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Abstract
Landauerʼs principle relates entropy decrease and heat dissipation during logi-
cally irreversible processes. Most theoretical justifications of Landauerʼs prin-
ciple either use thermodynamic reasoning or rely on specific models based on
arguable assumptions. Here, we aim at a general and minimal setup to formulate
Landauerʼs principle in precise terms. We provide a simple and rigorous proof of
an improved version of the principle, which is formulated in terms of an equality
rather than an inequality. The proof is based on quantum statistical mechanics
concepts rather than on thermodynamic argumentation. From this equality ver-
sion, we obtain explicit improvements of Landauerʼs bound that depend on the
effective size of the thermal reservoir and reduce to Landauerʼs bound only for
infinite-sized reservoirs.

Keywords: Landauerʼs principle, entropy, heat, statistical mechanics, quantum
information theory, second law of thermodynamics

1. Introduction

The Maxwellʼs demon paradox suggested that one can lower the entropy of a gas of particles
without expending energy, and thus violate the second law of thermodynamics, if one has
information about the positions and momenta of the particles [Max71, LR03]. During the
resolution of this puzzle it became however clear that thermodynamics imposes physical

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence.
Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal

citation and DOI.

New Journal of Physics 16 (2014) 103011
1367-2630/14/103011+37$33.00 © 2014 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft

mailto:david.reeb@tum.de
mailto:m.wolf@tum.de
http://dx.doi.org/10.1088/1367-2630/16/10/103011
http://creativecommons.org/licenses/by/3.0/


constraints on information processing [Szi29, vNe49]. Rolf Landauer [Lan61] recognized that it
is the logically irreversible erasure of information that necessitates a corresponding entropy
increase in the environment [Ben82]; i.e. information erasure from the information-bearing
degrees of freedom of a memory register or computer causes entropy to flow to the non-
information-bearing degrees of freedom. At inverse temperature β, this entropy increase causes
heat

Q S (1)Δ Δ β⩾

to be dissipated, where SΔ denotes the entropy decrease in the memory. This consequence is
Landauerʼs principle, and the inequality (1) is also called the Landauer bound or limit.

Since its inception [Lan61], the above argument has been controversially discussed on
different levels. For example, it has been disputed whether it is necessary to assume the
validity of the second law of thermodynamics in order to derive Landauerʼs principle or
whether, conversely, the second law itself is actually a consequence of the principle (see e.g.
[EN99, Ben03, LR03]). Situations have been reported—both theoretically [AN01, Ali12] and
in experiment [Orl12]—which supposedly violate Landauerʼs principle. And it was actually
already recognized by Bennett [Ben73, Ben82] that all computation can be done reversibly,
thereby avoiding irreversible erasure and requiring no heat dissipation in principle. On the
other hand, the principle was successful in exorcising Maxwellʼs demon [Ben82, LR03], and
a recent experiment [Ber12] approached Landauerʼs limit but could not surpass it. Attempts
to formulate and prove Landauerʼs principle by more microscopic methods followed later
(e.g. [Pie00, SU09]), but they still have deficiencies as we discuss in more detail in
section 2.2.

Much of the misunderstanding and controversy around Landauerʼs principle appears to be
due to the fact that its general statement has not been written down formally or proved in a
rigorous way in the framework of quantum statistical mechanics. To remedy this situation is the
first goal of the present work.

We formulate in precise mathematical and statistical mechanics terms the setup for
Landauerʼs principle. The four assumptions are listed at the beginning of section 2.1 (see also
figure 1 for an overview of the setup). Our formulation encompasses processes more general
than ‘erasure’, and the setting is minimal in the sense that Landauerʼs bound can be violated
when any one of our assumptions is dropped.

Our first main result is a proof of Landauerʼs principle in the form of a sharpened equality
version (theorem 3)

( )Q S I S R D S( : ) , (2)R RβΔ Δ ρ ρ Δ= + ′ ′ + ′ ∥ ⩾

where the mutual information I S R( : )′ ′ quantifies the correlations built up between system and
reservoir during the process and the relative entropy D ( )R Rρ ρ′ ∥ can be physically interpreted
as the free energy increase in the reservoir. Closer examination reveals that Landauerʼs bound

Q SβΔ Δ⩾ can be tight only if S 0Δ = . The Landauer bound (1) can thus be improved for all
non-trivial processes.

Our second main result is then an explicit improvement of Landauerʼs bound (section 4),
which will be possible when the thermal reservoir assisting in the process has a finite Hilbert
space dimension d < ∞. A paradigmatic result is here (see theorem 6)
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This is illustrated in figure 2: for small reservoirs, the necessary heat expenditure QΔ lies
several ten percent above the Landauer limit (1). The main technical tool in deriving these
finite-size effects is a tight entropy inequality between relative entropy and entropy
difference [RW13].

In section 5 and appendix C, we present a few extensions of the setup from section 2.1.
Section 6 forms a counterpart to results like equation (3), as we construct processes that
approach Landauerʼs bound (1) arbitrarily closely by using a reservoir of unbounded size d.

2. Setup and notation

Here we formalize the exact setting in which we prove—and improve—Landauerʼs principle.
We avoid unnecessary excess structure that is present in some previous works (discussed in
section 2.2), and aim to motivate each necessary ingredient. This is the first step to a rigorous
treatment of Landauerʼs principle in sections 3 and 4. Our setup and the subsequent statements
will be quantum-mechanical, but apply to the classical (probabilistic) case as well upon
restriction to commuting states and Hamiltonians. In section 5 and appendix C we discuss some
extensions of the setup described here.

2.1. Setup of the process

As commonly conceived, Landauerʼs process [Lan61] is supposed to ‘erase’ or ‘reset’ the state
of a system by having it ‘interact’ with a ‘thermal reservoir’, bringing the system into a
‘definite’ state, such as a fixed pure state. We use this conception as a motivation, but our setup
will be more general and precise.

The four assumptions needed for Landauerʼs principle are as follows (see also figure 1):

(a) the process involves a ‘system’ S and a ‘reservoir’ R, both described by Hilbert spaces,

(b) the reservoir R is initially in a thermal state, e tr[e ]R
H Hρ = β β− − , where H is a Hermitian

operator on R (‘Hamiltonian’) and [ , ]β ∈ −∞ +∞ is the ‘inverse temperature’,

(c) the system S and the reservoir R are initially uncorrelated, SR S Rρ ρ ρ= ⊗ ,

Figure 1. Our formalization of the ‘process’: an initially uncorrelated state S Rρ ρ⊗ of a
system S and a thermal reservoir R ( e tr eR

H H⎡⎣ ⎤⎦ρ = β β− − ) is subjected to a unitary

evolution, U U: ( )SR S R
†ρ ρ ρ′ = ⊗ . This replaces Sρ by the marginal state

tr [ ]S R SRρ ρ′ = ′ . Landauerʼs principle (or Landauerʼs bound) [Lan61] now relates the
entropy decrease SΔ in the system to the heat QΔ dissipated to the reservoir:

Q S.βΔ Δ⩾ We rigorously prove and improve this inequality in the paper.
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(d) the process itself proceeds by unitary evolution, U USR SR
†ρ ρ′ = .

We now discuss each of these four assumptions in more detail, arguing that this setup is
minimal.

The process acts on two subsystems, S and R, and we call S the ‘system’ and R the
‘reservoir’. We model these as quantum systems with Hilbert spaces of finite dimensions dS and
d dR≡ , respectively (see figure 1). The extension of our treatment to infinite-dimensional state
spaces is discussed in appendix C.3.

Secondly, we require a Hamiltonian H HR ≡ of the reservoir to be given, i.e. a Hermitian
operator H H ( )d† = ∈  . We furthermore assume that initially, i.e. before the process starts,
the reservoir is in a thermal state

e

tr e
(4)R

H

H⎡⎣ ⎤⎦
ρ =

β

β

−

−

at inverse temperature [ , ]β ∈ −∞ +∞ (for β = ±∞, Rρ is the maximally mixed state on the
ground space of H± ; see appendix A for more details on statistical mechanics).

The assumption of an initially thermal reservoir state to be consumed during the process is
reasonable, since such states may be considered cheaply available; this is due to the physics
intuition—verified in several computable models—that a reservoir governed by H and at
inverse temperature β will generically relax to the state (4) (see e.g. [BR97, Thi02]) or to a state
close to it (e.g. [MAM+13]). Furthermore, if Rρ would not be a thermal state as in equation (4),
then it would be possible to violate Landauerʼs bound (see section 2.2); this is related to the fact
that thermal states are the only completely passive states, meaning that from an arbitrary number
of state copies one cannot extract work by unitary operations alone [PW78]. Lastly, the
appearance of the initial thermal reservoir state (4) is motivated already by the mathematical
need to have a definite value for β appearing in Landauerʼs bound as stated in equation (1).

We do not put any assumption on the initial system state Sρ ; in particular, it need not be a
thermal state. The following developments and results are in fact completely independent of the
system Hamiltonian, and it does not even need to be specified.

As the third assumption, we require system and reservoir to be initially uncorrelated, i.e.

. (5)SR S Rρ ρ ρ= ⊗

This assumption will be important for Landauerʼs principle to hold: if the initial state SRρ would
for instance be such that the reservoir R had perfect classical correlations with S, then a unitary
process could reduce the system entropy without any heat dissipation, in violation of
Landauerʼs bound. This can be seen from the example in section 5.1, in which the system S is
brought into a final pure state without any change of the reduced state of the reservoir.

The product state assumption (5) is standard in the theory of thermodynamics and in many
common tasks in information processing, e.g. in the paradigmatic examples of resetting a
register in a computer or when performing error correction. In these cases, the assisting
reservoir R is often assumed not to have previously interacted with the register S, such that their
states are independent. When however system and reservoir have undergone prior interactions,
they may be correlated, and we give a Landauer-like bound for this case in equation (57). (The
case of extreme correlations would correspond to reversible computation [Ben73, Ben82],
which indeed does not require any energy expenditure but suffers from error build-up in
practical implementations.) Furthermore, as we are assuming an initially thermal reservoir (see
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equation (4)), correlations in SR would be unnatural unless the full initial state SRρ were also
thermal, but this would then require a (Hamiltonian) interaction term between S and R; see also
[dRi13]. Some reported ‘violations’ of Landauerʼs bound [AN01, Orl12] can be explained by
their not respecting the initial product state assumption (5).

Extensions of the product state assumption (5) and the inclusion of an additional memory
register are discussed in section 5.1 (see also section 5.2).

So far we have described the assumptions on the initial state SRρ , equations (4) and (5). The
fourth and last assumption is that the process itself happens by any unitary evolution

( )U U U U , (6)SR S R SR
† †ρ ρ ρ ρ′ = ⊗ =

where the unitary U ( )d dS ∈ ⊗ acts jointly on S and R. Importantly, the unitarity
assumption implies that no unspecified environment E may participate in the process and take
on entropy, which is what may happen during a dissipative process described by quantum
channels. Instead, the description (6) forces one to explicitly include all resources used during
the process in the description by S and R. Furthermore, if a general quantum channel were
allowed for the evolution SR SRρ ρ↦ ′ , then there obviously could not be any restriction on the
entropy changes and heat flows (defined below) and no version of Landauerʼs bound
could hold.

The unitary U in (6) may for example be effected by a time-dependent Schrödinger
evolution, where an interaction Hamiltonian H t( )SR

int is switched on at some point in time by an
external agent and then switched off later, such that a total unitary U acts on the initial state SRρ
and gives the final state (6). Our setup and results below do however not require any such
structure for U; in fact, they do not even depend on the concrete unitary U, but merely on the
fact that the evolution SR SRρ ρ↦ ′ was effected by some unitary.

The joint final state SRρ′ of system and reservoir may be correlated, which is the generic
case. By [ ]: trS R SRρ ρ′ = ′ we denote the final state of the system (‘state after the process’), by

[ ]: trR S SRρ ρ′ = ′ the final state of the reservoir. Note in particular that we do not require Sρ′ to be
a pure state. This assumption is frequently made in the literature, but may not always be
achieved as discussed in section 3.3.

For a process as just described, Landauerʼs principle relates the entropy decrease of the
system

( )S S S: ( ) , (7)S SΔ ρ ρ= − ′

(where S ( · ) denotes the von Neumann entropy, equation (13)) to the heat transferred to the
reservoir

( ) [ ]Q H H H: tr tr tr , (8)R R R R
⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦Δ ρ ρ ρ ρ= ′ − = ′ −

which corresponds to the (average) increase in internal energy of the thermal reservoir. The
term ‘heat’ is justified because this energy is not ‘ordered’ since R is an initially thermal
reservoir, which may absorb entropy from S during the process and spread the energy over
many states [PW78, BR97]. Another quantity of central importance will be the entropy increase
of the reservoir

( )S S: ( ), (9)R RΔ ρ ρ= ′ −

which appears in the ‘second law lemma’ (lemma 2) and in many computations below.
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In the above notation, Landauerʼs principle, which we rigorously prove below, can be
written as Q SβΔ Δ⩾ [Lan61, Ben82, LR03].

In the commonly imagined situation of ‘erasure of information’ (e.g. if the process aims to
bring the system to a pure final state), the entropy of the system S decreases and SΔ is positive.
But unless explicitly stated otherwise, our derivations also apply to the case where the entropy
of S increases, corresponding to S 0Δ ⩽ , and we subsume this by the term ‘process’ as well.
Similarly, if heat is transferred away from the reservoir, QΔ will be negative. Also, Δ can be
negative for some processes.

To illustrate the above framework, we give here a paradigmatic example:

Example 1 (swap process). Let both the system S and the reservoir R have bipartite structure
and agree in the dimension of one subsystem:

( )d d d, , , . (10)d d d d d d
sw S R

S sw S sw R2 2
2 2      = ⊗ = ⊗ ∈

We denote the reduced states of Sρ respectively Rρ w.r.t. these bipartitions by S1
ρ , R2

ρ , etc. The
initial system state Sρ may be chosen arbitrarily. Also, in this example, Rρ may be chosen
almost arbitrarily since every given full-rank state Rρ can be written as the thermal state of a
Hamiltonian H : log Rρ= − at finite inverse temperature : 1β = .

Let the processU : S R S R, ,1 1 2 2 = ⊗ be the unitary flip S R,1 1 swapping the two subsystems S1
and R1 of dimension dsw, i.e. ( )| | : | |S R, 1 2 2 11 1 ψ ψ ψ ψ〉 ⊗ 〉 = 〉 ⊗ 〉, leaving S2 and R2 unaffected.

