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Abstract
Electron cyclotron resonance heating (ECRH) can drive large current densities through electron
cyclotron current drive (ECCD). ECCD is expected to be crucial for high-performance plasmas
in future fusion reactors like ITER and DEMO, making the current drive efficiency of ECCD a
critical design parameter for future reactors. In present-day devices, good agreement between
measured and predicted current drive efficiency has been found. However, to ensure the
reliability in future machines, a direct validation of the electron momentum distribution function
is needed.

As a first step towards this goal, we present in this paper oblique electron cyclotron emission
(ECE) measurements of a low-density plasma in the ASDEX Upgrade tokamak. Two oblique
ECE diagnostics are used to allow the simultaneous measurements of electrons streaming co-
and counter-directionally with the plasma current. Predictions for the distribution function are

7 ASDEX Upgrade team: See author list of H Meyer et al 2019 Nucl. Fusion 59 112014.
8 See http://www.euro-fusionscipub.org/eu-im.
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computed with the bounce-averaged Fokker-Planck code RELAX.9 To allow direct comparison
with the measurements, synthetic radiation temperatures are computed with the code ECRad.10

Good agreement is found if radial transport occurring predominantly at low electron energies is
included.
We demonstrate that oblique ECE diagnostics measure the electron distribution function

directly at the ECRH deposition site in phase space. Furthermore, they are sensitive to the
abundance of pitch-angle scattered electrons that reduce the ECCD efficiency. Limitations and
uncertainties of the measurements and the modeling are discussed.

Keywords: electron cyclotron current drive, electron cyclotron emission,
non-thermal electron velocity distribution

(Some figures may appear in colour only in the online journal)

1. Introduction

Electron cyclotron resonance heating (ECRH) is a technique
that utilizes focused, MW-strong microwave beams to heat a
magnetized plasma. If the power is injected obliquely to the
magnetic field, the microwave power is deposited onto elec-
trons streaming in a particular direction. This technique is
called electron cyclotron current drive (ECCD) [1], as it can
drive significant and localized currents inside the plasma. Both
qualities are highly desirable for a fusion power plant, and
most current and planned fusion reactors have an ECRH sys-
tem [2–10].

A critical quantifier for the design of ECRH systems is
the current drive efficiency, i.e. how much current can be
driven per unit of absorbed power. In most present and planned
fusion reactors based on the magnetic confinement concept,
the deposited amount of power density is small enough such
that the magnitude of the driven current scales linearly with
respect to the injected power [11, 12]. This implies that
the changes in the electron distribution function caused by
ECRH are minimal. If, however, the energy flux from the
beam to the plasma is sufficiently large, or electron density
(ne) is sufficiently low [11], the perturbation of the distri-
bution function becomes large enough to affect the absorp-
tion of electron cyclotron waves by the plasma, rendering the
current drive efficiency non-linear with respect to the input
power.

Regardless of whether the ECCD response is linear or not,
the driven current is given by the steady-state electron distri-
bution function subject to collisions and electron cyclotron
diffusion due to the ECRH absorption [13]. In addition to
this, radial transport can play a significant role [11, 14] and,
in tokamaks, so can the parallel electric field [15]. Several
studies have confirmed the overall accuracy of the theoretical
model for ECCD [16–21]. However, none of the measurement
techniques employed in these studies are able to resolve the
electron distribution function in momentum space directly at
the site of microwave absorption. To ensure the reliability of

9E Westerhof et al, Rijnhuizen report,1992.
10S Denk et al, Computer Physics Communications, p. 107175, 2020.

the theoretical model for ECCD, it is desirable to verify the
predicted electron momentum distribution function directly,
instead of only the current profile derived from it.

This paper presents a first step to confirm the quasi-linear
theory for ECCD using oblique electron cyclotron emission
(ECE) measurements capable of resolving the electron distri-
bution function at the ECRH deposition site in the phase space
spanned by a radial coordinate and cylindrical momentum
space. Oblique ECE diagnostics have already proven to be a
useful tool for the assessment of the current drive efficiency of
lower hybrid current drive [22], which is another wave-based
scheme for electron heating. Furthermore, qualitative studies
of non-thermal electron distributions have been made with
oblique ECE [23–26], and an oblique ECE system is planned
for ITER [27].

In this paper, the measurements of ASDEX Upgrade
(ASDEX Upgrade) discharge #35 662 taken by two oblique
ECE diagnostics are compared to synthetic ECE spectra com-
puted with the electron cyclotron radiation transport model
for advanced data analysis (ECRad) [28]. For the compu-
tation of the electron distribution functions, the quasi-linear
Fokker-Planck code RELAX [29] is used. The current drive
and power deposition profiles obtained with RELAX are com-
pared against linear calculations with Gray [30] and TOR-
BEAM [31, 32]. Since radial transport can be a significant
factor for the current drive profile [11, 14, 20], three different
models for the momentum dependence of the radial diffusion
coefficient are investigated. Lastly, the phase-space sensitivity
of radial and oblique ECE measurements is discussed.

The paper is structured into six sections. First, the oblique
ECE system at ASDEX Upgrade and the design of discharge
#35 662 are presented. Next, the data analysis yielding the
plasma profiles and the equilibrium is briefly discussed, and
the modeling of the electron distribution function and the syn-
thetic ECE signals is presented. In section 4, the measure-
ments of two oblique ECE systems and a radial ECE system
are compared to the forward-modeled radiation temperatures
(Trad) for four empirical models for the radial transport coef-
ficient. Section 5 discusses the phase-space sensitivity of the
radial ECE and the two oblique systems. Section 6 addresses
the limitations of this study. The paper concludes with a sum-
mary in section 7.
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2. Diagnostic system and discharge scenario

This section gives a short overview of the oblique ECE system
at ASDEXUpgrade and describes ASDEXUpgrade discharge
#35 662, which will be discussed in this paper.

2.1. Oblique ECE system

The oblique ECE measurements are performed with the
radiometers used by the collective thomson scattering (CTS)
system [33, 34]. It uses ECRH wave guides and launchers for
the transmission, which allows for a highly flexible viewing
geometry. The CTS diagnostic consists of two independent
radiometers, each connected to one of the ECRH beam lines.
The radiometer ‘CTA’ features 50 irregularly spaced chan-
nels ranging from 4.4GHz below to 4.5GHz above 105GHz,
which is the frequency of the gyrotron used in the experi-
ment. The second radiometer ‘CTC’ has 42 ECE channels
that are spaced slightly more narrowly than the ‘CTA’ sys-
tem. The lowest measured frequency is 3.0GHz below the
gyrotron frequency and the highest 3.0GHz above it. CTS
and conventional ECE diagnostics are multi-channel hetero-
dyne radiometers. One important difference is that the sig-
nal strength of CTS is significantly lower than that of ECE,
and so must be strongly amplified. To protect the elec-
tronics from correspondingly amplified non-CTS signals at
the same frequencies, voltage-controlled variable attenuators
are integrated into both receivers. They allow for adjustable
attenuation in the range of 0 to −40 dB. Both receivers
are equipped with two rotatable wire grids allowing for
precise mode filtering even at oblique observation angles.
For the discussed experiments, X-mode polarization was
selected.

The diagnostic was not individually calibrated for the
experiment discussed in this paper. Since an absolute calibra-
tion of the diagnostic is necessary for the validation of ECCD-
theory, the diagnostic is cross-calibrated against the electron
temperature (Te) profiles obtained with a conventional ECE
system, which in turn is calibrated against hot and cold black
body radiators [35]. How the cross-calibration is performed
is discussed in appendix A. The calibrated measurements of
this diagnostic are averaged over 10 ms. The error bars shown
in figures indicate one standard deviation of the statistical
uncertainty plus one standard deviation of estimated system-
atic uncertainty derived from the cross calibration as discussed
in reference [28].

