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Abstract

Fed with a partial scan, single-view 3D completion models are expected to generate the
completed geometry as an inference result. Applications such as AR/VR and autonomous
driving could benefit from targets being presented in their complete structures, while oc-
cluded geometries are missing due to limited camera view. Learning-based 3D completion
approach can reveal the occluded regions conditioned on a single view sample with the help
of large-scale training data.

It is straightforward to adapt existing image-space methods to design encoder-decoder ar-
chitectures constructed with convolutions in volumetric space to process local and global
information. Nonetheless, the slow inference speed limits the practicality of the volumetric
completion. The computation and memory costs increase exponentially regarding the resolu-
tion because of the convolutions. Apart from the methodology designs, the lack of a large
amount of real 3D supervision, because of the difficulty in annotating, also makes it hard to
optimize models in volumetric space for real scenarios.

Due to the memory cost, the volumetric completion is struggling to reconstruct finer de-
tails practically. Such difficulty motivated us further to investigate the works on a sparse
data format, the point cloud, for 3D completion. Since the point cloud does not present
information in empty spaces, such a sparse 3D representation can be with flexible local
resolution depending on specific local geometric complexity. However, a straightforward
adaptation with a similar encoder-decoder architecture as the volumetric methods does not
work because of the unorganized structure of point cloud. This situation implies that the
well-known operators employed on images or volumes cannot be applied to point cloud.

Therefore, in this dissertation, we propose solutions to address all the aforementioned
problems in both volumetric data and point cloud for the task of 3D completion from a single
view. Notably, while other point cloud methods are limited to reconstructing a synthetic
single object, our proposed approach alleviated this limitation by reconstructing real scenes.
Inspired by the improvements from all the completion methods, we also demonstrate their
generalizability by expanding their applications to other tasks, e.g. , hand pose estimation,
point cloud segmentation, and natural language processing.
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Zusammenfassung

Gegeben ein Teilscan, versuchen 3D-Vervollständigungsmodelle von der Einzelansicht die
vollständige Geometrie zu erzeugen. Anwendungen wie AR/VR und autonomes Fahren
könnten davon profitieren, dass Objekte in ihrer vollständigen 3D Struktur dargestellt wer-
den, obwohl verdeckte Geometrien eigentlich aufgrund der begrenzten Kamerasicht fehlen.
Ein auf Lernen basierender Ansatz zur 3D-Vervollständigung kann die verdeckten Regio-
nen auf der Grundlage einer einzigen Ansichtsstichprobe mit Hilfe von umfangreichen
Trainingsdaten aufdecken.

Es ist einfach, bestehende Bildverarbeitungsmethoden zu adaptieren, um Encoder-Decoder-
Architekturen zu entwickeln, die durch Convolutions im volumetrischen Raum lokale und
globale Informationen verarbeiten. Dennoch schränkt die langsame Inferenzgeschwindigkeit
die praktische Anwendbarkeit der volumetrischen Vervollständigung ein. Die Rechen- und
Speicherkosten steigen aufgrund der Convolutions exponentiell mit der Auflösung an. Abge-
sehen von der Methodik erschwert das Fehlen einer großen Menge echter 3D-Trainingsdaten
die Optimierung von Modellen im volumetrischen Raum für reale Szenarien, da es sehr
schwierig ist, solche 3D-Daten zu annotieren.

Aufgrund der Speicherkosten ist die volumetrische Vervollständigung nur schwer in der Lage,
feinere Details praktisch zu rekonstruieren. Diese Schwierigkeit hat uns dazu motiviert, die
Arbeiten an einem spärlichen Datenformat, der Punktwolke, für die 3D-Vervollständigung
weiter zu untersuchen. Da die Punktwolke keine Informationen in leeren Räumen enthält,
kann eine solche spärliche 3D-Darstellung eine flexible lokale Auflösung in Abhängigkeit von
der spezifischen lokalen geometrischen Komplexität handhaben. Eine einfache Anpassung
mit einer ähnlichen Encoder-Decoder-Architektur wie bei den volumetrischen Methoden
funktioniert jedoch aufgrund der unorganisierten Struktur der Punktwolke nicht. Dies bedeu-
tet, dass die bekannten Operatoren, die für Bilder oder Volumen verwendet werden, nicht
auf Punktwolken angewendet werden können.

Daher schlagen wir in dieser Dissertation Lösungen vor, um alle oben genannten Pro-
bleme sowohl bei volumetrischen Daten als auch bei Punktwolken für die Aufgabe der
3D-Vervollständigung aus einer einzigen Ansicht zu lösen. Während andere Punktwolken-
Methoden auf die Rekonstruktion eines einzelnen synthetischen Objekts beschränkt sind,
wird diese Einschränkung durch den von uns vorgeschlagenen Ansatz dank der Rekon-
struktion von realen Szenen gemildert. Inspiriert durch die Verbesserungen aller Vervoll-
ständigungsmethoden demonstrieren wir auch ihre Verallgemeinerbarkeit, indem wir ihre
Anwendungen auf andere Aufgaben ausweiten, z. B. auf die Schätzung der Handhaltung,
die Segmentierung von Punktwolken und die Verarbeitung natürlicher Sprache.
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1Introduction

In the starting chapter of this dissertation, Section 1.1 briefly introduces the motivations and
background of applying machine learning to tasks in 3D space, especially addressing the
advantages of adopting the 3D methods to solve real-world tasks compared to 2D methods.
Given a specific type of input in an inference system, which is partial scans, the overview of
single-view 3D understanding is then introduced in Section 1.2. Finally, Section 1.3 lists the
structure of this dissertation, which focuses more specifically on our contributions.

1.1 Background

Intuitively, the world is perceived as a 3D Euclidean space. 3D space reveals more useful
information for complex tasks than 2D information because objects naturally exist in 3D. The
eyes of most herbivores are positioned on the sides of their heads so they can see as much of
their environment as possible. But the predators have a stereoscopic vision, which is helpful
for complicated tasks, e.g. gauging the distance to their prey when they hunt. Such a natural
fact shows that a good understanding of detailed 3D structures and distances is crucial if
actions are more complicated. Human vision works similarly to predators’ vision. The
simultaneous integration of the images from both of our eyes results in a 3D understanding
which is also enhanced by the memorized related informations in our brain.

Human societies depend more on 3D understanding instead of 2D for industrial applications
such as autonomous driving, automatic sorting in the factory, license plate recognition, Si-
multaneous Localization and Mapping (SLAM), augmented reality (AR), virtual reality (VR),
etc. By comparing information towards a scene from two vantage points, 3D information can
be extracted by examining the relative positions of objects in the two panels. This is similar to
the biological process of stereopsis. Specifically for scenarios involving autonomous driving,
there are indeed solutions that work solely in 2D space. For example, LaneNet [11] segments
the lanes and marks on the road in 2D space, which guilds the 3D maneuver of the vehicle so
that the vehicle can cruise on the current lane on the highway. To avoid a collision, object
detectors such as DETR [12] predict 2D bounding boxes using features extracted from images
such as ResNet [13].

5



Chapter 1: Introduction
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Figure 1.1 An illustration of information lost due to 2D projec-
tions from the edges of a 3D mesh with limited views.

However, a colletion of projected 2D data
lost part of the original 3D structures, es-
pecially when the projection directions
are limited. As shown in Fig. 1.1, neither
of these two 2D projection from a 3D cur-
vature mesh can reveal the correct 3D ge-
ometry without ambiguity. So instead,
some follow-up models supplemented
with the 3D inference results can be more
confidently used in solving object detec-
tion and segmentation tasks, e.g. Anchor
DETR [14] and PETR [15]. Such a trend
proves that using 3D information helps
improve recognition accuracy without
over-consuming computational resources.
Besides autonomous driving, AR and VR

also build applications on top of learned parametric models, which depend more frequently
on 3D approaches. Augmenting the observed scenes with realistic visual effects involves
estimating spaces that are not observable. Such estimation for occluded structures could be
achieved by either positioning known 3D models to align them with an observed partial
scan [16] or reconstructing the occluded area with a learned completion model [17, 18]. This
dissertation focuses on the second approach, which takes on the observed structures to infer
the structures that are out of view.

Ideally, the entire 3D space of interest could be progressively constructed with the help
of 3D scanners for an autonomous robot to process and take action once the movement
of the scanners is not restricted by either the environment or the mechanical components
themselves. In special scenarios, like moving vehicles and drones, only 3D information
partially captured from a certain camera view is feasible. Resulting in problems in which
crucial structures are occluded so that cars or drones can not take further actions reasonably.
To handle such a problem of occlusions, 3D completion from a single view plays an important
role in extrapolating the complete structures.

Although the RGB image is the most feasible single-view data, such input has no geometric
information that could be used as part of expected 3D structures in the output. Especially
for scene completion, image-to-scene completion does not satisfy results because the perfor-
mance of many deep architectures is highly dependent on a global latent feature in which
local structures are not explicitly included. Indeed, there are single-view works progressively
completing scenes from RGB [19] with several steps which include room layout estima-
tion [20], object detection, and object completion [21], yet such progressive reconstruction
is tedious and does not perform well when the camera movement is constrained. Another
solution is to rely on depth prediction from RGB [22, 23, 24]. However, the predicted depth
from RGB is less precise than a back-projected 3D surface from the depth scan. In addi-
tion, off-the-shelf depth sensors such as Kinect [25] and RealSense [26] can deliver scans in
real-time, which are more efficient than depth prediction.

6



1.2 3D Reconstruction from a Single View

1.2 3D Reconstruction from a Single View

(a) Partial scan (b) Semantic completion

Parts of the geometries are 
missing due to
occlusion

ceiling
wall

furniture

chair
floor

Inference with       
learned

model

Figure 1.2 An exemplar semantic completion from a 3D partial scan in (a) presented in point cloud which is back-
projected from a single depth image with camera intrinsic, and the expected semantically completed
3D scene in (b).

As mentioned in Section 1.1, 3D understanding is critical for modern life. Here, we refer
to 3D understanding specifically for tasks with the partial scans as input, e.g. single-view
3D reconstruction. Given a depth image as illustrated in Fig. 1.2, the expected 3D under-
standing enhances the partial observations with semantics and completed geometries. These
approaches are focused on two aspects of the topic of 3D machine vision, which are the
capacity of

1. accurately recognizing the surrounding objects, together with,

2. building the geometric structure of the scene which assembles the 3D relation of the
objects of interest.

The former is referred to as semantic segmentation, while the latter is the 3D completion. By
merging two tasks into the topic of semantic completion with an end-to-end model, semantic
segmentation and completion could be estimated by the same deep architecture. In such a
manner, the estimated semantics could be leveraged to improve the completion as well.

In this dissertation, we focus on 3D object completion and 3D semantic scene completion from
a single view. The bulk of our research is conducted on 3D completion, while segmentation
is only used for scenes.

7



Chapter 1: Introduction

1.3 Structure of the Dissertation

Given the introduced research background and an overview of current progress on the topic
of our targeted tasks, this section briefly outlines the main structure of this dissertation
starting from Chapter 2 to 7.

Chapter 2: Fundamental Theories. This chapter starts by describing deep learning related
topics in Section 2.1, including the basic operations in Section 2.1.1 and the common archi-
tectures built from these operators in Section 2.1.4. Apart from the architecture, we also
explain how to train it with an optimizer in Section 2.1.4. The succeeding parts of this
chapter introduce some major learning techniques that are related to this dissertation, such as
adversarial learning in Section 2.2.1, variational inference in Section 2.2.3 and metric learning
in Section 2.2.2.

Chapter 3: Learning-based Single View 3D Completion. We start the chapter by introducing
the 3D completion in Section 3.1.1. We then integrate the semantic segmentation into the
completion as an end-to-end model in Section 3.1.2. After that, we discuss the common 3D
data formats used for 3D semantic completion in Section 3.2. At the end of this chapter, we
introduce some existing datasets in Section 3.3.1 and the corresponding metrics for evaluation
in Section 3.3

Chapter 4: Recent History of 3D Completion from a Single View. We begin with an
overview of 3D completion in Section 4.1. This chapter then maps out the related work in 3D
completion from a single view. Considering that there are different data formats that can be
used in 3D completion, this chapter also investigates the input from RGB or depth image as
well as the output to volumetric data in Section 4.2, and point cloud in Section 4.3. At the
end of the chapter, we discuss common latent features learned from 3D completion models
in Section 4.4.

Chapter 5: Summary of Contributions. This chapter summarizes the main contributions
and additionally provides the associated publication for each work. Our works are mostly
focused on reconstructing 3D in two data formats, which are volumetric data in Section 5.1
and point cloud in Section 5.2. Inspired by some insights during the model designs in
these two sections for 3D completion. We further propose some feature learning methods in
Section 5.3 to other 3D-related tasks and even tasks which are not targeted in 3D.

Chapter 6 and 7: Conclusion and Future Works. Eventually, we summarize the contribution
of this dissertation and the solved related tasks in Chapter 6. Then, we discuss some future
works in Chapter 7.

8



2Fundamental Theories

This dissertation focuses on solving single-view 3D completion with learning-based ap-
proaches, whereas deep learning plays an important role. Deep learning is part of a broader
family of machine learning approaches based on parameterized architectures with many
weights.

In this chapter, we first introduce some fundamental deep learning theories in Section 2.1,
including basic operators, famous architectures, different types of losses according to specific
tasks, and some standard optimizers. Although how the converged deep model performs
during inference depends on the loss function, there are still ways to let the parametric
model perform differently by setting some constraints as optimization targets. Practically,
given a task to solve with a parameterized deep architecture, we may encounter problems,
including difficulty sampling in latent space in a generative model, lack of ground truth
data for training, wrongly provided annotations, etc. So next, in Section 2.2, we introduce
some training techniques targeted at solving problems in specific application scenarios,
which can significantly improve the performance of trained deep architectures. Those
techniques include variational constraint, adversarial training, unsupervised training, and
metric learning.

2.1 Deep Learning

As a branch of machine learning approaches based on large-scale parameterized models,
usually referred to as deep architectures, deep learning is widely adopted in a large variety of
tasks, including natural language processing, visual recognition, speech recognition, neural
rendering, etc. Leveraging the power of a large amount of training data, deep architectures,
such as an MLP shown in Fig. 2.1, are usually built with different sequentially connected
operators and modules which will be introduced in Section 2.1.1 including fully-connected
layers, convolutional layers, pooling operators, etc. Those individual operators are used to
compose deep architectures in Section 2.1.2 targeting different types of tasks. While most
initialized deep models are not expected to perform a satisfactory inference, the parametric
models are validated by loss functions and optimized with optimizers, which are introduced
further in Section 2.1.3 and Section 2.1.4.

9



Chapter 2: Fundamental Theories

2.1.1 Operators

Processing input data with large amounts of intermediate latent features, deep architectures
are composed of repetitively appearing operations to process input data, including fully-
connected layers, convolutional layers, pooling, and non-linear activations. In this section,
we briefly introduce each single operator that is used to construct deep architectures in
Section 2.1.2.

Fully-connected layer. Fully-connected layers serve as one of the most basic layers in deep
learning, all output units from one layer are projected to every unit of the next layer with a
parameterized projection function. Performing as dense projections, they compile the input
data extracted by previous layers to form the final output to get the expected inference results.
Using the fully-connected layers to construct the last few layers is a common design in deep
architectures.

Convolutional layers. Convolutions are initially proposed for signal processing, such as
noise filtering and high-frequency filtering. Given an input signal s(x), the convolved signal
ŷ(x) can be formulated as

ŷ(x) =

∫∞
−∞ ω∞(τ)s∞(x− τ)dτ . (2.1)

To practically implement the convolution from its continuous form to the discrete form with
the filter ω, the infinite version

ŷ(x) =

∞∑
dx=−∞ω∞(dx)s∞(x− dx) (2.2)

is usually adapted to its finite form

y(x) =

kx∑
dx=−kx

ω(dx)s(x− dx) , (2.3)

where the kernel ω is parameterized to be smaller, resulting in a much smaller model
compared to fully-connected layers. The convolutions can be converted to fully-connected
layers when the filter ω is with the same length of the signal s.

Local convolutional operations are widely used when data s is organized such as audio,
images, and videos. Considering images are well-gridded data where common local patterns
are easier to learn from a large amount of data. Processing 2D images is a typical applicable
scenario for local convolutions. A fundamental expression of producing a single convolution
output targeted on a single 2D position x,y with the value of s(x,y) could be presented as

y(x,y) =
kx∑

dx=−kx

ky∑
dy=−ky

ω2d(dx,dy)s(x− dx,y− dy) , (2.4)

where y(x,y) is the output and ω2d is the convolutional kernel. Every element of the filter
kernel is considered in the range of [−kx,kx] and [−ky,ky]. Here the kernel size kx and ky
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2.1 Deep Learning

determines the scale of the receptive field; once it is set to be larger than a single element, it is
possible to extract some local features by considering several local input elements.

Some exceptional cases may happen when the data format has difficulty getting local neigh-
borhoods explicitly organized, e.g. , natural languages and point cloud. In those works,
a single down-sampling operator such as max-pooling, introduced in the next paragraph,
could even be with a receptive field of the whole input data. Alternatively, works like Point-
Conv [27] and PointCNN [28] index each sample with k-nearest neighbor (KNN) search to
find local patches, where they then apply the convolution kernels on those local patches.

Given the basic convolutional operation (2.4), some hyperparameters apart from kernel size
kx are also crucial such as stride, padding, and dilation rate, which could be adjusted to
practically solve some real-world problems. While information is sometimes expected to get
compressed in the spatial domain to reduce noises, the convolution stride could be larger
than 1. In one particular case for image convolution, the spatial dimensionality would be
gradually reduced by at least kx − 1 per-layer because the kernel cannot be centered on the
edge element on the image, resulting in a tiny feature patch in the end. To overcome this
issue, spatial paddings, such as zero padding and repetitive padding, could be used. For
object detection and 3D completion tasks, some crucial targets in the input data are with a
large variety of scales, so that convolutional kernels in the same layer with different dilation
rates will make it possible to attend to the objects on different scales.

To generalize 2D convolution into other dimensions, e.g. volumetric data in 3D, similar
patterns could be followed in terms of convolution operation as described in (2.4), where one
additional dimension should be added for both local and patch and convolutional kernel.
Similarly, convolution can also be applied for audio along the time axis by changing the
operational dimension to 1.

While convolution is used to extract features with down-sampled results, a similar operation
called transposed convolution is used to up-sample the input feature map to a desired output
feature map to fit for the requirement of specific output spatial dimensions such as super-
resolution applications [29] and image segmentation [30]. Specifically regarding point cloud
deconvolutional operations, FoldingNet [31] uses a 2D grid to help generate a 3D point cloud
from a single feature. PCN [17] further uses local FoldingNet to obtain a fine-grained output
from a coarse point cloud with a low resolution, which could be regarded as an alternative to
point cloud deconvolution.

Pooling. Aiming at making extracted features more compact, pooling functions replace the
network output at a specific location with a summarized statistic of the nearby outputs. For
example, the 2D max-pooling operation reports the maximum output within a rectangular
neighborhood. One crucial factor that makes the pooling results different is the way to
determine the samples fed into the pooling operator. While max-pooling is applied for a
local set of elements, graph max-pooling (GMP) [32] takes the element-wise maximum value
of the feature across all the vectors, where we select the subset of feature vectors with the
highest activations. Other popular pooling functions include the average of a rectangular
neighborhood, the L2 norm of a rectangular neighborhood, or a weighted average based
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on the distance from the central pixel. In all cases, pooling helps make the representation
approximately invariant to small input translations, which means that if we translate the
input by a small amount, the values of most of the pooled outputs do not change.

Non-linear activations. The activation function of a node defines the output of that node
given an input or set of inputs. The most common activation functions can be divided into
three categories: ridge functions, radial functions, and fold functions.

Ridge functions are multivariate functions acting on a linear combination of the input vari-
ables, e.g. ReLU [33] function presented in max(0, x), Heaviside [34, 35] function presented
in 1x>0, Logistic [36, 37] function presented in (1 + exp−x)−1, etc.

Radial activation functions are a particular class of activation functions known as radial basis
functions (RBFs), including Gaussian function, multi quadratics, inverse multi quadratics,
polyharmonic splines, etc.

Folding activation functions are extensively used in the pooling layers in convolutional
neural networks and output layers of multi-class classification networks. These activations
aggregate the inputs, such as taking the mean, minimum, or maximum. In multi-class
classification, the softmax activation is widely used which is presented as

softmax(x)i =
expxi∑c
j=1 expxj

, (2.5)

where c is the number of classes and x is a c-dimensional vector.

Multi-head attention. The attention mechanism [38] describes a weighted average of
elements, particularly sequential elements, with the weights dynamically computed based
on a set of queries and the keys of these elements. The difference between weighting each
element with attention and straightforward matrix multiplication is that attention modules
dynamically decide on which elements are focused more compared to the others.

In terms of implementation, the attention layer takes its input in the form of three parameters,
known as the query Q, key K and value V . Multi-head Attention [38] is composed of multiple
attention heads allowing for attending to parts of the input sequential data with different
lengths. Weighted by Wout, a multi-head attention Amul

Amul(Q,K,V) = [A1, . . . ,Ah]Wout (2.6)

is usually produced by concatenating several individual scaled dot-product attention {Ai}

Ai(Q,K,V) = softmax(
QWQ

i (KWK
i )

T

√
dk

)VWV
i (2.7)

where
√
dk is the dimension of the key and query vectors. Such multi-head attention

overcomes the difficulty of representing multiple different aspects to which a sequence
of elements wants to attend with the help of different sets of {WQ

i ,WK
i ,WV

i }.
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2.1 Deep Learning

2.1.2 Architecture

By implementing some inference models in deep architectures, layer-by-layer operations
as mentioned in Section 2.1.1 are used. The performance of deep architectures can surpass
human expert performance usually because of its large-scale parametric model, where
different operators should be carefully connected to form some standard modules. Regarding
different tasks, especially given with different input and output pairs, different architectures
are proposed, such as deep belief networks, deep reinforcement learning, recurrent neural
networks, and convolutional neural networks have been applied to fields including computer
vision, speech recognition, natural language processing, machine translation, bioinformatics,
drug design, medical image analysis, climate science, material inspection, and board game
programs. In the following paragraphs, we illustrate some basic architectures.

Multi-layer Perceptron (MLP)

x fcdin,d1 bias a fcd1,d2 bias a fcd2,dout bias a y

Figure 2.1 An example of a multi-layer perceptron (MLP) composed of 3 fully-connected layers with biases, which
are followed by non-linear activations a.

Multi-layer perceptron (MLP), e.g. the one shown in Fig. 2.1, consists of several fully-
connected layers with nonlinearly activating functions a for the output of each fully-connected
layer. Disregarding forward passing data with a batch size of more than 1, a single input for
MLP is always flattened as a vector; each element in the vector is connected with a certain
weight to every element in the following layer.

Two of the most important factors of MLP are the number of layers and output dimension.
As shown as a 3-layer MLP in Fig. 2.1, din and dout are determined by the problem on
hand. The sizes of d1 and d2 are flexible hyperparameters according to other factors such
as expected inference accuracy and efficiency. The multi-layer perceptron (MLP) represents
a function y(x;Θ) parameterized by the weights Θ in the fully-connected layers and their
biases. Usually, a deeper MLP gives the model more capacity to fit the training data. An
example could be shown in Fig. 2.2 where more fully connected layers are used to build
the whole auto-encoder (AE) architecture with dimensional hyperparameters d1,d2 and dlat.
Here the output dimension dout is set to be the same as the input dimension din to build the
reconstruction loss L(x̃, x), which quantifies the similarity between the reconstruction x̃ and
the input x itself.

Convolutional Neural Network (CNN)

Convolutional neural networks (CNN) are regularized versions of multi-layer perceptrons.
Each neuron in one layer of MLP is connected to all neurons in the next layer. The complete
connectivity in these layers makes them prone to over-fitting data. CNN performs regular-
ization by taking advantage of the hierarchical pattern in data and assembling increasingly
complex patterns using smaller and simpler patterns embossed in their filters. Therefore,
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Figure 2.2 An example of an auto-encoder with a din-dimensional input x, built with a multi-layer percep-
tron, where both the encoder and decoder are composed of a 3-layer-perceptron connected by a
dlat-dimensional latent code z.

on a scale of connectivity and complexity, CNNs are on the lower extremity. One of the
earliest works of CNN is LeNet-5 [39] which comprises seven convolutional layers aiming at
classifying digits from an image with 32 × 32 pixels.

Local operators are one of the most critical components in CNN, which takes several el-
ements in a local neighborhood. The output is usually less than the input processed by
local operators. To efficiently process information and remove noises, the dimensionality
reduction in the encoder-decoder architecture, local operators make it possible to present the
original information from the previous layer into a few elements in the output. For example,
convolutions with a stride larger than one can compress information in images and videos.
Here stride is a convolution operation parameter that modifies the movement over the image
or video.

Deconvolutional networks. Similar to the auto-encoder formed with MLP, if transposed
convolution is involved, the convolutional network could be modified as the deconvolutional
network where spatial dimensions are increased in the decoder. In some tasks, the input
information needs to be firstly summarized by an encoder so that a decoder can generate
satisfying information without being misled by noises. In such a scenario, the number of
elements in input is first decreased and then increased to the other high-dimensional space,
which differs for different tasks, e.g. , completion, segmentation, and reconstruction. The
dimension reduction in the encoder is usually not applied for all dimensions, e.g. , in image
processing with CNN, the spatial dimensions are decreased while the pixel-wise feature
dimension is usually increased from initial RGB-α channels. Such a manner allows the
model to store potentially useful information even when spatial information is filtered to
be less. The other example is point cloud processing; usually, the dimension of the points
is significantly decreased, e.g. , into a small amount in SoftPoolNet [6] and 1-dimension in
PointNet [40]. While the number of points is significantly decreased, the feature dimension is
greatly increased from the three dimensions of the input’s (x,y, z) coordinates.

Skip-connections. Skip-connections are also called shortcut connections, feeding output
from early layers to later layers which skips some layers in neural networks. It is formulated
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2.1 Deep Learning

as a piece of additional information fed together with straightforward passed features, which
can be used in either summation or concatenation.

fc1 a fc2 ⊕
add

F(x) + x

a
x

The bypassed x

F(x)

Figure 2.3 A skip-connection formed by feature sum-
mation in ResNet [13] variants fed with
input x, where two fully-connected layers
are skipped.

Residual networks (ResNet) [13] were proposed to
solve the image classification problem. In ResNet,
the information from the initial layers is passed to
deeper layers by matrix summation as shown in
Fig. 2.3 between the encoded feature F(x), which
is produced by two fully-connected layers {fc1, fc2}

connected with a non-linear activation a, and the in-
put x. This operation has no additional parameters,
as the output from the previous layer is added to
the layer ahead. By doing concatenation instead of
summation, U-Net [41] concatenates layers in the en-
coder with layers in the decoder. Such concatenation

makes the U-Nets use fine-grained details learned in the encoder to construct an image in
the decoder. Regarding the number of skipped layers, U-Net is with long skip-connections,
whereas ResNet was with short skip-connections.

Recurrent Neural Network (RNN)

To handle tasks dealing with sequential data, it is intuitive that what was memorized before
can be modeled within the context of a recurrent model so that the current inference can be
well-conditioned on previous information. Also optimized by gradient descending for their
parametric models, Recurrent Neural Network [42] (RNN) is structured with loops, which
allow information to persist.

A R

ht

xt

Figure 2.4 An exemplar RNN module.

As shown in Fig. 2.4, the recurrent parametric module R processes
the input xt and its outputs ht at the same time in each loop which
could be formulated as

ht = R(xt,ht−1) . (2.8)

RNN module stores memory information directly in the neurons.
Such behavior is described as the hidden state of the RNN, which
is a vector of floating point numbers that keep track of how active
each neuron is. These constantly changing hidden states will keep

on getting updated once new materials are added. RNN is widely adopted to process time-
related data, such as natural languages and financial statistics. As an example, words in
sentences can be coded with tokens. It could be trained to use past information and infer
the next word for this sentence. In terms of training, the loss function L for RNN of all time
steps t is defined based on the loss at every time step. Practically, the gradient vanishing and
exploding problems commonly exist in RNNs, because of a multiplicative gradient that can
be exponentially decreasing or increasing with respect to the number of layers.

Two strongly related works, Gated Recurrent Unit [43] (GRU) and Long Short-Term Memory
units [44] (LSTM) both target solving the vanishing gradient problem encountered by tradi-
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tional RNNs, while LSTM is a generalization of GRU. Interestingly, RNN can be adapted for
different kinds of data generation tasks such as Music generation, sentiment classification,
name entity recognition, and machine translation.

Transformers

normed-sum

multi-head
attention

normed-sum

multi-head
attention

normed-sum

masked
multi-head

attention

normed-sum

MLP

normed-sum

MLP

fc

softmax

E(x) E(ŷshifted)

yout

×N

×N

Figure 2.5 An example of a transformer [38] with encoded input E(x).
Two cascaded fully-connected layers which are connected by
a ReLU activation form the MLP.

Like recurrent neural networks
(RNNs), widely used to process se-
quential data such as natural lan-
guage, transformers are also de-
signed to handle sequential input
data for tasks such as translation
and text summarizing. However,
unlike RNNs, transformers [38, 45]
do not necessarily process the data
in order. Instead, the attention
mechanism provides context for
any position in the input sequence
coded with positional encodings.
For example, if the input data is
a natural language sentence, the
transformer does not need to pro-
cess the beginning of the sentence
before the end. Rather, it identifies
the context that confers meaning
to each word in the sentence. This
feature allows for more paralleliza-
tion than RNNs and therefore re-
duces training times. Such a data
processing technique also makes it
useful for extracting features from
unordered data, such as the feature
map of the point cloud [46]. As
illustrated in Fig. 2.5, the input x

and the shifted output ŷshifted are both encoded as latent embeddings E(x) and E(ŷshifted),
which are the summed features with their positional encodings. Benchmarked with satis-
fying performance, the pre-trained models like GPT-3 [47], BERT [48], and RoBERTa have
demonstrated the potential of transformers to find real-world applications such as document
summarization, document generation, biological sequence analysis, and video understanding.
In chemistry and biology, transformers are also utilized to gain a deeper understanding of the
relationships between genes and amino acids in DNA and proteins. This greatly boosts the
progress for faster drug design and development. Transformers variants are also employed
in some special scenarios to identify patterns and detect unusual activity to prevent fraud,
optimize manufacturing processes, suggest personalized recommendations, and enhance
healthcare.
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2.1 Deep Learning

2.1.3 Loss Functions

To numerically evaluate how deep architecture performs given specific tasks, we can validate
how output y differs from the expected ground truth ygt in terms of different metrics.

Common losses. The most common metric is norm 2 Euclidean distance which evaluates
the distance between two vectors in Euclidean space, which is described by the square root
of the summed squares of each dimensionality in y and ygt. The norm 2 distance is then
presented as

Lnorm =

√√√√
n∑

i=1

(yi − yi
gt)

2 . (2.9)

To validate models designed for pose-related tasks, e.g. pose estimation, cosine distance

Lcosine =

∑n
i=1 y

i × yi
gt

∥y∥∥ygt∥
(2.10)

is widely adopted, which focuses more on the direction of the estimated feature instead of
the anchored position of the estimation.

Reward-based loss. In procedures such as reinforcement learning [49], the artificial agents
learn to get rewards that they will receive when their actions have to lead to the successful
completion of a task. The network is trained to handle tasks to get as many rewards as
possible. Notice that such a network comprises two main parts: a decision network that uses
sensory information to select actions that lead to the greatest reward and a value network that
predicts how rewarding an action will be. The loss to get more rewards is then composed of
two parts: maximizing the rewards and predicting the expected numerical reward according
to specific actions as accurately as possible.

Binary cross entropy loss. In some scenarios, quantized estimations are expected, such as
classification and segmentation. Classification presents a categorical label for each sample
as a one-hot code with a length of the number of categories. Similarly, the segmentation
networks present the segmentation result as a multi-channel binary mask with the same
spatial size as the input data, where a one-hot code feature is assigned for each single input
element. The binary cross-entropy loss Lentropy is presented as

Lentropy =

n∑
i=1

−yi logyi
gt − (1 − yi) log(1 − yi

gt) . (2.11)

During training, those metrics could be used as loss functions to back-propagate gradients
to optimize network parameters. More recently, the binary cross entropy losses have also
been widely served as regularization to improve the confidence of some implicitly learned
parameters in more complex tasks, such as distinguishing foreground space and background
space apart from each other in the radiance field of NeRF [50] and signed distance field in
NeuS [51] to reconstruct unbounded 3D scenes.
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2.1.4 Optimizer

Learning-based algorithms involve optimization in many contexts. For example, performing
inference in models such as PCA involves solving an optimization problem. We often use
analytical optimization to write proofs or design algorithms. Concerning optimization of
deep architectures, it could be referred to as finding the parameters Θ of a neural network
that significantly reduces a cost function Lopt which could be presented as

Lopt = L
Θ
({S}) + λR

Θ
(Θ) , (2.12)

where the training set {S} is used to produce a performance measure. To overcome the
problem of overfitting, additional regularization terms R(Θ), e.g. L1 and L2 norms [52],
weighted by λ are also added during training, which modify Θ to favor simple solutions of
minimizing L({S}).

Optimizing Deep Architecture

Optimization algorithms that use only a single example at a time are sometimes called
stochastic or sometimes online methods. The term online is usually reserved for cases where
the examples are drawn from a stream of continually created examples rather than from
a fixed-size training set over which several passes are made. Most algorithms used for
deep learning fall somewhere in between, using more than one but less than all the training
examples. These were traditionally called mini-batch or mini-batch stochastic methods, and
it is now common to call them stochastic methods.

Stochastic gradient descent (SGD) and its variants are the most used optimization algorithms
for general machine learning and deep learning. The learning rate ϵ is necessary to get
gradually decreased over time. In practice, it is common to decay the learning rate linearly
until iteration τ, so that the learning rate for iteration k would be

ϵk = (1 −
k

τ
)ϵ0 +

k

τ
ϵτ , (2.13)

while for iterations more than τ, ϵ could be simply defined as a constant.

While stochastic gradient descent remains a popular optimization strategy, learning with
it can sometimes be slow. The method of momentum, which is derived from a physical
analogy, is designed to accelerate learning, especially in the face of high curvature, small
but consistent gradients, or noisy gradients. The momentum algorithm accumulates an
exponentially decaying moving average of past gradients and continues to move in their
direction. Although the momentum algorithm can mitigate these issues related to the learning
rate somehow, it does so at the expense of introducing another hyperparameter. There are
also optimizers proposed to use adaptive learning rates, e.g. , AdaGrad [53], RMSProp [54]
and Adam [54] and their variants [55, 56, 57].
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2.2 Training Techniques

Targeted on solving some real problems, training with some special techniques is useful
to improve the performance of the converged model even without changing the structural
properties of deep architectures.

2.2.1 Adversarial Training

Deep learning works well when the training data is similar to the testing data. In some
scenarios, the training data is in a pretty different domain compared to the testing data,
causing a data migration problem. This implies that the feature domains extracted by the
same encoder are different. Then there is an objective to make both domains similar so that
the network trained from one type of data could be applied to the test data.

z ygen

G(z)

yreal

y sy
D(y)

get scores

Figure 2.6 Discriminator D helps optimize generator G.
Notice that z could be extracted from an en-
coder E from an additional input x

Such tasks could be referred to as domain adap-
tation [58, 59, 60] or domain generalization [61],
and practically could be solved by discrimina-
tive training [62, 63]. For instance, the domain
discriminator in DANN [64] is used to distin-
guish the source domain from the target domain
using a binary code, while ADDA [65] uses two
different discriminators for the source feature
and the target features. A discriminator D is

crucial in the architectural implementation and training. As shown in Fig. 2.6, D which
produces realistic scores sy is used to optimize the generator G through a loss function

Lgen
(G)

= − log (D(G(z))) (2.14)

by randomly sampling the latent features z from certain distributions, e.g. Gaussian distri-
bution, Bernoulli distribution, or even distribution defined by a parametric encoder E from
another input x. Such optimization works only when the parameters of the discriminator are
optimized by the other loss function

Ldis
(D)

= − log(D(yreal)) − log (1 −D(G(z))) , (2.15)

which serves as a counterpart of Lgen. Practically, Lgen and Ldis are usually optimized in
alternating training.

If additional category labels are available, SymNets [66] can further improve the domain
adaptation by using the two-level domain confusion losses from the domain level to the
category level. By making the latent feature extracted by the encoder in the same dimension
as the input, GVB [67] uses discriminative training to make the latent features from the two
different domains in the same subspace.
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2.2.2 Metric Learning

Instead of evaluating the final output of deep architectures, latent features could also be
set with some constraints, potentially beneficial to improving the performance of the final
output. Such optimization is specifically beneficial when latent features are expected to be
within a given distribution so that new samples can be sampled, which produces reasonable
output.

Several methods have applied metric learning in the latent space optimization [68, 69, 70].
Assuming supervised learning, these methods optimize the distance among the samples
so that they reflect their ground truth semantic similarity. They formulate the pair-wise
distance metrics, which include: the triplet loss and its derivatives [68, 71, 72, 73], the
contrastive loss and its derivatives [74, 69], and the Neighborhood Component Analysis
and its derivatives [75, 76, 70]. Among all those losses, triplet learning [77, 68, 78, 71, 79]
is one of the typical learning strategies where the pair-wise distances are further labeled as
positive or negative based on the pair-wise relationships, resulting in clusters in the latent
space. Focused on latent features extracted by encoder E(·), the loss functions training with
Siamese term [80] could be defined as

Lpair(xi, xpos) = |E(xi) − E(xpos)|
2 , (2.16)

so that distances between the latent samples E(xpos) from the same category with E(xi)

become smaller while the distances between the samples from different categories become
larger; and, the loss function for triplet learning [77] is defined as

Ltriplet(xi, xpos, xneg) = ln

(
max

(
1, 2 −

|E(xi) − E(xneg)|
2

|E(xi) − E(xpos)|2 +ω

))
, (2.17)

where ω is a small margin to ensure that the final loss function is not infinite so that samples
from the same category, i.e. the positive pairs xi and xpos, are closer than samples from
distinct clusters, i.e. the negative pairs xi and xneg. We apply these loss functions to all the
possible permutations in the batch.

2.2.3 Variational Constraint

Given an encoder-decoder architecture such as Fig. 2.7, the variational inference uses the
encoder to approximate the posterior of the latent features produced by the encoder that is
conditioned on the expected network output. Such approximation is governed by a simple
distribution of the data in latent space, e.g. Gaussian distribution. These methods are derived
from VAE, where [81] proposes an assumption that the latent feature of VAE behaves like
PCA components. This, in effect, makes the convergence in training more efficient.

To solve the problem caused by the over-simplified latent space of VAE, categorical labels are
integrated into conditional VAE (CVAE), which is used in generation [82] and prediction [83].
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Figure 2.7 An example of a variational auto-encoder (VAE) with four convolutional modules in both the encoder
and decoder individually.

With a better performance than the standard VAE, they prove that such information can
potentially improve the generative models.

Using variational inference in clustering, GMVAE [84] and its graph embedding version [85]
demonstrate that multi-modal Gaussian can reveal categorical information better than VAE.
Another notable method is from VQ-VAE [86], which aims at solving the “posterior collapse"
by discretizing the trained features into a table. Moreover, InfoVAE [87] improves the
evidence lower bound (ELBO) objective since they observed that the ELBO favors optimizing
the distribution over the inference.

Beyond the assumption of simple distributions in the latent space, Auxiliary Deep Generative
Models [88] adds auxiliary latent variables. However, the disadvantage of such work is that
the auxiliary latent variables are necessary during training and inference time.

Besides visual data, VAE can also be used for natural language processing (NLP), such as
machine translation. VAE-LSTM [89] composes both the encoder and the decoder with LSTM
operations, while VAE-CNN [90] uses LSTM in the encoder and the dilated CNN to form
the decoder. In these methods, to solve the latent variable collapse problem [89, 91] of VAEs,
HR-VAE [91] imposes regularization for all the hidden states of the LSTM encoder.

The variational inference model imposes a pre-defined distribution on the latent feature
to optimize the encoder-decoder architecture. Unlike other methods, we implement the
variation constraint through the nebula anchors.

21



Chapter 2: Fundamental Theories

We first adopt the variation translation model from GNMT [92] where the expected Y differs
from input X. The difference between input and expected output implies that we can denote
a given problem through the probabilistic model P(Y|X).

Given the encoder E(X) which produces the latent feature z and the generator G(z), the
objective is to make the expectation Ez∼QP(Y|z) of the likelihood P(Y|z) to be close to the true
probability P(Y), where the probability Q(z) is determined by E(X) while P(Y|z) is determined
by G(z). We then use the Kullback-Leibler (KL) divergence D from posterior P(z|Y) to Q(z|X),
written as

DKL[Q(z|X,A)||P(z|Y)]=Ez∼Q

[
log
(
Q(z|X)

P(z|Y)

)]
, (2.18)

to measure the difference between those two distributions. Thus, by minimizing the KL
divergence, we evaluate the capacity of the encoder to generate latent variables that are
likely to produce the expected target. Since P(z|Y) is intractable, VAE [93, 94] rewrites
KL-divergence from (2.18) as

DKL[Q(z|X)||P(z|Y)] =Ez∼Q

[
log
(

Q(z|X)

P(Y|z) · P(z)

)]
+ logP(Y) . (2.19)

If we reorganize it as

DKL[Q(z|X)||P(z|Y)] = logP(Y) −

(
−Ez∼Q

[
log
(

Q(z|X)

P(Y|z) · P(z)

)])
, (2.20)

the second term is then called evidence lower bound (ELBO) of logP(Y). Considering that
the first term is independent of Q(z|X), the optimization then focuses on

ELBO =− Ez∼Q

[
log
(

Q(z|X)

P(Y|z) · P(z)

)]
(2.21)

alone, which could be reformulated as

ELBO =Ez∼Q [logP(Y|z)] − Ez∼Q

[
log
(
Q(z|X)

P(z)

)]

=Ez∼Q [logP(Y|z)] − DKL[Q(z|X)||P(z)] . (2.22)

Finally, the loss function of the generative model is formulated as Lenc-gen = −ELBO which is
written as

Lenc-gen = D[Q(z|X))||P(z)]︸ ︷︷ ︸
Lenc

−Ez∼Q[logP(Y|z)]︸ ︷︷ ︸
Lgen

, (2.23)

where the first term Lenc enforces the encoder to produce latent features which satisfy a
Gaussian distribution while the second term Lgen enforces the predicted output from the
latent feature fits the expected ground truth.
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3Learning-based Single View 3D
Completion

The 3D completion task takes a single view of the targeted object, depicted by a depth image,
an SDF volume, a point cloud, etc. to predict its 3D representation. Considering that only
a limited view of the entire scene is captured, constrained by the sensor’s viewpoint, the
objective of 3D completion inference models is to complete the target area by revealing the
hidden structures that are not visible in the input while keeping the observed geometries
as precise as possible. Learning-based models are popularly used due to their flexibility of
adaptation to different training data.

Here we first demonstrate our focused task of 3D semantic completion in Section 3.1 which
starts with a pure geometric completion in Section 3.1.1. Then combining semantic segmen-
tation with completion, the topic of doing semantic completion with an end-to-end model
is introduced in Section 3.1.2. Practically, there are many optional ways to present the 3D
semantic completion results. Different 3D data formats have their advantages and disad-
vantages for 3D semantic completion which will be introduced in Section 3.2. At the end of
this chapter, we introduce some existing datasets in Section 3.3.1 and metrics to evaluate the
related approaches in Section 3.3.

3.1 3D Semantic Completion

Given the task of constructing completed 3D geometry y from a single view of the target x,
which is practically depicted by a 2.5D input such as a depth image, an SDF volume, or a
point cloud. We solve it with a deep architecture which is usually implemented by encoder-
decoder architecture E and G. Both architectural and training designs could be involved
to improve the performance of the inference G(E(x)) in terms of completion accuracy and
inference efficiency.

3.1.1 3D Completion

To start with the tasks of doing 3D completion, we would mention that real-world RGB
images are much more than the number of existing depth images practically because depth
sensors are less popular in daily life. So we would first mention that an easy solution for 3D
completion is to use multiple frames and RGB images as input. For example, the recurrent
networks 3D-R2N2 [95] fuse multiple RGB feature maps sequentially into a decoder to predict
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Chapter 3: Learning-based Single View 3D Completion

the complete 3D geometries. To get 3D structures presented in higher resolutions, a coarse-
to-fine 3D decoder presented in Pix2Vox [96] and a residual refiner in Pix2Vox++ [97] are
proposed. Due to the recent popularity of the attention mechanisms, AttSets [98] proposed to
build attention layers to correlate the image features from different views. Although RGB
images are easy to get, the lack of 3D geometries makes deep architectures less robust to
background noises, which is a problem for complicated targets such as indoor scenes. Our
3D reconstruction in this paper focuses on only a single depth image.

Taking a depth image of an object from an arbitrary camera pose, the objective of 3D ob-
ject completion is to complete its missing structure and build its full reconstruction. The
advantage of a 2.5D image is the fact that it could be back-projected into 3D space.

3D back-projection from depth. In the depth image captured from devices such as Kinect
and RealSense, the depth value z together with the pixel-wise coordinates (x,y) could be
used to present a 3D surface or structural volume such as signed distance field (SDF) volume.
Here we have an introduction to the way to back-project depth images into 3D.

Considering the simplest pinhole camera model with no skew or distortion factor. A 3D
point p3d ∈ R3, which could be explicitly coded as (x,y, z), is mapped to the image plane by
the function f(x,y, z) as a 2D point p2d ∈ R2 which is presented as (u, v). Such procedure can
be described as a transformation

p2d ∼= K× [R|t]× p3d , (3.1)

where p2d is the projected point on the 2D image plane, K is the intrinsic camera matrix that
projects a 3D point to the image plane, and [R|t] is the extrinsic parameters describing the
relative transformation of the point in the world coordinate to the camera coordinate. Here
p3d represents the 3D point expressed in a predefined world coordinate system in Euclidean
space. Consider the equation in (3.1), a 3D point p3d can be projected into a 2D position (u, v).
On the other hand, the 3D points can also be recovered with a given z from a depth map and
solving x and y in the world frame for further processing, to get a 3D point p3d correctly
positioned.

By repetitively calculating a set of 3D points {p3d} from all valid depth values on an image, a
back-projected 3D surface S can be described by {p3d} ∈ S. Given such an incomplete surface
as input, a completion model can be structured, conditioning on the observed geometries.

3.1.2 Semantic Completion

Semantic completion supplements geometric completion with estimated semantic labels.
Sometimes it is practically referred to as semantic scene completion (SSC) [99] because scenes
are one of the best targets which need semantic labels to get objects separately presented from
the room layout. Here the objective is not only to build the full reconstruction of the scene
but also to semantically label each component. Before introducing semantic completion, 3D
segmentation is also an important topic to start with.
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3D segmentation. Apart from 3D completion, 3D segmentation is also a fundamental and
challenging task. Traditionally, 3D segmentation could be performed with hand-crafted fea-
tures, but hand-crafted features are hard to get generalized to large-scale data. Deep learning
based approaches significantly improves the performance of 3D segmentation for different
data formats such as sparse convolution [100] for volumetric data and PointNet++ [101] for
point cloud.

End-to-end semantic completion. Instead of estimating the complete geometries and the
semantic segmentation with cascaded completion and segmentation architectures, we fo-
cus on semantic completion with end-to-end models which jointly estimate the complete
geometry and semantics. Cascade semantic completion training usually tends to separately
optimize completion and segmentation models with the back-propagated gradients. Assum-
ing that the model is cascaded by a completion head and concatenated with a segmentation
sub-network, the segmentation gradient has far less influence on completion model. The
specialty of end-to-end training is that the semantic labels are usually produced by the same
layer of deep architecture so that the completion and segmentation supervisions enforce the
networks jointly producing geometric estimation for occluded areas and segmentation labels.
In this case, simultaneously learning the geometric structure and the semantic information
allows the algorithm to learn the contextual cues that can in turn represent the objects in the
reconstruction.

Focusing on learning-based semantic completion, most related work can be categorized
depending on the input data they process – voxelized grid or point cloud.

3.2 3D Representations

Some major data formats in which the expected 3D completion is presented have quite
different characteristics. They differ in the efficiency of processing, scale to get stored and
simplicity to get processed. In topics of 3D semantic completion, three types of data are
utilized the most which are volumetric data in Section 3.2.1, point cloud in Section 3.2.2 and
implicit surface 3.2.3.

3.2.1 Volumetric Data

Volumetric data is a set of samples (x,y, z, v), representing the value v of some property of
the data, e.g. 0 or 1 for occupancy and one-hot code for categories. Occupancy of 0 or 1 is
commonly used to indicate whether a voxel at (x,y, z) belongs to the background or object.
Similar to 2D image segmentation, volumetric semantic completion can also be presented by
element-wise categorical one-hot coding. The collection of 3D location (x,y, z) are usually
fixed across all samples in the same dataset for easy processing.

Given a depth image, its volumetric representation could be made by back-projecting all
pixels in the depth image into 3D space with the help of the camera’s intrinsic and extrinsic
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matrix. The values v for volumetric data are not necessarily to be integers, e.g. SDF values
in the signed distance field describe the interior and surrounding volume of an object. The
negative and positive signs for SDF values are used to denote where the position is located
from the surface of the object. The SDF values sometimes are quite useful for 3D completion
because they can provide an offset in empty space indicating the distance to the closest
structures.

Volumetric data is easy to get processed because of its gridded format. Such a fixed voxel grid
usually makes it easy to apply 3D convolution inspired by the popularity of 2D convolution
operations in CNNs [102, 103, 104] for RGB images.

For object completion, works such as 3D-EPN [105] and 3D-RecGAN [106] are proposed to
present complete shapes in volumetric space generated by 3D deconvolutions. Built upon
the architecture of 3D-RecGAN [106], 3D-RecGAN++ [107] utilizes adversarial training with
a 3D discriminator to improve the reconstruction. Also supplemented with discriminative
training, our ForkNet [8] further improves the completion accuracy for both synthetic and
real objects by self-supervised training with synthetically generated training pairs from two
of our decoders during training.

As for the topic of semantic scene completion, there have been several methods for semantic
scene completion based on voxel grids that were initiated by SSCNet [99]. Using a similar
volumetric data with 3D convolutions [105, 106, 107], VVNet [108] convolves on the 3D
volumes which are back-projected from the depth images, revealing the camera view instead
of a TSDF volume. Since 3D convolutions are heavy in terms of memory consumption
especially when the input is presented in high resolution, SketchSSC [109] learns the 3D
boundary of all objects in the scene to quickly estimate the resolution of the invariant
features.

Losses. Some related loss functions used for volumetric data reconstruction are usually
focused on 3 objectives in topic of semantic completion: (1) reconstructing SDF volumes
in (3.2), (2) estimating completion occupancy volumes in (3.3) and (3) estimating semantic
completion volumes in (3.5).

First, the loss function LSDF used to enforce a reconstructed SDF volume xoutput to be similar
to its ground truth x is

LSDF =
∥∥xoutput − x

∥∥2 . (3.2)

Next, the loss functions Lcomplete and LSSC are used to optimize the completion result goutput

and the semantic completion result soutput to be similar to their ground truth ggt and sgt,
binary cross entropy could be adapted with weights in loss functions.

Lcomplete =

1∑
i=0

(ϵ(goutput,ggt)) , (3.3)
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where ϵ(·, ·) is the per-category error

ϵ(q, r) = −λr logq− (1 − λ)(1 − r) log(1 − q) . (3.4)

Notice that λ in (3.4) ranges between 0 and 1, which weighs the importance of reconstructing
true positive regions in the volume. The larger λ is, the less penalty for the false positive
predictions will be enforced.

Similar to (3.3), a loss function to estimate semantic completion could be presented as

LSSC =

N∑
i=0

(ϵ(soutput, sgt)) (3.5)

where N is the number of categories in the semantic scene. With the help of some common
optimizers such as Adam optimizer [110], the parametric models would be with the ability
to produce expected 3D reconstruction results.

Volumetric completion architectures are comparably easy to get designed concerning the fact
that many 2D convolutional networks proposed for image-related tasks could be referred.
One disadvantage of representing completion in volumetric data is the limited local resolution
which makes it hard to reveal details without consuming many resources. Such a problem
could be solved by adopting a point cloud for 3D completion.

3.2.2 Point Cloud

A point cloud is a set of data points in space. The points may represent a 3D shape or
object. Each point position has its set of Cartesian coordinates (x,y, z). A point cloud has
the potential to reconstruct the object at a higher resolution. Simple tasks like translation
and rotation on point cloud can be done with point-wise rotation and translation matrix,
which could be presented with MLP if such matrix is expected to be estimated. For more
complicated tasks, e.g. point cloud segmentation and completion need to get solved by
learning-based methods such as some trending deep learning approaches.

Point cloud’s limitation to getting it easily used in deep learning is its unstructured data.
Unlike RGB images or voxel maps, point clouds do not have a particular order, and the
number of points varies as we change the camera pose or the object.

Dealing with unstructured data. To get encoded point cloud features possible to get used as
input for a decoder in deep architectures, the problem introduced by its unordered structure
needs to be solved. Targeted to solve the unordered structure of point clouds, presenting
the whole point cloud into a global feature that is permutational invariant is a practical way.
Applying pooling for the entire point cloud, e.g. max-pooling or average pooling results
in a single vector as a latent feature that is constantly given any point cloud presenting the
same shape. Max-pooling is more commonly used instead of average pooling because it also
gets rid of the bad influence of point duplication. PointNet [40] is among the first few works
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which propose to adopt max-pooling to achieve a permutation invariant latent feature for
further classification and segmentation.

Targeted on point cloud reconstruction and completion tasks, there are many works built
upon a PointNet feature. FoldingNet [31] proposes an object completion solution that
deforms 2D rectangular grids by multi-layer perceptron (MLP). By increasing the number of
2D rectangular grids, AtlasNet [111] and PCN [17] added more complexity as well as details
into the reconstruction. MSN [18] then further improves the completion by adding restrictions
to separate different patches apart from each other. Moreover, Cycle4Completion [112] is also
based on PointNet features but solves the problem by training with an unsupervised cycle
transformation.

Some works solve the problem of unstructured point cloud without summarizing them
into a single vector. SoftPoolNet [6] builds local groups of features by sorting them into
a feature map which is convolved by transposed 2D convolutions to produce complete
point cloud. Consequently, this approach can deal with unorganized point clouds and
achieve reconstruction results at high resolution. RFNet [113] and PointTr [46] produce
latent features presented in several vectors by encoder. On one hand, RFNet [113] uses its
features to complete the object in a recurrent way by concatenating the incomplete input
and the predicted points level by level. On the other, PointTr [46] relies on transformers to
produce a set of queries directly from the observed points with the help of positional coding,
which is further fed for the decoder to produce another set of queries to present the occluded
regions.

Extracting local features. Apart from the global features, some local features are origi-
nally proposed for point cloud segmentation to exploit local neighborhoods such as Point-
Net++ [101], which focuses on extracting features from local point groups which are sampled
with farthest point sampling (FPS). Using the nearest neighbor search for feature extraction,
KCNet [114] further aggregates the local features to investigate more complex relationships.
KPConv [115] and 3D-GCN [32] make the kernel of the point cloud convolution deformable
to generate better matches with different local geometries for segmentation.

For the aim of doing point cloud completion, PointNet++ [101] is used in PMP-Net [116]
which completes the entire object gradually from the observed regions to the nearest occluded
regions. The other recent work which uses the PointNet++ feature is SnowflakeNet [117],
which split points in the coarsely reconstructed object to execute the completion progres-
sively.

Processing point cloud in voxel grid. Point cloud can also be discretized into voxel grid
so that some volumetric operations such as 3D convolution and transposed 3D convolution
could be used to extract local features. The recent work from PVD [118], GRNet [119] and
VE-PCN [120] leverage both the point cloud and the voxel grid representations. Unlike
most works that rely on Chamfer distance to optimize the model, PVD [118] uses a simple
Euclidean loss to optimize the shape generation model from the voxelized point cloud
representation. GRNet [119] first voxelizes the point cloud, processes the voxel grid with
deep learning and converts the results back to point cloud. While this solves the unorganized
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structure of the point clouds, its discretization removes its advantage on reconstructing in
higher resolutions. VE-PCN [120] improves the completion by supplementing the features
of the decoder in the volumetric completion with the edges. This method then converts the
voxels to point clouds by Adaptive Instance Normalization [121].

