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Abstract. We show how to apply a generalization of local control design to
the problem of the saturation of a spin-1/2 particle by magnetic fields in nuclear
magnetic resonance. The generalization of local or Lyapunov control arises from
the fact that the derivative of the Lyapunov function does not depend explicitly
on the control field. The second derivative is used to determine the local control
field. We compare the efficiency of this approach with that of the time-optimal
solution that has recently been derived using geometric methods.
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1. Introduction

The control of spin systems by magnetic fields has great potential for applications in nuclear
magnetic resonance (NMR) [1]. An example is given by the preparation of a well-defined
initial state such as the saturation process that consists in vanishing the magnetization
vector of a sample by using an adequate pulse sequence [2, 3]. In the setting of NMR
spectroscopy and imaging, the saturation control can be used for solvent suppression or contrast
enhancement [5, 6]. Different approaches have been proposed to date to solve this control
problem. They extend from intuitive schemes such as the inversion recovery (IR) method [1] to
more elaborate pulse sequences based on geometric optimal control theory [4] or optimization
schemes [7, 8, 16, 19]. In a recent work [4], we showed that a gain of 60% in the duration of
the saturation process can be achieved when using the time-optimal solution with respect to the
IR one. In general, however, analytic solutions as derived in [4] are not available, and easily
accessible numerical methods are required for the control of complex and realistic systems.
Here, we investigate such a method and demonstrate its efficiency through a comparison with
time-optimal analytic solutions [4]. Roughly speaking, the present method is an extension of
local [9] or Lyapunov control [10], in terms of a so-called Lyapunov function V over the state
space, which is minimum (or maximum) for the target state. In original Lyapunov control theory,
a control field that ensures the monotonic decrease of V is constructed with the help of the first
time derivative V̇ of V . Under well-established general conditions on the Hamiltonian (see
e.g. [11] for a recent review), the system converges asymptotically towards the target state. This
approach has been largely explored in quantum mechanics from both the physical [9, 12, 13]
and mathematical points of view [14].

In this paper, we will employ a target functional whose first time derivative does not depend
on the available control fields. In this case, an inspection of V̇ does not help us to identify
suitable control fields, and standard local control theory cannot be used. Therefore, one has to
resort to the second time derivative V̈ , which allows the design of control pulses that speed up
the increase of V [15]. At first glance, one might assume that losing control of V̇ should be a
disadvantage. However, it turns out that it also yields significant advantages: since control fields
typically induce unitary dynamics, the lack of dependence of V̇ on the control field implies
the invariance of V under the corresponding unitary group. Consequently, the function V is
constant for a continuous manifold of quantum states within which the control can induce
dynamics. Not enforcing a given path through state space but giving the system the opportunity
to find its optimal path with a direction restricted only by the manifolds of constant V permits
us to avoid exerting unnecessary control but to give the system substantial freedom to find
its optimal path. Also, V̈ allows us to predict the dynamics of V for longer intervals than V̇ ,
since it extrapolates for two infinitesimal time steps rather than one. This reduces the time-local
character of Lyapunov control, and the efficiency of this generalized approach will be illustrated
using different numerical simulations in this paper.

The scheme under scrutiny here was originally developed for many-body systems, in
particular for systems with a high-dimensional Hilbert space [15]. Since high-dimensional
problems typically lack analytical solutions, we will focus here on the dynamics of a single
spin-1/2 system, since this provides us with a test case with rigorous optimal solutions. The
present method is, however, not specific to the model or target functional discussed here, but
only requires a target functional whose value cannot be modified by the control alone.
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The paper is organized as follows. Section 2 deals with the description of the system and
of the control problem. The description of the generalized local control approach and of the
time-optimal one is presented in section 3. Different numerical results are finally presented in
section 4 for relevant situations in NMR. The conclusion and perspective views are given in
section 5.

2. The model system

The state of a spin-1/2 particle in an NMR experiment is most conveniently expressed by
its Bloch vector with components Mx , My and Mz. If the radiofrequency magnetic field is in
resonance with the spin, the Bloch equations are given by

dMx

dt
= ωy Mz −

Mx

T2
,

dMy

dt
= − ωx Mz −

My

T2
, (1)

dMz

dt
= − ωy Mx + ωx My −

Mz − M0

T1
,

where ωx and ωy are the two components of the control field Eω, T1 and T2 are two relaxation
rates characterizing the incoherent process due to the interaction with the environment and M0

is the thermal equilibrium magnetization. Since the maximum amplitude ωmax that the control
fields Eω can adopt induces a natural time scale, it is convenient to introduce the scaled variables

Eu = 2π Eω/ωmax, τ = (ωmax/2π)t, 0 = 2π/(ωmaxT2), γ = 2π/(ωmaxT1), Ex = EM/M0.

