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Abstract

The development of an organism is a collective effort of a growing number of cells, which
subsequently form precise patterns. Cells coordinate by processing local interactions, and
global cues to output changes in gene expression. However, the underlying mechanisms
leading to robust patterning of tissue, despite the presence of noise inherent to biological
processes, are only partially understood. The predominate modeling approach is using
continuous differential equations. Motivated by the intrinsic cellularity of the system, we
here explore cellular automata (CA) as a discrete dynamical framework. CA are discrete in
a threefold sense: in state space, physical space, and time. They are capable of producing
patterns of arbitrary complexity from simple local input signals, with simple update rules.
Here, we show that an extended, stochastic cellular-automata framework is well suited for
modeling pattern-formation processes, by studying three examples of increasing biological
specificity.

We first aim for a solid background on cellular-automata theory (Part I) to then turn to
modeling of biological processes (Part II). Therefore, we begin with a discussion of schemes
to classify CA based on their dynamical behavior evolving from a single, an ensemble of, or
all possible initial conditions. In this context, we investigate the relation between information-
theoretic quantities characterizing the dynamical behavior of 2D CA rules.

In Part II, we focus on biologically inspired CA rules, and how they can mimic pattern
formation in tissues: (1) For formation of a gene-expression boundary, we find that adding a
local signal reduces boundary ‘fuzziness’, even if the additional signal is noisier than the global
signal ‘gradient’. (2) Forming the rows of bristles in Drosophila can be qualitatively reproduced
in our minimal stochastic CA model, if we include the experimentally observed global
prepattern to guide the self-organized dot formation. (3) For the intestine’s stationary epithelial
cell-type distribution, we turn away from a model with minimal number of parameters,
and optimize cell-type update probabilities with experimental data of stationary cell-type
distributions. This model ‘learns’ that cells do not ‘de-differentiate’, and is able to correctly
infer the order of magnitude of timescales in the system. Common ingredients all three
models require to qualitatively reproduce the — quite distinct — patterns are noise, and the
combination of a local with a global signal. Noise breaks symmetries of our simplified models.
The interplay of local and global signaling, however, is a consistent theme in developmental
biology.

Although it turns out that we do not directly benefit from our theoretical study of cellular
automata in Part I for the biology inspired models in Part II, we could at least sketch some
ideas for the CA-classification question. Part II promotes an extended, stochastic CA modeling
framework for developmental pattern formation that can generate hypotheses about the mode
of cell-cell communication, range of signals, and timescales in the system.
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Zusammenfassung

Die Entwicklung eines Organismus ist eine kollektive Anstrengung einer wachsenden Zahl
von Zellen, die iterativ präzise Muster bilden. Zellen koordinieren sich, indem sie lokale
Interaktionen und globale Signale verarbeiten, um Änderungen in der Genexpression zu
steuern. Allerdings sind die zugrunde liegenden Mechanismen, die zu einer robusten Gewebe-
musterung führen, trotz des Vorhandenseins von Stochastizität, die biologischen Prozessen
innewohnt, sind nur teilweise verstanden. Der vorherrschende Modellierungsansatz verwen-
det kontinuierliche Differentialgleichungen. Motiviert durch die intrinsische Zellularität des
Systems untersuchen wir hier zelluläre Automaten (CA) als Klasse diskreter dynamischer
Modelle. CA sind im dreifachen Sinne diskret: im Zustandsraum, im physikalischen Raum
und in der Zeit. Sie sind in der Lage, aus einfachen, lokalen Eingangssignalen mit einfachen
Regeln Mustern beliebiger Komplexität zu erzeugen. Hier zeigen wir, dass ein erweiterter,
stochastischer CA Ansatz sich gut eignet zur Modellierung von Musterbildungsprozessen,
indem wir drei Beispiele zunehmender biologischer Spezifität untersuchen.

Wir streben zunächst einen soliden Hintergrund zur Theorie zellulärer Automaten (Teil
I) an, um uns dann der Modellierung biologischer Prozesse zu zuwenden (Teil II). Daher
beginnen wir mit einer Diskussion der Schemata zur Klassifizierung von CA basierend auf
ihrem dynamischen Verhalten, das sich entwickelt aus einer einzigen, einem Ensemble von,
oder allen möglichen Anfangsbedingungen. In diesem Zusammenhang untersuchen wir
Relationen zwischen informationstheoretischen Größen, die das dynamische Verhalten von
2D-CA-Regeln charakterisieren.

In Teil II konzentrieren wir uns auf biologisch inspirierte CA-Regeln und wie sie Musterbil-
dung in Geweben nachbilden können: (1) Zur Bildung einer Genexpressionsgrenze finden
wir, dass das Hinzufügen eines lokalen Signals die ‘Unschärfe’ der Grenze reduziert, selbst
wenn das zusätzliche Signal verrauschter ist, als der globale Signal ‘Gradient’. (2) Bildung der
Borstenreihen bei Drosophila kann in unserem minimalen stochastischen CA-Modell quali-
tativ reproduziert werden, wenn wir das experimentell beobachtete globale Mustervorlage
miteinbeziehen zur Koordination der selbstorganisierten Punktbildung. (3) Für die stationäre
Epithelzelltypenverteilung des Darms wenden wir uns ab von Modellen mit einer minimalen
Anzahl an Parametern und optimieren Zelltyp-Wahrscheinlichkeiten mit experimentellen
Daten stationärer Zelltypverteilungen. Dieses Modell ‘lernt’ das Zellen nicht ‘entdifferen-
zieren’ und ist in der Lage, korrekt auf die Größenordnung von Zeitskalen im System zu
schließen. Gemeinsame Zutaten, die alle drei Modelle benötigen um qualitativ die sehr
verschiedenen Muster zu reproduzieren sind Stochastizität und die Kombination eines lokalen
mit einem globalen Signal. Stochastizität bricht Symmetrien unserer vereinfachten Modelle.
Das Zusammenspiel der lokalen und globalen Signale scheint hingegen ein durchgängiges
Thema in der Entwicklungsbiologie zu sein. Obwohl sich herausstellt, dass wir nicht di-
rekt von unserem theoretischen Studium der zellulären Automaten in Teil I für die von der
Biologie inspirierten Modelle in Teil II profitieren, könnten wir zumindest einige Ideen für
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Zusammenfassung

die CA-Klassifizierungsfrage skizzieren. Teil II wirbt für einen erweiterten, stochastischen
CA-Modellierungsansatz zur Bildung von Mustern in der Entwicklungsbiologie, der Hy-
pothesen über die Art der Zell-Zell-Kommunikation, Reichweite von Signalen, und Zeitskalen
im System generieren kann.
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GoE number of garden of Eden states
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|BoA| attractor basin size
No. BoA number of separate attractor basins in the field
ξν noise at position ν
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1. Introduction and Outline

Every living organism consists of cells — and is thus ‘discretized’ by nature. Nevertheless,
many pattern formation processes during organism development are modeled in a continuous
framework, e.g., as reaction-diffusion systems introduced by Alan Turing (Turing 1952) and
reviewed, e.g., in (Kondo and Miura 2010). A common drawback of the predominant modeling
approach, tailoring differential equations to living systems, is the large number of parameters
(Koopmans and Youk 2021). In this work, we explore cellular automata (CA) as a discrete
modeling framework for pattern formation in biological tissue.
Cellular Automata (CA) are a class of discrete, dynamical systems that update each of their
cells’ states with respect to their neighboring cells. CA are discrete in a threefold sense —
discrete in space (cellularized), discrete in time, and discrete in state space. In the 1940s, the
concept of CA was first implied by John von Neumann studying self-replicating systems
(Neumann 1966), and put into mathematical context by Stanislaw Ulam (Ulam 1952), working
on crystal growth. It gained greater general popularity with John Conways ‘Game of Life’
in the 1970s (Gardner 1970), a very simple rule1 that was shown to be capable of universal
computation.
Successful examples of the cellular automata framework in development are modeling of
labyrinthine patterned lizard skin scales (Manukyan, Montandon, Fofonjka, et al. 2017),
liver lobule injury recovery (Adhyapok, Fu, Sluka, et al. 2021), nervous-tissue development
(Lehotzky and Zupanc 2019), and insect eye photoreceptor patterning (Ebadi, Perry, Short,
et al. 2018), further discussed in Sec. 3.1.

Cellular Automata definition A cellular automata (network) is defined on a d-dimensional
grid, often of finite length L with periodic boundary conditions. Each ‘cell’ of the grid is
assigned a state cν in a finite state space Σ = {0, 1, . . . , k − 1} ⊂ N0, cν ∈ Σ. The states of a
grid are updated synchronously at discrete time steps, by a local update function, which is
identical for all cells, called the cellular automaton rule ϕν,

ϕν : Σ|N (ν)| → Σ

ϕν

({
cµ(t)|µ ∈ N (ν)

})
= cν(t + 1) ,

with N (ν) denoting the neighborhood of cell ν, including the cell itself. In one dimension,
a range-r neighborhood includes all cells that are maximally r sites to left or right of cell ν.
On a 2D square grid, common choices are the Von-Neumann neighborhood, denoting the
upper, lower, left, and right neighbor of a cell, or the Moore neighborhood, containing the Von

1On a 2D grid with a Moore neighborhood and two possible states - alive or dead, (i) any cell with less than two
live neighbors dies of loneliness, (ii) any live cell with two or three neighbors remains alive, (iii) any live cell
with more than three live neighbors dies of overpopulation and (iv) any dead cell with three live neighbors
becomes a live cell, as if by reproduction.

1



1. Introduction and Outline

Neumann neighborhood and extending it to the four diagonal cells. As the number of states
and the neighborhood are finite, we can list all input configurations and the corresponding
outputs in a table that uniquely specifies the CA rule, its rule table.

Common extensions to this notion of cellular automata are asynchronous updates (Fatès
2014; Nehaniv 2003), and probabilistic update rules as used in the second part of this thesis
(Part II). More precisely, we work with two types of probabilistic (or stochastic) CAs: For
the first type, the state of a cell c∗ν(t) is a random variable, consisting of a deterministic
state cν(t) ∈ Σ and additive noise ξν(t). The update rule processes a realization to output a
deterministic value cν(t + 1) ∈ Σ. For the second type, the states are in Σ, but the update
rule assigns to each input a tuple of update probabilities, one probability for each state in Σ.
The state at the next time step is drawn from this distribution. In Part II, we also extend the
framework to accept one external space- and time-dependent input xν(t) ∈ X ⊂ R such that

ϕX
ν : Σ|N (ν)| × X → Σ

ϕX
ν

({
cµ(t)|µ ∈ N (ν)

}
, xν(t)

)
= cν(t + 1) .

Cellular automata are arguably the simplest class of systems that realizes the full spectrum
of dynamical behavior — from approaching a simple fixed point, from any initial condition,
up to universal computation (Wuensche 1998).

Outline In the first part of this thesis, we aim to characterize the space of potentially
biologically interesting cellular automata. We are interested in general statements about
what types of patterns can be generated by which types of rules, how the patterning process
depends on initial conditions, and how many time steps the process takes. Therefore, we
review and take further steps towards a classification of 2D cellular automata. This unsolved
problem is more than 50 years old and has been strongly marked by Stephen Wolfram’s work
Vispoel, Daly, and Baetens 2021, introducing four heuristic classes based on ‘typical’ rule
behavior from random initial conditions (Wolfram 1984a; Wolfram 2002). We divided the
classification ideas into ‘rule table based’, ‘local’, and ‘global’ approaches, following a recent
review (Vispoel, Daly, and Baetens 2021). ‘Local’ means with respect to a single or, here, an
ensemble of, random initial conditions, whereas ‘global’ considers all initial conditions. We
focus on information-theoretic quantities for 2D cellular automata, such as the entropy of a
generated pattern, mutual information for local information conservation, difference-pattern
spreading, and the amount of synergistic information processing between cells. For 1D cellular
automata of fixed length, we study the whole basin-of-attraction field.

In the second part, we take the opposite approach, and explicitly focus on biologically in-
spired cellular automata rules, and how they can aid pattern formation observed in tissues. We
model patterning processes of increasing biological specificity, starting from gene-expression
boundary formation, Drosophila bristle-prosecutor formation, and the stationary small-intestine
epithelium cell-type distribution. All three examples have in common that using a stochastic
cellular automata with extension to one long-range signal was a successful modeling strategy
to robustly form the observed patterns. This might be surprising as those patterns are qualita-
tively quite different — a sharp boundary, evenly spaced dots and the stationary but dynamic
small intestine cell type distribution.

2



Part I.

First part: Characterization of Cellular
Automata
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2. Characterization Schemes of Cellular
Automata

Our first approach towards gaining insight from cellular-automata modeling of biological
pattern-formation phenomena is trying to characterize the space of potentially interesting
cellular automata. Can we make some general statements about which patterns can be
generated by which type of rules? How does the patterning process depend on initial
conditions? How long does it take?

