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Abstract
Many physical properties of glasses are still far from being understood at the
atomic level. The lack of experimental methods capable of studying glassy
dynamics at this scale has impeded the development of a complete model for
atomic transport processes. Here we apply the new technique of atomic-scale x-
ray photon correlation spectroscopy to directly observe single atomic motion in
lead silicate glass. We show that dynamics change significantly depending on
the glass composition, from single jump processes between inhomogeneous
regions to multiple jump processes along network paths and through voids. Up
until now, such measurements were far out of reach for temperatures below the
glass transition. Our findings suggest that the method and the model introduced
here will also help understanding atomic diffusion in a wide range of other glass
systems.

Keywords: XPCS, atomic diffusion, lead silicate glass, aXPCS, coherent x-ray
scattering, synchrotron radiation

1. Introduction

X-ray photon correlation spectroscopy (XPCS) is a powerful method for studying dynamics in
disordered systems. Important groundwork was laid for this field by the pioneering papers of
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Sutton et al [1] and Brauer et al [2]. The most frequent application of XPCS are studies of soft
matter dynamics where objects are in the nanometer range (see e.g. 3–7). The capability to
resolve single atomic motion in condensed matter with this technique, atomic-scale x-ray
photon correlation spectroscopy (aXPCS), has been shown only recently by Leitner et al [8].
Moreover, Stana et al have shown how to apply this method to less ordered polycrystalline
materials [9]. In the metallic glass ZrNiCuAl, the close connection between atomic dynamics
and crystallization has demonstrated the failure of the concept of equilibrium diffusion in this
material [10]. Recently, Hruszkewycz [11] et al have shown that ultrafast dynamics
measurements with XPCS on the atomic scale should be feasible. Here we utilize the new
method of aXPCS to shed light on the motion at the atomistic level in lead silicate glass below
the glass temperature.

Glasses were among the first artificial materials produced by humans, nevertheless their
systematic investigation started surprisingly late. The foundations of this research area were laid
by Zachariasen [12] and Warren [13]. While the short-range order was rather clear, it was many
decades of scientific work later that more detailed models for the intermediate-range order could
be provided. This was possible because of the application of many different methods like
neutron scattering, extended x-ray absorption fine structure, nuclear magnetic resonance and
infrared and Raman spectroscopy [14]. The dynamical behavior of silica glass and other glassy
materials is nonetheless still puzzling. The glassy state is normally seen as a dynamically
arrested state. Recent findings suggest that even in the deep glassy state in oxide glasses fast
atomic rearrangements can happen [15]. Lead silicate glass is of specific interest in structural
and dynamical terms, as lead building blocks can cause ion conduction through the glass and as
the components lead oxide and silica oxide both can act as network formers, depending on their
mixing ratio. While structural details have been revealed recently [16, 17], the principles of the
diffusion processes still have to be clarified. Building upon a detailed view of the dynamics, the
crucial issue is how these properties are connected to the network-forming role of each
component. One of the reasons for these open questions has been the lack of an appropriate
method to study glassy dynamics spatially resolved on the atomic scale.

2. Experimental method

2.1. Theory

A good introduction to XPCS can be found in [18 and 19]. The basic idea is that information
about the dynamics in real space is stored in a time-series of coherently scattered x-ray
intensities. From the autocorrelation function

Δ Δ⃗ = ⃗ ⃗ + ⃗( ) ( ) ( ) ( )g q t I q t I q t t I q t, , , , , (1)(2) 2

information about the time scale of the underlying atomistic dynamics can be deduced. Here,
⃗I q t( , ) is the observed intensity at scattering vector ⃗q and at time t and the brackets 〈 〉... denote

the average over time, i.e. over all pairs of intensity separated by time Δt. Due to the fact that
the van Hove pair correlation function can be related to the intensity autocorrelation function
[10], the experimentally obtainable values can be linked to the dynamics:

2

New J. Phys. 16 (2014) 093042 M Ross et al



Δ β Δ τ⃗ = + − ⃗ α{ }( )( ) ( )g q t t q, 1 exp 2 . (2)(2)

