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Abstract. We propose a physical model for the nonlinear inelastic mechanics
of sticky biopolymer networks with potential applications to inelastic cell
mechanics. It consists of a minimal extension of the glassy wormlike chain
(Gwlc) model, which has recently been highly successful as a quantitative
mathematical description of the viscoelastic properties of biopolymer networks
and cells. To extend its scope to nonequilibrium situations, where the
thermodynamic state variables may evolve dynamically, the Gwlc is furnished
with an explicit representation of the kinetics of breaking and reforming sticky
bonds. In spite of its simplicity, the model exhibits many experimentally
established nontrivial features such as power-law rheology, stress stiffening,
fluidization and cyclic softening effects.
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1. Introduction

In many studies of cell mechanics and dynamics, the cell is characterized as a viscoelastic
body [1]–[3]. It is an intriguing question to what extent such mechanical behaviour can be
rationalized in terms of comparatively simple polymer physics models. In this respect, the
comparison of cell rheological data and minimalistic in vitro reconstituted constructs of the
cytoskeleton, such as pure actin solutions [4]–[8] or cross-linked actin networks [9]–[14], has
recently provided many new insights. Important progress has also been made in the development
of phenomenological mathematical descriptions. This includes approaches related to the tube
model [15]–[18], tensegrity-based approaches [19]–[21], effective-medium models [22]–[24]
and some others [25, 26]. In particular, the glassy wormlike chain (Gwlc) model [27], a
phenomenological extension of the standard wormlike chain (Wlc) model of semiflexible
polymers [28], has been successful in describing a plethora of rheological data for polymer
solutions [7, 29] and living cells [30] over many decades in time with a minimum of parameters.
However, all these studies were primarily concerned with viscoelastic behaviour, while the latest
investigations have underscored the glassy [31]–[33], fragile [34, 35] and inelastic [34]–[36]
character of the mechanical response of living cells. Even for biopolymer networks in vitro,
experiments operating in the nonlinear regime had so far to resort to special protocols that
minimize plastic flow [8, 37] for making contact with dedicated theoretical models.

The aim of the present paper is to overcome this restriction by extending the Gwlc to
situations involving inelastic deformations. As a first step, we concentrate on reversible inelastic
behaviour, where the deformation does not alter the microscopic ground state. The protocol
applied by Trepat et al [34] provides a paradigmatic example. Cells are subjected to a transient
stretch such that, after some additional waiting time in the unstretched state, the (linear) material
properties of the initial state are recovered. The simplification for the theoretical modelling
results from the assumption that not only the macro-state but also the micro-state of the system
may, to a good approximation, be treated as reversible under such conditions; that is, we assume
that the complete conformation of the polymer network, including the transiently broken bonds
between adjacent polymers, is constrained to eventually return to its original equilibrium state.
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For the time-delayed hysteretic response of the network to such protocols, one could thus still
speak of a viscoelastic (‘anelastic’) response in an operational sense, but we refrain from doing
so in view of the fundamentally inelastic nature of the underlying stochastic process—in contrast
to the reversible softening effects observed in [38], for example. Indeed, by simply allowing
bonds to reform in new conformational states, the model developed below can readily be
extended to arbitrary irreversible plastic deformations, as will be demonstrated elsewhere [45].
Before entering the discussion of our model, we would also like to point out that the proposed
(inelastic) extension of the Gwlc is strongly constrained by identifying the newly introduced
parameters with those of the original (viscoelastic) Gwlc model, where possible. Despite its
increased complexity, the extended model will therefore enable us to subject the underlying
physical picture to a more stringent test than hitherto possible by comparing its predictions to
dedicated experiments. Moreover, unlike current state-of-the-art simulation studies [25], it is
not limited to rod networks but is firmly rooted in a faithful mathematical description of the
underlying Brownian polymer dynamics.

This paper is organized as follows. First, we review some basic facts about the Gwlc
in section 2.1. Next, in section 2.2, we introduce our extended reversible inelastic version,
which we formulate using the notion of an effective interaction potential as in the original
construction of the Gwlc in [27]. (A preliminary account of the basic procedure and some
of its cell-biological motivation including reversible bond-breaking kinetics has recently been
given in a conference proceedings [39].) Sections 3.1 and 3.2 explain the physical mechanism
underlying the mechanical response under pulsed and periodically pulsed loadings, whereas
section 3.3 illustrates its phenomenology. We demonstrate that the model exhibits the hallmarks
of nonlinear cell mechanics: strain/stress stiffening, fluidization and cyclic softening [34]–[36].
Section 3.4 investigates the relevance of the lately quantified structural heterogeneities in
networks of semiflexible polymers [40] for the mechanical properties; finally, we conclude and
close with a brief outlook.