Most biological tissues are at least two dimensional thus we want to get a better under-
standing of the 2D cellular-automata rule space. A 2D cellular automaton in a Von-Neumann
neighborhood is uniquely defined by its rule table listing the update value to each of the
k5 neighborhood configurations. For many biological systems, it can be argued that a cell
treats information from its neighbors, e.g., in the form of signaling molecules, independent
of their orientation. For cellular automata this translates to the constraint of outer-totalistic
update functions. The cell’s state at the next time step only depends on its own state and how
often each possible state c ∈ Σ is present among the neighboring cells. It does not matter,
which orientation the neighboring cells have, e.g. if it is the upper left or the upper right
neighbor that is in a particular state. Mostly, we consider outer-totalistic rules in this chapter.
A constraint enforced throughout this chapter is the existence of a ‘quiescent state’. A state
q ∈ Σ is quiescent, if a cell cν with a neighborhood in state q,

{
cµ = q

}
µ∈N (ν)

, is again mapped

to state q in the next time step, cν(t + 1) = ϕ
({

cµ(t) = q
}

µ∈N (ν)

)
= q. We will often take

state ‘0’ to be quiescent. Rules that have a quiescent state and give the same result, when
rotating or reflecting their neighborhood, are called legal rules. The dynamics generated by
illegal rules is in general considered not to be ‘physically meaningful’ (C. G. Langton 1990). Of
the 256 ECA, only 32 are legal, for instance. However, 2D rule spaces are in general extremely
large, containing kk5

rules, thus imposing constraints is common practice in order to reduce
the number of rules.

A rules’ behavior, meaning its ‘typical’ space-time traces, can roughly be characterized as
evolving to (Class I) fixed, homogeneous states, (Class II) simple, separated periodic structures,
(Class III) chaotic, aperiodic patterns or (Class IV) complex patterns of localized structures.
These heuristic categories are called Wolfram Classes, after Stephen Wolfram, who classified
all 256 1D two state (’elementary’) cellular automata accordingly (Wolfram 1984a). However,
this characterization is not exact it the sense that not every rule belongs to one particular class
as the class of its behavior can be different for different initial initial conditions (Culik II and
Yu 1988). As some cellular automata are capable of universal computation, there are initial
conditions for which the actual behavior is undecidable (Halting problem). Also, Wolfram’s
heuristic classification procedure is not feasible for an arbitrary 2D k-state rule in practice,
as it would require labeling time traces for a significant amount of initial conditions for a

5



2. Characterization Schemes of Cellular Automata

time long enough to allow transition effects to die out. The concept of a ‘transient’ is not well
defined, either — e.g., for complex rules the Halting problem implies, that we can never say if
a rule has actually transitioned to its stationary state. Also, for chaotic rules, it is far from
obvious to decide, if they have reached ‘their typical dynamics’ or not.

In this chapter, we want to explore different approaches to characterize 2D rules. Following
a current review (Vispoel, Daly, and Baetens 2021), we structured those by, first, introducing
rule-table based parameters Sec. 2.1, second, studying measures that are determined from
simulations starting from a single up to few initial conditions of same type (‘local parameters’)
Sec. 2.2 and, third, measures based on simulations from all possible initial conditions (‘global
parameters’) Sec. 2.3. We will explore, among others, Langton’s parameter in Sec. 2.1, time
averaged single-site entropy, Kolmogoroff complexity, difference pattern spreading and local
memory in Sec. 2.2, and a rule’s capacity for synergistic information processing in Sec. 2.3.
Our explorations are aimed to find parameters from the definition of a rule, or parameters
that can be obtained by little computational effort, that allow for conclusions about either
the rules ‘class’ or any of the information theoretic properties determining their dynamic
behavior, such as entropy of the pattern, local information conservation and difference pattern
spreading.

2.1. Rule-table based Parameters and derived rule-sampling Schemes

2.1.1. Langton’s λ Parameter

At first, we want to discuss work by (C. G. Langton 1990) that inspired our explorations.
Langton designed two related paths in rule space to construct a set of rules of k states that are
parameterized by a single variable λ: a ‘rule table walk through’ and a ‘random table’. He
characterized legal rules along these paths with respect to their single-site entropy, memory
and transition time.

λ denotes the fraction of neighborhood configurations that are not mapped to the quiescent
state, commonly chosen to be ‘0’, but are randomly assigned any of the remaining k − 1
possible values. A rule with small λ is expected to evolve to a stationary pattern (Wolfram
Class I behavior for most initial conditions), because nearly all neighborhood configurations
map to the quiescent state (C. G. Langton 1990). For larger λ rules, non-trivial limit cycles
occur. At some λ, different for each table-walk-through, the non-zero rule table entries
‘percolate’ and more complex patterns emerge. For λ = 1 − 1

k typically the most chaotic
patterns are created. As λ increases from 0 to λ = 1 − 1

k there consequently is a transition
between periodic and chaotic rules. This transition, however is not sharp, in the sense that
there is no unique λ at which the transition happens for independent table-walk-throughs.
It is hypothesized (H. Gutowitz and C. Langton 1995) that rules with complex behavior can
be found at this transition regime: rules capable of universal computation need to allow for
long transients, memory and information transmission. All those criteria have been shown to
occur in the transition regime (C. G. Langton 1990).

Within the space of rules with quiescent states, a rule table-walk-through samples an
ordered set of rules with roughly increasing ‘complexity’. The first rule has only one non-zero
entry (ignoring the quiescency condition for a moment), which is a number randomly chosen

6



2.1. Rule-table based Parameters and derived rule-sampling Schemes

among the remaining k − 1 options. The probability of those k − 1 options is taken to be
uniform. For the second rule, another entry in the rule vector is randomly chosen and
assigned a random state different from zero. We fill up the set of rules in this way until every
neighborhood configuration (except the quiescent state) is mapped to a non-zero state. See
Fig. 2.1 for an example in 1D with only two possible states for better illustration. Langton et
al. give an example of typical sequence of behavior observed for a rule table walk through for
k = 4 states and a neighborhood of 5 cells (including the central cell) (C. G. Langton 1990):

• λ ≈ 0: The initial grid is mapped to a quiescent grid of zeros within one time step

• λ ≈ 0.1: After 1-5 time steps, a homogeneous fixed point is reached

• λ ≈ 0.25: Transient lengths increase, about three different outcomes can occur (depend-
ing on the initial condition): a homogeneous fixed state, a heterogeneous fixed state, or
a periodic state

• λ ≈ 0.5: Transients can be over 10’000 time steps, structures with a periodicity of more
than 1000 time steps appear.

• λ ≈ 0.55: The steady state is essentially transient behavior and long-time dynamics is
chaotic

• λ ≈ 0.6: Transients decrease with further increasing λ and long-time behavior is chaotic

• λ ≈ 0.75: Behavior is essentially random after a single time step; State of maximal
disorder.

Numerical simulations in (W. Li, Packard, and C. G. Langton 1990) generally suggest that (i)
transients grow exponentially with λ near the transition from ‘typically periodic’ to ‘typically
chaotic’ behavior and (ii) lattice size has a stronger influence on the typical behavior of a rule,
the closer it is to λ of this transition-regime value.

For the random-table rule set, for each λ we randomly select a fraction λ of configurations
(except the quiescent configuration). For each of those configurations, we uniformly choose a
non-zero output, from the remaining k − 1 states. By both procedures we obtain a set of rules
with increasing λ. If not explicitly stated otherwise, we use the random-table method, as it
does not introduce correlations between the rules.

In the limit of infinitely many states, a rule with λ close to one approaches an annihilated
system, i.e., in every time step the next update for a cell is essentially given by drawing a
random number, because the number of possible neighborhoods is so large that they don’t
repeat. Langton’s λ can be seen as the zeroth order of a hierarchy of parametrization schemes,
named ‘local structure theory’ and developed by Gutowitz (H. A. Gutowitz, Victor, and
Knight 1987).

Rule-table Entropy

We here propose a modification of λ, the ‘rule-table entropy’ RTE, i.e., the entropy of different
states within a rule vector, based on how often each state c ∈ {0, . . . , k − 1} occurs, instead of

7



2. Characterization Schemes of Cellular Automata

Figure 2.1.: Sketch of Langton’s rule-sampling routines at the example of the 1D, two-state
rules. Each rule is defined by its rule table, which consists of all possible neigh-
borhood configurations and a rule vector. Each neighborhood configuration,
comprising the central cell’s state ci, its left and right neighbor, ci−1 and ci+1, is
assigned an output. The tuple of all outputs forms the rule ‘vector’. Left: Table-
walk-through method: Start with a rule vector containing only zeros, except from
the quiescent configurations (printed bold). It has the smallest possible fraction
of non-zero sites, λ = 1

len(rule vector) . For the next larger λ, randomly select one of
the non-quiescent configurations and change the according rule-vector entry to a
non-zero state, by uniformly drawing from the other k − 1 options (here only ‘1’).
Right: The random-table method: For any λ, randomly choose a corresponding
fraction of non-quiescent zeros in the rule table, and change them to non-zero
sites, again by uniformly drawing from the other k − 1 options. Rules sampled
by a random-table method are independent of each other, while rules in one
table-walk-through are correlated.

the fraction of non-zero entries λ,

RTE(ϕ) ≡ −
k−1

∑
c=0

pc(ϕ) logk (pc(ϕ)) , (2.1)

with pc the fraction of rule vector entries of rule ϕ in state c. Rules of the same equivalence
class have the same RTE value. This measure ensures that a rule with many, but equal
non-zero values has a lower value than a rule with many, but different non-zero entries. For
example, in case of k = 8 and λ = 1 − 1

8 a rule generated with any of the two of Langton’s
sampling schemes is probably very chaotic, but it could in principle also contain only ones for
7/8th of the rule table, and with that be rather simple as suggested by its rule table entropy
value. One example for k = 3, where the large λ value results from a single predominant
non-zero state in the rule vector can be found in the Appendix, Fig. A.1. For a large number k
of states, sampling the same state more often than the quiescent state is rare, thus in this case
we will use λ or RTE, which ever better fits the question at hand.

8



2.2. Local Parameters

2.1.2. Other Rule-table based Parameters

This short introduction of further rule-table based parameters is for a better overview and
follows (Vispoel, Daly, and Baetens 2021).

Z-reverse parameter reflects how much we know about the preimage, when we know
the current state. It is introduced by Wuensche (Wuensche 1998) in the context of reverse
constructing precursor configurations of grid states. Each iteration of the reconstruction
algorithm takes into account a larger part of a neighborhood configuration and therefore gives
a better approximation of a rule’s Z value. In contrast to λ, Z-reverse has the same value
for rules of the same equivalence class, i.e. left-right or color interchanged versions of a rule
(G. Oliveira, P. Oliveira, and Omar 2000).

µ sensitivity is defined as the average number of changes in the output of the update rule ϕ

when changing the state c of a single site of the neighborhood N (G. Oliveira, P. Oliveira, and
Omar 2000).

µ :=
1

|N |k|N | ∑
Σ|N |

|N |

∑
ν=1

∂ϕ

∂cν
(2.2)

with ∂ϕ
∂cν

the Boolean derivative of ϕ, and Σ|N | denoting all neighborhood configurations. A
low µ value indicates ordered behavior, while a high µ value suggests chaotic behavior, similar
to Langton’s λ and Wuensches Z-reverse parameter. However, µ is capable of separating
ECA’s with a periodic steady state more clearly from chaotic ECAs in comparison to Langton’s
λ (G. Oliveira, P. Oliveira, and Omar 2000).

2.2. Local Parameters

Having explored parameters based on the rule table, we now want to characterize the
dynamical behavior of cellular automata. First, we want to do so for single initial conditions
or an ensemble of initial conditions of the same type, mostly random initial conditions. The
corresponding parameters are ‘local’ in this sense, in contrast to the ‘global’ parameters,
studied in the next section, that depend on the full set of initial conditions.

2.2.1. Pattern Entropy as a Measure of CA Complexity

In order to characterize a CA generated pattern, we study the B-block entropy H(B, t) of how
often a block of cells B occurs in the pattern C,

H(B, t) :=
1
|B| ∑

b∈Σ|B|

P(B = b, t) logk(P(B = b, t)) . (2.3)

P(B = b, t) denotes the frequency at which a specific block configuration B = b occurs in the
pattern C at time t, and Σ the set of possible states. In the simplest case, B consists of a single
cell and we define

H1 ≡ H(|B| = 1) . (2.4)

9



2. Characterization Schemes of Cellular Automata

Figure 2.2.: Left: Single-site entropy time traces H1 for increasing λs for outer-totalistic rules.
Right: H1 time traces averaged within the window [1, t]. For 1000 time steps — our
default choice of simulation time — the entropies have converged for all tested λs.
The k = 8 state rules are generated via the random-table method and run on a
random initial square grid of length L = 64.

Figure 2.3.: Exemplary grid configurations at t = 1000 for some of the rules of Fig. 2.2.

Another natural choice would be the neighborhood form, e.g., the 5 Von-Neumann cells. A
block can have any shape, such as three cells arranged in a ‘L’.

We will first focus on H1 and later compare to |B| > 1-site entropy results.