For such processes, one may now compute all above quantities (7)–(9) explicitly

( ) ( ) ( ) ( )S S S S S S S( ) , ( ) , (11)S S R R R S2 1 2 1
Δ ρ ρ ρ Δ ρ ρ ρ= − − = − + +

( ) ( ) ( )Q H I S R I S S I R Rtr , ( : ) : : , (12)S R R 1 2 1 2
S R1 2

⎡⎣ ⎤⎦Δ ρ ρ ρ= ⊗ − ′ ′ = +ρ ρ

where the mutual information I S R( : )′ ′ between S and R in the final state SRρ′ is defined in
equation (15) and will become important later.

As specific examples in the paper we will often consider processes that swap S and R
completely, i.e. that have d d dS sw= = and d d 1S R2 2= = . In section 6 we consider a reservoir

( )d d kS = ⊗ , consisting of k system copies, and a k-step process that swaps S successively
with each reservoir subsystem.

2.2. Differences to previous works

Much of the early work on Landauerʼs principle is based on thermodynamic reasoning rather
than statistical mechanics and assumes the validity of the second law of thermodynamics; this
already starts with [Lan61] and continues e.g. in [Ben82, LR03]. Sometimes, the content of
Landauerʼs principle is even taken to be the non-decrease of entropy in any process operating
between a system and reservoir [Ben82, LR03, NC00]. This mix of notions and the
presupposition of the second law in the first place has caused criticism, even questioning the
validity of Landauerʼs principle, see e.g. [EN99] and [Ben03] for a response. It is only in some
recent derivations of Landauerʼs principle that the second law has not been assumed explicitly,
e.g. in [Shi95, Pie00, SU09]; we follow this line.

Our derivation of Landauerʼs principle does not assume the final state SRρ′ to be a product
state, whereas this is a common assumption in many previous treatments, especially in those
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using some form of the Jarzynski equality [Pie00, Jar99] or treating the quantum case (see
[LR03]). Even more specially, many derivations require a pure final system state, which
however is generally not even achievable (see section 3.3). Also, we do not require the final
reservoir state Rρ′ to commute with the reservoir Hamiltonian H [Pie00, Tas00]. Our proofs are
fully quantum-mechanical and do not require basis choices (cf [Pie00]) or specific ‘trajectories’
(cf [Tas00, Jar11]).

We do however explicitly assume a product initial state, SR S Rρ ρ ρ= ⊗ ; otherwise,
Landauerʼs principle may be violated as discussed below equation (5). Note that in derivations
based on thermodynamic reasoning, the product state assumption (5) is largely implicit.

Some of the literature assumes a Hamiltonian to be given also for the system S (e.g.
[Pie00, SU09]), and sometimes even the initial state of S is supposed to be thermal. Our
treatment shows that these assumptions are unnecessary; the (inverse) temperature appearing in
Landauerʼs bound is that of the assisting reservoir. Furthermore, the assumption of a thermal
initial system state would severely limit the usefulness of Landauerʼs principle to information
processing applications, when for example the system initially contains some outcome of a
previous computation.

A Hamiltonian for the system would be necessary in order to make statements about the
‘work done on the system’ (e.g. [SU09]), which however the above stated bound Q SβΔ Δ⩾
does not do and which we also do not consider in this paper. In particular, the total energy of SR
need not be defined, but even if a Hamiltonian for S were given, the total energy would typically
not be conserved during the process. Our disregard of system energy is also consistent with
assuming a completely degenerate system Hamiltonian (e.g. [FDO+12]).

Some treatments in the literature assume effective stochastic dynamics (e.g. [Shi95])
instead of a unitary as in (6), whereas in our formalism all involved subsystems have to be taken
into account explicitly. Often in the literature the allowed dynamics is not sufficiently well
specified, and this had led to the famous Maxwellʼs demon paradox [Max71, LR03]; the
paradox is resolved by recognizing that the demonʼs memory must not be treated like an
entropy sink [Ben82] (see also section 5.1). Furthermore, by writing the whole process as a
single discrete step as in equation (6), we do not put any requirement on the ‘speed’ or other
structure of the evolution (as e.g. in [Pie00, Shi95]).

Lastly, by considering the von Neumann entropy S ( ) tr[ log ]ρ ρ ρ= − and the averaged
heat transfer Q Htr ( )R R

⎡⎣ ⎤⎦Δ ρ ρ= ′ − , our formalism and statement of Landauerʼs principle
concerns an ensemble of systems: the heat transfer may be different in each single
instantiation of the process, but on average equals QΔ in the thermodynamic limit of many
independent processes; similarly, SΔ is the average information decrease in the system S (cf
beginning of section 5.2). This asymptotic formalism is most widespread in thermodynamics
and information theory, but recently one-shot statements have been considered in these fields
(e.g. [Ren05]). In particular, Landauerʼs principle and other work extraction statements have
been formulated in the one-shot framework [dRi11, Abe13a, HO11, EDR+12, FDO+12], but
some of these derivations still rely on the asymptotic Landauer bound (1) as one of their
ingredients.

Apart from the contrast between von Neumann versus one-shot entropies, note that our
explicit assumption of a finite-dimensional reservoir to derive the finite-size effects in section 4
is disjoint from the assumption of a one-shot scenario, which is sensible to address a finite
(small) number of repetitions of a process.
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2.3. Notation

This work considers predominantly finite-dimensional systems, in particular to examine finite-
size effects, and we concentrate on these here. Some notions, however, will be extended to
infinite dimensions and are discussed separately at the respective places (especially appendices
C.3 and appendix D). Our treatment is for quantum systems, but contains classical systems
mostly as a special case (states as probability distributions or diagonal density matrices), with
exceptions noted separately. For more details on entropic quantities, see [OP93, Weh78,
CT06, NC00].

For any n ∈ , we denote by ( )n the set of bounded operators acting on n , i.e. the n-
dimensional complex matrix algebra. An n-dimensional quantum state ρ is a positive
semidefinite operator ( )nρ ∈  of trace one [NC00].

The (von Neumann) entropy of a quantum state ρ is defined by

S ( ): tr[ log ]. (13)ρ ρ ρ= −

We use the natural logarithm exclusively (denoted as log), so that all entropic quantities are
measured in units of nat ( 1.44 bits≈ ). This is important to note in section 4 for the finite-size
effects, which are nonlinear in the entropies.

The relative entropy between two states σ and ρ is defined as

D ( ): tr[ log ] tr[ log ]. (14)σ ρ σ σ σ ρ∥ = −

It is D ( )σ ρ∥ = ∞ iff supp[ ] supp[ ]σ ρ⊆ . By Kleinʼs inequality [OP93, Weh78, CT06, NC00],
the relative entropy is always non-negative and it vanishes iff ρ σ= .

For a state ABρ of a bipartite system with reduced states : trA b AB
⎡⎣ ⎤⎦ρ ρ= and

: tr ,B A AB
⎡⎣ ⎤⎦ρ ρ= the mutual information is defined as

I A B I A B S S S( : ) : ( : ) : ( ) ( ) ( ), (15)A b ABAB
ρ ρ ρ= = + −ρ

which is always non-negative. Most often it will be clear from the context for which state the
mutual information is evaluated and we omit the subscript, also writing I A B( : )′ ′ for the mutual
information between systems A and B in the state ABρ′ . We sometimes use similar notation for
the entropy itself, e.g.S AB S( ): ( )ABρ= and S A S( ): ( )Aρ′ = ′ .

We further define the conditional entropy (of A conditioned on B) in a bipartite state ABρ

S A B S A B S AB S B( ): ( ) : ( ) ( ). (16)
AB

= = −ρ

A Hamiltonian H on a system (which will always be the reservoir R in this paper) is a
Hermitian operator. The corresponding thermal state at inverse temperature [ , ]β ∈ −∞ +∞ is

:
e

tr e
, (17)

H

H⎡⎣ ⎤⎦
ρ =β

β

β

−

−

with ρ±∞ defined to be the maximally mixed state on the ground space of H± , cf equation (4).
For more details on the thermodynamics of finite-dimensional systems, see appendix A. For
general accounts of statistical mechanics, see [BR97, Thi02].

rhs and lhs abbreviate ‘right-hand side’ and ‘left-hand side’, respectively.
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3. Landauerʼs principle sharpened

3.1. Equality form of Landauerʼs principle

We now rigorously prove Landauerʼs principle in the setting described in section 2.1. We
actually sharpen Landauerʼs principle by proving an equality version, which reduces to the
famous Landauer bound [Lan61] when two non-negative terms are dropped. One of these two
terms can be physically interpreted as some manifestation of the second law of thermodynamics
in our setting. We prove this first:

Lemma 2 (second law lemma). Let ( ) ( )SR S R
d dS ρ ρ ρ= ⊗ ∈ ⊗  be a product state on

a bipartite finite-dimensional system SR, let U ( )d dS ∈ ⊗ be a unitary, and denote the
state after the evolution by U U( )SR S R

†ρ ρ ρ′ = ⊗ , with reduced states Sρ′ and Rρ′ . Then

( ) ( )S S S S I S R( ) ( ) ( : ) 0. (18)S S R R
⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ρ ρ ρ ρ′ − + ′ − = ′ ′ ⩾

In the notation of section 2.1, this reads

S I S R S( : ) , (19)Δ Δ Δ= + ′ ′ ⩾

i.e. the reservoirʼs entropy increase Δ outweighs the systemsʼs entropy decrease SΔ .

Proof. Using the additivity of the von Neumann entropy for product states SR S Rρ ρ ρ= ⊗ and
the invariance of the entropy under the unitary evolution S R SRρ ρ ρ⊗ ↦ ′ , we have

( )( ) ( )
( ) ( )

( ) ( )
( )

S S S S S S S

S S S

I S R

( ) ( )

( : ) 0, (20)

S S R R S R S R

S R SR

SR

ρ ρ ρ ρ ρ ρ ρ ρ

ρ ρ ρ

′ − + ′ − = ′ + ′ − ⊗

= ′ + ′ − ′
= ′ ′ ⩾′ρ

where the last inequality follows from the non-negativity of the mutual information. □
The proof shows in particular that equality SΔ Δ= in the second law lemma is attained

(meaning that no total entropy increase happens) iff the final state is a product state
SR S Rρ ρ ρ′ = ′ ⊗ ′ . In some accounts in the literature, the above lemma 2, holding that the

reservoir entropy increase exceeds the system entropy decrease, is already termed ‘Landauerʼs
principle’ (cf [Ben82, LR03, NC00]). We, however, take the term ‘Landauerʼs principle’ to
mean a bound on the heat dissipation QΔ to an initially thermal reservoir necessitated by an
entropy decrease SΔ in some other system.

We now state and prove a sharpened version of Landauerʼs principle:

Theorem 3 (equality form of Landauerʼs principle). Let ( ) ( )SR S R
d dS ρ ρ ρ= ⊗ ∈ ⊗ 

be a product state on a bipartite finite-dimensional system SR, where e tr eR
H H⎡⎣ ⎤⎦ρ = β β− − is

the thermal state corresponding to a Hamiltonian H H ( )d† = ∈  at inverse temperature
[ , ]β ∈ −∞ +∞ . LetU ( )d dS ∈ ⊗ be a unitary, and denote the state after the evolution by

U U( )SR S R
†ρ ρ ρ′ = ⊗ , with reduced states Sρ′ and Rρ′ . Then

9
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( )( ) [ ]( )S S I S R D H H( ) ( : ) tr tr . (21)S S R R R R
⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ρ ρ ρ ρ β ρ ρ− ′ + ′ ′ + ′ ∥ = ′ −

In the notation of section 2.1, this reads

( )Q S I S R D( : ) , (22)R RβΔ Δ ρ ρ= + ′ ′ + ′ ∥

which implies Landauerʼs bound [Lan61]

Q S. (23)βΔ Δ⩾

Proof. First consider the case ( , )β ∈ −∞ +∞ . Using the second law lemma (lemma 2) in the
first line, we have

( )

( )

( )

[ ]

[ ]

[ ] [ ] [ ]

[ ]

( ) ( )S I S R S S I S R S S

H

H H H

H

Q D

( : ) ( ) ( : ) ( )

tr log tr log
e

tr e

tr log tr logtr e

tr log tr logtr e tr tr

tr tr log tr log
e

tr e

. (24)

S S R R

R R R

H

H

R R R
H

R R R
H

R R

R R R R R

H

H

R R

⎡

⎣
⎢
⎢ ⎡⎣ ⎤⎦

⎤

⎦
⎥
⎥

⎡⎣ ⎡⎣ ⎤⎦ ⎤⎦
⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦

⎡⎣ ⎤⎦
⎡

⎣
⎢
⎢ ⎡⎣ ⎤⎦

⎤

⎦
⎥
⎥



Δ ρ ρ ρ ρ

ρ ρ ρ

ρ ρ ρ β

ρ ρ β ρ β ρ β ρ

β ρ ρ ρ ρ ρ

βΔ ρ ρ

+ ′ ′ = − ′ + ′ ′ = ′ −

= − ′ ′ +

= − ′ ′ + − −

= − ′ ′ − − + ′ − ′

= ′ − − ′ ′ + ′

= − ′ ∥

β

β

β

β

β

β

−

−

−

−

−

−

In the case β =+∞, P Pdim( )R g gρ = is the normalized projector onto the ground state
space of H. This implies [ ]H Htr trR R

⎡⎣ ⎤⎦ρ ρ′ ⩾ , i.e. Q 0Δ ⩾ . If Q 0Δ = , then Rρ′ is supported in
the ground state space as well, so that one can continue after line (24) with

( ) ( )[ ]( )S S P D( ) tr log logdim , (25)R R R R g R Rρ ρ ρ ρ ρ ρ′ − = − ′ ′ − = − ′ ∥

yielding that both sides of (21) vanish. If Q 0Δ > , then Rρ′ has support outside the ground state
space of H, i.e. outside the support of Rρ , so that D ( || )R Rρ ρ′ = + ∞ and both sides of (21)
equal each other again. The reasoning in the case β = −∞ is exactly analogous (or,
alternatively, follows from the substitutions H H↦ − , β β↦ − ).

