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Abstract
Robot manipulators have been widely used in scientific research and engineering applica-
tions, such as space exploration, mental spinning and polishing, cargo handling, medical
surgery, etc. With low cost, they are able to effectively improve production efficiency, freed
up productivity, and protect human life and health. Recently, the robot manipulator is re-
quired to execute more and more sophisticated tasks, and thus it is increasingly challenging
to control a robot manipulator reliably. First, the dynamics of the robot manipulator is nor-
mally not known exactly, especially for high-degree-of-freedom ones. Moreover, input and
state constraints may deteriorate instantaneous performance of the robot manipulator and
can be used to describe safety requirements on control used in safety-critical applications,
e.g., close to or in cooperation with humans. Unfortunately, input and state constraints are
not of interest in the recent controller design. In addition, because of the inverse calcula-
tion involved in task-space control schemes, singularity problems are also challenging to be
handled.
In the dissertation, an adaptive incremental sliding mode controller is firstly proposed to

address modeling errors and external disturbances. The switching gains of the sliding mode
controller are regulated by a novel positive semi-definite barrier function (PSDBF). The
PSDBF prevents switching gains from being over/under-estimated. It results in enhancing
robustness of the controller and attenuating chattering.
Secondly, an incremental model predictive controller (MPC) is developed exploiting time-

delay estimation (TDE), and the concrete mathematical model is not required. This is
because the continuous-time nonlinear system model is approximated by an incremental
system using TDE. The input and state constraints are formulated as inequality constraints.
Thus, optimal control performance is achieved while input and state constraints are taken
into account. Considering the bounded error sourced from TDE as the major disturbance,
local input-to-state stability (ISS) of MPC is analyzed. Different from existing ISS analysis
for MPC, here continuity of the value function is used to derive the upper bound of the
difference between two value functions, and the resulting cumulative error bound is not
over-conservative. It is theoretically inferred from this ISS and the cumulative error bound
that increasing the prediction horizon enlarges the region of attraction, and at the same time
decreases tracking errors.
Finally, a robust and singularity-free task-prioritized control scheme, hierarchical incre-

mental MPC (HIMPC), is proposed for kinematically redundant robots based on multi-layer
constrained optimal control problems (OCPs), where multiple tasks are executed and ordered
by priority levels. Incremental systems are developed that approximate uncertain system dy-
namics and also equations of motion of tasks. The task hierarchy is then realized by equality
constraints on control signals for lower-priority tasks, based on dynamic consistency. Hier-
archical feasibility of HIMPC and uniqueness of the solution is theoretically analyzed. The
distinctive feature of this task-space controller is singularity-free. The reasons are two-fold:
(1) no inverse matrix calculation is involved in the algorithm; (2) Hessian matrices of the
constrained OCPs are always positive definite.
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Zusammenfassung

Robotermanipulatoren sind in der wissenschaftlichen Forschung und in technischen Anwen-
dungen weit verbreitet, z. B. in der Weltraumforschung, beim Drehen und Polieren von
Metallen, beim Frachtumschlag, in der medizinischen Chirurgie usw. Sie sind kostengünstig
und können die Produktionseffizienz effektiv verbessern, die Produktivität steigern und das
Leben und die Gesundheit der Menschen schützen. In letzter Zeit müssen Robotermanipula-
toren immer anspruchsvollere Aufgaben ausführen, so dass es immer schwieriger wird, einen
Robotermanipulator zuverlässig zu regeln. Zum einen ist die Dynamik des Robotermanipu-
lators normalerweise nicht genau bekannt, insbesondere bei Robotern mit hohem Freiheits-
grad. Darüber hinaus können Eingangs-und Zustandsbeschränkungen die instantane Perfor-
manzdes Robotermanipulators verschlechtern. Eingangs- und Zustandsbeschränkungen sind
typischeSicherheitsanforderungen in sicherheitskritischen Anwendungen, z. B. bei Roboter-
manipulatorenin der Nähe von oder in Zusammenarbeit mit Menschen. Beschränkungen
diese Art werden in Reglerentwurfsverfahren jedoch häufig nicht beachtet. Darüber hin-
aus sind Singularitätsprobleme aufgrund der inversen Berechnungen, die nötig sind wenn
Regelungen im Task-Space erfolgen, ebenfalls eine Herausforderung.
In dieser Dissertation wird zunächst ein adaptiver inkrementeller Gleitmodusregler vorgeschla-

gen, um Modellierungsfehler und externe Störungen zu berücksichtigen. Die Schaltfunktio-
nendes Gleitmodusreglerswerden durch eine neuartige positiv semi-definite Barrierefunktion
(PSDBF) implementiert. Die PSDBF verhindert, dass die Schaltverstärkungüber-oder un-
terschätzt werden. Dadurch wird die Robustheit des Reglers erhöht und das Chattering
gedämpft.
Zweitens wird ein inkrementeller modellprädiktiver Regler (MPC) entwickelt, der eine

Zeitverzögerungsschätzung (TDE) nutzt, und kein konkretesmathematische erfordert. Das
konkrete mathematische Modell ist nicht erforderlich, da das zeitkontinuierliche nichtlineare
Systemmodell durch ein inkrementelles System mit TDE approximiert wird. Die Eingangs-
und Zustandsbeschränkungen werden als Ungleichheitsbedingungen formuliert. Auf diese
Weise wird eine optimale Regelperformanzerreicht, während Eingangs- und Zustandsbeschränkun-
gen berücksichtigt werden. Unter Betrachtung des begrenzten Fehlers, der von der TDE als
Hauptstörung herrührt, wird die lokale Input-to-State-Stabilität (ISS) der MPC analysiert.
Anders als bei der bisherigen ISS-Analyse für MPC wird hier die Stetigkeitder Wertefunktion
verwendet, um die obere Schranke der Differenz zwischen zwei Wertfunktionen abzuleiten.
Dieresultierende kumulative Fehlerschranke ist damit nicht überkonservativ. Aus der ISS
und der kumulativen Fehlerschranke wird theoretisch abgeleitet, dass eine Vergrößerung des
Vorhersagehorizontssowohlden Attraktionsbereichals auch denNachlauffehler verringert.
Schließlich wird ein robustes und singularitätsfreiestask-priorisierendes Regelschema, hi-

erarchische inkrementelle MPC (HIMPC), für kinematisch redundanteRoboter vorgeschla-
gen, das auf mehrschichtigen, beschränktenoptimalen Regelproblemen (OCPs) basiert, bei
denen mehrere Tasksausgeführt und nach Prioritätsstufen geordnet werden. Es werden
inkrementelle Systeme entwickelt, die die unsichere Systemdynamik und auch die Bewe-
gungsgleichungen der Aufgabenapproximieren. Die Task-hierarchie wird durch Gleichheits-
beschränkungen für Steuersignale der Tasksniedrigerer Priorität realisiert, wobei als Grund-
lage die dynamische Konsistenz dient. Die hierarchische Machbarkeit von HIMPC und die
Eindeutigkeit der Lösung werden theoretisch analysiert. Die Besonderheit dieses Task-Space-
Reglersist die Singularitätsfreiheit. Dafür gibt es zwei Gründe: (1) der Algorithmus erfordert
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keine Berechnung der inversen Matrix; (2) die Hessematrizender beschränkten OCPs sind
immer positiv definit.
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Introduction 1

In this chapter, research background is first introduced. Then, challenges in control of
robot manipulators are summarized and state-of-the-art controllers are reviewed. Finally,
contributions and outline of this dissertation are introduced.

1.1 Research Background
Robot manipulator has attracted more and more attention from researchers, and are play-
ing increasing significant roles in scientific researches and engineering applications, such as
space exploration [1], mental spinning and polishing [2], [3], cargo handling [4], assembly [5],
medical surgery [6], [7], etc.
In accordance with the above-mentioned applications, the main advantages of the robot

manipulator are summarized as follows:

1) The robot manipulator improves production efficiency. In factories, repetitive and
high-intensity manual labour is usually not only inefficient but also performed with
low precision and safety. With the help of the robot manipulator, the work efficiency
will be improved significantly and factories can also increase more profits.

2) The robot manipulator freed up productivity. With the development of control science
and artificial intelligence technology, the robot manipulator is able to complete high-
precision, complex and repetitive tasks independently. As a result, manual operation
time is greatly reduced.

3) The robot manipulator improves surgical outcomes. With the help of tools controlled
autonomously by mechanical micro-manipulators, surgeons perform operations with
greater precision and tremors are reduced. It directly impact the surgical outcomes.

4) The robot manipulator protects human life and health. The robot manipulator can
replace humans to do tasks in environments that are dangerous or harmful to humans
such as high temperature, high humidity, radiation, poison, etc.

1.2 Challenges in Control of Robot Manipulators
Recently, the robot manipulator is required to complete more and more sophisticated tasks.
To control a robot manipulator reliably in the complex environment is challenging, and the
main challenges are listed as follows:
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1.2.1 Uncertainties and Unmodelled Dynamics
In practice, sufficiently accurate model identification is impossible, especially for high-degree-
of-freedom robot manipulators. First of all, when we construct the system dynamics, the
friction function of the robot manipulator is always simplified to reduce the complexity of
the controller. Linear friction models are studied in [8]. Although nonlinear friction models
were constructed, such as LuGre model [9] and the integrated friction model [10], the fric-
tion function is still not accurately known. This is because the joint friction varies during
operation or device wear. And also the complex mechanism of the mechanical systems and
the friction is also affected by environments, such as temperature. Besides, the robot dy-
namics, especially the inertia matrix, undergoes severe changes when the end-effector carries
or releases unknown payloads. In addition, there are also some unmodelled dynamics. For
example, the high-order dynamics of the motor are always omitted in the controller design.
Unfortunately, these model uncertainties and unmodelled dynamics inevitably deteriorate
tracking performance of the controller. Thus, it has a strict requirement on robustness of
the controller.

1.2.2 Input and State Constraints
The robotic system suffers from input saturation problems since all motors have an upper
bound of torques. Input saturation is a challenge of the controller design. The nonlinear
saturation of motor will deteriorate instantaneous performance of the robot manipulator,
such as higher overshoot, larger tracking errors, and even instability of the closed-loop system
[11], [12]. In addition, state constraints can be used to describe safety requirements on control
and thus enable robot manipulators to also be used in safety-critical applications, e.g., close
to or in cooperation with humans. Thus, state constraints are required to be considered
in controller design to guarantee safety. Unfortunately, state constraints are usually not
of interest to most of the Lyapunov-based controller design, such as computed torque and
dynamic inversion controllers [13]. This is because the consideration of state constraints
increases the complexity of Lyapunov functions. Although some Lyapunov-based controllers
consider the state constraints, the results are conservative, i.e., the feasible region is far
away from the boundary of the admissible set. As a result, the working space of the robot
manipulator is “wasted”.

1.2.3 Singularity
Singularity problem appears in task-space control schemes for the robot manipulator. In-
verse kinematics and inverse dynamics are two main task-space control approaches, where
the inversion of the term involving the Jacobian matrix is required to be computed. When
the Jacobian matrix loses its rank, the kinematic singularity occurs and the system is un-
stable. Although we can avoid the kinematic singularity by a restriction on allowed tasks,
an assumption is made on singularity-free task space. However, this assumption limits the
feasible task space of the robot manipulator.
Kinematically redundant robots are able to execute multiple tasks simultaneously, and

often tasks are ordered by priority levels. To enable the robot manipulator to perform
multiple tasks in a prioritized manner, task-prioritized control schemes are mostly developed
using the null-space projection method, and prioritized Jacobian matrices are computed. The
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prioritized Jacobian matrix happens to be singular even in configurations at which Jacobian
is full-rank. These kind of singularities are due to the employed control algorithm, and thus
they are termed algorithmic singularities. Because of the inverse calculation involved in
task-space control schemes, singularity problems are challenging to be handled.

1.3 State-of-the-Art Controllers
The challenges and problems stated in Section 1.2 have been studied although they are not
well resolved, and the state-of-the-art controllers are reviewed as follows.

1.3.1 Methods to Improve Robustness
Control accuracy is an important criterion of the robot manipulator. Thus, robustness, the
property to measure capabilities of controllers handle modelling errors and external distur-
bances, is emphasized in most of the state-of-the-art controllers. To enhance the robustness
of the controller, sliding mode controllers (SMC) [14], [15] are employed. However, the chat-
tering phenomenon of SMC deteriorates the tracking performance. Adaptive methods [16],
[17] and intelligent methods, such as neural networks [18], [19], fuzzy [20], [21], and Gaussian
process (GP) [22], are also applied on robot manipulators. However, these methods normally
use amounts of parameters that are tuned online to approximate and identify uncertainties
and external disturbances, resulting in high computational complexity. Moreover, weighting
parameters are required to be tuned offline relying on empirical knowledge of the engineers.
Owing to simplicity and efficacy, disturbance observer (DOB) based controllers have been

widely employed on robotic and mechanical systems [23]–[25]. Nevertheless, there are also
some limitations for the DOB-based controllers in practice [26]. In case the bandwidth of the
DOB is not high enough to compensate for inertia variations, the closed-loop system will be
unstable. In other words, if one can increase the bandwidth of DOB and/or nominal inertia
matrix, then stability will be enhanced. However, in practice, it will make the controller
more noise-sensitive. To address this problem, nonlinear DOB was developed in [27], and
the trade-off between robustness and noise sensitivity can be better adjusted. Nevertheless,
the nominal nonlinear dynamics terms are required to design the nonlinear DOB.
Time delay control (TDC) [28] based on time-delay estimation (TDE) [28]–[36] is a ro-

bust controller, which requires less modelling information. The time-delayed signals are
employed to estimate dynamics of the robot manipulator. The stability condition for TDC
was established independently in [28], [36], which also provides an important criterion to
select the constant diagonal decoupling inertia matrix M̄. A sufficient small M̄ can stabilize
the system even when the nonlinear dynamics terms of robot manipulators are unknown.
Nevertheless, with the constant M̄, the TDE-based controllers do not always guarantee high
tracking accuracy in different positions. In [30], a modified Nussbaum function was employed
to tune M̄ automatically. However, the modified Nussbaum function method is sensitive to
measurement noises and difficult to be implemented in practice. To make the controller
more practical, adaptive schemes for M̄ were developed in [32], [33]. However, the adaptive
schemes in [32], [33] usually do not reflect the tracking error timely and precisely. As a result,
it results in low control precision [35]. Considering TDE error as the disturbance, adaptive
SMC schemes were also developed to improve tracking accuracy of TDE-based controllers
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[29], [31], [34]. However, the switching gains are normally overestimated [37] or underesti-
mated [29], [33]. When the switching gains are overestimated, it results in chattering. For
underestimation, tracking accuracy will be adversely affected.
To sum up, if we can prevent the switching gains from being underestimated and overesti-

mated simultaneously, then the combination of TDC and SMC is an effective way to address
uncertainties and modelling errors and thus enhance robustness.

1.3.2 Methods to Address Input and State Constraints
Input saturation has been intensively studied, since it is critical to tracking performance.
The methods to handle the input saturation are similar, where auxiliary variables are in-
troduced and auxiliary dynamics subsystems are designed to compensate for the saturation
nonlinearity [11], [12], [38]–[40]. Although the overshoot caused by the input saturation is
avoided, the tracking performance is not optimal. In comparison, there are fewer research
on the state constraints. In [13], [41], barrier functions were employed to address state
constraints, however, the results are conservative and the design of the control Lyapunov
function is challenging.
Model predictive control (MPC) [42] is an optimization-based control method addressing

optimal control performance as well as input and state constraints, where the constrained
optimal control problem (OCP) is considered. For MPC, the constrained OCP is solved
using the state predictions generated by the nominal mathematical model in a horizon. Thus,
control performance of MPC will be adversely affected by uncertainties, such as modelling
errors and disturbances. To attenuate uncertainties and improve robustness, SMC [43] is
combined with MPC. However, optimality of the control performance is adversely affected
by SMC. Moreover, the nominal mathematical model of the robot manipulator is required.
In addition, the employed mathematical model is nonlinear and thus we have to consider
nonlinear MPC schemes, of which computational complexity is such high that it can not
implemented in real-time. Although the nominal model of the robot manipulator are not
required for NN [44], [45], data-driven methods [46], [47], GP [48]–[50], and other learning
methods [51], [52] based MPC methods, they further increase the computational complexity
and real-time control performance is not guaranteed.
All in all, if we can reduce dependence on the mathematical model (enhance the robust-

ness) and adopt a linear MPC scheme, MPC can an option to address input and state
constraints of the robot manipulator.

1.3.3 Methods to Handle Singularity
In the literature, damping factors [53] are commonly introduced to calculate inverse kine-
matics (inverse dynamics) controllers and to address kinematic singularity problems, The
damping factors are either fixed or can be automatically adopted [54], [55]. However, there
is a trade-off between good conditioning of the solution and tracking accuracy. Thus, tun-
ing a reasonable damping factor is a challenging work: too low a damping factor and the
control signal will be too large (undesired); too large damping factor and control perfor-
mance will be deteriorated [56]. Besides introducing damping factors, there are also several
methods introduced to avoid singularities. In [57], an optimization-based inverse kinemat-
ics singularity-robust solver is developed, taking advantage of the structure of the robot
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manipulator. However, this method is merely applied to one robot with a spherical wrist
and more than three joints before it. In [58], a singularity-robust method is introduced. In
[58], [59], the singularity-robust controller consists of a joint-space position controller which
is activated when the robot manipulator is near singular configurations and a task-space
controller that is employed when the robot leaves the singular region. The singular regions
are described by the potential energy functions. When there are multiple singular regions,
a complex potential energy function is required.
In the null-space projection based task-prioritized controllers, algorithm singularity occurs

especially when tasks conflict with each other. The damping factor [53] and the continuous
null-space projection [60] were used to address algorithmic singularity. The result is still
not satisfactory. In [61], the equality constraints on control signals are employed to realize
the task hierarchy, without using the null-space projection idea and inverse matrix of the
prioritized Jacobian matrix is not required to calculate. However, the dynamic consistency
(or task hierarchy) will be affected since the inertial matrix is required to construct the
equality constraint equations and the fact that modelling error is inevitable.
Therefore, how to address singularity in task-space control schemes is still an open prob-

lem. In accordance with the literature review, if we can avoid inverse calculation, use the
equality constraints, and adopt a robust mathematical model, the singularity problems (in-
cluding algorithmic singularity in task-prioritized control schemes) will be solved.

1.4 Contributions and Outline
In this dissertation, incremental optimal controllers exploiting time-delay estimation (TDE)
are developed to address uncertainties and unmodlled dynamics, input and state constraints,
and singularity problems. First, the main contributions of this dissertation are summarized
as follows:

1) The switching gains are not overestimated or underestimated, and robust-
ness is enhanced. The positive semi-definite barrier function (PSDBF) based in-
cremental sliding mode controller is developed, where a novel PSDBF is designed to
regulate switching gains. Then, switching gains increase with the rise of sliding vari-
ables, and vice versa. Thus, the PSDBF prevents switching gains of the sliding mode
controllers from being over/under-estimated. It results in enhancing robustness of the
controller and chattering attenuation simultaneously.

2) The MPC is developed without concrete mathematical model. A new in-
cremental model predictive controller (IMPC) is proposed. The new IMPC allows for
constrained control of a robot manipulator where the resulting incremental model is
derived using time-delay estimation (TDE). Compared with existing MPC methods,
the nominal mathematical model is not required and robustness of the controller is
enhanced. Moreover, the IMPC is a linear MPC, and computational complexity dra-
matically decreases compared with nonlinear MPC methods, which makes it possible
to realize real-time control in milliseconds.

3) Input-to-state stability (ISS) of the incremental model predictive is ana-
lyzed, and the cumulative error bound is not over-conservative. Considering
the bounded error sourced from TDE as the major disturbance, local ISS of IMPC

5



1 Introduction

is confirmed. Different from existing ISS analyses for MPC, here continuity of the
value function is used to derive the cumulative error bound, and thus the cumulative
error bound is no longer over-conservative. It is theoretically inferred from the ISS and
the derived cumulative error bound that increasing the prediction horizon enlarges the
region of attraction, and at the same time decreases tracking errors.

4) Singularity problem in task-space control scheme is avoided. A hierarchical
incremental model predictive controller (HIMPC) is designed to execute multiple tasks
simultaneously, and tasks are ordered by priority levels. The null-space projection idea
is not employed, and task hierarchy is realized by imposing equality constraints on
input signals. Since no inverse calculation is involved in these constraint equations,
algorithmic singularity is avoided. Besides, the inverse calculation of terms w.r.t.
Jacobian matrices is also not involved in the constrained OCPs, and the Hessian matrix
of each constrained OCP is verified to be positive definite. Therefore, the HIMPC is
also a kinematically singularity-free method.

Next, the outline of this dissertation is listed, in the order of the organisation.
Incremental sliding mode controller (Chapter 2). An adaptive incremental sliding

mode control (AISMC) scheme for a robot manipulator is presented in this chapter, it pre-
vents switching gains from being over/under-estimated. Firstly, an incremental backstepping
(IBS) controller is designed using TDE to reduce dependence on the mathematical model.
After substituting IBS controller into the nonlinear system, a linear system w.r.t. tracking
errors is obtained while TDE error is the disturbance. Then, the AISMC scheme, including
a nominal controller and an SMC, is developed for the resulted linear system to improve con-
trol performance. According to the equivalent control method, the SMC is to handle TDE
error. To receive optimal control performance at the sliding manifold, an LQR controller is
selected as the nominal controller. The SMC is designed based on PSDBF since it prevents
switching gains from being over/under-estimated, and two practical problems are addressed
in this paper: A new PSDBF is designed and conservative (large) setting bounds affecting
tracking precision and/or system stability are avoided; An improved PSDBF based SMC is
developed where the PSDBF and an adaptive parameter are used simultaneously to regulate
switching gains, and the system is still stable when sliding variable occasionally exceeds the
predefined vicinity. Moreover, the finite-time convergence property of the sliding variable is
strictly analyzed. Finally, real-time experiments are conducted to verify the effectiveness of
the proposed control method. The material of this chapter was published in Mechatronics
[62].
Incremental model predictive controller (Chapter 3). A new IMPC strategy is

proposed in this chapter, which allows for constrained control of a robot manipulator while
the resulting incremental model is derived without a concrete mathematical system model.
First, to reduce dependence on the nominal model of robot manipulators, the continuous-
time nonlinear system model is approximated by an incremental system using TDE. Then,
based on the incremental system, the tracking IMPC is designed in the framework of MPC
without terminal ingredients. Thus, compared with existing MPC methods, the nominal
mathematical model is not required. Moreover, we investigate reachable reference trajectories
and confirm the local ISS of IMPC, considering the bounded TDE error as the disturbance
of the incremental system. For reachable reference trajectories, the local ISS of IMPC
is analyzed using the continuity of the value function, and the cumulative error bound is
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not over-conservative. Finally, several real-time experiments are conducted to verify the
effectiveness of IMPC. Experimental results show that the system can achieve optimal control
performance while guaranteeing that input and state constraints are not violated. The
material of this chapter was accepted by IEEE Transactions on Control Systems Technology
[63].
Hierarchical incremental model predictive controller (Chapter 4). A hierar-

chical incremental model predictive controller (HIMPC) is developed for redundant robots
controlling multiple hierarchical tasks formulated on multi-layer constrained optimal control
problems (OCPs), and algorithmic and kinematic singularities are avoided. The proposed
HIMPC method, is robust to dynamic uncertainties, untethered from kinematic/algorithmic
singularities and capable of handling input and state constraints. To this end, we first derive
robust incremental systems that approximate uncertain system dynamics without computing
complex nonlinear functions or identifying model parameters. Then the constrained OCPs
are cast as quadratic programming problems which result in linear MPC, where dynamically-
consistent task priority is realized by deploying equality constraints and optimal control is
attained under inequality state constraints. Thus computational complexity drastically de-
creases compared with nonlinear MPC-based methods. Hierarchical feasibility and unique-
ness of its solution are theoretically analyzed; finally, simulations and experiments verify
the effectiveness of HIMPC compared with state-of-the-art task-prioritized controllers. The
material of this chapter was submitted to IEEE Transactions on Robotics, and now it is
under review.
As a summary, the contributions and outline of the dissertation are visualized in Fig. 1.1.
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Figure 1.1: The contributions and outline of the dissertation.
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Incremental Sliding Mode Control 2

The control of robot manipulators has been well investigated in the past several decades, and
it attracts considerable attention [14], [64]–[67]. The major challenge in robot manipulator
control, e.g., in manufacturing [68] or aerospace applications [69], is to be able to accurately
track reference trajectories in joint or task space. Generally, precise control of the robot
manipulator is challenging due to external disturbances and un-modelled uncertainties [70].
In this chapter, the aim is to design a robust controller using the time-delay eatimation
(TDE) technique.

2.1 Overview
The robust controller developed in this chapter is a combination of TDE and SMC. TDE
is used to approximate uncertain dynamics of the robot manipulator. Then to further
enhance control performance, SMC is designed to address the TDE error. However, switching
gains are either over-estimated or under-estimated. It is challenging to realize robustness
enhancement and chattering attenuation simultaneously. Thus, in this chapter, how to
prevent switching gains from being over-/under-estimated is the main focus.

2.1.1 Related Work
There are model-based and model-free approaches to control robot manipulators. The promi-
nent model-based approaches are computed torque (CT) [71] and backstepping [72]–[74].
However, control performance of model-based controllers depends on precise identification
of the system. In practice, sufficiently accurate identification is impossible because joint
friction varies during operation or device wears. Besides, the robot dynamics, especially
the inertia matrix, undergoes severe changes when the end-effector carries or releases un-
known payloads [75], which inevitably deteriorates tracking performance. To cope with this
problem, robust control [65], [76]–[78], SMC [14], [15], [79], and some techniques, such as
neural networks [18], [19] and fuzzy logic systems [80], were applied in combination with
CT method to improve tracking accuracy. Nevertheless, some techniques, such as neural
networks, employed some parameters identified online to approximate uncertain nonlinear
functions and external disturbances, resulting in high computational complexity.
Owing to its simplicity and efficacy, in the last forty years, disturbance observer (DOB)

based controllers have been widely applied on robotics and mechanical systems [23], where
uncertainties and external disturbances of the controlled plant are estimated [24], [25]. Es-
pecially in [26], nonlinear stability analysis for the DOB-based position control for robot
manipulators was implemented. As stated in [26], there are limitations for the DOB-based
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controllers in practice. In case the bandwidth of the DOB is not sufficiently high to compen-
sate for inertia variations, the closed loop system will not be stable. In other words, if one
can increase bandwidth of DOB and/or nominal inertia matrix sufficiently, then stability
of the control system will be strengthened. However, in practice, it makes the DOB-based
controller more noise-sensitive. To address inertia variations and to improve stability of the
DOB-based controller, the inertia matrix of the robot manipulator was identified online in
[81]. Nevertheless, online identification was realized using neural network, which increases
computational complexity. When the known nonlinear dynamics terms are used in the de-
sign of nonlinear DOB [27], performance of the control system can be improved in practice
and the trade-off between robustness and noise sensitivity can be better adjusted. However,
to implement the nonlinear DOB, the nominal nonlinear dynamics terms are required.
Time delay control (TDC) [28] based TDE [28]–[36] is a typical model-free control method.

TDC, similarly to incremental nonlinear dynamic inversion (INDI) [82], [83] or incremental
backstepping (IBS) [84], [85], uses time-delay signals to estimate partial dynamics of the
controlled system without any parameters identified online. In [28] and [36], the well known
stability condition of TDE was established independently, which provides an important ba-
sis for the application of TDE and also a criterion to select the TDE parameter M̄. A
sufficiently small M̄ can stabilize the system even when inertia matrix and other nonlinear
dynamics terms are unknown. Besides, M̄ selected for the robot manipulator also satisfies
the sufficient condition for stability under payload variations. Considering the posture of a
robot manipulator changes frequently during operation, the best tuned M̄ in a particular
situation may not be the best one for other situations. Thus, with constant M̄, the TDE-
based controllers do not always guarantee high tracking accuracy in different positions. A
modified Nussbaum function was employed in [30] to tune M̄ automatically. However, the
modified Nussbaum function method is sensitive to measurement noises and difficult to be
implemented directly in practical applications. To improve tracking performance, an adap-
tive M̄ scheme was adopted in [32], [33]. Nevertheless, the proposed adaptive laws usually do
not reflect the tracking error timely and precisely. Thus, sometimes it results in low control
precision [35]. Considering TDE error as the disturbance, SMC was also developed together
with TDC to improve tracking accuracy in [29], [31], [34] because of its strong robustness.
For conventional SMC, the upper bound of the disturbance is selected as the switch-

ing gain. However, it is difficult to apply in practice. First, the selected upper bound is
always conservative although some papers estimated it mathematically [86]. Besides, the
overestimated upper bound is the main reason for chattering phenomenon. The chattering
phenomenon makes various undesirable effects [80], e.g. current harmonics and torque pul-
sation. To address chattering, several strategies were developed. In [87], a DOB-based SMC
scheme was proposed. A DOB is firstly employed to estimate disturbance, and then the SMC
is designed to address the rest disturbance. Amplitudes of switching gains are decreased and
it results in less chattering. Besides, robustness of the control system is also guaranteed.
However, the upper bound of the estimation error is required to design the switching gain.
Normally, this upper bound is overestimated. Without the upper bound of the disturbance,
an adaptive SMC scheme was proposed in [37]. Nevertheless, chattering still happens since
switching gains are monotonically increasing to guarantee asymptotic stability. For adaptive
SMC schemes in [29], [33], the switching gain increases when the sliding variable magnitude
is large, and decreases in the vicinity of sliding manifold. However, involvement of a thresh-
old value in the adaptive laws invites potential underestimation problem of the switching
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gain, and this problem compromises the controller accuracy by applying lower switching gain
than the required amount [35].
A barrier function-based adaptive SMC was developed in [88], where the proposed bar-

rier function ensures convergence of the output variable and maintains it in a predefined
neighborhood around the origin. In this predefined vicinity around the origin, switching
gains are regulated by the barrier function. Thus, the switching gains increase with the
rise of sliding variables and vice visa. Therefore, the barrier function based adaptive SMC
avoids over/under-estimation of switching gains, i.e., it achieves good tracking performance
and chattering reduction simultaneously. However, it also has some limitations. In prac-
tice, sliding variables may exceed the predefined vicinity because of some severe changes of
the model, some faults or some measurement noises. Then the switching gain turns to be
negative and finally it results in instability. In addition, the barrier function based adap-
tive SMC as well as SMC schemes in [15], [18], [19], [29], [31], [33], [37], [83], [87] focus on
addressing disturbances and reducing chattering, while optimal control performance at the
sliding manifold is always ignored.

