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Abstract

Virtualization technology has undergone a paradigm shift, in which it has turned its focus
from virtualizing servers to assisting the security of operating systems. The technological
drive has made virtualization an omnipresent and integral element in the digital world.
Most of the modern application processors have added a wide-ranging set of hardware
extensions to support system virtualization. The accompanied technological advances and
the resulting benefits in regard to resource isolation have inspired researchers to change
their perspective on virtualization and to form novel virtualization-assisted techniques for
dynamicbinary analysis and operating system defenses. Their motivation has helped them
to repurpose the virtualization extensions for security. Specifically, they suggested to move
security services out of the operating system into an isolated environment guarded by the
hypervisor. Over time, virtual machine introspection have evolved and proven effective,
even against sophisticated malicious actors; the strong isolation and inspection capabilities
of the hypervisor ensure that even compromised virtual machines cannot easily mislead
or directly manipulate the security frameworks, which retain an unimpaired view over the
virtual machine’s binary state. These capabilities have led to a substantial rise in adoption
of security-driven virtualization techniques in private and industry sectors leveraging
virtualization for dynamic binary analysis and operating system security.

Disregarding the benefits of virtualization-assisted security frameworks, prior work fa-
ces a set of challenges. For instance, a general limitation of virtualization-assisted security
frameworks is that they cannot be deployed on-demand; they require a compliant hyper-
visor to be set up in advance underneath the target operating system to implement the
necessary foundation. Further, modern virtual machine introspection based frameworks
rely on hardware-supported capabilities to dynamically analyze sophisticated malware in
a stealthy way. While these capabilities have evolved and shown great potential on x86-
based, and especially Intel architectures, they lack the necessary foundation for virtual
machine introspection to be equally effective on other architectures. For instance, this is
one of the reasons why ARM has received insufficient attention with regard to stealthy
analysis, despite its breakthrough and increasing acceptance in the server market. Un-
deniably, the motivation behind moving security services into isolated environments has
helped security experts gain improved inspection, resilience, and stealth capabilities with



regard to virtual machine introspection based dynamic analysis of sophisticated malwa-
re. Yet, virtualization-assisted operating system security frameworks do not always need
to fully outsource their logic and capabilities; this strategy constrains the portability of
virtualization-assisted security measures as they rely on the logic integrated into the hy-
pervisor or a security framework operating inside a different virtual machine.

In this work, we explore novel virtualization-assisted techniques to further enhance
their capacity with regard to security by addressing the above challenges. Specifically,
we position our research around two main pillars, which guide our work towards im-
proving the state-of-the-art virtualization-assisted primitives for dynamic binary analysis
and operating system security. We begin our work by establishing a foundation for both
research directions that allows us to deploy arbitrary virtualization-assisted frameworks
on-demand. In this context, we address the first of the presented challenges by introducing
a thin microkernel-based hypervisor, WhiteRabbit, which we use to dynamically deploy
virtualization-assisted primitives. We exemplify a scenario by installing a virtual machine
introspection framework underneath a running Linux system, without leaving any in-
guest artifacts behind. We demonstrate that the virtualization overhead of our prototype
can compete with prominent hypervisors and hence presents a viable alternative.

We then turn our attention towards the first pillar, namely improving the state-of-the-art
of virtualization-assisted primitives for dynamic binary analysis. Specifically, we develop
novel primitives for setting and single-stepping software breakpoints on ARMv7 and
ARMVS application processors—specifically on the AArch32 and AArch64 execution state
of the ARMv8 architecture—in a stealthy way. To achieve this, we repurpose the virtu-
alization extensions to overcome the shortcomings of the hardware-intended monitoring
mechanisms. We extend the Xen Project hypervisor with the ability to dynamically allocate
and switch among different second level address translation tables on ARM to define diffe-
rent views on the guest-physical memory. To the best of our knowledge, we are the first to
leverage this capability to hide software breakpoints in the guest’s memory on AArch64.
By additionally de-synchronizing the TLB-organization, we manage to establish a stealthy
solution on AArch32. We demonstrate the effectiveness of our work by equipping the
state-of-the-art dynamic binary analysis framework, DRAKVUF, with our primitives, and
hence establish the foundation for stealthy dynamic binary analysis on ARM.

By addressing the second pillar of our research, we utilize virtualization to fortify
security-critical operating system components. We introduce selective memory protection
(xMP) primitives to empower guests with the ability to isolate and protect sensitive data
in isolated xXMP domains in kernel and user space against data-oriented attacks. We do
no longer consider the system’s virtualization extensions as components that are available
solely to the hypervisor. Instead, we incorporate them as inherent building blocks into the
operating system’s subsystems, and hence allow them to define custom policies. Thus, we
interface the Linux memory management with Xen to define different views on the guest-
physical memory, which we repurpose for creating disjoint xMP domains. Combined with
Intel’s in-guest EPTP switching capabilities, we do not require the virtual machine to
interact with the hypervisor to maintain the set of xMP domains, once they have been set
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up. By additionally equipping pointers to data inside xMP domains with context-bound
HMACs, we manage to obstruct data-oriented attacks. We apply xXMP to process credentials
and page tables in kernel space, and cryptographic material of selected applications in user
space. We show that the xMP primitives entail only a limited overhead and present an
effective defense against data-oriented attacks.

Finally, we conclude our research by focusing on the next higher abstraction level of
the virtualization technology. Specifically, we enhance the security of modern operating
system level virtualization techniques (containers) on Linux. We introduce Jessk, a static
analysis based framework for tailoring policies for the Linux Secure Computing (seccomp)
mode. JessE utilizes an abstract interpretation based constant propagation to identify an
over-approximated set of system call numbers the binaries in a specific Docker container
are authorized to invoke. In addition, we combine Jesse with the state-of-the-art container
and library debloating techniques to narrow down only the necessary regions of the libc,
which Jesse considers during the analysis. Once we extract the authorized system calls,
we compile seccomp policies to restrict access to unnecessary, and potentially vulnerable
system calls. Through our prototype, we demonstrate that Jesse is an effective means to
thwart existing real-world container escalation exploits.

Overall, through our research, we demonstrate that the potential of virtualization tech-
nology has not yet been explored to its full extent with regard to security. Our prototypes
reveal that the introduced virtualization-assisted primitives do not only advance the state-
of-the-art in dynamic binary analysis, but also open and prospect new horizons of novel
operating system security architectures.
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Kurzfassung

Die Virtualisierungstechnologie hat einen Paradigmenwechsel vollzogen, bei dem sie ih-
ren Schwerpunkt von der Servervirtualisierung auf die Unterstiitzung der Sicherheit von
Betriebssystemen verlagert hat. Der technologische Fortschritt hat die Virtualisierung zu
einem allgegenwirtigen und integralen Bestandteil der digitalen Welt gemacht. Heute
haben die meisten modernen Anwendungsprozessoren eine breit-gefacherte Palette von
Hardwareerweiterungen zur Unterstiitzung der Virtualisierung eingefiihrt. Die sich dar-
aus ergebenden Vorteile im Hinblick auf die Ressourcenisolierung haben Forscher dazu
inspiriert, ihre Perspektive auf die Virtualisierungstechnologie zu d&ndern, um neue vir-
tualisierungsgestiitzte Techniken fiir die dynamische Bindranalyse und den Schutz von
Betriebssystemen zu entwickeln. Um dies zu erreichen, haben Forscher die Konzepte
der hardwaregestiitzten Virtualisierungserweiterungen neu interpretiert und fiir die Sys-
temsicherheit umfunktioniert. Insbesondere schlugen sie vor, Sicherheitsdienste aus dem
Betriebssystem in eine isolierte Umgebung zu verlagern, die vom einem Hypervisor be-
wacht wird. Daraus hat sich im Laufe der Zeit ein neuer Mechanismus entwickelt, der
als Introspektion virtueller Maschinen bezeichnet wird. Dieses Verfahren hat sich selbst
gegen raffinierte boswillige Akteure als wirksam erwiesen. Die ausgepréagten Fahigkeiten
des Hypervisors im Bezug auf die Ressourcenisolierung und Inspizierung stellen sicher,
dass selbst kompromittierte virtuelle Maschinen die ausgelagerten Sicherheitsdienste nicht
leicht irrefiihren oder direkt manipulieren konnen, weil die Sicherheitsdienste trotz einer
potenziellen Systemkompromittierung eine unbeeintrachtigte Sicht auf den bindren Zu-
stand der virtuellen Maschine beibehalten. Aus diesem Grund haben diese Fihigkeiten
zu einem erheblichen Anstieg der Akzeptanz von sicherheitsorientierten Virtualisierungs-
techniken im privaten sowie im industriellen Sektor fiir die dynamische Bindranalyse und
die Sicherheit von Betriebssystemen beigetragen.

Abgesehen von den Vorteilen, die virtualisierungsgestiitzte Sicherheitsdienste mit sich
bringen, stehen vorherige Forschungsarbeiten vor einer Reihe von Herausforderungen.
Beispielsweise besteht eine allgemeine Einschrankung virtualisierungsgestiitzter Sicher-
heitsdienste darin, dass sie nicht spontan auf Abruf eingesetzt werden konnen; Sie erfordern
einen kompatiblen Hypervisor, der im Voraus eingerichtet werden muss, um die erforderli-
che Grundlage zu implementieren. Dartiber hinaus verlassen sich moderne Dienste, die auf
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der Introspektion virtueller Maschinen basieren, auf hardwaregestiitzte Funktionen, um
technisch anspruchsvolle Malware auf verdeckte Weise dynamisch zu analysieren. Obwohl
sich diese Fahigkeiten mit der Zeit weiterentwickelt und grofSes Potenzial auf x86-basierten
und insbesondere Intel-Architekturen gezeigt haben, fehlt ihnen die notwendige Grund-
lage, um auf anderen Architekturen gleichermafsen effektiv zu sein. Dies ist zum Beispiel
einer der Griinde, warum ARM bisher trotz seines Durchbruchs und der zunehmenden
Akzeptanz auf dem Servermarkt nur unzureichende Aufmerksamkeit im Hinblick auf
verdeckte Analyse erhalten hat. Die Motivation, Sicherheitsdienste in isolierte Umgebun-
gen zu verlagern, hat Sicherheitsexperten unbestreitbar zu einer verbesserten Inspektion,
Widerstandsfahigkeit und Tarnung in Hinsicht auf dynamische Analyse anspruchsvoller
Malware verholfen. Allerdings miissen virtualisierungsgestiitzte Sicherheitsdienste fiir Be-
triebssysteme ihre Logik und Fahigkeiten nicht immer vollstandig auslagern. Tatsdchlich
schrankt diese Strategie die Portabilitét virtualisierungsgestiitzter Sicherheitsmafsnahmen
ein, weil sich die ausgelagerten Dienste vom eingesetzten Hypervisor abhédngig machen.

In dieser Arbeit untersuchen wir neue virtualisierungsgestiitzte Techniken, um ihre Ka-
pazitdt im Hinblick auf die Sicherheit weiter zu verbessern. Um dies zu erreichen gehen
wir die oben genannten Herausforderungen an. Insbesondere positionieren wir unsere
Forschung um zwei Hauptsdulen, die unsere Arbeit stiitzen, um den Stand der Tech-
nik von virtualisierungsgestiitzten Grundbausteinen fiir die dynamische Bindranalyse und
die Sicherheit von Betriebssystemen zu verbessern. Bevor wir uns jedoch den beiden Sdulen
widmen, beginnen wir unsere Arbeit, indem wir eine Grundlage fiir beide Forschungsrich-
tungen aufstellen. Diese Grundlage erlaubt uns beliebige virtualisierungsgestiitzte Dienste
dynamisch—auf Bedarf—bereitzustellen. In diesem Zusammenhang gehen wir die erste
der vorgestellten Herausforderungen an, indem wir einen leichtgewichtigen Mikrokernel-
basierten Hypervisor, den wir als WhiteRabbit bezeichnen, vorstellen. Wir verwenden
WhiteRabbit, um virtualisierungsgestiitzte Bausteine dynamisch zur Verfiigung zu stellen.
Wir veranschaulichen ein Szenario, in dem wir einen Dienst zur Introspektion virtueller
Maschinen dynamisch unter einem aktiven Linux-System installieren, ohne jegliche Ana-
lyseartefakte im Gastsystem zu hinterlassen. Wir zeigen, dass der virtualisierungsbedingte
Mehraufwand unseres Prototyps mit fithrenden Hypervisor Systemen konkurrieren kann
und somit eine realistische Alternative zu heutigen Systemen darstellt.

AnschliefSend wenden wir uns der ersten Sdule zu, die sich damit befasst, den Stand der
Technik von virtualisierungsgestiitzten Bausteinen fiir die dynamische Binédranalyse zu
verbessern. Hierfiir untersuchen wir die ARM Architektur, um Defizite zu identifizieren
und neuartige Techniken zu entwickeln, die fiir eine effektive virtualisierungsgestiitzte dy-
namische Bindranalyse erforderlich sind. Insbesondere entwickeln wir neuartige Baustei-
ne, die es uns ermoglichen auf ARMv7- und ARMv8-Anwendungsprozessoren—speziell
auf der AArch32 beziehungsweise AArch64 Architektur—getarnte Software-Breakpoints
zu setzen und zu iiberspringen. Diese Bausteine bleiben fiir das Gastsystem verborgen
und stellen die Basis fiir eine getarnte dynamische Bindranalyse dar. Um dies zu errei-
chen, nutzen wir die Virtualisierungserweiterungen des Systems in einer neuen Weise,
die es uns ermoglicht die nicht-vorhandene Hardwareunterstiitzung in Hinblick auf eine



getarnte Bindranalyse zu ersetzen. Hierfiir erweitern wir den Xen-Projekt-Hypervisor um
die Fahigkeit, dynamisch verschiedene erweiterte (Second Level) Seitentabellen auf ARM
zuzuweisen und zwischen ihnen zu wechseln, um verschiedene Sichten auf den Gast-
physischen Speicher zu definieren. Nach unserem besten Wissen, sind wir die ersten, die
diese Fahigkeit nutzen, um Software-Breakpoints im Speicher des Gastes auf AArch64 zu
verstecken. Indem wir zuséatzlich den Assoziativspeicher, also den Translation Lookaside
Buffer des Systems de-synchronisieren, gelingt es uns, eine getarnte Losung auf AArch32
zu etablieren. Wir demonstrieren die Effektivitdt unserer Arbeit, indem wir den dyna-
mischen Bindranalysedienst DRAKVUF mit unseren Bausteinen ausstatten und somit die
Grundlage fiir eine getarnte dynamische Bindranalyse auf ARM ermoglichen.

Fiir die zweite Sdule unserer Forschung nutzen wir Virtualisierungstechniken, um si-
cherheitskritische Betriebssystemkomponenten zu hdrten. Wir stellen Bausteine fiir die
Selective Memory Protection (xMP), also fiir einen selektiven Speicherschutz vor, die
Gastsystemen ermdglichen, sensible Daten in isolierten xMP-Doménen im Benutzeradress-
raum und im Adressraum des Betriebssystemkerns zu isolieren und vor datenorientierten
Angriffen zu schiitzen. In diesem Zusammenhang betrachten wir die Virtualisierungser-
weiterungen des Systems nicht mehr als Komponenten, die nur dem Hypervisor allein zur
Verfiigung stehen. Stattdessen binden wir sie als inhdrente Bausteine in die Subsysteme
des Betriebssystems ein und erlauben ihnen eigene Regeln zu definieren. So erméglichen
wir eine Schnittstelle zwischen der Linux-Speicherverwaltung und Xen, um verschiedene
Sichten auf den Gast-physischen Speicher zu definieren. Wir nutzen die unterschiedlichen
Sichten auf den Gast-physischen Speicher, um disjunkte xMP-Doménen zu erstellen. In-
dem wir zusétzlich Zeiger auf Daten innerhalb von xMP-Doménen mit kontextgebundenen
HMACSs ausstatten, gelingt es uns, datenorientierte Angriffe zu unterbinden. Wir wenden
unsere xMP Implementierung auf Datenstrukturen mit Prozessberechtigungen und Sei-
tentabellen im Adressraums des Betriebssystemkerns und auf kryptographisches Material
ausgewdhlter Anwendungen im Benutzeradressraum an. Schliefilich zeigen wir, dass die
xMP-Bausteine nur einen begrenzten Rechenmehraufwand verursachen und gleichzeitig
eine effektive Verteidigung gegen datenorientierte Angriffe darstellen.

Wir schlieffen unsere Forschung ab, indem wir uns auf die ndchsthchere Abstrakti-
onsebene der Virtualisierungstechnologie konzentrieren. Insbesondere verbessern wir die
Sicherheit moderner Virtualisierungstechniken auf Betriebssystemebene (Container) unter
Linux. In diesem Kontext stellen wir Jessg, einen auf statischer Analyse basierender Dienst
zur Anpassung von Richtlinien fiir den Linux Secure Computing (seccomp) Modus, vor.
Jesse verwendet eine auf abstrakten Interpretation basierende Konstantenpropagierung,
um eine Obermenge von Systemaufruf-Nummern zu identifizieren, die die Programme in
einem bestimmten Docker-Container aufrufen diirfen. Dariiber hinaus kombinieren wir
Jesse mit Container- und Bibliotheks-Debloating-Techniken, um nur die notwendigen Be-
reiche der libc Bibliothek einzugrenzen, die Jesse widhrend der Analyse beriicksichtigt.
Sobald wir die autorisierten Systemaufrufe extrahiert haben, kompilieren wir seccomp-
Richtlinien, um den Zugriff auf nicht-bendtigte und potenziell verwundbare Systemauf-
rufe einzuschranken. Durch unseren Prototypen demonstrieren wir, dass Jesse in der Lage

el



ist existierende Container-Eskalations-Exploits in der realen Welt zu verhindern.

Insgesamt zeigen wir durch unsere Forschung, dass das Potenzial der Virtualisierungs-
technologie in Bezug auf die Sicherheit noch nicht vollstandig ausgeschopft ist. Unsere
Prototypen zeigen, dass die eingefiihrten virtualisierungsgestiitzten Bausteine nicht nur
den Stand der Technik in der dynamischen Binédranalyse voranbringen, sondern auch neue
Horizonte von Betriebssystem-Sicherheitsarchitekturen eréffnen.
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Chapter

Introduction

Change has never happened this fast before, and it will never be this slow again.
— GRAEME WooD

Virtualization technology has come a long way since its origin at IBM in 1960s. At
that time, IBM implemented CP-40, the first hypervisor that supported virtual memory
and full system virtualization for IBM’s System /360 mainframes [Bro09]. The CP-40 hy-
pervisor and, in particular, its successor CP-67 was a turning point for IBM, and since
then has inspired future technology and paved the way for virtualization, as we know it
today. System virtualization has had its peak in the 1960s and 1970s, yet, in the 1980s
and 1990s, the lack of computing power has restrained the development of hypervisors
for new architectures [Bro09]. In the past two decades, virtualization has experienced
its renaissance. The continual technological advances have gained momentum required
to increase the computing power to an extent to which virtualization became attractive;
virtualization has improved the utilization and energy consumption of the thriving hard-
ware resources, which were otherwise not exploited to their full capacity. Over time, most
of the modern application processor architectures added hardware support for virtual-
ization. In fact, today, virtualization is omnipresent and has become an integral element
of our everyday lives. Driven by the concept of abstraction, virtualization techniques are
embedded in different architectural levels, with each being responsible to implement an
isolated and simplified view on the underlying resources [SN05]. One of the most promi-
nent application scenarios is the modern cloud infrastructure that utilizes virtualization
technology to improve the availability and overall resource utilization of physical servers;
clustering a high number of virtual machines on a small set of powerful physical machines
helps distributing and optimally utilizing the available resources that would otherwise
not reach their capacities. At the same time, particularly with regard to the increasing
complexity of malware and the rising value of data privacy and integrity, the security de-
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1 Introduction

mands on such infrastructures exploded. Consequently, the rising demands have strongly
influenced the research on operating system (OS) security through virtualization, which
drives the main focus of this work. To motivate our work, the following summarizes our
main research direction, the entailed challenges that we aim to overcome, and our vision
of virtualization-assisted OS security that, we believe, will strongly affect the design of
future hypervisor and OS architectures.



1.1 Motivation

1.1 Motivation

Exploiting vulnerabilities has never been as lucrative as it is today. The modern world
of digitalization and highly interconnected systems has inspired malicious actors and
organizations to form a new business model that utilizes a wide range of malware types,
with each type designed to target a particular group of interest. Different malware types are
classified into different categories based on the applied infection and execution strategy,
volatility, and stealth [Vog15, Rut06a]. Often, the concept of sophisticated and stealthy
malware hinges on unauthorized behavior modification of high-privileged and security-
sensitive software [RutO6a]. The identification of the malicious behavior is often extremely
difficult, yet, vital for providing remedies in form of security patches.

To further complicate the situation, malware authors additionally impede static and
dynamic analysis by resorting to obfuscation techniques [UPBSB15, JRWM15]. For in-
stance, run-time packers present one of the most commonly applied obfuscation methods
for malware. Packers are responsible—contrary to what the term, packer, implies—for
unpacking (i.e., reconstructing) the original malware binary at run-time. This process,
e.g., decompresses or decrypts the packed code in memory and can involve an arbitrary
number of unpacking layers. Each layer is responsible for unpacking another layer until
the original binary has been restored. Sophisticated malware packers involve multiple,
potentially encrypted layers of unpacking elements that can be interleaved with code se-
quences of the packed binary, and even distributed among different processes. Further
combined with anti-debugging and integrity validation checks [Rut04, CAM 08, BCK"10,
SAM14, BBF"16, MANP17], it takes a lot of effort, even for highly skilled reverse engineer-
ing experts, to fully comprehend the malicious behavior and intent, and to narrow down
the malware’s point of entry. Taken into account the time and finances required to detect,
analyze, and counteract security breaches renders this an economically unsustainable and
almost hopeless situation, without having the right tools at hand.

The growing complexity of modern malware drives security experts to increasingly
leverage virtualization technology to assist malware detection and analysis [CN01, GRO3,
DRSL08, PSE11, GDX]J11, VKSE13, LMP*14, PLM18]. In fact, almost two decades ago,
researchers became aware of the benefits offered by virtualization with respect to secu-
rity [CNO1]. They have suggested to move security applications out of the OS into a high-
privileged environment that can be realized through system virtualization. In essence,
system virtualization adds a high-privileged software layer, the hypervisor (also known as
the virtual machine monitor (VMM)), between the OS and the underlying hardware.! The
VMM manages system resources and exposes only a narrow virtual hardware interface,
the virtual machine (VM), that forms an isolated execution environment for guest OSes. In
this way, the VMM bares only a limited attack vector, yet, at the same time, it maintains a

'Throughout this work, we use the terms hypervisor and VMM interchangeably to describe the high-
privileged virtualizing software layer that implements a virtual hardware interface, beneath which it
transparently manages hardware resources on behalf of guest OSes [SNO05].
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1 Introduction

complete and untainted view over the entire VM’s binary and register state [PG74, Pfo13].?

These properties have inspired researchers to form novel virtualization-assisted tech-
niques for security, which they have coined virtual machine introspection (VMI) [GRO3].
VMI assists security experts to analyze and manipulate the state of guest OSes from the
outside. The VMM'’s strong isolation capabilities ensure that even compromised VMs can-
not manipulate the virtualization-assisted monitors, which can operate from a different
VM or from the VMM itself. More importantly, virtualization lends external monitors
an omniscient character and inherently hinders malware inside VMs from deluding the
analysis, and thus has become indispensable for malware analysts and reverse engineers.

Over time, VMI techniques have proven effective. In particular the rich variety of
hardware-supported virtualization extensions of the x86 architecture—with a strong em-
phasis on Intel—has given research on VMI the necessary ground for inspiration and
progress. Yet, to benefit from these techniques, a VMI-aware VMM must be set up in
advance underneath the target system; a constraint for the massive application of VML
In other words, systems that were not explicitly set up for VMI cannot benefit from these
capabilities. Without VMI, to perform memory forensics, reverse engineers would need
to resort to complex data-recovery methods to extract memory contents by relying on po-
tentially compromised OS mechanisms. To break through the given constraint, one must
call into question the rigid deployment strategy of VMMs. Specifically, if we recall so-
phisticated virtualization-based rootkits that employ on-the-fly virtualization techniques
to subvert OSes [RutO6b, RT07, Zov06], the question arises whether we can adopt similar
techniques to deploy thin VMM s to facilitate VMI and other virtualization-assisted frame-
works on-demand. Besides, inspired by the ingenuity of attackers, one should investigate
the benefits of such on-the-fly deployment strategies and question whether or not other
hardware architectures can benefit from similar mechanisms.

Regardless of the VMM deployment strategy, virtualization has helped defenders to
gain the upper hand in the never-ending arms race against the malicious actors. In
fact, over the past few years, there has been a substantial rise in adoption of virtualiza-
tion technology in analysis frameworks in both commercial [VMR20, Fir20, Bit20] and
open-source applications [PSE11, VKSE13, LMP*14, Lib20, Vol20]. Facing the new chal-
lenge, attackers have quickly adapted and equipped malware with anti-virtualization
techniques [CAM ™08, BCK™10, SAM14, MANP17], which scrutinize the execution envi-
ronment for artifacts to reveal and evade VMI-based analysis frameworks. This feature
has lent malware a split personality that actively avoids revealing its logic to security
experts and hence poses a new challenge for reverse engineers. This situation, in turn,
has formed a new incentive for VMI researchers to investigate a novel property, namely
stealth, that has not received sufficient attention in the past. Even though perfect VM
transparency (i.e., the ability of being undistinguishable with real hardware) is infea-

2We disregard AMD Secure Encrypted Virtualization (SEV), AMD SEV Encrypted State (SEV-ES), and
AMD SEV Secure Nested Paging (SEV-SNP) extensions to encrypt the guest’'s memory (and register
state) to make them inaccessible to a benign, yet, potentially vulnerable VMM.
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sible in practice [GAWFO07], the modern trend towards system consolidation through
virtualization renders the goal of VM transparency obsolete. Discrepancies between
physical and virtual machines cannot completely hide the presence of a virtual envi-
ronment [Rut04, CAM'08, Pfol3, SAM14, MANP17, TBZ*18].

At the same time, server virtualization is becoming omnipresent. Thus, a virtualized
system does not necessarily indicate that its sole purpose is malware analysis. Therefore, it
does not make economic sense for attackers to exclude virtual environments. Nevertheless,
malware can still detect VM-based analysis systems, through artifacts, ranging from guest-
accessible memory to register contents. Contrary to VM transparency, this highlights the
value of the stealth property. Previous research has shown that VMI-based analysis
frameworks can achieve a high degree of stealth [PSE11, Pfo13, LMP*14] by means of
modern hardware virtualization extensions of the x86 architecture. Contrary to x86, other
architectures struggle to foresee hardware capabilities that facilitate, in particular, stealthy
VML This places a great emphasis on the question of how to conceal VMI-based analysis
frameworks on architectures without the necessary hardware support.

One concrete example is given by the ARM architecture. ARM has become the leading
processor architecture for mobile, wearable, and Internet of Things (IoI') devices. Through
the continuously increasing computing performance and the added hardware support for
virtualization, ARM has recently started claiming a bigger slice of the server market pie as
well [Ama20, The20b]. As such, it will not be long before malware starts more regularly
targeting the ARM architecture. Therefore, the stealthy operation of VMI on ARM is an
obligation to successfully analyze and proactively mitigate this growing threat. Stealthy
VMI has proven itself perfectly suitable for malware analysis on x86—the dominant player
in the virtualization and server industry—, yet, it lacks the foundation required to be
equally effective on ARM [PLM*18]. While previous work employs VMI techniques on
ARM for security purposes [YY12, GV]14, TKFC15], it does not emphasize its stealthy
nature. Consequently, cloaking analysis frameworks remains an open question and em-
phasizes the need for novel primitives, which empower stealthy monitoring on ARM.

Until recently, the virtualization extensions of the system’s Instruction Set Architecture
(ISA) have served the sole purpose of supporting the VMM in managing, isolating, and
efficiently distributing the system’s hardware resources among different VMs. With VMI,
this perspective has changed; virtualization extensions are used to facilitate powerful
malware detection and analysis systems. Yet, we claim that the capacity and possibilities
provided by virtualization have not yet been explored to their full extent. From this
vantage point, we believe that modern OS and VMM architectures require a paradigm
shift, in which services of the VMM can become an integral part of the OS. Our vision is
to integrate, in particular, the strong memory isolation capabilities of the virtualization
extensions into the guest to assist critical elements of the OS. Consequently, in this work, we
investigate entirely new ways of repurposing virtualization extensions to define in-guest
policies, which are enforced by the underlying VMM. This work further considers ways of
supporting the security of OS-level virtualization and ultimately sets the ground for novel
in-guest primitives that can form a strong defence in kernel and user space.
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1 Introduction

1.2 Research Questions

This work intends to investigate and highlight the capabilities of virtualization techniques
that have not yet been explored to their full potential with regard to security. Specifically,
we approach this high-level goal from two different security perspectives, in which we
leverage virtualization for (i) stealthy dynamic binary analysis and (ii) OS security. To
accommodate both perspectives, we form the following two main research questions, the
answer to which renders the main focus of this work. The first question addresses how to
employ virtualization to improve the state-of-the-art foundation for dynamic binary and
malware analysis techniques. The second question considers aspects of virtualization that
can assist modern OSes in guarding sensitive components against sophisticated attacks. To
complement both questions, we take into account the x86 as well as the ARM architecture.’
Overall, our key research questions can be further subdivided into the following concrete
objectives:

(Q1) How can we realize stealthy VMI on the ARM architecture? With ARM becoming
one of the most prevalent architectures for mobile, wearable, IoI, and now even in the
server market, it presents an attractive target for malicious actors. We have to investigate
whether the architectural capabilities of modern ARM virtualization extensions meet the
demands of VMI-based malware analysis tools that have proven effective on x86. In
particular, the question arises to what extent the ARM architecture can ensure stealthy
VMI and what means are necessary to empower it?

(Q2) How can we apply virtualization to enhance the security of OS components? Given
the strong memory isolation capabilities of virtualization, the first question that comes into

mind is which OS components can benefit from this competence. To answer this ques-

tion, we must determine and investigate potential hardware-architectural deficits that

struggle protecting against certain attack patterns. Assuming there is a need for novel

in-guest memory isolation primitives that leverage hardware’s virtualization extensions,

we have to answer the question which architectural modifications of the modern OSes and

VMM s are necessary to empower the OS subsystems with the new capabilities to promote

virtualization-assisted security on different software levels.

(Q3) How can we assist OS-level virtualization to enhance its isolation capabilities?
The global accessibility and flexibility of modern OS-level virtualization solutions (i.e.,
containers) has gained popularity. Containers share the OS kernel with the host, yet,
unlike system virtualization techniques, they lack strong isolation capabilities. Still, the
communitity utilizes containers not only for convenient packaging of services but also for
security-critical tasks. At this point, the question one has to answer is whether and how
we can enhance the isolation of containers to improve their overall security.

3Throughout this work, we refer to both x86 and x86-64 as the x86 architecture.
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1.3 Thesis Statement and Contribution

Thesis statement: virtualization-assisted security has not yet been explored to its full extent;
modern hardware-supported virtualization extensions supply the necessary foundation
to (i) establish stealthy primitives for dynamic malware analysis frameworks on ARM ar-
chitectures (despite their hardware deficits for stealthy monitoring), and (i) transform the
design of modern OS architectures such that they can leverage the strong memory isolation
capabilities of the virtualization extensions to enhance the security of its subsystems.

The following summarizes the concrete contributions of this work, which address the
identified key research questions and provide a glimpse into the true potential of virtual-
ization technology with regard to security.

We propose a flexible VMM deployment strategy to facilitate on-demand deployment
of VMI frameworks and virtualization-assisted security primitives for OS subsystems.
We begin our work by investigating on-the-fly virtualization techniques to overcome the
rigid nature of VMM deployment. Specifically, we lay out a minimalistic microkernel-
based VMM architecture that leverages on-the-fly virtualization techniques for deploy-
ment on x86 and ARM architectures. The main objective of the new VMM architecture
is to dynamically and transparently shift a running OS into a virtual environment, an
inspiration that we borrow from the Blue Pill rootkit for x86 [RutO6b, RT07]. Yet, as so
often in security, we transform the originally malicious intention behind this technology
for the benign purpose of equipping virtualization-assisted security-driven frameworks
with a flexible deployment strategy; this strategy facilitates periodic, sporadic, as well as
permanent—yet retrospective—deployment of only the absolutely necessary virtualiza-
tion components, avoiding immense, error-prone, and, for many purposes, irrelevant code
base of traditional VMMSs. Once deployed, our architecture allows to transparently unfold
an extensible, microkernel-based architecture underneath the dynamically virtualized OS.
In this way, we broaden the capability horizon of the OS, in particular, through strong and
fine-grained memory isolation features that are otherwise not available to the OS.

We support our design with a prototype, WhiteRabbit, that dynamically virtualizes a
running Linux by leveraging hardware virtualization extensions of the x86 architecture.
We highlight that even though our prototype focuses on dynamically and transparently
deploying a VMI infrastructure for local and remote VMI frameworks, it can similarly
deploy the necessary means required to assist the deployment of functionality that assists
in-guest security-relevant subsystems of the dynamically virtualized OS.

Impact: By exploring this research direction, we establish a flexible, on-demand deploy-
ment strategy that can act as a vehicle for VMI frameworks as well as virtualization-assisted
in-guest security subsystems on x86 and ARM. In fact, we can apply this strategy to many
techniques that we propose throughout this work. Further use cases include protecting,
monitoring, and forensic analysis of managed corporate and Iol infrastructures.

Publication: Parts of this contribution have been published in the paper [PKZ18].
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1 Introduction

We identify and overcome deficits of the ARMv7 and ARMv8 architectures to facili-
tate novel primitives for stealthy virtualization-assisted malware analysis on ARM. The
hardware-supported virtualization extensions on Intel form a solid foundation for stealthy
VML Inspired by Intel, we define a set of requirements that are necessary to establish
stealthy monitoring on the ARM architecture. In this regard, we have identified that, con-
trary to Intel, the ARMv7 and ARMv8 architectures lack sufficient hardware capabilities
required for stealthy VMI. (While ARM generally does not support stealthy single-stepping,
its 32-bit execution state, AArch32, in addition, has no notion of execute-only memory pages;
every code page has to be readable and executable.) As such, we shift our focus towards ex-
ploring and developing new primitives that empower ARM for stealthy malware analysis,
despite the spotted architectural shortcomings. To compensate unmet requirements for
stealthy monitoring, as a first step, we propose a novel single-stepping primitive, without
using the hardware-intended functionality—which by itself can reveal the analysis frame-
work. Further, we equip the Xen project hypervisor with the ability to dynamically allocate
and switch among different guest-physical memory views. Specifically, we implement the
Xen alternate p2m (altp2m) subsystem for the ARM architecture. This subsystem allows an
external monitor to switch among a set of second level address translation (SLAT) tables
to enforce different memory access permissions of individual guest-physical page frames
per view and remap individual guest frames to different machine frames. That is, instead
of switching permissions of individual guest frames in one global view, Xen al tp2m allows
us to switch among different views—immediately changing the guest’s perspective on the
guest-physical memory.

Impact: By combining both of the above methodologies, we form the basis for stealthy
VMI on AArch64. In addition to that, we tackle the architectural deficit of AArch32
with respect to execute-only memory; we utilize the Xen altp2m implementation in a way
that allows us to take control of the Translation Lookaside Buffer (TLB) organization on
AArch32. By de-synchronizing the TLB organization, we manage to hide instrumented
code pages in the guest’s memory and realize the foundation for stealthy VMI on AArch32.
Finally, we develop and open source the foundation for the binary analysis framework
DRAKVUF [LMP*14] and hence establish the means for stealthy dynamic malware anal-
ysis on both AArch32 and AArch64.

Publication: Parts of this contribution have been published in the paper [PLM18].

We integrate virtualization capabilities into guest OSes to establish in-guest memory
isolation primitives for protecting sensitive data against data-oriented attacks. Hav-
ing built a solid foundation for stealthy VMI on ARM architectures, we shift the focus
of our research on virtualization towards empowering guest OSes with additional capa-
bilities with respect to security. In this regard, we investigate and leverage the unique
properties of the modern Intel virtualization extensions to promote Extended Page Table
(EPT) management tasks to the guest OS. Combined with the Xen altp2m subsystem, we
utilize the Intel EPT pointer (EPTP) switching capability to manage different views on the
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guest-physical memory from inside a VM. In this way, we lend the guest the capability to
interact with the system’s virtualization extensions, without any hypervisor interaction.
We extend the memory management system of the Linux kernel to realize xMP, an in-
guest virtualization-assisted selected memory protection primitive for guarding sensitive data
against data-oriented attacks in both user and kernel space. Specifically, xXMP combines
Intel’s EPTP switching and the Xen altp2m subsystem to control different guest-physical
memory views, to isolate sensitive data in disjoint xMP domains. We equip in-kernel
management information and pointers to sensitive data in xMP domains with authenti-
cation codes, whose integrity is bound to an immutable context to impede data-oriented
attacks. In a more concrete application scenario, we apply xMP to guard all page tables
and process credentials in the Linux kernel, as well as sensitive data in user-space ap-
plications, with only minimal performance overhead. Finally, we integrate xMP into the
Linux namespaces framework, and hence form the foundation for virtualization-assisted
OS-level virtualization (container) protection against data-oriented attacks.

Impact: This contribution establishes the foundation for virtualization-assisted security mech-
anisms that allow to alleviate the strict separation between an OS and a VMM. The im-
plemented use cases demonstrate the flexibility and power of the introduced concepts
by hardening different subsystems of the Linux kernel, user space processes, as well as
containers against data-oriented attacks. The virtualization-assisted security primitives
are building blocks, which extend the capabilities of the OS to leverage the system’s vir-
tualization extensions for security, without having to outsource security-relevant logic
into the VMM. In other words, contrary to VMI techniques, any VMM that implements a
common Application Programming Interface (API) for virtualization-assisted security can
assist in-guest security subsystems in a way that is completely indifferent to the semantic
knowledge of the OS.

Publication: Parts of this contribution have been published in the paper [PMG™20].

We support OS-level virtualization by statically generating last line of defense seccomp
policies to limit the number of system calls available to Docker containers. Inaddition
toisolating selected OS resources through xMP namespaces from potentially compromised
containers, we introduce JEssE, a static analysis based framework for generating Linux sec-
comp policies for non-obfuscated binaries in Docker containers. The system call interface
of modern OSes offers user space applications access to a high number of system calls.
Unfortunately, a vulnerability in one of those system calls can pave the way for attackers
to compromise the entire OS kernel. By following the principle of least privilege, with JessE,
we aim at granting containers access only to those system calls that are absolutely neces-
sary for their genuine execution. Jessk statically generates policies for the seccomp facility
on Linux that has the capability to filter out unused and potentially vulnerable system
calls. Specifically, Jesse implements an abstract interpretation based constant propagation
for conservatively connecting system calls to identified system call invocations (syscall
instructions) in binaries. By additionally applying dead code elimination techniques to
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used general-purpose libraries, such as 1ibc, we make sure that the generated system call
filters consider only those system calls that are relevant for the container’s execution.

Impact: Even though the proposed implementation targets ELF binaries in Docker con-
tainers compiled for the x86 architecture, its general concepts are independent of the
architecture and are similarly applicable to all binaries of the system.

Publication: At the time of submission, parts of this contribution have been accepted and
are to appear in the paper [GPZ23].
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Parts of the contributions in this work base upon the following published, scientific,
and peer-reviewed articles. Not all parts of our work were published before the date of
submission of this thesis. Work that has been submitted for review is stated as such at
appropriate locations.

[PKZ18]

[PLM+18]

[PMG20]

[GPZ23]

Sergej Proskurin, Julian Kirsch, and Apostolis Zarras. Follow the WhiteRabbit:
Towards Consolidation of On-the-Fly Virtualization and Virtual Machine Introspec-
tion. In IFIP International Conference on ICT Systems Security and Privacy Protection
(IFIP SEC), 2018.

Sergej Proskurin, Tamas Lengyel, Marius Momeu, Claudia Eckert, and Apostolis
Zarras. Hiding in the Shadows: Empowering ARM for Stealthy Virtual Machine
Inrospection. In Annual Computer Security Applications Conference (ACSAC), 2018.

Sergej Proskurin, Marius Momeu, Seyedhamed Ghavamnia, Vasileios P. Kemerlis,
and Michalis Polychronakis. xMP: Selective Memory Protection for Kernel and User
Space. In IEEE Symposium on Security and Privacy (S&P), 2020.

Charlie Groh, Sergej Proskurin, Apostolis Zarras. Free Willy: Prune System Calls
to Enhance Software Security. To appear in ACM/SIGAPP Symposium on Applied
Computing (SAC), 2023.

The following published, scientific, and peer-reviewed articles comprise further contri-
butions that have not been considered in this work.

[PMK12]

[PKE15]

[PWS15]

[MPR*21]

Sergej Proskurin, David McMeekin, and Achim Karduck. Smart Camp: Building
Scalable and Highly Available IT-Infrastructures. In IEEE International Conference on
Digital Ecosystems and Technologies (DEST), 2012.

Sergej Proskurin, Fatih Kilic, and Claudia Eckert. Retrospective Protection utilizing
Binary Rewriting. In Deutscher IT-Sicherheitskongress, 2015.

Sergej Proskurin, Michael Weiss, and Georg Sigl. seTPM: Towards Flexible Trusted
Computing on Mobile Devices based on GlobalPlatform Secure Elements. In In-
ternational Conference on Smart Card Research and Advanced Applications (CARDIS),
2015.

Mathias Morbitzer, Sergej Proskurin, Martin Radev, Marko Dorfhuber, and Erick
Quintanar Salas. SEVerity: Code Injection Attacks Against Encrypted Virtual Ma-
chines. In IEEE Workshop on Offensive Technologies (NOOT), 2021.

At the time of submission of this dissertation, the following work remains under review:

Marius Momeu, Fabian Kilger, Christopher Roemheld, Simon Schniickel, Sergej
Proskurin, Vasileios P. Kemerlis, and Michalis Polychronakis. Immutable Memory
Management Metadata for Commodity Operating System Kernels. Under review,
2022.
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1.5 Outline

The remainder of this work is organized as follows. In Chap. 2, we summarize the foun-
dations regarding virtualization technology to assist the reader in better understanding
the course and details of our work. In this chapter, we outline relevant components of the
hardware virtualization extensions, and conclude with a discussion about the benefits and
challenges of VMI. We then proceed with Chap. 3, in which we put the perspective of our
research directions and the individual objectives into a concrete frame. In this regard, we
introduce a conceptual, hardware-independent target system architecture that allows us
establish a bird’s eye perspective upon the overall picture of the contributions of this work.
We further present a comprehensive, and generic threat model describing the adversarial
capabilities targeting the abstract system. We extend our assumptions of the generic threat
model for each framework presented in the following chapters.

Having laid out the necessary foundation, we proceed with Chap. 4 — 7, which present
the main pillars of our research. Yet, before we begin addressing our research objectives
(Sec. 1.2), in Chap. 4, we elaborate an alternate, on-demand deployment strategy for
virtualization-assisted services. Specifically, we present WhiteRabbit, a thin microkernel-
based VMM that can be deployed on-the-fly. We exemplify a specific use case, in which
we apply WhiteRabbit to deploy a VMI-based framework on a running Linux. At the same
time, we underline WhiteRabbit’s ability to act as a generic vehicle, which is not limited to
VMI, and hence can be leveraged to dynamically deploy any of the virtualization-assisted
services of the following chapters. We conclude this chapter by assessing and comparing
the virtualization overhead of WhiteRabbit with Linux KVM and the Xen hypervisor.

Further, in Chap. 5, we focus on improving the state-of-the-art VMI techniques on ARM.
In this chapter, we identify that ARM does not provide the necessary hardware support
in regard to stealthy monitoring. To compensate the missing hardware capabilities, we
explore alternative directions for VMI. We repurpose the system’s virtualization extensions
to implement novel primitives for setting and single-stepping software breakpoints in
a stealthy way, without using the intended hardware mechanisms. We integrate the
presented strategy into the dynamic binary analysis framework, DRAKVUF, and hence
empower ARM with the ability to stealthy monitor guest OSes. We conclude this section
by extensively assessing the performance and effectiveness of the introduced primitives.

In Chap. 6, we turn our attention towards reinforcing the security of OS components
through virtualization. We leverage virtualization extensions on Intel to establish selective
memory protection (xMP) primitives, which we intend to use against data-oriented attacks
in kernel and user space. We equip the Linux memory management system with the
ability to configure and switch among different views on the guest’s physical memory. By
configuring the views in a sophisticated way, we establish the means for protecting sensitive
data in kernel and user space in isolated and disjoint xXMP domains. In addition, we equip
in-kernel management information and pointers to sensitive data in xMP domains with
context-bound authentication codes to obstruct data-oriented attacks. We conclude this
section by assessing the performance and security of the introduced xMP primitives.
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1.5 Outline

In Chap. 7, we focus on enhancing the security of OS-level virtualization (i.e., containers)
techniques. Contrary to the previous chapters, we utilize the Secure Computing (seccomp)
mode of the Linux kernel to reduce the system call interface. In this way, we intend to elimi-
nate unnecessary and potentially vulnerable system calls, which would be otherwise freely
available to the containers. Specifically, we introduce JessE, a framework that combines a
set of static analysis techniques to tailor seccomp policies for (containerized) Executable
and Linkable Format (ELF) binaries. Jessk either extracts binaries from container images
(or directly takes them from the file system) and applies an abstract interpretation based
constant propagation technique to identify authorized system calls for a given binary. Ad-
ditionally, we combine Jesse with state-of-the-art library debloating techniques to associate
each of the exported functions in the standard C library (1ibc) with a set of system calls
it requires for its execution. In the end, Jesse combines the identified system calls of the
analyzed binary with the system calls of each 1ibc function the analyzed binary requires.
Finally, Jessk uses the extracted system calls to generate seccomp policies for the respective
Docker containers. We conclude this chapter by evaluating the precision of our analysis
and by applying Jesse to popular Docker images and protecting them against real-world
container escalation exploits.

We conclude this dissertation in Chap. 8, in which we summarize our contributions and
provide an outlook on future research directions with regard to enhancing the state of
virtualization-assisted analysis and OS security.
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2
Chapter

Technical Background

If you can’t explain it simply, you don’t understand it well enough.
— ALBERT EINSTEIN

This chapter assists the reader with the fundamentals that are essential to the under-
standing of the remainder of the dissertation. In particular, the following sections cover
different concepts of the virtualization technology, the necessary means for their imple-
mentation, and the benefits and challenges behind VMI. In other words, the conveyed
knowledge of this chapter renders the necessary foundation, upon which we base our
research on virtualization-assisted dynamic binary analysis and OS security.
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2 Technical Background

2.1 Virtualization Technology

The adoption of virtualization techniques in modern computer systems has become om-
nipresent and unavoidable. In fact, virtualization is deeply embedded in various computer
system components, which we often do not consciously, or directly associate with virtual-
ization itself. For instance, even though virtual memory is regarded as a given construct, it
represents one form of virtualization that allows to decouple, or abstract the management
of the limited physically available memory resources of one or multiple interconnected
systems. This form of virtualization contributes to better performance and overall physical
memory utilization, as well as security through address space isolation. Further exam-
ples for virtualization comprise among others: virtual system calls [Bov14a] which increase
the performance of selected system calls by emulating their functionality in user space;
and the extended Berkeley Packet Filter (eBPF) in-kernel virtual machine which establishes an
execution environment for user-supplied programs in the Linux kernel, e.g., for filtering
network traffic or unauthorized system calls, tracing, and in-kernel optimization [Fle17].
While these virtualization techniques transparently assist us in our every-day life, in this
thesis, we mainly focus on virtualization techniques that establish isolated execution en-
vironments for individual (or groups of) processes or entire OSes.

One of the key concepts of virtualization is its ability to manage complexity [SNO5].
To fully understand even the most complex systems, we can break down their complex
structure into a hierarchy of different levels of abstraction; higher, more abstract levels build
upon, yet, do not involve with the implementation details that are encapsulated by lower
abstraction levels. Instead, the abstraction levels are separated by well-defined interfaces
that hide complex implementation details. At the same time, the interfaces impose a strict
specification; software written for one interface will not work on another. As a result,
components residing at higher levels of abstraction receive a simplified view over the
lower components in the hierarchy, yet, have to adhere to the specific interface.

To clarify the general idea, let us apply the concept of managing complexity to the above
scenario of virtual memory. Virtual memory hides the complexity of managing the phys-
ical memory behind a well-defined memory management interface. That is, the virtual
address spaces presented to processes—that we regard as system components at a higher
abstraction level—embody an abstract, or simplified view of the underlying memory man-
agement subsystem at the heart of the OS kernel. The well-defined abstraction interface,
relaxes the constraints of the underlying implementation details. In fact, it provides an
illusion to user space processes of possessing exclusive access to an immense amount of
memory resources, defined by the virtual address space. Specifically, this interface hides
the underlying memory management system implementation that is responsible, amongst
others, for governing physical memory, page tables, memory overcommitment, and swap-
ping. At the same time, the interface strictly defines how the processes can interact with
the virtual address space. By following the specifications of the interface, processes can
execute, access, and even allocate and release additional memory, without any concern
about these and further details of the overall architecture.
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2.1 Virtualization Technology

Processes Processes
System Call Interface
ABI —
OS
System ISA User ISA User ISA
ISA ++ ++ ++
Machine Machine

(a) The ISA interface defines the machine. (b) The ABI interface defines the machine.

Figure 2.1: Different interfaces define different perspectives on the machine [SNO5].

Similarly, the inherent properties of physical computer architectures define strict and
immutable interfaces. Two interfaces that we consider relevant for this work are the
Instruction Set Architecture (ISA) and the Application Binary Interface (ABI) (Fig. 2.1).

Instruction Set Architecture: The ISA represents the lowest interface that interlinks the
hardware with the software. It defines the architecture’s instruction set, registers,
(virtual) memory, and the interrupt and exception architecture. Fig. 2.1(a) illustrates
a simplified representation of this interface. In the figure, we further distinguish
between components of the user ISA and system ISA, which are visible to less- or high-
privileged software, respectively. While the user ISA is responsible for establishing
an execution environment for software, the system ISA assists the OS in managing the
system’s hardware resources. The microarchitecture of different Central Processing
Units (CPUs) ensures that software, developed for a specific ISA, is compatible to all
CPU variants that implement the same ISA. Thus, the ISA is responsible for software
compatibility and strictly regulates which software components are authorized to
access specific parts of the underlying system.
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Application Binary Interface: Similar to the ISA, we can subdivide the ABI into the system
call interface and the less-privileged user-visible part of the ISA. Fig. 2.1(b) sketches this
division. Through the system call interface, OSes offer less-privileged user space
applications a uniform link that governs access to the OS internals. In other words,
the system call interface lends processes in user space the ability to request and
communicate with system resources, such as memory and I/O devices.

To sum up, the ISA strictly defines an interface between the OS and the underlying hard-
ware, binding the OS to the particular architecture (Fig. 2.1(a)). Similarly, the ABI separates
user space applications from the details implemented by the OS and hardware, ultimately
creating dependencies between the applications and the overall platform (Fig. 2.1(b)). In
both cases, the respective interface hides the complexity of the implementation details un-
derneath the particular interface, lending software (at higher abstraction levels) an abstract
view of the underlying machine upon which it is executing. In this regard, an OS perceives
the machine through the angle that is defined by the ISA; whereas from the perspective of

17



2 Technical Background

Process

S System Calll Interface User ISA
ource N A
ABI 2L Nz

Runtime
Target
ABI

oS
Hardware

Figure 2.2: Process VM runtimes implement and expose a virtual ABI to processes [SNO5].

user space applications, it is the ABI that sheds light on the platform—which comprises
the OS and user ISA—that is considered a machine. Consequently, a software interface,
which complies to the expected behavior of a particular machine, has the power to provide
an illusion of the imitated machine to software that executes on higher abstraction levels.
This presents the main idea behind virtualization technology.