Lastly, the Landauer bound (23) follows from the fact that the mutual information and the
relative entropy are both non-negative. □

An equality equivalent to equation (22) has been derived in [ELV10] before. There,
however, the aim was to identify reversible and irreversible contributions to the entropy change,
and no connection to Landauerʼs principle was established. See also the ‘note added’ in
section 7.

For extensions of Landauerʼs principle (theorem 3) to infinite-dimensional separable
Hilbert spaces, see appendix C.3.

10

New J. Phys. 16 (2014) 103011 D Reeb and M M Wolf



3.2. Equality cases in Landauer’s bound βΔQ ⩾ ΔS

The equality form of Landauer’s principle (theorem 3) allows us to investigate how tight the
Landauer bound Q SβΔ Δ⩾ is (see equation (23)). The basic result here is that Landauerʼs
bound holds with equality iff, roughly speaking, the process does not do anything:

Corollary 4 (equality cases in the Landauer bound). Consider a process as described in
theorem 3. Then, Landauerʼs bound Q SβΔ Δ⩾ holds with equality iff there exists a unitary
V ( )dS∈  such that

V Vwith

and . (26)

SR S R

S S

R R

†

ρ ρ ρ

ρ ρ
ρ ρ

′ = ′ ⊗ ′

′ =
′ =

Equivalently, Landauerʼs bound holds with equality iff

S Q 0. (27)Δ Δ= =

Proof. By the equality version (22) of Landauerʼs principle and due to the non-negativity of the
mutual information and the relative entropy, one has equality in Landauerʼs bound iff
I S R D( : ) ( ) 0R Rρ ρ′ ′ = ′ ∥ = . This is equivalent to SRρ′ being a product state SR S Rρ ρ ρ′ = ′ ⊗ ′
and R Rρ ρ′ = , i.e. to the first and third condition in (26).

This then already implies the second condition in (26) as follows. By the assumptions on
the process, the states SR S Rρ ρ ρ= ⊗ and SR S Rρ ρ ρ′ = ′ ⊗ before and after the process are
related by a unitary transformation, U USR SR

†ρ ρ′ = , and thus have the same spectra (as
multisets, i.e. including multiplicities): mspec( ) mspec( )S R S Rρ ρ ρ ρ⊗ = ′ ⊗ . As the spectrum
of a product state equals the pointwise product of the individual spectra, one has

( )mspec( ) · mspec( ) mspec · mspec( ), (28)S R S Rρ ρ ρ ρ= ′

and since Rρ has a non-zero eigenvalue, this implies mspec( ) mspec( )S Sρ ρ= ′ . So, Sρ and Sρ′
are two Hermitian matrices with identical spectra, and are thus related by a unitary
transformation, V VS S

†ρ ρ′ = with V ( )dS∈  .
Finally, note that the second and third condition in (26) imply S 0Δ = and Q 0Δ = ,

respectively, and thus (27). Conversely, (27) obviously implies S QΔ βΔ= . □

By corollary 4, equality S QΔ βΔ= holds only if the process transforms the system in a
unitary way and leaves the reservoir untouched, i.e. ( ) ( )V VSR R SR R

†
 ρ ρ′ = ⊗ ⊗ (note,

however, that possibly U V R≠ ⊗ when S Rρ ρ⊗ has degenerate eigenvalues, as then the
unitary transformation achieving S R SRρ ρ ρ⊗ ↦ ′ is not unique). Then there is no change in the
information of the system and zero heat flow to the reservoir. In this sense, only trivial
processes satisfy S QΔ βΔ= ; this statement remains basically true in infinite dimensions as well
(appendix C.3).

Considering the converse implication of corollary 4, Landauerʼs bound is a strict
inequality Q SβΔ Δ> for any process with nonzero entropy decrease ( S 0Δ ≠ ) or nonzero heat
flow ( Q 0Δ ≠ ). In section 4 we will in fact derive such non-trivial lower bounds on the
difference Q SβΔ Δ− between the two sides of Landauerʼs bound (23). More precisely, we will

11

New J. Phys. 16 (2014) 103011 D Reeb and M M Wolf



look for a non-negative function g S( )Δ satisfying Q S g S( )βΔ Δ Δ⩾ + , with g S( ) 0Δ > for
S 0Δ ≠ ; similarly, for a function h Q( )Δ such that Q S h Q( )βΔ Δ Δ⩾ + , with h Q( ) 0Δ > for
Q 0Δ ≠ .

When one fixes (or puts upper bounds on) both the system and reservoir dimensions dS and
d, then the existence of such functions g and h follows because the entropy, mutual information
and relative entropy are sufficiently continuous and the space of all processes as well as the state
space are compact. Our functions g and h will indeed explicitly depend on the dimension d of
the reservoir. Conversely, in section 6 we show that any non-trivial g or h actually has to
depend on the reservoir dimension, since in the limit of large reservoir sizes d we construct
explicit processes coming arbitrarily close to attaining the bound Q SβΔ Δ⩾ .

3.3. A bound on the pureness of the final state

Several discussions in the literature formulate Landauerʼs principle for processes having a pure
final state Sρ′ , i.e. where the system S is being brought into a definite microstate and all
information has been ‘erased’. This assumption is for example made in the works
[Pie00, Shi95] aiming to derive Landauerʼs principle. It is also implicit in Landauerʼs original
paper [Lan61] as well as in the many references that employ or ‘derive’ the ubiquituous claim
that an amount (log 2) β of heat has to be dissipated in the ‘erasure of a (qu-)bit’ (see
e.g. several papers reprinted in [LR03]). The latter situation would correspond to S log 2Δ = on
a system of dimension dS = 2, which automatically forces the final system state Sρ′ to be pure,
whereas the initial state Sρ must have been completely mixed.

Here we point out that a Landauer process as described above can in general not reduce the
rank of the system state Sρ . This is possible only with a reservoir at strictly zero temperature or
with a reservoir Hamiltonian having formally infinite energies (see below). The following
impossibility result thus shows in particular that some previous statements of Landauerʼs
principle in the literature are void. This issue is also related to the ‘unattainability formulation’
of the ‘third law of thermodynamics’, see also the discussions in [AHJM11, WSB12, TV14].

We first analyze quantitatively how the smallest eigenvalue of the system state can change
during the process U Utr [ ( ) ]S R S R

†ρ ρ ρ′ = ⊗ , described in section 2.1, using a reservoir of
finite dimension d < ∞. Writing A( )Minλ for the smallest eigenvalue of a Hermitian operator A,
and denoting by |ψ〉 any normalized eigenvector of Sρ′ corresponding to ( )SMinλ ρ′ , we have
(where i{| }R i〉 denotes any orthonormal basis for the reservoir system R)

( ) i i (29)S S

i

d

R SR RMin

1

∑λ ρ ψ ρ ψ ψ ρ ψ′ = ′ = ′
=

( )( ) d d ( ) ( ). (30)
i

d

SR S R R S
1

Min Min Min Min∑λ ρ λ ρ ρ λ ρ λ ρ⩾ ′ = ⊗ =
=

Denoting by HMin and HMax the minimal respectively maximal energy (eigenvalue) of the
reservoir Hamiltonian H, we can lower bound the minimal eigenvalue in the thermal state Rρ

e d d d
( )

e

tr

e

e

e e
, (31)R

H

H

H

H

H H H

Min

( ) 2Max Max

Min

Max Min

⎡⎣ ⎤⎦
λ ρ = ⩾ = ⩾

β

β

β

β

β β−

−

−

−

− − − ∥ ∥
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with the operator norm H∥ ∥ and assuming [0, ]β ∈ ∞ (the extension to negative β is trivial).
Plugging back into (30) gives:

Proposition 5 (bound on the pureness of the final state). Consider any process as described
in theorem 3, with a reservoir at inverse temperature [0, ]β ∈ ∞ . Then

( ) e ( ) e ( ), (32)S
H H

S
H

SMin
( )

Min
2

Min
Max Minλ ρ λ ρ λ ρ′ ⩾ ⩾β β− − − ∥ ∥

where HMin (HMax) denotes the minimal (maximal) eigenvalue of the reservoir Hamiltonian H.

This means in particular that an initially full-rank state Sρ cannot be purified (cf also
[WSB12, TV14]) unless H H( )Max Minβ − = ∞, i.e. for a zero-temperature reservoir (β = ∞)
or for a Hamiltonian some of whose energy levels are formally ∞; see also appendices C.3 and
appendix D for the latter case. Generally, ( ) ( )S SMin Minλ ρ λ ρ′ ≪ can be achieved only by very
disparate energy scales in H compared to the ambient temperature 1 β. The analysis leading up
to equation (32) also shows that rank( ) rank( )S Sρ ρ′ ⩾ unless Hβ ∥ ∥ = ∞, since we are in
finite dimensions here.

When one does allow for formally infinite energies in H, then for any desired Sρ′ and any
inverse temperature (0, )β ∈ ∞ one can just engineer a suitable reservoir: define the
Hamiltonian H : ( log )Sρ β= − ′ (using the formal convention log 0 :− = + ∞), so that

R Sρ ρ= ′ , and let U be the process swapping S and R (see example 1). But note that the heat
Q Htr[ ( )] tr[( ) log ]R R R R RΔ ρ ρ ρ ρ ρ β= ′ − = − ′ (and not merely the norm H∥ ∥) is infinite in

any process with rank( ) rank( )R Rρ ρ′ > , which necessarily happens in finite dimensions for any
process achieving rank( ) rank( )S Sρ ρ′ < . At strictly zero temperature (β = ∞), similar rank-
decreasing processes can be constructed without infinite QΔ .

In appendix D we exhibit rank-decreasing processes at finite temperature and having finite
heat flow QΔ (and actually coming arbitrarily close to saturating the inequality Q SβΔ Δ⩾ );
such processes however need both an infinite-dimensional reservoir and formally infinite
Hamiltonian levels. Note that the analysis leading up to (32) and the rank considerations above
are not meaningful for infinite-dimensional reservoirs: if H∥ ∥ < ∞, then the thermal state does
not exist in infinite dimensions for [0, )β ∈ ∞ (cf also appendix C.3); and when H∥ ∥ = ∞, the
bound (32) becomes trivial.

In cases where it is sufficient to reach a final state Sρ ′∼ that is only δ-close to the desired
final state Sρ′ , i.e. S S 1ρ ρ δ∥ ′ − ′ ∥ ⩽∼ , the state Sρ ′∼ can be chosen to be of full rank whenever

0δ > . Then, from section 6 (proposition 8), one can explicitly construct a process with final
state Sρ ′∼ using a finite-dimensional reservoir and such that the heat dissipation QβΔ is
arbitrarily close to S S S: ( ) ( )S SΔ ρ ρ= − ′∼ ∼ . Note that, for given Sρ′ and δ, it is possible to
minimize SΔ∼

by analytical methods, i.e. to maximize S ( )Sρ ′∼ subject to the constraint
S S 1ρ ρ δ∥ ′ − ′ ∥ ⩽∼ , using the Kuhn–Tucker conditions [BV04]. As S S( ) ( )S Sρ ρ′ ⩾ ′∼ for the

optimal Sρ ′∼ , the heat expenditure QβΔ in such a process can be made arbitrarily close to
S S S( ) ( )S SΔ ρ ρ= − ′ or smaller. Note that our impossibility results differ from the one in

[TV14],where it is investigated whether for all initial states Sρ the output U Utr ( )S R
†⎡⎣ ⎤⎦ρ ρ⊗

can be δ-close to a fixed pure state.
Rather than by the smallest eigenvalue, the idea behind proposition 5 can be formalized via

majorization theory and entropies (again in finite dimensions). Namely, when the initial states

Sρ , Rρ (or just their spectra) are fixed, then one of the possible final system states
U Utr [ ( ) ]S R S R

†ρ ρ ρ′ = ⊗ majorizes any other such state obtained by varying U. The spectrum
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of this maximal (‘purest’) state, which is unique up to unitary equivalence, is obtained by listing
the dSd eigenvalues of S Rρ ρ⊗ in increasing order and repeatedly summing d successive ones,
starting from the lowest. This state has also minimal entropy S ( )Sρ′ among all possible final
system states [AU82], but its entropy is nonzero iff S Rρ ρ⊗ has more than d nonzero
eigenvalues; in particular, it is nonzero whenever Hβ∥ ∥ < ∞ and S ( ) 0Sρ > .

A few treatments of Landauerʼs principle in the literature do not require a pure final system
state Sρ′ , but do assume a product final state SR S Rρ ρ ρ′ = ′ ⊗ ′ (such a product state would of
course be implied by a pure Sρ′ ); cf e.g. some parts of [Pie00] (see also section 2.2). Similar to
the pure final state discussed above, also this product final state assumption is generally not
achievable: a generic product state SR S Rρ ρ ρ= ⊗ will admit only one tensor product
decomposition (two when the dimensions d dS = match). Thus, the condition

U U( )S R S R
†ρ ρ ρ ρ′ ⊗ ′ = ⊗ for generic Sρ , Rρ implies U U US R= ⊗ with unitaries US, UR

and so allows only trivial processes with no entropy change as U US S S S
†ρ ρ′ = (or, additionally,

U U U( )SR S R= ⊗ in the case d dS= , with the swap operator SR ; cf example 1).

4. Finite-size corrections to the Landauer bound

The strengthened form of Landauerʼs principle (theorem 3) showed that Landauerʼs bound
Q SβΔ Δ⩾ is sharp only in quite trivial cases (corollary 4). It can therefore be improved in all

interesting cases. Of course, the tightest improvement is given by the equality version (22), but
this contains the quantities I S R( : )′ ′ and D ( )R Rρ ρ′ ∥ which are usually not available as they
would for example require knowledge of the full global state SRρ′ .

Figure 2. Comparison of lower bounds on the heat dissipation, for a reservoir consisting
of n = 4 qubits (d = 16): Landauerʼs linear bound (23) is the black straight line. The red
curve shows the best bounds from equation (36) (approaching +∞ as S dlogΔ → ),
whereas the blue curve shows the quadratic bound from equation (36) for S 0Δ ⩾ .
Points below a curve are excluded by the respective bound, i.e. cannot be achieved by
any physical process.
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In this section we derive improvements of Landauerʼs bound that are explicit in the
sense that they depend on the quantity SΔ that does already appear in the inequality

Q SβΔ Δ⩾ . In fact, the new bounds have to depend on the reservoir dimension d as well,
because processes can approach Landauerʼs bound Q SβΔ Δ⩾ in the limit d → ∞ (see
section 6). The inequalities we prove in the present section thus constitute finite-size
corrections to Landauerʼs bound.

