CPO plays one of the most salient roles. An all-channel communication
network can be observed in each squad. SAs enable a decentralized exchange so
that other team members can exchange architecture-relevant information with-
out necessarily involving SAs. This observation coincides with the values and
principles of agile software development. Both SAs and BPAs prefer face-to-face
communication with their team members and do not exchange information by
including bridging roles. Each squad is accompanied by at least one SA and BPA.
Both architects play a dual role in their squads. On the one hand, they make
architectural decisions and iteratively create architecture models. On the other
hand, they provide guidance and support their squad in meeting architectural
standards. With this setup, the observed program aims to increase development
speed by balancing emergent and intentional architecture. In all social networks,
SAs form central nodes in inter- and intra-team sharing.

Table 3. Summary of the social network analysis

276

Collaboration Between Architects and Agile Teams 151

5.2 Threats to Validity

We discuss potential threats to validity along with an assessment scheme as
recommended by Runeson and Höst [20].

Construct Validity: This aspect reflects to what extent operational measures
that are studied really represent what the researcher has in mind [20]. Two
countermeasures were taken for construct validity. First, interview protocols were
coded by the author of this paper and reviewed by a second researcher. Second,
a key informant of the organization has reviewed the analyses of this paper.

Internal Validity is irrelevant, as this study was neither explanatory nor causal.

External Validity: This aspect of validity concerns to what extent the findings
can be generalized, and to what extent the findings are of interest to other
persons outside the case under investigation [20]. This paper focuses on analytical
generalization [20] by providing a detailed description of the case. It provides
empirical insights that allow for a profound understanding on the collaboration
between architects and agile teams. The shown findings should be viewed as
valuable insights for other organizations that adopted Essential SAFe.

Reliability: This validity is concerned with to what extent the data and the
analysis are dependent on the specific researcher [20]. To mitigate this threat,
two countermeasures were taken. First, the case study has been designed so
that the large number of interviewees and multiple interviewers allowed data
and observer triangulation. Second, a case study database was created, which
includes case study documents such as audio recordings protocols, and field notes
of observations.

6 Conclusion and Future Work

In this paper, we described the collaboration between architects and agile teams
in a large-scale agile development program of a German consumer electronics
retailer. Due to the complexity and extent of the CRM product, each squad is
guided and supported by at least one SA and BPA. Each SA is responsible for the
architecture of a subsystem and ensures that the respective squad complies with
defined architectural requirements. The observed program also introduced the
new role of the BPA that is responsible for developing the functional architecture
of the subsystem. To understand the role of SAs and BPAs and their collabo-
ration with squads, we investigated social networks of one scaled team and four
squads. We learned that intra-team architecture sharing is usually facilitated by
SAs. Comparing the social networks with common communication networks, we
discovered that SAs and BPAs prefer direct communication. For the most part,
architects share information on a daily basis with their teams. The intra-team
sharing between architects and their teams is characterized by an all-channel
communication network.

As future work, we will continue to study the large-scale agile development
program of the German consumer electronics retailer. First, we will research how

277

152 Ö. Uludağ et al.

the current state of architecture sharing is perceived by the stakeholders and how
it could be improved by the use of various coordination mechanisms such as ad
hoc meetings, co-location or communities of practices. Second, as the squads
in the large-scale agile development program become more mature and evolve
towards feature teams, we will investigate the architectural decision-making pro-
cess of squads. We hope to gain a better understanding of the collaboration
between architects and squads regarding the distribution of their responsibilities
for architectural issues.

References

1. Kettunen, P.: Extending software project agility with new product development
enterprise agility. Softw. Process: Improv. Pract. 12(6), 541–548 (2007)

2. Dingsøyr, T., Moe, N.B.: Towards principles of large-scale agile development. In:
Dingsøyr, T., Moe, N.B., Tonelli, R., Counsell, S., Gencel, C., Petersen, K. (eds.)
XP 2014. LNBIP, vol. 199, pp. 1–8. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-14358-3 1

3. Alqudah, M., Razali, R.: A review of scaling agile methods in large software devel-
opment. Int. J. Adv. Sci. Eng. Inf. Technol. 6(6), 28–35 (2016)

4. Dikert, K., Paasivaara, M., Lassenius, C.: Challenges and success factors for large-
scale agile transformations: a systematic literature review. J. Syst. Softw. 119,
87–108 (2016)

5. Uludag, Ö., Kleehaus, M., Caprano, C., Matthes, F.: Identifying and structuring
challenges in large-scale agile development based on a structured literature review.
In: IEEE 22nd International Enterprise Distributed Object Computing Conference
(EDOC) 2018, pp. 191–197. IEEE (2018)

6. Rost, D., Weitzel, B., Naab, M., Lenhart, T., Schmitt, H.: Distilling best practices
for agile development from architecture methodology. In: Weyns, D., Mirandola,
R., Crnkovic, I. (eds.) ECSA 2015. LNCS, vol. 9278, pp. 259–267. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-23727-5 21

7. Leffingwell, D.: SAFe R© 4.5 Reference Guide: Scaled Agile Framework R© for Lean
Software and Systems Engineering. Addison-Wesley Professional, Boston (2018)

8. Mocker, M.: What is complex about 273 applications? untangling application archi-
tecture complexity in a case of european investment banking. In: 2009 42nd Hawaii
International Conference on System Sciences 2009, HICSS, pp. 1–14. IEEE (2009)

9. Waterman, M.: Reconciling agility and architecture: a theory of agile architecture,
Ph.D. thesis, Victoria University of Wellington (2014)

10. Uludağ, Ö., Hauder, M., Kleehaus, M., Schimpfle, C., Matthes, F.: Supporting
large-scale agile development with domain-driven design. In: Garbajosa, J., Wang,
X., Aguiar, A. (eds.) XP 2018. LNBIP, vol. 314, pp. 232–247. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-91602-6 16

11. Uludağ, Ö., Kleehaus, M., Xu, X., Matthes, F.: Investigating the role of archi-
tects in scaling agile frameworks. In: 2017 IEEE 21st International Enterprise Dis-
tributed Object Computing Conference (EDOC), pp. 123–132. IEEE (2017)

12. Kniberg, H., Ivarsson, A.: Scaling agile @ spotify (2012)
13. Guo, L.C., Sanchez, Y.: Workplace communication. Organizational behavior in

health care, pp. 77–110 (2005)

278

Collaboration Between Architects and Agile Teams 153

14. Presbitero, A., Roxas, B., Chadee, D.: Effects of intra- and inter-team dynamics on
organisational learning: role of knowledge-sharing capability. Knowl. Manag. Res.
Pract. 15(1), 146–154 (2017)

15. Lunenburg, F.: Network patterns and analysis: underused sources to improve com-
munication effectiveness. Nat. Forum Educ. Adm. Super. J. 28(4), 1–7 (2011)

16. Angelov, S., Meesters, M., Galster, M.: Architects in scrum: what challenges do
they face? In: Tekinerdogan, B., Zdun, U., Babar, A. (eds.) ECSA 2016. LNCS,
vol. 9839, pp. 229–237. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
48992-6 17

17. Bachmann, F., Nord, R.L., Ozakaya, I.: Architectural tactics to support rapid
and agile stability. Technical report, Carnegie-Mellon University Pittsburgh PA
Software Engineering Institute (2012)

18. Nord, R.L., Ozkaya, I., Kruchten, P.: Agile in distress: architecture to the rescue.
In: Dingsøyr, T., Moe, N.B., Tonelli, R., Counsell, S., Gencel, C., Petersen, K.
(eds.) XP 2014. LNBIP, vol. 199, pp. 43–57. Springer, Cham (2014). https://doi.
org/10.1007/978-3-319-14358-3 5

19. Dingsøyr, T., Moe, N.B., Fægri, T.E., Seim, E.A.: Exploring software development
at the very large-scale: a revelatory case study and research agenda for agile method
adaptation. Empirical Softw. Eng. 23(1), 490–520 (2018)

20. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research
in software engineering. Empirical softw. Eng. 14(2), 131 (2009)

21. Lethbridge, T.C., Sim, S.E., Singer, J.: Studying software engineers: data collection
techniques for software field studies. Empirical softw. Eng. 10(3), 311–341 (2005)

22. Cruzes, D.S., Dyba, T.: Recommended steps for thematic synthesis in software
engineering. In: 2011 International Symposium on Empirical Software Engineering
and Measurement (ESEM), pp. 275–284. IEEE (2011)

23. Scott, J.: Social Network Analysis. Sage, Thousand Oaks (2017)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

279

Enterprise Architects in Large-Scale Agile Development

Twenty-fifth Americas Conference on Information Systems, Cancun, 2019 1

What to Expect from Enterprise Architects in
Large-Scale Agile Development? A

Multiple-Case Study
Completed Research

Ömer Uludağ
Technische Universität München

oemer.uludag@tum.de

Martin Kleehaus
Technische Universität München

martin.kleehaus@tum.de

Niklas Reiter
Technische Universität München

niklas.reiter@tum.de

Florian Matthes
Technische Universität München

matthes@tum.de

Abstract
In modern times, traditional enterprises are confronted with rapidly changing customer demands,
increasing market dynamics, and continuous emergence of technological advancements. Confronted with
the imperatives of a digital world, companies are striving to adopt agile methods on a larger scale to meet
these requirements. In recent years, enterprise architecture management has established itself as a valuable
governance mechanism for coordinating large-scale agile transformations by connecting strategic
considerations to the execution of transformation projects. Our research is motivated by the lack of
empirical studies on the collaboration between enterprise architects and agile teams. Against this backdrop,
we present a multiple-case study of five leading German companies that aims to shed light on this field of
tension. Based on our results from 20 semi-structured interviews, we present the expectations of agile
teams for enterprise architects and how they are fulfilled.

Keywords

Enterprise architecture management, large-scale agile development, multiple-case study

Introduction
In increasingly hypercompetitive environments, enterprises face a multitude of challenges such as
continuously changing customer demands, rapidly evolving technological advancements, and tensing
regulatory uncertainties (Fuchs and Hess 2018; Kettunen and Laanti 2017). Consequently, companies are
urged to undergo organizational transformations to respond readily to environmental changes (Besson and
Rowe 2012; Gerster et al. 2018). To master their respective organizational transformation, firms are
extensively adopting agile practices which often necessitate large-scale agile transformations (Dikert et al.
2016; Fuchs and Hess 2018). However, these transformations entail new managerial challenges (Dingsøyr
et al. 2018) such as hierarchical organizational structures that prevent the wide adoption of agile (Hekkala
et al. 2017), traditional project management mechanisms that are overly process driven and bureaucratic
(Gregory et al. 2015), and coordination and alignment issues between large-scale agile activities as well as
between agile and non-agile teams (Scheerer et al. 2014). The term “large-scale agile development” has been
used to describe multi-team development efforts that make use of agile principles involving a high number
of actors and interfaces with existing systems (Dingsøyr et al. 2014; Rolland et al. 2016).
In recent years, enterprise architecture management (EAM) has established itself as a valuable governance
mechanism to coordinate transformations by connecting strategic considerations to the execution of large-
scale agile projects (Greefhorst and Proper 2011). It covers all dimensions of an enterprise (business,
application, information, and infrastructure aspects) and fosters the mutual alignment of business and IT
(Hauder et al. 2014; Rouhani et al. 2015).