2. Theory

2.1. The glassy wormlike chain

The Gwlc is a phenomenological extension of the Wlc model, the well-established standard
model of semiflexible polymers. A broad overview of Wlc and Gwlc dynamics can be found
elsewhere [28]. The Wlc describes the mechanics of an isolated semiflexible polymer in
an isothermal viscous solvent. In the weakly bending rod approximation, a solution of the
stochastic differential equations of motion for the Wlc is possible via a mode decomposition
ansatz for the transverse displacement of the polymer contour from the straight ground state. The
individual modes labelled by an index n are independent of each other and decay exponentially
with rates τ−1

n . For convenience, we set the thermal energy kBT = 1, so that the bending rigidity
can be identified with the persistence length `p, in the following. Using this convention, the Wlc
expression for the transverse susceptibility of a polymer of contour length L (with respect to a
point force) reads

αWlc(ω) =
L3

`pπ 4

∞∑
n=1

1

(n4 + n2 f/ fL)(1 + iωτn)
. (1)
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Figure 1. Cartoon of a test polymer (differently coloured) in a network. The
trapping of the test polymer is schematically represented by means of an effective
interaction (figure 2) indicated by the potential wells at sticky entanglement
points, which are on average separated by a contour length Le. The test polymer
can bind/unbind by overcoming an energy barrier of height E . The average
contour length between the closed bonds is 3.

Here, f is an optional backbone tension and fL ≡ π2`p/L2 is the Euler buckling force for a
hinged rod of length L . The different powers of n in the denominator show the competition
between bending and stretching forces.

In the Gwlc, interactions of the polymer with the surrounding network (e.g. excluded
volume interactions or sticky contacts) are reflected in an altered Wlc mode relaxation
spectrum [27, 29]. The intuitive—albeit not fully microscopic—picture underlying the
formulation of the Gwlc is illustrated in figure 1, which depicts a test polymer reversibly
bound to the background network via potential wells at all topological contacts, the so-called
entanglement points. Consider now a generic point somewhere along the polymer backbone (not
an entanglement point). It can relax freely until the constrictions are being felt, which slow down
the contributions from long-wavelength bending modes. The Gwlc translates this intuition into
a simple prescription for the mode spectrum: the short-wavelength modes are directly taken
over from the wormlike chain model, whereas modes of wavelength λn longer than the typical
contour length 3 between adjacent bonds are modified to account for the slowdown. Motivated
by the physical picture illustrated in figure 1, the slowdown of the relaxation of a wavelength
λn is expressed by an Arrhenius factor exp [E (λn/3 − 1)] for breaking (λn/3 − 1) potential
energy barriers of height E simultaneously. Accordingly, the phenomenological recipe to turn a
Wlc into a Gwlc reads

τn → τ̃n =

{
τn, λn < 3,

τn exp [E(λn/3 − 1)] , λn >3.
(2)

Upon inserting this into (1), one obtains the Gwlc susceptibility αGwlc(ω) . The microscopic
‘modulus’ for transverse point excitations of a generic backbone element on a test polymer is
then defined as the inverse susceptibility, gGwlc(ω) = 1/αGwlc(ω). An approximate expression
for the macroscopic shear modulus is obtained along similar lines [22, 27].

In the original equilibrium Gwlc theory, 3 was assumed to be a constant of the order of
the entanglement length of the network, 3& Le. Note, however, that Le is a geometric quantity
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Figure 2. Sketch of the schematic effective interaction potential for a test
segment against the background. A polymer segment can either be ‘bound’ by a
transient crosslinker or a sticky patch on the backbone of another polymer (left
potential well) or ‘unbound’ and merely confined by the surrounding network
to a tube-like cage (right well). When considering an ensemble of contacts, the
fraction of closed bonds depends on the free energy difference U between both
states. The transition rates k− and k+ between the bound and unbound states
depend on the barrier heights E and (E − U ), respectively. An externally applied
force can tilt the potential and favour binding or unbinding events.