Our main result on finite-size improvements uses the following auxiliary quantities
[RW13]

N d r r
r

r
d( ): max (1 ) log

1
( 1) , (33)

r0 1 2

2
⎜ ⎟⎛
⎝

⎞
⎠= − − −

< <

{ }M x d D s r H s H r s r d x( , ): min ( ) ( ) ( ) ( ) log ( 1) , (34)
s r d d0 , ( 1)

2= ∥ − + − − =
⩽ ⩽ −

where d2 ⩽ < ∞ and x d d[ log , log ]∈ − , and with the binary entropy H s S( ):=
s s(diag( , 1 ))− and the binary relative entropy D s r D s s( ): (diag( , 1 )2 ∥ = − ∥

r rdiag( , 1 ))− . To get a better understanding of these quantities for our following main
result, we remark that it follows from ([RW13] especially remark 4 and lemma 14 therein) that
N d d O( ) log (1)1

4
2= + (as d → ∞) and

( )
M x d

x

N d
O x x d

x

d
O

d
d x

( , )
2 ( )

as 0 (for any fixed 2),

2

log

1

log
as (for any fixed ).

(35)

2
3

2

2 4

⎧

⎨
⎪⎪

⎩
⎪
⎪

⎛
⎝⎜

⎞
⎠⎟ 

=
+ → ⩾

+ → ∞ ∈

Note that the quantity d(log ) can be interpreted roughly as the number of particles in the
reservoir R.

Theorem 6 (explicit finite-size improvements of Landauerʼs principle). Consider processes
as described in theorem 3. If the reservoir dimension satisfies d2 ⩽ < ∞, then

Q
S M S d S

S

N
S

S N S N N S S

S
( , )

( )
2

if 0

2 if 0

, (36)

2

2

⎧
⎨
⎪⎪

⎩
⎪⎪ ⎡

⎣⎢
⎤
⎦⎥

⎫
⎬
⎪⎪

⎭
⎪⎪

βΔ
Δ Δ Δ Δ Δ

Δ Δ Δ Δ
Δ⩾

+ ⩾ + ⩾

+ − − − ⩽
⩾

for any N N d( )⩾ with N(d) from equation (33); for example N dlog ( 1) 11

4
2= − + or

N dlog2= . The function M S d( , )Δ is defined in equation (34). If d = 1, then Q S 0Δ Δ= = .

We prove theorem 6 in section 4.1 (for S 0Δ ⩾ ) and section 4.3 (for S 0Δ ⩽ ). The main
work for the latter case is done in section 4.2. Note that our proofs for the two cases are quite
different.

The tightness of the bounds from theorem 6 is investigated in appendix B. In particular we
show that, for any given d 2⩾ and S 0Δ ⩾ , the bound Q S M S d( , )βΔ Δ Δ⩾ + is tight,
whereas the bound (36) for S 0Δ < is not tight. Note however that at least the square brackets in
(36) is strictly positive whenever S 0Δ < , behaving like S N O S( ) 2 (( ) )2 3Δ Δ+ as S 0Δ → .
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The lower bounds (36) on the necessary heat dissipation QβΔ are illustrated in figure 2. As
can be seen, when erasing1 bit of information assisted by a small reservoir (e.g. of n = 4 qubits),
then the minimum heat expenditure QΔ necessary is tens of percent above the commonly
assumed Landauer limit SΔ β.

4.1. Improvement of Landauer’s bound for ΔS ⩾ 0

The main work here is accomplished by an entropy inequality proven in [RW13]. It gives a tight
lower bound on the relative entropy D ( )σ ρ∥ between any d-dimensional quantum states σ, ρ in
terms of their entropy difference S S( ) ( )Δ σ ρ= − and the dimension d

D M d( ) ( , ), (37)σ ρ Δ∥ ⩾

where the function M x d( , ) is defined for d2 ⩽ < ∞, x d d[ log , log ]∈ − in equation (34).
For each fixed d, the function M x d( , ) is strictly decreasing for x 0⩽ and strictly

increasing for x 0⩾ , strictly convex in x d d[ log , log ]∈ − , and attains values
M d d d( log , ) log− = , M d(0, ) 0= , and M d d M x d(log , ) lim ( , )x dlog= = ∞→ [RW13].

M x d( , ) can be easily computed numerically as an optimization over two bounded real
variables, by its definition in equation (34). Furthermore, the lower bounds

M x d N N x
x

N

x

N
x d d( , ) e

2 6
0 [ log , log ] (38)

x
N

2 3

2
⩾ − − ⩾ + ⩾ ∀ ∈ −

hold for any N N d( )⩾ , where N(d) is defined in equation (33); one may for example choose
N d N dlog ( 1) 1 ( )1

4
2= − + > or N d N dlog ( )2= > . See [RW13] for detailed proofs and

discussion.
To prove (36) in the case S 0Δ ⩾ , note that Q D ( )R RβΔ Δ ρ ρ= + ′ ∥ by the equality

version of Landauerʼs principle (theorem 3), where we also used S I S R( : )Δ Δ= + ′ ′ by the
second law lemma (lemma 2). The bound (37) gives then Q M d( , )βΔ Δ Δ⩾ + . Finally,
equation (36) follows for S 0Δ ⩾ since SΔ Δ⩾ and M x d( , ) is monotonically increasing in
x 0⩾ [RW13].

In appendix B we show that the derived inequality is tight in the sense that, for any fixed d
and any possible value of S 0Δ ⩾ , there exists a process, which attains equality in the bound

Q S M S d( , )βΔ Δ Δ⩾ + .

4.2. Improved Landauer bound depending on ΔQ

The following derivation requires some notation and thermodynamics facts from appendix A,
where these things are proven rigorously. We also use the presuppositions and notation from
theorem 6 (made explicit in the statement of theorem 3).

Denote by E H H E: tr [ ] tr [ ] ( )R Rρ ρ β= = =β the initial energy of the reservoir, and
denote by e tr [e ]R th

H H
,ρ′ = β β− ′ − ′ the thermal state of the same energy as Rρ′ , i.e.

H E Q H Etr[ ] tr [ ] ( )R R R th,ρ Δ ρ β′ = + = ′ = ′ . Here, [ , ]β′ ∈ −∞ +∞ is uniquely determined if
H R∝ (appendix A), which we assume from now on; otherwise it would be Q 0Δ = , in which
case the final result theorem 7 follows directly from theorem 3.

As is easily seen by using the thermal form of Rρ and R th,ρ′ , the relative entropy term from
(22) can be rewritten as follows (this is ‘Pythagoras’ theorem’ first noticed in [Csi75])
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( ) ( )( )D D D . (39)R R R R th R th R, ,ρ ρ ρ ρ ρ ρ′ ∥ = ′ ∥ ′ + ′ ∥

Note that the first term on the rhs is always finite, whereas the other two terms are always
both finite or both infinite. Rewriting the last term due to thermality of Rρ and lemma A.2
gives

( ) ( )( )( ) ( )D D S Str log ( ) (40)R R R R th R th R R R th R, , ,
⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ρ ρ ρ ρ ρ ρ ρ ρ ρ′ ∥ = ′ ∥ ′ + ′ − − − ′ −

( )D Q E E( )d . (41)R R th
E

E Q

,
R

R∫ρ ρ βΔ β= ′ ∥ ′ + −
Δ+

Except possibly for the term tr [ ( log )]R th R,ρ ρ′ − (and consequently QβΔ ) in case β = ± ∞, all
addends in (40)–(41) are finite (even though the integrand can diverge at the boundaries when

,β β′ = ± ∞). Treating this case with the usual conventions, we can continue

( ) ( ) ( )( )D D E E E( ) d (42)R R R R th
E

E Q

R,
R

R∫ρ ρ ρ ρ β β′ ∥ = ′ ∥ ′ + −
Δ+

( )D
E

E
E E

d ( )

d
d d (43)R R th

E

E Q

E

E

,
R

R

R

⎛
⎝⎜

⎞
⎠⎟∫ ∫ρ ρ β= ′ ∥ ′ + − ′

′
′

Δ+

( )D
H

E E
1

var ( )
d d , (44)R R th

E

E Q

E

E

E
,

( )R

R

R

∫ ∫ρ ρ= ′ ∥ ′ +
′

′
Δ

β

+

where in the last step we used equation (A.7).
Notice that always E( ) [ , ]β β β′ ∈ ′ in the last integral, where we understand the notation

[ , ]β β′ for β β′ < to mean the interval [ , ]β β′ . We can thus (even in the case Q 0Δ < ) put a
lower bound on the double integral by replacing the denominator by Hmax var ( )[ , ]γ β β γ∈ ′ .
Furthermore dropping the relative entropy term gives

( )D
H

E E
Q

H

1
max var ( )

d d
( )

2 max var ( )
. (45)R R

E

E Q

E

E

[ , ]

2

[ , ]R

R

R
∫ ∫ρ ρ Δ′ ∥ ⩾ ′ =

Δ

γ β β γ γ β β γ

+

∈ ′ ∈ ′

We aim for a lower bound on D ( )R Rρ ρ′ ∥ that involves the quantity QβΔ , which already
appears in the usual Landauer bound, rather than QΔ alone; at the same time we would like to
eliminate the complicated expression in the denominator, which resembles a heat capacity
(cf (A.3) and (A.8) in appendix A). To do this, assume first ( , ) {0}β ∈ −∞ +∞ ⧹ to get

( )D
Q

H

( )

2 max var ( )
. (46)R R

2

[ , ]
2

ρ ρ βΔ
β

′ ∥ ⩾
γ β β γ∈ ′

If Q 0Δ ⩽ , then β γ β′ ⩾ ⩾ , since the energy is strictly decreasing with the inverse
temperature. Thus, if Q 0Δ ⩽ and 0β > , the denominator in (46) can be upper bounded by

H2 max var ( )[ , ]
2γγ β β γ∈ ′ . The same holds for 0β < and Q 0Δ ⩾ , since then we have
0β γ β′ ⩽ ⩽ < . If Q 0βΔ ⩽ and ( , ) {0}β ∈ −∞ +∞ ⧹ , we thus have

( )D
Q

H

( )

2 max var ( )
. (47)R R

2

[ , ]

ρ ρ βΔ
γ

′ ∥ ⩾
γ β β γ∈ ′

When γ = ± ∞, the expression Hvar ( )γγ should be interpreted as 0, since Hvar ( ) 02β =γ=±∞ in
(46) due to β ≠ ± ∞.
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The key observation is now that Hvar ( )γγ can be upper bounded independently of the
Hamiltonian H or the inverse temperature γ just as a function of the reservoir dimension d (see
(A.8) and below). In fact, the following tight bound was proven in [RW13]

H N d d dvar ( ) ( )
1
4

log ( 1) 1 for 2 , (48)2γ ⩽ < − + ⩽ < ∞γ

where N(d) is defined in (33). This also holds for γ = ±∞, due to the convention from the
previous paragraph; to see this, note that the lhs of (48) is written in [RW13] as var (log )ρρ γγ

,
and this equals 0 when ργ is maximally mixed on its support subspace, in particular for

.γ = ± ∞
We thus have:

( )D
Q

N d
Q

( )

2 ( )
if 0. (49)R R

2

ρ ρ βΔ βΔ′ ∥ ⩾ ⩽

This statement holds also for {{ , 0, }β ∈ −∞ +∞ , which was not included in the above
derivation. This is because β = +∞ necessitates Q 0Δ ⩾ , which together with the condition

Q 0βΔ ⩽ enforces Q 0Δ = , so that the numerator in (49) vanishes and the inequality holds.
Similarly, the numerator vanishes for , 0β = −∞ . Note that the rhs of (49) does never
diverge as long as Q 0βΔ ⩽ , because of Q S I S R d( : ) logβΔ Δ Δ⩾ + ′ ′ = ⩾ − due to (22)
and (19).

Using equation (49) in theorem 3, and also using lemma 2, we finally arrive at:

Theorem 7 (sharpening of Landauerʼs bound for Q 0βΔ ⩽ ). Consider processes as described
in theorem 3, with the reservoir dimension satisfying d2 ⩽ < ∞. If the initial inverse
temperature [ , ]β ∈ −∞ +∞ and the heat dissipation QΔ satisfy Q 0βΔ ⩽ , then

S S I S R Q
Q

N d
Q( : )

( )

2 ( )
if 0, (50)

2

Δ Δ Δ βΔ βΔ βΔ⩽ + ′ ′ = ⩽ − ⩽

where N(d) is defined in equation (33).

The right inequality in (50) is generally wrong if one does not demand Q 0βΔ ⩽ , because
for any d 2⩾ it is easy to construct Hamiltonians H such that QβΔ becomes arbitrarily large
(positive, but finite), so that the rhs in (50) becomes arbitrarily negative, whereas dlogΔ ⩾ −
is bounded from below.

The derivation leading up to theorem 7 shows how more detailed knowlege about the
reservoir (i.e. about the temperature, the Hamiltonian, or its heat capacity) could be exploited,
when available, to obtain better bounds than (49) or (50). With knowledge of only the
reservoir dimension d, however, the essential bound (48) is tight [RW13]. Bounds similar to
(49) or (50) are possible also in the case Q 0βΔ > if one for example has a lower bound on
| |β′ , i.e. if one knows by how much the temperature can rise at most by the addition of the heat
amount QΔ .

4.3. Improvement of Landauer’s bound for ΔS⩽0

Landauerʼs bound Q SβΔ Δ⩾ does not forbid values of QβΔ close to SΔ (see equation (23)). In
the case S 0Δ < it thus ‘allows’ some negative values of QβΔ . But then theorem 7 gives new
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constraints and we will use these to prove (36) in the case S 0Δ ⩽ . Assume therefore a process
with S 0Δ ⩽ throughout this section.

If Q 0βΔ ⩾ , then the inequality (36) holds since

S N S N N S N N N S Q2 2 0 , (51)2 2⎡
⎣⎢

⎤
⎦⎥Δ Δ Δ Δ βΔ+ − − − = − − ⩽ ⩽

due to S 0Δ ⩽ and N N d( ) 0⩾ ⩾ .
Assume therefore now Q 0βΔ < (as noted below (49), it is QβΔ > − ∞ always). In this

case, we use theorem 7,

Q
Q

N d

( )

2 ( )
, (52)

2

Δ βΔ βΔ⩽ −

multiply this by N d2 ( ), and rearrange to get

N d Q N d N d( ( ) ) ( ) 2 ( ) . (53)2 2βΔ Δ− ⩽ −

This implies Q N d N d N d( ) ( ) 2 ( )2βΔ Δ⩾ − − and, via SΔ Δ⩽ due to lemma 2,

Q N d N d N d S( ) ( ) 2 ( ) . (54)2βΔ Δ⩾ − −

The last expression only decreases when N(d) is replaced by any N N d( )⩾ , as one verifies
easily. This finally proves inequality (36) in the case S 0Δ ⩽ .