Generally, virtualization decouples from the physical hardware constraints by imple-
menting a flexible, virtual interface that is not bound to the hardware. This interface,
implements a dedicated virtualization layer that mimics the characteristics of a real ma-
chine to form a virtual execution environment, the virtual machine (VM). We refer to the
software that executes in the VM as the guest, and the system hosting the VM as the host.
Virtual resources that are presented through the virtual interface to the guest are either
completely emulated in software or directly mapped to physically available resources of
the host system [PG74]. Depending on the virtual interface implementation, we distinguish
between process-level VMs and system-level VMs, which, as the names suggest, define exe-
cution environments for processes or OSes, respectively. In addition, recent technological
advances have introduced OS-level virtualization, also known as containers, which lever-
ages OS’s services to form a virtual environment for groups of processes. In the following
sections, we introduce these concepts and relate them to security and our work.

2.1.1 Process-level Virtualization

Process-level, or simply process VMs form virtual execution environments for a single, or
in some cases, a group of processes [SNO5]. Fig. 2.2 illustrates a simplified process VM
architecture that adds a software virtualization layer that borders the host’s ABI. When
referring to process VMs, this virtualization layer is called runtime. The runtime imple-
ments the necessary means to establish a virtual ABI that is compatible to the virtualized
process. That is, the complex implementation of this compatibility layer hides beneath
the virtual (source) ABI. To establish a consistent taxonomy, we pick up on the introduced
notion of complexity management: from the perspective of a process, the abstract view
of the machine is presented through the ABI, which comprises the user-visible part of the
ISA and the OS system call interface (Fig. 2.1(b)). Generelly, since the combination of a
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2.1 Virtualization Technology

particular ISA and OS is referred to as platform, throughout this work we use the term
platform to describe the machine as it is perceived by processes.

According to this definition, the host’s platform itself can be considered one of the
most rudimentary process VMs that implements the concept of multiprogramming (and
multitasking); a concept that lends processes the ability to share resources and execute
(virtually) at the same time, without being aware of each other. An executing process
builds upon the host’s ABI and has the impression of having the entire machine for its own
purposes. Under the hood, the OS manages the resources on behalf of the process, iso-
lates its address space, and time-shares the hardware among different, similarly unaware
processes to provide virtual and isolated execution environments. Other key benefits of
using process VMs mainly comprise compatibility, but also performance optimization and
platform independence.

Compatibility: To establish compatibility, process VMs can expose a source ABI that does
not necessarily have to comply with the target ABI of the underlying platform. That
is, process VMs can allow programs compiled for a specific platform to run on a
system hosting a different OS or implementing a different ISA. In both cases, the
runtime must apply emulation techniques (e.g., through interpretation or binary
translation, the concepts of which are not the focus of this work [SNO05]) either to
translate source instructions into target instructions or to implement the operation
of the guest’s system calls through the host-supplied functionality.

Performance optimization: To increase the overall performance, dynamic binary op-
timization frameworks identify hotspots by dynamically gathering run-time infor-
mation. Based on the gathered execution profiles, such frameworks translate the
selected source instructions into optimized target instructions of the same (or differ-
ent) ISA by means of software or hardware emulators.! The binary optimizers cache
the translated code to increase its performance upon the next execution.

Platform independence: Finally, a special application scenario for process VMs focuses
on establishing platform independence. So called High-level Language (HLL) VMs,
with Java Virtual Machine (JVM) and Dalvik Virtual Machine (DVM) being two of
the most prominent implementations, define runtimes that establish a platform-
independent, virtual ISA. The virtual ISA aims to reduce dependencies to the host’s
OS and ISA. Consequently, applications compiled against this virtual ISA can execute
on any system, as long as the runtime implementation supports the host’s platform.

"Modern x86 CPU microarchitectures translate CISC into RISC-like p-operations to increase performance.
Further examples are given by ARM Jazelle [Por05] and NVIDIA Denver architecture [BBTV15] that use
hardware extensions to translate Java bytecode and ARM instructions, respectively.
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2 Technical Background

Two of the most prominent and noteworthy examples for process VMs, which implement
a compatibility layer for processes that were compiled for a different OS, are presented by
Wine [Win20] and Microsoft Windows Subsystem for Linux (WSL) [Mic16b, YIRS17]. Wine
implements a runtime that facilitates executing Portable Executable (PE) binaries compiled
for Windows on POSIX-compliant OSes, including Linux and macOS. On the other hand,
WSL allows to execute Executable and Linkable Format (ELF) binaries on Windows.

On a technical level, Wine comprises a runtime that replaces the (user space) system
programming interface, namely the Windows API, with a custom implementation that
mimics the intended functionality on Linux.? Windows leverages a different concept
that shifts the runtime into the kernel space. Specifically, Windows applies pico processes,
which wrap and execute the ELF binaries in user space, and pico providers, which are the
complementary components that control the state and execution of pico processes from
the kernel space [Micl1, Micl6a, YIRS17]. That is, pico providers intercept system calls
of pico processes and emulate, or mimic their behavior through the given functionality of
the host to provide the illusion of the expected platform.

An example for a process VM framework that allows to execute binaries compiled against
a different ISA is given by the Linux kernel support for miscellaneous binary formats,
binfmt_misc [Cor16]. This functionality allows to register almost arbitrary binary formats
(potentially compiled against a different ISA) and the associated interpreters by means
of the virtual filesystem /proc/sys/fs/binfmt_misc/. Upon executing a binary with a
previously registered format, the system will match the binary’s magic byte sequence and
use the associated interpreter that is capable of emulating the binary’s ISA, regardless of
the host’s platform. In this way, it becomes possible to execute binaries compiled, e.g., for
ARM on the x86 architecture (yet by using the same OS).

With regard to security, process VMs provide only light-weight isolation capabilities
(e.g., through virtual memory that prevents corrupted processes from directly accessing
the memory of other, benign execution environments). Thus, to meet the modern demands
on security, process VM runtime implementations apply additional access control and
logical separation techniques to isolate access to global resources—and thus to restrain
the attackers [App20]. While most of these techniques are not directly related to our
work, there exist a special class of process VMs that raises our attention and affects our
research. This class of process VMs, coined OS-level virtualization, leverages the OS kernel’s
features to establish, in particular, isolated execution environments for groups of processes.
Specifically, OS-level virtualization techniques maintain processes in so called containers
with a limited view on global system resources. We dedicate the following section to
describe modern OS-level virtualization techniques to establish the foundation that intends
to assist the reader in understanding some of our design choices.

ZEven though Wine—being the acronym for Wine Is Not an Emulator—resists in being associated with
emulators, it uses a form of emulation that mimics the semantics of the original Windows APL
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Figure 2.3: Container runtimes lend processes an isolated view on the OS’s resources.

2.1.2 OS-level Virtualization

Modern OS-level virtualization techniques leverage services, or rather subsystems, of the
underlying OS kernel to establish light-weight isolated execution environments, containers,
for processes. The first container implementations [Ltd20, SPF 07, Rio20, Ora20] have their
origin in Unix-based OSes, and today, they have regained popularity on Linux [Doc20a,
Inc20, Fou20, Goo20a] and started to become increasingly attractive on Windows [Fer19].
Given the container’s affinity to Linux, the following description focuses on the most
fundamental concepts of the Linux kernel that define the basis for OS-level virtualization.
In addition, we shed light on selected concepts that facilitate containers on Windows.

A container comprises one or a set of regular user space processes and utilizes the
OS kernel to restrict the processes’ capabilities, and their perception and access to global
system resources. Containers execute directly on the OS kernel, which is responsible for
enforcing these restrictions. In contrast to process VMs, compatibility is not the main
purpose of the runtime of OS-level VMs (the container runtime). In other words, the
container runtime itself does not intend to intercept or emulate the virtualized application’s
instructions or system calls to establish, e.g., cross-OS compatibility. Instead, the main
purpose of the container runtime aims to create efficient, scalable, reproducible, and
isolated execution environments with governed resources (Fig. 2.3). Note that other layers
of the OS kernel can still pursue the compatibility property. For instance, similar to the WSL
process VM [Micl6b, YIRS17] that allows to execute ELF binaries on Windows (Sec. 2.1.1),
dedicated abstraction layers of the Windows kernel can complement the container runtime
to allow executing Linux containers on Windows.

The container runtime configures subsystems of the underlying OS kernel to establish a
contained execution environment that receives its own view on the OS’s resources. This is
accompanied by a container image that provides a container with its own plumbing layer
(i.e., the user space components of the OS). That is, even though different Linux containers
share the host’s OS kernel, they assemble memory images with their own user space
components (including the service to be contained, additional tools, libraries, and a file
system hierarchy). In this way, container images present stand-alone software packages
that convey the look and feel of a particular Linux distribution. As such, a container’s
Linux distribution does not necessarily have to be the same as the one used by the host
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2 Technical Background

and can be independently deployed to other systems.

Even though different container runtime implementations vary with regard to high-level
functionality (e.g., container image management and deployment), at the lowest level, their
core tasks eventually boil down to configuring the OS kernel’s sandboxing features.® These
features can be distributed across three classes that describe the key properties of OS-level
virtualization: resource isolation, resource governance, and access control. In the following,
we outline the key concepts of each class and support them with an a specific Linux
subsystem. Note that although the highlighted concepts are specific to Linux, their general
functionality assembles essential building blocks, and is indispensable for containers.

Resource isolation: In the scope of OS-level virtualization, resource isolation lends pro-
cesses in containers an abstract perspective on selected global system resources. In
other words, this property establishes an environment, which creates an illusion of
having exclusive access and control of the particular system resources. The Linux
kernel implements a set of namespaces [Ker13b] to provide such contained environ-
ments (i.e., containers) which, when combined, affect the containers’ perception such
that they believe they are being executed upon a private OS instance; processes in
different containers use services of the same OS kernel, yet, they are isolated and
cannot observe or (directly) interact with each other.

Resource governance: Linux leverages the control groups (cgroups) [Brol4] subsystem
to efficiently govern the system’s hardware resources (such as CPU, memory, and
devices) between containers. Specifically, the Linux cgroups subsystem is a concept
that organizes processes (e.g., inside a container) in a hierarchy to form a control
group, accounts for, limits, and imposes control upon system resources of this group.
To govern resources, the cgroups subsystem applies so called resource controllers to
cgroup hierarchies; processes assigned to a cgroup adhere to the constraints imposed
by the applied resource controllers.

Access control: The principle of least privilege mandates every entity to access only the
resources that are necessary for its execution. Linux implements a set of mechanisms
that assist processes to comply with this principle. For instance, the Secure Computing
(seccomp) facility [Cor09, Corl2c] allows processes to register system call filters to
limit their access to the considerable surface of the system call interface. Through
seccomp, the kernel restricts processes in accessing the kernel’s services by selectively
reducing the number of authorized system calls. Specifically, containers can register
and install seccomp filters in form of Berkeley Packet Filter (BPF) programs. This way,
the in-kernel BPF bytecode Just-In-Time (JIT) compiler and interpreter can check the
container’s authorization of the requested service upon every system call invocation.

3The Open Container Initiative (OCI) specifies standards for the container runtime and image, yet, the
implementation among different runtimes varies [Foul5b].
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2.1 Virtualization Technology

Additionally, Linux implements capabilities [Cor06, Edg15] and Linux Security Mod-
ules (LSM) [SFV20] that a container runtime can configure to enforce fine-grained
access control policies. Since these, however, are deemed irrelevant for this work,
we refer the reader to the respective documentation.

The Microsoft Windows kernel has not initially foreseen concepts similar to Linux
namespaces and cgroups. Yet, to meet modern demands for OS-level virtualization
and comply with the standards of OCI Microsoft added a subsystem for creating silo
objects [YIRS17] to provide similar functionality. In addition, Microsoft implemented the
Host Compute Service (HCS) [Mic17b], an abstraction layer that interfaces containers with
underlying kernel subsystems without exposing their implementation details. That is,
similar to Linux kernel sandboxing features, the HCS is responsible for encapsulating
Windows containers in resource-governed environments. Yet, by using these mechanisms
alone, Windows cannot execute containers which were build for Linux (Sec. 2.1.3).

The benefits of OS-level virtualization techniques heavily promote utilizing containers in
private and industry sectors. Given this trend, one must consider the security implications
that might arise in the presence of compromised containers. Generally, from the security
perspective, the isolation capabilities of containers are regarded as critical. Specifically, this
is due to the fact that containers share the host’s OS kernel and merely abstract the view on
its global resources; successful kernel exploits from inside a container have the potential to
impair the security of other containers and even the host itself. There exist attack vectors
that can assist adversaries in breaking out or disclosing (and even manipulating) sensitive
information from inside of containers [Gral6, LLW 18, Mic20a].

Such threats partially stem from vulnerable container deployment and management
components or insufficiently strong configuration policies, which in turn, result from a
lack of expertise. (Note that we consider all configuration issues that impair the container’s
key properties including access control, and resource isolation and governance.) While this
is a relevant topic, we consider it out of scope; it is the task of container runtime developers
and vendors, e.g., to provide sufficient documentation and strong default configuration
policies. Other sources of this threat can arise from potential vulnerabilities in system calls
that can act as an open gate to the underlying OS kernel. Independent of the exact strategy
of the adversary, once inside the kernel, she inevitably gains the power to take control
over the system. This emphasizes the need for stronger isolation capabilities, which can
be obtained through the concepts of system virtualization.

2.1.3 System-level Virtualization

System VMs implement the necessary means to form virtual execution environments
for entire computer systems. Software executing inside these artificially encapsulated
surroundings stay in constant believe of a false reality, namely that the capsule they reside
in is the physical system. Given that the virtualization layer of system VMs provides full
compatibility to physical systems, the virtual environment can host OSes, including the
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2 Technical Background

associated user space components, and even nested instances of system VMs, which, in
turn, can create their own virtual universe for software [PG74, SNO5]. Given the power of
system virtualization, the following provides insights on its capabilities that have shaped
our vision of virtualization-supported dynamic analysis and OS architectures.

The software virtualization layer of system VMs was coined virtual machine monitor
(VMM) in the 1960s, and is also referred to as the hypervisor.* Today, this layer is often
assisted by hardware virtualization extensions. Unlike runtimes of process VMs, the VMM
targets a level below the ABI and hence implements a virtual hardware interface. This
interface comprises a virtual ISA, which, from the perspective of the software inside the
VM, defines an abstract view of the machine (Fig.2.1(a)). Similar to process VMs, the offered
virtual ISA does not necessarily have to comply with the ISA provided by the underlying
hardware. Such configurations resort to emulation techniques to translate the guest’s
instructions—as well as the entailed architectural characteristics—to the ones supported by
the physical hardware. We have mentioned and referenced types of emulation techniques
in Sec. 2.1.1. System VMs can apply these techniques to emulate legacy and experimental
system environments for reasons of compatibility and research.

Further, the virtual ISA conceals the guest’s perspective to physically available resources.
Underneath the virtual ISA, the VMM maintains and manages the physically available
hardware resources on behalf of different VMs. Each VM receives its own set of virtual
hardware resources, which can comprise at least one CPU, memory, and I/O devices. In
fact, the VMM takes on the complex task of transparently multiplexing the physically
available, or software-emulated system resources through time-sharing or partitioning
techniques, without disclosing potentially sensitive information of individual VMs. This
way, the VMs receive the impression of exclusively owning the hardware, even though the
VMM shares the available resources among them.

2.1.3.1 Hierarchical Privilege Separation

Modern computer architectures implement a strict privilege hierarchy that distributes
privilege levels across different execution modes. Given the complex variety of hardware-
defined privilege modes, we draw upon their logical abstraction from the OS’s perspective:
for simplicity, the OS distinguishes between the user mode and the supervisor or kernel mode
(Sec. 2.2.1). In this regard, the high-level (user space) plumbing layer of the OS executes
with user mode privileges; the low-level OS kernel space, in turn, operates with kernel
mode privileges. (Note that concrete hardware architectures and OS implementations
can assign these abstract modes to different physically-available modes [LSK18].) This
constellation allows the OS kernel to maintain control over processes in user space. In
other words, the privilege separation prohibits user space applications from accessing
privileged resources. Examples of privileged resources are system configuration registers
and the system’s timer interrupt. Without enforcing an effective privilege separation,

*Throughout this work, we use the terms VMM and hypervisor interchangeably.
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Figure 2.4: VMMs execute on the host’s (target) ISA and expose a virtual (source) ISA to guest
OSes. While native VMMs (a) directly execute on bare-metal, hosted VMMs (b)
operate as part of the OS [SNO5].

(in the worst case) applications would be able to take indefinite control of the system’s
resources, and hence impair time-sharing and the concept of multiprogramming.

Having introduced the privilege hierarchy for modern OSes, we have to clarify how a
VMM integrates and interacts with the rest of the system from an architectural perspective.
Similar to how OSes impose control over their user space components, to maintain a certain
level of control over VMs—or rather over the system’s hardware resources—the VMM
requires higher system privileges than the guest OS kernel in the VM. Consequently, the
VMM should operate in a lower execution mode than the guest OS. The VMM'’s exact
execution mode depends on its architecture. Generally, we distinguish between two types
of system VM architectures, namely native (Type I) and hosted (Type II) system VMs [SNO5].
Fig. 2.4 illustrates both flavours. Native system VMs operate directly on bare-metal, in one
of the most privileged modes. The elevated privileges and the proximity to the hardware
enable the VMM to be efficient and in direct control of the hardware. On the other hand,
to accommodate a potentially high number of different architectures and their hardware
configurations, native system VMs have to implement an arsenal of necessary drivers to
govern and maintain the system’s hardware resources. Hosted system VMs, on the other
hand, execute as part of the host OS. In fact, the VMM of hosted VM architectures can
reside entirely inside the OS’s kernel, or, at the risk of reduced performance, outsource
(at least) parts of its functionality into user space. Regardless, of the variation, hosted
system VMs leverage the OS’s services to communicate with the hardware, and hence
benefit from a reduced complexity. In all cases, we use the term system mode, to refer to
an abstract scope of jurisdiction of a VMM, disregarding its architecture and the concrete
hardware-defined execution mode.
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2 Technical Background

2.1.3.2 Efficient System VMs

To draw a more tangible picture of the term privilege, we borrow the taxonomy defined
by the virtualization pioneers, Popek and Goldberg, who have summarized the formal
requirements for system virtualization [PG74]. In the early 1970s, they have presented
sufficient conditions for ISAs required to realize efficient system VMs. In this regard, they
have defined a general classification for arbitrary ISAs, distributing instructions across the
following three categories, namely privileged, sensitive, and innocuous instructions. Even
though this long-established classification solely distinguishes between the user and su-
pervisor mode, the concepts equally apply to the modes of modern architectures.

Privileged instructions: When executed in supervisor (or generally, in the most-privileged
system mode) a privileged instruction does not trap (i.e., it does not cause the system
to interrupt the instruction’s execution and switch to a different mode with higher
privileges). On the other hand, a privileged instruction must always trap, when it is
executed in user mode.

Sensitive instructions: This class further distinguishes between control- and behavior-
sensitive instructions. Control-sensitive instructions can modify the system’s hard-
ware configuration (e.g., they can register interrupt handlers). Behavior-sensitive
instructions depend on the system’s configuration and produce different results
when executed, e.g., in different modes of operation.

Innocuous instructions: The set of instructions that does not belong to the group of
sensitive instructions is considered innocuous.

According to the formal definition of Popek and Goldberg a system’s ISA can be effi-
ciently virtualized, only if the set of sensitive instructions is a subset of privileged instruc-
tions [PG74, SNO5]. We elaborate on this definition below.

From a functional perspective, Popek and Goldberg describe the VMM as a control pro-
gram, whose responsibilities are distributed across three modules, namely the dispatcher,
allocator, and interpreter. The dispatcher handles the VM’s implicit and explicit requests
(i.e., VM exits). Explicit VM exits occur by explicitly generating hypercalls (e.g., traps gen-
erated by calling dedicated instructions). This mechanism is used to establish a direct
communication between a VM and the VMM (e.g., to increase performance of I/O oper-
ations). Implicit VM exits occur every time the guest executes a privileged instruction, or
upon hardware interrupts. In both cases, the VM traps into the VMM, this is where the
dispatcher takes over control and delegates the incoming requests to one of the remain-
ing modules. The task of the allocator is to maintain and safely multiplex the system’s
(physical and emulated) hardware resources across VMs. Finally, the interpreter assists
the dispatcher in providing compatible functionality to emulate the traps into the VMM.
Further, the work of Popek and Goldberg strictly specifies that a VMM is expected to satisfy
the following three properties, namely efficiency, resource control and, equivalence [PG74].
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Resource Control: This property requires the VMM to be in full control of the system’s
hardware resources. In other words, given this property, a VM cannot access the
resources that were not explicitly allocated and granted to this VM in the first place.
At the same time, this property ensures that the VMM is able to take back control
over the resources granted to a VM.

Equivalence: The VMM is expected to establish a virtual execution environment that
facilitates software to exhibit behavior equivalent to the behavior the software would
show if it was executed on a physical machine. Tolerated exceptions to this property
comprise the availability of physical resources and discrepancies in performance and
timing characteristics.

Efficiency: Efficient VMMs allow VMs to execute all innocuous instructions directly on
the CPU, without any interventions.

The efficiency property implies a given efficiently virtualizable ISA. Unfortunately, this
assumption is not always supported by the underlying hardware architecture. For in-
stance, the modern ISA, IA-32, alone does not satisfy the efficiency condition; IA-32 holds
a set of sensitive, yet, not privileged instructions. Such critical instructions do not trap into
the VMM, without the need for emulation (or paravirtualization) techniques [SNO5]. (Nat-
urally, the same argument applies to VMMSs that expose a source ISA that is different to the
target ISA of the physical system.) Yet, modern hardware-assisted virtualization extensions
to various ISAs (including IA-32) address this issue, and hence facilitate implementing
efficient system VMs. In this work, we rely on many features of the hardware-supported
virtualization extensions. Thus, we discuss them in the following section.
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2 Technical Background

2.2 Hardware-assisted Virtualization Extensions

Modern architectures often implement hardware extensions to support system virtual-
ization (Sec. 2.1.3.2). Such hardware-supported virtualization extensions enhance the
capabilities of the system’s ISA to assist VMMs and guest OSes on processor level. From
a birds-eye perspective, the CPUs equipped with virtualization extensions implement
primitives that allow the VMM to provide guest OSes an abstract and isolated view on
the physically available resources. Such extensions are specifically dedicated to reduce
the virtualization-induced performance overhead and implementation complexity of the
VMM, but also to establish a basis for efficient system VMs [PG74] (Sec. 2.1.3). In this
section, we focus on the main system components that receive hardware support for sys-
tem virtualization. These comprise the CPU, memory, and devices. We mainly consider the
virtualization extensions of the ARM [Arm20] and x86 [Int20a] architecture, as they are
relevant for this work. Yet, before diving into the details of the virtualization extensions,
we take a step back to get a clear picture of the execution environments of both architectures.
Note that we have published parts of this section in [PKZ18, PLM 18, PMG"20].

2.2.1 Execution Environments

We recall from Sec. 2.1.3 that modern computer architectures implement a strict privi-
lege hierarchy, which allows high-privileged software to impose control over software
with less privileges. The execution environments associated with the individual levels
of the privilege hierarchy strongly depend on the hardware architecture and hence differ
between x86 and ARM. Throughout this work, we mainly focus on the x86-64° [Int20a]
and the two most recent versions of the A-profile (application) ARM architecture family,
namely ARMv7-A [ARM14] and ARMv8-A [Arm20]. Also, because of their architec-
tural resemblance, we use the ARMvS8-A architecture to represent both ARMv7-A and
ARMVS-A, unless stated otherwise. While the x86 architecture uses different modes of
operation [Int20a], ARMvVS-A refers to different execution and security states [Arm20] to de-
scribe the system’s execution environments. Inboth architectures, the respective execution
environments define the memory model, register set, and the set of available instructions.

2.2.1.1 Modes of Operation on x86-64

The modern x86-64 architecture comprises three main modes of operation (or simply modes)
that define the ISA and hence form the execution environment for software compo-
nents [Int20a]. These modes comprise the real mode, protected mode, and IA-32e mode—which
is also known as the long mode. For brevity, we exclude the System Management Mode
(SMM), a highly privileged mode for system monitoring and debugging. The real mode
uses a 16-bit ISA that goes back to Intel 8086. The protected mode extends the memory

>We prefer Intel over AMD for describing the general architecture. Both architectures exhibit only negligible
differences that are of no relevance for this section.

28



2.2 Hardware-assisted Virtualization Extensions

Increasing
privileges

Figure 2.5: The privilege hierarchy on x86 implements four protection rings. Typically ring 0
hosts the OS kernel, whereas user space processes execute in ring 3 [Int20a].

protection capabilities of the real mode (through paging) and implements a backward-
compatible mode for the 16-bit ISA and a 32-bit ISA that is known as IA-32. Finally, the
IA-32e, or long mode, forms a 64-bit extension to IA-32. Similarly, to the protected mode,
the long mode, comprises two sub-modes, namely the compatibility mode and the 64-bit
mode. The compatibility mode is binary compatible to the 32-bit IA-32 ISA, whereas the
64-bit mode implements the Intel 64 ISA (also known as AMD64).

Compeatibility is an inherent characteristic of the x86 architecture; even today, x86-based
systems begin their boot process in real mode before they can enter the protected or long
mode. Once the system has switched to either one of these modes, it becomes able to
logically organize different levels of the software architecture by assigning different priv-
ilege levels to individual code and data segments. The x86 privilege hierarchy comprises
four privilege levels, numbered from 0 to 3 [Int20a]. This hierarchy uses a model, which
associates every privilege level with a dedicated privilege ring (Fig. 2.5). Typically, the
OS kernel operates in the most-privileged level, ring 0, whereas user space applications
execute with the least privileges in ring 3. In other words, these two hardware-defined
levels characterize the privileges of the introduced OS’s abstractions for user and kernel
mode (Sec. 2.1.3). If a user space process (in user mode) requires services of the OS kernel
(in kernel mode), it must invoke a system call that temporarily suspends the process and
performs the necessary actions to switch from ring 3 to ring 0, in which the kernel can
satisfy the request and return control to the suspended process in user mode.

2.2.1.2 Execution and Security States on ARMv8-A

The ARMvS architecture differentiates between two execution states, namely AArch32 and
AArch64 [Arm20]. The execution state AArch32 is binary compatible to the ARMv7-A
architecture. It establishes a 32-bit execution environment that can be configured to host
software compiled against the Thumb ISA, T32, and the ARM ISA, A32. The execution
state AArch64, in turn, supplies a 64-bit ARM ISA, A64. Similar to x86, ARM implements
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Normal State Secure State
( AArch64/AArch32 ) ( AArch64/AArch32 )
ELO 1 Application 1 Secure Application
AArch64/AArch32 i AArch64/AArch32 |
L GuestOS | sewreos
AArch64/AArch32 i AArché4 :
EL2 Hypervisor 'Secure Hypervisor (ARMve.4)
AArch64 )
B secueMontor

Figure 2.6: The privilege hierarchy on the ARMv8 architecture distributes privileges across
different exception levels and security states [Arm20].

a privilege hierarchy, which assists the system to assign different levels of privileges to
different software components. These hierarchical levels are called privilege levels (PLs) on
AArch32 and exception levels (ELs) on AArch64. Both have only moderate differences, which
are of no relevance to our work. To ensure a consistent terminology, we prefer the term
exception levels over privilege levels. Also, we use the term ELs to refer to the individual
levels of the privilege hierarchy of both execution states, AArch32 and AArch64.

Fig. 2.6 illustrates four different exception levels, numbered from 0 to 3 [Arm20]; higher-
numbered ELs exhibit higher privileges. Also, individual ELs can use different execution
states [Arm20]. For instance, components of the software architecture that execute in
ELO® and EL1 can use AArch32, with software in EL2 executing under AArch64. Much
like the protection rings on x86, the different ELs restrict access to privileged resources.
This allows ARM to strictly separate and distribute individual components of the software
architecture across different ELs. For instance, the OS kernel operates in the high-privileged
EL1, whereas user space processes execute with the least privileges in EL0®. The interaction
between two different exception levels uses, as the name suggests, exceptions. Every
exception that is taken from the currently active EL to the same or to a higher-privileged
EL. Hence, every software component registers dedicated exception vectors which act as
entry points of the individual ELs. For instance, every time a user space process invokes a
system call, the system generates and takes the Supervisor Call exception from EL® to the
registered entry point in the exception vector table of EL1, where it resumes the operation.

As we can see in Fig. 2.6, ARMv8-A further distinguishes between the two different se-
curity states: normal state and secure state, with the latter being also referred to as TrustZone.
The ARMVS-A architecture mirrors the exception levels EL8-1 (the ARMv8.4-A specifica-
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VMX root VMX non-root

ring 3 ring 3

ring 2 ring 2

ring 1

ring 1

Figure 2.7: The x86 VMX mode of operations mirror the four protection rings [Int20a].

tion extends this architecture by also mirroring EL2) and places the copy into the secure
state, which logically separates hardware resources in an attempt to establish a Trusted
Execution Environment (TEE). The secure state additionally manages the EL3, which is
mainly responsible for handling switches between the two security states.

2.2.2 CPU Virtualization

The essence behind CPU virtualization is to provide VMs with an illusion of having
exclusive ownership of the CPU. To face this challenge, modern VMMs leverage hardware-
supported virtualization extensions to temporarily assign and multiplex the system’s CPU
among the VMs, without losing control of the CPU to either one of them. To ensure that
the VMM maintains control over the CPU, the virtualization extensions force each VM to
operate on its own, virtual state; the hardware ensures that the privileged instructions trap
into the VMM, in case they would otherwise affect the state of other VMs or the VMM.

Different hardware implementations of virtualization extensions facilitate CPU virtual-
ization by dedicating an additional, high-privileged execution environment to the VMM.
Having discussed the concepts behind various execution environments on x86 and ARM
in the previous section, we can turn our attention towards the specifics of the virtualization
extensions of these two architectures. Therefore, the following summarizes the concepts
applied by the virtualization extensions on Intel and ARM to virtualize the CPU.

2.2.2.1 Intel Virtualization Technology

Intel’s virtualization extensions (Intel VI-x) introduce an additional mode of operation,
the virtual machine extensions (VMX) operation [Int20a]. This mode differentiates be-
tween two logically separated sub-modes comprising the VMX root and VMX non-root
operation. The VMX root operation extends the system’s ISA with an additional set of
VMX instructions to maintain virtual environments. At the same time, VMX non-root im-
poses restrictions on the software privileges, behavior, and perspective on the underlying
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2 Technical Background

system. For instance, selected hardware events or privileged instructions cause software
in VMX non-root to trap into the VMX root operation. Typically, a VMM operates in the
high-privileged VMX root and guest VMs operate in the less-privileged VMX non-root.

To provide full compatibility for software architectures in both the VMX root and VMX
non-root, Intel VI-x duplicates the four privilege levels and assigns both sub-modes of
the VMX operation their own set of protection rings (Fig. 2.7). In this way, the software
architecture of, e.g., OSes does not have to be adjusted for the respective VMX operation.
Intel VI-x dedicates a hardware defined data structure called Virtual Machine Control
Structure (VMCS) to maintain control over the VMs in VMX non-root and coordinate
transitions between the VMM and a particular guest. Specifically, the VMCS reserves space
for the host’s CPU and the guest’s virtual CPU (vCPU) state, which is used to temporarily
save and restore the particular state on every VMX transition. That is, the system initializes
the CPU with the guest’s vCPU state on VM entries and restores the host’s CPU state on
VM exits.® If the guest requires multiple CPUs, the VMM must maintain one VMCS for
each virtual CPU. Further organization of the VMCS holds execution control fields that
determine the guest’s behavior. For instance, by configuring these fields the VMM can
define the set of events that will trap into the VMM and the way how the system behaves
on VM entries and exits.

2.2.2.2 ARM Virtualization Technology

ARM offers its own set of virtualization extensions to assist CPU virtualization [Arm20].
Similar to Intel VT-x, the virtualization extensions of the ARMvS8-A architecture dedicates
the high—privileged exception level, EL2, for hosting a VMM (Fig. 2.6). EL2 equips the
VMM with capabilities to maintain and impose control over VMs. Software components
in ELO or EL1 trap into the higher privileged VMM in EL2, e.g., on privileged instruction
fetches, or on access to system configuration registers or devices managed by the VMM.
Similar to system call invocations that take the generated Supervisor Call exception from
ELO to EL1, the VMM initializes a dedicated exception vector table that allows to handle
exceptions from either of these exception levels. Thus, a VM exit on ARM is nothing else
than an exception taken to EL2. Contrary to the VMCS of Intel VT-x, the virtualization
extensions on ARMv8-A do not automatically save and restore the state of guest OSes
from a hardware-defined memory region. Instead, ARM implements different banks for
special- and general-purpose registers. These banks bind selected registers to a particular
execution environment, and preserve their contents in their banked shadow copies on
transitions to another exception level or execution and security state. Additionally, the
VMM maintains the respective unbanked CPU state on VM transitions. Even though this
design decision entrusts the software with managing the CPU state, the VMM can focus
on saving only relevant information, thus avoiding unnecessary memory writes.

®The terms VM entry and VM exit refer to Intel’s terminology describing transitions from the VMM into
the guest and reverse. Throughout this work, we use these terms to also describe the transitions between
the VMs and the VMM on ARM systems.
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Figure 2.8: The system’s virtual memory system architecture uses guest-controlled first level
address translation and VMM-controlled second-level address table translation
tables to translate guest-virtual to machine-physical addresses.

2.2.3 Memory Virtualization

Through memory virtualization, VMMs provide the illusion to VMs of having control of
their physical memory. While guests maintain page tables for translating guest-virtual
to guest-physical addresses, the VMM is responsible for translating guest-physical into
machine-physical addresses (Fig. 2.8). This lends VMMSs a memory isolation property
that ensures that even compromised guests cannot manipulate other VMs or the VMM
itself. On systems without virtualization support, the VMM maintains an additional set
of page tables (shadow page tables) for managing the guest’s physical memory in software.
By write-protecting the guest’s page tables, the VMM intercepts their modifications and
redirects translations to a dedicated memory location. The downside is that the complex
software management of shadow page tables entails a significant performance overhead.

To approach the poor performance of shadow page tables on hardware with virtual-
ization support, the Memory Management Unit (MMU) features a supplementary level
of indirection through the second level address translation (SLAT) tables (Fig. 2.8). Simi-
lar to shadow page tables, the hardware requires an additional set of page tables that is
maintained solely by the VMM and cannot be accessed by the guest. These second stage
translation tables complement the translation of guest-virtual to guest-physical addresses,
by mapping the guest-physical to machine-physical addresses. Accesses to memory that
is not mapped or lacks access permissions in these tables result in traps allowing the
VMM to isolate and control the guest’s view on the physical memory. Different hardware
implementations of SLAT tables can differ. For instance, the SLAT tables of both AArch64
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2 Technical Background

and Intel allow to define execute-only memory, which lends a VMM the ability to hide code
instrumentation [DZX13, LMP*14, PLM"18]. In contrast to Intel and AArch64, SLAT on
AArch32 does not support this functionality.

2.2.4 Device Virtualization

Similar to the system’s CPU or memory, Input/Output (I/O) devices describe yet an-
other form of system resources governed by the VMM. The versatility of various devices
strongly affects the task of device virtualization. In contrast to a CPU, which conforms
to a single interface (i.e., ISA), devices implement a high number of different interfaces,
which have to be considered by the VMM. Generally, a VMM equips VMs with a set of
virtual devices. Virtual devices can, but do not necessarily have to correspond to the
physically available devices. In cases, in which virtual devices are not backed by their
physical representation, the VMM can intercept the VM’s I/O requests and emulate the
device’s behavior in software. Regardless of the device’s implementation, the VMM bears
a two-fold responsibility to virtualize devices. First, the VMM has to ensure a compatible
device representation towards VMs. This task differentiates between shared and non-
shared devices. In particular, the VMM must determine how to correctly manage the
device’s state. This presents a challenge for devices, which were not implemented with
virtualization in mind. For instance, while a VMM can divide and assign individual parti-
tions of a hard drive to different VMs, multiplexing access to network devices or graphics
cards among different VMs dramatically increases the management overhead. Second,
the VMM is responsible for providing a communication interface between the VMs and
devices. To satisfy this task, the VMM can: (i) trap and emulate every I/O request in
software; (i7) modify drivers of the guest OS to establish an efficient, virtualization-aware
communication; or (ii7) employ hardware virtualization techniques. Modern architectures
typically apply para- or hardware-virtualization techniques to virtualize devices. When
applying para-virtualization, the system leverages a split-driver architecture [Chi08], in
which a device driver’s functionality is split across a VMM-aware front end (inside the
guest) and a back end (inside a privileged VM or the hypervisor). Both driver compo-
nents communicate through a well-defined interface (e.g., virtio [Rus08]). In contrast,
hardware-virtualization directly passes through a physically available device to a partic-
ular VM. Such techniques are often accompanied by an I/O Memory Management Unit
(IOMMU) [Int19], which allows to remap and isolate the address spaces of DMA-capable
devices [BYMX'06]. Sophisticated virtualization extensions [Int20c] additionally man-
age the devices’ state, and hence multiplex devices among different VMs. In this way,
hardware-supported device virtualization reduces the complexity and interactions with
the VMM and hence increases the overall performance.
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2.3 Virtual Machine Introspection

Many modern OSes bundle the most sensitive and security relevant components at its
heart, namely in the depths of the OS kernel. Yet, contrary to microkernel architectures,
a monolithic design does not foresee a privilege separation layer between the security-
related and the remaining kernel components, or rather subsystems. Even though the
long-established concept of isolation has proven effective in increasing security [SS72],
unfortunately, logically separating kernel subsystems is not the most relevant point on the
kernel developers’ agenda. At the same time, this lack of isolation encourages maliciously
motivated actors to target and abuse vulnerabilities in various interfaces of the OS to
establish primitives to illegally access the memory reserved for the kernel. These primitives
can allow attackers to read from or write to sensitive data in the kernel memory, or cause the
kernel to delude or even deactivate the given security mechanisms. Sophisticated malware
can counter defense mechanisms by evading or directly attacking trusted pillars upon
which the defenses rely [JBZ*14]. To approach this issue, Chen et al. [CN01] suggested
to relocate OSes into VMs and to shift the OS’s security services from the OS kernel into
an isolated and high-privileged environment that is maintained by a VMM. The main
reason for this is that security applications, which operate outside the VM cannot be easily
manipulated or fooled by a potentially compromised OS. With their work, Chen et al. have
set an incentive to leverage virtualization technology to support OSes, which, shortly after,
emerged to a novel research direction, coined virtual machine introspection (VMI) [GRO03].
VMI has highly influenced our work and is the main focus of this section.

2.3.1 The Scope and Benefits

Virtual machine introspection describes primitives that facilitate software to engage in
OS hardening and analysis activities from an isolated, and hence protected environment.
Specifically, VMI comprises a set of techniques that utilize the VMM to inspect, manipulate,
and control software executing inside VMs [Pfo13]. These capabilities lend VMI applica-
tions an omniscient character, which is in particular attractive for its unique property of
having a complete and untainted view over the VM’s state [PG74, Pfo13]. These properties
have proven effective and led to an increased adoption of virtualization techniques for mal-
ware detection, prevention, and analysis frameworks in commercial [VMR20, Fir20, Bit20]
and open source sectors [VKSE13, LMP*14, Lib20, PSE11].

The concepts behind virtual machine introspection entrust a VMM to regain the trust in
security that is increasingly questioned in non-virtualized OSes [JBZ*14]. The fading lack
of trust in OSes can be attributed to their constantly growing size and complexity; both
properties inadvertently introduce sufficient ground for malicious actors to invade and
take over the kernel. In contrast, VMMSs are limited in size and complexity. In addition,
they expose only a manageable-sized interface towards VMs, isolate themselves from
malicious activity, and hence render themselves as suitable candidates for the system’s
Trusted Computing Base (TCB). Consequently, shifting security applications out of the OS
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Figure 2.9: A VMM must supply the VM, with the capabilities isolation, inspection, interposi-
tion, and stealth to facilitate stealthy introspection of the guest OS inside VM.

into the VMM is a logically-appealing strategy. Garfinkel et al. [GR03] have summarized
three capabilities a VMM must supply to accommodate the necessary foundation for
VML These capabilities comprise isolation, inspection, and interposition. In addition, recent
research [DZX13, ZLSS13, ZLS"15, LMP*14, Vog15, Len15, NZ17] has identified a fourth
capability that has become indispensable for VMI-based malware analysis, namely stealth
(Fig. 2.9). In the following, we summarize the four core characteristics a VMM has to
supply to support stealthy virtual machine introspection.

Isolation: The inherent characteristics of VMMSs provide guest software executing inside a
VM anillusive perspective on the system’s resources (Sec. 2.1.3); guests cannot access
resources that were not explicitly granted and are virtually unaware of any environ-
ment outside the virtual machine. These characteristics form the isolation property,
which ensures that even potentially compromised guest OSes cannot affect the state
of other VMs or the VMM itself [GRO3]. Consequently, from a security standpoint,
the isolation capability ensures the integrity of VMI-based security mechanisms ex-
ecuting outside of the target VMs. Fig. 2.9 provides a simplified representation of
the isolation property (@). The VMM utilizes the second level address translation
to isolate the memory of individual VMs. Even though, the VMM supplies further
capabilities to isolate the system’s resources, we exclude them for the sake of brevity.
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Inspection: Generally, malware either aims to directly attack or evade security mecha-
nisms, e.g., by feeding them with falsified information [GR03]. The strong isolation
capability of VMMSs ideally thwarts direct attacks against outsourced VMI com-
ponents. On the other hand, the inspection capability can assist VMI to obstruct
evasion attacks. This capability hinges upon a VMM with a complete and untainted
view of the guest’'s memory and register state, as well as the state of virtual de-
vices [GRO3, Pfol3]. Equipped with these insights, VMI applications cannot be
easily deluded. Yet, the VM'’s state involves a great amount of binary information
that VMI applications need to put into the right context, before they can apply
any security-relevant actions. To translate the VM'’s binary state to high-level in-
formation, VMI applications have to trust and rely on semantic information of the
guest’s OS and the virtual hardware architecture, which has to be gathered in the
first place [PSE09]. For instance, the VM, in Fig. 2.9 applies semantic information
associated with VM; to map its binary state to the high-level data structure struct
task_struct (®). Generally, this lack of knowledge is known as the semantic gap,
which every VMI application has to bridge [CNO1]. Because of its relevance for VMI,
we pay special attention to the semantic gap in the following section.

Interposition: To avoid losing control over the system’s resources to guest OSes, the VMM
must provide the necessary means to interpose, or intercept the guest’s operation
upon certain events. Such events can comprise, amongst others, the guest’s execu-
tion attempts of privileged instructions, access to protected memory regions, and
hardware interrupts (Sec. 2.1.3). While some of these events unavoidably trap to
temporarily hand over control to the VMM for managing resources, the system can
be configured to assist VMI; intercepting selected events of interest lends VMI tools
the ability to observe and manipulate, and hence control the target VM'’s state for
various security purposes. For instance, a VMI application can utilize the VMM to
write-protect the memory region of the guest’s Interrupt Descriptor Table (IDT) to
receive notifications about every unauthorized in-guest write access to it.
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Despite the VMM'’s power to intercept the VM'’s events, its applicability reaches its
limits when protecting the security sensitive resources that are not bound to the
hardware. In other words, the hardware does not foresee the necessary means to
intercept certain events, even though they are relevant for the purpose of analysis;
occurrences of such events do not trap into the VMM. Thus, often, VMI tools must
apply alternative and creative methods to side-step the hardware’s inability to inter-
cept events of interest to nevertheless achieve the desired behavior. For instance, even
though the VMM cannot directly intercept system calls on x86, Pfoh et al. [PSE11]
have shown an alternative approach: the authors utilize their VMI framework, Nitro,
to initialize the Model Specific Register (MSR) holding the base address of the system
call dispatcher with NULL. Alternatively, invasive introspection frameworks, such as
DRAKVUF [LMP*14, PLM"18], inject, e.g., software breakpoint instructions into the
guest’s memory to interpose on selected events. Fig. 2.9 illustrates a similar setup
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in which we inject an int3 instruction into the prologue of the __x64_sys_read()
system call handler (). This configuration causes the system to trap into the VMM
on every system call invocation. As such, intercepting events of interest can impose
a measurable performance overhead, introducing another source of information for
malware that aims to evade virtual environments [Rut04, CAM 08, MANP17].

Stealth: Malware can exhibit a split personality. In other words, malware can change its

behavior, as soon as it uncovers suspicious artifacts, or merely suspects an under-
lying analysis framework. Instances of this split-personality malware employ anti-
debugging and anti-virtualization techniques [Rut04, CAM*08, BCK*10, SAM14,
BBF*16, MANP17] to reveal and evade analysis. Similar to the isolation capability,
stealth is not to be confused with VM transparency [GAWFO07]. One can approach VM
transparency in an attempt to make the VM indistinguishable from real hardware to
reduce virtualization artifacts (that present themselves in form of discrepancies to
physical machines in the execution environment, hardware, and system behavior),
and hence avoid malware evasion; yet, according to Garfinkel et al., and to this date,
this property remains infeasible, and more importantly impractical for modern de-
fense mechanisms [GAWEF(7]. Disregarding the technical challenges, which make
this goal infeasible in the first place, its impracticality is mainly because of the fact
that, today, we observe an increasing trend toward system consolidation through
virtualization. This trend renders the goal of VM transparency obsolete; the presence
of a virtualized environment does not necessarily indicate that its sole purpose is
dedicated for VMI [PLM*18]. Therefore, it would be unprofitable for attackers to
exclude virtual environments. Even though perfect VM transparency is still infeasi-
ble [GAWF07], as we point out in Fig. 2.9, VMI tools should focus on hiding analysis
artifacts, such as memory or register contents that can indicate and, in the worst
case, reveal the underlying analysis framework (®). By providing the necessary
means to cloak analysis artifacts, a VMM can facilitate stealthy monitoring of highly
sophisticated malware.

A VMM that inhibits this (extended) set of capabilities supplies VMI-based security

mechanisms with a proficiency specifically tailored for efficient and highly robust malware
detection and analysis, conducted entirely isolated from the software inside the VM.
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2.3.2 The Semantic Gap

Modern OS kernels comprise various data structures, each dedicated for a specific purpose.
These data structures hold small fragments, or snapshots of the entire system'’s state and
assist the OS in managing and maintaining its resources. In other words, OS kernel
data structures define building blocks required to form high-level abstractions, such as
processes, files, and kernel modules. High-level abstractions convey the OS’s semantics
that fully describe the state of the OS. For instance, monitoring tools, such as ps on
Linux, observe the OS’s data structures to infer semantic knowledge about the respective
high-level abstractions (i.e., in the case of ps, the semantic knowledge describes the state
information of active processes). Consequently, it is this semantic knowledge upon which
many security applications rely to detect and potentially prevent malicious activity.

From the VMM'’s perspective, the state of a VM comprises a vast amount of unstruc-
tured binary information in volatile memory and registers, as well as disk contents and
devices.” The lack of structure underneath the OS obfuscates a correct interpretation of the
semantics. Even though the VMM provides the necessary means to interpose on various
in-guest events and let VMI tools observe the complete and unobstructed binary state of
the VM, without first placing this binary information into the right context, the VMM,
and hence the VMI applications, will not be able to make sense out of it. We refer to this
lack of knowledge as the semantic gap [CNO1]. Consequently, every VMI application faces
the challenge of interpreting and reconstructing the hidden high-level semantics from the
immense amount of low-level information to bridge the semantic gap [PSE09].

2.3.2.1 Bridging the Semantic Gap

The general mechanism behind bridging the semantic gap is to apply information, or
knowledge that facilitates generating a semantically enriched view on the VM'’s binary
state. The added information constitutes in-depth knowledge of the guest OS (i.e., the
software architecture) and (virtual) hardware architecture that assists VMI tools in recon-
structing data structures to regain fragments of the missing semantics. Recent research
has organized common methods for reconstructing OS kernel data structures into three
view generation patterns [PSE09]. These comprise the in-band delivery, out-of-band delivery,
and the derivative pattern, which we briefly outline in the following. Depending on the sce-
nario, these patterns can be applied separately or in combination to achieve most effective
results. They apply different methodologies to acquire the knowledge required to bridge
the semantic gap. More importantly, the applied methodologies differ, among others, in
completeness of the reconstructed state, stealth, and their assumptions concerning trust
in the guest OS [Pfol3, JBZ" 14, Vog15].

"Throughout this work, we reduce the notion of the VM'’s state to the virtual architecture’s register state
and contents of the volatile memory.
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2 Technical Background

In-band delivery pattern: This pattern involves in-guest agents that utilize services of the

guest OS itself to acquire the state information of interest and deliver it to the VMM.
The gathered state solely considers the guest’s software architecture and is thus de-
livered in-band (i.e., from within the VM). The in-band delivery strategy benefits
from its unique position, as it can completely avoid the complex and potentially
inaccurate operation of bridging the semantic gap; the agent does not need to recon-
struct the guest’s data structures as it already has insight to the guest-visible state.
That is, in-guest agents observe the guest’s state in a similar level of detail as it is
perceived by the guest OS. Therefore, the in-guest agent rather observes and passes
the first-hand knowledge about the guest’s software architecture to the VMM.

At the same time, such agents expose themselves to the in-guest environment and
are subject to potential attacks. Even though a VMM can shield the agent against
direct tampering attempts, it cannot guarantee that the agent receives a complete
and unobstructed view of the guest’s state; malware can detect such agents and
feed them with falsified information. The question of trust applies similarly to the
guest OS as the agent strongly relies on its trustworthiness; a compromised OS can
break the inflicted assumptions of its benignity, and hence similarly mislead the in-
guest agent. Therefore, in-band delivery patterns trade off stealth and completeness
for convenience and simplicity of inspecting and delivering the state information.
From a critical perspective, the given downside questions the benefits of approaches
utilizing an in-band delivery strategy over traditional in-guest security measures,
such as common off-the-shelf anti-virus solutions.

Out-of-band delivery pattern: This pattern involves an external component to identify

40

and extract information necessary to reconstruct guest OS kernel data structures.
This component is responsible to supply the VMI framework with the accumulated
knowledge. Empowered with this knowledge, the VMI framework becomes able to
transform the guest’s binary representation into a meaningful state that is necessary
to derive the high-level semantic insights. Only then, the VMI framework can
start with the guest introspection activities. Generally, such external, knowledge-
gathering components acquire the semantic knowledge ahead of time (i.e., before
the VMI operation). This knowledge can comprise exported or debugging symbols,
crafted data structure signatures, or the results of static or dynamic analysis that can
help to narrow down the format and location of relevant kernel data structures in
the guest’s memory [JBZ*14].

Contrary to the in-band delivery pattern, strategies that acquire the relevant infor-
mation out-of-band do not engage in any in-guest participation, and hence do not
risk a direct exposure of the analysis framework. Thus, out-of-band delivery ap-
proaches are suited for stealthy operation. On the other hand, the view generation
component of the VMI framework strongly relies on the trustworthiness and com-
petency of the external component that delivers the acquired semantic knowledge
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in the first place. The delivered information is as good as the applied information
gathering technique and likely to not cover the guest’s complete state. Another level
of uncertainty applies to the integrity of the guest OS; the VMI framework cannot be
completely sure that the delivered semantic knowledge fully matches the guest OS’s
software architecture. This is because the delivered semantic knowledge cannot be
bound to the respective OS architecture and hence cannot be trusted [Lit08, JBZ*14].
Even if the OS was benign, malicious actors could inflict, e.g., unauthorized struc-
tural changes on the OS kernel data structures to confuse the VMI framework and
evade analysis [BJW'10].