Here the coherence factor [18] β, which can vary between 0 and 1, is a gauge for the degree of
coherence. The empirical stretching parameter α can be less than one for a subdiffusive motion
of particles [4] or for dynamics where several processes are active. From the obtained
correlation time τ ⃗q( ), conclusions on the atomic dynamics can be drawn. The aXPCS technique
is a model-dependent technique, like several other methods including Mößbauer spectroscopy
[20], time-domain nuclear forward scattering [21] and quasielastic neutron scattering (QENS)
[20, 22]. To extract information from the obtained behavior of the correlation time,
mathematical models of different diffusion processes are formulated and tested with the
experimental τ ⃗q( ) values. In aXPCS the exchange of two atoms of the same species does not
affect in any way the scattering pattern, as the configuration of the coherently illuminated
volume before and after the jump is indistinguishable. Compared to incoherent methods it is,
however, necessary to account for the immediate vicinity of the diffusing species which is
usually described by the short-range order parameter. In amorphous materials like lead silicate
glasses, the short-range order is still very pronounced, resulting in the so-called structure factor
peak. The influence of the surroundings on the movement of each atom has been first described
qualitatively for coherent QENS in liquids [23] and is called de Gennes narrowing. The physical
principle for this effect is the fact that maxima in the structure factor of liquids and amorphous
solids ⃗( )S qSRO occur at scattering vectors corresponding to the most probable interatomic
separation, i.e. they are due to the highly correlated and long-living atomic arrangements. The
theory describing the diffuse scattering under short-range order in a linear approximation [24] is
discussed in detail by Leitner and Vogl [25]. Calculations within an incoherent scattering theory
can be transformed into the form

τ
τ

⃗ =
⃗
⃗

−
−

( ) ( )
( )

q
q

S q
, (3)1 inc

1

SRO

that can be compared with the results of coherent experiments, where τ ⃗q( )inc is the correlation
time obtained from incoherent scattering.

2.2. Samples

Two different lead silicate oxide glasses (PbO)x(SiO2) −x1 have been prepared, with mixing
ratios of x = 30 mole%, referred to as low lead content glass and x = 60 mole%, referred to as
high lead content glass. This selection was chosen due to the substantial difference in the
structure of lead silicate glasses with these compositions. It has been found that PbO–SiO2 can
be classified as a binary network-former glass [17], with emphasis on SiO2 network forming in
a low lead content and on PbO network forming in a high lead content silicate glass.

Chemically pure materials were used to prepare the glass batches. The finely mixed
batches were melted in alumina crucibles in an electrically heated muffle furnace at
temperatures ranging between 1123K for high lead content glass and 1273K for low lead
content glass. The duration of melting was about 1 h and the melts were subsequently quenched
to room temperature. The solid specimens were annealed from about 673K to room temperature
with a temperature decrease of about 10K h-1 in order to remove stress. The composition of the
samples was analyzed by energy-dispersive x-ray spectroscopy (EDX) showing good
agreement with the nominal composition. The glass transition temperature of the samples
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was measured by differential scanning calorimetry (DSC) on a NETZSCH DSC 204 Phoenix,
yielding values of T ≈ 753g K for low lead content glass and T ≈ 663g K for high lead content
glass.