2.2. Discharge scenario

This paper discusses the oblique ECE measurements of the
ASDEX Upgrade discharge #35 662 with a toroidal magnetic
field Bt =−1.8T and a plasma current of Ip = 460kA. A
single gyrotron at 105GHz, and a power of 490 kW is used.
Due to the toroidal injection angle of−20◦, the gyrotron drives
counter-ECCD (short ctr-ECCD).

The discharge can be structured into two sections: A
phase without ECRH for the cross-calibration of the oblique
ECE utilizing a neutral beam injection (NBI) power ramp

and a phase in which ECCD drives the electron momentum
distribution non-thermal. Figure 1 shows a time trace of Te,
ne, and the ECRH and NBI heating power. The period over
which the calibration is performed is shaded in cyan, and the
time-point t= 3.84s discussed in this paper is marked with a
vertical red line.

The toroidal angles of the oblique ECE arrays are+20◦ for
‘CTA’ and −20◦ for ‘CTC’. A top view of the beam paths is
shown in figure 2(b). It is noteworthy that, even though ‘CTC’
is the array with the same toroidal angle as the ECRH, it is
sensitive to co-streaming electrons. Since the wave vector of
ECE is rotated by 180◦ with respect to the ECRH wave vec-
tor, the Doppler-shift also has an opposite sign. Accordingly,
‘CTA’ is the array directly sensitive to the counter-streaming
electrons subject to ECCD. In the scope of this paper, the sens-
itivity to either co- and ctr-streaming electrons is the most
important property of these two diagnostics. Therefore, they
will be referred to as ctr-ECE (‘CTA’) and as co-ECE (‘CTC’)
from here on out. The sensitivity of the two arrays is discussed
in detail in section 5.

The magnetic equilibrium is shown in figure 2, which also
indicates the volume of sight (VOS) of the radial ECE [36], the
two oblique ECE receivers, and the ECRH beam. Figure 2(b)
contains the corresponding top view. The ‘warm resonance
positions’ [37] (not depicted), i.e. the maxima of the birthplace
distributions [37, 38] of the two oblique ECE diagnostics lie
close to the flux surfaces onto which the gyrotron deposits its
power (see section 5).

3. Data analysis and modeling

A multitude of measurements and codes is needed in order
to predict the synthetic ECE spectra during ECCD. The flow
chart in figure 3 illustrates the data flow and the interdependen-
cies between the different codes. This section guides the reader
through this flowchart from the top to the bottom, The relevant
sections are indicated on the flow chart.

3.1. Data analysis

Computing the electron momentum distribution functions
requires kinetic profiles (Te and ne), a magnetic equilibrium,
and an estimate for the effective ion charge profile (Zeff). The
kinetic profiles and the equilibrium are also needed for the cal-
ibration of the oblique ECE (see appendix A). All quantities
are derived from the measurements by the means of Integrated
Data Analysis (IDA) [39].

The following set of diagnostics is considered in IDA:

≫ ECE [36] for Te;
≫ Thomson scattering [40] for Te and ne;
≫ Plasma interferometry [41] for ne;
≫ Lithium beam emission spectroscopy [42] for ne.

The IDA analysis is performed twice, first with a magnetic
equilibrium provided by the CLISTE code [43], and then with
the magnetic equilibrium reconstructed by the integrated data

3
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Figure 1. (a) Time evolution of Te and ne at the magnetic axis. (b) NBI and ECRH power for discharge #35 662. The phase designated for
the cross-calibration of the oblique ECE is shaded cyan. The point discussed in this paper is marked by the red vertical line.

Figure 2. Plasma shape and VOS of the ECE diagnostics and trajectory of the ECRH beam for discharge #35 662. The VOS of the radial
ECE is shown in turquoise, and the VOS of the oblique ECE are blue (ctr-ECE or ‘CTA’) and orange (co-ECE or ‘CTC’). Please note that
they overlap in (a) and that the VOS of the co-ECE overlaps with the ECRH beam in (b). The beam trajectory of the ECRH is color-coded to
indicate the intensity of the individual rays. The separatrix and the magnetic axis are marked in dark blue. Figure (a) shows a poloidal cross
section and figure (b) the corresponding top view.

analysis equilibrium (IDE) code [44]. This two-step process is
necessary because the IDE code requires the kinetic profiles
as an input. It also needs the ion pressure profile, which is
obtained from charge exchange recombination measurements
[45]. This diagnostic directly delivers the ion temperature (Ti)
profile during NBI power injection. Additionally, it enables
Bremsstrahlung measurements from which the Zeff profile can
be estimated [46]. From the Zeff and the ne profiles, the ion
density profile is derived. Lastly, IDE also needs the fast
ion pressure, which is derived with the RABBIT code [47],
and the ECCD profile, which is computed with TORBEAM
[31, 32].

To achieve a reasonable match between measurements and
theoretical predictions, the equilibrium obtained with IDE is
empirically shifted downwards by a cm. This downward shift

agrees with the uncertainties of the equilibrium position and
the uncertainties of the ECRH deposition location. This is cla-
rified in section 6.

3.2. Electron cyclotron current drive

The electron momentum distribution functions are computed
with the RELAX code [29]. It is a bounce-averaged Fokker-
Planck code that takes into account:

(a) Quasi-linear electron cyclotron damping;
(b) Weakly relativistic, momentum-conserving collisions via

a truncated collision operator;
(c) The parallel electric field;
(d) Radial diffusion [14];
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Figure 3. Flowchart illustrating the data analysis and modeling in this paper. The top layer is the data analysis of the Te and ne profiles and
the magnetic equilibrium. The next level is the ECCD and radial transport modeling. The final layer is the computation of the synthetic ECE
measurements.

(e) The radiation reaction force [36].

With the exception of collisions, all of these effects can
be toggled on and off, which allows their importance to be
assessed.

RELAX does not have an internal ray tracer; hence we rely
on the beam tracing code Gray [30] for this purpose. In the
previous step, TORBEAM was used for ECRH beam tracing
because TORBEAM is tightly integrated with the ASDEX
Upgrade infrastructure. However, Gray is preferable for the
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interfacing with RELAX because the RELAX calculations
were performed on the EUROFUSION WPCD gateway, and
Gray provides its output as a Consistent Physical Object [48]
that can be loaded by RELAX. The integrity of the data trans-
fer from GRAY and RELAX was verified using scenarios in
which the electron cyclotron damping is linear with respect to
the power.

Gray discretizes the beam into concentrically arranged
rays, and in the calculations discussed here, 7 radial times 25
poloidal rays summing up to 1+ 6× 25= 151 total rays are
considered. The rays are shown in figure 2, and the color indic-
ates the power remaining in the individual ray. Since beam
tracing codes are used, diffraction is taken into account, but
beam broadening due to turbulent ne fluctuations is neglected,
the importance of which will be the subject of a future paper.

The loop voltage Uloop responsible for the parallel elec-
tric field is assumed to be radially constant. Its value is
calculated by solving Ip,target = Ip(Uloop), where Ip,target is the
measured plasma current and the profile Ip = Ip(Uloop) is con-
structed through a spline interpolation of the steady-state
current predicted by RELAX with input Uloop = j∆Uloop,
j∈ {0, 1,…, 5}, and ∆Uloop = 0.2V. Since RELAX cannot
compute the bootstrap current, Ip,target is the experimentally
measured current minus the bootstrap current provided by the
IDE [44] code. Radial diffusion is neglected when computing
the loop voltage, since its effect on the plasma current is of
the order of few kA, which is negligible. For t= 3.84s, a loop
voltage of 0.36V is computed, which is reasonably close to
the measured value of 0.44V.

