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Abstract. The visualization and subsequent assessment of the inner human
bone structures play an important role for better understanding the disease- or
drug-induced changes of bone in the context of osteoporosis giving prospect
for better predictions of bone strength and thus of the fracture risk of
osteoporotic patients. In this work, we show how the complex trabecular bone
structure can be visualized using µCT imaging techniques at an isotropic
resolution of 26 µm. We quantify these structures by calculating global and
local topological and morphological measures, namely Minkowski functionals
(MFs) and utilizing the (an-)isotropic scaling index method (SIM) and by
deriving suitable texture measures based on MF and SIM. Using a sample of
151 specimens taken from human vertebrae in vitro, we correlate the texture
measures with the mechanically measured maximum compressive strength
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(MCS), which quantifies the strength of the bone probe, by using Pearson’s
correlation coefficient. The structure parameters derived from the local measures
yield good correlations with the bone strength as measured in mechanical tests.
We investigate whether the performance of the texture measures depends on the
MCS value by selecting different subsamples according to MCS. Considering
the whole sample the results for the newly defined parameters are better than
those obtained for the standard global histomorphometric parameters except for
bone volume/total volume (BV/TV). If a subsample consisting only of weak
bones is analysed, the local structural analysis leads to similar and even better
correlations with MCS as compared to BV/TV. Thus, the MF and SIM yield
additional information about the stability of the bone especially in the case of
weak bones, which corroborates the hypothesis that the bone structure (and not
only its mineral mass) constitutes an important component of bone stability.
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1. Introduction

Osteoporosis, which is considered as one of the ten most important diseases in the world
population, is nowadays defined as a skeletal disorder characterized by compromised bone
strength predisposing to an increased risk of fracture [1]. Since this definition appears fairly
abstract the following statements were added: bone strength reflects the integration of two
main features: bone density and bone quality. Bone density is expressed as grams of mineral
per area or volume and in any given individual is determined by peak bone mass and
amount of bone loss. Bone quality refers to architecture, turnover, damage accumulation (e.g.
microfractures) and mineralization. The measurement of the bone mineral density (BMD) is
a well-established technique in the diagnosis of osteoporosis. Evaluating the bone mass with
BMD using dual-energy x-ray absorptiometry (DXA) or quantitative computed tomography
(QCT) may, however, be insufficient to fully assess the biomechanical strength of the trabecular
bone or the fracture risk [2]. Another important component responsible for bone strength is the
architecture of the inner bone, the so-called trabecular bone structure, which is not yet assessed
as a standard procedure.
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An indispensable prerequisite for a quantitative assessment of the trabecular bone structure
is a proper three-dimensional (3D) visualization of the complex inner bone network, in which
the rod- and plate-like constituents enclosing the bone marrow have a size of the order of
50–200 µm. Advances in tomographic imaging techniques, such as computed tomography (CT),
micro CT (µCT) and high-resolution magnetic resonance imaging (HR-MRI) have significantly
improved the spatial resolution being now of the order of the trabeculae in bone. Therefore, it
has become possible to visualize the complex inner network of the bone structure in vitro as
well as in vivo [3]–[5].

In order to quantitatively characterize trabecular bone structures, it is necessary to use
statistical measures which are sensitive to all the essential information about bone structure
as presented in 3D tomographic images. There is a variety of conceivable statistical measures
which might be used to analyse bone structures. Conventional approaches rely on the use of
histomorphometric measures, which are already known from histology [4, 6].

The visual impression of the trabecular structure clearly indicates a complex network—
very much like the largest existing structures, namely the (evolved) distribution of galaxies in
the Universe with its clusters, filaments and huge voids. Thus, one might be led to the conjecture
that also in this case the use of linear measures (power spectrum and autocorrelation function) is
not sufficient for a proper description and must rather be complemented with nonlinear measures
being sensitive to the higher order spatial correlations (HOC) in the image. In fact, it has been
shown using the method of surrogates that the trabecular structure as displayed in 3D HRMRI
of osteoporotic and non-osteoporotic bones have nonlinear spatial correlations [7].