Convergence of Entropy in Time When we use ‘entropy’ as an observable later in this
section, we usually (implicitly) mean the time-average entropy, in order to approximate the
long time behavior, after transients have settled. More precisely, we use entropy averaged over
a fixed simulation time tmax,

⟨H(B, t)⟩ ≡ 1
tmax

tmax

∑
t=1

H(B, t) . (2.5)

Therefore, we want to start with explicitly looking at entropy time traces. For a parameter
choice commonly used in this section (i.e. k = 8 states, L2 = 642 cells, tmax = 1000), the left
plot of Fig. 2.2 shows the single-site entropy time traces for a set of different outer-totalistic
rules with increasing λ. The right plot shows the time average of those entropies up to time t.
We observe that the average entropy very quickly converges for all, but one rule. For this rule,
with an intermediate λ of 0.24, it takes less than 500 time steps. This observation qualitatively
matches our expectation, as Wolfram Class I or Class II behavior, common for small λ, and

10



2.2. Local Parameters

Figure 2.4.: Histogram of randomly sampled rules. On the y-axis the mean entropy, taken
over a span of time-steps is plotted and on the y-axis the corresponding standard
deviation. We see a smooth ‘valley’ between ‘ordered’ and ‘chaotic’ rules, rather
than a sharp transition. Taken from Andy Wuensche, discrete dynamics lab ddl
(Wuensche 2021).

chaotic behavior, common for large λ, are both characterized by short transients. However, for
intermediate λ, there is a higher temporal variation in the time trace.

Wuensche suggested to use this qualitative difference in the variances to differentiate
between complex and non-complex rules (Wuensche 1998). However, he could only find a
continuous transition in variance between this different behavioral classes, see Fig. 2.4.

Time averaged single-site Entropy Langton (C. G. Langton 1990) discusses the single-site
entropy for a random-table (see Fig. 2.5) and table-walk-through (Fig. 2.6). For ‘legal’ general
rules, Langton observed that ⟨H1⟩ has a maximum for λ = 1 − 1

k , as the rule table becomes
more regular again for higher λ values. This result is also confirmed in Fig. 2.5(Left), showing
data for three different k (for outer-totalistic rules). If we assume that a rule acts on a random
grid at reach time step, then we make a mean-field estimation (MF) of the single-site entropy:

MF H1 = −(1 − λ) logk(1 − λ)− λ logk

(
λ

(k − 1)

)
(2.6)
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2. Characterization Schemes of Cellular Automata

Figure 2.5.: Time-averaged single-site entropies ⟨H1⟩ of random-table sampled rules starting
from a random initial 64 × 64 grid, with time average taken over 1000 steps. Left:
Entropies of outer-totalistic rules of k = 5, 8 or 10 states. Here, ⟨H1⟩ is to the
base 2. Horizontal lines indicate the maximum entropy possible. Vertical lines
mark λ = 1 − 1

k , for which we expect the most chaotic rules. Indeed, those
have maximal ⟨H1⟩. The gray line shows the percolation threshold of the Von-
Neumann neighborhood, λP = 0.59. The colored curved lines are the mean-field
approximations MF H1 (Eq. 2.6). Right: In red we depicted outer-totalistic, in
orange general k = 8 rules. General rules do take the relative location of their
neighbors into account. The gray horizontal lines marks the entropy of one of
the simplest chaotic rules. The vertical gray line corresponds to the percolation
threshold. Almost all randomly sampled rules with λ > λP are expected to have
an entropy larger than the horizontal line.
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2.2. Local Parameters

For k → ∞ this mean field estimate equals λ. As a CA rule in general does form patterns, we
only expect this approximation to be relevant for chaotic rules. The curved lines in the Fig. 2.5
show this mean-field estimation for three different values of k. Langton further observed that
there is a ‘gap’ of single-site entropy values below 0.28, see Fig. 2.5. This value corresponds
to one of the simplest chaotic rules: The rule realizes only two states and essentially maps
a neighborhood that contains mostly zeros and one non-zero state to that non-zero state.
Moreover, observe that for a λ of 0.59 only very few k = 5 rules have a single-site entropy
below 0.28. This value of λ equals the static-site percolation threshold for the Von-Neumann
neighborhood. It is consistent that the non-zero rule-table entries contribute in the dynamics,
starting from random initial grids, and not just die out, if the fraction of neighborhood
configurations that are mapped to non-zero states, reaches this value.

In Fig. 2.5(Right) results for general and outer-totalistic rules are shown. Naively, we would
expect that the spread within the outer-totalistic rules should be smaller than the spread
within the general rules, as outer-totalistic rules are subset of general rules. However, we
observe the opposite. The reason is Langton’s sampling scheme: In fact, for sufficiently large
k it is highly unprobable that a general rule, sampled with Langton’s random-table method,
is outer-totalistic. Also, the sampling scheme works best for large rule vectors, as a larger
sample size can better represent the underlying distribution, i.e., the uniform distribution of
the non-zero k − 1 states. The number of different input configurations, and consequently, the
sample size, is much smaller for an outer-totalistic than for a (legal) general rule.

For rules generated by a rule table-walk-through, we show ⟨H1⟩ in Fig. 2.6. For small λ,
rules have zero entropy. For some table-walk-throughs cyclic rules with a slightly higher
entropy occur, probably with a ‘non-trivial’ periodicity of at least two time steps. A ‘trivially’
cyclic rule would have a periodicity of one, i.e. a fixed point. At a λ value different for each
table-walk-through, we observe a sharp increase in entropy. The lower plot in Fig. 2.6 shows
that rules have indeed change their behavior from cyclic (including the ones with trivial limit
cycle) to non-cyclic (or ‘chaotic’) at this entropy jump. On the right, the same data is plotted
against the rule-table entropy RTE. We observe that for high RTE values, ⟨H1⟩ traces converge
to the RTE value.
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2. Characterization Schemes of Cellular Automata

Figure 2.6.: Time-averaged single-site entropies ⟨H1⟩ for a set of 15 independently sampled
rule table-walk-throughs. Each table-walk through comprises 63, k = 8-state
outer-totalistic rules. Rules start from a random initial square grid of length
L = 64. Upper left: Independent table-walk-throughs are shown in different colors.
There is no unique λ where the jump in entropy occurs. Lower left: Same data,
but colored in blue for rules that did reach a fixed point or limit cycle within
the simulation time of 1000 time steps, and in red, for those that did not. The
jump in entropy within each rule table-walk through seems correlates with the
transition from cyclic to chaotic behavior. Right: Same data as the left plots, but
plotted against RTE. We observe that for rules with large RTE rules converge to
the diagonal, plotted in gray.
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2.2. Local Parameters

Block Expansion of Entropy

In order to better capture the spatial complexity of the pattern Olivier Martin1 suggested to
expand the single-site entropy to blocks of multiple cells in order to study the convergence
of this quantity w.r.t increasing block sizes |B| (October 2018, personal correspondence). We
tested blocks of up to 13 cells, enumerated as follows: ‘C’ means the central cell, subsequent
0/1/2/3 refers to its upper, left, lower or right neighbor. Those are all cells in the Von
Neumann neighborhood of ‘C’. ‘D’ refers to cells diagonal to the central cell, i.e., a subsequent
0/1/2/3 means C’s upper-right / lower-right / lower-left / upper-left diagonal neighbor.
That covers all cells within in the square surrounding the central cell (Moore neighborhood).
With ‘L0123’ we denote the upper, right, lower and left cell of this C0123D0123 square.

Fig. 2.7 depicts the mean B-block entropy deviations from the single-site entropy in depen-
dence of RTE for different blocks. The larger the deviation of the block from the single-site
entropy is, the higher are dependencies within cells of the block. If the deviation equals zero,
there are no spatial correlations with the considered block configurations. Thus, we expect
the blocks, consisting of the central cell and a direct neighbor, to show a higher deviation
than the blocks, consisting of central cell and a diagonal neighbor. As the tested rules are
outer-totalistic, we do not expect the orientation of cell towards each other to matter, e.g.,
results for block ‘C0’ should equal results for ‘C1’. Surprisingly, we find that deviations from
block to single-site entropy are small, not exceeding 2.5%. Examples of snapshots for three
of the rules and according B-block frequency distributions are shown in the Appendix A.1.
Subjectively, the patterns look much more interesting than what the small deviation of the
B-block entropies from the single-site entropy would suggest. Consequently, we wonder, if the
simulations have actually converged, as larger blocks require larger grid sizes for sufficient
statistics. For blocks up to |B| = 3 convergences is demonstrated by blocks ‘C0’ and ‘C2’ as
well as ‘C02’ and ‘C03’ agreeing with each other.

1Universite Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay,
France; Universite Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE - Le Moulon, 91190 Gif-sur-Yvette, France
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2. Characterization Schemes of Cellular Automata

Figure 2.7.: On the y-axis we have the difference between the time-averaged single-site entropy
from time-averaged entropies of larger blocks B. Different blocks are color-coded
as follows: ‘C’: Central cell (blue), ‘C0’: Central cell and the one above (orange),
‘C2’ center and lower neighbor (green), ‘CD0’ center and lower right corner
(brown), ‘C03’: Center, upper and right neighbor (red), ‘C02’: Center, upper
and left neighbor (purple). Results are for outer-totalistic k = 3 rules sampled
with Langton’s random table-method for tmax = 100 and run on a square grid of
length L = 200 from random initial conditions. We observe that simulations have
converged as results for blocks equivalent under outer-totalistic rules coincide.
Further, the maximal deviation from the block entropy to the corresponding
single-site entropy is small, i.e. less than 3% of the single-site entropy.

To get a better idea of the order of magnitude of the grid size needed for convergence of
the block entropies for larger block sizes, we studied H(B) of the random initial grids, see
Fig. 2.8. This can be seen as H(B) generated by the ‘identity rule’, as the identity does not
correlate sites and should yield the maximal entropy of one, when starting from random
initial conditions. Consequently any deviation from one is due to a lack of convergence.

Olivier Martin (April to May 2019, email correspondence) pointed out the following estima-
tion for this lack of convergence in dependence of the block size |B|, which we could confirm
numerically in Fig. 2.8:

⟨H(|B|)identity⟩ ≈ 1 − 1
L2

k|B| − 1
2|B| log(k)

(2.7)

The larger the block size |B|, the larger is the expected deviation. Moreover, it scales inversely
with the number of cells in the grid. For the parameters used in Fig. 2.7, i.e. k = 3, L = 2002,
this implies the |B| = 3 entropy of the identity rule would show a deviation on the order
of 10−4. We also observe, that the smallest grid size such that in principle all different
configurations could occur, |B|k, is a good order of magnitude estimate for the minimum
grid size needed. At about |B|k the deviation 1 − ⟨H(B)⟩ changes to exponential decay, with
respect to the number of cells in the grid.
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2.2. Local Parameters

Figure 2.8.: Left: For the identity rule with k = 3 states, we show the deviation of the block
entropy from the single-site entropy (equaling 1) for increasing random initial
grids and depict different blocks in different colors: ‘C’ means the central cell,
subsequent 0/1/2/3 refers to its upper, left, lower or right neighbor. Those are
all cells in the Von Neumann neighborhood of ‘C’. ‘D’ refers to cells diagonal to
the central cell, i.e., a subsequent 0/1/2/3 means C’s upper-right / lower-right
/ lower-left / upper-left diagonal neighbor. With ‘L0123’ we denote the upper,
right, lower and left cell of this C0123D0123 square. Vertical lines mark |B|k. Right:
Blue dots depict the intercept b(|B|) for different block sizes |B|, when performing
a linear fit on the log(1 − ⟨H(B)⟩) curves in the left plot for sufficiently large L,
thus b(|B|) = L2 log(1 − ⟨H(B)⟩). The orange line shows the theoretical estimate
Eq. 2.7.
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2. Characterization Schemes of Cellular Automata

2.2.2. Kolmogroff Complexity Approximation

The Kolmogoroff complexity is an abstract measure of the complexity of a string s, which,
e.g., encodes the spatial pattern produced by a cellular automaton. More formally, given an
arbitrary universal programming language, then the Kolmorgoroff Complexity KC of string s
is the length of the shortest program that outputs s when run on a Turing machine plus an
unknown constant (independent of s and specific to the language) (Kolmogorov 1963). It can
be shown that KC is not a computable function, i.e. there is no program that takes a string s
and returns KC(s) as output, only upper bounds can be provided (Vitányi 2020). The probably
most straightforward version of computing an upper bound to a string s is to use a lossless
compression algorithm.

Hector Zenil (Zenil 2010) characterized the ECA by measuring the compression ratio of a
pattern’s compressed size and its original size, averaged over time. Inspired by his work, we
compress the 2D patterns generated by randomly sampled outer-totalistic rules by a lossless
compression algorithm, zip. In Fig. 2.9 we find though, that the result of compressing each
grid at a particular time step, and averaging the results over time, yields qualitatively the
same result as ⟨H1⟩. One problem could be our choice of compression algorithm as it is
designed for strings, i.e. 1D arrays, not 2D pictures as our grids. Zenil has further put forth
related approaches to classify elementary cellular automata with Kolmogorov complexity,
that we have not tested for our 2D problem. He introduced a characteristic exponent similar
in the spirit to a Lyapunov coefficient for cellular automata, but with respect to variations
of the compressed patterns (Zenil 2010), (Zenil and Villarreal-Zapata 2013), and a block
decomposition approach of the 2D space time pattern (Zenil, Soler-Toscano, Delahaye, and
Gauvrit 2015).