To ensure that the distribution function predicted by
RELAX has been iterated sufficiently to have reached steady-
state, Trad is computed viaECRad for every 500th intermediate
distribution until

√√√√ Nch∑
i=1

(Trad,i(n)−Trad,i(n− 1))2 < Nch eV, (1)

where the radiometer channel number is i, Nch is the total
amount of forward-modeled ECE channels, including the
radial ECE+ the two oblique ECE systems, and n is the count
of RELAX iterations.

Figure 4(a) compares the power deposition profile com-
puted by Gray, TORBEAM, and RELAX, considering only
collisions and ECRH. TORBEAM and Gray agree reason-
ably well, and the quasi-linear power deposition profile com-
puted by RELAX is very similar to the two linear counterparts.
Near the magnetic axis, TORBEAM predicts a slightly differ-
ent power deposition profile, which is most likely due to the
way TORBEAM calculates the plasma volume. Figure 4(b)
compares the corresponding current densities. Here Gray and
TORBEAM disagree quite strongly for unknown reasons that
are still under investigation. However, since the distribution
functions computed byRELAX are independent of the two lin-
ear calculations, this is not an issue for the physics investigated
in this paper. RELAX shows the largest driven current. Since
the TORBEAM and RELAX driven current profiles match in

case of a linear ECCD response at 1 kW of power (not depic-
ted), it is safe to conclude that the excess current predicted by
RELAX in figure 4(b) is due to quasi-linear effects. The pre-
dicted total driven currents are −29 kA for Gray, −38 kA for
TORBEAM, and −47 kA for RELAX.

Figure 4(c) shows the Te and ne profiles computed by the
IDA code, which are supplied to RELAX. It also shows the ne
and the ‘Te’ computed from the zeroth and 2nd moment of the
non-thermal RELAX distribution function. The density pro-
file remains unchanged because it is forced to be fixed for all
RELAX calculations shown in this paper to improve numerical
stability. At the peak of the deposition profile, the ‘Te’ as given
by the second moment of the RELAX distribution, is slightly
elevated with respect to the initial temperature. This occurs
in the same region where the TORBEAM and RELAX driven
current profiles deviate from each other, which confirms that
the ECCD response is non-linear in this region.

3.3. Radial transport modeling

Figure 5 shows the electron heat diffusion profile as derived
from the power balance by ASTRA [49]. This profile can-
not be used directly in RELAX due to numerical difficulties
arising in RELAX for the very large heat diffusivities near the
plasma edge. This problem can be avoided by disregarding
radial transport in this region completely, which the oblique
ECEmeasurements are anyway insensitive to. Hence, the sim-
plified χe profile as depicted in figure 5(a) is considered in the
RELAX computations.

Three different models for the momentum space depend-
ence are considered in this paper, here termed models A,
B, and C. For model A, the radial diffusion coefficient is
momentum independent and for

ModelB : DModelB(ρpol,u) = χ∗
e,simpl(ρpol)

u2

u2th,0
(2)

and

ModelC : DModelC(ρpol,u) = χ∗
e,simpl(ρpol)exp

(
− u2

4u2th,0

)
(3)

with u= p
me,0c0

the total dimensionless momentum, whereas p
is the electron momentum, me,0 the electron rest mass, c0 the
speed of light in vacuum, and

ρpol :=

√
Ψpol −Ψpol,ax

Ψpol,sep −Ψpol,ax

where Ψax and Ψsep are the poloidal flux at the magnetic axis
and the separatrix, respectively. The thermal momentum com-
puted for Te at the magnetic axis is denoted as uth,0, and it
is approximately 0.09 for the discussed discharge and time
point. While it might be more meaningful to use the local
thermal velocity as reference, this would make the normaliza-
tion discussed below much more complicated due to the radial
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Figure 4. (a) Comparison of the power deposition profiles computed by Gray, TORBEAM, and RELAX for the case of only quasi-linear
electron cyclotron diffusion and collisions. (b) as in (a) but for the current density profile. (c) Comparison of the initial ne and Te with their
respective counterparts computed from the zeroth and second moment of the RELAX distribution function.

Figure 5. (a) Electron heat diffusivity profile as derived from the power balance by ASTRA. Due to numerical issues in RELAX occurring
with the original χe profile, the simplified version χe,simpl is considered in the RELAX calculations. (b) Comparison of χe,simpl with its
renormalized counter parts χ∗

e,simpl for model B and C.

dependence of uth. The normalizedχ∗
e,simpl(ρpol) is obtained by

dividing χe,simpl(ρpol) by

ModelB : NB(ρpol) =

ˆ ∞

−∞

ˆ ∞

−∞

u2⊥ + u2∥
u2th,0

f̂(ρpol,u⊥,u∥)u⊥du∥du⊥ (4)

ModelC : NC(ρpol) =

ˆ ∞

−∞

ˆ ∞

−∞
exp

(
−
u2⊥ + u2∥
4u2th,0

)
f̂(ρpol,u⊥,u∥)u⊥du∥du⊥ (5)

with u∥ and u⊥ the parallel and perpendicular momentumwith

respect to the magnetic field, and f̂ the electron momentum

distribution function normalized to unity. This renormaliza-
tion ensures that the effective, momentum space integrated
diffusion coefficient is comparable among all three models
at each radial point. Since model A carries no momentum
dependence, and the distribution function is normalized to
unity, χe,simpl and χ∗

e,simpl are identical for model A. Please see
appendix B for a derivation of the normalization procedure.

The main purpose of the differentiation between mod-
els B and C is to determine whether fast or slow electrons
are responsible for the majority of the radial heat-transport.
Gyrokinetic calculations for off-axis positions in ITER show
that electrostatic turbulence is dominant, and slow, trapped
electrons are responsible for the majority of the radial trans-
port [50]. Qualitatively, the same behavior was also seen in
gyrokinetic calculations of TCV plasmas with central ECCD,
which is similar to the scenario discussed here [51]. Hence, it
is expected that model C should yield the best agreement with

7
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the experiment. If, however, magnetic turbulence is dominant
in the experiment, then the radial transport increases linearly
with electron velocity and one would expect model B to pro-
duce the best agreement with the measurements [52].

3.4. ECRad

The ECRad [28] code is used to compute synthetic ECE spec-
tra. It is a ray tracing code that also solves the radiation trans-
port equation, taking into account a fully relativistic absorption
coefficient and emissivity suitable for non-thermal plasmas. In
the calculations, the effect of finite bandwidth is disregarded,
but the finite width of the volume of sight is modeled by a
rectangular bundle of 5× 5 rays. Aside from this, the config-
uration is the same as in references [28, 36].

4. Comparison of ECE measurements with
modeled spectra

In the following section, all ECE measurements of #35 662
are compared to their synthetic counterparts. The time point
t= 3.84s is chosen because the plasma is stationary around it
for 10ms, which is longer than the approximate time required
to achieve convergence in RELAX. The only non-stationary
feature is a 1/1 (where m/n represent the poloidal and tor-
oidal mode number) ideal magnetohydrodynamic (MHD) kink
mode, rotating in the plasma center with a frequency of about
2.6 kHz. Its possible effects on themeasurements and themod-
eling are addressed in the discussion at the end of the paper
(see section 6).

4.1. Conventional, radial ECE

Before addressing the more important oblique ECE measure-
ments, it is useful to discuss the radial ECEmeasurements that
deliver the Te information for the truncated collision operator
in RELAX and the initial distribution function.

Figure 6 compares the measured ECE spectrum against two
synthetic sets of Trad. The synthetic spectrum depicted with
purple squares is derived from a thermal distribution func-
tion, while the distribution computed by RELAX is considered
in ECRad for the data visualized with blue upside down tri-
angles. Radial diffusion is neglected in the RELAX calcula-
tion. The Te profile considered for the thermal Trad is depicted
by a black line, and the upper and lower uncertainty bands,
as estimated by the IDA, are shown via the dashed purple
lines.