Beside these purely statistical reasons (bio-)physical considerations can also lead one to a
better motivated choice of statistical description. The architecture of the trabecular bone is the
result of continuous bone remodelling which is a complex process involving the resorption of
bone on a particular surface followed by a phase of bone formation. In healthy adults, there is a
balance between the amount of bone resorbed by osteoclasts and the amount of bone formed by
osteoblasts. The bone formation is triggered by external mechanical forces, thus being strain-
dependent (see, e.g. [8]–[11] and references therein). In this context not only the strength of
the external stimuli matters but also its direction so that the resulting network consists of some
aligned structures along the main directions of the forces acting on the bone [12].

These bio-physical mechanisms under the action of external stimuli can also be regarded
as a self-organized optimization process, where the resulting trabecular bone structure fulfils
the requirements for optimal load transfer by pairing suitable strength and stiffness to minimal
weight according to the rules of mathematical design [13].

In this paper, we show that a proper 3D visualization of the trabecular structure is feasible
using µCT imaging techniques, which allows for a detailed local structural analysis. To this end
we employ global and local Minkowski functionals (MFs) (see, e.g. [14] and references therein)
as a class of measures quantifying topological aspects of the bone network. Furthermore, we
represent the image data as a 3D point distribution and estimate the local scaling properties using
isotropic and anisotropic scaling indices. The scaling index method (SIM) (see, e.g. [15, 16]
and references therein) is well suited to quantifying geometrical aspects of the bone structures
on a local level, especially to discriminate between (aligned) plate- and rod-like structural
elements. The contribution of the various structural features identified using MF and SIM to
the strength of the bone specimens is assessed by correlating the newly calculated texture
measures with the maximum compressive strength (MCS), which is measured by mechanical
testing. We especially investigate whether an additional sophisticated structural analysis yields
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Figure 1. Reconstruction of bone microstructures from µCT scans for four
selected specimens with different MCS and/or bone volume/total volume
(BV/TV). From left to right: MCS = 17.87 and BV/TV = 0.07; MCS = 82.53
and BV/TV = 0.07; MCS = 90.84 and BV/TV = 0.17; MCS = 157.00 and
BV/TV = 0.17.

more information about the bone stability as compared with the mere measurement of the bone
volume (BV), and if so, how this is achieved.

The outline of the paper is as follows: in section 2, we describe the preparation of the data
set for this study and how the imaging and the mechanical testing of the probes was performed.
Section 3 reviews the formalism of the MF and SIM and shows some specific extensions. Our
results are presented in section 4. We conclude with section 5 and give a brief outlook to future
work.

2. The data set

2.1. µCT imaging

One hundred and fifty one cylindrical specimens were harvested from spines (73 thoracic
vertebrae and 78 lumbar vertebrae) using diamond trephines (Salzmann, Munich, Germany)
as described previously [4], with an 8 mm inner diameter drill. The sample is heterogeneous,
i.e. bones harvested from 58 men and 54 women cadavers were considered. The mean age of
the donors was 80 ± 10 years. The donors had agreed to dedicate their body to the institute
several years prior to death. The length of the probes was set to 14 mm. The samples were
stored in a solution of 5% buffered formalin until µCT scanning. The scans were acquired
for the central 6 mm in length of the specimen using a µCT 20 scanner (Scanco Medical,
Brütisellen, Switzerland). The resolution was set to 26 µm (isotropic), similar to a previous
study on human trabecular bone [4]. In that system, a microfocus x-ray tube with a focal spot
of 10 µm is used as a source. The filtered 40 kVp x-ray spectrum is peaked at 25 keV allowing
excellent bone versus soft tissue contrast owing to the pronounced photoelectric effect. The
integration time was 100 ms leading to a total scan time of 4.1 h per sample. The grey-value
images were segmented using a low-pass filter by convolving the image with a Gaussian kernel
with a standard deviation of 0.8 and a support of 1 to remove noise and a fixed global threshold
equal to 22% of maximal grey value to extract the mineralized bone phase. These binarized 3D
images as shown in figure 1 represent the basis of all subsequent image postprocessing steps.
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2.2. Mechanical testing