Skip-connection. If we want to keep some observed geometries from input to output, a
skip connection is a good solution that passes input points or features in the decoder. Skip
connection for point cloud cannot be built directly because the points before the global feature
are not indexed explicitly with points in the decoder in many works. The skip connection
could be presented in either point or feature space. To point-wise skip connection, resampling
approaches among the fused point cloud of output and input could be applied, e.g. MDS [18]
and FPS [101]. As for building up feature-wise skip connection, we need to project the encoder
feature to the space of the decoder feature. SoftPool++ [5] solves such feature projection by a
matrix which is learned from a large scale of training data.

Losses. The most common loss to match the geometries between two-point clouds is
Chamfer distance and Earth-mover distance. Because point cloud datasets present 3D data
efficiently with flexible local resolutions, point cloud completion is one of the most important
topics. Due to the unorganized characteristic of the point cloud, point-to-point supervision
cannot be enforced directly. To calculate point-wise distance Chamfer distance and Earth
Mover’s Distance are commonly used. Chamfer distance uses the nearest neighbor searching
to assign points from one point cloud to the other. Earth Mover’s Distance (EMD), sometimes
referred to as Earth Moving Distance, additionally makes sure that one point in a point cloud
is assigned to only one point in the other point cloud once to calculate the point-wise distance
in EMD.

3.2.3 Implicit Surface

The other alternative 3D representation is implicit surfaces [122, 123, 124, 125]. Such a surface
S is defined as a surface in Euclidean space defined with an implicit function f(·)

S = {p ∈ R3 | f(p) = τ} . (3.6)

where τ is a threshold used to distinguish the inner and outer space of the targets and p is
the input 3D position, usually presenting the x, y and z coordinates. Particularly, extracting
the mesh from a signed implicit field f(·), e.g. the signed distance field (SDF) [126, 127]
or truncated SDF (TSDF) [128], is determined by the values of the sampled positions at a
threshold τ of 0.

So by querying a sufficient amount of points (x,y, z), the surface of the targeted objects
could be smoothly presented. To estimate point-wise implicit values, some approaches use
point cloud features [124, 125] which consider both global and local geometric information.
Unlike point cloud which only focuses on reconstructing expected structures while empty
space is disregarded, implicit 3D reconstruction such as DeepSDF [122], IF-Net [129] and
Points2Surf [124] creates a fine-grained 3D shape by estimating an object surface which
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distinguishes the inner and outer space. Such a format not only produces smoother surface
reconstruction but also reveals more local structural details compared to traditional mesh
reconstruction approaches such as screened Poisson reconstruction (SPR) [130]. For this work,
we do not investigate this form of 3D data, only volumetric and point cloud data – mainly
for the reason of efficiency concern, especially for applications of scene completion.

3.3 Evaluation

To get approaches evaluated, some popular datasets are constructed, which will be introduced
in Section 3.3.1. Some metrics are adopted or proposed specifically for different datasets
which will be introduced in Section 3.3.2.

3.3.1 Dataset

Here we introduce some major dataset for evaluating 3D completion performance targerted
on single object in paragraph 3.3.1 and indoor scenes in paragraph 3.3.1

Object completion. ShapeNet [131] is kept updated during these years to establish a highly-
annotated, large-scale dataset of 3D shapes. Such single object 3D dataset is widely used in
computer graphics, computer vision, robotics, and other related areas. Targeted on object
completion task from a single view, so far there are mainly 3 datasets that are established
based on the original ShapeNet dataset, which are PCN [17], TopNet [132], and MVP [133]
datasets. As the first two completion targeted point cloud datasets, object point cloud in
PCN [17] and TopNet [132] are sampled from ShapeNet meshes, supplementing two sets of
datasets individually for low and high resolutions evaluation, which contain 2,048 and 16,384
points on the complete object, respectively, where the inputs are provided with 2,048 points
for each camera view. The low-resolution dataset provided by TopNet is also commonly
referred to Completion3D benchmark. Since some related works report their results in terms
of the L1 and L2 metric of the Chamfer distance separately, we also report our results in
both resolutions (2,048 and 16,384) and metrics (L1 and L2) in this dissertation. By providing
much more partial scan samples from 26 uniformly distributed camera poses for each 3D
CAD model, MVP [133] dataset establishes a multi-view partial point cloud dataset which
contains over 100,000 scans in total.

Apart from those mentioned datasets which are targeted on 3D completion from a single
view, ABC [134] dataset introduces a collection of one million Computer-Aided Design
(CAD) models for research of geometric deep learning methods and applications, which
can be used for evaluating object completion from noise scans. Each model in the ABC
dataset is a collection of explicitly parameterized curves and surfaces, providing ground
truth for differential quantities, patch segmentation, geometric feature detection, and shape
reconstruction. Sampling the parametric descriptions of surfaces and curves allows for
generating data in different formats and resolutions, enabling fair comparisons for a wide
range of geometric learning algorithms. As a use case for our dataset, we perform a large-
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scale benchmark for the estimation of the surface normal, comparing existing data-driven
methods and evaluating their performance against both the ground truth and traditional
normal estimation methods.

Semantic scene completion. The SUNCG [99] and NYU [135] are two of the earliest bench-
marks for semantic scene completion and include a paired depth image and the corresponding
semantically labeled volume. Based on an online interior design platform, the evaluation
of SUNCG contains more than 130,000 paired depth images and voxel-wise semantic labels
taken from 45,622 houses with realistic rooms and furniture layouts [99]. Like SUNCG, each
image in NYU [135] dataset is also annotated with 3D semantic labels. While SUNCG com-
prises synthetically rendered depth data, NYU includes real scenes acquired with a Kinect
depth sensor. The NYU [135] dataset is composed of 1,449 indoor depth images captured
with a Kinect depth sensor. This makes the evaluation of NYU more challenging, due to the
presence of real nuisances, as well as due to a limited training set of fewer than 1000 samples.
The ground truth resolution of both datasets is given as voxels on the scale of 240× 144× 240.
Due to memory issues, most approahes decrease the 3D resolution to get their proposed
methods evaluated, e.g. [136, 108, 137, 138, 99] produce 60 × 36 × 60 semantic volumes for
evaluation and [10, 107, 8] produce a resolution of 80× 48× 80. Notice that both SUNCG and
NYU datasets suggest two types of evaluation as introduced in SSCNet [99]. One evaluates
the semantic segmentation accuracy on the observed surface reconstruction, while the other
considers the semantic segmentation of the predicted full volumetric reconstruction.

In terms of the categorical semantics, both SUNCG [99] and NYU [135] present semantic
categories of 12 classes of varying shapes and sizes, i.e. : empty space, ceiling, floor, wall, window,
chair, bed, sofa, table, tvs, furniture and other objects.

Although SUNCG supplements large amount of data, they are all rendered from synthetic
models. Considering that NYU dataset only contains limited number of real samples, an-
other relevant dataset for single view 3D completion for real data is ScanNet [139] which
is supplemented with its ground truth semantic completion supervision by CompleteScan-
Net [140] dataset. Such real dataset contains a total of 45,451 paired partial scans and semantic
completion.

3.3.2 Metrics

To validate the performance of completion approaches, some metrics are proposed to validate
results presented in different data formats.

Intersection over union (IoU). Intersection over Union (IoU) and the mean average pre-
cision (mAP) are commonly used to validate semantic completion results presented in a
volumetric format [10, 8, 99], the predicted voxel labels are compared to ground truth la-
bels for each object class on both the observed and occluded voxels for semantic scene
completion.
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Chamfer distance (CD). Chamfer Distance (CD) is the most common evaluation metric
to evaluate whether geometries from two point clouds match with each other or not [17, 6].
It takes the distance of each point into account. For each point in each cloud, CD finds the
nearest point in the other point set and sums the square of distance up.

Earth mover’s distance (EMD). Earth Mover’s Distance (EMD), sometimes referred to as
Earth Moving Distance, is another popular loss metric for comparing point clouds alongside
Chamfer Distance [17, 6]. One point in a point cloud is only assigned to only one point in the
other point cloud once to calculate the point-wise distance in EMD. One disadvantage of the
Chamfer distance and earth mover’s distance is the fact that they can hardly reflect the errors
in the local geometry because some crucial structures are only with a few points from which
the errors will be averaged by a large amount of other points on the same target.

F-Score@1%. Since the Chamfer distance hardly reflects the errors in the local geometry as
suggested in [141], the evaluation in GRNet [119] uses the metric F-Score@1% to validate the
performance of point cloud completion. In general, F-Score is calculated from the precision
and recall of the test, where the precision is the number of true positive results divided by
the number of all positive results, including those not identified correctly, and the recall is
the number of true positive results divided by the number of all samples that should have
been identified as positive. Specifically, F-Score@1% computes the F-Score after matching the
predicted point cloud to the ground truth with a distance threshold of 1% of the side length
of the reconstructed volume.
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Single-view 3D completion could be presented from different types of input and output. The
output is expected to be presented in multiple different 3D data formats, while the input can
also be RGB. This chapter reviews works targeting 3D completion tasks with and without
semantics from a single view. Considering that 3D data could be presented in different
formats, different completion approaches are proposed, particularly for individual common
3D data. Here, we start with an overview of 3D completion in Section 4.1. Then we present
works using single view data as input, targeting presenting the completion in the form of
volumetric data in Section 4.2 and point cloud in Section 4.3, where the topics concerning
both geometric completion and semantic completion are discussed. Concerning that most
3D completion models are structured using encoder-decoder architectures, we discuss some
popular features connecting the encoder and decoder in Section 4.4.

4.1 3D Completion

Single RGB is one of the simplest input data to get used to produce complete 3D data, e.g.
Im2Struct [142] is one of the first few works using CNN to process an image to produce
cuboids to present a 3D shape. Single RGB image does not explicitly present observed
structures and the background usually introduces much noise to decode objects.

To improve the completion accuracy furthermore by changing input, a sequence of RGB
images and a set of depth images can be used as input. The former could be referred to
as solutions revealing occluded regions with more images, and the latter solution provides
3D structures directly which can be part of output. 3D-R2N2 [95] builds recurrent neural
networks to fuse multiple feature maps extracted from input RGB images sequentially to
recover the 3D geometries. To further improve the reconstruction, a coarse-to-fine 3D decoder
was proposed in Pix2Vox [96] as well as the residual refiner in Pix2Vox++ [97]. Due to the
recent popularity of the attention mechanisms, AttSets [98] proposed to build attention layers
to correlate the image features from different views. Considering a sequence of RGB images
is less effective to collect, and more camera positions are not feasible in some scenarios, in
contrast, 3D reconstruction in this dissertation focuses only on a single scan.

Focusing on learning-based completion depth images, most related work can be categorized
depending on the input data they process – voxelized grid, point cloud, and meshes. In the
following sections, we separately introduce approaches which are used for completion in
different data formats, e.g. volumetric approaches in Section 4.2 and point cloud approaches
in Section 4.3.
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4.2 Volumetric Inference

Volumetric data is a set of samples (x,y, z, v), where the value v presents some property of the
data such as occupancy values or signed distance function values for voxel at position (x,y, z).
Given a depth image, its volumetric representation could be made by back-projecting all
pixels in the depth image into 3D space with the help of the camera’s intrinsic and extrinsic
matrix. The convenience of processing the volumetric data is because of its gridded format.
Such a fixed voxel grid usually makes it easy to apply 3D convolution inspired by the
popularity of 2D convolution operations in CNNs [102, 103, 104] for RGB images.

Object completion. Due to the advantages in extracting meaningful local patterns while
removing noises introduced by the 2D convolution operations in CNNs [102, 103, 104] for
images, its straightforward extension to 3D convolutions on volumetric data also rose to fame.
3D-EPN [105] and 3D-RecGAN [106] are the first few works on this topic, where they extended
the typical encoder-decoder architecture [30] to 3D. Although 3D-EPN produces coarse 3D
shapes, the fine shape needs to be with the help of a correlation between coarse shape
with known 3D geometry from a shape database. Such retrieval introduces an additional
cost of time and limits the ability to reconstruct atypical examples. 3D-RecGAN [106] and
3D-RecGAN++ [107] on the other hand improve the fine 3D completion by applying a
discriminator composed of 3D convolutions.

Semantic scene completion. Semantic scene completion is distinguishable for its end-to-end
inference, which simultaneously produces geometric completion and semantic segmentation.
It does not necessarily use cascaded architecture, which produces geometric completion
first and then does semantic segmentation based on the completed shape. For this topic,
SSCNet [99] is the first few works that demonstrated promising results in the joint task
of scene completion and semantic segmentation utilizing a CNN [143, 144]. SSCNet [99]
proposes a CNN-based architecture that carries out jointly the 3D scene completion and the
semantic labeling from a single depth image. A voxel-wise softmax loss function is proposed
as the optimizer for learning semantic segmentation of volumetric elements. SSCNet encodes
the depth image into volumetric space using the Truncated Signed Distance Function (TSDF)
from KinectFusion [145] so that the input of such inference pipeline is presented in 3D space
for easier processing. It uses dilated convolutions to make it possible to extract features
from the object with different scales. Based on SSCNet, VVNet [108] applies view-based
3D convolutions to replace SDF back-projections, resulting in more effective geometric
information extraction from the input depth image. SaTNet [138] relies on the RGB-D
images. They initially predict the 2D semantic segments with the RGB. The depth image
then back-projects the semantically labeled pixels to a 3D volume, which goes through
another architecture for 3D scene completion. ScanComplete [146] also targets semantic scene
completion. However, instead of starting from a single depth image, they assume to process
a large-scale reconstruction of a scene acquired via a consumer depth camera. They suggest
a coarse-to-fine scheme based on an auto-regressive architecture [147], where each level
predicts the completion and the per voxel semantic labeling at a different voxel resolution.
Focusing on refining produced volumetric completion, 3D-RecGAN++ [148] suggests using
an adversarial approach to learn how to realistically complete partial object shapes from
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common classes. Later on, other generative models have also been proposed to generate 3D
data directly from 2D images, such as the 3D Inductor [149]. Due to the limited amount of
3D annotation for real data, previous works have performed poorly on real depth images.
Also adopting 3D discriminators to optimize the output, ForkNet [8] performs better on
real datasets such as NYU [135] dataset by enforcing multiple decoders producing paired
unseen partial scan and its semantic completion for training. Such a generated training pair
makes it possible to get the model trained well even if there is training data. As mentioned
works present input partial scan into a volumetric latent feature which potentially loses some
local details, SketchSSC [109] extract contour sketches of a target to be used as local priors to
complete the whole target.

In summary, the main advantage of volumetric completion is its data structure, such that
deep learning methods developed for RGB images can be extended to 3D. However, this
advantage is also its limitation. The fixed local resolution makes it hard to reconstruct the
object’s finer details without consuming much memory. The performance of recent works on
the topic of volumetric semantic completion is reported in Table 4.1 on SUNCG [99] dataset
and Table 4.2 on NYU [135] dataset, both reported in intersection over union (IoU in %).

SUNCG [99] dataset, intersection over union (IoU in %)

Method ceil. floor wall win. chair bed sofa table tvs furn. objs. Avg.

SSCNet [99] - surf 97.7 94.5 66.4 30.0 36.9 60.2 62.5 56.3 12.1 46.7 33.0 54.2

ForkNet [8] - surf 98.2 96.9 67.8 37.4 35.9 72.9 69.6 48.8 20.5 48.4 32.4 57.2

AdversarialSSC [10] 41.4 37.7 45.8 26.5 26.4 21.8 25.4 23.7 20.1 16.2 5.7 26.4

3D-RecGAN [107] 79.9 75.2 48.2 28.9 20.2 64.4 54.6 25.7 17.4 33.7 24.4 43.0

SSCNet [99] 96.3 84.9 56.8 28.2 21.3 56.0 52.7 33.7 10.9 44.3 25.4 46.4

VVNet [108] 98.4 87.0 61.0 54.8 49.3 83.0 75.5 55.1 43.5 68.8 57.7 66.7

SaTNet [138] 97.9 82.5 57.7 58.5 45.1 78.4 72.3 47.3 45.7 67.1 55.2 64.3

ForkNet [8] 95.0 85.9 73.2 54.5 46.0 81.3 74.2 42.8 31.9 63.1 49.3 63.4

Table 4.1 Evaluation on semantic scene completion. surf indicates that only observed geometries are validated.

NYU [135] dataset, Intersection over Union (IoU in %)

Method res. whole ceil. floor wall win. chair bed sofa table tvs furn. objs Avg.

SSCNet [99] 60 55.1 15.1 94.6 24.7 10.8 17.3 53.2 45.9 15.9 13.9 31.1 12.6 30.5

VVNet [108] 60 61.1 19.3 94.8 28.0 12.2 19.6 57.0 50.5 17.6 11.9 35.6 15.3 32.9

SaTNet [138] 60 60.6 17.3 92.1 28.0 16.6 19.3 57.5 53.8 17.7 18.5 38.4 18.9 34.4

ForkNet [8] 80 37.1 36.2 93.8 29.2 18.9 17.7 61.6 52.9 23.3 19.5 45.4 20.0 37.1

CCPNet [150] 240 63.5 23.5 96.3 35.7 20.2 25.8 61.4 56.1 18.1 28.1 37.8 20.1 38.5

SketchSSC [109] 60 71.3 43.1 93.6 40.5 24.3 30.0 57.1 49.3 29.2 14.3 42.5 28.6 41.1

SISNet [151] 60 78.2 54.7 93.8 53.2 41.9 43.6 66.2 61.4 38.1 29.8 53.9 40.3 52.4

Table 4.2 Evaluation on semantic scene completion. The value of res. (r) indicates the output volumetric resolu-
tion, which is r× 0.6r× r.
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4.3 Point Cloud Inference

A point cloud is a sparse 3D representation that presents every single 3D element in a set of
Cartesian coordinates (x,y, z). Unlike volumetric data which need to be gridded in fixed 3D
volumes, point cloud naturally does not need to be discretized into fixed resolution so that
complex local structures can be presented with higher local resolutions. Although point cloud
can potentially reconstruct the object at a higher resolution, it exhibits a limited application
in deep learning due to its unstructured data [40]. Such unstructured data form makes it
difficult to get local features extracted because the local region is not explicitly defined. Such
unstructured data does not have a particular order. Practically, if we back-project the depth
image into a point cloud in 3D space, the number of points varies as we change the camera
pose or the object.

Targeted to solve the unordered structure of point clouds, PointNet [40] proposes to imple-
ment max-pooling to achieve a permutation invariant latent feature presented in a single
vector. Notice that such a feature can still describe the object; interestingly, a structure of
contour and edges could be revealed if we trace the kept values in the feature back into the
original point cloud.

Point cloud completion. Based on the latest feature of PointNet, FoldingNet [31] proposes
an object completion solution that deforms 2D rectangular grids by multi-layer perceptron
(MLP). Such a large grid limits the ability to produce slim and sharp structures. By decreasing
the number of samples in a single 2D grid and increasing the number of grids, AtlasNet [111]
and PCN [17] added more complexity as well as more details to the reconstruction. MSN [18]
then further improves the completion by adding restrictions to separate different patches.
Moreover, Cycle4Completion [112] is also based on PointNet features but solves the problem
by training with an unsupervised cycle transformation. In addition, building a similar feature
as PointNet, ME-PCN [152] takes both the occupied and the empty regions on the depth
image as input for 3D completion, showing the advantage of masking the empty regions in
completion.

Moving away from the global feature representation, PointNet++ [101] samples the local
subset of points with the farthest point sampling (FPS) and then feeds it into PointNet [40].
Based on this feature, PMP-Net [116] completes the entire object gradually from the observed
regions to the nearest occluded regions. SnowflakeNet [117] also uses the PointNet++ features
to split points in the coarsely reconstructed object to execute the completion progressively.

Unlike the methods that are dependent on a vectorized global feature to solve the permutation
invariant problem, RFNet [113] and PointTr [46] produce several global features in their
encoder. On one hand, RFNet [113] uses its features to complete the object recurrently by
concatenating the incomplete input and the predicted points level by level. On the other,
PointTr [46] relies on transformers to produce a set of queries directly from the observed
points with the help of positional coding. In effect, PointTr [46] does not need to compress the
input into a single vector. The recent work from PVD [118], GRNet [119], and VE-PCN [120]
leverage both the point cloud and the voxel grid representations. Unlike most works that use
Chamfer distance to optimize the model, PVD [118] uses a simple Euclidean loss to optimize
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the shape generation model from the voxelized point cloud representation. GRNet [119]
first voxelizes the point cloud, processes the voxel grid with deep learning, and converts
the results back to a point cloud. While this solves the unorganized structure of the point
clouds, its discretization removes its advantage of reconstructing in higher resolutions. VE-
PCN [120] improves the completion by supplementing the features of the decoder in the
volumetric completion with the edges. This method converts the voxels to point clouds by
Adaptive Instance Normalization [121]. Another solution is presented in our previous work
SoftPoolNet [6], that builds local groups of features by sorting them into a feature map. 2D
convolutions are then applied to the feature map. Consequently, this approach can deal
with unorganized point clouds and achieve high-resolution reconstruction results. We build
upon SoftPoolNet [6] and generalize the feature extraction into a module called SoftPool++.
This then allows us to connect multiple modules in an encoder-decoder architecture. As a
consequence, we achieve better quantitative and qualitative results. Some selected recent
works validating on point cloud completion are reported in different metrics, i.e. , L1 distance
in Table 4.3 and Table 4.5, L2 distance in Table 4.4 and Table 4.6, and F-Score@1% in Table 4.7
and Table 4.8.

Completion3D [132] benchmark, output resolution = 2,048, L1 distance

Method plane cabinet car chair lamp sofa table vessel Avg.

FoldingNet [31] 11.18 20.15 13.25 21.48 18.19 19.09 17.80 10.69 16.48

AtlasNet [111] 10.37 23.40 13.41 24.16 20.24 20.82 17.52 11.62 17.69

PCN [17] 8.09 18.32 10.53 19.33 18.52 16.44 16.34 10.21 14.72

TopNet [132] 5.50 12.02 8.90 12.56 9.54 12.20 9.57 7.51 9.72

SA-Net [153] 2.18 9.11 5.56 8.94 9.98 7.83 9.94 7.23 7.74

SoftPoolNet [6] 4.76 10.29 7.63 11.23 8.97 10.08 7.13 6.38 8.31

SoftPool++ [5] 3.50 9.95 7.01 10.48 8.45 8.86 5.99 5.60 7.48

Table 4.3 Evaluation on the object completion based on the Chamfer distance trained with L1 distance (multiplied
by 104) with the output resolution of 2,048.

Point cloud segmentation. Unlike generating more 3D structures in 3D completion, intro-
duced in Section 4.1, the segmentation task assigns categorical labels without changing the
observed geometries. We focus on introducing point cloud segmentation approaches here
in this section. Point cloud segmentation depends on point-wise features; in PointNet [40],
3D features are processed into a point-wise feature with MLP. Such a point-wise feature
is further concatenated with a global feature produced by max-pooling in latent space for
semantic decoding, resulting in one-hot code that presents categorical information. Some
features are proposed for point cloud segmentation to exploit local neighborhoods, such
as PointNet++ [101] focusing on extracting features from local point groups. Also using
the nearest neighbor search for feature extraction, KCNet [114] further aggregates the local
features to investigate more complex relationships. KPConv [115] and 3D-GCN [32] make the
kernel of the point cloud convolution deformable to generate better matches with different
local geometries for segmentation.
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Completion3D [132] benchmark, output resolution = 2,048, L2 distance

Method plane cabinet car chair lamp sofa table vessel Avg.

FoldingNet [31] 12.83 23.01 14.88 25.69 21.79 21.31 20.71 11.51 19.07

PointSetVoting [154] 6.88 21.18 15.78 22.54 18.78 28.39 19.96 11.16 18.18

AtlasNet [111] 10.36 23.40 13.40 24.16 20.24 20.82 17.52 11.62 17.77

PCN [17] 9.79 22.70 12.43 25.14 22.72 20.26 20.27 11.73 18.22

TopNet [132] 7.32 18.77 12.88 19.82 14.60 16.29 14.89 8.82 14.25

GRNet [119] 6.13 16.90 8.27 12.23 10.22 14.93 10.08 5.86 10.64

SA-Net [153] 5.27 14.45 7.78 13.67 13.53 14.22 11.75 8.84 11.22

SoftPoolNet [6] 6.39 17.26 8.72 13.16 10.78 14.95 11.01 6.26 11.07

SoftPool++ [5] 4.59 15.82 6.78 11.41 8.82 13.37 9.15 4.93 9.36

PMP-Net [116] 3.99 14.70 8.55 10.21 9.27 12.43 8.51 5.77 9.23

Table 4.4 Evaluation on the object completion based on the Chamfer distance trained with L2 distance (multiplied
by 104) with the output resolution of 2,048.

PCN [17] dataset, output resolution = 16,384, L1 distance

Method plane cabinet car chair lamp sofa table vessel Avg.

3D-EPN [105] 13.16 21.80 20.31 18.81 25.75 21.09 21.72 18.54 20.15

ForkNet [8] 9.08 14.22 11.65 12.18 17.24 14.22 11.51 12.66 12.85

PointNet++ [101] 10.30 14.74 12.19 15.78 17.62 16.18 11.68 13.52 14.00

FoldingNet [31] 9.49 15.80 12.61 15.55 16.41 15.97 13.65 14.99 14.31

AtlasNet [111] 6.37 11.94 10.11 12.06 12.37 12.99 10.33 10.61 10.85

TopNet [132] 7.61 13.31 10.90 13.82 14.44 14.78 11.22 11.12 12.15

PCN [17] 5.50 10.63 8.70 11.00 11.34 11.68 8.59 9.67 9.64

MSN [18] 5.60 11.96 10.78 10.62 10.71 11.90 8.70 9.49 9.97

GRNet [119] 6.45 10.37 9.45 9.41 7.96 10.51 8.44 8.04 8.83

PMP-Net [116] 5.65 11.24 9.64 9.51 6.95 10.83 8.72 7.25 8.73

SoftPoolNet [6] 6.93 10.91 9.78 9.56 8.59 11.22 8.51 8.14 9.20

CRN [155] 4.79 9.97 8.31 9.49 8.94 10.69 7.81 8.05 8.51

SoftPool++ [5] 5.50 10.02 8.73 9.05 7.53 10.24 8.01 7.43 8.31

Table 4.5 Evaluation on the object completion based on the Chamfer distance trained with L1 distance (multiplied
by 103) with the output resolution of 16,384.

Point cloud semantic completion. Unlike volumetric data, semantic completion for point
cloud keeps changing the geometries, so it could be presented in a cascaded way, where
completion is done before head segmentation.
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PCN [17] dataset, output resolution = 16,384, L2 distance

Method plane cabinet car chair lamp sofa table vessel Avg.

FoldingNet [31] 3.15 7.94 4.68 9.23 9.23 8.90 6.69 7.33 7.14

TopNet [132] 2.15 5.62 3.51 6.35 7.50 6.95 4.78 4.36 5.15

MSN [18] 1.54 7.25 4.71 4.54 6.48 5.89 3.80 3.85 4.76

AtlasNet [111] 1.75 5.10 3.24 5.23 6.34 5.99 4.36 4.18 4.52

NSFA [156] 1.75 5.31 3.43 5.01 4.73 6.41 4.00 3.56 4.28

PCN [17] 1.40 4.45 2.45 4.84 6.24 5.13 3.57 4.06 4.02

PF-Net [157] 1.55 4.43 3.12 3.96 4.21 5.87 3.35 3.89 3.80

CRN [155] 1.46 4.21 2.97 3.24 5.16 5.01 3.99 3.96 3.75

SoftPoolNet [6] 1.63 3.79 3.05 3.27 2.95 3.78 2.59 2.25 2.91

GRNet [119] 1.53 3.62 2.75 2.95 2.65 3.61 2.55 2.12 2.72

SoftPool++ [5] 1.27 3.43 2.65 2.98 2.67 3.38 2.27 1.85 2.55

Table 4.6 Evaluation on the object completion based on the Chamfer distance trained with L2 distance (multiplied
by 103) with the output resolution of 16,384.

PCN [17] dataset, output resolution = 16,384, F-Score@1%

Method plane cabinet car chair lamp sofa table vessel Avg.

FoldingNet [31] 0.642 0.237 0.382 0.236 0.219 0.197 0.361 0.299 0.322

TopNet [132] 0.771 0.404 0.544 0.413 0.408 0.350 0.572 0.560 0.503

AtlasNet [111] 0.845 0.552 0.630 0.552 0.565 0.500 0.660 0.624 0.616

SoftPoolNet [6] 0.831 0.605 0.685 0.649 0.715 0.601 0.746 0.721 0.694

PCN [17] 0.881 0.651 0.725 0.625 0.638 0.581 0.765 0.697 0.695

MSN [18] 0.885 0.644 0.665 0.657 0.699 0.604 0.782 0.708 0.705

GRNet [119] 0.843 0.618 0.682 0.673 0.761 0.605 0.751 0.750 0.708

SoftPool++ [5] 0.867 0.693 0.706 0.712 0.794 0.689 0.825 0.804 0.761

Table 4.7 Evaluation on the object completion based on the F-Score@1% trained with L2 Chamfer distance and
the output resolution of 16,384.

4.4 Embedding of the 3D Completion Model

Recently, 3D reconstruction with the help of a radiance field can deliver high-fidelity surface
reconstruction. Several methods using neural networks have been proposed for volume
rendering and surface reconstruction, such as VolSDF [159] that applied the cumulative
distribution function of Laplacian distribution to evaluate the density function from SDF for
volume rendering and surface reconstruction. Another notable work of NeuS [160] adopts
an unbiased density function for signed distance field (SDF) for more accurate reconstruc-
tion; and, NeuralWarp [161] improved the accuracy on low-textured areas by optimizing
consistency between warped views of different images. Moreover, there have been numerous
works that were developed from NeuS [160]. For example, SparseNeuS [162] extends NeuS
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MVP [133] dataset, output resolution = 16,384, F-Score@1%

Method plane cabinet car chair lamp sofa table vessel Avg.

TopNet [132] 0.789 0.621 0.612 0.443 0.387 0.506 0.639 0.609 0.576

PCN [17] 0.816 0.614 0.686 0.517 0.455 0.552 0.646 0.628 0.614

SoftPoolNet [6] 0.843 0.568 0.636 0.623 0.698 0.568 0.680 0.710 0.666

GRNet [119] 0.853 0.578 0.646 0.635 0.710 0.580 0.690 0.723 0.677

MSN [18] 0.879 0.692 0.693 0.599 0.604 0.627 0.730 0.696 0.690

CRN [155] 0.898 0.688 0.725 0.670 0.681 0.641 0.748 0.742 0.724

SoftPool++ [5] 0.862 0.622 0.704 0.695 0.783 0.649 0.776 0.778 0.734

ECG [158] 0.906 0.680 0.716 0.683 0.734 0.651 0.766 0.753 0.736

PoinTr [46] 0.888 0.681 0.716 0.703 0.749 0.656 0.773 0.760 0.741

NSFA [156] 0.903 0.694 0.721 0.737 0.783 0.705 0.817 0.799 0.770

VRCNet [133] 0.928 0.721 0.756 0.743 0.789 0.696 0.813 0.800 0.781

Table 4.8 Evaluation on the object completion based on the F-Score@1% trained with L2 Chamfer distance and
the output resolution of 16,384.

to use fewer images for reconstruction. The geometric details can be revealed because of the
precisely recorded camera poses and a multi-view stereo dataset towards a single object.

Single-view completion usually tackles the task of various targets compared to these works;
single-view completion is usually inferencing based on a learned categorical prior so that the
estimated geometry could be regarded as a conditional reconstruction given a partial scan.
Such a conditional inference usually presents the categorical prior with a latent feature. While
there are many point cloud completion works carried out in encoder-decoder architectures,
e.g. FoldingNet [31], AtlasNet [111], PCN [17] and MSN [18], which is connected with only
a single latent feature such as PointNet [40] or PointNet++[101] feature, the feature itself
usually contains strong shape and categorical priors. Such implicitly learned categorical
prior can be helpful for other tasks such as classification. A notable work from OcCo [163]
demonstrates that the weights trained for completion are also valuable for other tasks like
segmentation and classification.
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5Contributions

This chapter summarizes the main contributions, supplemented with the associated pub-
lication for each work. The primary focus of our work is completing 3D geometries in
two data formats: volumetric data in Section 5.1 and point cloud in Section 5.2. First, to
leverage the well-investigated 2D operators such as 2D convolution to 3D data, Section 5.1
demonstrates solutions to make completion presenting in 3D grids from a single view scan
by adapting existing operations, architectures, and training techniques to 3D completion.
Because volumetric representation limits the resolution of the completed 3D targets, we
also focus on completing the target object as a point cloud with flexible local resolutions in
Section 5.2, where the reconstructed objects are with finer details. Eventually, inspired by the
improved performance on 3D completion by feature learning, especially metric learning and
variational inference, we further try to generalize feature optimization methods in Section 5.3
for other 1D, 2D and 3D tasks, including language translation planar reconstruction, hand
pose estimation, etc.

5.1 Volumetric Completion

This section focuses on semantic volumetric completion from a single view. The volumetric
3D completion is usually presented in a 3D grid with a size of d1 × d2 × d3. Incorporating
the semantics for Nc categories estimated simultaneously, Nc 3D grids are then used in total,
resulting in 4D data with the shape of d1×d2×d3×Nc. To estimate such expected completion,
Section 5.1.1 and Section 5.1.2 introduce two of our proposed approaches focused on two
different formats of input partial scan: depth image and signed distance field. Section 5.1.1
starts with a simple 2.5D image input while Section 5.1.2 leverages a 3D input which is a
signed distance field (SDF).
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5.1.1 Adversarial Semantic Scene Completion from a Single Depth Image
(International Conference on 3D Vision 2018)

Depth Image Ground Truth (a) 3D VAE (b) Ours

Empty Ceiling Floor Wall Window Door Chair Bed Sofa Table Furniture Objects

3DV 2022

Figure 5.1 Taking a single depth image as input, our proposed AdversarialSSC [10] outperforms previous works
on revealing more furniture.

Considering that an image has a limited view of the entire scene, constrained by the sensor’s
viewpoint, our deep learning approach aims to complete the scene by revealing the hidden
structures that are not visible in the input. A leisurely start to tackle the task of seman-
tic completion is presenting output in volumetric space so that existing 2D convolutional
architectures could be adapted by changing 2D operators to 3D.

While there are existing approaches that solve single-view 3D semantic completion, they
operate entirely through 3D convolutions during inference which could be more efficient.
In contrast, during inference, our model recovers the 3D structure in latent space from the
2.5D input by down-sampling through layers of 2D convolutions to improve the efficiency
of our encoder. However, having end-to-end training with a 2D encoder and a 3D decoder
cannot produce a satisfying reconstruction. This is because the 2D latent feature does not
contain the spatial 3D geometries. We then propose to match the reshaped 2D feature to a 3D
feature of 3D VAE. To make the feature matching easier compared to 3D VAE, a variational
inference is used as a constraint on the latent variables. During training, the adversarial loss
is used to make the two types of features similar. We additionally use adversarial learning on
the output to make our model able to reconstruct and classify every type of object, including
small objects.

Contributions

Yida Wang proposed and implemented the architecture, and adjusted the optimizer to fit
both feature learning from two domains and the completion inference from the image to the
expected semantic 3D reconstruction. Additionally, he evaluated on synthetic datasets.

David Tan helped rephrase the methodology and gave suggestions about the evaluations.

Federico Tombari corrected the evaluation in terms of fairness on common metrics.

Nassir Navab financed this work on behalf of the leader of TUM CAMP.
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Adversarial Semantic Scene Completion from a Single Depth Image

Yida Wang, David Joseph Tan, Nassir Navab, Federico Tombari
Technische Universität München

Boltzmannstraße 3, 85748 Garching bei München

Abstract

We propose a method to reconstruct, complete and se-
mantically label a 3D scene from a single input depth im-
age. We improve the accuracy of the regressed semantic 3D
maps by a novel architecture based on adversarial learn-
ing. In particular, we suggest using multiple adversarial
loss terms that not only enforce realistic outputs with re-
spect to the ground truth, but also an effective embedding of
the internal features. This is done by correlating the latent
features of the encoder working on partial 2.5D data with
the latent features extracted from a variational 3D auto-
encoder trained to reconstruct the complete semantic scene.
In addition, differently from other approaches that operate
entirely through 3D convolutions, at test time we retain the
original 2.5D structure of the input during downsampling
to improve the effectiveness of the internal representation
of our model. We test our approach on the main benchmark
datasets for semantic scene completion to qualitatively and
quantitatively assess the effectiveness of our proposal.

1. Introduction
Inspired by the way humans can imagine the structure of

a room by looking at an image, we propose an algorithm
that reconstructs the entire scene geometry and semantics
from a single depth image. By directly reconstructing the
scene from one view, the challenge is to plausibly complete
the scene in place of the hidden structures that are not vis-
ible from the input depth image. To this end, we utilize
a learning strategy that allows the algorithm to simultane-
ously perceive the objects in the scene and use its contextual
shape to fill the hidden structures. In addition, we simulta-
neously estimate a semantic segmentation of the completed
3D scene geometry.

Reconstructing the environmental information in 3D
space from a single viewpoint is relevant for a lot of tasks in
the field of augmented reality [24], robotic perception [14]
and scene understanding [15], where users and autonomous
agents often have only a limited set of observations of the
surrounding, and would benefit from a complete semantic
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Figure 1: The input depth image and the output semantic
3D reconstruction.

reconstruction of the scene geometry. To push the scientific
effort along these directions, recently large-scale bench-
mark datasets, such as SUNCG [22], NYU [20], Scan-
Net [5] and SceneNet [8], have been proposed to evaluate
different visual scene understanding tasks including those
of scene completion and semantic segmentation.

A few methods have recently been proposed in the di-
rection of 3D shape completion. In particular, SSCNet [22]
demonstrated good results in the joint task of scene comple-
tion and semantic segmentation by means of a CNN [23, 9].
They encode the depth image into volumetric space us-
ing the Truncated Signed Distance Function (TSDF) from
KinectFusion [17]. Differently, 3D-RecGAN++ [26] sug-
gests using an adversarial approach to learn how to realisti-
cally complete partial object shapes from common classes.
Generative models have also been proposed to generate 3D
data directly from 2D images such as the 3D Inductor [7].

In this work, we focus on the data acquired from depth
cameras, with the goal of reconstructing and semantically
labeling the whole scene from one single range image. As
a scene may contain small objects and complicated shapes,
we apply a generative adversarial model for this semantic
completion task. Combined with an encoder and a gen-
erator, our architecture uses depth images directly as the
input information and generate 3D volumetric data whose
elements are labeled with object categories. Specifically,
we use two discriminators to train the architecture to back-



project the depth information into the 3D volumetric space
with semantic labels. One discriminator is used to optimize
the entire architecture by comparing the reconstructed se-
mantic scene with the ground truth. Since the 3D variational
auto-encoders models the latent features of the volumetric
data very well, we designed our architecture such that our
encoder for depth images learns similar latent features. To
do so, we introduce another discriminator for optimizing the
learnt latent features.

To summarize, we have two main contributions. Firstly,
we propose the first generative adversarial network aimed
at semantic 3D scene completion, and we demonstrate how
the adversarial approach is a meaningful choice for the task
at hand. Secondly, we enforce adversarial learning not just
on the output reconstruction, but also on the latent space
to improve the quality of the results. We evaluate our ap-
proach on the main benchmark dataset for semantic scene
completion to qualitatively and quantitatively assess the ef-
fectiveness of our proposal.

2. Related work
Being particularly difficult and training intensive, the

task of shape completion from 2.5D has only, with the re-
cent explosion of deep learning, started to become a main
research trend in the community. SSCNet [22] proposes a
CNN-based architecture that carries out jointly the 3D scene
completion and the semantic labeling from a single depth
image. A voxel-wise softmax loss function is proposed as
the optimizer for learning semantic segmentation of volu-
metric elements. For training, the method assumes to know
the viewpoint as well as the alignment of the depth maps
and the reconstructed volumes to a common 3D reference
frame. Differently, our approach drops such assumptions
and can work without the information regarding the cam-
era pose or the global alignment. On a different task, 3D-
RecGAN++ [26] suggests learning a 3D adversarial gener-
ative model to complete partial 3D shapes of common ob-
ject classes. The use of the adversarial loss is motivated to
provide realistic and plausible interpolations of the missing
shape parts.

Scene and object completion has been investigated also
from RGB data. MarrNet [25] proposes to reconstruct 3D
object from 2.5D sketches with normal, depth and silhouette
information extracted from 2D images. Inspired by Mar-
rNet, the encoder of our architecture is mainly composed
of 2D convolutional operators while the generator is mainly
composed of 3D deconvolutional operators. The difference
lies in the fact that the latent variables of our model are
learned to be similar to the feature extracted from a 3D VAE
trained on the complete volumetric data.

PointOutNet [6] proposes an encoder-decoder deep ar-
chitecture to complete 3D objects from RGB images in the
form of 3D coordinates. 3D-R2N2 [3] tries to reconstruct

a volumetric representation of an object from an RGB im-
age by training a recurrent neural network over a latent
representation of the RGB data. In addition, by combin-
ing scene reconstruction and GAN, 3D-Scene-GAN [27] is
introduced for reconstructing complicated 3D scenes from
RGB views with mesh and texture by applying a discrimi-
nator to distinguish between the rendered 2D images of the
scene and real ones.

On a different topic, feature representations for gen-
erative models has been often deployed for reconstruc-
tion tasks, e.g. by means of Variational Auto-Encoders
(VAE) [1, 13] and conditional VAE (CVAE) [12, 21], which
are two popular methods to learn features from an input data
in continuous latent spaces trained via variational inference.
3D VAE [2] is also introduced by replacing 2D convolu-
tional kernels with 3D kernels for auto-encoding voxel data.

3. Semantic reconstruction
The semantic reconstruction algorithm takes a single

view of the scene, depicted by a depth image x, to pre-
dict its 3D volumetric representation y. The voxels of y
are semantically labeled with Nc object classes, denoted as
an Nc × 1 one-hot vector, i.e. a binary vector where one of
its element has a value of 1 to indicate the object category
while the other elements remain zero. Considering that the
image has a limited view of the entire scene, constrained
by the sensor’s viewpoint, the objective of our deep learn-
ing approach is also to complete the scene by revealing the
hidden structures that are not visible in the input. There-
fore, simulateneously learning the geometric structure and
the semantic information allows the algorithm to learn the
contextual cues that can in turn represent the objects in the
reconstruction.

Specifically, the depth image is a 640 × 480 image that
represents the z-axis of the camera coordinate system. As
input to our deep learning architecture, this image is down-
sampled to 320 × 240 in order to conserve GPU memory.
The resulting volumetric reconstruction is represented by
Nc grids of size 40 × 80 × 80 filled with binary elements
presenting the labels for each of the Nc objects. For sim-
plicity, we denote this 4D data as 40× 80× 80×Nc.

From the depth image to the 3D volume, our architecture
is a concatenation of an encoder Edep with 2D convolutional
operators that convert the input depth image into a lower-
dimensional latent feature ldep; and, a generator G with 3D
deconvolutional kernels that takes ldep to build the semantic
reconstruction. This architecture is illustrated in Fig. 2.

Encoder for depth image. The encoder Edep compresses
the depth image into a feature in the latent space. Its ar-
chitecture is a concatenated network that sequentially com-
bines 2D convolutional layers and max-pooling layers. The
operators for the paired convolutional and pooling layers
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Figure 2: Deep architecture for the semantic reconstruction in Sec. 3 and for the training procedure in Sec. 4. The former is
the concatenated architecture of the encoder Edep and the generator G reconstructs from the depth image to a voxel data while
the latter is the concatenated architecture of Evox and G is a 3D variational auto-encoder [2] for self-reconstruction.

are 2D convolutional kernels with, respectively, the size of
3× 3 and stride of 1× 1 and the size of 2× 2 with stride of
2 × 2. Each of these paired layers is processed by a leaky
ReLU activation function [16]. Therefore, the output of ev-
ery ReLU activation is a multi-channel 2D image. After six
convolutions operations, the result is an 80-channel 5 × 3
image which is reshaped into a set of 3D volume of size
5× 3× 5× 16. The output of the encoder represents the la-
tent feature ldep of the semantic reconstruction architecture.

Generator. With the goal of regressing the semantic re-
construction, the generator G unwraps the latent feature to a
higher dimensional voxel data. We assemble the generator
with 3D deconvolutional layers with the size of 3×3×3 and
stride of 2×2×2 which are processed by the ReLU function
as activation. After four deconvolutional layers, the output
of the generator is the voxel-wise classification y. By doing
this, y is presented in the shape of 80× 48× 80×Nc.

4. Architecture for training
Although our semantic reconstruction algorithm in

Sec. 3 could be optimized only with encoder Edep and gen-
erator G, the performance after training this way is subpar
(see Sec. 7.1). Hence, we include three components during
the training process to improve the performance – (1) the
encoder for the voxel data, (2) the discriminator for the re-
construction and (3) the discriminator for the latent features.

Specifically, we introduce another encoder Evox to extract
the feature lvox such that the latent feature from the encoder
Edep is driven to be similar to a feature extracted from Evox.
Thus, a discriminator Dl is used to optimize this similarity
as illustrated in Fig. 3 and consequently updates the param-
eters in Edep. Notably, Evox is optimized together with the
generator G as a 3D variational auto-encoder (3D VAE) [2]
to learn meaningful weights from training samples repre-
senting complete 3D semantic volumes.

(b) Latent Features

Latent 
for Depth

Latent 
for Voxel

(a) Reconstruction

Ground 
Truth

Prediction

Figure 3: Variables associated to each discriminator.

Encoder for the voxel data. Since reconstructing from
one image has a restrictive view of the scene, we want to
make the latent features ldep, extracted from the depth im-
age, to be similar to the complete volumetric data in order to
incorporate structures that are not visible from the input. We
introduce another encoder Evox to extract the feature lvox into
the architecture for learning. The input of Evox is the ground
truth volumentric data with semantic labels such that all the
operators in its architecure are 3D convolution kernels with
the size of 3×3×3 and stride of 2×2×2 as shown in Fig. 2.
The last layer of the encoder Evox produces 16 blocks. The
size of the output from Evox is set to be the same as Edep
because we want to make the latent representation of the
input depth images to be as similar as possible to that of
the ground truth volumetric representations. Thus, measur-
ing the similarity between ldep and lvox is possible because
the latent representation compresses the results for both the
depth and voxel data. As illustrated in Fig. 2, the latent fea-
tures from both the encoders Edep and Evox go through the
same generator G to predict semantic volumetric data.

Discriminator for the reconstruction. Encouraged by
the benefits of the generative models trained with adver-
sarial techniques [4], we introduce the discriminator Dvox
in training to optimize our semantic reconstruction by com-
paring our prediction against the ground truth as shown in
Fig. 3. The architecture of Dvox is similar to the encoder
Evox except for the last layer. In Fig. 4 (a), all the four 3D
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Figure 4: Architecture of the two discriminators.

convolutions have 3×3×3 kernels with stride of 2×2×2.
Then, the output of the last convolutional layer with the size
of 5×3×5×16 is reshaped to a vector of 1200 dimensions.
This is processed by three fully-connected layers with out-
put sizes, respectively, of 256, 128 and 1. Hence, the final
logit is a binary indicator to determine whether the predicted
volumetric data is the expected ones or not, which is widely
used in GAN [19].

Discriminator for the latent features. Since the output
of Edep and Evox are passed to the same generator G, the
resulting latent feature from the depth image ldep is driven
to be similar to the feature extracted from the ground truth
volumetric data lvox. We introduce another discrimina-
tor Dl aiming at distinguishing the latent descriptors illus-
trated in Fig. 3 and consequently updating the parameters in
Evox. As input to Dl, the latent variables are reshaped from
5 × 3 × 5 × 16 to a vector of 1200 dimensions. The ar-
chitecture of Dl in Fig. 4 (b) is constructed purely by three
fully-connected layers with output sizes of 256, 128 and 1.
Finally, the output of the discriminator is also a logit where
1 indicates that the latent feature from the depth image is
similar to the feature of the 3D VAE; otherwise, the value is
zero.

5. Optimization

The goal of the optimization is to enforce the latent fea-
tures from the depth image (ldep) and the predicted recon-
struction (y) to resemble the latent features of the 3D VAE
(lvox) and the ground truth volumetric data (t), respectively.
Since the architecture for the semantic reconstruction and
the 3D VAE share the same generator (see Fig. 2), we dis-
tinguish their results by denoting yx as the prediction from
the semantic reconstruction while yt from the 3D VAE.

Loss functions. When we solely consider the semantic re-
construction architecture (see Sec. 3), the loss that compares
the prediction and the ground truth for all the Nc objects is

represented as

Lx→y(Edep,G) =
Nc∑

c=1

[ε(yx(c), t(c))] (1)

where we define the per-object error as

ε(q, r) = −γr log q − (1− γ)(1− r) log(1− q) (2)

with γ as the hyper-parameter which weighs the relative
importance of false positives against false negatives. Con-
sequently, the error penalizes when the prediction and the
ground truth are distinct.

To further improve the reconstruction performance using
GAN (see Sec. 4), we include an adversarial loss

LGAN-y(Edep,G) = − log(Dvox(yx)) (3)

based on the trained discriminator Dvox that optimizes the
semantic reconstruction architecture by updating the param-
eters of its encoder and generator. On the other hand, train-
ing for the parameters in Dvox entails a loss function

LGAN-y(Dvox) = − log(Dvox(t))− log(1−Dvox(yx)) (4)

so that the discriminator Dvox could be further optimized to
be capable of distinguishing the generated volumetric data
from the ground truth.

As for the 3D VAE, we can train this architecture by min-
imizing a loss similar to (1). However, since we use the
ground truth reconstruction as the input, the loss function

Lt→y(Evox,G) =
Nc∑

c=1

[ε(yt(c), t(c))] (5)

enforces the predicted reconstruction yt to be similar to its
input. By training with variational inference by optimizing
the evidence lower bound (ELBO) [1, 13], the latent vari-
ables are distributed in a simple Gaussian distribution.

In reference to semantic reconstruction architecture, the
3D VAE influences the latent variable ldep to be as similar



to lvox as possible by using discriminator Dl to determine
whether ldep is presented similar to lvox. Therefore, similar
to Dvox, optimizing the similarity between the latent fea-
tures uses another discriminator Dl such that the loss func-
tion to update the encoder Edep is

LGAN-l(Edep) = − log(Dl(ldep)) (6)

while training for Dl involves

LGAN-l(Dl) = − log(Dl(lvox))− log(1−Dl(ldep)) . (7)

Minimization. Now that we have all the loss functions,
our optimization is defined as a combination of five compo-
nents. The first two are based on the architecture for training
in Fig. 2. From the depth image x and the ground truth t,
we separately train them one after the other for the samples
in a mini-batch with

min(Lx→y(Edep,G)) and (8)
min(Lt→y(Evox,G)) (9)

so that the parameters of the architectures are updated alter-
natively. At the same time, the variational inference sets a
constraint on the latent variables as a Gaussian distribution
which makes it easier for the output of both of the encoders
to match with each other.

Assuming that the discriminators are trained, we can fix
their parametric model in order to update the encoder to
move towards

min(LGAN-l(Edep)) (10)

while update both the encoder and the generator toward

min(LGAN-y(Edep,G)) (11)

which are also optimized alternatively.
Finally, the two discriminators are trained by minimizing

min(LGAN-y(Dvox)) and (12)
min(LGAN-l(Dl)) (13)

such that the former is used to penalize poorly reconstructed
voxel data in reference to the ground truth while the lat-
ter makes the latent codes computed from the depth image
similar to the latent feature extracted from a well trained
3D VAE. Notably, the discriminators are updated when the
accuracy in distinguishing the generated outputs are lower
than specific level [4]. We set this threshold to 15% in our
experiments.

In practice, we use the Adam optimizer [11] with a learn-
ing rate of 0.0001.

6. Implementation details

We use the paired depth image and semantically labeled
volumes provided by SUNCG [22] and NYU [20]. The size
of volumetric data with the object labels is 240 × 240 ×
240 × Nc where Nc is set to 12. Due to the limited GPU
memory, we down-sample the data to 80 × 48 × 80 × Nc

by max-pooling with 3× 3× 3 kernel and 3× 3× 3 stride.
In this manner, the original volumetric data is presented in a
space with a lower resolution which is suitable for training
in a single GPU with no more than 12 GB memory. In our
experiments, we use a single NVIDIA TITAN Xp for train-
ing and the batch size is set to be 8. The depth images are
also resized from 640 × 480 to 320 × 240 with a bilinear
interpolation.

The 12 object classes in our experiments are based on
SUNCG [22] that includes: empty space, ceiling, floor,
wall, window, door, chair, bed, sofa, table, furniture and
small objects. Since the ratios of samples in each cate-
gories are not balanced, we redesign the evaluation strategy
in Sec. 7 to concentrate on reconstructing important objects
in the indoor condition with small amount of voxels such as
furnitures and small objects.

7. Experiments

We evaluated on the SUNCG dataset [22] that includes
pairs of depth images and the corresponding semantically
labelled 3D reconstructions.

Evaluation Strategy. Considering that this dataset is for
the indoor environments, over 90% of the reconstructed
scene is empty. Then, when we exclude the empty spaces,
simple structures such as the wall, floor and ceiling dom-
inate the voxels in the scene. This means that the ratio
of the number of voxels for different object classes is not
balanced. For instance, we noticed that the SUNCG test
sets [22] do not have enough small objects and furnitures.
In this case, if the learned architecture enhances its ability
to predict the empty spaces and the simple structures, their
accuracy is significantly higher than the results predicted by
an architecture that focuses on distinguishing the other ob-
ject classes.

Since the ratio of voxels for small objects and furnitures
in the training dataset are higher than the one in the test
set in SUNCG [22], we design a 10-fold cross validation
by splitting the training data which was introduced by [10].
The entire dataset is divided into ten folds with the same
amount of samples, the evaluation procedure then uses 1 of
the 10 folds as the test set and the remaining 9 as the training
dataset. Thereafter, the final result is the average of the ten
evaluations.



empty ceil. floor wall win. door chair bed sofa table furn. objs. Avg.

3D VAE [2] 49.3 26.1 33.2 29.7 14.4 4.6 0.7 16.4 13.9 0.0 0.0 0.0 30.8
3D-RecGAN++ [26] 49.3 32.6 37.7 36.0 23.6 13.6 8.7 20.3 16.7 9.6 0.2 3.6 36.1
Ours without Dl 49.6 42.0 35.9 44.8 28.5 25.5 15.4 28.6 20.1 21.5 11.5 6.5 42.7
Ours without Dvox 49.6 39.0 35.7 43.4 26.8 23.8 18.5 29.2 22.4 16.8 10.4 5.3 41.7
Ours (Proposed) 49.7 41.4 37.7 45.8 26.5 26.4 21.8 25.4 23.7 20.1 16.2 5.7 44.1

Table 1: Semantic scene completion results on the SUNCG test set with depth map for IoU in percentage.

empty ceil. floor wall win. door chair bed sofa table furn. objs. Avg.

3D VAE [2] 99.6 18.8 68.9 63.6 25.0 8.5 4.2 16.4 9.5 1.3 0.4 2.6 65.6
3D-RecGAN++ [26] 99.9 21.5 76.2 78.8 31.9 15.3 8.1 18.7 10.2 2.9 1.4 4.3 79.4
Ours without Dl 100.0 29.1 72.8 92.9 29.7 20.2 9.9 20.8 13.5 2.6 6.2 3.0 92.3
Ours without Dvox 99.9 28.6 70.3 91.5 28.3 18.8 9.1 20.2 12.7 2.6 4.9 2.6 90.1
Ours (Proposed) 100.0 29.1 76.2 94.2 32.0 22.7 11.4 21.9 14.2 3.1 7.6 3.6 94.5

Table 2: Semantic scene completion results on the SUNCG test set with depth map for mAP in percentage.

Metric. We evaluate the performance of the reconstruc-
tor based on the intersection over union (IoU) and the mean
average precision (mAP) of the predicted voxel labels com-
pared to ground truth labels [22] where we evaluate the IoU
of each object classes on both the observed and occluded
voxels for semantic scene completion. Notably, instead of
taking the average IoU and mAP as the mean of the results
from individual categories, we calculate the average with
respect to the number of voxels in each category.

Comparison. We compare our results against 3D VAE [2]
and 3D-RecGAN++ [26]. In order to directly estimate the
volumetric reconstruction solely from the input depth im-
age, we modify [2, 26] by scaling the surface generated
by the depth image through bilinear interpolation to fit the
80 × 48 × 80 volumetric grid which serves as the input
to [2, 26]. Furthermore, we added the loss function from (1)
in training to perform semantic segmentation. Notably, the
U-Net [18] connection between encoder and decoder in 3D-
RecGAN++ [26] are still applied by resizing the scale of
every layers. In addition, we further investigate the ad-
vantage of the discriminators by evaluating our approach
without Dl and Dvox. Based on Sec. 5, when implement-
ing our approach without Dl, (10) and (13) are discarded in
the optimization; while, the implementation without Dvox
discards (11) and (12).