Generally, the deviations between the two synthetic ECE
spectra are negligible. Most importantly, the distribution func-
tion computed by RELAX results in Trad, which are consistent
with the ECE measurements in the plasma core. This means
that the modeling is self-consistent, and that the Te profile con-
sidered in the truncated collision operator is realistic.

For cold resonance position ρpol,res,cold > 1.0, there are
deviations between the two sets of Trad in figure 6. However,
the optical depth of these channels is below 0.5, and ECRad
is unable to model these ECE measurements properly due to
its limited wall reflection model. Without a more suitable wall

Figure 6. Comparison of Trad measured with the radial ECE with
two sets of synthetic data, i.e. based on a thermal plasma and
derived from a RELAX distribution in the absence of radial
diffusion. The figure also shows the Te profile derived with IDA
(black solid line) and its corresponding upper and lower error bands
(dashed purple lines).

reflection model, e.g. the one proposed in reference [53], these
measurements cannot be interpreted quantitatively.

4.2. Oblique ECE measurements

The VOS of the oblique ECE is chosen such that it measures
the distribution function directly at the deposition site of the
ECRH (see also section 5). The oblique ECE measurements
are compared to five sets of synthetic spectra assuming:

(a) Thermally distributed electrons.
(b) The distribution function computed by RELAX in the

absence of radial diffusion.
(c)–(e) The distribution functions computed by RELAX for

the radial diffusion models A, B, and C.

This means that the electron cyclotron diffusion, collisions,
the loop voltage, and the radiation reaction force are included
in all considered RELAX calculations. Notably, the effect
of the parallel electric field is non-negligible, as it reduces
the forward-modeled radiation temperatures by 5–10% when
added to calculations with collisions and electron cyclotron
diffusion. The radiation reaction force [36], however, results
in negligible changes in Trad when added into the mix.

Figure 7 compares the measured radiation temperatures
of the ctr-ECE (reminder: this is the ‘CTA’ array) with the
five sets of synthetic data computed with ECRad. As the

8
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Figure 7. Comparison of Trad measured with the ctr-viewing
oblique ECE primarily sensitive to counter-streaming electrons with
five sets of synthetic data, i.e. thermal plasma, RELAX without
radial diffusion (i.e. RELAX), and RELAX with radial diffusion
model A–C (i.e. Model A, B, and (C).

name suggests, this diagnostic is primarily sensitive to ctr-
streaming electrons, which are directly affected by the ECCD.
A thermal plasma is assumed for the data depicted by the
black squares, while a RELAX distribution function in the
absence of radial diffusion is assumed for the dark blue tri-
angles. Furthermore, figure 7 shows the synthetic data for the
three different radial diffusion models: A (light blue upside
down triangles), B (orange diamonds), and C (green circles).
The various Trad are mapped to the maximum of the birth-
place distribution of observed intensity, i.e. ‘warm’ resonance
positions ρpol,res,warm. To make the ρpol,res,warm-positions uni-
form for all Trad, the birthplace distributions resulting from the
non-thermal distribution function in the absence of radial dif-
fusion are used for all ‘warm’ resonance positions. Figure 8
shows the same as figure 7 but for the co-ECE (reminder:
this is the ‘CTC’ array), which is primarily sensitive to co-
streaming electrons that are only indirectly affected by the
ECCD through collisions.

In figure 7, the agreement between measurements and the
Trad based on RELAX with model C for radial diffusion is
good at the plasma core, and only small discrepancies arise
for 0.2< ρpol,res,warm < 0.27. For the co-ECE, the two inner-
most channels are not matched by model C, but otherwise the
agreement is excellent. The radial diffusion models A and B
result in Trad that only agree for the measurements that are
very close to thermal level. Generally, it appears that model A
smears out the non-thermal features of the distribution func-
tion too much as it starts overpredicting the measurements at
large ρpol. Most importantly, the large difference in the Trad
predicted bymodels A, B, and C shows that, with oblique ECE
it is possible, to determine which energy domain is responsible
for the radial transport. In this case, model C shows the best
agreement, which is expected given gyrokinetic simulations
for ITER [50].

Figure 8. Same as figure 7 but for the co-ECE.

When examined closely, the ctr-ECE measurements
between 0.18< ρpol,res,warm < 0.27 in figure 7 show a slight
sinusoidal structure, which cannot be seen in any of the syn-
thetic Trad and neither in the co-ECE measurements. Given the
comparatively large error bars, it is hard to tell whether this
is an error in the cross-calibration or due to a feature in the
distribution function that is not captured by the distribution
functions computed by RELAX. It is noteworthy that the
cross calibration is unlikely to yield systematic errors with
this shape, as the Te profile should be reasonably smooth at
these length scales. Without further experiments verifying the
existence of these structures, an interpretation is not feasible
at this point.

5. Sensitivity of the ECE measurements in phase
space

The main novel feature of this paper is the utilization of
oblique ECE for the validation of the quasi-linear theory for
ECCD. The main merit of oblique ECE diagnostics is the
phase space region they are able to resolve. In this section, the
phase-space sensitivity of the radial and oblique ECE meas-
urements presented in the previous section is discussed.

5.1. Birthplace distribution of observed intensity in phase
space

The main tool for this discussion is the birthplace distribu-
tion function of observed intensity [28, 37, 38]. Ordinarily,
this distribution is constructed as a function of a single, radial
coordinate, but it can be extended to phase space. The basic,
one-dimensional birthplace distribution of observed intensity
Dω(s) at frequency ω is given as a function of the arc-length s
[37] by

Dω(s) :=
jω(s)Tω(s)
Iω(sobs)

, (6)

where jω(s) is the emissivity, Iω(sobs) is the intensity obtained
by solving the radiation transport equation, and lastly, Tω(s)
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is the transmittance of the plasma slab between point s and the
observation point sobs. It is defined as

Tω(s) := exp

(
−
ˆ sant

s
αω(s

′)ds ′
)
, (7)

where sant is the arc-length at the antenna position and αω is
the absorption coefficient as given by reference [54]. In the
case of a calculation considering a finite volume of sight, as
is done here, it is best to bin the contribution of the individual
rays to a ρpol-axis.

To extend the birthplace distribution to phase space, the
integral in the dimensionless parallel momentum u∥ in the
emissivity is omitted [28, 54]

D∗
ω(s,u∥) :=

Tω(s)
Iω

ωp,0
2ω

2πc30

ˆ (
n

ω̄N⊥

)2

∣∣∣∣(ex+ ω̄N⊥

n
u∥ez

)
Jn(b)−

ib
n
J ′n(b)ey

∣∣∣∣2
× f̂(s,u⊥,u∥)δ

(
γ− u∥N∥ −

n
ω̄

) u⊥
γ
du⊥. (8)

For details on the notation, please see reference [28], and note
the electron momentum distribution function normalized to
unity is expressed as f̂, while it is denoted as just f in refer-
ence [28]. This extension is only valid for a single ray, and in
the following, only the central ray is discussed.

Analogously, amock-up of the phase-space-resolved power
deposition profile can be obtained by replacing the emissivity
with the absorption coefficient in equation (6) and removing
the normalization Iω. It is noteworthy that this function is not
really a power deposition profile anymore because it lacks the
dependency of the flux surface volume that the power depos-
ition profile holds. Instead, this construct is a function defined
for a singular ray of the ECRH beam, e.g. the central ray in the
following, and will be denoted as dP∗

ECRH/ds in the following.