2.1.2 Method and Contributions
In this chapter, the IBS controller based on TDE is designed for a robot manipulator. To
improve tracking performance, a redesign incremental control combining IBS with AISMC
is developed. Because of the TDE method, a linear system is obtained after substituting
IBS controller into the system and TDE error is considered as the disturbance. The AISMC
scheme, including a nominal controller and an improved positive semi-definite barrier func-
tion (PSDBF) based SMC, is developed, where the PSDBF based SMC avoids over/under-
estimation of switching gains. In accordance with the equivalent control method, the PSDBF
based SMC is to compensate for the TDE error. To receive optimal control performance
at the sliding manifold, an LQR controller is selected as the nominal controller. For the
PSDBF based SMC, to avoid conservative (large) setting bound affecting tracking precision
and/or system stability, a new PSDBF is designed. Besides, to keep the system stable once
sliding variables exceed the predefined vicinity, an improved PSDBF based SMC structure is
developed. When the sliding variable locates inside the predefined vicinity, switching gains
are mainly regulated by the PSDBF. Otherwise, switching gains will be updated according
to adaptive laws. Finite time convergence property of the sliding variable is strictly analyzed
by Lyapunov theorem. Finally, the PSDBF based AISMC is implemented in practice.
Compared with the above mentioned articles and references herein, the main contributions

of this paper are summarized as follows:

1) An improved PSDBF based SMC is developed which keeps the system stable when
sliding variables occasionally exceed the predefined vicinity;

2) A new PSDBF is designed to avoid conservative (large) setting bound;

3) The system receives optimal control performance at the sliding manifold.

2.1.3 Outline of this Chapter
The rest of this chapter is organized as follows. In Section 2.2, the IBS controller based
on TDE is first introduced. In Section 2.3, to further enhance tracking performance, the

11



2 Incremental Sliding Mode Control

AISMC scheme based on PSDBF is developed, and finite-time convergence of the sliding
variable is analyzed by Lyapunov theorem. The experimental results are given in Section
2.4 followed by a short summary in Section 2.5.

2.2 Problem Formulation and Preliminaries

2.2.1 Control Objective
In this chapter, our target is to make the robot manipulator precisely and robustly track the
reference signals. Before we design the controller, the following assumption about reference
signals is made.

Assumption 1 (Bounded and Smooth Reference Signals [85], [89]). The joint position
reference signal qref is smooth and bounded, satisfying 0 ≤ r ≤ ‖qref‖ ≤ r < ∞, 0 ≤ ṙ ≤
‖q̇ref‖ ≤ ṙ <∞, and 0 ≤ r̈ ≤ ‖q̈ref‖ ≤ r̈ <∞.

Remark 1 (Reasonability of Assumption 1). The smoothness of reference signals is a
reasonable assumption widely applied in related works, since non-smooth reference signals
causes sharp actuator changes and may cause damages to mechanical systems.

2.2.2 Incremental Backstepping based on TDE
In this subsection, an IBS controller based on TDE is presented, which is the fundamental
work of this chapter.
The devloped incremental system (A.7) is in the strict-feedback form, and backstepping

controller is designed.
Step 1: Let e1 = x1 − qref be the tracking error. For (A.7a), we design the virtual control
signal x2d as follows:

x2d = −k1e1 + q̇ref , (2.1)
where k1 ∈ R>0 is a design parameter.
Let e2 = x2 − x2d be the tracking error of (A.7b), the dynamics of the tracking error e1

reads
ė1 = ẋ1 − q̇r = x2 − q̇ref

= x2d + (x2 − x2d)− q̇ref = −k1e1 + e2.
(2.2)

Step 2: Consider the second subsystem (A.7b), the incremental controller ∆u is designed
as

∆u = ḡ−1(v− ẋ2,0) (2.3)
where v = −k2e2 + ẋ2d is a pseudo control law, k2 ∈ R>0 is a design parameter. Substituting
(2.3) into (A.6) yields

ė2 + k2e2 = ε. (2.4)
Thus, the dynamics of the tracking error e2 is stable if the TDE error ε is bounded. Here,
similarly to [31], [36], we introduce a lemma about the boundedness property of the TDE
error.

Lemma 1 (Bounded TDE Error). Assume the sampling rate is sufficiently high, ∃ε̄ ∈ R>0,
‖ε‖ ≤ ε̄ holds if ḡ satisfies ‖I− g(x)ḡ−1‖ < 1 and IBS controller (2.3) is employed.

12
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Proof: Substituting (2.3) into (A.2b) yields

ε = ẋ2 − v (2.5)

Combining (A.2b), (2.3), with (2.5) yields

g−1(x)ε = g−1(x) (ẋ2 − v) (A.2b)= g−1(x) (f(x)− v) + u
(2.3)= g−1(x) (f(x)− v) + u0 + ḡ−1(v− ẋ2,0)

(2.6)

From (A.4), we have ḡ−1ẋ2,0 = H(x0, ẋ0) + u0, then

g−1(x)ε = g−1(x)f(x) +
(
ḡ−1 − g−1(x)

)
v−H(x0, ẋ0). (2.7)

For H(x0, ẋ0) = (ḡ−1 − g−1(x0)) ẋ2,0 + g−1(x0)f(x0), we get

ε =
(
g(x)ḡ−1 − I

)
v−

(
g(x)ḡ−1 − I

)
ẋ2,0 + η1 (2.8)

where η1 = g(x) (∆ + (g−1(x0)− g−1(x)) ẋ2,0), ∆ = g−1(x)f(x)− g−1(x0)f(x0). Besides,
from (2.5), we obtain ε0 = ẋ2,0 − v0, where ε0 and v0 are values of ε and v at the previous
sampling time respectively. Thus,

ε =
(
I− g(x)ḡ−1

)
ε0 +

(
g(x)ḡ−1 − I

)
(v− v0) + η1. (2.9)

In the discrete-time domain, the TDE error is expressed as follows:

ε(k) =
(
I− g(k)ḡ−1

)
ε(k − 1) +

(
g(k)ḡ−1 − I

)
η2(k) + η1(k) (2.10)

where η2(k) = v(k) − v(k − 1). As shown in (2.3), v is designed to be continuous in time,
thus limTs→0‖v(k) − v(k − 1)‖ = 0 and limTs→0‖η1(k)‖ = 0. In other words, η1(k) and
η2(k) are all bounded for sufficiently small Ts. Suppose there exists η̄1, η̄2 ∈ R>0 such that
‖η1(k)‖ ≤ η̄1 and ‖η2(k)‖ ≤ η̄2 hold for k ≥ 0 [31]. Besides, ḡ satisfies ‖I− g(x)ḡ−1‖ < 1.
There exists κ ∈ R>0, 0 < κ < 1, such that ‖I− g(x)ḡ−1‖ ≤ κ < 1. By induction, we get

‖ε(k)‖ ≤ κ‖ε(k − 1)‖+ κη̄2 + η̄1

≤ κ2‖ε(k − 2)‖+ (κ2 + κ)η̄2 + (κ+ 1)η̄1

≤ κk‖ε(0)‖+
k−1∑
i=0

κi(κη̄2 + η̄1)

≤ κk‖ε(0)‖+ κη̄2 + η̄1

1− κ = ε̄

(2.11)

where ε(0) is the initial value of ε(k).
Therefore, the TDE error is bounded by

(
κk‖ε(0)‖+ κη̄2+η̄1

1−κ

)
if ‖I − g(x)ḡ−1‖ ≤ κ < 1

holds. As k →∞,
(
κk‖ε(0)‖+ κη̄2+η̄1

1−κ

)
→ κη̄2+η̄1

1−κ .

�
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2 Incremental Sliding Mode Control

Given the bounded TDE error, the stability of closed-loop system is analyzed. Consider
a Lyapunov function V : Rn × Rn 7→ R

V = 0.5e>1 e1 + 0.5e>2 e2. (2.12)

Along with tracking error dynamics (2.2) and (2.4), V̇ is

V̇ = e>1 ė1 + e>2 ė2

= −k1e>1 e1 − k2e>2 e2 + e>1 e2 + e>2 ε.
(2.13)

Through Young’s inequality [90] and Lemma 1, we have

e>1 e2 ≤ 0.5e>1 e1 + 0.5e>2 e2 (2.14)

e>2 ε ≤ 0.5e>2 e2 + 0.5 ‖ε‖2
2 ≤ 0.5e>2 e2 + 0.5ε̄2 (2.15)

where ε̄ is the upper bound of the TDE error ε (compare Lemma 1). Substituting (2.14)
and (2.15) into (2.13) yields

V̇ ≤ − (k1 − 0.5) e>1 e1 − (k2 − 1) e>2 e2 + 0.5ε̄2 (2.16)

Let k1 > 0.5 and k2 > 1, and define k0 = min{k1− 0.5, k2− 1}. Then, (2.16) is rewritten as

V̇ ≤ −2k0V + 0.5ε̄2 (2.17)

Then, applying the comparison principle and zooming technique [91], we obtain the upper
bound of tracking errors from (2.12) and (2.17):

‖ei(t)‖ ≤
√

2V (t) ≤
√

2V (0)e−2k0t + ε̄2

2k0
(1− e−2k0t). (2.18)

Eqs. (2.17) and (2.18) indicate tracking errors are all bounded over any time interval.
Besides, tracking precision can be improved by compensating for the TDE error and/or
choosing appropriate design parameters. Large design parameters decrease tracking errors
and increase convergence rate, while too large design parameters cause system oscillation.

Remark 2 (Why is the Backstepping Structure Adopted?). In accordance with definitions
of tracking errors (e1 and e2) and the virtual control signal x2d in (2.1), the incremental con-
troller ∆u designed in (2.3) can be rewritten as follows: ∆u = ḡ−1 (q̈ref + KDė1 + KPe1 − q̈0),
where KD = (k1 + k2)I, KP = k1k2I, and q̈0 = ẋ2,0. It implies the designed IBS controller
is identical to the TDC developed in [12]. The backstepping control structure is adopted
here since it is a systematic control method, i.e., construction of both the control law and
the the associated Lyapunov function is systematic [92]. One of the benefits of a systematic
approach is rigorousness of the theoretical derivation of the methods. In the backstepping
control structure, an n-order nonlinear affine system is divided into n sub-systems. For
each one sub-system, a control law is designed based on the dynamic inversion method where
only one parameter ki(i = 1, · · · ,n) is involved. Employing the uniform/standard Lyapunov
function Vi = ∑i

j=1
1
2z

2
j (where zj is the tracking error of the j-th sub-system), Lyapunov

stability is analyzed. A series of positive design parameters (greater than 1) guarantees the
closed-loop system is Lyapunov stable. The other advantage of the systematic approach is
that the parameters are convenient to be tuned. For example, from (2.18), one learns that
increasing ki appropriately, tracking performance will be enhanced.
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Figure 2.1: Control framework (where u0 is the most recent torque input).

2.3 Adaptive Incremental Sliding Mode Control
The IBS controller based on TDE is designed in Section 2.2.2, and it is shown that tracking
precision is affected by the TDE error and design parameters. To address TDE error and
then enhance tracking performance, the adaptive incremental sliding mode control (AISMC)
scheme based on PSDBF is developed in this section.

2.3.1 Barrier Function based Adaptive Incremental SMC
As shown in Figure 2.1, the AISMC is combined with the IBS controller to improve tracking
accuracy, i.e., we complete the incremental controller ∆u redesign as follows:

∆u = ∆ud + ∆uo (2.19)

Let ∆ud be the IBS controller (2.3), substituting the redesign controller ∆u (2.19) into the
incremental system (A.6), and then combining with the tracking error dynamics (2.2), we
obtain an LTI system w.r.t. tracking errors e1 and e2:{

ė1 = −k1e1 + e2
ė2 = −k2e2 + ḡ∆uo + ε (2.20)

Denote X := col(e1, e2), (2.20) is rewritten as:

Ẋ = AX + B(∆uo + ε′) (2.21)

where A =
[
−k1I I

O −k2I

]
, B =

[
O
ḡ

]
, and ε′ = ḡ−1ε is a new version TDE error. Note that

(A, B) is stabilizable, regardless of k1 and k2.
In the sequel, we first determine the SMC structure. Here, we not only want to attenuate

the TDE error, but also regulate the tracking performance at the sliding manifold. Thus,
we design the following SMC scheme for (2.21).

∆uo = ∆uo,noi + ∆uo,sm (2.22)
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where ∆uo,noi = −KX = −R−1B>PX is a linear quadratic regulator (LQR) controller
designed for the nominal plant of (2.21), Q > 0 and R > 0 are weighting matrices, P is the
solution of the following Riccati equation:

A>P + PA + Q−PBR−1B>P = 0.

Note that ∆uo,sm is the PSDBF based SMC which is given later.
Then, according to the designed SMC scheme (2.22), we design the sliding variable. Re-

garding the LQR controller ∆uo,noi as the nominal controller, we define the integral sliding
variable [93], [94]:

s(t) = G
(
X(t)−X(0)−

∫ t

0
(AX + B∆uo,noi) dt

)
(2.23)

where G = B† = (B>B)−1B>.
Finally, we will use the equivalent control method [95], [96] to determine the state equations

when the state is confined to the sliding manifold. The equivalent control method is a
common way to explore the nature of TDE. It consists in the following three steps:

1) Force the derivative of s(t) equal to zero. For (2.23), the derivative of s(t) is

ṡ(t) = G
(
Ẋ(t)− (AX + B∆uo,noi)

)
= ∆uo,sm + ε′. (2.24)

2) Determine the equivalent control. Let ṡ(t) = 0, the equivalent control is

(∆uo,sm)eq = −ε′. (2.25)

3) Determine the state equations on the sliding surface. Substituting (2.25) into (2.24),
the TDE error is eliminated, and trajectories of tracking errors at the sliding manifold
are given by

Ẋeq = AXeq + B∆uo,noi (2.26)
where Xeq is the equivalent state (tracking errors e1 and e2) at the sliding manifold.

In accordance with the idea of equivalent control method [95], [96] and the resulting equa-
tion (2.25), we learn that ∆uo,sm is to attenuate the TDE error. Besides, under the function of
the LQR controller ∆uo,noi, the system at the sliding manifold (compare (2.26)) achieves op-
timal control performance with the cost function

∫∞
0

(
X>QX + ∆u>o,noiR∆uo,noi

)
dt. Thus,

the combination of ∆uo,noi and ∆uo,sm not only attenuates the TDE error, but it also regu-
lates tracking performance at the sliding manifold.
Remark 3 (Linear Controller is Adopted.). For the nonlinear controlled plant, an LTI
system w.r.t. the tracking errors is obtained after the redesign incremental controller is
employed. In other words, the redesign incremental controller makes it possible to design the
LQR controller to regulate the tracking errors.
Remark 4 (Tracking Performance of Conventional SMC Depends on Parameter λ.). For
most of adaptive SMC methods, their main purpose is to attenuate the disturbance. They do
not guarantee the system receives optimal control performance at the sliding manifold. For
example in [29], the tracking error trajectory at the sliding manifold is ë + 2λė + λ2e = 0,
where λ is a design parameter. That means the tracking error dynamics only depends on λ at
the sliding manifold. If inappropriate λ is selected, the tracking performance is not improved
significantly even if an effective SMC is designed later.
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Before the PSDBF based SMC ∆uo,sm, a new format PSDBF is introduced.

fBF (x) = $|x|
$ − |x|

, x ∈ (−$,$) (2.27)

Note that for some given and fixed $ ∈ R>0, fBF (x) : (−$,$) 7→ [0,∞] is an even
continuous function, strictly increasing on [0,$) and satisfying the following two properties:

1) lim|x|7→ε fBF (x) = +∞;

2) fBF (x) has a minimum at zero and fBF (0) = 0 [88].

To attenuate the TDE error and prevent swtiching gains from being over/under-estimated,
we design the following PSDBF based SMC ∆uo,sm:

∆uo,sm = −ρ sgn(s(t)) (2.28)

where sgn(s(t)) = (sign(s1(t)), · · · , sign(sn(t))); ρ = diag(ρ1, · · · , ρn) are switching gains.
To keep system stable when sliding variables occasionally exceed the predefined vicinity $,
the switching gain will be regulated by PSDBF (2.27) and the adaptive parameter ri(t)
simultaneously:

ρi(t) = ri(t) + f̃BF (si(t)) (2.29)

where

f̃BF (si(t)) =

fBF (b$), if |si(t)| ≥ b$

fBF (si(t)), if |si(t)| < b$
,

b ∈ R>0 and 0 < b < 1, and the updating law of parameter ri(t) is

ṙi(t) =

0, (|ri(t)| ≤ ς) ∧ (|si(t)| < b$)
ϕ (sat (|si(t)|))θi(t) θi(t), otherwise

(2.30)

with ri(0) ≥ 0,

sat(|si(t)|) =

|si(t)|, if |si(t)| ≥ ι

ι, if |si(t)| < ι
,

ι ∈ R>0 is a small scalar, θi(t) = sign(|si(t)| − b$), ϕ ∈ R>0 is an adaption parameter and
ς ∈ R>0 is a small scalar. Note that ri(t) ≥ 0 according to (2.30) and the fact ri(0) ≥ 0.

Remark 5 (Security Problem is Solved.). In [88], the PSDBF is directly employed to regulate
the switching gain. It is theoretically verified the sliding variable converges to and stays
inside a predefined vicinity around the origin. However, in practice, the sliding variables
sometimes exceed the predefined vicinity because of some severe changes of the model, some
faults or some measurement noises. Unfortunately the switching gain turns to be negative
when sliding variable exceeds vicinity, resulting in instability. While for the proposed PSDBF
based SMC scheme, the switching gain is regulated by PSDBF and an adaptive parameter
simultaneously as shown in (2.30). Even when the sliding variable exceeds the predefined
vicinity occasionally, the switching gain updates through (2.30) accordingly. Thus, security
of the scheme is guaranteed.
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In what follows, the behavior of the sliding variable will be analyzed. Assume |si(0)| ≥ b$,
then switching gain ρi increases because of the increasing ri, until |si(t)| < b$. Once the
sliding variable enters the vicinity of the sliding manifold, i.e., |si(t)| < b$, ri(t) decreases
and ρi(t) is gradually regulated by the PSDBF fBF (si(t)). According to (2.27), fBF (si(t))
is strictly increasing on [0,$) and it is an even function. Thus, in the region |si(t)| < b$,
the switching gain falls as |si(t)| declines, and increases with the rise of |si(t)|. It not only
prevents the switching gain from being overestimated, resulting in chattering reduction, but
also avoids underestimation problem. Afterwards, if |si(t)| exceeds bε, the switching gain
increases fast through (2.30) to decrease |si(t)| until |si(t)| reaches b$ again.
From above analysis, the design parameter $ plays an important role to determine the

bound of the sliding variable (|si(t)| < b$ < $). Thus, $ is termed as the setting bound for
the sliding variable in this chapter.
Finally, from (2.3), (2.19), (2.22), and (2.28), the entire control law u is designed as follows:

u = uo + ∆u
= uo + ḡ−1 (−k2e2 + ẋ2d − ẋ2,0)︸ ︷︷ ︸

∆ud

−R−1B>PX︸ ︷︷ ︸
∆uo,noi

−ρ sgn(s(t))︸ ︷︷ ︸
∆uo,sm

. (2.31)

Although the control scheme (2.31), involving IBS, LQR, and SMC is relatively complex,
there is only one parameter ρ adapted online. For other parameters in (2.31), they are either
measurements or can be determined offline before implementation. Thus, it will not cause
heavy computational complexity.

2.3.2 Finite-Time Convergence Property of the Sliding Variable
Before analyzing finite-time convergence property of the sliding variable, the following two
lemmas about boundedness properties of TDE error and switching gain are introduced.
Note that the upper bound of the TDE error is related to the controller as shown in the

proof of Lemma 1. Owing to the introduced redesign controller, the upper bound of the
TDE error is essential to be re-analyzed.

Lemma 2 (Bounded TDE Error). Assume the sampling rate is sufficiently high, ∃ε̄∗ ∈ R>0,
‖ε′‖2 ≤ ε̄∗ holds if ḡ satisfies ‖I− g(x)ḡ−1‖2 < 1 and the controller (2.31) is employed.

Proof: According to the entire control law u in (2.31), the redesign incremental control
law ∆u can be rewritten as follows:

∆u = ḡ−1(v∗ − ẋ2,0) (2.32)

where v∗ = −k2e2 + ẋ2d − ḡR−1B>PX − ḡρsgn(s(t)) is the pseudo control law of the
incremental system (A.6). Similarly to the pseudo control laws in [31], [83] where they also
include the sliding mode controller part, ∆v∗ = v∗(k)−v∗(k− 1) is bounded for sufficiently
high sampling rate. Let η̄∗2 be the bound of ‖∆v∗‖, i.e., ‖∆v∗‖ ≤ η̄∗2, then analogous to
Lemma 1, the TDE error ε′ is bounded by

‖ε′(k)‖ ≤ κk‖ε′(0)‖+ λmin(ḡ)κη̄
∗
2 + η̄1

1− κ = ε̄∗ (2.33)

where λmin(ḡ) is the minimum eigenvalue (element) of ḡ, and ε̄∗ is the upper bound.
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�

Lemma 3 (Bounded Switching Gain). Based on the bounded TDE error, the switching gain
ρi, which is updated by (2.29) and (2.30), is bounded by ρ∗i ∈ R>0, i.e., ρi(t) ≤ ρ∗i for any
t ≥ 0.

Proof: Considering the “worst” case, we calculate the upper bound of switching gains.
Suppose that |si(0)| > b$. Without loss of generality, we assume si(0) > 0 . There are

two situations for r0: ε̄∗ ≥ r0 + fBF (b$) and ε̄∗ < r0 + fBF (b$), where r0 is the initial value
of ri(t).
i) ε̄∗ ≥ r0 +fBF (b$). From the updating law of ri(t) (2.30), and given that upper bound of

the TDE error exists as proved in Lemma 2, it follows that ρi(t) is increasing and there exists
t1, t1 < ε̄∗−r0−fBF (b$)

ϕb$
, such that ρi(t1) = ε̄∗. This is because ε̄∗ si(0)>b$= r0 +

∫ t1
0 ϕsi(t)dt +

fBF (b$) > r0 + ϕb$t1 + fBF (b$). According to (2.24), si(t1) − si(0) =
∫ t1

0 ṡi(t)dt ≤∫ t1
0 (−ρi(t) + ε̄∗) dt ≤ (ε̄∗ − r0 − fBF (b$)) t1. Thus, si(t1) < si(0) + (ε̄∗−r0−fBF (b$))2

ϕb$
.

Afterwards, switching gain is large enough to make the sliding variable decrease. Then,
at t2, si(t2) = b$. According to (2.24),
si(t2)−si(t1) ≤

∫ t2
t1

(−ρi(τ1) + ε̄∗) dτ1 =
∫ t2
t1

(−r0 −
∫ τ1
0 ϕsi(τ2)dτ2 − fBF (b$) + ε̄∗) dτ1

ρi(t1)=r0+
∫ t1

0 ϕsi(τ2)dτ2+fBF (b$)=ε̄∗
= −

∫ t2
t1

∫ τ1
t1
ϕsi(τ2)dτ2dτ1 ≤ −ϕb$(t2−t1)2

2 .
Thus, t2 − t1 ≤

√
2(si(t1)−b$)

ϕb$
, where si(t1) is upper bounded as we discussed above. Ac-

cording to (2.29) and (2.30), we have

ρi(t2) = ε̄∗ +
∫ t2

t1
ϕsi(t)dt ≤ ε̄∗ + si(t1)

√
2ϕ(si(t1)− b$)

b$
. (2.34)

Therefore, ρi(t2) is upper bounded.
ii) ε̄∗ < r0 + fBF (b$). At t = 0, the switching gain is large enough to decrease the sliding

variable, and the switching gain still increase to improve the convergence of the sliding
variable, according to (2.30). If si(t3) = b$, then ρi(t3) > ρi(t) for all t < t3. According to
(2.24) and (2.28)-(2.30), we have: b$ − si(0) =

∫ t3
0 ṡi(t)dt ≤

∫ t3
0 (ε̄∗ − ri(t)− fBF (b$)) dt ≤

(ε̄∗ − r0 − fBF (b$)) t3 since ri(t) > r0 for any t ≤ t3. Hence, t3 ≤ si(0)−b$
r0+fBF (b$)−ε̄∗ . According

to (2.30), we have

ρi(t3) = r0 +
∫ t3

0
ϕsi(t)dt+ fBF (b$)

si(t)<si(0)
≤ r0 + ϕsi(0) (si(0)− bε)

r0 + fBF (b$)− ε̄∗ + fBF (b$).
(2.35)

Therefore, ρi(t3) is still bounded.
After the sliding variable enters the region |si(t)| ≤ b$, fBF (si(t)) is bounded and ri(t)

is decreasing until ri(t) ≤ ς according to (2.30). Thus when |si(t)| ≤ b$ the switching gain
is less than ρi(t2) or ρi(t3). Therefore, if the sliding variable is maintained in the region
afterwards, ρi(t) is bounded and ρ∗i is obtained through (2.34) or (2.35). On the other hand,
if the sliding variable exceeds the setting bound at t4, si(t4) = b$, the rest ρi(t) is still
bounded. This is because there is a bound for ri(t4). If we assume ri(t4) > ε̄∗ − fBF (si(t4)),
then si(t4)ṡi(t4) ≤ |si(t4)| (ε̄∗ − (ri(t4) + fBF (si(t4))) < 0. That means the sliding variable
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will decrease. It contradicts. Therefore, ri(t4) ≤ ε̄∗ − fBF (si(t4)) = ε̄∗ − fBF (b$). Then,
according to (2.35), we can determine the upper bound of ρi(t) under this circumstances.
All in all, ρi(t) is bounded during the whole time horizon.

�

Based on Lemma 2 and Lemma 3, we analyze finite-time convergence property of sliding
variables. For simplicity, we use one sliding variable (noted as si(t)) to complete the following
analysis.

Theorem 1 (Finite-Time Convergence Property). Consider the LTI system (2.21) controlled
by the SMC (2.28), with the updating law (2.30) for the switching gain (2.29), then for any
si(0) and $ ∈ R>0, there exists t̄ > 0 such that for all t ≥ t̄,

|si(t)| ≤
√

(b$)2 + (ε̄∗−fBF (b$)−ς)2

ϕ
.

Proof: Suppose |si(0)| ≥ b$, the Lyapunov function Vs : R× R 7→ R [97] is considered

Vs = 0.5s2
i (t) + 0.5ϑ (ρi(t)− ρ∗i )

2 (2.36)

where ϑ ∈ R>0 is a design parameter, and ϑ > 1
ϕ
holds.

Considering the case |si(t)| ≥ b$, we have

V̇s =si(t) (−ρi(t) sign(si(t)) + ε′i) + ϑ (ρi(t)− ρ∗i )ϕ|si(t)|
≤ − ρi(t)|si(t)|+ ε̄∗|si(t)|+ ϑϕ (ρi(t)− ρ∗i ) |si(t)|
=− ρi(t)|si(t)|+ ε̄∗|si(t)|+ ρ∗i |si(t)| − ρ∗i |si(t)|

+ ϑϕ (ρi(t)− ρ∗i ) |si(t)|
=− (ρ∗i − ε̄∗)|si(t)|+ (−|si(t)|+ ϑϕ|si(t)|) (ρi(t)− ρ∗i )

(2.37)

From Lemma 3, ρi(t) ≤ ρ∗i and ε̄∗ < ρ∗i . Besides, ϑϕ− 1 > 0 since ϑ > 1
ϕ
. Thus,

V̇s ≤ − (ρ∗i − ε̄∗)︸ ︷︷ ︸
Πs>0

|si(t)| − (−|si(t)|+ ϑϕ|si(t)|)︸ ︷︷ ︸
Πρ>0

|ρi(t)− ρ∗i |

= −
√

2Πs
|si(t)|√

2
−
√

2
ϑ

Πρ

√
ϑ|ρi(t)− ρ∗i |√

2

≤ −Π
(
|si(t)|√

2
+
√
ϑ|ρi(t)− ρ∗i |√

2

)
≤ −Π

√
Vs

(2.38)

where Π = min{
√

2Πs,
√

2
ϑ
Πρ}. Thus, finite-time converging to |si(tr)| = b$ is guaranteed,

where tr is the reaching time. From (2.37), we have d
dt

(
2
√
Vs
)
≤ −Π. Integral both sides,

we get
tr ≤

2
Π

(√
Vs(0)−

√
Vs(tr)

)
(ρi(tr)−ρ∗

i )2≥0
≤ 2

Π

(√
Vs(0)− b$√

2

)
.