7.1. SUNCG

SUNCG [22] is a dataset of 3D scenes which contains
pairs of depth image and its corresponding volumetric scene
where all objects in the scene are semantically annotated.
We implemented the 10-fold validation on the pairs for the
111,697 different scenes.

Comparison against other approaches. The evaluation
on both the IoU and mAP in Table 1 and Table 2 shows
that our generative model performs better than 3D VAE [2]
and 3D-RecGAN++ [26] which are the recent works on 3D
generative architectures. We acquired an IoU of 44.1% and
an mAP of 94.5% that is 8% and 15.1% better than the next
best performing approach.

Comparison on the architecture for learning. To un-
derstand the advantage of incorporating the components in
learning, we investigate learning our method without the
discriminators. Without the discriminator for the latent fea-
tures, our performance decreases by 1.4% in IoU and 2.2%
in mAP; while, without the discriminator for the reconstruc-
tion, the results decrease by 2.4% in IoU and 4.4% in mAPo.
However, it is noteworthy to mention that, even without
these discriminators, our method still achieves better results
compared to both 3D VAE [2] and 3D-RecGAN++ [26].

Performance on smaller objects. If we look closely on
Table 1, our approach has a significant improvement over
3D VAE [2] and 3D-RecGAN++ [26] on smaller objects
like the class of table, furniture and objects wherein [2] pro-
duced an IoU of zero. The reason behind this improvement
is because the adversarial training is especially helpful in
reconstructing and completing small objects compared to
3D VAE [2]. Note that these results are also validated by
evaluating the mAP in Table 2.

Since the latent space is continouos, this implies that it
reserves regions for the object classes with a smaller amount
of voxels in the scene or a fewer samples in the training
dataset. Therefore, while all methods can reconstruct the
common objects such as the ceiling, floor and walls with



empty ceil. floor wall win. door chair bed sofa table furn. objs. Avg.

3D VAE [2] 49.4 33.3 25.3 32.4 16.9 9.3 5.6 19.2 14.7 1.1 0.0 0.0 31.5
3D-RecGAN++ [26] 49.6 35.1 31.8 39.2 23.7 17.9 11.5 26.1 22.6 18.1 5.1 3.0 37.7
Ours without Dl 49.6 42.4 35.8 44.4 29.2 24.8 17.2 30.6 24.2 19.5 11.5 4.4 42.4
Ours without Dvox 49.7 43.9 37.3 45.9 26.7 29.2 20.1 24.0 24.6 26.1 19.8 9.0 44.3
Ours (Proposed) 49.8 49.6 42.7 51.2 24.2 34.9 23.0 28.1 30.4 29.9 22.0 11.5 51.4

Table 3: Semantic scene completion results finetuned on the NYU training set with real world depth map for IoU in percent-
age.

empty ceil. floor wall win. door chair bed sofa table furn. objs. Avg.

3D VAE [2] 99.8 25.0 53.8 70.9 19.3 7.4 4.2 14.3 9.4 1.1 1.2 0.9 68.4
3D-RecGAN++ [26] 99.9 27.3 67.5 87.6 27.0 15.8 8.0 19.2 12.0 2.2 3.4 1.8 86.5
Ours without Dl 100.0 28.9 72.1 92.7 29.6 19.8 9.9 20.8 13.3 2.7 6.6 2.9 91.9
Ours without Dvox 100.0 29.2 76.8 94.5 31.9 22.6 11.5 21.9 14.2 3.2 8.2 4.1 94.8
Ours (Proposed) 100.0 30.8 79.1 96.6 35.4 26.9 17.0 13.9 15.8 3.6 9.7 5.5 97.2

Table 4: Semantic scene completion results finetuned on the NYU training set with real world depth map for mAP in
percentage.

correct labels as illustrated in both Table 1 and Table 2, the
main advantage of our work is the capacity to reconstruct
and classify every type of object labels.

Qualitative results. We illustrate the qualitative results in
Fig. 5 and compare them with 3D VAE [2] and the ground
truth. Based on these voxel representations, we can clearly
visualize the superiority of our algorithm to reconstruct
more detailed structures compared to [2]. Therefore, this
confirms the advantage of our approach to reconstruct not
only the larger structures but also the smaller objects in the
scene.

7.2. Fine-tune with NYU

The objective of this section is to investigates whether
an increase in the size of the learning dataset from a differ-
ent source can improve the performance of the algorithm or
confuse the learned model.

In this section, we include the NYU dataset [20] which is
also an indoor scene dataset. It contains both the depth im-
ages captured by Kinect and the 3D models. This includes
the volumetric 3D data with the annotated object labels for
every voxels in 1,449 scenes. The semantic annotations for
the volumetric data in this dataset consist of 33 objects in
7 categories. Note that, due to the limited amount of 1,449
volumetric scenes from the NYU dataset, this size is insuf-
ficient to learn a deep learning architecture. Thus, we only
use the NYU to supplement our training dataset while test-
ing on SUNCG for the 12 categories. This requires us to
relabel the object classes of the volumetric data in NYU to
match the labels provided by SUNCG dataset.

Comparison against other approaches. Similar to
Sec. 7.1, this procedure is implemented on all the five ap-
proaches that we are comparing. While fine-tuning with the
NYU dataset, our experiments show that the combination of
the two datasets improve the perfomance of our algorithm.
From Table 1 to Table 3 and Table 2 to Table 4, we expe-
rience an increase in IoU by 7.3% and in mAP by 2.7%.
Although both the 3D VAE [2] and 3D-RecGAN++ [26]
also experienced an increase in performance, the difference
is not significant which counts for a maximum of 1.6% in-
crease in IoU. Note that, in Table 3, the results on smaller
objects for 3D VAE [2] remains close to zero or zero.

Comparison on the architecture for learning. When we
learn our architecture with the discriminators, the effect of
the improvement is negligible. Without the discriminator
for the latent features, the IoU even decreased from 42.7%
to 42.4%; while, without the discriminator for the recon-
struction, the IoU increases only from 41.7% to 44.3%.
Therefore, based on this experiment, we can attribute the
significant improvement of our work’s perfomance to the
discriminators in the training architecture.

8. Conclusion

We have proposed a novel approach for semantic scene
completion from a single depth map, which exploits the
power of adversarial training to regress accurate reconstruc-
tions without the need of additional assumptions or the
camera pose information. Our proposal relies on the en-
forcement of two adversarial losses – one aimed at mak-
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Figure 5: GAN for semantic 3D reconstruction from depth images.

ing the output realistc; while, the other aimed at imitating
the embedding learned via auto-encoder from the complete
volumetric data. We have demonstrated the effectiveness
of our approach on a reference benchmark dataset such as
SUNCG. The future work aims at modifying our architec-
ture to overcome the memory limitation so to process higher
resolution samples, this allowing a direct comparison with
approaches such as SSCNet [22].
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5.1 Volumetric Completion

5.1.2 ForkNet: Multi-Branch Volumetric Semantic Completion From a
Single Depth Image (International Conference on Computer Vision
2019)

ICCV 2019

Input ForkNet

Figure 5.2 The proposed ForkNet [8] can semantically complete a real scene from a depth image captured from
a single camera view. Fine structures of an object can be reconstructed with details with our model
trained on ShapeNet [164] dataset.

We use back-projected SDF volumes as input for semantic completion. Our proposed ForkNet
is composed of three generators together with an encoder. It is trained by a mix of supervised
and unsupervised stages, which leverage the power of generative models and the annotations
provided by benchmark datasets.

To overcome a common limitation of available benchmarks e.g. SUNCG [99] that provide
imprecise semantic labels, we design our geometric completion to be independent of semantic
completion. Existed 3D annotations for real examples are insufficient to train large-scale deep
architectures, we constantly generate paired SDF volumes and semantic completion volumes
to act as the training data. By training the entire encoder and decoder architecture with
our proposed SDF-Semantic consistency, the generators are trained to produce SDF volumes
and semantic scenes while being optimized to produce realistic data by the discriminator.
Aiming at revealing both the small and large objects in the scene, we structured our network,
which is composed of many 3D residual (Res3D) modules, where the first Res3D module
activates small objects. In contrast, the larger objects are captured on the subsequent Res3D
modules.

We numerically show a significant performance boost when evaluating the NYU dataset [135]
Interestingly, the synthetically generated SDF volume can correctly present occluded regions
due to the limited camera position.

Contributions

Yida Wang proposed and implemented the ForkNet architecture and evaluated the perfor-
mance in synthetic and real datasets.

Federico Tombari proposed the idea of adapting a cycle consistency, which is initially used
to optimize two different domains.

David Tan helped investigate why SDF-semantic consistency is beneficial for evaluation.

Nassir Navab financed on behalf of the leader of TUM CAMP.
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ForkNet: Multi-branch Volumetric Semantic Completion
from a Single Depth Image

Yida Wang1, David Joseph Tan2, Nassir Navab1, Federico Tombari1,2

1Technische Universität München 2Google Inc.

(a) Depth Image (NYU) (b) Ground Truth (c) SSCNet (d) Proposed Method
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Figure 1: Our 3D semantic completion model (right-most) generates realistic yet accurate volumetric scene representations
from a single depth image (left-most) affected by occlusion and noise, even if acquired from a real depth sensor.

Abstract

We propose a novel model for 3D semantic completion
from a single depth image, based on a single encoder and
three separate generators used to reconstruct different ge-
ometric and semantic representations of the original and
completed scene, all sharing the same latent space. To
transfer information between the geometric and semantic
branches of the network, we introduce paths between them
concatenating features at corresponding network layers.
Motivated by the limited amount of training samples from
real scenes, an interesting attribute of our architecture is
the capacity to supplement the existing dataset by generat-
ing a new training dataset with high quality, realistic scenes
that even includes occlusion and real noise. We build the
new dataset by sampling the features directly from latent
space which generates a pair of partial volumetric surface
and completed volumetric semantic surface. Moreover, we
utilize multiple discriminators to increase the accuracy and
realism of the reconstructions. We demonstrate the benefits
of our approach on standard benchmarks for the two most
common completion tasks: semantic 3D scene completion
and 3D object completion.

1. Introduction
The increasing abundance of depth data, thanks to the

widespread presence of depth sensors on devices such as

robots and smartphones, has recently fostered big advance-
ments in 3D processing for augmented reality, robotics and
scene understanding, unfolding new applications and tech-
nology that relies on the geometric rather than just the ap-
pearance information. Since 3D devices sense the environ-
ment from one specific viewpoint, the geometry that can be
captured in one shot is only partial due to occlusion caused
by foreground objects as well as self-occlusion from the
same object.

As for many applications, this partial 3D information is
insufficient to robustly carry-out 3D tasks such as object de-
tection and tracking or scene understanding. A recent re-
search direction has emerged that leverages deep learning
to “complete” the depth images acquired by a 3D sensor,
i.e. filling in the missing geometry that the sensor could not
capture due to occlusion. The capability of deep learning
to determine a latent space that captures the global context
from the training samples proved useful in regressing com-
pleted 3D scenes and 3D shapes even when big portion of
the geometry are missing [3, 4, 28, 30, 39]. Also, some of
these approaches have been extended to jointly learn how
to infer geometry and semantic information, in what is re-
ferred to as semantic 3D scene completion [4, 30, 34]. Nev-
ertheless, current approaches are still limited by different
factors, including the difficulty of regressing fine and sharp
details of the completed geometry, as well as to general-
ize to shapes that significantly differ from those seen during
training.
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Figure 2: This figure shows the ground truth reconstruc-
tion where we notice the incorrect labels from SUNCG [30]
dataset on the TVs, i.e. enclosed in the black box.

In this work, we aim to tackle 3D completion from a sin-
gle depth image based on a novel learned model that relies
on a single encoder and multiple generators, each trained to
regress a different 3D representation of the input data: (i) a
voxelized depth map, (ii) a geometric completed volume,
(iii) a semantic completed volume. This particular architec-
ture aims at two goals. The first is to supplement the lack
of paired input-output data, i.e. a depth map and the associ-
ated completed volumetric scene, with novel pairs directly
generated from the latent space, i.e. by means of (i) and
(iii). The second goal is to overcome a common limitation
of available benchmarks that provide imprecise semantic la-
bels, by letting the geometric completion remain unaffected
from it, i.e. by means of (i) and (ii). By means of specific
connections between corresponding neural layers in the dif-
ferent branches, we let the semantic completion model be
conditioned on geometric reconstruction information, this
being beneficial to generate accurate reconstructions with
aligned semantic information.

Overall, the proposed learning model uses a mix of su-
pervised and unsupervised training stages which leverage
the power of generative models in addition to the annota-
tions provided by benchmark datasets. Additionally, we
propose to further improve the effectiveness of our gener-
ative model by employing discriminators able to increase
the accuracy and realism of the produced output, yielding
completed scenes with high level details even in the pres-
ence of strong occlusion, as witnessed by Fig. 1 that reports
an example from a real dataset (NYU [24]).

Our contributions can be summarized as follows: (i) a
novel architecture, dubbed ForkNet, based on a single en-
coder and three generators built upon the same shared latent
space, useful to generate additional paired training samples;
(ii) the use of specific connections between generators to let
geometric information condition and drive the completion
process over the often imprecise ground truth annotations
(see Fig. 2); and, (iii) the use of multiple discriminators to
regress fine details and realistic completions. We demon-
strate the benefits of our approach on standard benchmarks
for the two most common completion tasks: semantic 3D

scene completion and 3D object completion. For the for-
mer, we rely on SUNCG [30] (synthetic) and NYU [24]
(real). For the latter, instead, we test on ShapeNet [1] and
3D-RecGAN [38]. Notably, we outperform the state of the
art for both scene reconstruction and object completion on
the real dataset.

2. Related work
Semantic scene completion. 3D semantic scene comple-
tion starts from a depth image or a point cloud to provide
an occlusion-free 3D reconstruction of the visible scene
within the viewpoint’s frustrum while labeling each 3D ele-
ment with a semantic class from a pre-defined category set.
Scene completion could be in principle achieved by exploit-
ing simple geometric cues such as plane consistency [23] or
object symmetry [17]. Moreover, meshing approaches such
as Poisson reconstruction [16] as well as purely geometric
works [7] can also be employed for this goal.

Recent approaches suggested to leverage deep learning
to predict how to fill-in occluded parts in a globally coher-
ent way with respect to the training set. SSCNet [30] carries
out semantic scene completion from a single depth image
using dilated convolution [40] to capture 3D spatial infor-
mation at multiple scales. They rely on a volumetric repre-
sentation to represent both input and output data. Based on
SSCNet, VVNet [12] applies view-based 3D convolutions
as a replacement for SDF back-projections, this resulting
more effective in extracting geometric information from the
input depth image. SaTNet [21] relies on the RGB-D im-
ages. They initially predict the 2D semantic segments with
the RGB. The depth image then back-projects the seman-
tically labelled pixels to a 3D volume which goes through
another architecture for 3D scene completion. ScanCom-
plete [4] also targets semantic scene completion but, in-
stead of starting from a single depth image, they assume
to process a large-scale reconstruction of a scene acquired
via a consumer depth camera. They suggest a coarse-to-
fine scheme based on an auto-regressive architecture [27],
where each level predicts the completion and the per-voxel
semantic labeling at a different voxel resolution. The work
in [34] proposes to use GANs for the task of semantic scene
completion from a single depth image. In particular, it pro-
poses to use adversarial losses applied on both the output
and latent space to enforce realistic interpolation of scene
parts. The work in [34] proposes to use GANs for the task
of semantic scene completion from a single depth image. In
particular, it proposes to use adversarial losses applied on
both the output and latent space to enforce realistic interpo-
lation of scene parts. Partially related to this field, the work
in [31] leverages input object proposals in the form of 2D
bounding boxes to extract the layout of a 3D scene from a
single RGB image, while estimating the pose of the objects
therein. A similar task is tackled by [9] starting from an
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Figure 3: ForkNet – the proposed volumetric network architecture for semantic completion relies on a shared latent space
encoded from SDF volume x reconstructed from the input depth image. The two decoding paths are trained to generate,
respectively, incomplete surface geometry (x̂), completed geometric volume (g) and completed semantic volumes (s).

RGB-D image.

Object completion. 3D object completion aims at obtain-
ing a full 3D object representation from either a single depth
or RGB image. While several RGB-based approaches have
been recently proposed [2, 6, 35], in this section, we will
focus only on those based on depth images as input since
they are more related to the scope of this work. The work
in [28] uses a hybrid architecture based on a CNN and an
autoencoder to learn completing 3D shapes from a single
depth map. 3D-RecGAN [38, 39] proposes to complete an
observed object from a single depth image using a network
based on skip connections [29] between the encoder and
the generator so to fetch more spatial information from the
input depth image to the generator. 3D-EPN [3] performs
shape completion based on a latent feature concatenated
with object classification information via one-hot coding,
so that this additional semantic information could drive an
accurate extrapolation of the missing shape parts. Han et
al. [13] complete shapes with multiple depth images fused
via LSTM Fusion [19] and process the fused data using a
3D fully convolutional approach. MarrNet [35] reconstructs
the 3D shape by applying reprojection consistency between
2.5D sketch and 3D shape.

GANs for 3D shapes. Although the use of GANs for 3D
semantic scene completion tasks is almost an unexplored
territory, GANs have been frequently employed in recent
proposals for the task of learning a latent space for 3D
shapes, useful for object completion as well as for tasks
such as object retrieval and object part segmentation. For
instance, 3D-VAE-GAN [36] trains a volumetric GAN in
an unsupervised way from a dataset of 3D models, so to be
able to generate realistic 3D shapes by sampling the learned
latent space. ShapeHD [37] tackles the difficult problem
of reconstructing 3D shapes from a single RGB image and
suggests to overcome the 2D-3D ambiguity by adversari-

ally learning a regularizer for shapes. PrGAN [8] learns to
generate 3D volumes in an unsupervised way, trained by
a discriminator that distinguishes whether 2D images pro-
jected from a generated 3D volume are realistic or fake. 3D-
ED-GAN [33] transforms a coarse 3D shape into a more
complete one using a Long Short-term Memory (LSTM)
Network by interpreting 3D volumes as sequences of 2D
images.

3. Proposed semantic completion

Taking the depth image as input, we reconstruct the vis-
ible surface by back-projecting each pixel onto a voxel of
the volumetric data. Denoted as x, we represent the surface
reconstruction from the depth image as a signed distance
function (SDF) [25] with nl ×nw ×nh voxels such that the
value of the voxel approaches zero when it is closer to the
visible surface.

Our task then is to produce the completed reconstruction
of the scene with a semantic label for each voxel. Hav-
ing N object categories, the class labels are assigned as
C = {ci}Ni=0 where c0 is the empty space. Thus, denoted as
s, we represent the resulting semantic volume as a one-hot
encoding [22] with N + 1 dimensional feature. Similarly,
we define g as the completed reconstruction of the scene
without the semantic information by setting N to 1.

3.1. Model architecture

We assemble an encoder-generator architecture [36] that
builds the completed semantic volume from the partial
scene derived from a single depth image. As illustrated in
Fig. 3, the encoder E(·) is composed of 3D convolutional
operators where the spatial resolutions are decreased by a
factor of two in each layer. In effect, this continuously re-
duces the volume into its simplest form, denoted by the la-
tent feature z such that z = E(x).
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Figure 4: (a-b) Downsam-
pling and (c) upsampling
convolutional layers in our
architecture (see Fig. 3).
Note that the two parameters
(s, d) in all the functions are
the stride and dilation while
the kernel size is set to 3.

In detail, the encoder is composed of four downsampling
operators. The first aims at denoising [30] the SDF volumes
as illustrated in Fig. 4(a). This involves a combination of a
3D convolutional operator, several 3D ResNet blocks [14],
denoted as Res3D(s, d) where s is the stride while d is the
dilation, and a pooling layer. The second layer aims at
including different objects in the scene even with varying
sizes by concatenating the output of four sequentially con-
nected 3D ResNet blocks in Fig. 4(b). Consequently, the
information from the smaller objects are captured on the
first Res3D(·, ·) while the larger object are captured on the
subsequent blocks. Notably, the first block is parameterized
with a dilation of 1 while the other three with dilations of
2. The concatenated result is then downsampled by a 3D
convolutional operator. In the final two layers, we further
downsample the volume with 3D convolutional operators
until we form the latent feature with a size of 16×5×3×5.

Branching from the same latent feature, we design three
generators that reconstructs:

(i) the SDF volume (x̂) which, with respect to x, formu-
lates as an autoencoder;

(ii) the completed volume (g) which focuses on recon-
structing the geometric structure of the scene; and,

(iii) the completed semantic volume (s) which is the de-
sired outcome.

We assign these generators as the functions Gx̂(·), Gg(·) and
Gs(·), respectively. Notably, we distinguish x, which is the
SDF volume obtained from the input depth image, from x̂,
which is the inferred SDF volume obtained from the gen-
erator. The structure of each generator is composed of 3D
deconvolutional operators that increases the spatial resolu-
tion by two in each layer.

While the first 3 convolutional upsampling layers in the
generators are composed of 3D deconvolutional operators
as shown in Fig. 3, the last layer is a multi-scale upsam-
pling which is sketched in Fig. 4(c). This layer is similar to
the multi-scale downsampling of the encoder where the goal
is to consider the variation of sizes from different objects.
In this case, we concatenate the results of two sequentially
connected 3D ResNet blocks then end with a 3D deconvo-
lution operator. With the same operations as the other gen-

erators, the generator that builds the completed semantical
volume Gs additionally incorporates the data from the gen-
erator of the geometric scene reconstruction Gg as shown in
Fig. 3 by concatenating the results from the second and the
third layers. Since the resulting x̂, g and s have different
number of channels, only the dimension of the output from
the deconvolutional operator in the last layer changes for
each structure.

Giving a holistic perspective, we can simplify the sketch
of the architecture in Fig. 3 to Fig. 5 by plotting the relation
of the variables x, x̂, g, s and z. When we focus on cer-
tain structures, we notice that we have an autoencoder that
builds an SDF volume in Fig. 5(a), the reconstruction of the
scene in Fig. 5(b) and the volumetric semantic completion
in Fig. 5(c), where all of these structures branch out from
the same latent feature. Later in Sec. 3.2, these plots are
used to explain the loss terms in training.

The rationale of having multiple generators is twofold.
First, in contrast to the typical encoder-decoder architecture,
we introduce the connection that relates the two generators.
Taking the output from the Gx̂ in each layer, we concatenate
the results to the data from Gs as shown in Fig. 3. By estab-
lishing this relation, we incorporate the SDF reconstruction
from the Gx̂ into the semantic completion in order to capture
the geometric information of the observed scene.

Second, the latent feature can generate a pair of SDF and
completed semantic volumes. Through this set of paired
volumes, we can supplement the learning dataset in an un-
supervised manner. This becomes a significant component
in evaluating the NYU dataset [24] in Sec. 4.1 where the
amount of learning dataset is limited because, since they use
a consumer depth camera to capture real scenes, annotation
becomes difficult. However, evaluating on this dataset is
more essential compared to the synthetic dataset because it
brings us a step closer to real applications. Relying on this
idea in Sec. 3.2, we propose an unsupervised loss term that
optimizes the entire architecture based on its own learning
dataset.

Discriminators. Inspired by GANs [11, 26], we intro-
duce the discriminator Dx that evaluates whether the gener-
ated SDF volumes from Gx̂ are realistic or not by comparing
them to the learning dataset. Here, Dx is constructed by a
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Figure 5: Graphical models of the 4 data flows (and the associated loss terms) used during training and derived from Fig. 3.

sequentially connected 3D convolutional operators with the
kernel size of 3×3×3 and stride of 2. This implies that the
resolution of the input volume is sequentially decreased by
a factor of two after each operation. To capture the local
information of the volume [5], the results from Dx is set to
a resolution of 5×3×5.

With a similar architecture as Dx, we also introduce a
second discriminator Ds that evaluates the authenticity of
the generated volume s. Notably, the two discriminators
are evaluated in the loss terms in Sec. 3.2 to optimize the
generators.

3.2. Loss terms

Leveraging on the forward passes of smaller architec-
tures in Fig. 5, we can optimize the entire architecture by
simultaneously optimizing different paths. We also opti-
mize the architecture of the two discriminators that distin-
guishes whether the generated volumes are realistic or not.
During training, the learning dataset is given by a set of
the pairs {(x, sgt)}, where we distinguish sgt as the ground
truth from the generated s. Note that the ground truth for
the geometric completion ggt is the binarized summation of
non-empty space in sgt and an occupancy volume from the
SDF surface.

SDF autoencoder. Motivated to reconstruct as similar
SDF volume from the generator Gx̂ as the original input,
we define the loss function

Lauto
(E,Gx̂)

= ‖Gx̂(E(x)) − x‖2 (1)

for the autoencoder in Fig. 5(a) in order to minimize the
difference between the observed x and the inferred x̂.

Geometric completion. In Fig. 5(b), a conditional gen-
erative model combines the encoder E(·) and the generator
Gg(·) in order to reconstruct the scene (i.e. without the se-
mantic labels). Since the reconstruction is a two-channel
volume that represents the empty and non-empty category,
we use a binary cross-entropy loss

Lrecon
(E,Gg)

=
1∑

i=0

(ǫ(Gg(E(x)), ggt)) (2)

to train the inference network, where ǫ(·, ·) is the per-
category error

ǫ(q, r) = −λr log q − (1 − λ)(1 − r) log(1 − q) . (3)

In (3), λ, which ranges from 0 to 1, weighs the importance
of reconstructing true positive regions in the volume. If λ =
1, the penalty for the false positive predictions will not be
considered; while, if λ is set to 0, the false negatives will
not be corrected.

Semantic completion. Similar to (2), in Fig. 5(c), we
train a conditional generative model that is composed of the
encoder E(·) and generator Gs(·) linking x and s. Hence,
we also use a binary cross-entropy loss

Lpred
(E,Gs)

=

N∑

i=0

(ǫ(Gs(E(x)), sgt)) (4)

where N is the number of categories in the semantic scene.

Discriminators on the architecture. In relation to the ar-
chitecture, we use two discriminators to optimize the gen-
erators [36] through

Lgen-x̂
Gx̂

= − log (Dx(Gx̂(z)))

Lgen-s
Gs

= − log (Ds(Gs(z))) . (5)

In this manner, we optimize the two generative models in-
cluding both the SDF encoder and the semantic scene gener-
ator by randomly sampling the latent features. On the other
hand, when we update the parameters of both discrimina-
tors, we optimize the loss functions

Ldis-x
(Dx)

= − log(Dx(x)) − log (1 − Dx(Gx̂(z)))

Ldis-s
(Ds)

= − log(Ds(sgt)) − log (1 − Ds(Gs(z))) . (6)

During training, we apply the set of equations in (5) and (6)
alternatingly to optimize the generators and the discrimina-
tors separately. Note that we use the KL-divergence from
the variational inference [10, 15] to penalize the deviation
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(a) SDF Volume (b) Completed Semantic Scene

Figure 6: An example of the generated SDF volume and
the corresponding completed semantic scene parameterized
from the latent feature, which are used to supplement the
existing learning dataset.

between the distribution of E(x) and a normal distribution
with zero mean and identity variance matrix. The advan-
tage of such is the capacity to easily sample from the latent
space in the generative model, which becomes helpful in the
succeeding loss term.

SDF-Semantic consistency. Since the generators are
trained to produce SDF volumes and semantic scenes while
being optimized to produce realistic data by the discrimi-
nator, we can build a new set of paired volumes to act as
the learning dataset in order to supplement the existing one.
Thus, we propose to generate paired volumes directly from
the latent feature in order to optimize the architecture in an
unsupervised learning.

Exploiting the latent space, we reconstruct the set of
pairs {(Gx̂(z),Gs(z))}, where z is randomly sampled from
a Gaussian distribution centered on the average of latent fea-
tures of a batch of samples. Following the inference model
in Fig. 5(c), we formulate a similar loss function as (4) but
with the newly acquired data such that

Lconsistency
(E,Gx̂,Gs)

=

N∑

i=0

(ǫ(Gs(E(Gx̂(z))),Gs(z))) . (7)

By drawing the data flow of the first term Gs(E(Gx̂(z))) in
Fig. 5(d), we observe that the loss term in (7) optimizes the
entire architecture.

Interestingly, when we take a closer look at the newly
generated pairs {(Gx̂(z),Gs(z))} in Fig. 6, we can easily
notice the realistic results. The SDF volume in Fig. 6(a)
considers missing regions due to the camera position while
the semantic scene in Fig. 6(b) generates lifelike structures
and reasonable positions of the objects in the scene (e.g. the
bed in red). By adding the newly generated pairs, we nu-
merically show in Sec. 4.1 that there is a significant boost in
performance when evaluating the NYU dataset [24] where
the size of the learning dataset is small.

Optimization. With all the loss terms given, achieving
the optimum parameters in our architecture requires us to
simultaneously minimize them. We start by optimizing (1),
(2), (4) and (5) altogether. Then, the loss functions in (6)
for the two discriminators are optimized alternatively (i.e.
batch-by-batch) with (1), (2), (4) and (5). In practice, we
employ the Adam optimizer [18] with a learning rate of
0.0001. For the data flows, Fig. 5(a) and (d) are both un-
supervised while Fig. 5(b) and (c) are supervised. In addi-
tion, for the discriminators, (5) is unsupervised while (6) is
supervised.

4. Experiments
There are two tasks at hand – (1) 3D semantic scene

completion; and, (2) 3D object completion. Although they
perform similar tasks in reconstructing from a single view,
the former completes the structure of a scene with semantic
labels while the latter requires a more detailed completion
with the assumption of a single category.

Metric. For each of the N classes, the accuracy of the pre-
dicted volumes is measured based on the Intersection over
Union (IoU). Analogously to the evaluation carried out by
other methods, the average IoU is taken from all the cate-
gories except for the empty space.

Implementation details. We learn our model with an
Nvidia Titan Xp with a batch size of 8. We applied
batch normalization after every convolutional and deconvo-
lutional operations except for the convolutional operations
in the last deconvolutional layers in 3 generators. Leaky
ReLU with a negative slope of 0.2 is applied on the out-
put of each convolutional layer in the Res3D(·, ·) modules
in Fig. 4. In addition, ReLU is applied on the output of de-
convolutional operations in the generators except for the last
deconvolution operation in the Multi-Scale Upsampling. Fi-
nally, the sigmoid operation is applied to the last deconvolu-
tion layer of the generators for the geometric and semantic
completion. Notably, the factor λ from (3) is set to be 0.5
for the geometric completion in (2). For the semantic com-
pletion, it is initially set to 0.9 in (4). However, when the
network is capable of revealing objects from the depth im-
age, more and more false positive predictions in the empty
space appears. Due to this, we set λ to 0.6 after five epochs.

4.1. Semantic scene completion

The SUNCG [30] and NYU [24] datasets are currently
the most relevant benchmarks for semantic scene comple-
tion, and include a paired depth image and the correspond-
ing semantically labeled volume. While SUNCG comprises
synthetically rendered depth data, NYU includes real scenes
acquired with a Kinect depth sensor. This makes the eval-
uation of NYU more challenging, due to the presence of
real nuisances, as well as due to a limited training set of
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ceil. floor wall win. chair bed sofa table tvs furn. objs. Avg.

SSCNet [30] (observed) 97.7 94.5 66.4 30.0 36.9 60.2 62.5 56.3 12.1 46.7 33.0 54.2
Proposed Method (observed) 98.2 96.9 67.8 37.4 35.9 72.9 69.6 48.8 20.5 48.4 32.4 57.2

Wang et al. [34] 41.4 37.7 45.8 26.5 26.4 21.8 25.4 23.7 20.1 16.2 5.7 26.4
3D-RecGAN [38] 79.9 75.2 48.2 28.9 20.2 64.4 54.6 25.7 17.4 33.7 24.4 43.0
SSCNet [30] 96.3 84.9 56.8 28.2 21.3 56.0 52.7 33.7 10.9 44.3 25.4 46.4
VVNet [12] 98.4 87.0 61.0 54.8 49.3 83.0 75.5 55.1 43.5 68.8 57.7 66.7
SaTNet [21] 97.9 82.5 57.7 58.5 45.1 78.4 72.3 47.3 45.7 67.1 55.2 64.3
Proposed Method 95.0 85.9 73.2 54.5 46.0 81.3 74.2 42.8 31.9 63.1 49.3 63.4
– without completion branch 94.1 83.5 68.2 49.6 43.1 80.5 77.7 41.8 33.8 61.7 51.7 62.3
– without scene consistency 89.6 79.5 63.4 46.3 39.0 77.5 73.2 37.7 29.8 57.4 46.7 58.2

Table 1: Semantic scene completion results on the SUNCG test set with depth map for IoU (in %).

ceil. floor wall win. chair bed sofa table tvs furn. objs. Avg.

SSCNet [30] (observed) 37.7 91.9 75.4 64.0 29.0 51.1 63.3 43.7 29.7 73.3 54.5 50.8
Proposed Method (observed) 41.5 90.8 69.6 54.8 27.7 53.1 66.3 44.4 27.1 74.7 57.5 55.2

Lin et al. [20] (NYU only) 0.0 11.7 13.3 14.1 9.4 29.0 24.0 6.0 7.0 16.2 1.1 12.0
3D-RecGAN [38] 35.3 70.3 24.1 3.8 11.9 47.4 43.1 11.4 16.9 30.6 7.2 27.5
Geiger and Wang [9] (NYU only) 10.2 62.5 19.1 5.8 8.5 40.6 27.7 7.0 6.0 22.6 5.9 19.6
SSCNet [30] 15.1 94.6 24.7 10.8 17.3 53.2 45.9 15.9 13.9 31.1 12.6 30.5
VVNet [12] 19.3 94.8 28.0 12.2 19.6 57.0 50.5 17.6 11.9 35.6 15.3 32.9
SaTNet [21] 17.3 92.1 28.0 16.6 19.3 57.5 53.8 17.7 18.5 38.4 18.9 34.4
Proposed Method 36.2 93.8 29.2 18.9 17.7 61.6 52.9 23.3 19.5 45.4 20.0 37.1
– without completion branch 35.8 94.1 28.9 19.2 16.8 61.4 53.5 23.0 14.0 45.6 18.9 36.5
– without scene consistency 36.8 91.7 28.0 18.3 8.3 58.8 49.5 13.0 16.7 42.6 17.6 34.7

Table 2: Semantic scene completion results on the NYU test set with depth map for IoU (in %).

SUNCG NYU

Lin et al. [20] – 36.4
3D-RecGAN [38] 72.1 51.3
Geiger and Wang [9] – 44.4
SSCNet [30] 73.5 56.6
VVNet [12] 84.0 61.1
SaTNet [21] 78.5 60.6
Proposed Method 86.9 63.4
– without completion branch 82.3 62.6
– without scene consistency 82.0 61.1

Table 3: Scene completion results on the SUNCG and the
NYU test set in terms of IoU (in %).

less than 1000 samples. We compare our method against
Wang et al. [34], Lin et al. [20], 3D-RecGAN [38], Geiger
and Wang [9], SSCNet [30], VVNet [12], and SaTNet [21].
The resolution of our input volume is given in the scale
of 80×48×80 voxels. While [9, 12, 20, 21, 30] produce
60×36×60 semantic volumes for evaluation, [34, 38] and
us produce a slightly higher resolution of 80×48×80.

Following SUNCG [30], the semantic categories include

12 classes of varying shapes and sizes, i.e.: empty space,
ceiling, floor, wall, window, chair, bed, sofa, table, tvs, fur-
niture and other objects. We follow two types of evalua-
tion as introduced by [30]. One evaluates the semantic seg-
mentation accuracy on the observed surface reconstruction,
while the other considers the semantic segmentation of the
predicted full volumetric reconstruction.

SUNCG dataset. Based on an online interior design plat-
form, the evaluation of SUNCG contains more than 130,000
paired depth images and voxel-wise semantic labels taken
from 45,622 houses with realistic rooms and furniture lay-
outs [30]. Focusing on the semantic segmentation on the
observed surface, our approach performs at an IoU of 57.2%
which is 3.0% higher than SSCNet [30]. On the other hand,
when we evaluate the IoU measure on the entire volume
in Table 1, our method reaches an average IoU of 63.4%
which is significantly better than Wang et al. [34], 3D-
RecGAN [38] and SSCNet [30] but slightly worse than
VVNet [12] and SaTNet [21].

NYU dataset (real). The NYU dataset [24] is composed
of 1,449 indoor depth images captured with a Kinect depth
sensor. Like SUNCG, each image is also annotated with
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bench chair couch table Avg.

Varley et al. [32] 65.3 61.9 81.8 67.8 69.2
3D-EPN [3] 75.8 73.9 83.4 77.2 77.6
Han et al. [13] 54.4 46.9 48.3 56.0 51.4
3D-RecAE [38] 73.3 73.6 83.2 75.0 76.3
3D-RecGAN [38] 74.5 74.1 84.4 77.0 77.5
Proposed Method 79.1 80.6 92.4 84.0 84.1
– without scene consistency 76.3 76.4 87.5 81.2 80.4

Table 4: Object completion results on the ShapeNet test set
in terms of IoU (in %). The resolution for Varley et al. [32]
and 3D-EPN [3]: 32×32×32, for others: 64×64×64.

3D semantic labels. Due to its size, training our network on
this dataset alone is insufficient. As a solution already used
in [30], we take the network trained on the SUNCG then
refine it by supplementing the training data from NYU with
1,500 randomly selected samples from SUNCG in each
epoch of training.

Although we achieved slightly worse results than
VVNet [12] and SaTNet [21] on the synthetic dataset, we
performed better than the state of the art on the real images,
reaching an IoU measure of 37.1% as shown in Table 2.
Consequently, we attain a 4.2% improvement compared to
VVNet [12] and 2.7% to SaTNet [21].

Looking at the other approaches, we achieve even more
significant improvements with at least 6.6% increase in IoU.
For the evaluation on the semantic labels on the observed
surface, we gained 4.4% increase in IoU against SSCNet.
Notably, our approach outperforms other works not only on
the average IoU but also on individual object categories. In
addition, we also achieve similar improvements in the scene
completion task in Table 3 with approximately 2.8% better
in IoU compared to SaTNet [21].

Moreover, while the re-implementation SSCNet [30] in
our experiments does not fit into any of our contributions,
we used it in order to qualitatively compare our results with
them (see Fig. 1).

Ablation study for loss terms. In Tables 1 and 2, we
investigate the contribution of Lrecon from the supervised
learning and Lconsistency from the unsupervised learning. Our
ablation study indicates that Lconsistency prompts the highest
boost in IoU with 5.2% in Table 1. When using the Lrecon
in the geometric completion, it improves by 1.1% on the
SUNCG dataset. A similar conclusion for the loss terms is
presented in Table 1 for NYU.

4.2. 3D object completion

Adapting the assessment data and strategy from 3D-
RecGAN [38], we use ShapeNet [1] to generate the training
and test data for 3D object completion, wherein each re-
constructed object surface x is paired with a corresponding
ground truth voxelized shape with a size of 64×64×64. The
dataset comprises four object classes: bench, chair, couch

bench chair couch table Avg.

Han et al. [13] 18.4 14.8 10.1 12.6 14.0
3D-RecAE [38] 23.1 17.8 10.7 14.8 16.6
3D-RecGAN [38] 23.0 17.4 10.9 14.6 16.5
Proposed Method 32.7 24.1 15.9 22.5 23.8
– without scene consistency 26.1 21.5 14.9 18.6 20.3

Table 5: Object completion results on the real-world test set
provided by 3D-RecGAN [38] in terms of IoU (in %). The
resolution for all methods is 64×64×64.

and table. [38] prepared an evaluation for both synthetic
and real input data. Notably, for both synthetic and real test
data, we can express the same conclusions as the ablation
studies in Sec. 4.1 (see Tables 4 and 5).

Synthetic test data. We perform two evaluations in Ta-
ble 4. The first is a single category test [38] such that each
category is trained and tested separately while the second
considers the categories in order to label the voxels. We
compare our results against [3, 13, 32, 38].

In the single category test, we achieve the best results
with 84.1%. This result is 6.5% higher than 3D-EPN [3],
6.6% higher than 3D-RecGAN [38], 7.8% higher than 3D-
RecAE [38], 32.7% higher than Han et al. [13] and 14.9%
higher than Varley et al. [32]. Moreover, this table also
shows the we achieve the best results across all categories.

Real test data. Using the single category test in Table 5,
we also evaluate the 3D object completion task on the real
world test data provided by [38]. In this evaluation, we
generate the state-of-the art results with 23.8% IoU mea-
sure, which is higher than 3D-RecAE [38] by 7.2%, 3D-
RecGAN [38] by 7.3% and Han et al. [13] by 9.8%.

5. Conclusion

We propose ForkNet, a novel architecture for volumetric
semantic 3D completion that leverages a shared embedding
encoding both geometric and semantic surface cues, as well
as multiple generators designed to deal with limited paired
data and imprecise semantic annotations. Experimental re-
sults numerically demonstrate the benefits of our approach
for the two tasks of scene and object completion, as well
as the effectiveness of the proposed contributions in terms
of architecture, loss terms and use of discriminators. How-
ever, since we compress the input SDF volume into a lower
resolution through the encoder then increase the resolution
through the generator, small or thin structures such as the
legs of the chair or TVs tend to disappear during compres-
sion. This is an aspect we plan to improve in the future
work. In addition, for 3D scene understanding, the volumet-
ric representations are typically memory and power-hungry,
we also plan to extend our model for completion of efficient
and sparse representations such as point clouds.

8615



References
[1] Angel X Chang, Thomas Funkhouser, Leonidas Guibas,

Pat Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese,
Manolis Savva, Shuran Song, Hao Su, et al. Shapenet:
An information-rich 3d model repository. arXiv preprint
arXiv:1512.03012, 2015. 2, 8

[2] Christopher B Choy, Danfei Xu, JunYoung Gwak, Kevin
Chen, and Silvio Savarese. 3d-r2n2: A unified approach for
single and multi-view 3d object reconstruction. In European
conference on computer vision (ECCV). Springer, 2016. 3

[3] Angela Dai, Charles Ruizhongtai Qi, and Matthias Nießner.
Shape completion using 3d-encoder-predictor cnns and
shape synthesis. In Proc. IEEE Conf. on Computer Vision
and Pattern Recognition (CVPR), volume 3, 2017. 1, 3, 8

[4] Angela Dai, Daniel Ritchie, Martin Bokeloh, Scott Reed,
Jürgen Sturm, and Matthias Nießner. Scancomplete: Large-
scale scene completion and semantic segmentation for 3d
scans. In Proc. IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), volume 1, 2018. 1, 2
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Figure 1: Illustration of the branches in the ForkNet architecture.

1. Ablation study
Based on the architecture from the main submission, the

goal is to evaluate the influence of each component pro-
posed in this paper. This section highlights the ablation
study in reference to the two main contributions of the pa-
per. In Sec. 1.1, we focus on different cost functions in rela-
tion to the branches and discriminators; while, in Sec. 1.2,
we investigate the concatenated layers in detail and focus
on the advantage of each.

1.1. Branches and discriminators

Investigating the branches in our architecture through
Fig. 1, we evaluate on the following scenarios:

(a) Proposed method – With all the branches in Fig. 1, this
case utilizes all the cost functions and connections dis-
cussed in the main submission during learning.

(b) Semantic completion branch only – This follows the
basic architecture of taking the SDF volume as input
and building the completed semantic volume as output.
Hence, this utilizes the semantic completion branch in
Fig. 1. Removing the other branches as well as the con-
catenation of the layers from the completion branch,

learning in this case only relies solely on Lpred and Ds.

(c) Without completion branch – Starting from the pro-
posed architecture, this case removes the completion
branch in Fig. 1, effectively discarding the concate-
nated layers and the cost function Lrecon.

(d) Without scene consistency – Aiming at deactivating
the cost function Lconsistency, this scenario inherently
simplifies the entire architecture by removing the SDF
branch since, without Lconsistency, this branch no longer
influences the main semantic completion task. There-
fore, this case includes both the completion and se-
mantic completion braches while removing Lauto and
Lconsistency as well as the discriminator Dx.

Notably, these cases are evaluated in Tables 1, 2, 3 and 4.
Compared to the tables in the main submission, we com-
pleted the entries by adding the evaluation on utilizing the
semantic completion architecture only from (b).

Based on the five scenarios, the influence of the main
contributions are evaluated on (c) and (d).

3D scene completion. Although one can argue to sim-
plify the architecture by using the semantic completion

1



ceil. floor wall win. chair bed sofa table tvs furn. objs. Avg.

SSCNet [7] (observed) 97.7 94.5 66.4 30.0 36.9 60.2 62.5 56.3 12.1 46.7 33.0 54.2
Proposed Method (observed) 98.2 96.9 67.8 37.4 35.9 72.9 69.6 48.8 20.5 48.4 32.4 57.2

Wang et al. [9] 41.4 37.7 45.8 26.5 26.4 21.8 25.4 23.7 20.1 16.2 5.7 26.4
3D-RecGAN [10] 79.9 75.2 48.2 28.9 20.2 64.4 54.6 25.7 17.4 33.7 24.4 43.0
SSCNet [7] 96.3 84.9 56.8 28.2 21.3 56.0 52.7 33.7 10.9 44.3 25.4 46.4
VVNet [3] 98.4 87.0 61.0 54.8 49.3 83.0 75.5 55.1 43.5 68.8 57.7 66.7
SaTNet [6] 97.9 82.5 57.7 58.5 45.1 78.4 72.3 47.3 45.7 67.1 55.2 64.3
Proposed Method 95.0 85.9 73.2 54.5 46.0 81.3 74.2 42.8 31.9 63.1 49.3 63.4
– without completion 94.1 83.5 68.2 49.6 43.1 80.5 77.7 41.8 33.8 61.7 51.7 62.3
– without scene consistency 89.6 79.5 63.4 46.3 39.0 77.5 73.2 37.7 29.8 57.4 46.7 58.2
– without discriminators 88.4 79.1 63.5 46.7 39.3 77.3 73.6 37.2 30.9 57.3 45.7 58.1

Table 1: Semantic scene completion results on the SUNCG test set with depth map for IoU (in %).

ceil. floor wall win. chair bed sofa table tvs furn. objs. Avg.

SSCNet [7] (observed) 37.7 91.9 75.4 64.0 29.0 51.1 63.3 43.7 29.7 73.3 54.5 50.8
Proposed Method (observed) 41.5 90.8 69.6 54.8 27.7 53.1 66.3 44.4 27.1 74.7 57.5 55.2

Lin et al. [5] (NYU only) 0.0 11.7 13.3 14.1 9.4 29 24 6.0 7.0 16.2 1.1 12.0
3D-RecGAN [10] 35.3 70.3 24.1 3.8 11.9 47.4 43.1 11.4 16.9 30.6 7.2 27.5
Geiger and Wang [2] (NYU only) 10.2 62.5 19.1 5.8 8.5 40.6 27.7 7.0 6.0 22.6 5.9 19.6
SSCNet [7] 15.1 94.6 24.7 10.8 17.3 53.2 45.9 15.9 13.9 31.1 12.6 30.5
VVNet [3] 19.3 94.8 28.0 12.2 19.6 57.0 50.5 17.6 11.9 35.6 15.3 32.9
SaTNet [6] 17.3 92.1 28.0 16.6 19.3 57.5 53.8 17.7 18.5 38.4 18.9 34.4
Proposed Method 36.2 93.8 29.2 18.9 17.7 61.6 52.9 23.3 19.5 45.4 20.0 37.1
– semantic completion branch only 28.3 81.6 24.0 2.2 12.9 49.9 44.9 13.5 19.9 30.9 7.4 28.7
– without completion 35.8 94.1 28.9 19.2 16.8 61.4 53.5 23.0 14.0 45.6 18.9 36.5
– without scene consistency 36.8 91.7 28.0 18.3 8.3 58.8 49.5 13.0 16.7 42.6 17.6 34.7
– without discriminators 35.1 91.7 28.1 19.3 8.7 58.8 49.5 13.1 15.6 42.5 16.7 34.5

Table 2: Semantic scene completion results on the NYU test set with depth map for IoU (in %).

branch alone, we illustrate in Tables 1 and 2 that this sit-
uation is insufficient to perform the task. Taking the IoU of
this situation as baseline, we demonstrate in these tables that
each component – the completion branch, the scene consis-
tency and the discriminators – contributes to reach 63.4%
for SUNCG and 37.1% for NYU, which is the state of the
art.

While the completion branch aims at incorporating the
geometric structures on the semantic completion branch
while the scene consistency aims at building a new learning
dataset to help the limited amounts especially in the NYU,
the goal of the discriminator is less obvious.

By disentangling the discriminators from the scene con-
sistency, we notice that we achieve lower IoU without the
discriminators (i.e. with scene consistency) than without
the scene consistency (i.e. with discriminators). This ob-
servation emphasizes the value of the discriminators while
performing the scene consistency since the objective of the
scene consistency is to supplement the learning dataset with
newly generated volumes while the objective of the discrim-

inator is to enforce that the generated volumes are realistic.

3D object completion. In contrast to the 3D scene com-
pletion task, the goal of the 3D object completion is to con-
struct the volume of the object from a single view but with
a known object category. Thus, while the semantic com-
pletion branch with one object category produces the same

bench chair couch table Avg.

Varley et al. [8] 65.3 61.9 81.8 67.8 69.2
3D-EPN [1] 75.8 73.9 83.4 77.2 77.6
Han et al. [4] 54.4 46.9 48.3 56.0 51.4
3D-RecAE [10] 73.3 73.6 83.2 75.0 76.3
3D-RecGAN [10] 74.5 74.1 84.4 77.0 77.5
Proposed method 79.1 80.6 92.4 84.0 84.1
– without scene consistency 76.3 76.4 87.5 81.2 80.4
– without discriminators 69.9 75.8 87.1 81.3 78.5

Table 3: Object completion results on the Shapenet test set
in terms of IoU (in %). The resolution for Varley et al. [8]
and 3D-EPN [1]: 32×32×32, for others: 64×64×64.
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Figure 2: Illustration of the first and second concatenation in the ForkNet architecture.

results as the completion branch, we merge them together;
thus, removing the concatenation. As a result, we only have
two branches stemming from the latent feature. For the ab-
lation study in Tables 3 and 4, since the task is altered to ge-
ometric reconstruction, we highlight the cases where scene
consistency and the discriminators are not used. Moreover,
since there are only two branches for the 3D object comple-
tion, when we evaluate without the scene consistency, this
is the same as evaluating with the completion branch alone.

In these tables, we also show the advantage of each com-
ponent that contributes to achieve better IoU. Notably, we
can formulate the same conclusion regarding the relation
between the scene consistency and discriminator as the 3D
scene completion.

1.2. Concatenations from the completion branch

Between the completion and the semantic completion
branches, we connect the them by concatenating the result-
ing layers from the completion to the semantic as shown in
Fig. 2. In effect, we are incorporating the geometric struc-
ture of the scene into the semantic completion task.

In this ablation study, we investigate the influence of
each layer that is concatenated in Table 5. By completely
removing the concatenations, the IoU drops from 63.4% to
62.3% in SUNCG and 37.1% to 36.5% in NYU. Between
the two, the second one improves the semantic completion

bench chair couch table Avg.

Han et al. [4] 18.4 14.8 10.1 12.6 14.0
3D-RecAE [10] 23.1 17.8 10.7 14.8 16.6
3D-RecGAN [10] 23.0 17.4 10.9 14.6 16.5
Proposed method 32.7 24.1 15.9 22.5 23.8
– without scene consistency 26.1 21.5 14.9 18.6 20.3
– without discriminators 25.7 21.1 12.9 18.9 19.7

Table 4: Object completion results on the real world test set
provided by 3D-RecGAN [10] in terms of IoU (in %). The
resolution for all methods is 64×64×64.

SUNCG NYU

Proposed method 63.4 37.1
– 1st concatenation only 62.1 36.4
– 2nd concatenation only 62.8 36.9
– without concatenations 62.3 36.5

Table 5: Semantic scene completion results on the SUN-
NCG and the NYU test set in terms of IoU (in %).

task the most, allowing to add larger geometric information
into the semantic completion branch.

2. Qualitative results
We also show the qualitative results for 3D object com-

pletion in Fig. 3 and compare with 3D-RecGAN [10].
Notably, these results confirm our numerical performance
wherein we reconstruct better structures and semantic la-
bels than the state of the art.
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5.2 Point Cloud Completion

5.2 Point Cloud Completion

Volumetric data relies on a 3D grid with a fixed resolution to discretize the 3D geometry at
hand so that the completed shapes produced by our works in Section 5.1 are limited in terms
of details. By increasing the resolution, finer details of the surface can be stored. Nevertheless,
memory requirements increase exponentially with a linear increase in spatial resolution.
Achieving a higher resolution is the driving force to redirect our research to point cloud
completion.
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Chapter 5: Contributions

5.2.1 SoftPoolNet: Shape Descriptor for Point Cloud Completion and
Classification (European Conference on Computer Vision 2020 Oral)

Input ForkNet FoldingNet

PCNAtlasNetGround Truth SoftPoolNet

Better Reconstruction
For instance, the wings are 
clearly separated.

ECCV 2022
Figure 5.3 The single view object completion with the proposed SoftPoolNet [6] shows more smoothness than our

previous volumetric method [8]. It accurately presents the separation between upper and lower wings
of the plane compared to other point cloud completion works based on PointNet [40] feature.

Focusing on geometric completion presented in a point cloud, we propose SoftPoolNet [6] to
complete a partial scan to a complete shape with detailed surfaces. Structured with flexible
3D local resolutions, the point cloud does not store information about empty spaces, where
complex local structures could be presented with more points. Given the partial scan of
an object, a point cloud input is presented by Nin points written in a matrix formed as
Pin = [xi]

Nin
i=1 where each point is represented as the 3D coordinates xi = [xi,yi, zi]. The

expected complete output point cloud should also be presented as a matrix Pout, which a
completion model produces.

The main challenge when processing a point cloud is its unstructured arrangement. This
fact implies that changing the order of the points in Pin describes the same point cloud but
generates a different feature matrix that flows into decoders for completion. PointNet [40]
solves this problem by using max-pooling to project the 2D feature into a vector so that it
is permutation invariant, but such operation loses too much information from the input,
potentially helpful in completion. In SoftPoolNet, we propose to organize the extracted
features from the encoder of the point cloud based on their activation, which is a procedure
we name soft-pooling. The max-pooling in PointNet is then replaced with soft-pooling so
that more information is retained while keeping the required permutation invariance.

Based on the proposed soft-pool operation, we build an encoder-decoder architecture called
SoftPoolNet, targeted at point cloud completion. Because our latent feature reveals spatial
relationships in the feature map, we propose regional convolutions to construct our decoder.
Compared to MLP-based approaches, It convolves local features to improve the completion
tasks with finer details. Since such convolution depends on local regions, we find local
regions by optimizing the inter-regional and intra-regional relationships, resulting in similarly
distributed amounts of points throughout the regions, while the confidence of each feature to
be in a single region is increased. In practice, we minimize the Chamfer distance between
boundary points between 2 regions to restrict the connection between adjacent regions to their
boundaries. Finally, we show that this approach benefits classification and completion.
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5.2 Point Cloud Completion

Contributions

Yida Wang implemented and proposed the SoftPool operator and the way to compose the
SoftPoolNet feature from features extracted from different regions. He also implemented the
regional convolutions used in the decoder to form the whole SoftPoolNet architecture for
point cloud completion. He evaluates all experiments.

David Tan suggested focusing more on atypical objects to find the specific advantages
of our work. He noticed a problem when regional convolution goes through two regions
during inference, which should be solved by carefully setting the hyperparameters of the
convolutional kernels.

Federico Tombari involved in the discussion about the advantages and disadvantages of
presenting the completed target in point cloud instead of volumetric data.

Nassir Navab financed this work on behalf of the leader of TUM CAMP.
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Abstract. Point clouds are often the default choice for many appli-
cations as they exhibit more flexibility and efficiency than volumetric
data. Nevertheless, their unorganized nature – points are stored in an
unordered way – makes them less suited to be processed by deep learning
pipelines. In this paper, we propose a method for 3D object completion
and classification based on point clouds. We introduce a new way of orga-
nizing the extracted features based on their activations, which we name
soft pooling. For the decoder stage, we propose regional convolutions, a
novel operator aimed at maximizing the global activation entropy. Fur-
thermore, inspired by the local refining procedure in Point Completion
Network (PCN), we also propose a patch-deforming operation to simu-
late deconvolutional operations for point clouds. This paper proves that
our regional activation can be incorporated in many point cloud architec-
tures like AtlasNet and PCN, leading to better performance for geomet-
ric completion. We evaluate our approach on different 3D tasks such as
object completion and classification, achieving state-of-the-art accuracy.