280

Enterprise Architects in Large-Scale Agile Development

Twenty-fifth Americas Conference on Information Systems, Cancun, 2019 2

In large-scale agile development, typical tasks of enterprise architects (EAs) include (1) harmonizing
governance requirements across sprints and agile teams (ATs), (2) supporting ATs by aligning individual
project strategies with enterprise objectives, and (3) working closely with ATs by guiding them through
business and technical roadmaps (Uludağ et al. 2017). However, the mutual expectations of EAs and ATs
are not always frictionless (Kulak and Li 2017). This tension originates to some extent from the antithetic
ways of thinking and mindsets of both stakeholder groups. EAs embrace a top-down perspective focusing
on long-term goals and strategies (Hanschke et al. 2015). This top-down decision model may conflict with
ATs’ short-term ambitions to satisfy the business representatives (Dingsøyr et al. 2018). The pressure to
deliver business functionality may lead to the negligence of long-term architectural improvements
(Dingsøyr et al. 2018). The traditional “command and control” culture of EAs may oppose the conversant
“servant leadership” culture of ATs (Kulak and Li 2017).

Our findings are consonant with those of Canat et al. (2018), Hanschke et al. (2015), and Hauder et al.
(2014) that empirical studies on the collaboration between EAs and ATs are lacking. Against this backdrop,
we aim to fill this gap formulating the following research questions:

RQ 1: What expectations do agile teams have for enterprise architects?
RQ 2: To what extent are these expectations satisfied by enterprise architects?

Theoretical Background and Related Work
Agile methods such as Scrum or XP rely mainly on emergent design practices, meaning that architecture
emerges from the system and is not imposed by some direct structuring force (Babar 2009). The practice
of emergent design is effective at the team level but insufficient when agile methods are applied on a larger
scale. For large-scale agile development, a certain degree of architectural planning and governance becomes
more important (Leffingwell et al. 2008) as they ensure the alignment of ATs to achieve desirable
organization-wide effects (Ovaska et al. 2003) and provide a common target vision by combing strategic
considerations with the execution of agile projects (Greefhorst and Proper 2011). Alike (Greefhorst and
Proper 2011), we take the view that the mutual alignment of large-scale agile transformation can be achieved
by an effective EAM function. Until now, EAM initiatives mostly focused on top-down governance (Winter
2016). However, this enforcement-centric view does not fit well into increasingly widespread agile
environments as it restricts the design freedom of ATs and encounters their resistance (Kulak and Li 2017).
In recent years, a number of novel EAM approaches have been proposed to address the aforementioned
problems, which are presented in the following.

Agile Enterprise Architecture Management (Hauder et al. 2014)
Hauder et al. (2014) propose an organization-specific agile EAM function that consists of the three main
phases. In the first phase, the EAM function starts by motivating an EAM endeavor. In this phase, the EAM
function must convince the stakeholders of the meaningfulness of the EAM function and its long-term
benefits for the entire company. Here, the EAM function must ensure that the top management and other
key stakeholders support the EAM endeavor. Next to motivating the EAM endeavor, the EAM team collects
information from various stakeholders that serves as a decision base later on. The collected information is
formalized by developing stakeholder-specific models. In the second phase, developed models and concepts
are communicated and used to explain decisions. This phase is characterized by strong communication and
supporting activities between the EAM team and its stakeholders. In this phase, the EAM team should show
the turnover for each individual stakeholder. In this step, the EAM team gathers feedback by asking its
stakeholders what went well and what went wrong. In the third phase, the EAM team not only analyzes and
reflects on its results and practices, but also analyzes and reflects on the feedback and engagement of
stakeholders. Based on a new information base, the EAM team may consider adjusting the EAM function.

Adaptive Enterprise Architecture (Wilkinson 2006)
Based on a case study, Wilkinson (2006) proposes a method for designing an adaptive Enterprise
Architecture by exploiting the use of architecture principles, IT governance, and the adaptability of a
service-oriented computing infrastructure. In addition, Wilkinson (2006) describes a set of architecture
principles that include modularity, simplifcation, integration, and standardization that can be applied to
build an adaptive Enterprise Architecture.

281

Enterprise Architects in Large-Scale Agile Development

Twenty-fifth Americas Conference on Information Systems, Cancun, 2019 3

Collaborative Enterprise Architecture (Bente et al. 2012)
Bente et al. (2012) propose six building blocks for a collaborative Enterprise Achitecture based on lean and
agile practices to tackle identified EAM problems such as dealing with the speed of change in the landscape
of business models and IT systems or enforcing rules and compliance where each project has a high degree
of freedom. Benefiting from examined sources paired with their professional experience, Bente et al. (2012)
describe how architecture processes can be streamlined, how an agile and lean EAM initiave can be built,
and how collaboration and participation can be fostered.
Lightweight Enterprise Architecture (Theuerkorn 2004)

As enterprise system landscapes are becoming increasingly complex, Theuerkorn (2004) proposes a
lightweight Enterprise Architecture framework that uses a set of architectural artifacts to align IT with
business strategy and to govern and evolve complex IT systems in organizations. The framework picks up
the issues of many Enterprise Architecture functionalities that fail to deliver their promised benefits in time
or cost. Besides an extensive explanation of the framework itself, Theuerkorn (2004) also explains how to
deal with bad behaviors of architects, e.g., EAs who have their own agenda in mind and do not care about
others or even perceive them as competition, thus causing trouble.

Case Study Design
Since our research is motivated by a practical problem, we apply case study research as it provides an in-
depth overview of real-life situations and contemporary phenomena (Easterbrook et al. 2008). In the
following, we outline the design of this multiple-case study in line with Runeson and Höst (2008).
Case Study Design: Our goal is to explore the expectations of ATs for EAs in large-scale agile development.
We also seek to describe and explain the situation whenever possible. Therefore, our case study is of
exploratory nature but also bears a descriptive or explanatory character (Runeson and Höst 2008).
Additionally, this paper employs a multiple-case study design with five organizations that allows cross-case
analysis (Yin 1994). The cases were purposefully selected because the companies undergo major agile
transformations and their traditional EAM functions face unprecedented challenges while collaborating
with large-scale agile development endeavors. We selected cases from diverse industries to avoid industry
bias. An overview of the case organizations and conducted interviews is presented in Table 1.

Industry and code
name of case
organization

Head-
quarter
location

Company size
[employees]

No. of
inter-
views

Position of interviewees

Global insurance
company
(“GlobalInsureCo”)

Germany 140,000+ 4
Agile developer (AD);
enterprise architect (EA);
chapter lead agile coaching (CLAC)

Car manufacturer
(“CarCo”) Germany 130,000+ 5

Chief technology officer (CTO);
enterprise architect (EA);
product owner (PO)

Information technology
company (“ITCo”) Germany 7,000+ 2 Enterprise architect (EA);

product owner (PO)

Retail company
(“RetailCo”) Germany 50,000+ 5

Chapter lead business process
architecture (CLBPA); enterprise
architect (EA); product owner (PO);
scrum master (SM)

Public sector insurance
company
(“PublicInsureCo”)

Germany 6,700+ 4
Agile developer (AD); enterprise
architect (EA); head of IT
governance department (IT-G)

Table 1. Overview and specifics of case organizations and conducted interviews
Data Collection: We focused on first- and third-degree data collection techniques (Lethbridge et al. 2005).
First-degree techniques are direct methods where the researcher is in direct contact with the subject and
collects data in real time. For that, we conducted 20 individual and group interviews which were semi-
structured. In almost all companies, at least one senior executive, one EA, and one member of an AT were

282

Enterprise Architects in Large-Scale Agile Development

Twenty-fifth Americas Conference on Information Systems, Cancun, 2019 4

interviewed to gain a diverse perspective on the expectations for EAs and further triangulate our results.
The interviews followed a semi-structured questionnaire and were rather conversational to allow
interviewees to explore their views in detail (Yin 1994). Each interview lasted 45-60 minutes and was
primarily conducted in face-to-face meetings. At least two researchers were present in the interviews to
facilitate observer triangulation and to mitigate the risk of researcher bias (Runeson and Höst 2008). We
supplemented our interview findings by third-degree data collection techniques, which allow the researcher
to get an independent analysis of work artifacts based on already available and sometimes compiled data.
Slide decks and wiki pages of the cases provided us in-depth information about their EAM initiatives.
Hence, we were able to obtain supplementary information on how EAs perceive their role in large-scale
agile development or how EAs themselves work agile and lean. The purposeful selection of different data
sources and roles from different case organizations enables the triangulation of data sources (Stake 1995).

Data Analysis: The interviews were recorded, transcribed, then coded by one researcher with open coding
(Miles et al. 2014) and using the qualitative data analysis software MAXQDA1. Preliminary codes were
consolidated and checked for consistency and completeness by another researcher. Subsequently, groups
of code phrases were merged into concepts that were later related to the formulated research questions.

Results

Expectations of Agile Teams for Enterprise Architects

We used the organization-specific agile EAM practice model (Hauder et al. 2014) to determine the
expectations of ATs for EAs. Our results are presented along with the agile EAM model. Here, we focus on
the activities, which are particularly relevant for the collaboration between EAs and ATs.

(1) Models: In all cases, application landscape diagrams and business capability maps (sometimes referred
to as domain maps) were the primary architecture models provided by EAs for ATs. Further, in all case
organizations, business capability maps were enriched by additional information, e.g., applications,
technologies, infrastructure components, etc. Other commonly models named were data models, interface
models, system communication models or process models. Furthermore, technical reference architectures,
architecture blueprints, architecture patterns or technical reference architectures were mentioned. In all
organizations, interviewees stated that ATs have the following expectations of provided models: availability,
binding force, quality, and relevance. Further important expectations of models mentioned were added
value, applicability, and level of detail.
(2) Availability: Across all cases, the general statement was that EAs should not be a part of ATs as they
should remain within their overarching role and coordinate multiple ATs. However, ATs’ expect on demand
availability of EAs who should support and consult ATs on architectural issues as needed. The majority of
interviewees rated the availability of EAs to support as ATs as moderate, mainly due to capacity bottlenecks.
(3) Communication: The communication between ATs and EAs is mainly indirect via third roles. At CarCo,
EAs and solution architects (SAs) regularly discuss and decide on cross-team architecture topics within
architecture boards. The decisions made are communicated to the respective teams by SAs. However, ATs
can use common communication media such as wikis, e-mails or phone to communicate with EAs. Face-
to-face communication between EAs and SAs takes place frequently. At ITCo, the communication between
ATs and EAs is more complicated. There, EAs align with domain architects (DAs) through so-called
business area architecture meetings on a monthly basis. The topics discussed are communicated by DAs to
SAs, which forward related information to their corresponding teams. Nevertheless, ATs can directly
communicate with EAs via phone or e-mails. A similar flow of communication can be observed at RetailCo.
EAs meet weekly with DAs and SAs in communities of practices for architecture (CoPA) and discuss
overarching architecture topics. Participation is mandatory for all architects. The topics discussed there are
then communicated to the teams. Again, ATs can directly communicate with EAs by scheduling face-to-face
meetings. In some cases, EAs and ATs sit in the same building. The interviewees considered the co-location
of EAs and ATs helpful as it increases productivity due to the shorter physical and communication distances.
At PublicInsureCo, communication between EAs and ATs is in some cases direct, e.g., when EAs join ATs
at the beginning of a project. The communication between the two is facilitated by daily stand-ups,