(which is determined by the polymer concentration and the persistence length), whereas the
contour length 3 between closed bonds clearly depends on the state of the bond network. One
therefore has to allow for an increase of 3 with the number of broken bonds in non-equilibrium
applications. This issue is explored in the following.

2.2. Effective interaction potential and bond kinetics

All mechanical quantities calculated within the Gwlc model crucially depend on the interaction
length 3. In previous applications of the model [7, 27, 30], it was assumed that 3 remains
constant—equal to its equilibrium value and unaffected by the deformation of the sample.
In other words, the equilibrium theory allowed for statistical bond fluctuations but not for a
dynamical evolution of the parameters characterizing the thermodynamic state of the bond
network. An obvious starting point for generalizations of the model to non-equilibrium
situations is therefore to consider the number of closed bonds, and therefore also 3, as dynamic
variables, dependent on the strain- and stress-history of the network. We now provide a mean-
field description to account for such a dynamically evolving bond network. For clarity, we return
to the intuitive picture underlying the Gwlc, where the (possibly crosslinker- or molecular-
motor-mediated) complex interactions between the polymers are summarized into an effective
interaction potential for a test segment against the background, as sketched in figure 2. The
same idea has also been used earlier in many related situations (e.g. [26, 41, 42]). The generic
potential exhibits three essential features: a well-defined bound state, a well-defined unbound
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state and a barrier in between (figure 2). The confining well corresponding to the unbound state
represents the tube-like caging of the test polymer within the surrounding network [15, 17, 43].
For ease of notation, we further introduce the dimensionless fraction of closed bonds, or bond
fraction

ν(t) ≡ 30/3(t), (3)

which is simply the ensemble-averaged fraction of sticky contacts that are actually in the bound
state. The minimum bond distance 30 is typically of the order of Le, but may be somewhat larger
in situations where the bonds are mediated by crosslinker molecules or by partially sterically
inaccessible sticky patches (e.g. for helical molecules [12, 44]).

A quantitatively fully consistent way of calculating the dynamics of ν would involve
solving the full Fokker–Planck equation for a Wlc–Wlc contact—a formidable programme
to be pursued elsewhere [45]. Here, for the sake of our qualitative purposes, we chose to
concentrate on the physical essence of the discussion, and keep the mathematical structure
as simple and transparent as possible. We therefore approximate the dynamics by a simple
exponential relaxation as is familiar from the standard example of reacting Brownian particles,
conventionally described by Kramers theory with a Bell-like force dependence [46, 47]. Using
this simplification and assuming a schematic interaction potential as depicted in figure 2,
the value of ν is determined by the competition between bond breaking and bond formation
with reaction rates k− and k+, respectively. Both rates are represented in the usual adiabatic
approximation (meaning that the equilibration inside the wells is much faster than the barrier
crossing and external perturbations) by the following [46]:

k−τ0 = e−E+(xt−xb) f , k+τ0 = e−E+U−(xu−xt ) f , (4)

where τ0 is an intrinsic characteristic Brownian time scale for bond breaking and formation4,
and f is the force pulling on the bond. Noting that the fraction of open bonds is 1 − ν, we can
then write down the following rate equation for the fraction of closed bonds:

ν̇(t)τ0eE = −(e−(xu−xt ) f (t)+U + e(xt−xb) f (t))ν(t) + e−(xu−xt ) f (t)+U. (5)

The time dependence of ν(t) leads via (3) to an implicit time dependence of the Gwlc
parameter 3(t) and thereby of all observables derived from the Gwlc. The time-dependent
force f (t) in (5) may be thought to result from an externally imposed stress protocol or from
internal dynamical elements such as molecular motors setting the network under dynamic
stress. Hence, via an appropriately chosen set of slowly changing state parameters f (t), U (t),
E(t), . . . , the model can in principle accommodate the active biological remodelling in living
cells and tissues [39]. (For a discussion of the relation between the microscopic f and the
macroscopic stress, see [29].) Note that for constant force, the stationary value of ν,

νstat = (1 + exp[−U + (xu + xb) fstat])
−1 , (6)

obtained by setting ν̇ ≡ 0, does not depend on E , as it should (the steady state is independent of
the transition state).