After µCT measurements, the bone samples were cut to a length of 12 mm with parallel surfaces
using a saw microtome (Leica Microsystems Inc, Wetzlar, Germany). The bone marrow was
removed by washing and ultrasonic cleaning (Sonorex, Bandelin electronic, Berlin, Germany).
Bone samples were embedded in polymethylmethacrylate (Beracryl, Bauer HandlesGmbH,
Adetswil, Switzerland) to a depth of 1.5 mm on each end. The embedded samples were tested
using a servohydraulic testing machine (MTS 858 mini Bionix II, MTS Eden Prairie, USA)
with a load cell of 1.5 kN. After 12 preconditioning cycles to 0.35% of strain at a speed
of 0.005 mm s−1, the samples were loaded to 6% compressive strain at the same velocity of
0.005 mm s−1. Force and displacement were recorded for the last two cycles and the final loading
up to the strain of 6%. Ultimate strength was identified from the largest stress value of the force-
displacement curve. MCS was calculated from this first local maximum of the stress–strain
curve.

3. Trabecular bone structure analysis

3.1. Histomorphometric measures

The traditional way for assessing the structural properties of cancellous bone is the calculation
of the four so-called histomorphometric measures (i) BV/TV, (ii) trabecular number (Tr.N),
(iii) trabecular thickness (Tr.Th) and (iv) trabecular separation (Tr.Sp). These four quantities
were computed in 3D as described previously [4]. In addition, the structure model index
(SMI) [17]—a global measure of plate- or rod-like trabecular architecture—and the bone surface
(BS) were calculated using the analysis software delivered by the µCT-manufacturer. It is worth
noticing that the BV fraction and the BS find exact correspondences in two of the four global
MFs described below.

3.2. MFs

The characterization of the morphology of spatial patterns is relevant in different branches
of science. In order to investigate the geometry and topology of typical structural motifs, it
is necessary to use objective quantitative measures. The MFs are a set of scalar measures
suitable for the description of the morphology of structures (for a review about MF and its
applications in morphological image processing see [14]). The usefulness of these functionals
has already been demonstrated in the analysis of galaxy catalogues and simulations of large
scale structure [18]–[24], as well as of the temperature distribution in maps of the cosmic
microwave background radiation [25]–[28]. Furthermore, they were also used to characterize
the morphology of spinodal decomposition [29] and of patterns arising in reaction–diffusion
systems [30].

MFs are defined only for convex bodies. In fact, convex bodies play a relevant role in
integral geometry. A collection of points K in the d-dimensional Euclidean space is called a
convex set if for every pair of points in K , the entire line segment joining them lies in K as well.
A convex set with non-empty interior is called a convex body. We will restrict our attention to
compact sets, i.e. convex sets that are bounded and closed. If a parallel body Kε is considered,
i.e. the set that contains all points closer to K than ε > 0, and if K is convex, then the general
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expression for the volume V of the parallel body Kε at a distance ε is given by the Steiner
formula [31, 32]

V (Kε) =

d∑
ν=0

(
d

ν

)
W (d)

ν (K )εν, (1)

where the W (d)
ν (K ) are called quermassintegrals or MFs and are given by

W (1)

0 (K ) = l(K ), W (1)

1 (K ) = 2, d = 1, (2)

W (2)

0 (K ) = A(K ), W (2)

1 (K ) =
1
2U (K ), W (2)

2 (K ) = π, d = 2, (3)

W (3)

0 (K ) = V (K ), W (3)

1 (K ) =
1
3 S(K ), W (3)

2 (K ) =
2π

3
B(K ),

W (3)

3 (K ) =
4π

3
, d = 3, (4)

where l(K ), A(K ), U (K ), V (K ), S(K ) and B(K ) denote the length, the area, the boundary
length, the volume, the surface and the mean breadth, respectively. It should be mentioned that
parallel sets keep the properties of convexity and compactness. The MFs have very important
properties (like motion invariance, C-additiveness and continuity) whose discussion is beyond
the scope of this work. It is worth mentioning, however, a fundamental result in integral
geometry about the completeness of the family of the MF. A theorem by Hadwiger [33] states
that every motion invariant, C-additive and continuous functional φ over K can be written as