1 https://www.maxqda.com/

283

Enterprise Architects in Large-Scale Agile Development

Twenty-fifth Americas Conference on Information Systems, Cancun, 2019 5

plannings or retrospectives. In other cases, communication between EAs and ATs takes place indirectly via
DAs and SMs. Apart from a CoPA every two weeks, there are no other regular meetings between EAs and
ATs. Alike PublicInsureCo, EAs at GlobalInsureCo can join ATs as needed and directly communicate with
them. However, the regular exchange is indirect through CoPAs and SAs. Like CarCo, ATs can use diverse
communication tools such as e-mail or phone to contact EAs. In all cases, ATs expect a more frequent and
personal contact to EAs. They also consider the communication through third persons as suboptimal.
(4) Involvement: The involvement of ATs in relevant architecture processes differs across the case
organizations. At CarCo, the to-be architecture of a project is defined without involving ATs. At the
beginning of a project, the to-be architecture is handed over to a SA who is responsible for intra-team
architecture decisions. Deviations between the as-is and to-be architecture have to be documented and
justified by the SAs. Hence, ATs are not involved in the creation of intentional architecture but have some
degree of freedom for emergent architecture. At ITCo, the involvement of ATs in relevant architecture
processes is accomplished by DAs who act as representatives of ATs (similar to SAs at CarCo). At RetailCo,
ATs and their respective SAs take responsibility for intra-team architecture decisions. However, on higher
levels, ATs are not involved in architecture processes. Similar to CarCo, ATs at PublicInsureCo and
GlobalInsureCo are less involved in up-front planning but are involved in the creation of emergent
architecture. Across all cases, however, ATs want to be involved in the creation of intentional architecture.
One EA of PublicInsureCo argued that “[ATs] should be very strongly involved, as they are the domain
experts”. An PO of CarCo added that “Each project should retain freedom and be accepted by EAs”.

(5) Support: Currently, EAs support ATs by providing architecture principles, assisting teams in their
realization (CarCo; PublicInsureCo; GlobalInsureCo), providing tools and technology stacks (CarCo;
PublicInsureCo), and guiding them through technical roadmaps (CarCo; PublicInsureCo). In addition, EAs
consult and support ATs on architectural issues (RetailCo; PublicInsureCo; GlobalInsureCo) and mediate
further relevant contact persons (GlobalInsureCo). In some cases, EAs perform architecture spikes
(PublicInsureCo) and directly collaborate with ATs on a code basis (GlobalInsureCo). However, ATs expect
first and foremost hands-on solutions and assistance in selecting new tools (CarCo; RetailCo;
PublicInsureCo). Also, ATs expect personal support and guidance in the realization of the to-be enterprise
architecture (ITCo; PublicInsureCo; GlobalInsureCo).

(6) Feedback: We observed that no formal and standardized feedback processes between ATs and EAs exist.
In general, ATs are able to provide feedback informally and as needed. For this reason, ATs can use typical
communication media such as e-mail or phone or arrange face-to-face meetings. In almost all companies,
CoPAs were mentioned as an adequate arena for providing feedback (CarCo; RetailCo; PublicInsureCo;
GlobalInsureCo). At CarCo and PublicInsureCo, ATs provide feedback by commenting on the wikis of EAs.
On the one hand, some ATs stated that their expectations of the current form and frequency of giving EAs
feedback are met: “As it is now” (PO, RetailCo; AD, PublicInsureCo). On the other hand, others expect of
having regular appointments with EAs: “One enterprise architecture block every week to visit 15 teams”
(SM; RetailCo). Also, ATs would like to continue giving EAs feedback through CoPAs (CarCo; RetailCo;
PublicInsureCo; GlobalInsureCo) or personal dialogues (ITCo; CarCo). Across all case organizations,
interviewees mentioned that feedback from ATs is reflected by EAs. Based on the feedback, EAs revise
architecture principles and guidelines, adapt the meta-model of their EAM repositories to create new
architecture models, provide new or revised architecture artifacts or attempt to work more closely with ATs.
All respondents appreciated the EA’ reflections on feedback.

Self-Perception versus External Perception of Enterprise Architects

After revealing the ATs’ expectations, we asked all interviewees to rate and justify the extent to which these
expectations are met by EAs.
(1) Models: All stakeholder groups felt that the architecture models provided by EAs only partially met the
expectations. In general, ATs considered the models too abstract or unspecific and thus irrelevant (PO,
CarCo; AT, RetailCo). One AT member enjoyed the freedom due to their high degree of abstraction: “I enjoy
the space, so the expectations are fulfilled” (AD, PublicInsureCo). Two team members indicated that the
required architecture models were not made available in time (PO, CarCo; AT, RetailCo). Interestingly, EAs
had the most negative perception of the models. In this respect, four main pain points were mentioned.
First, current architecture models offer a high level of technical detail and thus are considered immature
(EA ITCo; EA, RetailCo; EA, PublicInsureCo). Second, EAs recognized difficulties of ATs in understanding

284

Enterprise Architects in Large-Scale Agile Development

Twenty-fifth Americas Conference on Information Systems, Cancun, 2019 6

their architecture models because they are too abstract, general or complex (EA, RetailCo; EA,
GlobalInsureCo). Third, the architecture models do not provide sufficient guidance on how they should be
implemented by ATs, thus being considered not practicable (EA, RetailCo; EA, GlobalInsureCo). Last but
not least, the communication of the models is considered as insufficient, leading to a low level of awareness
by ATs (EA, CarCo; EA, RetailCo; EA, GlobalInsureCo). The EA of GlobalInsureCo suggested
communicating architecture models when starting a new project. Managers shared the opinion that most
of the models are mainly driven by standardization and complexity reduction aspects. The CTO of CarCo
stated that “one size fits all architecture models” do not meet the expectations of ATs and that the models
mostly propose solutions that include unnecessary or missing functionalities, causing additional efforts and
costs. The IT-G of PublicInsureCo stated that many EAs assume that old proven models would be still useful
for new problems. He suggested that EAs have to create new tailored models for ATs. Two managers added
that current models do not provide sufficient technical details (IT-G, PublicInsureCo; CLBPA, RetailCo).
(2) Availability: ATs expect high availability of EAs. 37.50% of AT members said that they have difficulties
in finding an EA, while 62.50% had a rather positive perception. 53.85% of all EAs reported that ATs have
issues finding an EA, while the remaining 46.15% claimed that this is not the case. In contradiction, all
managers felt that ATs have no difficulties finding EAs.
(3) Communication: Among all stakeholder groups, ATs were the least satisfied with the communication
with EAs. They stated that EAs are overloaded (PO, CarCo) and lack technical know-how (SM, RetailCo),
affecting the speed of communication (PO, CarCo). Further, AT members stated that direct communication
channels are missing and that they need a lot of effort to identify contact persons (AT, RetailCo; AD,
GlobalInsureCo). At PublicInsureCo, the perception of the communication was rather positive. An agile
developer (AD) of PublicInsureCo explained that the required information is provided by EAs and that
existing communication channels work. An AD of GlobalInsureCo also positively mentioned that EAs are
perceived as valuable through direct contact and open dialogue. Similar to ATs, EAs also felt that the
expectations regarding the communication are not satisfied. EAs argued that there are not able to
communicate more intensively with ATs due to capacity restrictions (EA, CarCo; EA, RetailCo). They also
recognized the issue of indirect communication with ATs via DAs, thus leading to dissatisfactions by ATs
and their unwillingness to communicate with EAs (EA, PublicInsureCo). An EA of GlobalInsureCo
explained the communication between EAs and ATs is good through the use of training and tools, but also
noted that existing communication formats are not yet known by everyone and therefore sometimes
communication is missing. An EA of CarCo had a more positive perception: “There are no complaints”.
Two EAs proposed one suggestion for improving this situation, namely, to clarify the roles and
responsibilities of EAs so that the different expectations can be met (EA, RetailCo; EA, PublicInsureCo).
Also, EAs should offer a variety of communication channels for faster accessibility (EA, GlobalInsureCo).
In this respect, the external perception of managers differs considerably from that of ATs and EAs. The
managers stated that EAs work closely with ATs (CTO, CarCo; CLAC, GlobalInsureCo), have sufficient time
to collaborate (CTO, CarCo), and are always available to them (CLBPA, RetailCo).

(4) Involvement: The majority of ATs felt left out regarding their involvement in the architecture process
because of weak collaboration (PO, CarCo; PO, ITCo; PO, SM, RetailCo). An PO of ITCo added: “[ATs] are
simply not asked”. Some interviewees called for greater involvement (PO, CarCo; SM, RetailCo). At
PublicInsureCo, the opinion of one AD was very positive: “Nothing is missing”. Similarly, an AD of
GlobalInsureCo mentioned that teams are well involved in architecture decisions such as deciding on best
practices, software architecture or code libraries. The self-perception of EAs is similar to that of ATs. The
primary reason given was that the capacity of EAs is fully exhausted (EA, CarCo; EA, RetailCo; EA
PublicInsureCo). According to one EA of PublicInsureCo, ATs do not necessarily feel to be involved in
architecture processes due to the lack of support given by EAs. In addition, the involvement must be
clarified in advance and optimized: “Wherever there is a need, the way of involvement must be clarified”
(EA, PublicInsureCo). The feedback from ATs helps to optimize the capacities of EAs and thus enables their
involvement in architecture processes (EA, RetailCo). Compared to other stakeholder groups, the
managers’ perception is very positive. At GlobalInsureCo, ATs are actively involved in architecture
processes through architecture coordination circles (CLAC, GlobalInsureCo). With this respect, the CLBPA
of RetailCo explained that the active involvement of ATs facilitates the creation of the to-be enterprise
architecture. In contrast, the CTO of CarCo explained that not all ATs can be involved in architecture
processes as this constitutes a scaling issue and they lack the necessary overarching view of the organization.

