
DEPARTMENT OF INFORMATICS

TECHNICAL UNIVERSITY OF MUNICH

Master’s Thesis in Informatics

Canonicalization of Loop-free Tensor
Networks

David A. Tellenbach

DEPARTMENT OF INFORMATICS

TECHNICAL UNIVERSITY OF MUNICH

Master’s Thesis in Informatics

Canonicalization of Loop-free Tensor

Networks

Kanonisierung Schleifenfreier

Tensornetzwerke

Author: David A. Tellenbach

Supervisor: Prof. Dr. rer. nat. Christian Mendl

Advisor: M.Sc. Qunsheng Huang

Submission Date: 15.03.2022

I confirm that this master’s thesis in informatics is my own work and I have documented all

sources and material used.

Munich, 12.03.2022 David A. Tellenbach

Abstract

Many important tensor network algorithms can benefit from orthogonality constraints on

the tensors of the network or even require that tensors form isometries when considered

as matrices. We explore different methods to orthogonalize tensor networks and present a

canonical form that can be used to flexibly shift centers of orthogonality.

After methods to orthogonalize tensor networks have been established, we clarify how a

network can be considered as an element of a product of Riemannian manifolds to eventually

introduce a modified line-search method based on gradient descent that can be used to

minimize complex-valued functions on tensor networks.

iii

Contents

Abstract iii

List of Figures vii

List of Tables ix

List of Algorithms xi

List of Source Codes xiii

List of Abbreviations xv

1. Introduction 1

2. Mathematical Formalism 3

2.1. Linear Algebra . 3

2.2. Tensor Networks . 7

3. Canonical Tensor Networks 13

3.1. Orthogonalization via QR Decomposition 14

3.2. Direct Orthogonalization . 14

3.3. Orthogonalization with respect to Edges 19

3.4. Canonical Forms . 19

3.5. Shifting Centers of Orthogonality . 21

4. Application 25

4.1. Optimal Truncation . 25

4.2. Optimization on Riemannian Manifolds 26

v

Contents

5. Conclusion and Future Work 37

A. Code Examples 39

Bibliography 51

vi

List of Figures

4.1. Retraction Rx of point ξ P TxM onto manifoldM. 29

4.2. Convergence of gradient norms for Riemannian gradient descent (RGD),

Riemannian gradient descent with backtracking line-search and conjugated

gradient (CG) with backtracking line-search. 35

vii

List of Tables

4.1. Properties of Stiefel manifold St pn, pq. 33

ix

List of Algorithms

1. Matricization of a tensor . 9

2. Tensorization of a matrix . 9

3. Direct orthogonalization . 16

4. Orthogonalization with respect to edges . 19

5. Canonicalization of a loop-free tensor network 20

6. Shift center of orthogonality . 23

7. Optimal truncation . 25

8. Riemannian gradient descent . 30

9. Riemannian gradient descent on orthogonalized tensor networks 32

xi

List of Source Codes

A.1. Constructing a tensor network. 39

A.2. Computing the inner product of tensors. 40

A.3. Decomposition of tensors using either SVD or QR. 40

A.4. Orthogonalization with respect to edges. 42

A.5. Transforming a tensor network into canonical form. 43

A.6. Shifting the center of orthogonality. 44

A.7. Computing the gradient of an inner product. 46

A.8. Riemannian gradient descent on tensor network. 46

A.9. Conjugate Gradient with backtracking line-search. 47

xiii

List of Abbreviations

CG Conjugate gradient

DMRG Density-matrix renormalization group

MPS Matrix product state

RGD Riemannian gradient descent

SVD Singular value decomposition

TT Tensor train

xv

CHAPTER 1

Introduction

A tensor network is a graph with tensors as nodes and tensor contractions as edges. Although

being a relatively simple representation of tensors and contractions between them, tensor

networks have proven to be an efficient tool for a whole range of interesting applications, such

as the simulation of quantum computers [Che+18; Hua+20], the description of quantum

many-body systems [CV09; VCM09] or big data processing [Cic14].

Besides being an expressive tool for understanding large systems of tensors, tensor networks

have further reaching practical advantages. A canonical example to see the strength of

tensor network ansätze is the description of a quantum spin state on a one-dimensional

lattice with N P N sites. Instead of describing the entire system as one large state, each
lattice site can be described as a three-dimensional tensor where two of the dimensions are

connected to adjacent sites. The resulting tensor network is called a matrix product state or

MPS. For a relevant family of systems, it can be shown that a truncated MPS can express

the state of the whole systems with a lesser number of coefficients which leads to a real

computational advantage [BC17; Has07].

Many interesting algorithms in all of the aforementioned areas can benefit from orthogonality

constraints on the tensors in a network, rising the necessity for transformations that enforce

such constraints on general tensor networks.

This thesis introduces procedures that transform arbitrary loop-free tensor networks into a

canonical form, enforcing certain properties on the network tensors. We then subsequently

present two applications that benefit from networks in canonical form.

1

1. Introduction

In chapter 2 we introduce the necessary theory of linear algebra and fix the notation of tensor

networks to present different orthogonalization procedures in chapter 3. The third chapter

also introduces canonical forms for loop-free tensor networks. Chapter 4 then introduces the

application of canonical forms to optimal truncation of edges in a tensor network and the

optimization of functions on Riemannian manifolds.

We implemented all methods introduced in this work in the programming language Python

and finish the thesis with an overview of the implementation and a final discussion of some

numerical results.

2

CHAPTER 2

Mathematical Formalism

This chapter gives a brief introduction to the mathematical formalism we will need in the

further course of this thesis. We first give a recap of linear algebra basics and subsequently

introduce the notation of tensor networks.

2.1. Linear Algebra

Linear algebra is a branch of mathematics that deals with finite dimensional vector spaces

and linear mappings between them. The topic is covered in a wide range of introductory

textbooks such as [GL13] or [Str13] to name just two.

This section gives a brief recap of linear algebra basics and introduces a few matrix decom-

positions that will be useful later. For our purpose, all vector spaces we consider have finite

dimension and are defined over the field of complex numbers C. Since any vector space over
C of dimension n is isomorphic to Cn, we consider spaces of the latter form only.

2.1.1. Basic concepts

Vectors and matrices An element of a vector space Cn is called a vector and is denoted
by a small letter such as v or u. A homomorphism is a linear mapping f : Cn Ñ Cm between
two vector spaces that preserves the structure of the spaces and is fully specified by its action

on some basis vectors. We can therefore consider f as a matrix M P Cmˆn where each

3

2. Mathematical Formalism

column of M is the image of f on the standard basis ei P Cn, i “ 1, . . . , n. On the other

hand, each matrix gives rise to a homomorphism such that we uniquely identify matrices

with homomorphisms.

Special matrices Let M P Cmˆn be a matrix with coefficients mi j P C for i “ 1, . . . m and

j “ 1, . . . n. The transposed matrix MT “ pm1
i jq has coefficients m

1
i j “ mj i . The complex

conjugated matrix M˚ “ pm1
i jq is the matrix given by m

1
i j “ m˚

i j where ˚ denotes complex

conjugation and the adjoint matrix M: is defined as M: “ pM˚qT .

A square matrix H P Cnˆn is Hermitian if H: “ H and unitary if H:H “ In. Equivalently a

square matrix H is unitary, if H´1 “ H:.

Inner product and norm The vector spaces Cn can be equipped with the usual dot product

x, y : Cn ˆ Cn Ñ C, px, yq ÞÑ xy˚

as an inner product which induces the 2-norm

||x ||22 “ xx, xy.

For matrices A P Cmˆn we define the Frobenius norm, which is the 2-norm of the vectorization

of A, in other words

||A||F “

g

f

f

e

m
ÿ

i“1

n
ÿ

j“1

ai j .

In the future we will omit the subscripts for both, the 2-norm for vectors and the Frobenius

norm for matrices.

Isometry We call a matrix A P Cmˆn an isometry if it preserves the above norm, i.e., if

||Av || “ ||v ||, @v P Cm.

This gives rise to the equivalent definition of an isometry that we are using as our primary

one during the course of this thesis: A matrix A P Cmˆn is an isometry if A:A “ In. Note

that an isometric matrix is unitary if it is square, i.e., if n “ m.

2.1.2. Matrix Decompositions

Matrix decompositions are factorizations of matrices into a product of other matrices and

are fundamental for a lot of different applications, ranging from approximation of matrices

to solving linear equations or finding eigenvalues. We discuss three decompositions, the

spectral decomposition, the QR decomposition and the singular value decomposition which

we will use later to transform tensor networks.

4

2.1. Linear Algebra

Spectral decomposition The spectral or eigen decomposition of a square matrix A P Cnˆn

is applicable if A has n linearly independent eigenvectors.

Theorem 2.1 (Spectral decomposition). Let A P Cnˆn be a square matrix with n linearly

independent eigenvectors. Then

A “ U∆U:,

where U P Cnˆn is a unitary matrix which i´th column is the i´th eigenvector of A and

∆ P Cnˆn is a diagonal matrix with the i´th eigenvalue on the i´th diagonal entry.

Proof. See [GL13, p. 67].

QR decomposition A QR decomposition is a decomposition of matrices that always exists,

regardless of the structure of the matrix to be decomposed. It factorizes a matrix into a

product of a unitary matrix Q and an upper triangular matrix R, thus the name.

Theorem 2.2 (QR decomposition). If A P Cmˆn, then there exists a unitary matrixQ P Cmˆm

and an upper triangular matrix R P Cmˆn such that

A “ QR. (2.1)

Proof. See [GL13, p. 247].

In general, the QR decomposition of a matrix is not unique as R might contain rows of 0. In

this case one can consider the thin QR decomposition given by

A “ Q1R1 with A “
`

Q1 Q2
˘

loooomoooon

“Q

ˆ

R1
0

˙

loomoon

“R

.

If A has full rank and the diagonal elements of R1 are fixed to be positive, then R1 and Q1
are unique.

Similarly to the QR decomposition, it is also possible to decompose a matrix into a product

RQ where R is again upper triangular and Q is again unitary. In fact, the implementation

of both decompositions are just slightly different [And+99]. We call this modified QR

decomposition the RQ decomposition.

5

2. Mathematical Formalism

Singular value decomposition (SVD) SVD is one of the most widely used matrix decom-

positions and has some remarkable properties. As for the QR decomposition, there are no

requirements on the matrix structure.