4 Strictly speaking, the fluctuations in the potential wells at xb and xu are characterized by different Brownian
time scales depending on the width of the potential wells. At the present stage, we do not bother to distinguish
these time scales, nor to fine-tune their numerical values, and identify them, for the sake of simplicity, with the
entanglement time scale τLe in our numerical calculations.
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Figure 3. Dependence of the microrheological ‘modulus’ gGwlc on the bond
fraction ν for various values of E (brown, E = 0.1: red, E = 1: blue, E = 5: green,
E = 10: black, E = ∞) at a frequency ω0 ≈ 1/10τ−1

30
and a force f = f30/2 (τ30

is the relaxation time of a mode of length 30 and f30 is the Euler buckling force
for a rod of length 30); (a) normalized real part g′; (b) loss angle.

3. Results and discussions

3.1. Viscoelastic properties

Whenever the bond kinetics can be disregarded (ν̇ = 0), the viscoelastic properties are simply
those of the bare Gwlc [7, 27, 29, 30], which can basically be characterized as Wlc short-
time dynamics followed by a slow, highly stretched logarithmic relaxation resembling power-
law rheology with a non-universal exponent within the typical experimental time windows.
Strong perturbations (stress or strain) then give rise to a pronounced stiffening due to the
steeply nonlinear response of semiflexible polymers under elongation [2]. This well-established
behaviour can be understood as the canvas against which we aim to discern the characteristic
mechanical signatures of the bond kinetics.

An observable that will be of particular interest in the following is the complex microscopic
‘modulus’ g ≡ gGwlc(ω0, 30/ν, f ), introduced in the previous section. It is used to determine
the linear as well as (via a nonlinear update scheme, see appendix) the nonlinear force response
of the system. To understand how the time dependence (5) of ν affects this important quantity,
it is instructive to first examine the dependence of g on ν. To this end, we formally consider
ν temporarily as an independent variable instead of determining it from (5). Note that this
approach nevertheless makes sense, as for a fixed set of parameters, ν can still take any value
between zero and one. This is due to the freedom in choosing an initial state, which can be
imagined to have evolved from the prior deformation history.

For other fixed parameters, both the real part g′ (figure 3(a)) and the imaginary part g′′

of g increase monotonically with ν. We emphasize that g′′ is not simply proportional to g′

and therefore the loss angle δ = arctan(g′′/g′) also depends on ν (figure 3(b)). For small ν,
the loss angle is large, corresponding to fluid-like behaviour. With increasing ν, the system
becomes more solid-like. Increasing the barrier height E makes the dependence of g on ν more
pronounced (figure 3). Conversely, as can be expected, the dependence on the barrier height E
vanishes with decreasing bond fraction ν. Note that due to the boundary conditions, the limit of
a Newtonian fluid (δ = π/2) is not recovered when formally taking the limit of vanishing bond
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fraction (ν → 0, 3 → ∞). Finally, the potential difference U solely determines the dynamics
of ν via (5) and therefore influences the modulus g solely through the equilibrium value for ν.

After these general considerations, we now concentrate on the nonlinear and non-
equilibrium dynamic response of the extended inelastic Gwlc model, which results from the
coupled relaxation of the viscoelastic polymer network and the transient bond network.

3.2. Stress stiffening versus rate-dependent yielding

A convenient way to characterize the mechanical properties of an inelastic material is a
force–displacement curve. For a perfectly linear elastic (Hookean) body, it would simply consist
of a straight line, whereas a perfectly plastic body would feature as a rectangle delineated by
a yield force fy and an arbitrary plastic strain value. For our qualitative purpose, we identify
the average transverse displacement of the test polymer segment (which is used to determine
the force response, see appendix) with the reaction coordinate x of the schematic potential
sketched in figure 2; and we identify the force f entering the reaction rates with the backbone
tension of the test polymer. As a characteristic length scale for the transverse displacements,
we use the width (xu − xt) of the effective confinement potential, which is a measure of a
typical mean-square displacement of the polymer in the unbound state. Using this convention,
we now consider the effect of a time-symmetric displacement pulse on the evolution of the
force f (t) and bond fraction ν(t). For technical convenience, we use a Gaussian shape for
the displacement pulses, but the qualitative conclusions to be drawn are largely independent
of the precise shape. The duration of the displacement pulse, which sets the time scale for the
dynamic response, is used as the unit of time in the following. Here, we are not interested in
short-time tension propagation and single-polymer dynamics [48]; hence a lower bound for
pertinent pulse durations is provided by the interaction time scale τ30 ' τ0. On the other hand,
for pulse durations longer than τ0eE , the system deformation would be quasi-static so that no
genuinely dynamic effects of the bond kinetics could be observed.