1 Introduction

Point clouds are unorganized sparse representations of a 3D point set. Compared
to other common representations for 3D data such as 3D meshes and voxel
maps, they are simple and flexible, while being able to store fine details of a
surface. For this reason, they are frequently employed for many applications
within 3D perception and 3D computer vision such as robotic manipulation
and navigation, scene understanding, and augmented/virtual reality. Recently,
deep learning approaches have been proposed to learn from point clouds for 3D
perception tasks such as point cloud classification [4,14,18,19] or point cloud
segmentation [11,13,14,17,23]. Among them, one of the key breakthroughs in
handling unorganized point clouds was proposed by PointNet [18], introducing
the idea of a max pooling in the feature space to yield permutation invariance.

An interesting emerging research trend focusing on 3D data is the so-called
3D completion, where the geometry of a partial scene or object acquired from a
single viewpoint, e.g. through a depth map, is completed of the missing part due
to (self-)occlusion as visualized in Fig. 1. This can be of great use to aid standard
3D perception tasks such as object modeling, scene registration, part-based seg-
mentation and object pose estimation. Most approaches targeting 3D completion
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Input ForkNet FoldingNet

PCNAtlasNetGround Truth
Our Method

Fig. 1: This paper proposes a method that reconstructs 3D point cloud models
with more fine details.

have been proposed for volumetric approaches, since 3D convolutions are natu-
rally suited to this 3D representation. Nevertheless, such approaches bring in the
limitations of this representation, including loss of fine details due to discretiza-
tion and limitations in scaling with the 3D size. Recently, a few approaches have
explored the possibility of learning to complete a point cloud [9,25,26].

This paper proposes an encoder-decoder architecture called SoftPoolNet,
which can be employed for any task that processes a point cloud as input in
order to regress another point cloud as output. One of the tasks and a main
focus for this work is 3D object completion from a partial point cloud.

The theoretical contribution of SoftPoolNet is twofold. We first introduce soft
pooling, a new module that replaces the max-pooling operator in PointNet by
taking into account multiple high-scoring features rather than just one. The intu-
ition is that, by keeping multiple features with high activations rather than just
the highest, we can retain more information while keeping the required permuta-
tion invariance. A second contribution is the definition of a regional convolution
operator that is used within the proposed decoder architecture. This operator
is designed specifically for point cloud completion and relies on convolving local
features to improve the completion task with fine details.

In addition to evaluating SoftPoolNet for point cloud completion, we also
evaluate on the point cloud classification to demonstrate its applicability to
general point cloud processing tasks. In both evaluations, SoftPoolNet obtains
state of the art results on the standard benchmarks.

2 Related work

Volumetric completion. Object [7] and scene completion [20,22] are typically
carried out by placing all observed elements into a 3D grid with fixed resolu-
tion. 3D-EPN [7] completes a single object using 3D convolutions while 3D-
RecGAN [24] further improves the completion performance by using discrimina-
tive training. As scene completion contains objects in different scales and more
random relative position among all of them, SSCNet [20] proposes a 3D volu-
metric semantic completion architecture using dilated convolutions to recognize
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objects with different scales. ForkNet [22] designs a multi-branch architecture to
generate realistic training data to supplement the training.

Point cloud completion. Object completion based on point cloud data change
partial geometries without using a 3D fixed grid. They represent completed
shapes as a set of points with 3D coordinates. For instance, FoldingNet [25]
deforms a 2D grid from a global feature such as PointNet [18] feature to an
output with a desirable shape. AtlasNet [9] generates an object with a set of
local patches to simulate mesh data. But overlaps between different local patches
makes the reconstruction noisy. MAP-VAE [10] predicts the completed shape by
joining the observed part with the estimated counterpart.

CNNs for point clouds. Existing works like PointConv [23] and PointCNN [13]
index each point with k-nearest neighbour search to find local patches, where
they then apply the convolution kernels on those local patches. Regarding point
cloud deconvolutional operations, FoldingNet [25] uses a 2D grid to help generate
a 3D point cloud from a single feature. PCN [26] further uses local FoldingNet
to obtain a fine-grained output from a coarse point cloud with low resolution
which could be regarded as an alternative to point cloud deconvolution.

3 Soft pooling for point features

Given the partial scan of an object, the input to our network is a point cloud
with Nin points written in the matrix form as Pin = [xi]

Nin
i=1 where each point is

represented as the 3D coordinates xi = [xi, yi, zi]. We then convert each point
into a feature vector fi with Nf elements by projecting every point with a point-
wise multi-layer perceptron [18] (MLP) Wpoint with three layers. Thus, similar

to Pin, we define the Nin × Nf feature matrix as F = [fi]
Nin
i=1. Note that we

applied a softmax function to the output neuron of MLP so that the elements
in fi ranges between 0 and 1.

The main challenge when processing a point cloud is its unstructured ar-
rangement. This implies that changing the order of the points in Pin describes
the same point cloud, but generates a different feature matrix that flows into
our architecture with convolutional operators. To solve this problem, we propose
to organize the feature vectors in F so that their k-th element are sorted in a
descending order, which is denoted as F′k. Note that k should not be larger than
Nf . A toy example of this process is depicted in Fig. 2(a) where we assume that
there are only five points in the point cloud and arrange the five feature vectors
from F = [fi]

5
i=1 to F′k = [fi]i={3,5,1,2,4} by comparing the k-th element of each

vector. Repeating this process for all the Nf elements in fi, all F′k together result
to a 3D tensor F′ = [F′1,F

′
2, . . .F

′
Nf

] with the dimension of Nin ×Nf ×Nf . As

a result, any permutation of the points in Pin generate the same F′.
Sorting the feature vectors in a descending order highlights the ones with the

highest activation values. Thus, by selecting the first Nr feature vectors from
all the F′k as shown in Fig. 2(b), we assemble F∗ that accumulates the features
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Fig. 2: Toy examples of (a) sorting the the k-th element of the vectors in the
feature matrix F to build F′k and consequently F′ and (b) concatenation of the
first Nr rows of F′k to construct the 2D matrix F∗ which corresponds to the
regions with high activations.

with the highest activations. Altogether, the output of soft pooling is the Nf ·Nr

point features. Since each feature vector corresponds to a point in Pin, we can
interpret the first Nr feature vectors as a region in the point cloud. The effects
of the activations on the 3D reconstruction are illustrated in Fig. 3, where the
point cloud is divided into Nf regions. Later in Sec. 6, we discuss on how to
learn Wpoint by incorporating these regions. That section introduces several loss
functions which optimize towards entropy, Chamfer distance and earth-moving
distance such that each point is optimized to fall into only one region and to be
selected for F∗ by maximizing the k-th element of the feature vector associated
to the same region.

Similar to PointNet [18], we also rely on MLP to build the feature matrix
F. However, PointNet directly applies max-pooling on F to produce a vector
while we try to generalize this approach and sort the feature vectors in order to
assemble a matrix F∗ as illustrated in Fig. 2. Considering the distinction between
the two approaches, we refer our approach as soft pooling. Fundamentally, in
addition to the increased amount of information from our feature vectors, the
advantage of our method is the ability to apply regional convolutional operations
to F∗, as discussed in Sec. 4. The differences are evident in Fig. 4, where the
proposed method achieves detailed results on reconstructing all the six legs while

Fig. 3: Deconstructing the learned regions (unsupervised) that correspond to
different parts of the car.
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(a) Input (b) Ground Truth (d) Ours(c) PointNet 

Fig. 4: Comparison of our method and PointNet [18] where PointNet reconstructs
the more typical four-leg table instead of six in (c).

PointNet follows the more generic structure of the table with four. This proves
that soft pooling makes our decoder able to take all observable geometries into
account to complete the shape, while the max-pooled PointNet feature cannot
reveal the rarely seen geometry.

4 Regional convolution

Operating on F∗, we introduce the convolutional kernel Wconv that transforms
F∗ to a new set of points Pconv by taking several point features into considera-
tion. We structure Wconv with a dimension of Np ×Nf × 3 where Np represent
the number of points which are taken into consideration such that

Pconv(i, j) =

Nf∑

l=1

Np∑

k=1

F∗(i+ k, l)Wconv(j, k, l) . (1)

Here, the kernel slides only inside each region of features without taking features
from two different regions in one convolutional operation. As the kernel size
allows it to cover Np features, we pad each region with Np−1 duplicated samples
at the end of each region in order to keep the output resolution the same as Nin.
Experimentally, we tried different numbers of Np ranging from 4 to 64 and
evaluated that 32 generates the best results. Learning the values in Wconv is
discussed in Sec. 6.

In addition, we use a convolution stride which is set as a value smaller than
Np to change the output resolution in terms of the number of point features.
With a stride of S, we then take samples every S point feature in F∗. Notice
that, by using a stride which is smaller than 1, we can also upsample F∗ by
interpolating 1

S − 1 new points between two points then apply the convolution
kernel again. This is an essential tool in reconstructing the object from a partial
scan.

5 Network architecture

We build an encoder-decoder architecture which consists of MLP and our re-
gional convolutions, respectively. Serving as the input to our network, we per-
mutate the input scans and resample 1,024 points. If the partial scans have less
than 1,024 points, we then duplicate the missing samples.
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Fig. 5: Decoder architecture of SoftPoolNet with two regional convolution that
converts the features from the regions to point clouds and interpolates from the
coarse 256 points to a higher resolution with 16,384 points.

Our encoder is a point-wise MLP that generates the output neuron with a
dimension of [512, 512, 8]. We then perform soft pooling as described in Sec. 3
that produces F∗ with the size of [256, 8] by setting Nr to 32 and Nf to 8,
resulting an output of Nf ·Nr = 256 features.

Finally, for the decoder, we propose a two-stage point cloud completion ar-
chitecture which is trained end-to-end. The output of the first is used as the
input of the second point cloud completion network. Both of them produces the
completed point cloud but with different resolutions. Illustrated in Fig. 5, we
construct the decoder with two regional convolutions from Sec. 4. The first out-
put P′out is fixed at 256 while the second Pout produces a maximum resolution
of 16,384.

6 Loss functions

During learning, we evaluate whether the predicted point feature Pout matches
the given ground truth Pgt through the Chamfer distance. Similar to [9,25,26],
we use the regression loss function for the shape completion from a point cloud

Lcomplete(Wpoint,Wconv) = Chamfer(Pout,Pgt) . (2)

We observed that there are two major drawbacks in using this loss function alone
– the reconstructed surface tends to be either curved on the sharp edges such
FoldingNet [25] or having noisy points appear on flat surfaces such as AtlasNet [9]
and PCN [26]. In this work, we tackle these problems by finding local regions
first, then by optimizing the inter- and intra-regional relationships.

Moreover, while FoldingNet [25] sacrifices local details to present the entire
model with a single mesh having smooth surface, AtlasNet [9] and PCN [26] use
local regions (or patches) to increase the details in the 3D model. However, both
of them [9,26] have severe overlapping effects between adjacent regions which
makes the generated object noisy and the regions discontinuous. To solve this
problem, we aim at reducing the overlaps between two adjacent regions.

6.1 Learning activations through regional entropy

Considering that the dimension of a single feature is Nf , we can directly define
Nf regions for all features. Given the probabilities of regions to which the feature
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fi belong, we want to optimize the inter- and intra-regional relationships among
the features. We directly present the probability of the feature fi belonging to
all Nf regions by applying the softmax function to fi as

P (fk, i) =
fk[i]

∑Nf

j=1 fk[j]
. (3)

Since the information entropy evaluates both the distribution and the confidence
of the probabilities of a set of data, we define the feature entropy and the regional
entropy based on the regional probability of the feature.

The goal of the inter-regional loss function is to similarly distribute the num-
ber of points throughout the regions. We define the regional entropy as

Er = − 1

B

B∑

j=1

R∑

i=1

[(
1

N

N∑

k=1

P (fk, i)

)
· log

(
1

N

N∑

k=1

P (fk, i)

)]
(4)

where B is the batch-size. Here, we want to maximize Er. Considering that the
upper-bound of Er is − log 1

R = log(R), we can then define the inter-regional loss
function as

Linter(Wpoint) = log(R)− Er (5)

in order to acquire a positive loss function. Once Er is close to log(R), each region
would contain similar amount of point features. Interestingly, we can select the
number of regions by evaluating how much the regional entropy Er differs from
its upper-bound. The best number of regions should be the one with a small
Linter. This is evaluated later in Table 6.

On the other hand, the goal of the intra-regional loss function is to boost
the confidence of each feature to be in a single region. The intra-regional loss
function then minimize the feature entropy

Lintra(Wpoint) = − 1

N

1

B

N∑

k=1

B∑

j=1

Nf∑

i=1

P (fk, i) logP (fk, i) . (6)

The optimum case of the feature entropy is for each feature to be a one-hot code,
i.e. when only one element is 1 while the others are zero.

6.2 Reducing the overlapping regions

Although Lintra tries to make each point feature confident about the region to
which it belongs, instances exist where many adjacent points would fall under
different regions. For example, we observe in Fig. 6 that patches from different
regions are stacked on top of each other, producing noisy reconstructions. No-
tably, this introduces unexpected results when fitting a mesh to the point cloud.
Thus, we want to minimize region overlap by optimizing the network to restrict
the connection between adjacent regions to their boundaries.
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(a) without (b) with

Fig. 6: Effects of without and with Lboundary where the wings are not planar and
the engines are less visible in (a). Note that the colors represent different regions.

(a) Input (b) Ground Truth
(c) Ours without 

(d) Ours

Fig. 7: Effects of without and with Lpreserve where the seat is missing in (c).

First, each point is assigned to a region with the highest activation. All points
that belong to region i but has activation for region j larger than a threshold
τ are included in the set Bji . Inversely, the points that belong to region j but
have activation for region i larger than τ are added in the set Bij . Note that,

if both sets Bji and Bij are not empty, the regions i and j are then adjacent.

Thus, by minimizing the Chamfer distance between Bji and Bij , we can make the
overlapping sets of points smaller such that the optimal result is a line. We then
define the loss function for the boundary as

Lboundary(Wpoint,Wconv) =

Nf∑

i=1

Nf∑

j=i

Chamfer(Bji ,Bij) (7)

where both Wpoint and Wconv are optimized. After experimenting on different
values of τ from 0.1 to 0.9, we set τ to be 0.3.

6.3 Preserving the features from MLP

After sorting and filtering the features to produce F∗, some feature vectors in
F∗ are duplicated while some vectors from F are missing in F∗. To avoid these,
we introduce the loss function

Lpreserve(Wpoint) = Earth-moving(F∗,F) . (8)

Since the earth moving distance [12] is not efficient when the size of the samples
is large, we then randomly select 256 vectors from F and F∗. Considering that
the feature dimensions in F and F∗ are both Nf , the earth moving distance
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then takes features with Nf dimension as input. In practice, Fig. 7 visualizes
the effects of Lpreserve in the reconstruction, where removing this loss produce
a large hole on the seat while incorporating this loss builds a well-distributed
point cloud.

7 Experiments

For all evaluations, we train our model with an NVIDIA Titan V and param-
eterize it with a batch size of 8. Moreover, we apply the Leaky ReLU with a
negative slope of 0.2 on the output of each regional convolution output.

7.1 Object completion on ShapeNet

We evaluate the performance of the geometric completion of a single object on
the ShapeNet [5] database where training data are paired point clouds of the
partial scanning and the completed shape. To make it comparable to other ap-
proaches, we adopt the standard 8 category evaluation [26] for a single object
completion. As rotation errors are common in the partial scans, we further eval-
uate our approach against other works on the ShapeNet database with rotations.
We also evaluate the performance on both high and low resolutions which contain
16,384 and 2,048 points, respectively.

We compare against other point cloud completion approaches such as PCN [26],
FoldingNet [25], AtlasNet [9] and PointNet++ [19]. To show the advantages over
volumetric completion, we also compare against 3D-EPN [24] and ForkNet [22]
with an output resolution of 64 × 64 × 64. Notably, we achieve the best results
on most objects and in all types of evaluations as presented in Table 1, Table 2
and Table 3.

An interesting hypothesis is the capacity of Lboundary to be integrated in other
existing approaches. Thus, Table 1 and Table 2 also evaluate this hypothesis
and prove that this activation helps FoldingNet [25], PCN [26] and AtlasNet [9]

Output Resolution = 16,384

Method plane cabinet car chair lamp sofa table vessel Avg.

3D-EPN [7] 13.16 21.80 20.31 18.81 25.75 21.09 21.72 18.54 20.15
ForkNet [22] 9.08 14.22 11.65 12.18 17.24 14.22 11.51 12.66 12.85
PointNet++ [19] 10.30 14.74 12.19 15.78 17.62 16.18 11.68 13.52 14.00
FoldingNet [25] 5.97 10.80 9.27 11.25 12.17 11.63 9.45 10.03 10.07
FoldingNet + Lboundary 5.79 10.61 8.62 10.33 11.56 11.05 9.41 9.79 9.65
PCN [26] 5.50 10.63 8.70 11.00 11.34 11.68 8.59 9.67 9.64
PCN + Lboundary 5.13 9.12 7.58 9.35 9.40 9.31 7.30 8.91 8.26
Our Method 4.01 6.23 5.94 6.81 7.03 6.99 4.84 5.70 5.94

Table 1: Completion evaluated by means of the Chamfer distance (multiplied by
103) with the output resolution of 16,384.
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Output Resolution = 2,048

Method plane cabinet car chair lamp sofa table vessel Avg.

FoldingNet [25] 11.18 20.15 13.25 21.48 18.19 19.09 17.80 10.69 16.48
FoldingNet + Lboundary 11.09 19.95 13.11 21.27 18.22 19.06 17.62 10.10 16.30
AtlasNet [9] 10.37 23.40 13.41 24.16 20.24 20.82 17.52 11.62 17.69
AtlasNet + Lboundary 9.25 22.51 12.12 22.64 18.82 19.11 16.50 11.53 16.56
PCN [26] 8.09 18.32 10.53 19.33 18.52 16.44 16.34 10.21 14.72
PCN + Lboundary 6.39 16.32 9.30 18.61 16.72 16.28 15.29 9.00 13.49
TopNet [21] 5.50 12.02 8.90 12.56 9.54 12.20 9.57 7.51 9.72
Our Method 4.76 10.29 7.63 11.23 8.97 10.08 7.13 6.38 8.31
– without Linter 10.82 20.45 15.21 20.19 18.05 18.58 15.65 8.81 15.97
– without Lintra 5.23 16.10 12.49 14.62 13.90 12.37 12.96 5.72 11.67
– without Linter, Lintra 10.91 20.54 15.27 20.28 18.16 18.66 15.75 8.91 16.06
– without Lboundary 5.46 10.98 8.27 11.95 9.51 10.92 7.78 7.40 9.03
– without Lpreserve 10.29 19.75 14.13 19.35 17.88 18.21 15.23 8.11 15.37

Table 2: Completion evaluated using the Chamfer distance (multiplied by 103)
with the output resolution of 2,048.

Output Resolution = 1,024

Method plane cabinet car chair lamp sofa table vessel Avg.

3D-EPN [7] 6.20 7.76 8.70 7.68 10.73 8.08 8.10 8.17 8.18
PointNet++ [19] 5.96 11.62 6.69 11.06 18.58 10.26 8.61 8.38 10.14
FoldingNet [25] 15.64 22.13 17.46 29.74 32.00 24.57 18.99 21.88 22.80
PCN [26] 3.88 7.07 5.50 6.81 8.46 7.24 6.01 6.27 6.40
DeepSDF [16] 3.88 - - 5.63 - 4.68 - - -
LGAN [3] 3.32 - - 5.59 - - - - -
MAP-VAE [10] 3.23 - - 5.57 - - - - -
Our Method 2.52 5.49 4.08 5.20 6.17 5.25 4.61 5.80 4.89

Table 3: Completion results using the Earth-Moving distance (multiplied by 102)
with the output resolution of 1,024. We report the values of DeepSDF [16] from
their original paper by rescaling according to the difference of point density.

perform better. Nevertheless, even with such improvements, the complete version
of the proposed method still outperforms them.

7.2 Car completion on KITTI

The KITTI [8] dataset present partial scans of real-world cars using Velodyne
3D laser scanner. We adopt the same training and validating procedure for car
completion as proposed by PCN [26]. We train a car completion model based on
the training data generated from ShapeNet [5] and test our completion method
on sparse point clouds generated from the real-world LiDAR scans. For each
sample, the points within the bounding boxes are extracted with 2,483 partial
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Method Fidelity MMD Consistency

FoldingNet [25] 0.03155 0.02080 0.01326
AtlasNet [9] 0.03461 0.02205 0.01646
PCN [26] 0.02800 0.01850 0.01163
Our Method 0.02171 0.01465 0.00922

PCN [26] (rotate) 0.03352 0.02370 0.01639
Our Method (rotate) 0.02392 0.01732 0.01175

Table 4: Car completion on LiDAR scans from KITTI.

point clouds. Each point cloud is then transformed to the box’s coordinates to
be completed by our model then transformed back to the world frame. PCN [26]
proposed three metrics to evaluate the performance of our model: (1) Fidelity,
i.e. the average distance from each point in the input to its nearest neighbour in
the output (i.e. measures how well the input is preserved); (2) Minimal Match-
ing Distance (MMD), i.e. the Chamfer distance between the output and the
car’s point cloud nearest neighbor from ShapeNet (i.e. measures how much the
output resembles a typical car); and, (3) Consistency, the average Chamfer dis-
tance between the completion outputs of the same instance in consecutive frames
(i.e. measures how consistent the networks outputs are against variations in the
inputs).

Table 4 shows that we achieve state of the art on the metrics compared
to FoldingNet [25], AtlasNet [9] and PCN [26]. When we introduce random
rotations on the bounding box in order to simulate errors in the initial stages,
we still acquire the lowest errors.

7.3 Classification on ModelNet and PartNet

We evaluate the performance of the features in term of classification on Mod-
elNet10 [27], ModelNet40 [27] and PartNet [15] datasets. ModelNet40 contains
12,311 CAD models in 40 categories. Here, the training data contains 9,843
samples and the testing data contains 2,468 samples. Following RS-DGCNN [2],
a linear Support Vector Machine [6] (SVM) is trained on the representations
learned in an unsupervised manner on the ShapeNet dataset. RS-DGCNN [2]
divides the point cloud of the objects into several regions by positioning the ob-
ject in a pre-defined voxel grid, then use the regional information to help train
latent feature. In Table 5, the proposed method outperforms RS-DGCNN [2] by
1.64% accurracy on ModelNet40 dataset, which shows that our feature contains
better categorical information. Notably, similar results are also acquired from
ModelNet10 [27] and PartNet [15] with their respective evaluation strategy.

7.4 Ablation study

Loss functions. In the reconstruction and classification experiments, Table 2
and Table 5 also include the ablation study that investigates the effects of the
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Method ModelNet40 [27] ModelNet10 [27] PartNet [15]

VConv-DAE 75.50% 80.50% -
3D-GAN 83.30% 91.00% 74.23%
Latent-GAN 85.70% 95.30% -
FoldingNet 88.40% 94.40% -
VIP-GAN 90.19% 92.18% -
RS-PointNet [2] 87.31% 91.61% 76.95%
RS-DGCNN [2] 90.64% 94.52% -
KCNet [1] 91.0% 94.4% -

Our Method 92.28% 96.14% 84.32%
– without Linter 89.40% 95.75% 81.13%
– without Lintra 83.70% 90.21% 79.28%
– without Linter, Lintra 82.97% 90.02% 78.41%
– without Lboundary 88.26% 95.01% 80.86%
– without Lpreserve 86.09% 92.27% 79.05%

Table 5: Object classification on ModelNet40 [27], ModelNet40 [27] and Part-
Net [15] datasets in terms of accuracy.

loss functions from Sec. 6. For both experiments, we notice all loss functions are
critical to achieve good results since each of them focuses on different aspects.

Activations. Since the number of regions is one of the hyper-parameters in our
approach, we evaluate on the performance with different number of regions quan-
titatively in Table 6. These results demonstrate that the accuracy for the shape
completion is increasing as the number of regions increases from 2 to 8, then
the performance gradually drops as the number of regions continues to increase
from 8 to 32. By observing Linter at the same time, we find that it achieves the
minimum value of 0.20 when there are 8 regions as well. This proves that Linter

can be used as an indicator for whether the expected number of regions could
be used or not.

Moreover, Fig. 8 shows the regional activations when we shuffle the sequence
of points in the partial scan. We can see that both the reconstructed geometry
relative sub-regions are identical. So, it illustrates that, by using the proposed
regional activations, our model is permutation invariant, which indicates that
the reordered point cloud is suitable to perform convolutions.

(Nf , Nr) (2, 128) (4, 64) (8, 32) (16, 16) (32, 8)

Chamfer Distance 7.80 6.31 5.94 6.27 6.75
Linter 0.41 0.67 0.20 0.49 1.33

Table 6: Influence of Nf and Nr on the Chamfer distance (multiplied by 103)
and Linter.
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1 2 3 4 5 6

Fig. 8: With identical results, this evaluation shows the robustness of the recon-
struction when we randomly shuffle the input point cloud.

Point cloud versus volumetric data. In addition to achieving worse numerical re-
sults in Sec. 7.1, volumetric approaches have smaller resolutions than the point
cloud approaches due to the memory constraints. The difference becomes more
evident in Fig. 9, where ForkNet [22] is limited by a 64×64×64 grid. Nevertheless,
both the volumetric and point cloud approaches have difficulty in reconstruct-
ing thin structures. For instance, the volumetric approach tends to ignore the
joints between the wheels and car chassis in Fig. 9 while FoldingNet [25] and
AtlasNet [9] only use large surface to cover the area of wheels. In contrast, our
approach is capable of reconstructing the thin structures quite well. Moreover,
in Table 7, we also achieve the lowest inference time compared to all point cloud
and volumetric approaches.

Method Size (MB) Inference Time (s) Closed Surface Type of Data

3D-EPN [7] 420 - Yes Volumetric
ForkNet [22] 362 - Yes Volumetric
FoldingNet [25] 19.2 0.05 Yes Points
AtlasNet [9] 2 0.32 No Points
PCN [26] 54.8 0.11 No Points
DeepSDF [16] 7.4 9.72 Yes SDF
Our Method 37.2 0.04 Yes Points

Table 7: Overview of the object completion methods. The inference time is the
amount of time to conduct inference on a single sample.
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Fig. 9: Evaluated on ShapeNet [5], comparison of shape completion based on
ForkNet [22], FoldingNet [25], AtlasNet [9] and PCN [26] against our method.

8 Conclusion

This paper introduced the SoftPool idea as a novel and general way to extract
rich deep features from unordered point sets such as 3D point clouds. Also,
it proposed a state-of-the-art point cloud completion approach by designing a
regional convolution network for the decoding stage. Our numerical evaluation
reflects that our approach achieves the best results on different 3D tasks, while
our quantitative results illustrate the reconstruction and completion ability of
our method with respect to ground truth.
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1 Comparison of SoftPoolNet to PointNet and PCN

Our architecture is composed by two parts: encoder and decoder. The encoder
takes the partial scan as input. We process the partial scans with our novel soft
pooling to produce the ordered feature F ∗. Then, the decoder takes the feature
F ∗ as input and apply our regional convolution twice to produce the point clouds
with resolutions of 256 and 16,384 successively.

Notably, there are some similar components between our encoder and Point-
Net [1], as well as our decoder and PCN [3]. The following sections discuss the
distinction in more detail.

1.1 Distinction of our encoder from PointNet

Each point on the cloud goes through the multi-layer perceptron (MLP) to
accumulate the feature vectors into the matrix F. Then, we sort the feature
vectors in a descending order based on the k-th element of each vector. The
sorted matrix is denoted as F′i. After independently sorting all Nf elements,
we collect the matrices to form the tensor F′ as shown in Fig. 1(a). We then
build our softpool feature by taking the first Nr elements of each matrix and
concatenate them to F∗.

concatenate concatenate

Fig. 1: Comparison between (a) our soft-pool operation and (b) max-pooling
from PointNet, where the feature from PointNet is only a subset of our feature.
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When comparing our softpool feature F∗ with the feature from PointNet [1]
denoted as FPN, PointNet executes a max-pooling operation on F′ as illustrated
in Fig. 1(b). Assuming that both features are derived from the same F′ produced
by an MLP, we can conclude that FPN is a subset of our feature where

FPN =
[
F′1[1], F′2[2], F′3[3], . . . F′Nf

[Nf ]
]

(1)

only takes the one value of each matrix while our method takes the first Nr rows.
Due to this, the dimensionality of the feature are then distinct. PointNet takes
a vector with 1,024 values while we take Nr ×Nf ×Nf .

Notably, both our softpool feature and the PointNet feature are permutation
invariant, which means that F∗ and FPN are the same irrelevant of the order of
the input points. This is one of the most important aspect when handling point
clouds since this data is unordered.

1.2 Distinction of our decoder from PCN

Based on our decoder architecture in the paper, the resulting feature from the
encoder undergoes two successive regional convolution operations. The first con-
verts the features to a course point cloud P′out with 256 points. From there, the
second regional convolution interpolates from the coarse to a fully-packed point
cloud with 16,384 points which is denoted as Pout.

Compared to PCN [3], both approaches execute a coarse-to-fine approach
which is performed by our second regional convolution. However, the architecture
and the method are different.

Given P′out, PCN [3] duplicates P′out 64 times and appends a 2D coordinates
of an 8× 8 grid. Then, they use MLP to produce Pout that locally deforms the
2D grids around each point similar FoldingNet [2]. In contrast, we interpolate 63
samples between every 2 points of P′out and use the proposed regional convolution
to produce Pout. Compared to MLP in PCN, our regional convolution takes more
local samples into account to produce a point in the higher resolution.

2 Ablation study on the softpool feature F∗

Using our architecture trained with Nr = 32, we present the qualitative results
when only a subset of the rows is selected. The objective is to investigate which
parts of the object each region reconstructs first. In Fig. 2, we start by limiting
with the first two rows of the feature matrix then increasing Nr to reach 32. By
selecting the first 2 features, we observe that the softpool feature focuses on a
skeleton of the object without large surfaces. Although the regions reconstruct
different parts of the object, they tend to cover the important components like
the wings of plane and the wheels of car. As we increase Nr from 2 to 32, the
object is slowly completed without huge overlaps between different regions.

In addition to the first 32 rows when setting Nr, we also looked into the
rows beyond 32. The lamp in Fig. 3 focuses on the following ranges: [33 : 64],
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Fig. 2: Results when choosing the first subsets of Nr with the following ranges:
[1 : 2], [1 : 4], [1 : 8], [1 : 16] and [1 : 32] when the architecture is trained with
Nr = 32.

Fig. 3: Results when choosing different ranges of rows from F′ to form F∗ instead
of selecting the first Nr = 32 rows.

[65 : 96], [97 : 128] and [129 : 169]. Although the shape of the lamp starts to
deform as we go beyond 32, our reconstruction results still captures its overall
shape even when we select the range [129 : 169]. Therefore, this proves that our
feature is not constrained to the first 32 rows when sorting and demonstrates
the robustness of our softpool feature.
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3 Ablation study on τ

When computing for Lboundary, we introduced the threshold τ to compute the
sets. In Table 1, we then evaluate different values of τ and investigate its behavior
with respect to the Chamfer distance. The table demonstrates that the results
are not sensitive to the τ , where the thresholds between 0.2-0.9 generate a small
difference in the Chamfer distance (with less than 1) from the chosen threshold
of 0.3. Notably, compared to the related work, any threshold between 0.1 to 0.9
outperforms the other methods.

τ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Chamfer Distance 7.08 5.99 5.94 6.12 6.19 6.18 6.21 6.25 6.71

Table 1: Sensitivity of the average Chamfer distance (multiplied by 103) to the
threshold τ .

4 Ablation study on Nr, Nr and Lboundary

We investigate the influence of increasing the weight of Lboundary on the recon-
struction as we change the number of regions Nf and the number selected rows
Nr. While we chose the best option with Nr set to 8 and Nr set to 32, Table 2
also shows that a larger weight on Lboundary improves the performance when the
number of regions is larger, e.g. when Nf is 32.

(Nf , Nr) (2, 128) (4, 64) (8, 32) (16, 16) (32, 8)

1 ×Lboundary 7.80 6.31 5.94 6.27 6.75
2 ×Lboundary 7.80 6.31 5.91 6.25 6.72
10 ×Lboundary 7.82 6.29 5.95 6.01 6.19

Table 2: Influence of Nf , Nr and the weight of Lboundary for object completion
on the average Chamfer distance (multiplied by 103).
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5.2 Point Cloud Completion

5.2.2 SoftPool++: An Encoder-Decoder Network for Point Cloud Com-
pletion (International Journal of Computer Vision 2022)

(a) FoldingNet (d) SoftPool++(b) PCN (c) SoftPoolNetInput

from PointNet features

Ground truth

from SoftPool features

IJCV 2022

Figure 5.4 Our proposed SoftPool++ [5] shows local structures such as the tires better than approaches built
upon PointNet [40] feature, while more input geometries are kept compared to our previous work of
SoftPoolNet [6] contributed by the proposed point cloud skip-connection.

As introduced in Section 5.2.1, the input point cloud is described by a 2-dimensional feature
map in SoftPoolNet, which is processed by MLP and soft pooling. The drawback of Soft-
PoolNet is the size of the SoftPool features. With a dimension of Nr ×Nf ×Nf, the latent
feature cannot have a large Nf in practice because the memory footprint increases with the
size of the feature, but the memory size of our off-the-shelf GPU constrains us. For example,
SoftPoolNet sets the feature dimension Nf to a small value of 8, which is comparably much
smaller than PointNet’s latent feature. Such a small value of Nf may limit the decoder’s
power for completion.

In this work, we are interested in building a series of SoftPool features with larger dimension-
alities in the latent space. Hence, we propose a SoftPool++ operator to further truncate the
SoftPoolNet features to Nr ×Nf ×Ns, where the third dimension takes the first Ns matrices
in F∗. As the pointwise dimensionality of the SoftPool++ feature could be much larger than
the SoftPoolNet feature, we can increase it to 1,024, which matches the dimension of the
PointNet feature. By replacing the PointNet [40] encoder in MSN [18] with our SoftPoolNet++
encoder, we show that the SoftPool++ feature supplements the MSN’s decoder with more
than separated local structures which match the ground truth more precise. This proves
that SoftPool++ makes our decoder capable of considering all the observable geometries to
complete the shape. At the same time, the max-pooled PointNet feature cannot deal with
geometric structures, which are rarely or not at all seen in the training data.

Additionally, we found a problem in existing works where the compression in the encoder
tends to lose parts of the input shape structure, especially when latent features are too
compact as a single vector, e.g. , the PointNet feature. Using skip connections specifically
devised for point clouds, where links between corresponding layers in the encoder and the
decoder are established. However, point cloud U-connection cannot be directly implemented
by feature concatenation because the encoder and decoder features are in different domains.
To solve this problem, we introduce a transformation matrix that projects the features from
the encoder to the decoder and vice-versa.
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Chapter 5: Contributions

Contributions

Yida Wang tackled the weakness of previous work (SoftPoolNet), where the observed
structures are not guaranteed to get kept in the output for some samples. He implemented
and evaluated the U-connection built for point cloud features between the encoder and
decoder to solve this problem.

David Tan rephrased the methodology section and suggested a more proper way to visual-
ize the results.

Federico Tombari revised this work, especially by building up an explicit connection
between this work and existing works.

Nassir Navab financed this work on behalf of the leader of TUM CAMP.
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Abstract
We propose a novel convolutional operator for the task of point cloud completion. One striking characteristic of our approach
is that, conversely to related work it does not require any max-pooling or voxelization operation. Instead, the proposed
operator used to learn the point cloud embedding in the encoder extracts permutation-invariant features from the point cloud
via a soft-pooling of feature activations, which are able to preserve fine-grained geometric details. These features are then
passed on to a decoder architecture. Due to the compression in the encoder, a typical limitation of this type of architectures
is that they tend to lose parts of the input shape structure. We propose to overcome this limitation by using skip connections
specifically devised for point clouds, where links between corresponding layers in the encoder and the decoder are established.
As part of these connections, we introduce a transformation matrix that projects the features from the encoder to the decoder
and vice-versa. The quantitative and qualitative results on the task of object completion from partial scans on the ShapeNet
dataset show that incorporating our approach achieves state-of-the-art performance in shape completion both at low and high
resolutions.

Keywords Point cloud · Completion · SoftPool · Skip-connection

1 Introduction

Several data representations exist for 3D shapes. One com-
mon choice is the use of spatially discretized representations
such as volumetric data (Yang et al. 2017;Wang et al. 2019b;
Yang et al. 2018a). Alternative popular choices are implicit
descriptions (Park et al. 2018; Chibane et al. 2020) as well
as sparse 3D coordinate-based representations such as point
clouds (Yang et al. 2018b; Xie et al. 2020b; Yuan et al.
2018) and 3D meshes (Groueix et al. 2018). Among this
latter category of 3D data formats, point clouds are arguably
the simplest, since they store 3D coordinates without any
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additional topological information such as faces or edges
associated to the vertices. Hence, investigating how to pro-
cess and learn 3D shape geometry based on these simple,
yet effective representations is currently a hot research topic.
This has recently motivated several tasks in 3D computer
vision such as estimating point cloud deformation (Yang et
al. 2018b; Yuan et al. 2018), registration (Aoki et al. 2019;
Park et al. 2017), completion (Wang et al. 2020b; Groueix
et al. 2018; Yuan et al. 2018), segmentation (Qi et al. 2017a;
Lei et al. 2020; Xu et al. 2020) and 3D object detection (Shi
et al. 2020; Qi et al. 2019).

This paper focuses on the point cloud completion task.
The goal is to fill out occluded parts of the input 3D geome-
try represented by a partial scan, in away that is coherentwith
the global shape while preserving fine local surface details.
This is a useful task for many real world applications since
occluded regions are normally present as part ofmost 3Ddata
capture processes within, e.g., SLAM or multi-view recon-
struction pipelines. State-of-the-art approaches targeting this
task are based on neural networks and mostly rely on learn-
ing how to deform a set of 2D grids at different scales into
3D points, based on global shape descriptors typically rep-
resented by PointNet (Qi et al. 2017a) features. Examples of
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these approaches are FoldingNet (Yang et al. 2018b), Atlas-
Net (Groueix et al. 2018) and PCN (Yuan et al. 2018).

To overcome the aforementioned problem related to infor-
mation loss due to feature compression at the level of the
encoder–decoder bottleneck, GRNet (Xie et al. 2020b) sug-
gests to preserve fine geometry details by discretizing the
features via volumetric featuremaps used at the different lay-
ers of the encoder. It also suggests using volumetric U-Net
(Yang et al. 2018a) to build skip connections between the
encoder and the decoder, eventually merging the obtained
features with the input point cloud. The idea of leveraging
skip connections among different layers of an encoder–
decoder model follows the successful paradigm already
exploited for volumetric shape completion, in particular 3D-
RecGAN (Yang et al. 2017) and ForkNet (Wang et al. 2019b).
While effective, converting sparse point cloud features into
volumetricmaps brings in all the disadvantages of discretized
3Ddata representationswith respect to point clouds, in partic-
ular the loss of fine shape details, the inability to flexibly deal
with local point density variations, as well as the unpractical
trade-off between 3D resolution and memory occupancy.

Recently, we have demonstrated how, by means of sort-
ing features based on their activations rather than applying
max pooling, we can build up point clouds embeddings that
store more informative features for a point cloudwith respect
to PointNet. This feature-learning approach, named Soft-
Pool (Wang et al. 2020b), obtained state-of-the-art results
for different point cloud-related tasks, such as completion
and classification. In this work, we build up on our previous
work (Wang et al. 2020b) to propose a more complete end-
to-end framework. Our contributions are two-folds and are
listed as follows:

1. We generalize our feature extraction technique into a
module called SoftPool++. This module introduces trun-
cated softpool features aimed to decrease the memory

requirements of the originalmethodduring training,mak-
ing it compatible with off-the-shelf GPUs. Notably, a
disadvantage of the SoftPool features (Wang et al. 2020b)
is that each point is processed independently from the
rest. Due to this, the proposed module further processes
the truncated softpool featureswith regional convolutions
in order to recognize the relationships between the fea-
ture points. In contrast toWang et al. (2020b) that applies
their feature once, this module can be applied multiple
times as demonstrated in our architecture, which uses it
across multiple layers.

2. We propose a novel encoder–decoder architecture char-
acterized by the use of point-wise skip connections. By
connecting corresponding layers between encoder and
decoder, this has the advantage of preserving fine geo-
metric details from the given partial input cloud. This is
to the best of our knowledge the first approach using skip
connections for unorganized sets of 3D feature maps,
relaxing the need of spatial discretization as deployed in
Xie et al. (2020b), with benefits in terms of completion
accuracy and memory occupancy. In addition, we also
adapt the discriminator from TreeGAN (Shu et al. 2019)
for the shape completion problem to further improve our
model.

Our method is evaluated on ShapeNet (Chang et al. 2015)
for the task of shape completion and on ModelNet (Zhirong
et al. 2015) and PartNet (Mo et al. 2019) for the task of
classification. Figure 1 illustrates a teaser of the shape com-
pletion results. It compares the architectures that are built on
PointNet (Qi et al. 2017a) and SoftPool (Wang et al. 2020b)
features. Visually, we show the advantage of the reconstruc-
tions that rely on SoftPool features as they are remarkably
more similar to the ground truth. Moreover, the figure also
highlights the improvements of SoftPool++ with respect to
our previous approach (Wang et al. 2020b).

(a) (b) (c) (c) (d) (e)

Fig. 1 Object completion results of the PointNet features such as FoldingNet (Yang et al. 2018b) and PCN (Yuan et al. 2018); and, the SoftPool
features such as SoftPoolNet (Wang et al. 2020b) and the proposed SoftPool++

123



International Journal of Computer Vision (2022) 130:1145–1164 1147

2 RelatedWork

Based on the focus of our contributions, we browse through
the relevant methods in 3D object completion from partial
scans and the use of skip connections with 3D data.

2.1 3D Object Completion

Inspired by the way humans perceive the 3D world from
2D projections, 3D-R2N2 (Choy et al. 2016) builds recur-
rent neural networks (RNNs) to fuse multiple feature maps
extracted from input RGB images sequentially to recover
the 3D geometries. To further improve the reconstruction, a
coarse-to-fine 3D decoder was presented in Pix2Vox (Xie et
al. 2019) as well as the residual refiner in Pix2Vox++ (Xie
et al. 2020a). Due to the recent popularity of the attention
mechanisms, AttSets (Yang et al. 2020) proposed to build
attention layers to correlate the image features from differ-
ent views. In contrast, our 3D reconstruction in this paper
focuses on only a single depth image.

Taking a depth imageof an object froman arbitrary camera
pose, the objective of 3D object completion is to complete its
missing structure and build its full reconstruction. Focusing
on learning-based completion,most relatedwork can be cate-
gorized depending on the input data they process—voxelized
grid or point cloud. Interestingly, a notable work from OcCo
(Wang et al. 2021a) demonstrates that the weights trained for
completion are also valuable for other tasks like segmenta-
tion and classification.

Voxelized Grid Due to the popularity of 2D convolution
operations in CNNs (Azad et al. 2019; Kirillov et al. 2020;
Yang et al. 2020) for RGB images, its straightforward exten-
sion to 3D convolutions on volumetric data also rose to fame.
3D-EPN (Dai et al. 2017) and 3D-RecGAN(Yang et al. 2017)
are the first works on this topic, where they extended the typ-
ical encoder–decoder architecture (Noh et al. 2015) to 3D.
Adopting a similar architecture, 3D-RecGAN++ (Yang et al.
2018a) and ForkNet (Wang et al. 2019b) utilize adversarial
trainingwith 3D discriminator to improve the reconstruction.

Themain advantage of volumetric completion is the struc-
ture of its data such that deep learningmethods developed for
RGB images can be extended to 3D. However, this advantage
is also its limitation. The fixed local resolution makes it hard
to reconstruct the object’s finer details without consuming a
huge amount of memory.

Point Cloud Having the inverse problem, point clouds have
the potential to reconstruct the object at a higher resolutions
but exhibited so far a limited application in deep learning
due to its unstructured data. Note that, unlike RGB images
or voxel maps, point clouds do not have a particular order,

and the number of points varies as we change the camera
pose or the object.

Targeted to solve the unordered structure of point clouds,
PointNet (Qi et al. 2017a) proposes to implement max-
pooling in order to achieve a permutation invariant latent
feature. Based on this one dimensional feature, FoldingNet
(Yang et al. 2018b) proposes an object completion solution
that deforms a 2D rectangular grids by multi-layer percep-
tron (MLP). By increasing the number of 2D rectangular
grids, AtlasNet (Groueix et al. 2018) and PCN (Yuan et
al. 2018) added more complexity as well as details into the
reconstruction. MSN (Liu et al. 2020) then further improves
the completion by adding restrictions to separate different
patches apart from each other. Moreover, Cycle4Completion
(Wen et al. 2021) is also based on PointNet features but
solves the problem by training with an unsupervised cycle
transformation. Moving away from the global feature rep-
resentation, PointNet++ (Qi et al. 2017b) samples the local
subset of pointswith farthest point sampling (FPS) then feeds
it into PointNet (Qi et al. 2017a). Based on this feature, PMP-
Net (Wen et al. 2020b) completes the entire object gradually
from the observed regions to the nearest occluded regions.
SnowflakeNet (Xiang et al. 2021) also uses the PointNet++
features to split points in the coarsely reconstructed object to
execute the completion progressively. In addition, building
a similar feature as PointNet, ME-PCN (Gong et al. 2021)
takes both the occupied and the empty regions on the depth
image as input for 3D completion, showing the advantage of
masking the empty regions in completion.

Unlike the methods which are dependent on a vectorized
global feature to solve the permutation invariant problem,
RFNet (Huang et al. 2021) and PointTr (Yu et al. 2021) pro-
duce several global features in their encoder. On one hand,
RFNet (Huang et al. 2021) uses their features to complete the
object in an recurrent way by concatenating the incomplete
input and the predicted points level by level. On the other,
PointTr (Yu et al. 2021) relies on transformers to produce a
set of queries directly from the observed points with the help
of positional coding. In effect, PointTr (Yu et al. 2021) does
not need to compress the input into a single vector.

The recentwork fromPVD(Zhou et al. 2013),GRNet (Xie
et al. 2020b) and VE-PCN (Wang et al. 2021b) leverage both
the point cloud and the voxel grid representations. Unlike
most works that rely on Chamfer distance to optimize the
model, PVD (Zhou et al. 2013) uses a simple Euclidean loss
to optimize the shape generation model from the voxelized
point cloud representation. GRNet (Xie et al. 2020b) first
voxelizes the point cloud, processes the voxel grid with deep
learning and converts the results back to point cloud. While
this solves the unorganized structure of the point clouds,
its discretization removes its advantage on reconstructing in
higher resolutions. VE-PCN (Wang et al. 2021b) improves
the completion by supplementing the features of the decoder
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in the volumetric completion with the edges. This method
then converts the voxels to point clouds by Adaptive Instance
Normalization (Lim et al. 2019).

Another solution is presented in our previous work Soft-
PoolNet (Wang et al. 2020b) that builds local groups of
features by sorting them into a feature map. 2D convolu-
tions are then applied to the feature map. Consequently, this
approach is able to deal with unorganized point clouds and
achieve reconstruction results at high resolution. We build
upon SoftPoolNet (Wang et al. 2020b) and generalize the fea-
ture extraction into a module which we call SoftPool++. This
then allows us to connect multiple modules in an encoder–
decoder architecture. As a consequence, we achieve better
quantitive and qualitative results.

2.2 Skip Connections in 3D

Skip connections were initially proposed for image process-
ing (Mazaheri et al. 2019; Kim et al. 2016; Gao et al. 2019;
Azad et al. 2019) then later adapted for 3D volumetric recon-
struction (Yang et al. 2017, 2018a;Wang et al. 2019b). Given
a point cloud as input, the methods like GRNet (Xie et al.
2020b) and InterpConv (Mao et al. 2019) require to convert
the input point cloud to voxel grids.

Aiming at alleviating this limitation on point clouds, the
work from Std (Yang et al. 2019) bypasses the encoder fea-
tures into decoder point-by-point while GACNet (Wang et
al. 2019a) constructs a graph from the points then constructs
the skip connection with the graph. The problem of these
point-wise skip connections is that new points cannot be
introduced in the decoder. To solve this, SA-Net (Wen et
al. 2020a) groups PointNet++ (Qi et al. 2017b) features in
different resolutions with KNN. The skip connection from
the encoder then matches the resolution of the decoder.

Contrary to these methods, in the context of object com-
pletion, the objective of our skip connection is compensate
for the lost data in the encoder and bypass the observed geom-
etry to the decoder. We also introduce the concept of feature
transformation to compensate for the difference between the
features from the encoder and decoder. Later in our evalu-
ation, we found that the skip connection is a crucial step to
achieve higher accuracy. Moreover, the SoftPool++ features
also contribute to make our skip connection simpler. Since it
is an organized feature, we avoid the time-consuming KNN,
which significantly decreases our inference time.

3 Feature Extraction

Given the partial scan of an object, the input to our network
is a point cloud with Nin points written in matrix form as

Pin = [xi ]Nin
i=1, where each point is represented as the 3D

coordinates xi = [xi , yi , zi ].
On one hand, the first objective of this section is to build

a feature descriptor from the unorganized point cloud such
that the feature remains the same for any permutation of the
point cloud in Pin. On the other hand, the second objective is
to generalize this process into a feature extractionmodule that
takes an arbitrary input Pin. In this way, the proposed module
can be implemented at multiple instances in our architecture.

3.1 SoftPool Feature

From the point cloud vector, we then convert each point into a
feature vector fi with N f elements by projecting every point
with a point-wise multi-layer perceptron (Qi et al. 2017a)
with its parameters assembled inWMLP. Thus, we define the
Nin×N f feature matrix as F = [fi ]Nin

i=1. Note that we applied
a softmax function to the output neuron of the perceptron so
that the elements in fi range between 0 and 1.

Throughout this section, we refer to the toy example in
Fig. 2 to visualize the various steps. This example assumes
that there are only five points in the point cloud such that
Nin = 5 as shown in Fig. 2a.

One of the main challenges in processing a point cloud is
its unstructured arrangement. If we look at Fig. 2a, changing
the order of the points in Pin reorganizes the rows of the
feature map F . There is consequently no guarantee that the
feature map remains constant for the same set of points. To
solve this problem,we propose to organize the feature vectors
in F so that their k-th elements are sorted in a descending
order, which is denoted asF′

k . Note that k should not be larger
than N f . This is demonstrated inFig. 2awherewe arrange the
five feature vectors from F = [fi ]5i=1 to F

′
k = [fi ]i={3,5,1,2,4}

by comparing the k-th element of each vector.
The features in SoftPoolNet (Wang et al. 2020b) repeat

this process for all of the N f elements in fi . Altogether, the
feature is a 3D tensor with the dimension of Nin × N f × N f

denoted as F′ = [F′
1,F

′
2, . . .F

′
N f

] in Fig. 2b. Finally, we
assemble the SoftPool features F∗ by taking the Nr rows
with the highest activations of all F′

i in F
′. Since each row in

F′
i is equivalent to a point, we can then interpret the Nr rows

of F′
i as one region in the point cloud, summing up to all N f

regions in F∗.
Although both PointNet (Qi et al. 2017a) and SoftPoolNet

(Wang et al. 2020b) utilize MLP in their architecture, they
have significant differences on handling the results thereof.
Compared to the max-pooling operation in PointNet (Qi et
al. 2017a), themotivation of the SoftPool feature is to capture
a larger amount of information and to further process it with
regional convolution operations, as explained later in Sect. 4.
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(a) (b)

Fig. 2 Toy examples of the truncated SoftPool feature. Given 5 points
in (a), they go through Multi-layer Perceptron (MLP) to produce F. At
the k-th element, the vectors are sorted to build F′

k and consequently F
′.

In (b), we concatenation of the first Nr rows of F′
k to construct the 3D

tensor F∗ which corresponds to the regions with high activations then
truncated to assemble F̂

3.2 Generalizing and Truncating the SoftPool
Feature

In practice, we noticed that we can generalize the SoftPool
feature formulation to an arbitrary input feature Pin—thus,
alleviating the definition of points—to produce the Soft-
Pool features F′. From this perspective, we can construct
an architecture with a series of SoftPool feature extractions.
Therefore, we take the point cloud as the input to the archi-
tecture and extract the first SoftPool features. Then, after
processing the first features, we can then extract the second
features from themand so on. This is discussed later in Sect. 4
with an encoder–decoder architecture.

However, the drawback of such architecture is the size of
the SoftPool features.With a dimension of Nr ×N f ×N f , the
memory footprint increases with the size of the feature but
we are constrained by the memory size of our off-the-shelf
GPU. Notably, in Wang et al. (2020b), they set the feature
dimension N f to a small value of 8. In this work, since we
are interested in building a series of SoftPool features in an
encoder–decoder architecture, N f increases up to 256 in the
latent space.

Hence, we propose to further truncate the SoftPool fea-
tures to Nr × N f × Ns , where the third dimension takes the
first Ns matrices in F∗ as illustrated in Fig. 2b. To distinguish
from Wang et al. (2020b), we refer this as the Truncated
SoftPool feature, denoted as F̂ in Fig. 2b.

3.3 Regional Convolutions

Considering that each point in the cloud independently goes
through MLP while the operations thereafter to produce the
truncated SoftPool features rely on sorting, each row of our
feature remains independent from each other. However, in
contrast to max-pooling which produces a vector, our feature
is a 3D tensor which can undergo convolutional operations.

Instead of applying the same kernel to all regions asWang
et al. (2020b), we generalize the regional convolutions and
impose distinct kernels for each region. We first split F̂ =

[F̂r ]Ns
r=1 into separate regions F̂r and correspondingly apply a

set of kernelsWconv = {Wr }Ns
r=1. Assigning the concatenated

output tensor as Fout = [Pr ]Ns
r=1, we can formally describe

this operation as

Pr (i, j) =
N f∑

l=1

Nk∑

k=1

F̂r (i + k, l)Wr ( j, k, l) (1)

for the r -th region.
The dimension of each kernel is Nk×N f ×Nout, where Nk

indicates the number of neighbors to consider and Nout is the
desired size of the output Pr . Note that the kernels convolves
on the entire width of F̂r , i.e.corresponding to its width N f .
This implies that we only pad on the vertical axis. Similar
to other convolutional operators, the stride s distinguishes
between a convolutional and deconvolutional operation. If
the stride is greater than 1, F̂r is downsampled, while it is
upsampled if the stride is less than 1.

3.4 SoftPool++Module

Now, we have all the components to build the feature extrac-
tion module as shown in Fig. 3, which we call SoftPool++.
Since Pin is defined as the input point cloud, we generalize
the input of the module as Fin where we set Fin = Pin in
the first layer. Hence, the input matrix Fin goes through a 3-
layer perceptron then builds the truncated SoftPool features.
Thereafter, we perform regional convolution and reshape the
results by squeezing the third dimension to finally acquire
our output feature matrix Fout.

Fig. 3 Overview of the feature extraction module called SoftPool++
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Fig. 4 Object completion results with MSN (Liu et al. 2020) while
using PointNet (Qi et al. 2017a) features and SoftPool++ features on its
encoder

When constructing our architecture in Sect. 4, the encoder
and decoder are distinguished primarily on the stride s. In this
paper, we show the versatility of this novel module to act as
an encoder and decoder as well as to refine a coarse point
cloud with more elaborate details.

The differences between decoding from PointNet features
and SoftPool++ features are evident in Fig. 4, where we
replace the PointNet feature in MSN (Liu et al. 2020) with
a SoftPool++ feature with the same size of 1024. By replac-
ing the PointNet (Qi et al. 2017a) encoder in MSN (Liu et
al. 2020) with our SoftPoolNet++ encoder, we show that the
SoftPool++ feature supplements the MSN’s decoder where
all the wheels are clearly separated from the body of the
SUV, while the original PointNet feature in MSN follow the
more generic structure of a vehicle with tiny gaps between
wheel and body. This proves that SoftPool++ makes our

decoder able to take all observable geometries into account
to complete the shape, while the max-pooled PointNet fea-
ture cannot deal with geometric structures which are rarely
or not at all seen in the training data.