Theorem 2.3 (Singular value decomposition). Let A P Cmˆn be a complex matrix. Then

there exist unitary matrices

U P Cmˆm and V P Cnˆn

and a matrix

Σ “ diagpσ1, . . . , σpq P Rmˆn, p “ min pm, nq

with σ1 ě σ2 ě . . . ě σp such that

A “ UΣV :.

Proof. See [GL13, p. 76].

We call the σi for i “ 1, . . . , p the singular values of A, the columns of U left-singular vectors

of A and the columns of V right-singular vectors of A, respectively.

The singular value decomposition of a matrix is rank-revealing, that means we can read of

the rank of the decomposed matrix A. It is given as the number of non-zero singular values.

This leads to the interpretation of theorem 2.3, that the SVD decomposes an arbitrary

matrix into a sum of r rank-1 pieces, given by

A “

r
ÿ

k“1

ukσkv
:

k ,

where r P N is the rank of the matrix A.

SVD has a bunch of important properties. Here we focus on its usage to optimally approximate

a matrix using low-rank approximation which can be formulated as

Defintion 2.1 (Low-rank approximation). Let A P Cmˆn be a matrix and A “ UΣV : its

singular value decomposition. Let σi be the i-th singular value of A, ui the i-th left-singular

vector and vi the i-th right-singular vector, respectively. Then

Ak “

k
ÿ

i“1

σiuiv
:

i (2.2)

is a matrix of rank k , the k-rank approximation of A.

The importance of low-rank approximations is due to the following theorem by Eckard and

Young [EY36]:

6

2.2. Tensor Networks

Theorem 2.4 (Eckart–Young). For a matrix A P Cmˆn, the k-rank approximation Ak is the

best approximation of rank k with respect to the Frobenius norm, i.e.,

min
BPCmˆn

rankpBq“k

||A´ B|| “ ||A´ Ak ||. (2.3)

Proof. See [GL13, p. 79].

Theorem 2.4 states that the best approximation of a matrix of rank k is given by the first k

rank-1 pieces resulting from its SVD.

2.2. Tensor Networks

The first ideas to represent tensors and operations between them in the form of graphical

diagrams date back to Roger Penrose who developed first ideas in the article “Applications

of negative dimensional tensors” [Pen71]. This section gives an introduction to modern

graphical notation for tensor networks which turns out to be surprisingly helpful in many

cases.

Besides many resources on the web, comprehensive introductions to the topic can be found

in [Bia19], [BB17] or [BC17]. The following chapter gives a summary of the key results.

2.2.1. Graphical Diagrams

Given a tensor T of degree N, we denote T as a circle with N outgoing legs, each leg

representing one dimension of the tensor. E.g., for N “ 4

T

l

j

i k

Contraction of tensors is denoted by connecting edges representing indices we want to

contract along. A standard matrix multiplication of two matrices A P Cmˆn and B P Cnˆp

can thus be denoted as

7

2. Mathematical Formalism

A B
i j k

ù AB
i k

Here we denoted the index corresponding to dimension m as i , to dimension n as j and to

dimension p as k. Using such a simple graphical representation immediately enforces that

the second dimension of A and the first dimension of B must match.

The above notation is consistent for arbitrary tensor contractions as the following example

illustrates:

M N
i j

k

l
“

ř

j Mi jNjkl

The identity matrix is denoted as a simple line since contracting with the identity matrix has

no effect. One can imagine our networks to be free of unnecessary identity matrices in the

sense that those have already been absorbed into other tensors.

The trace of a matrix trrAs is denoted by connecting legs that we want to trace out. In the

simplest case of a matrix the standard matrix trace is given by

A

i

Again, we immediately see that taking the trace of a matrix requires it to be square since

both dimensions need to match. Using this notation, we can denote the trace of arbitrary

complex networks:

A B
j

i

Here we traced out the first dimension of A and the second dimension of B to arrive at the

so called partial trace of both tensors.

Neighboring tensors that are not necessarily connected, form an implicit Kronecker product

by grouping legs together:

8

2.2. Tensor Networks

A

B

A

B
Ab B

ù

2.2.2. Matricization

Many interesting operations are defined for matrices only, while our usual objects of interest

are tensors of arbitrary finite dimension. To be able to apply matrix methods, we often have

to group tensor legs together to form a two-dimensional object. This process is known as

matricization which we can identify with a procedure, that takes as inputs a tensor we want

to consider as a matrix, a list of legs we want to identify as the matrix rows and a list of

legs we want to identify as the matrix columns (see algorithm 1).

Algorithm 1: Matricization of a tensor

Input: Tensor T P Cn1ˆ...ˆnk , row-legs tr1, . . . , rlu Ĺ t1, . . . , ku, col-legs

tc1, . . . , cmu Ĺ t1, . . . , ku

Output: Matrix M P C
śl
i“1 nriˆ

śm
i“1 nci

1 σ Ð tr1, . . . , rl , c1, . . . , cmu;

2 T Ð transpose legs of T according to σ;

3 M Ð reshape T to
´

śl
i“1 nri ,

śm
i“1 nci

¯

;

4 return M;

We call the reverse procedure of reshaping a matrix back to a known tensor as tensorization.

In contrast to matricization we also need to receive the original tensor’s dimensions as an

input. Algorithm 2 sketches the tensorization procedure where the permutation σ´1 is the

inverse of the permutation σ in the symmetric group.

Algorithm 2: Tensorization of a matrix

Input: Matrix M P Cmˆn, row-legs tr1, . . . , rlu Ĺ t1, . . . , ku, col-legs

tc1, . . . , cmu Ĺ t1, . . . , ku, tensor dimensions tn1, . . . , nku

Output: Tensor T P Cn1,...,nk
1 σ Ð tr1, . . . , rl , c1, . . . , cmu;

2 d Ð permute tn1, . . . , nku according to σ;

3 T Ð reshape M to d ;

4 T Ð transpose legs of T according to σ´1;

5 return T ;

9

2. Mathematical Formalism

Using graphical tensor network notation, matricization of a tensor is denoted as graphically

grouping tensor legs together, e.g. as

T
i

j

k
mat
ù T

i k

j

2.2.3. Decompositions

Section 2.1.2 discussed how to decompose a matrix A P Cmˆn into a unitary matrix

Q P Cmˆm and an upper triangular matrix R P Cmˆn. We now want to apply the same

decomposition to the now established graphical representation in form of tensor networks.

To make clear that the matrix Q from the QR decomposition is unitary, we’ll represent it as

a green rectangle in contrast to our representation of general tensors as blue circles. In the

future we will denote general isometries as green rectangles.

Given a matrix A we can form its QR decomposition graphically as

A

QR

i j
ù Q R

i i j

Similarly we can graphically apply a SVD to a tensor in a network:

A

SVD

i j
ù U Σ V ˚

i i i j

SVD can also be used to split a tensor in a network by first performing a SVD as shown

above and then multiplying both resulting unitary matrices with Σ1{2. Since Σ is a diagonal

matrix by construction, taking its square-root is as easy as taking the coefficient-wise square

root of its diagonal entries. Graphically we get

10

2.2. Tensor Networks

U Σ
1
2 Σ

1
2 V ˚

i i i i j
ù X Y

i i j

It should be noted that the resulting tensors are in general not unitary anymore after Σ
1
2 has

been absorbed.

Both, QR decomposition and SVD are defined for matrices only. In the case of arbitrary

tensors, these have to be reshaped into matrices first, as shown in subsection 2.2.2. The

decision which tensor legs are grouped together to form a matrix that can be decomposed is

crucial, since properties of the individual factors are only given under the grouping of legs

used to perform the decomposition. In particular, isometries are only preserved under a

certain grouping of legs.

2.2.4. Matrix Product States

Matrix product states (MPS) or tensor trains (TT) are a form of tensor network that

arises when factorizing a tensor of dimension N into a chain of tensors, each of them being

three-dimensional.

A (finite) MPS consists of l rank 3 tensors Al P CDlˆnlˆDl`1 with D0 “ 1 “ Dl`1. The legs

ni for i “ 0, . . . , l are called physical bonds, the legs Di for i “ 0, . . . , l ` 1 connecting the

individual MPS tensors are called virtual bonds.

A0

n0

1
A1

n1

D1
A2

n2

D2 . . .
D3

Al
Dl

nl

1

One can interpret an MPS to originate in subsequent decomposition of a larger tensor, e.g.,

T

SVD

ù A0 T 1

SVD

ù . . .

11

CHAPTER 3

Canonical Tensor Networks

In this chapter we develop the theory of canonical forms for loop-free tensor networks, which

is a certain form of a network that is well-suited for further usage in different tensor network

algorithms. Canonical forms have been described in [Oru13], [Vid07] and [Vid03]. While we

focus on loop-free tensor networks, the canonicalization procedures can be generalized to

networks containing closed loops as shown in [Eve18].

We start by fixing some definitions and continue to present different methods to orthogonalize

tensor networks, in particular using QR decompositions in section 3.1 and branch densities in

section 3.2, to then subsequently introduce general canonical forms in section 3.4.

Consider a loop-free tensor network with tensors T1, . . . , Tk . We want to fix the notation of

tensor being a center of orthogonality.

Defintion 3.1 (Center of orthogonality). A tensor Tk in a loop-free tensor network is a

center of orthogonality if every branch of Tk is an isometry after matricization with edges

attached to Tk forming the column legs and all other edges forming the row legs.

Having a fixed center of orthogonality in a network is a crucial property and in some sense

gives the network orientation if we consider all edges being oriented towards the center of

orthogonality. For any tensor Tk that is not the center, we can then group incoming and

outgoing edges together to arrive at an isometry. The following network illustrates this fact:

13

3. Canonical Tensor Networks

C

A

B

Tensor C is the center of orthogonality, the tensors A and B are isometries, when reshaped

according to the arrows on the edges.

We call the process of transforming a network in a way that results in the existence of a

center of orthogonality, orthogonalization.

3.1. Orthogonalization via QR Decomposition

As discussed in section 2.1.2 and section 2.2.3, the QR decomposition of a matrix factorizes

it into a unitary matrix Q and an upper triangular matrix R. Since unitary matrices are

closed under multiplication, using the unitary factor from a QR decomposition is a promising

approach for orthogonalization of a network.

Orthogonalization via QR or RQ decomposition works by repeatedly decomposing tensors

and absorbing the resulting upper triangular factor into neighboring tensors until the proposed

center of orthogonality is reached. All tensors but the center of orthogonality are the unitary

factors Q from the QR or RQ decomposition and thus isometries.

The choice of using a QR or a RQ decomposition depends on the position of a tensor relative

to the new center of orthogonality.