However, for any fixed choice of compression algorithm, the question remains, if we are
actually measuring some sort of complexity or rather testing the performance of the concrete
algorithm.
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2.2. Local Parameters

Figure 2.9.: For 2D k = 8 state CAs sampled with Langton’s random-table method starting
from a random initial square grid of length L = 64: Left: We show the time-
averaged single-site entropy ⟨H1⟩ in orange and the time-averaged, normalized,
Kolmogoroff-complexity estimate in blue. max KC is taken to be KC of an 64×64
grid with cell states uniformly drawn from {0, . . . , k − 1}. Right: Shows the
Kolmogoroff complexity estimate KC plotted versus the single-site entropy of
the same data. Both quantities are averaged over 1000 time steps. The measures
appear to be highly correlated.

2.2.3. Difference-Pattern Spreading

Another way to classify cellular automata is with respect to their stability under small
perturbations of initial conditions. Generally, this is done by examining the dynamics of
difference spreading patterns in analogy to Lyapunov exponents in continuous-state dynamical
systems. However, in contrast to continuous-state systems, there is no notion of closeness for
initial conditions. Different approaches exist, put forth in (W. Li, Packard, and C. G. Langton
1990), (Wolfram 1984a), (Bagnoli, Rechtman, and Ruffo 1992) and (Zenil 2010). Bagnoli et
al. determined the number of ways in which a defect can propagate to a certain time step.
Essentially, each defect is propagated in a different replica of the simulation, such that defects
cannot annihilate. Consequently, the number of replicas can grow exponentially in time.
Other approaches are based on the number of defect cells at a particular time step, which can
increase at most linearly for 1D CA. Hector Zenil used the compressed difference between
patterns at each time step, generated by ‘neighboring’ initial condition pairs, and examined
the slope in time for the ECA (Zenil 2010). ‘Neighboring’ in this setting is with respect to one
site difference in the initial grid’s ‘Gray Codes’2.

The definition of difference-pattern spreading by Li et al. (W. Li, Packard, and C. G. Langton
1990) is for range r cellular automata and essentially measures the speed γ of the fastest spread
of a defect (different from our definition below). They study the speed at which the outmost
non-zero state of the difference pattern moves from its initial position towards the boundaries

2Gray Code is an ordering of the binary system such that two successive values differ in only one binary digit.
E.g., the two binary initial grids representing decimal values ‘1’ and ‘2’ in normal binary code are ‘0...001’ and
‘0...010’, thus their Hamming distance equals two sites. In Gray code, ‘1’ and ‘2’ are represented by ‘0...001’ and
‘0...011’, differing only in a single site.
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2. Characterization Schemes of Cellular Automata

of the grid. Li, Packard and Langton (W. Li, Packard, and C. G. Langton 1990) estimated an
average (w.r.t. initial conditions) value of the difference-pattern spreading rate γ in terms of λ

for 1D k = 2 range r rules: For a two-state rule, a fraction of λ of the 2r + 1 neighborhood
configurations map to 1 and the other 1 − λ configurations to 0. If we randomly choose two
2r + 1-sized blocks from the set of all possible blocks, the probability that they map to the
same symbol is

Psame = λ2 + (1 − λ)2 .

The probability that the left spreading rate γleft equals its upper bound r is given by the prob-
ability, that the blocks (c−r, c−(r−1), . . . , cr−1, 1) and (c−r, c−(r−1), . . . , cr−1, 0) map to different
symbols, 1− Psame, in the first time step. Implicitly, Li et al. (W. Li, Packard, and C. G. Langton
1990) make the assumption that the blocks at the outmost edge of the difference spread are
drawn randomly from the set of all possible blocks. However, for a rule with small λ, most
parts of the grid will be in state 0, not random, unlike the initial condition. Consequently, we
expect the estimation to fail for small λ. On the contrary, if the rule table rather is random,
assuming a uniformly random grid for t > 1 might be a useful approximation. In this
line of argument, the probability that the spreading rate to the left equals r − 1 is given by
the probability that the blocks stated above map to the same symbol, multiplied with the
probability that blocks (c−r, c−(r−1), . . . , 1, cr−1) and (c−r, c−(r−1), . . . , 0, cr−1) map to different
symbols. To summarize:

P(γleft > r) = 0

P(γleft = r) = 1 − Psame

P(γleft = r − i) = (r − i)Pi
same(1 − Psame)

P(γleft = 0) = 0 .

With that, the average left spreading rate is

γleft =
r

∑
i=0

(r − i)Pi
same(1 − Psame) (2.8)

= r − Psame

1 − Psame
+

Pr+1
same

1 − Psame
(2.9)

= r − 1
2

2λ2 − 2λ + 1
λ(1 − λ)

+
1
2
(2λ2 − 2λ + 1)r+1

λ(1 − λ)
, (2.10)

where the last term can be dropped for larger r (in this case the result matches (W. Li, Packard,
and C. G. Langton 1990)). For example, for a λ = 0.5 ECA, i.e., one that is expected to be
about as chaotic as possible, we obtain γleft = 1 − 1 + 0.5 = 0.5. This result is reasonable,
as for perfect chaos we expect the outmost cell to be in the same state with probability 0.5.
Further, for a k-state r = 1 cellular automata it follows that

γleft = 1 − Psame ,

meaning that the left-difference spreading rate is equal to the probability of sampling cells in
a different state.
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We can extend the work by Li et al. (W. Li, Packard, and C. G. Langton 1990) to a k state
cellular automata as follows: Essentially, we have to modify the expression of the probability
of evolving two configurations to the same state,

Psame =

(
λ

k − 1

)2

+ (1 − λ)2

and substitute it in Eq. 2.9. Note that this expression, and also the remaining derivation,
should hold true for the 2D outer-totalistic cellular automata, if we consider spread only in
one direction of the grid. Moreover, for large k, allowing for a better sampling of the rules, it
follows that Psame → 0. Thus we can expand Eq. 2.9 and obtain

γleft ≈ r − 1 + 2λ − λ2 . (2.11)

The version of difference-pattern spreading-rate used for 2D outer-totalistic CA in the
following is inspired by Stephen Wolfram’s approach (Wolfram 1984a).

For the 2D CA we apply a simplified procedure: Run each rule twice, for the second run,
change a single site and measure the difference-pattern size ∆. We define ∆ as the Hamming
distance between the pattern of the primary run and the defect run. We average ∆ over an
ensemble of independent initial conditions, ⟨∆⟩ and study

√
⟨∆⟩s time trace (Fig. 2.10). From

Fig. 2.10 we see that the difference-pattern curves
√
⟨∆⟩ can be characterized by their initial

slope,
√

∆/t, and their final saturation value, t → ∞
√

∆ (note, that we omitted the ensemble
average in the notations for conciseness).
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Figure 2.10.: Difference-spreading measures for the first two of four independent table-walk-throughs
(each in a separate column) with 55 outer-totalistic k = 8 rules of increasing λ. Each rule is
run twice, starting from one of 50 independent random initial square grids of length L = 64,
with the second run initially differing in a single site. The first row shows the square root of
the size of the difference pattern

√
∆, measured as the number of differing sites, over time,

with λ color-coded. The second row shows the ensemble average thereof, including analytical
estimates of a random rules slope (≈ 1.3), saturation value ( 7

8 L2), start (L/2) and end (L) of
transition region between growth and saturation, as gray lines.
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Figure 2.10.: Difference-spreading measures for the last two of four independent table-walk-throughs. To
each rule’s

√
⟨∆⟩ curve, we fitted a line in the initial linear regime to obtain its difference-

pattern spreading velocity
√

∆/t and a second line in the final, constant regime for its
difference-pattern saturation value t → ∞

√
∆. The third row shows t → ∞

√
∆ and

√
∆/t of

the ensembles with respect to the measured single-site entropies ⟨H1⟩, all rescaled by their
maximal value. In the last row, the rescaled

√
∆/t and ⟨H1⟩ values are plotted for direct

comparison with their corresponding mean-field estimates.
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2. Characterization Schemes of Cellular Automata

As an example, and for proper rescaling of our results, let us consider what we expect
for a ‘random’ rule — i.e. a stochastic rule that at each time step randomly, with respect to
a uniform distribution, updates each cell state independent of its or its neighbors previous
state (annealed limit). To calculate

√
∆/t and t → ∞

√
∆, we need the maximal area, that

is affected at time t, times the probability, that a site has changed its state. The region at
time t that can be maximally affected by a single-site change in the initial grid is given by
1 + ∑t

i=1 4i = 2t2 + 2t + 1, with +1 due to the initial single defect. The probability for a site to
change state under the random rule is given by k−1

k , with k the number of states a cell can
have. With that, the expected difference spreading speed

√
∆/t can be approximated to be

√
∆/t ≈

√
2t2(k−1)

k

t
≈ 1.3 (2.12)

for our k = 8 state space. A line with this slope is plotted in Fig. 2.10 and yields a tight upper
bound. Moreover, the saturation value of the difference pattern t → ∞

√
∆ on an L × L lattice

is expected to equal k−1
k L2 sites, which corresponds to the horizontal gray line in Fig. 2.10,

second column. The two vertical gray lines mark the expected time, the defect spread hits the
horizontal/vertical boundary (at t = L

2 ) and the corner (at t = L), respectively. These lines
agree well with the qualitative change of the difference pattern size from linear to slowing
down and from slowing down to saturated. Due to the tightness of the upper bound, we can
conclude that a deterministic cellular automata rule with maximal λ behaves similarly to a
stochastic random rule with regard to difference-pattern spreading.

How do
√

∆/t and t → ∞
√

∆, our measures of the sensitivity of a CA rule to small changes
in initial conditions, relate to the single-site entropy ⟨H1⟩ of this CA? Fig. 2.10, second column,
suggests that both measures are roughly proportional to ⟨H1⟩. In the last row of Fig. 2.10,
we show our rescaled estimate Eq. 2.11 of the mean-field difference-spreading rate MF γ,
together with the entropy estimate, Eq. 2.6. As γ refers to the maximum spread, it is rescaled
by the expected fraction of sites in the ‘wrong’ state, k−1

k . We observe that the rescaled
estimates MF γ and MF H1 can actually describe the rescaled difference-pattern slopes

√
∆/t

(rescaled by their maximum value given by the stochastic rule derived before) and ⟨H1⟩ well
for sufficiently large λ. The similarity of these two estimates MF γ and MF H1 explains,
why the difference-spreading rate

√
∆/t seems to be equivalent to ⟨H1⟩. Can we analytically

find an relationship between ⟨H1⟩ and
√

∆/t by comparing their mean-field estimates? The
mean-field curves for different number of states k seem to approach each other for increasing
k up to an intermediate value, on the order of k = 10, see Fig. 2.11. However, for very large
k, e.g., k = 100, they diverge again, and for k = 1000, we can see their lim k → ∞ limit,
γ → 2λ − λ2 (Eq. 2.11 and MF ⟨H1⟩ → λ). Thus, single-site entropy and difference-pattern
spreading rate are not equivalent, but for many practical purposes — i.e., intermediate values
of k — results are so similar, that we don’t consider them as different characteristics of a rule.

2.2.4. Local Memory as a Measure of CA Complexity
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2.2. Local Parameters

Figure 2.11.: Comparison of the mean-field estimates for single-site entropy MF ⟨H1⟩ and
difference spreading rate MF γ for different k values. We find that both measures
agree rather well only for larger number of states, such as k = 8. For k → ∞ MF
⟨H1⟩ approaches λ.
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2. Characterization Schemes of Cellular Automata

Another information theoretic measure to quantify a rule’s complexity, already studied by
Langton (C. G. Langton 1990), is its memory in the sense of local information conservation. It
is given as the mutual information of a cell c at time t and its future state at t + 1. As with
entropy, we will use time averaged local memory,

⟨I(c(t); c(t + 1))⟩ = ⟨H(c(t + 1))− H(c(t + 1)|c(t))⟩t , (2.13)

with H denoting entropy of the according probability distributions. The probabilities for each
state, or each tuple of states at time t and time t + 1, are calculated from the frequencies of
both states within a grid at time t and t + 1. For rules with very small λ that produce a fixed
pattern, the mutual information equals zero. We expect that a highly chaotic rule has low
mutual information, as the state of a cell at the next time step is nearly independent of its
state at t in the limit of infinitely many states k → ∞. For a general rule, this is what we find,
see Fig. 2.12 in agreement with (C. G. Langton 1990).

However, for outer-totalistic rules, local information conservation does hardly decrease
for chaotic rules with increasing λ. Generally local memory is much higher than for typical
general rules, see Fig. 2.12. There seem to be too many dependencies induced in the outer-
totalistic rule table such that mutual information results of a cell and its future state are not
exactly meaningful. Also, there is no clear distinction between cyclic and non-cyclic rules, as
in case of general rules studied in (C. G. Langton 1990) as shown in Fig. 2.13.
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2.2. Local Parameters

Figure 2.12.: Local information conservation in terms of time averaged mutual information
⟨I(c(t); c(t + 1))⟩. Left: Shown for general k = 8 state rules sampled with
Langton’s random-table method, and run on a L = 64 square grid from random
initial conditions for 1000 time steps. The gray lines mark the percolation
threshold λP = 0.59 and 1 − 1

k , for reference. We expect rules fixed point rules
to have zero ⟨I(c(t); c(t + 1))⟩, and small λ, and equivalently for chaotic rules,
which have a large λ. Right: Shown is ⟨I(c(t); c(t + 1))⟩ for outer-totalistic rules,
sampled in 10 independent rule table-walk-throughs (different colors). The outer-
totalistic k = 8 rules are run from random initial conditions for 1000 time steps
on a L = 64 square grid. Apparently, temporal correlation for outer-totalistic
rules are higher than for typical general rules, also they do not decay for more
chaotic rules.