Derivative pattern: Contrary to the information delivery patterns, this pattern uses in-
depth knowledge of the (virtual) hardware architecture alone to derive a semanti-
cally enriched view on the guest’s state. One of the biggest advantages of this pattern
is that the derived information does not depend on any software components that
are (potentially) susceptible to deception. Instead, this strategy trusts and binds
its assumptions to the underlying hardware specification, rendering them as im-
mutable; the entire software architecture inside the VM adheres to this specification.
Consequently, even the most sophisticated malware cannot affect the assumptions,
which were made to derive the view. For instance, OSes leverage hardware-defined
data structures (such as segment and interrupt descriptors, and page tables) as an-
chors (locked, e.g., in the system’s control registers) that define the environment
the guest OS relies upon; malicious actors cannot simply neglect or modify these
anchors and hence similarly depend on their existence. Hardware vendors precisely
describe the structure of such hardware anchors and (parts of) the referenced data
structures. Consequently, derivative patterns can uncover parts of the guest’s state
by reconstructing data structures along the chain of interlinked references stemming
from the hardware anchor. In other words, data structures are rooted in hardware
if it is possible to create a chain of references between a hardware anchor and the
particular data structure [Pfol3].
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At the same time, purely derivative patterns reconstruct only a limited view on
the guest’s state. Only a small number of data structures inside OSes are rooted
in hardware [Pfol3]. As such, they are often employed complementary with the
introduced information delivery patterns.

The given view generation patterns equip external VMI tools with the ability to recon-
struct a part of the guest’s state to establish robust security frameworks. At the same
time, they place strong trust assumptions on the integrity and benignity of the component,
which is responsible to gather the semantic knowledge, and on the OS itself. We consider
this an open problem and hence dedicate the following section to clarify the issue at hand.
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2.3.2.2 The Question of Trust

VMI tools apply one, or a combination of the presented view generation patterns to
translate the VM’s binary representation into meaningful information (Sec. 2.3.2.1). In
this context, VMI tools, which employ in-band or out-of-band delivery patterns, assume
trustworthiness and integrity of the following three components: (i) the component that
gathers the semantic knowledge, (i7) the delivered semantic knowledge itself, and (ii7) the
guest OS kernel [JBZ714]. The trust assumptions placed on these components cannot
always be relied upon. The quintessence is that the delivered semantic knowledge is non-
binding [Lit08]; it cannot be bound to an immutable anchor which is guaranteed to remain
unchanged at run-time [JBZ"14]. By changing the assumptions of the OS’s semantics,
malware can evade introspection. For instance Direct Kernel Structure Manipulation
(DKSM) [BJW'10] attacks specifically aim to modify the guest kernel’s data structure
representation. Disregarding their complexity, and whether such attacks are at all feasible
in realistic scenarios, the net effect of DKSM attacks is that VMI tools continue to rely
on outdated information and hence can potentially miss the malicious behavior. Jain et
al. [JBZ"14] use these trust assumptions to differentiate between the weak and the strong
semantic gap problem.

Weak semantic gap: This problem fully relies on the integrity of the acquired non-
binding semantic knowledge. The gathered knowledge is immutable and complete
in regard to all security-relevant invariants. Further, this problem trusts that the
guest OS remains benign during the view generation and cannot be compromised
until its deployment and VMI-controlled launch.

Strong semantic gap: This problem neither trusts the guest OS nor any non-binding
semantic information without additional run-time validation [JBZ"14].

Under the assumption of the strong semantic gap problem, a maliciously driven semantic
knowledge gathering component (whether in-guest or external) can falsify, withhold, or
simply not identify potentially security-sensitive information during the acquisition of
the semantic knowledge. Alternatively, a malicious actor can retrospectively modify the
delivered semantic knowledge, without influencing the process of acquisition. In both
cases, the modified or incomplete knowledge can create a blind spot in the reconstructed
guest state, which would guarantee a safe space for malicious activity. Finally, even if
(7) and (i) were complete and trustworthy, the guest kernel itself (iii) can break the
assumptions of VMI, e.g., if it was replaced or dynamically patched, right after having
applied the delivery-based view generation patterns. On the other hand, derivative view
generation patterns cannot be easily fooled. Yet, as we have learned in the previous
section, purely derivative approaches cannot reconstruct the entire state of a guest. Hence,
they should be accompanied by knowledge acquired either through in-band or out-of-band
delivery patterns. Since not every data structure is rooted in hardware, the complementary
delivered semantic knowledge faces the described challenges. Asa consequence, the strong
semantic gap problem remains unsolved and hence requires further investigation.
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2.4 Summary

In this chapter, we have outlined the technical foundation that is required to assist the
reader in better understanding the components of our work. The following chapters will
draw upon the depicted foundation and further extend it where necessary. In essence, we
have guided the reader through the fundamental concepts of virtualization technology,
for virtualization technology has inspired and is the main topic of this work. In an
attempt to share both our insights and admiration to virtualization technology, we progress
through different forms of virtualization that are common today. Further, we amplify
upon selected hardware components and extensions of the x86 and ARM architecture,
which simplify system virtualization. Throughout this work, we repurpose the described
hardware components in different ways to assist VM introspection as well as the security
of OSes. We conclude this chapter with an overview of virtual machine introspection
techniques, which entail advantages and disadvantages, when compared to conventional
in-kernel security mechanisms. The main intention behind this chapter is to prime the
reader such that they develop a sense for the high potential of virtualization technology
in regard to OS security; the strong logical separation capabilities make virtualization
techniques particularly attractive with regard to security, and hence to our work. Having
defined the necessary foundation, we have set the sail towards exploring novel concepts
that leverage virtualization for stealthy dynamic binary analysis, as well as virtualization-
assisted OS security primitives (Sec. 1.2). Yet, before we dive into the details of our work,
in the next chapter, we provide the reader with a conceptional system architecture, which
combines the contributions of this work to convey our vision of a virtualization-assisted
system architecture.
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Chapter

System Architecture

Yes, three is mystic. Three stands at the heart of your quest.
Another number comes later. Now the number is three.
— STEPHEN KING

This work investigates novel virtualization-assisted primitives to improve the state-
of-the-art stealthy dynamic binary analysis techniques and the security of selected OS
components (Sec. 1.2). To put the perspective on these two main drivers of our research
into a more concrete frame, in this chapter, we introduce a conceptional and hardware-
independent high-level representation of a system architecture. Specifically, the target
system architecture in this chapter integrates the primitives introduced in this work and
provides an organized overview of their concepts. In this regard, we define a target system
hosting a VMM, which maintains two logically separated VMs—one for each research
direction—and aligns our primitives with their scope of application in the respective
VM. This allows us to position and shed light on the introduced security elements in the
context of a global system representation and hence exemplify the purpose of our work.
In addition, we outline a comprehensive threat model targeting the introduced system
architecture. The threat model serves as a basis and is further extended by the elaborated
threat models in the following chapters specifically tailored to the individual primitives.
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3 System Architecture
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Figure 3.1: The target system architecture comprises a VMM and two domains, the privileged
domain, Dom@®, and the unprivileged domain, DomU. The domains represent and
accommodate the two research directions of this work, namely stealthy dynamic
binary analysis (DomU) and virtualization-assisted OS security (Dom®).

3.1 Conceptional Target System

The target system architecture serves as an abstract organizational structure. It assists
the reader in aligning the objectives of this work with the different building blocks of the
following chapters in form of virtualization-assisted security primitives. Even though our
contributions build upon physical hardware capabilities, the conceptional system in this
section generalizes the applied concepts, and hence avoids any hardware dependencies.
Thus, the target system is not bound to any specific hardware architecture. Instead, it
represents a wide-ranging set of architectures with hardware virtualization extensions.
Real-world systems that can benefit from the introduced concepts vary from low-power
mobile, IoI, and wearable devices, to legacy and high-end desktops, laptops, and servers.
Most of the presented concepts are orthogonal to each other: while a combined setting
exhibits the most benefits, the introduced security primitives can be applied individually.

Fig. 3.1 illustrates a simplified target system architecture comprising a VMM and two
logically separated domains (i.e., VMs),! with each hosting a fully-fledged OS kernel and
user space plumbing. Each domain represents one of this work’s goals, in the context of
which we leverage virtualization for () stealthy dynamic binary analysis and (ii) OS secu-
rity (Sec. 1.2). Thus, the logical separation between both domains in the figure allows us to

'We prefer the Xen Project hypervisor’s [BDF03, Chi08, Lin20a] notion of domains for describing VMs.
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clearly separate the two perspectives on security that guide our research, and to highlight
how our contributions interact with the target system architecture to accommodate them.
In this regard, we devote the unprivileged domain, DomU, on the right hand side of the
figure to dynamic binary analysis. Specifically, the VMM of our target system architecture
supplies a VMI-based framework in the privileged domain, Dom®, with access to novel
primitives of the VMM to observe the behavior of binaries inside the DomU in a stealthy
way. On the other hand, we use the Dom® on the left hand side of the figure to highlight
the involved OS components, which we have equipped with virtualization-assisted mem-
ory protection primitives to increase the system’s resilience against potential attacks. We
elaborate the introduced primitives in detail in the following chapters (Chap. 4 - 7).

We distribute the virtualization-assisted primitives (which form the essence of this work)
across different abstraction layers of the target system architecture. The following outlines
the assumptions and responsibilities of involved abstraction layers and links them to
the security primitives of this work. To maintain consistency, we adhere to the introduced
terminology (Sec. 2.1.3), which associates the different abstraction layers of the architecture
with execution modes (i.e., user, kernel, and system mode) of the privilege hierarchy.

System mode: The system mode hosts the VMM and forms the lowest and most-privileged
level that we consider in the target system architecture. It supplies the VMM with
services of the hardware-assisted virtualization extensions required to establish the
foundation for (efficient) system VMs (Sec. 2.1.3). We assume that the target archi-
tecture supplies a SLAT mechanism to isolate and govern access to physical memory
that is reserved for VMs (Sec. 2.2.3). Optionally, the system can encrypt the guest’s
memory, yet, this would limit the VMM '’s inspection capability and hence impair its
functionality required to dynamically analyze binaries in the DomU (Sec. 2.3.1).

Aligning the contributions: The VMM operates with privileges of the system mode and
is the central component that is responsible for implementing the security primitives
for both stealthy dynamic binary analysis and virtualization-assisted OS security.
We utilize and extend the Xen Project hypervisor [BDF03, Chi08, Lin20a], yet, we
do not limit the general concepts to Xen (Chap. 5 — 6). Alternatively, we propose
using a thin VMM, which benefits from a reduced attack surface; it implements only
essential functionality and can equip arbitrary virtualization-assisted primitives with
an on-demand deployment strategy (Chap. 4). Regardless of the security primitives’
deployment details, instead of using one set of SLAT tables to define a global view
on the guest-physical memory, we assume the VMM has the ability to maintain and
switch among different views. This is a requirement to form primitives to enable
stealthy dynamic binary analysis (Chap. 5) and enhance the guests with strong
memory isolation capabilities (Chap. 6). In both cases, the VMM offers authorized
guest OS components access to these primitives through its hypercall interface. This
way, guest OSes can leverage these primitives to stealthy analyze binaries in other
VMs (Chap. 5) or configure in-guest security and memory access policies, which
allow to protect sensitive data in kernel and user space (Chap. 6).
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Kernel mode: Our target system architecture reserves the kernel mode for general-purpose

OSkernels inside VMs. Even though our work has a strong affinity towards the Linux
kernel for its open source character, the general concepts are applicable to any OS.
Depending on whether a domain is used for dynamic (malware) analysis or for
general OS hardening, the kernel’s level of agnosticism varies with regard to the un-
derlying VMM and hardware. In the former use case, the DomU runs an unmodified
OS kernel; a VMI framework in Dom® utilizes the VMM to analyze malware in DomU,
without revealing any in-guest analysis artifacts (Chap. 5). In the latter use case, Dom®
runs a modified kernel that actively interacts with the VMM through the hypercall
interface to either activate the hardware’s capabilities in the VM, or to leverage the
VMM to gain the virtualization-assisted memory isolation capabilities (Chap. 5 - 6).

Aligning the contributions: Our contributions equip selected subsystems of the ker-
nel to protect sensitive OS components against attacks. We focus on hardening the
memory and process management system through the virtualization-assisted prim-
itives established in system mode (Chap. 6). Additionally, we pave the way towards
enhancing the security of the driver architecture, and obstructing selected attacks
against the OS kernel heap management structures, which we highlight for the future
work (Sec. 8.2). The extended OS kernel memory management system interfaces the
VMM in system mode. We use the system’s hypercall interface to propagate access
to the strong memory isolation capabilities into the memory management system.
Our idea is to repurpose the system’s virtualization extensions to lend the kernel
memory management the ability to define disjoint and isolated memory domains.
We intend to utilize such domains to protect selected sensitive and security-critical
data structures against data-oriented attacks (Chap. 6). In this context, we estab-
lish the means to thwart attacks against page tables and process credentials of the
process management subsystem. Further, our contribution utilizes and extends the
Linux namespaces to protect data structures against unauthorized access attempts
originated in specified namespaces (Chap. 6). Thus, our contributions also extend
the kernel to enhance the isolation capabilities of containers (Sec. 2.1.2).

User mode: The least-privileged abstraction layer of our target system architecture mainly
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accommodates the user space plumbing layer of the OS. It defines an execution
environment for individual or groups of processes in form of containers (Sec. 2.1.2).

Aligning the contributions: The OS kernel extensions pass the virtualization-assisted
memory isolation primitives through the system call interface to user space compo-
nents. This allows processes to protect sensitive data in isolated domains against
data-oriented attacks (Chap. 6). Additionally, our target architecture applies system
call filtering mechanisms to reduce the number of system calls authorized to pro-
cesses and containers (Sec. 2.1.2). To accommodate the system call filtering facility,
we foresee a static analysis based framework for deriving accurate policies from
binaries to restrict a large portion of system calls (Chap. 7).



3.2 Comprehensive Threat Model

3.2 Comprehensive Threat Model

To accompany the introduced high-level target system architecture, in this section, we
outline the associated comprehensive high-level threat model. Specifically, we distinguish
between two distinct roles describing offensive and defensive tactics of the malicious actor,
and the actions she can take in targeting the system. We adapt and extend these roles in
the following chapters in order to clarify the threat model and adversarial capabilities of
the respective contribution (Chap. 4 - 7).

Offensive attacker: The firstrole defines the capabilities and intent of an offensive attacker
who abuses, e.g., latent memory corruption vulnerabilities to leak or modify sensi-
tive information, or lever out active security mechanisms and take control over the
system. In both cases, the attacker aims to establish read and write primitives to craft
and stitch together gadgets (in user and kernel space) required to conduct various
attacks. While the gained primitives in user space allow malicious actors to directly
access the victim process’ address space, the attacker leverages potentially vulner-
able system calls or kernel drivers to indirectly leak or corrupt the kernel memory.
The proposed target system architecture assembles a set of virtualization-assisted
OS security mechanisms (Dom® in Fig. 3.1) to reduce the system’s attack surface or
even prevent such operations.

Defensive attacker: The second role describes a defensive attacker who utilizes sophisti-
cated deobfuscation, anti-debugging, and anti-virtualization techniques focusing on
revealing in-guest analysis environments and artifacts. In other words, the attacker
lends malware a split personality to evade the detection and, in particular, analysis
of the employed techniques. That is, the attacker is indifferent to virtual environ-
ments, yet, she will abort the operation upon disclosing any evidence of an analysis
framework. The system architecture reserves and dedicates an unprivileged domain
(DomU in Fig. 3.1) to inspect and analyze the malicious behavior of such actors in a
stealthy way, without noticeably intervening in the malicious actions, and without
revealing the analysis framework.

Both roles assume a strong attacker with root privileges, yet, without physical access
to the target system. Also, in both cases, we assume the adversary operates in a top-down
manner by paving the way from user-controlled entities, e.g., from a compromised or
implanted malicious user-space process or device driver into the heart of the OS kernel.
That is, at the point of the attack, the adversary does not rely on malicious, or otherwise
compromised components residing in the same or higher privilege levels (i.e., modes) than
the VMM itself. Further, we disregard attacks that require physical access to the system’s
hardware. In a similar way, we deem the class of attacks out of scope, which abuse Direct
Memory Access (DMA) channels (that originate from the outside of the VM) to gain direct
access to the guest’s physical memory.
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3 System Architecture

3.3 Summary

In this chapter we have defined an abstract, hardware-independent representation of the
target system architecture and the associated high-level threat model. To ease the structure
of both main research directions pursuit by this work (Sec. 1.2), we logically separate their
focus and responsibilities between two VMs of the outlined system architecture. Therefore,
we dedicate one VM to organize the involved OS components and virtualization-assisted
primitives that are necessary to prevent sophisticated attacks against the OS’s kernel and
user space processes. At the same time, we dedicate another VM to establish a sand-
boxed environment equipped with stealthy monitoring primitives that can assist security
experts in analysing the behavior of sophisticated malware. Accordingly, we outline
the anticipated threats of the offensive and defensive roles or strategies an attacker can
pursue. We identify the attack vectors of the offensive and the tendency towards iden-
tifying analysis frameworks of the defensive schemes, and finally associate the system’s
virtualization-assisted components that aim to counter both strategies. We expand and
adapt the high-level threat model to the introduced primitives in the following chapters.
Overall, the choice to clearly group and position the objectives of both research directions,
allows us to create two isolated, yet comprehensive perspectives on our work, in which
we leverage virtualization either for stealthy dynamic binary analysis or OS security as
described in the remainder of this work.
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Chapter

On-demand Deployment of Virtualization-assisted
Frameworks

Reality is merely an illusion, albeit a very persistent one.
— ALBERT EINSTEIN

Modern malware can acquire and execute with the same privileges as the sensitive parts
of the OS. Once installed, it can hide from the OS and its security frameworks. The growing
complexity of modern malware drives security experts to increasingly leverage virtualiza-
tion techniques, which provide access to the complete and untainted view over the VM’s
state [CNO1, GR03, DRSL08, PSE11, Lit08, GDXJ11, LMP"14]. Specifically, they relocate
security primitives into a high-privileged VMM [CNO1]. This strategy allows security
experts in academia and industry to enhance security frameworks with virtualization-
assisted memory isolation, inspection, and interposition capabilities (Sec. 2.3). For exam-
ple, on the industrial side, Microsoft has identified and demonstrated the effectiveness of
virtualization-assisted security primitives. In fact, Microsoft integrates the Hyper-V VMM
into the OS to enhance its security since Microsoft Windows Server 2008 [Mic17a, YIRS17].
Yet, Microsoft Windows is one of the only few commercial OSes which follow this path.

To benefit from virtualization technology, a VMM has to be explicitly set up underneath
the OS. This, however, constraints a wide adoption of virtualization-assisted security
frameworks. We believe that as long as OSes are not shipped with an integrated, and pos-
sibly minimalistic VMM, which offers an interface to the hardware-assisted virtualization
extensions,' the popularity of virtualization-assisted security mechanisms in non-cloud
environments will remain in its limits. Consequently, our first contribution explores a
new deployment strategy for thin VMMSs, which, we believe, can influence the design and
enhance the capabilities of OS security subsystems.

!Note that the Linux kernel implements Kernel-based Virtual Machine (KVM) [KKL*07, Lin20b], a kernel-
based VMM. Yet, KVM transforms the Linux kernel into a (Type II) VMM, instead of equipping it with
security services.
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4 On-demand Deployment of Virtualization-assisted Frameworks

In this chapter, we elaborate a new deployment strategy and architecture of a thin VMM,
which we coin WhiteRabbit. We equip WhiteRabbit with on-the-fly virtualization tech-
niques, which allow the VMM to be deployed on-demand, e.g., on devices in managed
corporate or Iol infrastructures. More precisely, we can deploy WhiteRabbit by loading
a kernel module, which moves a live OS into a dynamically initialized virtual environ-
ment. This deployment strategy can also be implemented as an integral component of
the OS kernel. Once deployed, WhiteRabbit transparently unfolds a minimalistic and
extensible microkernel-based architecture underneath a running OS, without leaving any
traces inside the virtualized guest environment. To demonstrate the flexible deployment
strategy for arbitrary virtualization-assisted frameworks, in this chapter we exemplify one
specific use case, in which we utilize WhiteRabbit to expose VMI services, which can be
transparently deployed for the purpose of forensic analysis. In this context, once deployed
WhiteRabbit offers a LibVMI interface that enables it to be engaged by VMI applications.
Contrary to existing VMI solutions, our system does not require the target OS to be set up
for VMI in advance. Instead, we deploy WhiteRabbit spontaneously on general-purpose
systems. As a result, WhiteRabbit transforms the target system into a monitored environ-
ment that can be controlled by custom or existing VMI monitors.

Our conceptional design and prototype can take control over the virtualization ex-
tensions underneath a running Linux system on Intel as well as ARM (Sec. 2.2). Even
though WhiteRabbit’s on-the-fly virtualization capability and limited virtualization over-
head constitute an effective solution for malware detection and analysis, we consider the
deployment strategy of WhiteRabbit as a generic means to set up the necessary environ-
ment for arbitrary virtualization-assisted security measures. In other words, we regard
WhiteRabbit as a generic vehicle for deploying various virtualization-assisted OS security
mechanisms. In fact, we can apply the techniques described in this section to transpar-
ently set up other variants of VMI-based binary analysis frameworks (Chap. 5) underneath
an executing OS, or dynamically equip the OS itself with additional security primitives
(Chap. 6), which we introduce in the following chapters.

Note: We have published parts of this chapter in [PKZ18]. Even though the publication
builds upon the ground work defined in the author’s Master’s thesis [Pro16], the author
has reimplemented many parts of WhiteRabbit for x86 and introduced a new prototype
for ARM. All measurements stem from the revised and published work, and not the thesis.

52



4.1 Threat Model

4.1 Threat Model

Even though we can apply the on-the-fly deployment strategy of WhiteRabbit to deploy
various virtualization-assisted frameworks, throughout this chapter, we focus on the VMI
capabilities of our system. Hence our threat model considers and extends the defensive
attacker strategy, which we have outlined in Sec. 3.2. Overall, the main objective of the
adversary is to avoid revealing the internals of her attack. Thus, before mounting her
attack against the system, she prefers to ensure the absence of a VMI-based monitor.

We assume an adversary with root privileges, who can fully control the guest OS and
all security-relevant parts of the kernel. We disregard how the adversary gains root privi-
leges in the first place to emphasize the stealthy nature of WhiteRabbit. The attacker can
inspect the OS for agents in form of processes or kernel modules, which would reveal a
security framework. Further, the adversary can inspect the kernel’s data structures for
potential analysis artifacts and inconsistencies, which would indicate an external monitor.
Generally, she can employ anti-debugging and anti-virtualization techniques that reveal
the presence of a virtualization-based analysis framework. At the same time, the attacker
cannot perform DKSM attacks by exploiting the semantic gap to evade VMI [BJW'10]. The
attacker is not concerned about generally virtualized systems, yet, she will abort her attack
as soon as she reveals an analysis framework. Even though she can carve the guest’s mem-
ory, she cannot use DMA or operate with higher privileges than WhiteRabbit. Also, she
disregards side channel attacks against VMMs, especially those that base upon a flawed
CPU microarchitecture to reveal the VMM’s memory from unprivileged execution envi-
ronments [WVBM 18, Cor20b, SLM"19]. Further, the attacker has access to the system’s
registers and can search the file system for indications of an analysis framework.

Although WhiteRabbit provides a stealthy environment, VMI applications that are built
upon it may employ services detectable by the adversary. For instance, WhiteRabbit does
not provide any means to cloak in-guest instrumentation. For this, WhiteRabbit could be
extended to support multiple guest-physical memory views to satisfy integrity checks as
presented by complementary work based on the Xen altp2m subsystem [dml15, LMP* 14,
SMJ*17, PLM*18, PMG'20] or similar techniques [DZX13], which manipulate or switch
among different SLAT tables to coordinate the guest’s view on the guest-physical memory.
We explore stealthy instrumentations through alternate SLAT configurations in Chap. 5.
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4 On-demand Deployment of Virtualization-assisted Frameworks
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Figure 4.1: WhiteRabbit allows a remote host (left) to analyze the on-the-fly virtualized system
in the middle (x86) and right (ARM). Shaded components are involved in VMI.

4.2 The WhiteRabbit VMM

WhiteRabbit comprises a self-sufficient and thin microkernel-based VMM, which we have
designed to dynamically virtualize live OSes. As we discuss throughout this work, the
concepts behind on-the-fly virtualization allow us to equip various security frameworks
with flexible on-the-fly virtualization capabilities. Before diving into details, in the follow-
ing, we provide a bird’s eye perspective on WhiteRabbit and exemplify one use case, in
which we consolidate WhiteRabbit’s on-demand deployment strategy with VMI.

Generally, to shift a running OS into a virtual environment, our system leverages the
virtualization extensions of the Intel and ARM architecture in a special way. As such, we
draw upon characteristics of both architectures throughout the remainder of this chapter.
Even though we could have adapted traditional VMMs, such as the Xen Project hypervi-
sor [BDF*03, Lin20a] and Linux KVM [KKL 07, Lin20b], to facilitate on-the-fly virtualiza-
tion of OSes, we have opted for a custom, minimalistic VMM implementation. The main
reason for this design decision is that traditional VMM implementations specialize in a
different scope; they entail a considerable amount of potentially error-prone functionality
that is not necessary and would remain unused when applied for our purpose.

Fig. 4.1 illustrates a simplified architecture of WhiteRabbit on both x86 and ARM. The
presented WhiteRabbit software architecture comprises custom subsystems and supplies
VMI capabilities to remote parties. To tackle potential exposures, WhiteRabbit hides
in memory from the virtualized OS. Specifically, since WhiteRabbit controls the VM’s
view on the guest-physical memory (Sec. 2.2.3), it excludes its code and data region
mappings in the SLAT tables. Further, WhiteRabbit implements and exposes a LibVMI-
compatible interface to remote VMI tools. In this way, WhiteRabbit allows remote VMI
tools to introspect the dynamically virtualized OS, which has not been explicitly set up
for VMI. The microkernel character of WhiteRabbit reduces the size and complexity of
the VMM. In fact, we implement only essential VM-maintenance functionality inside the
high-privileged protection ring 0 onIntel and across EL1 and EL2 on ARM (Sec. 2.2.1). We
place additional components required for memory management, remote communication,
and VMl into the user space in ring 3 on Intel and EL® on ARM. This architectural choice
allows to isolate WhiteRabbit’s user space components from the guest and, at the same
time, hardens the system; crashes of user space components do not affect the entire system.
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4.2 The WhiteRabbit VMM

As part of its initialization, WhiteRabbit cuts off any dependencies to the virtualized OS.
This includes the OS’s services as well as any resource management structures that are
bound to the hardware (e.g., interrupt management and paging). Therefore, WhiteRabbit
is not bound to the OS’s memory or other resource management systems which could be
otherwise observed and manipulated by adversaries. Consequently, since WhiteRabbit
uses only custom subsystems, which do not require any services of the guest OS, it can
generally host arbitrary OSes. For instance, if we provided an OS-independent deployment
strategy for WhiteRabbit, our system could virtualize the respective OS on-demand.

The memory management system of WhiteRabbit is a relevant example for the custom
subsystems. To satisfy memory allocation requests, this subsystem has to allocate and
extract sufficient memory from the guest in the first place. To claim the memory, White-
Rabbit utilizes the (zoned) buddy allocator of Linux during its initialization. The buddy
allocator manages the system’s physical memory and does not store any relevant metadata
that could potentially reveal the VMM; contrary to the Linux SLUB allocator, memory al-
located through the buddy allocator does not indicate the purpose of the allocation itself.
Instead, the system marks the memory as reserved, and hence not available. Alternatively,
to increase its stealthiness during initialization, WhiteRabbit could scan and directly ad-
just the system’s page tables, and manually reserve the system’s memory management
structures to avoid inconsistencies. Either way, since the VMM leverages SLAT tables
to hide its components, the allocated memory regions become invisible to the guest OS
after WhiteRabbit completes its initialization. In other words, once set up, WhiteRabbit
can intercept the guest’s access attempts to the respective memory and, e.g., emulate or
redirect the accesses to a non-suspicious memory region [LMP*14].

To remotely access the VMI functionality, the conceptual design of WhiteRabbit ded-
icates I/O drivers that establish and maintain a secure communication channel to the
remote parties. The communication channel should be either entirely cut off or multi-
plexed with the guest’s drivers. To isolate the communication channel the system could
employ, e.g., unused I/O devices or hardware extensions that allow to multiplex I/O
resources (e.g., through Intel VI-d or VI-c, and ARM System MMU (SMMU)).

4.2.1 On-the-Fly Virtualization

To dynamically virtualize a running OS, we have to deploy WhiteRabbit on the target
system in the first place. In this context, we distinguish between OS-dependent and OS-
independent deployment strategies. Both can be performed locally or remotely. The OS-
dependent strategy requires a kernel module to set up WhiteRabbit underneath the target
OS. The kernel module can (i) either implement the VMM functionality or (i) merely
act as a means for transportation. The former approach implements the WhiteRabbit
functionality as part of the kernel module. This strategy must be regarded critically as it
allows WhiteRabbit to use the services of the target OS: employed services might reveal
the presence of WhiteRabbit or provide false information, which is controlled by malware.
On the other hand, this strategy is a valid alternative for virtualization-assisted in-guest
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4 On-demand Deployment of Virtualization-assisted Frameworks

security frameworks that merely require WhiteRabbit to set up and establish an interface to
the system’s virtualization extensions. We discuss this application scenario in more detail
in Chap. 6. The latter approach uses the kernel module as a loader to deploy WhiteRabbit
in form of an OS-independent binary into memory. In this scenario, even though the
loader requires OS services, WhiteRabbit can remain completely OS-agnostic.

The OS-independent strategy uses a DMA channel to inject WhiteRabbit into the sys-
tem’s memory. By taking the role of the bus master, hardware devices can initiate the
communication and hence arbitrary access (assuming deactivated IOMMU) another node’s
memory. Thus, we could use DMA-capable interfaces (e.g., FireWire or Thunderbolt) to
transparently load WhiteRabbit into the system’s memory. Yet, after injecting the code, the
system requires additional means to execute it. One idea is to use Intel Active Management
Technology (AMT) to launch WhiteRabbit from a remote system.

Once deployed on the target system, WhiteRabbit takes on several tasks to virtualize
and satisfy the requests of a running OS. These tasks are best described according to the
taxonomy of Popek and Goldberg [PG74] (Sec. 2.1.3.2). Their taxonomy describesa VMM as
a modular control program, whose modules belong to three groups comprising an allocator,
a dispatcher, and an interpreter. Accordingly, we distribute the tasks of WhiteRabbit among
these groups and describe them in the following. Note that, for simplicity, we assume that
WhiteRabbit has been deployed on the target system in form of a kernel module.

4.2.1.1 The Allocator Module

The allocator of WhiteRabbit moves an executing OS into a less-privileged, virtual environ-
ment. This module is responsible for setting up the remaining components of WhiteRabbit
and configuring the hardware to ensure that the target OS continues with its operation
inside a VM, without being aware of any change of its environment. To achieve this, the
allocator leverages the system’s hardware-assisted virtualization extensions. Specifically,
the allocator takes a snapshot of the OS’s state and uses the hardware to allocate and
configure a virtual environment to reflect the recorded state of the OS. At the same time,
the allocator unfolds and registers other modules of WhiteRabbit inside a high-privileged
execution environment underneath the VM. In other words, the allocator abuses the sys-
tem’s virtualization extension to shift the OS into a VM, and, at the same time, to provide
it with the illusion of having unrestricted access to the system’s resources. Overall, this
process is highly hardware-dependent. As such, in the following, we discuss the steps
necessary to shift an OS into a VM on Intel and ARM (Sec. 2.2).

The Intel architecture: On Intel, the allocator records the system'’s state (i.e., before it
has virtualized the OS) in the guest-state area of the VMCS (Sec. 2.2.2). This area holds
control registers that determine the guest’s behavior. Also, the allocator sets up the host’s
state and registers the entry point of the VMM that will be executed at every VM exit in
VMX root. Finally, WhiteRabbit grants the VM direct hardware access by passing through
devices, without emulating any hardware resources.
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4.2 The WhiteRabbit VMM

The ARM architecture: While the virtualization support of the ARM architecture closely
resembles its x86 counterpart, it entails peculiarities, which differentiate the process of on-
the-fly virtualization of a live OS. For instance, ARM cannot initialize the exception level
EL2, which forms a dedicated execution environment for the VMM (Sec. 2.2.2), from a less-
privileged exception level: in case the system has not set up the exception vectors in EL2 at
system boot, there is no way to retrospectively place these vectors. Consequently, to allow
OSes to access and configure the exception vectors in EL2—which are necessary for system
virtualization—just before entering EL1, the boot loader launches the OS kernel in EL2.
There, the OS installs a general-purpose hypervisor stub, the lowvisor, which initializes the
aforementioned exception vectors [DN14]. This lowvisor allows Linux subsystems in EL1
(e.g., Linux KVM) to retrospectively initialize the exception vectors through a hypercall
and take control over EL2. Thus, after ensuring that the lowvisor has not been occupied,
the allocator of WhiteRabbit uses the same strategy to take control of EL2, and hence
initializes WhiteRabbit in the high-privileged execution environment underneath the OS.

On both architectures, the allocator configures the system’s virtualization-extensions to
cause selected guest events of interest to trap into the VMM. Generally, this strategy allows,
e.g., VMI frameworks (Chap. 5) to intercept relevant guest events for analysis purposes, or
assist in-guest security mechanisms with the capability to provide strong memory isolation
capabilities (Chap. 6). Examples for potentially relevant guest events include hardware
events, the execution of sensitive instructions (which would otherwise not unconditionally
trap into the VMM), and access to the sensitive system registers. Besides, the allocator sets
up subsystems (e.g., memory management and device drivers) to manage the system’s
hardware resources and thus to allow WhiteRabbit to become independent from the
virtualized OS. Once the allocator has set up the VM and the individual subsystems of
WhiteRabbit, it uses the system’s SLAT tables to unmap its code and data regions and
hence hide from the guest in memory.

4.2.1.2 The Dispatcher Module

The dispatcher of WhiteRabbit is the entry point of the VMM. Every time the VM exits and
transfers the execution to the VMM, the system triggers the dispatcher of WhiteRabbit.
This applies to explicitly and implicitly generated VM exits. Explicit VM exits result from
explicitly causing the VM to exit, e.g., through hypercalls. Implicit VM exits include all
guest events that automatically trap into the VMM. In both cases, the dispatcher analyzes
the VM exit reason, based on which it decides which operation to perform next. It is the
interpreter (described in the following section) that is responsible for performing tasks on
behalf of the dispatcher.

4.2.1.3 The Interpreter Module

The interpreter simulates guest instructions and hardware events that trap into the VMM.
Hardware-assisted virtualization extensions define a class of unconditionally and condition-
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4 On-demand Deployment of Virtualization-assisted Frameworks

ally trapped instructions. The former class comprises privileged instructions that always
trigger VM exits when executed inside the VM. For instance, the CPUID instruction on Intel
unconditionally traps into the VMM. The latter class of instructions trigger VM exits only
if the allocator has configured them to trap. The same applies to hardware events. In
all these cases, the interpreter provides the necessary functionality to handle the trapped
event and appropriately update the guest’s state. For this, the interpreter leverages the
memory and device management services of WhiteRabbit that are set up by the allocator.
In regard to the VMI capabilities of WhiteRabbit, we can utilize the interpreter’s ability to
manipulate the guest’s state to enforce the requests of the VMI subsystem.

4.2.2 Bridging the Semantic Gap

The on-demand deployment strategy of WhiteRabbit allows to dynamically deploy ver-
satile virtualization-assisted frameworks. In other words, we do not limit WhiteRabbit to
providing only one specific service. Instead, we dedicate WhiteRabbit to be a fundamental
building block that can assist various security mechanisms. Depending on their purpose
and policy, these mechanisms can interface WhiteRabbit from inside (Chap. 6) or from
the outside (Chap. 5) of the VM. Both concepts have different requirements with regard to
accessing the guest’s state. For instance, in-guest security mechanisms do not necessarily
need to rely on the VMM to reconstruct the guest’s state. On the other hand, this assump-
tion changes, when we put WhiteRabbit into the context of VMI-based frameworks; VMI
frameworks intend to analyze the guest from an external position and hence have to map
the guest’s binary state to a semantically-enriched representation (Sec. 2.3). In such cases,
we have to ensure that WhiteRabbit implements the necessary primitives, which can assist
local and remote VMI frameworks in bridging the semantic gap (Sec. 2.3.2).

We demonstrate the effectiveness and usefulness of WhiteRabbit by demonstrating its
ability to accommodate VMI frameworks. Specifically, in the following use cases, we
outline example implementations of the (i) in-band and (ii) out-of-band delivery as well
as (i11) derivative view generation patterns [PSE09, Pfo13] (Sec. 2.3.2.1). We have imple-
mented these patterns in our prototype to bridge the semantic gap. Note that the fol-
lowing patterns are use cases, which we have selected to demonstrate the applicability of
WhiteRabbit. We highlight that WhiteRabbit is a generic vehicle for virtualization-assisted
security mechanisms, which we demonstrate in the context of VMI frameworks. That said,
VMI frameworks which build upon WhiteRabbit, can implement custom policies and use
WhiteRabbit to enforce them by applying the presented, or other implementations of the
view generation patterns, which are not limited to the following use cases.

4.2.2.1 In-band Delivery Pattern

This pattern involves the guest OS to collect semantic information (Sec. 2.3.2.1). We imple-
ment one specific use case, which adopts the concepts of the X-TIER framework [VKSE13,
Vog15]. Specifically, WhiteRabbit allows remote VMI tools to inject kernel modules into
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4.2 The WhiteRabbit VMM

the guest. Before WhiteRabbit can inject the module, its VMI component (Fig. 4.1) has to
process the module to establish a generic and OS-agnostic module representation (as we
do not claim any novelty on the OS-agnostic module representation, we refer the reader to
the X-Format of the X-TIER framework [VKSE13, Vog15]; our prototype uses a format that
closely resembles the X-Format). To simplify the implementation of the VMI component,
these steps could be prepared in advance by the remote host.

Generally, to inject kernel modules into a VM, WhiteRabbit has to undergo multiple
steps. First, the VMI component has to allocate and map additional memory into the VM
to position the module’s sections. This poses a challenge, since the memory management
system of the dynamically virtualized OS has tracked the available physical memory. In
contrast to WhiteRabbit, X-TIER operates as part of Linux KVM, a Type II system VM
(Sec. 2.1.3). As such, it can request memory from the underlying OS to accommodate this
step. On the other hand, WhiteRabbit cannot simply add physical memory to the VM.
Instead of resorting to the services of an underlying OS, it obtains the memory from the
local memory pool, which it has extracted from the guest during its deployment (Sec. 4.2).

In the next step, the VMI component of WhiteRabbit equips the module by additional
functionality that is required to communicate with WhiteRabbit from within the guest.
The added functionality comprises wrappers responsible for relaying calls to exported
kernel functions and announcing the end of the module’s execution through hypercalls.

In the final step, WhiteRabbit temporarily uncovers the module in the guest’s physical
memory by means of the SLAT tables; injects the module into the address space of the
interrupted guest process by adjusting its page tables; and redirects the guest’s instruction
and stack pointer to transfer the guest’s control-flow to the module. As such, upon
resuming the VM, the guest will execute the injected module. To prevent the module
from being interrupted, and thus potentially revealed, WhiteRabbit must take additional
precautions. In the simplest case, it could deactivate the guest’s timer interrupt and
intercept external interrupts as long as the module executes. An alternative solution could
configure a set of SLAT tables to establish different views on the guest’s physical memory
and effectively hide the module from the guest. We provide an example of a similar
configuration in Chap. 5.

4.2.2.2 Out-of-band Delivery Pattern

WhiteRabbit implements an interface for LibVMI [Pay12, Lib20]; a C-library that imple-
ments an API to dynamically extract and control the VM’s state. To bridge the semantic
gap, LibVMI uses out-of-band kernel symbol information that is delivered ahead-of-time.
This library further complements the out-of-band delivered information with knowledge
of the VM’s system architecture. Similarly, LibVMI offers an API for the memory foren-
sic analysis framework, Volatility [Vol20, LCLW14]. In this way, WhiteRabbit offers an
effective interface for custom and prevalent LibVMI and Volatility based forensics tools.
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4 On-demand Deployment of Virtualization-assisted Frameworks

4.2.2.3 Derivative Pattern

VMI frameworks that leverage the derivative view generation pattern [Lit08, DRSLO0S,
PSE11], engage in-depth knowledge of the guest’s hardware architecture to derive the
guest OS’s semantic information. Derivative view generation benefits from the fact that
critical static in-guest data structures are rooted in hardware [PSE11, Pfo13]. For instance,
one can build a chain of references between the system call dispatcher and an immutable
hardware anchor (Sec. 2.3.2.1); on Intel, the IDTR or the MSRs that are related to fast
system calls (e.g., SYSENTER_EIP_MSR) present immutable hardware anchors, which root
the system call dispatcher in hardware. Unfortunately, it is difficult to identify and utilize
such hardware anchors. Yet, through LibVMI, WhiteRabbit facilitates remote tools to
use their knowledge of the hardware architecture to derive the guest’s view. In fact, a
derived view can be accommodated by additional properties: namely evasion-evidence and
evasion-resistance [PSE11, Pfol3]. According to Pfoh et al., critical guest data structures
are evasion-evident if they are rooted in hardware. This property allows WhiteRabbit to
observe changes to such data structures. By additionally protecting all elements along the
chain from the hardware anchor to the data structure, the data structure becomes evasion-
resistant: any modification along this chain can be detected by matching the integrity of
the system’s configuration with a known value [PSE11, Pfo13].

4.2.3 Hiding Techniques

The inspection capability of VMMs lends VMI frameworks an omniscient character (Sec. 2.3).
This character ensures that malicious behavior inside VMs cannot easily mislead a VMI-
based analysis. Assuch, VMI hasbecome in particular attractive in analyzing sophisticated
malware. In an attempt to counter the analysis, malware applies anti-debugging and anti-
virtualization techniques to scan its execution environment for artifacts that would reveal
a monitor [CAM™08, BCK*10, SAM14]. As soon as the malware believes it is being mon-
itored, it exhibits a different personality and changes its behavior. Thus, WhiteRabbit
must apply cloaking techniques to avoid exposing itself and the associated VMI frame-
works. Given that perfect VM transparency (the ability of being indistinguishable with
real hardware) is not feasible and impractical for modern defense mechanisms [GAWFO07],
WhiteRabbit does not intend to eliminate all side effects that are related to virtualization
(Sec. 2.3.1). A virtualized system does not always indicate a monitored environment. In
fact, the modern trend towards cloud computing makes this assumption obsolete. Con-
sequently, WhiteRabbit mainly focuses on cloaking its presence in the guest’s memory,
without explicitly hiding any general virtualization artifacts. Specifically, WhiteRabbit
sidesteps common anti-virtualization techniques, which focus on the execution environ-
ment and hardware category of the anti-virtualization taxonomy introduced by Chen et
al. [CAM'08]. We associate WhiteRabbit's memory footprint with the execution envi-
ronment and traces of the kernel module with the hardware category. To sidestep both,
WhiteRabbit applies the SLAT mechanism.
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Figure 4.2: WhiteRabbit relocates itself and uses the SLAT mechanism to hide in memory.

4.2.3.1 Execution Environment Artifacts

To expose an analysis framework, a malicious guest can carve the guest-physical mem-
ory, e.g., for signatures that could indicate the presence of an in-guest agent of the VMI
framework. To prevent an exposure in memory, we utilize the system’s SLAT mechanism.
Specifically, we unmap the guest-physical memory of WhiteRabbit in the SLAT tables such
that our framework becomes invisible to the guest. This strategy allows WhiteRabbit to
intercept and satisfy accesses to this memory, by redirecting them to a safe memory region.

At the same time, if we deployed WhiteRabbit in form of a kernel module, this strategy
would entail the following challenge. As soon as the kernel module takes control over
the system’s virtualization extensions to accommodate WhiteRabbit, it will resume the
OS. At this point, the OS—now running inside the VM—needs to continue the original
control-flow of the kernel module to complete the initial request. In this way, WhiteRabbit
can safely resume the OS without having to adjust the kernel’s stack or any kernel data
structures from within the VMM. Unfortunately, since WhiteRabbit unmaps itself from
the guest-physical memory, resuming the guest inside the kernel module would violate
the guest’s memory permissions in the SLAT table and hence trap into WhiteRabbit.

For clarification, let us depict a scenario, in which the kernel module initiates the process
of moving the OS into a VM as part of its initialization function. As soon as the module
completes virtualizing the OS (i.e., as part of the VMM), it will need to return to its
initialization function (i.e., within the VM) to complete the kernel module’s initialization
request. In other words, the OS’s first instruction within the VM is, at the same time, one
of the last instructions of the kernel module that has virtualized the OS. The module’s
initialization function (inside the VM) needs to return to the Linux kernel to complete the
module’s initialization. However, at this point, the kernel initializes remaining entries of
the struct module, which, in turn, resides in the module’s memory protected by SLAT.
In addition, we have to allow the kernel to release the memory holding the kernel module.
In both cases, the kernel needs to access the memory, which has been previously made
invisible, or rather inaccessible to the guest OS. In the following section, we discuss the
necessary steps required to overcome this challenge.
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4 On-demand Deployment of Virtualization-assisted Frameworks

4.2.3.2 Hardware and Device Driver Artifacts

The hardware anti-virtualization category inspects, among others, the system’s device
drivers in order to to reveal virtualization-based analysis frameworks. Thus, it is the task
of WhiteRabbit to eliminate any hardware, or rather device driver related artifacts inside of
the VM. That is, assuming WhiteRabbit was deployed in form of a kernel module, it would
need to conceal not only its code and data sections, but also any in-guest data structures
that could indicate the presence of the kernel module.

As we have discussed in the above scenario, leveraging the SLAT mechanism alone to
cloak the presence of WhiteRabbit leads to an issue during the kernel module’s initializa-
tion stage. To overcome this challenge, we have to leverage the guest kernel itself to free
the memory and data structures that are linked to WhiteRabbit. At the same time, we
have to provide the means to facilitate WhiteRabbit’s operation under cover of the SLAT
mechanism. To achieve this, WhiteRabbit () relocates itself to another location in memory
and (i7) instructs the guest kernel to release the originally loaded kernel module inside
the VM, without affecting its relocated copy.

Fig. 4.2 illustrates the relocation process of the original WhiteRabbit kernel module
(module) to another location in the machine’s physical memory (module’). To avoid having
to explicitly relocate the virtual addresses inside the code section of module’, we map the
relocated module’ to the same virtual address region in the VMM’s address space, as the
one occupied by the original module. To achieve this, we use the following setup. The
guest’s page tables and the complementary SLAT tables map the guest-virtual addresses to
the machine-physical addresses of the original module. At the same time, the VMM’s page
tables map the original virtual addresses to the relocated machine-physical addresses of
module’. This way, the host can use the original virtual addresses to address module’ (the
VMM'’s virtual addresses correspond to guest-virtual addresses). This setup allows us to
unmap module’ in the guest-physical memory and hence hide its presence in memory.

To conclude the hiding process, once WhiteRabbit (module’) launches the OS kernel,
it will resume the initialization function of the original module inside the VM. Thus, by
returning a negative value at the end of its initialization routine, the module instructs
the kernel to release its memory and all in-guest data structures that are associated with
WhiteRabbit. Alternatively, the module can configure a work-queue that initiates a clean
module destruction without making the kernel suspicious. In a final step, WhiteRab-
bit zeroes out the contents of the released in-guest data structures and memory pages,
which used to represent the original kernel module, to ensure that WhiteRabbit cannot be
retrospectively reconstructed.
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4.3 Evaluation

We evaluated WhiteRabbit by first assessing its practicality in regard to performance. In
this regard, we have investigated the induced virtualization overhead and compared it with
the popular Xen Project hypervisor [BDF03, Lin20a] and Linux KVM [KKL*07, Lin20b].
Second, we have analyzed WhiteRabbit’s effectiveness. In this part of the evaluation we
make clear that common anti-debugging techniques are ineffective against VMI-based
analysis frameworks that build upon WhiteRabbit. We extend our discussion by assessing
the impact of different anti-virtualization techniques on WhiteRabbit.

4.3.1 System Setup

Our system setup comprises a Linux kernel v4.13. The host is equipped with a 4-core
(8 threads) 3.4 GHz Intel Skylake Core i7-6700 CPU, and 16GB of RAM. We have limited
the CPU to only one active core to accommodate the implementation-based limitation of
our prototype. In fact, to simulate a comparable load among different VMM implemen-
tations, we have granted only one core to all VMMSs, and pinned the VMM and guest
to the same physical core. Finally, we configured the performance CPU frequency scaling
governor of Linux (and the respective VMM) to avoid performance drops, e.g., due to
power consumption oriented configurations.

4.3.2 Performance

Itis crucial that the VMM and VMI tools affect the system’s performance as little as possible.
Since we intend to use WhiteRabbit as a vehicle for generic VMI tools, our performance
evaluation focuses on the virtualization overhead. That is, in the following evaluation, we
do not consider VMI tools that were built upon WhiteRabbit. As the performance highly
depends on the respective purpose, we deem the overhead of VMI tools out of scope.

To estimate the virtualization overhead of WhiteRabbit, we carried out three rounds of
experiments. All reported results correspond to a vanilla Linux vs. a Linux inside a VM,
hosted by three VMM implementations: namely Linux KVM, Xen (with Linux inside the
unprivileged DomU), and WhiteRabbit. The results are mean values over three runs.

First, we compared the virtualization overhead of WhiteRabbit with Xen v4.11 and Linux
KVM. Interestingly, our initial results have shown that Xen outperformed the bare metal
Linux, with active Intel Turbo Boost technology. As such, we deactivated Turbo Boost to
avoid different microcode decisions in regard to performance states. We have used a set
of CPU- and memory-intensive macro (Phoronix v7.6.0 and SPEC CPU2017) and micro
(LMbench v3.0) benchmarks to stress different system components and hence to determine
the virtualization overhead of Linux KVM, Xen, and WhiteRabbit.
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Table 4.1: Virtualization overhead (OHD) of WhiteRabbit, Xen, and Linux KVM, measured us-
ing Phoronix v7.6.0 on x86.