285

Enterprise Architects in Large-Scale Agile Development

Twenty-fifth Americas Conference on Information Systems, Cancun, 2019 7

(5) Support: The majority of AT members are not satisfied with the support of EAs. They complained about
the lack of support from EAs due to capacity problems, work overload, and a lack of technical know-how
(PO, CarCo; PO, ITCo; SM, RetailCo; AD, PublicInsureCo). Few AT members were satisfied to some extent
and reported positive feedback (PO, CarCo; SM, PO, RetailCo; AD, GlobalInsureCo). The added value of
EAs was perceived positively in cases in which they provide high-level requirements (PO, CarCo) and offer
top-down informative, consultative, and mediatory support (AD, GlobalInsureCo). The self-perception of
EAs on this point is similar to that of ATs. The EAs mentioned time and capacity restrictions as main reasons
for inadequate support (EA, CarCo; EA RetailCo; EA, GlobalInsureCo). Two EAs explained that architecture
models provided are too unspecific and the expected support cannot be given (EA, CarCo; EA, RetailCo). In
many cases, EAs do not have the necessary technical know-how to support ATs adequately (EA, CarCo).
One EA of PublicInsureCo also stated that some ATs do not need support by EAs. Both EAs of
GlobalInsureCo felt that ATs are satisfied as “concrete added value is created in the teams”. Among all
three stakeholder groups, the managers had the most positive perception. The CTO of CarCo praised that
their EAs receive a lot of positive feedback and that competent EAs are highly demanded by ATs. He noted
that EAs lack of capacity and thus need to focus on the most important projects with a high economic impact
(CTO, CarCo). The CLBPA of RetailCo was very pleased with the support as “they have a lot of educational
and explanatory work to do”. The CLAC of GlobalInsureCo perceived the role of EAs as more active,
because they “join the team and are part of the team, not by e-mail, phone or other means”.
(6) Feedback: The AT members had a rather negative opinion since the feedback culture is not lived and
there is a lack of feedback mechanisms between ATs and EAs (SM, RetailCo; AD, PublicInsureCo).
According to an AD of GlobalInsureCo, EAs should show more initiative to gather feedback from ATs
through observation and direct team collaboration. Due to the lack of capacity, EAs are not able to receive
and process feedback (PO, ITCo). Only one AT member indicated that his feedback was well received and
processed (PO, CarCo). The majority of EAs felt that the expectations of the ATs for the opportunity to
provide feedback are met. They explained that ATs have sufficient feedback opportunities, e.g., workshops,
e-mail or personal face-to-face meetings (EA, CarCo; EA, ITCo; EA, RetailCo; EA, PublicInsureCo; EA,
GlobalInsureCo). One EA of CarCo stated: “Wouldn't know how to improve it”. An EA of ITCo opposed
since structured feedback mechanisms are not established or are further improvable. One EA of
GlobalInsureCo added that some EAs do not respond to feedback of ATs at all. The perception of the
managers is similar to that of EAs. Many ATs still perceive EAM as an ivory tower and therefore give little
feedback to the EAs (CTO, CarCo). Existing feedback is driven top-down by EAs due to immature feedback
culture and its dependency to the organizational structure (IT-G, PublicInsureCo; CLAC, GlobalInsureCo).
One solution would be establishing stable feedback channels between ATs and EAs (CLAC, GlobalInsureCo).
(7) Recommendation: We used the Net Promoter Score (NPS) to obtain an overview of the satisfaction of
all stakeholder groups. Here, we asked the question: How likely is it that you would recommend an EA to
an AT? The participants were able to give an answer ranging from 0 (not at all likely) to 10 (extremely
likely). Respondents with a score of 9 or 10 are called promoters. Interviewees answering a 7 or 8 are
denoted as passives. Detractors are those with a score of 0 to 6. Finally, the NPS was calculated as the
percentage of promoters minus the percentage of detractors. Figure 1 shows the NPS calculated for each
stakeholder group as well as the overall NPS.

Figure 1. Overview of the NPS of all stakeholder groups (N=25)

Four interesting observations can be made: First, ATs do not seem to be satisfied with the current support
by EAs (NPS = -37.50%). Second, most of the EAs would recommend themselves, thus seem to be satisfied

© sebis190219 Uludağ - Vierter Scaling Agile Practices Workshop 2

1

10

4

15

3

3

6

4

4

0

5

10

15

20

25

30

Agile Teams (ATs) Enterprise Architects (EAs) Managers (Ms) Total

Promoters Passives Detractors

NPSATs= -37.50% NPSEAs= 76.92% NPSMs= 100.00% NPSTotal= 44.00%

286

Enterprise Architects in Large-Scale Agile Development

Twenty-fifth Americas Conference on Information Systems, Cancun, 2019 8

with how they support ATs (NPS = 76.92%). Third, all managers recommend EAs to ATs (NPS = 100.00%).
Fourth, a comparison of all stakeholder groups reveals that ATs are least satisfied with the current situation
and that the managers recognize the added value of EAs, confirming our previous observations and
findings. The overall NPS value is 44.00%.
Figure 2 provides an aggregated overview of the respective ratings by each stakeholder group.

Figure 2. Overview of the rating on how different stakeholder groups perceive to what

extent the ATs’ expectations are fulfilled by EAs (N=25)

Discussion

Key Findings

Five key findings emerge from this multiple-case study: First, our results indicate that ATs mainly expect
technological guidance and support from EAs. We are consonant with Drews et al. (2017) and believe that
the role of the EA should be primarily technology focused. To this end, EAs must leave the “ivory tower”
and keep their technical knowledge up-to-date (Kulak and Li 2017). Second, the lack of capacity and the
high workload of EAs makes it difficult to deliver their services on time and in appropriate quality. Some
EAM initiatives of the case organizations use agile and lean methods to address the above-mentioned
problem. This finding is in line with Hanschke et al. (2015) and Hauder et al. (2014) that companies are
applying agile and lean methods to increase the efficiency of EAM initiatives. Third, we made similar
observations as Canat et al. (2018) that the communication between EAs and ATs is an issue. We observed
that EAs work closely with ATs at the beginning of a project life-cycle and leave them after a project
matured, similar to the way described in the Enterprise Unified Process (Ambler 2002). In addition, we
witnessed that the communication between ATs and EAs via a third persons is considered suboptimal.
Fourth, the fear of the “Big Design Upfront” becomes reality for ATs as they feel excluded from architecture
processes. Although ATs follow the emergent design principle of the Agile Manifesto (Beck et al. 2001), we
found that in many cases ATs ask for involvement in the creation of an intentional architecture. Fifth, the
positive perception of managers and the rather negative attitude of ATs towards EAs show that the added
value of EAs has not yet reached the team level, which is a similar result to that of (Canat et al. 2018).

Limitations

For the evaluation of possible validity threats of our observations, we used the assessment scheme
recommended by (Runeson and Höst 2008). Since the case study is exploratory and does not seek to
establish causal relationships, internal validity is not a concern. Construct validity is concerned with
whether the study design represents a proper investigation of the research questions. We took three
countermeasures to address this threat. First, we used several sources for data collection. These included
semi-structured interviews with various stakeholder groups and internal documents of the cases. Second,
the interviews were transcribed and coded by one researcher and then reviewed by a second researcher.

© sebis190219 Uludağ - Vierter Scaling Agile Practices Workshop 1

1

2

3

4

5

6

7

8

9

10
Models

Availability

Communication

InvolvementSupport

Feedback

Recommendation

Enterprise Architects Agile Teams Managers

1

2

3

45

6

7

287

Enterprise Architects in Large-Scale Agile Development

Twenty-fifth Americas Conference on Information Systems, Cancun, 2019 9

Third, key informants of the case organizations reviewed the interview results to establish a chain of
evidence. External validity relates to the generalization of the findings and to what extent the results are of
interest outside the investigated cases. For this purpose, we focused on the literal replication of our cases
and aimed for analytical generalization by providing a thorough description of the cases. Our case study
provides profound details so that this validity can be addressed by identifying similarities between other
organizations and the characteristics of our cases. Reliability refers to whether the case study is conducted
in a robust manner and whether a replication by other researchers would yield the same results, i.e.,
researcher bias. Three countermeasures were taken to counteract researcher bias. First, there were always
two researchers present in the interviews. Second, the data analysis was checked for consistency and
completeness by a second researcher. Third, all reports sent to the companies were revised by another
researcher and discussed with company representatives.

Conclusion and Future Work
Confronted with the imperatives of competitive environments, firms are urged to undergo large-scale agile
transformations to respond to environmental changes (Fuchs and Hess 2018; Gerster et al. 2018). The EAM
function provides governance mechanisms to coordinate and align multiple large-scale agile activities to
achieve desirable organization-wide effects and agility (Drews et al. 2017; Greefhorst and Proper 2011). The
expectations of EAs and ATs are not always frictionless as both exhibit antithetic ways of thinking and
mindsets (Kulak and Li 2017). Our research is motivated by the lack of empirical studies on the
collaboration between EAs and ATs. We conducted an exploratory study with five cases to get an
understanding of this field of tension.
Derived insights are threefold: First, communication between EAs and ATs is primarily driven by SAs,
which increases information loss and misunderstanding. Second, all interviewees request a supporting EA
role in the future, which is characterized by a deep understanding of technologies and broad communication
skills. However, this new role requires EAs to cede decision-making power and possess sound reasoning
skills. Third, the workload of EAs grew due to the multitude of ATs. Consequently, EAs have difficulties in
handling all requests of ATs on architectural issues.
Finally, this article leaves some room for further studies. We encourage researchers to perform longitudinal
studies on how the expectations of ATs for EAs vary throughout large-scale agile transformations.
Researchers should also conduct cross-case analyses with the goal to compare how the role of the EA is
realized in different types of organizations.

References
Ambler, S. 2002. Agile Modeling: Effective Practices for Extreme Programming and the Unified Process,

New York: John Wiley & Sons.
Babar, M. A. 2009. “An Exploratory Study of Architectural Practices and Challenges in Using Agile Software

Development Approaches,” in 2009 Joint Working IEEE/IFIP Conference on Software Architecture
European Conference on Software Architecture, pp. 81–90.

Beck, K., Beedle, M., Van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M., Grenning, J.,
Highsmith, J., Hunt, A., Jeffries, R., and others. 2001. Manifesto for Agile Software Development.

Bente, S., Bombosch, U., and Langade, S. 2012. “Collaborative Enterprise Architecture,” Collaborative
Enterprise Architecture, Burlington: Morgan Kaufmann.

Besson, P., and Rowe, F. 2012. “Strategizing Information Systems-Enabled Organizational Transformation:
A Transdisciplinary Review and New Directions,” The Journal of Strategic Information Systems
(21:2), pp. 103–124.

Canat, M., Català, N. P., Jourkovski, A., Petrov, S., Wellme, M., and Lagerström, R. 2018. “Enterprise
Architecture and Agile Development - Friends or Foes?,” in 22nd International Enterprise
Distributed Object Computing Workshop.

Dikert, K., Paasivaara, M., and Lassenius, C. 2016. “Challenges and Success Factors for Large-Scale Agile
Transformations: A Systematic Literature Review,” Journal of Systems and Software (119), pp. 87–
108.

Dingsøyr, T., Fægri, T. E., and Itkonen, J. 2014. “What Is Large in Large-Scale? A Taxonomy of Scale for
Agile Software Development,” in Product-Focused Software Process Improvement, A. Jedlitschka, P.

288

Enterprise Architects in Large-Scale Agile Development

Twenty-fifth Americas Conference on Information Systems, Cancun, 2019 10

Kuvaja, M. Kuhrmann, T. Männistö, J. Münch, and M. Raatikainen (eds.), Cham: Springer
International Publishing, pp. 273–276.

Dingsøyr, T., Moe, N., Fægri, T., and Seim, E. 2018. “Exploring Software Development at the Very Large-
Scale: A Revelatory Case Study and Research Agenda for Agile Method Adaptation,” Empirical
Software Engineering (23:1), pp. 490–520.

Drews, P., Schirmer, I., Horlach, B., and Tekaat, C. 2017. “Bimodal Enterprise Architecture Management:
The Emergence of a New EAM Function for a BizDevOps-Based Fast IT,” in 21st International
Enterprise Distributed Object Computing Workshop, pp. 57–64.

Easterbrook, S., Singer, J., Storey, M.-A., and Damian, D. 2008. “Selecting Empirical Methods for Software
Engineering Research,” in Guide to Advanced Empirical Software Engineering, F. Shull, J. Singer,
and D. Sjøberg (eds.), London: Springer, pp. 285–311.

Fuchs, C., and Hess, T. 2018. “Becoming Agile in the Digital Transformation: The Process of a Large-Scale
Agile Transformation,” in 39th International Conference On Information Systems, San Francisco.

Gerster, D., Dremel, C., and Kelker, P. 2018. “‘Agile Meets Non-Agile’: Implications of Adopting Agile
Practices at Enterprises,” in 24th Americas Conference on Information Systems.

