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Abstract. Two variants are described of 3He-4He dilution refrigerators for experiments with
polarized nuclei in particle beams, which often have to be performed under adverse experimental
conditions. The first is used for experiments in a beam of cold neutrons that do not allow any
3He on their beam path. The sample is therefore indirectly cooled by liquid 4He.

The second variant is used for experiments in a beam of heavy nuclei that only allow a
very thin film of material, in this case 4He, to cool a thin polarized polystyrene target. Such
a polarized target is a powerful spectroscopic tool to investigate nuclear structure and reaction
mechanisms, which is of interest for the study of nuclei far from stability.

1. Introduction
A convenient way to reach milliKelvin temperatures is dilution refrigeration. The first
refrigerator with a lowest temperature of 220 mK was built in 1965 by Das, de Bruyn Ouboter
and Taconis [1]. A steady improvement followed, leading to a lowest temperature of 8 mK in
the 4He-circulating version in 1976 by Pennings, de Bruyn Ouboter and Taconis [2] and 2 mK
in 1978 in the 3He-circulating version by Frossati [3]. Most of the instruments developed for
applications in solid state physics or materials research are not suited for experiments in particle
physics with polarized targets, because of many experimental conditions and constraints, related
to target loading, beam access, detector opening angles etc.
Here we present two special dilution refrigerators for particle scattering experiments: one for
experiments in a cold neutron beam, where the slightest amount of 3He is prohibitive, because
of the very large neutron absorption cross section, and one for experiments in a beam of heavy
particles, where the total amount of any material including He, should be kept as low as possible
and cooling of the sample has to be realized by a 4He film.
The two systems have in common that the nuclei of interest in the sample (protons, deuterons
etc.) are polarized by Dynamic Nuclear Polarization (DNP) [4], a process in which the
polarization of free electrons, almost fully polarized at temperatures below 1 K and magnetic
fields of ∼2.5T, is transferred to the nearby nuclei by irradiation with microwaves at a frequency
close to the ESR line. This requires in general a cooling power of 0.5 - 1mW per cm3 sample
material at temperatures below 0.5 K, plus the heat dissipated by the incoming particle beam.
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Both systems are based on a design of a special dilution refrigerator for polarized nuclei by
Roubeau [5].
The characteristics of this design are firstly that the whole refrigerator is fully contained in its
own pumping tube and can de taken out or re-inserted in a short time even in a cold cryostat
(thus allowing loading of samples kept at 77 K). Secondly, the mixing chamber is directly in the
isolation vacuum of the cryostat, thus minimizing the amount of material in the beam path. A
further development at PSI incorporated a removable central access [6], enabling a faster target
change, or an angle-reproducible loading of special-shaped targets, or even the use of multi-stage
or dummy-targets, up to sizes of 100 cm3 [7].

2. Dilution refrigerator for samples in a cold neutron beam
2.1. Constraints in a beam of cold neutrons
As mentioned above, no 3He at all can be tolerated in the cold neutron beam. Therefore, an
apparatus had to be developed with a dilution refrigerator and a separate 4He chamber for
the cooling of the sample. The refrigerator is used in an experiment to determine the spin-
dependent scattering length of the deuteron. The experiment with a Ramsey apparatus was
described elsewhere [8]. A severe geometrical limitation is that the tail of the cryostat has to
fit between the pole shoes of an electromagnet, 49 mm apart. Since the cryostat is operated
without `N2 because of compactness, two gas cooled shields and a shield on still-temperature
were used, reducing the available space even more.

2.2. Experimental set-up for a beam of cold neutrons
The lower part of the cryostat is shown in figure 1. A dilution refrigerator with a central
microwave guide was used. The mixing chamber, filled with mixture, and the sample cell, filled
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Figure 1. The lower part of the cryostat
with the mixing chamber (m.c.) filled with
3He-4He mixture, the 3He rich phase (a),
the diluted phase (b), the phase boundary
between them (p.b.), the microwave guide
(µw), the sapphire microwave window (w)
and heat exchanger (h) between mixing
chamber and sample cell are shown. The
sample (S) is embedded in liquid 4He (c)
and mounted on microwave guide (d). The
sample cell is surrounded by aluminium
radiation shields at 120K (s1), 30 K (s2) and
1K (s3) .
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with pure 4He, are connected by a vertical, coaxial heat exchanger, made out of a cylindrical
friction weld from stainless steel (the flange part) to copper (the thermal part) with silver powder
sintered on both sides in annular, spark eroded, grooves. A sapphire window allows microwaves
to pass. The sintered silver heat exchanger has on the mixing chamber side 20.6 g silver powder
[9], on the sample side 27.7 g.
The sample cell is also made out of a friction weld, this time between stainless steel for the
indium-sealed flange and aluminum for the lower cylindrical part in the neutron beam region
with a thickness of 0.5mm. The indium-sealed flange adds only 2 mm radially to the 19 mm
outside diameter of the sample cell.
The sample, a 1.2 mm polystyrene platelet of Ø 5mm, was situated ∼16 cm below the mixing
chamber. Without microwave irradiation the lowest temperature of the sample was 92 mK with
< 70mK in the mixing chamber. Typical polarization values achieved were 40 % for protons
and 20 % for deuterons. During polarization, the 3He flow rate was increased to ∼ 1 mmol/s.
The thermal gradient from sample to mixing chamber is mainly determined by the low thermal
conductivity of 4He at these temperatures.