Figure 2.13.: Time averaged mutual information ⟨I(c(t); c(t + 1))⟩ for 15 independent rule
table-walk-throughs of outer-totalistic k = 8 rules, run a random initial square
grids of length L = 64 for 1000 time steps. Each walk through is divided into a
blue line, depicting cyclic rules, and a red line, depicting non-cyclic rules. Left:
⟨I(c(t); c(t+ 1))⟩ is plotted versus λ; Right: ⟨I(c(t); c(t+ 1))⟩ plotted versus RTE.
In contrast to the case of general rules, ⟨I(c(t); c(t + 1))⟩ does not appear to be
very informative for outer-totalistic rules.
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2. Characterization Schemes of Cellular Automata

2.2.5. Cycle Length

The length of the limit cycle, P does not exist for chaotic rules, but among the ordered rules it
can serve as a measure of how ‘complex’ their dynamics is. When sampling rules according
to Langton’s table-walk-through method with increasing λ, we first expect to obtain rules
with P=1, then rules with roughly increasing cycle length, and for an even larger λ a ‘jump’
to the simulation time, i.e. to not cyclic. P results, together with the corresponding entropies,
are shown in Fig. 2.14. We hardly observe any spread in ⟨H1⟩ starting from independent
random initial conditions. However, we do observe that the cycle length can strongly depend
on the initial condition for intermediate RTE rules. For one of the rule-table walk throughs, it
seems that we ‘have just not simulated long enough’, as some rules with λ values between
cyclic rules of P≈ L have not converged to a limit cycle within the simulation time. However,
according to Langton, for rules right at the entropy jump, the transition time is expected to
diverge (C. G. Langton 1990).
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2.2. Local Parameters

Figure 2.14.: 4 different table-walk-through sampled outer-totalistic k = 8 rule sets (same data
as Fig. 2.10), each shown in a separate plot versus RTE. Each rule is run on 50
independent random initial conditions for 1000 time steps on a 64×64 square
grid. Cyclic and non-cyclic rules of a table-walk-through are shown in different
colors. Upper: Limit cycle lengths P are plotted for each of the 50 independent
runs of each rule. We observe, e.g. in the lower-left plot that P strongly depends
on the actual initial condition, varying between two orders of magnitude. In the
lower-right P plot, there is one rule that has a finite cycle length for some initial
conditions, but does not transition to a limit cycle for others. Lower: Single-cell
entropies ⟨H1⟩ of the same simulations. ⟨H1⟩ of runs starting from independent
initial conditions hardly deviate.
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2. Characterization Schemes of Cellular Automata

2.2.6. Other local Parameters

The presentation of further local parameters in this section is based on (Vispoel, Daly, and
Baetens 2021).

Mean field theory can determine the equilibrium densities ρ
eq
c of cell states c ∈ Σ, in

some cases. It neglects the spatial correlations induced by a CA rule, which make certain
neighborhood configurations N ∈ Σ|N | more or less likely than expected by the density of
each state c in the grid C(t) at time t, ρc(t). Using this mean field approximation, we can
estimate the density of cells in state c as

ρc(t + 1) = ∑
N∈ϕ−1(c)

p(N, t) ,

with p(N, t) =
k−1

∏
c′=0

(
ρ′c(t)

)#c′(N) ,

with #c′(N) denoting the number of neighbors in state c′ in the neighborhood configuration
N.

In equilibrium, we have ρc(t + 1) = ρc(t) =: ρ
eq
1 , which yields a set of k − 1 so called master

equations. For the elementary cellular automata, this translates to

ρ
eq
1 = ∑

N∈ϕ−1(c)

(ρ
eq
1 )#1(N)(1 − ρ

eq
1 )#1(N) . (2.14)

To ‘solve’ this equation, we plot both sides against ρ
eq
1 on the x-axis, consequently the

first line is simply the diagonal. Stephen Wolfram observed the following properties of the
resulting intersections, that correspond to the systems’ fixed points (Wolfram 1984a): CA
evolving to a homogeneous fixed point have a single stable fixed point at ρ1 = 0, which implies
that excitations die out. For CA evolving to an inhomogeneous stationary pattern, the fixed
point at the origin is marginally stable, indicating that excitations will neither decay nor grow.
The densities will depend on the initial configuration, thus the mean-field approximation
cannot predict them. Periodic and chaotic CA have an unstable fixed point at the origin, as a
small number of non-zero states in the initial grid is increased by the CA. The stable non-zero
fixed point gives a good estimate of the equilibrium densities. Apparently, complex ECA rules
are ‘too simple’ to generate a typical Class IV mean-field curve with a stable fixed point at the
origin and for a larger ρ1 value, as well as an unstable fixed point in between.

Two-point correlation functions are complementary to the mean-field approximation. As
the induction of spatial correlations by a CA indicates self-organization in the sense of settling
to an attractor, the two-point spatial correlation function

Corr(2)(r, t) := ⟨ci(t)ci+r(t)⟩grid − ⟨ci(t)⟩grid⟨ci+r(t)⟩grid (2.15)

will be maximized for periodic CA and take small, but generally non-zero, values for chaotic
cellular automata (Wolfram 1984a).
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2.3. Global Parameters

Power spectral properties For elementary cellular automata, Ninagawa explored the fre-
quency distribution of each grid configuration C ∈ {0, 1}L of L sites for f = 0, 1, . . . T by
applying a discrete Fourier transform of the CA time trace, starting from a given initial
condition (Ninagawa 2008),

Ĉ( f ) =
1
T

T−1

∑
t=0

C(t) exp
(
−i

2πt f
T

)
. (2.16)

He investigated the resulting power spectral density

PSD( f ) :=
1
L

L

∑
i=1

|Ĉi( f )| . (2.17)

In case of a time trace starting from a random initial condition with quiescent steady state,
the power density is low at all frequencies as short transients are virtually random. If a
rule has a non-zero homogeneous steady sate, the PSD will have a peak at f = 0. A cyclic
steady state of period P leads to a peak at f = T

P . In case of (very) chaotic behavior, the
PSD is non-zero and relatively homogeneous for all frequencies, i.e., displaying a white noise
spectrum. For complex rules, and a random initial condition, the power spectrum follows a
power law. However, checking PSD plots for all ECA on Stephen Wolfram’s simple program
atlas3 (Wolfram 2022), suggests that this spectrum is neither sufficient nor necessary for Class
IV rules, given a particular random initial condition.

2.3. Global Parameters

Now we turn to ‘complexity’ measures based on all possible initial conditions.

2.3.1. Synergy

We have seen that entropy is an insightful information-theoretic measures to characterize the
dynamics of a CA rule. Another promising information-theoretic measure, which combines
entropy and mutual information, is the notion of synergy S. This approach was put forth
in (Quax, Chliamovitch, Dupuis, et al. 2018). In information theory, synergy in the sources
of information means, that multiple sources together provide more information, than each
source alone. It is therefore often referred to as information of the ’whole minus sum of parts’.
If we think of a cellular automaton as an information-processing device that takes the initial
condition as an input, and outputs a time series of grid configurations, synergy measures the
rule’s capability to process the initial grid, not just each cell-state input separately.

More formally, we define the synergy S of a CA at time t with respect to a subset O of the
initial grid C(t = 0) ≡ C0 as

S(t) ≡ I(ct
i ; O)− ∑

c0
j ∈O

I(ct
i ; c0

j ) with O ⊆ C0 , (2.18)

3website link
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2. Characterization Schemes of Cellular Automata

with ct
i ≡ ci(t) for conciseness. As all cells are the same, the index i could actually be dropped.

However, we keep it to indicate that ct
i means a single fixed cell. We simply refer to synergy

with respect to the full initial grid, O = C0, as ‘synergy’. By definition, it is the mutual
information of a fixed cell i at time t, and the full initial grid (=‘whole’), minus the sum of
the mutual information of each single cell cj(0) of the initial grid, and the current cell state
(=‘sum of parts’). In this case, the first mutual information quantity, I(ct

i ; C0), reduces to
H(ct

i)− H(ct
i |C0) = H(ct

i), as the initial condition fully predicts the state of ct
i for deterministic

cellular automata. The probabilities, that are required for determining the mutual information
quantities, are obtained by running the CA of interest for t time steps, from all possible initial
conditions, and counting the occurrences of each ct

i and c0
j realization. Considering all initial

conditions implies, that all neighborhood configurations at t = 0 are equally probable, thus
S(t = 1) can be calculated directly from the rule table. As in 1D, a cell ct

i can actually only
be influenced by c0

i−t, . . . , c0
i+t cells, thus the number of initial conditions is computationally

feasible for small times t (and small k).
Let us look at some ECA examples. Reversible (bijective) rules have zero synergy, which is

directly clear from their algebraic or logic representation, as they can only depend on a single
input

• rule 170: (ci−1, ci, ci+1) → ci+1 and

• rule 15: (ci−1, ci, ci+1) → not(ci−1) .

Chaotic rules with maximal synergy S = 1 are, for instance,

• rule 90: (ci−1, ci, ci+1) → (ci−1 + ci+1) mod 2 and

• rule 150: (ci−1, ci, ci+1) → (ci−1 + ci + ci+1) mod 2 .

In those cases, knowing only a single cell state of ci’s neighborhood does not give any
information about the outcome ct+1

i . Interestingly, all of those rules are ‘controllable’, i.e., can
be steered to any pattern, if one can control the left and right grid-boundary cell at each time
step, (Ramalho, Kremser, Wu, and Gerland 2021).

Synergy for ECA

For ECA (Quax, Chliamovitch, Dupuis, et al. 2018) showed by a machine-learning approach
that synergy is the single most predictive feature, of a set of information-theoretic measures
ψ⃗(ϕ), to determine a rule ϕ’s Wolfram class Class(ϕ). In fact, synergy and a single other
quantity, roughly described as ‘longest-range information transfer’, are sufficient to predict the
Wolfram class, when not distinguishing between Wolfram Class I and II. The set of information
measures tested includes mutual information Iϕ of any subset O of cells of the initial grid C0

and the current cell state ct
i ,

ψ⃗t(ϕ) ≡
(

Iϕ(ct
i ; O) | O ∈ 2C0

)
, (2.19)

where 2C0
is the power set notation for all subsets of cells of the initial grid. The span of

ψ⃗(ϕ) includes local ‘memory’ Iϕ(ct
i ; c0

i ), information ‘transfer’ Iϕ(ct
i ; c0

i−t) + Iϕ(ct
i ; c0

i+t) and

information synergy Iϕ(ct
i ;
{

c0
i−t, . . . , c0

i+t

}
)−

t
∑

n=−t
Iϕ(ct

i ; c0
i+n).
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2.3. Global Parameters

Let us study the results for the first time step, to gain some intuition. At t = 1, only the
cells c0

i−1, c0
i and c0

i+1 can contribute, thus

O ∈
{
{c0

i }, {c0
i−1}, {c0

i+1}, {c0
i−1, c0

i }, {c0
i , c0

i+1}, {c0
i−1, c0

i+1}, {c0
i−1, c0

i , c0
i+1}

}
.

We can simplify the notation in 1D, by fixing the order of cells within the set, and using ‘1’ if
a cell at that position is within the initial grid’s subset O, or ‘0’, if not. With that, we can write
the feature vector at, e.g. t = 1, as follows:

ψ⃗t=1(ϕ) =
(

Iϕ100, Iϕ010, Iϕ100, Iϕ110, Iϕ011, Iϕ101, Iϕ111
)

,

where, e.g., ‘110’ corresponds to
(
ct

i ; {c0
i−1, c0

i }
)
.

For t = 1, Quax’ and Langton’s notion of ‘memory’, respectively ‘local information conserva-
tion’ are similar, as both measure the mutual information of a cell at the current and previous
time step. The notions differ, because Quax uses an ensemble of initial conditions, while
Langton evaluates memory by averaging over many time steps, after the rule has reached its
‘typical’ behavior.

Quax et al. formalize the prediction problem as follows: First, consider the rule number R
of ECA rule ϕ as a uniformly distributed random stochastic variable, i.e., P(R) = 1

256 . The
(normalized) predictive power is then defined as

I(Class(R); ψ⃗t(ϕ))

H(Class(R))
,

with H(Class(R)) the entropy of the rule classes. This normalization is chosen, because the
number of rules within in a Wolfram Class differs strongly between the Classes. We are
interested in the single feature that has maximal individual predictive power,

ψt
1 ≡ arg max

ψ∈χ⃗t

I(Class(R); ψt)

H(Class(R))
.

Therefore we extend the feature set to all synergy quantities to φ⃗t,

χ⃗t(R) ≡
(
ψ⃗t, φ⃗t) , (2.20)

with the set of synergies φ⃗t defined as,

φ⃗t ≡

Iϕ(c0
i ; O)− ∑

cj∈O
Iϕ(ct

i ; c0
j ) ; O ∈ 2C0

 .