4 Network Architecture

The volumetric U-Net (Çiçek et al. 2016; Yang et al. 2018a)
in 3D-RecGAN (Yang et al. 2017) and GRNet (Xie et al.
2020b) has shown significant improvements in object com-
pletion as it injects more data from the encoder to the decoder
in order to supplement the compressed latent feature. With-
out the skip connection in U-Net, we end up losing most of
the input data as it goes through the encoder. Consequently,
the decoder starts hallucinating the overall structure without
being faithful to the given information. Inspired by this idea,
we introduce a novel U-Net connection that directly takes
the point cloud as input, i.e.without the need of voxelization
at any stage of the network.

Our network architecture is composed of an encoder–
decoder structure with a skip connection as shown in Fig. 5.
Such connection between encoder and decoder makes the
completion more likely to preserve input geometries. The
encoder is composed of consecutive feature extraction mod-
ules from Sect. 3.4 to downsample the input to the latent
feature while the decoder is composed of the similar feature
extractionmodules to upsample to the output.As discussed in
Sect. 3.4, the stride s is a significant parameter to distinguish
the two layers. Table 1 lists the values of all the parameters
for the module in the convolution and deconvolution layers.

Fig. 5 Overview of our object completion architecture where the
parameters for the convolution and deconvolution operations based on
the feature extractionmodule are listed in Table 1. Note that, in our eval-

uation, we compare three point cloud results from the decoder: (1) the
skip-connection output; (2) the coarse output; and, (3) the fine-grained
output which is the final reconstruction
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Table 1 Dimensions and parameters on each feature extraction module in our architecture

Feature extraction module Conv1 Conv2 Deconv1 Deconv2 MDS Deconv3 Deconv4

Input variable Pin Fconv1
out Fconv2

out [Fdeconv1
out ,Fconv1

out R] Fdeconv2
out PMDS Fdeconv3

out

Number of rows Nin Nin/8 256 512 + Nin/8 1024 + Nin/4 2048 4096

Number of columns 3 256 256 256 3 3 3

Stride (s) 8 2 1/2 1/2 – 1/2 1/4

Feature dimension (N f ) 256 256 256 256 3 256 256

Number of rows in the region (Nr ) Nin 32 Nin Nin – Nin Nin

Truncation size (Ns ) 1 8 1 1 – 1 1

Kernel size (Nk ) 8 8 4 4 – 4 4

Dimension of output feature (Nout) 256 256 256 3 3 3 3

Output variable Fconv1
out Fconv2

out Fdeconv1
out Fdeconv2

out PMDS Fdeconv3
out Pout

Number of rows Nin/8 256 512 1024 + Nin/4 2048 4096 16,384

Number of columns 256 256 256 3 3 3 3

Note that the input to the architecture is the point cloud Pin with a dimension of Nin ×3 while the output is another point cloud Pout with 16,384×3

Skip Connection with Feature Transform We bridge the
encoder and decoder with a skip connection to build a U-
Net-like (Çiçek et al. 2016; Yang et al. 2018a) structure. This
connection links the results of conv1, denoted as Fconv1

out , to the
results of deconv1, denoted as Fdeconv1

out . However, instead of
simply concatenating them, we introduce a square matrix
R that transforms the features from the encoder as Fconv1

out R.
Note that the multiplication by the transform is on the
right side because the points are arranged row-wise in Pin,
which implies that the feature vectors are also arranged row-
wise. Subsequently, we concatenate the two matrices into
[Fdeconv1

out ,Fconv1
out R] that serves as the input to the feature extrac-

tion module, producing Fdeconv2
out .

In order to avoid randomly large values in the transfor-
mations and attain numerical stability during training, we
regularize the transformation matrix to be orthonormal such
that all elements are between [−1, 1] and it mathematically
satisfies RR� = I where I is an identity matrix. Geometri-
cally, the regularizer imposes to rotate the features by R.

Minimum Density Sampling Since the number of points in
the input cloud vary, the results of deconv2 would also pro-
duce a varying number of points, i.e.with 1024 + Nin

4 points
from Table 1, since it depends on the input dimension. Thus,
we include a Minimum Density Sampling (MDS) (Liu et al.
2020) in the decoder to standardize the output to a coarse res-
olution of 2048 points. The coarse resolution is then refined
with two deconvolutional operations to 16,384 points. The
motivation of adding the MDS is to help the final deconvo-
lutional layers to converge faster during training. Later in
Sect. 6, we investigate further the differences between the
point clouds from the skip-connection as well as the coarse
and fine as illustrated in Fig. 5.

5 Loss Functions

Since the main goal here is point cloud completion (Groueix
et al. 2018; Yang et al. 2018b; Yuan et al. 2018), we first
analyse whether the predicted point feature Pout matches the
given ground truth Pgt through the Chamfer distance

Lcomplete = Chamfer(Pout,Pgt) . (2)

Furthermore, we optimize our architecture with two sets of
loss functions that are related to the feature extraction mod-
ule for all the convolution and deconvolution layers in the
architecture from Sect. 3.4 as well as the skip connection
with the feature transform from Sect. 4.

5.1 Optimizing the Feature ExtractionModule

For the feature extraction module that utilizes SoftPool fea-
tures, we adopt the same loss terms as inWang et al. (2020b),
where their main objective is to optimize the distribution of
the features across different regions.

Intra-regional Entropy The ideal case for the feature vector
fi is a one-hot code, i.e. each vector gets assigned to only
one region. To accomplish this goal, we measure the proba-
bility of fi belonging to region k in all Ns regions by directly
applying the softmax on the elements of the vector as

P(fi , k) = efi [k]
∑Ns

j=1 e
fi [ j]

. (3)

This implies that P is maximized when fi is a one-hot code,
with the k-th element equal to one. However, in presence of
multiple peaks in the vector, P(fi , k) might decrease signif-
icantly. Therefore, by taking the entropy into account, the
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(a)

(b) (c) (d)

Fig. 6 Our object completion results with and without the influence of
Lboundary

intra-regional loss function

Lintra = − 1

Nin

1

B

Nin∑

i=1

B∑

j=1

Ns∑

k=1

P(fi , k) log P(fi , k) (4)

where B is the batch size, tries to enforce the feature vector to
have one peak so that it confidently falls into just one region.

Inter-regional Entropy The drawback ofLintra is that all fea-
ture vectors have the same peak at the k-th element. Looking
at a more holistic perspective, the inter-regional loss function
aims at distributing the features across different regions. It
relies on maximizing the regional entropy

Er = − 1

B

B∑

j=1

Ns∑

k=1

P̄k · log P̄k (5)

given that

P̄k = 1

Nin

Nin∑

i=1

P(fi , k) . (6)

We can then define the loss function as

Linter = log(Ns) − Er (7)

since the upper-bound of Er is computed as − log 1
Ns

or sim-
ply log(Ns).

Boundary Overlap Minimization In addition to optimizing
the holistic distribution of the points, we also incorporate a
loss function that is applied on pairs of regions i and j . We
collect a set of points Bi

j from region i with activations of
region j larger than a threshold τ , i.e.set to 0.3. Similarly,

we also take the inverse B j
i . Consequently, we squeeze the

overlaps between the two regions.
By minimizing the Chamfer distance between Bi

j and B j
i ,

we obtain the loss

Lboundary =
Ns∑

i=1

Ns∑

j=i

Chamfer(B j
i ,Bi

j ) (8)

that tries to make the overlapping sets of points smaller, ide-
ally down to just a line. In Fig. 6, we visualize the difference
of optimizing with and withoutLboundary, where the distribu-
tion of the point cloud is less noisy on the occluded regions
such as the armrest.

Notably, this loss function is general enough to be effec-
tively applied also on othermethods that rely on a subdivision
of the point cloud into different regions, such as AtlasNet
(Groueix et al. 2018), PCN (Yuan et al. 2018) and MSN (Liu
et al. 2020). In Sect. 7.2, we formally evaluate these methods
with and without Lboundary.

Feature Duplicate Minimization The last loss term

Lpreserve = Earth-moving(F̂,F) (9)

imposes that the resulting truncated SoftPool feature F̂ takes
most of the features from original F so that it avoids dupli-
cates. To make the earth moving distance (Li et al. 2013)
more efficient, 256 vectors are randomly selected from F
and F̂. In practice, Fig. 7 visualizes the effects of Lpreserve in
the reconstruction, where lower weights of this loss produce
a large hole, while incorporating this loss builds a point cloud
with similar densities.

5.2 Optimizing the Skip Connection

Wefirst visualize a subset of the architecture and focus on the
skip connection as shown in Fig. 8. Here, we define Ppartial

as the partial reconstruction on Fdeconv2
out contributed by the skip

connection with the feature transform. However, note that
Ppartial is not a subset of Fdeconv2

out . It is produced by taking
the input point cloud through conv1, feature transform and
deconv2.

Since the skip connection aims tomaintain the given input
structure, we define a loss function that acts as an auto-
encoder such that

Lskip = Chamfer(Ppartial,Pin) . (10)

In addition, based on Sect. 4, we regularize the values in the
feature transform such that

LR = ‖RR� − I‖2 (11)
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(a) (b) (c) (d) (e) (f)

Fig. 7 Our object completion results while increasing the weight of Lpreserve

Fig. 8 Subset of the architecture that focuses on the skip connection

makes R orthonormal.

5.3 Discriminative Training

Recognizing the advantages fromTreeGAN(Shuet al. 2019),
we also investigate applying discriminative training condi-
tions on the input partial scan Pin. In this case, we first
introduce the conditional feature maps Pout|Pin and Pgt|Pin

by concatenating them along the point axis. We build our
discriminator D with the same parametric model proposed
in Shu et al. (2019). By restricting the output of the discrim-
inator to a range between 0 and 1, we can then apply

Linfer = − log(D(Pout|Pin)) , (12)

to optimize our completion architecture while

Ldiscri = − log(D(Pgt|Pin)) − log(1 − D(Pout|Pin)) (13)

to optimize the discriminator D. In practice, we impose
the loss functions in (12) and (13) alternatively in order to
optimize the completion architecture and the discriminators
separately.

6 Experiments

For all evaluations, we train ourmodelwith anNVIDIATitan
V and parameterize it with a batch size of 8. Moreover, we
apply the Leaky ReLU with a negative slope of 0.2 on the
output of each regional convolution.

6.1 Completion on ShapeNet

We evaluate the performance of the geometric completion of
a single object on the ShapeNet (Chang et al. 2015) database
where they have the point clouds of the partial scanning as
input and the corresponding ground truth completed shape.
To make it comparable to other approaches, we adopt the
standard 8 category evaluation (Yuan et al. 2018) for a sin-
gle object completion. Both sampled fromShapeNetmeshes,
PCN (Yuan et al. 2018) and TopNet (Tchapmi et al. 2019)
supplement two set of datasets individually for low and
high resolutions evaluation, which contain 2048 and 16,384
points, respectively, where the inputs are provided with 2048
points. Notice that the low resolution dataset provided by
TopNet is also commonly referred to Completion3D bench-
mark. Since previous works report their results in terms of
L1/L2 metric of the Chamfer distance separately, we also
report our results in both resolutions (2048 and 16,384) and
metrics (L1 and L2).

We compare against state-of-the-art point cloud comple-
tion approaches such as PCN (Yuan et al. 2018), FoldingNet
(Yang et al. 2018b), AtlasNet (Groueix et al. 2018), Point-
Net++ (Qi et al. 2017b), MSN (Liu et al. 2020) and GRNet
(Xie et al. 2020b). To show the advantages over volumet-
ric completion, we also compare against 3D-EPN (Dai et al.
2017) and ForkNet (Wang et al. 2019b) with an output reso-
lution of 64 × 64 × 64. As for point cloud resolutions, PCN
(Yuan et al. 2018), GRNet (Xie et al. 2020b) and SoftPoolNet
(Wang et al. 2020b) report the best performance with 16,384
points whileMSN (Liu et al. 2020) presents their final output
resolution with 8192 points. Aiming at a fair numerical com-
parison at different resolutions, we modify the last layers of
these architectures so as to attain the same resolution for all
methods.

Low Resolution At low resolution, we achieve competitive
results, attaining the 0.13 × 10−4 from PMP-Net (Wen et
al. 2020b) with the L2-Chamfer distance in Table 2, while
we achieve state-of-the-art results when evaluating on the
L1-Chamfer distance in Table 3.
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Table 2 Evaluation on the object completion based on the Chamfer distance trained with L2 distance (multiplied by 104) with the output resolution
of 2048

Method Plane Cabinet Car Chair Lamp Sofa Table Vessel Avg.

Completion3D (Tchapmi et al. 2019) benchmark, Output Resolution = 2048, L2 metric

FoldingNet (Yang et al. 2018b) 12.83 23.01 14.88 25.69 21.79 21.31 20.71 11.51 19.07

PointSetVoting (Zhang et al. 2020a) 6.88 21.18 15.78 22.54 18.78 28.39 19.96 11.16 18.18

AtlasNet (Groueix et al. 2018) 10.36 23.40 13.40 24.16 20.24 20.82 17.52 11.62 17.77

PCN (Yuan et al. 2018) 9.79 22.70 12.43 25.14 22.72 20.26 20.27 11.73 18.22

TopNet (Tchapmi et al. 2019) 7.32 18.77 12.88 19.82 14.60 16.29 14.89 8.82 14.25

GRNet (Xie et al. 2020b) 6.13 16.90 8.27 12.23 10.22 14.93 10.08 5.86 10.64

SA-Net (Wen et al. 2020a) 5.27 14.45 7.78 13.67 13.53 14.22 11.75 8.84 11.22

PMP-Net (Wen et al. 2020b) 3.99 14.70 8.55 10.21 9.27 12.43 8.51 5.77 9.23

SoftPoolNet (Wang et al. 2020b) 6.39 17.26 8.72 13.16 10.78 14.95 11.01 6.26 11.07

Ours 4.59 15.82 6.78 11.41 8.82 13.37 9.15 4.93 9.36

Without skip-connection 4.63 16.35 9.10 13.40 10.55 13.85 10.90 6.23 10.63

Without D 5.07 16.12 6.86 11.56 8.88 13.67 9.21 5.33 9.59

Without LR 5.38 17.04 9.93 14.13 11.35 14.52 11.63 6.81 11.35

Bold indicates the best performance achieved in certain column

Table 3 Evaluation on the object completion based on the Chamfer distance trained with L1 distance (multiplied by 104) with the output resolution
of 2048

Method Plane Cabinet Car Chair Lamp Sofa Table Vessel Avg.

Completion3D (Tchapmi et al. 2019) benchmark, output resolution = 2048, L1 metric

FoldingNet (Yang et al. 2018b) 11.18 20.15 13.25 21.48 18.19 19.09 17.80 10.69 16.48

AtlasNet (Groueix et al. 2018) 10.37 23.40 13.41 24.16 20.24 20.82 17.52 11.62 17.69

AtlasNet + Lboundary 9.25 22.51 12.12 22.64 18.82 19.11 16.50 11.53 16.56

PCN (Yuan et al. 2018) 8.09 18.32 10.53 19.33 18.52 16.44 16.34 10.21 14.72

PCN + Lboundary 6.39 16.32 9.30 18.61 16.72 16.28 15.29 9.00 13.49

TopNet (Tchapmi et al. 2019) 5.50 12.02 8.90 12.56 9.54 12.20 9.57 7.51 9.72

SA-Net (Wen et al. 2020a) 2.18 9.11 5.56 8.94 9.98 7.83 9.94 7.23 7.74

SoftPoolNet (Wang et al. 2020b) 4.76 10.29 7.63 11.23 8.97 10.08 7.13 6.38 8.31

Ours 3.50 9.95 7.01 10.48 8.45 8.86 5.99 5.60 7.48

Without skip-connection 4.29 10.24 7.76 11.10 9.13 9.72 6.33 6.46 8.13

Without D 3.72 10.07 7.23 10.76 8.50 9.15 6.10 5.92 7.68

Without LR 4.68 10.54 8.06 11.42 9.45 10.03 6.70 6.77 8.46

Without Linter 9.81 19.49 13.24 18.20 16.83 17.00 15.64 7.16 14.67

Without Lintra 3.70 15.93 10.78 12.97 12.89 11.79 11.33 5.60 10.62

Without Linter, Lintra 9.07 19.62 14.31 19.17 16.46 17.82 14.34 7.60 14.80

Without Lboundary 4.71 10.43 8.14 11.27 9.27 10.57 7.43 7.36 8.65

Without Lpreserve 7.43 18.84 11.58 15.68 17.38 17.53 14.46 6.49 13.68

Bold indicates the best performance achieved in certain column

High Resolution We achieve the best results on most objects
with the high resolution as presented in Tables 4 and 5 with
8.31×10−3 and 2.55×10−3, respectively. Table 5 also shows
that volumetric approaches like 3D-EPN (Dai et al. 2017)
and ForkNet (Wang et al. 2019b) having large issues when
evaluated in Chamfer distance because the converted point
clouds from the fixed volumetric grids are at much smaller
local resolutions.

Validating with F-Score@1% Since the Chamfer distance
hardly reflect the errors in the local geometry as suggested
in Tatarchenko et al. (2019), the evaluation in GRNet (Xie et
al. 2020b) uses the metric F-Score@1% that computes the F-
Score after matching the predicted point cloud to the ground
truth with a distance threshold of 1% of the side length of
the reconstructed volume. The evaluations on reconstructing
higher resolutions are reported in Tables 6 and 7 on ShapeNet
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Table 4 Evaluation on the object completion based on the Chamfer distance trained with L1 distance (multiplied by 103) with the output resolution
of 16,384

Method Plane Cabinet Car Chair Lamp Sofa Table Vessel Avg.

PCN (Yuan et al. 2018) dataset, Output Resolution = 16,384, L1 metric

3D-EPN (Dai et al. 2017) 13.16 21.80 20.31 18.81 25.75 21.09 21.72 18.54 20.15

ForkNet (Wang et al. 2019b) 9.08 14.22 11.65 12.18 17.24 14.22 11.51 12.66 12.85

PointNet++ (Qi et al. 2017b) 10.30 14.74 12.19 15.78 17.62 16.18 11.68 13.52 14.00

FoldingNet (Yang et al. 2018b) 9.49 15.80 12.61 15.55 16.41 15.97 13.65 14.99 14.31

AtlasNet (Groueix et al. 2018) 6.37 11.94 10.11 12.06 12.37 12.99 10.33 10.61 10.85

TopNet (Tchapmi et al. 2019) 7.61 13.31 10.90 13.82 14.44 14.78 11.22 11.12 12.15

PCN (Yuan et al. 2018) 5.50 10.63 8.70 11.00 11.34 11.68 8.59 9.67 9.64

PCN + Lboundary 5.13 9.12 7.58 9.35 9.40 9.31 7.30 8.91 8.26

MSN (Liu et al. 2020) 5.60 11.96 10.78 10.62 10.71 11.90 8.70 9.49 9.97

GRNet (Xie et al. 2020b) 6.45 10.37 9.45 9.41 7.96 10.51 8.44 8.04 8.83

PMP-Net (Wen et al. 2020b) 5.65 11.24 9.64 9.51 6.95 10.83 8.72 7.25 8.73

CRN (Wang et al. 2020a) 4.79 9.97 8.31 9.49 8.94 10.69 7.81 8.05 8.51

SoftPoolNet (Wang et al. 2020b) 6.93 10.91 9.78 9.56 8.59 11.22 8.51 8.14 9.20

Ours 5.50 10.02 8.73 9.05 7.53 10.24 8.01 7.43 8.31

Without skip-connection 6.72 10.46 9.70 9.12 8.42 10.85 8.48 7.80 8.95

Without D 5.73 10.19 8.79 9.10 7.55 10.47 8.12 7.75 8.46

Without LR 5.77 11.92 11.60 11.47 9.02 12.14 11.82 9.87 10.45

Bold indicates the best performance achieved in certain column

Table 5 Evaluation on the object completion based on the Chamfer distance trained with L2 distance (multiplied by 103) with the output resolution
of 16,384

Method Plane Cabinet Car Chair Lamp Sofa Table Vessel Avg.

PCN (Yuan et al. 2018) dataset, Output Resolution = 16,384, L2 metric

FoldingNet (Yang et al. 2018b) 3.15 7.94 4.68 9.23 9.23 8.90 6.69 7.33 7.14

FoldingNet + SoftPool++ 3.02 7.86 4.50 9.07 9.03 8.69 6.49 7.31 7.00

AtlasNet (Groueix et al. 2018) 1.75 5.10 3.24 5.23 6.34 5.99 4.36 4.18 4.52

TopNet (Tchapmi et al. 2019) 2.15 5.62 3.51 6.35 7.50 6.95 4.78 4.36 5.15

NSFA (Zhang et al. 2020b) 1.75 5.31 3.43 5.01 4.73 6.41 4.00 3.56 4.28

PCN (Yuan et al. 2018) 1.40 4.45 2.45 4.84 6.24 5.13 3.57 4.06 4.02

PCN + SoftPool++ 1.10 4.37 2.40 4.81 5.67 4.70 3.41 3.82 3.79

MSN (Liu et al. 2020) 1.54 7.25 4.71 4.54 6.48 5.89 3.80 3.85 4.76

MSN + SoftPool++ 1.13 7.24 4.64 4.21 6.28 5.83 3.57 3.45 4.54

PF-Net (Huang et al. 2020) 1.55 4.43 3.12 3.96 4.21 5.87 3.35 3.89 3.80

CRN (Wang et al. 2020a) 1.46 4.21 2.97 3.24 5.16 5.01 3.99 3.96 3.75

GRNet (Xie et al. 2020b) 1.53 3.62 2.75 2.95 2.65 3.61 2.55 2.12 2.72

SoftPoolNet (Wang et al. 2020b) 1.63 3.79 3.05 3.27 2.95 3.78 2.59 2.25 2.91

Ours 1.27 3.43 2.65 2.98 2.67 3.38 2.27 1.85 2.55

Without skip-connection 1.53 3.75 2.96 3.15 2.90 3.59 2.35 1.96 2.77

Without D 1.37 3.59 2.78 3.13 2.74 3.51 2.43 2.03 2.69

Without LR 1.42 4.74 2.91 4.63 3.66 4.14 2.83 2.29 3.33

Bold indicates the best performance achieved in certain column
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Table 6 Evaluation on the object completion based on the F-Score@1% trained with L2 Chamfer distance and the output resolution of 16,384

Method Plane Cabinet Car Chair Lamp Sofa Table Vessel Avg.

PCN (Yuan et al. 2018) dataset, output resolution = 16,384, F-Score@1%

FoldingNet (Yang et al. 2018b) 0.642 0.237 0.382 0.236 0.219 0.197 0.361 0.299 0.322

FoldingNet + SoftPool++ 0.687 0.347 0.455 0.237 0.236 0.257 0.377 0.428 0.378

AtlasNet (Groueix et al. 2018) 0.845 0.552 0.630 0.552 0.565 0.500 0.660 0.624 0.616

TopNet (Tchapmi et al. 2019) 0.771 0.404 0.544 0.413 0.408 0.350 0.572 0.560 0.503

PCN (Yuan et al. 2018) 0.881 0.651 0.725 0.625 0.638 0.581 0.765 0.697 0.695

PCN + SoftPool++ 0.880 0.671 0.777 0.723 0.755 0.578 0.819 0.661 0.733

MSN (Liu et al. 2020) 0.885 0.644 0.665 0.657 0.699 0.604 0.782 0.708 0.705

MSN + SoftPool++ 0.903 0.727 0.721 0.736 0.718 0.633 0.796 0.750 0.748

GRNet (Xie et al. 2020b) 0.843 0.618 0.682 0.673 0.761 0.605 0.751 0.750 0.708

SoftPoolNet (Wang et al. 2020b) 0.831 0.605 0.685 0.649 0.715 0.601 0.746 0.721 0.694

Ours 0.867 0.693 0.706 0.712 0.794 0.689 0.825 0.804 0.761

Without skip-connection 0.836 0.658 0.670 0.671 0.753 0.652 0.753 0.791 0.723

Without D 0.843 0.672 0.700 0.686 0.767 0.653 0.768 0.796 0.736

Without LR 0.824 0.634 0.593 0.670 0.695 0.575 0.686 0.755 0.679

Bold indicates the best performance achieved in certain column

objects provided by the Completion3D (Tchapmi et al. 2019)
andMVP (Pan et al. 2021), respectively. Here, the average F-
Score with SoftPool++ outperforms the other methods. The
tables also validate the benefit of our individual contribu-
tions in the overall result. In addition, Table 7 shows that, by
applying our SoftPool++ module on the variational coarse
sub-architecture of VRCNet (Pan et al. 2021), the average
performance of the fine reconstruction reached the state-of-
the-art with the improvement from 78.1 to 79.9%.
Advantage over SoftPoolNet Wang et al. (2020b).

Compared to SoftPoolNet (Wang et al. 2020b), our contri-
butions in the proposed SoftPool++ features improve (Wang
et al. 2020b) by 0.83× 10−4 in the L1 Chamfer distance and
1.71 × 10−4 for L2. Strikingly, even without the skip con-
nections, we have already outperformed SoftPoolNet (Wang
et al. 2020b). This then demonstrate the strength of the pro-
posed SoftPool++ over (Wang et al. 2020b).

Moreover, the results from high resolution reconstruc-
tion also validates our conclusion when evaluating against
SoftPoolNet (Wang et al. 2020b). With or without the skip
connections, our SoftPool++ performs better than (Wang et
al. 2020b).

6.2 Qualitative Evaluation

Similar to Sect. 6.1, the objects in this section are also trained
from and evaluated on ShapeNet (Chang et al. 2015). How-
ever, for the qualitative results in Fig. 9, we show the results
in the original points resolution specified in their respective
methods.
Comparison against PointNet (Qi et al. 2017a) feature.

From Fig. 9, themax-pooling operation from the PointNet
(Qi et al. 2017a) feature is embedded in FoldingNet (Yang et
al. 2018b), PCN (Yuan et al. 2018) andMSN (Liu et al. 2020).
We noticed that these methods are either over-smoothens the
reconstruction or start introducing noise.

On one hand, FoldingNet (Yang et al. 2018b) and PCN
(Yuan et al. 2018) smoothens out the reconstruction so that
the fine details such as the armrest of the chair are no longer
visible and the wheels of the car are no longer separated. On
the other, MSN (Liu et al. 2020) tries to reconstruct the finer
details but produces a noisy point cloud. Contrary to these
methods, we achieve a smoother surface reconstruction with
with visible geometric details of the object like the armrest
and the wheels.

Advantage of Skip Connections We also explore the com-
bination of 3D-GCN (Lin et al. 2020) and TreeGAN (Shu et
al. 2019) that uses graph convolutions in an encoder–decoder
architecture. Its latent feature is presented as a vector with a
length of 1024.Without the skip connection, several inconsis-
tencies emerge. For instance, the shape of the boat is slimmer
than the ground truth while one dimension of the bookshelf
is thicker. These information are part of the input but are not
propagated to the output.

Among these methods, GRNet (Xie et al. 2020b) achieves
similar quantitative results compared to our approach in
Table 5. They also build skip connections between their
encoder and decoder. However, as input to the architecture,
they first voxelize the input point cloud. After going through
the encoder–decoder, they convert the 3D grid back to point
cloud. Due to the discretization of the point cloud, this affects
the results of GRNet (Xie et al. 2020b). It fails to reconstruct
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Table 7 Evaluation on the object completion based on the F-Score@1% trained with L2 Chamfer distance and the output resolution of 16,384

Method Plane Cabinet Car Chair Lamp Sofa Table Vessel Avg.

MVP (Pan et al. 2021) dataset, Output Resolution = 16,384, F-Score@1%

TopNet (Tchapmi et al. 2019) 0.789 0.621 0.612 0.443 0.387 0.506 0.639 0.609 0.576

PCN (Yuan et al. 2018) 0.816 0.614 0.686 0.517 0.455 0.552 0.646 0.628 0.614

PCN + SoftPool++ 0.853 0.643 0.729 0.563 0.472 0.566 0.670 0.643 0.642

MSN (Liu et al. 2020) 0.879 0.692 0.693 0.599 0.604 0.627 0.730 0.696 0.690

MSN + SoftPool++ 0.914 0.717 0.727 0.620 0.638 0.649 0.765 0.726 0.719

GRNet (Xie et al. 2020b) 0.853 0.578 0.646 0.635 0.710 0.580 0.690 0.723 0.677

ECG (Pan 2020) 0.906 0.680 0.716 0.683 0.734 0.651 0.766 0.753 0.736

NSFA (Zhang et al. 2020b) 0.903 0.694 0.721 0.737 0.783 0.705 0.817 0.799 0.770

CRN (Wang et al. 2020a) 0.898 0.688 0.725 0.670 0.681 0.641 0.748 0.742 0.724

VRCNet (Pan et al. 2021) 0.928 0.721 0.756 0.743 0.789 0.696 0.813 0.800 0.781

VRCNet + SoftPool++ 0.947 0.745 0.768 0.759 0.810 0.720 0.829 0.813 0.799

PoinTr (Yu et al. 2021) 0.888 0.681 0.716 0.703 0.749 0.656 0.773 0.760 0.741

SoftPoolNet (Wang et al. 2020b) 0.843 0.568 0.636 0.623 0.698 0.568 0.680 0.710 0.666

Ours 0.862 0.622 0.704 0.695 0.783 0.649 0.776 0.778 0.734

Without skip-connection 0.862 0.555 0.648 0.652 0.716 0.603 0.703 0.719 0.682

Without D 0.856 0.624 0.666 0.664 0.732 0.622 0.738 0.770 0.709

Without LR 0.822 0.488 0.602 0.573 0.661 0.500 0.667 0.696 0.626

Bold indicates the best performance achieved in certain column

thin structures like the antenna on the boat and the vertical
stabilizers of the jet. In addition, it tried to fill up the hole in
the box which should have remained empty. In contrast, our
method that processes directly on the point cloud can handle
these cases.
Improvements from SoftPoolNet (Wang et al. 2020b). More-
over, we compared the proposedmethod against the previous
SoftPoolNet (Wang et al. 2020b) to reveal the advantages
of our novel approach. From Fig. 9, while the previous
method fails to reconstruct the four corners of the box and
the wheels of the jet, the new method is more consistent to
the ground truth. Overall, our novel approach reconstructs
sharper geometries with less noise and less holes.

Other Methods There have been some trend to re-purpose
method that were originally tailored for semantic segmen-
tation such as PointCNN (Li et al. 2018) to train for object
completion. Since they both use point clouds, the intuition is
to use the local convolutions fromLi et al. (2018) to upsample
the point cloud from its partial scan to its completed structure.
Unfortunately, these methods fails to reconstruct the objects
because it is not the intended purpose of the architecture—
in semantic segmentation, their input and output point cloud
remains the same.

6.3 Classification onModelNet and PartNet

In addition to shape completion, we also evaluate our
approach in terms of classification on the ModelNet10 (Zhi-

rong et al. 2015), ModelNet40 (Zhirong et al. 2015) and
PartNet (Mo et al. 2019) datasets. Note that ModelNet40
contains 12,311 CAD models classified into 40 categories
while PartNet contains 26,671 models with 24 categories.

Similar to the other approaches such as 3D-GAN(Wuet al.
2016), RS-DGCNN (Sauder et al. 2019), VConv-DAE (Shar-
maet al. 2016), FoldingNet (Yang et al. 2018b) and KCNet
(Shen et al. 2018), we also implemented a self-supervised
training to extract features from the input point cloud then a
supervised training to train a linear Support Vector Machine
(SVM) (Cortes and Vapnik 1995) to predict the categori-
cal classification. The former relies on the 57,448 ShapeNet
models (Chang et al. 2015) as its training dataset while the
latter relies on ModelNet (Zhirong et al. 2015) and PartNet
(Mo et al. 2019).

It is noteworthy to mention that there is a significant dif-
ference from RS-DGCNN (Sauder et al. 2019) in the details
of the self-supervised training. On one hand, our method ran-
domly subsamples the point cloudwhile, on the other, Sauder
et al. (2019) includes an additional data augmentation step
that randomly decomposes the 3D input structure into differ-
ent parts then repositions these parts by translation. Since we
did not include the additional augmentation from Sauder et
al. (2019), our evaluation is a fair comparison against other
methods.

The evaluation in Table 8 reports that our model out-
performs the accuracy of RS-DGCNN (Sauder et al. 2019)
by 4.11% on the ModelNet40 dataset, a sign of the higher
descriptiveness in terms of categorical information. The
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Fig. 9 Qualitative results on the ShapeNet (Chang et al. 2015) dataset. Note that the three results from our method corresponds to different parts
of the architecture as explained in Fig. 5. Here, (k) represents our final reconstruction

123



International Journal of Computer Vision (2022) 130:1145–1164 1159

Table 8 Object classification
accuracy on ModelNet40
(Zhirong et al. 2015),
ModelNet40 (Zhirong et al.
2015) and PartNet (Mo et al.
2019) datasets

Method ModelNet40 (%) ModelNet10 (%) PartNet (%)

VConv-DAE (Sharmaet al. 2016) 75.50 80.50 –

3D-GAN (Wu et al. 2016) 83.30 91.00 74.23

Latent-GAN 85.70 95.30 –

FoldingNet (Yang et al. 2018b) 88.40 94.40 –

VIP-GAN (Han et al. 2019) 90.19 92.18 –

RS-PointNet (Sauder et al. 2019) 87.31 91.61 76.95

RS-DGCNN (Sauder et al. 2019) 90.64 94.52 –

KCNet (Shen et al. 2018) 91.0 94.4 –

SoftPoolNet (Wang et al. 2020b) 92.28 96.14 84.32

Ours 94.75 96.99 87.25

Without skip-connection 93.17 96.34 85.26

Without Linter 91.23 95.11 83.07

Without Lintra 84.98 91.35 81.91

Without Linter, Lintra 84.21 91.77 80.55

Without Lboundary 89.70 94.14 82.39

Without Lpreserve 87.84 93.15 81.32

Without LR 79.22 85.40 76.48

Bold indicates the best performance achieved in certain column

improvement of 2.47% from our approach compared to Soft-
PoolNet (Wang et al. 2020b) is also obvious, proving that the
proposed SoftPool++ feature and skip-connection together
are more advantageous for classification. Similar results are
also obtained onModelNet10 (Zhirong et al. 2015) and Part-
Net (Mo et al. 2019).

6.4 Efficiency

In addition to the evaluation in terms of shape completion
and categorical classification, we also compare in Table 9
the properties of our model such as its memory footprint and
inference speed, as well as the type of data being processed.

The cost of outperforming SoftPoolNet (Wang et al.
2020b) becomes evident on the memory footprint and the
inference time. Compared to SoftPoolNet (Wang et al.
2020b), thememory footprint of ourmethod is approximately
doubled due the increase in the number of parameters from
the multiple feature extraction modules in our architecture.
This also triggers a larger inference time than SoftPoolNet
(Wang et al. 2020b) from 0.04 to 0.11 seconds. A similar
trend is associated to other approaches that divides the point
cloud into regions such as AtlasNet (Groueix et al. 2018)
andMSN (Liu et al. 2020), i.e.we achieve significantly higher
accuracy in reconstruction but also increase thememory foot-
print and the inference time.

However, if we look at the overall data, we observe that
the proposed method at 61.7MB consumes remarkably less
memory than the other point cloud approaches such asGRNet
(Xie et al. 2020b) at 293MB and PointCNN (Li et al. 2018)

at 497MB, as well as the volumetric approaches such as 3D-
EPN (Dai et al. 2017) at 420MB and ForkNet (Wang et al.
2019b) at 362MB. An important reason why their models are
so large in memory usage is that 3D convolutions are applied
in multiple layers of their architectures, while our approach
is mainly composed of 2D convolutions only. Among those
approaches with large memory consumption, GRNet (Xie et
al. 2020b) is one of the top performers in point cloud com-
pletion. Since their architecture relies on volumetric grids
where they convert the input point cloud to voxel grid then
convert back to a point cloud, this affects not only their mem-
ory footprint but also their inference time, which is 8 times
higher than ours.

Compared to approaches composed mainly of MLPs, our
model reports a comparable size to PCN (Yuan et al. 2018)
while having a faster inference time than MSN (Liu et al.
2020). The reason is that although our 2D convolution ker-
nels introduces a additional dimensions, the newly added
dimension Nk of 32 is comparablymuch smaller than the fea-
ture dimension N f of 256 at which MLPs operates. Notably,
approaches based on KNN search such as PointCNN (Li et
al. 2018) and 3D-GCN (Lin et al. 2020) usually take much
longer for inference.

7 Ablation Study

Based on the evaluation from ShapeNet (Chang et al. 2015),
we further analyze our proposed method’s behavior through
an ablation study. In this section, we demonstrate the advan-
tage of SoftPool++ over PontNet; expound on the claims of
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Table 9 Overview of different
object completion methods.
Note that the inference time is
represented by the amount of
time to conduct inference on a
single object

Size Inference Core Data With
Method (MB) Time (s) Operator Type KNN

3D-EPN (Dai et al. 2017) 420.0 – 3D Conv Voxels No

ForkNet (Wang et al. 2019b) 362.0 – 3D Conv Voxels No

GRNet (Xie et al. 2020b) 293.0 0.88 3D Conv Points No

PointCNN (Li et al. 2018) 497.0 1.20 3D Conv Points Yes

DeepSDF (Park et al. 2018) 7.4 9.72 MLP SDF No

FoldingNet (Yang et al. 2018b) 19.2 0.05 MLP Points No

AtlasNet (Groueix et al. 2018) 2.0 0.32 MLP Points No

PCN (Yuan et al. 2018) 54.8 0.11 MLP Points No

MSN (Liu et al. 2020) 12.0 0.21 MLP Points No

3D-GCN (Lin et al. 2020) (coder) 2.1 0.82 2D Conv Points Yes

SoftPoolNet (Wang et al. 2020b) 37.2 0.04 2D Conv Points No

Ours 61.7 0.11 2D Conv Points No

our loss function; investigate the value of the skip connection
with feature transform in our architecture; and; delve deeper
on what happens in the SoftPool++ module.

7.1 Replacing PointNet with SoftPool++

In addition to the comparison in Table 5, we also evaluate
the results by replacing the latent features in other point
cloud completion approaches [i.e.FoldingNet (Yang et al.
2018b), MSN (Liu et al. 2020), and PCN (Yuan et al. 2018)]
with our SoftPool++ features, while keeping their decoders
unchanged. In this way, we have a one-to-one comparison of
PointNet and SoftPool++ features.

Since these works depend on a PointNet features (having
a dimensionality of 1024), we also build up our SoftPool++
features with the same size. Remarkably, the use of Soft-
Pool++ features improves performance in all testedmethods,
i.e.the performance of FoldingNet (Yang et al. 2018b), PCN
(Yuanet al. 2018) andMSN(Liu et al. 2020) improves respec-
tively by 0.14 × 10−3, 0.23 × 10−3 and 0.22 × 10−3.

7.2 Loss Functions

Tables 3 and 8 include an ablation study that investigates the
effects of the individual loss functions from Sect. 5. For both
experiments, we notice that all loss functions are critical to
achieve state-of-the-art results. Note that we have shown in
Fig. 6 and cabinet completion in Fig. 7 to demonstrate the
contributions of Lboundary and Lpreserve in the reconstruction.
Lboundary in other methods. An interesting idea is the capac-
ity of Lboundary to be integrated in other existing methods
that join multiple deformed 2D patches together to form the
final output. Since the patches in AtlasNet (Groueix et al.
2018), PCN (Yuan et al. 2018) andMSN (Liu et al. 2020) are
frequently overlapping nearby patches, we tried to integrate

Fig. 10 Object completion results with and without the influence of the
skip-connection

Lboundary into their loss functions. Tables 4 and 3 evaluate this
idea and prove that this activation helps FoldingNet (Yang et
al. 2018b), PCN (Yuan et al. 2018) and AtlasNet (Groueix
et al. 2018) perform better, improving the Chamfer distance
with at least 1×10−4 on the resolution of 2048 and 1×10−3

on resolution of 16,384.

7.3 Skip Connection with Feature Transform

One of the key contributions in this paper is the introduc-
tion of skip connections with feature transforms on point
cloud. Our ablation study in Tables 3 and 2 also includes the
numerical advantage of having the skip connection in our
architecture, improving the Chamfer distance by 0.65×10−4

in L1 and 1.27 × 10−4 in L2.
In addition to the numerical advantage, we also interpret

these values through some examples in Fig. 10 where we
reconstruct lamps. Without the skip connection, the model
recursively simplifies the given partial scan until it reaches
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Fig. 11 Visualization of the first row of F on the first SoftPool++ mod-
ule in our architecture

the latent feature. Due to the oversimplification, the output
then builds the closest generic shape of the lamp. Contrary
to that, with the skip connection, the model preserves the
input structure and incorporates the given partial scan into
the final reconstruction. In effect, the result is closer to the
ground truth.

We also perform an ablation study on the regularization
LR of the feature transform R in Tables 4, 5, 3 and 2. Com-
pared to our complete framework, the results trained without
the skip-connection drops by 0.64 × 10−4. However, when
trained with the skip-connection but without the regular-
ization of R, the results drops by 2.14 × 10−4 which is
significantly larger. Therefore, it is noteworthy to mention
that training with skip-connection but without the regular-
ization performs worse than removing the skip-connection
altogether. This clearly shows the advantage of the regular-
ization term on the feature transform.

7.4 Activations from the SoftPool++ Features

Given the input point cloud,we explore howSoftPool++ sorts
the points on the first feature extraction module in the archi-
tecture. For this experiment, we visualize the points based on
the value of the first column inFwhich is the result ofMLP as
shown in Fig. 2. Therefore, Fig. 11 highlights the activations
associated to this feature. Noticeably, due to MLP, the points
can undergo much more than just a linear transformation of
its absolute coordinates.

Continuing our analysis, we move further into examining
how the truncation sizes (Ns, Nr ) and the output dimension
N f influence the completion. Table 10 summarizes this eval-
uation on ShapeNet (Chang et al. 2015) as we vary these
values on the second SoftPool++ module in our architecture.
As described in Table 1, since our SoftPool++ feature is fixed
with 256 rows, we then set Nr ×Ns = 256. Note that the next
ablation study focuses on changing the number of rows by

Table 10 Influence of N f and (Ns , Nr ) on the L2 Chamfer distance
(multiplied by 103), evaluated on the output resolution of 2048 points

Ns Nr N f

32 64 128 256 512

1 256 17.33 16.50 13.45 11.24 10.39

2 128 17.28 17.06 15.22 14.62 13.10

4 64 16.32 15.66 13.65 11.29 11.31

8 32 17.55 11.18 10.27 9.59 9.58

16 16 17.97 11.26 10.21 9.60 9.59

32 8 17.31 11.89 10.32 9.59 9.58

Bold indicates the best performance achieved in certain column

Table 11 Influence of Ns and Nr on the L2 Chamfer distance (multi-
plied by 103), evaluated on the output resolution of 2048 points

Ns Nr

8 16 32 64 128 256

1 – – 14.99 14.82 14.64 11.24

2 – 14.99 14.97 14.73 14.62 11.26

4 14.79 12.85 12.27 11.29 11.08 9.91

8 11.56 10.62 9.59 9.59 9.62 9.64

16 10.07 9.59 9.62 9.62 9.61 9.63

32 9.60 9.61 9.61 9.62 9.61 9.61

Here, N f is set to 256
Bold indicates the best performance achieved in certain column

independently setting Nr and Ns . For the ease of training and
evaluation for all (Ns, Nr ) and N f , we do not apply discrim-
inative training D for Table 10. The table indicates that we
reach the minimum Chamfer distance as soon as Ns reaches
8, Nr reaches 32 and N f reaches 256. After then, only small
improvements of around 0.01 × 10−3 are attained. There-
fore, we select Ns = 8, Nr = 32 and N f = 256 so that there
are less parameters in the model to train which consequently
lead to less memory footprint.

The next ablation study alleviates the constraint of having
a fixed latent feature dimension where we set Nr ×Ns = 256
in Table 10. In Table 11, we consider different values of
Nr and Ns while setting N f to 256, where we observe that
that the error plateaus when Ns is 8 and Nr is 32. Note that
these values matches the optimum values from Table 10 and
validates the advantage of truncation.

Considering the numerical advantages of Ns , we also
explore it visually while keeping N f and Nr constant to
256 and 32, respectively. Similar to Fig. 11, Fig. 12 plots
the points from the input point cloud that are truncated by
Ns . By increasing Ns from 4 to 16, the resulting feature
also increases the amount of structures from the plane. For
instance, the wings becomemore andmore visible on the fig-
ure. This then raises the question of how much information
from the partial scans does the network need to reconstruct
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Fig. 12 Visualization of the truncated points on the input point cloud
with different values of Ns

the object. Evidently, this question is answered by our abla-
tion study in Table 10 where we found the optimum value of
Ns , i.e.8. Comparisons in Fig. 12 shows that larger values of
Ns does not further add the points on the body of the plane
which is a common part for plane category.

8 Conclusion

We propose a novel feature extraction technique called Soft-
Pool++ that directly processes the point cloud. Compared to
the counterpart that heavily relies on the max-pooling oper-
ation in PointNet (Qi et al. 2017a), our feature extraction
method captures a higher amount of data from the input point
cloud by alleviating the limitation of taking only the maxi-
mum while also establishing the relation between different
points through our regional convolutions.

Structuring multiple SoftPool++ in an encoder–decoder
structure, this paper becomes the first to propose a point-wise
skip connection with feature transformation. Considering
that the given point cloud is continuously downsampled in
the encoder, the main advantage of such connection is the
capacity to incorporate the input data into the decoder. This
then overcomes the loss of information in the encoder.

Examining our contributions on 3D object completion,
we discovered that we perform the state-of-the-art especially
on high-resolution reconstructions. We also visually demon-
strate our advantage and concluded that our reconstructions
are sharper, i.e.with less noise in our point cloud; and, cap-
tures the finer details, i.e.without over-smoothing different
parts of the object.
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5.2 Point Cloud Completion

5.2.3 Learning Local Displacements for Point Cloud Completion (Confer-
ence on Computer Vision and Pattern Recognition 2022)

(b) MSN (c) PoinTrInput Ground Truth(a) PCN (d) VRCNet (f) Ours (Trans) (e) Ours (Dir)

CVPR 2022

Completion Semantic Completion

Figure 5.5 The proposed Disp3D [4] is the first few works which can semantically reconstruct a scene in the form
of a point cloud with an end-to-end model.

As described in previous works of ours, SoftPoolNet [6] and SoftPool++ [5] can keep local
geometries where adjacent samples in a latent feature could be spatially related in the original
3D space. The proposed methods improved the point cloud completion with the help of
convolutions in the decoder compared to using the PointNet feature. The fact is that the basic
operations in both encoders of SoftPoolNet and SoftPool++ are still multi-layer perceptron
(MLP) which cannot progressively process points in the local neighborhood.

In this work, we propose an approach using local displacement vectors to process local
features progressively in encoder-decoder structures. Our proposed learnable displacement
vectors perform feature extraction by matching the point features to extract the information
from the local point sets with a similar shape. While the point cloud completion usually
depends on down-sampling in the encoder and up-sampling in the decoder, we design our
operator to be used in both the encoder and decoder by applying a neighbor-pooling and
making a standalone up-sampling operator. Considering that the input point cloud should be
part of the completed output, we enforce a constraint that the order in the output point cloud
moves from the observed to the occluded so that a particular part of the output could be
trained to be specifically close to the input partial scan. By evaluating our proposed operator
in a transformer architecture, e.g. PoinTr [46] on both object and indoor scene completion
tasks, we achieve state-of-the-art in point cloud completion for both objects and scenes.
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Yida Wang investigated the advantages and disadvantages of existing local operators
for point cloud on the topic of both completion and segmentation. He then proposed
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Abstract

We propose a novel approach aimed at object and se-
mantic scene completion from a partial scan represented as
a 3D point cloud. Our architecture relies on three novel lay-
ers that are used successively within an encoder-decoder
structure and specifically developed for the task at hand.
The first one carries out feature extraction by matching the
point features to a set of pre-trained local descriptors. Then,
to avoid losing individual descriptors as part of standard
operations such as max-pooling, we propose an alterna-
tive neighbor-pooling operation that relies on adopting the
feature vectors with the highest activations. Finally, up-
sampling in the decoder modifies our feature extraction in
order to increase the output dimension. While this model is
already able to achieve competitive results with the state of
the art, we further propose a way to increase the versatility
of our approach to process point clouds. To this aim, we in-
troduce a second model that assembles our layers within a
transformer architecture. We evaluate both architectures on
object and indoor scene completion tasks, achieving state-
of-the-art performance.

1. Introduction

Understanding the entire 3D space is essential for both
humans and machines to understand how to safely navigate
an environment or how to interact with the objects around
them. However, when we capture the 3D structure of an ob-
ject or scene from a certain viewpoint, a large portion of the
whole geometry is typically missing due to self-occlusion
and/or occlusion from its surrounding. To solve this prob-
lem, geometric completion of scenes [2, 27, 32] and ob-
jects [16, 20, 39, 44, 45] has emerged as a task that takes on
a 2.5D/3D observation and fills out the occluded regions, as
illustrated in Fig. 1.

There are multiple ways to represent 3D shapes. Point
cloud [3, 6], volumetric grid [8, 27], mesh [11] and implicit
surfaces [18, 21, 40] are among the most common data for-
mats. These representations are used for most 3D-related
computer vision tasks such as segmentation, classification
and completion. For what concerns geometric completion,

Input: 

Partial Scan

Output:

Completion
of our method

Clearly 
reconstructs
the rear-view mirror!

Figure 1. From the input partial scan to our object completion, we
visualize the amount of detail in our reconstruction.

most works are focused on either point cloud or volumetric
data. Among them, the characteristic of having an explicitly
defined local neighbourhood makes volumetric data easier
to process with 3D convolutions [7, 41, 42]. One drawback
introduced by the predefined local neighborhood is the inac-
curacy due to the constant resolution of the voxels, meaning
that one voxel can represent several small structures.

On the other hand, point clouds have the advantage of not
limiting the local resolution, although they come with their
own sets of drawbacks. Mainly, there are two problems in
processing point clouds: the undefined local neighborhood
and unorganized feature map. Aiming at solving these is-
sues, PointNet++ [23], PMP-Net [35], PointConv [37] and
PointCNN [13] employ k-nearest neighbor search to de-
fine a local neighborhood, while PointNet [22] and Soft-
PoolNet [33] adopt the pooling operation to achieve per-
mutation invariant features. Notably, point cloud segmenta-
tion and classification were further improved by involving
k-nearest neighbor search to form local features in Point-
Net++ [23] compared to global features in PointNet [22].
Several variations of PointNet [22] also succeeded in im-
proving point cloud completion as demonstrated in Fold-
ingNet [43], PCN [45], MSN [16]. Other methods such as
SoftPoolNet [33] and GRNet [39] explicitly present local
neighbourhood in sorted feature map and voxel space, re-
spectively.

This paper investigates grouping local features to im-
prove the point cloud completion of objects and scenes.
We apply these operation in encoder-decoder architectures
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which iteratively uses a feature extraction operation with
the help of a set of displacement vectors as part of our para-
metric model. In addition, we also introduce a new pool-
ing mechanism called neighbor-pooling, aimed at down-
sampling the data in the encoder while, at the same time,
preserving individual feature descriptors. Finally, we pro-
pose a new loss function that gradually reconstructs the
target from the observable to the occluded regions. The
proposed approach is evaluated on both object completion
dataset with ShapeNet [3], and semantic scene completion
on NYU [25] and CompleteScanNet [36], attaining signif-
icant improvements producing high resolutions reconstruc-
tion with fine-grained details.

2. Related works
This section focuses on the three most related fields –

point cloud completion, point cloud features and semantic
scene completion.

Point cloud completion. Given the partial scan of an ob-
ject similar to Fig. 1, 3D completion aims at estimating the
missing shape. In most cases, the missing region is due
to self-occlusion since the partial scan is captured from a
single view of the object. Particularly for point cloud, Fold-
ingNet [43] and AtlasNet [11] are among the first works to
propose an object completion based on PointNet [22] fea-
tures by deforming one or more 2D grids into the desired
shape. Then, PCN [45] extended their work by deforming a
collection of much smaller 2D grids in order to reconstruct
finer structures.

Through encoder-decoder architectures, ASFM-Net [38]
and VRCNet [20] match the encoded latent feature with a
completion shape prior, which produce good coarse com-
pletion results. To preserve the observed geometry from the
partial scan for the fine reconstruction, MSN [16] and VR-
CNet [20] bypass the observed geometries by using either
the minimum density sampling (MDS) or the farthest point
sampling (FPS) from the observed surface and building skip
connections. By embedding a volumetric sub-architecture,
GRNet [39] preserves the discretized input geometries with
the volumetric U-connection without sampling in the point
cloud space. In more recent works, PMP-Net [35] gradu-
ally reconstructs the entire object from the observed to the
nearest occluded regions. Also focusing on only predicting
the occluded geometries, PoinTr [44] is among the first few
transformer methods targeted on point cloud completion by
translating the partial scan proxies into a set of occluded
proxies to further refine the reconstruction.

Point cloud features. Notably, a large amount of work in
object completion [11,16,33,35,39,43,45] rely on PointNet
features [22]. The main advantage of [22] is its capacity to

be permutation invariant through max-pooling. This is a
crucial characteristic for the input point cloud because its
data is unstructured.

However, the max-pooling operation disassembles the
point-wise features and ignores the local neighborhood in
3D space. This motivated SoftPoolNet [33] to solve this
problem by sorting the feature vectors based on the activa-
tion instead of taking the maximum values for each element.
In effect, they were able to concatenate the features to form
a 2D matrix so that a traditional 2D convolution from CNN
can be applied.

Apart from building feature representation through pool-
ing operations, PointNet++ [23] samples the local subset of
points with the farthest point sampling (FPS) then feeds it
into PointNet [22]. Based on this feature, SA-Net [34] then
groups the features in different resolutions with KNN for
further processing, while PMP-Net [35] uses PointNet++
features to identify the direction to which the object should
be reconstructed. PoinTr [44] also solves the permutational
invariant problem without pooling by adding the positional
coding of the input points into a transformer.

Semantic scene completion. All the point cloud comple-
tion are designed to reconstruct a single object. Extending
these methods from objects to scenes is difficult because of
the difference in size and content. When we tried to train
these methods for objects, we noticed that the level of noise
is significantly increased such that most objects in the scene
are unrecognizable. Evidently, for semantic scene comple-
tion, the objective is not only to build the full reconstruction
of the scene but also to semantically label each component.

On the other hand, there have been a number of meth-
ods for semantic scene completion based on voxel grids
that was initiated by SSCNet [27]. Using a similar volu-
metric data with 3D convolutions [7, 41, 42], VVNet [12]
convolves on the 3D volumes which are back-projected
from the depth images, revealing the camera view instead
of a TSDF volume. Later works such as 3D-RecGAN [42]
and ForkNet [32] use discriminators to optimize the con-
volutional encoder and decoder during training. Since 3D
convolutions are heavy in terms of memory consumption
especially when the input is presented in high resolution,
SketchSSC [4] learns the 3D boundary of all objects in the
scene to quickly estimate the resolution of the invariant fea-
tures.

Although there are quite many methods targeting on vol-
umetric semantic scene completion, there are still no related
works proposed explicitly for point cloud semantic scene
completion which we achieved in this paper.

3. Operators
Whether reconstructing objects or scenes from a single

depth image, the objective is to process the given point
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cloud of the partial scan Pin to reconstruct the complete
structure Pout. Most deep learning solutions [16, 20, 33, 43,
45] solve this problem by building an encoder-decoder ar-
chitecture. The encoder takes the input point cloud to it-
eratively down-sample it into its latent feature. Then, the
decoder iteratively up-sample the latent feature to recon-
struct the object or scene. In this section, we illustrate
our novel down-sampling and up-sampling operations that
cater to point cloud completion. Thereafter, in the follow-
ing sections, we use our operators as building blocks to
assemble two different encoder-decoder architectures that
perform object completion and semantic scene completion.
We also discuss the associated loss functions.

3.1. Down-sampling operation

To formalize the down-sampling operation, we denote
the input as the set of feature vectors Fin = {fi}|Fin|

i=1 where
fi is a feature vector and | · | is the number of elements in the
set. Note that, in the first layer of the encoder, Fin is then set
to the coordinates of the input point cloud. We introduce a
novel down-sampling operation inspired from the Iterative
Closest Point (ICP) algorithm [1, 5]. Taking an arbitrary
anchor f from Fin, we start by defining a vector δ ∈ RDin .
From the trainable variable δ, we find the feature closest to
f+δ and compute the distance. This is formally formulated
as a function

d (f , δ) = min
∀f̃∈Fin

∥(f + δ)− f̃∥ (1)

where δ represents a displacement vector from f . Multiple
displacement vectors are used to describe the local geome-
try, each with a weight σ ∈ R. We then assign the set as
{(δi, σi)}si=1 and aggregate them with the weighted func-
tion

g(f) =
s∑

i=0

σi tanh
α

d(f , δi) + β
(2)

where the constants α and β are added for numerical sta-
bility. Here, the hyperbolic tangent in g(f) produces values
closer to 1 when the distance d(·) is small and closer to 0
when the distance is large. In practice, we can speed-up
(1) with the k-nearest neighbor search for each anchor. A
simple example of this operation is depicted in Fig. 2. This
illustrates the operation in the first layer where we process
the point cloud so that we can geometrically plot a feature
in Fin with respect to {(δi, σi)}si=1.