(2.39)
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2.3 Adaptive Incremental Sliding Mode Control

Now the sliding variable enters the region |si(t)| ≤ b$. Afterwards, |si(t)| still decreases
because ρi(tr) > ε̄∗ as discussed especially in Appendix C. That means, the sliding variable
does not leave the region instantly. In the region |si(t)| ≤ b$, ρi(t) is gradually regulated
by PSDBF according to (2.29) and (2.30). To check whether the sliding variable leaves the
region, the Lyapunov function VB = 0.5s2

i (t) is considered. Combining (2.24), (2.27), (2.28)
with (2.29), one has

V̇B = si(t)ṡi(t)
= si(t) (−(ri(t) + fBF (si(t))) sign(si(t)) + ε̄′i)
≤ −ri(t)|si(t)| − fBF (si(t))|si(t)|+ ε̄∗|si(t)|
ri(t)≥0
≤ − (fBF (si(t))− ε̄∗)︸ ︷︷ ︸

ΠB

|si(t)|

(2.40)

Eq. (2.40) shows that when |si(t)| > $ε̄∗

$+ε̄∗ , ΠB > 0. If the parameter $ε̄∗

$+ε̄∗ < b$, then
ΠB > 0 (V̇B < 0) for |si(t)| ∈

(
$ε̄∗

$+ε̄∗ , b$
)
. The PSDBF ensures the sliding variable converges

to a neighborhood around $ε̄∗

$+ε̄∗ in finite time tc, and the sliding variable remains in the region
|si(t)| ≤ $ε̄∗

$+ε̄∗ . On the contrary, if $ε̄∗

$+ε̄∗ ≥ b$, then ΠB < 0 for |si(t)| ∈ (0, b$). With the
decreasing of ri(t), ri(t) + ΠB < 0 for t ≥ ts, i.e., some time later after the sliding variable
enters the region |si(t)| ≤ b$, the switching gain ρi(t) = ri(t)+fBF (si(t)) will be smaller than
ε̄∗. Although under this circumstances the sliding variable gradually leaves the region, the
switching gain decreases when the sliding variable lies in the vicinity of the sliding manifold,
resulting in chattering reduction. From the above discussion, the sliding variable trajectory
is grouped into following two categories:

i) if $ε̄∗

$+ε̄∗ < b$, then ΠB > 0 for |si(t)| ∈
(
$ε̄∗

$+ε̄∗ , b$
)
. From (2.40), we have

V̇B ≤ −ΠB|si(t)| = −
√

2ΠB
|si(t)|√

2
= −
√

2ΠB

√
VB

(2.41)

Thus, there exists δ ∈ R>0 such that $ε̄∗

$+ε̄∗ +δ < b$ holds, and |si(t)| reaches
(
$ε̄∗

$+ε̄∗ + δ
)

in finite time tc, which satisfies

tc ≤

√
2
(√

VB(b$)−
√
VB

(
$ε̄∗

$+ε̄∗ + δ
))

fBF
(
$ε̄∗

$+ε̄∗ + δ
)
− ε̄∗

. (2.42)

Note that ΠB takes the minimum value at |si(t)| =
(
$ε̄∗

$+ε̄∗ + δ
)
for |si(t)| ∈

(
$ε̄∗

$+ε̄∗ + δ, b$
)
.

The reason why we introduce a small scalar δ to determine the upper bound of tc is
that ΠB = 0 when |si(t)| = $ε̄∗

$+ε̄∗ .

ii) if $ε̄∗

$+ε̄∗ ≥ b$, then ΠB < 0 for |si(t)| ∈ (0, b$). Therefore, |si(t)| gradually leaves
the region |si(t)| ≤ b$. Later on, according to (2.38), |si(t)| will converge to this
region again after it leaves the region. Although |si(t)| moves in and out of the region,
|si(t)| and ρi(t) are all bounded according to (2.38) and Lemma 3. Without loss of
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2 Incremental Sliding Mode Control

generality, we estimate the upper bound of the sliding variable when it moves out of
the region at tε supposing si(tε) = b$ and ri(tε) = ς. Considering the “worst” case
[97], one gets ṡi(t) = − (ri(t) + fBF (b$)) + ε̄∗

ṙi(t) = ϕsi(t), ri(tε) = ς
(2.43)

Then, using Laplace transform, we have

si(t) = b$ cos (√ϕt) + ε̄∗ − fBF (b$)− ς
√
ϕ

sin (√ϕt)

=

√√√√(b$)2 + (ε̄∗ − fBF (b$)− ς)2

ϕ
sin (√ϕt+ Θ)

(2.44)

where Θ = arctan b$
√
ϕ

ε̄∗−fBF (b$)−ς .

Thus, the upper bound of the sliding variable is
√

(b$)2 + (ε̄∗−fBF (b$)−ς)2

ϕ
. Note that

(2.44) is not the real trajectory of the sliding variable. We only use it to demonstrate
boundedness property of the sliding variable after the sliding variable exceeds the
setting bound.

Therefore, for all t > tr, |si(t)| stays inside (0,B($)), whereB($) =
√

(b$)2 + (ε̄∗−fBF (b$)−ς)2

ϕ
.

�

Remark 6 (Conservative Setting Bound is Adopted in the Conventional PSDBF [88].).
The novel PSDBF (2.27) is different from the one employed in [88]. As stated in [88], |si(t)|
ultimately converges to $ε̄∗

1+ε̄∗ . We assume the PSDBF in [88] is still applied in this paper. In
practice, the TDE error is related to the sampling period, i.e., the smaller sampling period,
the smaller is the TDE error. When the sampling period is sufficiently small,the TDE error
can be very small and it is possible that ε̄∗ << 1 during a long time horizon or even the
entire execution time. In what follows, we will investigate whether the PSDBF introduced
in [88] is suitable to be applied when ε̄∗ << 1. If ε̄∗ << 1, then the actual bound for |si(t)|,
$ε̄∗

1+ε̄∗ (≈ $ε̄∗), is much smaller than the setting bound $. Thus, there remains a considerable
discrepancy between the actual bound and the setting one. Normally, we want to regulate
the sliding variable to be as small as possible to attenuate the disturbance (TDE error in the
context of this chapter). Thus, in practice, we would like to select a small setting bound $.
Sometimes $ε̄∗ will be so small that |si(t)| can not converge to it, resulting in fluctuation or
even instability. This phenomenon is also verified by numerical simulations in Section 2.4.2.
Thus, in practice, to guarantee stability, conservative (large) setting bounds are selected,
which have bad influences on tracking precision.

Remark 7 (Conservative Setting Bound is Avoided in the Novel PSDBF.). For the proposed
PSDBF (2.27) in this paper, |si(t)| ultimately converges to $ε̄∗

$+ε̄∗ . Here is a case analysis to
analyze the actual bound $ε̄∗

$+ε̄∗ , and there are two situations considered.
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2.4 Simulation and Experiments

1) If ε̄∗ << $, then $ε̄∗

$+ε̄∗ < ε̄∗ < $ and $ε̄∗

$+ε̄∗ ≈ ε̄∗. Obviously, the sliding variable
will converge to |si(t)| < $. As mentioned in Remark 6, we normally would like to
select a small setting bound to satisfy precision requirement of the control system. In
this situation, the upper bound of the TDE error ε̄∗ is even smaller than the setting
bound $. Thus, tracking performance will not be badly influenced by the disturbance.
According to the actual bound $ε̄∗

$+ε̄∗ (≈ ε̄∗) and the barrier function, we learn that the
switching gain $|si(t)|

$−|si(t)| ≈ ε̄∗. Therefore, it results in chattering reduction and tracking
performance is nearly not affected.

2) If ε̄∗ >> $, then $ε̄∗

$+ε̄∗ < $( $ε̄∗

$+ε̄∗ ≈ $). In this situation, ε̄∗ is larger than the
setting bound. Under the function of the PSDBF based on SMC, the sliding variable
will converge to |si(t)| < $ε̄∗

$+ε̄∗ and $ε̄∗

$+ε̄∗ ≈ $. It also means the sliding variable will
converge to a predefined vicinity w.r.t. $. In this situation, even when ε̄∗ << 1, the
actual bound will not shrink significantly. From the case study, one learns that sliding
variable will converge to a predefined vicinity and conservative (large) setting bounds
are avoided, regardless of ε̄∗.

Remark 8 (How to Select the Parameter b.). If we let b be close to 1 infinitely, then
$ε̄∗

$+ε̄∗ < b$ holds because $ε̄∗

$+ε̄∗ < $ regardless of $ and ε̄∗. As shown in the situation i) of
Theorem 1, |si(t)| is maintained in the region [0, b$] independent of ε̄∗. This is also why
we keep b as close as possible to 1 in the following experiments.

Remark 9 (Over- and Underestimation of Switching Gains are Avoided Simultaneously.).
If the sliding variable is maintained in the region |si(t)| ≤ b$, the switching gain eventually
changes following the PSDBF. Thus the switching gain increases with the rise of sliding vari-
able and vice versa. Therefore, this scheme avoids over- and underestimation of the switching
gains simultaneously. While in [29], the switching gain sometimes is underestimated because
the switching gain merely decreases in the vicinity of the sliding manifold.

2.4 Simulation and Experiments
To validate effectiveness of the proposed control scheme, a 3-DoF robot manipulator (see
Figure 2.2), created by Chair of Automatic Control Engineering (LSR), Technical University
of Munich (TUM), is considered. The identified mathematical model of the robot manipula-
tor can be referred to Table II, III, and IV in [94]. The manipulator is actuated by 3 Maxon
torque motors with a turn ration of 1.25×10−3 deg. The incremental encoders offer the joint
position measurement with a resolution of 2000. The sensors and actuators are connected
with the computer using a peripheral component interconnect (PCI) communication card.
The executable algorithm is created by MATLAB 2017a in Ubuntu 14.04 LTS, using the
first-order Euler solver with the sampling rate of 1 kHz.

2.4.1 Tracking Accuracy in Experiments
To verify the high tracking accuracy of the proposed controller, we compare three conven-
tional control methods, the adaptive backstepping [72], the adaptive SMC [29], and the IBS
developed in Section 2.2.2, with our AISMC scheme in Section 3.1, in this experiment. For
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Figure 2.2: Experimental setup of the 3-DoF planar robot manipulator with control hardware
and software architectures and its kinematic structure (l1 = l2 = l3 = 0.3 m).

simplicity, we will use the abbreviation ABS, ASMC, IBS and AISMC to respectively refer
these methods.
Parameters of Controllers: To ensure objectivity, design parameters are determined

for four controllers in accordance with following steps.

S1 : ḡ = diag(14, 32, 80) for ASMC, IBS, and the proposed AISMC. As stated in [98],
lowering the elements of M̄ attenuates signal noises, having the same effect as using
the first-order digital low-pass-filter. Besides, the TDE based controller does not pose
strict requirements on the selection of TDE gains. A sufficiently small M̄ can also
guarantee the stability condition holds (compare Remark 23). As stated in (A.4),
ḡ = M̄−1. Thus, a large ḡ is selected.

S2 : k1 = k2 = 8 for ABS, IBS, and the proposed AISMC. As analyzed in Section 2.2.2,
IBS controller in nature is a TDC and KP = k1k2I and shaping factors KD = (k1+k2)I.
Then, KP = 64I and KD = 16I for ASMC. To avoid input saturation, we do not select
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Figure 2.3: Reference trajectories for the three joints.

high gains in this step.

S3 : b = 10
11 for the proposed AISMC since b should be close to 1 as stated in Remark

8. The setting bound $ = [0.002, 0.001, 0.001] for ASMC and the proposed AISMC.
Normally, the setting bound $ is determined according to precision requirement of
the control system and designers’ experience. Meanwhile, one method to determine a
reasonable $ is shown in Section 2.4.2.

S4 : For the proposed ASMC, αi = 50 and ϕi = 2.5 × 103 (i = 1, 2, 3). According to
the updating law (2.30) in this article and (11) in [29], the design parameter ϕ in this
article is corresponding to ϕi

αi
in [29]. Thus, ϕ = 50 for the proposed AISMC.

For AISMC, weighting matrices Q = 20I and R = I, and small scalar parameters ς = ι =
10−5. Note that according design parameters ḡ, k1, k2, Q and R, we can obtain matrix P.
From the above steps to determine parameters for controllers, we learn that the practical

design procedure of the proposed controller is not much more complex than that of existing
methods, almost the same as that of ASMC.
Because of the limited availability of sensors, we use the following difference models to

estimate q̇(k) and q̈(k) [99], [100]: q̇(k) = q(k)−q(k−1)
Ts

, q̈(k) = q(k)−2q(k−1)+q(k−2)
T 2
s

where Ts is
the sampling period, and Ts = 1 ms.
Experimental Results: The reference trajectories for the three joints are displayed in

Figure 2.3, and experimental results are displayed in Figures 2.4-2.9 and Table 2.1.
As shown in Figure 2.4 and Table 2.1, the tracking errors increase with the rise of the

reference signal amplitudes when ABS and IBS are employed (For clarity, we only give the
root-mean-square (RMS) values of ABS). ASMC and AISMC show smaller tracking errors
than IBS, because the TDE error is compensated for by the additional SMC. The proposed
AISMC scheme shows the smallest tracking errors, and the maximum tracking errors of the
three joints are all about 0.01 deg regardless of the reference signal amplitudes. Figure 2.5
displays the torques generated by ASMC, IBS, and AISMC, respectively. It is observed that
three controllers are all affected by the inherent noises almost in the same degree.
Figures 2.6-2.7 show sliding variables and switching gains generated by ASMC and AISMC

schemes. For the ASMC scheme, there are some fluctuations around the setting bound. This
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Figure 2.4: Experimental results: Tracking errors of the three joints.

is because the switching gain merely decreases when the sliding variable enters the bound,
and then the switching gain increases when the sliding variable moves outside the bound,
as shown in Fig. 2.7. While, the sliding variables are nearly maintained inside the setting
bounds for the AISMC scheme. Because of measurement noises, the sliding variables exceed
the bounds temporarily for some short periods. When the sliding variable lies inside the
bound, the switching gains increase or decrease whenever the sliding variables increase or
decrease.
To further verify effectiveness of AISMC, we conducted the experiments with different

payloads, and the payloads are installed to the end-effector of the manipulator. As shown
in Figure 2.8 (taking joint 2 for example) and Table 2.1, the tracking accuracy for IBS and
ABS controllers decrease, and tracking errors rise as the payload weights increase. This is
because the robot dynamics is affected by the payload. For ASMC, it attenuates the external
disturbance effectively while the tracking errors generated by IBS increases with the rise of
the payloads (see the enlarged parts). As expected, there are no apparent differences for
the AISMC scheme with different payloads, except for a short time around the starting
time (see the enlarged part). During these time, switching gains are adapted to attenuate
the disturbances, and the longer time is taken for the heavier payloads, resulting in larger
tracking errors only around the starting time.
Figure 2.9 shows the effectiveness of the LQR controller. Here, we select k1 = k2 = 3 to do
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Figure 2.5: Experimental results: Torque inputs for three joints.

comparison experiments. Without the LQR controller, we design the sliding variable letting
the ∆uo,noi = 0 following (2.23). Thus, there are four schemes are considered, i.e.,

1) : no LQR, k1 = k2 = 3;

2) : AISMC, k1 = k2 = 3;

3) : no LQR, k1 = k2 = 8;

4) : AISMC, k1 = k2 = 8.

As shown in Figure 2.9, tracking performance of Scheme 1 (k1 = k2 = 3) is worse than
that of Scheme 3 (k1 = k2 = 8). It is attributed to the difference of design parameters. In
Schemes 1 and 3, after the TDE error is addressed by SMC ∆uo,sm, tracking error dynamics
is only affected by design parameters (k1 and k2) at the sliding manifold. If inappropriate
design parameters are selected, tracking performance is not satisfied although the TDE error
is handled by SMC. Moreover, design parameters are selected according to trial and error.
In general, the larger k1 and k2 are selected, the better tracking performance is received.
However, in practice, we could not increase k1 and k2 infinitely because large parameters will
cause input saturation and/or fluctuation of the system. Besides, tracking performance of
Schemes 1 and 3 is worse than that of their counterparts (Scheme 2 or 4). This is because for
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Table 2.1: Experimental results: RMS Values of the Tracking Errors of the Three Joints
(10−2 Deg) with or without Payloads

Joint 1

Weight (g) ABS ASMC IBS AISMC
0 92.13 2.08 3.45 0.20
200 92.34 2.11 3.58 0.20
500 92.60 2.14 3.69 0.21
1000 92.94 2.15 3.87 0.21

Joint 2

Weight (g) ABS ASMC IBS AISMC
0 28.93 1.18 1.53 0.18
200 29.02 1.22 1.60 0.18
500 29.29 1.25 1.65 0.19
1000 30.27 1.35 1.75 0.20

Joint 3

Weight (g) ABS ASMC IBS AISMC
0 227.1 3.11 8.82 0.21
200 227.2 3.14 8.83 0.24
500 227.3 3.15 8.87 0.26
1000 227.5 3.16 8.92 0.26

Schemes 2 and 4 (AISMC schemes), their tracking performance is regulated further at the
sliding manifold because of LQR controllers. In addition, for Schemes 2 and 4, they display
almost the same tracking performance regardless of k1 and k2. This is also because LQR
controllers make the system receive optimal control performance at the sliding manifold. It
also implies the proposed AISMC scheme does not pose strict requirements on k1 and k2.
Note that for existing methods, such as IBS (or TDC) and ASMC, tracking performance

can be enhanced if elements of M̄ (or ḡ−1) increase appropriately. The larger M̄ generally
suppresses TDE error faster so that control performance can be enhanced. However, the
large value of M̄ amplifies the signal noise effect and invokes control chattering. For the sake
of attenuating the signal noise, we select a small M̄ (or large ḡ) in this study.
Note that the proposed control scheme does not take input saturation into account. When

control signals are highly saturated, control performance will be degraded. As displayed in
Figure 2.9, the conventional TDE-based controller normally select high gains to improve
tracking performance. However, large k1 and k2 also can cause input saturation and/or fluc-
tuation of the system. For our method, we can set relatively small k1 and k2 when we design
IBS. Then, LQR controller is designed later to obtain a satisfactory control performance.
Besides, when we design the LQR controller, the corresponding cost function also considers
the input variable, which prevents control signals from being too large. Moreover, the sliding
mode controller is developed based on PSDBF. The PSDBF avoids over/under-estimation
of switching gains. Thus, our proposed control scheme prevents input signals from being
saturated to some extent.

2.4.2 Effectiveness of the Barrier Function
As discussed in Remark 6, the previous PSDBF introduced in [88] may not be safe. Here,
it is dangerous to do experiments using the previous PSDBF (introduced in [88]) based
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Figure 2.6: Experimental results: Sliding variables.

incremental sliding mode controller, e.g. it may break the robot when fluctuation or even
instability occurs. Thus we did simulations here. We set $ = 0.02, and the other parameters
are same to the Section 2.4.1.
As shown in Figure 2.10, the system is unstable. As discussed in Remark 6, we intend to

make the sliding variable converge to a bound $ while the controller makes it converge to the
bound $ε̄∗ in nature. Because ε̄∗ is relatively small (compare Figure 2.11), the actual bound
$ε̄∗ is too small such that it is beyond the controller capabilities, resulting in instability.
Note that the TDE error is also affected by the controller. Normally, we need to provide
the TDE error curves under the action of the previous PSDBF (introduced in [88]) based
incremental sliding mode controller. However, the system is not stable. In this situation, the
system function suffers from sudden and drastic changes. The aim of displaying the TDE
error curves under the action of the IBS controller (compare Figure 2.11) is to show the
amplitude of the TDE error is relatively small under the current simulation environment.
To show effectiveness of the novel PSDBF based AISMC, a series of simulations are con-

ducted. As shown in Figure 2.12, the sliding variables converge to and maintain inside the
setting bound when $ = 0.5 or 0.0004, corresponding to situation i) of Theorem 1, the
ultimate |si(t)| is maintained in the region (0, b$). When we select $ = 0.5 which is obvi-
ously larger than the upper bound of TDE error ε̄∗, the sliding variable is smaller than that
generated by IBS plus LQR. That means, it also attenuates the disturbance even when we
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Figure 2.7: Experimental results: Switching gains.

select a large setting bound. For $ = 0.0002, corresponding to the situation ii) of Theorem

1, |si(t)| converges to a bound σ

(
σ <

√
(b$)2 + (ε̄∗−fBF (b$)−ς)2

ϕ

)
although sometimes the

output exceeds the bound $. In this situation, there are some slight fluctuations of the slid-
ing variable around the setting bound. It also implies the smaller setting bound $ may not
generate better tracking performance. When too small $ is selected, it causes fluctuation of
the sliding variable although the system is still stable. This is the limitation of this study.
In practice, to avoid fluctuation of the sliding variables, we also can determine b and $ as

follows. As discussed in Remark 8, we keep b as close as possible to 1. Then, motivated by
finite-time convergence of the sliding variable we analyzed in Section 2.3.2, we can determine
$ hereafter. We first apply a large setting bound. As discussed in Remark 6, the sliding
variable converges to the bound $ε̄∗

$+ε̄∗ which can be measured from simulation/experimental
results. Then, we can determine the upper bound of TDE error ε̄∗. According to the
precision requirement, we select appropriate $ and let $ε̄∗

$+ε̄∗ < b$, corresponding to the
situation i). Thus, the sliding variable converges to and stays in the region |si(t)| ≤ b$, and
there are no fluctuations of the sliding variable around the setting bound. In this situation,
the switching gain increases or decreases whenever the sliding variable increases or decreases,
and it protects the switching gains from being overestimated or underestimated. As a future
development, the setting bound $ will be updated employing data-driven and/or learning
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Figure 2.8: Experimental results: Tracking errors of Joint 2 with different payloads generated
by ABS, ASMC, IBS, and AISMC.

techniques to avoid fluctuation of the sliding variable and enhance control performance.

2.5 Summary
In this chapter, an adaptive incremental sliding mode controller (AISMC) is developed for a
robot manipulator under the framework of incremental backstepping (IBS) using time-delay
estimation (TDE). The AISMC consists of the IBS controller and an integral SMC.
The IBS controller is the base of AISMC. First, to reduce dependency on the concrete

mathematical model of the robot manipulator and also address modeling uncertainties and
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Figure 2.9: Experimental results: Tracking errors for the three joints with or without the
LQR controller.
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Figure 2.10: Simulation results: Positions of the joints under the PSDBF in [88] based SMC
when $ = 0.02.

external disturbances, the TDE technique is employed to approximate the dynamics equa-
tion. As a result, the incremental system in the strict-feedback form is obtained. To track
the reference signal, the IBS controller is first designed for the incremental system. The
Lyapunov theorem is used to theoretically analyze stability of the closed-loop system. How-
ever, from the stability analysis, it is shown that the tracking error is adversely effected
by the TDE error. Although the tracking performance can be improved by increasing the
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Figure 2.11: Simulation results: TDE errors under the action of the IBS controller.
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Figure 2.12: Simulation results: Sliding variables of the joints under the PSDBF based sliding
mode controller when $ = 0.5, 0.0004, and 0.0002.

control gains, too large control gains may cause system oscillation. Thus, SMC is designed
to address the TDE error.
After substituting IBS into the nonlinear system, the resulting system is a linear time-

invariant (LTI) system w.r.t. tracking errors. An AISMC is designed for the LTI system to
address the TDE error and then improve tracking performance further. The SMC is designed
into an integral form since it not only attenuates the TDE error, but also regulates the
tracking performance at the sliding manifold. Thus, the AISMC scheme involves the nominal
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controller and the sliding mode controller. The linear LQR controller is designed as the
nominal controller to guarantee the system receive optimal control performance at the sliding
manifold. The sliding mode controller is designed on the basis of a novel positive semi-definite
barrier function, which avoids overestimation and underestimation of the switching gains
simultaneously, resulting in high tracking accuracy and slight chattering simultaneously. The
finite-time convergence of the sliding variable to a vicinity around the origin is theoretically
analyzed by the Lyapunov theorem.
Simulation and comparison experiments are conducted to verify the effectiveness of the

proposed control scheme. There are three schemes involved. First, the developed AISMC
is compared with state-of-the-art nonlinear controllers and it is proven that tracking errors
of AISMC decrease without chattering of control signals. Robustness of the controller is
enhanced. Then, AISMC is compared with the adaptive SMC and it is shown that switching
gains of AISMC avoids underestimation and overestimation simultaneously. In addition, the
performance of the system at the sliding manifold is also investigated. The system exhibits
optimal performance at the sliding manifold regardless of control gains.
However, as discussed in simulation and experiments in Section 2.4, input and state con-

straints, which either affect tracking performance of the control system or can be be described
as safety requirements, are not considered in this chapter. To make the controller more prac-
tical, the robust controller while satisfying input and state constraints will be studied in the
following chapters.
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Incremental Model Predictive Control
(IMPC) 3

In Chapter 2, robustness of the controller is enhanced by developing one TDE-based con-
troller. Nevertheless, optimality of controllers and accounting for input and state constraints
were not yet thoroughly addressed together, while constraints can be used to describe safety
requirements on control and thus enable robot manipulators to also be used in safety critical
applications, e.g., close to or in cooperation with humans. To fill in this gap, in this chapter,
we will design a robust and optimal controller while satisfying input and state constraints.

3.1 Overview
In this chapter, an incremental model predictive controller is developed exploiting TDE,
without the concrete mathematical model. Considering the TDE error as the disturbance,
practical stability of IMPC is analyzed. Finally, effectiveness of the controller is validated
by experimental results.

3.1.1 Related Work
Nonlinear control approaches, such as computed torque [101] or backstepping [73], are able
to deliver high-performance controllers for robot manipulators. However, a precise model is
needed and performance is deteriorated in the presence of model uncertainties and distur-
bances. To address the robustness issue, disturbance observers [102], SMC [15], [103], and
adaptive control methods [74] are employed and often combined with computed torque or
backstepping. Nevertheless, the nominal model of the robot manipulator and its parameters
still need to be identified. To alleviate the need of the concrete mathematical modeling and
parameter identification, intelligent control techniques, such as fuzzy logic systems [104] and
neural networks (NNs) [105], are proposed to approximate unknown/uncertain system dy-
namics. Yet, these approaches also pay more attention to robustness, not to optimal tracking
performance. In addition, input and state constraints are usually not of interest.
Model predictive control (MPC) [42], or receding horizon control[106], is an optimization-

based control addressing optimal tracking control performance and input and state con-
straints such as saturation of control inputs and physical limits of workspace and speed.
The distinct feature of MPC lies in its capability of systematically handling input and state
constraints within the controller design. For MPC, the constrained optimal control problem
is solved using the state predictions generated by the nominal mathematical model in a
horizon [107]–[111], where the difference between the nominal and real mathematical models
due to uncertainties and disturbances may degrade tracking performance [112]. Besides,
when some dynamics terms are unknown, MPC algorithms in [107]–[112] are not able to be
implemented.
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A robust MPC was proposed for a helicopter in [113] where an extended high-gain observer
estimates model uncertainties and disturbances. However, the nominal mathematical model
is required. Learning-based MPC methods are proposed [114]–[116] to deal with uncer-
tain/unknown system dynamics, where Gaussian process (GP) and NNs are used to identify
nonlinear models online which can reduce dependence on the concrete mathematical model.
A data-driven model predictive control was developed in [117], where a non-parametric ma-
chine learning technique is used to estimate a prediction model. Unfortunately, learning and
data-driven techniques further increase the computational complexity of MPC, and selec-
tion of parameters is empirical. Other robust MPC schemes including min-max optimization
[118], [119] and sliding mode techniques [120], [121] are also employed to improve robust-
ness without significant increase of complexities. Alternatively, MPC is formulated with an
incremental model which generates the state predictions by using both present and previ-
ous states[122]. However, since the incremental system is obtained from linearization of the
nonlinear system, the concrete mathematical model is required and the controller is only
effective locally around equilibrium points.
Model uncertainties and disturbances not only increase the computational complexity of

MPC, but they also make stability analysis more challenging. Due to uncertainties and/or
disturbances, the Lyapunov stability that was established for the nominal system is not
simply transferable [110], [111], and input-to-state stability (ISS), also known as practical
Lyapunov stability, is required to be considered. In [123], [124], ISS of MPC with terminal
ingredients was analyzed where a feasible control sequence, which guarantees that input and
state constraints are not violated, was employed. However, the derived cumulative error
bound increases with increasing the prediction horizon. It results in an over-conservative
cumulative error bound, which conveys that the tracking error increases for increasing the
prediction horizon. However, in practice, increasing prediction horizon appropriately will
decrease tracking errors [125]. Thus, the derived over-conservative cumulative error bound
provides a wrong guidance to improve tracking accuracy.
For MPC without terminal ingredients, the ISS property was investigated in [126], where

time-variant sets of admissible predicted states are used. In [127], [128], for linear systems,
the continuity property of the value function was applied to estimate cumulative error bounds
and then verify ISS. Feasible control sequences were not required and time-invariant input
and state constraints could be used. Unfortunately, if the eigenvalue of the system matrix
(also known as coefficient matrix) is greater than one, it still results in the rise of the
cumulative error bound with increasing the prediction horizon.

3.1.2 Method and Contributions

In this chapter, an incremental model predictive control (IMPC) method is developed for a
robot manipulator modelled by Euler-Lagrange equations. To obtain optimal performance
in the presence of input and state constraints as well as the robustness against uncertainties
and disturbances, we first design a robust incremental model in the global set of admissible
states exploiting the time-delay estimation (TDE) technique[28], [36]. TDE is a model-free
method, which uses time-delayed input and output signals to estimate partial dynamics of
the system without concrete mathematical model, laborious parameter identification, and
linearization around equilibrium points of the system[29], [32], [33]. Then, a MPC problem
is formulated, where the state predictions are generated from the discretized incremental
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control system derived by TDE.
In particular, a reachable reference trajectory is defined, for which ISS of the proposed

IMPC is analyzed. Using continuity of the value function, ISS is verified and over-conservative
cumulative error bound is avoided. ISS is shown for all horizon lengths that are larger than
a specific threshold derived recursively. The contributions are summarized as follows:

1) No concrete mathematical model required. Different from existing MPC methods, the
concrete mathematical model of the robot manipulator is not required. This is be-
cause the continuous-time nonlinear system model is approximated by an incremental
system using TDE, and the state predictions are generated using the linear discretized
incremental system.