5. Landauer processes involving correlations

More general than in section 2.1, we consider in section 5.1 a setup where initial correlations
may be used during the process. In section 5.2 we ask for thermodynamic constraints on the
erasure of correlations themselves (rather than entropy). Further extensions of the basic setup
are described in appendix C.

5.1. Landauer processes with memory and noisy operations

More generally than in the setup from section 2.1, the agent who aims to modify (e.g. to ‘erase’)
the systemʼs initial state Sρ may have some information about the actual microstate (e.g. pure
state) of the system S. In this case, the desired process may be accomplished with less heat
expenditure than given by naive application of Landauerʼs bound Q SβΔ Δ⩾ (see e.g. [dRi11]).
Formally, this additional knowledge can be described through an additional memory system M
that may initially be correlated with the system S, and such that the unitary U may now act
jointly on all three systems S, R, and M.

For example, when the system state is p i i| |S i i Sρ = ∑ 〉 〈 (with orthonormal states i{| }S〉 )
and the agent had perfect classical knowledge about the microstate i| 〉 of S, the situation
would be described by p i i i i| | | |SM i i S Mρ = ∑ 〉 〈 ⊗ 〉 〈 , whereas perfect quantum correlation
would correspond to a pure (entangled) initial state p i i| | |SM i i S Mψ〉 = ∑ 〉 〉 of system and
memory. In both examples, if the process is a unitaryU USM R= ⊗ acting non-trivally only
on SM in such a way that ( )U i i i| | | |SM S M S Mψ〉 〉 = 〉 〉 (with any fixed pure state | Sψ〉 ), then one
easily verifies
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( )( )U U with , (55)SRM SM R SRM SM R S RM R R
† ρ ρ ψ ψ ρ ρ ρ′ = ⊗ ⊗ = ⊗ ′ ′ =

i.e. the information from S is completely erased (S ( ) 0Sρ′ = ), whereas R remains unchanged (in
the first example above with initially perfect classical correlations also M remains unchanged,

RM RMρ ρ′ = ); in particular, no entropy or heat increase occurs in the reservoir, Q 0Δ Δ= = .
This seems to contradict the second law lemma (equation (19)) and Landauerʼs bound
(equation (23)), but is of course due to the initial correlations with M that the process U can
access.

Further extending the setup from section 2.1, instead of only unitary interactions U
(equation (6)), one may allow for so-called ‘noisy operations’ [HHO03], i.e. unitaries using an
additional completely mixed ancilla system, or more generally any unital quantum channel T.
For this, we use that a unital positive and trace-preserving map T does not decrease the
entropy [AU82].

The above points motivate the following setup, which extends the one from section 2.1 and
to which we can easily generalize our treatment:

(a’) the system S, reservoir R, and memory M are initially in a joint quantum state SRMρ ,

(b’) the initial reduced reservoir state trR SM SRM
⎡⎣ ⎤⎦ρ ρ= is thermal, e tr eR

H H⎡⎣ ⎤⎦ρ = β β− − ,

(c’) the process proceeds by a unital positive trace-preserving map T, i.e. T ( )SRM SRMρ ρ′ = ,

(d’) the entropy and heat changes SΔ , Δ, QΔ are defined on the marginal states as in figure 1.

A modified second law lemma (cf lemma 2) for this more general situation is then
immediately verified

S R S R S SRM S R S SRM S R
S SRM S R S S R M S R
( ) ( ) [ ( ) ( )] [ ( ) ( )]

[ ( ) ( )] [ ( ) ( )] (56)
Δ = ′ − = − − − ′

⩾ − − ′ ′ ′ − ′

S SM I SM R S S M I S M R
S S M S S M I S M R S M S M I SM R

[ ( ) ( : )] [ ( ) ( : )]
[ ( ) ( )] ( : ) [ ( ) ( )] ( : ), (57)

= − − ′ ′ − ′ ′ ′
= − ′ ′ + ′ ′ ′ + − ′ −

where S S M( | ) from (16) is the entropy of S conditioned on M. The inequality in (56) is due to
S S T S( ) ( ( )) ( )SRM SRM SRMρ ρ ρ′ = ⩾ [AU82] and will be an equality if T is unitary.

If one only considers processes where the memory registerM is not being altered (as e.g. in
[dRi11]), implying S M S M( ) ( )′ ⩽ , and where the reservoir was initially uncorrelated with the
rest, SRM SM Rρ ρ ρ= ⊗ (see section 2.1), then one still has

S I S M R S S S S M S S M( : ) with : ( ) ( ), (58)cond cond condΔ Δ Δ Δ⩾ + ′ ′ ′ ⩾ = − ′ ′
similar to (19). Intuitively it is clear that ScondΔ Δ⩾ need not hold when either the memory M
takes on some of the entropy, i.e. when S M S M( ) ( )′ > , or when the initial total entropy was
reduced due to correlations with R, i.e. when I SM R( : ) 0> ; both possibilities constitute
resources that may be exploited for more efficient processes. Note that the second law lemma
just outlined in (57)–(58) does not require a thermal state Rρ nor a Hamiltonian H for the
reservoir; but when the reservoir is initially thermal (see condition (b) above) then it is natural to
assume no initial reservoir correlations, I SM R( : ) 0= , see section 2.1 and [dRi13].

Under the assumptions SRM SM Rρ ρ ρ= ⊗ and S M S M( ) ( )′ ⩽ (in addition to (a’)–(d’)
above), one arrives thus at the following form of Landauerʼs principle, generalizing
equation (22),
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( )Q S I S M R D S( : ) . (59)R Rcond condβΔ Δ ρ ρ Δ⩾ + ′ ′ ′ + ′ ∥ ⩾

The proof is as in (24), but now starting from (58). All the finite-size improvements from
section 4 apply to this more general case with memory as well if only SΔ is replaced by ScondΔ .

One can evaluate all above statements for the two examples given around equation (55). In
both cases, I S M R I SM R( : ) ( : )′ ′ ′ = , S M S S( ) ( )= , and S S M( | ) 0′ ′ = . Furthermore, for the
classically correlated case the initial conditional entropy was S S M( | ) 0= and the state of the
memory did not change, S M S M S S( ) ( ) ( )′ = = , whereas in the case of maximal quantum
correlations S S M S S( | ) ( )= − is negative and the final memory state is pure S M( ) 0′ = . The
latter case is the most interesting: the generalization (59) of Landauerʼs principle is not tight in
this case, since the memory state was purified at the expense of the quantum correlations
between S and M; a subsequent unitary interaction between M′ and R′ may however reduce the
reservoir energy to give in the end Q S M S S( ) ( )βΔ = − = − and S M S M( ) ( )″ = .

As a final remark, if there is no memory system M but possibly initial correlations in SR
[Ali12], then (57) can be written as

S S S S I S R I S R S S R S S R S I S R( ) ( ) ( : ) ( : ) ( ) ( ) ( : ). (60)Δ Δ= − ′ + ′ ′ − = − ′ ′ ⩾ −

Now one can formulate a Landauer principle in terms of the difference S S R S S R( | ) ( | )− ′ ′
rather than ScondΔ as above; or alternatively, one can bound the mutual information term
I S R( : ), which appears with the ‘wrong’ sign, by more traditional quantities like the trace
distance, I S R d d( : ) (log log )SR S R S R1ρ ρ ρ⩽ ∥ − ⊗ ∥ + , and this gives corrections to the
usual Landauer bound (similarly for the term I SM R( : ) in (57)). Using similar processes as
above with M (around equation (55)), one can see that for initially perfect classical or quantum
correlations in SR, one can achieve S S S( )Δ = while still Q 0Δ = (due to R Rρ ρ′ = ); this
‘violation’ of Landauerʼs bound is of course explained by SR S Rρ ρ ρ≠ ⊗ , contraryto the
assumption (5).

5.2. A Landauer principle for correlations rather than entropies?

The common formulation of Landauerʼs principle [Lan61] says that changing the information in
a system (e.g. by ‘erasing information’) puts constraints on the heat dissipated during the
process. This statement is consistent with the mathematical content of theorem 3 when the
entropy S ( )ρ is interpreted as the amount of information in a system in state ρ, and thus

S S S( ) ( )S SΔ ρ ρ= − ′ is interpreted as the decrease of information in S. Such an interpretation
of entropy is substantiated by the fundamental theorems of asymptotic information theory
[Sha48, Sch95].

This interpretation of entropy also corresponds to the situation where the system has
been prepared by someone in any one of the (orthonormal, and thus perfectly distinguishable)
pure states i i| |〉〈 according to the distribution p{ }i i, such that however the index i is unknown
to a second agent (who thus describes the system state as p i i| |i iρ = ∑ 〉〈 ; see [Ben03] for
further discussion). In this sense, data or information is contained in the system and may be
retrieved by the second agent through a measurement in the basis i{| }i〉 ; this measurement
yields the information p p S( log ) ( )i i i ρ∑ − = on average over many independent retrievals.
Mathematically, p p( log )i i i∑ − is the minimum (over all complete measurements) of the
averaged measurement outcome information on a state with eigendecomposition

p i i| |i iρ = ∑ 〉〈 .
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In contrast to the information stored in a system, which was just quantified by the entropy,
one can instead consider the information someone has about a system. The information that an
agent (with memory register M) has about the state of system S is simply the correlations
between S and M, described by the joint state SMρ of the combined system SM (see also
section 5.1). And the amount of correlations between S and M is quantified by the mutual
information I S M( : ) (again, for an averaged or asymptotic scenario [Sha48]). This makes sense
since I S M( : ) 0= is equivalent to SM S Mρ ρ ρ= ⊗ , meaning that the agentʼs memory does not
hold any information about the microstate of S, whereas I S M S S( : ) ( )= iff S S M( | ) 0= , such
that the agent has (on average) perfect classical knowledge about the state of S.

One may now wonder whether a version of Landauerʼs bound also holds for the change of
information about a system. We show here that a straightforward analogy does not work. For
the setup assume that, besides an initially thermal reservoir R that is uncorrelated with the other
systems (see sections 2.1 and 5.1), there are a system S and a memory register M, which may be
correlated

,
e

tr e
. (61)SRM SM R R

H

H⎡⎣ ⎤⎦
ρ ρ ρ ρ= ⊗ =

β

β

−

−

The information about S is thus I S M( : ) initially. Then the system S and reservoir R is subjected
to a joint unitary process as described in section 2.1

( )( )U U , (62)SRM SR M SRM SR M
† ρ ρ′ = ⊗ ⊗

and we examine how the information of the memory M about the system S changes

I I S M I S M: ( : ) ( : ). (63)Δ = − ′ ′

The process imagined does not affect the memory M; if it were allowed to, then IΔ can be
virtually independent of the heat change QΔ , so that no version of Landauerʼs bound (such as
possibly Q IβΔ Δ⩾ ) can hold. Note further that it is always I 0Δ ⩾ in such processes due to the
data processing inequality [NC00, CT06]; this corresponds to ‘information erasure’, whereas
the entropy change SΔ in sections 2.1 and 5.1 could have either sign.

But even so, there cannot be a straightforward version of Landauerʼs bound involving
IΔ . To see this, take any state SMρ , and consider a reservoir R of the same size as S and with

initial state : trR S M SM
⎡⎣ ⎤⎦ρ ρ ρ= = (note that every full-rank state Rρ is the thermal state of

some Hamiltonian H : log Rρ= − at 1β = ). Let the process U :SR SR= be the swap of S and R
(cf example 1). Then I S M( : ) 0′ ′ = , and so I I S M( : )Δ = , since R and M were initially
uncorrelated, whereas Q 0βΔ = due to R Rρ ρ′ = . Thus, the tentative inequality Q IβΔ Δ⩾ is
here violated whenever I S M( : ) 0> . The latter happens in particular when M initially has
perfect classical or quantum knowledge about a non-pure state Sρ (cf beginning of
section 5.1).

As another violating example, take a product initial state SRM S R Mρ ρ ρ ρ= ⊗ ⊗ with
d R S: dim( ) dim( ) 2= = ⩾ and again USR SR= ; then I 0Δ = , whereas

Q tr ( )(log )R S R
⎡⎣ ⎤⎦βΔ ρ ρ ρ= − may assume either sign. Namely, QβΔ becomes negative for

example when : | |Sρ ψ ψ= 〉〈 is any pure state and d: (1 )| |R ρ λ ψ ψ λ= − 〉〈 + with any
(0, 1)λ ∈ , since (cf remark 5 in [RW13])
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( )Q S S D

S d D d

S S d D D d

D d S d d d

tr ( ) log ( ) ( )

((1 ) ) ( (1 ) )
(1 ) ( ) ( ) (1 ) ( ) ( )

( ) ( ) (log log ) 0 (64)

R S R S R S R
⎡⎣ ⎤⎦

 

 

 

βΔ ρ ρ ρ ρ ρ ρ ρ

λ ψ ψ λ ψ ψ λ ψ ψ λ
λ ψ ψ λ λ ψ ψ ψ ψ λ ψ ψ

λ ψ ψ λ λ

= − = − + ∥

= − − + + ∥ − +
< − − − + − ∥ + ∥

= ∥ − = − =

due to strict concavity of the entropy and convexity of the relative entropy; one can actually find
λ such that Q d0.4 logβΔ < − , whereas Q d0.2 logβΔ > − for any Sρ , Rρ . Again, the
inequality Q IβΔ Δ⩾ does not hold here. On the other hand, QβΔ is positive by theorem 3 for
any Sρ , Rρ with S S( ) ( )S Rρ ρ> and can be come arbitrarily big for any fixed d 2⩾ ; thus, also a
reversed inequality, such as tentatively Q IβΔ Δ⩽ , cannot hold in general.