φ(K ) =

d∑
ν=0

aνW (d)
ν (K ), (5)

where aν ∈ R. Thus, the d + 1 MF forms a complete system of morphological measures on the
set of convex bodies. The use of MF to characterize the morphology of images requires further
consideration. In order to allow for the application of MF to images, it is necessary to introduce
the concept of a convex ring [33]. A convex ring R is the class of all subsets A ∈ Rd which can
be expressed as finite unions of compact convex sets

A =

l⋃
i=1

Ki , Ki ∈K. (6)

If A1, A2 ∈R then A1
⋃

A2 ∈R and A1
⋂

A2 ∈R. Given an additive functional φ then
φ(A1

⋃
A2) = φ(A1) + φ(A2) − φ(A1

⋂
A2). Motion invariance of φ on R is derived from

motion invariance for φ on K. It should be noted that a binary image is an instance of the
convex ring R, where the black pixels are the convex sets, i.e. the elements of K.

The Euler characteristic or connectivity number χ is an important functional which allows
us to extend the application of MF from K to R and thus to images. It is defined as [33]

χ(K ) =

{
1, K 6= ∅,

0, K = ∅,
(7)

for all K ∈K. The Euler characteristic is an additive, motion invariant functional onR. In d = 2,
χ is given by the number of connected components minus the number of holes. For d = 3,
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χ can be obtained as the number of connected components minus the number of tunnels plus
the number of cavities.

As mentioned above, each pixel of a 2D or 3D image is a convex set. Therefore, such an
image may be considered as an element of the convex ring R and thus one can build additive
image functionals to characterize the image morphology. However, some care has to be taken
because MFs are only defined on convex sets. The key to the practical application of integral
geometry to images is the additivity of χ . Further details of the derivation are beyond the scope
of this paper. The interested reader is referred to [14]. For a 2D binary image, it can be shown
that all MFs can be calculated by assuming that pixels are squares with linear size normalized to
one. Then, the procedure to evaluate the three MFs consists of two steps. First, every black pixel
is decomposed into four vertices, four edges and the interior of a pixel. Then the total number
of squares ns, edges ne and vertices nv are counted to evaluate the area M1, perimeter M2 and
Euler characteristic M3 from

M1 = ns, M2 = −4ns + 2ne, M3 = ns − ne + nv. (8)

The procedure to calculate MF for 3D binary images is analogous to the one in 2D with the
only difference that each black pixel is now the union of eight vertices, 12 edges, six faces and
the interior of the cube. The four MFs, namely the volume M1, the surface area M2, the mean
breadth M3 and the Euler characteristic M4, are defined as

M1 = nc, M2 = −6nc + 2nf 2M3 = 3nc − 2nf + ne M4 = −nc + nf − ne + nv, (9)

where nc and nf are the number of cubes and faces, respectively.
In this paper, we calculate MF in 3D to characterize the morphology of µCT tomographic

images of the human spine. In order to compute the MF, it is necessary to binarize the images.
Previous application of the MF to MRI and CT images of human trabecular bone by Böhm
et al [34, 35] focused on the characterization of the contribution to the image structure of
different grey-level regions using global functionals. These studies were carried out using a
moving threshold procedure to binarize the grey-level distribution of the tomographic image.
Thus, the behaviour of the global MF as a function of the grey-level value is obtained. As
mentioned above, µCT images have a standardized grey-level distribution which allows us to
easily obtain the 3D mineral network by thresholding the distribution. A visual inspection of
the mineral network reveals (see figure 1) that it is far from being homogeneous but is highly
complex, i.e. it contains regions with high density volumes and plates, low density rods, different
orientations, etc. After generating a binary image, one can evaluate global and local MFs. Local
MF can be applied to investigate the scaling behaviour of the different functionals. In this paper,
we compute local MF to account for the diversity of local structural components. However, the
local MF were only evaluated for a typical scale of the trabecular network, namely for the mean
trabecular spacing (∼1.2 mm). Using this scale, we expect to obtain an optimal contrast between
MF values for the different substructures (rods, plates, dense regions, etc). For the sake of
comparison, global MFs were also calculated. Cubes of side approximately the mean trabecular
spacing were considered to evaluate the local MF. The local values of the MF were compiled
into a probability density (PM i ) which provides the frequency of the different substructures that
compose the mineral network. For instance, the probability density for the volume (first MF)
tells us how heterogeneous the bone density is (see figure 2).
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Figure 2. Probability distributions of the local MFs for the four selected
specimens. From top to bottom: volume M1, surface area M2 and mean breadth
M3. Green solid line: MCS = 157.00, BV/TV = 0.17, blue solid line: MCS =