2) Optimal performance for TDE based control. The TDE based incremental controller
is developed in the framework of MPC without terminal ingredients, and input and
state constraints are formulated as inequality constraints. Thus, optimal control per-
formance is achieved while input and state constraints are taken into account, which
has not been considered in existing TDE-based controllers[28], [29], [32], [33], [36].

3) No over-conservative cumulative error bound. Considering the bounded error sourced
from TDE as the major disturbance, local ISS of IMPC is confirmed. Different from
existing ISS analyses for MPC, here continuity of the value function is used to derive the
upper bound of the difference between two value functions, and the resulting cumulative
error bound is not over-conservative. It is theoretically inferred from this ISS and the
cumulative error bound that increasing the prediction horizon enlarges the region of
attraction, and at the same time decreases tracking errors.

3.1.3 Outline of this Chapter
The rest of this chapter is organized as follows: Section 3.2 presents the proposed IMPC.
The local ISS property of IMPC is theoretically analyzed in Section 3.3. A series of real-time
experiments is performed on a robot manipulator and effectiveness of the proposed IMPC is
verified in Section 3.4 followed by a short summary in Section 3.5.

3.2 Reference Tracking IMPC
In this section, the control objective is first introduced, which is a prerequisite to formulate
the MPC problem. Then, discretizing the incremental system derived by TDE, an approx-
imated discrete-time linear system is obtained. Based on the approximated discrete-time
linear system, the reference tracking IMPC is developed through formulating a constrained
optimal control problem.

3.2.1 Control Objective
The control objective is to make the robot manipulator track the given reference signal xref
and impose the following point-wise constraints on state and input:

(x, u) ∈ Z = X× U, (3.1)
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where X, U, and Z are all compact sets containing the origin in their interior.
Constraints are imposed on state and input in (3.1), i.e., x ∈ X, and u ∈ U. In the

context of the robot manipulator, the joint position, velocity, and torque are constrained by
|qi| ≤ qi,max, |q̇i| ≤ q̇i,max, |τi| ≤ τi,max with qi,max, q̇i,max, τi,max ∈ R>0 being specified limits.
In this dissertation, only smooth reference trajectories xref are considered, since non-

smooth reference trajectories can cause damage to mechanical systems due to sharp actuator
changes. Without loss of generality, reference trajectories are assumed to be smooth and
bounded (See Assumption 1).
Note that according to the definition in (A.2), the reference signal xref := (x1,ref , x2,ref) :=

(qref , q̇ref).

3.2.2 Formulation of the Proposed IMPC
In this subsection, the IMPC is developed. Firstly, a discrete-time linear system is obtained
by discretizing the incremental system (A.7) derived by TDE. Then, the stage cost function
will be defined. Finally, IMPC is developed by formulating a constrained optimal control
problem (OCP).

Discrete-Time Linear System

Discretizing the incremental system (A.7) using the following Euler numerical differentiation

ẋ∗(k) = x∗(k + 1)− x∗(k)
Ts

+ ω∗(k),

where ω∗(k) is the dicretization error. Replacing ẋ1, ẋ2, and ẋ2,0 by ẋ1(k), ẋ2(k), and
ẋ2(k − 1) respectively, (A.7) is transformed into the discrete-time form:

x1(k+1)=x1(k)+Tsx2(k)− Tsω1(k)
x2(k+1)=2x2(k)−x2(k−1)+ḡTs(∆u(k)+ε′)+Tsω̄2(k),

(3.2)

where ε = ḡε′, ω̄2(k) := ω2(k−1)−ω2(k), and Ts is the sampling period. Note that it is
reasonable to assume that discretization errors are bounded, and the smaller Ts, the smaller
are discretization errors.
Let x(k) := col (x1(k), x2(k)), then (3.2) is rewritten as

x(k + 1) = A1x(k) + A2x(k − 1) + B1∆u(k) + ε̄1 (3.3)

with A1 :=
[

I TsI
O 2I

]
, A2 :=

[
O O
O −I

]
, B1 :=

[
O

ḡTs

]
, and ε̄1 :=

[
−Tsω1(k)

ḡTsε′ + Tsω̄2(k)

]
.

Let X(k) := col (x(k), x(k − 1)), equation (3.3) is then rewritten as a first-order discrete-
time system with disturbance ε̄2 given by

X(k + 1) = AX(k) + B∆u(k) + ε̄2 (3.4)

with A :=
[
A1 A2
I O

]
, B :=

[
B1
O

]
, and ε̄2 :=

[
ε̄1
O

]
.

For ε̄2 = 0, we obtain the nominal system of (3.4), a discrete-time linear system:

X(k + 1) = AX(k) + B∆u(k). (3.5)
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Note that the linear system (A, B) is controllable. Different from conventional linearization
methods, such as Taylor series [122], [129] and Carleman approaches [130], the linear system
(3.5) is obtained without concrete mathematical model. Besides, it is effective in the whole
set Dx, not only locally around equilibrium points.

Stage Cost Function

The stage cost function will be defined in the following. Besides xref , the reference control
signal uref is required to define a reference tracking stage cost function. For nonlinear MPC
[131], [132], uref is usually calculated from the nominal model. Since it is assumed that prior
knowledge of the nominal model is not available (see Section A.1), the discrete-time linear
approximation (3.5) is used to calculate an approximated incremental reference control signal
∆ûref(k):

∆ûref(k) = B† (Xref(k+1)−AXref(k)) (3.6)

with B† :=(B>B)−1B>, Xref(k) :=col(xref(k),xref(k−1)).

Constrained OCP

Consider the full reference trajectory of the manipulator is predefined. The reference tra-
jectories over a finite horizon after time instance k are thus priorly known, and the tracking
stage cost function is defined as follows:

`(Xk+i|k, ∆uk+i|k, k + i) =
∥∥∥Xk+i|k −Xref(k + i)

∥∥∥2

Q
+
∥∥∥∆uk+i|k −∆ûref(k + i)

∥∥∥2

R
, (3.7)

where Q� 0 and R� 0 are weighting matrices and •k+i|k denotes predictions of states and
control inputs, in particular, Xk|k=X(k), and Xk+i|k is calculated using (3.5), i.e.,

Xk+i|k = AXk+i−1|k + B∆uk+i−1|k. (3.8)

Based on the stage cost function (3.7), the cost function JN(X(k), ∆ū(k), k) : R4n ×
Rn×N × I≥0 → R w.r.t. an input sequence ∆ū(k) := [∆uk|k, · · · , ∆uk+N−1|k] at time k, is
defined as follows:

JN(X(k), ∆ū(k), k)=
N−1∑
i=0

`(Xk+i|k, ∆uk+i|k, k+i) (3.9a)

s.t. Xk+i+1|k = AXk+i|k + B∆uk+i|k (3.9b)

uk+i+1|k =
(

u(k) +
i∑

m=0
∆uk+m|k

)
∈ U (3.9c)

Xk+i|k ∈ X̄ (3.9d)

where X̄ := {X = col(x′, x′′) ∈ R4n : x′ ∈ X, x′′ ∈ X}, i ∈ I[0,N−1], and N ∈ I>0 is the
prediction horizon.
Finally, the IMPC is developed in the framework of MPC without terminal ingredients,

i.e., the reference tracking IMPC is developed through formulating the following constrained
OCP:

VN(X(k), k) = min∆ū(k)JN (X(k), ∆ū(k), k) . (3.10)
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The solution to OCP (3.10) is an optimal state and input sequence (X̄∗k, ∆ū∗k), where
X̄∗k := [X∗k|k, · · · , X∗k+N−1|k] and ∆ū∗k := [∆u∗k|k, · · · , ∆u∗k+N−1|k]. The first column of the
optimal input trajectory ∆ū∗k, denoted by ∆u∗(k) or ∆u∗k|k, is applied to the system combined
with the current control law u(k). In other words, the feedback control law at time k+1 is
u∗(k+1) := u(k) + ∆u∗(k).

Remark 10 (Convex Optimization Problem). For this chapter the cost function is defined
in (3.9), to account for the incremental control signal ∆u and do not consider the absolute
control signal u. Obviously, the cost function JN(X(k), ∆ū(k), k) is a convex function be-
cause of its quadratic form. Besides, (3.9b) is an affine system and X̄, U are convex sets.
Therefore, OCP (3.10) is a convex optimization problem, and a unique optimal solution
exists for non-empty admissible sets.

Remark 11 (Nominal Model is not Required). In existing MPC without terminal ingre-
dients, compare [110], [111], the prediction is based on a nominal model. This requires to
first identify the nominal model of the plant with high precision. The proposed IMPC ap-
proach employs the incremental model based on TDE and thus it is not necessary to identify
the model of f(x) and g(x) in (A.2b). Accordingly, the predictions are generated by the
discrete-time linear system (3.5), where only ḡ is associated with the system model because
ḡ is selected such that ‖I−g(x)ḡ−1‖ < 1. As stated in Remark 23, the sufficient condition
for ‖I− g(x)ḡ−1‖ < 1 can be fulfilled by a large positive ḡi even though the exact expression
of g(x) is unknown.

3.3 Input-to-State Stability Analysis
In Section 3.2, the IMPC is developed without the concrete mathematical model, where the
approximated discrete-time linear system (3.5) is used to generate predictions. However, the
TDE error is inevitable and stability will be affected by this error. Stability will be investi-
gated in the ISS framework and it is shown that for a large enough horizon a bounded TDE
error will allow that the reference trajectory is stabilized but not asymptotically reached.
In this section, a definition of the reachable reference trajectory is first given. Then, some
preliminary results are introduced, such as a local upper bound of the value function, an
upper bound of the TDE error, and local continuity of the value function. Finally, ISS of
the proposed IMPC in local regions around reachable reference trajectories is investigated.

3.3.1 Reachable Reference Trajectory
In this subsection, a locally optimal incremental controller is developed for the discrete-time
linear system (3.5), which is used to define the reachable reference trajectory.

Locally Optimal Incremental Controller

Let E(k) := X(k)−Xref(k) be the tracking error. Assuming input and state constraints are
not violated, a locally optimal incremental control signal ∆uOI(X(k), Xref(k)) is designed
considering (3.9a) as the cost function:

∆uOI(X(k), Xref(k)) = ∆ûref(k) + K0E(k), (3.11)
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where K0 = −(R + B>PB)−1B>PA, and P � 0 is the solution to the following Riccati
equation:

P = A>PA−A>PB(R + B>PB)−1B>PA + Q.

To study stability of the system under the action of locally optimal incremental controller
(3.11), V (E(k)) := ‖E(k)‖2

P is considered as the Lyapunov function. Then, the difference is

∆V (E(k + 1)) = V (E(k + 1))− V (E(k))
= ‖E(k + 1)‖2

P − ‖E(k)‖2
P

= −E>(k)
(
Q + R̃

)
E(k) ≤ 0

(3.12)

where R̃ := A>PB(R+B>PB)−1R(R+B>PB)−1B>PA and R̃ � 0.

Definition of Reachable Reference Trajectory

Based on the locally optimal incremental controller, the definition of the reachable reference
trajectory is introduced.

Definition 1 (Reachable Reference Trajectory). A reference trajectory (Xref , ∆ûref) is reach-
able if Xref(k+i) ∈ X̄ and

∥∥∥Ek+i|k

∥∥∥2

Q
≤ c implies u(k) ∈ U, Xk+i|k ∈ X̄,

uref(k), uref(k+i+1) := u(k)+
i∑

m=0
∆ûref(k+m) ∈ Uref ,

uk+i+1|k=
(
u(k)+

i∑
m=0

∆uOI(Xk+m|k,Xref(k+m))
)
∈U,

for i ∈ I[0,N−1], Uref
⊕Cs ⊆ U and Cs ⊆ Rn := {c ∈ Rn : −s1 ≤ c ≤ s1}, where c, s ∈ R≥0

are positive scalars and ⊕ denotes Minkowski sum. Otherwise, it is unreachable.

Similar to the definition of the reachable reference trajectory in [111], Definition 1 also
requires that the trajectory can be tracked and lies strictly in the tightened constraint sets.
However, it is not guaranteed that such a reachable reference trajectory still exists when the
incremental control structure is adopted. Assuming ḡ is selected such that ‖I− g(x)ḡ−1‖≤
δ < 1, the following Lemma 4 is given, which verifies the reachable reference trajectory
exists and provides sufficient conditions of reachable reference trajectories.

Lemma 4 (Existence of Reachable Reference Trajectories). Suppose that there exists cx ∈
R>0 such that ‖Xi−Xref(k+i)‖2

Q≤cx (i∈I[0,N−1]) implies Xi ∈ X̄. If the reference trajectory
satisfies µ2 (k1rb1+fmaxrb2+ω2,max + f0) < τmax, and

(
fmaxrb2 + ¯̈r+ω2,max+f0

)
/ḡmin < (1−

δ)τmax, and ‖E(k)‖2
Q ≤ c, then, for i ∈ I[0,N−1], u(k) ∈ U, Xk+i|k ∈ X̄,

uref(k), uref(k+i+1) := u(k)+
i∑

m=0
∆ûref(k+m) ∈ Uref ,

uk+i+1|k=
(
u(k)+

i∑
m=0

∆uOI
(
Xk+m|k,Xref(k+m)

))
∈U,
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and Uref
⊕Cs ⊆ U, where c := min{cu, cxλ̃ }, s := min{s1, s2}, cu := min{c1, c2}, λ̃ :=

λmax(Q)λmax(P)
λmin(Q)λmin(P) , k1 := ‖K1‖, K1 := 1

Ts
[O, I, O,−I], rb1 := 2

√
(r̄2 + ¯̇r2), rb2 :=

√
2(r̄2 + ¯̇r2),

ω2,max :=maxk∈I>0‖ω2(k)‖, τmax := mini∈I[1,n]τi,max, and ḡmin := λmin(ḡ).
Note that s1, c1, s2 and c2 are given in (3.21), (3.22), (3.34), and (3.35) respectively.

Proof : Through exploring the working mechanism of the locally optimal incremental con-
troller in the horizon, it is verified that reachable reference trajectories satisfying Definition
1 exist.
First, a sufficient condition for u(k) ∈ U is derived. The state x(k) := col(x1(k), x2(k))

satisfies the following differential equation, see (A.2b).

ẋ2(k) = f(x(k)) + g(x(k))u(k). (3.13)

Discretizing ẋ2(k) with the discretization error ω2(k) yields(
x2,k|k − x2,k−1|k

)
/Ts = ẋ2(k) + ω2(k). (3.14)

Replacing ẋ2(k) in (3.13) by (3.14) yields

u(k) = g−1(x(k))
[(

x2,k|k − x2,k−1|k
)
/Ts − ω2(k)− f (x(k))

]
. (3.15)

According to Property 1 and Assumption 5, one has

‖u(k)‖ ≤ µ2 (‖K1X(k)‖+ ω2,max + fmax‖x(k)‖+ f0) (3.16)

In accordance with Assumption 1, it is obtained that

‖K1X(k)‖ ≤ ‖K1‖ (‖E(k)‖+ ‖Xref(k)‖) ≤ k1 (‖E(k)‖+ rb1) , (3.17)

‖x(k)‖ ≤ ‖e(k)‖+ ‖xref(k)‖ ≤ ‖E(k)‖+ rb2. (3.18)

Substituting (3.17) and (3.18) into (3.16) yields

‖u(k)‖ ≤ µ2 ((k1+fmax)‖E(k)‖+ k1rb1 + fmaxrb2 + ω2,max + f0) . (3.19)

In Section 3.2.1, |τi| ≤ τi,max is specified. Thus, from (3.19), the following sufficient
conditions are derived such that ‖u(k)‖ ≤ τmax and ‖uref(k)‖ ≤ τmax−s, i.e., u(k) ∈ U,
uref(k) ∈ Uref , and Uref

⊕Cs ⊆ U.

µ2 (k1rb1 + fmaxrb2 + ω2,max + f0) < τmax (3.20)

s ≤ τmax − µ2 (k1rb1 + fmaxrb2 + ω2,max + f0)︸ ︷︷ ︸
s1∈R>0

(3.21)

‖E(k)‖2
Q ≤ λmin(Q)

(
τmax − µ2 (k1rb1 + fmaxrb2 + ω2,max + f0)

µ2(k1 + fmax)

)2

︸ ︷︷ ︸
c1∈R>0

. (3.22)
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Secondly, incremental control signals and predicted states in the horizon are calculated by
recursion.
Introducing ḡ, u(k) is expressed as follows using (3.13):

u(k) = ḡ−1[ẋ2(k)− f (x(k))− (g(x(k))− ḡ)u(k)] . (3.23)

Replacing ẋ2(k) in (3.23) by (3.14) yields

u(k) = ḡ−1
[(

x2,k|k − x2,k−1|k
)
/Ts − ω2(k)− f (x(k))

]
− ḡ−1 (g(x(k))− ḡ) u(k). (3.24)

Recall ∆uOI(X(k), Xref(k)) in (3.11), (3.11) is rewritten as:

∆uOI(X(k),Xref(k)) = ḡ−1
(
q̈ref(k + 1)− ˆ̇x2(k) + K2E(k)

)
, (3.25)

where ˆ̇x2(k) :=
(
x2,k|k − x2,k−1|k

)
/Ts is the approximated derivative, and K2 := ḡK0 + K1.

Thus, uk+1|k is

uk+1|k =u(k) + ∆uOI(X(k), Xref(k))
=ḡ−1 [−f(x(k)) + K2E(k) + q̈ref(k + 1)− ω2(k)]− ḡ−1[g(x(k))− ḡ]u(k).

(3.26)

Applying ∆uOI(X(k), Xref(k)) to (3.5), ẋ2,k+1|k is

(x2,k+1|k − x2,k|k)/Ts =
(
x2,k|k − x2,k−1|k

)
/Ts + ḡ∆uOI(X(k), Xref(k))

(3.13),(3.14)= f(x(k)) + ḡuk+1|k + (g(x(k))− ḡ)u(k) + ω2(k). (3.27)

From (3.27), uk+1|k is expressed using x2,k+1|k and x2,k|k:

uk+1|k =ḡ−1
[(

x2,k+1|k − x2,k|k
)
/Ts − ω2(k)− f (x(k))

]
− ḡ−1(g(x(k))− ḡ)u(k). (3.28)

Similarly, at time k+i, the predicted control signal is

uk+i|k =ḡ−1
(
−f(x(k)) + K2Ek+i−1|k + q̈ref(k + i)− ω2(k)

)
− ḡ−1(g(x(k))− ḡ)u(k). (3.29)

Finally, sufficient conditions for that input and state constraints in the horizon are not
violated are determined.
As assumed, ḡ is selected such that ‖I− g(x)ḡ−1‖ ≤ δ < 1. Besides, according to (3.12),

the following inequalities are obtained:

‖Ek+i|k‖2 ≤ λ̄ρi−1‖E(k)‖2 (3.30)

‖Ek+i|k‖2
Q ≤ λ̃ρi−1‖E(k)‖2

Q (3.31)

with λ̄ := λmax(P)
λmin(P) , and ρ := 1− λmin(Q+R̃)

λmax(P) < 1.
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In accordance with Assumption 1, Assumption 5, (3.18), (3.29), and (3.30), one has

‖uk+i|k‖ ≤

(
fmax + kmax

√
λ̄
)
‖E(k)‖+ fmaxrb2 + ¯̈r + ω2,max + f0

ḡmin
+ δτmax, (3.32)

where kmax := ‖K2‖. According to (3.32), a sufficient condition for uk+i|k ∈ U and uref(k +
i) ∈ Uref is obtained: (

fmaxrb2 + ¯̈r + ω2,max + f0
)
/ḡmin < (1− δ)τmax (3.33)

s ≤ τmax −
(
fmaxrb2 + ¯̈r + ω2,max + f0

)
/(ḡmin(1− δ))︸ ︷︷ ︸

s2∈R>0

(3.34)

‖E(k)‖2
Q ≤ λmin(Q)

(
(1− δ)ḡminτmax − fmaxrb − ¯̈r − ω2,max − f0

fmax + kmax
√
λ̄

)2

︸ ︷︷ ︸
c2∈R>0

. (3.35)

From (3.20), (3.22), (3.33), and (3.35), it is concluded that, if the reference trajectory
satisfies (3.20) and (3.33), and ‖E(k)‖2

Q ≤ cu, then ∀i ∈ I[0,N ], uk+i|k ∈ U and uref(k + i) ∈
Uref .
Besides, if ‖E(k)‖2

Q ≤ cx
λ̃
, according to (3.31), then ‖Ek+i|k‖2

Q ≤ cx,∀i ∈ I[0,N−1], that is,
Xk+i|k ∈ X̄.
Therefore, if the reference trajectory satisfies (3.20) and (3.33), ‖E(k)‖2

Q ≤ c guarantees
local controllability of (3.5).

�

Note that Lemma 4 is introduced to show existence of the reachable reference trajectory.
Zooming techniques are used to derive the sufficient conditions of the reachable reference
trajectory and it results in conservative results. In other words, even though the sufficient
conditions are not satisfied, often some reference trajectories are nevertheless reachable.
Moreover, the sufficient conditions in Lemma 4 are not related to the prediction horizon
N . Hence, if the assumption (∃cx ∈ R>0 such that ‖Xi −Xref(k + i)‖ ≤ cx implies Xi ∈ X̄)
holds regardless of N , then Lemma 4 still holds when a large N is selected. In addition,
it is not required to determine or construct reachable reference trajectories when the IMPC
is implemented in practice. No matter for reachable or unreachable reference trajectory, the
controller is obtained through solving the constrained OCP (3.10). The introduction of the
reachable reference trajectory is merely a basis for local ISS analysis.

3.3.2 Preliminary Results
In this subsection, some preliminary results to analyze ISS of IMPC are developed. Consid-
ering the locally optimal incremental controller (3.11) as the auxiliary control law, a local
upper bound of the value function VN (X(k), k) is derived for a reachable reference trajec-
tory. Then, an upper bound of the TDE error is determined. At last, the continuity of
VN (X(k), k) is shown, which is used to avoid an over-conservative cumulative error bound
during ISS analysis.
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Local Upper Bound of Value Function

Considering a reachable reference trajectory, a local upper bound of VN(X(k),k) is deter-
mined in Lemma 5.

Lemma 5 (Local Upper Bound of Value Function). For a small enough tracking error
‖E(k)‖2

Q ≤ c, there exists κ ∈ R>0 such that VN(X(k), k) is bounded by

VN(X(k), k) ≤ κ‖E(k)‖2
Q. (3.36)

Proof : Given a reachable reference trajectory, a small enough tracking error ‖E(k)‖2
Q ≤ c

will allow to apply the locally optimal incremental controller (3.11) without violation of input
or state constraints. Besides, due to optimality principle, VN(X(k), k) ≤ JN(X(k), ū(k), k).
Thus, if it is shown that the cost function JN(X(k), ū(k), k) is bounded under the func-
tion of the locally optimal incremental controller, then boundedness of the value function
VN(X(k), k) is also found.
For the locally optimal incremental controller (3.11), upper bounds for the tracking errors

are obtained (cf. (3.31) in Lemma 4), and for the control signals in the prediction horizon∥∥∥∆̃uk+i|k

∥∥∥2

R
=
∥∥∥∆uOI(Xk+i|k,Xref(k+i))−∆uref(k+i)

∥∥∥2

R

≤Kmax

∥∥∥Ek+i|k

∥∥∥2

Q
, (3.37)

where i ∈ I[0,N−1], Kmax := λmax(R)‖K0‖2
R

λmin(Q) .
Thus, one has

VN(X(k), k) ≤ JN(X(k), ∆ū(k), k)

=
N−1∑
i=0

(
‖Ek+i|k‖2

Q + ‖∆̃uk+i|k‖2
R

)
0<ρ<1
≤ κ‖E(k)‖2

Q,

(3.38)

where κ := (1+Kmax)λmax(Q)λmax(P)
(1−ρ)λmin(Q)λmin(P) .

�

Upper Bound of TDE Error

In the sequel, an upper bound for the difference between state predictions using the ap-
proximated nominal dynamics (3.5) and the real state trajectory that results from (3.4) is
quantified. To determine this upper bound, an upper bound of TDE error is firstly deter-
mined.
In[7], [28], [29], [32], [33], [36], [133], the TDE error is verified to be bounded if a TDE-

based controller is employed. However, in our approach the incremental controller ∆u(k)
is obtained by solving the constrained OCP (3.10), and an analytic expression for ∆u(k) is
not available. In the following Lemma 6, local continuity of uncertain functions and the
input constraint will be used to analyze boundedness of the TDE error.

Lemma 6 (Bounded TDE Error). There exists ε∗ ∈ R>0 such that ‖ε′‖ ≤ ε∗ for a sufficiently
small sampling period.
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Proof : According to (A.4) and (A.5), ε′ is rewritten as

ε′ =
(
ḡ−1 − g−1(x)

)
(ẋ2 − ẋ2,0) +

(
g−1(x0)− g−1(x)

)
ẋ2,0

+ g−1(x)f(x)− g−1(x0)f(x0).
(3.39)

Since ẋ2 = f(x) + g(x)u, one has

ẋ2 − ẋ2,0 = f(x)− f(x0) + g(x)∆u + (g(x)− g(x0)) u0. (3.40)

Substituting (3.40) into (3.39) yields

ε′ =
(
ḡ−1g(x)−I

)
∆u+

(
ḡ−1g(x)−I

)
g−1(x)r1+r2 (3.41)

with r1 := f(x) − f(x0) + (g(x)− g(x0)) u0, r2 := (g−1(x0)− g−1(x)) ẋ2,0 + g−1(x)f(x) −
g−1(x0)f(x0).
For a sufficiently small sampling period, r1 and r2 are all bounded, i.e., there exist r1,

r2 ∈ R>0 such that ‖r1‖ ≤ r1 and ‖r2‖ ≤ r2 [7].
According to Property 1 and the fact that g−1(x) = M(q), one obtains ‖g−1(x)‖ ≤ µ2.

Moreover, as stated in Section 2.2.2, ḡ is selected such that ‖I− g(x)ḡ−1‖ ≤ δ < 1. Thus,

‖ε‖ ≤‖
(
ḡ−1g(x)− I

)
‖‖∆u‖+ ‖

(
ḡ−1g(x)− I

)
‖‖g−1(x)‖‖r1‖+ ‖r2‖

≤δ‖∆u‖+ δµ2r1 + r2.
(3.42)

For IMPC, ∆u is obtained solving the constrained OCP (3.10) such that u ∈ U. As
stated in Section 3.2.1, ‖u‖ ≤ umax. Thus, ∆umax := max‖∆u‖ = max‖u− u0‖ ≤ 2umax.
Therefore, the TDE error is bounded by

‖ε′‖ ≤ 2δumax + δµ2r1 + r2 := ε∗. (3.43)

�

Remark 12 (Supplementary Notes to Lemma 6). Note that ε∗ derived in Lemma 6 is
over-estimated. H (x, ẋ)t−L is used to approximate H (x, ẋ) and L is usually selected as the
sampling period. In practice, a digital control system can be regarded as a continuous system
when the sampling rate is faster than 30 times the system bandwidth [134]. Thus, the smaller
the sampling period, the smaller is the TDE error. In other words, for any choice of ε̄∗, a
sufficiently small sampling period can be chosen such that ‖ε′‖ ≤ ε̄∗.

Thus using (3.4), (3.5), and Lemma 6, one obtains that

‖X(k+1)−X∗k+1|k‖ ≤ ‖ε̄2‖ ≤ ε̄∗ (3.44)

with ε̄∗ :=
√

2
(
ω2

1,max + (ḡmaxε∗ + 2ω2,max)2
)
Ts and ω1,max := maxk∈I≥0‖ω1(k)‖.
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Continuity of Value Function

In the following, continuity property of the value function will be verified, based on local
controllability of the system (3.5). At first, a set D (D ⊆ X̄) will be introduced in Lemma
7, to show if X ∈ D, then the optimal solutions lie strictly in the tightened constraint sets.

Lemma 7 (Tightened Constraint Sets). There exist constants Vmax, s̃, r̃1 ∈ R>0 such that
optimal solutions starting from X (X ∈ D, D := {X ∈ X̄ : VN(X, k) ≤ Vmax}) satisfy
tightened constraints, i.e., X∗k+i|k ∈ X̄′ and u∗k+i|k ∈ U′ for all i ∈ I[0,N−1], where X̄′

⊕Br̃1 ⊆ X̄
and U′⊕Cs̃ ⊆ U.