Benchmark (unit) | wlo | KVM  (OHD) | Xen  (OHD) | WhiteRabbit (OHD)
Blake2 (Cycles/Byte) 5.94 594  (0.00%) | 594  (0.00%) 5.94 (0.00%)
C-Ray (s) 107.08 | 10856  (1.38%) | 107.67  (0.55%) 107.09 (0.00%)
Gzip Compression (s) 11.50 1206 (4.86%) | 1198  (4.17%) 11.74 (2.08%)
John-the-Ripper DES (Real C/5) | 5,419,000 | 5,340,000 (1.45%) | 5,394,000 (0.46%) | 5417,667  (0.02%)
John-the-Ripper MD5 (Real C/s) | 16,844 | 16,583  (1.54%) | 16,748  (0.56%) 16,822 (0.13%)
N-queens (s) 21670 | 22094  (1.95%) | 217.77  (0.49%) 216.80 (0.04%)
OpenSSL (Signs/s) 145 14183 (218%) | 14253  (1.70%) 144.70 (0.20%)
7-Zip Compression (MIPS) 4,603 3736  (18.83%) | 3988  (13.36%) 4,443 (3:47%)
RAMspeed Integer (MB/s) 17,370.73 | 16,630.25 (4.26%) | 16942.71 (2.46%) | 17,016.09  (2.04%)
RAMspeed Floating Point (MB/s) | 17,734.84 | 16,744.56  (5.58%) | 16,875.53 (4.84%) | 16,861.26  (4.92%)

Table 4.2: SPEC CPU2017, in sec. Table 4.3: LMbench v3.0, in usec.
Benchmark ‘ w/a WhiteRabbit OHD Benchmark | wia WhiteRabbit OHD
600.perlbench_s | 282 286 (1.41%) fork()+execve() 50.04 58.23 (16.36%)
602.gcc_s 409 419 (2.44%) fork(OQ+exit () 47.01 55.58 (18.23%)
605.mcf_s 624 641 (2.72%) f‘_’rk8+/ bin/sh B 2o <(193~29;4;/*;)

o ipe . . . (J
620. ommetpp_s 382 406 (6.28%) iezdo 000 00 0.00%)
22 3 Xgéa“‘:bmk—s ggz ggg %‘ﬁgé‘)) select() (500 fds) 2.46 2.52 (2.38%)

5.X264_s (0.00%) select() (500 TCP fds) | 8.16 8.35 (2.32%)
631.deepsjeng_s | 357 363 (1.68%) writeO 0.05 0.06 (19.99%)
641.leela_s 460 460 (0.00%) Protection fault 0.30 0.31 (3.33%)
648. exchangeZ_s 264 265 (0.37[70) Signal delivery 0.66 0.65 (1_510/0)
657.x2_s 2220 2379 (7.16%) UNIX socket I/O 1.99 2.07 (4.02%)

Table 4.1 shows the Phoronix results, which we divided into CPU- (upper part) and
memory-intensive (lower part) benchmarks. Overall, the results indicate only a minor
overhead for all candidates. Yet, WhiteRabbit outperforms Xen and KVM. While KVM
produces less than 4.02% CPU and 4.92% memory overhead on average, the virtualization
overhead of WhiteRabbit is kept to a minimum at 0.74% for CPU and 3.48% for memory
benchmarks on average. According to our measurements, Xen outperforms KVM and
approaches WhiteRabbit with an averaged 2.66% CPU and 3.65% memory bandwidth
overhead. While we expected the arithmetically-heavy benchmarks, Gzip and 7-Zip, to
perform similarly to other CPU-intensive benchmarks, they are outliers for all candidates.

Performance measurements among VMMs can be unreliable as each VMM might emu-
late and scale the guest’s clock source differently. As our prototype does not emulate any
clock sources, we can precisely determine the resulting virtualization overhead. Therefore,
we ran the SPECspeed Integer benchmarks of the SPEC CPU2017 suite and summarized the
results in Table 4.2. Overall, we can see that WhiteRabbit entails only minor performance
overhead. Yet, in line with the findings in Table 4.1, the outliers are compression-heavy
benchmarks (Gzip, 7-zip, and 657 .xz_s), which were apparent on Linux KVM and Xen.
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Finally, we selected a set of LMbench v3.0 latency-focused micro-benchmarks, to observe
the performance overhead on the system software level (Table 4.3). The overall picture
suggests that the design of WhiteRabbit is ideally suited as a basis for virtualization-
assisted security tools, which do not require the services of a fully-fledged VMM.

4.3.3 Effectiveness

We have virtualized a Linux and were able to single-step and extract analysis-sensitive
processes. Therefore, we employed state-of-the-art anti-debugging and anti-virtualization
techniques that impede dynamic analysis and stop execution as soon as they believe they
reside in a sandbox. The following summarizes these techniques and shows that they are
rendered ineffective against WhiteRabbit.

4.3.3.1 Anti-Debugging

Linux bares an API via the ptrace system call to allow debugging of user space processes.
This API utilizes hardware-based memory watchpoints and single-stepping capabilities,
as well as the ability to access foreign address spaces. However, ptrace entails that any
tracee can be traced by exactly one process. This property is abused for anti-debugging:
a hostile machine code can use ptrace to trace itself. Consequently, if ptrace fails, the
caller becomes aware of a tracing application; if it succeeds, no other tracer will be able to
attach herself to this process. While this situation can be side-stepped by intercepting calls
to ptrace and adjusting the return values, the idea can be extended to multiple malicious
processes tracing each other to completely hinder debugging.

Besides, debuggers (e.g., gdb and lldb) leave environment artifacts that can reveal debug-
gers. These artifacts include (i) address space layout randomization allocating the text,
data, and virtual Dynamic Shared Object (vDSO) pages at unusual addresses, (ii) envi-
ronment variables, (i) the parent process’ name containing the debugger’s name, and
(iv) software breakpoints non-transparently placed into the tracee’s address space. We
have open sourced a debugger detection tool implementing the above.”

WhiteRabbit does not make use of any of the above techniques. In fact, WhiteRabbit
does not leave in-guest user space artifacts and thus cannot be detected by these and
similar anti-debugging mechanisms.

4.3.3.2 Anti-Virtualization

To assess WhiteRabbit’s ability to evade anti-virtualization techniques, we have armed the
virtualized Linux with custom and publicly available sandbox-detection tools including
paranoid fish, al-khaser, and virt-what. These tools apply (i) static heuristics, (ii) low-level sys-
tem properties, and (ii1) user behavior artifacts to disclose sandboxed environments [CAM 08,
MANP17]. Even though the following evaluation is by no means complete, we intend

2https://github.com/kirschju/debugmenot
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4 On-demand Deployment of Virtualization-assisted Frameworks

to clarify the strategies that lend WhiteRabbit the ability to cope with common anti-
virtualization techniques. Disregarding timing differences in the virtualized environment,
given that WhiteRabbit alone does not leave any artifacts inside the guest, none of these
tools were able to identify WhiteRabbit.

Static heuristics: Static heuristics target virtualization artifacts (e.g., drivers, execution
environment and hardware configuration, vendor information, as well as memory and file
system artifacts) that are specific to virtual environments controlled by well-known VMM
implementations. Striking MAC addresses are additional indicators for sandboxed envi-
ronments. Generally, WhiteRabbit does not change the system configuration that is visible
to the guest OS. Similarly, WhiteRabbit does not leave in-guest artifacts (including memory
and the file system) that could be captured by static heuristics (Sec. 4.2.3). Consequently,
WhiteRabbit renders static heuristics obsolete.

Hardware artifacts: Hardware artifacts comprise timing properties and effects of im-
perfect instruction and device emulation. Further hardware-based information leakages
emerge, among others, from register contents. The analysis framework could employ
in-guest debug registers and performance counters for analyzing the guest. For instance,
as we discuss in Chap. 5, hardware breakpoint and watchpoint register contents can ex-
pose the analysis framework. Further, sophisticated analysis frameworks can make use
of the hardware control-flow features, such as Intel’s Processor Trace [Int20a], to trace
control-flow events. Thus, the contents of such debug registers can indicate an under-
lying analysis framework. As WhiteRabbit alone acts as a vehicle for VMI (and other
virtualization-assisted security) applications, it does not make use of such registers. Thus,
the VMM itself cannot be detected through leaking register contents. On the other hand,
the reader must consider that careless VMI tools, which build upon WhiteRabbit could
implement less-stealthy techniques, and hence expose their presence. To address such
situations, WhiteRabbit provides the necessary means to intercept critical events. Thus,
VMI tools must handle such events and return inconspicuous register values to cloak the
analysis.

Besides, WhiteRabbit permits the guest to directly access the hardware without emulat-
ing any hardware devices. Thus, it does not expose itself through such indicators. On the
other hand, timing differences can indeed reveal the VMM. In fact, we were able to expose
WhiteRabbit by comparing the time of unconditionally trapped instructions with reference
values. However, with today’s omnipresent virtualization technology, it is insufficient to
reveal the virtual environment alone (Sec. 4.4.2).

User behavior artifacts: User behavior artifacts target the system’s credibility by observ-
ing its state and configuration, including mouse cursor activity or an unusually small size
of the hard drive or memory. Sophisticated systems check wear-and-tear relics, e.g., log
files, browser history, and network behavior [MANP17]. Such artifacts lose relevance, as
WhiteRabbit virtualizes production systems with realistic wear-and-tear relics.
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4.4 Discussion

WhiteRabbit is a powerful tool that might turn into a serious threat in hands of adversaries.
Therefore, in the following, we discuss countermeasures to defend against its malicious
use. Additionally, we turn the attention towards limitations of our WhiteRabbit prototype.

4.4.1 Countermeasures

A proactive approach against adversaries with access to WhiteRabbit suggests to employ
a native VMM, such as Xen, that executes directly on bare metal and hence occupies
the system’s virtualization extensions. This approach can obstruct malicious attempts to
subvert the entire system. Since the native VMM would host a set of VMs, the attacker with
root privileges inside one of the VMs, would not be able place WhiteRabbit underneath the
native VMM. Assuming an attacker attempts to initialize WhiteRabbit from a compromised
VM, the underlying VMM will be able to intercept and discard any subversion attempts:
on Intel, the instructions required to set up the VMX root operation will implicitly trap into
the VMM; on ARM, the VMM will deflect any attempts to reconfigure VBAR_EL2. In both
cases, the VMM would be able to detect the malicious pattern and obstruct the attack. Even
if the maliciously utilized WhiteRabbit supported nested virtualization (enabling VMM
hierarchies), it would not be able to take exclusive control over the system’s virtualization
extensions as they would be occupied by the benign VMM. The same applies to hosted
VMM, such as Linux KVM: in this scenario, subversion attempts from a compromised
VM would not be able to take over control over an operating VMM. On the other hand,
an adversary could subvert the entire system as long as Linux KVM has not taken control
over the system’s virtualization extensions. This is true for both Intel and ARM.

Given the technological advancements of both Intel and ARM architectures with regard
to nested virtualization, the following question arises. Assuming the underlying VMM
implementation supported nested virtualization, would it be still possible to subvert the
compromised guest and position WhiteRabbit in a nested way in between the VM and
the VMM? Although the native VMM would intercept every (nested) virtualization at-
tempt, without additional precautions and guest-behavior analysis, we assume that the
VMM would not hinder WhiteRabbit from subverting the guest (much like it would not
hinder a second level, i.e., nested, virtualization). In other words, we strongly believe that
WhiteRabbit would be able to move the compromised VM into a nested virtual environ-
ment, and position itself between the first level VMM and the (nested) VM. In this context,
WhiteRabbit would need to configure the system to forward traps of the nested VM to the
nested WhiteRabbit—which is the default setting in nested environments. We leave the
question of how to defend against such scenarios for future work.
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4.4.2 Limitations

Depending on the point of view, we identify a set of limitations that affect different vectors.
These vectors target VMI in general as well as the implementation deficits of WhiteRabbit.
Given that the dynamic deployment of VMI frameworks through WhiteRabbit presents
the main use case of this chapter, we first amplify upon one of the main considerations
that affects VMI, namely VM transparency (Sec. 2.3.1).

Malware can evade analysis through anti-virtualization techniques [CAM*08, BCK*10,
MANP17]. These consider, among others, side effects of emulated instructions, as certain
instructions are not sufficiently documented [Dom17]. To address potential inconsistencies
between virtual and physical environments, one can attempt to make the appearance
of VMs indistinguishable from real hardware; a security analyst can approximate the
behavior of the hardware by gaining the necessary domain knowledge through massive
testing [SAM14]. Regardless of how well the virtual environment manages to mirror the
appearance of a physical machine, differences in timing behavior will always remain. A
system that achieves perfect VM transparency is not feasible and impractical [GAWF(7]
(Sec. 2.3.1). In other words, adversaries, e.g., with access to external time sources will
always be able to detect discrepancies caused by virtualization. Yet, the trend toward
system consolidation through virtualization renders the goal of VM transparency obsolete.
If a system is virtualized, it does not necessarily mean the malware is subject to analysis.
Thus, it is more affordable for attackers to target both physical and virtual environments
than exclusively focusing on physical machines. Consequently, any VMI framework that
leverages WhiteRabbit should focus on concealing analysis artifacts, instead of the artifacts
and inconsistencies, which can arise due to virtualization. Since the question of stealth
is vital for VMI, in Chap. 5, we introduce new methods that assist VMI tools in cloaking
analysis artifacts.

The next limitation of VMI, in particular when combined with WhiteRabbit’s deploy-
ment strategy, refers to the strong semantic gap [JBZ"14] (Sec. 2.3.2.2). Even though the
combination of in-band and out-of-band delivery with derivative patterns establishes a
solid ground for analysis (Sec. 2.3.2.1), this combination cannot detect every modification
performed by VMI-aware malware. The reason for this is that delivery-based view genera-
tion patters strongly rely upon the guest OS or external information delivery sources; at the
same time, derivative approaches cannot reconstruct the entire state to fully eliminate the
need for a trust anchor [PSE09]. This is because not every data structure can be bound to
hardware. Consequently, unannounced structural modifications of these data structures
(e.g., through malicious relocation in memory) may remain unnoticed [BJW10]. The same
applies to OS infections that have happened before the analyst was able to deploy her VMI
framework via WhiteRabbit. Since WhiteRabbit could have missed the point of infection,
it cannot assume the guest OS is trustworthy at the time of its deployment. This implies
that VMI tools cannot rely on the guest’s integrity as long as every semantically relevant
data structure is not bound to hardware or its trustworthiness is not otherwise validated
at run-time [JBZ " 14]. This is an open challenge that results from the strong semantic gap.
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4.4 Discussion

While recent advances in confidential computing have established a basis for separating
workloads into components with different trust levels [Int21, Adv20, Arm21], we leave the
question of how to establish trust in a potentially malicious environment for future work.

Besides, since WhiteRabbit facilitates dynamic deployment of virtualization-assisted
security mechanisms, a deployed VMI tool can miss the actual attack. For instance,
attackers can inject one-shot exploits to gather critical information, and unload them
before the security analyst has a chance to deploy the VMI tool via WhiteRabbit. The
same applies to periodical system checks, which regularly load and unload WhiteRabbit;
conducted attacks may slip through periodic system checks and leverage the semantic
gap to delude VMI applications [JBZ*14, BJW*10]. These restrictions render WhiteRabbit
more suitable for detection and analysis of long-living, persistent malware or for deploying
virtualization-assisted security mechanisms that directly support subsystems of the OS.
For instance, we could leverage WhiteRabbit to establish an interface between system’s
virtualization extensions and dedicated subsystems of the guest OS (Chap. 6).

Another limitation affects the cloaking ability of WhiteRabbit. DMA-capable devices
have access to the system’s physical memory. Through DMA, adversaries can locate
WhiteRabbit in memory, despite the SLAT mechanism. To approach this, WhiteRabbit
could restrain DMA access by engaging the system’s IOMMU (Intel VI-d or ARM SMMU).
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4.5 Related Work

Our work on WhiteRabbit combines the deployment strategy of state-of-the-art virtual
machine based rootkits (VMBRs) with concepts of VMI. Thus, in the following, we consider
previous research, that is related to both concepts.

In-band delivery based frameworks: PI [GDX]11]is an in-band delivery framework for
injecting security applications into a guest VM. Vogl et al. [VKSE13] extend this idea with
X-TIER, a framework for malware detection and removal. In contrast to PI, which hijacks
user space processes, X-TIER injects kernel modules into the guest. Both PI and X-TIER
bridge the semantic gap by reconstructing the view on the guest’s state from information
that is delivered by the injected agents. The VMI component of WhiteRabbit adapts the
concepts of X-TIER to inject kernel modules into guest VMs. Yet, WhiteRabbit allows VMI
tools to additionally correlate the gathered in-band delivered guest state with information
gathered through out-of-band delivery and derivative view generation patterns.

Out-of-band delivery based frameworks: DRAKVUF [LMP*14, PLM"18] is a stealthy,
VMlI-based, dynamic binary analysis framework. It applies out-of-band delivered symbol
information to reconstruct the guest’s state and leverages the VMI primitives of Lib-
VMI [Pay12, Lib20] to introspect VMs on x86 and ARM. Since, WhiteRabbit exposes a
LibVMI interface to remote VMI frameworks, it could equip DRAKVUF with the abil-
ity to dynamically virtualize a system, e.g., for malware analysis. Volatility [Vol20] and
Rekall [Rek20] are prominent out-of-band delivery based memory forensics frameworks
that facilitate cross-platform memory analysis of VM images and memory dumps.

Derivation based frameworks: Nitro [PSE11] introduces a VMI framework that uses its
hardware architecture knowledge to derive semantic information about the guest OS. Nitro
utilizes virtualization extensions to trace the guest’s system calls. Ether [DRSLO8] manipu-
lates the fast system call dispatcher to redirect the guest’s system calls to a fixed, unpaged
memory location. In this way, Ether causes system calls to generate page faults, which,
in turn, can be intercepted by the VMM. Another derivative view generation approach
is taken by Litty et al. [Lit08]. They present Patagonix, which is a hash-based memory
validation framework on top of Xen. It employs binding semantic knowledge related to
the MMU and the paging mechanism to detect malware. Similarly, Kittel et al. [KVL"14]
present a Linux kernel validation approach, which considers run-time code patching per-
formed by the kernel. Similarly, we can apply WhiteRabbit’s ability to derive the guest’s
view for kernel validation. Even more, in combination with on-the-fly virtualization, the
target OS kernel can be validated periodically through temporal injection and unloading
of WhiteRabbit without inducing virtualization overhead between the checks.
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4.5 Related Work

VM-based frameworks: SubVirt [KCW™'06] introduces one of the first VMBRs that can
be permanently installed as a VMM underneath existing Linux and Windows OSes. In
the meantime, VM-based rootkits have evolved to hardware-assisted VM (HVM) rootkits.
Rutkowska introduces Blue Pill [RutO6b], an HVM rootkit that is able to transparently
move an executing OS instance into a virtual environment controlled by a thin VMM. In
parallel to Blue Pill, Vitriol [Zov06] present a mostly similar HVM rootkit to subvert Mac
OS X on Intel. Later, the New Blue Pill [RT07] was presented to also support the Intel VT-x
technology. In addition, Cloaker [DCCCO08] and CacheKit [ZSS*16] present hypervisor-
assisted rootkits for the ARM architecture. Further, Buhren et al. [BVN16] demonstrate
attack vectors on ARM that allow to subvert a running Linux on-the-fly.

On-the-fly virtualization based security frameworks: Similar to WhiteRabbit, Hyper-
Sleuth [MFPC10] is a small VMM that can virtualize a running Windows XP on-the-fly
on Intel. However, contrary to WhiteRabbit, HyperSleuth does not utilize the hardware-
assisted SLAT mechanism and thus entails higher software overhead. It also does not hide
its in-guest artifacts. This exposes its presence to in-guest malware and thus is not suited,
e.g., for analysing sophisticated split-personality malware.
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4.6 Summary

In this chapter, we have presented WhiteRabbit, a thin VMM, which is able to virtualize
a running Linux OS on-the-fly on Intel and ARM architectures. The flexible deployment
strategy of WhiteRabbit allows us to dynamically position virtualization-assisted security
frameworks, e.g., on devices in managed corporate or IoI infrastructures. Once deployed,
WhiteRabbit unfolds a microkernel-based architecture underneath the OS. We consider
WhiteRabbit as a generic vehicle that can equip versatile virtualization-assisted security
frameworks with a flexible deployment strategy. To demonstrate the potential behind our
framework, in this chapter, we have exemplified a specific use case, in which we have used
WhiteRabbit to unify VMI with on-the-fly virtualization—even though we do not limit
the presented deployment strategy to VMI. In this context, we have used WhiteRabbit to
dynamically place a VMI framework on a general-purpose system that was not specifically
set up for VMI in advance. WhiteRabbit has incorporated the system’s SLAT mechanism
to hide its presence in memory. Further, it has exposed a LibVMI-compatible interface to
remote hosts to facilitate VMI-based analysis of the virtualized OS. We have evaluated our
prototype on Linux running on-top of Intel. Our results demonstrate that the dynamic
virtualization of a running OS is fast and further system virtualization does not present a
significant performance overhead.

Having presented the concepts of the generic VMM deployment strategy, in the fol-
lowing chapter, we turn our attention towards our first objective (Q1). Specifically, we
investigate new primitives to facilitate, in particular, stealthy VMI on ARM devices without
the necessary hardware support. We highlight that, even though we leverage the Xen
Project hypervisor to enforce the proposed primitives, they could be equally deployed
on-the-fly by means of WhiteRabbit.
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Chapter

Stealthy Monitoring on ARM

Sometimes the problem is to discover what the problem is.
— GORDON GLEGG

Virtualization technology can help defenders to gain the upper hand in the arms race
against malicious actors. As hypervisors expose a narrow, virtual hardware interface
toward guests, they bare a limited attack vector. Atthe same time, they maintain a complete
and untainted view of the guest’s state (Sec. 2.3.1). To benefit from this constellation, we
can apply virtual machine introspection (VMI) techniques [GR0O3] (Sec. 2.3). As we have
learned in the previous chapters, VMI constitutes techniques that lend security frameworks
the ability to observe, analyze, and control the state of VMs. These techniques have evolved
over the past two decades and have reached a point, which has become relevant not only
to academia but also to the industry [Fir20, VMR20, Bed20]. Recent research on VMI has
placed a particular emphasis on the stealth property of VMI frameworks. The main reason
for this development is that the stealthy nature of VMI has gained relevance as it can assist
security experts in dynamically analyzing the behavior of split-personality malware that
can choose to behave differently if it notices that it is being analyzed [CAM™08].

In the past, x86 was the dominant player in the server world and an exceedingly attractive
target for malware and exploitation; this is where VMI was most needed. Yet, IoI, wear-
ables, mobile devices, the growing demand for ARM in the server market [AmaZ20, The20b],
and Apple’s transition to the ARM architecture [AA20] has created renewed emphasis on
developing VMI systems for ARM. Even though stealthy VMI has proven itself perfectly
suitable for malware analysis on Intel, it often lacks the foundation required to be equally
effective on ARM. At this point, the question arises to what extent we can leverage the
ARM architecture to improve state-of-the-art dynamic binary analysis frameworks through
stealthy VMI techniques on the ARM architecture (Q1).

73

=
e
<
(=
o
o
[=
=
o
=
c
O
=
>
=
=
(1]
Q
-
n




5 Stealthy Monitoring on ARM

We have observed that virtualization-based analysis frameworks build upon fundamen-
tal techniques that allow to intercept and single-step guest OSes [DZX13, GV]14, LMP*14].
To observe the guest’s execution, one can apply both invasive [DZX13, GV]14, LMP*14]
and non-invasive [DRSLO8, Lit08, PSE11] approaches. To assist security experts in ana-
lyzing sophisticated malware, both approaches must be invisible to the guest (Sec. 2.3.1).
Although non-invasive approaches are inherently stealthy, in-guest memory or register
artifacts used by invasive approaches to intercept the VM’s control-flow must be explicitly
hidden. For instance, an adversary can use the finite number of hardware breakpoint reg-
isters to reveal the analysis framework. While Intel as well as the AArch64 execution state
of ARMv8 CPUs (Sec. 2.2.1) allow to hide memory artifacts by marking memory pages as
execute-only, second level translation tables of both the A Arch32 execution state of ARMv8
and the ARMV7 architecture prohibit execute-only memory and thus impede stealthy VML

Besides, to transparently single-step guest OSes on Intel CPUs, the Monitor Trap Flag
(MTF) can be used. As a matter of fact, MTF is part of Intel’s virtualization extensions
and inaccessible to the guest. Sadly, this feature is not supported by ARM. In fact, it is
unfeasible to single-step the guest in a stealthy way by relying solely on the hardware
capabilities. While previous efforts employ VMI on ARM [YY12, GV]14, TKFC15], none of
them achieves a stealthy solution against attackers with root privileges. Emulation presents
a potential workaround, but is known for being imperfect [Fer07, Xen16b, Xenl6a].

In this chapter, we closely examine the ARM architecture to identify shortcomings and
develop novel techniques necessary for effective virtualization-assisted dynamic binary, or
rather malware analysis. Specifically, we explore novel directions of VMI primitives, which
empower stealthy monitoring of guest OSes with multiple virtual CPUs (vCPUs) on both
AArch32 and AArch64 without resorting to emulation. First, we introduce an alternative
method on placing breakpoints; instead of using hardware or software breakpoints that
either leak information about the analysis framework or require logic that distinguishes
between breakpoints set by the analysis system and the guest—thus increasing the perfor-
mance overhead—we expand the idea that was first presented in SPROBES [GV]14]. As
such, we place Secure Monitor Call (SMC) instructions into the guest kernel to intercept the
VM and redirect the control to the hypervisor. By injecting only two SMC instructions, we
enable single-stepping without using the hardware-intended approach, which can reveal
the monitor. In parallel, we implement a system, which facilitates an external monitor
that applies second level address translation (SLAT) tables to define and dynamically
switch among different guest-physical memory views. In this context, we introduce our
extensions to the Xen Project hypervisor [BDF*03, Lin20a] on ARM, called alternate p2m
(altp2m). We highlight that even though we decided to extend the Xen Project hypervisor,
the introduced primitives are not bound to any VMM. In fact, we can consider leveraging
the stealthy deployment strategy of WhiteRabbit (Chap. 4) in order to dynamically mount
the analysis techniques discussed this chapter.

The above methodologies suffice for stealthy analysis on AArch64. Yet, to hide from
malware on AArch32, which lacks execute-only memory even through SLAT, we consolidate
the aforementioned techniques along with the Translation Lookaside Buffer (TLB). In
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detail, we take control over the TLB organization on AArch32 by leveraging altp2m to
establish a stealthy guest monitoring approach. This approach employs al tp2mto carefully
de-synchronize the TLB organization to effectively hide code pages in the guest’s memory.
This allows us to maintain different mappings of the same guest physical frame in the
instruction and data TLB and thus to effectively hide code pages in guest memory [Tor14].
Finally, we extend the dynamic malware analysis framework, DRAKVUF [LMP*14],
with the capabilities of the above primitives to empower ARM for stealthy VML In fact, we
leverage DRAKVUF to evaluate the performance and effectiveness of our VMI primitives
on AArch32 and AArch64. Overall, we believe that our work constitutes an efficient and
robust building block that is able to introduce stealthy VMI to the ARM architecture.

Note: Parts of this chapter have been published in [PLM"18]. We have open sourced the
code developed as part of this project. In fact, to allow other researchers to reproduce
our results, we have participated in the conference’s artifact evaluation.! The published
research paper has received an Outstanding Paper Award.

TDRAKVUF on ARM: https://github.com/drakvuf-on-arm/drakvuf-on-arm
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5 Stealthy Monitoring on ARM

5.1 The Need for Alternative Monitoring Primitives on ARM

Split-personality malware frequently employs anti-virtualization techniques [CAM™08,
BCK™10] to reveal and evade introspection. Even though defenders could put a lot of ef-
fort into an attempt to make the VM almost indistinguishable from real hardware, a system
that achieves perfect VM transparency is still unfeasible in practice [GAWFO07] (Sec. 2.3.1).
Recently, as we have learned in Chap. 4, we have observed an increasing trend toward sys-
tem consolidation through virtualization. This trend renders the goal of VM transparency
obsolete; a virtualized system does not necessarily indicate that its sole purpose is mal-
ware analysis. Therefore, it makes no sense for attackers to exclude virtual environments.
Nevertheless, malware can still detect VM-based analysis systems, through in-guest arti-
facts, ranging from guest-accessible memory to register contents. Consequently, cloaking
remains an open question and emphasizes the need for stealthy monitoring.

Contrary to x86, ARM does not foresee hardware capabilities that are essential for stealthy
malware analysis. In fact, this is one of the reasons why existing VMI approaches for x86
cannot be similarly applied to ARM. In particular, ARM is not capable of hiding artifacts
that are involved in single-stepping guest VMs. Additionally, ARMv7 complicates hiding
in-guest code instrumentation, as it lacks the capability of granting execute-only permis-
sions to code pages. While both points can be addressed through emulation techniques,
we choose to avoid emulation, as it is known for being imperfect [Fer(07, Xen16b, Xenl6a].
In this section, we extend the introduced ARM architecture (Sec. 2.2) to highlight its limi-
tations in regard to stealthy VMI. We particularly amplify upon the selected architectural
components that are relevant for this chapter.

5.1.1 Debug Exceptions

The ARM architecture offers a set of debug registers, which can be configured to set
breakpoints and watchpoints, and to single-step individual instructions. Specifically,
ARM allows to configure the debug registers to generate debug events. These events, in
turn, generate debug exceptions which must be handled in dedicated exception handler
routines that are typically set up by debuggers.

Both AArch32 and AArch64 support up to 16 configurable breakpoints. Every break-
point can be set by means of the Breakpoint Control Register DBGBCR in conjunction with
one of the Breakpoint Value Registers DBGBVR. Respectively, ARM supports up to 16 watch-
points, which function in a similar way. In the simplest case, a set breakpoint or watchpoint
holds an instruction address, that generates an associated debug event on every instruc-
tion or data fetch. On top of that, ARM features software breakpoint instructions, the
execution of which causes the CPU to generate the respective debug events. For instance,
on AArch64, upon executing a software breakpoint instruction, the system immediately
generates a Breakpoint Instruction exception, which interrupts the most recent execution
and transfers the control-flow to the registered exception handler.
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To single-step hit breakpoints, a monitor can configure DBGBCR to mismatch the break-
point address in one of the DBGBVR registers: since addresses of instructions that follow
a hit breakpoint do not match the address in DBGBVR, the execution of every following
instruction will cause the CPU to generate a debug event. Alternatively, AArch64 allows
to generate Software Step exceptions by setting the SS bit of the Monitor Debug System
Control, MDSCR_EL1, and Saved Program Status Register, SPSR, of the target exception level.
For instance, to single-step a hit breakpoint in EL1 the monitor must set the MDSCR_EL1.SS
and SPSR_EL1.SS bits. After returning to the trapped instruction, the SPSR will be written
to the process state PSTATE register in EL1. As a consequence, the CPU will execute the
next instruction and generate a Software Step exception.

To prevent a potential disclosure of the analysis system, the VMM can intercept (and
emulate) the guest’s accesses to debug registers and hence cover, e.g., set breakpoints
controlled by the VMM. Yet, we highlight that adversaries can use the finite number of
breakpoint and watchpoint registers as side channel information to reveal the analysis
framework. Also, in-guest debugging cannot be perfectly emulated. For example, the
KVM hypervisor implements VMM-based debugging on ARM with the restriction that
the guest will be unable to use these features concurrently. Thus, hardware breakpoints
and watchpoints, as well as single-stepping through breakpoint mismatching—the only
way to single-step guest’s on AArch32—are not suited for stealthy VMI.

Unfortunately, Software Step exceptions on AArch64 are also visible to guest OSes. The
VMM can intercept accesses to MDSCR_EL1 and hide the SS bit. Also, ARM forbids direct
access to the PSTATE. SS bit in all exception levels, which complicates a discovery of analysis
systems. Still, an adversary with control over the guest’s exception handlers in EL1 (kernel
space) can reveal the analysis by provoking an interrupt from EL1 that traps as well to
EL1 (Sec. 2.2.1): in the exception handler, the PSTATE holding the set SS bit will be written
to SPSR_EL1 which in turn is accessible. We have validated this behavior as part of our
evaluation (Sec. 5.4.4). Since accesses to SPSR_EL1 cannot be intercepted, the VMM would
need to trap and emulate every instruction in the exception handlers to cloak the analysis.
This, however, is not a good alternative as the overhead of handling exceptions would rise
enormously. As such, we are in need for stealthy single-stepping alternatives, upon which
we place great emphasis in this chapter.

5.1.2 Translation Lookaside Buffer

To counter the lack of execute-only memory on AArch32, we shift our focus toward the TLB
organization. Virtual memory address translation entails high performance overhead.
The reason for this is that the associated page tables reside in main memory. To increase
performance, the TLB buffers the most recent guest-virtual to guest-physical address (and
guest-physical to machine-physical) translation results. The TLB organization on x86 and
ARM evolved to a split TLB architecture. A split TLB separates the TLB into two disjoint
sets comprising the instruction TLB (iTLB) and data TLB (dTLB); the iTLB caches translated
instruction fetches, whereas the dTLB holds translated data fetches. To further speed up
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5 Stealthy Monitoring on ARM

memory translation, the TLB organization adds a superior caching level, which serves as
a victim cache for both the instruction and data TLB. On ARM, this cache is called unified
TLB (uniTLB); it is comparable to the shared TLB (sTLB) on x86. The uniTLB holds evicted
entries from the iTLB and dTLB and is first consulted before walking the page tables.

To minimize TLB maintenance, the TLBs are associated or tagged with an identifier,
which organizes the TLB entries based on a specific context. This means TLB entries with
the same Address Space Identifier tag refer to a specific process. Similarly, entries tagged
with the same Virtual Machine Identifier (VMID) refer to a specific VM or rather to a specific
second level translation table (the VMID is part of the Virtualization Translation Table Base
Register VTTBR). As such, the CPU does not need to flush the TLBs on context switches,
which significantly increases the overall system performance.
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5.2 Threat Model

Our assumptions regarding the adversarial capabilities closely resemble the threat model
in Sec. 4.1. In a similar way, we base and extend the assumptions of the defensive attacker
strategy in Sec. 3.2. Previously, the attacker has focused on uncovering traces of White-
Rabbit, once it has been dynamically deployed (Chap. 4). Yet, WhiteRabbit offers a generic
VMl interface, which can tolerate and provide services to non-stealthy VMI tools. In other
words, while the attacker cannot directly uncover WhiteRabbit, she could indirectly ex-
pose the analysis system through artifacts that were left behind by careless VMI tools. In
addition to our previous assumptions, to amplify upon the stealthy character of the intro-
duced analysis techniques in this chapter, we assume an adversary who specifically aims
to reveal in-guest analysis artifacts. Note that we can combine the stealthy deployment
strategy of WhiteRabbit with the stealthy analysis techniques in this chapter.

We assume an adversary with root privileges, who possesses full control of the guest
VM on ARM,; she can access all security-relevant parts of the OS, including the guest kernel
and the configured exception vectors. Similar to our previous assumptions, we assume
the attacker is indifferent to virtualized systems. Yet, she will abort her operation in case
of disclosure of an analysis framework. Additionally, she can employ anti-virtualization
techniques, such as carving the guest’s memory for artifacts that may reveal the presence
of virtualization-based analysis frameworks. These artifacts comprise instructions, such
as software breakpoints and hypercalls, which are capable of intercepting and redirecting
the guest’s execution to the VMM. Further, she can inspect the OS for agents in form of
processes or kernel modules. We trust that the adversary cannot modify the OS before
we have set up our VMI-based analysis framework. That is, she cannot manipulate any
security-critical vectors without us noticing it.

We highlight that throughout this chapter, we consider that the attacker can analyze
in-guest accessible registers. Hence she aims to reveal analysis frameworks, which utilize
debug registers (Sec. 5.1.1), e.g., to configure hardware breakpoints, watchpoints, and
the single-stepping mechanism. The attacker understands that although access to these
registers can be intercepted and falsified by a VMM-based analysis framework, the VMM
will not be able to cloak the resulting side effects. For instance, if the attacker is being
emulated, she has the necessary means to discover it, due to imperfect emulation. The
same applies to register contents that spill into registers, access to which cannot be trapped
by the VMM. Note that we apply this threat model to the adore-ng rootkit to simulate a
realistic attacker in our evaluation (Sec. 5.4.4).
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5 Stealthy Monitoring on ARM

5.3 Guest Kernel Monitoring Primitives

Malware can reveal analysis systems that use standard debugging techniques and change
its behavior [CAM™08, BCK"10]. Thus, non-stealthy analysis can cause false observations.
We identify the requirements, which are necessary to facilitate stealthy monitoring;:

O a mechanism to intercept the guest in EL1 (guest kernel);
® asingle-stepping mechanism that cannot be discovered through in-guest artifacts; and
® cxecute-only memory.

Even though the Intel architecture meets the requirements @ — ®, unfortunately, the ARM
architecture does not foresee the necessary means for a stealthy single-stepping mechanism
(Sec. 5.1). On AArch32 the finite number of hardware breakpoints helps the attacker to
infer the presence of an analysis framework; on AArch64, the attacker can spill the set
PSTATE.SS bit into the SPSR_EL1 register to uncover the analysis framework. Besides,
AArch32 lacks execute-only memory (Sec. 5.1). As such, both architectures do not meet the
requirement @, whereas AArch32 additionally fails to comply with the requirement ©.
Consequently, many prevalent VMI tools cannot use the hardware features on the ARM
architecture to become equally effective as on Intel.

To tackle these shortcomings, we present novel VMI primitives that facilitate stealthy
monitoring of VMs. Instead of relying on the intended hardware mechanisms, we apply
the system’s virtualization extensions in a new way to empower ARM for stealthy VML
Specifically, we utilize the virtualization extensions to intercept the guest kernel at arbitrary
locations (aka. tap points [PCSLO8]) and leverage such tap points to single-step trapped
instructions in a stealthy way. Next, we extend the Xen Project hypervisor [BDF03,
Lin20a] to control the guest’s physical memory, which presents the foundation for stealthy
monitoring on ARM. Finally, we combine these primitives to set the ground for stealthy
VMI on ARM. Fig. 5.1 illustrates an overall architecture of our system whose components
are described in this section. In the following, we present primitives that, when combined,
form stealthy monitoring systems on both AArch64 and AArch32.

5.3.1 Implementing Kernel Tap Points

A monitor can leverage second level address translation (SLAT) to intercept the guest’s
execution at arbitrary locations. By withdrawing the execute memory access permission
from code pages containing functions of interest, the monitor can redirect the guest’s
execution in EL1 and ELO to the VMM (i.e., in EL2). Yet, this coarse-grained method
incurs a high overhead: execution of code that is irrelevant for tracing on the page holding
the target instruction would trap into the VMM. Instead, it is more desirable to monitor
only the fact that the guest has executed a specific function. This demand can be met
by software breakpoints. Software breakpoint instructions (Sec. 5.1.1) lend themselves as

80



5.3 Guest Kernel Monitoring Primitives

Dom® DomU
% User Space User Space
% VMI Monitor
()
3 ) , ) ;
System Call Interface |
]
Kernel Space B Kernel Space
E Guest-virtual memor‘y /’
i Original View |1 Execute View
' (rwx) : =9
2 i GEN—NFN || GFN — NFN
o] | '
= A I, Instr 1 ||t || Instr 1
£ A 1 | Instr 2 | |i || Tnstr2
n e I Instr 3 ||| Instr 3
i VMID’ : VMID”
Guest-physical mempry Guest-physical-memory’ i\\ JPtTage
\7 : \% == ==
i E | [ )| [k | |ern |
X 1
:| Hyper Call Interface | i
Xen £ ! i
Xen altp2m 1 I
[0} T
8 2 jevel address translation b
E CPU Active: Execute View ;
8 i
1% i
5 e Machine-physical memory i
L] [ [] | | [wen| | |

Figure 5.1: Xen altp2m enables a monitor in the privileged domain Dom0 to manage different
memory views of DomU. While the execute-view maps the target guest frame as
execute-only, the permissions of the original-view remain unchanged.

the instruction of choice to implement tap points (@). Yet, there exist other instructions
that can be similarly configured to trap to the VMM and have additional properties that
make them more desirable. For instance, the Secure Monitor Call (SMC) instruction is a
great alternative. Similar to software breakpoint instructions, the SMC instruction can be
configured to trap directly to the VMM. Thus we can utilize SMC instructions as triggers to
intercept and redirect the control-flow of the guest OS to the VMM (@).

One of the main benefits of using the SMC instruction is that the guest is architecturally
unable to subscribe to SMC traps; contrary to software breakpoints, the generated Secure
Monitor Call exceptions can only be directed to the TrustZone or to the VMM. This property
reduces the complexity of the monitor, as the execution of an SMC instruction never has to
be re-injected into the guest. A limitation of the SMC in place of a software breakpoint is
that it can only be executed in EL1, that is the guest kernel.

Even though we can use the SMC instruction to implement tap points in the guest ker-
nel (@), achieving stealthy single-stepping without architectural support presents a great
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Figure 5.2: Upon executing the first SMC instruction in the original page, the VMM redirects
the control-flow either to the backup page (a) or switches to the step-view (b) to
single-step Instr 1. In both cases, the pages are marked as execute-only.

challenge. Without hardware support for stealthy single-stepping we seem to have reached
an impasse on how to resume the execution of the guest kernel, without losing control over
the guest’s control-flow. If we remove the tap point to allow the trapped vCPU to continue
its execution, an additional event needs to be triggered immediately after executing the
first instruction, so that we can place the tap point back. This event will normally be
generated by a single-step exception. Further, in multi-vCPU domains, removing the tap
point from memory is critical, as it may introduce a race condition: while removing the
tap point, other vCPUs must not fetch the instruction from the same location.

5.3.2 Novel Single-Stepping Mechanism

The ARM architecture has an advantage over its x86 counterparts that we can leverage
for a novel single-stepping scheme, without using the single-stepping feature of the CPU:
ARM implements a fixed-width ISA. On x86, software breakpoints cannot be placed at
arbitrary locations, as you may end up overwriting a part of a large instruction. On ARM,
we can determine the position of the next instruction; depending on the execution mode,
the width of instructions is known beforehand. Thus, we can locate instruction boundaries
in memory without having to rely on a disassembler.

To illustrate how to utilize the fixed-width ISA for single-stepping, let us consider a
scenario, in which we run a VM with a single vCPU. An external monitor with access to
debug information of the target kernel, such as the System.map file on Linux, can determine
the location of system call handling kernel functions. By reading the first two instructions
from the prologue of the target kernel function into a backup buffer and then overwriting
the function’s first instruction with an SMC, the monitor will be able to intercept the guest
kernel (@) on execution of the marked kernel function. Assoon as the guest kernel executes
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the instrumented SMC instruction, the monitor will intercept the guest’s execution. At this
point, the monitor can place the temporarily saved original first instruction back into
memory and replace the immediately following instruction with a second SMC. When the
VMM resumes the VM, the guest executes the original instruction followed by the second
SMC. When the guest traps on the second SMC, the monitor can restore the original, first SMC
without losing control over the guest kernel and hence conclude single-stepping of the first
instruction in the system call handler. On A Arch64, we achieve stealthy single-stepping of
the guest (®) by configuring the instrumented page, which holds the system call handler,
as execute-only (®); reads and writes will trap into the VMM.

To achieve multi-vCPU safety, we can store the first instruction at a location already
mapped as executable, but unused at run-time. Here, we can safely place the second
SMC after the stored instruction. The exact location of this memory is flexible as we
only need space for two instructions per monitored location. For this, we can leverage
known memory holes in the Linux kernel, such as the memory immediately following the
kernel. For simplicity, we dedicate an entire page, backup page, for these two instructions
(Fig. 5.2(a)). In the figure, the original-view represents the physical memory that is made
visible to the guest through SLAT. On execution of the first SMC in the system call handler,
we point the trapped vCPU’s Program Counter (PC) to the backup page holding the original
first instruction without performing any further modifications. Once the second SMC in
the backup page is executed, we will point the PC back to the instruction following the first
SMC in the original page. While the above focuses on single-stepping the first instruction of
system call handlers, we can apply the same approach for arbitrary regions in the guest
kernel. This however, must foresee corner-cases, such as function returns and branches,
and thus requires the monitor to compute the target address.

5.3.3 Xen altp2m on ARM

Due to the architectural differences between x86 and ARM, we cannot apply existing VMI
solutions that target x86 to the ARM architecture. To nevertheless adapt existing malware
analysis tools that rely on the requirements @, @, and ® to the ARM architecture, we mimic
the behavior of an effective approach for Intel, namely Xen alternate p2m subsystem (short
altp2m). Without divulging the details of Xen altp2m on Intel, which we further expand
onin Sec. 6.1, the developers of Xen altp2mhave originally designed and implemented this
subsystem for the exclusive use on Intel. On this architecture, a VM’s memory view can
be directly associated with an Extended Page Table (EPT) represented by the EPT pointer
(EPTP) in the hardware defined data structure Virtual Machine Control Structure (VMCS)
(Sec. 2.2.2.1). The VMCS has capacity for up to 512 EPTPs (i.e., memory views) among
which the system can be instructed to switch dynamically. To the best of our knowledge,
Xen altp2m is the first public implementation that makes use of this CPU feature. This
makes Xen altp2m a unique tool for virtual machine introspection [Len16].
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Figure 5.3: The execute-view maps the target guest frame as execute-only; the original-view
grants the same guest frame read, write, and execute access permissions.

We implement the altp2m subsystem for ARM upon the Xen p2m subsystem. Xen
p2m stands for physical to machine and leverages SLAT to manage and isolate memory
between guest domains (Xen’s notion for VMs) and the VMM. On ARM the Virtualization
Translation Table Base Register (VTTBR) holds the base address of SLAT tables, similarly
to the EPTP on Intel. Xen p2m maintains only one VITBR. As such, the p2m subsystem
maintains a single view of the guest’s physical memory, even for VMs with multiple vCPUs.
On the other hand, Xen altp2m on ARM allows to dynamically define and switch among
different VTTBRs per domain and vCPU. The interaction with the altp2m interface takes
place through dedicated hypercalls, called HVMOPs. These facilitate the privileged domain
Dom0 to create, switch, and destroy individual memory views that are then applied to
unprivileged domains DomU (Fig. 5.1). In addition, the altp2m interface allows to define
memory access permissions of individual guest-physical page frames per view and also
remap individual guest frames to different machine frames.

VMI tools leverage SLAT to control the access permissions of the guest’s physical mem-
ory [DZX13, LMP*14] (Sec. 2.2.3). When the guest traps into the VMM due to a memory
access violation, the access permissions of the associated entries must be temporarily re-
laxed; the VMM must grant the required permission so that the guest can continue. Yet,
relaxing permissions in this ubiquitous view may allow one of the remaining vCPUs to ac-
cess the targeted memory without notifying the VMM. One solution is to pause remaining
vCPUs while single-stepping the trapped vCPU. This, however, imposes severe perfor-
mance degradation. Also, the lack of stealthy single-stepping on ARM makes VMI-tools
susceptible to disclosure. Xen altp2m solves such race conditions by maintaining different
views of the guest’s physical memory (Fig. 5.1). Instead of changing permissions of a
single memory view at run-time, altp2m allows to allocate a set of views beforehand. This
way, a monitor can individually assign a specific memory view to each vCPU of DomU.
As such, for instance on memory access violations, VMI-tools can switch the view of the
affected vCPU to a less restrictive view, instead of explicitly relaxing permissions of the
view that led to the trap; switching views is as simple as switching the domain’s VTTBR.
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Let us depict a scenario in which we monitor writes to critical regions (e.g., exception
vectors) in a multi-vCPU domain. This scenario assembles the architecture in Fig. 5.1. A
monitor in Dom0 allocates two distinct guest memory views that can be applied to each
vCPU in DomU. The monitor grants all guest frames of the critical region execute-only
permissions in the execute-view. The same guest frames keep their original permissions
in the original-view (Fig. 5.3); write attempts to the critical page by vCPUs with an active
execute-view generate memory access violations. We configure this behavior as default on
all vCPUs. On a potentially malicious write attempt, instead of relaxing permissions, the
monitor switches the view of the trapped vCPU to the less restrictive original-view. This
allows us to record the event, satisfy the write request, and avoid the target application
to become suspicious. We do not relax permissions of other vCPUs and thus avoid race
conditions. To ensure that the monitor regains control immediately after the write, we
single-step the trapped vCPU and switch back to the execute-view.

To further highlight the potential of Xen altp2m, we combine the single-stepping scheme
in Sec. 5.3.2 with Xen altp2m. For every instruction to be single-stepped, an external
monitor has to increase the guest’s physical memory by two additional pages. This allows
it to create two shadow-copies of the page holding the original instruction (we need two
additional copies if we would like to satisfy code integrity checks that can be redirected to
a view pointing to the original page). That is, similar to the above scenario, we allocate two
additional guest memory views: the execute-view holds the first duplicate, shadow-copy’,
while the step-view maps the shadow-copy” (Fig. 5.2(b)). We replace the target instruction
in the execute-view with a privileged SMC instruction. Then, instead of allocating a backup
page in the same memory view, we replace the second instruction of the same function in
the shadow-copy”. As such, upon execution of the first SMC in the execute-view, the monitor
can switch to the step-view without further adjustment. Finally, upon the execution of the
target instruction, the execution of the adjacent SMC instruction in step-view traps again into
the VMM, where we return to the execute-view and complete single-stepping.

These scenarios demonstrate the potential of Xen altp2m, enforcing memory restrictions
through SLAT. The guest has no access to SLAT tables, as they reside in VMM’s memory.
Thus, such memory restrictions are stealthy. In fact, we meet the requirements @ — ® and
hence establish a foundation for stealthy VMI on AArché64.

5.3.4 Splitting the TLBs

Sadly, AArch32 is not capable of enforcing execute-only pages; every code page has to
be both readable and executable, or instruction fetches will fail. Thus, while requirement
O and O (partially) apply to AArch32, the requirement @ is not covered. Therefore,
we cannot assure stealthy operation of Xen altp2m without further actions on AArch32.
To overcome this limitation we explore the TLB organization on ARM (Sec. 5.1.2) and
implement a system, which we refer to as split-TLB that satisfies our requirements.?

The term split-TLB first appeared in the context of processor architectures. In this chapter, we use this
term also as a substitute for the de-synchronized TLB organization.
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5 Stealthy Monitoring on ARM

Original View || Execute View
(r--) (r-x)
GFN <> MFN1 GFN <> MFN2
Original Page Shadow Copy
Instr 1 SMC
Instr 2 Instr 2
Instr 3 Instr 3
VMID VMID
Guest-physical memory
| |GFN | |
Machine-physical memory
\ [MFN1]  [MFN2 | \

Figure 5.4: The original-view translates the guest frame to MFN1, while the execute-view trans-
lates the same guest frame to MFN2. Both views are tagged with the same VMID.

ARM implements TLB-tagging to isolate translations tagged with different VMIDs. We
made a joint decision with Xen maintainers that unique VMIDs will be assigned to each
altp2m view. Contrary to x86, on ARM a TLB tag corresponds to a specific memory view
instead of a vCPU; by switching altp2m views we activate the associated VMID, without
having to flush differently tagged mappings of same guest-physical memory. On the other
hand, if different altp2m views shared a VMID, the guest would be susceptible to using
stalled translations in the TLB, even if the active view contained the most recent mappings
in memory. We choose to employ this architectural feature to hide modified code pages
from data fetches and thus mimic execute-only memory on AArch32. As such, we extend
the altp2m interface to pair the VMIDs of altp2m views to de-synchronize the physically
separated iTLB and dTLB.

To cause an inconsistent state in the TLBs that we require for hiding code pages, we
prime the iTLB so that it holds guest frame mappings that translate to different machine
frames than those cached in the dTLB. That is, we require a mechanism that allows us
to translate one guest frame to two physically different machine frames; only one of both
mappings will be exclusively cached either in the iTLB or dTLB. To achieve this effect, first,
we duplicate the page with the instruction to be monitored and replace it with an SMC
instruction in the shadow-copy without modifying the original page. Then, we prepare two
altp2m views and map both pages according to Fig. 5.4. It is essential that both memory
views are tagged with the same VMID; the system will ignore the primed iTLB entry, if
it switches to a memory view with a different VMID. We grant the original page read-only
permissions. We withdraw write permissions from the original page in the original-view
to intercept write attempts. This allows us to monitor any change to the original page
and propagate the modifications to the shadow-copy as required. Since AArch32 does
not support execute-only mappings, we grant the shadow-copy read and execute memory
access permissions. Also, we withdraw the execute permission from all other mappings
in the execute-view, as to limit the execution in this view to the page of interest (Fig. 5.5).
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Original View Execute View
Guest-physical ond |avel Machine-physical ond |avel Guest-physical
memory address translation memory address translation memory
MFN MFN
! _______________ (original) | N\ (shadow) | """ 77| !
IGRAT o AEEERCEs ---F DS,
‘ """""" (rwx) [P TR e aiafes (rw-) | T ’
(rwx) e g I i (rw-)

Figure 5.5: The original-view maps the target guest frame to the original machine frame; the
execute-view maps the same guest frame to the shadow-copy.