Greefhorst, D., and Proper, E. 2011. Architecture Principles: The Cornerstones of Enterprise Architecture,
Berlin: Springer.

Gregory, P., Barroca, L., Taylor, K., Salah, D., and Sharp, H. 2015. “Agile Challenges in Practice: A Thematic
Analysis,” in International Conference on Agile Software Development, pp. 64–80.

Hanschke, S., Ernsting, J., and Kuchen, H. 2015. “Integrating Agile Software Development and Enterprise
Architecture Management,” in 48th Hawaii International Conference on System Sciences.

Hauder, M., Roth, S., Schulz, C., and Matthes, F. 2014. “Agile Enterprise Architecture Management: An
Analysis on the Application of Agile Principles,” in International Symposium on Business Modeling
and Software Design.

Hekkala, R., Stein, M.-K., Rossi, M., and Smolander, K. 2017. “Challenges in Transitioning to an Agile Way
of Working,” in 50th Hawaii International Conference on System Sciences, pp. 5869–5878.

Kettunen, P., and Laanti, M. 2017. “Future Software Organizations - Agile Goals and Roles,” European
Journal of Futures Research (5:1), p. 16.

Kulak, D., and Li, H. 2017. “The Journey to Enterprise Agility: Systems Thinking and Organizational
Legacy,” The Journey to Enterprise Agility: Systems Thinking and Organizational Legacy, Cham:
Springer International Publishing.

Lethbridge, T. C., Sim, S. E., and Singer, J. 2005. “Studying Software Engineers: Data Collection Techniques
for Software Field Studies,” Empirical Software Engineering (10:3), pp. 311–341.

Miles, M., Hubermann, M., and Saldana, J. 2014. Qualitative Data Analysis: A Methods Sourcebook,
Thousand Oaks: Sage Publications.

Rolland, K. H., Fitzgerald, B., Dingsøyr, T., and Stol, K.-J. 2016. “Problematizing Agile in the Large:
Alternative Assumptions for Large-Scale Agile Development,” in 37th International Conference on
Information Systems.

Rouhani, B. D., Mahrin, M. N., Nikpay, F., Ahmad, R. B., and Nikfard, P. 2015. “A Systematic Literature
Review on Enterprise Architecture Implementation Methodologies,” Information and Software
Technology (62), pp. 1–20.

Runeson, P., and Höst, M. 2008. “Guidelines for Conducting and Reporting Case Study Research in
Software Engineering,” Empirical Software Engineering (14:2), p. 131.

Scheerer, A., Hildenbrand, T., and Kude, T. 2014. “Coordination in Large-Scale Agile Software
Development: A Multiteam Systems Perspective,” in 47th Hawaii International Conference on
System Sciences, pp. 4780–4788.

Stake, R. 1995. The Art of Case Study Research, Thousand Oaks: Sage Publications.
Theuerkorn, F. 2004. Lightweight Enterprise Architectures, Boca Raton: Auerbach Publications.
Uludağ, Ö., Kleehaus, M., Xu, X., and Matthes, F. 2017. “Investigating the Role of Architects in Scaling Agile

Frameworks,” in 21st International Conference on Enterprise Distributed Object Computing
Conference, pp. 123–132.

Wilkinson, M. 2006. “Designing an ‘Adaptive’ Enterprise Architecture,” BT Technology Journal (24:4), pp.
81–92.

Winter, R. 2016. “Establishing ‘Architectural Thinking’ in Organizations,” in The Practice of Enterprise
Modeling, J. Horkoff, M. A. Jeusfeld, and A. Persson (eds.), Cham: Springer International Publishing,
pp. 3–8.

Yin, R. 1994. Case Study Research: Design and Methods (5th Ed.), Thousand Oaks: Sage Publications.

289

 Enterprise Architects in Large-Scale Agile Transformations

 Americas Conference on Information Systems 1

Investigating the Role of Enterprise
Architects in Supporting Large-Scale Agile

Transformations: A Multiple-Case Study
Completed Research

Ömer Uludağ
Technische Universität München

oemer.uludag@tum.de

Florian Matthes
Technische Universität München

matthes@tum.de

Abstract
In today's competitive environments, companies must cope with changing customer demands, regulatory
uncertainties, and new technological advances. To this end, companies increasingly undergo large-scale
agile transformations to meet these requirements. In recent years, enterprise architecture management
has established itself as a valuable governance mechanism for coordinating large-scale agile
transformations by connecting strategic considerations to the execution of transformation projects.
Empirical studies investigating the role of enterprise architects (EAs) in this context are still scarce. We
present a multiple-case study of five major German companies that aims to shed light on the role of EAs
in supporting large-scale agile transformations. Based on our results from eighteen interviews, we present
a set of typical responsibilities of EAs. We also describe the expectations of various stakeholders towards
EAs and the challenges they face.

Keywords

Enterprise architecture management, large-scale agile transformation, multiple-case study

Introduction
Today's competitive environments are characterized by uncertainty and turbulence resulting from
regulatory uncertainties, changing customer demands, and new technological advances (Kettunen and
Laanti 2017; Sherehiy et al. 2007). As a result, companies are urged to undergo organizational
transformations to respond to dynamic environments and to sustain their survival (Besson and Rowe
2012; Gerster et al. 2018). To master their respective digital transformations, organizations strive to
become agile (Gerster et al. 2018; Rogers 2016). The extensive introduction of agile methods is a common
approach to address relevant issues of an organizational digital transformation (Bharadwaj et al. 2013;
Gerster et al. 2018). The large-scale adoption of agile methods in organizations often leads to large-scale
agile transformations as part of their organizational digital transformations (Dikert et al. 2016; Fuchs and
Hess 2018). Thereby, the term “large-scale agile transformation” can be defined as the transition from
traditional development approaches to agile practices in large multi-team or enterprise-wide settings
(Gerster et al. 2018). A large-scale agile transformation may involve a one-time big bang transfer to agile
methods or a step-wise approach where an agile pilot is scaled up into a large setting (Fuchs and Hess
2018). Large-scale agile transformations entail new managerial challenges such as skepticism towards the
new way of working (Dikert et al. 2016), coordination and alignment issues between large-scale agile
endeavors as well as between agile and non-agile teams (Scheerer et al. 2014), and tensions between top-
down architecture governance and bottom-up autonomy of agile teams (ATs) (Kulak and Li 2017). In
recent years, enterprise architecture management (EAM) has established itself as a valuable governance
mechanism for coordinating enterprise transformations by connecting strategic considerations to the
execution of large agile projects (Greefhorst and Proper 2011; Hauder et al. 2014). In large-scale agile
transformations, the role of EAM is also changing from enforcing technological standards to advising ATs
on their architectural decisions (Hanschke et al. 2015). Therefore, the new role of EAM focuses mainly on
cross-team issues with harmonizing governance efforts across ATs and guiding them through

290

 Enterprise Architects in Large-Scale Agile Transformations

 Americas Conference on Information Systems 2

architectural roadmaps (Uludağ et al. 2017). In the context of large-scale agile transformations, there are
two important architecture roles: first, enterprise architects (EAs) can support large-scale agile
transformations by resolving technical dependencies of ATs on a portfolio level and shaping the overall
strategic vision of the organization (Horlach et al. 2020; Uludağ et al. 2017). Second, software architects
can support large-scale agile transformations on the program or team level by taking architecture
decisions for ATs (Horlach et al. 2020; Uludağ et al. 2017). Notwithstanding the importance of EAs in
supporting large-scale agile transformations, only a few articles are available that describe the roles of EAs
in this context (cf. (Canat et al. 2018; Horlach et al. 2020)). None of these articles provide a cross-case
analysis of how EAs can support large-scale agile transformations and the challenges they face when
collaborating with agile teams. We aim to fill this gap by raising the following research questions (RQs):
RQ1: Which responsibilities do enterprise architects have in large-scale agile transformations?

RQ2: How should enterprise architects support large-scale agile transformations?
RQ3: Which challenges do enterprise architects face in supporting large-scale agile transformations?

Background and Related Work

Architects in Agile Development
Agile methods such as Scrum and Extreme Programming, which more or less adhere to the values of the
Agile Manifesto (Beck et al. 2001), assume that the best architectures, requirements, and design emerge
from self-organizing teams (Abrahamsson et al. 2010). They do not provide detailed guidance on building
a software architecture or on the role of software architects. The basic idea of these methods is that
architecture is a natural outcome of sprints and re-factorings (Leffingwell 2007). Despite differing views
on the compatibility of agility and architecture, the interests of scientists and practitioners aiming to
combine both concepts is increasing (Babar 2009). Abrahamsson et al. (2010) argue that the best solution
is to find a balance between these two extreme approaches and recommend the integration of architects
into agile projects. Angelov et al. (2016) propose three scenarios for the integration of architects1 in agile
projects: internal architect, external architect, and internal & external architect. The first scenario
describes different types of internal architects. The architecture agent is usually a senior developer who
acts as an architect. Based on his expertise, he supports the team by taking responsibility of architectural
decisions (Angelov et al. 2016; Fowler 2003). There can also be a dedicated supporting architect role in
the team, which mentors and consults the team in architectural topics. In addition, an AT can also have an
assigned classical architect who makes all important architectural decisions for the team. If there is no
expert, the entire team works as an internal architect. In this case, there is no dedicated architect in the
team (Angelov et al. 2016; Toth 2015). The second scenario describes the role of an external architect.
This architect is characterized by a supporting and guiding function (Toth 2015). He is assigned to
multiple teams and collaborates with other architects (Angelov et al. 2016). The external architect keeps
an eye on the big picture of the architecture. This setup gives the teams the support they need to integrate
the architecture into their teams (Angelov et al. 2016; Fowler 2003). The external architect can be either
an architect who supports or guides ATs (Toth 2015). In the third scenario, there is both an internal &
external architect. The internal architect focuses on inter-team communication, manages the current
code, and eliminates architectural problems that occur within the team. The external architect takes care
of the overall architecture, makes decisions to meet the architectural requirements, and acts as an
external coordinator between teams (Angelov et al. 2016; Toth 2015).
Enterprise Architects in Large-Scale Agile Development
Based on ten expert interviews with three German companies, Hanschke et al. (2015) describe how agile
methods can be used to create EA deliverables and how EAs can collaborate with ATs. Based on twelve
interviews with four companies, Canat et al. (2018) reveal that their cases do not regard agile and
architecture as opposites. The authors also claim that the extensive use of modeling at the team level is

1 The findings of Angelov et al. (2016) refer to the involvement of architects in agile projects in general,
including both enterprise and software architects. Thus, the three scenarios for the integration of
architects in agile projects apply to both architect roles.

291

 Enterprise Architects in Large-Scale Agile Transformations

 Americas Conference on Information Systems 3

considered as over-architecting as the lower levels are more dynamic. They also describe that EAs and ATs
have communication gaps and that EAs have no difficulties in working with AT, but that ATs tend to
disagree with the working methods of EAs. Horlach et al. (2020) propose six design principles for how
agile teams can establish architectural thinking so that they can see the ‘big picture’ of an organization in
terms of its strategic objectives and IT landscape to avoid organizational inertia or technical debts.