2.3. Setup

The aXPCS experiments were performed at beamline P10 of synchrotron PETRA III using a
coherent setup with 7 keV photons for the low lead content and 8 keV photons for the high lead
content glass sample. Measurements were performed in a resistively heated vacuum furnace (p
≈10−6mbar). The temperature was stabilized by a PID controller within a range of 0.1K at
713K for low lead content glass and 643K for high lead content glass. The intensity
autocorrelation function was measured for several scattering vectors (see figure 1) and the
correlation times were obtained by fitting equation (2) with a free coherence factor β and a
stretching parameter α = 1 for low lead content and α = 0.75 for high lead content glass,
respectively. In order to check the stability of the sample as well as the mechanical stability of
the setup, the two-time autocorrelation function C = 〈 〉 〈 〉〈 〉t t I t I t I t I t( , ) ( ) ( ) ( ( ) ( ) )1 2 1 2 1 2 was
calculated for each measurement. For equilibrium systems, the two-time autocorrelation
function only depends on Δ = −t t t2 1. The few measurements for which instabilities of the
setup occurred have been excluded. It should be noted that no significant broadening is
observed when evaluating the two-time autocorrelation time. This indicates on the one hand a
stable setup and on the other hand the absence of aging in the measured glasses on the atomic
scale on the time scale of the measurement. A similar behavior has been found recently by Ruta
et al [15].

As the detector is not point-like but expands over a span of about °2 , one also averages
over a small range of different q-values. For equilibrium systems and with a constant intensity
distribution this yields the same result as the pure time average at a sharp q-value, but for
significant changes in intensity within the q-range covered by the detector, averaging causes a
systematic error. Normally, this error is smaller than the statistical error for our measurements.
In high lead content glass, due to the long runtime of our experiment and the changes in
scattering intensity with increasing q, the systematic errors get significantly larger than the

Figure 1. Autocorrelation function Δg q t( , )(2) in a high lead content glass sample at
≈q 0.7 Å−1 and T = 643 K. Experimental values were fitted using equation (2) with the

parameter α = 0.75. The baseline at =g 1(2) is shown for comparison.
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statistical ones. We have accounted for this systematic error in high lead content glass by
virtually splitting the detector area into stripes of equal angular span where the correlation time
should not change significantly. The errors given are in that case the difference of the average to
the extremal value.

3. Results and discussion

Scattering intensity measurements in a conventional x-ray setup have been performed before
and after the XPCS experiments to ensure that no crystallization had occurred. The scattering
curves after the experiments are shown in figure 2 for low lead content and high lead content
and show no sharp peaks or any other sign of crystallization. The obtained intensities have been
used to account for the de Gennes narrowing according to equation (3). We find a first broad
peak at about 0.6 Å−1 and 0.8 Å−1, respectively. The first broad peak is more distinct in low lead
content glass compared to high lead content glass. This was also found in 17, where at low PbO
concentrations around 35 mole% there is an inhomogeneous distribution of PbOx polyhedra
resulting in an additional scattering peak at low q-value. At high PbO concentration around
65 mole% the SiO4 structural units are in contrast inhomogeneously distributed. It is of
fundamental interest how this change in structure is reflected in the dynamics of the PbOx

building blocks in the network.
Due to the significantly higher scattering cross-section of lead compared to the other

elements present in lead silicate glass, we are practically only sensitive to lead atoms and can
exclusively follow their dynamics. The dependence of the correlation time on the scattering
vector in our aXPCS experiments is shown in figure 3. In low lead content glass, we can utilize
a very successful model for jump diffusion derived by Chudley and Elliott [26].

Generally, the resulting inverse incoherent correlation time depends on the normalized
jump length distribution ρ x( ),

⎜ ⎟⎛
⎝

⎞
⎠∫τ τ ρ= −− −

∞
q j qx x x( ) 1 ( ) ( )d , (4)inc

1
0

1

0
0

where the first spherical Bessel function =j x x x( ) sin ( )0 , τ0 is the mean residence time on one
site and = ⃗q q . The assumption of Chudley and Elliott was that an atom is trapped in a cage
formed by neighboring atoms and, after a certain time, jumps to another site at a fixed distance l
in a random direction, which means ρ δ= −x x l( ) ( ), yielding τ τ= −− −q j q l( ) (1 ( )).inc

1
0

1
0 For

Figure 2. Scattering curves obtained after the experiment for low lead content and high
lead content glass.
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small q-values the sine function can be expanded, resulting in the ⃗ −q| | 2 divergence of correlation
times, which is a very general result valid for liquids as well as for crystalline solids and known
as the hydrodynamic limit [22]. For large ⃗q| | values the correlation time is simply equal to the
mean residence time.