Since, in addition, the equations of motions are invariant under rotations around the z-axis,
we can restrict the entire dynamics to the (y, z)-plane by assuming that ωy = 0. Doing so,
equations (1) reduce to

ẏ = −0y − uz,

ż = γ (1 − z) + uy
(2)

in terms of the scaled and scalar control fields u = 2πωx/ωmax.

3. Optimization schemes

In the following, we will take the thermal equilibrium state with Mz = M0 and Mx = My = 0 as
the initial state. In terms of the scaled magnetization, this implies that the initial state is located
at the north pole of the scaled Bloch sphere. As discussed in more detail below, the goal of the
control is to bring the scaled Bloch vector to the center of the sphere in minimum time with the
constraint |u|6 2π on the control field, which is known as the saturation control problem [5, 6]
in NMR.

3.1. Generalized local control theory

Since our goal is to reach a vanishing magnetization vector, which is equivalent to a maximum
entropy state, we can choose any entropy-like functional as the target. We consider the linear
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entropy

Sl(%) = 1 − Tr %2
=

1
2(1 − x2

− y2
− z2), (3)

which specifies the length of the Bloch vector. Sl = 0 corresponds to a pure state with a Bloch
vector of maximal length and Sl = 1/2 corresponds to a completely mixed state, i.e. a thermal
state associated with infinite temperature.

Reaching maximum entropy in minimum time, i.e. as quickly as possible, can be done by
choosing u such that the temporal increment of Sl is maximized. As anticipated above, the time
derivative

dSl

dt
= 0y2

− γ (1 − z)z (4)

of Sl is independent of u, which is a direct consequence of the invariance of Sl under coherent
dynamics, as generated by u. We therefore have to inspect the curvature of Sl, which essentially
contains information on how the impact of relaxation changes under the coherent dynamics. In
the present case, it reads

d2Sl

dt2
= u y(γ − 2(γ − 0)z)︸ ︷︷ ︸

µ:=

+S̈o
l , (5)

where S̈o
l denotes the curvature in the absence of a control field. Since maximization of the

curvature results in maximally fast increase of Ṡl, which in turn implies an acceleration of
the increase of entropy, we will choose, at any instance of time, u such that it maximizes the
curvature. Given that the modulus of u is bounded by 2π , this leads to the choice u = 2π if
µ > 0 and u = −2π if µ < 0. As long as µ is finite, this implies that u is constant over a
finite period of time so that the equations of motion can be integrated straightforwardly. Care
is, however, necessary if µ = 0. In this case, one has to distinguish between stable solutions,
where the control fields ensure that the condition µ = 0 is preserved, and unstable conditions,
where the control or the natural dynamics ensures that the condition µ = 0 is satisfied only for
an isolated point in time. The latter case is realized for y = 0 and corresponds to u = 0 (i.e.
no control pulse), the system remaining in the line of the equation y = 0 to follow its natural
dynamics. The former case is realized for z = z0 = γ /(2(γ − 0)) and requires some more care.
Let us therefore step back for a moment from the framework of differential equations and
discuss equations (2) in terms of finite time steps. If we start out with µ6 0 then the value
of µ will increase in time since we were assuming the condition µ = 0 to be stable. Owing to
the finite time steps, however, we might end up in a situation where µ> 0. Now, in turn, µ will
decrease in time, so that we risk ending up in rapid changes of the sign of µ, which results in a
rapidly changing sign of the control pulses. Decreasing the size of the time steps will decrease
the size of the fluctuations in µ and increase the frequency with which the control pulse changes
sign. Once this frequency has exceeded all system frequencies sufficiently, we can replace the
rapidly oscillating pulse by a time-averaged pulse

ū(t) =

∫
dt̃ u(t̃) f (t − t̃), (6)

where f (t) is some function, such as a Gaussian, that is positive in some finite domain around
t = 0 and that decays sufficiently fast outside this domain. In the limit of infinitesimal time
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steps, the fluctuation in µ will vanish, and ū is the pulse that has to be applied to preserve the
condition µ = 0. The control ū needs to be chosen such that

ż = γ (1 − z) + ū y = 0. (7)

This implies that the local pulse solution can be written as

ū = −
γ

y
(1 − z) = −

γ

y

(
1 −

γ

2(γ − 0)

)
. (8)

Note that ū → ±∞ when y → 0, which defines a limit of admissibility due to the bound on the
control given by

|y|>
|γ (γ − 20)|

2π(20 − 2γ )
. (9)

This means that for smaller values of y, the system cannot follow this horizontal line and a
constant control u = ±2π has to be used. Together with equation (2), the equation of motion
for the y-component with u = ū reads consequently as

ẏ = −0y +
1

y

γ 2(γ − 20)

4(γ − 0)2︸ ︷︷ ︸
:=g

, (10)

which has the solution

yS = ±

√
e−20t

(
y2

0 −
g

0

)
+

g

0
, (11)

where y0 is the initial y-coordinate on the horizontal axis. One deduces that ū is determined
through equation (8), and ū in turn defines z(t) uniquely. One finally arrives at

u = 2π for µ > 0, (12)

u = −2π for µ < 0, (13)

u = 0 for y = 0 and µ = 0, (14)

u = ū as given by equation (8) for µ = 0 and z = z0, (15)

and the complete solution is a concatenation of these pieces, as sketched in figure 1. In the
following, the control fields of maximum intensity will be called regular or bang, while those
such that |u| < 2π will be said to be singular.