However, this approach has some limitations over other orthogonalization procedures we will

discuss in the next sections. Namely, it requires to fix the center of orthogonality before

starting the orthogonalization procedure and is computationally costly since a QR or RQ

decomposition has to be performed for every tensor but the center of orthogonality.

3.2. Direct Orthogonalization

Direct orthogonalization is another orthogonalization approach that forms the basis for

transforming a tensor network into its canonical form. It relies on transforming the network

by working with branch densities.

14

3.2. Direct Orthogonalization

Defintion 3.2 (Branch density). Given a tensor network and a tensor T in the network. Let

P be a branch in the network, starting at T and MP the matricization of P with the leg

connecting P to T being the column legs and all other open legs being the row legs. The

branch density ρP of P is the product

ρP “ M:

PMP .

The branch density ρP is a matrix since the open legs after forming the product of the branch

are exactly the two legs connected to the beginning of the branch. Furthermore

Lemma 3.1. For any branch P in a tensor network, the branch density ρP is a Hermitian

matrix.

Proof. The lemma holds for all matrices M P Cmˆn and thus in particular for the branch

density. Let mi j P C denote the i j´th coefficient of M and ρi j the i j´th coefficient of
ρ “ M:M, then M:M is given by

ρi j “

m
ÿ

k“1

m˚
kimkj

“

˜

m
ÿ

k“1

mkim
˚
kj

¸˚

“

˜

m
ÿ

k“1

m˚
kjmki

¸˚

“ ρ˚
j i

and ρ is Hermitian.

The direct orthogonalization procedure now works as follows: Consider a loop-free tensor

network and a tensor T0. For all branches b1, . . . , bl that originate in T0, compute the branch

density ρbi “ b:

i bi , i “ 0, . . . , l . By lemma 3.1 ρbi is Hermitian and thus has a spectral

decomposition with real eigenvalues only, i.e.,

b:

i bi “ ρbi “ Ubi∆biU
:

bi
,

where Ubi is unitary. We now want to compute the principal square root ∆
1
2
bi
of ∆bi . Since

∆bi is a diagonal matrix with real coefficients, we can form its square root by simply taking

the square root of its diagonal entries, i.e., the coefficients are given by

ˆ

∆
1
2
bi

˙

i j

“

$

&

%

b

`

∆bi
˘

i j
, if i “ j,

0, if i ‰ j.

15

3. Canonical Tensor Networks

Define

Xbi :“ ∆
1
2
bi
.

Again, since ∆bi is a diagonal matrix, we have

X
´ 1
2

bi
“ ∆

´ 1
2
bi
.

The orthogonalization procedure is then given by algorithm 3.

Algorithm 3: Direct orthogonalization

Input: Tensor network with tensors tT1, . . . , C, . . . , Tnu, proposed center of

orthogonality C

1 for branches bi from C do

2 ρbi Ð branch density of bi ;

3 Find spectral decomposition ρbi “ Ubi∆biU
:

bi
;

4 Xbi Ð Ubi∆
1
2
bi
U:

bi
;

5 X´1
bi

Ð Ubi∆
´ 1
2
bi
U:

bi
;

6 for branches bi from C do

7 C Ðabsorb Xbi ;

8 bi Ðabsorb X´1
bi
into first tensor of bi ;

The following example shows the direct orthogonalization procedure in detail. Consider the

following tensor network.

A

C

B D

E

F

First we compute the branch density for the branch Ñ B Ñ D Ñ pE, F q as

16

3.2. Direct Orthogonalization

B

D

EF

E˚F ˚

D˚

B˚

“ ρ0 “ ∆0

U0

U:

0

As discussed above, ρ0 is Hermitian and we can compute its spectral decomposition as

ρ0 “ U0∆0U
:

0 “ U0∆
1
2
0∆

1
2
0U

:

0

which leads to

X0 “ U0∆
1
2
0U

:

0 and X´1
0 “ U0∆

´ 1
2
0 U

:

0.

Next we compute the branch density for the branch Ñ C, as

17

3. Canonical Tensor Networks

C

C˚

“ ρ1 “ ∆1

U1

U:

1

and likewise get X1 and X
´1
1 as

X1 “ U1∆
1
2
1U

:

1 and X´1
1 “ U1∆

´ 1
2
1 U

:

1.

Next we absorb X0, X1 into tensor A, X
´1
0 into tensor B and X´1

1 into tensor C:

A

C

B D

E

F
X0

X´1
0

X1

X´1
1

Now the network is orthogonalized with tensor A being the center of orthogonality and both,

branch Ñ B Ñ D Ñ pE, F q and Ñ E being isometries under the condition that the edges

connecting the branches with A form the columns and all other free edges form the rows.

18

3.3. Orthogonalization with respect to Edges

3.3. Orthogonalization with respect to Edges

We now want to extend the orthogonalization procedure described in section 3.2 to shift the

center of orthogonality not towards a tensor in the network but towards an edge connecting

two tensors. Obviously, we cannot absorb square roots into edges between tensors, therefore

we introduce a new tensor that we call link-tensor on the edge we want to be the center

of orthogonality. To keep the network invariant under such changes, we initially set the

link-tensor to be the identity matrix. Algorithm 4 describes the procedure in detail.

Algorithm 4: Orthogonalization with respect to edges

Input: Tensor network with tensors tT1, . . . Tnu, edge pTi , Tjq

Output: Tensor network with tensors tT1, . . . T
1
i , . . . , T

1
j , . . . , Tk , σTi ,T ju

1 Initialize link-tensor σTi ,T j Ð I;

2 Insert σTi ,T j on edge pTi , T jq;

// Handle branch over Ti
3 ρTi Ð branch density for branch from σTi ,T j over Ti ;

4 Find spectral decomposition ρTi “ UTi∆TiU
:

Ti
;

5 XTi Ð UTi∆
1
2
Ti
U:

Ti
;

6 X´1
Ti

Ð UTi∆
´ 1
2
Ti
U:

Ti
;

// Handle branch over Tj
7 ρTj Ð branch density for branch from σTi ,T j over Tj ;

8 Find spectral decomposition ρTj “ UTj∆TjU
:

Tj
;

9 XTj Ð UTj∆
1
2
Tj
U:

Tj
;

10 X´1
Tj

Ð UTj∆
´ 1
2
Tj
U:

Tj
;

// Absorb principal square roots and their inverses

11 T 1
i Ð absorb X´1

Ti
into Ti ;

12 T 1
j Ð absorb X´1

Tj
into Tj ;

13 σTi ,T j Ð absorb XTi , XTj into σTi ,T j ;

14 return tT1, . . . T
1
i , . . . , T

1
j , . . . , Tk , σTi ,T ju;

3.4. Canonical Forms

We now have all the pieces together to introduce general canonical forms for loop-free tensor

networks. The orthogonalization procedure described in this section has been discussed in

[Oru13], [Vid07] or [Vid03]. The idea is to use the direct orthogonalization procedure from

section 3.2 to simultaneously orthogonalize a network with respect to all of its edges, similar

19

3. Canonical Tensor Networks

to what we presented in section 3.3. The resulting network is said to be in canonical form

and can be used to flexibly shift centers of orthogonality as we will show in section 3.5.

Algorithm 5: Canonicalization of a loop-free tensor network

Input: Tensor network with tensors tT1, . . . , Tnu

Output: Tensor network in canonical form

// Collect square roots of branch densities

1 for edges pTi , Tjq in the network do

2 Initialize link-tensor σTi ,Tj Ð I;

3 Insert σTi ,Tj on edge pTi , Tjq;

// Handle branch over Ti
4 ρTi Ð branch density for branch from σTi ,Tj over Ti ;

5 Find spectral decomposition ρTi “ UTi∆TiU
:

Ti
;

6 XTi Ð UTi∆
1
2
Ti
U:

Ti
;

7 X´1
Ti

Ð UTi∆
´ 1
2
Ti
U:

Ti
;

// Handle branch over Tj
8 ρTj Ð branch density for branch from σTi ,Tj over Tj ;

9 Find spectral decomposition ρTj “ UTj∆TjU
:

Tj
;

10 XTj Ð UTj∆
1
2
Tj
U:

Tj
;

11 X´1
Tj

Ð UTj∆
´ 1
2
Tj
U:

Tj
;

// Absorb into tensors

12 for tensors Ti do

13 T 1
i Ðabsorb all X´1

Ti
into Ti ;

// Absorb into link-tensors

14 for link-tensors σTi ,Tj do

15 σ1
Ti ,Tj

Ðabsorb XTi , X
´1
Tj
into σTi ,Tj ;

Algorithm 5 almost looks like a repeated application of algorithm 4 for all edges in the

network, but there is a subtle yet important difference: While a repeated application of

algorithm 5 would absorb the principal square roots for each branch density right after

computing it, algorithm 4 postpones the absorption until after all branch densities have been

found. This guarantees that each principal square root originates from a branch density of

the original network.

One could assume that repeated absorption into the network tensors prevents individual

branches from being isometries, however, exactly this is the case. To see this, we consider

20

3.5. Shifting Centers of Orthogonality

the following small example of a network in canonical form:

A1 B1 C1

σAB σBC

We show that the path Ñ B1 Ñ σAB Ñ A1 forms an isometry: Consider the product

A1σABB
1. We denote X1 as the principal square root of the branch density for the path

Ñ A, X2 for the path Ñ B Ñ C and X3 for the path Ñ B Ñ A. Reverse engineering the

orthogonalization procedure we arrive at

pA1σABB
1q:pA1σABB

1q “ pAX´1
1 X1X2X

´1
2 BX

´1
3 q:pAX´1

1 X1X2X
´1
2 BX

´1
3 q

“ pABX´1
3 q:pABX´1

3 q

“ pX´1
3 q:pABq:pABqX´1

3

“ ρ
´ 1
2
3 pABq:pABqρ

´ 1
2
3

“ ρ
´ 1
2
3 ρ3ρ

´ 1
2
3

“ ρ
´ 1
2
3 ρ

1
2
3 ρ

1
2
3 ρ

´ 1
2
3

“ I.

Here we used that pX´1
3 q: “ X´1

3 because

`

X´1
3

˘:
“

´

U3∆
´ 1
2U:

3

¯:

“ U3∆
´ 1
2U:

3 “ X´1
3 .