Additional models have been applied in comparison to the Chudley–Elliott approach.
Those were a Gaussian-like jump length distribution model similar to [27] with a mean jump
distance and an additional delocalization parameter of an atom from its site and an extended
Chudley–Elliott model, as introduced further below for high lead content glass. Both yield the
same fit in the relevant range as the single jump Chudley–Elliott model and are thus not shown
in figure 3. Particularly, the two-jump Chudley–Elliott model fit results show that no additional
details can be resolved by assuming multiple jump processes for low lead content glass. A
further model has been derived for jump lengths which are uniformly distributed (ρ =x l( ) 1 )
for ⩽x l and 0 otherwise. The resulting inverse correlation time is
τ τ= −− −q ql ql( ) (1 Si( ) ( )),inc

1
0

1 where Si(ql) is the sine integral and l the maximum jump
distance allowed. The fit of this model as shown in figure 3 deviates much stronger from the
data than the single jump Chudley–Elliott approach. Concluding the comparison of different
models, we find that the single jump Chudley–Elliott model as the most direct approach
capturing the details of the experimental data is the most appropriate jump model for low lead
content glass. From the medium q-range covered by our experiments, the physical insight about
diffusion details on the atomic scale can be obtained. The fit to the data according to the
Chudley–Elliott model yields a jump distance of about ≈l 8(1) Åand a mean residence time of
τ ≈ 3700 s. The distances and correlation times measured here are caused by an effective single

Figure 3. Dependence of the inverse correlation time on the scattering vector for low
lead content glass at 713 K (upper plot) and high lead content glass at 643 K (lower
plot). The curves show the fit of different models to the data each for low lead content
and for high lead content glass (sjCE/tjCE: single jump and two-jump Chudley–Elliott
model, UD: model with uniformly distributed jump lengths up to a maximum distance).
The long single jump model has been fit only to q-values below 0.5 Å−1, the short single
jump model to the whole q-range.
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jump. From the Einstein relation [28] in the form τ= 〈 〉D l (6 )2
0 we calculate a diffusivity on

the order of 10−22m2 s−1. This longer range jump behavior compared to the expected
neighboring distance can be attributed to the existence of lead-free regions in the glass. It has
been reported for different kinds of glasses [29], that micro-inhomogeneities on the order of
10Å in size have been found. This interpretation is also very well reproduced by results
obtained in 17. In lead silicate glass of similar composition to our low lead content glass, an
aggregation of lead oxide was found, resulting in large amounts of lead-free volume with void
sizes of about 15Å. The stretching parameter α = 1 of the fit to our data shows that the jump
process has no memory of previous jumps, thus supporting the idea of a single process inside
the void structure. A diffusion through these voids has to be fast compared to the mean
residence time of a lead atom and the distance should be in the order of the void size, which is
in good agreement with our results.

For the high lead content glass, we find that the atomic diffusion undergoes a significant
change (figure 3), calling for an extended jump model. Due to the structural inhomogeneity on
the short range, different jump processes along locally different jump vector directions are
possible. We extend the Chudley–Elliott model to two jump processes to account for this
additional feature in the dynamics. This model is based on the same assumptions as the regular
Chudley–Elliott model but extended by an additional jump process:
ρ ω δ ω δ= − + −x x l x l( ) ( ) ( )1 1 2 2 . This results in

⎡⎣ ⎤⎦τ τ ω ω= − − −− − ( ) ( ) ( )q j q l j q l( ) 1 1 , (5)inc
1

0
1

1 0 1 1 0 2

with τ τ τ= +− − −
0

1
1

1
2

1 and ω τ τ= − −
i i

1
0

1. The factor ωi is the probability for a jump to have a
distance li with a mean residence time τi.

The measured correlation times are shown together with the model fit in figure 3 and
reproduce this extended jump model. The fit yields values of ≈l 1.2(7)1 Å, ≈l 13(3)2 Å,
ω ≈ 0.91 and τ ≈ 4350 s. From that, we get an overall diffusivity on the order of 10−22m2 s−1

(note the lower temperature compared to the low lead content measurement). Thus about 90%
of the atomic jump processes take place on a very short range, while longer range jumps
comparable to the situation in the low lead content glass still exist. The stretching parameter
α = 0.75 of the fit to our data indicates a change in the diffusion process due to the dynamical
heterogeneity, which is known to play an important role in the dynamics of glassy materials
[30], or in other words the jump process depends on whether a lead atom is placed inside the
network structure or at the edge of a void.