We configure the original-view to be active by default. On the first execution of the
function to be monitored, the guest hands over control to the VMM: the instruction fetch
violates the permissions of the read-only mapping. As such, the translation result does not
get cached in the TLBs. The monitor leverages this architectural property to intercept the
guest upon permission violation and switch to the execute-view, which grants execution
access of the requested guest frame. This time, upon the successful SLAT table walk
using the execute-view, the translation mechanism populates the iTLB with the machine
frame that is associated with the execute-view (i.e., MFN2 in Fig. 5.4). Consequently, further
instruction fetches from the page in question will directly consult the primed iTLB entry
until it gets evicted. When the primed iTLB entry gets evicted it will need to be primed
again. Upon execution of the SMC in the execute-view, the monitor can single-step the
original instruction as described in the Sections 5.3.2 and 5.3.3. After single-stepping the
monitored instruction, the monitor switches back to the original-view.

The setup configures two views that map one guest frame to two machine-physical
frames with different access permissions. By priming the iTLB, we cause the system
to fetch the target instruction from the execute-view. At the same time, reads from the
same addresses consult the original-view. As the iTLB and dTLB hold mappings from
two different views, the primed system does not need the VMM to switch the views.
This setup satisfies reads initiated, for example, by integrity checkers. At the same time,
it transparently causes the guest to execute the SMC instruction in the shadow-copy of
the original page (). Thus, by combining the monitoring primitives introduced in this
section with the discussed TLB de-synchronization technique, we manage to meet the
requirements @ - ® on AArch32. In addition, since this configuration causes the VM to trap
to the VMM only for the purpose of priming the TLBs, or when executing the instrumented
SMC instructions, the split-TLB strategy incurs only minimal overhead. Nevertheless, this
setup entails a limitation that we discuss in detail in Sec. 5.5.2.
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5 Stealthy Monitoring on ARM

5.4 Evaluation

To evaluate our work, we have implemented the discussed Xen altp2m subsystem and
ported LibVMI [Pay12, Lib20] and the dynamic binary (and malware) analysis framework
DRAKVUF [LMP*14] to the ARM architecture.! We have equipped DRAKVUF with the
presented VMI-primitives to assemble the foundation for stealthy guest kernel monitoring
on AArch32 and AArch64. This allowed us to assess both the effectiveness and the induced
performance penalty of the introduced primitives.

5.4.1 System Setup

Our system setup comprises an external monitor (i.e., DRAKVUF) inside of the privileged
domain Dom® on top of the Xen hypervisor v4.11. DRAKVUF traces system calls that are
executed in the unprivileged domain DomU. Both domains run the Linux kernel v4.15. The
host comprises an 8-core 1.2GHz ARM Cortex-A53 CPU, and 1GB of RAM available to
both the privileged domain Dom® and the unprivileged domain DomU. Even though we have
performed all measurements on AArch64, the setup can be equally applied to AArch32.

DRAKVUF uses OS-profiles, with exported functions and data structure information,
that are statically generated by Rekall [Rek20] to locate system calls and set tap points in the
prologue of each system call handler in the guest’s kernel memory. This way, it establishes
the means to intercept and monitor the guest’s kernel behavior. Unfortunately, Rekall lacks
the ability to generate profiles for Linux kernels compiled for AArch64. To accommodate
this issue, we have implemented and open-sourced a custom Rekall profile generator to
gather the relevant AArch64 system call and kernel data structure information.’

As part of our evaluation, DRAKVUF leverages our implementation of the Xen altp2m
subsystem (Sec. 5.3.3) to dynamically create and switch among different guest memory
views on ARM;* it uses the altp2m interface to communicate with the introduced subsys-
tem from Dom®. We employ altp2min combination with the discussed VMI-primitives that
meet our requirements @ — ® to stealthy monitor every system call on AArch64 (Sec. 5.3).
In total, our system setup has monitored 340 different system calls, which are distributed
across 111 different 4 KB memory pages. In addition, we have armed altp2m with the abil-
ity to take control over the system’s TLB organization to assess the primitives for stealthy
monitoring on AArch32 (Sec. 5.3.4).

3Rekall profile generator for AArch64:
https://github.com/drakvuf-on-arm/rekall-profile-generator
4Xen altp2m on ARM: https://github.com/drakvuf-on-arm/xen/tree/arm-altp2m-drakvuf
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5.4 Evaluation

5.4.2 DRAKVUF on ARM

To assess the presented VMI-primitives for the ARM architecture (Sec. 5.3), we have com-
bined them with DRAKVUEF. The established foundation for DRAKVUF enabled thereby
stealthy dynamic malware analysis on ARM. In addition, to demonstrate that our proposed
single-stepping primitive (by using both the synchronized and the de-synchronized TLB
configuration) can keep up with the performance of the hardware-supported approach,
we have implemented a conventional, non-stealthy single-stepping mechanism for Xen in
the way it is specified by the AArch64 specification [Arm20]; this single-stepping alter-
native leverages dedicated hardware capabilities controlled through the PSTATE. SS bit on
AArch64 (Sec. 5.1.1).

That is, within the scope of our evaluation, we have extended Xen, LibVMI, and
DRAKVUEF in such a way that allows us to employ the VMI-primitives for placing ar-
bitrary tap points in the guest’s kernel memory and protecting these through our Xen
altp2m subsystem implementation. At the same time, we can combine these primitives
with one of the following three different single-stepping approaches:

* Hardware-SS: anon-stealthy single-stepping implementation that leverages hardware
capabilities of AArch64 (Sec. 5.1.1).

* Double-SMC-SS: our stealthy method that leverages two SMC instructions protected
by Xen altp2m (Sec. 5.3.3).

* Split-TLB-SS: an approach that additionally de-synchronizes the TLB organization
to make up for the lack of execute-only memory (@) on AArch32 (Sec. 5.3.4).

Independent of the applied single-stepping method, DRAKVUF utilizes SMC instructions
to set tap points in the prologue of each system call handler and leverages Xen altp2m to
protect them. In other words, in the face of the evaluation, we have applied one of the three
single-stepping flavors through DRAKVUF to step over the trapped SMC instructions. More
precisely, we have leveraged DRAKVUF to duplicate all pages, which hold system calls,
such that we can configure them to be monitored (Fig. 5.6). Then, we have allocated two
guest memory views, whereas the first view (original-view) has mapped the original page
and the second view (execute-view) has mapped the shadow-copy. We granted the original
page in the original-view read-only permissions. The permissions of the shadow-copy in
the execute-view were either execute-only on AArch64 or read-execute on AArch32. In both
Hardware-SS and Double-SMC-SS setups, it was the execute-view that was active by default;
Split-TLB-SS used the original-view as default. Finally, we replaced the first instruction of
every system call handling function in the shadow-copy with an SMC instruction. Further
operation depended on the employed single-stepping method. The following exemplifies
the individual steps taken by DRAKVUF to trace every invocation of a system call inside
the guest domain in accordance with one of the single-stepping alternatives.

Hardware-SS: To prevent the guest from discovering the instrumented SMC instruction
in the shadow-copy, we grant execute-only access permissions to the memory page that is
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5 Stealthy Monitoring on ARM

Original View || Execute View Original View || Execute View Step View Original View || Execute View Step View
(r--) (--x) (r--) --x) (--x) (r--) (r-x) (r-x)
GFN <+ MFN1 GFN <+ MFN2 GFN <+ MFN1 GFN < MFN2 GFN <> MFN3 GFN <+ MFN1 GFN <+ MFN2 GFN <+ MFN3
Original Page Shadow Copy’ Original Page Shadow Copy’ Shadow Copy” Original Page Shadow Copy’ Shadow Copy”
Instr 1 SMC Instr 1 SMC Instr 1 Instr 1 SMC Instr 1
Instr 2 Instr 2 Instr 2 Instr 2 SMC Instr 2 Instr 2 SMC
Instr 3 Instr 3 Instr 3 Instr 3 Instr 3 Instr 3 Instr 3 Instr 3
VMID’ VMID” VMID’ VMID” VMID”’ VMID’ VMID’ VMID”

Guest-physical ‘memory

|GFN_| | |GFN | |
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(b) Double-SMC-SS (c) Split-TLB-SS
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(a) Hardware-SS
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Figure 5.6: Different views on the guest-physical memory provided by Xen altp2m. We utilize
each view configuration to establish three single-stepping (SS) alternatives.

mapped in the execute-view (Fig. 5.6(a)). This way, the execution of the first instruction of
the system call handler in the execute-view interrupts the guest kernel execution and hands
over control to Xen, which in turn notifies DRAKVUF about the trap. Consequently,
DRAKVUEF switches back to the original-view, single-steps only one instruction (i.e., the
original first instruction of the system call handling function) by utilizing the dedicated
single-stepping mechanism of the hardware, and continues in the execute-view. We can
satisfy all read-requests to code pages that are marked execute-only in the execute-view by
switching to the original-view. Also, we intercept writes to propagate changes to all views.

Double-SMC-SS: In this context, we use the same original-view and execute-view config-
urations as in Hardware-SS. In addition, we create a third view, step-view, which we use to
single-step instructions without relying on the intended hardware capabilities. The step-
view maps a second copy of the original page, in which we replace the second instruction
of the system call handler function with a second SMC (Fig. 5.6(b)). This way, when we
intercept the first SMC in the execute-view, DRAKVUF switches to the step-view to execute
the original first instruction and trap at the second SMC immediately after. This is the
single-stepping scheme, which we have introduced in Sec. 5.3.3. The second SMC instruc-
tion in the step-view facilitates DRAKVUF to switch back to the execute-view and continue
execution right after the first SMC.

Split-TLB-SS: This setup closely resembles the configuration of Double-SMC-SS. Yet,
since AArch32 lacks execute-only memory, we have de-synchronized the system’s TLB
organization to simulate execute-only memory (Sec. 5.3.4). Specifically, we granted read-
execute memory access permissions to the shadow-copies in the execute-view and step-view
Fig.5.6(c)). To de-synchronize the entries in the iTLB from the dTLB, we used the same VMID
for the original- and execute-view. We primed the iTLB such that instruction fetches from
the target page accessed the execute-view in the iTLB; data access consulted the original-view
in the dTLB. Right after executing the first SMC, DRAKVUF dynamically switched to the
step-view to single-step the original first instruction similarly to Double-SMC-SS.
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Table 5.1: Monitoring overhead of DRAKVUF utilizing the single-stepping primitives Hardware-
SS, Double-SMC-SS, and Split-TLB-SS, measured by LMbench v3.0.

Benchmark w/o Hardware Double-SMC Split-TLB
(in msec) Step-View Backup Page | Step-View Backup Page
syscall() 0.31 299.05 x 238.55 x 269.32 % 317.68 x 250.26 %
open() /close() 5.44 37.25 X 29.11 X 35.95 x 49.57 x 33.94 x
read(Q 0.67 141.14 x 117.27 x 125.46 x 148.27 x 111.77 x
write() 0.47 203.32 x 163.81 x 178.43 x 219.62 x 157.31 x
select() (500 fds) 28.33 4.40 x 3.89 x 4.04 x 4.39 x 4.02 x
stat() 2.63 38.06 x 30.74 x 32.43 x 40.14 x 31.82 x
2| fstatO 0.62 152.57 x 126.40 x 135.81 x 166.97 x 121.06 x
g | fork()+execve() | 1383.33 4.38 x 4.02 x 4.36 x 19.29 x 12.33 x
5 forkO+exit () 377.43 221 x 2.09 x 245 x 15.66 x 11.20 x
fork()+/bin/sh 3249.17 3.86 x 3.59 x 3.92 x 16.35 x 10.54 x
sigaction() 0.51 186.27 x 141.18 x 147.31 x 174.65 x 144.58 x
Mem read 1745.00 0.97 x 0.97 x 1.00 x 0.99 x 0.99 x
Mem write 4687.67 0.92 x 0.92 x 1.00 x 0.98 x 0.98 x
Signal delivery 4.34 43.70 x 34.64 x 35.51 x 41.01 x 36.48 x
Page fault 1.49 1.15 x 1.16 x 1.09 x 1.28 x 1.28 x
PipeI/O 12.26 30.34 x 28.13 x 34.69 x 77.94 x 39.36 x

In all three configurations, every time a system call trapped into Xen, it has notified
DRAKVUF about the event, which monitored the system call for further processing; on
every system call, DRAKVUF has intercepted the guest, monitored the event, single-
stepped the trapped instruction according to the applied single-stepping alternative, and
resumed the guest. As such, during benchmarking, our monitor was overwhelmed with
a persistent shower of system calls.

5.4.3 Performance

Automated VMI-based malware analysis strongly affects the overall system performance.
As such, the VMI-induced performance overhead must be kept to a minimum. To evaluate
the performance overhead of the introduced VMI-primitives, we have conducted two ex-
periments comprising a set of CPU-intensive macro- and micro-benchmarks, during which
we used DRAKVUF to monitor every system call that was set off by the benchmarking
tools in DomU. To solely focus on the monitoring overhead, we have deactivated the output
to the console. All results are means over three runs.

In the first experiment, we used DRAKVUF to trace all system calls that were set off
by a set of LMbench v3.0 micro-benchmarks. This allowed us to analyze the induced
performance cost on system-software level (Table 5.1). To be more precise, first, we
have executed DRAKVUF in combination with the Hardware-SS approach that leveraged
the AArch64 hardware architecture to single-step protected tap points and determined
the overall execution overhead. In this way, we have established a baseline which we
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5 Stealthy Monitoring on ARM

Table 5.2: Monitoring overhead of DRAKVUF utilizing the single-stepping primitives
Hardware-SS, Double-SMC-SS, and Split-TLB-SS, measured by Phoronix v7.6.0.

‘ Benchmark (unit) ‘ w/o ‘ Hardware ‘ Double-SMC ‘ Split-TLB

2 | Gzip (s) 41681 |  11.99% 36.30 % | 190.12 %
2| N-queens (s) 779.78 0.00 % 0.00 % 0.00 %
7-Zip (MIPS) 612.67 |  -0.54% 011% | 1017 %

have then compared with DRAKVUF’s performance using both of our proposed single-
stepping variants, namely Double-SMC-SS and Split-TLB-SS. Besides, as both variants can
leverage a backup page in the execute-view instead of using an additional step-view (Fig. 5.2(a)),
we examined the performance of both configurations for each single-stepping primitive.
Overall, the results show that the performance of Double-SMC-SS and Split-TLB-SS are close
to our baseline implementation for single-stepping and thus present suitable alternatives.

Surprisingly, we have observed that the Double-SMC-SS implementation outperforms
the setup utilizing Hardware-SS in the most cases. One can argue that our implementation
that is responsible for managing the hardware-supported single-stepping in Xen requires
additional overhead that might result in the observed behavior. However, we believe that
the hardware logic behind single-stepping over one instruction requires more time than
simply intercepting the execution of an SMC instruction.

The performance of the Split-TLB-SS approach strongly depends on the number of
memory pages are involved in the system call. That is, since we have only a very limited
number of iTLB-entries (10 iTLB entries on ARM Cortex-A53), as soon as the system call
accesses memory pages that are not yet part of the iTLB, primed iTLB entries might get
evicted according to the TLB eviction strategy.

In our second experiment, we have conducted a set of CPU-intensive macro-benchmarks
of the Phoronix Test Suite v7.6.0 and summarized the results in Table 5.2. Unfortunately,
due to the limited support on ARM, we were able to conduct only a small number of
macro-benchmarks. Please note that the units of our measurements vary. Overall, the
collected results suggest that DRAKVUF incurs only limited overhead on the overall
system performance and thus is very well suited for efficient malware analysis on ARM.

5.4.4 Effectiveness

To demonstrate the effectiveness of DRAKVUF on ARM, we have set up our system to ana-
lyze the adore-ng rootkit on ARM. By setting a tap point to trace kallsyms_lookup_name(),
we identiefied that the rootkit determined the location of the kernel function for kernel hot
patching (aarch64_insn_patch_text()). In particular, it created kernel hooks required,
among others, to hide files, processes, and logs and to communicate with the rootkit. As
such, we set another tap point to aarch64_insn_patch_text() and hence observed all
malicious writes to kernel regions holding sensitive function hooks.
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5.4 Evaluation

We have further lend the adore-ng a split-personality property that was looking for arti-
facts that could reveal our monitor. When the rootkit had detected our analysis framework,
it terminated its operation. With this property, adore-ng was able to successfully uncover
our system when it leveraged Hardware-SS to trace and single-step the rootkit (Sec. 5.1.1).
Also, the rookit was able to reveal SMC instructions by synchronizing the TLBs, when we
applied our Split-TLB-SS scheme on AArch32. The exact steps to disclose Split-TLB-SS are
described in Sec. 5.5.2. Yet, the Double-SMC-SS method on AArch64 remained undisclosed.
Consequently, as we can use the AArch64 architecture to also trace AArch32 guests, we
deem this analysis method stealthy for both architectures.
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5 Stealthy Monitoring on ARM

5.5 Discussion

Even though we provided a strong foundation for stealthy VMI on the ARM architecture, in
this section, we discuss alternative tracing methods, review the limitations of the proposed
VMI primitives, and amplify upon some of the security concerns entailed with stealthy
analysis primitives.

5.5.1 Alternative Tracing Methods

Our approach necessitates two guest context switches to trap on and single-step one
instruction. If we limit ourselves to tracing the Linux kernel, we can adapt the functionality
of ftrace [The20a], a tracing framework for Linux kernel analysis. If we assume a Linux
kernel compiled with the CONFIG_DYNAMIC_FTRACE parameter, the prologue of white-listed
kernel functions will hold a call to a dedicated stub, calls to which allow ftrace to record
the function call. When tracing is disabled, this stub is filled with NOP instructions. We can
reuse the call to the function stub in every kernel function by placing an SMC instruction to
this position and protecting it through Xen altp2m. This approach eliminates the need for
the second SMC (Fig. 5.2), as we do not need to replace and single-step any instructions.

By using this approach, we could reduce the overhead induced by single-stepping
instructions. At the same time, this approach limits itself to monitoring only Linux guests
with ftrace support. Besides, if we prefer to avoid single-stepping instructions, the
ftrace tracing mechanism will need to be deactivated, which would potentially indicate
the analysis framework. On the other hand, the monitor could fall back to our default
approach if tracing was activated. In contrast, our single-stepping method (Sections
5.3.2 and 5.3.3) is not limited to tracing only Linux kernels and can single-step functions at
arbitrary locations by considering corner-cases, which affect the control-flow. This renders
our design capable of monitoring all guest kernel locations.

Besides, our single-stepping schemes create up to three altp2m views, whereas each
view maps an individual variant of the original page (Fig. 5.6). Also, we consume up to
two additional pages per page holding the target function. Instead of creating an additional
step-view, we can use a backup page holding the original instruction and a second SMC per
tap point (Fig. 5.2(a)). Thus, we can reduce the pages as one backup page has capacity for
up to 512 tap points (on AArch32).

5.5.2 Limitations

We have presented novel approaches for stealthy monitoring the kernel space on ARM, in
multi-vCPU guest domains. Our implementation of Xen altp2m on AArch64, which we
combine with a de-synchronization technique of the split-TLBs on AArch32 to counteract
the lack of execute-only memory, allows us to hide arbitrary code from the guest. Yet, our
prototype entails the following limitations.
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5.5 Discussion

Applicability: By employing SMC instructions as a trigger to switch the control-flow to the
VMM, we limit ourselves to only intercepting the execution of EL1, which is the guest’s
kernel space. Even though, with Xen altp2m, we provide the necessary means to also hide
arbitrary code in user space, we chose the SMC instruction to implement tap points because
guests cannot subscribe to SMC events (Sec. 5.3.1). This strategy reduces the complexity of
the monitor, as it eliminates the need for any SMC event injections into the guest. A great
alternative to the SMC instruction is the Branch Exchange Jazelle (BXJ) instruction [BVN16].
This instruction can be executed in EL® and can be configured to trap into EL2. Yet, while
AArch32 guests can execute BXJ, AArch64 guests do not support this instruction. Yet, we
can implement yet another alternative by injecting instructions, which access dedicated
memory that is known to be protected by the monitor.

Robustness: Our Split-TLB-SS solution cannot guarantee ongoing stealthy operation on
AArch32 CPUs that implement a uniTLB. On such systems, attackers can re-synchronize
the TLBs and reveal the hidden SMC instructions from inside the guest. To achieve this,
they must synchronize the TLBs to detect pages hidden in the iTLB. This can be achieved
by forcing the system to evict the primed iTLB entries to the uniTLB and fetch them to
the dTLB. In this context, the attacker must ensure that the dTLB does not contain valid
mappings of the affected pages, as they would satisfy the guest’s read and write requests.
Also, if the primed entries in the iTLB get evicted, while having valid mappings in the
dTLB, the VMM will be able to re-prime the iTLB. As such, the guest must only evict the
dTLB. Explicit evictions result from flush operations. Implicit evictions result when the
iTLB or dTLB buffer gets full and needs to store a new entry; the hardware evicts one of
the entries from either the iTLB or dTLB to the uniTLB. The adversary knows that ARM
holds a finite number (in our case 10) of fully associative entries in the iTLB and dTLB.
Upon memory allocation, she can read or write to the allocated memory pages forcing the
system to implicitly flush the dTLB. Hence, the next data access to the target page will
consult the uniTLB. Next, the attacker flushes the iTLB to the uniTLB in a similar way to
ensure the primed entries are available for future access through the dTLB. Subsequent
reads from the target address will consult the uniTLB and reveal the hidden SMC.

Contrary to the ARM architecture, x86 reserves a global bit as part of the system’s page
table entries. The kernel can set the global bit in the page table entries to cause the system
to avoid flushing the TLB entries that hold their respective translations; the system can
still evict these entries, yet, only on a high TLB pressure. Thus, even if ARM implemented
a similar bit, it would not be enough to fully cloak the analysis on AArch32.

Scope: On AArch32, we further restrict our scope to tracing the execution of code pages
in kernel space, which do not perform integrity checks on themselves. This applies to the
majority of the kernel, including system call handlers. This limitation emerges as we cannot
hide injected SMC instructions at arbitrary positions in the kernel space; AArch32 specifies
executable pages to be marked with read-execute access privileges. Thus, for instance, we
distance our mechanisms from monitoring dynamically loaded kernel modules that might
perform integrity checks of routines located on the same page as the checking mechanisms.
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5 Stealthy Monitoring on ARM

Besides, the analyst must be aware of system calls that are mapped into the vDSO, a
shared library mapped into the address space of user space applications. It is used to
increase performance of frequently called system calls, by eliminating the context-switch
overhead. This way, frequently called system calls are mapped to user space and therefore
cannot be monitored through SMC instructions. On ARM, however, symbols that are
exported through the vDSO into user space are limited (i.e., there exist only four symbols
on AArch64 and two symbols on AArch32).

Stealth: Some of the problematic anti-virtualization categories deal with behavioral dis-
crepancies between physical and virtual environments (Sec. 4.4.2). These comprise timing
overhead induced by emulation or analysis. Side effects of certain instructions can differ
as they are not sufficiently documented. This category can only be partially addressed.
The hardware behavioral knowledge can be gathered through massive testing [SAM14]
and simulated by a VMM. Yet, if an attacker has access to external time sources, such
as Network Time Protocol (NTP), she will be able to detect discrepancies caused by the
virtualization overhead.

5.5.3 Malicious Abuse of Stealthy Tracing Primitives

As it is often the case in IT security, we have to be aware that strong and, in particular,
stealthy analysis primitives can turn into a serious threat in hands of malicious actors
(Sec.4.4). For instance, adversaries can combine the introduced stealthy analysis primitives
with on-demand VMM deployment strategies to introduce powerful rootkits (Chap. 4).
The same applies to curious administrators, who could utilize the discussed analysis
primitives to violate their customers’ privacy by dynamically monitoring VMs [HB17,
MHHW18, WMA ™19, MPR"21]. Without any additional means, the customers do not
have the necessary foundation to trust their infrastructures completely. In order to be
able to establish trust into otherwise untrusted environments, we envision that future
research and cloud providers will continue investing into modern advances of confidential
computing architectures [Int21, Adv20, Arm21].
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5.6 Related Work

This chapter focuses on stealthy monitoring on ARM, which applies architectural quirks
to cloak analysis artifacts from the guest. In the following, we present previous research
upon which we build the foundation for stealthy analysis on ARM.

VMM-based analysis: An analysis framework must be stealthy to avoid perturbing mal-
ware. SPIDER [DZX13] is a stealthy debugging and instrumentation framework based
on Linux KVM. By leveraging the EPT mechanism, SPIDER splits selected code and data
pages of the guest’s physical memory to implements invisible breakpoints. Similarly to
our work, this strategy essentially creates two different mappings of the particular guest
physical page. By exchanging the page mappings in the global set of EPT tables, SPIDER
mediates access to the page that holds the breakpoint by switching between the read-only
(data) and the execute-only (code) view. However, contrary to our work, using a single set
of EPTs per VM can induce race conditions when hiding software breakpoints in multi-
vCPU environments, a problem-scenario we discuss in-depth in Sec. 5.3.1. In addition,
DRAKVUF [LMP*14] is a VMI-based, automated dynamic malware analysis framework
built on top of LibVMI [Lib20] and Xen. DRAKVUF extends the idea of SPIDER by au-
tomating the process of malware analysis, which is not limited to the kernel but can be
also applied to user space applications. Similar to our work, DRAKVUF is capable of
tracing multi-vCPU environments by leveraging Xen altp2m [Len16]. Through our work,
we extend DRAKVUF to support stealthy monitoring on ARM (Sec. 5.4.2). Finally, the
WhiteRabbit [PKZ18] VMI framework combines on-the-fly virtualization with VMI on
x86 and ARM (Chap. 4). Our primitives combined with WhiteRabbit would establish a
stealthy monitor that could be deployed on systems not explicitly set up for VMI.

Beyond VMM-based analysis: SPECTRE [ZLSS13] facilitates a stealthy analysis frame-
work by operating in the SMM on x86, a level below the hypervisor. In a similar fashion,
MALT [ZLS"15] provides debugging capabilities that can be employed from remote. Even
though SMM-based introspection approaches dissociate themselves from VMI, they es-
sentially employ similar techniques. SPROBES [GV]14] utilizes ARM TrustZone to enforce
kernel integrity. Specifically, Ge et al. instrument SPROBES in form of SMC instructions
at critical locations in the OS kernel that could be abused by adversaries. Contrary to
our work, SMC instructions cause the system to trap into a handler in the secure world.
Similarly, Ninja [NZ17] leverages TrustZone and also ARM’s performance monitor unit to
transparently analyze malware. Also, Lengyel et al. [LKPE14, LKE15] explore concepts
that may be leveraged for VMI with Xen on ARM.

TLB de-synchronization and maintenance: The Shadow Walker rootkit [SB05], abuses
the split-TLBs for stealth purposes. Similarly, Wurster et al. [WvOS05] defeat integrity
checks. Additionally, the MoRE Shadow Walker [Tor14] demonstrates that modern, hybrid
TLB organizations with an additional shared TLB level are prone to de-synchronization
techniques. Grsecurity, on the other hand, de-synchronizes the split-TLB architecture in
PAGEEXEC [PaX20] to overcome the lack of hardware supported execute-only pages. Finally,
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5 Stealthy Monitoring on ARM

Wang et al. [WWZ19] present a novel technique that allows to intercept TLB misses on
x86. To achieve this, the authors set the reserved bits in the page table entries. As a result,
every TLB miss that consults the page tables the affected pages results in a page fault.
These mechanisms mainly focus on the x86 architecture. Also, the presented approaches
require invasive kernel changes or a dedicated hypervisor. In contrast, our approach
employs capabilities of the open source Xen hypervisor to de-synchronize TLBs on both
ARMvV7 and ARMVS architectures facilitating stealthy monitoring of guest domains.
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5.7 Summary

In this chapter, we have turned our attention towards the objective Q1. In particular, we
have investigated whether the modern ARM architecture is equipped with the necessary
hardware support that is required by stealthy VMLI. In this regard, we have identified that
both AArch32 and AArch64 lack the foundation required to set and single-step break-
points inside VMs in a stealthy way. Even though the modern ARM architecture is not
equipped with the necessary hardware capabilities, we have proposed novel techniques
that facilitate stealthy monitoring of guest OSes on ARM. We overcame ARM’s lack of
hardware support for stealthy VMI by presenting alternative primitives which empower
stealthy monitoring of guest OSes. These primitives establish an alternate way of setting
and single-stepping software breakpoints without using the intended hardware mech-
anisms. We have extended the Xen Project hypervisor to leverage SLAT to define and
dynamically switch among different guest-physical memory views. To this end, we have
introduced the first system on ARM that is capable of holding multiple guest memory
views in parallel. Combined with alternative methods for placing and single-stepping
breakpoints, this capability presents a stealthy solution on AArch64. We have further
combined the above techniques with peculiarities of the TLB organization to overcome the
lack of execute-only memory on AArch32. Specifically, we have de-synchronized the TLB
organization on ARM to hide software breakpoints in the guest’s memory. Finally, we
have equipped the dynamic binary analysis framework, DRAKVUE, with the alternative
monitoring primitives and used it to examine and identify the inherent advantages and
limitations of our techniques. In conclusion, to answer the objective Q1, we believe that
our methodologies can establish powerful covert VMI analysis systems on ARM.

As we have shown in this chapter, by combining software techniques with the system’s
hardware virtualization capabilities in a sophisticated way, we can overcome many of the
hardware’s limits and establish powerful techniques that were not originally foreseen.
Equipped with this knowledge, in the next chapter, as part of the objective Q2, we begin
investigating novel in-guest primitives, which can enhance the security of OS components.
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Chapter

Selective Memory Protection

If we knew what we were doing, it wouldn’t be called research, would it?
— ALBERT EINSTEIN

We have established that hardware virtualization extensions present an effective and
powerful asset for security analysts (Chap. 4 and 5). The capabilities of virtualization
extensions, repurposed for VMI, open security experts new ways that allow them to im-
prove their investigation. In this chapter, we shift our research focus away from VMI
towards virtualization-assisted OS security. Specifically, we change our perspective of
an isolated, stealthy, and analysis-oriented point of view, towards novel concepts for OS
architectures, which leverage virtualization extensions for defense purposes. We envi-
sion an OS architecture that alleviates the strict separation between the OS and a VMM;
virtualization extensions can be utilized by the OS kernel directly, without the need for
a fully-fledged VMM. In other words, the OS kernel can either (i) dedicate a subsystem
or (i7) retrospectively deploy virtualization-assisted services by installing a thin VMM,
such as WhiteRabbit (Chap. 4), with the sole purpose of taking control of the system’s
virtualization extensions. In both cases, it becomes the task of the OS kernel to define
flexible security policies, without having to export the logic to the VMM. Consequently,
we investigate how to integrate virtualization extensions into the OS kernel to enhance
selected OS components with the ability to defend against the implications of memory
corruption vulnerabilities (Q2).

Attackers leverage memory corruption vulnerabilities to establish primitives for reading
from or writing to the address space of a vulnerable process. These primitives form the
foundation for code-reuse and data-oriented attacks. While various defenses against the
former class of attacks have proven effective, mitigation of the latter remains an open prob-
lem. During the past three decades, data-oriented attacks have evolved from a theoretical
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6 Selective Memory Protection

exercise [YM87] to a serious threat [CXS105, Syn14, CBP*15, HSA*16, SXC17, IAJP18].
During the same time, we have witnessed a plethora of effective security mechanisms
that prompted attackers to investigate new directions and exploit less-explored corners
of victim systems. Specifically, recent advances in Control-Flow Integrity (CFI) [ABELOS5,
BHK"14, CZM*14, MBBM15, WBD"16], Code Pointer Integrity (CPI) [KSP"14, ZH18],
and code diversification [PaX03, CLH"15, BHR"15] have significantly raised the bar
for code-reuse attacks. In fact, CFI schemes have been adopted by Microsoft [Mic20b],
Google [Goo20b], and LLVM [LLV20].

Code-reuse attacks chain short code sequences, dubbed gadgets, to hijack an application’s
control-flow. It suffices to modify one control-flow structure, such as a function pointer or
a return address, with the start of a crafted gadget chain, to cause an application to per-
form arbitrary computation. In contrast, data-oriented attacks completely avoid changes
to the control-flow. Instead, these attacks aim to modify non-control data to cause the ap-
plication to obey the attacker’s intentions [HSA*16, SXC17, IAJP18]. Typically, attackers
leverage memory corruption vulnerabilities that enable arbitrary read or write primitives to
take control over the application’s data. Stitching together a chain of data-oriented gadgets,
which operate only on data, allows attackers to either disclose sensitive information or es-
calate privileges, without violating the application’s control-flow. This way, data-oriented
attacks remain under the radar, despite code-reuse mitigations, and can have disastrous
consequences [Syn14]. We anticipate further growth in this direction in the near future,
and emphasize the need for practical primitives that eliminate such threats.

Researchers have suggested different strategies to counter data-oriented attacks. Data-
Flow Integrity (DFI) [CCHO06] schemes dynamically track a program’s data flow. Similarly,
by introducing memory safety to the C and C++ programming languages, it becomes
possible to completely eliminate memory corruption vulnerabilities [NMW02, JMG'02,
NZMZ09, NZMZ10]. While both directions have the potential to thwart data-oriented
attacks, they lack practicality due to high performance overhead, or suffer from compat-
ibility issues with legacy code. Instead of enforcing data-flow integrity, researchers have
started exploring isolation techniques that govern access to sensitive code and data re-
gions [LZC™15, KCB*17, CAGN17]. Still, most approaches are limited to user space, focus
on merely protecting a single data structure, or rely on policies enforced by a hypervisor.

In this chapter, we leverage virtualization extensions of Intel CPUs to establish selective
memory protection (xMP) primitives that have the capability of thwarting data-oriented at-
tacks. Instead of enhancing a hypervisor with the knowledge required to enforce memory
isolation, we take advantage of Intel’s EPTP switching capability to manage different views
on guest-physical memory, from inside a VM, without any interaction with the hypervisor.
For this, we extended Xen altp2m [LMP*14, PLM*18] and the Linux memory manage-
ment system to enable the selective protection of sensitive data in user or kernel space by
isolating sensitive data in disjoint xMP domains that overcome the limited access permis-
sions of the MMU. A strong attacker with arbitrary read and write primitives cannot access
the xMP-protected data without first having to enter the corresponding xMP domain.
Furthermore, we equip in-kernel management information and pointers to sensitive data
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in xXMP domains with authentication codes, whose integrity is bound to a specific context.
This allows xMP to protect pointers and hence obstruct data-oriented attacks that target
the xMP-protected data. Note that even though we employ Xen to utilize the system’s
virtualization-extensions, we do not explicitly need a fully-fledged VMM to protect the
operating system. Instead, our OS primitives directly utilize the system’s virtualization
extensions to enhance selected components.

In the following sections, we leverage xXMP to protect two sensitive kernel data structures
that are vital for the system’s security, yet are often disregarded by defense mechanisms:
page tables and process credentials. In addition, we demonstrate the generality of xMP by
guarding sensitive data in common, security-critical (user-space) libraries and applications.
Lastly, in all cases, we evaluate the performance and effectiveness of our xXMP primitives.

Note: Parts of this chapter have been published in [PMG*20]. We have open sourced the
code developed as part of this project.

1Selective Memory Protection: https://github.com/virtsec/xmp
y
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6 Selective Memory Protection

6.1 Memory Partitioning and Isolation Capabilities on Intel

In this section, we discuss Memory Protection Keys [Int20a], Intel’s extension to the x86
ISA for fine-grained memory isolation, which can challenge data-oriented attacks in user
space. In addition, we provide an overview of the Xen altp2m subsystem for the Intel
architecture [LMP*14, PLM"18]. Contrary to the introduced Xen altp2m subsystem for
the ARM architecture in Sec. 5.3.3, we focus on Intel’s virtualization extensions, which
additionally authorize the guest to switch among different altp2m views, without having
to explicitly interact with the VMM. This functionality provides the basis for the imple-
mentation of our xMP primitives.

6.1.1 Memory Protection Keys

Intel’s Memory Protection Keys (MPK) technology supplements the general paging mech-
anism by further restricting memory permissions. In particular, each paging structure
entry dedicates four bits that associate virtual memory pages with one of 16 protection
domains. These domains correspond to sets of pages whose access permissions are con-
trolled by the same protection key (PKEY). User-space processes control the permissions of
each PKEY through the 32-bit PKRU register. Specifically, MPK allows different PKEYs to be
simultaneously active, and page table entries to be paired with different keys to further
restrict access to the associated pages. For each PKEY, the thread-local PKRU register holds
two bits (write disable and access disable) that define access permissions of the corresponding
protection domain. Data accesses to protection domains are thus restricted by both the
protection key and page table access permissions. Intel MPK allows threads to individu-
ally partition memory that belongs to their address space into 16 (at most) domains, and
to constrain access to individual domains without affecting domains of other threads.

Abenefit of MPK is that it allows user threads to independently and efficiently harden the
permissions of large memory regions. For instance, threads can revoke write access from
entire domains without entering kernel space, walking and adjusting page tables, and in-
validating TLBs; instead, threads can just set the write disable bit of the corresponding PKEY
in the PKRU register. Another benefit of MPK is that it extends the access control capabilities
of page tables, enabling threads to enforce (i) execute-only code pages [CLH"15, PPK*17],
and (ii) non-readable, yet present data pages [CAGN17] by setting the access disable bit of
the associated PKEY. Since the x86 MMU lacks the ability to enforce such policies via page
tables, mapped code and data pages can become subject to code-reuse [SMD"13] and data-
oriented attacks [Syn14, CXST05, HCA*15, HSAT16, MWK 18] that result from memory
disclosures. These capabilities provide new primitives for thwarting data-oriented attacks,
without sacrificing performance and practicality [BHK"14], or resorting to architectural
quirks [GEN15] and virtualization [CLH'15, BDOT16, WBD*16].

Although Intel announced MPK in 2015 [Cor15], it was integrated only in 2017, and so
far only to the Xeon Skylake-SP family. Later, in 2021, AMD followed Intel and added MPK
support to its EPYC Milan CPUs. Unfortunately, both CPU families are dedicated to high-
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end servers. Hence, the need for similar isolation features remains on desktop, mobile,
and legacy server CPUs. Another issue is that attackers with the ability to arbitrarily
corrupt kernel memory can (i) modify the per-thread state (in kernel space) holding the
access permissions of protection domains, or (i¢) alter protection domain bits in page table
entries. This allows adversaries to deactivate restrictions that are enforced by the MMU.
Lastly, the isolation capabilities of MPK are geared towards user-space pages. Sensitive
data in kernel space thus remains prone to unauthorized access. In fact, at the time of
writing, there is no equivalent mechanism for protecting kernel memory from adversaries
armed with arbitrary read and write primitives. Consequently, there is a need for alternative
memory protection primitives, the creation of which is the main focus of this work.

6.1.2 The Xen altp2m Subsystem

VMMs leverage SLAT (Sec. 2.2.3) to isolate physical memory reserved for VMs [Int20a]. In
addition to in-guest page tables that translate guest-virtual to guest-physical addresses, the
supplementary SLAT tables translate guest-physical to host-physical memory. Unautho-
rized accesses to guest-physical memory, which is either not mapped or lacks privileges in
the SLAT table, trap into the VMM [Wal02, BDF03]. As the VMM exclusively maintains
the SLAT tables, it can fully control a VM’s view on its physical memory [DZX13, LMP"14,
PKZ18, PLM"18]. Xen’s physical-to-machine subsystem (p2m) [BDF*03, Lin20a] employs
SLAT to define the guest’s view of the physical memory that is perceived by all virtual
CPUs (vCPUs). By restricting access to individual page frames, security mechanisms can
use p2m to enforce memory access policies on the guest’s physical memory.
Unfortunately, protecting data through a single global view (i) incurs a significant over-
head and (i) is prone to race conditions in multi-vCPU environments. Consider a scenario
in which a guest advises the VMM to read-protect sensitive data on a specific page. By re-
voking read permissions in the SLAT tables, illegal read accesses to the protected page, e.g.,
due to malicious memory disclosure attempts, would violate the permissions and trap into
the VMM. At the same time, for legal guest accesses to the protected page frame, the VMM
has to temporarily relax its permissions. Whenever the guest needs to access the sensitive
information, it has to instruct the VMM to walk the SLAT tables—an expensive operation.
More importantly, temporarily relaxing permissions in the global view creates a window of
opportunity for other vCPUs to freely access the sensitive data without notifying the VMM.
The Xen alternate p2m subsystem (altp2m) [LMP* 14, PLM 18] addresses the above issues
by maintaining and switching between different views, instead of using a single, global view.
As the views can be assigned to each vCPU individually, permissions in one view can be
safely relaxed without affecting the active views of other vCPUs. In fact, instead of relaxing
permissions by walking the SLAT tables, al tp2mallows switching to another, less restrictive
view. Both external [LMP'14, PLM*18] and internal monitors [LZC"15, SCL*18] use
altp2m to allocate and switch between views (Chap. 5). Although altp2m introduces a
powerful means to rapidly change the guest’s memory view, it requires hardware support
to establish primitives that can be used by guests for isolating selected memory regions.
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6 Selective Memory Protection

6.1.3 In-Guest EPT Management

Xen altp2m was introduced to add support for the Intel virtualization extension that
allows VMs to switch among Extended Page Tables (EPTs), Intel’s implementation of
SLAT tables [Int20a]. Specifically, Intel introduced the unprivileged VMFUNC instruction
to enable VMs to switch among EPTs without involving the VMM—although altp2m has
been implemented for Intel [dml15] and ARM [PLM*18] (Sec. 5.3.3), in-guest switching
of altp2m views is available to Intel only. Intel uses the VMCS to maintain the host’s and
the VM’s state per vCPU. The VMCS holds an EPT pointer (EPTP) to locate the root of
the EPT. In fact, the VMCS has capacity for up to 512 EPTPs, each representing a different
view of the guest’s physical memory; using VMFUNC, a guest can choose among 512 EPTs.

To pick up the above scenario, the guest can instruct the system to isolate and relax
permissions to selected memory regions, on-demand, using Xen’s altp2m EPTP switching.
Furthermore, combined with another feature, i.e., the Virtualization Exceptions (#VE), Xen
altp2m allows in-guest agents to take over EPT management tasks. More precisely, the
guest can register a dedicated exception handler that is responsible for handling EPT access
violations; instead of trapping into the VMM, the guest can intercept EPT violations and
try to handle them inside a (guest-resident) #VE handler.
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6.2 Threat Model

By shifting our focus away from VMI towards virtualization-assisted OS security (Q2),
we target attackers, who pursue offensive strategies to subvert the OS kernel. In this
chapter, we extend the offensive attacker strategy in Sec. 3.2, which facilitates the attacker
to mount data-oriented attacks. Yet, to be able to counter these with the proposed defense
mechanisms we expect the system to additionally support the state-of-the-art defense
mechanisms against code injection and code-reuse attacks.

Specifically, we expect the system to be protected from code injection [KKP03] through
Data-Execution Prevention (DEP) or other proper WAX policy enforcement, and to employ
Address Space Layout Randomization (ASLR) both in kernel [Lia09, Edg13] and user
space [Cor04, PaX03]. Also, we assume that the kernel is protected against return-to-user
(ret2usr) [KPK12] attacks through SMEP/SMAP [Yull, Corl2b, Int20a]. Other hardening
features, such as Kernel Page Table Isolation (KPTI) [Corl7, GLS"17], stack smashing
protection [vdV06], and toolchain-based hardening [Opel9a], are orthogonal to xMP—we
neither require nor preclude the use of such features. Moreover, we anticipate protection
against state-of-the-art code-reuse attacks [STL15, CBP*15, ELO" 15, GKK"18] via either
(i) fine-grained CFI [BCN*17] (in kernel [GTPJ16] and user space [TRC'14]) coupled with
ashadow stack [Cor18], or (i7) fine-grained code diversification [Lar14, KCL"18], and with
execute-only memory (available to both kernel [PPK*17] and user space [CLH15]).

Assuming the above state-of-the-art protections prevent an attacker from gaining arbi-
trary code execution, we focus on defending against attacks that leak or modify sensitive
data in user or kernel memory [CLH" 15, PPK*17], by transforming memory corruption
vulnerabilities into arbitrary read and write primitives. Attackers can leverage such prim-
itives to mount data-oriented attacks [MWK™18, IAJP18] that (i) disclose sensitive data,
such as cryptographic material, or (i7) modify sensitive data structures, such as page tables
or process credentials.
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6 Selective Memory Protection

6.3 Selective Memory Protection Primitives

To fulfil the need for a practical mechanism for the protection of sensitive data, we identify
the following requirements:

O Partitioning of sensitive kernel and user-space memory regions into disjoint domains.
® Isolation of memory domains through fine-grained access control capabilities.
® Context-bound integrity of pointers to memory domains.

Although the x86 architecture allows for memory partitioning through segmentation or
paging @, it lacks fine-grained access control capabilities for effective memory isolation &
(e.g., there is no notion of non-readable pages; only non-present pages cannot be read).
While previous work isolates user-space memory by leveraging unused, higher-privileged
x86 protection rings [LSK18], the isolation of the kernel memory is primarily achieved
through Software-Fault Isolation (SFI) solutions [PPK*17]. Even though the page fault
handler could be extended to interpret selected non-present pages as non-readable, switching
permissions of memory regions that are shared among threads or processes on different
CPUs can introduce race conditions: granting access to isolated domains by relaxing
permissions inside the global page tables may reveal sensitive memory contents to the
remaining CPUs. Besides, each permission switch would require walking the page tables,
and thus frequent switching between a large number of protected pages would incur a high
run-time overhead. Lastly, the modern x86 architecture lacks any support for immutable
pointers. Although ARMv8.3 introduced the Pointer Authentication Code (PAC) [Qual7]
extension, which equips pointers with authentication codes, there is no similar feature on
x86. As such, x86 does not meet requirements @ and ©.

In this work, we fill this gap by introducing selective memory protection (xMP) primitives
that leverage virtualization to define efficient memory isolation domains—called xMP
domains—in both kernel and user space, enforce fine-grained memory permissions on
selected xXMP domains, and protect the integrity of pointers to those domains (Fig. 6.1).
In the following, we introduce our xMP primitives and show how they can be used to
build practical and effective defenses against data-oriented attacks in both user and kernel
space. We base xXMP on top of x86 and Xen [Lin20a], as it relies on virtualization extensions
that are exclusive to the Intel architecture and are already used by Xen. Still, xMP is by
no means limited to Xen, as we further discuss in Sec. 6.7.1. Furthermore, xMP is both
backwards compatible with, and transparent to, non-protected and legacy applications.

6.3.1 Memory Partitioning through xMP Domains

To achieve meaningful protection, applications may require multiple disjoint memory
domains that cannot be accessible at the same time. For instance, an xMP domain that
holds the kernel’s hardware encryption key must not be accessible upon entering an xMP
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Guest Domain Xen
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Figure 6.1: xXMP uses different Xen altp2m views, each mapping guest frames to machine
frames with different access permissions, to partition memory into isolated xMP
domains. In addition, equipping data pointers to protected memory with HMACs
establishes context-bound pointer integrity.

domain containing the private key of a user-space application. The same applies to multi-
threaded applications in which each thread maintains its own session key that must not
be accessible by other threads; otherwise a potentially compromised thread could access
their session keys. We employ Xen altp2m as a building block for providing disjoint xMP
domains (Sec. 6.1.2). An xMP domain may exist in one of two states, the permissions of
which are configured as desired. In the protected state, the most restrictive permissions are
enforced to prevent data leakage or unauthorized modification. In the relaxed state, the
permissions are temporarily loosened to enable legitimate access to the protected data.

The straightforward way of associating an altp2m view with each xXMP domain is not
feasible because only a single altp2m view can be active at a given time. Instead, to
enforce the access restrictions of all XMP domains in each altp2m view, we propagate
the permissions of each domain across all available altp2m views. Setting up an xMP
domain requires at least two altp2m views. Regardless of the number of xMP domains,
we dedicate one view, the restricted view, to unify the memory access restrictions of all xMP
domains. We configure this view as the default on every vCPU, as it collectively enforces
the restrictions of all xMP domains. We use the second view to relax the restrictions
of (i.e., unprotect) a given xMP domain and to allow legitimate access to its data. We
refer to this view as domain[id], with id referring to the xMP domain of this view. By
entering domain[id], the system switches to the altp2m view id to bring the xXMP domain
into its relaxed state—crucially, all other xMP domains remain in their protected state. By
switching to the restricted view, the system switches all domains to their protected state.

To accommodate n xMP domains, we define n + 1 altp2m views. Fig. 6.2 illustrates
a multi-domain environment with domain[n] as the currently active domain (the page
frames of each domain are denoted by the darkest shade). The permissions of domain[n]
in its relaxed and protected states are r-x and --x, respectively. The --x permissions of
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Figure 6.2: The system configures n 4+ 1 altp2m views to create n disjoint xMP domains.
Each {domain[i] | i € {1,...,n}} relaxes the permissions of a given memory re-
gion (dark shade) and restricts access to memory regions belonging to other xMP
domains (light shade). In this example the xMP domain n is the active domain.

domain[n]’s protected state are enforced not only by the restricted view, but also by all
other xMP domains ({domain[j] | V5 € {1,...,n} A j # n}). This allows us to partition
the guest’s physical memory into multiple domains and to impose fine-grained memory
restrictions on each of them, satisfying @.

An alternative approach to using altp2m would be to rely on Intel MPK (Sec. 6.1.1).
Although MPK meets requirements @ and @, unfortunately it is applicable only to user-
space applications and cannot withstand abuse by memory corruption vulnerabilities
targeting the kernel. Furthermore, even when focusing only on user-space protection using
MPK, attackers can still disclose sensitive data in multi-threaded environments. Given that
threads share the same page tables, a controlled memory corruption vulnerability in one
malicious thread can gain access to protected data as soon as another benign thread relaxes
the permissions of an MPK domain. Consequently, due to the limited capabilities of MPK,
and since Intel has only recently started shipping (at the time of writing) server CPUs
with MPK, we opted for a solution that works on both recent and legacy systems, and can
protect both user-space and kernel-space memory.

6.3.2 Isolation of xXMP Domains

We establish a memory isolation primitive that empowers guests to enforce fine-grained
permissions on the guest’s page frames. To achieve this, we extended the Xen interface to
allow utilizing altp2m from inside guest VMs. Specifically, we implemented an API for the
Linux kernel that allows the use of existing hypercalls (HVMOPs) [dml15] that interact with
the Xen altp2msubsystem for triggering the VMM to configure page frames with requested
access permissions on behalf of the VM. Also, for performance reasons, we extended Xen
with a new hypercall: HVMOP_altp2m_isolate_xmp. This hypercall enables guests to place
selected page frames into xMP domains according to Sec. 6.3.1. Although this hypercall is
not vital for xMP (we can substitute its functionality with a set of existing hypercalls to Xen
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altp2m), it reduces the number of interactions with the hypervisor. Finally, we use altp2m
in combination with Intel’s in-guest EPTP switching and the #VE feature to allow in-guest
agents to take over several EPT management tasks (Sec. 6.1.3). This setup minimizes VMM
interventions and thus improves performance. Consequently, we do not have to outsource
logic to the VMM or to an external monitor, as the scheme provides flexibility for defining
new memory access policies from inside the guest.

Consider an in-guest application that handles sensitive data, such as passwords, cookies,
or cryptographic keys. To protect this data, the application can use the memory partitioning
primitives that leverage altp2m to allocate an xMP domain, e.g, domain[1] in Fig. 6.2: in
addition to domain[1] holding original access permissions to the guest’s physical memory;,
our memory isolation primitive removes read and write permissions from the page frame in
the restricted view (and remaining domains). This way, unauthorized read and write attempts
outside domain[1] will violate the restricted access permissions. Instead of trapping into
the VMM, any illegal access traps into the in-guest #VE-handler, which generates a seg-
mentation fault. Upon legal accesses, instead of instructing the VMM to walk the EPTs to
relax permissions, the guest executes the VIFUNC instruction to switch to the less-restrictive
domain[1] and serve the request. As soon as the application completes its request, it will
use VMFUNC to switch back to the restricted view and continue execution.

This scheme combines the best of both worlds: flexibility in defining policies, and fine-
grained permissions that are not available to the traditional x86 MMU. Our primitives
allow in-guest applications to revoke read and write permissions on data pages, without
making them non-present, and to configure code pages as execute-only, hence satisfying
requirement .