Other tentative notions of a Landauer principle for correlations can be dismissed similarly.
One may for example define complete erasure of information to mean any process
U USR M= ⊗ , together with a thermal resource state Rρ , which satisfies

( )U U
d d

tr max. entangled or class. correlated . (65)R SM R
S

S

M

S
SM

†⎡⎣ ⎤⎦  
ψ ρ ψ⊗ = ⊗ ∀

Such a complete erasure process is necessarily a swap of S with a dS-dimensional completely
mixed subsystem of R. But this does not require any heat dissipation, as shown in the first
example above where Q 0βΔ = .

6. Processes approaching Landauerʼs bound

Theorem 3 is a sharpened version of Landauerʼs principle, and theorem 6 makes the sharpening
more explicit through dimension-dependent lower bounds on the improvement. Given this, one
may now wonder about the possibility for dimension-independent improvements of the
Landauer bound Q SβΔ Δ⩾ [Lan61]. To answer this, we construct here processes which, for a
desired state transformation S Sρ ρ↦ ′ , approach Landauerʼs bound arbitrarily closely. This is
analogous to processes on single systems which come close to extracting the maximal amount
of work allowed by the second law from a nonequilibrium system, see e.g. [AG13, SSP13,
Abe13b].

By section 3.3, a process S Sρ ρ↦ ′ is achievable with a finite-dimensional reservoir only if
rank( ) rank( )S Sρ ρ′ ⩾ ; this is the case we treat below, formulating our construction as
proposition 8. The following construction also illustrates that, for any S 0Δ ≠ , the reservoir
dimension has to grow indefinitely as Landauerʼs bound Q SβΔ Δ⩾ is approached (see theorem
6). Rank-decreasing processes are the subject of appendix D.

Proposition 8 (rank-non-decreasing processes). Let two quantum states , ( )S S
dSρ ρ′ ∈ 

be given with d1 S⩽ < ∞ and rank( ) rank( )S Sρ ρ′ ⩾ , and let 0ε > . Then there exists a
reservoir of finite dimension d < ∞ with Hamiltonian H ( )d∈  and inverse temperature

: 1β = and a unitary U, such that the resulting process (see section 2.1) satisfies

Q S . (66)βΔ Δ ε⩽ +
That is, Landauerʼs bound Q SβΔ Δ⩾ can be approached arbitrarily closely.

Proof. Denote r : rank( )Sρ= ′ . We construct the reservoir R as consisting of k subsystems r , i.e.
d dS

k= , and the reservoir Hamiltonian as a sum of local Hamiltonians H Hi
k

i1= ∑ = , where
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each Hi acts nontrivially only on subsystem i. The initial thermal reservoir state is thus

R i
k

R
i

1
( )ρ ρ= ⊗ = , where e /tr[e ]R

i H H( ) i iρ = − − are the local thermal states. We will construct the
unitary U as a product of several unitaries (‘stepwise process’). As the zeroth step, apply a
unitary U0 to the system S alone such that U Usupp[ ] supp[ ]S S0 0

†ρ ρ⊆ ′ ; this does not change any
entropies or cause any heat flow. For any state ρ on S, denote by | rρ the r-dimensional
restriction onto the support of Sρ′ .

We now define U U: S0 0 0
†ρ ρ= , :k Sρ ρ= ′ , and choose intermediate states ρi satisfying

supp[ ] supp[ ]i Sρ ρ= ′ for k = 1,…,k. One possible choice is [AG13]

i

k

i

k
i k1 ( 0, , ), (67)i S0

⎜ ⎟
⎛
⎝

⎞
⎠ρ ρ ρ= − + ′ = …

but one can choose any k 1− points along a curve t( )ρ (t [0, 1]∈ ) connecting Sρ and Sρ′ in the
space of states in such a way that t( )ρ is supported on the full subspace supp[ ]Sρ′ for all t 0> .
Define then the local Hamiltonians H : log ( | ) ( )i i r

rρ= − ∈  ; this gives |R
i

i r
( )ρ ρ= .

Finally, define the unitary Ui in step i to be the operator swapping the reservoir subsystem i
with the r-dimensional subspace supp[ ]Sρ′ of S, see also figure 3.

After k steps, the final system state is thus Sρ′ and the system entropy has changed by
S S S: ( ) ( )S SΔ ρ ρ= − ′ . The heat dissipation is (denoting : |R S r

(0)ρ ρ= )

( ) ( )Q Htr tr log (68)R R R R R
⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦βΔ β ρ ρ ρ ρ ρ= ′ − = − ′

( ) ( )tr log (69)i
k

R
i

i
k

R
i

i
k

R
i

1
( )

1
( 1)

1
( )⎡⎣ ⎤⎦ρ ρ ρ= ⊗ − ⊗ ⊗= =

−
=

( )tr log tr ( ) log . (70)
i

k

R
i

R
i

R
i

i

k

i i i
1

( ) ( 1) ( )

1
1

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦∑ ∑ρ ρ ρ ρ ρ ρ= − = −
=

−

=
−

We now take any fixed curve t( )ρ , as outlined above, and make the discretization t: ( )i iρ ρ=
finer as k → ∞, as in the definition of the Riemann integral (e.g. as in (67)). Then (70) equals

Figure 3. The k-step process constructed in the proof of proposition 8 (shown here for
the case of full-rank Sρ and Sρ′ ): the first step S R R

(0) (1)ρ ρ ρ≡ ↔ swaps the initial state of
S with the state of the first subsystem of R. After the kth swap, S is in the desired state

Sρ′ , since the reservoir Hamiltonian (and temperature) has been constructed such that in
thermal equilibrium the kth reservoir subsystem has state R

k
S

( )ρ ρ= ′ . In the limit k → ∞
of many small steps, the heat production exceeds S S S( ( ) ( ))S Sρ ρ β Δ β− ′ = only by a
vanishingly small amount.
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( )t t ttr ( ) ( ) log ( ) , (71)
i

k

i i i

1

1
⎡⎣ ⎤⎦∑ ρ ρ ρ−

=
−

which for k → ∞ converges to

[ ]t t t t ttr[d ( ) log ( )] d tr ˙ ( ) log ( ) (72)
t 0

1

0

1∫ ∫ρ ρ ρ ρ→ =
=

t
t

t t t S Sd
d
d

tr[ ( ) ( ) log ( )] tr[ (1) (0)] ( (1)) ( (0)) (73)
0

1∫ ρ ρ ρ ρ ρ ρ ρ= − − = − − − +

( )S S S( ) . (74)S Sρ ρ Δ= − ′ =

Thus, for any 0ε > , there exists k ∈ such that for the associated process Q SβΔ Δ ε⩽ + . □

For any fixed value of k in the preceding proof we can also write, by theorem 3
(equation (22)),

( )( )Q S D S D , (75)R R
i

k

i i
1

1∑βΔ Δ ρ ρ Δ ρ ρ= + ′ ∥ = + ∥
=

−

since I S R( : ) 0′ ′ = due to the swap processes (cf example 1). In [AG13] an upper bound is
derived for the sum in (75) when using the prescription (67)

( )( ) ( ) ( )

( ) ( )

D D D

D D

k
, (76)

i

k

i i
i

k

i i i i

S S

1
1

1
1 1

equation(67) 0 0

∑ ∑ρ ρ ρ ρ ρ ρ

ρ ρ ρ ρ

∥ ⩽ ∥ + ∥

=
∥ ′ + ′ ∥

=
−

=
− −

which is explicitly seen to converge to 0 for k → ∞ when rank[ ] rank[ ]S Sρ ρ′ = .
Conversely, there is a lower bound on Q SβΔ Δ− for any k-step process, due to the

convexity of the function M x r( , ) from equation (37) in its first argument (see [RW13])

( )( ) ( )Q S D D k M S k r k M S k d( , ) , . (77)R R
i

k

R
i

R
i

S

1

( 1) ( )∑βΔ Δ ρ ρ ρ ρ Δ Δ− = ′ ∥ = ∥ ⩾ ⩾
=

−

This is stronger than the direct bound D M S r M S d( ) ( , ) ( , )R R
k

S
kρ ρ Δ Δ′ ∥ ⩾ ⩾ from

equation (37), since it is M S r O S k( , ) (( ) )k 2 2Δ Δ= as k → ∞, whereas the rhs of (77) is
O S k(( ) )2Δ [RW13]. This shows that theO k(1 ) convergence in (76) for the prescription (67) is
optimal for stepwise processes.

The number of steps k above may be interpreted as the time duration of the whole process,
assuming that each individual swap consumes constant time. Thus, lower bounds on the
difference Q SβΔ Δ− as in (77) corroborate the folklore that processes can become reversible
only in the limit of slow processes and large process times (see also section 3.1.1 in [RW13]).

7. Open questions

In the present work, we have investigated the energy expediture QΔ necessary to decrease the
system entropy by SΔ and have improved Landauerʼs bound (1) in case of a small reservoir.
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With increasing technological control over miniature systems, the actual initial and desired final
states Sρ and Sρ′ (or their minimum eigenvalues, etc.) become more important than just their
entropy difference. Thus, one can ask for better bounds Q S f d( , , )S SβΔ Δ ρ ρ⩾ + ′ than those
implied by theorem 6; strictly better bounds do exist for generic Sρ , Sρ′ , cf appendix B and
[RW13]. Such an improvement could also provide a stabilized version of the result from
section 3.3, according to which rank( ) rank( )S Sρ ρ′ < implies QβΔ = ∞ (when d < ∞). The
explicit constructions from section 6 however show that non-trivial functions f must necessarily
depend on the finite reservoir size d < ∞.

A related issue is to find tight finite-size improvements in theorem 6 for S 0Δ < . If a
function g is to satisfy Q S g S d( , )βΔ Δ Δ⩾ + , then the explicit examples from appendix B give
upper bounds on it: g S d M S d( , ) ( , )Δ Δ⩽ for S d[ log , 0]Δ ∈ − , and g S d S( , )Δ Δ⩽ − for

S d d[ 2 log , log ]Δ ∈ − − . Our work however leaves open the question whether the best
possible g is smaller than those values.

Going beyond the setting of separable Hilbert spaces (appendix C.3), Landauerʼs
principle can probably be formulated within the general statistical mechanical framework of
C*- or W*-dynamical systems [PW78, BR97, Thi02], and an equality version akin to (22) can
possibly be proven along the lines of theorem 3. Note that in this framework the mutual
information can be written as a relative entropy and the heat flow as a derivation w.r.t. the
dynamical semigroup. For a finite-dimensional system S and general operator-algebraic
reservoir R, the recent preprint [JP14] gives a generalization of the equality from [ELV10]
(see ‘note added’ below).

Finally, one may wonder whether thermodynamics puts constraints also on the erasure of
correlations between systems. Straightforward guesses at such relations, inspired by Landauerʼs
principle, were shown in section 5.2 to be violated in general. Also, one-shot formulations
(e.g. in the framework of [dRi11, Abe13a, HO11, FDO+12]) of our equality version of
Landauerʼs principle and the explicit finite-size corrections remain for future work.
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Note added in proof. After completion of the present work, we became aware of the paper
[ELV10] by Esposito, Lindenberg and Van den Broeck, which for a setting similar to
section 2.1 gives an equality that is easily seen to be equivalent to equation (22) above. While
these authors identify the mutual information and relative entropy terms as the ‘irreversible
entropy production’ during the process and illustrate recurrences under continuous time-
evolution in an explicit model, they do not make any connections to Landauerʼs principle and in
particular do not identify why the presuppositions of theorem 3 are reasonable to capture this
scenario (see section 2.1). No general explicit finite-size improvements of Landauerʼs bound
were given, nor have achieving processes been discussed there.
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Appendix A. Thermodynamics of finite-dimensional systems

Here we collect and rigorously prove some facts from the thermodynamics of finite-
dimensional systems, which are necessary especially to derive the finite-size improvements in
section 4. In the main text of this paper, the reservoir R plays the role of the d-dimensional
system below (cf section 2.1). All following derivations are equally valid for classical
systems with finite state space (note that all occuring thermal states are diagonal in the
eigenbasis of the Hamiltonian). For a more general development of statistical mechanics, see
e.g. [Thi02, BR97].

For the setup, we need a quantum system of finite Hilbert space dimension d, d1 ⩽ < ∞,
and a given and fixed Hamiltonian H for this system, i.e. a Hermitian operator H ( )d∈  .

Then, for any inverse temperature [ , ]β ∈ −∞ +∞ , the corresponding thermal state is

:
e

tr e
( [ , ]), (A.1)

H

H⎡⎣ ⎤⎦
ρ β= ∈ −∞ +∞β

β

β

−

−

with the convention that ρ±∞ denotes the maximally mixed state on the ground space of H± .
(The latter convention is physically sensible, and furthermore ensures lim ρ ρ=β β→±∞ ±∞, so
that ρβ is continuous in [ , ]β ∈ −∞ +∞ .) Thermal states are often only defined for non-
negative β, but for finite-dimensional systems there is no necessity for this restriction, besides
occasional notational convenience. Physically speaking, thermal states are the stable
(‘equilibrium’) states of a system with Hamiltonian H at temperature 1 β [PW78, BR97,
Thi02]. As such, they are ‘cheaply available’ when these physical conditions are met and can be
used ‘at no cost’ during the processes described in section 2.1.

We denote the thermal average of an operator A ( )d∈  sometimes by A A: tr⎡⎣ ⎤⎦ρ〈 〉 =β β

and its variance by A A Avar ( ) : ( )2= 〈 − 〈 〉 〉β β β.
The energy E E ( )β= of a thermal state is the thermal average of the Hamiltonian

E H H( ): tr tr
e

tr e
( [ , ]). (A.2)

H

H

⎡⎣ ⎤⎦
⎡

⎣
⎢
⎢ ⎡⎣ ⎤⎦

⎤

⎦
⎥
⎥β ρ β= = ∈ −∞ +∞β

β

β

−

−

Obviously, E ( )β is a continuous function of [ , ]β ∈ −∞ +∞ and smooth in ( , )β ∈ −∞ + ∞ .
By continuity at β = ± ∞ we mean E Elim ( ) ( )β = ±∞β→±∞ . It is easy to see that
E E H( ) ( )Min∞ = and E E H( ) ( )Max−∞ = , where EMin(H) and EMax(H) denote the minimal
and maximal eigenvalues (energy levels) of H, respectively.