Furthermore, to enforce the influence of the anchor in
this operation, we also introduce the function

h(f) = ρ · f (3)

that projects f on ρ ∈ RDin , which is a trainable parame-
ter. Note that both functions g(·) and h(·) produce a scalar
value.

(c)

1-1

(a)

(b)

Figure 2. (a) k-nearest neighbor in reference to an anchor f ; (b)
displacement vectors around the anchor f+δi and the correspond-
ing weight σi; and, (c) closest features f̃ to f + δi for all i.

Thus, if we aim at building a set of output feature vectors,
each with a dimension of Dout, we construct the set as

Fout =
{
[gb(fa) + h(fa)]

Dout
b=1

}|Fin|

a=1
(4)

where different sets of trainable parameters {(δi, σi)}si=1

are assigned to each element, while different ρ for each out-
put vector. Moreover, the variables s in (2) and Dout in (4)
are the hyper-parameters. We label this operation as the fea-
ture extraction.

It is noteworthy to mention that the proposed down-
sampling operation is different from 3D-GCN [15], which
only takes the cosine similarity. While still being scale-
invariant, hence suitable for object classification and seg-
mentation, they ignore the metric structure of the local 3D
geometry; consequently, making completion difficult be-
cause the original scale of the local geometry is missing.

Neighbor pooling. The final step in our down-sampling
operation is to reduce the size of Fout with pooling. How-
ever, unlike Graph Max-Pooling (GMP) [15], that takes the
element-wise maximum value of the feature across all the
vectors, we select the subset of feature vectors with the
highest activations. Therefore, while GMP disassembles
their features as part of their pooling operation, we preserve
the feature descriptors from Fout. From the definition of
Fout in (4), we base our activation for each vector fa

Aa =

Dout∑

b=1

tanh |gb(fa)| (5)

on the results of g(·) from (2). Thereafter, we only take the
1
τ of the number of feature vectors with the highest activa-
tions.

3.2. Up-sampling operation

The up-sampling and pooling operations in the encoder
reduce the point cloud to a latent vector. In this case, if we
directly use the operation in (4), the first layer in the decoder
ends up with one vector since |Fin| is one. Subsequently, all
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Figure 3. This architecture is composed of the proposed operators
to build its encoder and decoder.

the other layers in the decoder result in a single vector. To
solve this issue, our up-sampling iteratively runs (4) so that,
denoting Fin as the input to the layer, we build the set of
output feature vectors as

Fup = {Fu
out}

Nup
u=1

=
{
[gub (fa) + hu

b (fa)]
Dout
b=1

}a=|Fin|,u=Nup

a=1,u=1
(6)

which increases the number of vectors by Nup. As a result,
Fup is a set of Nu·|Fin| feature vectors. In addition to the list
of hyper-parameters in Sec. 3.1, our up-sampling operation
also takes Nup as a hyper-parameter.

4. Encoder-decoder architectures

In order to uncover the strengths of our operators in
Sec. 3 (i.e. feature extraction, neighbor pooling and up-
sampling), we used them as building blocks to construct
two different architectures. The first directly implements
our operators to build an encoder-decoder while the second
takes advantage of our operators to improve the transform-
ers derived from PoinTr [44]. We refer the readers to the
Supplementary Materials for the detailed parameters of the
architectures.

4.1. Direct application

The objective of the first architecture is to establish that
building it solely from the proposed operators (with the ad-
ditional max-pooling) can already be competitive in point
cloud completion. We then propose an encoder-decoder ar-
chitecture based on our operators alone as shown in Fig. 3.
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Figure 4. This architecture is derived from the transformers back-
bone, where we use the proposed operators to convert the input 3D
points to tokens and to perform the coarse-to-fine strategy.

The encoder is composed of four alternating layers of fea-
ture extraction and neighbor pooling. As the number of
points from the input is reduced by 128 times, we use a
max-pooling operator to extract a vector as our latent fea-
ture. Taking the latent feature from the encoder, the decoder
is then constructed from a series of up-sampling operators,
resulting in a fine completion of 16,384 points.

4.2. Transformers

The second architecture aims at showing the diver-
sity of the operators to improve the state-of-the-art from
PoinTr [44] that uses transformers. We therefore propose
a transformer-based architecture that is derived from [44]
and our operators as summarized in Fig. 4.

Before computing the attention mechanisms in the trans-
former, the partial scan are subsampled due to the mem-
ory constraint of the GPU. PoinTr [44] implements the Far-
thest Point Sampling (FPS) to reduce the number of points
and MLP to convert the points to features. Conversely,
our architecture applies the proposed operators. Similar
to Sec. 4.1, this involves alternating the features extraction
and neighbor pooling. Since the Fourier feature [28] and
SIRENs [26] have proven that the sinusoidal activation is
helpful in presenting complex signals and their derivatives
in layer-by-layer structures, a positional coding based on the
3D coordinates is then added to the features. In Fig. 4, we
refer this block as points-to-token. Thereafter, we use the
geometry-aware transformers from [44] which produces a
coarse point cloud.

From the coarse point cloud, we then replace their
coarse-to-fine strategy with our operators. This includes a
series of alternating feature extraction and up-sampling op-
erators as shown in Fig. 4.
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(a) Input

(b) Ground Truth

Neighbor Pooling

(e) Our Result(c) PoinTr

Farthest Point Sampling

(d) PoinTr + GMP

Graph Max-Pooling

Figure 5. The first row compares the point tokens chosen by Far-
thest Point Sampling (FPS) in PointTr [44], Graph Max-Pooling
(GMP) [15] in PointTr [44] and our proposed neighbor pooling
in our transformer architecture. These tokens are then fed to the
transformer and the coarse-to-fine strategy to produce the recon-
struction shown in the second row.

It it noteworthy to emphasize the difference between our
architecture from PoinTr [44] and to understand the impli-
cation of the changes. The contributions of points-to-tokens
and coarse-to-fine to the overall architecture is illustrated in
Fig. 5. We can observe from this figure that the FPS from
PoinTr [44] only finds the distant points while the results
of our neighbor pooling sketches the contours of the in-
put point cloud to capture the meaningful structures of the
object. Notably, by looking at our sketch, we can already
identify the that the object is a table. This is contrary to
the random points from PoinTr [44]. Moreover, our coarse-
to-fine strategy uniformly reconstructs the planar region on
the table as well as its base. Later, in Sec. 7, we numer-
ically evaluate these advantages in order to show that the
individual components has their own merits.

Since we previously discussed in Sec. 3.1 the difference
of our down-sampling operation against 3D-GMP [15], we
became curious to see the reconstruction in Fig. 5 if we re-
place the FPS in PoinTr [44] with the cosine similarity and
GMP of [15]. Similar to PoinTr, the new combination se-
lects distant points as its tokens while the table in their final
reconstruction increased in size. In contrast, our tokens are
more meaningful and the final results are more accurate.

5. Loss functions

Given the input point cloud Pin (e.g. from a depth im-
age), the objective of completion is to build the set of points
Pout that fills up the missing regions in our input data. Since
we train our architecture in a supervised manner, we denote
Pgt as the ground truth.

Completion. To evaluate the predicted point cloud, we
impose the Earth-moving distance [9]. Comparing the out-
put points to the ground truth and vice-versa, we end up

(a) Input (b) without (c) with (d) Ground 
Truth

First
Last

Figure 6. Compares the order of the point clouds reconstructed in
the object completion with and without Lorder

with

Lout→gt =
∑

p∈Pout

∥p− ϕgt(p)∥2 (7)

Lgt→out =
∑

p∈Pgt

∥p− ϕout(p)∥2 (8)

where ϕi(p) is a bijective function that finds the closest
point in the point cloud Pi to p.

Order of points in Pout. After training with (7) and (8),
we noticed that the points in the output reconstruction are
ordered from left to right as shown in Fig. 6(b). We want
to take advantage of this organization and investigate this
behavior further. Assuming the idea that, among the points
in Pout, we are confident that the input point cloud must be
part of it, we introduce a loss function that enforces that the
first subset in Pout is similar to Pin. We formally write this
loss function as

Lorder =
∑

p∈Pin

S(θout(p)) · ∥p− ϕout(p)∥2 (9)

where θout(p) is the index of the closest point in Pout based
on ϕout(p) while

S(θ) =
{
1, if θ ≤ |Pin|
0, otherwise

(10)

is a step function that returns one if the index is within the
first |Pin| points.

When we plot the results with Lorder in Fig. 6(c), we no-
ticed that the order in Pout moves from the observed to the
occluded. In addition, fine-grained geometrical details such
as the armrest of the chair are visible when training with
Lorder; thus, improving the overall reconstruction.

Semantic scene completion. In addition to the architec-
ture in Sec. 4 and the loss functions in (7), (8) and (9) for
completion, a semantic label is added to each point in the
predicted cloud Pout. Given Nc categories, we denote the
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(b) FoldingNet (d) MSN(c) PCN (g) PoinTr(e) SoftpoolNet (f) VRCNet(a) Input (j) Ground Truth(i) Ours (Trans)(h) Ours (Dir)

Figure 7. Object completion results where we highlight the errors in red points.

label for each point as a one-hot code li = [li,c]
nc
c=1 for the

i-th point in Pout and the c-th category. Since training is su-
pervised, the ground truth point clouds are also labeled with
the semantic category.

After establishing the correspondence between the pre-
dicted point cloud to the ground truth in (7) in training, we
also extract the ground truth semantic label l̂i. It then fol-
lows that the binary cross-entropy of the i-th point is com-
puted

ϵi = − 1

Nc

Ns∑

c=i

l̂i,c log li,c + (1− l̂i,c)(1− log li,c) (11)

and formulate the semantic loss function as

Lsemantic =
γ

|Pin|

|Pin|∑

i=i

ϵi (12)

where the weight

γ =
0.01

Lout→gt + Lgt→out
(13)

triggers to increase the influence of the Lsemantic in training
as the completion starts to converge. Note that γ is an im-
portant factor, since the output point cloud is erratic in the
initial iterations, which means that it can abruptly change
from one iteration to the next before the completion starts
converging.

6. Experiments
To highlight the strengths of the proposed method, this

section focuses on two experiments – object completion and
semantic scene completion.

6.1. Object completion

We evaluate the geometric completion of a single ob-
ject on the ShapeNet [3] database where they have the point
clouds of the partial scans as input and their corresponding

ground truth completed shape. The input scans are com-
posed of 2,048 points while the database provides a low
resolution output of 2,048 points and a high resolution of
16,384 points. We follow the standard evaluation on 8 cat-
egories where all objects are roughly normalized into the
same scale with point coordinates ranging between −1 to 1.

Numerical results. We conduct our experiments based
on three evaluation strategies from Completion3D [29],
PCN [45] and MVP [20]. Evaluating on 8 objects (plane,
cabinet, car, chair, lamp, sofa, table, vessel), they measure
the predicted reconstruction through the L2-Chamfer dis-
tance, L1-Chamfer distance and the F-Score@1%, respec-
tively. Note that, in this paper, we also follow the standard
protocol where the value presented for the Chamfer distance
is multiplied by 103. Although Table 1 only shows the aver-
age results across all categories, we refer the readers to the
supplementary materials for the more detailed comparison.

One of the key observations in this table is the capacity
of our direct architecture to surpass most of the other meth-
ods’ results. Among 11 approaches, our Chamfer distance
is only worse than 3 methods while our F-Score@1% is bet-
ter than all of them. This therefore establishes the strength
of our operators since our first architecture is solely com-
posed of it. Moreover, our second architecture, which com-
bines our operators with the transformer, reduces the error
by 3-5% on the Chamfer distance and increases the accu-
racy by 4.5% on the F-Score@1%.

The table also examines the effects of Lorder to our recon-
struction. Training with Lorder improves our results by 0.12-
0.13 in Chamfer distance and 0.013-0.021 in F-Score@1%,
validating our observations in Fig. 6.

Qualitative results. We compare our object completion
results in Fig. 7 with the recently proposed methods: Fold-
ingNet [43], PCN [45], MSN [16], SoftPoolNet [33], VRC-
Net [20] and PoinTr [44]. The red points in the figure high-
light the errors in the reconstruction. All the approaches re-
constructs a point cloud with 16,384 points with the excep-
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Completion3D PCN MVP
Method L2-Chamfer L1-Chamfer F-Score@1%

FoldingNet [43] 19.07 14.31 –
SoftPoolNet [33] 11.07 9.20 0.666
TopNet [29] 14.25 12.15 0.576
PCN [45] 18.22 9.64 0.614
MSN [16] – 9.97 0.690
GRNet [39] 10.64 8.83 0.677
ECG [19] – – 0.736
NSFA [47] – – 0.770
CRN [30] 9.21 8.51 0.724
SCRN [31] 9.13 8.29 –
VRCNet [20] 8.12 – 0.781
PoinTr [44] 9.22 8.38 0.741
ASFM-Net [38] 6.68 – –

Ours (Direct) 8.35 8.46 0.801
–without Lorder 8.47 8.59 0.788
–input Pgt 5.11 5.37 0.923

Ours (Transformer) 6.64 7.96 0.816
–without Lorder 6.74 8.09 0.795
–input Pgt 4.46 4.95 0.962

Table 1. Evaluation on Completion3D [29], PCN [45] and
MVP [20] datasets with their corresponding metrics for the object
completion task.

tion for FoldingNet with 2,048 points and MSN with 8,192.
Since FoldingNet and PCN take advantage of their math-

ematical assumption where they rely on deforming one or
more planar grids, they tend to over-smooth their recon-
struction where finer details such as the boat is flattened. In
contrast, our method can perform better on the smooth re-
gions as well as the finer structures. Nevertheless, the more
recent approaches like [16,20,33,44] can also produce more
descriptive reconstruction on the boat. However, they pro-
duce more errors which is highlighted in the unconventional
lamp or chair. Overall, our reconstructions are closer to the
ground truth.

Failure cases. In addition to the qualitative results, we
also examine the failure cases in Fig. 8. Most of them
are objects with unusual structures like the car without
the wheels. Another issue is when there is an insufficient
amount of input point cloud to describe the object such as

(e) Ground Truth(a) Input (d) Ours (Trans)(b) PoinTr (c) Ours (Dir)

Figure 8. Examples of the failure cases in object completion.

Method Resolution Average IoU

Lin et al. [14] 60 12.0
Geiger and Wang [10] 60 19.6
SSCNet [27] 60 30.5
VVNet [12] 60 32.9
SaTNet [17] 60 34.4
ForkNet [32] 80 37.1
CCPNet [46] 240 38.5
SketchSSC [4] 60 41.1
SISNet [2] 60 52.4

Ours (Direct) 60 40.0
–with γ = 1 in Lsemantic 60 37.2

Ours (Transformer) 60 42.4
–with γ = 1 in Lsemantic 60 38.9

Table 2. Semantic scene completion on NYU [25] dataset. The
value in resolution (x) is the output volumetric resolution which is
x× 0.6x× x.

the chair. Notably, compared to the state-of-the-art, our re-
constructions are still better in these situations.

6.2. Semantic scene completion

This evaluation aims at reconstructing the scene from a
single depth image through a point cloud or an SDF vol-
ume where each point or voxel is categorized with a se-
mantic class. Originally introduced for 2.5D semantic seg-
mentation, NYU [25] and ScanNet [6], which were later
annotated for semantic completion by [27, 36], are among
the most relevant benchmark datasets in this field. These
datasets include pairs of depth image and the corresponding
semantically labeled 3D reconstruction.

Semantic scene completion with voxels. NYU are pro-
vided with real scans for indoor scenes which are acquired
with a Kinect depth sensor. Following SSCNet [27], the se-
mantic categories include 12 classes of varying shapes and
sizes: empty space, ceiling, floor, wall, window, chair, bed,
sofa, table, tvs, furniture and other objects.

Since the other point cloud completion do not handle
semantic segmentation, we start our evaluation by com-
paring with the voxel-based approaches which perform the
both the completion and the semantic segmentation such
as [2, 4, 10, 12, 14, 17, 27, 32, 46]. Considering that the vol-
umetric data evaluates through the IoU, we need to convert
our point clouds to voxel grids to make the comparison.

One of the significant advantage of point clouds over
voxels is that we are not constrained to a specific resolu-
tion. Since most method evaluate on 60 × 36 × 60, we
converted our point cloud to this resolution. Our approach
achieves competitive average IoU of 42.4% which is better
than all the other methods except for SISNet [2]. However,
it is noteworthy to mention that our method faces additional
errors associated to the conversion from point cloud to vox-
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Method CompleteScanNet NYU

FoldingNet [43] 11.25 14.66
AtlasNet [11] 8.92 10.12
PCN [45] 8.19 9.98
MSN [16] 7.28 8.65
SoftPoolNet [33] 8.27 9.29
GRNet [39] 4.56 5.80
VRCNet [20] 4.29 5.45
PoinTr [44] 5.08 5.92

Ours (Direct) 3.17 4.72
Ours (Transformer) 3.04 4.38

Table 3. Evaluation on CompleteScanNet [36] and NYU [25]
dataset for scene completion, measuring the average Chamfer dis-
tance trained with L2 distance (multiplied by 103) with the output
resolution of 16,384.

els. In addition, the ground truth voxels for the furnitures in
the NYU dataset is a solid volume which is not a plausible
format for point cloud approaches which focuses more on
the surface reconstruction. This in effect decreases the IoU
of our method.

Moreover, Table 2 includes a small ablation study to ver-
ify the contribution of γ from (13) in Lsemantic. If we discard
(13) by setting γ to one, the IoU for our models decrease by
7.5-9%; thus, proving the advantage in adaptively weighing
the semantic loss function.

Point cloud scene completion. Another relevant dataset
is from ScanNet [6] which was supplemented with
the ground truth semantic completion by CompleteScan-
Net [36]. This include a total of 45,451 paired partial scan
and semantic completion for training. Our evaluation in Ta-
ble 3 takes 2,048 points as input and reconstructs the scene
with 16,384 points. Since there is no previous work that fo-
cused on point cloud scene completion, we compare against
methods that were designed for a single object completion
such as PCN [45], MSN [16], SoftPoolNet [33] and GR-
Net [39]. Based on our evaluation in Table 3, both versions
of our architectures attain the best results. Notably, we also
compared these methods on the NYU dataset in Table 3.
Similarly, the proposed architectures also achieve the state-
of-the-art in point cloud scene completion.

7. Ablation study
This section focuses on the strengths of our operator in

our transformer architecture. Although we adapt the trans-
former from PoinTr [44], we argue that every component we
added is significant to the overall performance. To evaluate
this, we disentangle the points-to-tokens and coarse-to-fine
blocks. In practice, we separate the backbone, which takes
points in the partial scan as input and outputs a coarse point
cloud, from the coarse-to-fine strategy. Evidently, in our ap-
proach, the points-to-tokens block is part of the backbone.

Since most methods can also be separated in this manner,

we then compose Table 4 to mix-and-match different back-
bones with different coarse-to-fine methods for object and
scene completion. In both tables, we classified the other
coarse-to-fine methods as: (1) deform which includes the
operation in deforming 3D grids; (2) deconv which pro-
cesses with MLP, 1D or 2D deconvolutions; and, (3) Edge-
aware Feature Expansion (EFE) [19]. We then highlight the
originally proposed architectures in yellow.

For any given backbone in every row, our coarse-to-fine
method produces the best results. Moreover, for any given
coarse-to-fine strategy in every column, our backbone per-
forms the best. Therefore, this study essentially proves that
each of the proposed components in our transformer archi-
tecture has a significant role in the overall performance.

8. Conclusion

We propose three novel operators for point cloud pro-
cessing. To bring out the value of these operators, we apply
them on two novel architectures that are designed for ob-
ject completion and semantic scene completion. The first
assembles together the proposed operators in an encoder-
decoder fashion, while the second incorporates them in the
context of transformers. Notably, both architectures pro-
duce highly competitive results, with the latter achieving
the state of the art in point cloud completion for both ob-
jects and scenes.

OBJECT COMPLETION

Coarse-to-Fine

Backbone deform deconv EFE Ours

MSN [16] 7.28 9.34 7.15 6.91
PoinTr [44] 5.48 5.71 4.91 3.76
SoftPoolNet [33] 10.08 8.27 7.65 7.63
GRNet [39] 9.25 5.61 5.26 4.90
VRCNet [20] 8.09 8.88 5.08 4.21

Ours 4.93 4.99 4.12 3.04

SCENE COMPLETION

Coarse-to-Fine

Backbone deform deconv EFE Ours

MSN [16] 9.97 12.31 9.26 9.08
PoinTr [44] 8.38 8.49 8.31 8.13
TreeGAN [24] 14.26 9.72 9.12 9.05
SoftPoolNet [33] 11.73 9.20 8.75 8.64
GRNet [39] 9.12 8.83 8.73 8.51
VRCNet [20] 10.03 10.20 8.52 8.26

Ours 8.19 8.30 8.07 7.96

Table 4. Mix-and-match evaluation on different backbone attached
to different coarse-to-fine methods for object and scene comple-
tion. The originally proposed combinations are marked in yellow.
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1. Supplementary materials
As we discussed in the paper, this document aims at

showing the detailed parameters of our architectures and
more comprehensive results for both object completion and
semantic scene completion. It also includes additional qual-
itative results that compares different methods against the
proposed.

1.1. Parameters in architectures

This work introduces two architectures to highlight the
benefits of the proposed layers. We list the parameters set
in every layer of our direct architecture in Table 1 and our
transformer architecture in Table 2.

1.2. Object completion

We exhibit a more detailed comparison on the object
completion evaluation in Table 3, Table 4 and Table 5 for
the Completion3D [14], PCN [26] and MVP [11] datasets,
respectively. While we only show the average results in the
paper, these tables show the per-category evaluation. Based
on these results, our architectures are better in most cate-
gories when evaluating the Chamfer distance in Table 3 and
Table 4; while, better in all categories when evaluating the
F-Score in Table 5.

1.3. Semantic scene completion with voxels

Since most of the point cloud approaches only perform
completion, we compared our semantic scene completion
results to the voxel-based approaches in Table 6. In order
to do this, we converted our high resolution point cloud to a
lower resolution 60×36×60 voxels. Table 6 shows the per-
category comparison against the voxel-based approaches.
Notably, although downsizing our point cloud introduces
errors and difference (e.g. the objects in the point cloud are
hollow while in the voxels are solid), we still achieve com-
petitive IoU results.

1.4. Semantic scene completion with point clouds

We illustrate the semantic scene completion results in
Fig. 1, evaluated on CompleteScanNet [21]. Since there
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Table 1. Parameters in each layer of our direct architecture.

is no other point cloud completion approach that explic-
itly claim that they can reconstruct scenes, we utilize the
architectures that were designed for object completion:
PCN [26], MSN [8], PoinTr [25] and VRCNet [11]. Due
to this, in Fig. 1, we perform the more complicated seman-
tic completion while the other methods carry out the simpler
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Table 2. Parameters in each layer of our transformer architecture.

completion task.
We observe from the other methods [8, 11, 25, 26] that

their results show a high level of noise such that the objects
in the scenes are no longer comprehensible. In comparison,
our results have significantly less noise and produce recon-
structions that are very similar to the ground truth. More-
over, a particular attention is given to PoinTr [25] since we
derived our transformer architecture from them. Compar-
ing our results against [25], our reconstructions are signifi-
cantly more accurate. This in effect demonstrate the impor-
tant contribution of our proposed layers to our transformer
architecture.
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Output Resolution = 16,384, L1 metric, PCN [26] dataset
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5.3 Generalizing Feature Learning for Other Tasks

5.3 Generalizing Feature Learning for Other Tasks

Finally, inspired by the improved performance on 3D completion by feature learning, espe-
cially variational inference used in Section 5.1, we want to generalize feature optimization
methods in this section for other 1D, 2D, and 3D tasks, including language translation, pla-
nar reconstruction, hand pose estimation, etc. Using a similar 2D encoder that produces
variational latent features as introduced in Section 5.1.1, Section 5.3.1 proposes a variational
architecture to estimate 3D key points on the hand from a single RGB image. Moreover, using
variational inference for feature learning, we introduce a nebula anchors in Section 5.3.2 to
form latent clusters, such that categorical information is learned in an implicit way which
potentially benefits many tasks, including 3D completion as well.
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Chapter 5: Contributions

5.3.1 Variational Object-aware 3D Hand Pose from a Single RGB Image
(IEEE Robotics and Automation Letters 2019)

ball GraspingPinchingHolding

Our latent feature reveals with which 
kind of objects the hand interacts.

RAL 2019

So that pose estimation 
could be beneficial.

Figure 5.6 By understanding the type of the grasped object, our proposed model [9] can produce realistic hand
gestures from a single RGB image even when the hand is partially occluded by the object.

Apart from 3D completion, as introduced in previous sections, there are other 3D tasks,
including hand pose estimation which we focus on in this work. Considering that we have ex-
ploited approaches to modify the distribution of the latent features e.g. in AdversarialSSC [10]
and ForkNet [8] to improve the performance, some feature learning techniques such as metric
learning and variational inference are investigated in this work for 3D hand pose estimation
from a single RGB image. Given the task of estimating 3D hand key points from a single
RGB image, it is likely to be with occlusion because of the interacted objects. Here, we embed
variational latent features to reconstruct the occluded parts by the decoders. Since the latent
space is a compact representation of the input domain, numerous unrealistic components are
removed during inference, which increases the accuracy of the outcome.

Intuitively, hand pose estimation could benefit from knowing the categories of the grasped
object because the same category of objects has a similar scale and shape layout. We introduce
additional features in the latent space that specialize in the shape and size of the grasped
object to influence the final hand pose regression. Consequently, the deep architecture can
internally infer the category of the grasped object to enhance the 3D reconstruction. When
the object labels are available, metric learning can be adopted as well to form clusters in
the latent space to reveal the object categories during inference. Then in the unsupervised
case, we adopt an unsupervised clustering approach that could be optimized with SGD [165]
aiming at forming clusters similar to those obtained via triplet training.

Existed 3D hand-object manipulation benchmarks with joint annotations are missing, so we
propose a synthetic dataset with realistic images, hand masks, and 3D joint coordinates.

Contributions

Yafei Gao implemented baseline architectures and made the conducted synthetic hand-
object dataset rendered with Blender.

Yida Wang implemented the clustering, variational inference, and metric learning.

Pietro Falco and Federico Tombari regulated the proposed synthetic dataset. They guided
to demonstrate the real-world demos as well.

Nassir Navab financed this work on behalf of the leader of TUM CAMP.
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Variational Object-aware 3D Hand Pose
from a Single RGB Image

Yafei Gao1,∗, Yida Wang1,∗, Pietro Falco2, Nassir Navab1 and Federico Tombari1,3

Abstract—We propose an approach to estimate the 3D pose of
a human hand while grasping objects from a single RGB image.
Our approach is based on a probabilistic model implemented with
deep architectures, which is used for regressing, respectively, the
2D hand joints heat maps and the 3D hand joints coordinates.
We train our networks so to make our approach robust to
large object- and self-occlusions, as commonly occurring with
the task at hand. Using specialized latent variables, the deep
architecture internally infers the category of the grasped object
so to enhance the 3D reconstruction, based on the underlying
assumption that objects of a similar category, i.e. with similar
shape and size, are grasped in a similar way. Moreover, given
the scarcity of 3D hand-object manipulation benchmarks with
joint annotations, we propose a new annotated synthetic dataset
with realistic images, hand masks, joint masks and 3D joints
coordinates. Our approach is flexible as it does not require depth
information, sensor calibration, data gloves, or finger markers.
We quantitatively evaluate it on synthetic datasets achieving state-
of-the-art accuracy, as well as qualitatively on real sequences.

Index Terms—variational inference, triplet

I. INTRODUCTION

HAND pose estimation is now a required technology
for many emerging consumer applications such as vir-

tual and augmented reality (VR, AR), robotics, gaming, and
human-machine interface. Concerning robotics, a key problem
in the scientific community is to program both stationary
robots and modern mobile manipulators without strong techni-
cal background. The classical programming techniques can be
optimal in industrial production lines where the environment
is completely structured. However, in applications that require
human-robot collaboration and in new areas of service robotics
such as logistics, healthcare, and house automation, robotic
systems have to be reprogrammed in an intuitive and easy
way by nonexpert users. An effective way to instruct robots in
an intuitive fashion is programming by demonstration, where
the robot observes humans performing a task and learns to
reproduce it. A key bottleneck, especially for manipulation
tasks, is the observation of human hands while grasping
and manipulating objects, as this presents the challenge of
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Fig. 1: 3D hand pose estimation from monocular under heavy
occlusion. The canonical hand joint configurations for objects
of the same category are similar. Hence, we leverage special-
ized latent features to regress accurate hand pose based on the
detected object’s information.

occlusion, since parts of the hand are dynamically occluded
by the grasped object. Notably, also the other aforementioned
applications such as AR, VR and gaming need to deal with
hand-object interaction and occlusion.

In this paper, we address the problem of estimating the hand
pose in 3D space while grasping objects using a single RGB
camera. 3D hand pose means the 3D positions of the hand
joints with respect to a frame fixed to the wrist. As it consumes
data only from a monocular camera, our system does not
require any depth sensor, sensor calibration, data gloves as
in [1], or finger markers [2]. To the best of our knowledge,
this is the first work that addresses discriminative hand pose
estimation using monocular image as input while the hand
interacts with an object. We propose a method based on two
stages, each carried out via a deep architecture which are
released here 1. Given an RGB image, the first step is to filter
the hand out of the environment and to generate a heat map
that highlights the joints’ location. To deal with the frequent
occlusions of the hand caused by the grasped objects, a deep

1https://github.com/wangyida/VO-handpose
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architecture with variational latent feature is purposely trained
to reconstruct the occluded parts. Then, the 3D coordinates
of the joints are estimated based on the generated heat map.
In order to enhance the 3D pose estimation procedure, we
introduce additional features in the latent space that specialize
to the shape and size of the grasped object to influence the
final hand pose regression. The underlying assumption for
this is that, for grasping similar objects in terms of shape
and size (e.g., from the same category), the joint (knuckle)
configurations of the two grasping poses are similar to each
other (see Fig. 1). In addition, given the current lack in
literature of 3D hand-object manipulation benchmarks with
joint annotations, we have generated a new annotated synthetic
dataset that includes realistic images, hand masks, joint masks
and 3D joints coordinates.

To summarize, the main contributions of this work are: i)
a novel variational deep architecture to reconstruct a 2D hand
mask in presence of large occlusions and to identify a heat-
map of hand joints’ locations using a monocular image; ii) a
deep network that estimates 3D hand pose from the 2D heat
map, leveraging latent features that identify the object category
to accurately estimate the hand pose; iii) a novel synthetic
dataset of hands grasping objects with rich annotations.

II. RELATED WORKS

A. 3D Bare-Hand Pose Estimation

Approaches for 3D bare hand pose estimation can be
sorted into two categories: discriminative (appearance-based)
and generative (model-based). While generative approaches
classify input X with expected output Y by learning a model
of joint probability P (X,Y ) and using Bayes rule to compute
P (Y |X), discriminative methods classify X by learning a
direct map between X and Y or directly estimating the
posterior probability.

Most generative approaches for hand pose try to fit a
parametric model to the data by generating model hypothe-
ses and evaluating them on the observed data [3], [4], [5].
Instead, discriminative approaches directly learn a forward-
pass function from training data and establish a mapping
from image to hand pose [6], [7]. In this case, a critical
factor is represented by finding a suitable learning model
which has the ability to handle a large amount of features
and possible hand poses [8], [9]. As deep architectures handle
more complex tasks, convolutional neural networks (CNNs)
fully utilise stacked convolutional operations to predict 2D
joint locations for real-time continuous pose recovery from a
single depth image [10]. Depth images alse help estimate 3D
poses [11], [12], [13]. With input of RGB images, 3D models
are also used to produce 2D samples to learn 3D Orientation
of objects [14]. Recently, Zimmermann et al. [15] propose a
concatenated architecture to estimate hand segmentation, joints
position and 3D poses sequentially.

B. Hand Pose Estimation with Object Interaction

Due to substantially increased occlusion caused by the
objects, related work in this field primarily falls within the
generative category and either assumes simplified working

conditions (e.g., empty background) or employs additional
input modalities (e.g., multi-view or depth data). A differen-
tiable objective function for pose estimation is proposed in [16]
where edges, optical flow, salient points and collisions are used
to capture the motion of two hands interacting with an object
on an empty background. Kyriazis [17] suggests an ensemble
of collaborative trackers to handle multi-object scenarios based
on RGB-D data as input. As for discriminative approaches,
Romero proposes a hand pose retrieval approach for RGB
images, where nearest neighbors from a large hand pose
database are retrieved based on object shape information [18].
A discriminative top-down approach is proposed in [19] using
CNNs, able to estimate the hand joints and object locations
from a depth camera. First object pixels are segmented out,
then a two-channel image containing both the input depth
map and the masked depth map are used to regress the 3D
joint position. However, experiments are proposed where only
a tennis ball is used as interacting object, which exhibits
a similar silhouette from diverse observation perspectives,
consequently only simplified occlusion cases are taken into
consideration. Another discriminative approach based on depth
data is proposed by Choi [20], which uses parallel deep
architectures and embeds object shape information into latent
features. Two networks share intermediate observations pro-
duced from different perspectives to create a more informed
representation. Instead of processing low-level data to detect or
remove occluded regions, it exploits a CNN-based framework
to extract grasp estimates from those regions. Interestingly,
Choi’s approach and our work share the assumption that there
is a strong correlation between the object category and the
grasping pose. Differently from Choi, we aim to solve the
task using only monocular data.

C. Hand-Object Datasets

To the best of our knowledge, there exist the following fully-
annotated hand-object datasets: Hand-Sphere Dataset [19],
SynthHands Dataset [21], GANerated Hands Dataset [22],
First-Person Hand Action [23], and Stereo Dataset [24]. Hand-
Sphere [19] captures hands grasping spherical objects using
a Kinect sensor and providing both hand segmentation and
pose estimation. For segmentation task, paired depth maps and
RGB images are provided with 5635 samples for training and
1042 for testing, while the pose estimation dataset consists
of 3986 samples for training and 745 for testing. Hand-
Sphere [19] lacks diversity of manipulated objects since the
object has a similar silhouette from different viewpoints, hence
provides limited types of occlusion. Also, this characteristic
does not allow to evaluate the assumption that hand poses are
correlated to the shape and category of the grasped object. Syn-
thHands [21] is a synthetic dataset for hand pose estimation
from depth and color data, with and without object interaction.
It uses a merged reality approach to capture and synthesize
large amounts of annotated data of natural hand interaction
in cluttered scenes. Occluded hand and interacting objects are
directly observed. However, to implement grasping hand pose
estimation task, many interactions within this dataset are phys-
ically invalid. Recently, GANerated Hands Dataset [22] was
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proposed, containing more than 330,000 color images of hands
with 2D and 3D annotations of 21 keypoints on a synthetic
hand model. The use of GANs help increase the realism of the
dataset, nevertheless physically invalid joint configurations still
exist. In this dataset, the hand pixels are already segmented and
extracted. Stereo Dataset [24] is composed by 18000 stereo
image pairs and 18000 depth images captured from different
scenarios and the ground-truth 3D positions of palm and finger
joints obtained from the manual label.

Our dataset differs in two main aspects. First, it includes
a variety of objects with labels. Second, it is designed to
realistically simulate hand-object interaction, hence facilitating
the use of parametric models trained on our dataset on real
data. A dataset with object labels is important as it allows us
to test approaches based on object category information.

III. METHODOLOGY

This section describes the proposed approach for 3D hand
pose estimation from a single image, devised to deal with large
hand occlusion. Inspired by [15], we first segment the com-
plete hand and regress joint locations as heatmaps, then use
such joint locations to guide 3D pose estimation by regressing
the 3D canonical and relative hand poses. As a reminder,
3D canonical poses are a set of absolute joint coordinates,
while 3D relative poses depend from a specific viewpoint.
In [15], three sub-architectures are used sequentially, namely
HandSegNet, PoseNet and PosePrior. Since this approach
estimates the pose of bare hands, it is not designed to deal
with occlusions that occurr during hand-object interaction. To
overcome this limitation, as depicted in Fig. 2, we propose to
replace the discriminative model in [15] with a generative one
based on two encoding-decoding networks and two learned
latent spaces (zh and zj in Fig. 2), so to regress more robustly
joint configurations and hand poses. Since the latent space
is a compact representation of the input domain, we believe
this approach enforces a large number of unrealistic poses to
be dropped during inference, increasing the accuracy of the
outcome.

In particular, first we replace HandSegNet (i.e., the network
in [15] for hand segmentation) with a variational convolutional
architecture based on an encoder-decoder pair and trained
to regress hand masks and joint location heatmaps. This
network is concatenated with another decoder, i.e. PoseNet in
[15]. Then, we replace PosePrior, which estimates in parallel
the canonical pose and the rotation matrix and obtains the
relative pose by multiplying the canonical coordinate by the
rotation matrix, with another variational auto-encoder, which
is trained via triplet learning to regress 3D canonical and
relative joint coordinates from the inferred joint heatmaps.
Note that, similarly to [15], hand side is also necessary for
pose inference. To describe more formally our pipeline in the
following, let X be the input RGB image, while the outputs
are a hand segmentation mask (Yh), a multi-channel joint
heatmap Yj and a set of estimated 3D joint coordinates Yp.
Two latent features zh and zj , which are extracted from X
and Yj , are used to regress 2D maps Yh, Yj and 3D poses Yp.
We apply, on both sub-architectures, variational inference and
triplet training.
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hand
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Fig. 2: Proposed architecture for 3D hand pose estimation.

A. 2D Hand Mask and Joint Heatmap

Supervised CNNs for segmentation such as DCN [25] and
stacked CNN [26] can effectively perform hand segmentation
only on those parts of the hand that are visible, so Hand-
SegNet [15] can not segment well the hand in presence of
occlusion even if trained with complete hand masks, this
leading to errors nearby hand joints. As shown in Fig. 5,
the segmented hand region generated by [15] mostly contains
visible hand parts, resulting in disconnected components in
presence of occluding objects. To solve this problem, we apply
variational inference on a latent feature zh of input X and split
the 2D estimator into an encoder-decoder pair. Instead of using
loss functions targeting hand segmentation directly, we set two
constraints to enhance the ability to obtain the 2D hand mask
in presence of occlusion:

• the decoder ph(zh) always generates a complete hand
from latent feature zh;

• the encoder qh(X) generates a latent feature z
′
h which is

likely to produce a complete hand.
First, the input image X is encoded into the latent features

zh by encoder qh, then used to generate a hand mask Yh at
256× 256 resolution via decoder ph. Here the grasped object
is removed once the hand mask is generated. Then, for the aim
of extracting hand joint information in form of pixel-wise heat
maps, Yj are generated from a decoder pj() with a masked
hand Xh as input. This means that pj is concatenated after ph,
so we can also generate pj directly from the latent features zh
via a combined decoder pj(ph).
pj is an extended convolutional architecture with 24 layers,

that outputs a 21-channel heatmap of size 32× 32× 21, each
channel associated to one of the 21 joints. Hence, we combine
the encoder and the 2 decoders together as pj(ph(qh)), gener-
ating the 2D pose as the heat map Yj from the image X . Both
the encoder qh(X) and the decoder ph(zh) are simultaneously
optimised with a variational constraint [27] for latent variables.
The Kullback-Leibler (KL) divergence D[Qh(z|X)||Ph(z|Y )]
between the posterior Ph(z|Y ) and a likelihood Qh(z|X) is
used to evaluate the capability of the encoder to generate latent
features which are likely to produce the expected target Y :

Ez∼Q[logQh(z|X)− logPh(Y |z)− logP (z)] + logP (Y ) .
(1)

Since the likelihood term Qh(z|X) is hardly tractable,
variational inference [27] solves this problem by redefining
a specific encoding function qh(·) with latent features z =
qh(X) following a Gaussian distribution N(0, I), such that the
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associated probability density function Qh(z|X) is expected to
fit the posterior Ph(z|Y ). We modify equation (1) as follows
to obtain the cost function for our encoder and decoder:

Lenc−hand =D[Qh(z|X)||P (z)]

Lgen−hand =− Ez∼Q[logPh(Yh|z)] . (2)

The loss function in (2) can be interpreted as: the condi-
tional log likelihood logPh(X|z) used in variational auto-
encoder [28] is replaced with logPh(Y |z) where the expected
network output is different from the input, so that the decoding
process can be carried out for different targets Y .

Once the completed hand segmentation network is trained
with equation (2), we use the generated hand mask to crop
the original image X . In this case, the hand is centered in the
image while all fingers are included for further processing. We
can define a loss function for the decoder simply by replacing
ph(zh) with pj(ph(zh), X), i.e. the likelihood Ph(Yh|z)
to generate hand masks is changed to generate joints maps
Pj(Yj |z,X); thus the final loss function used to regress the
2D joint heatmap is

Lgen−joint =− Ez∼Q[logPj(Yj |z,X)] . (3)

Finally, we train hand segmentation and joint estimation
together with the following loss:

L2d = Lenc−hand + Lgen−hand + Lenc−joint + Lgen−joint .
(4)

According to the architectural design, to get those latent
features we apply 3 fully-connected layers with dimensions
[256, 128, 128] respectively, followed by ReLU [29] to pro-
cess the output of the 18th convolutional layer in HandSeg-
Net [15] and the output of the first fully-connected layer in
PosePrior [15]. The decoder of our 2D hand joint estimator
relies on the convolutional architecture used for people detec-
tion in [30], with which is concatenated with the decoder for
hand segmentation.

B. Object-aware 3D Hand Pose Estimation

As the last step of our model, we estimate the canonical
and real 3D hand poses based on the images cropped by
the generated 2D joint heatmaps Yj . The canonical 3D hand
pose [31] defines a 3D pose which is rotation invariant and
independent of the camera view, so that a set of 2D hand
joints can be projected into the same 3D canonical pose even

if their real poses are different. Here we also apply variational
inference on the latent features to make the predicted 3D
pose more stable. Since humans grasp objects with a strategy
that depends on the size and shape of the object, the 3D
canonical hand poses should be similar to each other when
grasping similar objects. Fig. 3 shows that the distribution of
3D hand poses (trained without using any explicit object label)
becomes correlated to object categories. We then conclude that
3D hand pose estimation in presence of objects can benefit
from knowing the object category, should such information be
available in advance. However, at test time we want to predict
the hand pose just from an RGB image, without any additional
information. Therefore, instead of using object labels as an
additional input, we implicitly add category information to
the learned latent feature.

When estimating the 3D hand pose from the heatmap Yj

using the combined encoder-decoder architecture qj , pp, we
propose to use triplet training to optimize the latent features
zpose produced by qj , so that they form clusters driven by
object categories. Since most datasets do not provide object
labels for training, we introduce an approach to learn object-
related latent clusters, by introducing additional latent vari-
ables which are used as cluster centers. Our unsupervised
clustering could be used within stochastic gradient descent
(SGD) [32] to train a deep network, which would not be
possible for other clustering methods such as K-means [33].

Object-driven Latent Features via Triplet Training In
case the training dataset contains annotations regarding the
category of the manipulated object (such as for the proposed
HOP dataset described in Sec. IV), we want to learn latent
features that are similar when the category of the grasped
object is the same. To push latent features to cluster together
driven by object categories, we use metric learning. Metric
learning optimises feature distributions with relative infor-
mation between training samples: the distribution of latent
features changes so that the features which are expected to
produce similar outputs are also close to each other. Triplet
training [34] was initially applied to face recognition [35].
We apply a triplet cost function inspired from [36] together
with a pairwise term. The triplet loss function is computed
from triplets, i.e. three instances of the same feed-forward
network with shared weights [34]. Each triplet is composed of
a reference sample, a positive sample and a negative sample.
We use zref to denote the feature of reference input Xref

which is processed by function f .
In our case, f is the concatenated architecture of joint

estimator pj(ph(qh)) and encoder qp. f(Xpos) and f(Xneg)
denote, respectively, the positive (same label as Xref ) and
negative (different label as Xref ) anchors of the triplet. As
metric for training we use the Euclidean distance. As an
example, imagine a triplet with 3 hands holding, respectively,
a bottle, a mug and a tomato. The reference sample is grasping
a bottle. As hands have a similar configuration when grasping
a bottle and a mug, and a significantly different one when
holding a tomato, the hand with mug is labeled as positive
sample while the hand holding the tomato is regarded as a
negative sample.

During training, positive features zpos are those belonging to
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the same category as the reference feature zref , while negative
features zneg are those belonging to different ones. We set a
loss function to make squared Euclidean metric ||zref−zneg||22
larger than ||zref − zpos||22:

Ltriplet =
∑

ln(max(1, 2− ||zref − zneg||22
||zref − zpos||22 +m

))

+
∑
||zref − zpos||22 , (5)

where m is the margin for triplet. A pair-wise term |zref −
zpos|2 is used for moving latent features on the boundaries
of two categories, since the triplet term does not influence a
lot for those samples. The dimensionality of both of the latent
features zh and zp is 256. We choose it empirically through
a grid search approach from 24 to 210 to balance the fitting
capacity for data and time efficiency.

Unsupervised Latent Feature Optimisation In case the
training data does not provide object category labels, we adopt
an unsupervised clustering approach which could be used
with SGD [32] aiming at forming clusters similar to those
obtained via triplet training. Although K-means [33] clustering
is simple enough to form clusters without using additional
information, it can only be applied on a set of features without
changing values. Since latent features are continuously up-
dated during training, K-means would not converge easily. To
solve this problem, we introduce N additional latent variables
{c1, c2, . . . , cN} acting as cluster centers, having the same
dimension as the latent features. Suppose that batch size is M ,
latent variables {z1, z2, . . . , zM} are labeled with the index
of its nearest center cm ∈ {c1, c2, . . . , cN} during training.
The loss function Lcluster enforces those variables holding the
same label to stay close to their cluster center. At the same
time, the center itself moves towards the region of space where
variables with the same label are present. The clustering loss
function Lcluster is determined as below:

Lcluster =

M∑

m=1

||zm − cn||22 . (6)

The additional variables {c1, c2, . . . , cN} are randomly ini-
tialized from a Gaussian distribution. Once this unsupervised
clustering method is applied, triplet training still works when
the indices of latent variables are almost fixed. Thus, the su-
pervised and unsupervised loss functions can be used together
for metric learning:

Lmetric = Ltriplet + Lcluster (7)

We use the squared Euclidean distance Lpose = ||Yp −
pp(zj)||22 between the expected canonical 3D pose and the
output Yp of decoder pp as regression loss for the pose
estimation. The overall loss function hence becomes:

L3d = Ltriplet + Lcluster + Lpose (8)

Another advantage of enforcing such cluster centers is that the
network can be trained with categorical supervision as cluster
center of every category. It is then possible to exploit these
centers at test time to infer the category of the grasped object,
e.g. by comparing the distances between the latent feature

Object 
categories

cubicalcylindrical

sphericalslender

(a) Scenes (b) 21 joint (c) Objects (4 categories)

Fig. 4: Characteristics of the proposed HOP dataset

and each cluster center. Since the predicted canonical poses
are camera-view independent, we apply a rotation matrix R
to change Yp into a camera related pose, and we apply fully-
connected layers with linear activation based on input Yj . We
adopt the architecture proposed by [15] by adding loss function
||Rgt − R||22 to L3d. In the end, the relative 3D poses are
optimised with

L3dr
= Lpose + ||Rgt −R||22 + Lcluster + Ltriplet (9)

where the Ltriplet term is optional and used only when object
labels are available.

IV. HAND-OBJECT DATASET FOR 3D POSE ESTIMATION
(HOP)

The datasets described in Sec. II-C are not sufficient for
training an object-oriented hand pose estimation network due
to the lack of the necessary variations of objects and shapes.
We propose a new dataset dubbed Hand-Object Pose (HOP),
which contains 11,820 pairs of RGB images and masks at
320×320 resolution, with 800 samples to be used for testing.
Hand poses include 21 3D joints, which are manually created
according to physical grasping pose and degrees of freedom
(DoF) of each joint. Then they are used to precisely annotating
CAD models. Images encompass 5 female and 5 male subjects
who grasp 30 different objects with 600 randomly rendered
background images. We assign category labels for each image
based on the characteristics of the object present therein. The
dataset includes 4 object categories: i) cylindrical objects (e.g.,
bottle, can, milk carton), ii) bars and sticks (e.g., pencil,
fork, chopsticks), iii) cubical objects (e.g., book, smart phone,
cutting board), iv) spherical objects (e.g., orange, ball, tomato).

Dataset Generation: With the help of MakeHuman 2, an
open source computer graphics software for prototyping of
photo realistic 3D avatars, we obtained 3D models with skele-
ton in different body shapes, skin colors and ages. 3D object
models are obtained from TurboSquid3 and human activities
dataset [37]. We imitate physical human hand movement and
manually create series of interaction animations between a
human and an object using Blender4. Hand animations were
captured from different viewpoints. Two point lamps randomly
placed in each scene ensure the diversity of illumination
conditions. After fixing the location of camera and light
sources, background images, which exclude people or animals

2http://www.makehumancommunity.org
3https://www.turbosquid.com
4https://www.blender.org
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in the scene, are selected from www.pexels.com. Mask images
of both isolated hand and isolated object for each scene are
generated by Blender as well, which may be useful for future
research in object segmentation. We used Cycles Renderer5,
a physical-based unbiased path tracing engine designed for
animations, to produce photo-realistic renders.

Annotations: As we placed a standing human model in
the origin, 3D hand joint coordinates and object locations are
automatically obtained according to the relative position of
the center of the base of support (BoS). Object categories are
manually defined. The dataset also provides intrinsic camera
matrix and 3D keypoint positions in camera coordinate system
as well. The synthetic dataset and the corresponding source
code (python-blender) will be publicly released.

V. EXPERIMENTS

We evaluate our work on both bare hand datasets and our
object manipulation dataset, via quantitative and qualitative
results. For ablation purposes, we first independently test the
2D joint estimation and 3D pose estimation stages. When
testing the 3D pose estimation stage alone, we feed ground-
truth heatmaps as input. In addition, we also test the whole
architecture composed of all proposed stages.

A. 2D Hand Segmentation

As we are analysing our 2D processing architectures, only
{qh, ph, pj} are optimised and tested. We compare perfor-
mance in terms of completed hand segmentation on synthetic
data using HandSegNet in [15] and our variational 2D hand
estimator. We use 30000 samples from the rendered hand
dataset (RHD) [15] and 10220 samples from the proposed
HOP dataset together to train the 2D hand segmentation
network. The network is randomly initialized and trained using
ADAM [38] optimiser for 120,000 iterations. The learning
rate is 1 × 10−5 for the first 60,000 iterations, 1 × 10−6 for
the following 30,000 iterations and 1 × 10−7 until the end.
We quantitatively evaluate the performance of our methods on
completed hand segmentation and joint estimation compared
to HandSegNet and PoseNet in [15]. We show results in Fig. 5
under different challenging factors: (1) huge occlusion, (2)
small occlusion, (3) complex background, (4) skin interference
and (5) data migration from synthetic to real scenes.

The estimated 2D joints, hand masks, and estimated 3D
joints (zoomed in) are shown in Fig. 5. Our approach over-
comes occlusions from grasped objects better than [15]. One
common problem of completed hand segmentation networks
is skin interference, which means that such networks tends
to segment other body parts out of the background instead
of the hand. Fig. 5 also shows that our method performs
much better even when face and hand overlaps. Fig. 5,
bottom shows that our method works for real scenarios even
when the parametric model is trained on synthetic data only,
thanks to the realism of the proposed dataset (Sec. IV), as
well as the capability of our inference model to handle the
domain shift from synthetic to real data. The accuracy of the

5https://www.cycles-renderer.org/
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Fig. 5: Qualitative results of hand segmentation masks and
poses of cropped hands using masks on HOP dataset.

estimated hand masks proves that our variational training for
the encoder-decoder architecture is effective, also avoiding to
split the hand into several components around the object. One
limitation highlighted by these results are the recurring blurred
boundaries of the hand mask, which sometimes affects the
segmentation of fingers.

TABLE I shows quantitative results for 2D joint estimation
on the RHD [15] and the HOP datasets. We report the
area under the curve (AUC) on the percentage of correct
keypoints (PCK) with 20 pixels as threshold, the median value
of endpoint error (EPE median) in pixels and the average
endpoint error (EPE mean) in pixels. The Table shows how
Our-PoseNet is effective on both HOP and RHD [15] datasets,
achieving the best results with an AUC of, respectively, 0.775
and 0.704. The purpose of testing on RHD is to show that we
also have good performance on bare hand pose estimation. In
this case, triplet training is not adopted as there are no object
labels, though we can still use the proposed variational 2D
joint estimation architecture and the 3D pose estimator with
the cluster loss function.

Compared to HS-PoseNet [15], our variational embedding
yields a 0.032 improvement on AUC. If we use Hourglass [39],
i.e. a deep architecture initially applied for human joint
estimation, as a replacement for PoseNet in [15], the AUC
increases to 0.741. Accordingly, we replaced PoseNet with
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data method AUC EPE median EPE mean

HOP (ours) HS-PoseNet [15] 0.722 4.285 13.392
HS-Hourglass [39] 0.741 5.159 10.709
Our-PoseNet 0.754 4.024 10.707
Our-Hourglass 0.775 3.791 8.496

RHD [15] HS-PoseNet [15] 0.635 6.745 18.741
Our-PoseNet 0.704 4.215 17.520

TABLE I: 2D joint estimation by HS-PoseNet (i.e., HandSeg-
Net + PoseNet as proposed in [15]) and by our approach (i.e.,
the proposed architecture qh − ph.) EPE are in pixels.

method cylinder slender cubical sphere Avg.

HS-PoseNet [15] 0.694 0.773 0.767 0.701 0.734
Ours-PoseNet 0.743 0.812 0.828 0.721 0.776

TABLE II: Categorical joint estimation results on HOP dataset.
HS-PoseNet is the joint HandSegNet + PoseNet architecture
in [15]. Ours-PoseNet is the combination of qh, ph architecture
and PoseNet (pj). The AUC is calculated over the error range
in 0 to 20mm.

Hourglass in our architecture as well (i.e., Our-Hourglass),
obtaining an increased accuracy of 0.775, hence proving once
again the effectiveness of our variational approach. Although
RHD does not include object occlusion, our method still
performs better than HandSegNet [15], since there are still
self-occlusions in the free hand case. Fig. 6(a) illustrates the
AUC on PCK for which the error thresholds range from 20
pixels to 50 pixels. For the evaluation on the HOP dataset, we
tested the performance on each of the 4 categories separately.
Both HandSegNet [15] and our work are trained under the
same conditions from scratch. Our approach performs better
than HandSegNet [15] in each category, with a category-
wise average of AUC 0.776, which is 0.032 higher than
HandSegNet.

B. 3D Pose Estimation

To compare the performance with a focus on 3D pose
estimation only, we optimise only {qj , pp} and feed ground-
truth heatmaps as input, in order to unbias the comparison
from the other stages of the pipeline. Given the correlation
between the grasping pose and the object shape, first we
train the proposed architecture qj and pp based on our HOP
dataset with object labels. TABLE III shows AUC, median,
and mean EPE for the RHD [15], GANeratedHands [22],
Stereo [24] and our HOP datasets. For completeness, we
tested both triplet training and unsupervised clustering. Since
most available datasets lack object labels, we trained this
variational model on HOP without labels. By learning the
latent variables in an unsupervised way, we force the network
to create hyper-clusters in the latent space. The number of
clusters is not constant and is adjusted for each dataset.
Specifically, we choose a number of clusters in the range of
4 - 10, eventually picking 5 for HOP, 7 for RHD [15], 10 for
GANeratedHands [22] and Stereo [24]. Generally speaking,
a high number of clusters tends to reduce the advantages
brought in by clustering and metric learning, while quite small
number of clusters tend to make the network a variational
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Fig. 6: Accuracy for 2D and 3D joint estimation as PCK
over a threshold (pixels for 2D and mm for 3D) on the joint
(RHD+HOP) dataset.

data method AUC EPE median EPE mean

RHD [15] PosePrior [15] 0.555 18.932 28.804
Ours (cluster) 0.587 16.301 27.569

GANeratedHands [22] PosePrior [15] 0.977 7.665 8.790
Ours (cluster) 0.981 7.197 8.243

Stereo [24] CHPR [9] 0.839 - -
PosePrior [15] 0.948 9.543 11.064
GANeratedHands [22] 0.965 - -
Ours (cluster) 0.984 7.606 8.943

HOP (ours) PosePrior [15] 0.534 19.728 30.860
Ours (triplet) 0.597 15.901 27.326
Ours (cluster) 0.583 16.741 28.018

TABLE III: Results on RHD [15], GANeratedHands [22],
Stereo [24] and our HOP with triplet training (triplet) and
unsupervised clustering (cluster). EPE are in millimeters.

inference model. TABLE III shows the result of unsupervised
training latent variables on those datasets respectively. The
AUC ranges from 0.981 to 0.984 when we choose clusters
between 4 and 10 in Stereo [24] dataset. Fig. 6(b) compares
the PCK curve among PosePrior, our approach with clustering
loss, and our approach with Triplet training, all trained on the
HOP dataset. Combining the results shown in these tables, we
can observe that (1) the proposed network efficiently improves
the performance with respect to the original one, and (2) triplet
training on latent variables using label information leads to
better results than hyper clustering on latent space when labels
are not available.