6.3.3 Context-bound Pointer Integrity

For complete protection, we have to ensure the integrity of pointers to sensitive data within
xMP domains. Otherwise, by exploiting a memory corruption vulnerability, adversaries
could redirect pointers to (i) injected, attacker-controlled objects outside the protected
domain, or (i7) existing, high-privileged objects inside the xXMP domain.

As x86 lacks support for pointer integrity (in contrast to ARM, for which PAC [Qual?,
LNW™19] was recently introduced), we protect pointers to objects in xMP domains in
software. We leverage the Linux kernel implementation of SipHash [AB12] to compute
Keyed-Hash Message Authentication Codes (HMACs), which we use to authenticate se-
lected pointers. SipHash is a cryptographically strong family of pseudorandom functions.
Contrary to other secure hash functions (including the SHA family), SipHash is optimized
for short inputs, such as pointers, and thus achieves higher performance. To reduce the
probability of collisions, SipHash uses a 128-bit secret key to generate HMACs. The se-
curity of SipHash is limited by its key and output size. Yet, with pointer integrity, the
attacker has only one chance to guess the correct value; otherwise, the application (or the
entire system) will crash and the key will be re-generated.
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6 Selective Memory Protection

To ensure that pointers cannot be illegally redirected to existing objects, we bind pointers
to a specific context that is unique and immutable. The task_struct data structure holds
thread context information and is unique to each thread on the system. As such, we can
bind pointers to sensitive, task-specific data located in an xXMP domain to the address of
the given thread’s task_struct instance.

Modern x86 processors use a configurable number of page table levels that define the
size of virtual addresses. On a system with four levels of page tables, addresses occupy
the first 48 least-significant bits. The remaining 16 bits are sign-extended with a value
dependent on the privilege level: they are filled with ones in kernel space and with zeros
in user space [KPK14]. This allows us to reuse the unused, sign-extended part of virtual
addresses and to truncate the resulting HMAC to 15 bits. At the same time, we can use the
most-significant bit 63 of a canonical address to determine its affiliation—if bit 63 is set,
the pointer references kernel memory. This allows us to establish pointer integrity and
ensure that pointers can be used only in the right context ©.

Contrary to ARM PAC, instead of storing keys in registers, we maintain one SipHash key
per xXMP domain in memory. After generating a key for a given xMP domain, we grant the
page holding the key read-only access permissions inside the particular domain (all other
domains cannot access this page). In addition, we configure Xen altp2mso that every xMP
domain maps the same guest-physical address to a different machine-physical address.
Every time the guest kernel enters an xXMP domain, it will use the key that is dedicated
to this domain (Fig. 6.1). In fact, by reserving one specific memory page for keys, via the
kernel’s linker script, we allow the kernel to embed key addresses as immediate instruction
operands that cannot be controlled by adversaries (i.e., code regions are immutable).
Alternatively, to exclude the compiler from managing key material, we can leverage the
VMM to establish a trusted path for generating the secret key and provisioning its location
to the VM, e.g., through relocation information [KCL*18]. In particular, by leveraging
the relocation entries related to the kernel image, the VMM can replace placeholders
at given kernel instructions with the virtual addresses of (secret) key locations, upon
the first access to the respective key. Alternatively, we can provide the hypervisor with
all placeholder locations through an offline channel [LZC"15]. Regardless of the exact
strategy for generating, embedding, and assigning a secret key to a specific xXMP domain,
once deployed, the keys remain immutable to the guest and can be read-accessed only
after having entered the respective xMP domain; software executing outside a sensitive
domain cannot access its key.
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6.4 Integrating XxMP into Linux

We have extended the Linux memory management system to establish memory isolation
capabilities that allow us to partition @ selected memory regions into isolated & xMP
domains. During the system boot process, once the kernel has parsed the e820 memory
map provided by BIOS/UEFI to lay down a representation of the entire physical memory;,
it abandons its early memory allocators and hands over control to its core components.
These consist of: () the (zoned) buddy allocator, which manages physical memory; (i¢) the
slab allocator, which allocates physically-contiguous memory in the physmap region of
the kernel space [KPK14], and is typically accessed via kmalloc; and (iii) the vmalloc
allocator, which returns memory in a separate region of kernel space, i.e., the vmalloc
arena [PPK"17], which can be virtually-contiguous but physically-scattered. Both kmalloc
and vmalloc use the buddy allocator to acquire physical memory.

Note that () is responsible for managing (contiguous) pages frames, (i) manages mem-
ory in sub-page granularity, and (i) supports only page-multiple allocations. To provide
maximum flexibility, we extend both (i) and (i) to selectively shift allocated pages into
dedicated xMP domains (Fig. 6.3); (4i7) is transparently supported by handling (i). This
essentially allows us to isolate either arbitrary pages or entire slab caches. By additionally
generating context-bound authentication codes for pointers referencing objects residing in
the isolated memory, we meet all requirements @ — .

6.4.1 Buddy Allocator

The Linux memory allocators use get-free-page (GFP_*) flags to indicate the conditions,
the location in memory (zone), and the way the allocation will be handled [BC05a]. For
instance, GFP_KERNEL, which is used for most in-kernel allocations, is a collection of fine-
granularity flags that indicate the default settings for kernel allocations. To instruct the
buddy allocator to allocate a number of pages and to place the allocation into a specific
xMP domain, we extend the allocation flags. That is, we can inform the allocator by
encoding an xXMP domain index into the system’s GFP allocation flags. This allows us
to assign an arbitrary number of pages in different memory zones with fine-granularity
memory access permissions. Also, through the encoded xMP domain index the allocator
receives sufficient information to inform the Xen altp2m subsystem to place the allocation
into a particular xMP domain (Fig. 6.3). We use 8 free bits in the allocation flags to encode
the domain index, effectively supporting up to 256 distinct domains—more domains can
be supported by redefining gfp_t accordingly. This way, we can grant exclusive access
permissions to all pages assigned to the target xMP domain, while, at the same time, we
can selectively withdraw access permissions to the allocated page from all other domains
(Sec. 6.3.1). As such, accesses to pages inside the target domain become valid only after
switching to the associated guest memory view managed by Xen altp2m. When we assign
allocated pages to xMP domains, we record the PG_xmp flag into the flags field of struct
page, thereby allowing the buddy allocator to reclaim xMP-protected pages at a later point.
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Figure 6.3: Extensions to the Linux slab and buddy allocator facilitate shifting allocated pages
and slabs into xMP domains enforced by Xen altp2m.

6.4.2 Slab Allocator

The slab allocator builds on top of the buddy allocator to subdivide allocated pages into
small, sub-page sized objects (Fig. 6.3). This scheme allows to reduce internal fragmen-
tation that would otherwise be introduced by the buddy allocator. More precisely, the
slab allocator maintains slab caches that are dedicated to frequently used kernel objects
of the same size [Bon94]. For instance, the kernel uses a cache, named task_struct, to
maintain all instances of the struct task_struct data structure. (Note that the names of
the slab caches do not necessarily have to correspond to the names of the data structures.)
Such caches allow the kernel to allocate and free objects in a very efficient way, without
the need for explicitly retrieving and releasing memory for every kernel object allocation.
Historically, the Linux kernel has used three slab allocator implementations: SLOB, SLAB,
and SLUB, with the latter being the default slab allocator in modern Linux kernels.
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Every slab cache groups collections of continuous pages into so-called slabs, which
are sliced into small-sized objects. Disregarding further slab architecture details, as the
allocator manages slabs in dedicated pages, this design allows us to place selected slabs
into isolated xMP domains using the underlying buddy allocator. To achieve this, we
extend the slab implementation so that we can provide the xXMP domain index in the GFP
flags, when we create a new slab cache. Consequently, every time the slab cache requests
further pages for its slabs, it causes the buddy allocator to shift the allocated memory into
the specified xMP domain (Sec. 6.4.1). Note that we can apply this scheme either to all or
to selected slabs in the system.

6.4.3 Switches across Execution Contexts

The Linux kernel is a preemptive, highly-parallel system that must preserve the process-
specific or thread-specific state on (i) context switches and (ii) interrupts. To endure context
switches, and also prevent other threads from accessing isolated memory, it is essential to
include the index of the thread’s (open) xMP domain into its persistent state.

6.4.3.1 Context Switches

In general, operating systems associate processes or threads with a dedicated data struc-
ture, the Process Control Block (PCB): a container for the thread’s state that is saved
and restored upon every context switch. On Linux, the PCB is represented by the
struct task_struct. Weextended struct task_struct with anadditional field, namely
xmp_index_kernel, representing the xMP domain the thread resides in at any point in
time. We dedicate this field to store the state of the xXMP domain used in kernel space.
By default, this field is initialized with the index of the restricted view that accumulates
the restrictions enforced by every defined xMP domain (Sec. 6.3.1). The thread updates
its xmp_index_kernel only when it enters or exits an xXMP domain. This way, the kernel
can safely interrupt the thread, preserve its open xMP domain, and schedule a different
thread. In fact, we extended the scheduler so that on every context switch it switches to
the saved xMP domain of the thread that is to be scheduled next. To counter switching
to a potentially corrupted xmp_index_kernel, we bind this index to the address of the
task_struct instance in which it resides. This allows us to verify the integrity and context
of the index before entering the xMP domain ® (Sec. 6.3.3). Since adversaries cannot create
valid authentication codes without knowing the respective secret key, they will neither be
able to forge the authentication code of the index, nor reuse an existing code that is bound
to a different task_struct.

Threads in user space enter the kernel to handle system calls and (a)synchronous interrupts. Specifically,
upon interrupts, the kernel reuses the task_struct of the interrupted thread, which must be handled
with care.
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6 Selective Memory Protection

6.4.3.2 Hardware Interrupts

Interrupts can pause a thread’s execution at arbitrary points. In our prototype, accesses
to memory belonging to any of the xMP domains are restricted in interrupt (IRQ) con-
text. (We leave the primitives for selective memory protection in IRQ contexts for future
investigation.) To achieve this, we extend the prologue of every interrupt handler and
cause it to switch to the restricted view. This way, we prevent potentially vulnerable inter-
rupt handlers from illegally accessing protected memory. Once the kernel returns control
to the interrupted thread, it will cause a memory access violation when accessing the
isolated memory. Yet, instead of trapping into the VMM, the thread will trap into the
in-guest #VE handler (Sec. 6.1.3). The #VE handler, much like a page fault handler, veri-
fies the thread’s eligibility and context-bound integrity by authenticating the HMAC of its
xmp_index_kernel. If the thread’s eligibility and the index’s integrity is given, the handler
enters the corresponding xMP domain and continues the thread’s execution. Otherwise,
it causes a segmentation fault and terminates the thread.

6.4.3.3 Software Interrupts

The above extensions introduce a restriction with regard to nested xXMP domains. Without
maintaining the state of nested domains, we require every thread to close its active domain
before opening another one; by nesting xXMP domains, the state of the active domain will
be overwritten and lost. Although we can address this requirement for threads in process
context, it becomes an issue in interrupt context: the former executes (kernel and user space)
threads that are tied to different task_struct structures, while the latter interrupts the
process context and reuses the task_struct of interrupted threads.

Contrary to hardware interrupts that disrupt the system’s execution at arbitrary loca-
tions, the kernel explicitly schedules software interrupts (softirq) [BC05b], e.g., after
handling a hardware interrupt or at the end of a system call. As soon as the kernel selects
a convenient time slot to schedule a softirg, it will temporarily delay the execution of the
active process and reuse its context for handling the pending softirq. As such, the kernel
handles softirq events at seemingly arbitrary times and thus adds irregular delays to the
execution of the processes. Generally, work outsourced into a softirq cannot access the
state of a certain thread. Thus, without considerable adjustments of the softirq mecha-
nism, there is no way to associate a softirq with a specific thread, on behalf of which it is
executed. This is because softirgs execute in the context of arbitrarily-selected processes.

The Linux kernel configures 10 softirq vectors, with one dedicated for the Read-Copy-
Update (RCU) mechanism [McKO07]. A key feature of RCU is that every update is split into
(i) a removal and (i) a reclamation phase. While (i) removes references to data structures
in parallel to readers, (ii) releases the memory of removed objects. To free the object’s
memory, a caller registers a callback that is executed by the dedicated softirq at a later
point it time. If the callback accesses and frees memory inside an xMP domain, it must
first enter the associated domain. Yet, as the callback reuses the task_struct instance of
an arbitrary thread, it must not update the thread’s index to its open xXMP domain.
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Figure 6.4: User-space applications interact with the Linux kernel through mprotect to con-
figure independent xXMP domains.

To approach this issue, we leverage the callback-free RCU feature of Linux (by activating
the switch CONFIG_RCU_NOCB_CPU). Instead of handling RCU callbacks in a softirgq, the
kernel dedicates a thread to handle the work. This simplifies the management of the
thread-specific state of open xXMP domains, as we can bind it to each task individually: if
the thread responsible for executing RCU callbacks needs to enter a specific xMP domain,
it can do so without affecting other tasks. As is the case with hardware IRQs, xXMP does
not allow deferring work that accesses protected memory in softirq context.
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6.4.4 User Space API

To counter unauthorized manipulation and information disclosure attacks, we grant user
processes the ability to protect selected memory regions; we extend the Linux kernel
with four new system calls that allow processes to use xMP in user space (Fig. 6.4).
Specifically, applications can dynamically allocate and maintain disjoint xXMP domains
in which sensitive data can remain safe (@ — ). Furthermore, we ensure that attackers
cannot illegally influence a process” active xXMP domain state by binding its integrity to the
thread’s context, and hence meet requirement @.

Linux has provided an interface for Intel MPK since kernel v4.9. This interface com-
prises three system calls, sys_pkey_{alloc, free,mprotect}, backed by libc wrapper
functions for allocating, freeing, and assigning user space memory pages to protection
keys. Applications use the unprivileged WRPKU instruction to further manage memory
access permissions of the corresponding protection keys (Sec. 6.1.1). Likewise, we have
implemented the system calls sys_xmp_{alloc, free,mprotect}, which utilize altp2m
HVMOPs (Sec. 6.3.2) for allowing programmers to dynamically allocate and maintain dif-
ferent xMP domains in user space. In fact, these system calls implement functionality
equivalent to Intel MPK on Linux; they can be used as a transparent alternative on legacy
systems without sufficient hardware support (@ — ®). On sys_xmp_mprotect invocations,
we isolate the target virtual memory area (Sec. 6.3.2) and tag it so that we can identify
protected memory and release it upon memory reclamation.

Contrary to the MPK implementation of Linux, we do not use the unprivileged VMFUNC
instruction in user space. Instead, we provide the Linux kernel with an additional system
call, namely sys_xmp_enter, which enters a requested, previously allocated xMP domain
(either more or less restricted) and updates the state of the currently active xMP domain.
We save the respective state inside the xmp_index_user field of mm_struct that is unique to
every thread in user space. Also, we bind this index to the address of mm_struct (®). This
enables the kernel to verify the integrity and context of the xMP domain index on context
switches—in other words, the kernel has the means to detect unauthorized modifications
of this field and immediately terminate the application. Note that, with regard to our threat
model, we anticipate orthogonal defenses in user space that severely restrain attackers to
data-oriented attacks (Sec. 6.2). By further removing VMFUNC instructions from user space,
and mediating their execution via sys_xmp_enter, we avoid unnecessary Return-Oriented
Programming (ROP) (or similar code-reuse) gadgets, which could be (ab)used to illegally
switch to arbitrary xMP domains.
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6.5 Use Cases

We demonstrate the effectiveness and usefulness of xXMP by applying it to: (a) page tables
and process credentials, in the Linux kernel; and (b) sensitive in-process data in four security-
critical applications and libraries.

6.5.1 Protecting Page Tables

With Supervisor Mode Execution Protection (SMEP) [Yull], the kernel cannot execute
code in user space; adversaries have to first inject code into kernel memory to accomplish
their goal. Multiple vectors exist that allow attackers to (legitimately) inject code into the
kernel. In fact, system calls use the routine copy_£from_user to copy a user-controlled (and
potentially malicious) buffer into kernel memory. While getting code into the kernel is easy,
its execution is obstructed by different security mechanisms. For instance, W@ X withdraws
execute permissions from the memory that contains data copied from user space. In
addition, defenses based on information hiding, such as Kernel Space Address Layout
Randomization (KASLR) [Edg13], further obstruct kernel attacks but are known to be
imperfect [SMD*13, GLS"17, LSG'18, KHF"19]. Once adversaries locate the injected
code, they can abuse memory corruption vulnerabilities, e.g., in device drivers or the
kernel itself, to compromise the system’s page tables [DGLS17]. This, in turn, opens
up the gate for code injection or kernel code manipulation. Consequently, ensuring the
integrity of page tables is an essential requirement, which remains unfulfilled by existing
kernel hardening techniques [LHKS15, DKD*15, DGLS17].

Our goal is to leverage xMP to prevent adversaries from illegally modifying (i) page table
contents and (77) pointers to page tables. At the same time, xMP has to allow the kernel to
update page table structures from authorized locations. With the exception of the initial
page tables that are generated during the early kernel boot stage, the kernel uses the buddy
allocator to allocate memory for new sets of page tables. Using the buddy allocator, we
move every memory page holding a page table structure into a dedicated xMP domain, to
which we grant read-write access permissions (Sec. 6.4.1), and limit the access of remaining
domains to read-only. As the kernel allocates the initial page tables statically, we manually
inform Xen altp2m to place affected guest-physical page frames into the same domain.
Every write access from outside the dedicated xMP domain results in an access violation
that terminates the process. Thus, we must grant access to the protected paging structures
to the kernel components responsible for page fault handling and process creation and
termination, by enabling them to temporarily enter the xMP domain. This scheme does not
disrupt the kernel’s functionality and complies with requirements @ and @.

In addition, we extend the kernel’s process and thread creation functionality to protect
the integrity of every pgd pointer referencing the root of a page table hierarchy. More
precisely, we equip every pgd pointer with an HMAC (Sec. 6.3.3), and verify its integrity
every time the pointer gets written to CR3 (the control register holding the address of the
page table root). This protects the pointer against corruptions: as long as adversaries do
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6 Selective Memory Protection

not know the secret key, they cannot create a valid HMAC. Attackers cannot read the secret
key as it remains inaccessible from outside of the target domain. Attackers also cannot
adjust the pointer to the key, as its address is compiled as an immediate operand into kernel
instructions, and is thus immutable.

On the other hand, we cannot bind the pgd pointer to a specific thread context, as kernel
threads inherit the mm_struct of interrupted user threads. This, however, does not weaken
our protection. From the attackers’” perspective, it is impossible (or at least very hard) to
redirect the pgd to a different location, as they do not know the key. One attack scenario
is to exchange the pgd pointer with a different pgd that holds a valid authentication code
for another existing thread. Yet, this strategy would not allow the attacker to inject a new
address space, but likely crash the application. Note that while we can choose to bind the
pgd to the address of the associated mm_struct, this would not increase its security. As
such, we achieve immutability of the page table pointer (®).

We highlight that even with KPTI [GLS"17, LSG"18] (the Meltdown mitigation feature
of Linux that avoids simultaneously mapping user and kernel space), it is possible to au-
thenticate pgd pointers. As KPTI employs two consecutive pages, with each mapping the
root of page tables to user or kernel space, we always validate both pages by first normal-
izing the pgd to reference the first of the two pages. Lastly, a kernel that leverages xMP to
protect page tables does so in a transparent manner to user (and legacy) applications.

6.5.2 Protecting Process Credentials

Linux kernel credentials describe the properties of various objects that allow the kernel to
enforce access control and capability management. This makes them an attractive target
for data-oriented privilege escalation attacks.

Similarly to protecting paging structures, our goal is to prevent adversaries from (i) ille-
gally overwriting process credentials in struct cred or (i¢) redirecting the cred pointer in
task_struct to an injected or existing struct cred instance with higher privileges. With
the exception of reference counts and keyrings, once initialized and committed, process
credentials do not change. Besides, a thread may only modify its own credentials and
cannot alter the credentials of other threads. These properties establish inherent charac-
teristics for security policies. In fact, LSM [MSKHO02] introduce hooks at security-relevant
locations that rely upon the aforementioned invariants. For instance, SELinux [LS01] and
AppArmor [GAQ7] use these hooks to enforce Mandatory Access Control (MAC). Simi-
larly, we combine our kernel memory protection primitives with LSM hooks to prevent
adversaries from corrupting process credentials.

Linux prepares the slab cache cred_jar to maintain cred instances. By applying xMP
to cred_jar, we ensure that adversaries cannot directly overwrite the contents of cred
instances without first entering its xMP domain (Sec. 6.4.2). As we check both the integrity
and context of the active xXMP domain index (xmp_index_kernel), adversaries cannot
manipulate the system to enter an invalid domain (Sec. 6.4.3). At the same time, we
allow legitimate write access to struct cred instances, e.g., to maintain the number of
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subscribers; we guard such code sequences with primitives that enter and leave the xMP
domain right before and after updating the data structures. Consequently, we meet
requirements @ and @.

As every cred instance is uniquely assigned to a specific task, we bind the integrity of
every cred pointer to the associated task_struct at process creation. We check both the
integrity and the assigned context to the task_struct inside relevant LSM hooks. This
ensures that every interaction related to access control between user and kernel space via
system calls is granted access only to non-modified process credentials. Consequently,
we eliminate unauthorized updates to cred instances without affecting normal operation
(®). Again, a kernel that uses xMP to harden process credentials does so in a completely
transparent way to existing applications.

6.5.3 Protecting Sensitive Process Data

An important factor for the deployment of security mechanisms is their applicability and
generality. To highlight this property, we apply xMP to guard sensitive data in OpenSSL
under Nginx, ssh-agent, mbed TLS, and 1libsodium. In each case, we minimally adjust
the original memory allocation of the sensitive data to place them in individual pages,
which are then assigned to xMP domains. Specifically, using the system calls introduced
in Sec. 6.4.4, we grant read-write access to the xMP domain holding the sensitive data pages,
to which remaining domains do not have any access. We further adjust authorized parts
of the applications to enter the domain just before reading or writing the isolated data—any
other access from outside the xMP domain crashes the application. In the following, we
summarize the slight changes we made to the four applications for protecting sensitive
data. Note that an xMP-enabled kernel is backwards compatible with applications that do
not make use of our isolation primitives.

OpenSSL (Nginx): The popular OpenSSL library offers cryptographic services, including
encrypted transmission of data via Secure Socket Layer (SSL) and Transport Layer Security
(TLS). Web servers employ OpenSSL to establish secure communication channels. Our
adjustments to OpenSSL move private keys into xMP domains. In more detail, OpenSSL
uses the BIGNUM data structure to manage prime numbers [Opel9b]. We add macros that
allocate these structures into a separate xMP domain. Instrumenting the widely-used
library OpenSSL allows to protect a wide range of applications. In our case, combining the
modified OpenSSL with the Nginx web server (in HTTPS mode) offers protection against
memory disclosure attacks, such as Heartbleed [Syn14].

ssh-agent: To avoid repeatedly entering passphrases for encrypted private keys, users
can use ssh-agent to keep private keys in memory, and use them for authentication when
needed. This makes ssh-agent a target of memory disclosure attacks, aiming to steal the
stored private keys. To prevent this, we modify the functions sshbuf_get_(c)string to
safely store unencrypted keys in dedicated xMP domains.
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6 Selective Memory Protection

mbed TLS: The mbed TLS library manages prime numbers and coefficients of type
mbedtls_mpi in the mbedtls_rsa_context [ARM19b]. We define the new data structure
secure_mbedtls_mpi and use it for the fields D, P, Q, DP, DQ, and QP in the data structure
mbedtls_rsa_context. We further adjust the secure_mbedtls_mpi initialization wrapper
to isolate the prime numbers in an exclusive domain.

libsodium (minisign): The minimalistic and flexible 1ibsodium library provides basic
cryptographic services. By only adjusting the allocation functionality of the library, in
sodium_malloc [Lib19], we enable tools such as minisign to safely store sensitive infor-
mation in xXMP domains.
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6.6 Evaluation

To evaluate our work, we have implemented the introduced selective memory protection
primitives for Linux. In line with the presented use cases in Sec. 6.5, we have applied the
primitives to critical kernel and user space data structures to assess the added performance
penalty and security.

6.6.1 System Setup

Our setup consists of an unprivileged domain DomU running the Linux kernel v4.18 on top
of the Xen hypervisor v4.12. In addition, we adjusted the Xen altp2m subsystem so that
it is used from inside guest VMs, as described in Sec. 6.3 and 6.4. The host is equipped
with an 8-core 3.6GHz Intel Skylake Core i7-7700 CPU, and 2GB of RAM available to
DomU. Although we hardened the unprivileged domain DomU, the setup is not specific to
unprivileged domains and can be equally applied to privileged domains, such as Dom®.

6.6.2 Performance Evaluation

Performance is a critical aspect of modern OSes. New exploit mitigation technologies
are unlikely to be employed in practice if they incur a significant run-time overhead.
To evaluate the performance impact of xXMP we conducted two rounds of experiments,
focusing on the overhead incurred by protecting sensitive data in kernel and user space.
All reported results correspond to vanilla Linux vs. xMP-enabled Linux (both running as
DomU VMs), and are means over 10 runs. Note that the virtualization overhead of Xen is
negligible [PKZ18] (Sec. 4.3.2) and is therefore disregarded in our setting.

6.6.2.1 Kernel Memory Isolation

We measured the performance impact of xMP when applied to protect the kernel’s page
tables (PT) and process credentials (Cred) (Sec. 6.5.1 and Sec. 6.5.2). We used a set of
micro (LMbench v3.0) and macro (Phoronix v8.6.0) benchmarks to stress different system
components, and measured the overhead of protecting () each data structure individually,
and (77) both data structures at the same time (which requires two disjoint xMP domains).

Table 6.1 summarizes the LMbench results, focusing on latency and bandwidth overhead.
This allows us to get some insight on the performance cost at the system software level.
Overall, the overhead is low in most cases for both protected page tables and process
credentials. When protecting page tables, we notice that the performance impact is directly
related to functionality that requires explicit access to page tables, with outliers related to
page faults and process creation (fork()). In both cases, the system undergoes a set of
operations that open and subsequently close the particular protection domain, every time
it accesses the page table structures. Contrary to page tables, we observe that although the
kernel accesses the struct cred xMP domain when creating new processes, the overhead
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6 Selective Memory Protection

Table 6.1: Performance overhead of xXMP domains for page tables, process credentials, and
both, measured using LMbench v3.0.

Benchmark PT Cred PT+Cred
syscall(Q) 0.42% 0.64% 0.64%
open()/close() 1.52%  75.74% 78.93%
read() /write() 0.52% 150.84%  149.27%
select() (10 fds) 2.94% 3.83% 3.83%
select() (100 fds) 0.01% 0.31% 0.30%
stat() -1.22%  52.10% 53.33%
fstat(Q) 0.00% 107.69%  107.69%
.| fork()+execve() 250.04% 9.36%  259.59%
g | forkQ+exit() 461.20% 7.78%  437.31%
*Sé’ fork()+/bin/sh 236.75% 8.49%  240.64%
= | sigaction() 10.00%  3.30%  10.00%
Signal delivery 0.00% 2.12% 2.12%
Protection fault 1.33%  -4.53% -1.15%
Page fault 216.21% -258%  216.56%
PipeI/O 17.50%  32.87% 73.47%
UNIX socket I/O 1.16% 1.45% 2.25%
TCP socket I/O 10.23%  20.71% 37.13%
UDP socketI/0 13.42%  21.98% 41.48%
| Pipel/O 7.39% 7.09% 17.49%
S | UNIX socket I/O 0.10%  6.61%  13.40%
£ | TCP socket 1/0 6.89%  583%  14.53%
g | mmap() 1/0 1.22%  -0.53% 0.83%
M | FileI/O 0.00%  2.78% 2.78%

isinsignificant. On the other hand, the xMP domain guarding process credentials is heavily
used during file operations, which require access to struct cred for access control. The
impact of the two xXMP domains behaves additively in the combined setup (PT+Cred).

To investigate the cause of the performance drop for the outliers (UNIX socket 1/0,
fstat(), and read() /write()), we used the eBPF tracing tools [Fle1l7]. We applied the
funccount and funclatency tools while executing the outlier test cases to determine
the hotspots causing the performance drop by extracting the exact number and latency
of kernel function invocations. We confirmed that, in contrast to benchmarks with a
lower overhead, the outliers call the instrumented LSM hooks [MSKHO02] more frequently.
In particular, the function apparmor_file_permission [GAO07] is invoked by every file-
related system call. (This function is related to AppArmor, which is enabled in our DomU
kernel.) In this function, even before verifying file permissions, we validate the context-
bound integrity of a given pointer to the process” credentials. Although this check is
not limited to this function, it is performed by every system call in those benchmarks and
dominates the number of calls to all other instrumented kernel functions. For every pointer
authentication, this function triggers the xXMP domain to access the secret key required
to authenticate the respective pointer. To measure the time required for this recurring
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Table 6.2: Performance overhead of xXMP domains for page tables, process credentials, and
both, measured using Phoronix v8.6.0.

Benchmark PT Cred PT+Cred
AIO-Stress 015% 5.87% 5.99%
Dbench 043%  4.74% 3.45%
» | 10zone (R) -4.64%  26.9% 24.2%
;vg I0zone (W) 0.82%  4.43% 7.71%
@ PostMark 0.00%  7.52% 7.52%
$| Thr. I/O (Rand. R) | 2.92% 7.58%  10.13%
@ | Thr. I/O (Rand. W) | -5.35%  3.01%  -1.29%
Thr. I/0 (R) -1.06% 19.54%  20.08%
Thr. I/0 (W) 1.34% -1.61%  -0.27%
Apache 6.59% 9.33%  11.14%
FFmpeg 0.14%  0.43% 0.00%
2 | GnuPG 0.66% -131%  -2.13%
-2 | Kernel build 11.54%  1.84% 12.71%
& | Kernel extract 2.89%  3.65% 5.91%
S| OpenSSL -0.33% -0.66% 0.99%
<'| PostgreSQL 412%  0.32% 4.43%
SQLite 1.10% -093%  -0.57%
7-Zip 030%  0.26% 0.08%

sequence, we used the funclatency (eBPF) tool. The added overhead of this sequence
ranges between 0.5-1 psec. An additional 0.5-4 jisec is required for entering the active xMP
domain on every context switch—including switches between user and kernel space on
system calls. Consequently, the context-bound integrity checks affect the performance of
light-weight system calls, e.g., read() or write(), in a more evident way than system calls
with higher execution times or even without any file access checks. Having identified the
hotspot locations, we can focus on optimizing the performance in the future.

Table 6.2 presents the results for the set of Phoronix macro-benchmarks used by the
Linux kernel developers to track performance regressions. The respective benchmarks are
split into stress tests, targeting one specific system component, and real-world applications.
Overall, with only a few exceptions, the results show that xMP incurs low performance
overhead, especially for page table protection. Specifically, we observe a striking difference
between the read (R) and write (W) Threaded 1/0O tests: while the pwrite() system call
is hardly affected by xMP, there is a noticeable performance drop for pread(). Using
the eBPF tracing tools, we found that the reason for this difference is that the default
benchmark settings synchronize pwrite() operations. By passing the 0_SYNC flag to the
open() system call, pwrite() returns only after the data has been written to disk. Thus,
compared to pread (), which completes after 1-2 psec, pwrite () requires 2-8 msec, and the
added overhead of apparmor_file_permission accumulates and does not affect pwrite()
as much as it affects pread().
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Figure 6.5: Performance impact of xMP on Nginx with varying file sizes and number of con-
nections (X-axis: [file size (KB)]-[# requests]).

6.6.2.2 In-Process Memory Isolation

We evaluated the overhead of in-process memory isolation using our xMP-protected ver-
sions of the Nginx and mbed TLS servers (Sec. 6.5.3). In both cases, we used the server
benchmarking tool ab [Apal9] to simulate 20 clients, each sending 500 and 1,000 requests.
To compare our results with related work, we run the Nginx benchmarks with the same
configuration used by SeCage [LZC*15]. The throughput and latency overhead is neg-
ligible in most cases (Fig. 6.5). Contrary to SeCage, which incurs up to 40% overhead
for connections without KeepAlive headers and additional TLS establishment, xMP does
not suffer from similar issues in such challenging configurations, even with small files.
The average overhead for latency and throughput is 0.5%. For mbed TLS, we used the
ssl_server example [ARM19a] to execute an SSL server hosting a 50-byte file. (We chose
a small file to not mask the overhead with I/0.) On average, the overhead is 0.42% for
latency and 1.14% for throughput.

6.6.3 Scalability of xMP Domains

Hardware-based memory isolation features, similar to xMP, support only a small number
of domains. For instance, Intel MPK and ARM Domain Access Control (DAC) imple-
ment only 16 domains. Nevertheless, we investigate scenarios in which a high number
of domains becomes necessary. Modern infrastructures massively deploy OS-level vir-
tualization (i.e., containers), for which Linux namespaces [Ker13b] provide an essential
building block by establishing different views on selected global system resources. By
integrating xMP into Linux namespaces to isolate selected system resources (Sec. 6.5), we
establish () the foundation for virtualization-assisted OS-level virtualization, and (i) the
means to evaluate the scalability of xMP domains.

We introduce xMP namespaces to isolate process page tables. (Note that xXMP namespaces
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Figure 6.6: Performance impact of up to 250 xMP domains on the scheduler, measured using
the customized Phoronix Hackbench stress test.

can be extended to isolate arbitrary data structures.) We use the unshare() system call
to move a process into a new xMP namespace, effectively placing the process’ page tables
into a new xXMP domain; the process” descendants inherit their parent’s xXMP namespace,
and hence protect their page tables as well. Page tables of processes belonging to different
namespaces are isolated by different xMP domains. In this way, we prevent compromised
containers from modifying page tables of containers in different xXMP namespaces.

To measure the impact of an increasing number of xXMP domains, we customized the
Phoronix Hackbench scheduler stress test. Our adjustments cause the benchmark to place
groups of 10 processes each (five senders and five receivers exchanging 50K messages) into
separate xXMP namespaces. In its standard configuration, Xen supports up to 10 altp2m
views, with only eight of them being used for xMP domains—altp2m[0] is a mirror of
the hosts’s original view, and must not be changed, and altp2m[1] is the restricted view
(Sec. 6.3.1). We extended Xen so that we can create up to 256 altp2m views; recall that
this limitation stems from the fact that we encode the xXMP domain’s index into the GFP
allocation flags using eight unused bits (Sec. 6.4.1).

We compare the overhead of an xMP-capable with a vanilla Linux kernel. Fig. 6.6
shows the scheduling overhead of up to 250 distinct xXMP namespaces. (Results are means
over 10 runs.) Overall, the isolation overhead accumulates linearly with the number of
xMP domains—each domain contains the page tables of 10 processes. By increasing the
number of processes (250 xMP domains correspond to 2.5K processes), the time required
to schedule and run each stress test (i.e., 10 processes exchanging 50K messages) amortizes
the overhead, which can even drop to about 2%. This experiment presents the ability of our
prototype to scale up to 250 distinct isolation domains, an order of magnitude more than
what can be achieved by existing schemes, like Intel MPK and ARM DAC (16 domains).

Lastly, note that in the experiment above, page tables are assigned to isolated xMP
domains during process creation, but are populated while the benchmark is executing,
due to copy-on-write and dynamic memory allocations. Therefore, the experiment also
captures the management overhead of our prototype when it dynamically propagates
changes to the corresponding restricted domain views.
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6 Selective Memory Protection

6.6.4 Security Evaluation

We evaluated the security of our memory protection primitives using real-world exploits
against (i) page tables, (ii) process credentials, and (7ii) sensitive data in user space. De-
spite a strong attacker with arbitrary read and write primitives to kernel and user memory,
by meeting the requirements @ — ®, our system blocks illegal accesses to sensitive data.

6.6.4.1 Attacking the Kernel

We assume an attacker who aims to elevate their privilege using an arbitrary read and
write primitive in kernel memory. To evaluate this scenario, we used a combination of
real-world exploits that achieve the aforementioned capability. We first reconstructed an
exploit to bypass KASLR [DGLS17]. The task_struct of the first process (init_task) has
a fixed offset to the kernel’s base address and is linked to all processes on the system. This
provided us with the ability to locate sensitive management information about individual
processes, including the root of the page table hierarchy and process credentials. We then
abused CVE-2017-16995 (i.e., a sign-extension vulnerability in BPF) to gain an arbitrary
read-write primitive to kernel memory.

In the next step, we implemented two different attacks that target (i) the page tables and
(i7) the credentials of a given process, respectively. In the first attack, we used the write
primitive to modify individual page table entries of the target process. This allowed us to
grant the write permission to (an otherwise execute-only mapped) kernel code page with a
rarely used system call handler, which is overwritten with shellcode that disables SMEP
and SMAP in the CR4 register. This lends the attacker the power to inject arbitrary code
and data into kernel memory. In the second attack, we exchanged the cred pointer in the
malicious process’” task_struct with a pointer to an existing struct cred instance with
higher privileges. In both attacks, we were able to elevate the privileges of the malicious
process. By applying xMP to protect page tables and process credentials (Sec. 6.5.1 and
6.5.2), we were able to successfully block both attack scenarios.

To systematically evaluate xMP, we consider attacks that can be equally applied to all
kernel structures. We generalize the attack vectors against sensitive kernel structures in
the following strategies. Under our threat model, attackers can:

¢ directly modify the data structure(s) of interest;
¢ redirect a pointer of a data structure to an injected, attacker-controlled instance;
¢ redirect a pointer of a data structure to an existing instance with higher privileges.

xMP withstands modification attempts of the protected data structures (@ — @), as only
authorized kernel code can enter the associated xMP domains. For instance, when pro-
tecting page tables, without first hijacking the kernel’s execution, the attacker reaches an
impasse on how to modify page tables isolated in xMP domains. Injecting code is thus
prevented in the first place. Alternatively, the attacker can modify a thread’s pointer to
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a sensitive data structure. In this case, the modified value must comply with the added
context-bound integrity (@) that is enforced on every context-switch or right before ac-
cessing the sensitive data structure (Sec. 6.3.3). Since attackers do not know the secret key,
they cannot compute an HMAC that would validate the pointer’s integrity. Consequently,
attackers cannot redirect the pointer to an injected data structure.

To sidestep the secret key, attackers could overwrite the pointer with an existing pointer
(holding a valid HMAC) to a data structure instance with higher privileges. Yet, as
pointers to xMP-protected data are bound to the thread’s context (®), attackers cannot
redirect pointers to instances belonging to other threads. Note that attackers would have
to overwrite the pgd pointer of a privileged thread with the pgd pointer of an attacker-
controlled thread, when targeting page tables.

6.6.4.2 Attacking User Applications

We chose Heartbleed [Syn14] as a representative data leakage attack due to its high impact.
As a result of the lack of a bounds check of the attacker-controlled payload_length field
of OpenSSL's HeartbeatMessage, the attacker can reveal up to 64KB of linear memory that
may hold private keys, passwords, and other sensitive information, without altering the
application’s control flow. By equipping the vulnerable OpenSSL library with the ability to
guard secret material (Sec. 6.5.3), we prevented the sensitive regions from leaking. Illegal
accesses caused an EPT violation that trapped into the #VE handler, which reported the
illegal access and terminated the application.

6.6.4.3 Attacking Protection Primitives

Our user-space API does not use the VMFUNC instruction, but instead relies on a new
system call (Sec. 6.4.4). Given that VMFUNC is an unprivileged instruction, an attacker
can still use it in an attempt to enter different xMP domains. Even if an attacker in-
troduced a VMFUNC instruction in the application’s memory to mount a VMFUNC faking
attack [LZC'15], the next context switch would restore the xMP domain’s state from
xmp_index_[kernel |user], making the kernel immune to illegal domain switches from
user space. The attacker could try to use a write primitive to modify the kernel’s xMP do-
main state in xmp_index_[kernel |user], forcing the kernel to enter a privileged domain
and grant access to sensitive data on the next context switch. Yet, as we bind the integrity
of the active xXMP domain state to the associated thread’s context, any attempt to tamper
with it will crash the process.

Further, mediating the execution of VMFUNC instructions through the sys_xmp_enter
system call introduces gadgets that allow switching to previously-allocated xMP domains.
Nevertheless, to perform such attacks, the attacker will need to change the application’s
control flow, something that we assume to be thwarted by orthogonal defenses (Sec. 6.2).
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6 Selective Memory Protection

6.6.4.4 1/0 Attacks

Compromised I/O devices or drivers can access memory that holds sensitive data. To
address this threat, the VMM should confine device-accessible memory (i) by employing
the system’s IOMMU (e.g., Intel VI-d [Int19]) or (i¢) by means of SLAT. The former
strategy ensures that sensitive memory in one of the xMP domains will not be mapped
by the translation tables of the IOMMU; sensitive data structures become inaccessible to
devices. In the latter approach, without IOMMU, the guest is likely to use bounce buffers
(e.g., in combination with Virtio [Rus08]) or directly access the devices. In both cases,
a corrupted device or driver would access guest-virtual addresses, which are regulated
by Xen’s altp2m subsystem. Thus, it becomes impossible to leak or modify protected
information, without first having to gain arbitrary code execution capabilities in kernel
mode.
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6.7 Discussion

With xMP, we enhance Linux OSes with the capability to thwart data-oriented attacks.
In this section we review extensions and alternative application scenarios for xMP, and
discuss the limitations of our implementation.

6.7.1 Extensions to xMP

Intel Sub-Page Write Permission: Intel has announced the Sub-Page Write-Permission
(SPP) feature for EPTs [Int20a] to enforce memory write protection on sub-page granularity.
Specifically, with SPP, Intel extends the EPT with an additional set of SPP tables that
determine whether a 128-byte sub-page can be accessed. Selected 4KB guest page frames
with restricted write permissions in the EPT can be configured to subsequently walk the
SPP table to determine whether or not the accessed 128-byte block can be written.

Once this feature is implemented in hardware, it will enrich xMP in terms of performance
and granularity. Let us consider the use case of protecting process credentials. Once
initialized, the credentials themselves become immutable. However, meta information,
such as reference counters, must be updated throughout the lifetime of the cred instance.
This requires to first enter the xXMP domain and relax the permissions to the otherwise
read-only credentials, before updating the metadata. Using SPP, we can arrange struct
cred so that all metadata is placed into writable sub-pages, despite the memory access
restrictions of the xMP domain.

Execute-Only Memory: A corollary of the lack of non-readable memory (Sec. 6.1.1) is that
the x86 MMU does not support execute-only memory—code pages have to be readable as
well. This has allowed adversaries to mount Just-In-Time ROP (JIT-ROP) attacks [SMD*13],
which can bypass code randomization defenses. By reading code pages, an attacker can
harvest ROP gadgets and construct a suitable payload on the fly. A defense against JIT-
ROP attacks is thus to enforce execute-only memory to prevent the gadget harvesting
phase [BHK*14, GEN15, CZW*17, PPK*17]. By defining execute-only xMP domains for
code pages, xMP can offer similar protection.

Alternative Hypervisors and Architectures: Xen is by no means the only system on
which xMP can be integrated. Other hypervisors that implement (or can be extended
with [QK19]) similar functionality to Xen’s altp2m can be equally used. Similarly, xMP
does not dependent on Intel CPUs, as it does neither require hardware-supported EPTP
switching nor the in-guest #VE feature—maintaining and switching among different views
can be done in software. This would also relax Intel’s restriction with respect to the
maximum number of EPTPs, as the number of views would not be bound to hardware
capabilities. For instance, at the risk of sacrificing performance, we could port xMP
to Xen altp2m on ARM [PLM*18], in which altp2m does not rely on hardware support
(Sec.5.3.3). On ARM, xMP would also benefit from PAC [Qual7] for implementing context-
bound pointer integrity. Alternatively, we could use a thin VMM (e.g., WhiteRabbit) with
a flexible deployment strategy to dynamically install the foundation for xMP (Chap. 4).
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6 Selective Memory Protection

Hypervisor-managed Linear Address Translation: Intel has recently announced a new
addition to its virtualization extensions, coined hypervisor-managed linear address transla-
tion (HLAT) [Int20b]. HLAT defines another set of paging structures that allow VMMs
or trusted, and privileged guest kernels to manage translations of guest-virtual to guest-
physical addresses. So far, this was the task of the OS kernel. (The OS kernel governs page
tables, which are responsible for (the guest’s) linear address translation.) Yet, by addition-
ally combining the HLAT paging structures with the VMM-controlled EPTs, the system
facilitates the VMM to ensure the integrity of the combined (i.e., guest-linear to machine-
physical) translations; malicious attempts to tamper with the (in-guest) paging structures
can thus be obstructed, without having to mark the page frames that hold the guest’s page
tables as read-only in the EPT tables (Sec. 6.5.1). This addition provides hardware support
for the concept behind xMP in regard to protecting the guest’s page tables.

The HLAT extension provides another benefit for xMP, which is related to the overall
performance. Because xXMP restricts the page frames holding the guest’s paging structures,
by marking them as read-only, it can obstruct unauthorized access attempts to the page table
contents (Sec. 6.5.1). Unfortunately, management-related write-accesses to the page table
contents that originate from the CPU similarly violate the permissions of the EPT and trap
into the #VE handler; every time software (read or write) accesses a page, the CPU updates
the accessed and dirty flags (A/D) in the respective page table entry. Thus, enforcing integrity
of the paging structures through EPT tables incurs an additional performance overhead for
xMP. This is because xMP has to handle CPU-initiated updates of management information
in the page table entries. With HLAT, the EPT table entries receive an additional control
bit, page-write, which allows the processor to update the A/D bits, without violating the
permissions of the EPT and unnecessarily trapping into the #VE handler.

6.7.2 Limitations

The Linux callback-free RCU feature [Cor12a] relocates the processing of RCU callbacks out
of the softirq context, into a dedicated thread (Sec. 6.4.3.3). This allows RCU callbacks to
enter xXMP domains without affecting other threads” xXMP domain state, as we currently do
not provide selective memory protection in IRQ contexts. We leave addressing this issue
(i.e., selective memory protection in asynchronous execution contexts) to future work.

Besides, in our most recent implementation, we manually instruct the kernel when to
enter a specific XMP domain. Instead, we could automate this step by instructing the
compiler to bind annotated data structures to xMP domains. In addition, the compiler
could instrument the kernel code with calls that enter /leave the xXMP domain immediately
before/after accessing the annotated data structure.

Finally, we do not support nested xMP domains. In fact, we prohibit entering domains,
without first closing the active domain; by nesting xMP domains, the state of the opened
domain will be overwritten. To address this, the kernel needs to securely keep track of the
previously opened xMP domains by maintaining a stack of xMP domain states per thread.
Note that this relates to adding xMP support in IRQ contexts.
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6.8 Related Work

While the possibility of non-control data (or data-oriented) attacks has been identified
before [YM87], Chen et al. [CXST05] were the first to demonstrate the viability of data-
oriented attacks in real-world scenarios, ultimately rendering them as realistic threats.
With FrowStitca [HCA'15], Hu et al. introduced a tool that is capable of chaining, or
rather stitching together, different data-flows to generate data-oriented attacks on Linux
and Windows binaries, despite fine-grained CFI, DEP, and, in some cases, ASLR, in place.
Hu et al. [HSA"16] further show that data-oriented attacks are in fact Turing-complete.
They introduce Data-Oriented Programming (DOP), a technique for systematically gen-
erating data-oriented exploits for arbitrary x86-based programs. Similarly, Carlini et
al. [CBP"15] achieve Turing-complete computation by using a technique they refer to
as Control-Flow Bending (CFB). In contrast to DOP, CFB is a hybrid approach that relies
on the the modification of code pointers. Still, CFB bypasses common CFI mechanisms, by
limiting code pointer modifications in a way that the modified control-flows comply with
CFI policies. Ispoglou et al. [IAJP18] extend the concept of DOP by introducing a new
technique they coin as Block-Oriented Programming (BOP). Their framework automati-
cally locates dispatching basic blocks, in binaries that facilitate the chaining of block-oriented
gadgets, which are then chained together to mount a successful attack.

On the other hand, researchers have started to respond to data-oriented attacks. For
instance, DataShield [CP17] associates annotated data types with security sensitive infor-
mation. Based on these annotations, DataShield partitions the application’s memory into
two disjoint regions, and inserts bounds checks that prevent illegal data flows between the
sensitive and non-sensitive memory regions. Type-based Data Isolation [MvdKG22] ded-
icates separate memory arenas for colored objects (i.e., object types) and instruments the
compiler to constrain pointers such that they remain within the bounds of the respective
arena. Similar to our work, solutions based on virtualization maintain sensitive informa-
tion in disjoint memory views [KCB*17, LZC*15, HDX*18]. While MemSentry [KCB*17]
isolates sensitive data, SeCage [LZC*15] additionally identifies and places sensitive code
into a secret compartment. Both frameworks leverage Intel’s EPTP switching to switch be-
tween the secure compartment and the remaining application code. Yet, in contrast to our
work, MemSentry and SeCage are limited to user space. Also, SeCage adds complexity by
duplicating and modifying code that would normally be shared (e.g., libraries) between
the secret and non-secret compartments.

EPTI [HDX"18] implements an alternative to KPTI using memory isolation techniques
similar to xXMP. PrivWatcher [CAGN17] leverages virtualization to ensure the integrity
of process credentials. Contrary to our solution, PrivWatcher creates shadow copies of
struct cred instances, and places them in a write-protected region. PT-Rand [DGLS17]
protects page tables using information hiding. Zabrocki introduces LKRG [Zab18], a
runtime guard for the Linux kernel, ensuring the integrity of critical kernel compo-
nents by shadowing selected data structures or matching their hashes in a database.
Although, LKRG does not employ virtualization, the author considers to use a VMM for
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6 Selective Memory Protection

self-protection. Finally, with PARTS [LNW*19], Liljestrand et al. introduce a compiler in-
strumentation framework to cope with pointer-reuse attacks via the (recently-introduced)
ARMVv8.3-A pointer authentication features.
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6.9 Summary

6.9 Summary

In this chapter, we have shifted our research focus away from VMI to novel techniques
that utilize virtualization to assist the security of OSes. By closely examining the x86
architecture, we have identified ways that allow us to integrate hardware virtualization
extensions into the Linux OS to enhance the security of its subsystems (Q2). This scheme
has brought us one step closer to our envisioned design of an OS architecture, in which
hardware virtualization support becomes an integral part of the OS. Even more, by fol-
lowing the technological trend, we observe that our research coincides with modern
demands on virtualization. For instance, similar to xXMP, the independently announced
hypervisor-managed linear address translation (HLAT) extensions to the Intel architecture
were designed to ensure the integrity of paging structures inside VMs [Int20b]. Another
example is given by Microsoft’s Kernel Data Protection (KDP) extensions, which—very
similar to xXMP—introduce new primitives to the Microsoft Windows kernel involving
Hyper-V to isolate selected kernel memory regions in order to prevent unauthorized ac-
cess [Mic20c]. As such, in line with the technological trend, we propose novel defenses
against data-oriented attacks. Our system, called xMP, leverages Intel’s virtualization
extensions to set the ground for selective memory isolation primitives, which facilitate
the protection of sensitive data structures in both kernel and user space. xMP extends
the Linux memory management system to empower software developers with the ability
to shift sensitive data structures into disjoint and isolated domains, despite the limited
capabilities of the x86 MMU in regard to memory isolation. Even though, throughout this
chapter, we mainly focus on the Intel architecture, we have shown that we can apply xMP
to the ARM architecture, for which we have already provided the necessary foundation in
the previous chapter (Chap. 5); Xen altp2m on ARM does not rely on hardware support
and can similarly assist our xMP primitives. We further equip pointers to data in isolated
memory with authentication codes to thwart illegal pointer redirection. We demonstrate
the effectiveness of our scheme by protecting the page tables and process credentials in
the Linux kernel, as well as sensitive data in various user applications. In conclusion, we
believe that our results demonstrate that xMP is a powerful and practical solution against
data-oriented attacks.
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/
Chapter

Enhancing Security of Linux Containers

Writing is nature’s way of letting you know how sloppy your thinking is.
— Dick GUINDON

Recent advances in OS-level virtualization have successfully propagated this, once rarely
used, technology to the masses. Generally, OS-level virtualization techniques leverage
services of the underlying OS to establish light-weight isolated execution environments,
known as containers (Sec. 2.1.2). Prominent container implementations are Linux Contain-
ers (LXC) [Ltd20], BSD jails [Ri0o20], and Solaris Zones [Ora20]; yet it was Docker [Doc20a]
that gained the most popularity. Docker has become the de facto standard for containers
in both private and industry sectors for shipping various applications in a convenient
and platform-independent way. Unlike system virtualization techniques that implement a
virtual hardware interface (i.e., the VM), that offers fully-fledged execution environments
for OSes, containers share the same OS kernel with their host and solely abstract the view
on global kernel resources. As such, potential kernel exploits originated from inside a
container can impair the security of other containers on the same system and even the
host itself. Unfortunately, reducing the surface of this attack vector receives insufficient
attention. This drives us to investigate this direction to assist OS-level virtualization (Q3).