Using this material, we can follow the dynamics starting from the thermal equilibrium
(y = 0, z = 1). This point is an unstable fixed point of the dynamics; that is, following the
above prescription one should not add any control pulse, the state being stationary. Any small
deviation, however, will indicate that a finite control field needs to be applied. We will therefore
begin with an infinitesimally displaced initial condition y(0) = −ε, z(0) = 1. Then, according
to equation (13), the system is driven with maximum intensity u = −2π until the Bloch vector
reaches a point with µ = 0. At this point, the control field has to be changed so as to satisfy
equation (15) and the Bloch vector moves along the line µ = 0 until its y-component vanishes.
Once this is achieved, the spin will relax to the target state without any control field according
to equation (14). For the moment, we have been assuming that the control field can be chosen
strong enough to ensure that the spin remains on the horizontal µ = 0 trajectory. Here, it is not
the case, due to the limitation in the field amplitude; a constant pulse according to equation (13)
has therefore to be applied when ū = ±2π along the horizontal line.
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Figure 1. Temporal increment [ẏ, ż] of the Bloch vector in the y–z-plane in
the presence of local control as given in equations (12)–(15). The dashed arrow
depicts the evolution along the line µ = 0 according to equation (15); the dotted
arrow corresponds to free evolution according to equation (14). The curved, solid
arrows correspond to equations (12) and (13).

3.2. Optimal control theory

In this section, we briefly recall the tools of optimal control theory based on the application
of the Pontryagin maximum principle (PMP). See [18] for a general application to dissipative
quantum systems and see [4, 17, 19] for examples in NMR. The first step of this method consists
in introducing the pseudo-Hamiltonian H defined by

H= EP · ( EF0( EX) + u EF1( EX)), (16)

where EX = (y, z) and the vector fields EF0 and EF1 have, respectively, the components
(−0y, γ (1 − z)) and (−z, y). The vector EP is the adjoint state of the coordinates (py, pz).
The PMP states that the optimal trajectories are solutions of the system

ĖX =
∂H
∂ EP

( EX , EP, v), ĖP = −
∂H
∂ EX

( EX , EP, v),

H( EX , EP, v) = max
|u|62π

H( EX , EP, u), H( EX , EP, v)> 0.

Introducing the switching function 8 = EP · EF1, the PMP leads to two types of situations, the
regular and the singular ones. In the regular case, 8( EX , EP) 6= 0 or vanishes at an isolated point,
while in the singular case, 8 is zero on a time interval. In the former situation, the corresponding
control field is given by u = 2π × sign[8]. In the latter case where φ = φ̇ = φ̈ = · · · = 0, we
introduce the vector EV = (−γ + γ z − 0z, (−0 + γ )y) which satisfies φ̇ = EP · EV . The singular
trajectories belong to the set of points where EV is parallel to EF1, i.e. to the points such that
det( EF1, EV ) = 0. A straightforward computation leads to the two lines of equations y = 0 and
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Figure 2. Top: the evolution of the magnetization vector in the (y, z)-plane for
the local control trajectory (blue or black) and the optimal solution (red or gray)
with decoherence times T2 = 8.8 ms and T1 = 61.9 ms. The inset is a zoom-in of
the trajectories near the singular horizontal line. The cross indicates the position
of the limit of admissibility of the control along the horizontal axis. Bottom: the
corresponding control fields.

z = z0 [4], which shows that the singular set is the same in the local control and optimal
approaches. The corresponding optimal singular control is by definition the field such that the
dynamics remains on the singular lines. Still this field is identical to local singular control. At
this point, it is important to note that the trajectories given by the maximization of H are only
extremal solutions, i.e. candidates to be optimal. Other tools such as those introduced in [20]
have to be used to obtain optimality results and to select from extremal trajectories the ones that
are effectively optimal.

4. Comparison of local and optimal control sequences

As a specific example to illustrate the efficiency of these two optimization schemes, we consider
the control problem of a spin-1/2 particle coupled to a thermal environment as analyzed and
experimentally implemented in [4]. In this section, we will consider two examples characterized
by different relaxation parameters. In the first case, we have T2 = 8.8 ms and T1 = 61.9 ms,
which leads, with a maximum amplitude ωmax = 2π × 32.3 Hz, to 0 = 3.5 and γ = 0.5. In the
second situation, we choose T2 = 6.2 ms and T1 = 61.9 ms, which gives the same maximum
amplitude 0 = 5 and γ = 0.5.