3.5. Shifting Centers of Orthogonality

Having a tensor network in canonical form as described in section 3.4 allows for flexibly

shifting the center of orthogonality in the network as we will show next. Consider the

following network in canonical form

21

3. Canonical Tensor Networks

A

C

B D

E

F

σAB

σAC

σBD

σDE

σDF

To shift the center of orthogonality to e.g. the tensor A, we absorb each link-tensor into on

of the network tensors, according to its direction towards A as shown in the image where

dotted lines show how link-tensors should be absorbed. As discussed previously, this gives

the network orientation in the sense that each tensors forms an isometric matrix, when legs

are grouped together accordingly.

The above absorption of link-tensors can be efficiently implemented using a standard graph

traversal of the network, beginning at the proposed center of orthogonality (see algorithm 6).

Now consider any tensor T P Cn1ˆ...ˆnk in the network that is not the center of orthogonality.
We know that T is an isometry TM if legs are grouped together correctly. To obtain this

isometric matrix, we have to know the isometry leg of T , that is the leg of T that, when

followed, leads to the center of orthogonality. Since we consider loop-free tensor networks

only, we know that there will be at most one such leg. The isometric matrix can be obtained

by using the matricization procedure described earlier with the isometry leg as column legs

and all other legs as row legs.

22

3.5. Shifting Centers of Orthogonality

Algorithm 6: Shift center of orthogonality

Input: Tensor network with tensors tT1, . . . , Tn, Cu, proposed center of orthogonality C1

Result: Tensor network tT 1
1, . . . , T

1
n, C

1u with C as the center of orthogonality

1 Initialize empty queue Q;

2 Q.addpCq;

3 while Q is not empty do

4 T Ð Q.poppq;

5 if T has not been visited then

6 Mark T as visited;

// Perform the absorption of link-tensors

7 if T is a link-tensor then

8 ppT q1 Ðabsorb T into ppT q;

// Add neighboring tensors and set parents

9 for K in neigbors of T do

10 if neighbor has not been visited then

11 Q.addpKq;

12 ppKq Ð T ;

23

CHAPTER 4

Application

4.1. Optimal Truncation

Given a tensor network, we are often interested in an approximation of the same network

with smaller dimensions of the edges. We obviously want this approximation to be as good

as possible and have seen in theorem 2.4 that the SVD of a matrix is the best possible

approximation of a given rank that is available. We could therefore just perform a low-rank

approximation of all the network tensors to get a good approximation. However, having

a tensor network in canonical form yields an easier approach shown in algorithm 7. This

optimal truncation routine has been described in [Eve18].

Algorithm 7: Optimal truncation

Input: Tensor network with tensors T0, . . . , Tn , edge pTi , Tjq

Output: Tensor network with tensors T0, . . . , T
1
i , . . . , T

1
j , . . . , Tn

1 Orthogonalize the edge pTi , Tjq by applying algorithm 4;

2 σTiTj Ð link-tensor of the above orthogonalization ;

3 UΣV : Ð SVD pσTiTj q;

4 U 1Σ1V 1: Ð low-rank approximation as shown in definition 2.1;

5 T 1
i Ð absorb U 1 into Ti ;

6 T 1
j Ð absorb V 1: into Tj ;

7 σTiTj Ð Σ1;

25

4. Application

The term optimal truncation refers to the Eckard-Young theorem and is meant with respect

to the Frobenius norm. Theorem 4.1 states that it is not necessary to approximate the

tensors themselves but that this approximation can be performed on the link-tensor instead.

We claim that this is the best approximation possible for the edge between two tensors in a

network:

Theorem 4.1 (Optimal truncation). Given a loop-free tensor network and Ti , Tj two con-

nected tensors in the network. Then the optimal truncation of the edge between Ti and

Tj is given by first shifting the center of orthogonality to the edge, performing a low-rank

approximation of the resulting link-tensor on the edge and absorbing the unitary factors of

the low-rank approximation into Ti and Tj , respectively.

Proof. See [Eve18].

The intuition behind theorem 4.1 is that the edge-orthogonalization procedure relies on the

spectral decomposition of the branch density ρP “ P :P with P being the branches leading

to the edge to be truncated. This spectral decomposition is closely tied to the SVD of

the paths themselves: Let P “ UΣV : be the SVD of P and P :P “ W∆W : the spectral

decomposition of the branch density, then

ATA “
`

UΣV :
˘: `

UΣV :
˘

“ V Σ2V : “ W∆W : ñ U “ V and ∆ “ Σ2.

A low-rank approximation of P can thus be mapped to a low-rank approximation of the

spectral decomposition of ρP “ P :P .

4.2. Optimization on Riemannian Manifolds

When we interpret the tensors of a tensor network as isometries under a certain grouping of

legs, we can consider the network as elements of a geometric structure called a Riemannian

manifold M. Given a function f :MÑ R, we can try to minimize it, i.e., we try to solve
the optimization problem

min
xPM
f pxq.

While there are different techniques to solve the above optimization problem, we will focus

on a modified line-search method, well-known from optimization on Rn.

Methods to perform optimization on Riemannian manifolds have been extensively studied in

[AMS09], [Boo03], [Bou22] or [Smi14]. Introductions to general and Riemannian manifolds

can be found in [BD13] and [Lee13]. Applying these optimization techniques to tensor

networks is a relatively young idea and has previously been done in e.g. [Hae+12], [HDH20],

[LKF20] and [VHV18].

26

4.2. Optimization on Riemannian Manifolds

We give a brief introduction into the language and tools of Riemannian manifolds and will

then show how the optimization procedure can be applied to tensor networks in canonical

form.

4.2.1. Manifolds

A manifold can be thought of as a structure that locally looks like Rd . The canonical example
for a manifold is the sphere S2 which can be locally mapped onto the two-dimension space

R2.

We omit the most general definition of manifolds and restrict ourselves to the definition of a

(smooth, embedded sub-) manifold as follows:

Defintion 4.1 (Smooth, embedded sub-manifold). A subsetM Ď E of a d´dimensional

vector space E is a smooth, embedded sub-manifold (or just manifold), if for every x PM
there exists a neighborhood U Ď E , an open set V P Rd and a smooth bijection with smooth
inverse (a diffeomorphism) ϕ : U Ñ V such that ϕpMX Uq “ E X V , with E Ď Rd being a
linear subspace of Rd .

Although definition 4.1 is already a restriction of the most general definition of a manifold, it

reads very technically but basically just says that the manifold looks locally, in a neighborhood

of every point, like Rd . Our definition of a manifold is smooth because the mapping of the
local look-alike neighborhoods are smooth and embedded because the manifold lives in a

larger vector space E .

Our objects of interest are tensors that we can consider as matrices after appropriate

matricization. Furthermore, using tools from chapter 3, we can enforce orthogonality

constraints on the tensors. The following lemma covers this fact:

Lemma 4.1 (Stiefel manifold). The set of isometric matrices in Cnˆp with p ď n is a

manifold, called the Stiefel manifold St pn, pq:

St pn, pq “ tM P Cnˆp | X:X “ Ipu,

where Ip is the identity matrix of size p.

Proof. See [AMS09].

For each point x P M we can consider vectors being tangent to M at x . The set of all

tangent vectors of x has the structure of a vector space and is called the tangent space of

x , denoted as TxM. More formally

27

4. Application

Defintion 4.2 (Tangent space). LetM be a sub-manifold of a vector space E and γ : RÑM
a curve with γp0q “ x . The derivative γ1p0q P E is a tangent vector at x . The set of all
tangent vectors at x is the tangent space TxM Ď E at x .

The disjoint union of the tangent spaces of all points x PM is the tangent bundle TM of

M:
TM “

ğ

xPM
TxM.

Let’s draw an example for a tangent space of St pn, pq: Given a curve

γptq “ M ` tN `Opt2q,

with M P St pn, pq. Then, γptq P St pn, pq if γptq:γptq “ I, i.e.,

I “ γptq:γptq “ pM ` tNq:pM ` tNq `Opt2q “ I ` tpM:N ` N:Mq `Opt2q,

so M:N ` N:M “ 0. Thus the tangent space TM St pn, pq can be characterized as

TM St pn, pq “ tN P Cnˆp | M:N “ ´N:Mu.

Note that the tangent space at a point x PM is in general no subspace ofM. However, our
optimizations introduced later will require to land on the manifold again, so we need a way

to map points from tangent spaces to the manifold. Such mappings are called retractions

and are defined as

Defintion 4.3 (Retraction, [AMS09, p. 55]). A retraction on a manifoldM is a smooth

mapping

R : TMÑM

with the following properties. We denote the restriction R|TXM as Rx .

1. Rx p0x q “ x , with 0x being the zero-element of TxM and

2. With the identification T0xTxM » TxM, Rx satisfies

DRx p0x q “ idTxM,

where idTxM denotes the identity on TxM.

The second condition in the above definition is called local rigidity [AMS09, p. 55] and makes

sure a valid retraction in some sense preserves gradients (see fig. 4.1).

For our purposes we want to use a retraction on the Stiefel manifold Stpn, pq. Let X P Stpn, pq

be an isometry, and A P Cnˆp a matrix in the tangent space TXStpn, pq. We claim that the

mapping of A to the first factor of the polar decomposition of A`X is a retraction RX .

An alternative choice for a valid retraction is a mapping of A to unitary factor Q of the QR

decomposition of A`X.

28

4.2. Optimization on Riemannian Manifolds

x

Rx pξq

ξ

M

TxM

Figure 4.1.: Retraction Rx of point ξ P TxM onto manifoldM.

4.2.2. Riemannian Manifolds

The modified line-search we will be using to optimize functions on tensor networks is a

modified gradient-descent. For the definition of gradients we need to equip the tangent

spaces of manifolds with an inner product to arrive at a Riemannian manifold, but not every

inner product will do. We additionally require some smoothness properties on the inner

product, that we are not going to discuss here in detail. It’s enough to know that the inner

product we presented in chapter 2 fulfills this smoothness property.

Without giving a formal definition, we define a Riemannian manifold to be a manifoldM
with an inner product on the tangent space TxM at every point x P M that fulfills the

mentioned smoothness properties.

We are now ready to give a rule to compute the gradient on Riemannian manifolds:

Theorem 4.2 (Gradient on Riemannian manifolds). LetM be a sub-manifold of a vector

space E , Projx : E Ñ TM an orthogonal projector, f : M Ñ R a smooth function and
grad f̄ the gradient of f in E . Then

grad f pxq “ Projx
`

grad f̄ pxq
˘

.

Proof. See [Bou22, p. 58].

Theorem 4.2 states that computing gradients on the manifoldM is as easy as computing

the regular gradient and projecting it onto the tangent bundle ofM.