As in the case of low lead content glass, additional models have been compared to the
extended Chudley–Elliott model in high lead content glass. The Gaussian-like jump length
distribution approach and the model of uniformly distributed jump lengths yield the same fit in
the relevant range as the single jump Chudley–Elliott approach for short jump distances and are
thus not shown in figure 3. As can be seen by comparing the fit of the single jump
Chudley–Elliott approach for different q-value ranges to the fit of the extended Chudley–Elliott
model, only the latter can capture the details of the data across the whole q-range. In conclusion,
we find that the extended Chudley–Elliott approach is the most appropriate jump model for high
lead content glass as the most direct approach capturing the details of the experimental data.
This demonstrates that a drastic change in dynamics occurs, analogous to the change in
structure which has been found for high lead content glasses. In the composition region above
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50 mole% PbO, lead oxide forms the network while the silica oxide building blocks get mostly
isolated [17].

The increased jump distance for the longer range jumps in high lead content glass
compared to the motion in low lead content glass can be attributed to the tendency for larger
voids in the structure, enabling a longer-range mobility of the PbO building blocks. This
concurs well with the most surprising result in the study of Kohara et al [17] claiming that in
contrast to the common opinion lead silicate glasses contain extraordinarily large amounts of
free volume or voids. Recent studies of Kaur et al [31] support this view showing that lead
silicate glasses do not exhibit an abrupt increase in volume at the glass transition temperature
which would occur in a densely packed system.

4. Conclusion

Combining our results for the different lead compositions, we find that a split of the dynamics
occurs. Longer range single jump processes dominate the motion in low lead content glass
whereas at least two different jump processes, one on the short range and at least one other on
the long range, dominate the motion in high lead content glass. With these findings, lead
diffusion can be understood as a consequence of direct jumps between regions of PbO
aggregation in low lead content glass and as a consequence of short range motion between
connected regions of lead oxide aggregation and longer range direct jumps through voids in
high lead content glass. The clear transition in atomic motion from a single jump process in low
lead content to a two-jump process in high lead content glass indicates a change in the dynamics
hand in hand with the change in structure. The existence of jump processes on distinctly
different length scales can be attributed to two structural features. First, the longer range jumps
imply a still existing partial aggregation of lead in high lead content silicate glass and resulting
voids between these aggregations. Secondly, the much more frequent short range jumps show

Figure 4. Jump processes of lead oxide in lead silicate glass. Regions in dark (red) color
represent regions of lead oxide aggregation, regions in light (yellow) color represent
silica oxide structures. Left: for low lead content glass, the diffusive motion is driven by
jumps between regions of lead oxide aggregation. Right: in high lead content glass, two
distinct types of jump processes exist. The network connectivity allows for a short-
range diffusion along network paths, also jump processes through the voids over longer
distances contribute to the diffusion.
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that by the percolation of the PbO network structure, diffusion is possible along the strongly
connected regions of PbO aggregation (see figure 4).

In this study we utilized the aXPCS technique for lead silicate glasses to obtain detailed
insight into atomic transport, revealing the characteristic jump distances and the connection
between the structural heterogeneity of different glass compositions and the change in the
diffusion processes. These findings lead to the conclusion that even at this general level, a
consistent description of transport properties in lead silicate glasses can be achieved. Studying
further glass systems with aXPCS in a similar fashion promises to yield deeper insight and
enhance the understanding of atomic diffusion in amorphous systems.
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