For a small Gaussian displacement pulse of relative amplitude 0.9 (cf figure 4(a) and
appendix), the shape of the force–displacement curve predicted by our inelastic Gwlc model
shows all the features of a viscoelastic medium (figure 4(b), blue dashed curve). It starts with
a nearly linear regime for relative displacements . 0.4, where a weak stiffening sets in. Owing
to dissipation in the medium, the path back to the initial state takes its course at lower force,
which causes a weak hysteresis. This is essentially the viscoelastic response that already the
bare Gwlc model would have predicted. For a larger relative deformation amplitude of 2.8,
however, the predictions of the bare Gwlc and the inelastic Gwlc diverge. The bare Gwlc
predicts a strong stiffening (figure 4(b), red dotted curve), whereas the full model exhibits
an initial stiffening regime followed by a pronounced softening (figure 4(b), solid red curve).
A very interesting observation is that ‘softening’ in this case not only means a decrease of
the slope of the force–extension curve, but that the slope actually becomes negative over an
extended parameter region, once an operationally defined threshold force fy is exceeded. This
‘flow state’ bears more resemblance to plastic flow than to viscoelastic relaxation. The reason
for this qualitatively new phenomenon is the force-induced bond breaking. Theoretically, this is
best exemplified by the time dependence of the (experimentally not easily accessible) fraction
ν(t) of closed bonds (figure 4(c)). A glance at the bond fraction during the weak deformation
scenario (figure 4(c), blue dashed curve) reveals how the limit of a bare Gwlc is recovered,
namely whenever the deformation is not sufficiently violent and persistent to significantly
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Figure 4. Transition from a stiffening to a softening response at a rate-dependent,
operationally defined yield force fy: Gaussian deformation pulses (a) with
relative displacement amplitudes of 0.9 (dashed) and 2.8 (solid); corresponding
force–displacement curves and bond fraction evolutions (b, c); dotted curve in
(b): response of a Gwlc without bond breaking); order-of-magnitude estimate
for the rate dependence of the yield force, equation (7) with const. = 2.2, versus
the numerically obtained maximum forces of the force–displacement curves for
various mean force rates (d); the minimum bond fraction (d, inset) depends
non-monotonically on the force rate; E = 10.5, U = 2, τ0 = 0.004, (xt − xb)/

(xu − xt) = 0.07, 30 = 22.3.

decrease the fraction of closed bonds. For the large deformation scenario, in contrast, the bond
fraction stays only initially constant (figure 4(c), solid red curve). As a consequence of the large
strain, the force rises steeply, as can be seen from the strong stiffening in figure 4(b) (solid
red curve). At the yield force, the bond fraction suddenly decreases to nearly half of its initial
value during a very short time. The decrease in the bond fraction is accompanied by a somewhat
slower drop in the force, which is reflected in the sudden softening of the force–displacement
curve. The bond fraction eventually recovers on a much slower time scale, which is roughly
given by τ0 exp(E − U ). Note that even though the effects of the inelastic response dominate
the stress–strain curve, the viscoelastic relaxations from the underlying Gwlc model are still
present. They could hardly be disentangled from the inelastic contributions, however, without
an underlying faithful model of the viscoelastic response at hand.

In summary, we observe a competition between force-amplitude-dependent stress-
stiffening and force-rate-dependent yielding events. If the backbone force stays much smaller
than the yield force, the adaptation of the bond network requires an adiabatically long time,
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on the order of the bond lifetime τ0eE , so that plain viscoelastic Gwlc behaviour is observed on
the pulse time scale. In contrast, if the backbone tension f reaches the yield force fy, the bond
fraction declines sharply, thereby switching the response from the Wlc/Gwlc-typical stiffening
to a pronounced softening.