90.84, BV/TV = 0.17, blue dashed line: MCS = 82.53, BV/TV = 0.07 and
red dashed line: MCS = 17.87, BV/TV = 0.07. The black dashed vertical lines
indicate the window positions for the texture measures 1P(M1) and 1P(M2).

3.3. Isotropic and anisotropic weighted scaling indices

The weighted SIM offers a possibility to estimate the local isotropic and anisotropic scaling
properties of a point set, which is generally represented in a d-dimensional space. From this
knowledge it is possible to infer information about the local structural elements of the point set.
The basic ideas of the method stem from the characterization of strange attractors in a phase
space representation of dissipative dynamical systems which exhibit chaotic behaviour using
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correlation dimension [36] and crowding indices [37, 38]. Beside the countless applications of
these measures in the realm of nonlinear time series analysis, it has also been demonstrated
that this approach can successfully be used for texture analyses in 2D and 3D image data
[5, 39, 40]. Let us review the formalism for 3D image data.

The first step of the SIM is to create a set of n-dimensional vectors. For time series this is
most often done using the method of delay coordinates ([41] and references therein). Images can
just as well be represented as point distributions in an artificial embedding space by comprising
the spatial and intensity information of each pixel in a d-dimensional vector. Since we consider
in this study only binarized 3D images, a suitable representation of the image information as a
set of 3D vectors is given by Epi = (xi , yi , zi), i = 1, . . . , Nbones, where Nbones denotes the number
of bone voxels and xi , yi , zi , the voxel positions.

For each point the local weighted cumulative point distribution ρ is calculated. In general
form this can be written as

ρ( Epi , r) =

N∑
j=1

sr(d( Epi , Ep j)), (10)

where sr(•) denotes a kernel function depending on the scale parameter r and d(•) a distance
measure.

The weighted scaling indices α( Epi , r) are obtained by calculating the logarithmic derivative
of ρ( Epi , r) with respect to r ,

α( Epi , r) =
∂ log ρ( Epi , r)

∂ log r
=

r

ρ

∂

∂r
ρ( Epi , r). (11)

In principle, any differentiable kernel function and any distance measure can be used for
calculating α. For the case of isotropic scaling indices, we use the Euclidean norm ‖ • ‖2 as
a distance measure and a set of Gaussian shaping functions. So the expression for ρ simplifies
to

ρ( Epi , r) =

N∑
j=1

e−((di j /r))q
, di j =‖ Epi − Ep j ‖2 . (12)

The exponent q controls the weighting of the points according to their distance to the point
for which α is calculated. The higher q is chosen the more steplike becomes the weighting
function resembling more and more the Heaviside-function, which is used for the calculation of
the unweighted scaling indices. Another interesting choice of q is given by q = 2. In this case,
the kernel function is the well-known Gaussian exponential function.