The principle of least privilege mandates each entity to access only those resources that are
necessary for its execution. Contrary to this concept, modern OS architectures offer appli-
cations a uniform interface, i.e., the system call interface, that grants access to an immense
number of system calls. The number of system calls available to the application is entirely
independent of how many system calls the application requires. For instance, the Linux
kernel v5.5 comprises 347 distinct system calls, excluding the number of compatibility sys-
tem calls. Sadly, a vulnerability in one of those system calls has the potential to open the
gate to the underlying kernel [Dat17, Inc17, Dat16], despite modern isolation and security
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7 Enhancing Security of Linux Containers

mechanisms, including Linux namespaces, control groups, capabilities, MAC, KASLR,
and Supervisor Mode Execution and Access Prevention (SMEP/SMAP). This threat simi-
larly applies to containers, which share the same OS kernel with their host. In fact, most
privilege escalation exploits targeting containers on Linux abuse vulnerable system calls
to overcome the isolation enforced by the container and Linux kernel [LLW18].

One way to mitigate this threat is to remove or filter out unnecessary system calls, which
are otherwise freely available to applications and containers. For instance, recent advances
in library debloating [QPY18, RDDC*17, RNMJ17, AJWK"19, KGP19, WKKWK*20] remove
code regions in the process’ address space that are irrelevant to the program’s execution.
While library debloating focuses on reducing ROP (or similar code-reuse) gadgets, it does
not eliminate the threat; unavoidably remaining gadgets could allow the attacker to still
mount an attack that can abuse a vulnerable system call handler—which might not be
used by the program—to subvert the system. Contrary, as a last line of defense, the
seccomp (Secure Computing) facility of the Linux kernel provides the necessary means
to establish system call filters, which restrain applications and containers to use only
whitelisted system calls [Cor09]. However, to this point, there is no easy way to tailor
seccomp policies suitable for general-purpose applications and containers automatically.

Researchers have suggested different techniques that employ static or dynamic analysis
to identify the system calls required by the application (or container) under test. Dynamic
analysis based approaches [Pro03, WLX"17] employ automatic test generation techniques
that trigger different program behaviors, which, in turn, identify different system calls
required for the particular functionality. This strategy allows collecting most of the system
calls that are similarly accessed in production. Nevertheless, dynamic analysis suffers from
incompleteness, as the triggered execution traces severely limit the analysis; if a particular
system call has not been identified by the dynamic analysis, which bases its results on past
execution traces, it does not necessarily mean that it will not be called in production. In fact,
we identified a set of system calls that were either completely missed or falsely interpreted
by the dynamic analysis based policy generation of previous work [WLX*17]—in both
cases, normally authorized system calls were blacklisted. Consequently, due to incom-
plete information, false negatives can interrupt and terminate the execution of sandboxed
environments, which presents an intolerable inconvenience in production systems.

Even though existing static analysis frameworks [QPY18, AJWK*19, WKKWK™20,
DWK]J*20] apply similar techniques, they either focus on library or container debloat-
ing, or strongly rely on additional characteristics of the target binaries. Contrary to the
concurring tools, our proposed solution can analyze even stripped and closed-source bina-
ries without restrictions. For instance, Quach et al.’s [QPY18] library debloating technique
requires recompilation of the analyzed binaries with clang, Nibbler [AJWK™*19] cannot
work with stripped binaries, and both Egalito [WKKWK*20] and sysfilter [DWK]20]
need position-independent code (PIC) in their input binaries. Finally, Confine [GPBP20]
combines static and dynamic analysis to extract system calls from containers, yet, mainly
focuses on analyzing the standard C library, 1ibc. As we discuss in this chapter, Confine
requires access to the libc source code and omits a precise analysis of the system calls
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outside libc, which can lead to misleading results. In contrast to all of the mentioned ex-
amples, our approach does not depend on any binary metadata and works on unmodified,
stripped, closed-source, real-world binaries, and therefore complements their analysis.

When put into a different perspective, the problem of identifying a binary’s autho-
rized set of system calls can be reduced to constant propagation. Previous research has
shown excellent results when applying constant folding and constant propagation to
reconstruct Control-Flow Graphs (CFGs) from binaries [BGRT05, KV08, KZV09, KV10,
BHV11, FLPV15]. Inspired by the achievements of the previous work, we re-purpose
the concepts behind constant propagation to automatically derive legitimate system call
numbers from binaries to create tailored seccomp policies.

In this chapter, we present Jesse, a system that leverages static analysis to identify
system calls for arbitrary non-obfuscated ELF binaries. Note, even though this chapter
mainly focuses on enhancing the security of Docker containers, Jesse can be similarly
applied to conventional ELF binaries outside of containers; containerized programs are
nothing else than conventional program binaries and libraries, packaged in an image
that is supported by the respective container runtime (Sec. 2.1.2). Specifically, Jesse aims
to complement existing tools [WKKWK 20, GPBP20, DWK]20], to bridge the gap to
binaries that do not support PIC and lack the necessary binary metadata. Given the
provided set of system calls, it can be further processed into strong seccomp policies that
establish safe environments inside or outside Docker containers. Since the invocations of
system calls do not necessarily reveal the requested system call (a system call invocation
is merely the execution of the syscall instruction),’ we implement a constant propagation
technique based on abstract interpretation to derive the contextual semantics required to
(safely) approximate the set of system calls a container should be authorized to use [CC77].

To assess our system’s capability, we have applied Jessk to ELF binaries that are available
for Debian buster stable, and compared our results against existing frameworks. Specifi-
cally, we have picked a representative set of 1,064 ELF binaries, which correspond to the
Debian buster base image, and manually verified Jesse’s results; the results have shown that
Jessk did not introduce any false negatives and demanded human support in only 20 cases
(i-e., 2%). We have further employed Jessk to generate seccomp policies for five of the most
prominent Docker containers on Docker Hub. On average, we manage to block 54.7% of
all system calls and hence significantly increase the effectiveness of the default seccomp
policy for Docker containers, which conservatively blocks around 10.6% completely, and
up to 20.4% in combination with restrictions of additional Linux capabilities.

Note: This chapter has not yet been published. Yet, at the point of submission of this
dissertation, parts of this chapter have been accepted in [GPZ23]. The accepted paper bases
upon, yet, extends and fully revises the results of the Bachelor’s thesis supervised by the
author [Gro18].

'While we assume the analyzed binaries use the modern 64-bit fast system call instruction on x86, syscall,
the analysis’ concepts are by no means limited to it and can be extended to support different system call
instruction variants and architectures.
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7 Enhancing Security of Linux Containers

7.1 Binary Analysis and System Call Filtering

There exist two flavors of program analysis techniques: dynamic and static analysis.
Due to their inherent characteristics, both flavors differ in the accuracy of the gathered
analysis results, as they might produce false negatives or false positives. We consider as
false negatives, system calls that were falsely missed during the analysis and hence not
considered in the set of authorized (i.e., whitelisted) system calls. Execution attempts of
these excluded system calls cause the program to crash. Dynamic analysis can produce
false negatives as it solely relies on the given execution traces of a program and cannot
consider all of its execution paths. On the other hand, we consider as false positives,
system calls that were (conservatively) recognized as vital during the analysis and hence
were whitelisted, at the risk of never being executed. Static analysis can produce false
positives as its assumptions abstract unnecessary details and overapproximate the results.
Thus, we resort to a static analysis technique, abstract interpretation [CC77], to establish
profiles holding whitelisted system calls, which we enforce with the help of the Linux
Secure Computing mode [Cor(09, Corl2c] for individual binaries.

7.1.1 Linux Secure Computing Mode

The Linux Secure Computing mode, known as seccomp [Cor09, Corl2c], is a feature of the
Linux kernel that confines processes to a set of black- or whitelisted system calls. Option-
ally, seccomp allows filtering the system call’s arguments to further restrain processes. The
most restricted mode, SECCOMP_SET_MODE_STRICT, grants only four system calls, namely
read(), write(), exit(), and sigreturn(); any other system call results in an immedi-
ate termination of the process. On the other hand, the mode SECCOMP_SET_MODE_FILTER
delegates the filtering decision to a user-provided BPF program that can be installed per
process [M]93]; at every system call invocation, the in-kernel BPF bytecode JIT compiler
executes the BPF program, with the invoked system call number and arguments as input,
to enforce a given policy. Thus, the BPF program can decide whether (i) to execute the
system call, (i7) to kill the calling process, or (iii) to return an error.

To improve the security of containers, Docker adopted seccomp profiles and simplified
their usage. Instead of requiring the user to provide complex BPF programs, Docker ex-
pects a JSON-formatted profile that holds the black- and whitelisted set of system calls.
The profile further supports fine-grained policies per system call, e.g., by restricting argu-
ments or by binding the system call to a specific Linux capability (e.g., CAP_SYS_ADMIN).
Docker (v18.10.0, dev) ships a default seccomp profile that unconditionally permits 276
(out of 347 available) system calls [Mob20] on Linux kernel (v5.5), which is about 80.4% of
the available system calls [Mob20].2 By combining seccomp with Linux capabilities, the
default seccomp profile may grant up to 34 further system calls. Thus, the default seccomp

“Docker’s default policy white-lists 315 system calls, out of which 41 either do not exist on x86 or are
(redundant) compatibility system calls. Another 2 system calls are granted with argument restrictions.
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7.1 Binary Analysis and System Call Filtering

profile is very coarse-grained (it forbids 10.6% of all available system calls completely and
up to 20.4% when combined with Linux capability restrictions), the refinement of which
is the main focus of this chapter.

7.1.2 Abstract Interpretation

Abstract interpretation [CC77] is a theory based on static analysis that allows approx-
imating the semantics of programs, making it a useful tool for detecting information
leaks [ZC11, CC00, WBL*19]. We leverage abstract interpretation to identify system calls
relevant to a program’s genuine execution to tailor seccomp policies.

To identify a program’s semantic properties, abstract interpretation operates on the pro-
gram’s abstract representation. While the founders of abstract interpretation, Cousot and
Cousot [CC77], use finite flowcharts to represent programs, we resort to the more commonly
used program representation through CFGs. Applied to a CFG, abstract interpretation
annotates its edges (i.e., transfers of the control-flow) with symbols representing (possibly
infinite) sets of program states. Cousot and Cousot model a program’s state as a mapping
from variables to values. Once the abstract interpretation terminates, the annotated sym-
bols represent sets of states that can be reached at the associated edges; if a program state
is not part of the set of the computed program states at a particular edge in question, the
program will never reach this state at that edge, independent of the program’s input. Yet,
the computed sets may hold states that will never be reached. In most cases, an exact com-
putation of all program properties is not feasible [WZH " 11]. Thus, abstract interpretation
only provides an overapproximation of the exact program semantics.

As it is infeasible to store all possible sets of program states, abstract interpretation
operates on a user-provided, predefined set of symbols (.S). Thus, it functions on abstract
symbols instead of the sets of concrete program states. Cousot and Cousot extend S
to a complete lattice L that comprises the following elements to assemble the quintuple
L = (S,<,u, L, T). The lattice requires a partial order relation (<) and a join operation (L)
to work on the set of symbols. Both are necessary, as they simulate the subset relation (C)
and the union operation (U) for the sets of concrete program states. This means, instead of
unifying two sets of concrete program states, the abstract interpretation joins the symbols
representing the sets. Similarly, instead of applying the subset relation, it uses the partial
order relation from the lattice. Finally, to form a complete lattice, L must contain a fop (T)
and a bottom (L) element. These represent the largest and the smallest element (Vs € S :
1 < s < T), respectively, with regard to the partial order in the set of symbols S. These
elements simulate the empty set and the universe of the sets of concrete program states.

Comparable to concrete program states that are lifted to an abstract representation in the
form of lattice elements (s € .5), abstract interpretation requires lifting concrete operations
on concrete program states to abstract operations on lattice elements. This is where the
interpretation function (Int(e, C')) comes into play. It has to be tailored to the needs such
that it specifies how the basic blocks in the CFG operate on the lattice elements. For
example, when we would like to determine whether the values of variables in a given
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7 Enhancing Security of Linux Containers

Algorithm 1: The abstract interpretation algorithm which annotates the edges of

the program’s CFG with user-provided symbols. The annotations represent the

sets of all reachable program states at the particular edge.

Input : ACFGC = (N, E), a complete lattice L = (S, <,UJ, L, T), and an
interpretation function Int(e, C'), withe € E

Output: A CFG whose edges are annotated with symbols representing sets that
contain all reachable program states at the particular edge

foreach ¢ € F do

L annotate e with L ;

N =

3 repeat

1 changes:=0;

5 foreach e € £ do

6 oldAnnotation:=get annotation at e;

7 newAnnotation:=Int(e, (N, E));

8 if old Annotation # newAnnotation then

9 | changes:=changes U {(e, new Annotation)};

10 | foreach (e, newAnnotation) € changes do
11 L annotate e with new Annotation;

12 until changes = ();
13 return (N, E);

program are even or odd, it is the task of the interpretation function to infer whether the
computation results in an even or odd value. Similar to Cousot and Cousot, we assume that
the interpretation function receives a specific edge of the CFG as the first argument and
the complete CFG (including annotations of the previous rounds) as the second argument.
The interpretation function computes the new annotation symbol for the particular edge
and returns the symbol to the main abstract interpretation algorithm to update the CFG.

Alg. 1 describes the abstract interpretation which statically analyzes programs by an-
notating the edges of the program’s CFG with program states that can be reached at the
particular edge. The algorithm runs in rounds until it reaches a fixpoint (i.e., executing
another round would not change the annotations). As input, the abstract interpretation
receives a CFG C' comprising the set of nodes IV and the set of edges £, a complete lattice
L, and an interpretation function Int(e, C'). During initialization, the algorithm annotates
all edges in the CFG with L (lines 1 to 2). Then, the computation enters the main loop (lines
3 to 12), which is responsible for updating the annotations (lines 10 to 11). Specifically, the
main loop calls the interpretation function in line 7 until the annotations of the CFG no
longer change (i.e., until the abstract interpretation reaches a fixpoint).

To further clarify how to leverage abstract interpretation, in the following section, we
assist the reader in going through a detailed example scenario.
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7.1.3 Applying Abstract Interpretation

To demonstrate how to leverage abstract interpretation, let us consider a scenario in which
we analyze a part of a function to determine whether or not it will always return even
values in the general-purpose register rcx. As shown in Fig. 7.1, the example program
first sets rcx to 10, then enters a loop comprising a single loop instruction which subtracts
one from rcx and continues the loop if rcx is not zero after the subtraction, and finally,
returns if rcx equals zero.’ In this context, we specify a lattice L = (S <L, J_, T)
and an interpretation function Int(e,C). The lattice L comprises the set of symbols
S := {B,E,0,A}. The symbol B (blank) represents the empty set of states (i.e., we
use B to annotate unreachable edges); the symbols O and £ describe that rcx can only
hold odd (O) or even (E) values, respectively; and the symbol A (all) means that rcx can
hold any (whether even or odd) natural number. Further, the bottom (J_) and the top (—i—)
elements the lattice I, are represented by B and A, respectively. These abstract symbols
overapproximate the concrete set of values. That is, if an edge is annotated with A4, it
means that rcx can hold any natural number at the particular edge, but it does not have to.

Further, we define the partial order (<) relation and the join (L) operation of the lattice
L as follows. B is the smallest and A is the largest element (E and O are incomparable).
That is, with a, b € S:

alb:<= (a=B)V(b=A)V(a=0D)

A join with B (the smallest element) always returns the original element. In all the other
cases (i.e., ALE, ALO, ELUA, OUA, OUE, and ELIO), the result is A:

a ifb=1B
. b ifa=2B
allb =
a ifa=1b
A otherwise

Alg. 2 illustrates the interpretation function / nt(e,C). This function takes an edge e
of the CFG as first argument, the CFG (' itself as second argument, and returns a lattice
element s € S as annotation for the provided edge e. To compute the annotation, the
function first joins the annotations of incoming edges of the basic block from which the
edge in the first argument originates (origin(e) returns the basic block from which e
originates; incoming(b) returns all edges that target b) in lines 1 to 5.

Assuming the basic block is reachable, the interpretation function extracts the instruction
(for simplicity, we assume that the basic block holds only one instruction) in line 8 and
abstractly simulates its execution. In case the instruction writes to rcx, the function

3The x86 instruction loop first decrements the value in rcx and then checks it for 0. In case rcx has reached
0, loop continues with the next instruction; otherwise, it jumps to the target operand to continue the
loop [Int20a].
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7 Enhancing Security of Linux Containers

Algorithm 2: Interpretation function / nt(e, C') that determines the new annota-
tion in form of a lattice element for the provided edge e.

Input : Edge e and the annotated control-flow graph C'
Output: Lattice element s € S
bb := origin(e);
pre = B;
foreach ¢’ € incoming(bb) do
a :=annotation at edge €’;
L pre := prella;

g B W N =

if pre = B then
7 L return B;

(S}

8 instr :=extract instruction in bb;
9 if instr writes to rcx then

10 imm :=extract immediate in instr;
E iftimmmod2=0
11 return . ;
otherwise
12 else if instr =loop rel then
13 rel :=extract jump target in instr;
14 if e targets rel then
A ifpre=A
15 return ¢ O ifpre = F;
E otherwise
16 else
B ifpre=F
17 return L
E  otherwise

interprets the immediate value, imm, and returns E or O, depending on whether imm is
even or odd (lines 9 to 11). If the extracted instruction is a branch to the beginning of the
loop (Loop 7el), the function distinguishes between two cases, which depend on whether
the edge is a fallthrough or a jump to the beginning of the loop. The former case returns
B if joining the annotations on the incoming edges results in £. This is because loop
decrements rcx and only terminates the loop if the result is zero. Since decrementing
an even number can never be zero, this edge will never be taken. In the latter case, the
function returns E; rcx must be zero (i.e., even) because loop will only fall through if
rcx is zero after the decrement. In case of a jump, we only have to consider that rcx is
decremented by the loop instruction and that it can flip the value from even to odd, and
vice versa. In case of A, this does not matter and we preserve it.

144



7.1 Binary Analysis and System Call Filtering

Round 0: Round 1: Round 2: Round 3:
BB1 mov rcx, 10 l lmov rcx, 10 l lmov rcx, 10 l lmov rcx, 10 l
1
“|B E E E
mark: mark: f mark: mark:
BB2 loop mark 3 B loop mark D B Aloop mark 3 O loop mark D A
e3 2
B B B E
BB3 [ret ) (ret ) ret ret

Figure 7.1: We apply the abstract interpretation to the program (in form or a CFG that decre-
ments the value of rcx from 10 to 0 in a loop) to determine whether the returned
value in rcx is even (F) or odd (O). The iterative annotations of the CFG added
by the abstract interpretation are illustrated in four rounds.

To collect the building blocks of the abstract interpretation, Fig. 7.1 illustrates the iterative
annotation results of the abstract interpretation applied to our code fragment example in
the form of a CFG. We start in Round 0 (on the left) with all edge annotations set to B.
In Round 1, the edge leaving BB1 (el) is annotated with F/, because BB1 always sets rcx
to 10 which is an even number. The other annotations do not change, because the union
of the edges el and e2 in round zero is B meaning that the control-flow will never reach
BB2 in this round. Similarly, the control-flow does not reach the edges €2 and e3. In Round
2, our arguments from Round 1 apply to el and the union of el and e2 now returns F.
Thus, the edges of €2 is annotated with O; decrementing an even value always results in
an odd value. The annotation of e3 remains B because this edge is not reachable (zero
is an even value) and we determined that rcx is odd when the control-flow reaches the
end of BB2. In the last round, we annotate e2 with A, because the union of £ and O is A
and decrementing an arbitrary natural number results in another arbitrary number. In the
case of e3, the same situation applies initially, but since the edge is only taken when rcx
contains zero, the analysis recognizes that zero is even and hence annotates e3 with E.
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7 Enhancing Security of Linux Containers

7.2 Threat Model

Throughout this chapter, we assume an adversary who pursuits an offensive attacker strat-
egy (Sec. 3.2) to subvert and escape benign Docker containers on Linux. Our previous
work (Chap. 6) has countered offensive attackers by equipping the OS kernel with strong
memory isolation capabilities provided by the hardware virtualization extensions. The
extended OS kernel capabilities allowed us, among others, to isolate and guard access
to sensitive kernel data structures originated from namespaces of individual containers.
Similarly, in this chapter, we protect against adversaries with capabilities to escape Docker
containers on Linux. Instead of relying on the system’s virtualization extensions, we focus
on the available seccomp system call filtering capabilities of the Linux kernel, to prevent
adversaries, who target a vulnerable system call interface, from taking over the kernel.

In other words, we assume an attacker who intends to escalate her privileges to escape
a Docker container by abusing the Linux system call interface, the protection of which is the
main target of this work. We expect the target Linux kernel to implement the Linux sec-
comp facility (Sec. 7.1.1). We do not limit the adversarial capabilities to specific attacks, yet,
we expect her (i) to exploit memory corruption vulnerabilities to establish read and write
primitives into the victim application’s address space in order to hijack its control-flow and
(77) construct code gadgets to exploit kernel vulnerabilities through the system call inter-
face and finally take over the host system. We assume that the containerized application
under attack is benign and that the system employs state-of-the-art kernel and user space
ASLR [Lia09, Edg13]. We also assume that containerized applications are isolated from
other applications via state-of-the-art OS-level virtualization techniques including Linux
namespaces [Ker13b], control groups [Brol4], and capabilities [Cor06, Edg15]. Further, we
assume the system is protected against code-injection attacks through SMEP/SMAP [Yull,
Cor12b, Int20a] and WX policy enforcement mechanisms. Defenses against data-oriented
attacks [LZC"15, CAGN17, KCB"17, PMG™"20] are orthogonal to our work and can be
applied independently. The same applies to container [RDDC"17, RNMJ17], configu-
ration [KGP19], and library debloating [QPY18, AJWK"19, KGP19, RDDC*17, RNMJ17]
techniques that can further reduce the attack vector.

Under the assumption that the above state-of-the-art defenses restrain the attacker in-
side the isolated environment, potential memory corruption vulnerabilities in system call
handlers can still allow establishing primitives that enable them to read or write to the
kernel memory arbitrarily. Such primitives can be abused to (7) leak information to defeat
KASLR, (ii) deactivate SMEP/SMAP, and hence (iii) pave the way for the attacker to
inject and execute her payload. To limit this attack vector, we concentrate on reducing the
system call interface that is available to the attacker by creating seccomp policies tailored
for benign Docker containers.
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Figure 7.2: Three phases of the seccomp profile generation process. In the first phase, we
either extract the binaries to be analyzed from a container image (via container
debloating techniques), or directly take them from the file system. In the next
phase, we debloat the standard C library only and deliver it with the other binaries
to JessE in the third phase to finally generate a seccomp profile.

v
1
]
'
'
'
r
'
'
]
'
'
L
]

7.3 System Call Number Analysis

Fig. 7.2 provides a high-level view on the system call number analysis, in which we put
Jessk in perspective. The figure partitions the process of deriving seccomp profiles from
applications into three main phases. The first phase is responsible for identifying all
binaries that are relevant for the analysis. In other words, it is responsible for identifying
the complete set of binaries (i.e.,, programs and shared libraries) on which the target
program maintains a dependency. Since the program to be analyzed can be either a binary
or a container image, resolving and extracting the dependent binaries can differ; while we
can use the ELF header to identify binary dependencies, Sec. 7.4.1 discusses the special
case in which we apply container debloating techniques to dissect container images.

The second phase is responsible for identifying all code regions that are associated with
each exported function of the standard C library. This step has to be done only once and
allows JEssk to establish a map that associates each exported library function with a set
of system calls. This way, we can refer to the map to identify the system calls that are
associated with an exported library function that is used by the target binary in the next
phase. We describe this phase in more detail in Sec. 7.3.4.

Finally, the third phase utilizes static analysis to identify the set of system calls a program
requires; this phase presents the main focus of this section. We use this set to automat-
ically compile seccomp policies to filter unnecessary and potentially vulnerable system
calls, which would have been otherwise freely available. In the following, we present the
building blocks that allow us to harvest authorized system calls from ELF binaries. Specif-
ically, we statically analyze programs and their required libraries to locate all syscall
instructions. Then, we leverage abstract interpretation to identify the system calls. In
essence, we divide our analysis into two stages (Fig. 7.2). In the first stage, Jesse assembles
a CFG for each function in the given binary and identifies the locations of the syscall
instructions. The second stage leverages our abstract interpretation scheme to derive the
system call number that is passed as an argument to the identified syscall instruction.
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7 Enhancing Security of Linux Containers

7.3.1 Hypotheses for a Sound Analysis

The design and soundness of Jesse bases on the following four key hypotheses (H1 — H4),
which we have derived by observing benign, unobfuscated, compiler-generated real-world
binaries from official Debian mirrors (we have added the percentage of cases, in which a
hypothesis applies in our evaluation (Sec. 7.5), to account for its applicability):

(H1) Most unobfuscated binaries comply with the x86-64 ABI calling conventions (100%)
and can be linearly disassembled (99.34%) [ACvdV'16];

(H2) a syscall instruction invokes the same system call in most cases (98.98%);

(H3) if the binary provides a system call number to a syscall instruction by crossing
an indirect edge, the edge will not be part of the function holding the syscall
instruction (100%);

(H4) most binaries do not call system calls directly, instead they utilize wrappers in the
standard C library.

(H1) presumes a sound and complete disassembly and adherence to the x86-64 ABI
calling conventions. Contrary to (H1), malicious actors can obstruct disassemblers from
correctly interpreting the binary, or build binaries that use arbitrary calling conventions.
For instance, by relocating a binary’s entry point (even by one byte) on CISC architectures,
adversaries can manage to confuse common disassemblers. The same applies to obfuscated
binaries or (benign, compiler-generated) code regions that are intertwined with data. Since
binary analysis is undecidable [WZH"11], our analysis is inherently limited in its ability to
distinguish data from code. Yet, modern binaries strictly separate data from code regions
by placing them into disjoint sections. In fact, prior research has shown that even though
linear disassembly is an unsolved theoretical problem, most gcc and clang generated
binaries can be linearly disassembled in practice [ACvdV*16]. Thus, we can safely assume
that we will be able to recover a sound and complete disassembly from unobfuscated and
untampered binaries.

(H2) stems from the fact that distinct system calls are by design inherently different in
regard to their behavior and preparations needed to call them; kernel developers prefer
adding options to already existing system calls to support new features over introducing
new system calls with similar semantics [Cor20a]. Therefore, it is impractical to create
functions that are merely responsible for arranging arguments for a set of different system
calls. Besides, if such wrapper functions are created nonetheless, they are often small
enough to be eligible for inlining, and thus become invisible in the target binary.

(H3) states that if we assume that every syscall instruction always invokes the same
system call handler (H2), the binary will hold constant system call numbers, which have
either been hard-coded or resolved by the compiler. In fact, we have observed that most
syscall instructions involve only a few preceding assembly instructions (operating on
general-purpose registers) to acquire the associated system call numbers: our experimental
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findings confirm that (H2) holds in 98.98% of the analyzed system call invocations (Sec. 7.5).
Out of the remaining 1.02%, we have observed that none of the system call numbers
were provided through an indirect edge inside the same function that holds the syscall
instruction (H3). Instead, all of these system call numbers depend on function arguments.
As such, Jesse does not consider indirect edges in functions to identify the system call
numbers; if JEsseE manages to associate a system call number with a syscall instruction,
all potential indirect calls (inside the function) will invoke the same system call handler
(H2). (Note that indirect edges delivering system call numbers between functions not via
function arguments would violate the hypothesis (H1)). If such functions have been called
indirectly, Jesse cannot be certain about the exact location of the caller that has initiated the
function’s invocation. In such cases, Jesse requests external expert knowledge (Sec. 7.5.2).

Finally, hypothesis (H4) assumes that developers prefer calling system call wrappers in
libc (such as fopen(), fread(), and fwrite()) over directly invoking system calls. This
is because the system call wrappers in 1ibc are more convenient and make the resulting
program more portable. Hence, if a binary (other than 1ibc) invokes a system call directly,
it either (7) has highly specific needs regarding the system call’s arguments or (i7) the libc
does not support the desired use case. Consequently, even though binaries (outside 1ibc)
directly invoke only a few system calls, the system calls they require are of key-value for
creating seccomp profiles.

Note that every time Jesse cannot deduce a system call number, it will inform and direct
the analyst to the exact location of the affected syscall instruction to ease further analysis.
We discuss the soundness of Jessk in Sec. 7.6.1.

7.3.2 Control-Flow Graph Construction

First, we transform the binary into a CFG, which can be processed by the abstract interpre-
tation (Sec. 7.1.2). A CFG is a tuple (N, E') comprising a set of nodes (i.e., basic blocks) N
and a set of edges (i.e., control-flow transfers between basic blocks) E. Since inaccuracies
in the CFG can produce incorrect results for the abstract interpretation, it is crucial that
the CFG fulfills the following three requirements, whose violation can cause Jesse to mis-
interpret the target binaries: @ Correctness of N; @ Completeness of N; and ® Correctness of
E. Note that we do not require the set of edges to be complete; we compensate the lack of
this property of the CFG through (H2) and (H3) (refer to Sec. 7.6.1 for details).

The requirement @ ensures the correct contents of basic blocks—it is trivial and met
by most CFG construction tools. Yet, not every CFG construction framework assures
the requirements @ and ®@. Given that binary analysis is undecidable [WZH"11], CFG
construction remains an open problem. Often, such frameworks prefer completeness over
soundness of the CFG and thus can falsify the assumptions of analysis frameworks, e.g.,
through heuristics. For instance, both angr [SWH 15, SGS*16] and radare [Rad20] can miss
basic blocks and/or introduce invalid edges in certain situations. Angr’s static analysis
based CFG generation tool, CFGFast, can miss code (i.e., violate @) on indirect branches
(i.e., the branch target addresses are computed at run-time) [Ang20]. Respectively, angr’s
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7 Enhancing Security of Linux Containers

symbolic execution based CFG generation mechanism, CFGEmulated, can introduce ille-
gal edges (i.e., violate @), because it relies on symbolic execution to overapproximate the
set of possible jump targets [Ang20]. Similar restrictions apply to other CFG reconstruc-
tion frameworks [SA.20, BGRT05, KV08, KZV09, KV10, FLPV15]. One of the reasons for
applying heuristics is, among others, the tool’s generality in application. For instance,
heuristics allow to predict the location of code regions to a certain degree (at the risk of
potentially violating @ and @), even for obfuscated binaries or binaries that do not comply
with the ABI. Unfortunately, heuristics cannot always provide correct results with cer-
tainty, and thus would reduce Jesse’s precision. On the other hand, by avoiding heuristics
(and by following the hypotheses (H1 — H4)), we can exclude incorrect results with regard
to CFG construction with certainty. Generally, any CFG construction tool that follows the
aforementioned requirements (O — @) is an eligible candidate for Jesse. We have decided
to apply Lightweight Disassembler (LWD) [Eng20] for our purpose. LWD does not apply
any heuristics and its small code base allows us to easily extend and integrate it into Jessk.

Initially, we modify LWD to not regard syscall and call instructions as control-flow
changing instructions. Instead, they are regarded as instructions that can alter registers
according to the Linux calling conventions of the x86-64 ABI [MH]JM13] (H1). In addition,
we cause LWD to split the basic blocks holding a syscall instruction into two basic blocks
that we connect through an artificial edge. This way, we ensure that the second part of the
split basic block begins with the syscall instruction. This strategy simplifies identifying
the system call numbers passed as a parameter for syscall.

Contrary to conventional CFG construction frameworks, LWD only considers edges of
direct branches (including direct relative, absolute, and (un)conditional branches); it avoids
heuristics for indirect branches whose targets reside in general-purpose registers (other
than rip) or memory that cannot be statically determined. For instance, the instructions
ret and jmp reg always conclude a basic block, yet, they do not introduce any edges.
Hence, even though the final CFG comprises only correct edges (®), these do not have to
be necessarily complete. Granted, without considering all code regions, LWD would miss
syscall instructions. Yet, under (H1), this is not the case in our analysis: we modify LWD
such that it first linearly disassembles the binary, and then extends the disassembly to a
CFG by adding appropriate edges for all direct jumps. This allows us to achieve @ and
@. If we further assume that most syscall instructions invoke only one specific system
call (H2), a missing edge (i.e., resulting from incompletely recovered indirect branches)
would represent merely an alternative invocation of an already identified system call
(Jessk analyses each identified syscall instruction). Rarely, a syscall instruction is used
to call different system calls (Sec. 7.4.2). In such cases, it is impossible for Jesse to determine
the system call number statically. As such, Jesse informs the analyst about its exact location
(Sec. 7.3.3.3). This setting allows JEssE to either correctly determine the system call number
for the respective syscall instruction, or, in rare cases, request expert knowledge.
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7.3.3 System Call Number Identification

The modern x86-64 architecture implements the fast system call instruction, syscall [Int20a],
that allows user-space applications (ring 3) to make use of services provided by the high-
privileged kernel (ring 0). Upon the execution of the syscall instruction, the system
switches the context and executes the registered system call dispatcher in kernel space.
The system call dispatcher inspects the number passed in the rax register to determine
which system call handler has been requested [MHJM13]. We apply abstract interpretation
to implement an effective constant propagation strategy that allows us to determine the
system call number, passed in rax, for every identified syscall instruction in the CFG of
the given binary. In the following, we define a complete lattice I and the interpretation
function Int(e, C') that form our abstract interpretation.

7.3.3.1 Defining the Lattice

The lattice L of our abstract interpretation is a quintuple (S < U, J_, T) The system call
numbers passed via rax to the system call dispatcher never result from arithmetic com-
putations. Instead, rax is either @ initialized with an immutable immediate instruction
operand, or @ assigned a value from a different register. While @ can be trivially deter-
mined by identifying the assignment of rax, pinpointing the exact value in @ must be
accomplished through constant propagation techniques. Rarely, system call numbers are
read from memory. Even though this property constraints static analysis, Jesse identifies
the affected syscall’s location and requests the analyst’s assistance. To address both cases,
we define our lattice to keep track of the constant values that are propagated through the
general-purpose registers.* Consequently, we define every element s € S to hold either
the symbol N.X (i.e., the neutral element; the associated edge gets Never eXecuted) or a
15-dimensional vector (i.e., the register state). This vector maps each register to an element
in the set {X,0,...,2% — 1} (i.e., to a constant or to an unknown value X). Note that we
did not limit our analysis to merely considering the set of existing system call numbers;
instead, we decided to consider the complete range of numbers. This decision does not
affect the performance and allows us to apply the analysis to system calls that could be
potentially added in the future. Formally, S adheres to the following definition:

= {NX}Uf:R—{X,0,...,2% — 1}
with R representing the set of general-purpose registers:

R :={r[alblc|d]x, r[d|s]i, rbp, r[8-15]}

“We exclude rsp (stack pointer) and consider only 15 general-purpose registers. These include rbp as the
compiler can reuse the frame pointer.
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7 Enhancing Security of Linux Containers

Further, we glefine the partial 01_fder relation <, with NX as the smallest element. Two
vectors 7,y € S\{N X} fulfill » < y if they are identical or if elements of y differ only in
their mapping to X. We define formally for any a,b € S:

a<b: = (a=NX)Vv A((a(@) = b(i)) v (b(i) = X))

i€ER

The join operation LI unifies two vectors a,b € S. By unifying two vectors, for each
element (i.e., register) of the new vector, we preserve the old element’s value, if both vector
elements are identical. Otherwise, we assign the symbol X to the new element, as the
associated register can hold multiple values. Further, if either a or b is assigned the value
of the neutral element, N X, the join operation takes the assignment of the respective other
lattice element. Thus, the following defines L

a ifb=NX
ifa=NX

a(r) ifa(r) = b(r)
Ar € Ror— {X if a(r) 2 b(r) else

allb:=

Finally, we specify the bottom element of the lattice L (1) to be the smallest one (i.e.,
Va € S 1< a) and the top element (T) to be the largest (i.e., Va € S a< T) Therefore,
i inevitably represents N.X. Also, since the vector that assigns all registers to X stands
for all possible program states, T represents \r € R.r — X:

1L:=NX
T:=McRr—X

7.3.3.2 Defining the Interpretation Function

Abstract interpretation leverages an interpretation function to project how the basic blocks
in the CFG operate on abstract lattice elements that represent a program, or in our case,
register states (Sec. 7.1.2). To identify the exact system call number in rax, our interpre-
tation function applies symbolic execution [CARB12, SWS*16, SWH'15, SGS*16]. We
leverage the symbolic execution framework angr [Ang20] to propagate already assigned
constant values (in the register state) and to determine the register assignment in basic
blocks. Angr converts a loop-free sequence of x86-64 instructions (i.e., a basic block) into
an equivalent logic formula that represents all possible execution traces of the basic block.
Utilizing a Satisfiability Modulo Theories (SMT) solver (e.g., Z3 [Res20]), the interpreta-
tion function checks whether the formula can be satisfied and if so, it determines the exact
constant values assigned to the register state. Although angr uses Z3 to identify only one
satisfying solution, instead of a complete set of all possible constant values, we ensure that
the determined constant is indeed immutable via the process of elimination. Then, the
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Algorithm 3: Interpretation function / nt(e, C') that determines the register state
for the given edge e by propagating constants and determining constant assign-
ments to registers in the preceding basic block.

Input :Edge e and an annotated control-flow graph C
Output: Lattice element post € S

pre = NX;

foreach ¢’ € incoming(origin(e)) do

L a = get_annotation(e’, C');

_ W N =

pre ;= pre l q;
if pre = NX then
L return NX;

S = angr.blank_state();
foreachr € R do

L if pre(r) # X then

[N |

© ® 3

10 angr.constrain_register_value(S,r, pre(r));

1 F:=angr.symb_exec_basic_block(origin(e), S);
12 post :=A\r € Rr— X;

13 if —23.is_satis fiable(F') then

14 L return NX;

15 foreachr € R do

16 | v:= z3.get_model(F).get_value(r);

17 F' = F A (Tena # v);

18 | if —z3.is_satisfiable(F") then

19 L post(r) ==v;

20 return post;

interpretation function propagates the lattice elements to the main abstract interpretation
algorithm, which incorporates the results by annotating the edges, to finally identify the
system call a distinct syscall instruction refers to.

To further clarify the details, Alg. 3 describes the interpretation function Int(e, C') that
receives an edge e and an annotated CFG (' as parameters. This function identifies the
basic block, origin(e), out of which the given edge e originates, and collects annotations
of its origin’s incoming edges. To propagate constants in the register state that precedes
the basic block, origin(e), the algorithm joins the annotations of its incoming edges in
lines 1 to 4. This defines the initial (register) state of the basic block, which represents the
precondition for the symbolic execution. Then, in lines 7 to 11, the interpretation function
transforms the origin’s initial (register) state into its symbolic representation .S and adds
constraints for each register r € R which holds a constant value ¢ € {0, ...,2% — 1} at the
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7 Enhancing Security of Linux Containers

basic block’s entry point (that expresses the constraint .., = c at the basic block’s entry
point). At this point (line 11), we instruct angr to symbolically execute the basic block
origin(e), with the initial state S. Angr transforms the basic block into a logic formula F'
(that expresses the constraints given by the basic block). Once angr finalizes the formula,
we use angt’s SMT solver to determine whether or not /' can be satisfied. If F' cannot be
satisfied, the control-flow will never reach the end of the basic block (given the constrained
register state at the basic block’s entry point). If /' can be satisfied, we use angr’s SMT
solver to determine which registers hold a constant value after executing the basic block
(lines 12 to 19). For each register, first, we add a clause to ' that prohibits the assignment of
the identified value v to the register at the end of the basic block. Then, we consult the SMT
solver one more time to determine if the extended formula remains satisfiable. Only if the
formula cannot be satisfied (due to the new constraint), we can assure that the basic block
will always assign the same value to the register in question. At last, the interpretation
function returns a lattice element, representing the register state after executing the basic
block (i.e., the annotation for the edge e), to continue the abstract interpretation (Alg. 1).

7.3.3.3 Applying Abstract Interpretation

Given the right tools at hand (CFG C, Lattice L, and [ ht(e, ('), we are able to apply our
abstract interpretation based constant propagation to identify the system call number that
is passed to an identified syscall instruction in a binary. Once, the abstract interpretation
has made a pass through the CFG, every edge in the CFG will be annotated with a lattice
element representing the register state after each basic block. This includes the artificially
included edge ¢’ that immediately precedes the identified syscall instruction (Sec. 7.3.2).
That is, to determine the system call number for a particular syscall instruction, we have
to examine the annotation of ¢’ and extract the final value from the rax register. In case
rax maps to a constant value (rax € {0,...,2%* — 1}), we can be sure that the syscall
instruction will always receive the same system call number. Otherwise, if rax maps to X,
we will not be able to deduce the system call number. In this case, we inform the analyst
by stating the incompleteness of the analysis; she will have to complete the result before
generating the seccomp filter.
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7.3.4 Refining seccomp Policies

Exploiting a vulnerability in a system call in the Linux kernel can escalate a user-space
application’s privileges or escape from a container. To mitigate this threat, we propose
using seccomp to enforce the principle of least privilege and prohibit the invocation of any
system call that is not necessary for the genuine execution of the application. Conse-
quently, we leverage Jessk to generate seccomp filters for programs and Docker containers.
Disregarding whether an application is containerized or not, we first determine all depen-
dencies, composing a set of binaries required by the individual ELF file or the container
image; while we can simply inspect the ELF header to spot all libraries required by non-
containerized applications, we have to first dissect container images to identify all binaries
that reside in container images (Sec. 7.4.1). Then, we apply the introduced abstract inter-
pretation to the discovered binaries to determine the set of system call numbers essential
for their execution (Sec. 7.3). Finally, we generate a seccomp policy which whitelists the
identified system calls; and blacklists the remaining system calls.

Unfortunately, without any additional steps, this naive approach tends to create coarse
seccomp policies, as it does not consider that a system call (e.g., inside a library) may
not be called; the corresponding system call invocation can be unreachable or simply not
required by the binary. This presents an issue in particular for the standard C library,
libc. In fact, our evaluation has shown that employing this naive approach would create
seccomp profiles, which in case of the GNU libc implementation v2.28 would grant
273 system calls that stem only from the libc (Sec. 7.5.3.3). Consequently, to identify
the unreachable system call invocations, we apply library debloating on the 1ibc. This
improvement allows us to compile and apply an effective seccomp policy that forbids the
program to execute unneeded and potentially vulnerable system calls.

One of the inherent properties of shared libraries is their general-purpose character; they
are built to provide functionality “for all intents and purposes”. At the same time, due to this
characteristic, libraries are often considered as bloated [QPY18, AJWK 19, WKKWK™'20],
especially in the face of individual programs that often resort to only a tiny fraction
of the entire library. This is in particular true for the standard C library (i.e., 1libc).
Recent research has shown that 2016 Ubuntu applications make use of merely 5% of
the standard C library (i.e., 1libc) on average [QPY18]. Similar to library debloating
frameworks [QPY18, AJWK 19, WKKWK™20], we consider such fully-blown libraries as
security threats, as they can govern the access to unneeded (and potentially vulnerable)
system calls that the target program binaries never intended to use (in a benign setting).

The reason for this verdict is that 1ibc represents the main gatekeeper between the
system’s user space applications and the kernel; it implements wrappers for the most
system calls [Ker13a]. As part of the Linux Standard Base (LSB) [Foul5a], 1ibc establishes
a level of portability between distributions and architectures, and, more importantly, can
be used by proprietary, closed-source applications. Consequently, if we determine all 1ibc
code regions that are unreachable by the extracted, benign program binaries and exclude
these from Jesse’s system call number identification, we will manage to create a framework
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7 Enhancing Security of Linux Containers

that generates high precision seccomp policies. We choose libc as the only library, in
which we eliminate the unreachable code, as the state-of-the-art debloating techniques
have requirements that are not necessarily met by closed-source binaries (thus eliminating
a generic solution); they require recompilation [QPY18], meta information in unstripped
binaries [AJWK19], or must be position-independent [WKKWK™20, DWKJ*20].

Recent advances in code debloating on source code level [QPY18] as well as un-
stripped [AJWK™*19] and stripped binary level [WKKWK™20] have demonstrated their
effectiveness and precision in locating unreachable code in libraries. We have indepen-
dently implemented an approach similar to Nibbler [AJWK™19], which we use to comple-
ment Jesse by identifying unreachable code in libraries with help of relocation information
(as we do not claim any novelty, we refer the reader to Nibbler [AJWK"19]). In a general
scenario, we assume a given (blackbox) framework (e.g., Nibbler) that allows us to locate
the code regions associated with each exported library function. We highlight that this
step must be done only once, either by the security analyst or by the library maintainer.
We use the isolated code regions as input for our abstract interpretation to identify and
create a (per function) map holding the involved system call numbers. This way, we can
query the map to identify all system calls that are associated with the utilized exported
library functions that are required by a given program binary (i.e., the dissected container
service). Note that we do not regard this code reachability information delivery as an inte-
gral component of Jesse. Instead, we request this information from an external party only
for one, central library, namely libc. Disregarding our decision for this work, the analyst
can gather code reachability information for all involved libraries in order to generate even
more concise seccomp policies. We leave this part for future work.

Once we identify the involved binaries (including programs, their libraries, and the li-
braries’ unreachable code regions), we apply Jessk to (7) unfold their control-flows, leading
to a set of syscall instructions and (i) uncover the associated system calls (Sec. 7.3). Con-
sidering that most C programs employ the functionality of the standard C library, the net
effect of our system call number analysis (without first eliminating the unreachable code
in 1ibc) would result in a highly coarse-grained and heavily overapproximated collection
of system calls; 1ibc implements an essential part of the OS interface including a high
number of system call wrappers to simplify the communication with the OS kernel. As
such, by applying the unreachable code information (per exported library function) Jesse
considers only viable paths in 1ibc in its system call number analysis.
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7.4 Use Case: Enhancing Docker Container Security

To demonstrate the effectiveness of our system, in this use case, we leverage Jesse to gen-
erate seccomp filters for Docker containers. For each program in the container, we apply
the introduced abstract interpretation to identify the system calls that are essential for its
execution (Sec. 7.3). This set of system calls allows us to compile and apply an effective
seccomp policy that forbids the container from executing unneeded and potentially vul-
nerable system calls. The quality and strength of the generated seccomp policies highly
depend on (i) the precision and coverage of our static analysis (Sec. 7.3) and (i) the
accuracy of the optimization to disregard unused code sequences (Sec. 7.3.4). To deter-

mine both, we apply Jessk to five of the most popular Docker containers from Docker
Hub [Doc20b].

7.4.1 Dissecting Docker Containers

Docker uses a Dockerfile (a structured document with instructions) to build containers.
Among others, this file specifies the the main program to be executed inside the isolated
environment via the ENTRYPOINT (or CMD) command. Althoughitisadvised to provide only
one service per container, it is not strictly prohibited to share one container among multiple
services. Even if a container comprised only one service, its setup could require additional
programs, e.g., to prepare the environment (i.e., switch to another user or initialize a
database). That is, the specified executable can engage multiple programs in the Docker
image, with each requiring its own set of libraries. Unfortunately, Docker images are
known to incorporate a significant amount of unneeded programs and libraries [RNM]17,
RDDC*17]. Consequently, before Jesse determines the set of system calls required for the
container, it identifies all programs that are necessary to prepare and provide the intended
service(s). Specifically, Jesse implements existing container debloating techniques (without
claiming novelty results) [RNMJ17, RDDC"17] to dissect container images and precisely
narrow down the set of binaries to receive accurate results in the following steps.

7.4.2 Abstract Interpretation

We apply JessE to five of the most popular Docker containers [Doc20b].> We used Jesse
to dissect the containers to identify only necessary programs and libraries (Sec. 7.4.1).
Table 7.1 summarizes and assigns the extracted binaries—holding at least one syscall
instruction—to the associated container. By applying Jessk to the identified binaries, we
were able to link the exact system call number to 719 of 725 syscall instructions in the
containers’ latest version. Jesse was not able to determine the system call numbers of the
remaining 6 syscall instructions: 3 in libc, 2 in libpthread, and 1 in mysqld. Hence,
in 99.17% of all cases, our analysis determined the correct system call (verified by manual

5For purposes of comparison, we selected the same set of containers as Wan et al. [WLXT17].
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7 Enhancing Security of Linux Containers

inspection). Similar to the results in Sec. 7.5.1, we do not consider the remaining 0.83%
as false negatives. The reason for this is that, even though Jesse was not able to derive the
system call number in question, it pointed us to the exact location of the troubling syscall
instructions and requested our assistance to complete the analysis manually. We discuss
and assess the reasons for the incomplete mapping in Sec. 7.5.2.

7.4.3 Avoiding Unreachable Code

We applied the discussed optimization that allows Jessk to focus only on viable paths in the
libc in order to avoid considering system call invocations that remain unreachable to the
program in question (Sec. 7.3.4). One of the benefits of this optimization is that it needs to
be performed once per library version; for every binary that leverages services of the 1ibc,
Jesse queries the (per function) map of system call numbers required to tailor the seccomp
policy. Specifically, we have applied Jesse to the previously selected set of containers,
considering the additional (per function) code region information. (Note, while we have
used a custom implementation to identify the binary code regions of exported functions
in the 1ibc, we can gather this information from external sources (Sec. 7.3.4).)

The optimization drops the syscall instructions in container binaries to a subset reached
by the analyzed program. This way, we establish the basis for accurate and effective sec-
comp policies. To accommodate closed-source binaries, we apply the optimization only
to libc; system calls of other dissected container binaries are accumulated through the
general system call number analysis without the additional optimization (Sec. 7.3). In
other words, we trade accuracy for compatibility and still achieve more accurate results
than Docker’s default seccomp policy. Note, contrary to library code debloating strate-
gies [QPY18, AJWK™19], Jesse does not need to modify the libraries’ layout in the target
process’ address space or code pages to remove the unneeded code at load-time, and hence
does not exhibit any increased load-time performance or memory overhead.

Table 7.2 shows for each Docker container image the percentage of the restricted system
calls through generated seccomp policies. On average, the generated policies restricted
54.7% of all system calls and significantly improved the granularity of Docker’s default
seccomp policy, which prohibits, depending on the container configuration, 10.6% to 20.4%
of the system calls (Sec. 7.1.1). To rule out false negatives (i.e., falsely restricted system
calls), we applied these policies to the Docker containers and ran benchmarks, testing the
containers’ functionality. We selected the same benchmarks used by Wan et al. [WLX"17],
who, contrary to Jessg, use their work to dynamically mine seccomp policies. Instead of
collecting performance results (as we did not modify the applications themselves), we
focus on stressing the containers to achieve high coverage of the tested applications.

We employed httperf [M]98] to test the genuine execution of the nginx and httpd web
servers. In this context, we created 10 times 100 connections, each with an increasing
connection rate from 5 to 50 requests per second (req/sec), with steps of 5 req/sec and
2 seconds sleep time whenever the connection rate is increased. Further, we tested the
mysql containers by applying the benchmark sysbench [ako20]. We used OLTP test with 8
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Table 7.1: JEssE’s system call number identification analysis applied to ELF binaries (with at
least one syscall instruction) that were extracted from (two different versions of)
five popular Docker containers. The total number and percentage of the correctly
assigned system calls refers to the analyzed binary’s version residing in the respec-
tive container version.