29

4. Application

The Stiefel manifold St pn, pq is a sub-manifold of the linear space Cnˆp. As an orthogonal

projector we can thus choose

ProjX : Cnˆp Ñ TX St pn, pq, ProjXpZq “ Z ´Xsym
`

X:Z
˘

,

where

sympMq “
1

2

`

M `M:
˘

is the symmetric part of M [AMS09, p. 81].

4.2.3. Riemannian gradient descent

Line-search methods are based on the formula [AMS09, p. 54]

xk`1 “ xk ` tkηk ,

where ηk is the direction of the search and tk is the step-size. One of the most prominent

procedures to perform a line-search is gradient descent. For Riemannian manifolds it can be

formulated as shown in algorithm 8.

Algorithm 8: Riemannian gradient descent

Input: Riemannian manifoldM, smooth function f :MÑ R, initial point x1 PM
1 for k “ 1, 2, . . . do

2 tk Ð step-size;

3 ηk Ð ´tk grad f pxkq ;

4 xk`1 Ð Rxk pηkq ;

Riemannian gradient descent works by finding the direction for the line-search as the gradient

of the function to be optimized on the manifold. As shown in theorem 4.2 this can be done

by computing the gradient in the larger vector space and projecting it onto the manifold’s

tangent bundle. Since we require the updated point to live on the manifold again, a retraction

Rx from the tangent bundle to the manifold is applied.

We now want to use algorithm 8 to optimize functions on tensor networks.

4.2.4. Riemannian Optimization on Tensor Networks

As already explained, the Stiefel manifold is a natural choice to embed isometric tensors.

However, a whole network consists not of a single tensor, but of a list of tensors. We therefore

need a Riemannian manifold that contains multiple tensors as elements. Furthermore, if

a network is in canonical form, all but the center of orthogonality can be considered as

isometries and we need another manifold containing the center. For the latter we are going

30

4.2. Optimization on Riemannian Manifolds

to use the fact that the set of unconstrained matrices in Cmˆn is a usual Euclidean space

and where we can just compute gradients as usual.

To handle multiple tensors we consider the product of manifolds:

Lemma 4.2 (Product of manifolds). LetM1, . . . ,Mk be Riemannian manifolds, then the

product
ą

i

Mi

is a Riemannian manifold on which the inner product, retractions and projections are defined

point-wise.

For a product of Stiefel manifolds lemma 4.2 states that for pX1, . . . , Xnq P
Ś

i St pni , piq

an orthogonal projector

ProjpX1,...,Xnq :
ą

i

Cniˆpi Ñ TpX1,...,Xnq

ą

i

St pni , piq

is given by

ProjpX1,...,Xnq pZ1, . . . , Znq “

´

Z1 ´X1 sym
´

X:

1Z
:

1

¯

, . . . , Zn ´Xn sym
`

X:
nZ

:
n

˘

¯

and a retraction

RpX1,...,Xnq : TpX1,...,Xnq

ą

i

St pni , piq Ñ
ą

St pni , piq

by mapping each component of the tangent vector to the first factor if its polar decomposition.

One key ingredient is missing to optimize functions on product manifolds of tensors: The

function to be optimized will take a list of tensors as input but the gradient descent procedure

operates point-wise. We therefore have to clarify what a partial derivative of a function on a

tensor network is.

Since the contraction of tensors is linear in its arguments, a tensor network is a linear function

of its tensors. The partial derivative of a tensor network with respect to a tensor T is thus

defined by cutting out T :

31

4. Application

A

B

C D

EB
BA

“
B

C D

E

Due to lemma 4.2 we can define Riemannian gradient decent for tensors networks as shown

in algorithm 9. In other words, algorithm 9 works by individually performing Riemannian

gradient descent on all tensors of a network while taking the partial derivatives as defined

above as the gradient in the embedding vector space.

Algorithm 9: Riemannian gradient descent on orthogonalized tensor networks

Input: Tensors network with initial tensors tC1, T 11 , . . . , T
1
n u, center of orthogonality C,

real-valued smooth function f on tensors

1 for k “ 1, 2, . . . do

2 tk Ð step-size;

// Gradient descent for center of orthogonality

3 ηkC Ð ´tkBkCf pC
k , T k1 , . . . , T

k
n q;

// Gradient descent for isometric tensors

4 for i “ 1, . . . , n do

// Find direction by projecting gradient onto tangent space

5 ηkTi Ð ´tkProjT ki

´

BT ki
f pCk , T k1 , . . . , T

k
n q

¯

;

// Retract direction onto manifold and update tensor

6 T k`1
i Ð RT ki

pηkTi q;

Table 4.1 recaps the properties of the Stiefel manifold St pn, pq as needed for a line-search

with gradient descent.

32

4.2. Optimization on Riemannian Manifolds

tangent space Z P Cnˆp : sym pX:Zq “ 0

projection onto tangent space ProjxZ “ Z ´X sym pXTZq

gradient grad f pXq “ ProjX grad f̄ pXq

Table 4.1.: Properties of Stiefel manifold St pn, pq.

4.2.5. Finding ground states

A recurring objective in physics is to minimize functions of the form

f pT q “
xT |H|T y

xT |T y

where T can be a tensor network and H is a Hermitian operator. Functions of the above form,

can be interpreted as expectation values of the energy in a system and states minimizing it

are called ground states.

The following figure shows an example for xT |H|T y where T is a network of five tensors,

with the center of orthogonality shifted to A.

A

C

B

D

E

H

A˚

C˚

B˚

D˚

E˚

Since every tensor but A is an isometry, evaluating f can be simplified to

f pT q “
xT |H|T y

xT |T y
“

xT |H|T y

xA|Ay

“
xA,B, C,D,E, F |H|A,B, C,D,E, F y

xA|Ay

“
xA,B,D,E, F |H|A,B,D,E, F y

xA|Ay
.

Since f is complex-valued we treat a tensor and its conjugated-transposed as two different

variables. As shown in [VHV18, p. 25] each component of the gradient of f can be computed

as

grad f “ 2
BM: xT |H|T y ´

xT |H|T y

xT |T y
BM: xT |T y

xT |T y
.

33

4. Application

If T would consist of isometries only, the gradient would reduce to

grad f “ 2BM: xT |H|T y ,

but we consider general networks.

As already explained, each of the individual partial derivatives amounts of cutting out the

respective tensor from the network. Due to the simplified form of f pT q above, this leads to

simple terms in many cases.

Given the gradient of f , the Riemannian gradient descent machinery developed previously

can be used to find ground states. The Riemannian manifold will be the product manifold

of an Euclidean space of unconstrained matrices for the center of orthogonality and Stiefel

manifolds for each isometric tensor. In the Stiefel manifold cases grad f has to be projected

from the embedding vector space onto the tangent bundle and retracted from the tanget

bundle back onto the manifold, in the case of the unconstrained center nothing else has to

be done.

To simplify both, f and grad f it is not necessary to have a center of orthogonality. In fact,

a canonical form as shown in section 3.4 is enough and shifting the center as shown in

section 3.5 is not necessary. It is sufficient to choose a center of orthogonality and drop all

paths in the network connected to this center since it is known that these paths would be

isometries when the actual shift would be performed. This holds for both, simplifying terms

of the form xT |H|T y as well as xT |T y. In the latter case it is always enough to just form

the inner product xAσ1 . . . σn|Aσ1 . . . σny with A being the center and σi being link-matrices,

adjacent to A. All other paths in the network, including all other link-matrices, can be

dropped.

4.2.6. Implementation and Numerical Results

The Riemannian gradient descent methods introduced above have been implemented using

the programming language Python. Besides explicitly computing gradients by cutting out

tensors from networks we also implemented a version where gradients are computed using

automatic differentiation provided by the Python library Jax [Bra+18]. Both versions produce

the same gradients which we consider a sanity check for our implementation.

To be able to use more sophisticated line-search methods we experimented with the Python

library Pymanopt [Bou+14; TKW16], which provides methods for optimizations on Rieman-

nian manifolds.

Figure 4.2 shows the convergence of the norm of the gradient for the standard Riemannian

gradient descent as presented in this thesis, a modified version of Riemannian gradient descent

that dynamically adapts the step-size [AMS09, p. 76; Bou22, p. 76], called backtracking

line-search, and a conjugated gradient method, also accelerated using backtracking line-

search [AMS09, p. 180; Bou22, p. 140]. While more advanced methods can produce faster

34

4.2. Optimization on Riemannian Manifolds

convergence, the simple approach we developed in the course of this thesis successfully

converges and is able to solve the posed problem.

´100 0 100 200 300 400 500 600 700 800 900 1,000

10´4

10´3

10´2

10´1

Iterations

G
ra
d
ie
n
t
n
o
rm

RGD
RGD with backtracking line-search
CG with backtracking line-search

Figure 4.2.: Convergence of gradient norms for Riemannian gradient descent (RGD), Rie-

mannian gradient descent with backtracking line-search and conjugated gradient

(CG) with backtracking line-search.

35

CHAPTER 5

Conclusion and Future Work

In the course of this thesis we presented several methods to enforce orthogonality constraints

on tensor networks and to transform networks into canonical forms that can simplify further

usage in different algorithms.

We explored how tensor networks can be considered as elements on Riemannian manifolds

and how line-search methods can be used to optimize functions taking network tensors as

inputs. Gradient-based optimization procedures seem to be a promising approach to solve

optimization problems involving tensor networks and are an interesting addition to existing

algorithms such as the density-matrix renormalization group, DMRG [McC08; Sch11] or the

Evenbly-Vidal algorithm [EV07], especially since the Riemannian optimization machinery is

independent of the underlying tensor network.

The toolbox of Riemannian optimization techniques doesn’t end with first-order line-search

methods and it would be interesting to see how second-order methods such as Newton’s

methods [AMS09, p. 111; Bou22, p. 137] or Riemannian trust regions [AMS09, p. 136;

Bou22, p. 148] and their usually superlinear convergence [AMS09, p. 91] could be utilized.

During the implementation of the concepts presented here, we noticed a lack of fully

functional, high performing and flexible frameworks for tensor networks. While more or

less specialized frameworks exist [FWS20; HP18; Rob+19; Lya+22], a general and widely

accepted solution is still missing.

37

APPENDIX A

Code Examples

Construction of Tensor Networks

1 class Network:

2 def ˙˙init˙˙(self, tensors=None, shapes=None, edges=None):

3 # Construct graph to hold tensors and edges

4 self.graph = Graph()

5

6 # Add tensors specified as Numpy ndarrays

7 if tensors is not None:

8 for tensor in tensors:

9 self.graph.add˙node(Node(tensor[0], tensor[1]))

10

11 # Add tensors specified by shape and initialized randomly

12 if shapes is not None:

13 for shape in shapes:

14 self.graph.add˙node(Node(shape[0], np.random.rand(*shape[1:])))

15

16 # Add edges

17 if edges is not None:

18 for edge in edges:

19 self.graph.add˙edge(Edge(edge[0], edge[2], edge[1], edge[3]))

Listing A.1: Constructing a tensor network.