The rate dependence of the yield force fy can be estimated by setting the time it takes to
reach the yield force, fy/ ḟ , equal to the force-dependent time scale of bond opening, k−1

−
( f ),

from (4),

fy ḟ −1
' k−1

−
( fy) ⇒ (xt − xb) fy ≈ LW

(
const. × (xt − xb)τ0eE ḟ

)
. (7)

Here, LW(x) is the positive real branch of the Lambert W function. In figure 4(d), this estimate is
compared with results from numerical evaluations for Gaussian displacement pulses at different
average rates. Apart from the numerical errors, the slight deviations from the estimate may be
attributed to the fact that the force rate is not constant for the Gaussian protocol. They can
be mostly eliminated by using force ramp protocols of various slopes instead of the Gaussian
displacement pulses. For not too low rates, the rate dependence can be approximated by the
even simpler relation

(xt − xb) fy ≈ (E + ln ḟ τ0 + const.), (8)

where the force rate has to be normalized by a suitable force scale.
The minimum bond fraction reached during the application of the pulse, which we interpret

as a measure of the degree of fluidization, depends non-monotonically on the rate (figure 4(d),
inset). Qualitatively, this can be understood by noticing that two different factors influence
the fluidization, namely the maximum force attained during deformation and the time over
which the force is applied. The maximum force is simply the yield force fy, with the rate
dependence in (7) and figure 4(d), while the reciprocal rate itself sets the time scale. For high
rates (xu − xt) ḟ & 1 (in our example) the rate dependence of the maximum force wins and the
minimum ν reached decreases with increasing rate. For low rates, where the rate dependence
of the maximum force is much weaker (figure 4(d)), the minimum ν decreases with increasing
pulse duration, namely decreasing rate. Note that for slow pulses (low rates), the bond fraction
after the pulse may be quite different from the minimum ν, as significant recovery may already
take place during the pulse.

3.3. Transient remodelling and cyclic softening

The substantial changes in the material properties accompanying bond breaking can be
exemplified by monitoring the linear elastic modulus g′(ω0) (measured at a fixed frequency
ω0) in response to a strain pulse (figure 5(a)). Apart from the usual Wlc/Gwlc-typical stress
stiffening below the threshold force fy, the modulus is seen to drop below the value it had before
the deformation pulse, where it apparently saturates (remember that the deformation vanishes
for t > 1 and that the recovery takes roughly a time τ0eE−U

� 1). We thus observe what we call
a ‘passive’, ‘physical’ remodelling of the bond network as opposed to the ‘active’, ‘biological’
remodelling of the cytoskeleton of living cells in response to external stimuli. These passive
remodelling effects have recently been observed for human airway smooth muscle cells [34].
(A more quantitative discussion of the relation to the experimental observations will be given
elsewhere.) The fact that the deformation pulse leads to a decrease in g′ and an increase in the
loss angle δ (figure 5(c)) suggests the notion of fluidization [34].
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Figure 5. The internal force f and the bond fraction ν largely determine the
storage modulus g′ and the loss angle δ: normalized storage modulus g′
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and loss angle δ (c) during displacement pulses of large and small amplitudes,
2.8 (solid) and 0.9 (dashed); the stronger deformation pulse causes a strong and
persistent overshoot of the loss angle, indicating fluidization; slow recovery after
the pulse (b, d); parameters as in figure 4, ω0 = 3.

The passive remodelling described here is a transient phenomenon, because, after ces-
sation of the external perturbations, the bond fraction will eventually recover its equilibrium
value. This indicates that also the change in the system properties is a transient effect, which is
demonstrated by the recovery from fluidization in figures 5(b) and (d). Thus, while the fluidiza-
tion resembles a plastic process on short time scales, on long time scales, the phenomenology
is more similar to pseudo- and superelasticity as observed in shape-memory alloys [49].

To demonstrate that the transient passive remodelling also affects the nonlinear material
properties, we next consider a series of three pulses (figure 6). The force response to such
a protocol is depicted in figure 6(b). The force–displacement curve for the second stretching
(second left branch of the solid curve) is less steep than for the first stretching (leftmost branch
of the solid curve) and the yield force is lower. This indicates a cyclic softening, or viscoelastic
shake-down effect, closely related to the fluidization of the network by strain. The strength of the
shake-down depends on the fraction of transiently broken bonds and hence on the rate as well
as on the amplitude of the applied deformation (cf figure 6(c), solid red curve). Upon repeated
application of deformation pulses the force–displacement curves settle on a limit curve that is
essentially preconditioned by the initial deformation pulse and the inelastic work it performed
on the sample. For more gentle protocols that only break a smaller fraction of bonds, the initial
fluidization would not be as pronounced and one would obtain a gradual shake-down, which
converges to a limit curve only after many cycles.
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Figure 6. Protocol (a) and response (b, c) for three subsequent Gaussian strain
pulses; force–displacement curves (b) for a single minimum interaction distance
(30 = 22.3; solid) and for a distribution of 30 according to Glaser et al [40] with
mean 3̄0 = 22.3 (dashed); the bond fraction ν(c) for 30 = 0.5 3̄0 (dash-dotted),
3̄0 (solid) and 23̄0 (dashed); other parameters are as in figure 4.