Research Methodology
Being induced by a practical problem, we apply case study research since it gives an in-depth overview of
contemporary phenomena (Yin 1994).
Case Study Design: We aim to explore the role of EAs in supporting large-scale agile transformations.
Based on this goal, we formulated three research questions. We use a case study design with five
companies (Yin 1994). The cases were purposefully selected as they undergo major transformations and
their EAs face new challenges while working with ATs. We selected cases from different industries to
avoid industry bias. Table 1 presents an overview of the case companies and interviews.

Code name Employees Interviews Position of interviewees
Global insurance company
(“GlobalInsureCo”) 140,000+ 4 Agile developer; enterprise architect;

chapter lead agile coaching

Car manufacturer (“CarCo”) 130,000+ 4 Chief technology officer; enterprise architect;
requirements engineer; scrum master

Information technology
company (“ITCo”) 7,000+ 2 Enterprise architect;

product owner

Retail company (“RetailCo”) 50,000+ 4 Chapter lead business process architecture;
enterprise architect; product owner; scrum master

Public sector insurance
company (“PublicInsureCo”) 6,700+ 4 Agile developer; enterprise architect;

head of IT governance department

Table 1. Overview of case organizations and conducted interviews
Data Collection: We focused mainly on first- and third-degree data collection techniques (Lethbridge et
al. 2005). Using first-degree methods, we established direct contact with the subjects and collected data in
real time. For this purpose, we conducted twelve individual and six group interviews. In nearly all cases,
at least one senior executive, one EA, and one member of an AT were interviewed to receive a multifaceted
perspective on the subject under investigation and to triangulate our results. The interviews followed a
semi-structured questionnaire and were conversational to enable interviewees to describe their
experiences and views in detail (Yin 1994). The interviews were mainly conducted in face-to-face
meetings. At least two researchers were present in the interviews to strengthen observer triangulation
(Runeson and Höst 2009). We enriched our interview findings with third-degree data collection
techniques that supported us to analyze existing artifacts and available data. Here, slide decks and wiki
pages of the cases gave us detailed information about their EAM initiatives. The selection of multiple data
sources and roles from different case companies facilitated the triangulation of data sources (Stake 1995).
Data Analysis: The interviews were transcribed and coded with open coding (Miles et al. 2014). After
initial coding, we consolidated preliminary codes and checked their consistency and completeness. We
combined groups of code phrases into concepts that were linked to our research questions.

Results

Responsibilities of Enterprise Architects
We used exploratory questions to reveal the roles of EAs. Thus, we asked the respondents on the following
categories: (1) responsibilities, (2) changes in function, (3) and shifts in working methods. First, we asked
the interviewees to specify the responsibilities of EAs in large-scale agile transformations (see Table 22).

2 A “✓” indicates that a particular responsibility has been identified in a case while an “✗” means that a
specific responsibility is not given.

292

 Enterprise Architects in Large-Scale Agile Transformations

 Americas Conference on Information Systems 4

No. Responsibilities of enterprise architects Global-
InsureCo CarCo ITCo Retail-

Co
Public-

InsureCo

#1 Collaborating with stakeholders to develop the company's
architectural roadmap ✓ ✓ ✓ ✓ ✓

#2 Collaborating with ATs to guide them through
architectural requirements and roadmaps ✓ ✓ ✓ ✓ ✓

#3 Facilitating architectural decision-making process of ATs ✓ ✓ ✓ ✓ ✓

#4 Creating and communicating architecture principles and
ensuring their compliance ✓ ✓ ✓ ✓ ✓

#5 Creating strategic technical directions of the company ✓ ✓ ✓ ✓ ✓

#6 Organizing communities of practices for architecture and
architecture boards ✓ ✓ ✓ ✓ ✓

#7 Driving architectural decisions of the software products ✗ ✓ ✓ ✓ ✗
#8 Identifying and managing dependencies between ATs ✓ ✗ ✓ ✗ ✓
#9 Ensuring the reuse of enterprise assets ✓ ✓ ✓ ✗ ✗

#10 Mentoring and coaching ATs and other architects with
architectural basics and best practices ✓ ✗ ✗ ✓ ✓

#11 Consulting enterprise executives ✗ ✓ ✗ ✓ ✓
#12 Fostering technical excellence ✓ ✗ ✗ ✓ ✓
#13 Discovering and experimenting with new technologies ✓ ✓ ✗ ✗ ✓
#14 Creating architectural blueprints and standards ✓ ✓ ✗ ✓ ✗
#15 Consulting ATs for architectural problems ✓ ✓ ✗ ✗ ✓
#16 Defining a target architecture of the software products ✗ ✓ ✗ ✓ ✓
#17 Defining an architectural solution space for ATs ✓ ✓ ✗ ✓ ✗

Table 2. Responsibilities of enterprise architects in large-scale agile transformations
We observed several similarities between the case companies regarding the responsibilities of EAs. First,
their primary responsibility was not just to create architectural artifacts, such as standards or principles,
but also to closely communicate and collaborate with various stakeholders, in particular with ATs. Second,
their task included the creation of a common architectural understanding within the organization. For
instance, they provided training courses to developers or architects regarding architecture basics. In
addition, they organized communities to facilitate the exchange of information and knowledge. Third, EAs
were also responsible for steering and coordinating large-scale agile endeavors by creating technology and
business roadmaps and defining target architectures. In all cases, the ongoing transformations had a great
impact on the role of EAs leading to a number of changes in their responsibilities. At GlobalInsureCo, the
architectural decision-making authority was shifted from EAs to ATs. First, ATs were no longer dependent
on the approval of each architectural decision by the EAs but were empowered to make their own
decisions and were also accountable for them. Second, EAs were responsible for creating and
communicating architectural guidelines to ATs. Both changes were also reflected by an AT member:

“The decision-making power of EAs have been considerably reduced as the teams themselves are
now responsible for their architecture. Now, their responsibility is to explain architectural
requirements to create context and achieve team acceptance.” — Agile Developer, GlobalInsureCo

EAs were also regarded as service providers offering “enterprise architecture as a service”, e.g., providing
tools or offering consultation for architectural issues. Similar to GlobalInsureCo, CarCo's EAs had a
supportive and consulting role by assisting ATs for resolving architectural impediments. In addition, EAs
no longer defined an upfront architecture for software products but instead enabled a collaborative
process to create target architectures together with ATs. The organization also underwent a paradigm
shift away from monolithic architectures to microservice architectures, requiring EAs to support several
ATs. This change was accompanied by an excessive workload of EAs:

“Enterprise architects are now overloaded. Previously, they had to accompany 4 system teams,
now they have to assist more than 20 component teams.” — Scrum Master, CarCo

EAs recognized this issue and stated that their task is to convey “enterprise architecture as a skill” to ATs.
At ITCo, the main change was seen in providing context information to ATs and identifying dependencies
to other teams. EAs at RetailCo were required to delegate responsibilities to ATs. As a result, EAs had to
work more closely with ATs and to convince them argumentatively to move ATs in the right direction to

293

 Enterprise Architects in Large-Scale Agile Transformations

 Americas Conference on Information Systems 5

achieve the overall architecture strategy. EAs of PublicInsureCo were affected by the ongoing
transformations and gained an increasingly consultative role and performed fewer governance control
functions. To this end, EAs lost their veto right in architectural decisions made by ATs. They used
principles to provide an orientation for ATs without dictating them how to realize the specified principles.
We were also curious about the changes in their working methods. Table 3 provides an overview of the
changes. Again, a few similarities between the cases could be observed. First of all, EAs had increasingly
adopted agile and lean practices to avoid long conceptualization phases or the creation of outdated
architecture models. Second, EAs spent most of their time to communicate and collaborate with ATs, e.g.,
providing training courses or organizing community events. Third, they also built more technical skills to
provide better technological assistance.

No. Changes in the working methodology of enterprise
architects

Global-
InsureCo CarCo ITCo Retail-

Co
Public-

InsureCo

#1 Avoiding big design upfront by creating the simplest
architecture that can possibly work ✗ ✓ ✓ ✓ ✓

#2 Leaving the 'ivory tower' by closely collaborating with ATs ✓ ✓ ✗ ✓ ✓

#3 Involving ATs in the architectural decision-making process
instead of deciding over their heads ✓ ✓ ✗ ✓ ✓

#4 Using new tools such as collaboration tools of ATs ✓ ✓ ✗ ✓ ✓

#5 Creating architecture roadmaps with shorter
conceptualization phases and observation periods ✗ ✗ ✓ ✓ ✓

#6 Using also agile and lean practices such as sprints,
backlogs, and kanban boards ✓ ✓ ✗ ✗ ✓

#7 Organizing training courses and workshops for ATs ✓ ✗ ✗ ✓ ✓
#8 Building technical skills and capabilities ✓ ✗ ✗ ✓ ✓
#9 Conducting architecture spikes to explore new technologies ✗ ✓ ✓ ✗ ✓

#10 Aligning architectural decisions via communities rather
than via architecture boards ✓ ✗ ✗ ✓ ✗

#11 Specifying solution spaces rather than creating restrictive
requirements limiting the design freedom of ATs ✓ ✓ ✗ ✓ ✗

#12 Preferring communication with ATs based on personal
conservations over communication based on documents ✓ ✗ ✗ ✓ ✓

#13 Attending events of ATs such as plannings or demos ✗ ✗ ✗ ✓ ✓
#14 Preferring architectural decisions based on consensus ✓ ✗ ✗ ✓ ✗
#15 Coding with ATs rather than being a 'PowerPoint' architect ✓ ✗ ✗ ✓ ✗

Table 3. Changes in the working methodologies of enterprise architects
At RetailCo, some EAs were treated as developers and were therefore perceived as part of ATs.
Consequently, they were no longer part of the traditional governance cluster, but rather part of the
product organization. EAs at PublicInsureCo also switched from phased support of ATs to more
continuous support which is why they accompanied projects longer than before. Moreover, they closely
collaborated with domain and software architects within architecture communities. They were also
regularly invited to Scrum events of ATs.

Supporting Role of Enterprise Architects
We asked the interviewees to describe how EAs should support large-scale agile transformations. Table 4
gives an overview of the identified expectations. According to our findings, the most salient expectations
were that EAs should align ATs to work on the business visions and to develop a fundamental
understanding of architecture so that ATs can work on achieving the company's objectives themselves.

No. Expectations for enterprise architects Global-
InsureCo CarCo ITCo Retail-

Co
Public-

InsureCo
#1 Demonstrating the value of architecture ✓ ✓ ✓ ✓ ✓
#2 Aligning ATs with enterprise goals through principles ✓ ✓ ✓ ✓ ✓
#3 Fostering a common understanding for architecture ✓ ✓ ✗ ✓ ✓
#4 Entrusting more architecture responsibilities to ATs ✓ ✗ ✗ ✗ ✓
#5 Implementing architecture blueprints ✓ ✗ ✗ ✗ ✓
#6 Defining and communicating architecture standards ✓ ✓ ✗ ✗ ✗

294

 Enterprise Architects in Large-Scale Agile Transformations

 Americas Conference on Information Systems 6

#7 Supporting in designing team structures ✓ ✓ ✗ ✗ ✗
#8 Developing a continuous delivery pipeline for ATs ✓ ✗ ✗ ✓ ✗
#9 Specifying strategic goals for ATs ✗ ✓ ✓ ✗ ✗
#10 Identifying dependencies between ATs ✗ ✓ ✓ ✗ ✗
#11 Converting abstract themes into concrete initiatives ✗ ✓ ✓ ✗ ✗
#12 Consulting ATs regarding tool stacks ✗ ✓ ✗ ✗ ✓
#13 Establishing an alignment between business and IT ✗ ✓ ✗ ✗ ✓

Table 4. Expectations for enterprise architects to support large-scale agile transformations
Second, we were curious about the types of EAs exercised in the cases (see Table 5).