39

A. Code Examples

Inner products

1 def contract˙conjugate˙transposed(self,

2 nodes,

3 free˙axes=None,

4 output˙match˙topologyFalse):

5 # Insert conjugated nodes

6 conjugated˙nodes, conjugated˙edges = self.˙insert˙conjugated˙nodes(

7 nodes, free˙axes)

8

9 # Perform actual contraction

10 res = self.contract(nodes + conjugated˙nodes,

11 output˙match˙topology=output˙match˙topology)

12

13 # Remove conjugated nodes

14 for node in conjugated˙nodes:

15 self.graph.remove˙node(node)

16

17 # Remove newly introduced edges

18 for edge in conjugated˙edges:

19 self.graph.remove˙edge(edge)

20

21 return res

Listing A.2: Computing the inner product of tensors.

Tensor decomposition

1 def split˙node(self,

2 node: str,

3 left˙axes: list[int],

4 right˙axes: list[int],

5 decomposition: str = ’svd’):

6 if decomposition not in [’svd’, ’qr’]:

7 raise RuntimeError(f”Unknown decomposition ’–decomposition˝’”)

8

9 T = self.graph.nodes[node].tensor

10

11 # All decompositions we can use to split a node work on matrices rather than

12 # general tensors. We therefore reshape the tensor behind the node to 2D,

13 # according to left˙nodes (rows) and right˙nodes(cols)

14 left˙axes.sort()

15 left˙dims = [T.shape[i] for i in left˙axes]

16 right˙axes.sort()

17 right˙dims = [T.shape[i] for i in right˙axes]

18 T = Network.˙matricization(T, left˙axes, right˙axes)

19

20 # Split the node using svd

21 if decomposition == ’svd’:

40

22 u, s, vh = np.linalg.svd(T)

23 sigma = np.diag(s)

24 sigma˙sqrt = np.sqrt(sigma)

25 k = len(s)

26 u = u[:, :k]

27 vh = vh[:k, :]

28 left˙tensor = (u @ sigma˙sqrt).reshape((*left˙dims, vh.shape[0]))

29 right˙tensor = (sigma˙sqrt @ vh).reshape((u.shape[1], *right˙dims))

30

31 if decomposition == ’qr’:

32 q, r = np.linalg.qr(T)

33 left˙tensor = q.reshape((*left˙dims, r.shape[0]))

34 right˙tensor = r.reshape((q.shape[1], *right˙dims))

35

36 # Get all edges of the original node

37 old˙edges = self.graph.get˙connecting˙edges(node)

38 old˙edges.sort(

39 key=lambda edge: edge.axis1 if edge.node1 == node else edge.axis2)

40

41 old˙shape = self.graph.nodes[node].shape

42

43 # Remove original node

44 self.graph.remove˙node(node)

45

46 # Add new nodes

47 left˙node˙name = f”–node˝˙splitted˙left”

48 self.graph.add˙node(Node(left˙node˙name, left˙tensor))

49

50 right˙node˙name = f”–node˝˙splitted˙right”

51 self.graph.add˙node(Node(right˙node˙name, right˙tensor))

52

53 free˙axes = [-1 for s in old˙shape]

54 for node1, node2, axis1, axis2 in old˙edges:

55 if node1 == node:

56 free˙axes[axis1] = (node2, axis2)

57 if node2 == node:

58 free˙axes[axis2] = (node1, axis1)

59

60 left˙axes˙count = 0

61 right˙axes˙count = 1

62 for i, axis in enumerate(free˙axes):

63 if i in left˙axes:

64 if axis != -1:

65 self.graph.add˙edge(

66 Edge(left˙node˙name, axis[0], left˙axes˙count, axis[1]))

67 left˙axes˙count += 1

68 if i in right˙axes:

69 if axis != -1:

70 self.graph.add˙edge(

71 Edge(right˙node˙name, axis[0], right˙axes˙count, axis[1]))

72 right˙axes˙count += 1

41

A. Code Examples

73

74 # Remove old edges

75 for edge in old˙edges:

76 self.graph.remove˙edge(edge)

77

78 # Insert edge between left and right nodes

79 self.graph.add˙edge(

80 Edge(left˙node˙name, right˙node˙name,

81 len(left˙tensor.shape) - 1, 0))

82

83 return (left˙node˙name, right˙node˙name)

Listing A.3: Decomposition of tensors using either SVD or QR.

Orthogonalization with respect to Edges

1 def orthogonalize˙with˙respect˙to˙edge(self, edge: Edge):

2 a = edge.node1

3 b = edge.node2

4 free˙axis˙a = edge.axis1

5 free˙axis˙b = edge.axis2

6

7 # insert link tensor

8 link˙tensor = self.add˙link˙tensor(edge)

9 paths = self.graph.find˙paths(link˙tensor)

10 assert len(paths) ¡= 2

11

12 # Get principal sqrts

13 for path in paths:

14 if path[0] == a:

15 rho = self.contract˙conjugate˙transposed(path, [(a, free˙axis˙a)],

16 output˙match˙topology=True)

17 x˙a, x˙a˙inv = self.˙principal˙sqrt(rho)

18 if path[0] == b:

19 rho = self.contract˙conjugate˙transposed(path, [(b, free˙axis˙b)],

20 output˙match˙topology=True)

21 x˙b, x˙b˙inv = self.˙principal˙sqrt(rho)

22

23 # Absorb sqrts into link-tensor

24 self.graph.nodes[link˙tensor].tensor = self.˙perform˙contraction˙on˙tensors(

25 self.graph.nodes[link˙tensor].tensor,

26 x˙a,

27 x˙b,

28 contraction˙axes=[[1, 2], [1, -3], [2, -4]])

29

30 # Absorb inverse sqrt into a

31 a˙node = self.graph.nodes[a]

32 a˙axes = list(range(-1, -1 * len(a˙node.shape) - 1, -1))

33 a˙axes[free˙axis˙a] = 1

34 contraction˙axes = [a˙axes, [1, min(a˙axes) - 1]]

42

35 a˙node.tensor = self.˙perform˙contraction˙on˙tensors(

36 a˙node.tensor,

37 x˙a˙inv,

38 contraction˙axes=contraction˙axes,

39 output˙match˙topology=True)

40

41 # Absorb inverse sqrt into b

42 b˙node = self.graph.nodes[b]

43 b˙axes = list(range(-1, -1 * len(b˙node.shape) - 1, -1))

44 b˙axes[free˙axis˙b] = 1

45 contraction˙axes = [b˙axes, [min(b˙axes) - 1, 1]]

46 b˙node.tensor = self.˙perform˙contraction˙on˙tensors(

47 b˙node.tensor,

48 x˙b˙inv,

49 contraction˙axes=contraction˙axes,

50 output˙match˙topology=True)

Listing A.4: Orthogonalization with respect to edges.

Canonical Forms

1 def canonicalization(self):

2 sqrt˙dict = –˝

3 for edge in self.graph.edges:

4 # Collect principal sqrts that will be absorbed later

5 sqrt˙dict[edge] = []

6

7 a = edge.node1

8 free˙axis˙a = edge.axis1

9

10 b = edge.node2

11 free˙axis˙b = edge.axis2

12

13 # Get principal sqrts for path from b starting with a

14 a˙path = [path for path in self.graph.find˙paths(b) if path[0] == a][0]

15 rho = self.contract˙conjugate˙transposed(a˙path, [(a, free˙axis˙a)],

16 output˙match˙topology=True)

17 x˙a, x˙a˙inv = self.˙principal˙sqrt(rho)

18

19 # Get principal sqrts for path from a starting with b

20 b˙path = [path for path in self.graph.find˙paths(a) if path[0] == b][0]

21 rho = self.contract˙conjugate˙transposed(b˙path, [(b, free˙axis˙b)],

22 output˙match˙topology=True)

23 x˙b, x˙b˙inv = self.˙principal˙sqrt(rho)

24

25 sqrt˙dict[edge] = (x˙a, x˙a˙inv, x˙b, x˙b˙inv)

26

27 for edge in list(self.graph.edges):

28 # Insert link tensor

29 link˙tensor = self.add˙link˙tensor(edge)

43

A. Code Examples

30

31 # Absorb principal sqrts into link tensors

32 T = self.graph.nodes[link˙tensor].tensor

33

34 x˙a = sqrt˙dict[edge][0]

35 x˙b = sqrt˙dict[edge][2]

36

37 self.graph.nodes[

38 link˙tensor].tensor = self.˙perform˙contraction˙on˙tensors(

39 T, x˙a, x˙b, contraction˙axes=[[1, 2], [1, -3], [2, -4]])

40

41 # Absorb inverse sqrt into a

42 x˙a˙inv = sqrt˙dict[edge][1]

43 a˙node = self.graph.nodes[edge.node1]

44 a˙axes = list(range(-1, -1 * len(a˙node.shape) - 1, -1))

45 a˙axes[edge.axis1] = 1

46 contraction˙axes = [a˙axes, [1, min(a˙axes) - 1]]

47 a˙node.tensor = self.˙perform˙contraction˙on˙tensors(

48 a˙node.tensor,

49 x˙a˙inv,

50 contraction˙axes=contraction˙axes,

51 output˙match˙topology=True)

52

53 # Absorb inverse sqrt into b

54 x˙b˙inv = sqrt˙dict[edge][3]

55 b˙node = self.graph.nodes[edge.node2]

56 b˙axes = list(range(-1, -1 * len(b˙node.shape) - 1, -1))

57 b˙axes[edge.axis2] = 1

58 contraction˙axes = [b˙axes, [1, min(b˙axes) - 1]]

59 b˙node.tensor = self.˙perform˙contraction˙on˙tensors(

60 b˙node.tensor,

61 x˙b˙inv,

62 contraction˙axes=contraction˙axes,

63 output˙match˙topology=True)

Listing A.5: Transforming a tensor network into canonical form.