Lemma A.1 (heat capacity). Let H be a Hamiltonian on a finite-dimensional system. Then

E H
d

d
( ) var ( ) for ( , ). (A.3)

β
β β= − ∈ −∞ + ∞β

If H has at least two distinct energy levels, i.e. if H R∝ , then the energy E H( ) tr⎡⎣ ⎤⎦β ρ= β

is strictly decreasing in [ , ]β ∈ −∞ + ∞ , with strictly negative derivative E ( ) 0d

d
β <

β
for

( , )β ∈ −∞ +∞ .
If H R∝ , then E H d( ) tr[ ]β = is constant in [ , ]β ∈ −∞ +∞ .
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Proof. For ( , )β ∈ −∞ ∞ ,

H H H
d

d
tr

e

tr e
tr

e

tr e
tr

e

tr e
(A.4)

H

H

H

H

H

H
2

2⎡

⎣
⎢
⎢ ⎡⎣ ⎤⎦

⎤

⎦
⎥
⎥

⎡

⎣
⎢
⎢ ⎡⎣ ⎤⎦

⎤

⎦
⎥
⎥

⎛

⎝
⎜
⎜

⎡

⎣
⎢
⎢ ⎡⎣ ⎤⎦

⎤

⎦
⎥
⎥

⎞

⎠
⎟
⎟β

= − +
β

β

β

β

β

β

−

−

−

−

−

−

( )H H Htr tr var ( ), (A.5)R

2⎡
⎣⎢

⎡⎣ ⎤⎦
⎤
⎦⎥ρ ρ= − − = −β β β

which is strictly negative if H Htr R
⎡⎣ ⎤⎦ρ≠ β since ρβ is of full rank. Continuity

E Elim ( ) ( )β = ±∞β→±∞ gives then strict monotonicity in [ , ]β ∈ −∞ +∞ . The case H R∝
is obvious. □

Lemma A.1 implies that the inverse of the function E E ( )β= , namely

[ ] [ ]E H E H E: ( ), ( ) , , ( ), (A.6)Min Maxβ β β→ −∞ +∞ =

exists iff H R∝ , is strictly decreasing, continuous, and smooth in the interior of its domain, with
derivative

E
E

E

H

d
d

( )
d ( )

d
1

var ( )
. (A.7)

E E( )

1

( )

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟β β

β
= = −

β β β=

−

The lhs of (A.3) is also called the heat capacity w.r.t. inverse temperature, i.e. the
instantaneous rate of change in the system energy as β is varied; by lemma A.1 this equals the
(negative) energy fluctuations. When thermal states are parametrized in terms of the
temperature T : 1 β= (let here T ( , ) {0}∈ −∞ +∞ ⧹ ), then the corresponding heat capacity is

C T
T

E T
T

T

E
H H( ):

d
d

( )
d ( )

d
·

d ( )

d
var ( ) var ( ). (A.8)2β β

β
β β= = = =β β

Note that this quantity equals var (log )ρβ β , the variance of the operator log ρβ in the thermal
state ρβ. In section 4.2, we use that (A.8) is upper bounded just in terms of the system
dimension, namely by N(d), which is defined in equation (33), cf (48). See [RW13] for a proof.

The entropy S S ( )β= of a thermal state is (cf also section 2.3)

S ( ) : tr log tr
e

tr e
log

e

tr e
( [ , ]). (A.9)

H

H

H

H

⎡⎣ ⎤⎦
⎡

⎣
⎢
⎢ ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦

⎤

⎦
⎥
⎥β ρ ρ β= − = − ∈ −∞ +∞β β

β

β

β

β

−

−

−

−

Essentially paralleling the discussion following (A.2), S ( )β is continuous in [ , ]β ∈ −∞ +∞
(by [Fan73]), and smooth in the interior of its domain with first derivative (after some
elementary computation)

S H
d

d
( ) var ( ) ( ( , )). (A.10)

β
β β β= − ∈ −∞ +∞β

If H R∝ , the temperature E( )β β= is a function of the energy by (A.6), and (with some
common abuse of notation) the entropy S E S E( ): ( ( ))β= can also be viewed as a function of the
energy E of a thermal state. This function is well-defined even in the case H R∝ , since then
ρ ρ=β β′ for all , [ , ]β β′ ∈ −∞ +∞ . Thus one always has a well-defined function
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[ ] [ ]S E H E H d S S E: ( ), ( ) 0, log , ( ). (A.11)Min Max → =

The entropy, energy and temperature of thermal states are related as follows:

Lemma A.2 (relation between S, E, and β for thermal states). Let H be a Hamiltonian on a
finite-dimensional system. Then the entropy S S E( )= as a function of the energy of thermal
states is continuous, smooth in the interior of its domain, and has first derivative

E
S E E E H E E H

d
d

( ) ( ) for ( ) ( ). (A.12)Min Maxβ= < <

Proof. If H R∝ , the domain of S(E) consists of a single point and there is nothing to prove.
Otherwise, since E( )β β= is smooth and strictly decreasing in the interior of the domain by
(A.6)–(A.7) and S S ( )β= is smooth in the interior of its domain by (A.9)–(A.10), the
smoothness claim follows; similarly does continuity on the whole domain. Then, using the
chain rule and equations (A.7) and (A.10) for E E H E H( ( ), ( ))Min Max∈

E
S E

S E

E

E H

H
E

d
d

( )
d ( )

d
·

d ( )

d

( )var ( )

var ( )
( ). (A.13)

E E

E

E( )

( )

( )

β
β

β β
β= =

−
−

=
β β

β

β=

□
Lastly, we introduce the free energy, a notion used ubiquitously in traditional

thermodynamics. The relative entropy between any state ρ and a thermal state ρβ can, for
( , )β ∈ −∞ ∞ , be written as

( ) ( )( ) ( )D H H S Str[ ] tr ( ) (A.14)⎡⎣ ⎤⎦ρ ρ β ρ ρ ρ ρ∥ = − − −β β β

( )F F( ) , (A.15)β ρ β ρ= −β β β

where we defined the dimensionless free energy Fβ β of any state ρ as

F H S( ): tr[ ] ( ). (A.16)β ρ β ρ ρ= −β

With obvious and usual conventions, equations (A.14)–(A.16) hold for all [ , ]β ∈ −∞ +∞
(note that (A.16) need not equal 0 for 0β = ). Applied to D ( )ρ ρ∥ β in equations (A.14)–(A.15),
Kleinʼs inequality (see below equation (14)) gives several versions of the thermodynamic
inequality: the thermal state ρ ρ= β is the unique maximizer of the entropy at fixed energy, and
(for 0β ⩾ ) is the unique minimizer of the energy at fixed entropy. Equivalently, the functional

F ( )β ρβ is uniquely minimized by ρ ρ= β, which corresponds to the usual free energy
minimization in thermodynamics (for 0β ⩾ ). See [OP93, Thi02, BR97] for more detailed
discussions.

Appendix B. Tightness of the finite-size improvements

Here we investigate how tight our finite-size bounds from section 4 are.
Let U U( )SR S R SR S R

†ρ ρ ρ ρ ρ ρ= ⊗ ↦ ′ = ⊗ be any process as considered in theorem 6
(see also section 2.1), with a reservoir of dimension d < ∞. Before discussing the tightness of
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the bound equation (36), we investigate the range of possible values of the quantity SΔ , on
which the bound depends.

When d is fixed, one can put upper and lower bounds on the entropy change SΔ of the
system. A lower bound is obtained by

S S S S S S S S S R I S R S R( ) ( ) ( ) [ ( ) ( : ) ( )] (B.1)Δ = − ′ = − ′ ′ + ′ ′ − ′

S S S S S R I S R S R S R I S R S R( ) [ ( ) ( ) ( : ) ( )] ( ) [ ( : ) ( )], (B.2)= − + + ′ ′ − ′ = − − ′ ′ − ′

where we used S S R S RS S S S R( ) ( ) ( ) ( )′ ′ = = + by unitarity (6) and the product initial state
assumption (5). Now, for quantum systems I S R S R( : ) 2 ( )′ ′ ⩽ ′ , whereas the stronger inequality
I S R S R( : ) ( )′ ′ ⩽ ′ holds for classical systems [Weh78, OP93, NC00]. Lower bounds on SΔ are
then obtained by noting S R S R d( ), ( ) log′ ⩽

d S d
d S d

2 log log (quantum systems),
log log (classical systems), (B.3)

Δ
Δ

− ⩽ ⩽
− ⩽ ⩽

where for the upper bounds we used S S R S R d( ) ( ) logΔ Δ⩽ = ′ − ⩽ by lemma 2.
All inequalities can be attained when only the reservoir dimension d is fixed: a swap (see

example 1) between a pure Rρ and a maximally mixed Sρ (of dimension d dS = ) attains both
upper bounds, whereas swapping a maximally mixed Rρ with a pure Sρ attains the classical
lower bound. For the quantum lower bound, take the system S to be composed of two d-
dimensional subsystems S1, S2 in a maximally entangled initial state | S S,1 2ω〉 , and the reservoir
R again initially maximally mixed. Then the process that swaps S1 and R creates the final
state d( ) | |SR S S R,1 2ρ ω ω′ = ⊗ 〉 〈 with a maximally entangled state | S R,2ω〉 . Thus, dS S

2ρ′ =
so that S d2 logΔ = − . In this example, dR R Rρ ρ′ = = , which means there is no heat flow,

Q 0Δ = .
We now investigate how tight the inequality (36) from theorem 6 is. Specifically, for any

given d and SΔ (which are the quantities appearing in the bound), does there exist a process
such that the lower bound (36) on QβΔ holds with equality? The answer is in the affirmative
when S 0Δ ⩾ (which by (B.3) means S d0 logΔ⩽ ⩽ ), but not for S 0Δ < .

To see this, consider a swap process (example 1) between a system with d dS =
dimensions and the d-dimensional reservoir. Due to I S R( : ) 0′ ′ = and R Sρ ρ′ = , S Rρ ρ′ = ,
equation (22) gives

( )Q S D . (B.4)S RβΔ Δ ρ ρ= + ∥

Now, by [RW13], for any given d (with d2 ⩽ < ∞) and given S d d[ log , log ]Δ ∈ − + there
do exist d-dimensional states Sρ , Rρ with S S S( ) ( )S Rρ ρ Δ− = and D M S d( ) ( , )S Rρ ρ Δ∥ =
(one can choose Rρ as a thermal state of some Hamiltonian at finite temperature, except when

S dlogΔ = , which requires β = ∞). The swap process with these special initial states Sρ , Rρ
thus satisfies Q S M S d( , )βΔ Δ Δ= + , which shows that for S 0Δ ⩾ the best lower bound on

QβΔ from (36) is tight. This tightness holds for quantum as well as for classical systems, as the
states ,S Rρ ρ satisfying D M S d( ) ( , )S Rρ ρ Δ∥ = commute [RW13]. We leave open the question
whether for S 0Δ > the bound can be exactly tight even if one fixes dS independently of d.

For S 0Δ < however, the lower bound on QβΔ is given by the second selector in (36), for
which one can prove by using the leftmost inequality in (38)
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S M S d S N S N N S S d( , ) 2 for [ log , 0). (B.5)2⎡
⎣⎢

⎤
⎦⎥Δ Δ Δ Δ Δ Δ+ > + − − − ∈ −

This, combined with (37), shows that for S 0Δ < the above swap process (B.4) can never attain
the lower bound on QβΔ from (36). But are there processes other than swaps (and possibly with
d dS ≠ ) that attain the bound (36) for S 0Δ < ?

Going through the derivation in sections 4.2 and 4.3, one actually sees that for S 0Δ < the
bound (36) from theorem 6 is never sharp. This is ultimately because (49) is a strict inequality
for any Q 0Δ ≠ since the value N(d) in (48) is attained by Hvar ( )γγ for at most one value of γ,
corresponding to at most one energy E′ in (44)–(45); this uniqueness is shown in [RW13].

One might guess a better lower bound on QβΔ in the case S 0Δ < to be S M S d( , )Δ Δ+ .
This would at least be attained for the special swap process described below equation (B.4). On
the other hand, this guess is well-defined merely for S dlogΔ ⩾ − , since M S d( , )Δ is not
defined for smaller SΔ . In the quantum case, however, any value of S d d[ 2log , log )Δ ∈ − − is
possible as well, even with Q 0Δ = ; this follows from (B.3) and the subsequent example, if one
replaces | S S,1 2ω〉 by a general pure | S S,1 2φ〉 and uses the initial reservoir state

: tr | |R S S S,2 1 2
⎡⎣ ⎤⎦ρ φ φ= 〉 〈 .

Appendix C. Extended notions of Landauer processes

C.1. An integral version of Landauer’s principle

Here we develop a modified version of Landauerʼs principle, with an integral in place of the
term QβΔ from theorem 3. The derivation requires lemma A.2 relating entropy, energy and
inverse temperature, which is rigorously proven for finite dimensions in appendix A.

Theorem C.1 (integral version of Landauerʼs principle). Consider processes as described in
theorem 3. Denote the energy of the initial reservoir state by E H: tr[ ]R Rρ= , and denote by R th,ρ′
the thermal state with energy H E Q Htr [ ] tr[ ]R th R R,ρ Δ ρ′ = + = ′ . Then

( )S I S R D E E( : ) ( )d . (C.1)R R th
E

E Q

,SR

R

R∫Δ ρ ρ β+ ′ ′ ′ + ′ ∥ ′ =ρ
Δ+

(See appendix A for the definition of E( )β , in particular equation (A.6) and lemma A.2.)

Proof. If H R∝ , then necessarily Q 0Δ = and we define the integral to be 0 even though E( )β
is not well-defined in this case (see appendix A). The statement then follows immediately from
(22) since R th R,ρ ρ′ = as all thermal states on such a reservoir agree.