Throughout this study we calculate α for the case q = 2. Inserting equation (12) in the
definition for the weighted scaling indices (equation (11)) yields the following analytical
expression for α:

α( Epi , r) =

∑N
j=1 q((di j/r))qe−((di j /r))q∑N

j=1 e−((di j /r))q
. (13)

Structural components of a point set are characterized by the value of α. For example, points in
a point-like structure have α ≈ 0 and voxels forming rod-like structures have α ≈ 1. Sheet-like
structures are characterized by α ≈ 2 of the voxels belonging to them. A uniform distribution of
points yields α ≈ d which is equal to the dimension of the configuration space.
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Table 1. Correlation coefficients r between MCS and the histomorphometric
parameters, SMI, BS, M3 and M4 calculated for the whole sample. Note that
BV/TV ' M1 and BS ' M2.

BV/TV Tr.N Tr.Th Tr.Sp SMI BS M3 M4

0.73 0.43 0.30 −0.41 −0.43 0.61 0.06 −0.38

Anisotropic scaling indices are calculated by using a generalized quadratic distance
measure ‖ • ‖A, where A is a metric tensor. In the general case A (A = RT

· M · R) is a product
of a rotation matrix R and a diagonal matrix M containing the eigenvalues λ2

x , λ2
y and λ2

z . In
this study, in which the known direction of the external force is assumed to induce a globally
constant preferential direction, namely the z-direction, we only calculate anisotropic scaling
indices parallel and perpendicular to this direction, i.e. along the three major axes x , y and
z [42]. By only considering these three anisotropic scaling indices αx , αy , αz, and thus omitting
rotations depending on arbitrary values of the rotation angles φ and θ , the calculation of
the respective distances di j is considerably simplified and only depends on the choice of the
eigenvalues λ2

x , λ2
y and λ2

z ,

di j(λx , λy, λz) =
(
λ2

x(xi − x j)
2 + λ2

y(yi − y j)
2 + λ2

z(zi − z j)
2
)1/2

. (14)

We chose the ratio 5 : 1 for the eigenvalues, i.e. 5λx = λy = λz (and respective
permutations), for setting the degree of anisotropy along the three directions. This setting was
found to be well suited especially for the detection of aligned cylindrical structures (i.e. the
trabeculae) with typical mean breadth and length.

As for the local MFs we compile the isotropic and anisotropic scaling indices for the point
set in a frequency distribution N (α)

N (α)dα = #(α ∈ [α, α + dα]) (15)

or equivalently in the probability distribution

P(α)dα = Prob(α ∈ [α, α + dα]). (16)

The P(α)-representation of a point set can be regarded as a structural decomposition of
the data where the points are differentiated according to the local isotropic and anisotropic
morphological features of the structure elements to which they belong.

4. Results

To correlate the texture measures with the mechanical strength of the bone specimens we use
Pearson’s correlation coefficient r . The r values obtained for the standard histomorphometric
measures are summarized in table 1.

We find strong correlations for BV/TV and also for BS, whereas the other
histomorphometric measures, namely Tr.N, Tr.Th, Tr.Sp, the SMI and the third and fourth
MFs gave no or only moderate correlations with MCS. Therefore, only the global measures
BV/TV and BS will be considered in our more detailed, load-dependent analyses, which will be
described in the following.
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Figure 3. Colour-coded visualization of the local MFs for the images shown in
figure 1. Upper row: volume M1, middle row: surface area M2 and lower row:
mean breadth M3. (See stacks.iop.org/NJP/10/125010/mmedia for animations of
selected images.)

In figure 2, the probability distribution of the local MFs for the four selected specimens
are displayed. Figure 3 shows the corresponding colour-coded 3D visualization. From figure 2
one clearly sees that the distribution for the local volume M1 shows the expected shift towards
smaller values for weaker bones. A similar behaviour is observed for the BS M2, whereas M3

does not show such a clear systematic trend. This is then also reflected in poor results for the
correlations with MCS, which we have not included in the text. It should be noted that the
probability distribution for the local Euler characteristic M4 turned out to be rather discrete with
only a few different values and did not show any discriminative power. Therefore, this measure
is not included in the analyses either.