Proof : First, it is verified that the reachable reference trajectory lies in the tightened
constraint sets. According to the definition of the reachable reference trajectory (Definition
1), ‖Ek+i|k‖2

Q ≤ c implies Xk+i|k ∈ X̄ for all i ∈ I[0,N−1]. Thus, Xref(k + i) ∈ Xref and
Xref

⊕Br̃ ⊆ X̄, where Br̃ ⊆ R4n := {b ∈ R4n : ‖b‖ ≤ r̃} denotes a unitary ball with the
radius r̃, and r̃ =

√
c

λmax(Q) . Besides, uref(k + i) ∈ Uref and Uref
⊕Cs ⊆ U. Thus, the

reachable reference trajectory lies strictly in the tightened constraint sets.
Then, the possibility that optimal solutions X∗k+i|k and u∗k+i|k also lie strictly in the tight-

ened constraint sets is demonstrated using an extreme value. When ‖E(k)‖2
Q ≤ ξ (ξ ≤ c),

the system is controllable. If ξ is sufficiently small, then the optimal solutions X∗k+i|k and
u∗k+i|k converge and get close to the reference trajectory. Thus, it is reasonable to assume
that when ‖E(k)‖2

Q ≤ ξ, X∗k+i|k and u∗k+i|k strictly lie in the tightened constraint sets, i.e.,
there exist s̃, r̃1 ∈ R>0 such that X∗k+i|k ∈ X̄′ and U∗k+i|k ∈ U′ where X̄′⊕Br̃1 ⊆ X̄ and
U′⊕Cs̃ ⊆ U.
In addition, when ‖E(k)‖2

Q ≤ c, VN(X(k), k) is a decrescent function, i.e., ‖E(k)‖2
Q ≤

VN(X(k), k) ≤ κ‖E(k)‖2
Q (cf. Lemma 5). Thus, VN(X(k), k) ≤ ξ guarantees ‖E(k)‖2

Q ≤ ξ.
Therefore, Vmax ∈ R>0 exists.

�

Lemma 7 implies if X ∈ D, then the optimal solutions lie strictly in the tightened
constraint sets. Besides, the trajectory constituted by the optimal solutions starting from X
can be tracked. Thus, the optimal solutions starting from X (X ∈ D), can be regarded as a
reachable reference trajectory. If the initial error between X and Y is sufficiently small, then
predictions starting from Y generated by the locally optimal incremental controller lie in
feasible sets, in accordance with Definition 1. Thus, it is reasonable to make the following
assumption.

Assumption 2 (Optimal Solutions can be regarded as Reachable Reference Trajectories.).
For X ∈ D and Y ∈ R4n, ‖Y −X‖2

Q ≤ cd (cd ∈ R>0) implies ∀i ∈ [0,N − 1], Yk+i|k ∈ X̄
and uY

k+i|k ∈ U, where Yk+i|k and uY
k+i|k are predictions generated by the locally optimal

incremental controller ∆u(Yk+i, X∗k+i|k):

∆u(Yk+i, X∗k+i|k) = ∆u∗X,k+i|k + K0(Yk+i −X∗k+i|k) (3.45)

with ∆u∗X,k+i|k is optimal control signal corresponding to X.

Based on Lemma 7 and Assumption 2, Lemma 8 about continuity of value function is
proposed, which will be used to determine the cumulative error bound when ISS is analyzed.
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Lemma 8 (Continuity of Value Function). If X ∈ D, Y ∈ X̄, and ‖X−Y‖2
Q ≤ cd, then

VN(Y, k)−VN(X, k) ≤ K`(1 + ‖K0‖P)
1−√ρ

√√√√λmax(P)
λmin(Q) cd (3.46)

with a constant K` ∈ R>0.

Proof : Since the stage cost (3.7) is quadratic, one obtains the following Lipschitz property
of the stage cost function with a constant K` ∈ R>0:

|`(Xk+i|k, ∆uX,k+i|k, k + i)−`(Yk+i|k, ∆uY,k+i|k, k + i)|
≤ K`

(
‖Xk+i|k−Yk+i|k‖P + ‖∆uX,k+i|k−∆uY,k+i|k‖P

) (3.47)

where ∆uX,k+i|k and ∆uY,k+i|k are predicted control signals corresponding to X and Y,
respectively.
Considering X∗k+i|k and ∆u∗X,k+i|k are the optimal solutions starting from X and the fact

that ‖X − Y‖2
Q ≤ cd, it is concluded that if the locally optimal incremental controller

designed in (3.45) is employed, the generated predicted variables corresponding to Y will
not violate constraints, according to Assumption 2. Thus, the following upper bound of
the difference between VN(Y, k) and VN(X, k) is derived, employing ∆u(Yk+i,X∗k+i|k) (3.45)
as the auxiliary control law:

VN(Y, k)− VN(X, k)
≤JN

(
Y, ∆uOI(Yk+i, X∗k+i|k)

)
− VN(X, k)

≤K`

N−1∑
i=0
‖Yk+i|k −X∗k+i|k‖P

+K`

N−1∑
i=0
‖∆u(Yk+i, X∗k+i|k)−∆u∗X,k+i|k‖P

(3.45),(3.12)
≤ K`(1 + ‖K0‖P)

N−1∑
i=0

(√ρ)i‖X−Y‖P

≤K`(1 + ‖K0‖P)
1−√ρ

√√√√λmax(P)
λmin(Q) cd.

(3.48)

From (3.48), it is concluded that, if X ∈ D, Y ∈ X̄, and ‖X − Y‖2
Q ≤ cd, then the

difference between VN(Y, k) and VN(X, k) is upper bounded, regardless of N .

�

3.3.3 ISS of the Proposed IMPC
The concept of ISS has been widely used in stability analysis of systems with bounded
additive uncertainties [123], [124], [135]. Definitions and criteria for ISS that will be used
later are referred to Definition 2, Definition 3 and Proposition 1.
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Definition 2 (Input-to-State Stable [123], [135]). Consider a system given by

x(k+1) = F(x(k), w(k)), (3.49)

where x(k) ∈ Rn and w(k) ∈ Rm (m ≤ n) are the state and disturbance of the system (3.49),
respectively. Besides, there exists a constant γ ∈ R>0 such that ‖w(k)‖ ≤ γ for all k. Then
the system (3.49) is input-to-state stable if there exist β(·, ·) ∈ KL and η(·) ∈ K such that

‖x(k)‖ ≤ β(x(0), k) + η(γ) (3.50)

with x(0) being the initial value.
Definition 3 (ISS Lyapunov Function [123], [135]). A continuous function V (·) is an ISS
Lyapunov function for the system (3.49) if there exist functions α1(·), α2(·), α3(·) ∈ K∞ and
ϕ(·) ∈ K such that

α1(‖x(k)‖) ≤ V (x(k)) ≤ α2(‖x(k)‖), (3.51)

V (F(x(k), w(k))− V (x(k)) ≤ −α3(‖x(k)‖) + ϕ(γ), (3.52)
where ϕ(γ) is the cumulative error bound.
Note that definitions and properties of comparison functions K, K∞ and KL inDefinition

2 and Definition 3 are introduced in Appendix C.
Proposition 1 (The Method to Determine ISS of the System [123], [135]). If the system
(3.49) admits an ISS Lyapunov function, then it is ISS.
Motivated by [127], [128], the continuity of the value function will be employed to com-

plete the ISS analysis. In contrast to ISS analyses in [123], [124], feasible control sequences
are not required in this article. The continuity of the value function has been proved in
Section 3.3.2, which is also different from [127], [128]. Our approach has the advantage that
when the difference between states X and Y is sufficiently small (i.e., ‖X−Y‖2

Q ≤ cd), the
estimated upper bound of the difference between VN(X, k) and VN(Y, k) does not increase
with increasing N .
In the following Theorem 2, considering a reachable reference trajectory, ISS of the

IMPC w.r.t. the TDE error is analyzed. Finally, ISS of IMPC is proved by showing that
VN(X(k), k) is an ISS Lyapunov function.
Theorem 2 (ISS of IMPC). Let Assumption 2, Assumption 2, and Assumption 5
hold and suppose ε̄∗ satisfies

ε̄∗ ≤
√

cd
λmax(Q) , (3.53)

εN := K`(1 + ‖K0‖P)
1−√ρ

√√√√λmax(P)λmax(Q)
λmin(Q) ε̄∗ ≤ αV (Vmax). (3.54)

Considering a reachable reference trajectory, there exists N1 ∈ I>0, such that for all N > N1,
VN(X(k), k) with the initial value VN(X(k0), k0) ≤ Vmax, satisfies

α1 (‖E(k)‖) ≤ VN(X(k), k) ≤ α2 (‖E(k)‖) (3.55)

VN(X(k+1), k+1)−VN(X(k), k) ≤−αN(‖E(k)‖) + εN (3.56)
where αV (·) ∈ K and αN(·) ∈ K∞, i.e., VN(X(k), k) is an ISS Lyapunov function.
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Proof : It consists of 3 parts. Assuming VN (X(k), k) ≤ Vmax, Part I confirms that
VN(X(k), k) is a decrescent function, and Part II confirms that VN(X(k), k) is decreasing
regionally. At last, Part III demonstrates that, for a large enough prediction horizon N ,
VN(X(k), k) ≤ Vmax holds recursively.
Part I : A lower bound for VN(X(k), k) is straight-forwardly obtained from

VN(X(k), k) ≥ ‖E(k)‖2
Q ≥ λmin(Q)‖E(k)‖2. (3.57)

Define γVmax ∈ R>0 := max{κ, Vmax
c
}. VN(X(k), k) is upper bounded according to Lemma

5 and the definition of γVmax .

VN(X(k), k) ≤ γVmax‖E(k)‖2
Q ≤ γVmaxλmax(Q)‖E(k)‖2. (3.58)

Therefore, from (3.57) and (3.58), VN(X(k), k) is a decrescent function, i.e., VN(X(k), k)
satisfies (3.55), which is the first criterion of ISS Lyapunov function inDefinition 3 (compare
(3.51)) with α1(x) := λmin(Q)x2,α2(x) := γVmaxλmax(Q)x2.
Part II : In this part, the regional decreasing property of VN(X(k), k) is analyzed, i.e., the

relationship between VN(X(k+1), k+1) and VN(X(k), k) is constructed. To be able to analyze
stability similar to [110], [111], the value function VN(X∗k+1|k, k+1) is selected as an auxiliary
value function, and the relationship between VN(X∗k+1|k, k+1) and VN(X(k), k) is investigated
for a large enough N . To avoid an over-conservative cumulative error bound, the continuity
of the value function is used to upper bound the difference between VN(X(k+1), k+1) and
VN(X∗k+1|k, k+1). Finally, the relationship between VN(X(k+1), k+1) and VN(X(k), k) is
determined.
Following [110], [111], the relation between VN(X∗k+1|k, k+1) and VN(X(k), k) is determined

for a large enough prediction horizon N (N ≥ N1):

VN(X∗k+1|k, k+1)≤VN(X(k), k)−φNλmin(Q)‖E(k)‖2 (3.59)

where φN := 1− (κ−1)M
κM−2 , M ∈ I>0 ≥ d2 lnκ

lnκ−ln(κ−1)e, and N1 ∈ I>0 := dM + γVmax − 1e.
Note that the basic idea of the proof of (3.59) can be summarized as follows. For a large

enough N , there exists a constant kx ∈ I[0,N−M ] such that `(X∗k+kx|k, ∆u∗k+kx|k, k + kx) ≤ c.
Then, based on the local upper bound of the value function established in Lemma 5 and
the dynamic programming principle, (3.59) is obtained. For the detailed proof, see [110],
[111].
To construct the relation between V (X(k+1), k+1) and VN(X∗k+1|k, k + 1) using Lemma

8, the following Lemma 9 is introduced.

Lemma 9. Assuming ε̄∗ ≤
√

cd
λmax(Q) , if X(k) ∈ D and N ≥ N1, then X∗k+1|k ∈ D and

X(k + 1) ∈ X̄.

Proof : First, X∗k+1|k ∈ D is verified. According to (3.59), if N ≥ N1, then VN(X∗k+1|k, k+
1)≤VN(X(k), k).
Given that X ∈ D, i.e., VN(X(k), k) ≤ Vmax, one obtains that VN(X∗k+1|k, k+1)≤VN(X(k), k) ≤

Vmax, which implies X∗k+1|k ∈ D.
Then, X(k + 1) ∈ X̄ is confirmed. According to the TDE error bound in Lemma 6, one

has ‖X(k+1)−X∗k+1|k‖ ≤ ε̄∗ (cf. (3.44)). Thus, ‖X(k+1)−X∗k+1|k‖2
Q ≤ λmax(Q)(ε̄∗)2. Since

ε̄∗ ≤
√

cd
λmax(Q) , one obtains ‖X(k+1)−X∗k+1|k‖2

Q ≤ cd. Therefore, according to Assumption
2, X(k + 1) ∈ X̄ is obtained.
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�

In accordance with Lemma 8 and Lemma 9, one has

VN(X(k+1), k+1) ≤ VN(X∗k+1|k, k+1)+εN . (3.60)

Finally, the relation between VN(X(k + 1), k + 1) and VN(X(k), k) is confirmed. Substi-
tuting (3.59) into (3.60) yields (3.56):

VN (X(k+1), k+1)−VN(X(k), k) ≤−αN (‖E(k)‖)+εN

with αN(‖E(k)‖) :=φNλmin(Q)‖E(k)‖2.
Thus, as shown in (3.56), VN(X(k), k) satisfies the second criterion of ISS Lyapunov func-

tion in Definition 3 (compare (3.52)) with

α3(x) := φNλmin(Q)x2,ϕ(x) := K`(1 + ‖K0‖P)
1−√ρ

√√√√λmax(P)λmax(Q)
λmin(Q) x.

Therefore, VN(X(k), k) is an ISS Lyapunov function.
Part III : In this part, it will be verified that VN(X(k), k) ≤ Vmax holds recursively, for a

large enough N .
From (3.55) and (3.56), one has

VN(X(k+1),k+1)−VN(X(k),k)≤−αV (VN(X(k),k))+εN (3.61)

where αV (·) := αN ◦ αr−1(·) and αr(x) := λmax(Q)x2 are K∞ functions.
If X(k) ∈ D, then VN(X(k), k) ≤ Vmax. Thus, combining with the above analysis and

assumption, one has

VN(X(k+1), k+1)
(3.61)
≤ (id− αV )(VN(X(k), k))+εN

(3.54)
≤ (id− αV )(Vmax)+αV (Vmax)
≤ Vmax,

(3.62)

where id is the identity function, i.e., id(x) = x, for all x ∈ R. Thus, if X(k) ∈ D, then
X(k+1) ∈ D. Using induction, it is shown that VN(X(k+j), k+j) ≤ Vmax for all j ∈ I>0.
Thus, D is a positive invariant set. Therefore, VN(X(k), k) ≤ Vmax holds recursively.
According to (3.62), VN(X(k), k) ≤ Vmax holds recursively if N > N1. Given that

VN(X(k0), k0) ≤ Vmax, VN(X(k), k) ≤ Vmax holds for all k ∈ I[k0,∞).
In conclusion, it is demonstrated that for all N > N1 and initial state X(k0) with

VN(X(k0), k0) ≤ Vmax, the system is local ISS for a reachable reference trajectory.

�

Remark 13 (Assumptions (3.53) and (3.54) can be Satisfied.). The ISS analysis is based on
the assumptions (3.53) and (3.54) for the TDE error. If the combined TDE and discretization
error ε̄∗ is sufficiently small, these assumptions can be satisfied. According to (3.44), the
magnitude of ε̄∗ mainly depends on the upper bound of the TDE error ε∗. As stated in
Remark 12, by reducing the sampling period, the TDE error can be regulated as small as
necessary. It is consistent with simulations in Section 3.4.3 which displays the influences of
the sampling period on the stability of the closed-loop system.
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Remark 14 (Conservative Cumulative Error Bound is Avoided.). Different from the cumu-
lative error bound

(
Ls

Lf
N−1−1
Lf−1 + LtLf

N−1
)
d (where Lf , Ls, and Lt are Lipschitz constants,

and d is the upper bound of the disturbance) derived in [123], [124], the cumulative error
bound in this article εN := K`(1+‖K0‖P)

1−√ρ

√
λmax(P)λmax(Q)

λmin(Q) ε̄∗ does not increase as N increases.
Similar to our approach, the continuity property of the value function is also used to in-
vestigate local ISS of the MPC method in [127], [128]. Unfortunately, for A in (3.5), its
eigenvalue λ(A) > 1. It still results in the rise of the cumulative error bound with increasing
N , if the method in [127], [128] is applied.

Remark 15 (Increasing the Prediction Horizon Enlarges the Region of Attraction.). Simply
increasing the prediction horizon N can enlarge the region of attraction {X ∈ X̄ : VN(X, k) ≤
Vmax}. This is because N1 := dM+γVmax−1e increases as γVmax := Vmax

c
increases. It is also

verified by experiments in Section 4.5.

Remark 16 (Increasing the Prediction Horizon Decreases Tracking Errors.). According to
Part 3, the system ultimately converges to Dt := {X ∈ X̄ : VN(X, k) ≤ α−1

V (εN)}. Thus,
‖E(k)‖ ≤

√
α−1
V (εN)/λmin(Q) according to (3.55). If we increase M (or N) properly, both

αN(·) and αV (·) increase. Thus, the tracking error decreases if N increases properly. But it
does not asymptotically converge to zero because of the non-zero TDE error. The effects of
N on the tracking errors are also investigated by experiments in Section 4.5.

Remark 17 (How to Determine the Prediction Horizon.). To guarantee ISS of IMPC in
local regions around the reachable reference trajectory, the minimal prediction horizon N1 ∈
I>0 := dM + γVmax − 1e is determined. Due to the zooming technique, this minimal N is
very conservative (normally over-estimated, compare [111]). However, a too large prediction
horizon causes heavier computation such that the real-time control capability will be affected.
Thus, a balance between ISS and computing efficiency has to be found in practice. To this
end, based on current computing resources, the prediction horizon is selected as large as
possible.

3.4 Experiment
In this section, the proposed IMPC is validated on the 3-DoF robot manipulator shown
in Section 2.4.1. Firstly, to validate optimal control performance of IMPC, comparison
experiments with state-of-the-art TDE based controllers are conducted. Then, to show
capabilities to address input and state constraints, experiments are performed where step by
step, the constraints are tightened. Finally, there is a discussion of the experimental results.

3.4.1 Experimental Setup
The sampling period Ts = 1ms. The parameters for IMPC are chosen as follows: di-
agonal matrix ḡ = diag(14, 32, 80); weighting matrices Q = diag{500I3, 10I3, 50I3, I3},
R = diag{5, 5, 5}. Owing to the TDE technique, the nonlinear system is approximated
by a linear system (3.5) and then the constrained OCP (3.10) is a quadratic-programming
(QP) problem. Thus, the constrained OCP (3.10) is calculated by the active-set QP solver,
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3.4 Experiment

Table 3.1: Input and state constraints of Scenarios 1-5
Scenario Angular Velocity Input
No. constraint constraint constraint

1 114.59 deg 114.59 deg/s 4 N·m
2 114.59 deg 114.59 deg/s 2 N·m
3 63.03 deg 114.59 deg/s 4 N·m
4 114.59 deg 45.84 deg/s 4 N·m
5 63.03 deg 114.59 deg/s 2 N·m

qpOASES [136]. The prediction horizon N =15 unless noted otherwise. Note that ḡ is selected
by a manual tuning process following the procedures in Remark 23.
For the experimental study, 6 scenarios are considered. The reference trajectories for the

three joints are chosen as given in Figure 2.3. They are all sinusoidal reference trajectories.
The period is 5s and amplitudes are 28.65 deg (0.5 rad), 11.46 deg (0.2 rad), and 45.86 deg
(0.8 rad), respectively. Then, reference velocity amplitudes are 36.11 deg/s (0.63 rad/s),
14.40 deg/s (0.25 rad/s), and 57.60 deg/s (1.01 rad/s), respectively.
Scenario 1: Comparison with TDE based controllers. To verify optimal tracking perfor-

mance of the proposed IMPC, it is compared to the time delay control (TDC) [36] and TDC
combined with sliding mode controller [29]. For simplicity, these controllers are referred to
as IMPC, TDC, and TSMC, respectively. For IMPC, the input and state constraints are
shown in Table 3.1; For TDC and TSMC, the design parameters kP and kD are in general
determined by the desired natural frequency ωn and the damping ratio ζ, i.e., kP = ω2

n and
kD = 2ζωn. Here, we set ωn = 8 rad/s and ζ = 1. Thus, kP =64 and kD =16; Besides, for
TSMC, ε =[0.002, 0.001, 0.001], α =50, and ϕ =2.5×104 where ε, α, and ϕ are all design
parameters for the sliding mode controller. To quantify tracking performance of these three
controllers, the following average cost function is employed:

J = 1
Nt

Nt∑
k=0

(
‖E(k)‖2

Q + ‖∆̃u(k)‖2
R

)
(3.63)

where Nt = ts/Ts, ts is the terminal time.
Given that the reference signals varying flatly lie strictly in the state set of Scenario 1,

reference signals can be regarded as reachable reference trajectories in Scenario 1.
In Scenarios 2-5, the capability of IMPC to handle input and state constraints is verified,

through tightening input and state constraints (see Table 3.1). Note that 114.59 deg=2 rad,
63.03 deg=1.1 rad, and 45.84 deg=0.8 rad.
In Scenario 6, Scenario 1 (only IMPC part) and Scenario 3 are repeated with N =8, 12,

15, respectively, to study the effect of different prediction horizons on tracking performance.

3.4.2 Experimental Results
The experimental results of Scenario 1 are depicted in Figures. 3.1-3.3 and Table 3.2. As
shown in Figure 3.1 and Table 3.2, tracking errors of IMPC are smaller than that of TDC and
TSMC. As shown in Figure 3.2, especially the first subfigure, torque trajectories generated by
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Figure 3.1: Experimental results of Scenario 1: Tracking errors for the three joints.

Table 3.2: Experimental results of Scenario 1: RMS Values of the Tracking Errors of the
Three Joints (10−2deg)

Joint No. TDC TSMC IMPC
1 2.38 1.36 1.17
2 1.50 1.16 0.68
3 8.56 3.05 3.93

IMPC are smoother than that of TDC and TSMC. This is because acceleration information,
which is easily affected by measurement noise, is used to calculate torques directly for TDC
and TSMC. For IMPC, the torques are generated by solving an OCP. The costs for the
three controllers, calculated from (3.63) are 16.2475, 16.1185, and 3.3716, respectively. As
expected, the cost for IMPC is much smaller than that of TDC and TSMC. Although
tracking errors of TSMC are smaller than that of TDC, the related costs are almost equal.
This is because nonsmooth torque trajectories result in large values for ∆u, and costs for
TDC and TSMC mainly depend on variations of torque. As shown in Figure 3.3, most of the
computing time for each prediction horizon are smaller than 0.2 ms, which verifies real-time
control capability.
The experimental results of Scenario 2 are depicted in Figure 3.4. As shown in Figure 3.4,

input constraints are not violated and the system is still stable, although the tracking errors
are larger than that in Scenario 1.
The experimental results of Scenario 3 are depicted in Figure 3.5. It can be observed that

the reference trajectory of joint 3 does sometimes leave the admissible set. Nevertheless, the
closed-loop system is still stable. For the tracking errors, there are no apparent differences
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Figure 3.2: Experimental results of Scenario 1: Torques for three joints.
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Figure 3.3: Experimental results of Scenario 1: Computation time.

for joint 1 and joint 2, in comparison with Scenario 1. For joint 3, because of the strict
state constraint, the tracking error is larger when reference signals are unreachable. It is
also observed that during time intervals [8s,10s], · · · , [28s,30s], the tracking error of joint 3
gradually converges to a small neighborhood of the origin. There are two reasons for this
phenomenon. One is that the reference trajectory is getting closer and finally approaches
the feasible sets, the other is that when the reference trajectory becomes reachable again,
the tracking error ultimately converges to a small neighborhood around the origin. This
coincides to the local ISS of the proposed IMPC analyzed in Section 3.3. For the torques
of joint 3, there are severe variations for short periods when the positions are close to the
boundary of the constraints. This is to avoid state constraint violation. On the other hand,
joint 3 nearly stops moving while joint 1 and joint 2 continue to move. The movement of
joint 1 and joint 2 is regarded as the disturbance to joint 3. Despite of severe variations, the
whole closed-loop system is stable.
In Scenario 4, the state constraints are tightened for the angular velocity. The experimental

results of Scenario 4 are depicted in Figure 3.6. For joint 1 and 2, there are no significant
differences in tracking errors and tracking velocities between Scenario 1 and 4. For joint
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Figure 3.4: Experimental results of Scenario 2: Tracking errors and torques for three joints.
Note that ‘S1’ and ‘S2’ represent variables generated in Scenarios 1 and 2, re-
spectively.

3, the velocity is limited because of the new constraint, resulting in a larger tracking error.
As displayed in the fifth subfigure of Figure 3.6, the torque of joint 3 changes significantly
during some time horizons, such as [6s, 7s], [8s, 9s], · · · [28s, 29s]. During these time horizons,
controller tries to avoid violation of the velocity constraints.
As displayed in Figures. 3.5 and 3.6, especially the fourth subfigure of Figure 3.5 and the

fourth subfigure of Figure 3.6, state constraints are slightly violated. This is because the
TDE error and measurement noises are not considered when predictions are generated in the
constrained OCP (3.10). Comparing Figure 3.5 with Figure 3.6, one learns that it is more
difficult to constrain velocities because velocities are easily affected by measurement noise.
Although the violation phenomenon occurs around the constraint boundary, the proposed
IMPC scheme still has the capability to regulate states to a large extend.
The experimental results of Scenario 5 are depicted in Figure 3.7. In comparison with

Scenario 1, the tracking error of joint 1 increases slightly because of the tightened input
constraint. For joint 2, there are no significant differences. Joint 3 operates stably similar
to Scenario 3.
The experimental results of Scenario 6 are depicted in Figures 3.8-3.9. For Scenario 1 with

N =8, 12, 15, experimental results are depicted in Figure 3.8. The tracking error decreases
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Figure 3.5: Experimental results of Scenario 3: Tracking errors, position of joint 3, and
torques. Note that ‘S3’ represent variables generated in Scenario 3, respectively.

for a longer horizon N . It coincides with the ISS analysis in Section 3.3.3. For N =12 and
15, there are no significant differences in tracking errors. Due to the TDE error, the tracking
error does not converge to zero even if N continues to increase.

The experimental results of Scenario 3 with different horizons are shown in Figure 3.9.
For joints 1 and 2, the reference is reachable and tracking errors decrease with increasing the
horizon N . The reference trajectory for joint 3 is not always reachable. Although ISS for
unreachable reference trajectories is not considered in the presented theory, system outputs
stay close to reference signals. During the time intervals [8s, 10s], · · · , [28s, 30s], the
unreachable reference trajectory switches to a reachable reference trajectory. As shown in
Figure 3.9, especially the fourth subfigure, as the horizon N increases, the output is closer
to the reference signal. This is because the region of attraction increases and the tracking
error decreases with larger N , as analyzed in Remark 15 and Remark 16.
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Figure 3.6: Experimental results of Scenario 4: Tracking errors, velocity of joint 3, and
torques. Note that ‘S4’ represent variables generated in Scenario 4, respectively.

3.4.3 Discussion
Prediction Horizon N

In Section 3.3, the minimal prediction horizon N1 := dM +γVmax−1e can guarantee local
ISS of IMPC for reachable reference tracking. Using the zooming technique, the method in
Section 3.3 to determine the prediction horizon N is very conservative. This phenomenon is
illustrated using the following example. Assuming ‖E(k)‖2

Q ≤ c, we obtain the theoretical
minimal prediction horizon N =5.02×1012. However, in Scenarios 1-6, yet N =8 allows for
stability of the system. Thus, the minimal prediction horizon in ISS analysis is more of a
conceptual nature.
Besides, the statement inRemark 16 is verified by Scenario 6, i.e., tracking errors decrease

with increasing the prediction horizon N . To this end, one would try to select a larger
prediction horizon. On the other hand, increasing N causes heavier computation. Thus, in
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Figure 3.7: Experimental results of Scenario 5: Tracking errors, position of joint 3, and
torques. Note that ‘S5’ represent variables generated in Scenario 5, respectively.

practice, one needs to find a compromise between tracking errors and computing efficiency.
When the prediction horizon exceeds 15, real-time control cannot be realized because of the
limited computational capability of our computer. As shown in Figure 3.3, for reachable
trajectories, there is still room to increase the prediction horizon. However, for unreachable
trajectories, iterative number of the qpOASES solver increases to keep constraints satisfaction,
and it will also increase the computing time at the same time. Taking all factors discussed
above into consideration, we find that for our application N =15 is a reasonable selection
because it not only allows for real-time implementation but also guarantees precise enough
tracking.
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Figure 3.8: Experimental results of Scenario 6: Tracking errors with different prediction
horizons.

Reachable or Unreachable Reference Trajectory

During the implementation, one does not need to justify whether the reference trajectory is
reachable or unreachable. We only need to solve the constrained OCP (3.10).
As shown in Lemma 4, if the set of admissible states are enlarged enough, an unreachable

reference trajectory can be changed into a reachable reference trajectory. In other words
as shown in Scenarios 1-5, the reachable reference trajectory in Scenario 1 is changed into
unreachable reference trajectories in Scenarios 2-4 after tighter input and/or state constraints
are introduced. Although ISS of IMPC is not theoretically proven for unreachable reference
trajectories, the reference trajectory is tracked as close as possible and the closed-loop system
is still stable (as shown in Scenarios 2-5).