Case
Type

Global-
InsureCo CarCo ITCo Retail-

Co
Public-

InsureCo
No dedicated architect ✗ ✗ ✗ ✗ ✗
Architecture agent ✓ ✗ ✓ ✗ ✓
Supporting architect ✓ ✓ ✓ ✓ ✓
Classic architect ✓ ✓ ✓ ✓ ✓

Table 5. Types of enterprise architects exercised in the case organizations
Two interesting observations can be made: First, none of the cases had ATs taking over the
responsibilities of EAs as a whole team. Rather, the responsibilities of EAs were either exercised by a
dedicated EA or taken over by an experienced developer acting as an architecture agent. Second, all cases
had EAs acting either supportive or prescriptive. For instance, at GlobalInsureCo, architecture agents
were regular AT members developing software and making architectural decisions. Although they had
detailed knowledge about the software, interviewees had a rather negative attitude towards this type of
architect. Respondents argued that architecture agents lacked an overarching perspective on the
organization and comprehensive knowledge of enterprise architecture. Moreover, one interviewee stated
that the architecture solutions developed by architecture agents were less sustainable because they were
usually produced quickly. The role of the architecture agent role was also seen as less attractive due to the
dual role in the team and additional effort it entailed:

“The role of the architecture agent is the one you least want to have.” — Enterprise Architect, ITCo
In all cases, supporting EAs were primarily characterized by their proximity to ATs. However, we
observed three scenarios of how they supported ATs. In the first scenario, they were requested and used
as “ad-hoc fire extinguishers” when ATs did not know how to progress. In the second scenario, they
joined ATs so that the teams could use their skills to solve urgent architectural issues. In the third
scenario, EAs accompanied several ATs as mentors who were available for advice and support. Moreover,
supporting EAs were characterized by comprehensive technical know-how with solid knowledge of tool
stacks and programming languages. In all cases, supporting EAs had less decision-making authority than
classic architects. Thus, they had to argumentatively convince ATs to carry out architecture activities and
motivate them to do so. Advocates of the supporting EA argued that they were much closer to the needs of
ATs regarding architecture. They claimed that supporting EAs achieved greater effectiveness and buy-in
among ATs by increasing their intrinsic motivation. A further advantage mentioned was that supporting
EAs provided developers enough design freedom:

“The supporting enterprise architect facilitates the self-organization of agile teams.”
 — Head of IT Governance, PublicInsureCo

The interviewees also saw some drawbacks of the supporting EA role. First and foremost, their missing
decision-making power was leading to a lack of escalation mechanisms in case of non-compliance with
architectural recommendations. Along with this, an interviewee mentioned the possibility of greater
frustration due to a lack of decision-making power and little assertiveness. The role was perceived very
demanding as greater efforts were required to persuade ATs, especially when they did not adhere to
guidelines. Moreover, the respondents stated that demonstrating the added value of architecture to ATs
could be very challenging. One AT member claimed that the ability of the supporting EA to have an
overview of the overall picture could diminish through greater involvement in agile projects. One
respondent also pointed out the missing consequences in case of bad consultations:

295

 Enterprise Architects in Large-Scale Agile Transformations

 Americas Conference on Information Systems 7

“Consultation without responsibilities and obligations.” — Requirements Engineer, CarCo
The classic EA was distinguished above all by his comprehensive enterprise architecture know-how and
his focus on strategic themes. We observed that classic EAs were partly external architects making
architectural decisions for ATs and taking responsibility for them. However, they worked more on higher
management levels and were mainly involved in critical agile projects. In addition, classic EAs had a
greater distance to ATs than supporting EAs. Here, several participants mentioned that classic EAs tended
to work in the “ivory tower” and governed ATs by defining architectural requirements that they had to
meet. The interviewees mentioned the decision-making authority of the classic EA as an advantage in
moving ATs in the right architectural direction. In addition, classic EAs had escalation mechanisms in
case of non-compliance with architecture guidelines. Classic EAs also had a good overview of the overall
strategy and big picture of the organization. Due to the great distance to ATs, interviewees mentioned that
classic EAs made decisions over the heads of ATs without knowing their actual concerns. ATs had greater
difficulties in reaching classic EAs and providing feedback. Thus, classic EAs often encountered
acceptance issues when working with ATs. We asked the interviewees to indicate which type of architect is
desired in the future. The interviewees favored the supporting and classic EAs (see Figure 1). Our findings
confirm that the role of the architecture agent is perceived unappealing for ATs and that they actually
prefer supporting EAs. Different stakeholder groups wanted to have clear responsibilities in relation to
enterprise architecture. Some respondents also indicated that both classic and supporting EAs should be
exercised in the future, as supporting EAs would provide concrete technical guidance for ATs, while
classic EAs would have a better overview of the macro level. Some interviewees suggested that supporting
EAs should be equipped with decision-making authority to obtain a mix of classic and supporting EAs.

Figure 1. Types of enterprise architects that

should be exercised in the future (n=23)

Figure 2. Involvement of enterprise

architects as agile team members (n=18)

We were also interested in finding out whether EAs should be internal architects and part of ATs or
whether they should be external architects supporting multiple ATs (see Figure 2). The majority favored
external architects due to two reasons. First, they felt that ATs need some freedom to work and EAs
should maintain their overarching view of the organization. Second, they argued that ATs demand clear
guidance and support as needed. Some interviewees indicated that internal EAs would not be feasible due
to time and capacity constraints. In contrast, some interviewees argued that EAs should be phase-based
part of ATs, e.g., at the beginning of a project or depending on the architectural workload. Although the
majority of ATs and EAs chose external architects, most of the managers voted for internal EAs. They
justified this by saying that EAs should gain a better understanding of the current concerns of ATs:

“Then they [enterprise architects] know which problems actually exist in the teams.”
 — Chapter Lead Business Process Architecture, RetailCo

Challenges faced by Enterprise Architects
We were curious about the problems EAs faced in supporting large-scale agile transformations. Table 6
provides an overview of the identified challenges. In all cases, EAs were confronted with ATs that did not
understand or see the added value of enterprise architecture. Thus, ATs were slightly skeptical about
external recommendations or guidelines from EAs. To this end, EAs without decision-making authority
had difficulties in driving the organization's architecture strategy. Moreover, further challenges originated
from the tension between agility and architecture. For instance, ATs were put under pressure to deliver
business functionality, while long-term architectural improvements were often neglected. In contrast, EAs

2

4

2

6

3

1

0 2 4 6 8 10 12

E N T E R P R I S E A R C H I T E C T S S H O U L D
B E P A R T O F A G I L E T E A M S

E N T E R P R I S E A R C H I T E C T S S H O U L D
N O T B E P A R T O F A G I L E T A M S

AMOUNT

Agi le Teams Enterpr ise Architects Managers

4

2

2

7

3

1

3

1

0 2 4 6 8 10 12 14

N O D E D I C A T E D A R C H I T E C T

A R C H I T E C T U R E A G E N T

S U P P O R T I N G A R C H I T E C T

C L A S S I C A R C H I T E C T

AMOUNT

Agi le Teams Enterpr ise Architects Managers

296

 Enterprise Architects in Large-Scale Agile Transformations

 Americas Conference on Information Systems 8

had the mandate to build sustainable architectures reflecting the long-term strategy of the organization.
This tension also led to the accumulation of technical debts. EAs had to deal with a high frequency of
changes in IT systems as the architectural work of large-scale agile projects was more continuous. Due to
a lack of capacity and appropriate tools, EAs struggled to track whether ATs were on the right path to
achieve architecture goals. The ongoing agile transformations made the roles and responsibilities in
architectural decisions for ATs and EAs increasingly unclear.

No. Challenges faced by enterprise architects
Global-
Insure-

Co
CarCo ITCo Retail-

Co
Public-
Insure-

Co
#1 Dealing with a lacking understanding of enterprise architecture ✓ ✓ ✓ ✓ ✓
#2 Balancing short-term and long-term planning ✗ ✓ ✓ ✓ ✓
#3 Balancing upfront and emergent architecture ✗ ✓ ✓ ✓ ✓
#4 Dealing with acceptance issues by ATs ✓ ✗ ✓ ✓ ✓
#5 Dealing with loss of decision-making power ✓ ✗ ✗ ✓ ✓
#6 Defining clear roles and responsibilities regarding architecture ✓ ✓ ✗ ✓ ✗
#7 Ensuring the adherence of ATs with architecture requirements ✓ ✗ ✗ ✓ ✓
#8 Creating proper upfront architecture of the systems ✗ ✗ ✓ ✓ ✗
#9 Dealing with high frequency of architectural decisions ✗ ✓ ✓ ✗ ✗
#10 Creating a comprehensive overview of application landscape ✗ ✓ ✗ ✗ ✓

#11 Dealing with technical implementations and respective
technology trends ✗ ✓ ✗ ✗ ✓

#12 Dealing with turbulent environments ✓ ✓ ✗ ✗ ✗

#13 Establishing a lightweight review process for adapting new
technologies ✓ ✓ ✗ ✗ ✗

#14 Balancing architecture improvements and business value ✗ ✓ ✗ ✓ ✗
#15 Managing technical debts ✗ ✓ ✓ ✗ ✗
#16 Providing ATs appropriate architecture artifacts ✗ ✗ ✓ ✓ ✗

#17 Tracking the progress of ATs in meeting architectural
requirements ✗ ✓ ✗ ✓ ✗

Table 6. Challenges enterprise architects face in large-scale agile transformations

Discussion

Key Findings
Five key findings emerge from this multiple-case study: First, in line with Babar et al. (2013), we observed
that ATs were increasingly empowered to make local architectural decisions leading to a shift of
architectural decision responsibilities from EAs to ATs. It entailed a notable paradigm shift of mindsets,
i.e., EAs had more of an “advisory servant” role rather than a “command and control” philosophy.
Similar to Drews et al. (2017), we observed that EAs consulted and assisted ATs in the realization of
architectural standards and acted as a facilitator for cross-team architecture exchange. Second, as “agile
breaks everything” (Kulak and Li 2017), the large-scale adoption of agile methods had far-reaching
implications on the working methods of EAs. The primary change we observed was that EAs no longer
had big conception phases aiming to avoid “Big Design Upfront”. Instead, the architectural work by EAs
was more continuous and synchronized with the sprints of ATs. We agree with the opinion that “agile and
architecture can coexist as complementary approaches” (cf. (Abrahamsson et al. 2010)) and believe that
it not only exists between software architecture and agile development but also between enterprise
architecture and agile development. Third, while the majority of the EAM frameworks and literature
mainly focus on architectural artifacts in the form of models, principles or specifications, we realized that
ATs demand more hands-on and technical solutions by EAs. For instance, they expect EAs to have dealt
with architectural problems not only at the conceptual level but also at the technical level, i.e., developing
small prototypes to understand the “real concerns” of ATs. EAs can meet this expectation by performing
architecture spikes. Fourth, although the self-organization of ATs is a major success factor for large-scale
agile endeavors (Dikert et al. 2016), we observed that they do not insist on full autonomy regarding
architecture as long they are involved in architectural decision-making processes. Most participants
believed that EAs are important in ensuring that ATs are on the right track. Fifth, Uludağ et al. (2019)

297

 Enterprise Architects in Large-Scale Agile Transformations

 Americas Conference on Information Systems 9

noted that internal software architects play a dual role in their teams by making architectural decisions
and taking responsibility for them (classical architect) and helping the team in implementing the
architectural decisions made (supporting architect). We came to similar results as Uludağ et al. (2019)
only with the exception that EAs should not be part of ATs. Rather, ATs want to have external EAs that
become part of ATs only for short periods of time.