3. Dilution refrigerator for samples in a beam of heavy nuclei
3.1. Constraints in a beam of heavy nuclei
Further we developed a dilution refrigerator with a solid target of polarized protons for
experiments with radioactive ion beams. ( Tests at PSI were performed with beams of 12C
of 60 MeV or 14N of 170 MeV at a rate of < 5×106/s.) Such experiments are of interest in areas
as diverse as resonant elastic scattering, transfer reactions and nuclear matter distributions in
nuclei far from stability [10]. Such targets hold great promise in the context of exotic nuclei.
Using the DNP technique, in the past, 70µm thick scintillating polystyrene foils had been
polarized at PSI to 84% inside the mixing chamber of a 3He-4He dilution refrigerator [11]. We
report now on the development of a polarized target based on plastic foils of 1-200µm thickness,
placed inside a separate chamber attached to the mixing chamber. Cooling of the foil is achieved
via a superfluid film of 4He, keeping the beam‘s energy loss and recoils at a low level. [12]. The
chamber has two 500 nm thin, highly uniform silicon nitride windows. A NMR coil is attached
to the target foil to monitor the polarization. First results have been obtained to characterize
the target system, using the elastic scattering of 38 MeV 12C by protons in inverse kinematics.
This development confronted us with several technical challenges.
To reduce the amount of material in the beam path to the absolute minimum, the cryostat-
and the beamline-vacuum ( '10−5) mbar were connected, but sufficiently decoupled by allowing
only a 9 mm hole in the connecting flange. Thus the cryostat-vacuum could be kept at the 10−7

mbar level to avoid contamination condensation on the windows in the beam path.

Figure 2. Schematic frontal view
of the sample cell, situated below the
mixing chamber (m.c.), with sample (S)
mounted on a copper frame (f) with visible
clamping screws and a rectangular NMR
coil. Microwaves from waveguide (µw)
enter the sample cell through a sapphire
window (w).
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For experiments that involve low-energy recoils another challenge is related to their trajectories
in the high magnetic field. In this case, the target has to be operated in the so called frozen
spin mode, in which protons are first polarized at 2.5 T until the maximum polarization is
reached. Subsequently microwave irradiation is interrupted, the temperature is lowered to
typically ∼100mK , and the magnetic field lowered to a value in the range between 0.4 T and
1T. Under these conditions the nuclear polarization is expected to exhibit still sufficiently long
relaxation times.

3.2. Experimental set-up for a beam of heavy nuclei
All heat shields have open window sections in the incoming beam line, except for the shield
at 4.2 K, the outer shell of the superconducting split-pair magnet, which has a window covered
with a 0.2 µm gold foil to reduce the thermal radiation to the inside. No material at all, except
for the silicon-nitride exit window, was in the solid angle subtended from the target to the
detectors, which were mounted in the gap of the superconducting magnet, at the position of
the B = 0 circle. Since the silicon-nitride windows used do not withstand more than about
300mbar differential pressure, a special pumping scheme hat to be adopted for the evacuation
of the cryostat and the sample cell.

Figure 2 shows the target cell, containing as sample a 60µm polystyrene foil of 16mm ×
20mm (∼40 mg/cm2), with an embedded 1mm diameter copper NMR coil. Microwaves are
entering via a sapphire window in the bottom of the mixing chamber. A coverage of the sample
by a 0.3µm superfluid 4He film for the thermal transport is obtained by admitting 0.26 cm3

NTP 4He gas. Without microwave irradiation the lowest temperature of a calibrated ruthenium
oxide thermometer on the NMR coil read 190 mK, with <100mK in the mixing chamber. The
highest proton polarization was 30%.

4. Conclusions
Two variants were described of set-ups for particle physics experiments, where indirect cooling
of the samples by a dilution refrigerator via bulk 4He or a 4He film was successfully realized.
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