3.4. Introducing multiple length scales

So far, we have assumed that there is one well-defined characteristic length scale 30 for the
polymer interactions, which is of the order of the entanglement length Le and interpreted as
the minimum average contour distance between adjacent bonds of the test polymer with the
background network. This is clearly a mean-field assumption. Recent combined experimental
and theoretical studies have established that the local tube diameter and entanglement length in
pure semiflexible polymer solutions actually exhibit a skewed leptocurtic distribution with broad
tails [40]. To include this information in the above analysis is not straightforward, since the
elastic interactions between regions of different entanglement lengths are not known, a priori.
For the sake of a first qualitative estimate, the simplest procedure seems to be to average the
above results over a distribution of 30, corresponding to a parallel connection of independent
entanglement elements. Qualitatively, this renders the abrupt transition from stiffening to
softening somewhat smoother (cf figure 6(b), dashed curve). Moreover, the initial stiffening
is slightly more pronounced. This is due to the contributions of 30 < 3̄0, which exhibit both
stronger stiffening and fluidization. Nevertheless, all qualitative features—like stiffening and
remodelling effects and a ‘flow state’ indicating fluidization or inelastic shakedown—can still be
well discerned. This is consistent with the assumption that pure semiflexible polymer solutions
are at least qualitatively well described by a single entanglement length [17, 18, 22, 27, 50].
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4. Conclusions and outlook

We have presented a theoretical framework for a polymer-based description of the inelastic
nonlinear mechanical behaviour of sticky biopolymer networks. We represented the polymer
network on a mean-field level by a test polymer described by the phenomenologically highly
successful Gwlc model. Beyond the equilibrium statistical fluctuations captured by the original
model, we additionally allowed for a dynamically evolving thermodynamic state variable 3(t)
characterizing the network of thermo-reversible sticky bonds, which is updated dynamically
upon bond breaking according to an appropriate rate equation. Within our approximate
treatment we could obtain a number of robust and qualitatively interesting results, which are
not sensitive to the precise parameter values chosen, nor to the choice of the transverse rather
than the longitudinal susceptibility in (1). For sufficiently strong deformations, changes in the
mean fraction of closed bonds, reflected in 3(t), can influence material properties to a degree
at which the material behaves qualitatively different from the usual viscoelastic paradigm.
In particular, our theory predicts a pronounced fluidization response, which develops upon
strong deformations on top of the intrinsic viscoelastic stiffening response provided by the
individual polymers. After cessation of loading, the system slowly recovers its initial state.
These observations are in qualitative agreement with recently published experimental results
obtained for living cells [34], and a more quantitative comparison with dedicated measurement
results for cells and in vitro biopolymer networks will be the subject of our future work. We
found the yield force for the onset of the fluidization to be sensitive to the deformation rate.
Moreover, the fluidization response was shown to be accompanied by a cyclic softening or
shake-down effect. Taking into account the spatial heterogeneity of biopolymer solutions by
a distribution of entanglement lengths leads to a smoothing of the force–displacement curves
without affecting their qualitative characteristics. One may still expect qualitatively new effects
in situations with unusually broad distributions of entanglement lengths, such as for strongly
heterogeneous (e.g. phase separating) networks.

A parameter that was found to be very important for cells [51] but has not been discussed
much in this contribution is the prestressing force f0 (see appendix), which is present in adhering
cells even in the absence of external driving. Experimentally, it was established that increasing
prestress is correlated with a higher stiffness of adhering cells [51], which in turn is correlated
with a higher stiffness of the substrate [52]. When naively treating the prestressing force as
just an additive contribution to the overall force, our model predicts the opposite: the additional
force breaks more bonds and the network becomes softer and more fluid-like. To reconcile these
apparently contradicting trends, one can appeal to the notion of homeostasis, which essentially
amounts to postulating that the cell actively adapts its structure such that a certain set of
thermodynamic state variables remain in a physiologically sensible range [39]. This basically
implies that the cell will respond to stiff substrates or persistent external stresses by a biological
remodelling that corresponds to an increase of E and U , and possibly to a decrease of 30.
By adapting also the internal prestress f0, the cell may then avoid, apart from the structural
collapse, an equally undesirable loss of flexibility. We note, however, that internal stresses are
indeed observed to disrupt the cytoskeleton, as implied by the simple physical theory presented
here, if they are not permanently balanced by a substrate [53].