Limitations
We discuss potential validity threats along with an evaluation scheme suggested by Runeson and Höst
(2009). Construct validity reflects what extent the operational measures studied represent what the
researcher has in mind (Runeson and Höst 2009). As a countermeasure, we interviewed several people
with different roles. The interviews were also transcribed and coded by one researcher and then reviewed
by a second researcher. Moreover, key informants of the cases reviewed the interview results to establish a
chain of evidence. Internal validity is not a concern since this study is neither exploratory nor causal.
External validity refers to the generalizability of the results (Runeson and Höst 2009). Thus, we focused
on the literal replication of our cases and their analytical generalization. Reliability concerns to what
extent data and analysis are dependent on the specific researcher (Runeson and Höst 2009). To counter
this, two researchers were always present during the interviews. All reports sent to the companies were
also revised by another researcher and reviewed by case representatives. Also, a case study database was
created comprising case study documents such as audio recordings, interview protocols, and slide decks.

Conclusion and Future Work
Confronted with the imperatives of competitive environments, organizations undergo large-scale agile
transformations to respond to environmental changes (Fuchs and Hess 2018; Gerster et al. 2018). EAs
can support these transformations by aligning the individual project strategies of ATs with enterprise
objectives and guiding ATs through business and technical roadmaps (Uludağ et al. 2017). Our research
was motivated by the lack of empirical studies on the role of EAs in supporting large-scale agile
transformations. We conducted a study with five cases to get an in-depth understanding of the
responsibilities of EAs and the challenges they face. As future work, we encourage other researchers to
conduct cross-case analyses and to compare digital natives with traditional companies that may have
different collaboration cultures between EAs and ATs. This may help to get a better understanding of how
the roles and responsibilities of EAs change in specific organizational environments.
In future work, researchers should perform explanatory studies to reveal potential relationships between
exercised EA types and the realization of formulated EAM strategies. Researchers should also conduct
case studies to identify best practices for non-decisive EAs to drive architectural initiatives.

References
Abrahamsson, P., Babar, M. A., and Kruchten, P. 2010. “Agility and Architecture: Can They Coexist?,”

IEEE Software (27:2), IEEE.
Ali Babar, M., Brown, A. W., and Mistrik, I. 2013. “Agile Software Architecture: Aligning Agile Processes

and Software Architectures,” Agile Software Architecture: Aligning Agile Processes and Software
Architectures, Oxford: Newnes.

Angelov, S., Meesters, M., and Galster, M. 2016. “Architects in Scrum: What Challenges Do They Face?,”
in Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics) (Vol. 9839 LNCS), Copenhagen, pp. 229–237.

Babar, M. A. 2009. “An Exploratory Study of Architectural Practices and Challenges in Using Agile
Software Development Approaches,” in 3rd European Conference on Software Architecture, pp.
81–90.

Beck, K., Beedle, M., Van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M., Grenning, J.,
Highsmith, J., Hunt, A., Jeffries, R., and others. 2001. Manifesto for Agile Software Development.

Besson, P., and Rowe, F. 2012. “Strategizing Information Systems-Enabled Organizational
Transformation: A Transdisciplinary Review and New Directions,” The Journal of Strategic
Information Systems (21:2), pp. 103–124.

Bharadwaj, A., El Sawy, O. A., Pavlou, P. A., and Venkatraman, N. 2013. “Digital Business Strategy:
Toward a next Generation of Insights,” MIS Quarterly, JSTOR, pp. 471–482.

298

 Enterprise Architects in Large-Scale Agile Transformations

 Americas Conference on Information Systems 10

Canat, M., Català, N. P., Jourkovski, A., Petrov, S., Wellme, M., and Lagerström, R. 2018. “Enterprise
Architecture and Agile Development - Friends or Foes?,” in 22nd International Enterprise
Distributed Object Computing Workshop.

Dikert, K., Paasivaara, M., and Lassenius, C. 2016. “Challenges and Success Factors for Large-Scale Agile
Transformations: A Systematic Literature Review,” Journal of Systems and Software (119), pp. 87–
108.

Drews, P., Schirmer, I., Horlach, B., and Tekaat, C. 2017. “Bimodal Enterprise Architecture Management:
The Emergence of a New EAM Function for a BizDevOps-Based Fast IT,” in 21st International
Enterprise Distributed Object Computing Workshop, pp. 57–64.

Fowler, M. 2003. “Who Needs an Architect?,” IEEE Software (20:5), Los Alamitos: IEEE Computer
Society Press, pp. 11–13.

Fuchs, C., and Hess, T. 2018. “Becoming Agile in the Digital Transformation: The Process of a Large-Scale
Agile Transformation,” in 39th International Conference On Information Systems, San Francisco.

Gerster, D., Dremel, C., and Kelker, P. 2018. “‘Agile Meets Non-Agile’: Implications of Adopting Agile
Practices at Enterprises,” in 24th Americas Conference on Information Systems.

Greefhorst, D., and Proper, E. 2011. Architecture Principles: The Cornerstones of Enterprise
Architecture, Berlin: Springer.

Hanschke, S., Ernsting, J., and Kuchen, H. 2015. “Integrating Agile Software Development and Enterprise
Architecture Management,” in 48th Hawaii International Conference on System Sciences.

Hauder, M., Roth, S., Schulz, C., and Matthes, F. 2014. “Agile Enterprise Architecture Management: An
Analysis on the Application of Agile Principles,” in International Symposium on Business Modeling
and Software Design.

Horlach, B., Drechsler, A., Schirmer, I., and Drews, P. 2020. “Everyone’s Going to Be an Architect: Design
Principles for Architectural Thinking in Agile Organizations,” in Proceedings of the 53rd Hawaii
International Conference on System Sciences.

Kettunen, P., and Laanti, M. 2017. “Future Software Organizations - Agile Goals and Roles,” European
Journal of Futures Research (5:1), p. 16.

Kulak, D., and Li, H. 2017. “The Journey to Enterprise Agility: Systems Thinking and Organizational
Legacy,” The Journey to Enterprise Agility: Systems Thinking and Organizational Legacy, Cham:
Springer International Publishing.

Leffingwell, D. 2007. Scaling Software Agility: Best Practices for Large Enterprises, Addison-Wesley.
Lethbridge, T. C., Sim, S. E., and Singer, J. 2005. “Studying Software Engineers: Data Collection

Techniques for Software Field Studies,” Empirical Software Engineering (10:3), pp. 311–341.
Miles, M., Hubermann, M., and Saldana, J. 2014. Qualitative Data Analysis: A Methods Sourcebook,

Thousand Oaks: Sage Publications.
Rogers, D. L. 2016. The Digital Transformation Playbook: Rethink Your Business for the Digital Age,

Columbia University Press.
Runeson, P., and Höst, M. 2009. “Guidelines for Conducting and Reporting Case Study Research in

Software Engineering,” Empirical Software Engineering (14:2), Springer, p. 131.
Scheerer, A., Hildenbrand, T., and Kude, T. 2014. “Coordination in Large-Scale Agile Software

Development: A Multiteam Systems Perspective,” in 47th Hawaii International Conference on
System Sciences, pp. 4780–4788.

Sherehiy, B., Karwowski, W., and Layer, J. 2007. “A Review of Enterprise Agility: Concepts, Frameworks,
and Attributes,” International Journal of Industrial Ergonomics (37:5), Elsevier, pp. 445–460.

Stake, R. 1995. The Art of Case Study Research, Thousand Oaks: Sage Publications.
Toth, S. 2015. Vorgehensmuster Für Softwarearchitektur: Kombinierbare Praktiken in Zeiten von Agile

Und Lean, Munich, Germany: Carl Hanser Verlag.
Uludağ, Ö., Kleehaus, M., Erçelik, S., and Matthes, F. 2019. “Using Social Network Analysis to Investigate

the Collaboration between Architects and Agile Teams: A Case Study of a Large-Scale Agile
Development Program in a German Consumer Electronics Company,” in Lecture Notes in Business
Information Processing (Vol. 355), Montreal, pp. 137–153.

Uludağ, Ö., Kleehaus, M., Xu, X., and Matthes, F. 2017. “Investigating the Role of Architects in Scaling
Agile Frameworks,” in 21st International Conference on Enterprise Distributed Object Computing
Conference, pp. 123–132.

Yin, R. 1994. Case Study Research: Design and Methods (5th Ed.), Thousand Oaks: Sage Publications.

299

	Table of Content
	List of Figures
	List of Tables
	Part A
	1 Introduction
	1.1 Motivation
	1.2 Research Questions
	1.3 Structure of the Dissertation

	2 Theoretical Background
	2.1 Agile Software Development
	2.1.1 Agile Manifesto
	2.1.2 Agile Software Development Methods
	2.1.3 Scrum
	2.1.4 Extreme Programming

	2.2 Lean Software Development
	2.3 Large-Scale Agile Development
	2.3.1 Definition of Large-Scale Agile Development
	2.3.2 Scaling Agile Frameworks
	2.3.2.1 Scaled Agile Framework
	2.3.2.2 Large-Scale Scrum
	2.3.2.3 Disciplined Agile Delivery

	2.4 Patterns
	2.5 Communication Networks

	3 Research Design
	3.1 Research Strategy
	3.2 Research Methods
	3.2.1 Systematic Mapping Study
	3.2.2 Structured Literature Review
	3.2.3 Survey Research
	3.2.4 Case Study Research
	3.2.5 Pattern-Based Design Research

	Part B
	1 Revealing the State of the Art of Large-Scale Agile Development Research: A Systematic Mapping Study
	2 Investigating the Role of Architects in Scaling Agile Frameworks
	3 Evolution of the Agile Scaling Frameworks
	4 Investigating the Adoption and Application of Large-Scale Scrum at a German Automobile Manufacturer
	5 Identifying and Structuring Challenges in Large-Scale Agile Development Programs based on a Structured Literature Review
	6 Documenting Recurring Concerns and Patterns in Large-Scale Agile Development
	7 Identifying and Documenting Recurring Concerns and Best Practices of Agile Coaches and Scrum Masters in Large-Scale Agile Development
	8 Using Social Network Analysis to Investigate the Collaboration Between Architects and Agile Teams: A Case Study of a Large-Scale Agile Development Program in a German Consumer Electronics Company
	9 What to Expect from Enterprise Architects in Large-Scale Agile Development? A Multiple-Case Study
	10 Investigating the Role of Enterprise Architects in Supporting Large-Scale Agile Transformations: A Multiple-Case Study

	Part C
	4 Discussion
	4.1 Summary of Results
	4.2 Implications for Research
	4.3 Implications for Practice

	5 Limitations
	6 Conclusion and Future Research
	6.1 Conclusion
	6.2 Outlook

	Bibliography
	Publications
	Abbreviations
	A Embedded Publications in Original Format