Shifting Centers of Orthogonality

1 def shift˙center(self, center: str):

2 # Keep track of parents during the traversal

3 parents = –center: None˝

4

5 # Keep track of link tensors we need to absorb

6 absorption˙dict = –˝

7

8 # Keep track of axes along that a tensor is an isometry after absorption

9 # of link tensors

10 self.˙isometric˙dict = –˝

11

44

12 # Mark center as visited

13 visited = [center]

14

15 queue = [center]

16

17 while len(queue) != 0:

18 # Pop the next node from the queue

19 current˙node = queue.pop(0)

20

21 if current˙node not in visited:

22 visited.append(current˙node)

23

24 # If the current node is a link-tensor we add it to its parent’s

25 # absorption dict

26 if current˙node in self.˙link˙tensors:

27 if current˙node not in parents or parents[current˙node] is None:

28 raise RuntimeError(

29 ”Cannot shift orthogonality center to link-tensor”)

30 parent˙node = parents[current˙node]

31 if parent˙node not in absorption˙dict:

32 absorption˙dict[parent˙node] = []

33 absorption˙dict[parent˙node].append(current˙node)

34

35 # Find neighbors of current node and add them to the queue

36 neighbors = self.graph.neighbors(current˙node, include˙axes=True)

37 for neighbor in neighbors:

38 if neighbor[0] not in visited:

39 queue.append(neighbor[0])

40 parents[neighbor[0]] = current˙node

41 self.˙isometric˙dict[neighbor[0]] = neighbor[1][0]

42

43 # Absorb link-tensors according to absorption˙dict

44 for node, links in absorption˙dict.items():

45 self.contract([node] + links,

46 absorb=True,

47 new˙name=str(hash(node)),

48 output˙match˙topology=True)

49

50 # Rename all nodes to match original names

51 for node in absorption˙dict:

52 self.graph.rename˙node(str(hash(node)), node)

53

54 self.˙center = center

Listing A.6: Shifting the center of orthogonality.

45

A. Code Examples

Gradient computation

1 def inner˙product˙gradient(self, node, nodes):

2 # Insert conjugated nodes and conjugated edges

3 conjugated˙nodes, conjugated˙edges = self.˙insert˙conjugated˙nodes(

4 nodes, [])

5

6 # Cut out node and edges

7 removed˙edges = []

8 for edge in list(self.graph.edges):

9 if edge.node1 == node or edge.node2 == node:

10 removed˙edges.append(edge)

11 self.graph.edges.remove(edge)

12

13 removed˙node = self.graph.nodes[node]

14

15 self.graph.remove˙node(node)

16

17 contraction˙nodes = [n for n in nodes if n != node

18] + [n for n in conjugated˙nodes if n != node]

19

20 # get actual gradient

21 grad = self.contract(contraction˙nodes)

22

23 # Re-insert node and edges

24 self.graph.add˙node(removed˙node)

25 for edge in removed˙edges:

26 self.graph.add˙edge(edge)

27

28 for edge in conjugated˙edges:

29 self.graph.remove˙edge(edge)

30

31 for n in conjugated˙nodes:

32 self.graph.remove˙node(n)

33

34 return grad

Listing A.7: Computing the gradient of an inner product.

Riemannian Gradient Descent

1 def ˙tangent˙space˙projection(X, Z):

2 sym = lambda W: 0.5 * (W + W.conj().T)

3 return Z - X @ sym(X.conj().T @ Z)

4

5

6 def ˙stiefel˙manifold˙retraction(X, A):

7 return scipy.linalg.polar(X + A)[0]

8

46

9

10 def riemannian˙gradient˙descent(network,

11 nodes,

12 grad,

13 step˙size=0.001,

14 max˙iterations=1000,

15 eps=1e-7):

16 iteration = 0

17 while max˙iterations == -1 or iteration ¡ max˙iterations:

18 iteration += 1

19 norm = 0

20

21 for i, node in enumerate(nodes):

22 # Get tensor at node as 2d isometry

23 U = network.Nd˙to˙isometric˙2d(node)

24 assert np.allclose(U.T @ U, np.eye(U.shape[1]))

25

26 # Get euclidean gradient w.r.t. node

27 euclidean˙gradient = grad(node).reshape(U.shape)

28

29 # Project gradient onto tanget space

30 G = ˙tangent˙space˙projection(U, euclidean˙gradient)

31

32 # Update norm

33 norm += np.linalg.norm(G)

34

35 # Update tensor by using retraction from tangent space onto manifold

36 network.graph.nodes[node].tensor = network.isometric˙2d˙to˙Nd(

37 node, ˙stiefel˙manifold˙retraction(U, -1 * step˙size * G))

38

39 if norm ¡ eps:

40 break

Listing A.8: Riemannian gradient descent on tensor network.

Conjugate Gradient with backtracking line-search

1 # Construct tensor network

2 network = tn.Network(tensors=[(”C”, np.linalg.qr(np.random.rand(4, 6))[0])],

3 shapes=[(”A”, 4, 3), (”B”, 3, 5, 7), (”D”, 5, 7, 10),

4 (”F”, 10, 11), (”E”, 7, 9)],

5 edges=[(”A”, 1, ”B”, 0), (”B”, 1, ”D”, 0),

6 (”F”, 0, ”D”, 2), (”D”, 1, ”E”, 0),

7 (”C”, 0, ”A”, 0)])

8

9 # Canonicalize and shift center to ”A”

10 network.canonicalize()

11 network.shift˙center(”A”)

12

13 manifolds = []

47

A. Code Examples

14 # ”A” is embedded in a simple Euclidean manifold

15 a˙shape = network.tensor(”A”).shape

16 manifolds.append(pymanopt.manifolds.Euclidean(a˙shape[0], a˙shape[1]))

17

18 # All nodes but ”A” are isometries. Construct Stiefel manifolds for them

19 isometric˙nodes = [”B”, ”C”, ”D”, ”E”, ”F”]

20

21 for node in isometric˙nodes:

22 shape = network.Nd˙to˙isometric˙2d(node).shape

23 manifolds.append(pymanopt.manifolds.Stiefel(shape[0], shape[1]))

24

25 # Construct product manifold

26 product˙manifold = pymanopt.manifolds.Product(manifolds)

27

28 H = np.load(”hermitian˙operator˙9˙11˙9˙11.npy”)

29

30

31 # Cost function:

32 #

33 # ¡T—H—T¿

34 # -------

35 # ¡A—A¿

36 def contract(a, b, c, d, e, f, a˙adj, b˙adj, c˙adj, d˙adj, e˙adj, f˙adj):

37 return opt˙einsum.contract(

38 a, [1, 2], b, [2, 5, 8], c, [1, 9], d, [5, 4, 3], e, [4, 6], f, [3, 7], H,

39 [6, 7, 15, 16], a˙adj, [10, 11], b˙adj, [11, 12, 8], c˙adj, [10, 9],

40 d˙adj, [12, 14, 13], e˙adj, [14, 15], f˙adj, [13, 16],

41 []) / opt˙einsum.contract(a, [1, 2], a˙adj, [1, 2], [])

42

43

44 @pymanopt.function.Callable

45 def cost(a, b, c, d, e, f):

46 return contract(

47 a,

48 network.isometric˙2d˙to˙Nd(”B”, b),

49 network.isometric˙2d˙to˙Nd(”C”, c),

50 network.isometric˙2d˙to˙Nd(”D”, d),

51 network.isometric˙2d˙to˙Nd(”E”, e),

52 network.isometric˙2d˙to˙Nd(”F”, f),

53 a,

54 network.isometric˙2d˙to˙Nd(”B”, b),

55 network.isometric˙2d˙to˙Nd(”C”, c),

56 network.isometric˙2d˙to˙Nd(”D”, d),

57 network.isometric˙2d˙to˙Nd(”E”, e),

58 network.isometric˙2d˙to˙Nd(”F”, f),

59)

60

61

62 # Gradients in Euclidean space

63 tensor˙grads = [jax.jit(jax.grad(contract, i + 6)) for i in range(6)]

64

48

65

66 @pymanopt.function.Callable

67 def egrad(u0, u1, u2, u3, u4, u5):

68 a = u0

69 b = network.isometric˙2d˙to˙Nd(”B”, u1)

70 c = network.isometric˙2d˙to˙Nd(”C”, u2)

71 d = network.isometric˙2d˙to˙Nd(”D”, u3)

72 e = network.isometric˙2d˙to˙Nd(”E”, u4)

73 f = network.isometric˙2d˙to˙Nd(”F”, u5)

74

75 return [2 * tensor˙grads[0](a, b, c, d, e, f, a, b, c, d, e, f)] + [

76 network.Nd˙to˙isometric˙2d(node,

77 2 * grad(a, b, c, d, e, f, a, b, c, d, e, f))

78 for node, grad in zip(isometric˙nodes, tensor˙grads[1:])

79]

80

81

82 # Optimization problem

83 problem = pymanopt.Problem(product˙manifold,

84 cost=cost,

85 egrad=egrad,

86 verbosity=0)

87

88 # Conjugate gradient with backtracking line-search

89 linesearch = pymanopt.solvers.linesearch.LineSearchBackTracking()

90 solver = pymanopt.solvers.ConjugateGradient(linesearch=linesearch)

91

92 # Solve the optimization problem

93 solver.solve(problem, verbosity=2)

Listing A.9: Conjugate Gradient with backtracking line-search.

49

Bibliography

[AMS09] P.-A. Absil, R. Mahony, and R. Sepulchre. Optimization Algorithms on Matrix

Manifolds -. Kassel: Princeton University Press, 2009. ISBN: 140-0-830-249-.

[And+99] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J.

Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen.

LAPACK Users’ Guide. Third. Philadelphia, PA: Society for Industrial and Applied

Mathematics, 1999. ISBN: 0-89871-447-8 (paperback).

[BB17] J. Biamonte and V. Bergholm. “Tensor Networks in a Nutshell.” In: (July 31,

2017). arXiv: 1708.00006 [quant-ph].

[BC17] J. C. Bridgeman and C. T. Chubb. “Hand-waving and interpretive dance: an

introductory course on tensor networks.” In: Journal of Physics A: Mathematical

and Theoretical 50.22 (2017), p. 223001.

[BD13] T. Bröcker and T. Dieck. Representations of Compact Lie Groups -. Berlin

Heidelberg: Springer Science & Business Media, 2013. ISBN: 978-3-662-12918-0.

[Bia19] J. Biamonte. “Lectures on Quantum Tensor Networks.” In: (Dec. 20, 2019).

arXiv: 1912.10049 [quant-ph].

[Boo03] W. M. Boothby. An Introduction to Differentiable Manifolds and Riemannian

Geometry, Revised. Orlando, Florida: Gulf Professional Publishing, 2003. ISBN:

978-0-121-16051-7.