Limitations in Practice

To satisfy the assumptions w.r.t. the TDE error mentioned in Remark 13, a small enough
sampling period is required. In our experiments, 0.001s is used because of the setting of our
experimental system, which is also commonly used in robotic systems, such as [7], [29], [32],
[65], [74], [94], [137]. If the sampling period increases, the tracking error increases and finally
the closed-loop system becomes unstable. To check the influence of the sampling period on
control performance and considering safety issues, simulations of Scenario 1 with different
sampling periods (Ts= 0.001s, 0.005s, 0.01s, 0.02s) are implemented. Tracking errors of joint
1 are displayed. As shown in Figure 3.10, when Ts = 0.001s, 0.005s, and 0.01s, tracking
errors are very small. The tracking error increases as the sampling period increases since
the TDE error increases with increasing the sampling period as analyzed in Section 3.3.2.
For Ts = 0.02s, the tracking error trajectory starts to oscillate because a larger TDE error
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Figure 3.9: Experimental results of Scenario 6: Tracking errors and positions of joint 3 with
different prediction horizons.
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Figure 3.10: Simulation results: Tracking errors of Joint 1 with sampling periods Ts = 0.001s,
0.005s, 0.01s, 0.02s.

affects solutions of the constrained OCP (3.10) and the system becomes unstable. Therefore,
to receive reliable control performance, the sampling period should be smaller than 0.01s.
Besides, we need to take into account real-time computation capability since the smaller
sampling period, the heavier the burden of computing. In the experiment of the paper,
based on the simulation study, we select 0.001s to ensure both the real-time computation
and the tracking performance.
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3.5 Summary
In this chapter, an incremental model predictive controller (IMPC) for robot manipulators
was proposed. IMPC provides a control framework which obtains optimal control perfor-
mance without concrete mathematical model.
The design process of IMPC involves three steps. First, using time delay estimation

(TDE) and discretization, an approximated discrete-time linear system with incremental
control signal was derived. Then, the cost function is designed taking into account tracking
errors and control signals. Finally, with the approximated discrete-time linear system and
cost function, IMPC was developed, where the concrete mathematical model of the robot
manipulator was no longer required. This is the main contribution of this chapter.
The second major contribution of this chapter is the local input-to-state stability (ISS)

analysis of IMPC. First, we introduce the definition of reachable reference trajectory using
the local optimal incremental controller. In a small neighborhood around the reachable
reference trajectory, there exists local optimal incremental controller which stabilizes the
system and guarantees input and state constraints are not violated. Then, using this local
controllability of the system, a local region around the reachable reference trajectory is
defined, and in this region, continuity of the value function is proved. Finally, the cumulative
error bound is calculated using the continuity property of the value function, and the resulting
cumulative error bound is not over-conservative. It is theoretically inferred from this local
ISS analysis that increasing the prediction horizon enlarges the region of attraction and
decreases tracking errors.
To validate the proposed IMPC, a set of real-time experiments was performed. The results

demonstrate the efficacy of the proposed IMPC in realizing optimal control performance
while guaranteeing input and state constraints are not violated. In practice, tasks are usually
defined in task-space and task-space control is more intuitive. Thus, in Chapter 4, we will
extend IMPC to the task-space control schemes.
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In Chapters 2 and 3, joint-space controllers have been studied. Nevertheless, in the control
of robot manipulators, tasks to be executed are usually given in the task space [138]. For
existing task-space controllers, the most important performance criteria, such as robustness,
singularity-avoidance, optimality, and constraint admissibility, are not yet considered simul-
taneously. Concurrently addressing these issues is challenging given the inevitable modeling
errors, inherent inversion operation in algorithms and limited computing power of systems.
In this chapter, we aim at developing a task-prioritized control scheme taking into account
all these criteria simultaneously.

4.1 Overview
In this chapter, a task-space controller is developed in the framework of MPC, where equa-
tions of motion of tasks and system dynamics are approximated by linear incremental systems
using TDE. As a result, the optimal control perfromance is realized while constraints are
not violated and robustness is enhanced. Multiple tasks are considered simultaneously and
performed in a prioritized order. The task priority is realized based on the dynamic consis-
tency principle. In the algorithm, inversion of matrices w.r.t. Jacobian is avoided. It is a
singularity-free method.

4.1.1 Related Work
Mechanical or robotic systems (e.g. high-degree-of-freedom robot manipulator and humanoid
robots) which are kinematically redundant to a given task, enable execution of additional
tasks simultaneously. Usually, the primary task of the robot manipulator is to realize accu-
rate end-effector (EE) trajectory tracking. The primary task is assigned the highest priority
while the additional tasks, such as maintaining the orientation of EE, can be performed by
utilizing redundancy of the robot manipulator. Although multiple tasks can be controlled
if they are concatenated into a single task vector, all the conflicting tasks will be adversely
affected if a control conflict occurs.
To ensure conflict resolution, the operational space control framework has been employed

to bestow control capability of multiple tasks in a strictly prioritized manner for redundant
robots, mostly with the null-space projection method [139]–[144]. These task-prioritized
controllers are grouped into three categories, where either the desired joint velocities [139],
[140], or accelerations[141], or forces/torques [142], [143] are computed respectively [144].
Since most of commercial robots do not allow for a torque-level control interface, the velocity-
based scheme is preferred in robotic applications. Nevertheless, for tracking with a second-
order system such as a rigid body dynamics robot, the acceleration-based and force/torque-

63
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based schemes are more appealing owing to the explicit incorporation of accelerations. The
force/torque-based scheme brings significant advantages in applications where manipulation
in contact with environments is required, and constraints on torques are imposed to guarantee
security. In the last few decades, a variety of force/torque-based methods, such as operational
space formulation (OSF) [142]–[150], hierarchical quadratic programming (HQP) [61], [151]–
[153], and MPC [154], [155] were developed.
1) OSF schemes: The OSF [142] relying on null-space projections [156] has been widely

used and became a popular tool for task-prioritized control since it was introduced to robotics
decades ago. It provides dynamically decoupled control of multiple tasks based on a property
known as dynamic consistency: forces/torques for lower priority tasks do not affect the exe-
cution of high-priority tasks [143], where model-based feedback linearization is applied on all
hierarchical levels and decoupled control behavior of each task is obtained. The formal null-
space stability, which is difficult to be proven [144], [157], is theoretically analyzed in [148],
[149] for regulation control and [150] for tracking control, respectively. Nevertheless, both
the novel hierarchical controller and OSF are vulnerable to modeling errors [144] since the
mathematical model is required to be precisely identified to realize feedback linearization
and controller design. Unfortunately, modeling errors are inevitable in practice. Besides,
dynamics terms, especially the inertia matrix, undergo severe changes when the robotic sys-
tem carries or releases unknown payloads. Therefore, desired control performance naturally
deteriorates.
To deal with modeling errors, adaptive methods [158] and learning techniques [159] were

employed in operational space controls, where uncertain/unknown functions are identified
or optimal control is found online that maximizes an immediate reward. Although the
robustness of the controllers is improved, the computational complexity is such high that
it is difficult to apply them in practice. Besides, some parameters have to be heuristically
selected, which also increases the complexity of these methods. As an alternative, time-
delay estimation (TDE) based OSF methods were developed in [145]–[147]. TDE [7], [28],
[33], [36], [133] is a model-free controller design method, which uses time-delayed input
and output signals to estimate system dynamics without a concrete mathematical model,
laborious parameter identification, and linearization around equilibrium points of the system.
It results in enhanced accuracy in terms of dynamic consistency and control performance
along with enhanced computational efficiency.
Nevertheless, the null-space projection-based OSF methods [142]–[150] result in algorith-

mic singularity problems especially when tasks conflict with each other which finally result
in unstable behavior. Although a damping factor [53] and a continuous null-space projection
[60] were introduced to address the singularity problem, there is a trade-off between good
conditioning of the solution and tracking accuracy. Besides, physical limitations, such as
input and state constraints, are also not considered in all approaches until here. Constraints
are generally used to describe safety requirements not only for the environment but also
for the robot and should be considered in safety-critical applications, e.g., close to or in
cooperation with humans.
2) HQP schemes: Considering input and/or state (motion) constraints, HQP was devel-

oped in the framework of multiple quadratic programs (QPs) ordered hierarchically [61],
[151]–[153], where the task hierarchy is realized using the hierarchical structure of the QPs
[140], [160]. In [151], the robustness of HQP is addressed with a combination of sliding mode
control (SMC). However, to realize task hierarchy simultaneously, the null-space projection
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idea is adopted to design the sliding variable, which has the risk of algorithmic singularity. In
[152], task hierarchy is realized by solving the cascaded QP in lexicographic order, and in [61],
[153], equality constraints are imposed to guarantee strict task hierarchy without using the
null-space projection method. Thus, in [61], [152], [153], algorithmic singularity is avoided.
However, once the Jacobian matrix is singular, Hessian matrices of QPs in [152], [153] are no
longer positive definite, and kinematic singularity occurs. This is because, for QP solvers,
numerical weakness increases with the rise of the condition number of the Hessian matrix.
When the Hessian matrix is positive semi-definite, undesired (large-value) control signals are
computed and the system becomes unstable. Although the Hessian matrix is always positive
definite in [61], the risk of kinematic singularity is still not avoided since the algorithm in
[61] involves the inverse calculation of the terms w.r.t. Jacobian matrix. Besides, solutions
of the HQP are optimal to the current robot configuration, but not w.r.t. global tasks.
In other words, the locally optimal controllers might drive the controlled robotic systems to
disadvantageous configurations in the context of global tasks [161]. Finally, the HQP control
structure may cause torque peaks and oscillations [141], attributed to its limited (one step)
prediction.
3) MPC schemes: Model predictive controllers have been proposed to address drawbacks

of locally optimal controllers [161], [162]. Given that control performance is considered over
a finite-time horizon [163], [164], model predictive control (MPC) provides a more power-
ful option to fulfill control objectives of multiple tasks while constraints are not violated.
Nevertheless, task hierarchy in [161], [162] is realized by a weight-prioritized optimization
problem [165]. It results in a soft task-prioritized inverse kinematics control scheme. When
tasks conflict with each other, the highest-priority task, which is usually the primary or
security-related work, will be adversely affected.
The torque-based task-prioritized MPC schemes were developed independently in [154],

[155] for robotic systems. A single convex constrained optimization problem is constructed in
[155] where the task hierarchy is addressed by a quadratic inequality constraint that tracking
errors of high-priority tasks must be less than or equal to that of low-priority tasks. This re-
sults in a soft task hierarchy. Besides, the desired joint position and velocities are calculated
using the null-space projection method, resulting again in risk of algorithmic singularity. In
addition, predictions are generated based on the nominal mathematical equations of robotic
systems while uncertainties and/or disturbances are not considered. For a single-task control
problem, learning-based MPC methods [114], [116] were developed to improve robustness,
where Gaussian processes (GP) and neural networks (NN) are employed to identify non-
linear models online. Unfortunately, GP and NN learning techniques further increase the
computational complexity of MPC. SMC, being robust against uncertainties and efficient in
computation, is combined with MPC in [43] to address modeling errors and external distur-
bances for one single task. However, when multiple tasks are considered, task hierarchy will
be adversely affected by the compensating SMC method. To guarantee task hierarchy, the
task-prioritized sliding variable for each layer is designed and then an operational space model
predictive SMC was developed in [154]. Nevertheless, the task-prioritized sliding variable is
designed using the null-space projection method, which means it still suffers from the risk
of algorithmic singularity. Besides, the nominal mathematical model is needed. In addition,
due to the introduced pseudo control law, constraints imposed on torques are nonlinear and
non-convex and thus the considered optimal control problems (OCPs) are general nonlinear
programming (NLP) problems whose convexity is not guaranteed. The Non-convex program-
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ming problem whose solution is easy to fall into local optimum, is usually computationally
demanding.
The permitted sampling period of robotic systems is usually down to hundreds or even

thousands of a second, and thus with the general NLP solvers, such as IPOPT [166] and
LOQO [167], it is hard to guarantee real-time control, finally causing feedback delays. The
most popular and commonly used method is sequential quadratic programming (SQP) [168],
[169], where a series of approximated QP problems is solved sequentially until the solution
converges. SQP has been successfully applied on robotic systems [169], [170]. In [170], to
simplify the calculation, inequalities are treated as soft constraints. Owing to the efficient
SQP, the computational time is down to the order of milliseconds or tens of milliseconds
[168]–[170]. However, for high-precision robotics systems, the sampling period is 1 ms [7],
[33], [65], [94], [133], [137], [145]–[147], [171] since the control accuracy is in line with the
sampling rate. The approximated algorithm which trades control performance for speed,
such as real-time iteration (RTI), was developed [172] to avoid solving NLP iteratively. In
RTI, a single convex QP that locally approximates the original optimization problem is
solved per feedback step. It reduces computational time and has been applied on robot
manipulators in practice [171]. Nevertheless, application of RTI and SQP, relies on accurate
model of the controlled plant and stability problems arise in the presence of reference changes
and/or large external disturbances [173]. In contrast to NLP solvers, QP solvers which are
running at microseconds deliver solutions in a more reliable and efficient way [174], [175].
Therefore, it is appealing that the task-prioritized MPC scheme can be formulated into a
linear form whose OCP can be cast to a QP.

4.1.2 Method and Contributions
In this chapter, a task-prioritized control scheme, hierarchical incremental MPC (HIMPC)
is proposed for robotic systems modeled by uncertain Euler-Lagrange equations. To improve
the robustness against uncertainties and disturbances, we first develop a robust incremental
model in the global set of admissible states exploiting the TDE method. Then, the HIMPC
is formulated with multi-level constrained optimal control problems (OCPs) sequentially
ordered in accordance with task priorities. The state predictions are generated from the
discretized incremental model. Task hierarchy is fulfilled through equality constraints on
control signals for lower-priority tasks, based on the dynamic consistency principle. More-
over, each constrained OCP of the HIMPC is cast to a QP. The hierarchical feasibility of
the HIMPC is investigated, and the existence and uniqueness properties of the solution are
verified theoretically relying on the strict convexity of the QPs.
The contributions of this chapter are summarized as follows:

1) Robust. Different from existing task-prioritized MPC [154], [155] and optimization-
based methods [61], [140], [151]–[153], system dynamics of the robotic system will not
be required for the proposed controller. We will approximate both system dynamics
and equations of motion of tasks using TDE. This model-free nature improves robust-
ness against uncertainties and disturbances. Besides, TDE will allow that task priority
constraints are set independent of the accurate inertia matrix. Thus, robustness of the
controller in terms of tracking accuracy and also dynamic consistency is enhanced.

2) Computationally Efficient. Relying on the TDE method will not only improve the
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robustness of the proposed method but also simplify the nonlinear equations to linear
ones. The proposed HIMPC is essentially a linear MPC and each constrained OCP can
be cast to a QP. Compared with the nonlinear task-prioritized MPC schemes developed
in [154], [155], the proposed HIMPC decreases computational complexity dramatically,
which makes it possible to realize real-time control in milliseconds.

3) Singularity-Free. The null-space projection idea will not be employed in this approach,
and task hierarchy is realized by imposing equality constraints on input signals for
lower-priority tasks. Since no inverse calculation is involved in these equality constraint
equations, algorithmic singularity is avoided. Besides, the inverse calculation of terms
w.r.t. Jacobian matrices is also not involved in the constrained OCPs, and the Hessian
matrix of each constrained OCP is verified to be positive definite. Thus, the proposed
HIMPC is also a kinematically singularity-free method.

4.1.3 Outline of this Chapter
The rest of this chapter is organized as follows. In Section 4.2, control objective is introduced.
In Section 4.3, equations of motion of tasks and system dynamics are approximated by
incremental systems using TDE. Further, accuracy of this approximation method is analyzed.
Section 4.4 presents the HIMPC. The hierarchical feasibility of HIMPC is analyzed and the
existence and uniqueness properties of the solution are investigated. In Sections 4.6 and
4.5, simulation and experimental results are described and the effectiveness of the proposed
method is verified. Finally, Section 4.7 draws conclusion and discussion on future research
directions.

4.2 Control Objective
For a robot manipulator modeled by (A.1), a control task hierarchy including r ∈ I>0 levels
is introduced and it is assumed that i-th task has a lower priority level than all previous
(i − 1) tasks [150]. Especially, the first and r-th tasks have the highest and lowest priority
level, respectively. The task-space coordinate xi ∈ Rmi of the i-th task is

xi = fi(q), i ∈ I[1,r], (4.1)

where fi(q) : Rn → Rmi is the task mapping, on which the following assumption is made.

Assumption 3 (Certain and Continuously Differentiable Task Mapping). The considered
task mapping functions are known exactly and also continuously differentiable.

With this differentiability assumption, the Jacobian Ji(q) ∈ Rmi×n corresponding to the
coordinate xi is defined as

Ji(q) = ∂fi(q)
∂q

. (4.2)

Using Assumption 3, we conclude that all Jacobians are known functions with no un-
certainties.
In this chapter, the task i is to make xi track a desired reference trajectory xid and realize

the following target motion dynamics in free space [145]:
¨̃xi + KVi

˙̃xi + KPix̃i = 0, (4.3)
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where x̃i := xi − xid is the tracking error, and KVi � 0 and KPi � 0 denote damping and
stiffness matrices respectively, both of which are in diagonal forms in this chapter.
Non-smooth reference trajectories can cause damage to mechanical systems due to sharp

actuator changes. Thus, the reference trajectory xid is assumed to be bounded and smooth.

Assumption 4 (Bounded and Smooth Reference Trajectory,[89]). The reference trajectory
xid is bounded and smooth, satisfying 0 ≤ ri ≤ ‖xid‖ ≤ ri < ∞, 0 ≤ ṙi ≤ ‖ẋid‖ ≤ ṙi < ∞,
and 0 ≤ r̈i ≤ ‖ẍid‖ ≤ r̈i <∞.

Note that exact values of ri, ri, ṙi, ṙi, r̈i and r̈i in Assumption 4 are not required for
the controller design.
We aim to design a strict task-prioritized controller which is robust and singularity-free

while physical constraints of the robot manipulator, such as constraints on joint positions,
velocities, and torques, are satisfied. The following box constraints are considered: qmin ≤
q ≤ qmax, q̇min ≤ q̇ ≤ q̇max, and τmin ≤ τ ≤ τmax, where •min, •max denote specific
lower/upper bounds of •.

Remark 18 (Reasonability of Assumption 3). In this chapter, the task-space position
coordinate of a specified point on the link, joint, or end-effector of the robot manipulator is
considered for one task. Thus, if the Denavit-Hartenberg (D-H) parameters of the robotic
system are obtained, mapping functions are known exactly and in general are continuously
differentiable. Therefore, Assumption 3 is reasonable.

Remark 19 (Release Assumptions on Singularity-Free Task Space). We will not add an as-
sumption here on the tasks to be executable without running into singularities. The proposed
method will allow to execute singular combinations of tasks. In literature, it is common to
avoid singularities by restricting allowed tasks, and one assumption is made that task space
is singularity-free. However, this assumption delimits the feasible task space of the robot
manipulator. In this chapter, to ensure sufficient task space for the robotic system and to
guarantee safety, we will strive for designing a singularity-free control method. Thus, the
assumption on singularity-free task space is released.

4.3 Robust Incremental Systems
In this section and the following Section 3.2, a task-prioritized control scheme is developed.
We aim at taking into account optimality, input and state constraints, robustness, and
strict task hierarchy, simultaneously. To realize optimality and address input and state con-
straints, the task-prioritized control scheme is developed in the framework of MPC. Taking
into account the unknown system dynamics and also the computational complexity of the
algorithm, the TDE method is used to approximate equations of motion of tasks and system
dynamics to avoid online identification or other time-consuming operations. Besides, the
approximation accuracy of the resulting TDE-based incremental systems is analyzed.

4.3.1 Derivation of the Incremental Systems
In this subsection, uncertain equations of motion of tasks and system dynamics will be
approximated using TDE, and incremental systems are obtained, which are used to generate
state predictions.
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As stated in control objective (see Section 4.2), we aim to impose constraints on torques.
Thus, the torque is selected as the control variable in the proposed task-prioritized controller.
First, the equations of motion of tasks are derived with the torques being the inputs. With
(A.1) and (4.2), the equation of motion of the i-th task is obtained:

ẍi
(4.2)= J̇iq̇ + Jiq̈

(A.1)= J̇iq̇ + JiM−1 (τ−C(q, q̇)−G(q)−F(q̇)) . (4.4)

According to (4.4), the equation of motion is also uncertain. This is because it includes
uncertain system dynamics terms and external disturbance. To deal with these uncertainties
and reduce dependency on the concrete mathematical model, the TDE technique[7], [28],
[33], [36], [133] is employed to approximate the equation of motion (4.4), which involves two
steps.
Step 1: Separating Uncertain Terms from Known Terms. It is observed that uncertainties

of the equation of motion (4.4) are originated from the system dynamics (A.1). Thus, we will
consider (A.1) first. Introducing a diagonal positive definite matrix M̄, (A.1) is transformed
into the following form:

M̄q̈ +
(
M− M̄

)
q̈ + C(q, q̇)q̇ + G(q) + F(q̇)︸ ︷︷ ︸

Hq

= τ . (4.5)

Using (4.5), the equation of motion (4.4) is rewritten as:

ẍi = J̇iq̇ − JiM̄−1Hq︸ ︷︷ ︸
Hx

+JiM̄−1τ (4.6)

where Hx is also uncertain/unknown because of the lumped uncertain nonlinear function
Hq in (4.5).
Step 2: Using the Time-Delay Signals/Functions to Approximate the Unknown Terms.

The value of Hx at time t is approximated by that of Hx at time (t − L) for a sufficiently
small delay time L [7], [33], [133]:

(Hx)t ∼= (Hx)(t−L) . (4.7)

We abbreviate ẍi,0 := (ẍi)(t−L), τ 0 := τ (t−L), and Ji,0 = (Ji)(t−L) for simplicity. From
(4.6) and (4.7), one obtains TDE of Hx, (Hx)(t−L) as follows [133]:

(Hx)(t−L) = ẍi,0 − Ji,0M̄−1τ 0. (4.8)

Comparing (4.6) with (4.8), we learn that input matrices (JiM̄−1 and Ji,0M̄−1) are dif-
ferent. We will unify input matrices, considering the fact that variations of Jacobian Ji in a
short period is negligible. In other words, for a sufficiently small L,

Ji,0 ∼= Ji. (4.9)

Now, taking into account (4.9), we have an alternative TDE of Hx, Ĥx as follows:

Ĥx = ẍi,0 − JiM̄−1τ 0. (4.10)
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Finally, we obtain the incremental version of (4.4) with the combination of (4.6) and
(4.10):

ẍi = ẍi,0 + JiM̄−1∆τ + εx (4.11)

where ∆τ := τ − τ 0 is the incremental control signal, and εx := Hx − Ĥx is the TDE
error which is considered as a disturbance to the incremental system (4.11). Note that only
current values of ẍi and τ are used in (4.10) to complete the approximation while complex
and uncertain functions, such as M(q), C(q, q̇), G(q), and F(q), are not required.
For εx = 0, the nominal incremental system is obtained:

ẍi = ẍi,0 + JiM̄−1∆τ . (4.12)

In what follows, the Euler method is used to obtain a discrete-time version of the nominal
incremental system, which is used to generate predictions of xi. In accordance with [133],
to guarantee the delay time is sufficiently small, the sampling period Ts is selected as L.
Considering the sufficiently high sampling rate, discretization error is ignored. Thus, we
have

x̄i(k + 1) = A11x̄i(k) + A12x̄i(k − 1) + B1,i∆τ (k) (4.13)

where

x̄i := col (xi, ẋi, ẍi), A11 :=

 I TsI O
O 2I O
O O I

, A12 :=

O O O
O −I O
O O O

, B1,i :=

 O
JiM̄−1Ts
JiM̄−1

.
We define a stack variable ~xi(k+1) := col (x̄i(k + 1), x̄i(k)), and rewrite (4.13) as a canonical
linear equation:

~xi(k + 1) = A1~xi(k) + B1i∆τ (k) (4.14)

with A1 :=
[
A11 A12
I O

]
, B1i :=

[
B1,i
O

]
.

In addition to predictions of task-space coordinates (xi), we will need to predict joint
space behavior (q and q̇) to be able to evaluate constraints in joint space during predictions.
Unfortunately, as we assumed in Section A.1, the system dynamics (A.1) is uncertain in
this article. Alternatively, the TDE method will also be used to approximate the system
dynamics.
Same to procedures in [133], using TDE method, i.e., Hq ∼= (Hq)(t−L), the following

incremental system is obtained from (4.5).

q̈ = q̈0 + M̄−1 (∆τ + εq) (4.15)

where εq := (Hq)(t−L) −Hq is also the TDE error.
Let εq = 0, we also obtain the nominal incremental system from (4.15):

q̈ = q̈0 + M̄−1∆τ . (4.16)

Let q̄ := col(q, q̇), similar to (4.13), discritizing (4.16) yields the following discrete-time
system:

q̄(k + 1) = A21q̄(k) + A22q̄(k − 1) + B21∆τ (k) (4.17)
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with
A21 :=

[
I TsI
O 2I

]
, A22 :=

[
O O
O −I

]
, B21 :=

[
O

TsM̄−1

]
.

Similar to (4.14), let ~q(k + 1) := col (q̄(k + 1), q̄(k)), a canonical linear equation is also
obtained:

~q(k + 1) = A2~q(k) + B2∆τ (k) (4.18)

with A2 :=
[
A21 A22
I O

]
, B2 :=

[
B21
O

]
.

Now finally, using an auxiliary matrix M̄, we found discrete-time approximations of equa-
tions of motion and system dynamics (cf. (4.14) and (4.18)). We will use (4.14) and (4.18)
to generate state predictions over the prediction horizon while TDE errors are ignored.

Remark 20 (How Does This TDE Formulation Avoid Singularity?). In [145], the TDE
method was yet applied to task-space control. Unfortunately, kinematic and algorithmic sin-
gularities are not avoided. In the presented TDE formulation (see (4.12)), any inversion of
the terms involving Jacobian matrices is not required. Thus, the presented TDE formulation
has the potential for avoiding singularity.

Remark 21 (Why Including J̇iq̇ in the Lumped Function Hx). According to Assumption
3, the mapping function fi(q) is known exactly, which also delivers a certain time derivative
of Jacobian (J̇i). Thus, it would be not necessary to include the term J̇iq̇ in the lumped
function Hx. However, if the term J̇iq̇ is excluded in Hx, we can not obtain a canonical linear
system approximation (compare (4.14)) and the linear MPC framework that is introduced in
Section 3.2 has to be replaced by a nonlinear MPC framework. However, nonlinear MPC is
computationally often so demanding that real-time execution is impossible. Besides, a linear
formulation will allow more in-depth and more accessibly theoretical analysis of the controller
performance. In addition, in accordance with its continuity property, the term J̇iq̇ can be
accurately approximated by time-delay signals with a sufficiently high sampling rate. Thus,
J̇q̇ is included in the lumped function Hx.

4.3.2 Analysis of Approximation Accuracy
Although the exact mathematical model of the controlled robotic system is not required,
there is a discrepancy between real equations ((A.1) and (4.4)) and the nominal incremental
systems ((4.12) and (4.16)) because of inevitable TDE errors. In this subsection, we will show
that incremental systems exhibit higher approximation accuracy than that of the nominal
nonlinear mathematical model (abbreviated as nominal model in Section 4.3.2).
Denote the nominal inertial matrix, Coriolis/centrifugal matrix, gravitational matrix, and

viscous matrix as M̂, Ĉ, Ĝ, and F̂, respectively. According to (4.4), the following approxi-
mated equation of motion of the i-th task is obtained:

¨̂xi = J̇iq̇ − JiM̂−1N̂ + JiM̂−1τ (4.19)

where x̂i is the approximation generated by the nominal model, and N̂ := Ĉq̇ + Ĝ + F̂.
To obtain the approximation error, we recall the real system dynamics (A.1) and transform
(A.1) into the following form using M̂ [145]:

M̂q̈ + M̃q̈ + N = τ (4.20)
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where M̃ := M− M̂ is the modeling error of the inertial matrix M, and N := Cq̇ + G + F
is a lumped nonlinear dynamics term. Then, according to (4.4) and (4.20), the equation of
motion of the i-th task is rewritten as

ẍi = J̇iq̇ − JiM̂−1
(
M̃q̈ + N

)
+ JiM̂−1τ . (4.21)

From (4.19) with (4.21), the approximation error βi := ¨̂xi − ẍi is obtained:

βi = JiM̂−1
(
M̃q̈ + Ñ

)
(4.22)

where Ñ := N− N̂ is the modelling error of N.
Next, the approximation error of the incremental system (4.12) is derived. Similar to

(4.21), we obtain the equation of motion with the constant positive definite diagonal matrix
M̄ in (4.6). Comparing (4.11) with (4.12), one can observe that the approximation error of
(4.12) is the TDE error εx. Besides, for a sufficiently small sampling period, one has

J̇iq̇ ≈
(
J̇iq̇

)
(t−L)

. (4.23)

Thus, combining (4.6), (4.8), (4.9), (4.10), and (4.23) results in

εx = Hx − Ĥx
(4.8),(4.9),(4.10)

≈ Hx − (Hx)(t−L)
(4.6),(4.23)
≈ JiM̄−1

[(
M−M̄

)
q̈ −

(
M(t−L)−M̄

)
q̈(t−L) + εN

] (4.24)

where εN := N−N(t−L) is the TDE error of N.
In what follows, the approximation error for predictions of joint space coordinates is

derived. If the nominal model is available, in accordance with (A.1), the following nominal
system dynamics (4.25) is used to estimate q and q̇, where q̂ is the approximation.