Libraries

Programs

Binary Httpd MySQL Nginx Postgress Redis # of syscall % of Assigned

2423 2441|5713 8019 | 1.11.1 1179 | 954 122 | 323 502 | Instructions System Calls
libe v v v v v v v v v/ 417 / 404 98.08% / 99.26%
libpthread v 4 v v v v A A 158 / 169 98.73% / 98.82%
1d v 4 v v v v o v | v/ 36 /36 97.22% / 100.00%
librt v 4 v v oo/ 4 29 /29 100.00% / 100.00%
libattr 4 -/12 -/ 100.00%
libnuma v 4 9/9 100.00% / 100.00%
libsystemd v -/9 -/ 100.00%
libstde++ v v v 3/6 100.00% / 100.00%
libaio v v 5/6 100.00% / 100.00%
liberypt v v v 1/- 100.00% / -
libkeyutils o/ 3/3 100.00% / 100.00%
libcap-ng v -/2 -/ 100.00%
liberypto v v v -/2 -/ 100.00%
libuuid v v 2/2 100.00% / 100.00%
libgerypt v -/1 -/ 100.00%
libk5crypto v -/1 -/ 100.00%
libselinux v v o/ 1/1 100.00% / 100.00%
mysqld v v 8/17 100.00% / 94.12%
redis-server v Ve 2/8 100.00% / 100.00%
nginx v v 6/7 83.33% / 100.00%
httpd v v 1/1 100.00% / 100.00%

parallel threads and the maximum number of requests capped to 800. For the postgres
containers we applied the tpc-b-1like and the simple-update test of the pgbench [Gro20]
test suite for 60 seconds each. Finally, we applied redis-benchmark [Lab20] to the redis
containers. In all cases, the containers ran through and were not interrupted by a falsely

prohibited system call.

7.4.4 Withstanding Real-World Exploits

We assessed the added security of the generated seccomp policy by using real-world
exploits against (i) the MySQL server v5.7.14 running inside a Docker container and
(¢7) the Linux kernel v4.13. The combined exploits transformed a vulnerable system call
into an effective write primitive that allowed the subverted container to directly modify the
kernel memory for malicious purposes.

159

x
=}
=
|
P
o
>
=
—
=}
(4]
Q
(7]
o
=
(3]
=
©
=
=
17}

[
B
Q
=
©
'
[=
O
o




7 Enhancing Security of Linux Containers

Table 7.2: Restricted system calls through seccomp policies tailored for five popular Docker
container images. The seccomp policies were generated (statically) by Jesse and
(dynamically) through mining by Wan et al. [WLX"17].

Container | Mining [WLX"17]  JessE
httpd v2.4.23 78.9% 57.3%
httpd v2.4.41 - 55.3%
mysql v5.7.13 69.7% 49.5%
mysql v8.0.19 - 41.2%
nginx v1.11.1 77.8% 65.1%
nginx v1.17.9 - 61.1%
postgres v9.5.4 71.4% 50.7%
postgres v12.2 - 42.9%
redis v3.2.3 78.6% 65.4%
redis v5.0.2 - 58.5%

7.4.4.1 Case Study

We leveraged the CVE-2016-6662 (i.e., SQL injection vulnerability of the MySQL server) to
gain arbitrary code execution capabilities inside the container. Generally, once the attacker
gains control over the container, we assume she will attack the Linux kernel to attempt to
escape the sandboxed environment, as this will grant her the capability to control other
containers and even the kernel itself. To evaluate this scenario, we used the exploit for the
CVE-2017-5123 that was introduced into the Linux kernel v4.13 to simulate an attacker that
attempts to escape the container. In this context, first, we reproduced the exploit of Chris
Salls, the discoverer of the CVE-2017-5123, to bypass KASLR [Sall7]. As our container
was initially not bound by seccomp, and hence did not block unauthorized system calls,
we abused the vulnerable waitid() system call to establish an arbitrary write primitive
into the kernel memory; by abusing the fact that the vulnerable waitid() system call
handler missed the necessary access_ok() checks (that prevent the user-space argument
siginfo_t *infop from pointing to unauthorized memory), we were able to write-access
arbitrary kernel addresses. Since the unsafe_put_user() (and other) kernel helper does
not crash the kernel when accessing invalid memory, we were able to fingerprint the
kernel’s address space to identify its exact mapping [Sall7], despite KASLR.

In the next step, similar to the original exploit, the gained write primitive enable us
to perform the ret2dir attack [KPK14]. To conduct the attack, we identified a page in
the kernel’s physmap (i.e., a contiguous memory region that directly maps a part of, or
even all, physically available memory into the kernel space) that is aliased with a user-
space page controlled by us. Then, we injected a fake data structure (e.g., struct file)
with function pointers, which we used to initiate the execution of a ROP chain in kernel
space. In this way, we disabled the system’s SMEP and Supervisor Mode Access Protection
(SMAP) protection and granted privileges to the executing container process. As soon as
we received sufficient privileges, we became able, for instance, to request CAP_SYS_MODULE
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capabilities, allowing us to load kernel modules and thus control the entire system.

Even though the attacker managed to write to arbitrary kernel memory, our seccomp
policy was able to eliminate the vulnerability. Note that the Docker container did not
require the vulnerable system call for its genuine execution. As such, after applying the
generated seccomp policy to the container, seccomp successfully suppressed the unautho-
rized invocation of the vulnerable system call and immediately terminated the container.

7.4.4.2 Impact

In addition, to touch upon the impact of Jessg, we queried for CVEs that involve vulnerable
system calls, which would have been allowed by Docker’s default seccomp policy of the
analyzed containers. We identified 30 CVEs for nginx, 26 for httpd, 24 for postgres,
and 19 for mysql. We highlight that all of these CVEs could have been obstructed by the
generated policy of Jesse. Note that we have identified the CVEs based on their description;
therefore, they are by no means complete.
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7.5 Evaluation

To evaluate our work, we have implemented Jesse and applied it to all binaries of the
Debian buster base image. Since we have covered the security of Docker containers in the
previous section (Sec. 7.4), we do not focus on analyzing container images. Instead, the
following sections assess Jesse’s analysis techniques in general. To realize Jesse, we have
extended the LWD disassembler to identify the syscall instructions in binaries according
to Sec. 7.3.2. Further, we have implemented the introduced abstract interpretation based
constant propagation to determine the system call number for every previously identified
syscall instruction, which we discuss in Sec. 7.3.3. To consider only viable execution paths
in the 1ibc, we have lend Jesse the ability to debloat the standard C library (Sec. 7.3.4); our
library debloating implementation is independent of, yet, similar to Nibbler [AJWK"19].

Our evaluation of JessE assesses the precision and coverage of the employed abstract in-
terpretation based constant propagation (Sec. 7.3). To additionally amplify on the benefits
of JessE over existing static or dynamic analysis based frameworks, we provide test cases,
in which we compare the effectiveness of Jesse with the results of the existing solutions.
Specifically, we highlight that Jesse’s static analysis capabilities, which determine the set
of system call numbers of arbitrary non-obfuscated binaries, (i) exceed the capabilities of
dynamic analysis based solutions [WLX"17], and (i7) complement previous static analysis
frameworks [DWK]J 20, GPBP20].

7.5.1 Precision and Coverage

To evaluate the precision and coverage, we have applied Jessk to 1, 064 binaries of the Debian
buster base image to identify system calls and link them to their respective system call
numbers.® In addition, in order to establish a reference and to verify our assumptions, we
have manually inspected all binaries holding at least one syscall instruction; our analysis
has revealed that only 78 (out of 1, 064) ELF binaries hold at least one syscall instruction.
Finally, we have compared our results by applying the static analysis based system call
extraction framework, Confine [GPBP20], to the same set of binaries.

Table 7.3 shows that we have manually identified 984 distinct system call invocations, to
which we have matched the associated system call numbers. By applying Jessk to the given
set of binaries, we have identified 100% of the manually identified system call invocations
and linked the exact system call number in 964 of 984 cases. Hence, in 98.0% of all cases,
our analysis determined the correct system call (verified by manual inspection). We do not
consider the remaining 2.0% as false negatives. This is because in the remaining 20 cases,
JessE pointed to the exact location of the troubling syscall instructions and requested our
assistance to complete the analysis manually. This is a realistic strategy, as application
developers or security analysts should create the seccomp policies.

6Used Debian mirror state from the 3rd of October 2020.
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In addition, we have manually investigated how many of the 1, 064 binaries comply with
H1 - H4. Even though all of the analyzed binaries adhere to the x86-64 calling conventions,
we were not able to (fully) linearly disassemble 7 (0.66%) binaries. The reason is that these
binaries intertwine data with code in their .text sections, and thus violate (H1). We have
encountered 10 (1.02%) system call invocations which violate (H2). We have not observed
any violations of (H3). Jesse has informed us about each of the above violations; once we
have resolved the violation, we were able to resume Jesse to complete the analysis. We
clarify the reasons for the incomplete mappings of system calls in Sec. 7.5.2.

While the results of Jesse matched the number of the previously identified system call
invocations, surprisingly, Confine has reported additional 158 system call invocations and
flagged 183 cases for manual inspection. We have investigated this issue and identified
that Confine (i) can falsely interpret byte sequences in the .data section as syscall
instructions, and (7i) considers calls to all functions, whose symbols contain the string
“syscall”, as system call invocations. In addition, even though Confine’s system call
number approximation is conservative, it can miss system call invocations in case of tail-
call optimizations. For instance, Confine will miss system call invocations, if the compiler
replaces a call instruction to a generic system call wrapper (e.g., to the syscall () function
in 1ibc) with a jmp instruction to the respective wrapper; Confine’s implementation only
considers calls, yet, disregards jmps to such wrappers. Finally, we have discovered that
Confine has misidentified (32) as well as missed available system call numbers (76), which
effectively introduces false negatives. Overall, in 89.7% Confine links the correct system
call number to one of the 984 available syscall instructions.

In contrast, our results have shown that Jesse has automatically identified the correct sys-
tem call number in 98% of all cases. Further, Jesse did neither over- nor under-approximate
any system call invocations in the given set of binaries. In addition, under the assumption
that the analyst always correctly analyzes the flagged system call invocations, Jesse has not
produced any false negatives. Overall, combined with Confine’s capabilities in analyzing
the standard C library, we believe that Jesse can significantly contribute to the automatic
generation of seccomp policies for (containerized) applications.
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Table 7.3: Identified system call numbers of 1, 064 binaries of the Debian buster base image.
The summarized results have been gathered through manual inspection (acting as
baseline), Confine [GPBP20], and JessE, and present the precision and coverage
of the respective framework.

Manual Confine JessE

Raw numbers:

o Analyzed binaries 1,064 1,064 1,064
o Identified system call invocations 984 1142 984
System call number identification:

o System calls flagged for manual inspection 183 20
o Falsely identified system call numbers 0 32 0
o Missed system call numbers 0 76 0

Overall result:
o Correctly identified system call numbers 100%  89.7% 98.0%

7.5.2 Reasons for Incomplete Mappings

Table 7.3 shows that out of the 1,064 analyzed binaries of the Debian buster base image,
Jesse requested manual support in 20 cases. The reason for the incomplete mapping of the
system call numbers is threefold and in line with our hypotheses H1 — H4 (Sec. 7.3.1).

First, there exist functions, e.g., syscall() in libc, which allow selecting arbitrary
system calls by specifying the system call number in one of the function parameters—even
though this practice is not portable, error-prone, and mostly applied for testing [Cor10].
Since the exact system call number depends on the calling function, analyzing syscall ()
alone cannot determine the provided value (violation of H2). We can address this issue by
generalizing our definition of the abstract interpretation; instead of identifying the value
in the rax register before the syscall instruction, we cause the abstract interpretation to
identify the value in the register holding the function’s parameter (with the system call
number) immediately before calling the syscall() function. Note that the exact register
depends on the called function.

The second class refers to the incompleteness of the Capstone disassembly framework.
For instance, Capstone failed to disassemble rare floating-point instructions and to de-
termine data in the .text section (violation of H1), and hence impeded further analysis.
In fact, Jesse encountered 7 cases, in which Capstone failed to disassemble parts of the
binary. We have extended Jesse to mark such binaries for manual inspection, in which
the analyst has the possibility, e.g., to assist Capstone by explicitly stating whether the
troubling section belongs to the .text or .data section. One can solve this engineering
issue by extending the capabilities of Capstone.
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Finally, a small class of functions reads the system call number from memory. Albeit this
strategy does not violate any of our hypotheses (H1 — H4), it impedes static analysis; static
analysis cannot precisely determine the values that are read from memory. Nevertheless,
contrary to dynamic analysis (which cannot guarantee that the dynamic tests cover all paths
of the program [WLX"17]), in this and all upper cases Jesse narrows down the syscall
instruction’s exact location and lets analysts incorporate their knowledge to satisfy the
policy. We further discuss these cases in Sec. 7.6.2.

7.5.3 Impact Evaluation

We position Jesse among three existing frameworks, which employ both static [GPBP20,
DWKJ20] and dynamic analysis [WLX"17] to extract the set of system calls a regular
or containerized application is allowed to invoke. We demonstrate that the inherent
properties of dynamic analysis approaches can lead to false negatives. Even though we
believe that the selected static analysis frameworks are great candidates, we amplify upon
their limitations and demonstrate in what way Jesse can complement their functionality.

7.5.3.1 Dynamic Analysis

Generally, dynamic approaches generate more rigorous policies. Yet, they highly depend
on the achieved program coverage by the employed test suites, and hence merely un-
derapproximate the set of system calls that is vital for the analyzed program. In other
words, in case a benchmark misses an execution path (that leads to a system call) in the
target application, a potential execution of the hereby introduced false negative (a falsely
unauthorized system call in the seccomp policy) will eventually falsely crash the process.
To back our claims, in the following, we present pitfalls of the incompleteness of dynamic
analysis based related work [WLX"17].

By closely analyzing the Docker container versions and the respective seccomp policies
that were dynamically generated by Wan et al., we discovered that their analysis overlooked
a set of essential system calls. For instance, the dynamically generated seccomp policy for
the redis v3.2.3 container missed the system calls rename () and fsync(); both are used for
the redis’ background saving functionality. Another example is that the generated policy
for the nginx v1.11.1 container missed the system calls rename () and chmod(); the system
calls that define the web server’s capabilities with regard to UNIX-domain sockets. These
findings are incomplete, yet, they question the credibility of the dynamically gathered
results and, at the same time, underline the need for a more complete, static analysis.

7.5.3.2 Static Analysis

Confine [GPBP20] focuses on identifying legitimate system call numbers from container-
ized (i.e., Docker) applications to establish seccomp policies for Docker containers. To
achieve this, Confine requires the source code of the standard C library, 1ibc. Confine’s
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analysis provides an accurate mapping of system calls to the exported functions of the
libc. This allows the authors to map the system calls of the functions in the libc to
binaries, which use the respective library functions. Unfortunately, the analysis of the
remaining system calls (residing outside the 1ibc) lacks precision. In fact, we have shown
in Sec. 7.5.1 that Confine can produce false negatives, which are intolerable in production
systems. In addition, Confine uses a backpropagation-only based technique, which, by
design, cannot deal with loops.

Listing 7.1: Simplified code snippet from 1ibc highlighting the limitations of pure backpropa-
gation based methods.

mov rbx, <syscall number>
mov rcx, 0x10

begin_loop:
mov rax, rbx
syscall
dec rcx
jnz begin_loop

® N @ e W N =

Listing 7.1 shows a simplified real-world example, which can be found in similar form in
the 1libc. In the corresponding C code, the system call number is assigned inside the loop,
immediately before the syscall instruction. Yet, the compiler has pulled the assignment
of the constant system call number to a temporary register, rbx, in front of the loop to
optimize the performance. Such cases render pure backpropagation-based methods as
incapable of identifying the system call number. In contrast, JessE is not limited by loops
and does not require external assistance to identify the system call number in such cases.

On the other hand, sysfilter [DWK]J"20] provides highly precise results, as it addition-
ally identifies and eliminates system calls in libraries, which are linked against binaries,
yet, not needed at run-time. Unfortunately, sysfilter only works with PIC binaries,
which is a limiting factor of the analysis. For instance, 43.9% of all binaries in the De-
bian base installation comprise dynamically-linked, non-PIC binaries, and hence should
not be disregarded. Consequently, we regard the techniques applied in Jesse (Sec. 7.3)
complementary to both Confine and sysfilter.

7.5.3.3 Library Debloating

Asdiscussed in Sec.7.3.4, in order to identify unreachable code we apply library debloating
techniques only to the standard C library, libc. This strategy allows JEsse to consider only
viable paths during the system call number analysis. To quantify the impact of this pre-
processing step, we have applied Jesse to the GNU 1libc v2.28 that is part of the Debian
base installation. It turns out that the library holds 404 syscall instructions, which call
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273 distinct system calls. In other words, without applying debloating techniques, the
resulting seccomp profile would, by default, grant 273 distinct system calls in addition to
the ones that are not part of the 1ibc. Assuch, as opposed to the resulting seccomp policies
for the analyzed container images in Sec. 7.4.3, without this additional pre-processing step
the restrictions would be less effective. For instance, the generated seccomp policies for
the containers Httpd, MySQL, and Nginx would restrict only 17.3%, 14.1%, and 17.3% of
all system calls without debloating the 1ibc, instead of 55.3%, 41.2%, and 61.1% when
debloating the 1ibc respectively.
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7.6 Discussion

Only reliable analysis results can be of value in production systems. As such, in this
section, we assess the soundness of Jesse according to our key hypotheses (H1 — H4), the
compliance of which presents a sufficient condition to establish sound results in practice.
We conclude this section by discussing the limitations of our work.

7.6.1 Soundness

In essence, Jesse comprises a CFG construction (Sec. 7.3.2) and an abstract interpretation
based constant propagation technique (Sec. 7.3.3). Since our constant propagation strategy
relies on the constructed CFG, we have to evaluate both in combination. Our implementa-
tion of the constant propagation leans on the work of Kildall, for which the author provides
a proof of soundness [Kil73]. Kildall’s proof bases its assumptions on that the CFG is a cor-
rect and complete representation of the analyzed program. Yet, since the CFG constructed
by JEessE is correct, but not necessarily complete, we have to pose further requirements on the
analyzed binaries to ensure the soundness of Jesse’s results (Sec. 7.3.1).

First, we assume that the binary satisfies H1. H1 assumes that benign and untampered,
gce and clang generated binaries can be linearly disassembled [ACvdV*16]. This lends
Jesse the ability to (7) identify all syscall instructions in the binary, and (i) ensure that
the disassembled instructions in the basic blocks of the CFG correspond to valid basic
blocks in the analyzed program. Furthermore, due to our conservative CFG construction
mechanism, we can guarantee that all edges in the CFG represent valid control-flows in the
analyzed binary. Also, H1 safely assumes that the analyzed binaries adhere to the calling
conventions of the x86-64 ABI. Specifically, Jesse assumes that a function’s caller can only
observe changes in caller-saved general-purpose registers; callee-saved registers are restored
on every function return; violating this assumption would lead to false results if, e.g., a
function call—prior to a syscall instruction—would not restore a callee-saved register’s
value, which is involved in the computation of the system call number.

In addition, we assume that every system call invocation in the target binary adheres
to H2 or H3. Generally, there exist only two analysis outcomes: either Jesse manages to
identify a system call number for a specific syscall instruction or requests the analyst’s
assistance. Assuming Jesse identifies a system call number. If H2 holds, the identified
system call number is the only system call number that can be passed to the syscall
instruction under analysis. If H2 does not hold for this particular syscall instruction,
yet, H3 does, we can be sure that indirect jumps (inside of the function) do not affect the
computation of the system call number. In other words, the incomplete CFG does convey
the necessary information for Jesse to derive that a syscall should in fact be able to call
different system call handlers. In such cases, the analysis either directly assigns X to rax
as soon as it identifes a second possible value, or it propagates X from one of the function
arguments to rax at the syscall instruction. In both cases, Jesse informs the analyst,
regardless of whether or not the function itself has been called indirectly. (Note that if the
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provided CFG is not correct, H1 and H2 will not suffice for sound analysis results. As such,
we have ruled out heuristic-based CFG construction tools for Jesse—heuristics can either
miss code or introduce illegal edges (Sec. 7.3.2).)

Finally, H4 bases upon the observation that most binaries do not call system calls directly,
but rather use wrappers in the standard C library. While this observation does not directly
contribute to the soundness of Jessk, it does entail one corner case, which deals with generic
system call wrappers, such as the syscall() function in libc. Jesse can determine the
system call number provided to such wrappers, only if they are called directly. In such
cases, JEsse considers calls to generic system call wrappers as hypothetical invocations of
syscall instructions, which receive the system call number in another register (e.g., rdi),
instead of rax. Yet, if a binary calls generic system call wrappers indirectly, Jesse will not
be able to identify these calls and hence to derive the system call number. We have not
encountered a single case of this type in the evaluation.

7.6.2 Limitations

Identifying semantic properties of programs are generally undecidable. Consequently, the
employed abstract interpretation of Jesse only approximates the results and, in some cases,
encounters its limits. These limits stem from both the dynamic nature of program behavior
and the implementation deficits of our prototype, which we outline in the following.

Conditional branches: Jesse does not differentiate between the various branch targets
to avoid having to determine the conditions that are only computed at run-time. Hence,
if rax depended on a condition, our prototype would not be able to determine its value.
Interestingly, we have not encountered any conditional assignments of the rax register
that preceded a syscall instruction.

Generic system call wrappers: The scope of our constant propagation is limited to
function-level. While this is sufficient for most system call invocations, there exist functions
thatactas generic wrappers (e.g., the syscall () functionin libc) for arbitrary system calls;
they allow to specify the system call number in one of the function’s parameters. Since
the exact system call number depends on the calling function, analyzing the syscall()
function alone is insufficient to determine the provided system call number. We counter
this issue by, first, letting Jesse inform us about the non-identified system call number,
and second, instead of identifying the value in the rax register just before the syscall
instruction, we identify (in the case of the syscall () function) the value of the rdi register
just before calling the syscall () function. As this solution targets the syscall() function,
a generic solution would need to consider the register state transferred between function
calls. Yet, by analyzing binaries of Debian base, we have observed that syscall() is the
only function that receives a system call number as argument (Sec. 7.5.1).
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7 Enhancing Security of Linux Containers

System call numbers in memory: Jesse’s system call number analysis (Sec. 7.3) hinges on
the premise that system call numbers are passed as constants via the rax register, and that
they are not read from memory. Yet, some functions do not adhere to this assumption.
For instance, sighandler_setxid() in libpthread reads the system call number from
memory to determine whether to change the user or the group id. In such cases, Jesse
informs and requests the analyst’s input to make an informed decision.

Dynamically loaded code: C/C++ programs can constrain Jesse’s analysis by either load-
ing modules at run-time (via dlopen()), or dynamically generating code (via JIT compi-
lation). To address the former case, we rely on the analyst to instruct Jesse to analyze all
binaries loaded at run-time. Yet, static analysis cannot make any assumptions about the
dynamically generated code.

Attack vector reduction: Although seccomp effectively reduces the system’s attack vec-
tors, it cannot completely diminish future attacks. Jessk (as the last line of defense) is most
effective combined with other security hardening measures. For instance, when combined
with accurate library code debloating mechanisms [QPY18, AJWK*19, WKKWK™"20],
Jesse would establish a restricted environment, deprived of unnecessary and potentially
threatening gadgets and system calls.

Considering k-set domains: Jesse’s abstract interpretation based constant propagation
considers an abstract domain that restricts the number of constant values in registers to
one. In other words, our analysis cannot determine a set of different constant values, a
register can hold at a specific point. Instead, we assign T to the register if it can hold
more than one value (Sec. 7.3.3.1). This implementation is in line with H3, which assumes
that each syscall instruction is dedicated to invoke only one system call handler. We can
address this restriction by basing the abstract domain on k-sets to allow registers to hold
up to k different values. In this way, our analysis would be able to determine more than
one system call number per syscall. Interestingly, we have not encountered a single case,
in which this extension alone would improve the results in Sec. 7.5.1.

Virtual Dynamic Shared Object: On Linux, the vDSOis an architecture-dependent, shared
library mapped into the address space of every user space process [Bov14b]. Generally, the
vDSO increases the performance of selected system calls by emulating their functionality
in user space; virtual system calls do not have to switch into the kernel space to perform
their task. While the vDSO is practical, its architecture dependencies can introduce diffi-
culties to dynamically generated seccomp policies [Cor19]. For instance, the time-keeping
system calls highly depend on the program’s choice of the hardware’s clock source and
the system’s configuration [Cor19]. In case the vDSO (or rather its virtual system call
gettimeofday()) should not be in the position to meet these demands, it will fall back to
calling the system call in kernel space. Note that before Linux kernel v5.3, the fall back
called the 32-bit clock_gettime() system call [Cor19]. This introduces an issue for both
static and dynamic approaches for generating seccomp policies. Static approaches cannot
analyze the vDSO, and hence miss system calls that are invoked in the respective fall back
paths of virtual system calls. That is, even though the static analysis is able to extract the
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7.6 Discussion

called virtual system call (e.g., gettimeofday()), it will not identify the system call num-
ber that will be potentially called on another system (e.g., clock_gettime()). Similarly,
dynamic approaches can miss the system call numbers used in the fall back path as the
system could be differently configured on a different machine. To address this issue, we
have completely analyzed the vDSO and, by default, authorize the execution of all system
calls that can be called by the vDSO.

171

x
=}
=
|
Y
o
>
=
=
=}
(3
Q
(7]
()]
=
(3]
c
©
=
(=
17}

)
T
o

=
©

L
c
o

o




7 Enhancing Security of Linux Containers

7.7 Related Work

In this chapter, we have presented Jesse, a framework for creating seccomp policies to
establish a safe, sandboxed environment for Docker containers. In this context, we have
combined different techniques, which are related to sandboxing, debloating, and constant
propagation. In the following, we relate our work to selected research contributions.

There exists a significant body of research dedicated to analyzing and sandboxing appli-
cations and their libraries. For instance, Janus [GWT"96] is one of the first sandboxes for
untrusted applications. It uses the Solaris” dynamic tracing capabilities to interpose and
confine system calls. Automatically generating system call whitelists has been also subject
to Host-based Intrusion Detection Systems (HIDSs). For example, Wagner et al. [WDO01]
and Feng et al. [FGH" 04] use system call traces to detect malicious behavior. They apply
static analysis techniques to construct automatons representing the benign system call
traces and use them to detect malicious behavior at run-time. However, both approaches
rely on hand-crafted (i.e., expensive and error-prone) models to identify the set of system
calls of library functions. Thus, Jesse can complement their approaches.

Enhancing security of Android applications: Further sandboxing techniques have been
applied to Android. Boxify [BBH'15] establishes a framework that uses Android’s process
isolation to execute apps in the context of a trusted process with restricted permissions.
It limits the capabilities of untrusted apps by intercepting system calls and calls to the
Android APIL DroidSafe [GKP*15] models the Android API and uses static analysis to
reveal information leaks in Android applications. Similarily, FlowDroid [ARF*14] is
a static taint analysis that offers higher precision. While these approaches implement
the necessary means for isolating and restraining individual applications, they cannot
determine relevant permissions and system calls that should be whitelisted. As such,
Jamrozik et al. [JvSRZ16] introduce a dynamic analysis based framework, coined sandbox
mining, to determine the resources required by applications at run-time. They present
BOXMATE, a framework that executes tests against target applications on Android to extract
the set of resources (including system calls) required during the tests. This allows BoxMATE
to limit the applications to the gathered resources. Instead of relying on conventional
benchmarks, DroidBot [LYGC17] generates custom tests utilized by the framework of Le
et al. [LBL™18], to also consider parameters of calls to the Android APL

Enhancing security of Linux containers: Wan etal. [WLX"17] mine sandboxes for Linux
containers. They apply dynamic analysis to determine authorized system calls of Linux
binaries. Similar to Jessg, they use the gathered information to generate and apply seccomp
to filter unauthorized system calls. Unfortunately, due to the inherent properties of dy-
namic analysis, their framework can miss system calls. Similar to Wan et al.s approach,
Ghavamnia et al. [GPBP20] also construct seccomp profiles based on the results of a static
source code analysis called Confine. A novel mechanism is the temporal system call spe-
cialization by Ghavamnia et al. [GPMP20] that divides the execution of a program into
phases and applies different seccomp filters in each of these.
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Container and library debloating: Another research direction applies debloating tech-
nique to containers. Rastogi et al. [RDDC"17, RNM]J17] develop Cimplifier, a framework
that partitions, or distributes applications inside a container into multiple, minimal, iso-
lated, and interconnected containers. Their research, applies either dynamic [RDDC*17]
or static analysis [RNM]J17] techniques to discover essential and to remove unused pro-
grams from the container’s image. In this way, Rastogi et al. manage to eliminate unneeded
bloat from container images. Other debloating techniques aim to eliminate unneeded code
in program libraries. Quach et al. [QPY18] statically analyze the binaries to discover un-
needed instructions in libraries. They use the gathered information to unmap irrelevant
code in the process” address space. Additionally, Quach et al. overwrite irrelevant code
in the process” address space on sub-page granularity by relying on the copy-on-write
mechanism. Yet, the authors base their analysis on the intermediate representation of
LLVM and hence they have to recompile the analyzed binaries with clang (which is not
able to compile libc). Agadakos et al. [AJWK™19] develop a binary-level library de-
bloating tool, Nibbler, which analyses binaries to identify and erase unused functions in
libraries, without having to recompile the target binaries. Yet, the presented tools rely on
additional meta information in unstripped binaries, gathered from the ELF symbol table.
Egalito [WKKWK™20] is a framework for recompiling binaries to enhance their security
(e.g., by reordering instructions, introducing retpolines, JIT-shuffling, etc.). In addition,
similar to Nibbler, Egalito applies techniques to debloat programs and libraries. Contrary
to Jesse, Egalito requires binaries to support PIC to gather sufficient metadata. Although
Egalito significantly reduces the code size by recompiling the binaries, it cannot remove
code that is not executed due to disabled features in the configuration; such code is only
dead in the current configuration but not in general. As response, Koo et al. [KGP19]
develop a configuration-driven software debloating technique that overcomes this limita-
tion. Koo et al. analyze which libraries are only used to provide one specific feature and
remove these libraries when the feature is disabled.

Constant propagation: Finally, constant propagation is a well-studied research direction.
Kinder et al. [KV08, KZV09, KV10], Fleury et al. [FLPV15]), and Bardin et al. [BHV11]
employ constant propagation to recover CFGs from binaries. While Bardin et al. rely
on symbolic execution to underapproximate the CFG, Kinder et al. and Fleury et al.
overapproximate the CFG by using abstract interpretation identifying possible targets of
indirect branches.
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7 Enhancing Security of Linux Containers

7.8 Summary

Contrary to the security hardening techniques of previous chapters, in this chapter, we
have explored our final objective, which deals with the question how to assist OS-level
virtualization (Q3). Instead of relying on hardware virtualization extensions, we have
utilized the Secure Computing (seccomp) mode that is available to the Linux kernel. The
presented techniques do not require a dedicated VMM to enforce the security guarantees,
yet, they can complement orthogonal mechanisms that have the ability to further increase
the isolation of containers, e.g., through virtualization (Chap. 6). That said, we have
introduced JessE, a framework that leverages static analysis to tailor seccomp policies for
ELF binaries and Docker containers on Linux. Specifically, we have extracted sandboxed
ELF binaries from container images and utilized an abstract interpretation based constant
propagation to identify the system calls in the extracted binaries. More precisely, we have
analyzed arguments of syscall instructions to determine a set of authorized system call
numbers. We have further combined our analysis with state-of-the-art library debloating
techniques to narrow down the necessary code regions associated with each exported
function in the standard C library, 1ibc. We use the isolated code regions in the libc
to create a (per function) map with the involved system call numbers. In this way, Jesse
can query the map to identify the system calls of an exported function that is required by
the analyzed binary. Once we have extracted the system call numbers, we have compiled
seccomp policies for the respective Docker containers to thwart accesses to unnecessary,
and potentially vulnerable system calls. Finally, we have demonstrated the effectiveness
of our work by applying Jessk to all binaries in the Debian base image and popular Docker
containers, and by reinforcing seccomp against real-world container escalation exploits.
Overall, the results in this chapter confirm that Jesse can be the last line of defense against
real-world exploits.
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Chapter

Conclusion

Prediction is very difficult, especially about the future.
— NIELS BOHR

The technological advances and the adoption of virtualization has shown great potential
with regard to OS security. During the past two decades, virtualization has undergone
a paradigm shift, in which it has extended its horizon from virtualizing servers towards
OS security. Chen et al. [CNO1] were among the first to identify the potential and chal-
lenges behind virtualization-assisted security. This, at the time novel direction has set
an incentive to leverage virtualization to relocate security-related services out of the OS
into an isolated environment. Similarly, the seminal paper of Garfinkel et al. [GR03] has
formed the origin of virtual machine introspection. The concepts behind VMI have laid
the foundation for various frameworks and continue to evolve up to this day. Both papers
have strongly influenced and inspired many researchers to emphasize the value of virtu-
alization technology on security. With time, security through virtualization has spilled
over from academic circles. Today, it receives increasing acceptance from the public and
industry sectors. For instance, Microsoft uses their VMM, Hyper-V, not only to virtualize
servers but also to equip Microsoft Windows with various virtualization-assisted security
policies. Overall, we believe that the capacity of virtualization in regard to security has
not yet been explored to its full extent, which has become the main drive for our research.
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8 Conclusion

8.1 Contribution

Inspired by previous research on virtualization, the technological progress, and their mu-
tual drive, in this work, we have explored new ways of repurposing the hardware’s virtual-
ization extensions to pursue two main research directions: namely (¢) novel virtualization-
assisted techniques to improve the state-of-the-art VMI-based dynamic binary analysis
frameworks and (i7) primitives to support the security of selected OS components (Sec. 1.2).
To put the perspective on these two main research directions into a concrete frame, we have
outlined an abstract target system architecture in Chap. 3. We have used the simplified
target architecture to organize and position the concepts and intents of our contributions.
Also, we have accompanied the simplified architecture with a general threat model, which
defines offensive and defensive adversarial tactics to shed light on the presumed opponent.

Our line of research has begun by investigating on-demand VMM deployment strategies
(Chap. 4). By adopting the deployment scheme of virtualization-assisted rootkits [Rut06b,
RTO07, Zov06], we have designed a thin, microkernel-based framework, WhiteRabbit. We
have utilized WhiteRabbit to assist OSes to dynamically take control over the system’s
virtualization extensions, and to install arbitrary virtualization-assisted services according
to (i) and (i7). We have demonstrated the potential of WhiteRabbit’s deployment strategy
by installing an exemplified VMI framework on a Linux system, on-the-fly. By following
this line of research, we have gained a renewed perspective on the virtualization extensions
on x86 and ARM; we were able to utilize their capabilities on-demand—i.e., without having
to rely on a fully-fledged VMM, which typically has to be deployed before the OS itself.
Yet, more importantly, through this framework, we have gained the insights necessary to
approach the objectives that have helped guiding our research (Sec. 1.2).

The modern ARM architecture has become one of the most prevalent architectures
for mobile, wearable, and IoT devices, and also has found its way into the server mar-
ket [Ama20, The20b]. We have explored the ARM architecture to identify whether it is
equipped with hardware capabilities necessary for stealthy VMI. Even though our inves-
tigations have revealed that ARM lacks the foundation required for stealthy monitoring,
with Q1, we have set an objective to identify alternate ways to overcome this limitation.
We have observed that we can compensate the hardware deficits, by introducing alter-
native primitives to empower stealthy monitoring on ARM. In Chap. 5, we have shown
how these primitives can establish alternative ways of setting and single-stepping software
breakpoints, without using the intended hardware extensions. In other words, we have
repurposed the virtualization extensions on ARM to facilitate stealthy primitives for VML
Specifically, these primitives leverage our implementation of the Xen altp2m subsystem,
which utilizes the SLAT mechanism to define and switch among alternate views on the
guest-physical memory. By configuring the alternate views in a sophisticated way, we
manage to set and single-step over injected tap points in memory, without revealing them
to the monitored VM. To demonstrate the effectiveness of our achievements, we have
equipped the state-of-the-art dynamic binary analysis framework, DRAKVUF, with our
primitives, and hence ultimately empowered ARM with stealthy VMI capabilities.
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8.1 Contribution

As part of our next objective (Q2), we have shifted the focus of our research away from
VMI towards integrating the capabilities of hardware virtualization into Linux to enhance
the security of its subsystems (Chap. 6). This strategy has allowed us to overcome the
limited access permissions of the MMU in regard to memory isolation. We have intro-
duced virtualization-assisted selective memory protection (xMP) primitives to counter
data-oriented attacks in kernel and user space. Instead of outsourcing policies and knowl-
edge to enforce isolation of selected memory regions to the VMM, we have empowered the
memory management system of the OS with the ability to isolate sensitive data in disjoint
xMP domains. The xMP primitives additionally equip pointers to sensitive data in kernel
memory with context-bound authentication codes to prevent unauthorized pointer redi-
rections. We have shown that Intel’s in-guest EPTP switching capability perfectly suits our
demands; this hardware extension allows VMs to take over some of the EPT management
tasks, and hence to maintain different views on the guest’s physical memory. At the same
time, we have discussed that we can apply xMP, e.g., to the ARM architecture by imple-
menting dedicated hypercalls. In both cases, by utilizing xMP, guest OSes do not have
to relocate the defender’s logic into the VMM. To assess our work, we have implemented
and applied xMP primitives to protect all page table structures and process credentials in
kernel space, and cryptographic material of selected user space applications. In addition,
we have established the foundation for virtualization-assisted container security, by inte-
grating xXMP into Linux namespaces. In all cases, we have shown that the number of xMP
domains scales and incurs only low performance overhead for real-world applications.

By having integrated xXMP into the Linux namespaces, we have started to shift our focus
towards our final objective Q3. In this context, the question we have asked ourselves is
how to assist OS-level virtualization (i.e., containers) to fortify their isolation capabilities?
Through xMP, we have shown that we can equip Linux namespaces—an essential building
block of modern Linux containers—with enhanced memory isolation capabilities. The
xMP namespaces leverage SLAT to isolate selected system resources. In this way, xMP
provides a hardware-backed defense, which can be utilized by the Linux kernel to obstruct
adversaries from corrupting or leaking the contents of sensitive kernel data structures, even
if a malicious actor has gained primitives to arbitrarily read or write to kernel memory.

To approach Q3 from a different point of view, in Chap. 7 we have introduced JEssE, a
static analysis based framework to tailor seccomp policies for Docker containers on Linux.
Jessk filters not needed (and potentially vulnerable) system calls that would be otherwise
freely available to the applications in the container. In this regard, Jessk (i) extracts relevant
ELF binaries from Docker container images; (i¢) applies its abstract interpretation based
constant propagation to identify an over-approximated set of system calls, the respective
binary is authorized to invoke; and (7i¢) compiles Docker-compatible seccomp policies.
In addition, we have implemented common library debloating techniques to identify the
system calls of each individual function of the standard C library, libc. This scheme
has allowed us to create a map, which we can query to determine the system calls that
are associated with each exported function in the 1libc. Finally, we have applied Jesse to
popular Docker containers to protect them against real-world container escape exploits.
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8 Conclusion

8.2 Future Research Direction

Virtualization technology has reached a state, in which it receives increasing acceptance
from the public and industry sectors. Undoubtedly, this technology is indispensable in
cloud environments, yet, it has also proven itself perfectly suitable in regard to security.
In line with our work’s research directions, in the following, we share our thoughts on
our ongoing and future research directions on VMI-based dynamic binary analysis and
virtualization-assisted OS security.

Selective driver protection: Linux device drivers (in form of loadable kernel modules)
establish an interface between the OS kernel and physical devices. Being responsible for
handling the devices” input, kernel modules face the risk of being abused by malicious
actors, who aim to gain access to the most sensitive components of the OS kernel. To
alleviate this issue, our ongoing research investigates selective driver protection (xDP) prim-
itives for Linux. The general idea behind xDP is to prevent potentially vulnerable kernel
modules from mounting code-reuse attacks against the Linux kernel. Specifically, we can
use xDP to isolate selected device drivers and filter their communication with the kernel.
This essentially divides the problem into two steps. First, we have to generate filters to
grant access to only authorized kernel functions. We can implement this step as part of the
module loading procedure (this is where the kernel resolves the addresses of the exported
functions). Second, we have to isolate the drivers from the kernel through SLAT tables
and mediate their control-flow transfers to the kernel by enforcing the (per-driver) filters.

Inspired by the system call filtering capabilities of seccomp on Linux (Sec. 2.1.2), our
idea is to filter unauthorized control-flow transfers from a driver to the kernel, and hence
thwart driver-originated code-reuse attacks against the kernel. The interaction between
kernel modules and the kernel itself takes place through (i) exported kernel functions
and (i¢) dynamically initialized function pointers that point to the kernel’s functionality.
While we can address (i) by extracting the exported kernel functions that are required by
the particular driver (by parsing the kernel module’s relocation symbols), addressing (i)
requires further investigation, which we intend to pursue in our future work.

Once the filters are complete, much like with xMP (Chap. 6), we can utilize the EPTP
switching and the #VE functionality on Intel to unmap the kernel’s code segments (i.e.,
map the entire kernel memory as non-executable) from the driver’s view and mediate the
transitions. By creating two views on the guest’s physical memory (a driver view and a
kernel view, with both components being mutually non-executable in the respective opposite
view), we can obstruct execution attempts of unauthorized functions. The driver will trap
on every execution attempt of the non-executable kernel code into the #VE handler, in which
we can switch the views to continue the execution. Since the #VE handler will be invoked
on every transition of both views, it will allow us to apply the previously defined filter
to grant transitions to only authorized functions. Similarly, when the kernel executes a
driver’s function, it will trap into the #VE handler, which will switch back to the driver view.
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Hardening the Linux kernel slab allocator through in-place metadata isolation: An-
other research direction that we have started to investigate is the in-place isolation of metadata
in slab-based dynamic memory allocators on Linux [Mom20]. At the heart of its memory
management, the Linux kernel utilizes the slab allocator to facilitate fast and memory-
efficient allocations of kernel objects (Sec. 6.4.2). The Unqueued Slab Allocator, SLUB, is the
default slab allocator in modern Linux kernels. It maintains slab caches for frequently-used
objects of the same size. More importantly, the SLUB allocator maintains allocated objects
and metadata, e.g., of free objects in the same slab cache. In other words, both metadata,
which is required for managing slab objects, and the allocated slab objects themselves
share the same physical pages; this design choice lends adversaries sufficient ground for
abusing the slab object’s metadata to mount various attacks against the Linux kernel.

As alogical next step to our research on virtualization-assisted primitives (Chap. 6), this
research direction leverages virtualization to provide a split perspective on slab objects to
obstruct attackers from mounting attacks by abusing the heap’s metadata. In particular,
our ongoing research investigates a novel slab-hardening mechanism, which equips the
slab allocator with the ability to separate the metadata from the user-controlled objects,
without changing the virtual address layout of both elements. Specifically, our idea is
to establish an in-place isolation scheme, which utilizes the system’s SLAT mechanism to
define separate views on the guest-physical memory. In this context, each view translates
the object’s address to a machine-physical address that holds either the object’s data or its
metadata. This way, the suggested slab-hardening mechanism associates every slab object
with a view on its data (data view) and a separate view on its metadata (meta view). Thus,
the system can configure the data view as default to prevent attackers from corrupting the
metadata, and switch to the meta view only in controlled and safe locations.

Formal requirements for VMI-capable architectures: We have observed a cycle, in which
hardware vendors announce and incrementally roll out novel hardware extensions, which
are then explored by researchers with the intent to utilize the new hardware capabilities
for their purposes. This process does not always fully meet the needs of the researchers,
which are then forced (in the best case) to combine the hardware features with less-
performing software techniques. Similarly, throughout our work, we have repurposed
existing hardware features to meet our demands. Understandably, in only very rare cases,
research—sometimes driven by the industry—can directly influence the hardware vendors
to develop dedicated features. To counteract these conditions, researches can resort to an
open source ISA, such as RISC-V, to implement the necessary features directly in hardware,
and ideally introduce these features into the open standards that are maintained by the
community. In this regard, we believe it would be of great value to the research community
to specify and design the necessary hardware requirements for VMI (e.g., in form or a set
of hardware-assisted capabilities) to define a dedicated VMI-capable architecture.

Virtualization-assisted OS architecture: We have started our work by exploring novel
primitives to improve the capabilities of state-of-the-art VMI techniques. Over time, we
have turned our attention towards assisting the security of OS architectures. In Chap. 6, we
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8 Conclusion

have introduced our first attempt to integrate the capabilities of the system’s virtualization
extensions directly into the OS for defense purposes. Contrary to VMI, where external
monitors utilize these capabilities to establish concealed monitoring environments, we
envision a paradigm shift in the design of OS architectures. We believe that future OS
architectures should alleviate the strict line between the OS and the VMM. Instead, we
suggest that OSes should directly incorporate the system’s virtualization extensions as
inherent building blocks into their subsystems. We have observed that the prominent OS
and VMM vendors have begun to utilize their virtualization to enforce security policies.
Yet, we suggest to take this approach to the next level. We envision the next generation of
OS architectures to involve and utilize virtualization extensions as an integral part of the
OS. In other words, we consider the capabilities of virtualization extensions not limited
to VMMs, but rather as a hardware resource, whose properties can greatly benefit the
subsystems of the OS. The kernel can dedicate a kernel module to take control over these
hardware features (Chap. 4). This scheme would allow different subsystems of the OS
to utilize the added hardware properties to enforce custom policies, without relying on a
fully-fledged VMM. Given that the technological state of modern hardware architectures
supports nested virtualization, our idea does not conflict with multi-VM environments.

Virtualization-assisted container security: Further enhancing the security of containers
is one of the next logical steps of our research. This research direction partially overlaps
with the virtualization-assisted xXMP primitives, which have allowed us to enhance the
security of containers by extending the capabilities of the Linux namespaces (Chap. 6).
Given the flexibility of modern containers, they became not only prevalent in hosting
various services, but also a convenient environment for analyzing potentially malicious
binaries [Sti20]. Hence, equipping the OS’s namespaces with virtualization-assisted isola-
tion features (as we have done with xXMP) is a necessity in protecting against maliciously-
motivated container escapes. At the same time, we can imagine scenarios, in which we
can leverage the hardware-supported memory encryption features, combined with an al-
ternate SLAT scheme, to enhance the security of containers. For instance, by exploring
the announced Multi-Key Total Memory Encryption (MKTME) technology of Intel, future
research should investigate the benefits and consider applying the novel features to use
different keys to encrypt the memory of containers and the remaining parts of the OS.

By considering container-based analysis, we can think of methods that utilize the hard-
ware’s SLAT to establish stealthy analysis of binaries inside containers. Even though
previous research on container-based malware analysis techniques has progressed, the
applied methods lack a stealthy operation: both setting and single-stepping breakpoints
can reveal the analysis framework. Thus, they face challenges which similarly occur in
VMlI-based analysis in regard to split-personality malware. To improve the state-of-the-art,
similar to the presented techniques in Chap. 5, future research can consider alternative
ways to repurpose the system’s SLAT to implement stealthy monitoring primitives for
containers.
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8.3 Final Words

8.3 Final Words

Overall, through our research, we have demonstrated that virtualization technology has
a lot to offer. We have improved the stealthiness of state-of-the-art VMI-based dynamic
binary analysis frameworks on ARM. In fact, to the best of our knowledge, we were
the first to enable stealthy monitoring on ARM systems. In addition, we have provided
an insight into our envisioned virtualization-assisted OS architecture that alleviates the
strict separation between an OS and a VMM. The system’s virtualization extensions can be
utilized by the OS kernel directly to enhance the security of its subsystems, without having
to deploy a fully-fledged VMM. In parallel, and entirely independent to our research, we
have observed an industrial trend that follows a similar direction, which further supports
our drive and motivation towards virtualization-assisted security. In conclusion, I strongly
believe, and emphasize that the capacity of the virtualization technology in regard to
security has not been explored to its full extent. As such, I look forward to investigating
new avenues of virtualization that are yet to be discovered.
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Glossaries

Symbols

BXJ Branch Exchange Jazelle.

EL exception level.

MTF Monitor Trap Flag.

PC Program Counter.

PL privilege level.

SMC Secure Monitor Call.

VMID Virtual Machine Identifier.

VTTBR Virtualization Translation Table Base
Register.

#VE Virtualization Exceptions.

vDSO virtual Dynamic Shared Object.

A

ABI Application Binary Interface.

AMT Active Management Technology.

API Application Programming Interface.

ASLR Address Space Layout Randomiza-
tion.

B

BOP Block-Oriented Programming.
BPF Berkeley Packet Filter.

C

CFB Control-Flow Bending.
CFG Control-Flow Graph.
CFI Control-Flow Integrity.

CPI Code Pointer Integrity.
CPU Central Processing Unit.

D

DEP Data-Execution Prevention.

DFI Data-Flow Integrity.

DKSM Direct Kernel Structure Manipula-
tion.

DMA Direct Memory Access.

DOP Data-Oriented Programming.

dTLB data TLB.

DVM Dalvik Virtual Machine.

E

eBPF extended Berkeley Packet Filter.
ELF Executable and Linkable Format.
EPT Extended Page Table.

EPTP EPT pointer.

H

HCS Host Compute Service.

HIDS Host-based Intrusion Detection Sys-
tem.

HLAT hypervisor-managed linear address
translation.

HLL High-level Language.

HMAC Keyed-Hash Message Authentica-
tion Code.
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Glossaries

HVM hardware-assisted VM.
I

I/O Input/Output.

IDT Interrupt Descriptor Table.

IOMMU I/O Memory Management Unit.
IoT Internet of Things.

ISA Instruction Set Architecture.

iTLB instruction TLB.

J

JIT Just-In-Time.
JIT-ROP Just-In-Time ROP.
JVM Java Virtual Machine.

K

KASLR Kernel Space Address Layout Ran-
domization.

KPTI Kernel Page Table Isolation.

KVM Kernel-based Virtual Machine.

L

LSB Linux Standard Base.

LSM Linux Security Modules.
LWD Lightweight Disassembler.
LXC Linux Containers.

M

MAC Mandatory Access Control.

MKTME Multi-Key Total Memory Encryp-
tion.

MMU Memory Management Unit.

MPK Memory Protection Keys.

MSR Model Specific Register.

N
NTP Network Time Protocol.
(@]

OCI Open Container Initiative.
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OS operating system.
P

PAC Pointer Authentication Code.
PCB Process Control Block.

PE Portable Executable.

PIC position-independent code.

R

RCU Read-Copy-Update.
ROP Return-Oriented Programming.

S

SEV Secure Encrypted Virtualization.

SEV-ES SEV Encrypted State.

SEV-SNP SEV Secure Nested Paging.

SFI Software-Fault Isolation.

SLAT second level address translation.

SMAP Supervisor Mode Access Protection.

SMEP Supervisor Mode Execution Protec-
tion.

SMM System Management Mode.

SMMU System MMU.

SMT Satisfiability Modulo Theories.

SPP Sub-Page Write-Permission.

SSL Secure Socket Layer.

sTLB shared TLB.

T

TCB Trusted Computing Base.
TEE Trusted Execution Environment.

TLB Translation Lookaside Buffer.
TLS Transport Layer Security.

U
uniTLB unified TLB.
A\

vCPU virtual CPU.
VM virtual machine.
VMBR virtual machine based rootkit.



Glossaries

VMCS Virtual Machine Control Structure. W

VMI virtual machine introspection.

VMM virtual machine monitor.

VMX virtual machine extensions. WSL Windows Subsystem for Linux.
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