The proof in the general case starts again with the second law lemma (lemma 2)

( ) ( )( ) ( )S I S R S S S S S S( : ) ( ) ( ) . (C.2)R R R th R R th R, ,
⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦Δ Δ ρ ρ ρ ρ ρ ρ+ ′ ′ = = ′ − = ′ − − ′ − ′

Denoting by β′ the inverse temperature of R th,ρ′ (see beginning of section 4.2), the last square
brackets can, for ( , )β′ ∈ −∞ +∞ , be rewritten as (cf also (39) and following)

( ) ( ) ( )S S S tr log
e

tr e
(C.3)R th R R R th

H

H
, ,

⎡⎣ ⎤⎦
⎡

⎣
⎢
⎢ ⎡⎣ ⎤⎦

⎤

⎦
⎥
⎥ρ ρ ρ ρ′ − ′ = − ′ − ′

β

β

− ′

− ′
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( )( )S Dtr log
e

tr e
. (C.4)R R

H

H
R R th,

⎡

⎣
⎢
⎢ ⎡⎣ ⎤⎦

⎤

⎦
⎥
⎥ρ ρ ρ ρ= − ′ − ′ = ′ ∥ ′

β

β

− ′

− ′

For β′ = ±∞, one can explicitly verify (C.4), using that supp[ ] supp[ ]R R th,ρ ρ′ ⊆ ′ in this case.
Finally, as an entropy difference between two thermal states and due to lemma A.2, the

first square brackets S S[ ( ) ( )]R th R,ρ ρ′ − in (C.2) equals the integral on the rhs of (C.1). This is
exactly the same step made in equation (41), and finally proves (C.1). □

Remark C.2 (finiteness of the integral version). Note that statement (C.1) of the integral
version of Landauerʼs Principle and in particular the term D ( )R R th,ρ ρ′ ∥ ′ is always finite due to
supp[ ] supp[ ]R R th,ρ ρ′ ⊆ ′ , which is easily verified. The finiteness of (C.1) is in contrast to the
terms QβΔ and D ( )R Rρ ρ′ ∥ in the equality form (22), which both equal +∞ iff Q 0Δ ≠ and
β = ±∞.

Note that the three equations (22), (41), and (C.1) are consistent. However, the third one
cannot be obtained directly by subtracting the first one from the second, due to ill-definedness in
cases where QβΔ = ∞.

One may consider the integral in (C.1) as a natural analogue of the term QβΔ for a finite
reservoir, especially due to the physical intuition that it must undergo temperature changes

E( )β β= because of its bounded heat capacity in finite dimensions (see below (A.8)).
However, the quantities appearing in theorem C.1 are somewhat artificial: the state R th,ρ′ may
generally not appear physically in the process, just as little as any of the thermal states that give

E( )β its meaning (appendix A). Furthermore, the general discrete-step formulation of the
process (section 2.1) dissonates with the integral expression in (C.1). At any rate, since (C.1)
and (22) are equivalent (through the identity (41), at least for QβΔ < ∞), all lower bounds on
the heat expenditure QΔ derived from either equality version of Landauerʼs principle agree.

C.2. Processes on several independent systems

Consider k systems S S, , k1 … , with initial states , ,S Sk1
ρ ρ… , on each of which a separate

process prepares a desired final state U Utr [ ( ) ]i R i S R i( )
†

i i i
ρ ρ ρ′ = ⊗ using reservoirs Ri that are

initially in thermal states Ri
ρ , with Hamiltonians Hi and all at the same inverse temperature β. By

Landauerʼs bound (23), the total heat dissipated in all k processes satisfies

Q S , (C.5)
i

k

i

i

k

i

1 1

∑ ∑β Δ Δ⩾
= =

with S S S: ( ) ( )i S i( )i
Δ ρ ρ= − ′ and an obvious definition for QiΔ (cf equation (8)).
The question is now whether there exists a ‘joint process’, acting jointly on all k systems

S S, , k1 … and a large reservoir R at inverse temperature β, such that the total heat dissipation
can be less than the lower bound Si iΔ∑ from equation (C.5). For this, we assume the systems Si
to be initially uncorrelated, such that their joint state Sρ is

. (C.6)S S Sk1
ρ ρ ρ= ⊗ … ⊗
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Furthermore, while the final state U: tr [ ( )]S R S Rρ ρ ρ′ = ⊗ may be correlated among the different
subsystems Si, we demand that the reduced state on each individual system Si agrees with the
desired final state i( )ρ′ from above, i.e.

i ktr 1, , . (C.7)S S S S S i, , , , , ( )i i k1 1 1
⎡⎣ ⎤⎦ρ ρ′ = ′ ∀ = …… …− +

Then, by an easily derived chaining rule

( ) ( )( )( )S S I S S S S: . (C.8)S

i

k

i

i

k

i i k

i

k

i

1

( )

1

1

1

1

( )S∑ ∑ ∑ρ ρ ρ′ = ′ − … ′ ⩽ ′ρ
= =

−

+
=

Thus, the total heat QΔ dissipated in the joint process satisfies, by (23) and (C.8)

( ) ( )( )Q S S S S S( ) . (C.9)S S

i

k

S
i

k

i

i

k

i

1 1

( )

1
i

∑ ∑ ∑βΔ ρ ρ ρ ρ Δ⩾ − ′ ⩾ − ′ =
= = =

The heat expense QΔ in any joint process is therefore lower bounded as Q Si iβΔ Δ⩾ ∑ , just
like the total heat dissipated in the k separate processes above, see equation (C.5).

Further taking the result from section 6 that Landauerʼs bound can be approached
arbitrarily closely with suitable reservoirs, the above inequalities show that the least amount of
heat can be dissipated in the joint process with a product final state S k(1) ( )ρ ρ ρ′ = ′ ⊗ … ⊗ ′ ;
only in this case can the lower bound from (C.9) be arbitrarily well achieved, just as in the k
separate processes.

The assumption (C.6) of initially independent systems S S, , k1 … is essential for the result
above. As in section 5.1, one is easily convinced that less heat than S S( ( ) ( ))i S i( )i

ρ ρ∑ − ′ needs
to be expended if the systems S S, , k1 … were initially e.g. perfectly classically correlated.

C.3. Processes in infinite dimensions

For systems and reservoirs not described by finite-dimensional Hilbert spaces, some of the
quantities appearing in Landauerʼs principle may not be defined or need a more careful
definition. For example, both the initial and final system entropies may be infinite
[Weh78, Thi02], so that their difference SΔ is ill-defined. And the general equivalent of the
thermal states (4) are so-called KMS states [BR97, Thi02].

Some of our previous treatment, however, carries over to the case when the system S and
reservoir R are described by separable Hilbert spaces (see also [Thi02]). We now presuppose
this, and assume that the initial state of S is a normal state Sρ with finite entropy S ( )Sρ < ∞.
Assume further that a semi-bounded Hamiltonian H is given for the reservoir R such that at an
inverse temperature (0, ]β ∈ ∞ the thermal state : Rρ ρ=β exists and has finite energy; the latter

two conditions are, for (0, )β ∈ ∞ , equivalent to tr e H⎡⎣ ⎤⎦ < ∞β− and Htr e H⎡⎣ ⎤⎦ < ∞β− , and they
imply that the entropy S ( )Rρ is finite as well.

Then, for any joint unitary U on SR, the second law lemma (lemma 2) holds as well (all
quantities remain finite, except that the case S S I S R( ) ( ) ( : )S Rρ ρ′ = ′ = ′ ′ = + ∞ may occur).
Going through the derivation (24), one sees that QβΔ > −∞ always, since H is semi-bounded
and Rρ had finite energy by assumption. Furthermore, SΔ = −∞ implies QβΔ = ∞, which one
sees due to D ( ) 0R Rρ ρ′ ∥ ⩾ . Thus, the equality form (22) of Landauerʼs principle holds in the
setup of the previous paragraph as well, when employing the usual rules of calculus with∞ and
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when remembering that in the potentially ambiguous case SΔ = −∞ one has
I S R Q( : ) βΔ′ ′ = = ∞. Also, Landauerʼs bound Q SβΔ Δ⩾ (see (23)) always holds.

If one considers a process just as above, but now with infinite S ( )Sρ and finite S ( )Sρ′ (such
that an infinite amount SΔ = ∞ of entropy is ‘erased’ from the system S), then one sees
S Q( )Rρ Δ βΔ′ = = = ∞, so that Landauerʼs bound also holds.

Since the conditions for vanishing relative entropy and mutual information (where defined)
are as in the finite-dimensional case [OP93], one can check that the equality considerations from
corollary 4 carry over to the above setup (with either S ( )Sρ or S ( )Sρ′ finite) in the following
way: if Q SβΔ Δ= < ∞, then S Q 0Δ Δ= = and equation (26) holds with an isometry V. But
while, even for infinite-dimensional reservoirs, equality in Landauerʼs bound can be attained
only in trivial cases, one can approach the bound arbitrarily closely for any given SΔ with
processes using an infinite-dimensional reservoir (see section 6, and also appendix D).

In appendix D we use Hamiltonians that are not merely unbounded but that have formally
infinite (+∞) energy levels (see also section 3.3). This is done in order to have some
unpopulated levels in the initial reservoir state Rρ ρ= β. (Thermal states at zero temperature,
β = ∞, may have such unpopulated levels as well, but they are necessarily completely mixed
on their support space.) The calculations involving these Hamiltonians are formal. They can be
understood as limiting processes, but exact purification as in appendix D is achievable only at
the limit (the approach to the limit is quantified in section 3.3). This issue is similar to the case
of exactly zero temperature (β = ∞), whose physical relevance may be questioned as well.

Appendix D. Erasure towards a pure state

In section 3.3 we saw that, in finite dimensions, any rank-decreasing process S Sρ ρ↦ ′
necessarily has QβΔ = ∞, i.e. requires either a zero-temperature reservoir (β = ∞) or infinite
heat flow (via formally infinite Hamiltonian levels, in particular implying H∥ ∥ = ∞). Thus,
Landauerʼs bound Q SβΔ Δ⩾ cannot be tight for finite-dimensional processes with
rank( ) rank( )S Sρ ρ′ < .

Here we show that rank-decreasing processes can come arbitrarily close to Landauerʼs
bound by using an infinite-dimensional reservoir (with Hilbert space ℓ2; cf also appendix C.3).
To keep the notation manageable, we assume that a mixed initial qubit state s sdiag( , )S 1 2ρ = ,
with s s s, 1 (0, 1)1 2 1= − ∈ , is to be turned into a pure final state diag(1, 0)Sρ′ = .

From the argument leading up to proposition 5, one can see that for such a process the
initial reservoir state Rρ needs to have infinitely many unoccupied energy levels (see also last
paragraph in appendix C.3),

( )( )r r r r r rdiag , 0, , 0, , 0, , 0, , 0, , ℓ , (D.1)R 1 2 3 4 5 6
2ρ = … ∈ 

where the rj denote the initial eigenvalues of the (potentially) non-empty levels, which we will
determine below. At finite temperature, (0, )β ∈ ∞ , this means that the energy levels of the
reservoir Hamiltonian H corresponding to the unoccupied levels have to be formally +∞. We
further choose a unitary U that transforms S Rρ ρ⊗ to the final state SR S Rρ ρ ρ′ = ′ ⊗ ′ with

( )s r s r s r s r s r s rdiag , 0, , 0, , 0, , 0, , 0, , 0, (D.2)R 1 1 2 1 1 2 2 2 1 3 2 3ρ′ = …

( )r r r r r r: diag , 0, , 0, , 0, , 0, , 0, , 0, (D.3)1 2 3 4 5 6= ′ ′ ′ ′ ′ ′ …
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and diag(1, 0)Sρ′ = from above. It is clear that such a unitary exists by just permuting the
product basis states, since both S Rρ ρ⊗ and S Rρ ρ′ ⊗ ′ have the eigenvalues s ri j for i= 1, 2,
j ∈ , in addition to countably many eigenvalues 0.

We can now compute the heat flow. For this, denote the Hamiltonian energy levels by hj
corresponding to the eigenvalues rj in (D.1), i.e. r e ej

h
j

hj j= ∑β β−
′

− ′. Thus

( ) ( )Q r r h r r rlog (D.4)
j

j j j

j

j j j

1 1

∑ ∑βΔ β= ′ − = − ′
=

∞

=

∞

( ) ( )r r r r r r rlog log log log (D.5)
j

j j j j

j

j j j

1 1

∑ ∑= − ′ ′ + ′ ′ −
=

∞

=

∞

( )( )S S D( ) ; (D.6)R R R Rρ ρ ρ ρ= ′ − + ′ ∥

those computations are justfied since the rj will later be chosen such that Rρ and Rρ′ are
normalized states with finite entropies. One can easily see from (D.2) that
S S S S S S( ) ( ) ( ) ( ) ( )R R S S Sρ ρ ρ ρ ρ Δ′ − = = − ′ = . Together with (D.6) this gives

( )Q S D , (D.7)R RβΔ Δ ρ ρ= + ′ ∥

which coincides with our finite-dimensional equality version of Landauerʼs principle (theorem
3), considering that I S R( : ) 0′ ′ = here due to a pure Sρ′ (see also appendix C.3). It is now easy
to choose the occupation numbers rj such that D ( )R Rρ ρ′ ∥ , and thus QΔ , is finite.

To show moreover that the bound Q SβΔ Δ⩾ can be arbitrarily sharp, we have to find rj
such that D ( )R Rρ ρ′ ∥ in (D.7) is arbitrarily close to 0. One way to do this is the following:
Choose any (0, 1)ε ∈ and define

r r

r s r r s r k

: 0, : ,

: (1 ) : (1 ) for 2. (D.8)k k k k

1 2

2 1 1 2 2

ε
ε ε

= =
= − = − ⩾−

One can see that the so defined Rρ is normalized with entropy S H( ) ( ( )R 2ρ ε= +
S(1 ) ( ))Sε ρ ε− . And the relative entropy term in (D.7) is

( ) ( ) ( )D s r s r r s r s r rlog ( ) log log ( ) log (D.9)R R
k

k k k

k

k k k

1

1 1 2 1

1

2 2 2∑ ∑ρ ρ′ ∥ = − + −
=

∞

−
=

∞

s r s r( log (1 )) ( log (1 )) (D.10)
k

k

k

k

2

1

2

2∑ ∑ε ε= − − + − −
=

∞

=

∞

log (1 ), (D.11)ε= − −

which indeed approaches 0 as 0ε → .
Note however that, even in infinite dimensions, no process with S Sρ ρ↦ ′ exists that

makes the relative entropy term D ( )R Rρ ρ′ ∥ in (D.7) vanish exactly (cf appendix C.3):
D ( ) 0R Rρ ρ′ ∥ = would mean R Rρ ρ′ = , which would imply that the state

S R S R SRρ ρ ρ ρ ρ′ ⊗ = ′ ⊗ ′ = ′ (due to purity of Sρ′ ) would have to be unitarily equivalent to

S Rρ ρ⊗ . But this is possible only when Sρ was already rank-deficient.
Note finally that some state Sρ ′∼ which is δ-close to a given (possibly pure) state Sρ′ can be

reached with a finite-dimensional reservoir and with QβΔ arbitrarily close to S S( ) ( )S Sρ ρ− ′ ,
see section 3.3.
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