C. Comparison on the entire pipeline

Finally, we compare the performance of the whole pipeline
based on all parametric models {qh, ph, pj , qj , pp}. We evalu-
ate the results by training on HOP. We report the AUC on
the PCK for 20 millimeters threshold, the EPE median in
millimeters, and the EPE mean in millimeters. TABLE IV
shows that the proposed approach with variational inference
and metric learning has a good AUC of 0.580 which is 0.016
higher than previous work [15]. When we are training the
whole architecture and only apply unsupervised clustering
on the latent features from qj , the AUC improves to 0.669,
which is more than 0.100 higher than [15]. Note that both
supervised and unsupervised learning exploit object categories.
In supervised learning categories are given by the user as
labels, while in the unsupervised approach, they are clustered
automatically. If we have labels and the generated hand mask
is accurate enough, supervised learning performs better. If
the generated hand mask has low quality, it is better to use
clustering to automatically infer object categories.
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method AUC EPE median EPE mean

Zimmermann et al. [15] 0.543 32.003 45.581
Ours w/o variational 0.564 30.193 44.466
Ours (cluster) 0.669 23.280 36.052
Ours (triplet) 0.580 29.485 41.012

TABLE IV: Evaluation on joint training with 2D (qh,ph,pj)
and 3D (qj ,pp) processing with triplet training (triplet) and
unsupervised clustering (cluster). AUC is calculated over error
range from 0mm to 50mm.

VI. CONCLUSION AND FUTURE WORK

Our proposed variational network with metric learning es-
timates the 3D hand pose while grasping an object from a
single RGB image. We leverage the correlation between the
hand pose and the category of the grasped object to design
an effective architecture that does not require input 3D data.
Since available datasets often do not include object category
labels, a clustering method is introduced to group objects in
an unsupervised fashion. Notably, in our approach the object
category is the only information used for the objects. Both
for supervised and unsupervised training, its validity is based
on the assumption that hand poses for objects of the same
category are similar. If a user grasps the same object in differ-
ent and less natural ways, the performance of our architecture
would decrease as this would invalidate such assumption.
However, we believe that in many robotic applications (i.e.,
programming by demonstration) this assumption holds, since
users typically train robots by grasping similar objects with
similar hand configurations. An interesting future direction
regards the use of contact information to correct the estimated
3D hand pose, guaranteeing consistency between pose and
contact [40].
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5.3 Generalizing Feature Learning for Other Tasks

5.3.2 Self-supervised Latent Space Optimization with Nebula Variational
Coding (IEEE Transactions on Pattern Analysis and Machine Intel-
ligence 2022)
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Figure 5.7 The proposed nebula variational coder [3] (NVC) on different architectures that are designed to solve

problems in different tasks.

Further exploiting the latent clusters with the help of learnable cluster centers introduced in
Section 5.3.1, we propose a new set of parameters called nebula anchors to parameterize the
cluster centers. Each vector in the set of the nebula anchors has the same dimension as the
latent features. In terms of architectural design, our proposed methods can be generalized
to different tasks; we propose a variational inference model with latent space optimized by
anchors, which can be applied to different architectures and used in a variety of supervised
and unsupervised training including classification, regression, and recurrent prediction.

Such a variational inference model has its advantage over traditional variational models such
as VAE. The latent space of VAE often includes unused regions accountable for generating
samples that do not belong to the actual distribution. Specifically for VAEs, the Gaussian
assumption with the fixed expected density does not always match the encoder’s likelihood
with the decoder’s true posterior, leading, e.g. , to blurry reconstructed contours in perceptual
VAE. The formed clusters in our proposed variational coder adapt to the generated semantics
of the training data. We demonstrate experimentally that it can be used within different
architectures designed to solve different problems.

During training, to match features to anchors, the latent variables are labeled with the ID of
the nearest nebula anchor so that the variables with the same label are expected to stay close
to the associated anchor. At the same time, the anchor itself moves towards regions with a
higher density of variables and the same label. Regarding the optimization procedure of our
proposed nebula anchors, we propose the Nebula loss, inspired by Newton’s law of universal
gravitation, where the force is proportional to the two masses and inversely proportional
to their squared distance. Since each anchor is the cluster center of the latent features, the
mass value is related to the distance of the features to the anchor and the number of features
in the anchor. By design, our nebula anchors can be applied to the latent space of the VAEs
and other deep networks such as Convolutional Neural Networks (CNN), Recurrent Neural
Networks, and adversarial generative models. We have tested the proposed nebula anchor
for optimizing many different types of tasks, including NLP and 2D and 3D computer vision,
with noticeable improvements.
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Chapter 5: Contributions

Contributions

Yida Wang implemented and proposed the prototype by using additional trainable param-
eters in latent space to form clusters in a variational inference framework, which eventually
forms the proposed nebula anchors. He conducted the experiments to validate the proposed
method on different tasks.

David Tan and Yida Wang further related the initial idea concerning gravity law so that
the amount of samples assigned for each cluster center is conditioned for optimizing the
centers.

Federico Tombari clarified that there are corner cases about generalizing such proposed
nebula anchors to other tasks. He contributed to publication-related expenses on behalf of
Google Research Zurich.

Nassir Navab financed on behalf of the leader of TUM CAMP together with Federico.
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Self-supervised Latent Space Optimization
with Nebula Variational Coding
Yida Wang, David Joseph Tan, Nassir Navab, and Federico Tombari

Abstract—Deep learning approaches process data in a layer-by-layer way with intermediate (or latent) features. We aim at designing a
general solution to optimize the latent manifolds to improve the performance on classification, segmentation, completion and/or
reconstruction through probabilistic models. This paper proposes a variational inference model which leads to a clustered embedding.
We introduce additional variables in the latent space, called nebula anchors, that guide the latent variables to form clusters during
training. To prevent the anchors from clustering among themselves, we employ the variational constraint that enforces the latent
features within an anchor to form a Gaussian distribution, resulting in a generative model we refer as Nebula Variational Coding (NVC).
Since each latent feature can be labeled with the closest anchor, we also propose to apply metric learning in a self-supervised way to
make the separation between clusters more explicit. As a consequence, the latent variables of our variational coder form clusters which
adapt to the generated semantic of the training data, e.g. the categorical labels of each sample. We demonstrate experimentally that it
can be used within different architectures designed to solve different problems including text sequence, images, 3D point clouds and
volumetric data, validating the advantage of our proposed method.

Index Terms—nebula anchor, variational inference, self-supervised learning, metric learning

F

1 INTRODUCTION

IN machine learning, we aim at learning relationships of
different kinds between the input and the output signals.

For instance, solutions in language translation [1], [2] and
3D understanding [3], [4], [5] aim at completely transform-
ing the input data to a different form as the probabilities in
classification and segmentation. They rely on compressing
the input to its latent representations while identifying its
discriminative information. On the other hand, solutions in
image processing [6], [7], [8], [9] and 3D understanding [8],
[10], [11], [12], [13], [14] aim at preserving the information
from the input data as part of the output, formulating
additional skip connection [8], [9], [10], [12] and fusion [11]
between them.

Although there are traditional methods that can reduce
the dimensionality of the input in an unsupervised way,
such as principal component analysis (PCA) [15] and in-
dependent component analysis (ICA) [16], as well as in a
supervised way, e.g. linear discriminant analysis (LDA) [17],
they can hardly be applied when modeling complex data.

Moving towards deep learning, such compression can
also be modeled with an encoder-decoder architecture.
Auto-encoders (AE) [18], [19] are among the simplest, yet
effective, architectures able to extract the latent features
in an unsupervised fashion. For these reasons, they are
commonly employed in a variety of tasks such as image
denoising [20], [21] and retrieval [22]. Moreover, more com-
plicated tasks such as pose estimation [23], [24], [25] or
3D completion [5], [10] utilize a more generalized encoder-
decoder architecture.

Looking at the bigger picture, there are three ways to im-
prove the architecture, namely, encoder design [26], decoder
design [27] and latent feature optimization [26]. In this work,
we focus on proposing a novel latent feature optimization
approach.

One of the popular approaches to optimize the latent fea-

ture is through the variational inference [28], [29]. It matches
the likelihood of the encoder with the true posterior of the
decoder by setting a distribution constraint on the latent
features such as Gaussian or Bernoulli. Since they impose a
distribution in the latent space, it becomes feasible to gener-
ate reasonable output, with a trained decoder, directly from
random sampling of the latent feature, transforming the
deep architecture to a generative model such as variational
auto-encoder (VAE) [28], [29].

However, there are two main problems in assuming a
simple distribution like the Gaussian in VAEs. First, the la-
tent space often includes unused regions which are account-
able for generating samples that do not belong to the real
distribution. Specifically for VAEs, the Gaussian assumption
with the fixed expected density does not always match the
likelihood of the encoder with the true posterior of the
decoder, leading, e.g., to blurry reconstructed contours in
perceptual VAE [30]. Such problem is mostly influenced by
the decoder. With respect to the encoder, another problem is
the uncertainty described in [31], where the latent variables
are not expected to be continuous in some situations.

To solve these issues, conditional information [29] and
additional parameters [5], [10] out of the encoder-decoder
inference model are used to improve their results. Never-
theless, these solutions carry their own disadvantages. In the
former, the conditional information is still required during
inference; while, in the latter, the additional architecture
makes training less efficient.

We propose a new variational inference model which
can be applied to different architectures, and used in a
variety of supervised and unsupervised training includ-
ing classification, regression and recurrent prediction. Our
approach relies on the idea of having additional latent
variables used during training, called nebula anchors, that
are explicitly embedded in training the model so to help
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Fig. 1: Example applications of the proposed nebula variational coder (NVC) on different architectures that are designed
to solve problems in (a) planar reconstruction, (b) semantic scene completion, (c) point cloud segmentation and (d) hand
pose estimation. Note that (a) and (b) take real images captured from real scenes as input while (c) and (d) take synthetic
images rendered from realistic scenes.

the formation of hyper-clusters in the latent space. One of
its main advantages is the ability to exploit the semantic
meaning such as the categorical information in the latent
space without any human supervision. As an example on
the MNIST dataset [32], we illustrate that our generative
model automatically forms 10 clusters, each representing a
different digit (see Fig. 4 (b)).

The limitation of our anchor-based solution is the need
to pre-define one key hyper-parameter which is the num-
ber of anchors. To ease this, we also introduce a self-
supervised metric learning derived from the Siamese [33]
and Triplet [34], [35], [36] losses, tailored for the nebula
anchors. We apply the metric learning efficiently using the
labels produced by the nebula anchors based on the nearest
neighbour classifier to separate the clusters. Notably, unlike
other generative models such as CVAE [29] that use labels
as conditional variables to improve inference, our method
exploits the additional information only during training,
which implies that no additional information other than the
input samples is required during inference.

By design, our nebula anchors can be applied on the
latent space of not just the VAEs, but also other deep net-
works such as Convolutional Neural Networks (CNN) [37],
[38], Recurrent Neural Networks (RNNs) [39], [40] as well as
adversarial generative models such as GANs [5], [41], [42].
Motivated by the range of applicability, we evaluate the pro-
posed approach on various datasets that include image re-
construction on language translation on WMT16 [43], image
reconstruction on MNIST [32], 3D volumetric completion on
objects from ShapeNet [10], 3D point cloud segmentation on
PointNet [44], 3D hand pose estimation on HOP [25] and
Stereo [45], 3D planar reconstruction on NYUv2 [46] and
ScanNet [47], and 3D semantic completion on ScanNet [47].
Some of these results are shown in Fig. 1. Strikingly, even if
our experiments evaluate on varying datasets with distinct
objectives and dimensionalities such as sentences, images
and 3D point clouds, we demonstrate that our model is
beneficial in the encoder-decoder architectures.

2 RELATED WORKS

An encoder-decoder architecture is designed to extract the
latent features from the input which are then mapped to
the output. Auto-encoders (AEs) [48], [49] are among the
simplest encoder-decoder architectures. Their features are

used to solve a large variety of problems in image compres-
sion [48], video compression [50], anomaly detection [51],
saliency detection [49] and 3D segmentation [27]. By making
the parametric model deeper such as stacked convolutional
AE [52], wider such as BAE-Net [27] or nested such as AE2-
Nets [53], they improve ability of AEs to fit the training data.

While AEs are trained in an unsupervised way, there
are also architectures that use supervised information to
help train the latent features. Those works show obvious
advantages against traditional approaches [54]. Tackling a
more complex problem like reconstructing 3D structures
from a single 2D image, Deep Supervision [55] utilizes
the additional skeleton labels to optimize the output of
the hidden layers without using the variational methods
to estimate the occluded area in the 2D image. Recently,
there are more works in self-supervised learning for image
classification [56], point cloud retrieval [57] and 3D Axon
Segmentation [58].

Ranging from a simple auto-encoder to a more compli-
cated encoder-decoder architecture, the proposed nebula an-
chors can be integrated in all of them. Particularly, this work
proposes a general optimization approach to improve the
latent space in an encoder-decoder architecture which can
be applied to different problems. It is noteworthy to mention
that our experiments in Sec. 4 evaluates on language transla-
tion, image reconstruction, and 3D reconstruction and pose
estimation, where we demonstrate the superiority of incor-
porating the nebula anchors in the existing architectures.

The related work on the latent space optimization can be
categorize into four main fields, namely, variational embed-
ding, clustering, metric learning and adversarial learning.
The following sections discuss them in more detail. Com-
pared to these fields, we propose a variational approach that
forms clusters in the latent space while incorporating metric
learning as an optional optimization approach to further
improve the performance.

2.1 Variational embedding
Given an encoder-decoder architecture, the variational in-
ference use the encoder to approximate the posterior of the
latent features that are conditioned on the expected network
output. This is governed by a simple distribution of the data
in latent space. These methods are derived from VAE, where
[28] proposes an assumption that the latent feature of VAE
behaves like PCA components. This, in effect, makes the
convergence in training more efficient.
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To solve the problem caused by the simplicity of the
latent space of VAE, categorical labels are integrated in
conditional VAE (CVAE), which is used in generation [29]
and prediction [31]. With a better performance than the
standard VAE, they prove that such information holds the
potential to improve the generative models.

Using variational inference in clustering, GMVAE [59]
and its graph embedding version [60] demonstrate that
multi-modal Gaussian can reveal categorical information
better than VAE. Another notable method is from VQ-
VAE [61] which aims at solving the “posterior collapse”
by discretizing the trained features into a table. Moreover,
InfoVAE [62] improves the evidence lower bound (ELBO)
objective since they observed that the ELBO favors in opti-
mizing the distribution over the inference.

Going beyond the assumption of simple distributions
in the latent space, Auxiliary Deep Generative Models [42]
adds auxiliary latent variables. But the disadvantage of such
work is that the auxiliary latent variables are necessary not
just during training but also at inference time.

Apart from dealing with the visual data, VAE can also be
used for natural language processing (NLP) such as machine
translation. VAE-LSTM [63] composes both the encoder and
the decoder with LSTM operations while VAE-CNN [64]
uses LSTM in the encoder and the dilated CNN to form
the decoder. In these methods, to solve the latent variable
collapse problem [63], [65] of VAEs, HR-VAE [65] imposes
regularization for all the hidden states of the LSTM encoder.

2.2 Clustering the latent features

The main technique in the proposed method is the for-
mation of clusters in the latent space through our nebula
anchors. However, there are many related works focusing
on building clusters in the latent space.

As a simple deep clustering approach, DEC [66] is
among the first few works that clusters the latent space
in AEs. Aiming at including the discrete class labels into
the latent space, K-means [67] is another method to cluster
the feature [67], [68]. For instance, DCN [69] uses the K-
means clusters to learn a compact feature within an AE
architecture.

A notable work is from Gumbel-softmax [70] where they
train discrete latent variables by utilizing additional labels in
a way similar to our work. But, in contrast, [70] interpolates
between the discrete and continuous distributions while our
loss function directly operate on the distance metric between
features and clusters. Moreover, PrototypicalNet [71] builds
an embedding table for the latent features which are then
used to represent a feature by applying the softmax acti-
vations over distances of the feature to each vector in the
table. Moreover, the hierarchical clustering such as HG [72]
can exploit hierarchically organized auxiliary labels to learn
the clusters in the embedding space; while, IMSAT [73] and
IIC [74] learn the latent clusters by maximizing the sample-
wise categorical information.

In some cases, more than one labels are given for a single
sample. For instance, the object in an image is labeled with
the illumination and its styles. Targeted on this situation, the
latent space are then disentangled so that the latent clusters
reveal specific attributes such as in CDD [75] and Y-AE [26].

Among all the disentanglement approaches, two [26], [76],
[77] or three [75] attributes are commonly investigated.

2.3 Metric learning
There have been several methods that apply metric learning
in the latent space optimization [35], [78], [79]. Assuming a
supervised learning, these methods optimizes the distance
among the samples so that they reflect their ground truth se-
mantic similarity. They formulate the pairwise distance met-
rics, which include: the triplet loss and its derivatives [35],
[80], [81], [82], the contrastive loss and its derivatives [78],
[83], and the Neighborhood Component Analysis and its
derivatives [36], [79], [84]. Among all those losses, Triplet
learning [34], [35], [80], [85], [86] is one of the typical learn-
ing strategy where the pairwise distances are further labeled
as positive or negative based on the pair-wise relationships,
resulting in clusters in the latent space.

In this method, we also employ the triplet loss. But,
differently from them, our method can exploit the auxiliary
labels even if they do not have explicit labels, i.e. unsuper-
vised learning.

2.4 Adversarial feature learning
In some tasks, the training data is different from test data
which causes a data migration problem. This implies that
the feature domains extracted by the same encoder are
different. The objective then is to make both domains similar
to each others so that the network trained from one type
of data could be applied to the test data. Such tasks could
be referred as domain adaptation [87], [88], [89] or domain
generalization [90], and could be solved by discriminative
training [91], [92].

For instance, the domain discriminator in DANN [93]
is used to distinguish the source domain from the tar-
get domain using a binary code, while ADDA [94] uses
two different discriminators for the source feature and the
target features. If additional category labels are available,
SymNets [95] can further improve the domain adaptation
by using the two-level domain confusion losses from the
domain level to category level. By making the latent feature
extracted by the encoder in the same dimension as the input,
GVB [96] uses discriminative training to make the latent
features from the two different domains to be in the same
sub-space.

3 METHODOLOGY

Given the task of estimating the expected output Y from
the input X , the architecture of generative models such as
VAE [97] and CVAE [29] constitute two parts – the encoder
E(X) that compresses the input X into the latent variable z,
and the generator or decoder G(z), which maps z into the
output Y .

During training, the parameters in the architecture are
optimized through the loss function where its definition
depends on the problem at hand. For instance, regression
tasks such as image reconstruction [32] and language trans-
lation [98] commonly define the loss function by means of
the Euclidean distance

LEuclidean = ‖Ỹ − G(E(X))‖2 (1)
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where we differentiate the predicted output (Y ) from the
ground truth (Ỹ ). The solutions for the completion of par-
tially scanned 3D volumetric objects [10] or point cloud
segmentation [44] predict a one-hot encoded vector that
allows training by means of a binary cross entropy loss
function

LEntropy = −Ỹ log(G(E(X)))− (1− Ỹ ) log(1− G(E(X))) .
(2)

Furthermore, the point cloud reconstruction of the ob-
jects [4] evaluates whether the reconstructed point cloud
G(E(X)) matches the given ground truth Ỹ through the
Chamfer distance

LChamfer = Chamfer((G(E(X)), Ỹ ) . (3)

Later in Sec. 4, we use in our experiments the same loss
functions as in (1), (2) and (3) for the respective problems.

In most works [3], [44], the role of the latent feature is
simplified to be the output of the encoder and the input
of the generator. However, since the latent features extract
the most useful information from X , we aim at capturing
the contextual information from the latent feature (and indi-
rectly from X) by formulating clusters in the latent space in
order to easily build the relation between the latent feature
and the output.

3.1 Learning with Nebula Anchors
Inspired by K-means [67] where the sampled features form
clusters by iteratively updating their centers, we introduce
the concept of nebula anchors to parameterize the cluster
centers.

We define the set of the m nebula anchors as A =
{a1, a2, . . . , am}, each represented by a vector with the same
dimension m as that of the latent variable. In order to match
them, the latent variables are labeled with the ID of the
nearest nebula anchor so that the variable with the same
label are expected to stay close to the associated anchor,
while the anchor itself moves towards regions with higher
density of variables and the same label. We can then define
Zai

as the set of latent features that are close to ai. It follows
that ai is the cluster center of the latent features in Zai

.

3.1.1 Nebula loss
Our Nebula loss is inspired by the concept of Newton’s law
of universal gravitation, where the force is proportional to
the two masses and inversely proportional to their squared
distance. In this context, we interpret the mass

M(ai) = 1 +
∑

E(X)∈zai

‖E(X)− ai‖2 (4)

as the sum of distances from each feature attracted to its
anchor. Since the anchor ai is the cluster center of the latent
features in Zai

, the value of the mass is related to the
distance of the features to the anchor and the number of
features in the anchor.

Instead of dividing by the squared distance, we use the
negative logarithm of the squared distance

D−2(ai, aj) = − log ‖aj − ai‖2 ∝
1

‖aj − ai‖2
. (5)

0 1 2 3

0

2

4

‖aj − ai‖

f
(‖
a
j
−

a
i
‖)

− log ‖aj − ai‖2
1

‖aj−ai‖2

Fig. 2: Comparison of − log ‖aj − ai‖2 and 1
‖aj−ai‖2 .

Notably, the negative logarithm function is proportional to
the inverse of the distance as shown in Fig. 2. Considering
that we have the assumption of a variational latent space
(see Sec. 3.1.3), the distance between a pair of anchors ‖aj −
ai‖2 has a stable range roughly between 0 to 1. The main
difference between the two is the capacity of the logarithmic
function to enforce the optimized distance between the two
anchors to be 1 instead of infinity. This, in effect, makes the
optimization more stable.

Now that we have defined the mass of an anchor and
inverse distance between two anchors, we build the formula
for the gravitational force as

F (ai, aj) = M(ai) ·M(aj) ·D−2(ai, aj) . (6)

By minimizing the force, we also minimize the distance from
the feature to the anchors which makes them more compact
and, at the same time, maximize the distance between the
anchors. Therefore, to build the final loss, we sum up the
gravitational forces from all pairs of anchors. The nebula
loss then is

Lnebula =
m−1∑

i=1

m∑

j=1+1

F (ai, aj)

=
m−1∑

i=1

m∑

j=1+1

M(ai) ·M(aj) ·D−2(ai, aj)

=
m−1∑

i=1

M(ai) ·
m∑

j=1+1

M(aj) ·D−2(ai, aj) (7)

which ensures two criteria: (1) the latent feature belongs to
the closest anchor; and, (2) the anchors are separated from
each other.

3.1.2 Distinction from K-means

AsK-means [67] has been widely used for feature clustering
[67], [68], we want to point out the differences from the pro-
posed nebula loss. If the nebula anchors are optimized by
K-means [67], the cluster centers are then updated directly
with

ai =
1

|Zai
|
∑

zj∈Zai

zj (8)
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where |Zai
| is the number of elements in Zai

. The loss
function is therefore written as

LK-means =
m∑

i=1

∑

zj∈Zai

‖zj − ai‖2 =
m∑

i=1

|Zai
| ·Var(Zai

)

(9)

where Var(·) is the variance of the set. However, since
K-means is evaluated on all the samples to update the
centers of every cluster, it could not be applied in the
latent features when the network is being optimized by the
Stochastic Gradient Descent (SGD) [99]. One problem is that
LK-means depends on a large amount of samples, which is
not accessible when we optimize the parametric model with
samples in the mini-batches.

Although the Robbins-Monro stochastic approxima-
tion [100] can perform batch-wise optimization similar to
SGD using

anew
i = aold

i + lr
∑

E(X)∈zai

(E(X)− aold
i ) (10)

with the learning rate lr, this equation requires each subset
Zai

to come from a fixed set of latent features with a
constant total variance. Prior to convergence, the parameters
in the encoder constantly change which, in effect, changes
the values of the latent features across all the mini-batches
during training.

Differently from the cluster centers in K-means, our
nebula anchors could be optimized via SGD. To train our
loss batch-wise, we make the variational assumption on
the distribution of latent features and initialize the neb-
ula anchors in a Gaussian distribution accordingly. Hence,
this function is evaluated under unsupervised training and
forces the network to create nebula anchor-driven clusters
in the latent space.

3.1.3 Variational constraint

The variational inference model imposes a pre-defined dis-
tribution on the latent feature to optimize the encoder-
decoder architecture. Contrary to other methods, we imple-
ment the variation constraint through the nebula anchors.

We first adopt the variation translation model from
GNMT [98] where the expected Y is different from input X .
This implies that we can denote a given problem through
the probabilistic model P (Y |X).

Given the encoder E(X) which produces the latent
feature z and the generator G(z), the objective is to make
the expectation Ez∼QP (Y |z) of the likelihood P (Y |z) to be
close to the true probability P (Y ), where the probability
Q(z) is determined by E(X) while P (Y |z) is determined by
G(z). We then use the Kullback-Leibler (KL) divergence D
from posterior P (z|Y ) to Q(z|X,A), written as

DKL[Q(z|X,A)||P (z|Y )]=Ez∼Q

[
log

(
Q(z|X,A)

P (z|Y )

)]
(11)

to measure the difference between those two distributions.
Thus, by minimizing the KL divergence, we evaluate the
capacity of the encoder to generate latent variables that are
likely to produce the expected target.

(a) VAE

(d) Info-VAE

(b) NVC (c) NVC-ml

(e) VQVAE (f) GMVAE

Fig. 3: Comparison of covariance matrices computed from
the latent features that relies on variational constraint.

Since P (z|Y ) is intractable, similar to VAE [97], [101], we
rewrite the KL-divergence from (11) as

DKL[Q(z|X,A)||P (z|Y )]

= Ez∼Q

[
log

(
Q(z|X,A)

P (Y |z) · P (z)

)]
+ logP (Y )

= logP (Y )−
(
−Ez∼Q

[
log

(
Q(z|X,A)

P (Y |z) · P (z)

)])
(12)

where the second term is called evidence lower bound
(ELBO) of logP (Y ). Considering that the first term is in-
dependent of Q(z|X,A), the optimization then focuses on

ELBO =− Ez∼Q

[
log

(
Q(z|X,A)

P (Y |z) · P (z)

)]

=Ez∼Q [logP (Y |z)]− Ez∼Q

[
log

(
Q(z|X,A)

P (z)

)]

=Ez∼Q [logP (Y |z)]− DKL[Q(z|X,A)||P (z)] . (13)

Finally, we define the loss function of the generative model
as Lenc-gen = −ELBO. The final form of the loss function is
written as

Lenc-gen = D[Q(z|X,A))||P (z)]︸ ︷︷ ︸
Lenc

−Ez∼Q[logP (Y |z)]︸ ︷︷ ︸
Lgen

(14)

where the first term (Lenc) enforces the encoder to produce
latent features which satisfy a Gaussian distribution while
the second term (Lgen) enforces the predicted output from
the latent feature fits the expected ground truth.

Although the encoder is optimized by Lnebula which
enforces clusters and Lenc which enforces a Gaussian distri-
bution, it is noteworthy to mention that there is no conflict
in optimizing both losses. In training, our latent feature con-
verges to a single Gaussian distribution while the Nebula
loss focuses on forming clusters within this distribution. We
illustrate this occurrence in Fig. 3 by plotting the covariance
matrix of the latent features. This figure show that our
convariance matrix is almost identity which behaves similar
to VAE [97]. Conversely, other variational clustering ap-
proaches like Info-VAE [62], VQ-VAE [61] and GMVAE [59],
which rely on additional loss functions, discretization or
multiple Gaussian distributions, deviate from an identity
matrix.
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3.2 Self-supervised metric learning from the anchors
One interesting characteristic of nebula anchors is the ca-
pacity to form clusters even under unsupervised or self-
supervised settings. To separate the clusters in the latent
space further, we employ the losses involving metric learn-
ing.

Based on these clusters, we label all samples based on the
closest nebula anchor. The labels allow us to apply the self-
supervised metric learning on the samples with the Siamese
term [33]

Lpair(Xi, Xp) = |E(Xi)− E(Xp)|2 (15)

so that distances between the samples from the same cate-
gory become smaller while the distances between the sam-
ples from different categories become larger; and, the loss
function for triplet learning [34]

Ltriplet(Xi, Xp, Xn)

= ln

(
max

(
1, 2− |E(Xi)− E(Xn)|2

|E(Xi)− E(Xp)|2 + 0.01

))
(16)

so that samples from the same cluster, i.e. the positive pairs
Xi and Xp, are closer than samples from distinct clusters,
i.e. negative pairs Xi and Xn. We apply these loss functions
on all the possible permutations in the batch.

Consequently, although summing the two losses to
Lmetric does not significantly improve our results, the im-
provements are consistent throughout all our experiments in
the evaluation section. This makes us conclude that they are
optional but, at the same time, also valuable to the overall
performance.

3.3 Model optimization
Based on the previous sections, the final loss function is thus
defined as

Ltotal = Lenc-gen + Lnebula + Lmetric (17)

where the self-supervised metric learning loss term (Lmetric)
is optional. Similar to the optimization in VAE [97], the prob-
ability density function of the encoder Q(z|X, a) is defined
as the Gaussian distribution N(z|µ,Σ), where µ(X; θ) and
Σ(X; θ) are arbitrary deterministic functions. In addition,
we use the re-parameterization approach from VAE, ex-
plained in [97], to optimize the basic generative loss Lenc-gen.

4 EXPERIMENTS

To assess the proposed NVC model, we conduct an exten-
sive evaluation of the proposed method on various applica-
tions. From 1D to 3D information, we dive into the following
datasets:

1) WMT16 [43] for 1D language translation of the text
sequences;

2) MNIST [32] for 2D image reconstruction;
3) ShapeNet [102] for 3D semantic completion;
4) PointNet [44] for 3D point cloud segmentation;
5) Stereo [45] and HOP [25] for 3D hand pose estimation;
6) NYUv2 [103] and ScanNet [47] for 3D planar recon-

struction; and,
7) ScanNet [47] for 3D semantic scene completion.

Method WMT13 WMT14 WMT15 Variance

NMT [98] (greedy) 27.1 - 27.6 0.19
NMT [98] (beam=10) 28.0 - 28.9 0.23
NMT-GNMT [98] 29.0 - 29.9 0.30
– with GMVAE [104] 29.8 - 30.4 -
– with NVC 31.2 - 32.4 0.25
– with NVC-ML 33.4 - 34.9 0.31

FusedBert [105] - 30.8 - -
– with GMVAE [104] - 31.2 - -
– with NVC - 31.6 - 0.19
– with NVC-ML - 32.1 - 0.26

Transformer-Rep [106] - 33.9 - -
– with GMVAE [104] - 33.9 - -
– with NVC - 34.1 - 0.31
– with NVC-ML - 34.2 - 0.33

TABLE 1: Evaluation on the WMT German-English transla-
tion [43], performance is reported in BLEU score [106].

The objective is to evaluate the advantage of imposing the
nebula anchors on the latent space. Thus, in the following
experiments, we assess the difference of with and without
NVC where the latent space and nebula anchors are trained
in an unsupervised fashion. Moreover, we distinguish NVC
from NVC-ML which includes the optional metric learning
from Sec. 3.2.

4.1 1D language translation (WMT16)

Neural machine translation system usually rely on
sequence-to-sequence models such as [39], [40], [107]. These
models embed 1D input sentences by means of an encoder;
then, a recurrent model – typically a Long-Short Term Mem-
ory (LSTM) [108] network – operates on the latent space; and
finally, a decoder processes the embedded representation to
obtain an output translation and to capture the long-range
dependencies in the sentences.

We propose an experiment based on the WMT German-
English dataset [43]. One of the baseline architectures is
a 4-layer Neural Machine Translation (NMT) model [98]
with LSTM units. We apply our NVC model on the 1024-
dimensional embedding of the last GNMT layer. NVC is ap-
plied with and without metric learning, i.e. only with nebula
anchors, to train the latent variables in a fully unsupervised
way.

Due to the popularity of transformers, we also investi-
gate using FusedBert [105] and TransformerRep [106] as our
baseline architectures. For the transformers, we apply NVC
on the fused latent feature of the BERT-encoder attention
and the self-attention.

Table 1 shows the advantages of our NVC approach,
demonstrating its capacity to generalize even when applied
on recurrent models like NMT [98], FusedBert [105] and
TransformerRep [106]. The results from the other methods
are taken from [109].

Utilizing the same baseline architectures, we also com-
pare the our NVC against GMVAE [59] in order to quantify
the difference between the two clustering techniques. Ta-
ble 1 demonstrates that GMVAE [59] marginally improves
the machine translation models while the proposed method
reveals a clear improvement.
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Method rel δ1 δ2 δ3

U
ns

up
er

vi
se

d

Auto-encoder 0.191 78.6% 85.3% 91.9%
DVAE [21] 0.188 80.2% 86.8% 92.8%
– with NVC 0.162 82.8% 89.2% 95.0%
– with NVC-ML 0.147 84.5% 92.7% 96.2%
VAE [97] 0.169 82.4% 91.3% 95.2%
– with NVC 0.138 84.3% 92.6% 96.1%
– with NVC-ML 0.133 85.3% 93.8% 97.2%

Su
pe

rv
is

ed DVAE with NVC-ML 0.142 85.3% 92.8% 96.9%
VAE with NVC-ML 0.141 85.1% 92.5% 96.3%
CVAE [29] 0.165 82.9% 91.7% 95.4%
– with NVC-ML 0.116 87.6% 94.3% 98.6%

TABLE 2: Evaluation of the reconstruction on MNIST [32]
for different variational models. We use 10 anchors in the
latent space. The term rel is the absolute relative error while
the threshold accuracy δi is described in Adabins [111].

4.2 2D image reconstruction (MNIST)

We also evaluate the MNIST [32] dataset to demonstrate
that training with NVC performs as theoretically expected,
especially in terms of the learned digit-aware sub-manifolds
in the latent space centered on the anchors. The MNIST
dataset includes hand written digits characters from 10
categories which are evaluated based on the reconstruction
precision of the auto-encoder.

We adopt an auto-encoder as the basic architecture with
three fully-connected layers for each of the encoder and the
decoder. Notably, we train the NVC with self-supervised
metric learning without the categorical label of the samples.
To compare against the variational inference models without
the latent anchors, one hidden layer is added to produce the
latent feature to train a VAE, a DVAE and a CVAE.

In Table 2, we compare a series of variational inference
models such as VAE [97], DVAE [21] and CVAE [29] with
and without NVC. Using the reconstruction metrics pro-
posed in [110], this table demonstrates the effectiveness of
the proposed variational coder in improving the models. We
also include the experiments where the anchors are trained
by assigning the ground truth categorical labels during the
metric learning which is referred as Supervised in Table 2. It
shows that our proposed self-supervised learning, resulting
in having digit-related embeddings, is helpful to improve
the baseline methods.

For this experiment, it is noteworthy to mention that the
simplicity of the auto-encoder helps us generate insights on
the characteristics inferred by the learned nebula anchors.
Fig. 4 shows that different numbers of nebula anchors
perform well in learning meaningful manifolds according to
the hidden information such as the digit labels. When using
five nebula anchors, the five manifolds already include all
10 categories ranging from 0 to 9. Increasing to 10 anchors
reveal that every anchor is surrounded by each of the 10
digits. If we increase further to 20 anchors, they are not only
separate by the digits but also by the font styles. Later in
Sec. 5, we numerically evaluate the number of anchors from
different datasets.

In addition, we investigate the behavior of the latent
space during training. By comparing VAE with and without
the proposed methods, i.e. NVC and NVC-M, Fig. 5 (a)
plots the entropy of the latent variables at each training

(a) 5 (b) 10 (c) 20

Fig. 4: Visualization of the manifold centered on the nebula
anchors learned with different numbers of anchors.

step. Based on this figure, the entropy with NVC is larger
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Fig. 5: Influence of the nebula anchors on (a) the entropy of
the latent variables, (b) the evidence lower bound (ELBO)
and (c) the reconstruction loss during training.
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Methods 10 16 20 30 120

GMVAE [59] 88.54 91.26 96.92 93.22 89.70
VQ-VAE [61] 72.32 81.45 82.60 94.22 96.89

NVC 98.21 97.79 97.51 97.19 97.03

TABLE 3: Compares different number of anchors (or clus-
ters) on the classification accuracy evaluated on MNIST [32].

while adding the self-supervised metric learning improves
it further. Note that the higher entropy implies that clusters
formed are more separated. Hence, the encoder optimized
with the nebula anchors produces a more informative em-
bedding. Although this also implies that the higher entropy
deviates from the Gaussian distribution, we visualize in
Fig. 3 that the optimized distribution remains similar to
Gaussian.

To validate the optimization target Lenc in (14), we also
visualize the evidence lower bound (ELBO) at each training
step in Fig. 5 (b). Here, it becomes evident that the ELBO
with the proposed method is raised compared to standard
VAE so that its gap from the true posterior (which is
always larger than ELBO) becomes smaller. Consequently,
the reconstruction loss converges to a smaller error with
optimized with the proposed Nebula anchors as illustrated
in Fig. 5 (c).

Moreover, we also compare different clustering ap-
proaches, varying the number of anchors (or clusters). Ta-
ble 3 illustrates the adaptability of the proposed method to
acquire consistent results across different anchor sizes. This
is in contrast to the other methods [59], [61] where they peak
at only specific number of classes.

4.3 3D volumetric completion (ShapeNet)
Adapting the evaluation strategy from 3D-RecGAN [10],
we use ShapeNet [102] to generate the training and test
data for 3D object completion, wherein each reconstructed
object surface is paired with a corresponding ground truth
voxelized shape with a size of 64 × 64 × 64. The dataset
comprises of four object classes: bench, chair, couch and table.
Note that [10] prepared an evaluation for both synthetic and
real input data.

4.3.1 Synthetic data
We perform two evaluations in Table 4. The first is a single
category test [10] such that each category is trained and
tested separately while the second considers the categories
in order to label the voxels. We compare our results against
[3], [5], [10], [112], [113] by applying the nebula anchors
while learning the latent feature. The results are reported
in IoU with a 3D resolution of 64× 64× 64. By introducing
the anchors, the IoU of 3D-AE [10], 3D-RecGAN [10] and
ForkNet [5] are improved from 76.3%, 77.5% and 84.1% to
77.5%, 81.6% and 85.1%, respectively. With metric learning,
the result obtained from ForkNet [5] achieves the best per-
formance of 86.2% among all the approaches.

4.3.2 Real data
Since both 3D-RecGAN [10] and ForkNet [5] evaluated the
real scans [10] captured by Kinect, we also evaluate them
with and without the proposed method.

(b) 3D-GCN + NVC (c) Ground Truth(a) 3D-GCN

Fig. 6: Comparison of part segmentation from 3D-GCN [120]
with and without the proposed NVC optimization.

The single category test in Table 4 suggested by 3D-
RecGAN [10] shows that, by simply optimizing the latent
features using our approach (i.e. nebula anchor with metric
learning), the completion IoU is improved by 4% on average
while 2.5% on ForkNet [5]. In addition, the results in IoU
also show that, even without the metric learning, the nebula
anchors help improve 3D-RecGAN by 3.1% and ForkNet by
1.1%.

4.4 3D point cloud segmentation (PointNet)

We evaluated the proposed method in a 3D semantic seg-
mentation task for point clouds. In particular, we focus on
the dataset proposed by PointNet [44], which is a subset
of ShapeNet including 16 categories and a total of 16,881
point clouds. In this case, we applied our NVC model to
the network architecture proposed in PointNet, and again

Method bench chair couch table Avg.

Sy
nt

he
ti

c
[1

02
]

Varley et.al [112] 65.3 61.9 81.8 67.8 69.2
3D-EPN [3] 75.8 73.9 83.4 77.2 77.6
Han et.al [113] 54.4 46.9 48.3 56.0 51.4
3D-AE [10] 73.3 73.6 83.2 75.0 76.3
– with NVC 74.9 73.9 84.8 76.4 77.5
– with NVC-ML 76.5 74.4 85.6 77.6 78.6
3D-RecGAN [10] 74.5 74.1 84.4 77.0 77.5
– with NVC 76.7 78.4 90.0 81.4 81.6
– with NVC-ML 78.2 79.1 92.7 82.8 83.2
ForkNet [5] 79.1 80.6 92.4 84.0 84.1
– with NVC 80.2 82.1 92.9 85.3 85.1
– with NVC-ML 81.9 83.5 93.4 86.0 86.2

R
ea

l[
10

]

Han et.al [113] 18.4 14.8 10.1 12.6 14.0
3D-AE [10] 23.1 17.8 10.7 14.8 16.6
– with NVC 23.6 18.1 10.7 16.1 17.1
– with NVC-ML 25.0 19.2 12.5 16.9 18.4
3D-RecGAN [10] 23.0 17.4 10.9 14.6 16.5
– with NVC 27.9 19.1 13.6 17.8 19.6
– with NVC-ML 29.2 19.8 14.6 18.4 20.5
ForkNet [5] 32.7 24.1 15.9 22.5 23.8
– with NVC 34.1 25.0 16.4 24.2 24.9
– with NVC-ML 34.9 26.8 17.8 25.5 26.3

TABLE 4: Evaluation of the object completion in terms of
IoU (in %) on ShapeNet [102]. The resolution of Varley
et.al [112] and 3D-EPN [3] is 32×32×32 while 64×64×64
for the others.
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Method aero bag cap car chair earpod guitar knife lamp laptop motor mug pistol rocket skateboard table Avg.

Wu et al. [114] 63.2 - - - 73.5 - - - 74.4 - - - - - - 74.8 -
Yi et al. [115] 81.0 78.4 77.7 75.7 87.6 61.9 92.0 85.4 82.5 95.7 70.6 91.9 85.9 53.1 69.8 75.3 81.4
3DCNN [116] 75.1 72.8 73.3 70.0 87.2 63.5 88.4 79.6 74.4 93.9 58.7 91.8 76.4 51.2 65.3 77.1 79.4
SGPN [117] 80.4 78.6 78.8 71.5 88.6 78.0 90.9 83.0 78.8 95.8 77.8 93.8 87.4 60.1 92.3 89.4 85.8
SSCNN [118] 81.6 81.7 81.9 75.2 90.2 74.9 93.0 86.1 84.7 95.6 66.7 92.7 81.6 60.6 82.9 82.1 84.7
– with NVC-ML 77.8 75.6 77.0 72.1 89.5 64.2 91.9 82.3 76.2 94.1 60.5 94.2 78.0 54.4 67.9 80.0 77.2
PointNet++ [119] 82.4 79.0 87.7 77.3 90.8 71.8 91.0 85.9 83.7 95.3 71.6 94.1 81.3 58.7 76.4 82.6 85.1
PointNet [44] 83.4 78.7 82.5 74.9 89.6 73.0 91.5 85.9 80.8 95.3 65.2 93.0 81.2 57.9 72.8 80.6 83.7
– with NVC-ML 84.1 81.6 82.7 76.5 89.8 71.6 91.8 86.1 81.7 95.7 66.3 92.2 82.3 61.0 73.2 81.7 84.4
3D-GCN [120] 83.1 84.0 86.6 77.5 90.3 74.1 90.9 86.4 83.8 95.6 66.8 94.8 81.3 59.6 75.7 82.8 85.1
– with NVC-ML 83.5 83.1 91.4 79.6 92.9 70.3 97.4 87.1 87.4 97.0 78.0 97.2 84.4 61.6 82.3 87.9 86.3

TABLE 5: Evaluation of the semantic point cloud segmentation on ShapeNet [102]. The results are reported in terms of
mIoU as global average as well as for each of the 16 classes of the dataset.

trained the self-supervised metric learning using the class
labels of each point cloud.

Table 5 shows the semantic segmentation results of
NVC against the state of the art in terms of mean-
Intersection-over-Union (mIoU), i.e. the standard metric for
this dataset [44]. The table shows that NVC is beneficial to
improve the performance of PointNet, and achieve the best
overall result and on most individual categories.

In addition, we show some qualitative results in Fig. 6,
comparing the segmentation results from 3D-GCN [120]
with those reported by our method. From the figure, we can
see that NVC yields a more accurate segmentation, allowing
to better distinguish the borders between different object
parts.

4.5 3D hand pose estimation (Stereo/HOP)
To compare our work with VO-Hand [125] which also uses
trainable anchors to define the cluster centers, we tried to
apply 5 anchors on the HOP [125] dataset, 7 on RHD [24],
and 10 on GANeratedHands [23] and Stereo [45]. In [125],
a high number of clusters tends to reduce its advantages
while a small number of clusters brings the network back to
the standard variational inference model.

Table 6 shows the result of the unsupervised training of
the latent variables on those datasets, where the proposed
nebula anchors improves the performance of VO-hand [25]
on the HOP [25] dataset where the hands are occluded by
grasped objects from 0.597 to 0.623 in terms of AUC. In
the Stereo [45] dataset where hands are not occluded, we
also improve the performance in AUC from 0.984 to 0.986.
Note that the pose estimation in Stereo [45] is easier than

Method AUC EPE Median EPE Mean

St
er

eo
[4

5] CHPR [121] 0.839 - -
GANeratedHands [23] 0.965 - -
PosePrior [24] 0.948 9.543 11.064
VO-Hand [25] (cluster) 0.984 7.606 8.943
– with NVC 0.986 7.511 8.897

H
O

P
[2

5]

PosePrior [24] 0.534 19.728 30.860
VO-Hand [25] (triplet) 0.597 15.901 27.326
– with NVC 0.623 13.935 26.405
VO-Hand [25] (cluster) 0.583 16.741 28.018
– with NVC 0.599 16.063 27.729

TABLE 6: Evaluation on Stereo [45] and HOP [25] with the
baseline approach from VO-Hand [25] trained with unsu-
pervised clustering (cluster) [25] or triplet learning (triplet).
The endpoint errors (EPE) are in millimeters.

(a) Input

(b) Ground truth (c) PlanarRecon (d) PlanarRecon + NVC
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n
e 
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m
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ry

Fig. 7: Comparison of planar reconstruction from Planar-
Recon [126] with and without the proposed NVC optimiza-
tion.

HOP [25] because the former does not include any hand
occlusion; thus, the results are saturated. This explains why
the improvement between VO-hand [25] and our work is
marginal in Stereo [45].

4.6 3D planar reconstruction (ScanNet)

The ScanNet dataset [47] provides real RGB images and
their corresponding depth captured by depth cameras. Aim-
ing at simplifying the 3D reconstruction using large planes,
PlanarRecon [126] further fits 3D planes to the consolidated
3D point cloud which is back-projected from the depth
images using the camera’s intrinsic parameters. While con-
structing the 3D geometries in instance-level planes, Planar-
Recon [126] also incorporates the semantic annotations from
ScanNet. The resulting dataset contains 50,000 training and
760 testing images with a resolution of 256×192.

We evaluate our approach by optimizing the latent
feature of PlanarRecon [46] using nebula anchors on both
ScanNet [47] and NYUv2 [103] dataset. Pixel and plane
recalls are reported in Table 7, where the introduced neb-
ula anchor improves the performance on all threshold of
depth difference. By calculating with pixel-wise absolute
difference (rel) in Table 9 on NYUv2 [103] dataset, the
performance of PlanarRecon [46] is improved from 0.134 to
0.126 with the help of adding anchors in latent space. This
improvement is illustrated in Fig. 7 where the blurry RGB
input makes PlanarRecon [46] hard to reconstruct the floor
as a single plane, while the added nebula anchor helps to
reconstruct the floor as a whole piece. Additionally, the best
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Method 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60
Pi

xe
l

MWS [122] 2.40 8.02 13.70 18.06 22.42 26.22 28.65 31.13 32.99 35.14 36.82 38.09
NYU-Toolbox [123] 3.97 11.56 16.66 21.33 24.54 26.82 28.53 29.45 30.36 31.46 31.96 32.34
PlaneNet [124] 22.79 42.19 52.71 58.92 62.29 64.31 65.20 66.10 66.71 66.96 67.11 67.14
PlanarRecon [46] 30.59 51.88 62.83 68.54 72.13 74.28 75.38 76.57 77.08 77.35 77.54 77.86
– with NVC 33.45 54.91 65.74 71.05 75.43 77.61 78.10 79.91 80.12 80.67 81.66 81.92

Pl
an

e

MWS [122] 1.69 5.32 8.84 11.67 14.40 16.97 18.71 20.47 21.68 23.06 24.09 25.13
NYU-Toolbox [123] 3.14 9.21 13.26 16.93 19.63 21.41 22.69 23.48 24.18 25.04 25.50 25.85
PlaneNet [124] 15.78 29.15 37.48 42.34 45.09 46.91 47.77 48.54 49.02 49.33 49.53 49.59
PlanarRecon [46] 22.93 40.17 49.40 54.58 57.75 59.72 60.92 61.84 62.23 62.56 62.76 62.93
– with NVC 26.98 44.22 53.12 58.65 62.30 64.63 65.07 66.18 67.11 67.68 67.91 68.11

TABLE 7: Evaluation of the depth estimation on ScanNet [47] incorporating 3D plane estimations for the indoor scenes.
The pixel and plane recalls are reported according to threshold of depth difference.

performance is also achieved as 0.125 using our proposed
metric learning.

4.7 3D semantic completion (CompleteScanNet)

We also evaluate on the 3D semantic completion from the
CompleteScanNet [128] dataset which is built from the Scan-
Net dataset [47]. Here, we apply the proposed nebula anchor
in the latent space of ForkNet [5] where the variational
constraint is already used. The results are compared to orig-
inal ForkNet [5], ScanComplete [127] and SCFusion [128] in
terms of IoU on 11 categories.

By incorporating NVC, Table 8 demonstrates a signifi-
cant improvement on ForkNet increasing the IoU from 9.3%
to 14.1%. We illustrate an example of these improvements
in Fig. 8 where we can observe that our NVC helped
ForkNet [5] classify the table correctly. Furthermore, this
consequently reduces its gap between ForkNet [5], and
the state-of-the art methods from ScanComplete [127] and
SCFusion [128].

5 UNDERSTANDING THE NUMBER OF ANCHORS

This section focuses on the hyperparameter of the proposed
method which is the number of anchors. Fig. 9 and Table 9
provide the results with different numbers of nebula an-
chors. Since the number of anchors is a crucial hyperpa-
rameter, we evaluate how the number of anchors influence
the performance of inference model on three datasets – im-
age reconstruction (MNIST) [32], 3D planar reconstruction
(ScanNet) [47] and 3D object completion (ShapeNet) [102].

When the number of anchors is set to zero, the perfor-
mance of the inference model is the same as original model.
Although training with less than 5 anchors starts to improve
the performance of the original architectures, the significant
improvements are more evident in the range of 5 to 20
anchors depending on the task.

The goal of this section is to conduct an ablation study to
investigate the optimum performance in relation to number
of anchors. Ideally, the hyperparameter must have a stable
range of optimal values so that we can easily set its value
prior to training. Therefore, this study highlight the influ-
ence of Ma in Sec. 5.1 as well as the influence of the metric
learning in Sec. 5.2 in order to stabilize the optimal range.

5.1 Influence of Ma

From Sec. 3.1, the mass Ma acts as the weight of different
clusters centered around the anchors, which depends on
how many samples are assign to the anchors. Thus, an-
chors with a small number of samples back-propagate much
smaller gradients. By weighing the loss with the mass, the
important clusters are focused during training.

An interesting observation in Fig. 9 is the effects ofMa to
the range of the optimal number of anchors. We notice that
training withoutMa makes the performance of the inference
model sensitive to the number of anchors, reaching the best
results only at a certain peak. In this case, the mass-based
term in Lnebula is not used but instead we use the Euclidean
distance between the latent samples and their closest anchor
to optimize the network. After investigating Fig. 9, the plot
from ShapeNet demonstrate the worst case scenario where
there is only one optimal value for the number of anchors
(i.e. 5); otherwise, its performance drops significantly. With
the help of Ma, the results becomes more stable such that a
range of anchor sizes achieve good results instead of one.

5.2 Influence of the metric learning
As described in Sec. 3.2, we can optionally apply metric
learning such as Siamese and triplet training on the clusters.
This becomes more evident in Fig. 9 where NVC with metric
learning (NVC-ML) further improves the results. Looking
more closely at the plots, we notice that the metric learning
also stabilizes the range of optimal number of anchors
especially for ScanNet [47] in Fig. 9.

6 ABLATION STUDY ON THE LOSS FUNCTION

Using the experiments from the object completion in Table 4
and semantic completion in Table 8, we perform an abla-
tion study on the loss introduced in this paper. The first
comparison in Table 10 shows the evaluation when simplify
Lnebula to a Euclidean distance (labelled as without Ma).
This change based on ForkNet [5] produces a noticeable
reduction in performance by 2.8% in terms of IoU for object
completion and 2.6% for semantic scene completion.

The second comparison shows the advantage of having
the components Lpair and Ltriplet in metric learning. Table 10
validates that without either of the loss, the IoU is reduced
by up to 2.4% for object completion with ForkNet [5] and
2.5% with ScanComplete. Note that the results indicate
that training without Ltriplet introduce larger performance
deduction compared to training without Lpair.
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(c) ForkNet + NVC (d) Ground Truth(a) Input (b) ForkNet

Fig. 8: Comparison of semantic scene completion from ForkNet [5] with and without the proposed NVC optimization.

Method ceil. floor wall win. chair bed sofa table tvs furn. objs Avg.

ForkNet [5] 5.2 22.5 12.3 0.0 9.2 5.7 18.2 14.9 0.1 12.6 1.8 9.3
ForkNet [5]+NVC 10.2 29.3 18.2 3.3 14.5 11.9 25.1 17.9 4.7 16.0 3.9 14.1
ScanComplete [127] 16.4 39.3 35.0 1.8 20.4 3.8 11.2 27.7 0.6 13.2 7.8 16.1
SCFusion [128] 12.8 32.9 26.5 9.6 22.5 20.7 26.4 21.0 7.4 19.2 8.6 18.9

TABLE 8: Evaluation of the semantic completion on CompleteScanNet [128]. The results are reported in terms of IoU at a
resolution of 64× 64× 64.
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Fig. 9: Plots the performance on the image reconstruction (MNIST) [32], 3D planar reconstruction (NYUv2) [103] and 3D
object completion (ShapeNet) [102] with different amount of nebula anchor.

Dataset Method G(E()) 1 2 3 4 5 10 15 20 30 40

MNIST [32]: rel NVC without Ma 0.169 0.168 0.154 0.143 0.140 0.137 0.136 0.138 0.146 0.158 0.163
with VO-Hand [25] NVC 0.169 0.167 0.153 0.141 0.136 0.136 0.138 0.139 0.141 0.142 0.142

NVC-ML 0.169 0.164 0.149 0.141 0.134 0.138 0.133 0.134 0.136 0.136 0.138

NYUv2 [103]: rel NVC without Ma 0.134 0.135 0.135 0.135 0.131 0.132 0.131 0.129 0.129 0.134 0.135
with PlanarRecon [46] NVC 0.134 0.133 0.133 0.133 0.131 0.130 0.129 0.126 0.127 0.129 0.130

NVC-ML 0.134 0.133 0.133 0.131 0.130 0.129 0.129 0.126 0.125 0.126 0.129

ShapeNet [102]: IoU (in %) NVC without Ma 77.5 77.5 77.9 78.8 78.0 81.1 79.3 74.9 74.8 75.1 74.0
with 3D-RecGAN [10] NVC 77.5 77.4 78.1 78.6 79.8 81.6 82.3 82.4 82.1 81.6 79.3

NVC-ML 77.5 77.9 79.2 79.3 81.0 83.2 82.8 83.0 83.1 82.9 82.2

TABLE 9: Comparison of different amount of nebula anchors a with and without the self-supervised metric learning,
evaluated for the 2D image reconstruction on MNIST [32] and the depth estimation on NYUv2 [103] reported in absolute
difference (rel) and 3D object completion on ShapeNet [102] reported in Intersection over Union (IoU).