[Bou+14] N. Boumal, B. Mishra, P.-A. Absil, and R. Sepulchre. “Manopt, a Matlab Toolbox

for Optimization on Manifolds.” In: Journal of Machine Learning Research 15.42

(2014), pp. 1455–1459.

[Bou22] N. Boumal. An introduction to optimization on smooth manifolds. To appear

with Cambridge University Press. Jan. 2022.

[Bra+18] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin,

G. Necula, A. Paszke, J. VanderPlas, S. Wanderman-Milne, and Q. Zhang. JAX:

composable transformations of Python+NumPy programs. Version 0.2.5. 2018.

51

https://arxiv.org/abs/1708.00006
https://arxiv.org/abs/1912.10049

Bibliography

[Che+18] J. Chen, F. Zhang, C. Huang, M. Newman, and Y. Shi. “Classical Simulation of

Intermediate-Size Quantum Circuits.” In: (May 3, 2018). arXiv: 1805.01450

[quant-ph].

[Cic14] A. Cichocki. “Era of Big Data Processing: A New Approach via Tensor Networks

and Tensor Decompositions.” In: (Mar. 9, 2014). arXiv: 1403.2048 [cs.ET].

[CV09] J. I. Cirac and F. Verstraete. “Renormalization and tensor product states in spin

chains and lattices.” In: Journal of Physics A: Mathematical and Theoretical

42.50 (Dec. 2009), p. 504004. DOI: 10.1088/1751-8113/42/50/504004.

[EV07] G. Evenbly and G. Vidal. “Algorithms for entanglement renormalization.” In:

Phys. Rev. B 79, 144108 (2009) (July 10, 2007). DOI: 10.1103/PhysRevB.79.

144108. arXiv: 0707.1454 [cond-mat.str-el].

[Eve18] G. Evenbly. “Gauge fixing, canonical forms and optimal truncations in tensor

networks with closed loops.” In: Phys. Rev. B 98, 085155 (2018) (Jan. 16,

2018). DOI: 10.1103/PhysRevB.98.085155. arXiv: 1801.05390 [quant-ph].

[EY36] C. Eckart and G. Young. “The approximation of one matrix by another of lower

rank.” In: Psychometrika 1.3 (1936), pp. 211–218.

[FWS20] M. Fishman, S. R. White, and E. M. Stoudenmire. The ITensor Software Library

for Tensor Network Calculations. 2020. arXiv: 2007.14822.

[GL13] G. H. Golub and C. F. V. Loan. Matrix Computations. London: JHU Press, 2013.

ISBN: 978-1-421-40859-0.

[Hae+12] J. Haegeman, M. Mariën, T. J. Osborne, and F. Verstraete. “Geometry of

Matrix Product States: metric, parallel transport and curvature.” In: J. Math.

Phys. 55, 021902 (2014) (Oct. 29, 2012). DOI: 10.1063/1.4862851. arXiv:

1210.7710 [quant-ph].

[Has07] M. B. Hastings. “An Area Law for One Dimensional Quantum Systems.” In:

JSTAT, P08024 (2007) (May 14, 2007). DOI: 10.1088/1742-5468/2007/08/

P08024. arXiv: 0705.2024 [quant-ph].

[HDH20] M. Hauru, M. V. Damme, and J. Haegeman. “Riemannian optimization of

isometric tensor networks.” In: SciPost Phys. 10, 040 (2021) (July 7, 2020).

DOI: 10.21468/SciPostPhys.10.2.040. arXiv: 2007.03638 [quant-ph].

[HP18] J. Hauschild and F. Pollmann. “Efficient numerical simulations with Tensor

Networks: Tensor Network Python (TeNPy).” In: SciPost Phys. Lect. Notes

(2018). Code available from https://github.com/tenpy/tenpy, p. 5. DOI:

10.21468/SciPostPhysLectNotes.5. arXiv: 1805.00055.

[Hua+20] C. Huang, F. Zhang, M. Newman, J. Cai, X. Gao, Z. Tian, J. Wu, H. Xu, H. Yu,

B. Yuan, M. Szegedy, Y. Shi, and J. Chen. “Classical Simulation of Quantum

Supremacy Circuits.” In: (May 14, 2020). arXiv: 2005.06787 [quant-ph].

[Lee13] J. M. Lee. Introduction to Smooth Manifolds -. Berlin Heidelberg: Springer

Science & Business Media, 2013. ISBN: 978-0-387-21752-9.

52

https://arxiv.org/abs/1805.01450
https://arxiv.org/abs/1805.01450
https://arxiv.org/abs/1403.2048
https://doi.org/10.1088/1751-8113/42/50/504004
https://doi.org/10.1103/PhysRevB.79.144108
https://doi.org/10.1103/PhysRevB.79.144108
https://arxiv.org/abs/0707.1454
https://doi.org/10.1103/PhysRevB.98.085155
https://arxiv.org/abs/1801.05390
https://arxiv.org/abs/2007.14822
https://doi.org/10.1063/1.4862851
https://arxiv.org/abs/1210.7710
https://doi.org/10.1088/1742-5468/2007/08/P08024
https://doi.org/10.1088/1742-5468/2007/08/P08024
https://arxiv.org/abs/0705.2024
https://doi.org/10.21468/SciPostPhys.10.2.040
https://arxiv.org/abs/2007.03638
https://github.com/tenpy/tenpy
https://doi.org/10.21468/SciPostPhysLectNotes.5
https://arxiv.org/abs/1805.00055
https://arxiv.org/abs/2005.06787

Bibliography

[LKF20] I. A. Luchnikov, M. E. Krechetov, and S. N. Filippov. “Riemannian geometry

and automatic differentiation for optimization problems of quantum physics and

quantum technologies.” In: New J. Phys. 23, 073006 (2021) (July 2, 2020).

DOI: 10.1088/1367-2630/ac0b02. arXiv: 2007.01287 [quant-ph].

[Lya+22] D. I. Lyakh, A. McCaskey, J. Osborn, and T. Nguyen. exatn. https://github.

com/ORNL-QCI/exatn. 2022.

[McC08] I. P. McCulloch. “Infinite size density matrix renormalization group, revisited.”

In: (Apr. 16, 2008). arXiv: 0804.2509 [cond-mat.str-el].

[Oru13] R. Orus. “A Practical Introduction to Tensor Networks: Matrix Product States

and Projected Entangled Pair States.” In: Annals of Physics 349 (2014) 117-158

(June 10, 2013). DOI: 10.1016/j.aop.2014.06.013. arXiv: 1306.2164

[cond-mat.str-el].

[Pen71] R. Penrose. “Applications of negative dimensional tensors.” In: Combinatorial

mathematics and its applications 1 (1971), pp. 221–244.

[Rob+19] C. Roberts, A. Milsted, M. Ganahl, A. Zalcman, B. Fontaine, Y. Zou, J. Hidary,

G. Vidal, and S. Leichenauer. “TensorNetwork: A Library for Physics and Machine

Learning.” In: (May 3, 2019). arXiv: 1905.01330 [physics.comp-ph].

[Sch11] U. Schollwöck. “The density-matrix renormalization group in the age of matrix

product states.” In: Annals of physics 326.1 (2011), pp. 96–192.

[Smi14] S. T. Smith. “Optimization Techniques on Riemannian Manifolds.” In: Fields

Institute Communications; Volume: 3; 1994 (July 22, 2014). arXiv: 1407.5965

[math.OC].

[Str13] G. Strang. Lineare Algebra -. Berlin Heidelberg New York: Springer-Verlag, 2013.

ISBN: 978-3-642-55631-9.

[TKW16] J. Townsend, N. Koep, and S. Weichwald. “Pymanopt: A Python Toolbox for

Optimization on Manifolds using Automatic Differentiation.” In: Journal of

Machine Learning Research 17.137 (2016), pp. 1–5.

[VCM09] F. Verstraete, J. I. Cirac, and V. Murg. “Matrix Product States, Projected En-

tangled Pair States, and variational renormalization group methods for quantum

spin systems.” In: Adv. Phys. 57,143 (2008) (July 16, 2009). DOI: 10.1080/

14789940801912366. arXiv: 0907.2796 [quant-ph].

[VHV18] L. Vanderstraeten, J. Haegeman, and F. Verstraete. “Tangent-space methods

for uniform matrix product states.” In: SciPost Phys. Lect. Notes 7 (2019)

(Oct. 16, 2018). DOI: 10.21468/SciPostPhysLectNotes.7. arXiv: 1810.

07006 [cond-mat.str-el].

[Vid03] G. Vidal. “Efficient Classical Simulation of Slightly Entangled Quantum Compu-

tations.” In: Phys. Rev. Lett. 91 (14 Oct. 2003), p. 147902. DOI: 10.1103/

PhysRevLett.91.147902.

53

https://doi.org/10.1088/1367-2630/ac0b02
https://arxiv.org/abs/2007.01287
https://github.com/ORNL-QCI/exatn
https://github.com/ORNL-QCI/exatn
https://arxiv.org/abs/0804.2509
https://doi.org/10.1016/j.aop.2014.06.013
https://arxiv.org/abs/1306.2164
https://arxiv.org/abs/1306.2164
https://arxiv.org/abs/1905.01330
https://arxiv.org/abs/1407.5965
https://arxiv.org/abs/1407.5965
https://doi.org/10.1080/14789940801912366
https://doi.org/10.1080/14789940801912366
https://arxiv.org/abs/0907.2796
https://doi.org/10.21468/SciPostPhysLectNotes.7
https://arxiv.org/abs/1810.07006
https://arxiv.org/abs/1810.07006
https://doi.org/10.1103/PhysRevLett.91.147902
https://doi.org/10.1103/PhysRevLett.91.147902

Bibliography

[Vid07] G. Vidal. “Classical Simulation of Infinite-Size Quantum Lattice Systems in One

Spatial Dimension.” In: Phys. Rev. Lett. 98 (7 Feb. 2007), p. 070201. DOI:

10.1103/PhysRevLett.98.070201.

54

https://doi.org/10.1103/PhysRevLett.98.070201

	Abstract
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	List of Source Codes
	List of Abbreviations
	Introduction
	Mathematical Formalism
	Linear Algebra
	Tensor Networks

	Canonical Tensor Networks
	Orthogonalization via QR Decomposition
	Direct Orthogonalization
	Orthogonalization with respect to Edges
	Canonical Forms
	Shifting Centers of Orthogonality

	Application
	Optimal Truncation
	Optimization on Riemannian Manifolds

	Conclusion and Future Work
	Code Examples
	Bibliography