5.2. Power deposition in phase space

Illustrations of the resonance of an infinitely thin ECRH beam
in momentum space have been in use for quite some time now
for understanding ECCD (see e.g. reference [55]). With the
following illustration of the three-dimensional mock-up of the
power deposition profile, we also intend to capture the spatial
dependence of the resonance in momentum space.

In figure 9(a), the power deposition profile as computed by
Gray and RELAX are shown. For reference, Te is also indic-
ated. Figure 9(b) illustrates the resonance in momentum space
of the central ray. The figure also shows the iso-contours of the
distribution function computed by RELAX for the radial loca-
tion indicated by themiddle vertical line in (a), i.e. ρpol = 0.16.
While the contours are circular at small u indicating a thermal
distribution, significant anisotropy arises for larger u.

The color-coded semicircular lines show where the reson-
ance condition is fulfilled at the three radial locations indicated
by the dashed vertical lines in figure 9(a). The innermost semi-
circle in 9(b) corresponds to the outermost radial location. The
radius of the semicircle increases with decreasing ρpol. The

resonances are color-coded, where yellow corresponds to a
large amount of deposited power and pink to negligible power
deposition. Most of the power is deposited at low momenta.

Note that figure 9(b) only illustrates the behavior of the
central ray of the ECRH beam. In reality, the resonance is
broadened in momentum space due to the finite width of the
parallel wave number k⃗∥ spectrum and the finite spatial extent
of the ECRH beam. Here, it is useful to point out that quasi-
optical codes like Gray underestimate the k⃗-spectrum at the
beam focus [56]. To compensate for this, RELAX slightly
broadens the k⃗∥-spectrum internally. The benefit of using a
quasi-optical code like Gray is of course that spatial broad-
ening of the beam due to diffraction is correctly included.

The resonance of the ECRH beam defines our region of
interest in phase space in which the distribution function has
to be measured to validate the quasi-linear theory for ECRH
damping. In the following section, it is demonstrated that this
region is inaccessible to conventional radial ECE. That it is
accessible with oblique ECE is shown in section 5.4.

5.3. Phase-space sensitivity of radial ECE diagnostics

Figure 10(a) shows a zoomed-in view of figure 9(a) and with
a birthplace distribution added, representing the sensitivity of
the radial ECE channel with ρpol,res,cold = 0.17. In figure 10(b),
the corresponding resonance lines for the radial ECE dia-
gnostic were added. As indicated by the green coloration of
the resonance lines, the diagnostic is mainly sensitive to slow,
trapped electrons. In fact, there is no direct overlap between
the phase space region where the ECRH deposits significant
amounts of power and the one where the diagnostic is actually
sensitive.

For u< 0.15, RELAX predicts what is essentially a thermal
distribution function. As figure 10(b) shows this channel is
only sensitive to electrons with u< 0.15, in the plasma core.
Therefore, it is unsurprising that the forward-modeled Trad
for this channel is identical to that expected from a thermal
distribution. Furthermore, the Te profile inferred from the
radial ECE measurements is suitable for the truncated colli-
sion operator, as only highly collisional electrons contribute
to the measurement. This can change at very large Te where
the strongly down-shifted emission from relativistic electrons
can contribute through higher harmonics. This requires a pop-
ulation of electrons with u> 1.0. This momentum corres-
ponds to more than twelve times the thermal momentum in the
plasma core of #35 662. In addition, at larger Te, the contribut-
ing electrons will have larger momenta and, consequentially,
lower collisionality, making plasma core measurements with
radial ECEmore prone to non-Maxwellian tails in the electron
momentum distribution.

One of the most prominent features of non-thermal ECE
is a large Trad observed at frequencies that have no cold res-
onance position in the plasma. However, such measurements
are not probing the phase space region where the majority
of the ECRH power is absorbed. While the resonance lines
of the ECE and ECRH might still intersect, the majority of
the ECRH power absorption occurs at comparatively low
momenta, whereas the ECE stems from a few, very highly
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Figure 9. (a) Power deposition profiles computed by Gray and RELAX and the Te profile. The contours in (b) represent the distribution
function computed by RELAX at the radial location marked by the middle vertical line in (a). The color-coded semi-circles indicate where
the ECRH power is absorbed in phase space at the three radial locations marked by the vertical lines in (a). The outermost semicircle in (b)
corresponds to the innermost radial location in (a), the middle to the middle radial location, and the innermost to the outermost radial
location.

Figure 10. (a) Zoomed-in view of figure 9(a) with the addition of the birthplace distribution function (BPD) of a radial ECE channel with
the cold resonance at ρpol,res,cold = 0.17. Figure (b) shows the same as figure 9(b), but the resonance lines of this radial ECE channel were
added. The radial locations for these resonance lines are indicated by blue vertical lines in (a). Since the birthplace distribution is extremely
narrow, two of the resonance lines overlap and, hence, only two are visible.

energetic electrons. This is demonstrated in figure 11, which
shows the same as figure 10, but for a radial ECE channel with
ρpol,res,cold = 0.96. This particular channel is chosen because
its optical depth is approximately one, which means that the
measurement is not yet completely dominated by wall reflec-
tions, but still sensitive to non-thermal, down-shifted emission
originating from the plasma core.

The birthplace distribution in figure 11(a) was multiplied
by 100 to make the core contributions more easily visible. It

shows a large peak near the cold resonance near the plasma
edge, but also a small broad region of observed emission near
the plasma core. The corresponding resonance lines in (b)
show that this emission stems from the highly energetic elec-
trons at the intersection of the ECRH and ECE resonance lines.
While the distribution function is highly non-thermal in this
region of momentum space, the vast majority of the power
deposition occurs at lower momenta, which are inaccessible
for the radial ECE.
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Figure 11. As in figure 10 but for a radial ECE channel with the cold resonance at ρpol,res,cold = 0.96.

5.4. Phase-space sensitivity of oblique ECE diagnostics

Figure 12 shows the same as figure 11, but for a channel of the
ctr-ECE. As can be seen in (a), the power deposition profile of
the ECRH and the birthplace distribution of the oblique ECE
channel overlap nearly completely. The only exception is the
very core, at which there is still non-zero power deposition
while the birthplace distribution is vanishingly small. Since
the poloidal alignment between oblique ECE and ECRH is not
quite perfect, the central ray of the oblique ECE is slightly
further away from the magnetic axis than the central ray of the
ECRH (cf. Figure 2(a)). In fact, the measured frequency of this
particular channel is 108.7GHz, while the gyrotron frequency
is 105GHz.

Nevertheless, the radial match between oblique ECE sens-
itivity and ECRH power deposition is good. As with the previ-
ous figures, figure 12(b) compares the resonances of the ECRH
and the ctr-ECE in momentum space. First and foremost, the
coloration of the respective ECE and ECRH resonance lines
indicates that the power is deposited in the region where the
oblique ECE is sensitive. Hence, in this case, the oblique ECE
probes the electrons subject to the quasi-linear electron cyclo-
tron diffusion. This particular channel, with a warm reson-
ance position of ρpol,res,warm = 0.15, belongs to the group of
channels where the agreement between diagnostic and syn-
thetic data is excellent (cf. figure 7) in case of radial diffusion
model C.

When compared in detail, the resonance lines of ECRH
and ECE do not match up perfectly. The discrepancy arises
because the central frequency of this channel differs from fre-
quencies of the gyrotron. Despite the frequencymismatch, this
channel has the best radial overlap with the power deposition
profile.

Figure 13 shows the same as figure 12 but for the chan-
nel with the warm resonance at ρpol,res,warm = 0.25. This chan-
nel measures the ECE at 104.5GHz, which is much closer to

the gyrotron frequency than the previously discussed chan-
nel. Nevertheless, the radial match between birthplace distri-
bution and power deposition profile is worse for this channel
as shown in figure 13(a) due to the slight mismatch of poloidal
launch/viewing angle.