¨̂q = −M̂−1N̂ + M̂−1τ . (4.25)

From (4.20) and (4.25), the dynamics approximation error γ := ¨̂q − q̈ for the nominal
case is obtained:

γ = M̂−1
(
M̃q̈ + Ñ

)
. (4.26)

In an analogous manner, from (4.15) with (4.16), the approximation error of (4.16), δ :=
¨̂qinc − q̈ (where q̂inc is the joint position approximation using (4.16)), is obtained

δ =M̄−1
[(

M− M̄
)

q̈ −
(
M(t−L) − M̄

)
q̈(t−L) + εN

]
. (4.27)

For the TDE approximation (cf. (4.24) and (4.27)), we learn that, if the delay time L
(sampling period Ts) is sufficiently small, the inertia modelling error

(
M− M̄

)
q̈ is com-

pensated by their time-delay values
(
M(t−L) − M̄

)
q̈(t−L) effectively, and the smaller is the

sampling period, the smaller is the TDE error. While for nominal model cases, there are
no terms to compensate for modelling error. Besides, if the sampling period is sufficiently
small, then the value of εN (TDE error of N) will be less than that of Ñ (the modeling
error of N). In practice, a digital control system can be regarded as a continuous system
when the sampling rate is faster than 30 times the system bandwidth [134]. According to the
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continuity property, εN is small enough if the sampling rate is sufficiently high. Therefore,
for a sufficiently small sampling period, the incremental systems derived using TDE exhibit
high approximation accuracy and show strong robustness against inertia modeling error.
So far, we have derived incremental systems which will be used to determine state pre-

dictions and also verified their high approximation accuracy if a sufficiently small sampling
period is employed. Then, the task-prioritized MPC scheme will be developed in Section
3.2.

4.4 Hierarchical Incremental Model Predictive Control
In this section, the task-prioritized control scheme, hierarchical incremental MPC (HIMPC),
is developed as a series of constrained OCPs, where appropriate constraints are used to
enforce the task hierarchy. Then, the hierarchical feasibility of the proposed HIMPC and
existence and uniqueness of the OCP solutions are shown.

4.4.1 Method
In this subsection, at first, the stage cost for one task is first introduced, which is a basis to
develop the following constrained OCPs.
The stage cost is designed to take into account the target motion dynamics (4.3) as well

as controller oscillations, energy efficiency, and actuator protection. Thus, the predicted
motion dynamics error and the control signal are considered in the stage cost.
In accordance with (4.3), the predicted motion dynamics error e(~xi,k+j+1|k) at time k is

defined as
e(~xi,k+j+1|k) :=¨̃xi,k+j+1|k+KVi

˙̃xi,k+j+1|k+KPix̃i,k+j+1|k

=K̄i~xi,k+j+1|k −Kix̄id(k + j + 1)
(4.28)

Here ~xi,k+j+1|k := col
(
x̄i,k+j+1|k, x̄i,k+j|k

)
, x̃i,k+j|k := xi,k+j+1|k−xid(k+j+1), K̄i := [Ki, O],

Ki := [KPi , KVi , I], x̄id := col(xid, ẋid, ẍid), j ∈ I[0,N−1] is an intermediate variable for time
instance, N is the length of the prediction horizon, and •k+j|k stands for the predicted
variables, in particular, •k|k := •(k), and xi,k+j+1|k is calculated using the discrete-time
incremental system (4.14). I.e., for all j ∈ I[0,N−1],

~xi,k+j+1|k = A1~xi,k+j|k + B1i∆τ k+j|k (4.29)

with ~xi,k|k :=col
(
x̄i,k|k, x̄i,k−1|k

)
and x̄i,k−1|k := x̄i(k − 1). To obtain a canonical linear system,

the matrix B1i is considered as a constant matrix over the current prediction horizon and it
will be updated in the next prediction horizon according to the new measurement q(k + 1).
Note that this simplification is reasonable since variations of the joint position in a short
period can be ignored (see Remark 22).
Here, the incremental control signal ∆τ , not τ , is considered in the stage cost, since

the equations of motion of tasks and system dynamics are all approximated by incremental
systems. Thus, at time k, the following stage cost for task i is defined:

`
(
~xi,k+j+1|k, ∆τ k+j|k

)
= ‖e(~xi,k+j+1|k)‖2

Qi
+ ‖∆τ k+j|k‖2

Ri
(4.30)

where Qi � 0 and Ri � 0 are weighting matrices.
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Now the stage costs of tasks are combined and deliver the hierarchical MPC framework,
HIMPC. Therefore, a constrained OCP for each task is introduced, starting with the task
1 (highest-priority task). The task hierarchy will be realized by constraints to the OCPs of
lower-priority tasks.
Defining an admissible input trajectory ∆τ̄ 1 :=

[
∆τ 1,k|k, · · · , ∆τ 1,k+N−1|k

]
, the con-

strained OCP (Problem 1) for task 1 is introduced.
Problem 1:

∆τ̄ ∗1 = arg min
∆τ̄1

N−1∑
j=0

`
(
~x1,k+j+1|k, ∆τ 1,k+j|k

)
(4.31a)

s.t.
~x1,k+j+1|k = A1~x1,k+j|k + B11∆τ 1,k+j|k (4.31b)
~q1,k+j+1|k = A2~q1,k+j|k + B2∆τ 1,k+j|k (4.31c)
qmin≤ q1,k+j+1|k ≤ qmax (4.31d)
q̇min ≤ q̇1,k+j+1|k ≤ q̇max (4.31e)

τmin ≤ τ 0 +
j∑
s=0

∆τ 1,k+s|k ≤ τmax (4.31f)

where j ∈ I[0,N−1], ~q1,k+j+1|k is the joint state prediction under the action of the control signal
∆τ 1,k+j|k. Equality constraints (4.31b) and (4.31c) are employed to generate predictions
~x1,k+j+1|k and ~q1,k+j+1|k over the horizon while constraints (4.31d), (4.31e), and (4.31f) are
imposed on joint position, velocity, and torques, respectively. For Problem 1, ∆τ̄ ∗1 is the
optimal input trajectory. In case there is only one task, the first column of the optimal input
trajectory is applied to the system directly. For multiple tasks, ∆τ ∗1,k|k is just an auxiliary
control input that will be considered in the constrained OCPs of lower-priority tasks while
only task r, the lowest priority task, will finally deliver a control input that is applied to the
system.
To realize task hierarchy, relying on the dynamic consistency principle [143] (i.e., high-

priority tasks will not be affected by the torques designed for low-priority tasks), the follow-
ing equality constraints will be imposed on control signals when Problem i (i ∈ I[2,r]) is
formulated for task i:

Jp,kM̄−1∆τ̄ ∗p = Jp,kM̄−1∆τ̄ i,∀p ∈ I[1,i−1] (4.32)

Here ∆τ̄ ∗p and ∆τ̄ i are the optimal input trajectory and one admissible input trajectory for
the p-th and i-th layer constrained OCPs respectively, and Jp,k is the Jacobian matrix for
task p at time k. From (4.12) and (4.32), it is observed that the optimal motion of task p
will not be disturbed by optimal controllers determined for lower-priority tasks. It is worth
mentioning that no null-space projections are used and thus matrix inversion to determine
the prioritized Jacobian is not necessary here. Thus, the algorithmic singularity problem is
avoided.
With the task priority constraint (4.32), the following Problem i for task i (i ∈ I[2,r]) is

introduced:
Problem i (i ∈ I[2,r]):
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∆τ̄ ∗i = arg min
∆τ̄ i

N−1∑
j=0

`
(
~xi,k+j+1|k, ∆τ i,k+j|k

)
(4.33a)

s.t.
~xi,k+j+1|k = A1~xi,k+j|k + B1i∆τ i,k+j|k (4.33b)
~qi,k+j+1|k = A2~qi,k+j|k + B2∆τ i,k+j|k (4.33c)
qmin≤ qi,k+j+1|k ≤ qmax (4.33d)
q̇min ≤ q̇i,k+j+1|k ≤ q̇max (4.33e)

τmin ≤ τ 0 +
j∑
s=0

∆τ i,k+s|k ≤ τmax (4.33f)

Jp,kM̄−1∆τ ∗p,k+j|k = Jp,kM̄−1∆τ i,k+j|k, ∀p ∈ I[1,i−1] (4.33g)

It holds that j ∈ I[0,N−1] and ~qi,k+j+1|k is the joint state prediction under the action of
∆τ i,k+j|k. Similar to Problem 1, (4.33b) and (4.33c) are equality constraints and (4.33d),
(4.33e), and (4.33f) are inequality constraints. The difference between Problem 1 and
Problem i (i ∈ I[2,r]) is the series of equality constraints (4.33g), which allows the enforce-
ment of task hierarchy. Jp,k is considered as a constant matrix over the current prediction
horizon. In this way, the equality constraint (4.33g) is an affine linear system, which is also
the basis for analyzing the existence and uniqueness of the solution to Problem i.
The optimal control sequence ∆τ̄ ∗r is obtained after a series of constrained OCPs (from

Problem 1 to Problem r) are solved. ∆τ̄ ∗r is not only the optimal solution to Problem
r, but it also guarantees that optimal motion of tasks 1 to (r − 1) are not affected owing to
the equality constraint (4.33g). Thus, ∆τ̄ ∗r is considered as the optimal control sequence to
the proposed HIMPC. Combined with the recent control input τ 0, the first column of ∆τ̄ ∗r
is applied to the system, i.e., τ (k + 1) = τ 0 + ∆τ ∗r,k|k.
As a summary, Fig. 4.1 visualizes the structure and the control signal flow of HIMPC.

Remark 22 (Why Considering a Constant B1i Over the Current Prediction Horizon?). In
(4.13), the matrix B1i is derived using the Jacobian matrix Ji(q). With (4.18) (or (4.33c)),
Ji(q) can also be updated over the prediction horizon. However in this case, (4.29) will be
a nonlinear equation, and consequently a nonlinear MPC framework is required to be con-
sidered, which is computational demanding. For simplicity, B1i is considered as a constant
matrix over the current prediction horizon and it will be updated in the next prediction hori-
zon according to the new measurement q(k + 1). This is because during a short period, q
varies slighter compared with time derivative variables, such as q̇, q̈, ẋ, and ẍ. In other
words, the variation of Ji(q) during a short period is negligible. In this way, (4.29) used
to generate predictions of ~xi, which is originally a nonlinear equation, is approximated by a
canonical linear equation.

4.4.2 Analysis
The developed HIMPC framework is only logical if each constrained OCP is feasible for every
time, that means the set Di (1 ≤ i ≤ r) of admissible input trajectories ∆τ̄ i for Problem i
is non-empty. In this subsection, this hierarchical feasibility is proven. Based on hierarchical
feasibility, we further demonstrate that the solution to HIMPC exists and is unique.
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Figure 4.1: Control structure of the HIMPC, where “TD” denotes time delay of one sampling
period, and ∆~τ ∗i := [∆τ̄ ∗1, · · · , ∆τ̄ ∗i ]. Problems are solved sequentially following
the task priority order, and the optimal control law can only be obtained after
all problems are solved.

Due to the hierarchical structure and the equality constraint (4.33g), admissible sets of
low-priority constrained OCPs are affected by that of high-priority ones. To analyze the
feasibility of this hierarchical MPC, the definition of hierarchical feasibility is introduced.

Definition 4 (Hierarchical Feasibility,[176]). The hierarchical MPC (a series of constrained
OCPs ordered hierarchically) admits hierarchical feasibility at time k if the feasibility of
the i-th constrained OCP implies the feasibility of the (i + 1)-th constrained OCP for all
i ∈ I[1,r−1].

Before proving the hierarchical feasibility of HIMPC, we show existence and uniqueness
of solutions to Problem i using convex optimization theory.
It is obvious that Problem i (1 ≤ i ≤ r) is a standard quadratic program (QP):

min
Ui

U>i QiUi + U>i Li (4.34a)

s.t.
Gi1 = Ci1Ui + Di1 ≤ 0 (4.34b)
Gi2 = Ci2Ui + Di2 ≤ 0 (4.34c)
Gi3 = Ci3Ui + Di3 ≤ 0 (4.34d)
Hip (Ui) = a>ipUi + bip = 0,∀p ∈ I[1,i−1] (4.34e)

where Ui := col(∆τ i,k|k, · · · , ∆τ i,k+N−1|k) and (4.34b)-(4.34e) are joint position, velocity,
input, and task priority constraints in (4.33), respectively. The equality constraints (4.33b)
and (4.33c), which are used to generate predictions, are omitted here since the predictions
of task coordinates ~xi and joint angles ~q can be expressed by functions of the input Ui
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and recent states (~xi(k) and ~q(k)). For detailed expressions of Hessian matrix Qi, gradient
vector Li, and other parameters in (4.34), refer to Appendix B. Note that for i = 1, the task
priority constraint (4.34e) does not exist.
We are interested in existence and uniqueness of solutions. As preparation, the following

lemma about the Hessian matrix Qi is given.

Lemma 10. The Hessian matrix Qi is positive definite.

Proof : As shown in Appendix B,Qi := B̄>1iQ̄iB̄1i+R̄i, where Q̄i := diag
(
K̄>i QiK̄i, · · · , K̄>i QiK̄i

)
is a positive semi-definite matrix since Qi � 0. Then for any vector X ∈ RnN×1, we obtain
that

X>B̄>1iQ̄iB̄1iX =
(
B̄1iX

)>
Q̄i

(
B̄1iX

)
≥ 0.

Thus, B̄>1iQ̄iB̄1i is also positive semi-definite.
Besides, R̄i := diag (Ri, · · · , Ri) � 0 since Ri � 0.
Therefore, Qi := B̄>1iQ̄iB̄1i + R̄i is positive definite, i.e., Qi � 0.

�

Then, assuming Di is nonempty, a theorem about the properties of the solution to Prob-
lem i is concluded with the positive definite Hessian matrix Qi.

Theorem 3 (Existence and Uniqueness of the Solution,[165], [177]). Given that Di is
nonempty, the solution to Problem i exists and is unique.

Proof : Since Di for the admissible input trajectory ∆τ̄ i is non-empty, the admissible set
U i for the argument Ui of the QP (4.34) is also non-empty. In the following, we will use
convexity of the QP (4.34) to verify existence and uniqueness of the solution to the Problem
i.
As shown in (4.34), the non-empty admissible set U i for Ui is written as

U i =
i−1⋂
p=1

dom Hip

⋂( 3⋂
l=0

dom Gil
)

(4.35)

i.e., U i is composed of i− 1 hyperplanes
{
Ui : a>ipUi + bip = 0

}
(p ∈ I[0,i−1]) and 3 sublevel

sets {Ui : Gil ≤ 0} (l = 1, 2, 3). The equality constraint functions Hip(Ui) (p ∈ I[1,i−1]) are
linear and affine, and inequality constraint functions Gi1, Gi2, and Gi3 are all linear and
convex. Thus, the admissible set U i is convex.
Besides, the cost function U>i QiUi + U>i Li is in a quadratic form and is also convex.

Thus, (4.34) is a convex optimization problem and solutions exist.
Moreover, as shown in Lemma 10, the Hessian matrix Qi is positive definite, thus the

cost function U>i QiUi + U>i Li is strictly convex. Therefore, the solution to Problem i is
unique given that the admissible set Di is non-empty.

�

Finally, hierarchical feasibility of HIMPC is proved in Theorem 4.

Theorem 4 (Hierarchical Feasibility of HIMPC). The proposed HIMPC admits hierarchical
feasibility at each time k.
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Proof : Assume Problem i is feasible. Then the admissible set Di is nonempty, and in
accordance with Theorem 3 there exists the optimal input trajectory ∆τ̄ ∗i such that the
state, input, and task priority constraints (task priority constraints are not required when
i = 1)

Jp,kM̄−1∆τ ∗p,k+j|k = Jp,kM̄−1∆τ ∗i,k+j|k

for all p ∈ I[1,i−1] and j ∈ I[0,N−1], are not violated.
Next, feasibility of Problem (i+ 1) will be investigated through inspecting whether ∆τ̄ ∗i

is an admissible input trajectory also for Problem (i+ 1). Substituting ∆τ̄ ∗i into Problem
(i+1), obviously the state and input constraints, as well as priority constraints for p ∈ I[1,i−1]
are not violated because these constraints are identical to that in Problem i. Besides, the
priority constraint when p = i is also fulfilled, i.e., if ∆τ̄ i+1 = ∆τ̄ ∗i , then

Ji,kM̄−1∆τ ∗i,k+j|k ≡ Ji,kM̄−1∆τ i+1,k+j|k,∀j ∈ I[0,N−1].

It shows all constraints are not violated and thus ∆τ̄ ∗i is a feasible control trajectory to
Problem (i + 1). Thus, Problem (i + 1) is feasible if Problem i is feasible, i.e., the
proposed HIMPC admits the hierarchical feasibility.

�

Assume Problem 1 is feasible at time k. By induction, we conclude that Problems 2 to
r are also feasible at time k. Therefore, from Theorem 4, it is concluded that the admissible
set Di (1 ≤ i ≤ r) is not empty if Problem 1 is feasible.
In accordance with Theorem 3 andTheorem 4, we conclude that the solution to HIMPC

exists and is also unique if Problem 1 is feasible.

4.4.3 Discussion
In this subsection, the advantages of the proposed HIMPC over state-of-the-art task-prioritized
controllers are discussed. Besides, limitations of the proposed method are analyzed.

Strengths of HIMPC

Low Requirements on Modeling. In existing MPC based task-prioritized control schemes
[154], [155], state predictions are generated using nominal models. This requires performing
time-consuming identification of the mathematical model parameters of the plant. The
proposed HIMPC approach employs incremental systems to obtain state predictions and thus
it is not necessary to identify parameters of the model. For incremental systems (cf. (4.12)
and (4.16)), only M̄ is associated with the dynamics model because M̄ is selected such that
‖I−M−1M̄‖ < 1. As discussed in Remark 23, the sufficient condition for ‖I−M−1M̄‖ < 1
is fulfilled by a sufficiently small positive M̄i even though the exact expression of inertia
matrix M is unknown. Therefore, the proposed HIMPC has low requirements for modeling.
Robustness. As shown in Section 4.3.2, the incremental systems show high approximation

accuracy and strong robustness against inertia modelling errors and external disturbances.
This is because the inertia modelling error and external disturbances are compensated by
time-delay signals. Robustness of this proposed method is also reflected in terms of dynamic
consistency. In [61], a nominal inertia matrix M is used to construct equality constraints
(similar to (4.33g)), and it is obvious that dynamic consistency is deteriorated when there
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are inertia modelling errors. In HIMPC, M is replaced by a pre-determined M̄ in the
task priority constraints (equality constraint (4.33g)). Thus, enhanced dynamic consistency
is received. This advantage of HIMPC is also visible in the simulations and experiments
presented in Sections 4.6 and 4.5.
Computational Efficiency. The TDE method not only improves robustness of the control

scheme, but it also simplifies equations of motion of tasks and system dynamics. As shown in
(4.14) and (4.18), both equation of motion and system dynamics are approximated by linear
time-invariant systems, where online calculation of the complex nonlinear system dynamics
terms is not required. As a result, each constrained OCP is a QP problem, and computational
complexity will decrease dramatically, allowing for real-time control in milliseconds. In
comparison, the MPC frameworks in [154], [155] are nonlinear since nonlinear equations
are employed to generate state predictions. For a general nonlinear MPC scheme, heavy
computational complexity restricts its real-time application [172].
Singularity Handling. Different from null-space projection based methods [142]–[150],

we employ equality constraint (4.33g) to guarantee task hierarchy. No matrix inversion is
required and algorithmic singularity is avoided. Besides, also kinematic singularity is avoided.
In our approach, the cost function (4.30) is designed relying on target motion dynamics
(4.3), where inverse calculation of the terms w.r.t. Jacobian matrices is not necessary. In
contrast, e.g. in [61], Cartesian forces that are calculated using the equivalent Cartesian
mass matrix (JM−1J>)−1 are involved in the stage costs, and kinematic singularity occurs
when the Jacobian matrix loses its rank. Also, different from the approach in [152], [153],
Hessian matrices of the constrained OCPs are always positive definite (see Lemma 1). This
allows to relax the common assumption that singularity-free tasks are defined and gives more
flexibility in defining tasks. The simulations and experiments in Sections 4.6 and 4.5 will
further discuss singularity handling.

Limitations of HIMPC

Sampling. To guarantee the required approximation accuracy of the incremental systems,
the sampling period has to be chosen sufficiently small. If the sampling period increases,
the tracking errors will increase and the closed loop system may even become unstable.
Unfortunately, there are no systematic methods to determine the maximum allowable sam-
pling period. Note that in [7], [33], [133], [145]–[147], TDE methods have been successfully
applied for robot manipulator control, where sampling periods of 1 ms and 2 ms are used.
The tracking accuracy of TDE based controllers is in general better than that of state-of-
the-art controllers. In simulations and experiments, described in Sections 4.6 and 4.5, we
use Ts = 1 ms which from our experience is suitable to achieve high enough approximation
accuracy.
Prediction Horizon. For MPC without terminal ingredients, a sufficiently large prediction

horizon is required to guarantee recursive feasibility (system convergence) and global opti-
mality of solutions[164]. It also implies that the larger the prediction horizon, the better is
control performance. However, our framework does not allow for large prediction horizons.
The reason is that we set the Jacobians constant by ignoring variations of the joint positions
over the prediction horizon. The larger is the prediction horizon, the larger is the discrepancy
between real equations of motion and the derived incremental systems, which will deteriorate
the approximation accuracy of incremental systems. Besides, a large prediction horizon is
challenging for real-time control performance. Considering the above-mentioned factors, a
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Table 4.1: Task Definitions and Control Gains for Experiments
Level Task Definition Stiffness Damping
1 EE in x 200 N/m 10 Ns/m
1 EE in y 200 N/m 10 Ns/m
2 Joint position q1 50 Nm/rad 5 Nms/rad

reasonable prediction horizon is tuned manually in practice. In the following simulations
and experiments, N = 5 is selected, which not only ensures realizability of real-time control,
but also guarantees that control performance is satisfactory.
TDE Error. In the constrained OCPs from Section 3.2, equality constraints (compare

(4.33g)) are imposed on control signals to realize task hierarchy. However, the TDE er-
ror is ignored in the nominal incremental system (4.12). Consequently, task hierarchy will
be inevitably deteriorated, which is also visible in simulation and experimental results, see
Sections 4.6 and 4.5. Besides, joint position and velocity constraints are imposed in the con-
strained OCPs. Nevertheless, in practice, we are not able to guarantee that state constraints
are strictly satisfied. Given that the TDE error and measurement noise are ignored in this
article, there are prediction errors of state variables. As a result, the system suffers from the
risk of state constraint violation. After all, huge deterioration of task hierarchy and strongly
violating state constraints are avoided. This is because the derived incremental systems
exhibit high approximation accuracy as analyzed in Section 4.3.2. To deal with TDE error
and strict state constraints, tube-based MPC and learning techniques [178], [179] might be
useful.
Task Levels. The computational complexity of HIMPC increases as the number of tasks

increases. For a task hierarchy with n tasks, there will be n constrained OCPs to be solved.
In this article, the constrained OCPs are solved by a QP solver which is possible efficiently.
Nevertheless, the computing time increases with an increasing number of tasks because of
the serial connection of constrained OCPs. Fortunately, this increase is only linear.

4.5 Experiment on a 3-DoF Robot Manipulator
The effectiveness of the proposed HIMPC is investigated in experiments. The controller
is therefore compared to other state-of-the-art controllers, such as operational space for-
mulation (OSF) [150], TDE enhanced OSF (TDEOSF) [145], and hierarchical QP (HQP)
[61].

4.5.1 Experimental Setup
The custom-built 3-DoF planar robot manipulator, shown in Figure 2.2, is used throughout
the experimental verification. A task hierarchy with 2 priority levels is implemented. The
task definition and the corresponding stiffness and damping gains are shown in Table 4.1.
For HQP and HIMPC, qpOASES is used to solve the constrained OCPs. For HIMPC, the

prediction horizon is N = 5, and weighting matrices are chosen as Qi := 200I and Ri := 10I
for i = 1, 2. The upper and lower bounds of joint position, velocity, and torques are given
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Table 4.2: Boundaries of Input and State for the 3-DoF Planar Robot Manipulator
qmin (qmax) q̇min (q̇max) τmin (τmax)

−150 (150) deg −100 (100) deg/s −4 (4) N·m

in Table 4.2. For TDEOSF and HIMPC, M̄ = diag(0.033, 0.033, 0.033) is manually tuned,
compare Remark 23.
Two scenarios are implemented to verify the performance of the proposed method with

respect to control accuracy, optimality, task hierarchy, singularity handling, and constraint
handling.

4.5.2 Scenario 1: Control Accuracy and Optimality
Setting

The reference trajectory RT1 is considered (see Figure 4.2) in the scenario and we choose
q0 = [0, 90,−90]>deg as the initial configuration.

i) Control Accuracy. OSF, HQP, TDEOSF, and the proposed HIMPC are implemented
for comparison. The discrepancy between the identified and the real mathematical
model is considered as a disturbance. The robustness of tracking performance is ana-
lyzed by investigation of control accuracy.

ii) Optimality (qualitative). We take into account tracking errors and control signals in
the cost function (4.30). Thus, tracking error and control signals are inspected to
investigate the optimality of the control methods. We will first compare HIMPC and
TDEOSF and analyze how optimality in HIMPC improves performance. Then, we
introduce HIQP, i.e., a synonym of hierarchical incremental QP control which denotes
HIMPC with prediction horizon N = 1, and compare this to HIMPC with N = 5 to
investigate local optimality of the controller.

iii) Optimality (quantitative). We will calculate the average cost when applying each of the
controllers. With the stage cost for the predictions, see (4.30), we now introduce the
average cost (4.36) for tasks to evaluate the closed loop performance during a period
[0, ts] (iterations Nt = ts/Ts) where ts is the terminal time.

Ci = 1
Nt

Nt∑
k=0

(
‖e(xi(k))‖2

Qi
+ ‖∆τ (k)‖2

Ri

)
(4.36)

where Ci is the average cost for task i. Note that e(xi(k)) in (4.36) is calculated using
the real-time measurements, not predictions.

Results

The experimental results are shown in Figures 4.3-4.7 and Table 4.3.
i) All of the controllers, OSF, HQP, TDEOSF, and HIMPC, allow to realize the two

hierarchic tasks, but the tracking accuracy is different. As shown in Figure 4.3, and Table
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Figure 4.2: Reference trajectories RT1 and RT2. xd and yd are reference signals for co-
ordinates x and y of the EE in the task-space, respectively, and the reference
geometric curve of the EE is a “circle”. q1,d1 and q1,d2 are reference signals for q1.
RT1 includes xd, yd, and q1,d1, and RT2 involves xd, yd, and q1,d2.

Table 4.3: Experimental Results of Scenario 1 : Root-Mean-Square-Errors (RMSE) of Dif-
ferent Controllers

Task OSF TDEOSF HQP HIMPC
L1:xEE(m) 3.81×10−3 9.58×10−5 3.11×10−3 9.09×10−5

L1:yEE(m) 2.78×10−3 8.89×10−5 2.39×10−3 9.43×10−5

L2:q1(deg) 0.36 8.02×10−3 1.05 2.07×10−2

4.3, tracking performance of the model-based methods (OSF and HQP) is inferior. This is
because of the model discrepancy. Tracking performance of OSF and HQP might still be
improved with a more accurate model, though its accurate identification is time-consuming
and modeling errors are inevitable as we analyzed in Section 4.1.1. TDE-based methods
(TDEOSF and HIMPC) are model-free ones. Thus, they are not sensitive to the model
discrepancy and show strong robustness against disturbances. This allows for high tracking
precision.
ii) For further analysis, the tracking errors of TDEOSF and HIMPC are again displayed

in Figures 4.4 and Table 4.3, and we can conclude that the tracking performance of both
methods, TDEOSF and HIMPC, is satisfactory. The tracking errors of TDEOSF are the
smallest. This is because, in HIMPC, the cost function (4.30) does not only take into account
the desired tracking error dynamics but also the control signal to avoid controller oscillations
and to realize energy efficiency and actuator protection. Thus, the superiority of HIMPC
is only visible when we in addition look at input trajectories. In Figure 4.5, it is observed
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Figure 4.3: Experimental results of Scenario 1 : Tracking errors of OSF, HQP, TDEOSF,
and HIMPC.

that in comparison to TDEOSF, control signals of HIMPC are smoother. There are many
“glitches” in the control signal trajectories of TDEOSF. This is because the control signal of
HIMPC is obtained through solving OCPs. In contrast, for TDEOSF, the control signal is
calculated from analytic expressions, focusing on addressing tracking errors, while optimality
is not considered.
A final comparison between HIQP and HIMPC analyzes the local optimality of the con-

troller, and experimental results are shown in Figures 4.4 and 4.6. For HIQP and HIMPC,
the tracking errors of task 1 are very similar. However, for task 2, the tracking errors of
HIQP are larger than those of HIMPC during some periods (eg. [2s, 3s]). In addition, we
observe that the control signals of HIMPC are smoother than those of HIQP (see rectangular
symbols in Figure 4.6). This is because control signals of HIMPC are obtained by solving
OCPs over a longer prediction horizon, while HIQP only takes into account a one-step-ahead
prediction resulting in torque peaks and oscillations, especially for a noisy environment.
iii) Figure 4.7 shows that the average cost of tasks 1-2 is the lowest for HIMPC. This

quantitatively verifies the superior optimality of HIMPC. Although the control signals of
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Figure 4.4: Experimental results of Scenario 1 : Tracking errors of TDE-based methods
(TDEOSF, HIQP, and HIMPC).

HIQP are also obtained through solving constrained OCPs, the average cost of task 2 under
the action of HIQP is even higher than that of TDEOSF. Due to its one-step prediction,
the HIQP controller is locally optimal. Thus, over a time horizon, the average cost of HIQP
may be even higher than that of TDEOSF, though optimality is not considered for TDEOSF
controller design.