For example, at t = 1 we have φ⃗t=1 =
{

Sϕ110, Sϕ011, Sϕ101, Sϕ111
}

.
Quax et al. showed that synergy (with respect to the full initial grid) is the most predictive

feature: At t = 1, synergy alone has a predictive power of 0.37, with 1.0 implying perfect
prediction. When adding a second time step (t = 2), synergy increases its predictive power to
0.9, and slightly further for three time steps. Already at t = 3, two information features allow
for uniquely identifying the behavior class: Synergy together with the mutual information
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2. Characterization Schemes of Cellular Automata

quantity Iϕ1001001, a combination of mutual information and longest-range information
transfer, achieve a predictive power of 1.0.

Fig. 2.15 shows for t = 1, 2, 3 and 7 synergy S(t) plotted versus rule number. The non
equivalent 88 ECA rules are colored according to their Wolfram Classes. For perfect prediction,
we expect to see a clear separation between the different classes, except for Class I and Class
II. At t = 1, this is not the case, as expected. We further observe that there are five rules
with S = 1: those are, the rule that maps everything to zero, and the four reversible rules
(rule 15, rule 51, rule 170 and rule 204), discussed before. Likewise, the four data points with
maximal synergy correspond to the two chaotic rules mentioned (rule 90 and rule 150), and
their relatives4, rule 60 and rule 105. For t = 2, separation between different Wolfram Classes
indeed seems to increase, and slightly further improves at t = 3. t = 7 is plotted to show that
running the simulation longer does not further improve separation of rules, consistent with
(Quax, Chliamovitch, Dupuis, et al. 2018). This fast temporal convergence implies that all
22t+1 initial conditions can be tested, as t = 3 suffices.

Synergy for 2D outer-totalistic CA

In contrast to the ECA, there is no common empirical classification such as the Wolfram
classification, that we could use to directly check, how synergy S performs in characterizing
2D outer-totalistic CA rules. Thus, we will have to restrict ourselves to the time-averaged
single-site entropy ⟨H1⟩ of those rules. Fig. 2.16 shows ⟨H1⟩ for k = 3 rules plotted for
increasing λ, S(t = 1) calculated form the rule table, and S(t = 3). From those three options,
S(t = 3) seems to correlate best with ⟨H1⟩. Nonetheless, this correlation is not convincing for
rules with small ⟨H1⟩. We further observe that ⟨H1⟩ versus RTE looks very similar to ⟨H1⟩
versus S(t = 1).

In Fig. 2.17, we thus check ⟨H1⟩, S(t = 1) calculated from the rule table, and RTE of
outer-totalistic and typical general rules. For typical general k = 8 rules, we observe that
S(t = 1) is highly correlated to the rule-table entropy RTE. For outer-totalistic rules, the
deviation between RTE and S(t = 1) theory is larger, and grows with RTE.

In contrast to 1D, where we can check how well we can reproduce the Wolfram classification
for increasing time, it is not clear, after how many time steps t synergy gives the best prediction.
In Fig. 2.18 we plotted synergy for t = 1, 2, 3 over the rule-table entropy RTE for k = 3 rules.
As expected, for t = 0 the synergy is zero for all rules, but for larger times there is no clear
order. For most, but not for all rules S(t = 2) is closer to S(t = 3) and S(t = 3) ≤ S(t = 2).
Fig. 2.18 shows the synergy of outer-totalistic k = 3 rules for up to 3 time steps, including its
values at time t = 1, as calculated from the rule table. The good agreement of these theoretical
values with the measured S(t = 1) values suggests, that the number of initial conditions is
sufficiently large. As the outer-totalistic rules only radially transmit information, similarly to
1D, we hypothesize that S(t = 3) should suffice to separate rules with qualitatively different
dynamic behavior.

4rule 60: (ci−1, ci, ci+1) → (ci−1 + ci) mod 2, and rule 105: (ci−1, ci, ci+1) → (1 + ci−1 + ci + ci+1) mod 2
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2.3. Global Parameters

Figure 2.15.: Synergy S with respect to the whole initial grid is plotted for each of the 88
non-equivalent elementary cellular automata colored according to their Wolfram
class for times t = 1, 2, 3 and 7. Separation of different Wolfram Classes increases
from t = 1 to t = 3, but does not further improve for longer times (t = 7).
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2. Characterization Schemes of Cellular Automata

Figure 2.16.: Time-averaged single-site entropies ⟨H1⟩ of 100 outer-totalistic k = 3 rules,
sampled with Langton’s random-table method and run on a square grid of
length L = 64 are shown. Each rule is run for 1000 time steps from three
independent random initial grids (No. 0, No. 1, No. 2). Synergy values are
determined from running each rule for up to 3 time steps on 105 random initial
grids. Upper left: ⟨H1⟩ is plotted against RTE. We hardly observe any deviation
of ⟨H1⟩ between the three independent runs. Upper right: ⟨H1⟩ plotted against S
at t = 1, as calculated from the rule table (‘theory’). Bottom: ⟨H1⟩ plotted against
S at t = 3.
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Figure 2.17.: Time-averaged single-site entropies ⟨H1⟩ of 550 k = 8 rules sampled with Lang-
ton’s random-table method, and run on an initial random square grid of length
L = 64 for 1000 time steps. The left plots show results for general (orange),
and the right plots for outer-totalistic rules (orange). Top: ⟨H1⟩ is plotted versus
the S(t = 1) theory value, which is calculated directly from the rule table. The
center plot confirms our observation that the top plot is quite similar to ⟨H1⟩
versus RTE plots. In the bottom, we can show that the difference between RTE
and S(t = 1) theory is indeed quite small. On the right, we can see, that for
outer-totalistic rules, the deviation between RTE and S(t = 1) theory is growing
with RTE, and larger, in general.

37



2. Characterization Schemes of Cellular Automata

Figure 2.18.: Synergies for outer-totalistic k = 3 state rules. Same data as in Fig. 2.16 is used.
We observe that the measured S(t = 1) values agree well with the ones calculated
from the rule table (’theory’). However, we do not observe that the rules’ synergy
values converge in time.
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2.3.2. Attractor-based Classification

Finite Cellular Automata

We first summarize results from (Wuensche, M. Lesser, and M. J. Lesser 1992) and (Wuensche
1998), before reporting on our numerical checks of those statements.

For any finite CA of length L it is possible to divide its grids state space ΣLd
into basins of

attraction (with d denoting the dimension), see Fig. 2.19. The basin-of-attraction field, ‘BoA’,
can be characterized by the following properties:

• max deg, the maximum in-degree, respectively number of pre-image states (direct
predecessors) any grid configuration can have,

• GoE, the number of ‘garden-of-Eden’ grid states, i.e., grid states, that cannot be reached
by the CA for t > 0,

• max P , the maximum period of the attractor cycles, respectively the cycle length,

• max T , the maximum transient-tree length,

• No. BoA, the number of separate basins in the field, respectively the number of different
limit cycles.

Max P , max T and No. BoA will vary together, as prevalence of one will reduce margin
for the other two. The max deg reflects the GoE. The in-degree deg strongly determines the
number of possible ways, by that grid states can be connected to basins, which partition
the grid-state space. If deg diverges exponentially with system size Ld, most states are in
pre-images, implying that the scope for P , T and No. BoA is limited to remain either fixed,
or grow arithmetically with Ld and vice versa.

According to (Wuensche 1998) an approximate relation between an elementary cellular
automatons’ Wolfram Class and its basin-of-attraction field can be drawn as follows:

Class I The maximum pre-image degree deg diverges exponentially with L, as rules have a large
proportion of neighborhoods mapping to the same state. Most states are locked into
pre-images of branches rooted at point attractors, i.p. the quiescent state configuration.
The few states outside those basins of attraction only have enough scope for attractors
with short transients T and periods P .

Class II Max deg grows exponentially with L, but slower than for Class I rules, thus slightly
longer cycles P and transients T are possible.

Class IV Max deg and some combination of max P , T , and No. BoA is finely balanced and grows
by ‘some intermediate function’ with L, such as (kL)1/k. Enough scope for moderately
long cycles and transients remains.

Class III Max deg is fixed irrespective of L. So some combination of max P , T , and No. BoA will
grow exponentially with L.
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Figure 2.19.: From top to bottom: (1) For a k-state CA on a finite
grid of size Ld we have a state space of kLd

different
grid configurations. ‘B’ denotes one of them. (2) Part
of a trajectory in state-space generated by the update
rule: ‘C’ is a successor of ‘B’ and ‘A’ is a pre-image
of ‘B’. (3) State ‘B’ may have other pre-images be-
sides ‘A’. Their number is the ‘in-degree’. Pre-image
states may again have pre-images. If not, they are
called ‘garden-of-Eden’ states or ‘leaves’. (4) As the
system is deterministic, finite and discrete, when
simulating long enough (with an upper bound given
by the Poincare recurrence time), any trajectory has
to enter a state it has been in before, and with that
an attractor cycle. The period of the attractor is the
number of states in its cycle. The trajectory leading
to the attractor is a transient. (5) Sub tree ‘transient
tree’ rooted on one of the attractor states including
all transients from all Garden of Eden states in its
iterated pre-image. (6) The tree containing the tran-
sient trees for each attractor state is called ‘basin of
attraction’. (7) The basin of attraction field contains
all basins of attractions in the state space. It is a
partition of the state space. Taken from (Wuensche
1998).
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An atlas depicting the basin-of-attraction fields for each ECA up to a length of L = 15 can be
found in (Wuensche, M. Lesser, and M. J. Lesser 1992) or constructed by Wuensches’ ‘discrete
dynamics lab’ (Wuensche 2021).

We tested the statements above, with Stephan Kremser5 providing data for the observables
characterizing the attractor space of each ECA rule, up to a grid length of L = 16 sites,
generated by a simulation routine adapted from (Ramalho, Kremser, Wu, and Gerland 2021).
For the maximal in-degree, max deg, we observe in Fig. 2.20, that indeed, it exponentially
increases with L for Class I rules, and also for Class II rules, to a smaller extend, as stated
by (Wuensche, M. Lesser, and M. J. Lesser 1992) — except from the reversible Class II
rules. This exception is obvious, as a rule can only be reversible if deg is exactly one for all
options. However, there are Class III rules (i.e. 125, 22, 146 and 122) for which max deg also
exponentially increases with L. When checking the corresponding cycles explicitly, it turns
out that these cycles are the trivial fixed points — i.e., the all-zeros or all-ones state. The
number of Garden-of-Eden states GoE increases exponentially with system size for all rules,
but the reversible ones. The maximal attractor size max P is constant and for most Class I
and Class II rules, and non-monotonously increases for most Class III and Class IV rules. The
maximum transient length max T does not exceed 100 time steps (on a grid with a maximal
length of L = 16) for Class I and Class II rules, and non-monotonously increases for Class III
and Class IV rules. The number of separate attractors max No. BoA exponentially increases
with system size for Class II rules. For Class I rules it can also be constant. For Class IV and
Class III rules, it is non-monotonously increasing, except for rule 90.

5A fellow PhD student in the same group, Department of Physics, Technische Universität München
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Figure 2.20.: Observables characterizing the attractor field are plotted for increasing lengths all 88 non-equivalent
ECA rules grouped w.r.t. to their Wolfram Class. Note that the lines interpolate between even length
values as for a two state system, many rules showed a periodicity of 2. Also, we omitted values smaller
than L = 8, as related studies showed, that observable curves begin to converge from L = 8 onward
(Ramalho, Kremser, Wu, and Gerland 2021). These omissions are for better visibility of the results.
Also, labels for Class II rules, without rules not realizing a proper cyclic attractor (proper in the sense
of periodicity > 1), and without reversible rules are omitted, as these are 53 in number (i.e. 1, 2, 3, 5, 6,
7, 9, 10, 11, 13, 14, 19, 23, 24, 25, 26, 27, 28, 29, 33, 34, 35, 37, 38, 41, 42, 43, 44, 46, 50, 56, 57, 58, 62, 73,
74, 77, 94, 104, 108, 130, 134, 138, 142, 152, 154, 156, 162, 164, 172, 178, 184, 232). The lower edge of the
shaded area corresponds to the maximal number of states, 2L.
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Figure 2.20.: We can roughly confirm some, but not all of the statements in (Wuensche 1998), as discussed in the
main text. Most notably, max deg is apparently not fixed for all Wolfram Class III rules, e.g. max deg
increases exponentially for ‘chaotic’ rule 126, 22, 146 and 122. However, we can confirm that max deg
increases exponentially for most Wolfram Class I and II rules, naturally except the reversible ones.
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Figure 2.21.: For a fixed length L = 16 observables, characterizing the attractor field, are plotted for each rule, manually
grouped according to its class: Class I (grey), Class II with only (inhomogeneous) fixed point stationary
states (light blue), Class II without the rules just mentioned, and without reversible rules (blue), reversible
rules (cyan), Wolfram Class IV ’complex’ rules (green) and Wolfram Class III ’chaotic’ rules (red).
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In a sense as a cross section of Fig. 2.20 for L = 16, we show the same observables for
each rule, grouped by its Class, in Fig. 2.21. To better characterize the distributions of the
observables (except from No. BoA and GoE), we added plots for the observables median and
mean. For the cycle length the maximum, median and mean results are very similar. The
minimal cycle length is either one or two (not shown). The maximum and median basin of
attraction sizes No. BoA are qualitatively different, i.e. a rule with a larger max No. BoA
than another rule can have a lower median No. BoA than this rule. Median and mean are
different for Class I rules, otherwise quite similar. The maximal and median in-degree behave
similarly (except for the zero rule), also median and mean are rather similar. Also, for the
transient length, maximum, median and mean results vary similarly from rule to rule. For
the number of Garden-of Eden-states there is not much spread in the rules except from the
reversible rules and six ’outliers’, 154, 105, 150, 45 and 106, respectively, 30.