The toroidal observation angle of the co-ECE has the
opposite signwith respect to the ctr-ECE. Inmomentum space,
that causes the resonance lines to be mirrored around the
u∥ = 0 axis. Figure 14 compares the birthplace distribution
for a channel of the co-ECE with the power deposition pro-
file ρpol,res,warm = 0.16, and (b) shows its resonance lines. The
co-ECE does not deliver data on the distribution function in
the region of phase space where the ECRH is absorbed, but
it still delivers valuable information. The deformations of the
distribution functions caused by the ECCD for u∥ < 0 give
rise to the driven current. Some of this current is, however,
compensated by similar deformations appearing for u∥ > 0
due to pitch angle scattering. This effectively reduces the cur-
rent drive efficiency, and the magnitude of this effect can be
assessed with the co-ECE.

5.5. Including the finite width of the ECRH beam and the
VOS

So far only the central ray of the ECRH beam and the VOS
of the oblique ECE were considered for the momentum space
plots. To include the finite width of the beam and the VOS, the
3D power deposition and birthplace distribution profiles of the
individual rays need to be binned to a universal momentum
space grid. This can be done by integration in two steps. First,
the resonance line at each radial point needs to be binned to
the momentum space grid. This is accomplished by finding the
intersections between the resonance line and the grid cells.
Then, the path integral of the birthplace distribution from one
border of the cell to the other is added to the value of the cell.
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Figure 12. As figure 11 but for an oblique ECE channel of the ctr-ECE with the warm resonance at ρpol,res,warm = 0.15.

Figure 13. As figure 12 but for an oblique ECE channel with a warm resonance position slightly further outside than in figure 12 at
ρpol,res,warm = 0.25.

The radial dependency is removed by repeating this process for
each radial point and weighing the individual contributions of
the radial point with the value of 1D power deposition or birth-
place distribution function, respectively.

In figure 15, the resulting, binned 3D birthplace distribu-
tion function of the two oblique ECE diagnostics is compared
to the corresponding power deposition profile of the gyrotron.
The yellow to purple contour lines indicate the sensitivity of
the oblique ECE diagnostics, while the green contour surfaces
show where the gyrotron deposits its power in momentum
space. The contours marked with ctr-ECE are for the same
channel as in figure 12, and for the co-ECE, it is the same as
in figure 14. The plot confirms that the ctr-ECE measures the

distribution function in the region of momentum space where
the ECRH deposits its power.

5.6. Oblique ECE as a diagnostic for the plasma current

Given that oblique ECE can be set up to measure either co-
or counter streaming electrons, one could come to the con-
clusion that it might be able to deliver a measurement for the
local plasma current. Unfortunately, for #35 662, the sensitiv-
ity of the oblique ECE is not in the right region of momentum
space to allow this. This is illustrated in figure 16. The blue-red
colored contour surfaces indicate ( f− f0)β∥ with f the elec-
tron momentum distribution function computed by RELAX,
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Figure 14. As figure 12 but for an oblique ECE channel of the co-ECE with a warm resonance position at ρpol,res,warm = 0.16.

Figure 15. Comparison of the momentum-space sensitivity (yellow
to purple contour lines) of the ctr- and co-ECE with the regions in
momentum where the ECRH deposits its power (green contour
surfaces).

f 0 the thermal distribution as given by the Te profile, and
β∥ the parallel electron velocity normalized to the speed of
light. In figure 16(a) only collisions, and ECCD are considered
for f, while (b) also includes the loop voltage, the radiation
reaction force, and radial diffusion model C in the RELAX
calculation.

To obtain the contour surfaces, the spatial dependency of
( f− f0)β∥ is removed through integration, where each radial
point is weighted with the local current density times the
surface of the flux surface. Accordingly, ( f− f0)β∥ represents
the current distribution in momentum space, and the plasma

current can be computed by integrating over momentum space
and multiplying with the elementary charge.

The momentum space current density is compared to the
momentum-space sensitivity of a single channel for each of
the two oblique ECE diagnostics, exactly like in figure 15,
except that in figure 16(a), the considered distribution func-
tions only account for quasi-linear electron cyclotron diffu-
sion and collisions. In (b), the contour lines are the same as in
figure 15.

In the ECCD-only case, a small portion of the momentum
space current density is covered by the sensitivity of the
oblique ECE. However, the coverage is insufficient to infer the
entire plasma current. In themore realistic case depicted in (b),
the coverage is even more limited. The majority of the current
in the plasma is ohmic, and it resides at very low u⊥, a region
inaccessible to ECE in general. Nevertheless, the diagnostic
approach might still have some potential for stellarators where
no loop voltage exists.

6. Uncertainties and limitations of the current
experiments

To obtain a quantitative match between the simulated ECE
spectra and the measurements, a 1 cm downwards shift of all
flux surfaces needed to be introduced into the equilibrium.
There are four main sources of uncertainties that could explain
the need for this shift: (1) the plasma parameters, (2) the 1/1
kink mode in the plasma center, (3) the considered models for
radial transport, and (4), possible broadening of the ECRH
beam due to turbulent scattering. Investigating the effect of
the latter is beyond the scope of the current paper and will be
the subject of future work. For medium devices like ASDEX
Upgrade, the turbulent scattering is expected to be small [57].
The other three effects are discussed in the following sections.
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Figure 16. Comparison of the momentum-space sensitivity of the two oblique ECE diagnostics to the regions in momentum that contain the
current in the plasma. In (a), only collisions, and ECCD are considered in the distribution function, while (b) considers the loop voltage, the
radiation reaction force, and radial diffusion model C.

6.1. Equilibrium reconstruction and ECRH launcher angle

As shown in figure 2(a), the absorption of the ECRH beam
occurs at R, z-positions different from the measurement posi-
tions of the oblique ECE. The ECRH deposition occurs above
the magnetic axis, and the oblique ECE measures below it.
ECRH deposition and ECE measurement volumes are not
overlapping to avoid direct pick-up of ECRH launched power
and frequency-shifted scattered light (from CTS) by the sens-
itive ECE receivers. The two volumes are linked by electron
transport along the magnetic field, i.e. within flux surfaces.
Nevertheless, this renders the interpretation of the measure-
ments sensitive to the plasma elongation and the vertical pos-
ition of the magnetic axis.

To minimize possible errors in the equilibrium reconstruc-
tion, the IDE [44] code was used for equilibrium reconstruc-
tion. It couples the Grad–Shafranov equation to the current
diffusion equation to replace artificial smoothness constraints.
For the kinetic pressure, it considers the Te and ne profiles com-
puted through IDA and the thermal and fast ion pressures. The
ion temperature is obtained via charge exchange recombina-
tion spectroscopy of boron ions [45]. Since there is no neutral
beam power at t= 3.84s, the ion data from the short beam
pulse at t= 4.2 s is used for this time point. The fast-ion dens-
ity is estimated via the RABBIT [47] code. One of the main
strengths of IDE is the ability to include the measurements
from current measuring diagnostics like the imaging motional
Stark effect diagnostic [58] or plasma polarimetry [59]. Unfor-
tunately, neither of these diagnostics can be properly used in
the extremely low-density plasma scenario discussed in this
paper. Hence, due to the lack of diagnostic coverage in the
plasma center, the uncertainty of the z-position of the mag-
netic axis is estimated to be 6 mm by the IDE code.