Even though the nonlinear effects presented in this contribution depend crucially on the
bond kinetics, it should not be overlooked that the Gwlc is an equally indispensable ingredient
of the complete theory. Firstly, it provides the constitutive relation that gives the force in
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response to an infinitesimal displacement, which in turn governs the bond kinetics. Secondly,
the time-dependent linear susceptibility strongly filters the dynamic remodelling of the bond
network in practical applications, in which one rarely has access to the microstate of the
underlying bond network. In summary, the extended model thus integrates experimentally
confirmed features of the Gwlc response such as slow relaxation, power-law rheology,
viscoelastic hysteresis and shear stiffening with a simple bond kinetics scheme, which allows
less intuitive complex nonlinear physical remodelling effects like fluidization and inelastic
shake-down to be addressed.

Finally, we want to point out that it is straightforward to extend the above analysis in a
natural way to account for irreversible plastic deformations. To this end, one has to allow for the
possibility that the transiently broken bonds reform somewhere else than at their original sites
(as always assumed in the foregoing discussion) after strong deformations with finite residual
displacement. This can be included by accommodating an additional term acting as a ‘slip rate’
in (5) [45].
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Appendix. Obtaining force–displacement curves and solving for ν

The deformation pulse protocol used in this paper is

0(t) = γ0 exp

(
−

(t − τ)2

σ 2

)
. (A.1)

To obtain the full nonlinear response of the (extended) Gwlc to the displacement protocol
(A.1), we make use of the superposition principle: we know that the Fourier transform of
gGwlc(ω, 3, f )/(iω) is the linear response to a small displacement step. After decomposing
a finite displacement into infinitesimal displacement steps and a partial integration, we write

fGwlc(t) =

∫
∞

−∞

dt ′

∫
∞

−∞

dω
√

2π
gGwlc (ω, 3(t), fGwlc(t)) e−iω(t−t ′)0(t ′). (A.2)

Note that the right-hand side of (A.2) depends on fGwlc(t), rendering it a highly nonlinear
implicit equation. Using (A.1) and integrating by parts, we obtain

fGwlc(t) =
√

2γ0σ

∫
∞

0
dω e−iω(t−τ)gGwlc(ω, 3(t), fGwlc(t))e

−(σ 2ω2)/4. (A.3)

The next step is to establish a connection between the force in (5) and fGwlc(t). A finite
prestressing force f0 is introduced mainly for technical reasons, namely to avoid the unphysical
region of negative (i.e. compressive) backbone stress, which would buckle the polymers.
Whereas the physics of the prestressed network can essentially be mapped back to that of a
network without prestress by a renormalization of the parameters E and U , prestress may also
be seen as an important feature: indeed, the cytoskeleton of adhered cells is well known to be
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under permanent prestress, and suspended cells seem prone to spontaneous shape oscillations
that could be indicative of a propensity of the cells to set themselves under prestress [39]. In
the context and on the longer time scales of the biological remodelling of the cytoskeleton it
would therefore make sense to think of f0 as a dynamic force generated by molecular motors
and polymerization forces. For the following, however, we take the prestress to be constant so
that the force entering (5) is

f (t) = f0 + fGwlc(t). (A.4)

We now face the problem that (A.2) is an implicit equation for fGwlc(t), which depends on
ν(t), which in turn depends via f (t) on fGwlc(t). We therefore use a two-step Euler scheme: as
initial values for f and ν, we choose the prestressing force, f (t = 0) = f0, and the steady-state
value under the prestressing force, ν(t = 0) = ν(t → ∞| f = f0), respectively. We then choose
a sufficiently small time step 1t and apply the following iterative rule:

f (k1t) ≈ f0 + fGWLC (k1t | f ((k − 1)1t, ν((k − 1)1t)) , (A.5)

ν̇(k1t) ≈ ν̇(k1t | f (k1t)), (A.6)

where k ∈ N+ . In the limit 1t → 0, this procedure converges to the exact solution.
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