4.5.3 Scenario 2: Task Hierarchy, Constraint Admissibility, and
Singularity Handling

Setting

The reference trajectories RT2 and RT3 (see Figures 4.2 and 4.8, respectively) are considered
in this scenario. The initial configuration is q0 = [0, 90,−90]>deg when RT2 is considered,
while for RT3, q0 = [0, 0, 0]>deg is chosen.

i) Task Hierarchy and Constraint Admissibility. As long as the amplitude of the reference
trajectory of task 2 (q1) is small, task 1 and task 2 are non-conflicting. For increasing
amplitude, tasks become more and more conflicting. We verify task hierarchy by
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Figure 4.5: Experimental results of Scenario 1 : Control signals of TDEOSF and HIMPC.

investigating whether tracking performance of high-priority tasks will be affected when
high and low-priority tasks conflict with each other, and the reference trajectory RT2
is employed. RT2 is also used to investigate the capability of HIMPC to guarantee
that input and state constraints are not violated.

ii) Algorithmic Singularity Handling. The reference trajectory RT2 is used to demonstrate
that algorithmic singularity is avoided in HQP and HIMPC. Null-space projection
based methods (OSF and TDEOSF) are likely to suffer from algorithmic singularity
problems when tasks conflict with each other. To ensure safety, OSF and TDEOSF
are implemented only in numerical simulation when RT2 is employed.

iii) Kinematic Singularity Handling. Moreover, RT3 is used to verify that kinematic sin-
gularity is avoided in HIMPC. For RT3, the robot manipulator is straightened and is
kinematically singular at the start, end, and intersection between the two circles.
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Results

The results of Scenario 2 are shown in Figs. 4.9-4.14.
i) Tracking errors of HQP and HIMPC are displayed in Figure 4.9, and we observe that

tracking errors of q1 (task 2) are large in the time period [3.2s, 6s]. This is because, during
this period, tasks conflict with each other. The low-priority task (task 2) has to “sacrifice”
itself to guarantee satisfactory tracking performance of the high-priority task. Thus, for
HQP and HIMPC, task hierarchy is guaranteed. Besides, because HQP is a model-based
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Figure 4.8: Reference trajectory RT3. The reference curve of the EE consists of two tangent
circles. At t = 0s, 8s, and 16s, the reference configuration of the planar robot
manipulator is straightened.

method, the tracking error of HQP is higher than that of HIMPC. This further verifies the
robustness of HIMPC.
Besides, dynamic consistency can be verified by investigating whether tracking errors of

the highest-priority task (task 1) are affected when different reference trajectories (RT1 and
RT2) are employed. For the convenience of comparison, tracking errors of task 1 when
RT1 and RT2 are employed are summarized in Figure 4.10, where one can observe that for
HQP, tracking performance of task 1 deteriorates when tasks conflict. This is because the
nominal inertia matrix is used in HQP to construct task priority constraints and dynamic
consistency is adversely affected by the inertia modeling error. In contrast, for HIMPC,
tracking performance of task 1 is nearly not affected no matter whether tasks conflict or
not. This is because the TDE method is used to approximate equations of motion of tasks
and the inertia matrix is replaced by a predetermined diagonal matrix in the task priority
constraints (compare (4.33g)). Thus, enhanced dynamic consistency of HIMPC is obtained
due to the TDE approximation.
In Figure 4.11 it is shown that input constraints are not violated. During the period

[3.5s, 5.2s], the input torques of HIMPC are relatively large. This is because here tasks
conflict. The control signal not only needs to guarantee the priority of task 1, but it also
regulates tracking performance of low-priority tasks as well as possible. As we discussed in
Section 4.4.3, the TDE error and measurement noise are not considered for state predictions
in HIPMC, and it results in small prediction errors, see Figure 4.12, where joint velocity
constraints are slightly violated for short periods. This is common in MPC with uncertainty.
Though, at least we observe in our study that state constraints are not strongly violated.
This is because the incremental systems exhibit high approximation accuracy.
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Figure 4.9: Experimental results of Scenario 2 : Tracking errors of HQP and HIMPC (the
reference trajectory is RT2).
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ii) As stated in Section 4.1.1, null-space projection based methods, such as OSF and
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Figure 4.11: Experimental results of Scenario 2 : Torque inputs of three joints (the reference
trajectory is RT2), where b∗ denotes the corresponding torque bound.

TDEOSF, are likely to suffer from algorithmic singularity problems when tasks conflict with
each other. For security, we did numerical simulations to implement OSF and TDEOSF.
Consistent with theoretical analysis, the values of J2|pM−1J>2|p and J2|pM̄−1J>2|p (J2|p is
the prioritized Jacobian matrix) under the action of OSF and TDEOSF tend to be 0 at
around 3.3s. In other words, the prioritized Jacobian matrix J2|p loses its rank (and is a
null vector here). Then, the corresponding prioritized inertia matrices, (J2|pM−1J>2|p)−1 and
(J2|pM̄−1J>2|p)−1, tend to infinity and undesired (large-value) control signals are obtained.
As a result, the system will be unstable. Note that in the context of task definitions (see
Table 4.1), J2 = [1, 0, 0] is a constant vector. Thus, at this moment the system is not kinemat-
ically singular, but it is attributed to the prioritized Jacobian matrix (null-space projection
idea), i.e., it is the algorithmic singularity. For HQP and HIMPC, equality constraints are
employed to realize task hierarchy, and no prioritized inertia matrices are involved. Thus,
algorithmic singularity is avoided in HQP and HIMPC.
iii) We finally verify that HIMPC is still applicable when the robot manipulator passes

the kinematically singular configuration in Scenario 2, and the reference trajectory RT3
(see Figure 4.8) is considered. OSF, TDEOSF, and HQP cannot be implemented because
of kinematic singularity in the intial configuration. The experimental results are shown in
Figures 4.13 and 4.14. As shown in Figure 4.14, the tracking accuracy of HIMPC is still high.
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Figure 4.12: Experimental results Scenario 2 : Joint velocities of three joints (the reference
trajectory is RT2), where b∗ denotes the corresponding joint velocity bound.

Table 4.4: Comparison Between the Proposed HIMPC and State-of-the-Art Controllers
Property OSF TDEOSF HQP HIMPC
Robust × ! × !

Dynamic Consistency × ! × !

Singularity-Free × × × !

Input Constraints × × ! !

State Constraints × × × !

It verifies that HIMPC is kinematically singularity-free. Note that tracking errors of tasks
(especially ey shown in Figure 4.14) are slightly larger at the beginning and around 8s. This
is because the control degrees of freedom are partially lost when the robot manipulator is
kinematically singular. Nevertheless, HIMPC guarantees that the system passes the singular
region safely.
Finally, we summarize the results of the experimental evaluation in Table 4.4.
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Table 4.5: Task Definitions and Control Gains for Simulations
Level Task Definition Stiffness Damping

1 TCP position in x 200 N/m 10 Ns/m
1 TCP position in y 200 N/m 10 Ns/m
1 TCP position in z 200 N/m 10 Ns/m
2 TCP orientation (oX) 50 Nm/rad 5 Nms/rad
2 TCP orientation (oY ) 50 Nm/rad 5 Nms/rad
2 TCP orientation (oZ) 50 Nm/rad 5 Nms/rad
3 Joint position q1 50 Nm/rad 5 Nms/rad

4.6 Simulation of a 7-DoF KUKA Robot
The effectiveness of HIMPC is now in addition validated by simulations of control perfor-
mance for a higher-degree-of-freedom robot manipulator that allows for a task hierarchy with
more than two task levels.

4.6.1 Simulation Setup
We simulate a 7-DoF KUKA LBR iiwa 14 R820 [180] using the Matlab Robotics System
Toolbox [181] on a PC with Intel R© CoreTM CPU (i7 8550U @1.80 GHz). The sampling rate
is 1 kHz.
A task hierarchy with 3 priority levels (see Figure 4.15) is implemented with task definitions

and control gains in the target motion dynamics (4.3) from Table 4.5. We introduce the
tool center point (TCP) and x, y, and z denote its Cartesian coordinates in the body
frame, while oX , oY , and oZ are its orientation w.r.t. the X-, Y - and Z-axes. A reference
trajectory RT4 is defined, see Figure 4.16. The initial configuration of the robot manipulator
is q0 = [0, 60, 0, 60, 0, 0, 0]>deg. The prediction horizon of HIMPC is N = 5, and weighting
matrices are chosen as Qi := 200I and Ri := 10I for i = 1, 2, 3. Constraints for joint
position, velocity, and torques are chosen according to [180]. The constrained OCPs in
HIMPC are solved by qpOASES [174]. According to Remark 23, the diagonal matrix is
chosen as M̄ = diag(0.1, 0.21, 0.033, 0.042, 0.001, 0.001, 0.0003).
The reference trajectory RT4 is designed such that low-priority tasks conflict with high-

priority tasks. The successful realization of the task hierarchy is investigated by measuring
whether tracking performance of high-priority tasks is affected by low-priority tasks. Also,
the computational complexity of HIMPC is investigated by monitoring the computation time
for each prediction. Finally, it is verified that singularities are successfully avoided.

4.6.2 Simulation Results
The simulation results are displayed in Figure 4.17. We observe that the low-priority task
(Level 3) “sacrifices” itself to guarantee the task hierarchy, while tracking performance of
high-priority tasks is almost not affected. For [3.8s, 4s], tracking errors of Level 2 tasks
(especially the orientation of the TCP w.r.t. Y-axis) slightly increase. This is mainly because
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Figure 4.15: Simulation setup of the 7-DoF manipulator (KUKA LBR iiwa) with three-level
task hierarchy.

the joint positions are constrained.
However, for OSF, TDEOSF, and HQP, the controlled system is unstable for reference

trajectory RT4. This is because in the initial configuration, the system is kinematically
singular, i.e., the Jacobian matrix loses its rank (rank(col(J1, J2, J3)) = 6 < 7). For HIMPC,
we see that tracking errors of the level 3 task (position of joint 1) are slightly larger in the first
0.2 seconds. This is because the robot manipulator is kinematically singular and the control
degrees of freedom of the system are partially lost during this time period. Nevertheless, the
system passes the singular region safely.

4.7 Summary
In this chapter, the hierarchical incremental model predictive control (HIMPC) is proposed
for robot manipulators to execute multiple tasks simultaneously, where singularity problems
of task-space control are addressed.
To reduce dependency on an accurate mathematical model, equations of motion and sys-

tem dynamics are approximated by incremental systems using time-delay estimation (TDE).
It improves robustness of the controller against modelling errors and disturbances. The
HIMPC is proposed by developing a series of constrained optimization control problems
(OCPs), where task hierarchy is realized by equality constraints, which are set based on
dynamic consistency principle instead of using the null-space projection. Besides, inverse
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Figure 4.16: Reference trajectory RT4. The reference geometric curve of TCP is a “circle”
with a radius of 10 cm (level 1), and the orientation of TCP is assigned to be
maintained (level 2). Moreover, the first joint is commanded to move in a range
of 180 deg (level 3).

calculation of terms w.r.t. Jacobian matrices is not involved and Hessian matrices of con-
strained OCPs are always positive definite. As a result, the proposed HIMPC guarantees
both algorithmic and kinematic singularity-free capability. In addition, HIMPC is formu-
lated as a linear MPC. Compared with nonlinear MPC, computational complexity of HIMPC
dramatically decreases, which enables the controller run with a sampling time of 1 millisec-
ond. Finally, simulations and experiments were conducted, and the efficacy of HIMPC is
validated.
Future research will be devoted to extensive experimental evaluations of the controller and

extend to the impedance control case when dynamic interaction is required. Besides, the
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Figure 4.17: Simulation results: Tracking errors of HIMPC for the 7-DoF KUKA robot.

TDE error and strict state constraints will be addressed.
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Conclusions and Outlook 5

5.1 Conclusions
In this dissertation, we develop the joint-space and task-space controllers for robot manipu-
lators, addressing uncertainties, input and state constraints, and singularities, respectively.
Here, we conclude the dissertation by chapters.
In Chapter 2, an adaptive incremental sliding mode control is proposed to address mod-

eling errors and external disturbances. First, the time delay estimation (TDE) technique
is employed to approximate the uncertain and complex mathematical model of the robot
manipulator. It significantly reduces dependency on the mathematical model. However,
the TDE error is introduced, which adversely affects the tracking performance if a constant
diagonal decoupling inertia matrix is adopted. To compensate for the TDE error and then
further enhance robustness of the controller, sliding mode control is combined with TDE.
The novel positive semi-definite barrier function based sliding mode controller is designed
to prevent switching gains from being over-estimated and under-estimated. It results in
attenuating chattering and increasing tracking accuracy simultaneously. This is the main
contribution of this chapter. Although the first challenge (listed in Section 1.2) is addressed,
it also has the drawback, i.e., the input and state constraints are not considered.
In Chapter 3, an incremental model predictive control (IMPC) for the robot manipulator

was developed. First, an approximation discrete-time linear system with the incremental
control signal is derived using TDE and discretization. Based on the approximated discrete-
time linear system, the IMPC is proposed through constructing a constrained optimal control
problem (OCP). Thus, input and state constraints are addressed without the concrete math-
ematical model. This is the main contribution of this chapter. Moreover, considering the
bounded TDE error as the disturbance, the input-to-state stability (ISS) of IMPC is con-
firmed. Different from conventional methods, ISS is analyzed utilizing the continuity of the
value function, and over-conservative cumulative error bound is avoided. From ISS, it is
theoretically inferred that increasing the prediction horizon decreases tracking errors and
enlarges the region of attraction. This is the main theoretical contribution of this chapter.
In addition, in practice, the IMPC is a linear MPC owing to the adopted linear incremental
system, and the constrained OCP is a quadratic programming problem. Compared with
nonlinear MPC schemes, computational complexity decreases significantly.
In Chapter 4, a robust and singularity-free task-prioritized controller, the hierarchical in-

cremental model predictive controller (HIMPC), was proposed for a kinematically redundant
robot manipulator. Multiple tasks are considered simultaneously and ordered by priority lev-
els. At first, the incremental approximation is developed that approximates equations of mo-
tion of tasks and also uncertain system dynamics with high approximation accuracy. Then
the HIMPC framework was developed based on multi-layer constrained OCPs, where the
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task hierarchy is realized by equality constraints on control signals for lower-priority tasks,
based on dynamic consistency principle. Moreover, the hierarchical feasibility of HIMPC and
the uniqueness of its solution is theoretically analyzed. Finally, the effectiveness of the pro-
posed HIMPC is demonstrated by numerical simulations and real-time experiments. Com-
pared with state-of-the-art task-prioritized control schemes, the developed HIMPC shows
strong robustness against uncertainties and external disturbances and dynamic consistency
is also enhanced, owing to the introduced incremental approximation. Besides, the proposed
HIMPC is singularity-free, which is the main contribution of this chapter. The reasons are
twofold: (1) Inverse matrix calculation is not involved in HIMPC; (2) For each considered
OCP in HIMPC, the Hessian matrix is positive definite, and numerical weakness is avoided.

5.2 Outlook
While the practical robust and optimal controllers are proposed for the robot manipulator,
it also leaves some open problems to be investigated. In what follows, several potential
interesting fields for incremental model predictive control methods are listed.

Incremental Model Predictive Control with an Adaptive TDE Parameter

In the incremental model predictive controllers in Chapters 3 and 4, a constant decoupled
inertia matrix (TDE parameter) is employed and it is tuned manually. However, a constant
TDE parameter introduces a large TDE error in some configurations of the robot manipula-
tor. Thus, it still may result in poor tracking performance. As a potential development, the
optimal TDE parameter can be obtained online through an efficient data-driven algorithm
with a properly minimized data set.
In the data-driven algorithm, inevitable measurement noises will be considered since

second-order derivatives are required in the incremental control scheme. Thus, dedicated
filters and/or observers will be employed to estimate q̇ and q̈. Besides, the the updating law
of the TDE parameter will not be designed according to the tracking error. This is because
with the state constraints, tracking error may increase when the robot manipulator stick
to one configuration. In addition, for adaptive algorithm, the persistent-excitation (PE)
condition should be satisfied. Otherwise, the controller will be singular and the system will
be unstable. Therefore, to guarantee safety and system stability, the PE condition will be
relaxed in the data-driven algorithm.

Incremental Model Predictive Impedance Control

In Chapter 4, the task-space controller is merely considered in the free space. In practice,
the interaction between the robot manipulator and the environment is necessary. There is
a trade-off to be made between allowable interface forces and allowable deviations from the
desired positions. Impedance control is required so that the control objective should not track
the position only but rather involve the regulation of impedance of the robot manipulator.
Therefore, considering the target impedance control dynamics as part of the cost function,
incremental predictive impedance control can be a potential field to be studied.
Besides, the force sensor output is adversely affected by disturbances and the interaction

process and it is also a costly installation from an economic viewpoint. To realize the
impedance control without force sensors, a practical force observer should be developed to
estimate interaction forces merely according to end-effector positions and torques, i.e., the
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sensor-less impedance control scheme is proposed. The major challenge is the design of the
force observer without concrete mathematical model of the robot manipulator.

Incremental Model Predictive Control for a Flexible Joint Robot Manipulator
and/or a General System
In this dissertation, the rigid robot manipulator is considered, which is modelled by the

Euler-Lagrange equation. Flexible joint robot manipulators exhibit plenty of advantages
over their rigid counterparts, such as less material, lighter weight, higher manipulation speed,
lower power consumption, smaller actuators, more manoeuvrable and transportable, safer
to operate owing to reduced weight, etc. However, the control for the flexible joint robot
manipulator is also more challenging since the system dynamics is highly nonlinear and com-
plex. Besides, the accurate model of the flexible joint robot manipulator is more difficult
to be obtained. Thus, as a promising controller, a novel incremental model predictive con-
troller for the more general system can be developed. First, a cascaded incremental system
will be developed where the torques due to the joint compliance will be considered as an
intermediate control law. Then the incremental model predictive controller for the flexible
joint robot manipulator will be developed on the basis of the cascaded incremental system.
For robot manipulators, they can be modelled as Euler-Lagrange equations. The TDE

technique can be employed to obtain the incremental systems and then IMPC is constructed.
However, for a general system, such as non-Euler-Lagrange and non-affine system, it is
challenging to apply TDE directly Since input matrix is not always positive definite or input
matrix does not exist. Therefore, a general procedure should be developed to use the time-
delay estimation and approximate the uncertain nonlinear and general dynamical systems.

Strict State Constraint Satisfaction
In the developed incremental model predictive control, the system dynamics (and also

equations of motion of tasks in Chapter 4) is approximated by nominal incremental systems.
However, the TDE error is ignored. Then, there are prediction errors of state variables. As
a result, strict constraint satisfaction is not guaranteed. Although the huge deterioration
of strongly violating constraints is avoided, the system suffers from the risk of constraint
violation. This is an open problem for MPC when the uncertain system is considered. The
learning method is really an effective method to deal with the unpredictable TDE error and
measurement noises.
As a future development, we will take the strict state constraint satisfaction into con-

sideration. The tube-based MPC, data-driven and safe learning methods can be employed.
However, it is time-consuming to calculate tightened constraints in the tube-based MPC. Al-
though recently the efficient method to calculate tightened constraints has been developed,
it is still challenging to apply it on fast-dynamics systems. Thus, developing an effective
algorithm to determine tightened constraints for tube-based MPC is one of our research
directions.
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Preliminaries A

In this chapter, preliminaries, such as dynamic model of the robot manipulator and time-
delay estimation technique, will be introduced. First, dynamic model of an n-link robot
manipulator is modelled by an Euler-Lagrange equation. However, modelling errors and
external disturbances are inevitable. To reduce dependence on the concrete mathematical
model and approximate uncertain system dynamics, time-delay estimation (TDE) technique
is introduced, which is also a basis to develop controllers in Chapters 2-4.

A.1 Modeling of the Robot Manipulator
The dynamic model of an n-link robot manipulator is given as an Euler-Lagrange equation
[65], [182]:

M(q)q̈ + C(q, q̇)q̇ + G(q) + F(q̇) = τ , (A.1)

where q ∈ Rn is the vector of joint angles, M(q) ∈ Rn×n is the symmetric positive definite
inertia matrix, C(q, q̇) ∈ Rn×n is a matrix of centrifugal and Coriolis terms, G(q) ∈ Rn

contains the gravitational terms exerting on the robot manipulator, F(q̇) ∈ Rn denotes
viscous friction, τ ∈ Rn is the input applied to the joints.
For the Euler-Lagrange system (A.1), the uniform positive definiteness of the inertia matrix

M(q) is introduced in the following. Later we will need positive definiteness of M(q) to
determine design parameters (see Remark 23).

Property 1 (Positive Definite Inertia Matrix [79]). The matrix M(q) is uniformly positively
definite and there exist µ1, µ2 ∈ R>0 such that µ1I ≤ M(q) ≤ µ2I, where I ∈ Rn×n is the
n-dimensional identity matrix.

Note that due to inevitable modeling errors, the inertia matrix M(q), and other nonlinear
dynamics terms C(q, q̇), G(q), and F(q̇) are considered to be unknown/uncertain in this
dissertation.

A.2 Time-Delay Estimation
In this subsection, TDE will be introduced. Using the time-delay signals to estimate the
lumped dynamics, TDE guarantees an attractive model-free structure for controllers [28]–
[36]. To enhance robustness of the controller, the uncertain system dynamics will be ap-
proximated by TDE, which is the fundamental work to develop the incremental controllers
in this dissertation.
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Let x1 = q , x2 = q̇, and x = col(x1, x2), the dynamics (A.1) is transformed into an affine
nonlinear form:

ẋ1 = x2 (A.2a)
ẋ2 = f(x) + g(x)u, (A.2b)

where f(x) = −M−1(q)(C(q, q̇)q̇ + G(q) + Fq̇), g(x) = M−1(q) and u = τ .
According to [103], [183], M(q), C(q, q̇), G(q), and F(q̇) are all upper bounded. Thus,

the following assumption is made for f(x) in an admissible set Dx ⊂ R2n.

Assumption 5 (Boundedness Property of f(x)). f(x) with f(0) = 0 is upper bounded in
Dx, with constants fmax, f0 ∈ R>0, that is,

‖f(x)‖ ≤ fmax‖x‖+ f0, ∀x ∈ Dx. (A.3)

To reduce dependence on the mathematical model, such as f(x) and g(x), TDE technique
is applied on the second subsystem (A.2b), and an incremental system will be obtained.
Introducing a constant diagonal matrix ḡ, one obtains another expression of (A.2b) as

follows:
ḡ−1ẋ2 = H(x, ẋ) + u, (A.4)

where H(x, ẋ) = (ḡ−1 − g−1(x)) ẋ2 + g−1(x)f(x) is a lump nonlinear function. In practice,
when the sampling rate is sufficiently high, H(x, ẋ) can be estimated by its time-delay value
[28]–[36] as

Ĥ(x, ẋ) = H(x0, ẋ0) = ḡ−1ẋ2,0 − u0, (A.5)
where x0, x2,0 and u0 are the values of the states x, x2 and controller u at the previous
sampling time, respectively. In practice, a digital control system behaves reasonably close
to a continuous system if the sampling rate is faster than 30 times the system bandwidth
[134]. Thus, with sufficiently high sampling rate, the lump nonlinear function is estimated
by TDE [31].
From (A.4) and (A.5), we obtain the following system with the incremental controller ∆u:

ẋ2 = ẋ2,0 + ḡ∆u + ε (A.6)

where ∆u = u−u0, ε = ḡ
(
H(x, ẋ)− Ĥ(x, ẋ)

)
is the TDE error. The TDE error is related

to the designed controller [31]. We will analyze its boundedness in Lemma 1, Lemma 2,
and Lemma 6 with different controllers.
As a result, (A.2) is transformed into the following new strict-feedback system using TDE:

ẋ1 = x2 (A.7a)
ẋ2 = ẋ2,0 + ḡ∆u + ε (A.7b)

We can observe that ḡ is the only parameter in the new strict-feedback system (A.7). For
a specific robot manipulator, we can determine the diagonal matrix ḡ as follows.

Remark 23 (How to Determine the Diagonal Matrix ḡ?). According to Property 1, there
exist µ1,µ2 ∈ R>0 such that 0 < 1

µ2
≤ λi ≤ 1

µ1
since g(x) = M−1(x), where M(x) is the

inertia matrix and λi is the eigenvalue of g(x). Suppose ḡi is the diagonal element of ḡ,
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(
1− λi

ḡi

)
is the eigenvalue of (I− g(x)ḡ−1). If |1− λi

ḡi
| < 1, then ‖I− g(x)ḡ−1‖2 < 1 holds,

i.e., if ḡi satisfies ḡi > λi
2 , then ‖I − g(x)ḡ−1‖2 < 1 holds. Theoretically, we fix ḡi after

we have determined the maximum eigenvalue of g(x), noted as λi,max, and let ḡi > λi,max
2 .

In practice, ḡ is selected by a manual tuning process. If ḡi is sufficiently large, ḡi > λi,max
2

holds. Generally, large ḡ results in large TDE errors while small ḡ causes noisy responses.
The constant ḡ := diag(ḡ1, · · · , ḡn) is selected following the procedures in [184] (The TDE
parameter ḡ is corresponding to the inverse of M̄ in [184]): (1) start with a sufficiently large
positive value for ḡi to guarantee stability; (2) decrease ḡi until the closed-loop system almost
shows a noisy response. Following the aforementioned procedures, the TDE parameter ḡ is
tuned without any information about the plant dynamics.

Remark 24 (ḡ is Robust Against Payload Variations). ḡ determined for the no-load case
also makes ‖I−g(x)ḡ−1‖2 < 1 hold under payload variations. This is because the eigenvalues
of M(x) increase when the robot manipulator carries some payloads while the eigenvalues of
g(x) decrease. That is, λi > λ∗i , supposing λ∗i is the eigenvalue of g(x) when it carries some
payloads. Thus, ḡi > λ∗

i

2 still holds.
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Parameters in Eq. (4.34) B

Qi := B̄>1iQ̄iB̄1i + R̄i; Li := 2B̄>1iQ̄i(Ā1~xi(k)−Xid); Q̄i := diag
(
K̄>i QiK̄i, · · · , K̄>i QiK̄i

)
;

B̄1i :=


B1i
A1B1i B1i
A2

1B1i A1B1i B1i
· · ·
AN−1

1 B1i AN−2
1 B1i AN−3

1 B1i . . . B1i

;
Xid := col(x̄id(k + 1), · · · , x̄id(k +N)); R̄i := diag(Ri, · · · , Ri); K̄i := [Ki, O];

Ā1 := col
(
A1, A2

1, · · · , AN
1

)
; Ci1 := col(−ci1, ci1); Di1 :=

[
−L̄1~q(k) + q̄min
L̄1~q(k)− q̄max

]
;

ci1 :=


L1B2
L1A2B2 L1B2
L1A2

2B2 L1A2B2 L1B2
· · ·
L1AN−1

2 B2 L1AN−2
2 B2 L1AN−3

2 B2 . . . L1B2

;
L̄1 := col

(
L1A2, L1A2

2, · · · , L1AN
2

)
; q̄min := col (qmin, · · · , qmin);

q̄max := col (qmax, · · · , qmax); L1 := [I, O, O, O]; Ci2 := col(−ci2, ci2);

Di2 :=
[
−L̄2~q(k) + ¯̇qmin
L̄2~q(k)− ¯̇qmax

]
; L̄2 := col

(
L2A2, L2A2

2, · · · , L2AN
2

)
;

ci2 :=


L2B2
L2A2B2 L2B2
L2A2

2B2 L2A2B2 L2B2
· · ·
L2AN−1

2 B2 L2AN−2
2 B2 L2AN−3

2 B2 . . . L2B2

; L2 := [O, I, O, O];

¯̇qmin := col (q̇min, · · · , q̇min); ¯̇qmax := col (q̇max, · · · , q̇max); Ci3 := col(−Ī, Ī);

Di3 :=
[
−τ̄ 0 + τ̄min
τ̄ 0 − τ̄max

]
; Ī :=


I
I I
· · ·
I I · · · I

; τ̄ 0 := col (τ 0, · · · , τ 0);

τ̄min := col (τmin, · · · , τmin); τ̄max := col (τmax, · · · , τmax); a>ip := J̄p,k; bip := J̄p,kU∗p;
J̄p,k := diag

(
Jp,kM̄−1, · · · , Jp,kM̄−1

)
; U∗p := col

(
∆τ ∗p,k|k, · · · , ∆τ ∗p,k+N−1|k

)
.
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Definitions and Properties of Compari-
son Functions C

The comparison functions K, K∞ and KL are introduced in Definition 5 and Definition
6 [185].

Definition 5 (K Function). A continuous function α : [0, a) → R≥0, for some a > 0, is
said to belong to class K if it is zero at zero and strictly increasing. Moreover, α(·) is said
to belong to class K∞ if it is a class K function with a = ∞, and radially unbounded, i.e.,
α(x)→∞ as x→∞.

Definition 6 (KL Function). A continuous function σ : R>0 → R≥0 is said to belong to class
L if it decreases with limk→∞ σ(k) = 0. A continuous function β : [0, a) × [0,∞) → [0,∞)
is said to belong to class KL if, for each fixed s, the mapping β(r, s) belongs to class K with
respect to r and, for each fixed r, the mapping β(r, s) belongs to class L.

The following lemma states some properties of comparison functions, which are used in
Chapter 4 for ISS analysis of IMPC.

Lemma 11 (Properties of Comparison Functions). Let α1 and α2 be K functions on [0, a),
α3 and α4 be K∞, and β be a KL function. Denote the inverse of αi by α−1

i . Then,

1) α−1
1 is defined on [0,α1(a)) and is a K function;

2) α−1
3 is defined on [0,∞) and is a K∞ function;

3) α1 ◦ α2 is a K function;

4) α3 ◦ α4 is a K∞ function;

5) σ(r, s) = α1(β(α2(r), s)) is a KL function.

Note that ◦ denotes composition of two functions. The composition of functions f1 : S1 →
S2 and f2 : S1 → S3, (f2 ◦ f1)(·) are functions, then the function f2 ◦ f1 := f2(f1(·)), where
S1, S2, and S3 are any sets.
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