Figures 4 and 5 show the respective probability densities and visualization for the scaling
indices. The spectra for the isotropic scaling index α also show the expected shift towards lower
values for weaker bones indicating the transition from more predominant plate-like structural
elements in healthy bone to rod-like structures in rarefied osteoporotic bone. The spectra for
the two anisotropic scaling indices αx and αy are qualitatively very similar with a peak at
αx,y ≈ 2.1 and a larger tail towards higher values. A quite different shape can be observed for
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Figure 4. Same as in figure 2 but for the isotropic and anisotropic scaling indices
α, αx , αy and αz.
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Figure 5. Colour-coded visualization of the isotropic and anisotropic scaling
indices for the images shown in figure 1. From top to bottom: α, αx , αy and
αz. Note the similarities between αx and αy and the differences for αz. (See
stacks.iop.org/NJP/10/125010/mmedia for animations of selected images.)

the anisotropic scaling index along the direction of the external force, αz, and its probability
distribution P(αz). The spectra peak at higher values αz ≈ 2.4–2.7 and have a long tail
towards lower values, which becomes larger for weaker bones. These systematic differences
in the three spectra for anisotropic scaling indices, which are observed for the whole sample,
obviously show the already known fact that there are pronounced anisotropies in the trabecular
structure of the vertebrae with significantly more plate-like structural elements aligned along the
z-direction.

Given the spectra of the local MFs and scaling indices, we define the texture measures by
applying a filtering procedure by taking a window of fixed size and counting the percentage of
bone voxels with a value lying within the range of the chosen window. As in previous studies
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[5, 43], the fraction of the number of bone voxels lying in the window is defined as an
appropriate structure measures 1P(·). For this procedure we chose the most promising local
measures, namely M1, M2, α and αz. The position and size of the windows are heuristically set
to values where the differences in the spectra are expected to be pronounced.

In the first study of this µCT sample we did not perform a rigorous optimization of the
window position and window size, nor did we use a two-window technique. Thus we expect
our results to improve if more sophisticated texture measures are derived from the spectra of
local MFs and scaling indices. The correlations between MCS and the best global measures, i.e.
BV/TV ' M1 and BS ' M2 and the four local measures are shown in figure 6.

In table 2, the correlation coefficients r for the four local measures are listed. We find good
correlations for all four measures, where the MF-based measures perform slightly better than
the scaling index-based ones. In all four cases we find, however, higher correlations than for the
standard histomorphometric measures Tr.N, Tr.Th, Tr.Sp and the SMI. Only BV/TV and BS,
which both can be expressed in terms of global MFs, gave similar or better results.

Figure 6 reveals that the variance grows with increasing MCS. To study this effect in detail
and to investigate the load dependence of the correlation coefficient we first considered two
subsamples, which consisted (a) of the specimens with moderately low MCS, (60 < MCS <

120) and (b) of the weak bone specimens (MCS < 60). Table 3 summarizes the results for
subsample (a). We find that for this load regime all structure measures show no or only weak
correlations with MCS, indicating that in this transition region from weak to strong bone a clear
differentiation based either on bone density or structure measure becomes difficult. A detailed
investigation of the possible causes for this unexpected effect is a subject for a future study.

The situation changes, however, when subsample (b) is considered (table 4). Except for the
BS we find good correlations for BV/TV as well as for the local structure measures, where it
turns out that the scaling index-based measures perform best.

Thus, the structural properties of the trabecular bone become increasingly important for
weak, already rarefied bone specimens to assess their stability. This effect is elucidated in more
detail in figure 7, in which the correlation coefficients for the various measures are plotted
as a function of the cut parameter MCScut, which determines the subsample, for which r is
calculated. These subsamples consist of a set of specimens satisfying the condition MCS <

MCScut.
One can read from the diagram that BV/TV shows a good overall performance with slight

decrease for low MCScut-values. The second global measure BS, which yields good results for
the whole sample, shows the largest decrease for r when considering only weak bones. 1P(M1)

and 1P(M2), which both showed better correlations for the whole sample than the scaling
index-based measures, also perform significantly worse when MCScut is decreased. 1P(α) and
1P(αz) show, on the other hand, a qualitatively different behaviour. In these two cases, the
correlations stay roughly constant and even increase yielding maximal values in the range of
60 < MCScut < 80.