As the observables are highly correlated, we performed a principal component analysis
(PCA) on the normalized logarithm of the data, to construct an orthogonal basis with eigen-
vectors in the direction of maximal variance increase within the data, see Fig. 2.23. The PCA
loads, i.e., the observables plotted with respect to the first two principal components are
shown in Fig. 2.22. The first PCA component PC 1 can explain for 35.5% of the variance in the
data, the second for 31.7%. We observe that for the cycle length P , the transient length T , and
the in-degree deg results for maximum, median and mean contribute very similarly to the
principal components, in agreement with our observations from Fig. 2.21. To PC 1, P and
T have the largest contribution. For PC 2, it is the No. BoA, followed by deg, GoE and min,
mean, median and maximum of the basin of attraction size distribution, |BoA|. |BoA| is an
observable we added to Wuensches list of observables, characterizing the attractor-basin field.

We then used a k-means clustering for n = 2 up to 9 components (only n ∈ {2, 4, 6} shown).
However, already visually from Fig. 2.23, its is clear that no version even roughly reproduces
a separation of (i) Wolfram Class I and Class II, from Class III and Class IV rules (n = 2), or
(ii) the Wolfram Classes (n = 4) or (iii) additionally splitting off inhomogeneous fixed point
rules and reversible rules from Class II (n = 6).
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2. Characterization Schemes of Cellular Automata

Figure 2.22.: PCA loads (right) and explained variance (left) of the PCA analysis of a number
of observables, listed in the legend, characterizing the basin-of-attraction field for
ECA on an L = 16 grid. Left: Maximum, median and mean of observable have a
similar contribution to the principal components (CP). The minima contribute
less. There is no single observable that essentially forms a principal component.
Right: The explained variance drops significantly from the second to the third
principal component, suggesting the first two are sufficient for our analysis.
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Figure 2.23.: K-mean results for n = 2, 4, 6 components for PCA reduced data (PC 1 and PC 2). Black
crosses depict the center of each component. Class I (grey), Class II with only (inhomoge-
neous) fixed point stationary states (light blue), Class II without the rules just mentioned,
and without reversible rules (blue), reversible rules (cyan), Wolfram Class IV rules (green),
and Wolfram Class III rules (red).
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Figure 2.24.: t-SNE representation of the attractor data underlying Fig. 2.21 with a perplexity
of 70, random initialization and 5000 time steps. This representation agrees well
with the PCA results shown in Fig. 2.23 and also suggest, that there is no clear
separation of the rules into classes with respect to the basin-of-attractor field
observables tested.

Using a t-distributed stochastic neighbor embedding ‘t-SNE’ representation gives very
similar results, see Fig. 2.24. This is non-trivial, because the t-distributed stochastic neighbor
embedding does not rely on linear correlations, but tries to conserve closeness between
data points when mapping them to 2D. Apparently the Wolfram Classification does not
properly reflect the finite length dynamic behavior. However, the scaling of the attractor-space
observables with system length might be more insightful. It would be interesting to repeat
the analysis of this chapter with scaling properties obtained from data including larger grids.

Fractal dimension is another commonly used measure to describe the attractor-basin
field (Wolfram 1984a),(Vispoel, Daly, and Baetens 2021): The block entropy H(B, t) as
defined in Eq. 2.3 can be seen as the α → 1-limit of the the Renyi entropy Hα(B, t) =

1
1−α log

(
∑

B∈Σ|B|
P(B, t)

)
. For α = 0 the Renyi entropy measures the uncertainty of how many

configurations can be reached at time t, regardless of how probable each configuration is.
For large times, counted configurations lie on the attractor of the CA. In case of a finite grid,
Hα=0(t → ∞) ≡ d0 gives the fraction of configurations that is cyclic, and with that the fractal
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2.3. Global Parameters

dimension of the CA attractor. If the attractor is the set of all possible configurations, then
d0 = 1 for reversible, or maximally chaotic CAs. In general, for chaotic rules the attractor
is some fractal subspace of all configurations, i.e. 0 < d0 ≤ 1. If there is a finite number of
configurations on the attractor, as common for Wolfram’s Class I and Class II rules, we have
d0 = 0.

Infinite Cellular Automata

For infinite cellular automata, Hurley (Hurley 1990) has put forth an attractor based classi-
fication of cellular automata which is uncomputable in general, but gives insight into the
spectrum of possible dynamics.

First, we need to actually define the notion of a (minimal) attractor or quasi attractor.
Let (X, ϕ) be a dynamical system. The ω-limit of a subset U ⊆ X is ω(U) =

⋂
n>0

⋃
m>n

ϕm(U)

with · denoting closure. A (non-empty) set Y ⊆ X is an attractor if there exists an open
set U such that Y = ω(U) (and ϕ(U) ⊆ U). A (non-empty) set is a quasi-attractor if it is a
countable intersection of attractors, but itself not an attractor. Y is a minimal attractor (minimal
quasi-attractor) if it does not contain any attractor (quasi-attractor) as a proper subset. Hurley
proved that any cellular automaton rule ϕ satisfies exactly one of the following cases (Hurley
1990):

Case 1 There exists a unique minimal attractor of ϕ.

Case 2 There exists a unique minimal quasi-attractor Q of ϕ.

Case 3 There exists a pair of disjoint attractors. In this case ϕ as uncountably many minimal
quasi-attractors.

The zero-map CA, (ci−1, ci, ci+1) 7→ 0, is in Case 1, as well as any rule ϕ with a finite number
of attractors. The identity rule belongs to Case 3.

This classification is further refined in (Kůrka 1997), see Appendix A.2. Note that it is
applicable to any discrete dynamical system.

2.3.3. Other global Parameters

This short introduction is based on (Vispoel, Daly, and Baetens 2021) and included here to
give a better overview of what has been done already.

Topological properties of infinite CA time traces were used by Kurka to build a classification
scheme (Kůrka 1997). By translating the notions of equicontinuity and expansivity from
continuous to discrete dynamical systems, he could construct three classes and relate them to
his attractor based classification, as well as the Wolfram Classes.

Formal language theory methods can also be applied to 1D cellular automata. A formal
language can be characterized by the memory needed to implement the rules of its grammar.
The set of all possible CA configurations generated after a finite number of time steps forms a
regular language (Wolfram 1984b). This set can be represented by a De Bruijn graph for 1D
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2. Characterization Schemes of Cellular Automata

cellular automata for short times only. Consequently, formal language theory methods are
rather limited for studying cellular automata.

2.4. Conclusions of Part I

Here, we reviewed and further explored characterization schemes of cellular automata.
Although the focus is on 2D CA rules with a ‘large’ number of states k ≥ 8, we also
investigated the opposite limit, the two state 1D CAs (elementary cellular automata, ECA).
Whereas it is possible to study all 256 ECAs, we need to sample rules in 2D, in particular
for a larger number of states k from the kk5

options. Therefore, we applied one of Langton’s
sampling schemes, essentially generating a set of rules of increasing ‘chaoticity’. They start
with a rule table containing only zeros and subsequently randomly increase the fraction of
non-zero values, uniformly drawn from the remaining k − 1 states. Rules sampled with any
of Langton’s methods will be referred to as typical CA rules here.
We first studied rule table based quantities, in particular Langton’s λ, the fraction of non-zero
entries in the rule table, and our version of it (‘rule table entropy’). Both are only insightful for
a large number of states (or large neighborhoods). Then, we turned to ‘local measures’, which
are observables of the CA dynamics starting from a single or an ensemble of random initial
conditions. Among the local measures, we found that the time averaged single-site entropy
is a quite robust option. For a typical k = 8 rule, differences in single-site entropy between
runs starting from independent random initial conditions are quite small in our simulations,
compared to the maximum entropy of 1, see Fig. 2.7. Our simulations of typical k = 3 rules
indicated that deviations of the single-site entropy from its extension to larger blocks of sites
are small. Further, we observed a strong correlation of the single-site entropy of typical k = 8
rules with the time averaged Kolmogorov complexity approximation of the generated patterns,
performed by a string compression algorithm, see Fig. 2.9. This is probably not generally true,
e.g. not for the ECAs6. For typical 2D rules with on the order of ten states, single-site entropy
also correlates well with difference pattern spreading slope and saturation value, however
this is apparently not true for a smaller or larger number of states, see Fig. 2.11. Moreover, the
single-site entropy is computationally more efficient than the other local measures discussed
in this section. These observations suggest that, if we want to get a first impression of the
complexity of patterns generated by a given 2D rule, starting from random initial conditions,
the single-site entropy is a good starting point.

Generally, the behavior of a CA rule is strongly dependent on the initial condition — in the
most extreme case, the Turing complete CAs, any computation can be performed by tuning the
initial conditions accordingly. For many elementary cellular automata, the time evolution can
be either cyclic or chaotic, depending on the type of initial conditions. For typical k = 8 rules,
starting from random grids, we have seen that cycle lengths are initial condition dependent,
for instance. Thus, to properly characterize a rule, an approach based on ‘all’ initial conditions,
a global approach, as studied in the previous section, appears favorable. We focus on two

6ECA simulations by Stephan Kremser comparing different ‘complexity’ measures to find controllable rules in
the sense of (Ramalho, Kremser, Wu, and Gerland 2021) showed that the spatially averaged Kolmorgorov
complexity estimate outperforms single-site entropy (personal correspondence, January 2022; planned to be
published in his dissertation).
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global approaches, ‘synergy’ between a fixed cell’s state and the initial grid as proposed by
Quax et al. (Quax, Chliamovitch, Dupuis, et al. 2018) and an attractor based classification by
Wuensche (Wuensche 1997). Quax et al. showed that synergy after two time steps calculated
for an ECA rule run on all initial conditions can serve as a predictor of the rule’s Wolfram
Class to some extend. We discussed first experiments with synergy for typical 2D rules. A
recipe how Quax work could potentially be extended to 2D for a ‘finite time’ classification is
outlined in the Appendix A.3. Wuensche constructed the attractor space of ECA rules up to a
grid length of L = 15 (Wuensche, M. Lesser, and M. J. Lesser 1992), as each rule eventually
evolves to its limit cycle, latest at the Poincare time. We tested and relativized some of his
statements (Wuensche 1998) that draw connections between the scaling of properties of the
attractor space with system size and the Wolfram Classification. Further, we performed a
principal component analysis of the attractor based observables for fixed grid length and
found good agreement with a t-distributed stochastic neighbor embedding visualization of the
same data. However, we could hardly find clusters of rules in these representations, also rules
of different Wolfram Classes did not separate. It would be interesting to repeat this analysis
with scaling properties of the attractor-based observables, obtained from computationally
expensive data including larger grids.
However, both approaches only seem to be feasible for small rule spaces on finite grids, small
enough that the number of possible grid configurations is still computationally feasible. For
infinite grids there exists an abstract attractor based classification. Hurley and Kurka (Hurley
1990; Kůrka 1997) showed that each CA rule, in fact any discrete dynamical system, can be
uniquely assigned a class characterizing its attractor-basin field. However, it is generally
not possible to infer the class from the rule. It would be exciting if Wuensches finite length
approach for increasing lengths could be connected to the limiting behavior studied by Hurley
and Kurka.