Let us compare the time-optimal solution as computed in [4, 18] with the solutions obtained
with the generalized local control theory. The numerical results are presented in figures 2

New Journal of Physics 13 (2011) 073001 (http://www.njp.org/)

http://www.njp.org/


8

y

z

−1 −0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

−0.2 −0.15 −0.1 −0.05 0 0.05

−0.05

0

0.05

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

2

4

6

t

u

Figure 3. Evolution of the magnetization vector similarly to figure 2 but with
decoherence times T2 = 6.2 ms and T1 = 61.9 ms.

and 3 for the first and second cases, respectively. In the two cases, the time-optimal solution
is composed of two bang pulses of maximum amplitude 2π and two singular controls: starting
from the initial point of the coordinates (y = 0, z = 1), the first bang pulse drives the spin
up to the horizontal singular line where µ vanishes. The consecutive singular control ensures
that the z-component remains constant until y = yc, when the second bang pulse is applied.
The position yc is computed to ensure that the switching function φ and its first derivative φ̇

remain continuous along the optimal sequence. The values of yc are equal to −0.1605 and
−0.1356 in the first and second cases. The second bang pulse increases the z-component of the
magnetization vector until its y-component vanishes. The final part of the optimal sequence is a
zero control along the vertical singular axis y = 0 which allows to reach the target state. With the
chosen relaxation parameters γ and 0, the time-optimal sequence has a duration of 0.950 50 and
0.97 in dimensionless units (defined above in equation (2)) in the first and second cases. When
there is no bound on the control, the second bang does not exist and the optimal sequence is
formed by a bang arc followed by the two singular trajectories along the horizontal and vertical
lines. The solution of the generalized local control is very similar. Exactly like the time-optimal
solution, it begins with a bang pulse followed by a singular pulse ensuring that µ vanishes,
but this pulse is maintained longer than in the time-optimal solution. Only at y = −0.0862
and y = −0.0840 where |u| = 2π , the limited control intensity does not permit to maintain the
condition µ = 0 and a bang pulse has to be applied. In the unbounded situation, note that the
local and optimal solutions are identical. In the bounded case, if the second bang arc intersects
the vertical z-axis, the dynamics relaxes without any control until its Bloch vector vanishes.
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Figure 4. Evolution of the magnetization vector with decoherence times
T2 = 6.2 ms and T1 = 61.9 ms as in figure 2, but for an initial state corresponding
to the south pole of the Bloch sphere.

In the case of figure 2, this leads to an overall control duration of 0.950 98 that is slightly
larger than the one of the time-optimal solution; the difference is of the order of 4.81 × 10−4.
Whereas local control does not reproduce the time-optimal solution exactly, we can conclude,
in this case, that the longer duration of the former is negligible for all practical purposes. This
conclusion is not true for all the values of the relaxation parameters. In particular, in figure 3,
since there is no intersection between the second bang pulse and the z-axis, we observe that the
local control approach does not manage to reach the target, the minimum distance being equal to
9.9 × 10−4.

Figure 4 gives a third example where the initial point of the dynamics is the south pole
of the Bloch sphere, the relaxation rates being the ones of the first example. If we assume that
the initial point is exactly on the z-axis, then the local solution consists in letting the relaxation
with u = 0 act up to the center of the Bloch ball. Since this axis is unstable, any small deviation
from this point will induce a bang control of amplitude ±2π up to the horizontal singular line.
A second bang pulse is applied when the limit of admissibility of the control is reached and a
zero control is finally used up to the target state. The optimal control sequence is quite similar,
except for the second bang which is applied earlier than in the local control strategy. We observe
in figure 4 that the local and the optimal solutions are very close to each other with a control
duration of 0.8758 and 0.8753, respectively, while if u = 0 this time is 1.3861.
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5. Conclusion and perspectives

The close-to-optimal performance of the generalized time-local control pulses reflects the
potential of this new approach, which can efficiently replace the standard local control design
when this strategy cannot be used. Whereas we have seen that sufficiently strong control
typically permits to reach the target, it can also be missed with weak control fields. This opens up
the general question of convergence in the present generalized framework of Lyapunov control.
In standard Lyapunov control theory, there is a well-established theory of convergence, based,
e.g., on the concept of the Lasalle invariant set on which the derivative of the Lyapunov function
vanishes [21]. In addition, necessary and sufficient conditions on the Hamiltonian of the system
have been derived to ensure convergence towards the target state [11]. Given the success of
these tools for standard Lyapunov control theory, it seems within reach to also develop rigorous
concepts to predict convergence properties of the present extension.
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