In this regime, a linear combination of the two scaling index-based measures 1P(α) and
1P(αz) with BV/TV can also improve the correlation between bone properties and its strength.
For the subsample MCS < 60, we obtain r = 0.65 for BV/TV and 1P(α) and r = 0.66 for
BV/TV and 1P(αz). It is worth noticing that the combination of BV/TV with the anisotropic
scaling index not only gives slightly better results for MCScut = 60 than the combination with
1P(α), but also yields the highest correlations for the regime 60 < MCScut < 90, in which most
of the specimens lie.
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Figure 6. Correlations between MCS and M1, M2, 1P(M1), 1P(M2), 1P(α)

and 1P(αz). The dashed lines indicate the MCS-intervals of the subsamples
examined. The coloured filled circles belong to the specimens for which the local
MFs, the scaling indices, and the respective probability distributions were shown
in more detail in the previous figures.

These results suggest that the scaling indices are not redundant to BV/TV but capture
different yet important features of the bone structures for characterizing bone strength. In
addition, the alignment of structural components, which is identified by anisotropic texture
measures, also plays an important role for the bone stiffness and flexural rigidity.
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Table 2. Correlation coefficients r between MCS and the local MFs and isotropic
and anisotropic scaling indices calculated for the whole sample.

1P(M1) 1P(M2) 1P(α) 1P(αz)

0.61 0.58 0.55 −0.52

Table 3. Correlation coefficients r between MCS and selected structure measures
calculated for the subsample with 60 < MCS < 120.

BV/TV BS 1P(M1) 1P(M2) 1P(α) 1P(αz)

0.25 0.26 0.30 0.19 0.09 −0.07

Table 4. Correlation coefficients r between MCS and selected structure measures
calculated for the subsample with MCS < 60.

BV/TV BS 1P(M1) 1P(M2) 1P(α) 1P(αz)

0.59 0.37 0.54 0.51 0.62 −0.61

5. Conclusions and outlook

In this in vitro study, we demonstrated the feasibility of visualizing the 3D complex network of
the trabecular bone structure using high resolution µCT imaging techniques and of performing
a truly local, i.e. voxel-wise, structure analysis of the isotropic image data. The latter is achieved
by calculating local MFs and isotropic and anisotropic scaling indices.

These measures and their corresponding probability distributions reflect well the local
structural properties of the trabecular bone and their variations for strong and weak bones. Using
anisotropic scaling indices, we could provide evidence for a pronounced alignment of plate- and
rod-like structures along the direction of the external force in the vertebrae.

The structure parameters derived from the local measures yield good correlations with
the bone strength as measured in mechanical tests. Considering the whole sample the results
for the newly defined parameters are better than those obtained for the standard global
histomorphometric parameters except BV/TV.

If a subsample consisting only of the weak bones is analysed, the local structural analysis
leads to similar and even better correlations with MCS as compared to BV/TV. Thus the textural
information becomes increasingly important for weak bones with already rarefied trabecular
structure. These findings corroborate the hypothesis that the bone structure and not only its
mineral mass is an important ingredient of bone stability.

Besides the already good correlations obtained using the somewhat simple texture
measures, a local textural analysis of the trabecular bone offers many other new possibilities
for a refined analysis of the inner bone, which will eventually lead to better predictions of
disease-related fractures.

Particularly fragile regions of the bone, which lead to higher susceptibility to bone fracture,
may be identified by taking the spatial information of the local measures in the definition of the
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Figure 7. Correlation coefficient as a function of MCScut. The dashed coloured
lines indicate the correlation coefficients, which one obtains when the respective
structure measure is combined with BV/TV.

texture measure into account. A combination of the local structural description of the bone with
finite element models may lead to a clear identification of those structural elements which are
important for the bone strength. In future studies, we will especially investigate these two points
mentioned above.

All these analyses may ultimately help to better characterize and thus understand age,
disease and drug-induced changes in the trabecular bone structure. Furthermore, one may be
able to reveal the effects of pharmaceutical interventions on the inner bone structure beyond
simply measuring the BMD.
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