In addition, to the uncertainty regarding the equilibrium,
there is the possibility of errors in the assumed poloidal
and toroidal angles of the ECRH launcher and oblique ECE

viewing mirrors. For the toroidal angles, these are of little con-
sequence. For example, even an unlikely error as large as 1◦

changes the forward-modeled Trad of the ctr-ECE by less than
100 eV. However, the uncertainty of the vertical beam/volume
of sight position at the magnetic axis has not been assessed
as of yet. There are two factors that play a role here. The
first is a misalignment of the mirror itself, which is expec-
ted to be small and only produces uncertainties on the order
of a few millimeters. The second more critical problem is
the possible occurrence of parasitic modes in the wave guide.
These arise due to either off-axis injection or axially asym-
metric gyrotron output. This leads to a beat wave in the ves-
sel that sweeps the beam laterally. Recent calculations with
the PROFUSION code [60] showed a beat wave amplitude of
about 1 cm, assuming that 10% of the power is coupled to a
parasitic mode.

Figure 17 discusses the significance of the shift for the
case of the RELAX distribution functions with model C for
radial diffusion. It compares the synthetic data as shown in
figure 7, i.e. with the vertical shift, to the synthetic ctr-ECE
measurements obtained without the shift. The measurements
of the diagnostic are also shown for reference. To reduce clut-
ter in the graph, all measurements, synthetic and real, are
mapped to the warm resonance positions obtained for the
shifted equilibrium. For the original equilibrium, the major-
ity of synthetic Trad values fail to match the measurements,
and the shape of the synthetic measurements is narrower
than the measurements. Figure 17 also shows the Te profiles
obtained via IDA if the shift is considered or omitted in the
analysis.

In conclusion, the uncertainty of the magnetic axis posi-
tion and potential errors in the poloidal launch/viewing angle
of the ECRH and oblique ECE systems pose a limiting factor
to the interpretation of the experiments. The dependence on
the vertical position of the magnetic axis could be eliminated
in future experiments by matching the R–z positions of the
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Figure 17. Comparison between the ctr-ECE measurements and the
synthetic Trad based on radial diffusion model C, with and without a
1 cm vertical shift of the equilibrium. For the original equilibrium,
the modeling underpredicts the majority of the measurements. The
graph also shows the Te profile that is obtained via IDA with the
shift and the corresponding profile without it.

oblique ECEwarm resonances and the deposition region of the
gyrotron(s). To make the experiment more robust with regards
to the uncertainties of the poloidal viewing/launching angles
of the oblique ECE/ECRH, it would be useful to move the
deposition further outwards. For flux surfaces with a larger
diameter, an error on the order of several millimeters would
only have small effect on the measurements. For such exper-
iments, it would be necessary to strongly increase the ECRH
power [11].

6.2. Uncertainty of Te

Due to the particular shape of the plasma in #35 662 at
t= 3.84s, neither the Thomson scattering system nor the pro-
file ECE covers the flux surfaces with ρpol < 0.15. Hence, Te
near the magnetic axis is unknown in this region. Since Te is
a critical quantity for the electron distribution function during
ECCD, this is another limiting factor for the results shown in
this paper. To illustrate the sensitivity to the adopted Te pro-
file, we compare the Trad obtained with two Te profiles. The
first is consistently derived from the shifted equilibrium (c.f.
figure 6), and for the second, the shift is neglected during the
IDA. From these two Te profiles, the distribution functions and
the resulting Trad are computed using the shifted equilibrium
in both cases. Since two distinct Te profiles are considered in
RELAX, this also yields two unique sets of Trad.

Figure 18 compares these sets of Trad with the measure-
ments of the ctr-ECE system. Again, both the synthetic and

Figure 18. Comparison between the ctr-ECE measurements and the
synthetic Trad for different assumed Te profiles. If the vertical shift is
neglected when obtaining Te via IDA, then the resulting Trad can
barely match the measurements in the absence of radial diffusion,
but not for radial diffusion model C.

real measurements are mapped to the warm resonance pos-
itions obtained with the Te profile consistent with the shifted
equilibrium. For the lower Te profile, for which the shift is neg-
lected, the Trad including model C for radial diffusion fall short
of the measurements at the plasma center. Even in the absence
of radial diffusion, the synthetic Trad underpredicts the meas-
urements slightly (orange diamonds). If Te is obtained con-
sistently including the shift, then the resulting Trad match the
measurements if model C is considered for the radial diffusion.

6.3. Significance of the 1/1 kink mode

The ideal MHD kink mode rotating with about 2.6 kHz in
the plasma center effectively smears out the ECRH deposition
by shifting the flux surfaces. Its effect cannot be easily sep-
arated from the measurements through proper filtering, since
it rotates much faster than the millisecond time scale that the
modeled distribution function needs to achieve steady state. To
assess the significance of the mode for the interpretation of the
measurements, the magnitude of its displacement is derived
from themodulation in∆Trad that themode causes in the radial
ECE.

For an ECE channel with ρpol,res,cold = 0.3, the absolute
magnitude of ∆Trad = 310eV. In the forward-modeled Trad
based on the average Te profile, this corresponds to a shift of
only ∆ρpol = 0.03, or roughly 1.5cm. Hence, this displace-
ment is of the order of the vertical shift needed to get a match
between experiment and modeling. Hence, the kink mode also
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imposes an upper limit on the accuracy of the results. One
solution to overcome this problemwould be to avoid the occur-
rence of the mode in future experiments. This could be accom-
plished by using multiple gyrotrons with ctr-ECCD and by
spreading out the power deposition such that the q-profile
never falls below one. Alternatively, the smear-out effect of the
ECRH deposition profile needs to be included in the modeling,
which has been already been done with RELAX for neoclas-
sical tearing modes [61].

6.4. Turbulence models and the truncated collision operator

At present, very little is known about the momentum-space
dependence of turbulent radial transport. An exception is ref-
erence [50] where gyrokinetic calculations were performed
for mid-radius positions in ITER plasmas. These simulations
show that it is most likely that the majority of the heat trans-
port occurs at lowmomenta and inside the trapped cone. Of the
three empirical radial diffusion models studied in this paper,
Model C is the closest resemblance. This is encouraging since
Model C after all delivers the best agreement between themod-
eling and the measurements. Nevertheless, the diffusion mod-
els investigated in this paper are certainly still very simplistic
and leave much room for improvement.

Another potential weak point is the truncated collision
operator, which acts as an infinite sink or source for energy.
In reality, the power deposited by the ECRH is either radiated
away or transported outwards, both of which lead to fluxes in
phase space different from the flux caused by collisions with a
thermal distribution function. Accordingly, an important step
for future investigations would be the addition of a radiation
model and to couple RELAX to a transport code to handle the
radial heat transport properly. An energy-conserving collision
operator is already available in RELAX.

7. Summary

Oblique ECE measurements were performed for ASDEX
Upgrade discharge #35 662, a low density L-mode discharge
subject to central ctr-ECCD. Electron distribution functions
were computed with the RELAX code considering the ECRH
beam parameters derived with the quasi-optical Gray code.
The electron distribution function is not only a balance of col-
lisions and electron cyclotron diffusion, but is also subject
to the radial heat and particle transport. To test the sensitiv-
ity of oblique ECE on radial transport, four different models
were considered, namely no diffusion, velocity-independent
radial diffusion, and radial transport predominantly at either
large or low electron momenta. For the radial dependence
of the transport coefficients, the electron heat diffusivity was
considered inside the plasma core. If the plasma is vertically
shifted down by 1 cm, the oblique ECE measurements of both
diagnostics are quantitatively matched only by the model con-
sidering radial transport at low electron energies. Out of the
three considered models for the momentum space depend-
ency of radial transport, this model has the closest resemb-
lance to the gyrokinetic predictions for an ITER plasma.

Furthermore, the same trend has also been observed in a
gyrokinetic calculations of a plasma in the TCV tokamak,
which is similar to the discussed scenario.