7 CONCLUSION

Focused on self-supervised latent space optimization, we
present a novel nebula variational coder based on two

main contributions: (i) forming clusters in the latent space
through the additional variables, called nebula anchors,
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Dataset Method Baseline with NVC without Ma with ML without Lpair without Ltriplet

Object Completion on 3D-AE [10] 16.6 17.1 16.7 18.4 17.9 17.2
Real [10] 3D-RecGAN [10] 16.5 19.6 17.0 20.5 18.1 17.9

ForkNet [5] 23.8 24.9 22.1 26.3 24.5 23.9

Semantic Completion on ForkNet [5] 9.3 14.1 11.5 16.2 14.9 14.2
CompleteScanNet [128] ScanComplete [127] 16.1 18.4 16.9 19.8 17.2 17.3

SCFusion [128] 18.9 20.0 19.1 22.6 20.7 20.5

TABLE 10: Ablation study on loss functions, comparing the nebula loss against a Euclidean loss (i.e. without Ma) and
comparing the contribution of the losses metric learning. The results are reported in the average IoU (%) across different
categories for object completion [10] in Table 4 and semantic scene completion [128] in Table 8.

trained in an unsupervised way; and, (ii) by labeling fea-
tures with the assigned anchors, employing metric learning
to further separate the clusters in a self-supervised way. The
proposed approach showed, on one side, the performance
gains when tested on supervised and unsupervised tasks
and, on the other, good generalization capabilities to deal
with different network architectures and data dimensional-
ity.
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[52] J. Masci, U. Meier, D. Cireşan, and J. Schmidhuber, “Stacked
convolutional auto-encoders for hierarchical feature extraction,”
Artificial Neural Networks and Machine Learning–ICANN 2011, pp.
52–59, 2011.

[53] C. Zhang, Y. Liu, and H. Fu, “Ae2-nets: Autoencoder in autoen-
coder networks,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2019, pp. 2577–2585.

[54] T.-H. Chan, K. Jia, S. Gao, J. Lu, Z. Zeng, and Y. Ma, “Pcanet:
A simple deep learning baseline for image classification?” IEEE
transactions on image processing, vol. 24, no. 12, pp. 5017–5032,
2015.

[55] C. Li, M. Zeeshan Zia, Q.-H. Tran, X. Yu, G. D. Hager, and
M. Chandraker, “Deep supervision with shape concepts for
occlusion-aware 3d object parsing,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2017, pp.
5465–5474.

[56] S. Gidaris, A. Bursuc, N. Komodakis, P. Pérez, and M. Cord,
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6Conclusion

This dissertation focuses on 3D completion from a single view with learning-based ap-
proaches. It mainly investigates two trending 3D data formats, including volumetric data
and point cloud as introduced in Section 3.2. In terms of the contributed approaches, Sec-
tion 5.1 demonstrates our contributions in volumetric space by leveraging 3D convolutions,
achieving higher efficiency and accuracy compared to related volumetric methods. Next, our
proposed point cloud methods are demonstrated in Section 5.2 to reconstruct with adaptive
local resolutions to incorporate the finer geometric details. Apart from 3D completion, we
also investigate optimizing latent features in Section 5.3 to solve other tasks such as semantic
segmentation and natural language processing.

Processing local features on volumetric data is popular because gridded 3D data is similar to
well-organized pixels on an image. Since the local neighborhood is already well-structured,
designing encoder-decoder architectures constructed by convolutions to process local and
global information is easy. Although given such processing simplicity, volumetric completion
has a slow inference speed due to the 3D convolutions. Since the volumetric data back-
projected from the depth image is filled with numerous empty voxels, we proposed using
the 2D depth image directly as input for the encoder. Consequently, shifting from 3D
convolutions to 2D in the encoder reduces the training and inference time. However, in
end-to-end training, a 3D decoder could not infer directly on top of the reshaped 2D features.
We solve this problem by using discriminative training on latent space [10] so that the 2D
encoder can generate latent features in the same domain of 3D VAE latent features.

Another issue is the need for many real 3D annotations for training in real scenarios. In
addition, the existing real training data, e.g. NYU dataset, contains wrong semantic annota-
tions, which misleads the optimization while training the parametric model. To solve such a
problem, we proposed ForkNet [8], which automatically generates paired realistic data as
supervision during training. Such ability is achieved by applying a proposed SDF-Semantic
consistency on the graph model. To make the model robust to the incorrect semantics during
training, one of ForkNet’s decoders focuses on revealing geometries alone.

Overall, the reconstruction from volumetric data is generally constrained by the fixed resolu-
tion of the 3D grid. Motivated to increase the resolution, our research is then shifted to point
cloud. The computational resources of point cloud methods are focused on reconstructing
actual geometries alone, i.e. without the empty spaces. However, the challenge of handling
point clouds is their unorganized structure.

Given the unordered point cloud map, our proposed SoftPoolNet [6] automatically sorts
every point, ensuring that the latent feature is identical no matter how the input map is
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permuted. Based on the 2D latent feature, a regional convolution network involving soft-pool
operators is structured to reform the 3D shape. SoftPoolNet outperforms other point cloud
approaches in numerical evaluations and shows visual advantages.

Due to the compression in the encoder, a typical limitation of SoftPoolNet is that it tends
to lose sharp geometries of the input shape, which should be preserved. Standard encoder-
decoder architecture preserves input geometry in volumetric data with the help of skip
connections between encoder and decoder, which are formulated with element-wise sum-
mation or feature concatenation. Such skip-connection cannot be applied in the point cloud
because the two subsets of point-wise features from the encoder and decoder are not explicitly
indexed with each other in the feature map. Our proposed SoftPool++ [5] overcomes this
limitation by using skip connections specifically devised for point clouds, with the help
of a transformation matrix that projects the features from the encoder to the decoder and
vice versa. It eliminates the domain gap between encoder features and decoder features.
Structuring multiple SoftPool++ modules in an encoder-decoder structure, this work becomes
the first to propose a point-wise skip connection with feature transformation. Such a design
then overcomes the loss of information in the encoder.

After a careful survey on point cloud completion, we noticed that the related methods
could only complete 3D objects but fail when trained and tested on 3D scene completion
or 3D semantic scene completion. In contrast to volumetric data, local neighborhoods are
not explicitly defined in point clouds, so extracting local structural features for complex
point cloud reconstruction, such as scenes, is hard. Previous local descriptors using point
cloud convolutions are proposed to extract local features for segmentation and classification.
However, a general local descriptor is missing for completion. Therefore, we proposed
Disp3D [4] to represent the local structures by matching local sets of points to displacement
vectors. The proposed displacement vector-based operator processes the point cloud from a
local perspective, which could be used to form both encoders to down-sample point cloud
and decoders to up-sample point cloud. Notably, our approach is the first to successfully
infer 3D semantic scene completion from a single view through point clouds.

Moreover, we also aimed at generalizing the improvements we achieved in the completion
task to other tasks. In particular, to investigate latent feature optimization, we propose opti-
mizing with additional parameters in the latent space. Our proposed variational approach [9]
optimizes the latent feature with learnable cluster centers so that the 3D decoder can easily
infer the grasping gestures from a single RGB image. Then, inspired by the gravity law, we
further improve the performance of previous works by considering the number of samples
getting assigned to parameterized cluster centers, which we call nebula anchors [3]. The
advantage of such anchors extends to multiple tasks, including NLP, image reconstruction,
planar reconstruction, point cloud segmentation, hand pose estimation, etc.

Furthermore, our other collaborated works such as structural-SLAM [7] for mapping and
localization, Lidar upsampling [2] with BMW, and SecNet [1] at Facebook Reality Labs for eye
tracking are all inspired or back-boned by the mentioned works in this dissertation. These
proposed methods could be widely adapted to other applications.
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Based on the research conducted to complete this dissertation and other collaborated works,
we recommend the following future directions, including (a) efficient volumetric processing,
(b) completion without categorical priors, (c) 3D contact detection, and (d) geometries in
radiance field.

Efficient volumetric processing. While we have tried to present completion in point cloud
instead of volumetric data to increase the local resolution of the completion results, we
notice that some volumetric solutions are also worth a try aiming to overcome the resource
consumption problem so that output resolution can be practically higher with similar com-
putational resources, e.g. using sparse convolution [100] to process volumetric data, thus
allowing a direct comparison with approaches that are targeting on the large scene such as
ScanComplete [146].

Completion without categorical priors. As for point cloud completion, completing a
scene with enormous occlusions still needs to be qualitatively satisfying with the current
approaches, possibly because every scene does not have a strong categorical global shape
prior. First, We want to investigate whether point cloud completion on complex scene datasets
can be implemented without learning a strong categorical global shape prior [166]. After
that, we want to develop solutions to either present such shape prior with the help of some
segmentation supervision or propose pipelines that handle scene completion without using a
latent shape prior. One potential solution is completing from a local-to-global perspective
because single-object completion is always easier with centered targets.

3D contact detection. Considering that our proposed VO-Hand targets hand pose estima-
tion from a single RGB image where the hand interacts with an object. An interesting future
direction is using the contact information [167, 168] to correct the estimated 3D hand pose,
guaranteeing consistency between pose and contact. Such estimation depends on involving
mesh models between both the hand and the interacted object on hand.

Geometries in radiance field. Inspired by the excellent smoothness of meshes extracted
from a well-constructed signed distance field, 3D surfaces extracted from an implicit field
may have much better geometric precision. Nevertheless, due to the lack of precise 3D mesh
supervision, learning such implicit fields directly in 3D space takes much work. Given a set
of calibrated multi-view images towards a static scene, there are already works [50, 169, 51,
170] investigating jointly learning the surface and the appearance of a static scene using only
the appearance supervision presented in 2D space with the help of a learned radiance field.
We plan to investigate recent works about optimizing the plausible implicit field by training
with radiance supervision.

181





Part III

Appendix





Bibliography

[1] Y. Wang, Y. Shen, D. J. Tan, F. Tombari, and S. S. Talathi. “SecNet: Semantic Eye Completion
in Implicit Field”. In: Annual Conference on Neural Information Processing Systems. PMLR. 2023,
pp. 241–256 (see pp. 1, 180).

[2] A. Savkin, Y. Wang, S. Wirkert, N. Navab, and F. Tombari. “Lidar Upsampling With Sliced
Wasserstein Distance”. In: IEEE Robotics and Automation Letters 8.1 (2022), pp. 392–399 (see pp. 1,
180).

[3] Y. Wang, D. J. Tan, N. Navab, and F. Tombari. “Self-supervised Latent Space Optimization with
Nebula Variational Coding”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence
(2022) (see pp. 1, 157, 180).

[4] Y. Wang, D. J. Tan, N. Navab, and F. Tombari. “Learning Local Displacements for Point Cloud
Completion”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
2022 (see pp. 1, 125, 180).

[5] Y. Wang, D. J. Tan, N. Navab, and F. Tombari. “SoftPool++: An Encoder–Decoder Network for
Point Cloud Completion”. In: International Journal of Computer Vision (2022), pp. 1–20 (see pp. 1,
29, 37–40, 101, 125, 180).

[6] Y. Wang, D. J. Tan, N. Navab, and F. Tombari. “Softpoolnet: Shape descriptor for point cloud
completion and classification”. In: European Conference on Computer Vision. Springer. 2020, pp. 70–
85 (see pp. 1, 14, 28, 32, 37–40, 74, 101, 125, 179).

[7] Y. Li, N. Brasch, Y. Wang, N. Navab, and F. Tombari. “Structure-slam: Low-drift monocular slam
in indoor environments”. In: IEEE Robotics and Automation Letters 5.4 (2020), pp. 6583–6590 (see
pp. 1, 180).

[8] Y. Wang, D. J. Tan, N. Navab, and F. Tombari. “ForkNet: Multi-branch Volumetric Semantic
Completion from a Single Depth Image”. In: Proceedings of the IEEE International Conference on
Computer Vision. 2019, pp. 8608–8617 (see pp. 1, 26, 31, 35, 38, 55, 74, 146, 179).

[9] Y. Gao, Y. Wang, P. Falco, N. Navab, and F. Tombari. “Variational Object-aware 3D Hand Pose
from a Single RGB Image”. In: IEEE Robotics and Automation Letters (2019) (see pp. 2, 146, 180).

[10] Y. Wang, D. J. Tan, N. Navab, and F. Tombari. “Adversarial Semantic Scene Completion from a
Single Depth Image”. In: 2018 International Conference on 3D Vision (3DV). 2018 (see pp. 2, 31, 35,
42, 146, 179).

[11] D. Neven, B. De Brabandere, S. Georgoulis, M. Proesmans, and L. Van Gool. “Towards end-to-end
lane detection: an instance segmentation approach”. In: 2018 IEEE intelligent vehicles symposium
(IV). IEEE. 2018, pp. 286–291 (see p. 5).

[12] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and S. Zagoruyko. “End-to-end object
detection with transformers”. In: European conference on computer vision. Springer. 2020, pp. 213–
229 (see p. 5).

[13] K. He, X. Zhang, S. Ren, and J. Sun. “Deep residual learning for image recognition”. In: Proceedings
of the IEEE conference on computer vision and pattern recognition. 2016, pp. 770–778 (see pp. 5, 15).

185



Bibliography

[14] Y. Wang, X. Zhang, T. Yang, and J. Sun. “Anchor detr: Query design for transformer-based
detector”. In: 36.3 (2022), pp. 2567–2575 (see p. 6).

[15] Y. Liu, T. Wang, X. Zhang, and J. Sun. “Petr: Position embedding transformation for multi-view
3d object detection”. In: (2022), pp. 531–548 (see p. 6).

[16] F. Lu and E. Milios. “Globally consistent range scan alignment for environment mapping”. In:
Autonomous robots 4.4 (1997), pp. 333–349 (see p. 6).

[17] W. Yuan, T. Khot, D. Held, C. Mertz, and M. Hebert. “Pcn: Point completion network”. In: 2018
International Conference on 3D Vision (3DV). IEEE. 2018, pp. 728–737 (see pp. 6, 11, 28, 30, 32,
36–40).

[18] M. Liu, L. Sheng, S. Yang, J. Shao, and S.-M. Hu. “Morphing and sampling network for dense
point cloud completion”. In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 34.
2020, pp. 11596–11603 (see pp. 6, 28, 29, 36, 38–40, 101).

[19] S. Tulsiani, S. Gupta, D. F. Fouhey, A. A. Efros, and J. Malik. “Factoring shape, pose, and layout
from the 2d image of a 3d scene”. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. 2018, pp. 302–310 (see p. 6).

[20] N. Mayer, E. Ilg, P. Hausser, P. Fischer, D. Cremers, A. Dosovitskiy, and T. Brox. “A large
dataset to train convolutional networks for disparity, optical flow, and scene flow estimation”. In:
Proceedings of the IEEE conference on computer vision and pattern recognition. 2016, pp. 4040–4048
(see p. 6).

[21] R. Girdhar, D. F. Fouhey, M. Rodriguez, and A. Gupta. “Learning a predictable and generative
vector representation for objects”. In: European Conference on Computer Vision. Springer. 2016,
pp. 484–499 (see p. 6).

[22] C. Godard, O. Mac Aodha, and G. J. Brostow. “Unsupervised monocular depth estimation
with left-right consistency”. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. 2017, pp. 270–279 (see p. 6).

[23] H. Jung, Y. Kim, D. Min, C. Oh, and K. Sohn. “Depth prediction from a single image with
conditional adversarial networks”. In: 2017 IEEE International Conference on Image Processing
(ICIP). IEEE. 2017, pp. 1717–1721 (see p. 6).

[24] Z. Li and N. Snavely. “Megadepth: Learning single-view depth prediction from internet photos”.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018, pp. 2041–
2050 (see p. 6).

[25] Z. Zhang. “Microsoft kinect sensor and its effect”. In: IEEE multimedia 19.2 (2012), pp. 4–10 (see
p. 6).

[26] L. Keselman, J. Iselin Woodfill, A. Grunnet-Jepsen, and A. Bhowmik. “Intel realsense stereoscopic
depth cameras”. In: Proceedings of the IEEE conference on computer vision and pattern recognition
workshops. 2017, pp. 1–10 (see p. 6).

[27] W. Wu, Z. Qi, and L. Fuxin. “Pointconv: Deep convolutional networks on 3d point clouds”. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019, pp. 9621–9630
(see p. 11).

[28] Y. Li, R. Bu, M. Sun, W. Wu, X. Di, and B. Chen. “Pointcnn: Convolution on x-transformed points”.
In: Advances in Neural Information Processing Systems. 2018, pp. 820–830 (see p. 11).

[29] J. Kim, J. K. Lee, and K. M. Lee. “Deeply-recursive convolutional network for image super-
resolution”. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2016,
pp. 1637–1645 (see p. 11).

186



Bibliography

[30] H. Noh, S. Hong, and B. Han. “Learning deconvolution network for semantic segmentation”. In:
Proceedings of the IEEE International Conference on Computer Vision. 2015, pp. 1520–1528 (see pp. 11,
34).

[31] Y. Yang, C. Feng, Y. Shen, and D. Tian. “Foldingnet: Point cloud auto-encoder via deep grid
deformation”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
2018, pp. 206–215 (see pp. 11, 28, 36–40).

[32] Z.-H. Lin, S.-Y. Huang, and Y.-C. F. Wang. “Convolution in the cloud: Learning deformable kernels
in 3D graph convolution networks for point cloud analysis”. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 2020, pp. 1800–1809 (see pp. 11, 28, 37).

[33] Y. Li and Y. Yuan. “Convergence analysis of two-layer neural networks with relu activation”. In:
Advances in neural information processing systems 30 (2017) (see p. 12).

[34] L.-J. Deng, G. Vivone, W. Guo, M. Dalla Mura, and J. Chanussot. “A variational pansharpen-
ing approach based on reproducible kernel Hilbert space and heaviside function”. In: IEEE
Transactions on Image Processing 27.9 (2018), pp. 4330–4344 (see p. 12).

[35] A. Kawamoto, T. Matsumori, S. Yamasaki, T. Nomura, T. Kondoh, and S. Nishiwaki. “Heaviside
projection based topology optimization by a PDE-filtered scalar function”. In: Structural and
Multidisciplinary Optimization 44.1 (2011), pp. 19–24 (see p. 12).

[36] N. A. Kudryashov. “Logistic function as solution of many nonlinear differential equations”. In:
Applied Mathematical Modelling 39.18 (2015), pp. 5733–5742 (see p. 12).

[37] J. Berkson. “Application of the logistic function to bio-assay”. In: Journal of the American statistical
association 39.227 (1944), pp. 357–365 (see p. 12).

[38] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polo-
sukhin. “Attention is all you need”. In: Advances in neural information processing systems. 2017,
pp. 5998–6008 (see pp. 12, 16).

[39] Y. LeCun et al. “LeNet-5, convolutional neural networks”. In: URL: http://yann. lecun. com/exdb/lenet
20.5 (2015), p. 14 (see p. 14).

[40] C. R. Qi, H. Su, K. Mo, and L. J. Guibas. “Pointnet: Deep learning on point sets for 3d classification
and segmentation”. In: Proceedings of the IEEE conference on computer vision and pattern recognition.
2017, pp. 652–660 (see pp. 14, 27, 36, 37, 40, 74, 101).

[41] L. Bao, Z. Yang, S. Wang, D. Bai, and J. Lee. “Real image denoising based on multi-scale resid-
ual dense block and cascaded U-Net with block-connection”. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition Workshops. 2020, pp. 448–449 (see p. 15).

[42] Y. Yu, X. Si, C. Hu, and J. Zhang. “A review of recurrent neural networks: LSTM cells and network
architectures”. In: Neural computation 31.7 (2019), pp. 1235–1270 (see p. 15).

[43] M. Ravanelli, P. Brakel, M. Omologo, and Y. Bengio. “Light gated recurrent units for speech
recognition”. In: IEEE Transactions on Emerging Topics in Computational Intelligence 2.2 (2018),
pp. 92–102 (see p. 15).

[44] S. Hochreiter and J. Schmidhuber. “Long short-term memory”. In: Neural computation 9.8 (1997),
pp. 1735–1780 (see p. 15).

[45] A. C. Aguilera, P. M. Olmos, A. Artés-Rodríguez, and F. Pérez-Cruz. “Regularizing Transformers
with Deep Probabilistic Layers”. In: Neural Netw. 161.C (2023), 565–574 (see p. 16).

[46] X. Yu, Y. Rao, Z. Wang, Z. Liu, J. Lu, and J. Zhou. “Pointr: Diverse point cloud completion
with geometry-aware transformers”. In: Proceedings of the IEEE/CVF International Conference on
Computer Vision. 2021, pp. 12498–12507 (see pp. 16, 28, 36, 40, 125).

187



Bibliography

[47] L. Floridi and M. Chiriatti. “GPT-3: Its nature, scope, limits, and consequences”. In: Minds and
Machines 30 (2020), pp. 681–694 (see p. 16).

[48] J. Zhu, Y. Xia, L. Wu, D. He, T. Qin, W. Zhou, H. Li, and T. Liu. “Incorporating BERT into Neural
Machine Translation”. In: International Conference on Learning Representations. 2019 (see p. 16).

[49] L. P. Kaelbling, M. L. Littman, and A. W. Moore. “Reinforcement learning: A survey”. In: Journal
of artificial intelligence research 4 (1996), pp. 237–285 (see p. 17).

[50] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi, and R. Ng. “Nerf:
Representing scenes as neural radiance fields for view synthesis”. In: Communications of the ACM
65.1 (2021), pp. 99–106 (see pp. 17, 181).

[51] Y. Wang, Q. Han, M. Habermann, K. Daniilidis, C. Theobalt, and L. Liu. “NeuS2: Fast Learning
of Neural Implicit Surfaces for Multi-view Reconstruction”. In: arXiv preprint arXiv:2212.05231
(2022) (see pp. 17, 181).

[52] L. Yue, H. Shen, Q. Yuan, and L. Zhang. “A locally adaptive L1- L2 norm for multi-frame super-
resolution of images with mixed noise and outliers”. In: Signal Processing 105 (2014), pp. 156–174
(see p. 18).

[53] A. Lydia and S. Francis. “Adagrad—an optimizer for stochastic gradient descent”. In: Int. J. Inf.
Comput. Sci 6.5 (2019), pp. 566–568 (see p. 18).

[54] F. Zou, L. Shen, Z. Jie, W. Zhang, and W. Liu. “A sufficient condition for convergences of adam and
rmsprop”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
2019, pp. 11127–11135 (see p. 18).

[55] M. C. Mukkamala and M. Hein. “Variants of rmsprop and adagrad with logarithmic regret
bounds”. In: International conference on machine learning. PMLR. 2017, pp. 2545–2553 (see p. 18).

[56] T. Kurbiel and S. Khaleghian. “Training of deep neural networks based on distance measures
using RMSProp”. In: arXiv preprint arXiv:1708.01911 (2017) (see p. 18).

[57] R. V. K. Reddy, B. S. Rao, and K. P. Raju. “Handwritten Hindi digits recognition using convolu-
tional neural network with RMSprop optimization”. In: 2018 Second International Conference on
Intelligent Computing and Control Systems (ICICCS). IEEE. 2018, pp. 45–51 (see p. 18).

[58] L. Hu, M. Kan, S. Shan, and X. Chen. “Unsupervised domain adaptation with hierarchical
gradient synchronization”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 2020, pp. 4043–4052 (see p. 19).

[59] H. Tang, K. Chen, and K. Jia. “Unsupervised domain adaptation via structurally regularized deep
clustering”. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition.
2020, pp. 8725–8735 (see p. 19).

[60] C. Yang and S.-N. Lim. “One-Shot Domain Adaptation For Face Generation”. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020, pp. 5921–5930 (see
p. 19).

[61] R. Gong, W. Li, Y. Chen, and L. V. Gool. “Dlow: Domain flow for adaptation and generaliza-
tion”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019,
pp. 2477–2486 (see p. 19).

[62] E. Schonfeld, B. Schiele, and A. Khoreva. “A u-net based discriminator for generative adversarial
networks”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
2020, pp. 8207–8216 (see p. 19).

[63] R. Chen, W. Huang, B. Huang, F. Sun, and B. Fang. “Reusing discriminators for encoding:
Towards unsupervised image-to-image translation”. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 2020, pp. 8168–8177 (see p. 19).

188



Bibliography

[64] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette, M. Marchand, and V.
Lempitsky. “Domain-adversarial training of neural networks”. In: The journal of machine learning
research 17.1 (2016), pp. 2096–2030 (see p. 19).

[65] E. Tzeng, J. Hoffman, K. Saenko, and T. Darrell. “Adversarial discriminative domain adaptation”.
In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2017, pp. 7167–7176
(see p. 19).

[66] Y. Zhang, H. Tang, K. Jia, and M. Tan. “Domain-symmetric networks for adversarial domain
adaptation”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
2019, pp. 5031–5040 (see p. 19).

[67] S. Cui, S. Wang, J. Zhuo, C. Su, Q. Huang, and Q. Tian. “Gradually vanishing bridge for adversar-
ial domain adaptation”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 2020, pp. 12455–12464 (see p. 19).

[68] B. Kumar, G. Carneiro, I. Reid, et al. “Learning local image descriptors with deep siamese and
triplet convolutional networks by minimising global loss functions”. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 2016, pp. 5385–5394 (see p. 20).

[69] X. Wang, X. Han, W. Huang, D. Dong, and M. R. Scott. “Multi-similarity loss with general pair
weighting for deep metric learning”. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 2019, pp. 5022–5030 (see p. 20).

[70] Z. Wu, A. A. Efros, and S. X. Yu. “Improving generalization via scalable neighborhood component
analysis”. In: Proceedings of the European Conference on Computer Vision. 2018, pp. 685–701 (see
p. 20).

[71] E. Hoffer and N. Ailon. “Deep metric learning using triplet network”. In: International Workshop
on Similarity-Based Pattern Recognition. Springer. 2015, pp. 84–92 (see p. 20).

[72] K. Sohn. “Improved deep metric learning with multi-class n-pair loss objective”. In: Proceedings
of the 30th International Conference on Neural Information Processing Systems. 2016, pp. 1857–1865
(see p. 20).

[73] H. Oh Song, Y. Xiang, S. Jegelka, and S. Savarese. “Deep metric learning via lifted structured
feature embedding”. In: Proceedings of the IEEE conference on computer vision and pattern recognition.
2016, pp. 4004–4012 (see p. 20).

[74] R. Hadsell, S. Chopra, and Y. LeCun. “Dimensionality reduction by learning an invariant map-
ping”. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognitionb. Vol. 2.
IEEE. 2006, pp. 1735–1742 (see p. 20).

[75] J. Goldberger, G. E. Hinton, S. Roweis, and R. R. Salakhutdinov. “Neighbourhood components
analysis”. In: Advances in neural information processing systems 17 (2004), pp. 513–520 (see p. 20).

[76] Y. Movshovitz-Attias, A. Toshev, T. K. Leung, S. Ioffe, and S. Singh. “No fuss distance metric
learning using proxies”. In: Proceedings of the IEEE International Conference on Computer Vision.
2017, pp. 360–368 (see p. 20).

[77] P. Wohlhart and V. Lepetit. “Learning descriptors for object recognition and 3d pose estimation”.
In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2015, pp. 3109–3118
(see p. 20).

[78] J. Wang, Y. Song, T. Leung, C. Rosenberg, J. Wang, J. Philbin, B. Chen, and Y. Wu. “Learning
fine-grained image similarity with deep ranking”. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. 2014, pp. 1386–1393 (see p. 20).

189



Bibliography

[79] F. Schroff, D. Kalenichenko, and J. Philbin. “Facenet: A unified embedding for face recognition
and clustering”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
2015, pp. 815–823 (see p. 20).

[80] J. Lu, X. Zhou, Y.-P. Tan, Y. Shang, and J. Zhou. “Neighborhood repulsed metric learning for
kinship verification”. In: IEEE transactions on pattern analysis and machine intelligence 36.2 (2014),
pp. 331–345 (see p. 20).

[81] M. Rolinek, D. Zietlow, and G. Martius. “Variational autoencoders pursue pca directions (by
accident)”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
2019, pp. 12406–12415 (see p. 20).

[82] K. Sohn, H. Lee, and X. Yan. “Learning structured output representation using deep conditional
generative models”. In: Advances in neural information processing systems 28 (2015) (see p. 20).

[83] J. Walker, C. Doersch, A. Gupta, and M. Hebert. “An uncertain future: Forecasting from static
images using variational autoencoders”. In: European Conference on Computer Vision. Springer.
2016, pp. 835–851 (see p. 20).

[84] N. Dilokthanakul, P. A. Mediano, M. Garnelo, M. C. Lee, H. Salimbeni, K. Arulkumaran, and
M. Shanahan. “Deep unsupervised clustering with gaussian mixture variational autoencoders”.
In: arXiv preprint arXiv:1611.02648 (2016) (see p. 21).

[85] L. Yang, N.-M. Cheung, J. Li, and J. Fang. “Deep clustering by gaussian mixture variational
autoencoders with graph embedding”. In: Proceedings of the IEEE/CVF International Conference on
Computer Vision. 2019, pp. 6440–6449 (see p. 21).

[86] A. van den Oord, O. Vinyals, and K. Kavukcuoglu. “Neural discrete representation learning”.
In: Proceedings of the 31st International Conference on Neural Information Processing Systems. 2017,
pp. 6309–6318 (see p. 21).

[87] S. Zhao, J. Song, and S. Ermon. “Infovae: Balancing learning and inference in variational autoen-
coders”. In: Proceedings of the aaai conference on artificial intelligence. Vol. 33. 01. 2019, pp. 5885–5892
(see p. 21).

[88] L. Maaløe, C. K. Sønderby, S. K. Sønderby, and O. Winther. “Auxiliary deep generative models”.
In: International conference on machine learning. PMLR. 2016, pp. 1445–1453 (see p. 21).

[89] S. R. Bowman, L. Vilnis, O. Vinyals, A. Dai, R. Jozefowicz, and S. Bengio. “Generating Sentences
from a Continuous Space”. In: Proceedings of The 20th SIGNLL Conference on Computational Natural
Language Learning. Berlin, Germany: Association for Computational Linguistics, Aug. 2016,
pp. 10–21 (see p. 21).

[90] Z. Yang, Z. Hu, R. Salakhutdinov, and T. Berg-Kirkpatrick. “Improved variational autoencoders
for text modeling using dilated convolutions”. In: International conference on machine learning.
PMLR. 2017, pp. 3881–3890 (see p. 21).

[91] R. Li, X. Li, C. Lin, M. Collinson, and R. Mao. “A Stable Variational Autoencoder for Text
Modelling”. In: Proceedings of the 12th International Conference on Natural Language Generation.
Tokyo, Japan: Association for Computational Linguistics, 2019, pp. 594–599 (see p. 21).

[92] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey, M. Krikun, Y. Cao, Q. Gao,
K. Macherey, et al. “Google’s neural machine translation system: Bridging the gap between
human and machine translation”. In: arXiv:1609.08144. 2016 (see p. 22).

[93] D. P. Kingma and M. Welling. “Auto-Encoding Variational Bayes”. In: 2nd International Conference
on Learning Representations, Banff, AB, Canada, April 14-16, 2014, Conference Track Proceedings. Ed. by
Y. Bengio and Y. LeCun. 2014 (see p. 22).

190



Bibliography

[94] D. M. Blei, A. Kucukelbir, and J. D. McAuliffe. “Variational inference: A review for statisticians”.
In: Journal of the American Statistical Association just-accepted (2017) (see p. 22).

[95] C. B. Choy, D. Xu, J. Gwak, K. Chen, and S. Savarese. “3d-r2n2: A unified approach for single
and multi-view 3d object reconstruction”. In: European conference on computer vision. Springer.
2016, pp. 628–644 (see pp. 23, 33).

[96] H. Xie, H. Yao, X. Sun, S. Zhou, and S. Zhang. “Pix2vox: Context-aware 3d reconstruction from
single and multi-view images”. In: Proceedings of the IEEE/CVF International Conference on Computer
Vision. 2019, pp. 2690–2698 (see pp. 24, 33).

[97] H. Xie, H. Yao, S. Zhang, S. Zhou, and W. Sun. “Pix2Vox++: multi-scale context-aware 3D object
reconstruction from single and multiple images”. In: International Journal of Computer Vision 128.12
(2020), pp. 2919–2935 (see pp. 24, 33).

[98] B. Yang, S. Wang, A. Markham, and N. Trigoni. “Robust attentional aggregation of deep feature
sets for multi-view 3D reconstruction”. In: International Journal of Computer Vision 128.1 (2020),
pp. 53–73 (see pp. 24, 33).

[99] S. Song, F. Yu, A. Zeng, A. X. Chang, M. Savva, and T. Funkhouser. “Semantic scene completion
from a single depth image”. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR).
IEEE. 2017 (see pp. 24, 26, 31, 34, 35, 55).

[100] B. Liu, M. Wang, H. Foroosh, M. Tappen, and M. Pensky. “Sparse convolutional neural networks”.
In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2015, pp. 806–814
(see pp. 25, 181).

[101] C. R. Qi, L. Yi, H. Su, and L. J. Guibas. “PointNet++ deep hierarchical feature learning on point
sets in a metric space”. In: Proceedings of the 31st International Conference on Neural Information
Processing Systems. 2017, pp. 5105–5114 (see pp. 25, 28, 29, 36–38, 40).

[102] R. Azad, M. Asadi-Aghbolaghi, M. Fathy, and S. Escalera. “Bi-directional convlstm u-net with
densley connected convolutions”. In: Proceedings of the IEEE/CVF International Conference on
Computer Vision Workshops. 2019, pp. 0–0 (see pp. 26, 34).

[103] A. Kirillov, Y. Wu, K. He, and R. Girshick. “Pointrend: Image segmentation as rendering”. In:
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2020, pp. 9799–
9808 (see pp. 26, 34).

[104] F. Yang, Q. Sun, H. Jin, and Z. Zhou. “Superpixel segmentation with fully convolutional net-
works”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020,
pp. 13964–13973 (see pp. 26, 34).

[105] A. Dai, C. Ruizhongtai Qi, and M. Nießner. “Shape completion using 3d-encoder-predictor
cnns and shape synthesis”. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. 2017, pp. 5868–5877 (see pp. 26, 34, 38).

[106] B. Yang, H. Wen, S. Wang, R. Clark, A. Markham, and N. Trigoni. “3d object reconstruction from
a single depth view with adversarial learning”. In: Proceedings of the IEEE International Conference
on Computer Vision Workshops. 2017, pp. 679–688 (see pp. 26, 34).

[107] B. Yang, S. Rosa, A. Markham, N. Trigoni, and H. Wen. “Dense 3D object reconstruction from
a single depth view”. In: IEEE transactions on pattern analysis and machine intelligence (2018) (see
pp. 26, 31, 34, 35).

[108] Y. Guo and X. Tong. “View-volume Network for Semantic Scene Completion from a Single
Depth Image”. In: Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI).
Stockholm, Sweden: AAAI Press, 2018 (see pp. 26, 31, 34, 35).

191



Bibliography

[109] X. Chen, K.-Y. Lin, C. Qian, G. Zeng, and H. Li. “3d sketch-aware semantic scene completion via
semi-supervised structure prior”. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 2020, pp. 4193–4202 (see pp. 26, 35).

[110] D. P. Kingma and J. Ba. “Adam: A method for stochastic optimization”. In: arXiv preprint
arXiv:1412.6980 (2014) (see p. 27).

[111] T. Groueix, M. Fisher, V. G. Kim, B. C. Russell, and M. Aubry. “A Papier-Mâché Approach
to Learning 3D Surface Generation”. In: The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). 2018 (see pp. 28, 36–40).

[112] X. Wen, Z. Han, Y.-P. Cao, P. Wan, W. Zheng, and Y.-S. Liu. “Cycle4completion: Unpaired point
cloud completion using cycle transformation with missing region coding”. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021, pp. 13080–13089 (see pp. 28,
36).

[113] T. Huang, H. Zou, J. Cui, X. Yang, M. Wang, X. Zhao, J. Zhang, Y. Yuan, Y. Xu, and Y. Liu. “Rfnet:
Recurrent forward network for dense point cloud completion”. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision. 2021, pp. 12508–12517 (see pp. 28, 36).

[114] Y. Shen, C. Feng, Y. Yang, and D. Tian. “Mining point cloud local structures by kernel correlation
and graph pooling”. In: Proceedings of the IEEE conference on computer vision and pattern recognition.
2018, pp. 4548–4557 (see pp. 28, 37).

[115] H. Thomas, C. R. Qi, J.-E. Deschaud, B. Marcotegui, F. Goulette, and L. J. Guibas. “Kpconv: Flexi-
ble and deformable convolution for point clouds”. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision. 2019, pp. 6411–6420 (see pp. 28, 37).

[116] X. Wen, P. Xiang, Z. Han, Y.-P. Cao, P. Wan, W. Zheng, and Y.-S. Liu. “Pmp-net: Point cloud
completion by learning multi-step point moving paths”. In: Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition. 2021, pp. 7443–7452 (see pp. 28, 36, 38).

[117] P. Xiang, X. Wen, Y.-S. Liu, Y.-P. Cao, P. Wan, W. Zheng, and Z. Han. “Snowflakenet: Point cloud
completion by snowflake point deconvolution with skip-transformer”. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision. 2021, pp. 5499–5509 (see pp. 28, 36).

[118] L. Zhou, Y. Du, and J. Wu. “3d shape generation and completion through point-voxel diffusion”.
In: Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021, pp. 5826–5835
(see pp. 28, 36).

[119] H. Xie, H. Yao, S. Zhou, J. Mao, S. Zhang, and W. Sun. “Grnet: Gridding residual network
for dense point cloud completion”. In: European Conference on Computer Vision. Springer. 2020,
pp. 365–381 (see pp. 28, 32, 36–40).

[120] X. Wang, M. H. Ang, and G. H. Lee. “Voxel-based Network for Shape Completion by Leveraging
Edge Generation”. In: Proceedings of the IEEE/CVF International Conference on Computer Vision.
2021, pp. 13189–13198 (see pp. 28, 29, 36, 37).

[121] I. Lim, M. Ibing, and L. Kobbelt. “A convolutional decoder for point clouds using adaptive
instance normalization”. In: Computer Graphics Forum. Vol. 38. 5. Wiley Online Library. 2019,
pp. 99–108 (see pp. 29, 37).

[122] J. J. Park, P. Florence, J. Straub, R. Newcombe, and S. Lovegrove. “DeepSDF: Learning Continuous
Signed Distance Functions for Shape Representation”. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 2019, pp. 165–174 (see p. 29).

[123] J. Chibane, T. Alldieck, and G. Pons-Moll. “Implicit functions in feature space for 3d shape
reconstruction and completion”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 2020, pp. 6970–6981 (see p. 29).

192



Bibliography

[124] P. Erler, P. Guerrero, S. Ohrhallinger, N. J. Mitra, and M. Wimmer. “Points2surf learning implicit
surfaces from point clouds”. In: European Conference on Computer Vision. Springer. 2020, pp. 108–
124 (see p. 29).

[125] P. Guerrero, Y. Kleiman, M. Ovsjanikov, and N. J. Mitra. “Pcpnet learning local shape properties
from raw point clouds”. In: Computer Graphics Forum. Vol. 37. 2. Wiley Online Library. 2018,
pp. 75–85 (see p. 29).

[126] H. Oleynikova, A. Millane, Z. Taylor, E. Galceran, J. Nieto, and R. Siegwart. “Signed distance
fields: A natural representation for both mapping and planning”. In: RSS 2016 Workshop: Geometry
and Beyond-Representations, Physics, and Scene Understanding for Robotics. University of Michigan.
2016 (see p. 29).

[127] J. Zhang, Y. Yao, and L. Quan. “Learning signed distance field for multi-view surface reconstruc-
tion”. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021, pp. 6525–
6534 (see p. 29).

[128] S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. Newcombe, P. Kohli, J. Shotton, S. Hodges, D.
Freeman, A. Davison, et al. “Kinectfusion: real-time 3d reconstruction and interaction using a
moving depth camera”. In: Proceedings of the 24th annual ACM symposium on User interface software
and technology. 2011, pp. 559–568 (see p. 29).

[129] J. Chibane, T. Alldieck, and G. Pons-Moll. “Implicit Functions in Feature Space for 3D Shape
Reconstruction and Completion”. In: IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). IEEE. 2020 (see p. 29).

[130] M. Kazhdan and H. Hoppe. “Screened poisson surface reconstruction”. In: ACM Transactions on
Graphics (ToG) 32.3 (2013), pp. 1–13 (see p. 30).

[131] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang, Z. Li, S. Savarese, M. Savva,
S. Song, H. Su, et al. “Shapenet: An information-rich 3d model repository”. In: arXiv preprint
arXiv:1512.03012 (2015) (see p. 30).

[132] L. P. Tchapmi, V. Kosaraju, H. Rezatofighi, I. Reid, and S. Savarese. “TopNet: Structural Point
Cloud Decoder”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
2019, pp. 383–392 (see pp. 30, 37–40).

[133] L. Pan, X. Chen, Z. Cai, J. Zhang, H. Zhao, S. Yi, and Z. Liu. “Variational Relational Point
Completion Network”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 2021, pp. 8524–8533 (see pp. 30, 40).

[134] S. Koch, A. Matveev, Z. Jiang, F. Williams, A. Artemov, E. Burnaev, M. Alexa, D. Zorin, and
D. Panozzo. “Abc: A big cad model dataset for geometric deep learning”. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019, pp. 9601–9611 (see p. 30).

[135] P. K. Nathan Silberman Derek Hoiem and R. Fergus. “Indoor Segmentation and Support Inference
from RGBD Images”. In: European Conference on Computer Vision (ECCV). 2012 (see pp. 31, 35, 55).

[136] A. Geiger and C. Wang. “Joint 3d object and layout inference from a single rgb-d image”. In:
German Conference on Pattern Recognition (GCPR). Springer. 2015 (see p. 31).

[137] D. Lin, S. Fidler, and R. Urtasun. “Holistic scene understanding for 3d object detection with rgbd
cameras”. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR). 2013 (see p. 31).

[138] S. Liu, Y. HU, Y. Zeng, Q. Tang, B. Jin, Y. Han, and X. Li. “See and Think: Disentangling Semantic
Scene Completion”. In: Advances in Neural Information Processing Systems 31. Ed. by S. Bengio,
H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett. Curran Associates, Inc.,
2018, pp. 263–274 (see pp. 31, 34, 35).

193



Bibliography

[139] A. Dai, A. X. Chang, M. Savva, M. Halber, T. Funkhouser, and M. Nießner. “Scannet: Richly-
annotated 3d reconstructions of indoor scenes”. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. 2017, pp. 5828–5839 (see p. 31).

[140] S.-C. Wu, K. Tateno, N. Navab, and F. Tombari. “Scfusion: Real-time incremental scene recon-
struction with semantic completion”. In: (2020), pp. 801–810 (see p. 31).

[141] M. Tatarchenko, S. R. Richter, R. Ranftl, Z. Li, V. Koltun, and T. Brox. “What do single-view 3d
reconstruction networks learn?” In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 2019, pp. 3405–3414 (see p. 32).

[142] C. Niu, J. Li, and K. Xu. “Im2struct: Recovering 3d shape structure from a single rgb image”. In:
Proceedings of the IEEE conference on computer vision and pattern recognition. 2018, pp. 4521–4529
(see p. 33).

[143] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A.
Rabinovich. “Going deeper with convolutions”. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. 2015, pp. 1–9 (see p. 34).

[144] K. He, X. Zhang, S. Ren, and J. Sun. “Deep residual learning for image recognition”. In: Proceedings
of the IEEE conference on computer vision and pattern recognition. 2016, pp. 770–778 (see p. 34).

[145] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A. J. Davison, P. Kohi, J. Shotton,
S. Hodges, and A. Fitzgibbon. “KinectFusion: Real-time dense surface mapping and tracking”.
In: Mixed and augmented reality (ISMAR), 2011 10th IEEE international symposium on. IEEE. 2011,
pp. 127–136 (see p. 34).

[146] A. Dai, D. Ritchie, M. Bokeloh, S. Reed, J. Sturm, and M. Nießner. “Scancomplete: Large-scale
scene completion and semantic segmentation for 3d scans”. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. 2018, pp. 4578–4587 (see pp. 34, 181).

[147] S. Reed, A. van den Oord, N. Kalchbrenner, S. G. Colmenarejo, Z. Wang, Y. Chen, D. Belov, and
N. de Freitas. “Parallel multiscale autoregressive density estimation”. In: Proceedings of the 34th
International Conference on Machine Learning (ICML). JMLR. org. 2017 (see p. 34).

[148] B. Yang, S. Rosa, A. Markham, N. Trigoni, and H. Wen. “3D Object Dense Reconstruction from a
Single Depth View”. In: arXiv preprint arXiv:1802.00411 (2018) (see p. 34).

[149] M. Gadelha, S. Maji, and R. Wang. “3d shape induction from 2d views of multiple objects”. In:
International Conference on 3D Vision (3DV). 2017 (see p. 35).

[150] P. Zhang, W. Liu, Y. Lei, H. Lu, and X. Yang. “Cascaded context pyramid for full-resolution 3D
semantic scene completion”. In: Proceedings of the IEEE/CVF International Conference on Computer
Vision. 2019, pp. 7801–7810 (see p. 35).

[151] Y. Cai, X. Chen, C. Zhang, K.-Y. Lin, X. Wang, and H. Li. “Semantic scene completion via inte-
grating instances and scene in-the-loop”. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 2021, pp. 324–333 (see p. 35).

[152] B. Gong, Y. Nie, Y. Lin, X. Han, and Y. Yu. “ME-PCN: Point Completion Conditioned on Mask
Emptiness”. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021,
pp. 12488–12497 (see p. 36).

[153] X. Wen, T. Li, Z. Han, and Y.-S. Liu. “Point Cloud Completion by Skip-Attention Network With
Hierarchical Folding”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). 2020 (see pp. 37, 38).

[154] J. Zhang, W. Chen, Y. Wang, R. Vasudevan, and M. Johnson-Roberson. “Point set voting for
partial point cloud analysis”. In: IEEE Robotics and Automation Letters 6.2 (2021), pp. 596–603 (see
p. 38).

194



Bibliography

[155] X. Wang, M. H. A. J., and G. H. Lee. “Cascaded Refinement Network for Point Cloud Completion”.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2020
(see pp. 38–40).

[156] W. Zhang, Q. Yan, and C. Xiao. “Detail preserved point cloud completion via separated feature
aggregation”. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August
23–28, 2020, Proceedings, Part XXV 16. Springer. 2020, pp. 512–528 (see pp. 39, 40).

[157] Z. Huang, Y. Yu, J. Xu, F. Ni, and X. Le. “PF-Net: Point fractal network for 3D point cloud
completion”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
2020, pp. 7662–7670 (see p. 39).

[158] L. Pan. “Ecg: Edge-aware point cloud completion with graph convolution”. In: IEEE Robotics and
Automation Letters 5.3 (2020), pp. 4392–4398 (see p. 40).

[159] L. Yariv, J. Gu, Y. Kasten, and Y. Lipman. “Volume rendering of neural implicit surfaces”. In:
Advances in Neural Information Processing Systems 34 (2021), pp. 4805–4815 (see p. 39).

[160] P. Wang, L. Liu, Y. Liu, C. Theobalt, T. Komura, and W. Wang. “Neus: Learning neural implicit
surfaces by volume rendering for multi-view reconstruction”. In: arXiv preprint arXiv:2106.10689
(2021) (see p. 39).

[161] F. Darmon, B. Bascle, J.-C. Devaux, P. Monasse, and M. Aubry. “Improving neural implicit
surfaces geometry with patch warping”. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 2022, pp. 6260–6269 (see p. 39).

[162] X. Long, C. Lin, P. Wang, T. Komura, and W. Wang. “Sparseneus: Fast generalizable neural surface
reconstruction from sparse views”. In: Computer Vision–ECCV 2022: 17th European Conference, Tel
Aviv, Israel, October 23–27, 2022, Proceedings, Part XXXII. Springer. 2022, pp. 210–227 (see p. 39).

[163] H. Wang, Q. Liu, X. Yue, J. Lasenby, and M. J. Kusner. “Unsupervised point cloud pre-training
via occlusion completion”. In: Proceedings of the IEEE/CVF International Conference on Computer
Vision. 2021, pp. 9782–9792 (see p. 40).

[164] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang, Z. Li, S. Savarese, M. Savva,
S. Song, H. Su, J. Xiao, L. Yi, and F. Yu. “ShapeNet: An Information-Rich 3D Model Repository”.
In: CoRR abs/1512.03012 (2015) (see p. 55).

[165] M. Zinkevich, M. Weimer, L. Li, and A. J. Smola. “Parallelized stochastic gradient descent”. In:
Advances in neural information processing systems. 2010, pp. 2595–2603 (see p. 146).

[166] R. Hanocka, G. Metzer, R. Giryes, and D. Cohen-Or. “Point2Mesh: A Self-Prior for Deformable
Meshes”. In: ACM Trans. Graph. 39.4 (2020) (see p. 181).

[167] D. Tzionas and J. Gall. “3d object reconstruction from hand-object interactions”. In: Proceedings of
the IEEE International Conference on Computer Vision. 2015, pp. 729–737 (see p. 181).

[168] B. Tekin, F. Bogo, and M. Pollefeys. “H+ o: Unified egocentric recognition of 3d hand-object
poses and interactions”. In: Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition. 2019, pp. 4511–4520 (see p. 181).

[169] A. Pumarola, E. Corona, G. Pons-Moll, and F. Moreno-Noguer. “D-nerf: Neural radiance fields
for dynamic scenes”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 2021, pp. 10318–10327 (see p. 181).

[170] Z. Li, T. Müller, A. Evans, R. H. Taylor, M. Unberath, M.-Y. Liu, and C.-H. Lin. “Neuralangelo:
High-Fidelity Neural Surface Reconstruction”. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 2023, pp. 8456–8465 (see p. 181).

195





List of Figures

1.1 An illustration of information lost due to 2D projections from the edges of a 3D
mesh with limited views. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 An exemplar semantic completion from a 3D partial scan in (a) presented in
point cloud which is back-projected from a single depth image with camera
intrinsic, and the expected semantically completed 3D scene in (b). . . . . . . 7

2.1 An example of a multi-layer perceptron (MLP) composed of 3 fully-connected
layers with biases, which are followed by non-linear activations a. . . . . . . . 13

2.2 An example of an auto-encoder with a din-dimensional input x, built with a
multi-layer perceptron, where both the encoder and decoder are composed of a
3-layer-perceptron connected by a dlat-dimensional latent code z. . . . . . . . 14

2.3 A skip-connection formed by feature summation in ResNet [13] variants fed
with input x, where two fully-connected layers are skipped. . . . . . . . . . . 15

2.4 An exemplar RNN module. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5 An example of a transformer [38] with encoded input E(x). Two cascaded
fully-connected layers which are connected by a ReLU activation form the MLP. 16

2.6 Discriminator D helps optimize generator G. Notice that z could be extracted
from an encoder E from an additional input x . . . . . . . . . . . . . . . . . . . 19

2.7 An example of a variational auto-encoder (VAE) with four convolutional mod-
ules in both the encoder and decoder individually. . . . . . . . . . . . . . . . . 21

5.1 Taking a single depth image as input, our proposed AdversarialSSC [10] outper-
forms previous works on revealing more furniture. . . . . . . . . . . . . . . . . 42

5.2 The proposed ForkNet [8] can semantically complete a real scene from a depth
image captured from a single camera view. Fine structures of an object can be
reconstructed with details with our model trained on ShapeNet [164] dataset. 55

5.3 The single view object completion with the proposed SoftPoolNet [6] shows more
smoothness than our previous volumetric method [8]. It accurately presents
the separation between upper and lower wings of the plane compared to other
point cloud completion works based on PointNet [40] feature. . . . . . . . . . 74

5.4 Our proposed SoftPool++ [5] shows local structures such as the tires better
than approaches built upon PointNet [40] feature, while more input geometries
are kept compared to our previous work of SoftPoolNet [6] contributed by the
proposed point cloud skip-connection. . . . . . . . . . . . . . . . . . . . . . . . 101

5.5 The proposed Disp3D [4] is the first few works which can semantically recon-
struct a scene in the form of a point cloud with an end-to-end model. . . . . . 125

197



List of Figures

5.6 By understanding the type of the grasped object, our proposed model [9] can
produce realistic hand gestures from a single RGB image even when the hand is
partially occluded by the object. . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.7 The proposed nebula variational coder [3] (NVC) on different architectures that
are designed to solve problems in different tasks. . . . . . . . . . . . . . . . . . 157

198



List of Tables

4.1 Evaluation on semantic scene completion. surf indicates that only observed
geometries are validated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 Evaluation on semantic scene completion. The value of res. (r) indicates the
output volumetric resolution, which is r× 0.6r× r. . . . . . . . . . . . . . . . 35

4.3 Evaluation on the object completion based on the Chamfer distance trained with
L1 distance (multiplied by 104) with the output resolution of 2,048. . . . . . . 37

4.4 Evaluation on the object completion based on the Chamfer distance trained with
L2 distance (multiplied by 104) with the output resolution of 2,048. . . . . . . 38

4.5 Evaluation on the object completion based on the Chamfer distance trained with
L1 distance (multiplied by 103) with the output resolution of 16,384. . . . . . 38

4.6 Evaluation on the object completion based on the Chamfer distance trained with
L2 distance (multiplied by 103) with the output resolution of 16,384. . . . . . 39

4.7 Evaluation on the object completion based on the F-Score@1% trained with L2
Chamfer distance and the output resolution of 16,384. . . . . . . . . . . . . . 39

4.8 Evaluation on the object completion based on the F-Score@1% trained with L2
Chamfer distance and the output resolution of 16,384. . . . . . . . . . . . . . 40

199






	Titlepage
	Abstract
	Acknowledgments
	Chronological List of Authored Publications
	I Introduction
	1 Introduction
	1.1 Background
	1.2 3D Reconstruction from a Single View
	1.3 Structure of the Dissertation

	2 Fundamental Theories
	2.1 Deep Learning
	2.1.1 Operators
	2.1.2 Architecture
	2.1.3 Loss Functions
	2.1.4 Optimizer

	2.2 Training Techniques
	2.2.1 Adversarial Training
	2.2.2 Metric Learning
	2.2.3 Variational Constraint


	3 Learning-based Single View 3D Completion
	3.1 3D Semantic Completion
	3.1.1 3D Completion
	3.1.2 Semantic Completion

	3.2 3D Representations
	3.2.1 Volumetric Data
	3.2.2 Point Cloud
	3.2.3 Implicit Surface

	3.3 Evaluation
	3.3.1 Dataset
	3.3.2 Metrics


	4 Recent History
	4.1 3D Completion
	4.2 Volumetric Inference
	4.3 Point Cloud Inference
	4.4 Embedding of the 3D Completion Model

	5 Contributions
	5.1 Volumetric Completion
	5.1.1 Adversarial Semantic Scene Completion from a Single Depth Image (International Conference on 3D Vision 2018)
	5.1.2 ForkNet: Multi-Branch Volumetric Semantic Completion From a Single Depth Image (International Conference on Computer Vision 2019)

	5.2 Point Cloud Completion
	5.2.1 SoftPoolNet: Shape Descriptor for Point Cloud Completion and Classification (European Conference on Computer Vision 2020 Oral)
	5.2.2 SoftPool++: An Encoder-Decoder Network for Point Cloud Completion (International Journal of Computer Vision 2022)
	5.2.3 Learning Local Displacements for Point Cloud Completion (Conference on Computer Vision and Pattern Recognition 2022)

	5.3 Generalizing Feature Learning for Other Tasks
	5.3.1 Variational Object‐aware 3D Hand Pose from a Single RGB Image (IEEE Robotics and Automation Letters 2019)
	5.3.2 Self‐supervised Latent Space Optimization with Nebula Variational Coding (IEEE Transactions on Pattern Analysis and Machine Intelligence 2022)



	II Conclusion and Future Work
	6 Conclusion
	7 Future Works

	III Appendix
	Bibliography
	List of Figures
	List of Tables