It was shown that conventional, quasi-perpendicular ECE
measurements cannot access the region in phase space where
the ECRH power is absorbed. However, oblique ECE dia-
gnostics viewing the plasma at the toroidal angle opposite to
the ECRH and measuring closely around the gyrotron fre-
quency can resolve the electron distribution function directly
at the ECRH deposition site in phase space. Furthermore, an
oblique ECE aligned with the ECRH toroidally can measure
the abundance of electrons streaming in the direction oppos-
ite to the current drive. This allows the amount of pitch angle
scattering and the effect of the loop voltage to be quantified.
Nevertheless, oblique ECE diagnostics are unlikely to serve as
a diagnostic for the plasma current in tokamaks. For stellarat-
ors, in which the loop voltage is zero, further investigations
might be warranted.

Lastly, the limitations of the findings presented were dis-
cussed in detail. The empirical, vertical shift of the equilibrium
is necessitated most likely by the combination of inaccurate
equilibrium reconstruction, and errors in the vertical traject-
ory of the ECRH beam and the VOS of the oblique ECE. In
addition, it was discussed how the uncertainty of the Te pro-
files affects the synthetic measurements. Besides the possible
errors in the plasma parameters the interpretation of the meas-
urements is also limited by the presence of a 1/1 kink mode in
the plasma center, which displaces the flux surfaces by 1.5 cm.
The considered radial transport models and the truncated col-
lision operator were identified as the main weaknesses of the
modeling, .

Oblique ECE accompanied by thorough modeling of the
electron momentum distribution function and the radiation
transport is a powerful tool for the experimental validation of
electron cyclotron damping that has been left largely unex-
plored so far. Through improvement of the modeling tools
and the experiment design, it could potentially be possible to
even validate gyrokinetic predictions of the momentum space
dependence of radial transport.
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Appendix A. Oblique ECE cross-calibration

Since oblique ECE diagnostics are sensitive toDoppler-shifted
emission, a direct cross-calibration against the absolutely
calibrated profile ECE [36] at ASDEXUpgrade is not possible.
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Figure A1. Summary of the cross-calibration of channel 41 of the ctr-ECE and channel 31 of the co-ECE for discharge # 35 662. (a) The
time trace of the absolute value of the time-resolved calibration coefficients c41(t) and c31(t) (left y-axis) and the corresponding
forward-modeled Trad,mod which overlap. (b) NBI heating power (right y-axis) and ne at the magnetic axis (left y-axis) as functions of time.
(c) the linear regression of the measured signal V∗

diag vs. Trad,mod for both channels.

Therefore, the diagnostic is cross-calibrated via the radiation
transport code ECRad [28]. For the cross-calibration, it is
important that the electron momentum distribution is thermal.
In addition, it is beneficial if Te is varied during the cross-
calibration to quantify systematic errors. A detailed descrip-
tion of the cross-calibration process can be found in reference
[28], in which the cross-calibration of channel 40 of the ctr-
ECE was already discussed for discharge #35 662. However,
for the sake of reproducibility, we show below the details on
the cross calibration of both the ctr- and co-ECE for ASDEX
Upgrade discharge #35 662 for two of the channels discussed
in detail in section 5.

Figure A1 summarizes the cross-calibration process for
channel 41 of the ctr-ECE and channel 31 of co-ECE.
Figure A1(a) depicts the temporal evolution of the cross cal-
ibration factor c41(t) and c31(t) obtained for time point t. The
corresponding radiation temperatures T41,rad,mod and T31,rad,mod

are also shown using the right y-axis. Both calibration factors
scatter at most about 5% around the time-averaged value.
This is very close to the ideal case of a constant calibra-
tion factor. Note that all the plasma parameters entering the
cross-calibration, i.e. Te, ne, and the magnetic equilibrium are
derived frommeasurements and are, therefore, uncertain. Both
channels show the same temporal evolution, which makes it
likely that the deviations from a perfectly constant calibration
factor are not due to inherent problems with the diagnostics,
but rather due to systematic errors of the plasma profiles and
the equilibrium propagated to the calibration factor.

Figure A1(b) shows the heating power of the NBI system
and ne at the magnetic axis. The NBI heating was modulated
such that it performed a triangular-shaped power scan. This
results in a variation of Te, which is necessary to get adequate
estimates of the systematic uncertainties. Figure (c) shows the

linear regression of the diagnostic signal V∗
diag,41 and V∗

diag,31
against the predicted radiation temperature Trad,41 and Trad,31.
The linear regression matches the scatter plot well and, as
expected, the regression shows that Trad,mod = 0 corresponds
approximately to zero signal.

Appendix B. Normalization of the different radial
diffusion models

The three different models for the momentum dependence
of the radial diffusion coefficients are normalized such that
they produce the same radial heat flux at each radial point.
This section uses spherical instead of cylindrical momentum
space coordinates, i.e. (u, θ), with u the total dimensionless
momentum, and θ the pitch angle.

The starting point of the derivation is the radial transport
equation considered in RELAX [14]

∂λ ′f
∂t

=
1
r
∂

∂r

(
rDeff

∂

∂r
λ ′f+ rVpinch,effλ

′f

)
, (B1)

with f the electron momentum distribution function normal-
ized to the local electron density ne. The average minor radius
of the flux surface r is given by

√
V/2π2R, with R the major

radius, and V the flux surface volume. Vpinch,eff = ⟨∇rV̇pinch⟩Ψ
is the effective inward pinch velocity, Vpinch the diffusion velo-
city, and ⟨. . .⟩Ψ indicates a flux surface average. Please see ref-
erence [14] for the definition λ ′, which is not needed explicitly
in the following.

The most important quantity in the current context is the
effective diffusion coefficient Deff = ⟨(∇r)2D⟩Ψ where D is
the diffusion coefficient. Since none of the three diffusion
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models depends on the pitch angle, and the diffusion coeffi-
cients are assumed to be constant on a flux surface, the effect-
ive diffusion coefficient is

Deff = ⟨(∇r)2⟩ΨD(r,u) (B2)

for all models. As noted in Ref [14], the effective inward pinch
velocity is chosen such that it compensates for the particle flux
due to the radial diffusion. Nevertheless, as long as the three
diffusion models are properly normalized, this pinch velocity
will be the same for all three of the models. Therefore, we can
disregard the pinch term in equation (B1) when computing the
normalization.

Next, we split the radial dependence of the diffusion coeffi-
cient from the momentum space dependenceD= p(r)q(u) and
introduce the electron momentum distribution function nor-
malized to unity f̂= f/ne(r).

ˆ ˆ
1
r
∂

∂r
r⟨(∇r)2⟩Ψp(r)q(u)

∂

∂r
λ ′ne(r)̂f(r,u,θ)

2πu2sin(θ)dudθ = C(r), (B3)

with θ the pitch angle and C(r) an arbitrary, momentum-
independent function. Only the distribution function and q(u)
are dependent on momentum space; hence, one can rewrite
equation (B3)

1
r
∂

∂r
r⟨(∇r)2⟩Ψp(r)

∂

∂r
λ ′ne(r)

¨
q(u)̂f(r,u,θ)

2πu2sin(θ)dudθ = C(r). (B4)

For model A, qA(u) = 1 and no normalization is needed

1
r
∂

∂r
r⟨(∇r)2⟩ΨDA(r)

∂

∂r
λ ′
¨

f̂(r,u,θ)2πu2sin(θ)dudθ︸ ︷︷ ︸
=1 for all r

= C(r).

(B5)

The normalization function for B(r) for model B can be
derived from

1
NB(r)

¨
u2

u2th,0
f̂(r,u,θ)2πu2sin(θ)dudθ = 1forallr (B6)

and the normalization function C(r) for model C analogously
from

1
NC(r)

¨
exp

(
− u2

4u2th,0

)
f̂(r,u,θ)2πu2sin(θ)dudθ = 1forallr.

(B7)
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