To conclude our classification survey, despite many efforts in this field, there is still no
convincing classification of the cellular automata rule dynamics. The mostly cited one is
Wolfram’s heuristic classification. However, it is also commonly accepted that Wolfram’s
classification is initial condition depended, undecidable for some rules, requires a lot of
(subjective) studying of rule patterns and is therefore hard to extend to 2D CAs.
So, what have we learned about our initial questions? — Which types of patterns can be
generated by a rule? How long does it take? How robust are those patterns? For very small
grids and a small number of states, those questions can be answered by Wuensches attractor
space construction. For a sufficiently large number of states k in 2D, Langton’s λ compared
to λc = 1 − 1/k can give a rough idea of the patterns and transients to be expected of a
typical rule: short transients and fixed point patterns for λ ≈ 0, cyclic patterns and increasing
transients for larger λ, long transients and either cyclic or chaotic patterns for λ ≤ 0.59 (the
percolation threshold of the Von Neumann neighborhood), shorter transients and chaotic
patterns for 0.59 < λ ≤ λc. Also the difference-pattern spreading speed, characterizing how
sensitive the CA evolution is to small changes in random initial conditions, can be estimated
with λ — for sufficiently large λ values.
‘Types of patterns’ in the theory of elementary cellular automata context often refer to
categories like fixed point, cyclic, complex or chaotic, with a focus on complex evolutions.
Those complex rules are hypothesized to be related to long transients and sensitivity in initial
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conditions (C. G. Langton 1990). However, in biological systems, we are rarely interested in
long transients and high sensitivity of the patterning process. In a developmental biology
context the listed ‘pattern types’ seem very crude — what kind of fixed point patterns are
possible? Stripes, dots, clusters? Of which patterns do cyclic states consist? How robust are
those cycles? In this sense of the question, we have however not gained new insights.
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Second part: Interplay of Local and
Global signals in Developmental

Biology
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3. Introduction of Part II: Biologically
motivated CA Logics

Having started our journey from the pure theory of cellular automata, gaining an overview of
their (lack of) meaningful characterization, we now take the opposite approach — studying
cellular automata motivated from developmental biology. Each biological cell in a two- or
one-dimensional tissue is modeled as a stochastic cellular automaton. A CA’s state either
corresponds to the ‘cell type’ or to the gene-expression state (simplified to ‘On’ or ‘Off’) of a
single gene. Common properties of developmental systems are (1) stochasticity, (2) ordered
final patterns, and (3) local and global signaling. The following discussion of those three
properties focuses on biological examples and assumes familiarity with signaling pathways in
developmental biology. For an introduction to this topic, see Sec. 3.2.
(1) Noise is ubiquitous in cellular biology, from signal molecule production, signal transmis-
sion, to readout. For example, signal molecule production appears to be subject to stochastic
variations in molecule synthesis and secretion (Raser and O’Shea 2005; Bollenbach, Pantazis,
Kicheva, et al. 2008). Transport of long-range signaling molecules by diffusion is a stochastic
process itself, and might moreover be hindered by barriers (Restrepo, Zartman, and Basler
2014; Stapornwongkul and J. P. Vincent 2021). At the signal-uptake stage, cell-cell variability
in the number of receptors for the signaling molecule, binding of molecules to receptors,
and receptor occupancy are additional sources of noise (Jaeger, Irons, and N. Monk 2008;
Bollenbach, Pantazis, Kicheva, et al. 2008; Colman-Lerner, Gordon, E. Serra, et al. 2005).
Finally, activation of the signaling pathways, and induced gene expression regulation are
noisy processes (Raser and O’Shea 2005). We therefore extend our explorations to stochastic
cellular automata.
(2) Examples of patterns are gene-expression boundaries, stripes, dots, or more irregular but
stationary, patterns. Cell-type or gene-expression boundaries are well studied in the Drosophila
wing disc such as the anterior-posterior, and dorsal-ventral boundary formation (Aliee, Röper,
Landsberg, et al. 2012; Michel, Aliee, Rudolf, et al. 2016). Drosophila wing-vein formation (Bier
2000; De Celis 2003; Crozatier, Glise, and A. Vincent 2004; Blair 2007; Sprinzak, Lakhanpal,
Lebon, et al. 2010b), and gap-gene patterns in the early Drosophila embryo (Gregor, Tank, Wi-
eschaus, and Bialek 2007) are examples of stripe formation. Dots in the form of sensory organ
precursors are singled out during Drosophila-bristle formation (Corson, Couturier, Rouault,
et al. 2017), an example we will study in more detail in Sec. 5.1. Non static, but stationary
patterns include the small-intestine epithelial cell-type pattern (Buske, Galle, Barker, et al.
2011; Kai, Trw, Dongen, and Parsy 2021; Takahashi and Shiraishi 2020; Zhou, Ramachandran,
Mansouri, and Dailey 2018; Howitt, Lavoie, Michaud, et al. 2017; Gassler 2017; Mah, Yan, and
Kuo 2016), that we will model in Sec. 5.2. We observe that patterns are static or cyclic, thus
cellular automata rules with chaotic or complex behavior are of less biological interest.
(3) ‘Global signaling’ includes long range morphogens, such as Dpp (Bollenbach, Pantazis,
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Kicheva, et al. 2008) and bicoid (Gregor, Tank, Wieschaus, and Bialek 2007), electric potentials
(Levin 2021) or stress on the tissue (Aliee, Röper, Landsberg, et al. 2012). With ‘local signaling’
we refer to any information exchange between spatially neighboring cells, be it via diffusive,
small molecules, or ions channels, mechanical cues or interaction of membrane-bound proteins.
Suggested ‘communication codes’ include (i) sensing of signal identity, (ii) sensing of signal
concentration, (iii) combination of different inputs, and (iv) dynamics (P. Li and Elowitz 2019).
We will give a more detailed overview of chemical signaling during development in Sec. 3.2.
This large variety of signal processing modes in this wider sense justifies the generality a CA
modeling approach. Also, it motivates the extension of CA models to process an external
input from a global signal.
We begin with the arguably simplest class of rules that we can motivate biologically — CA
rules inspired by sigmoidal gene-expression regulation (Alon 2007), idealized to a single-
threshold rule. Our minimal boundary formation CA uses only this single parameter. The
next step is a rule with two thresholds, depending on the state of a cell, used in our Drosophila
bristle-formation model. For the small-intestine model, we allow for the full rule space, and
try to derive the update rule by comparison to experimental data.

The knowledge gap we are motivated by is that in developmental biology cells process
signals from a small number of different pathways, but collectively perform a broad variety of
robust patterning processes (P. Li and Elowitz 2019). On the other hand, cellular automata
process few different input components, but can, in principle, generate any pattern. Thus we
here explore cellular-automata models of biological cells.
Part II of this thesis is organized as follows: After outlining other cellular modeling approaches
in developmental biology, and a short overview of chemical signaling pathways, we discuss
three biological pattern formation systems modeled in a CA framework as named above. We
start with single-threshold logics to study the example of gene expression boundary formation
in Chap. 4, and continue with two threshold logics for Drosophila bristle formation (Sec. 5.1).
Finally, we give an example where potential update rules, summarizing differentiation, and
cell movement, are inferred from a stationary spatial cell-type distribution: our model the
small intestine epithelium (Sec. 5.2).

3.1. Other CA Models for developmental Biology

A great advantage of CA models is their ability to bridge scales between the behavior of
individual, interacting cells, and the development of tissues, requiring only a minimal set of
parameters (Lehotzky and Zupanc 2019; Koopmans and Youk 2021). The models can then
be used to generate hypotheses to be tested in experiments. In the following, we give some
examples of CA models in developmental biology. For a review of current agent-based models
that are not cellular automata, see Ref. (Shaebani, Wysocki, Winkler, et al. 2020).
The maybe most visual cellular automata are the skin-scale colors of the ocellated lizard
(Manukyan, Montandon, Fofonjka, et al. 2017). Their labyrinthine pattern can be modeled
by a quasi-hexagonal stochastic CA. Different to the focus of this work, skin scales consist of
multiple biological cells.
Adhyapok, Fu, Sluka et al. developed a stochastic 1D and 2D CA model of liver lobule injury
from experimental data with three different cell types — healthy, stressed, dead — and update
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rules modeling proliferation, cell death, and conversion from healthy to stressed (Adhyapok,
Fu, Sluka, et al. 2021). They distinguished time scales for each process, and performed a
parameter sweep (always keeping one parameter fixed). From those phase diagrams, they
could make predictions about evolution to tissue damage, recovery, and potential divergent
fates.
In nervous tissue development, Lehotzky and Zupanc modeled three systems: enteric nervous
system formation, neurosphere growths, and neutral fate specification (Lehotzky and Zupanc
2019). Their stochastic CA model included mitosis, cell movement, and differentiation after
mitosis.
A stochastic 2D CA model of two types of photoreceptors (yellow and pale) in the fly eye that
could reproduce the qualitative distributions, i.e., random vs. alternating stripes of these two
receptors in the Drosophila and Dolichopodidae retinas, is put forth in Ref. (Ebadi, Perry, Short,
et al. 2018). The model used a threshold CA with five parameters. Rows of retina cells are
patterned subsequently, thus, the CA only performs a single update step.
Nissen, Perera, Gonzalesz, et al. have modeled mammalian blastocyst generation in an agent-
based model including differential adhesion with four rules, the second one corresponding to
a CA (Nissen, Perera, Gonzalez, et al. 2017): ‘Switch fate if too many (next-nearest) neighbors
are in the same state’, resulting in differentiation of the inner cell mass to primitive endoderm
and epiblast cells in a salt-and-pepper pattern, which was rearranged by subsequent rules.
Those rules were qualitatively confirmed by experiments.
These examples cover very different phenomenons, and have the stochastic approach in
common. However, given the broad applicability of CA modeling to stem-cell differentiation,
the small number of studies using this approach is rather surprising (Lehotzky and Zupanc
2019). We will add three more examples in the following, after giving a short introduction on
chemical signaling.

3.2. Chemical signaling Pathways in developmental Biology

Chemical signaling pathways take external signals as input, and output, often switch like,
gene-expression changes within a cell. External signals, called ligands, bind to receptors in
the receiving cell membrane, and thereby trigger a cascade of biochemical reactions within
the cell, that result in transcription factors down-, or up-regulating transcription of a set of
genes. For chemical signaling during development, more than 17 kinds of signal transduction
pathways are known. However, only five of them dominate in early embryonic development
of animals: Notch, Transforming Growth Factor beta (TGF-β including BMP and Dpp), Wnt,
Hedgehog (HH) and Fibroblast growth factor (FGF) families (Gerhart 1999). An essential
difference between pathways is their communication range: Long-ranged via the circulatory
system — ’endocrine’, traveling a few cell widths — ‘paracrine’, or between neighboring cells
— ‘juxtacrine’. If cells can sense their own signal, it is an ‘autocrine’ pathway. Hormones
are an example for endocrine signaling. TGF-β, Wnt, HH and FGF pathways are paracrine
signaling pathways. Their ligands are well suited to form concentration gradients that can
encode positional information, and are then called ‘morphogens’. Juxtacrine signaling, e.g.,
the Notch pathways, requires direct contact between signaling cells.

The pathways allow for a large variety of distinct functions in different contexts. A number
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of ‘communication codes’ have been suggested (P. Li and Elowitz 2019) to enable their
multipurpose function: (i) Ligand identity: Different ligands for the same receptor can induce
different differentiation outputs, e.g., Dll1 and Dll2 in the Notch pathway. Ligand specificity
can be modulated, e.g., by co-receptor enzymes. (ii) Ligand concentration: Not only absolute
concentration levels of the signaling molecule can be measured, but also fold changes, in
some examples. Fold-change measurements are more robust to cell-to-cell variability (Adler
and Alon 2018). (iii) Combination of different inputs: The bone-morphogenetic protein (BMP)
pathway is an example where different ligands, or different receptors can interact in an
additive, ratiometric, or imbalance-detection mode (P. Li and Elowitz 2019). An example of
an orthogonal pathway is sonic hedgehog (SSH), a HH pathway, and BMP in the developing
neural tube. The two long range morphogens form anti-parallel dorsal-ventral gradients and
encode at least ten different cell fates along this axis (Zagorski, Tabata, Brandenberg, et al.
2017). At the transcription-factor stage of the signal processing, known ‘logics’ of combining
factors include AND, OR, NAND and SUM (Buchler, Gerland, and Hwa 2003; Alon 2007).
In synthetic biology, possibilities are manifold, see (Bashor, Patel, Choubey, et al. 2019), and
(Toda, Frankel, and Lim 2019; Chen and Elowitz 2021) for recent reviews. (iv) Dynamics:
Also amplitude, duration, and modulation of the morphogen gradient can contribute to the
signal. For SHH signaling, evidence has been presented that both the amplitude and duration
determine neural-progenitor cell fates in chick and mice (Dessaud, Yang, K. Hill, et al. 2007).
Further, a transient Delta prepattern in Drosophila bristle formation was observed by Corson
et al. (Corson, Couturier, Rouault, et al. 2017).

After having gained an impression of the variety of modes in signaling pathways we focus
on the probably most well studied example: Delta-Notch signaling. This is the pathway we
will revisit in the Drosophila-bristle and small-intestine model.

A short Introduction to Delta-Notch Signaling

The Delta-Notch signaling is a highly conserved signaling pathway among animals (Artavanis-
Tsakonas, Rand, and Lake 1999), and is used in diverse functions such as control of cell
differentiation, proliferation, and migration during development (Boareto 2020; Artavanis-
Tsakonas, Rand, and Lake 1999). By regulating cell differentiation it contributes to create
qualitatively different patterns, such as dots during Drosophila bristle formation (Corson,
Couturier, Rouault, et al. 2017) or sharp boundaries for Drosophila wing vein patterns (De
Celis 2003).

Delta and Notch are transmembrane protein families acting as ligand (Delta) and receptor
(Notch) of the signaling pathway. It has been shown (Sprinzak, Lakhanpal, Lebon, et al. 2010a)
that (i) Delta transactivates Notch in neighboring cells, and (ii) cis-inhibits Notch in its own
cell. Moreover, evidence is presented in Ref. (Sprinzak, Lakhanpal, Lebon, et al. 2010a) that
(iii) Delta is also cis-inhibited by Notch, i.e., the cis-inactivation is mutual. Also, (iv) Notch
can transcriptionally down-regulate cis-Delta (De Celis and Bray 1997; Huppert, Jacobsen, and
Muskavitch 1997). In order to better understand all those interactions, we provide a more
formal version of the above statements, based on (Sprinzak, Lakhanpal, Lebon, et al. 2010b).

Generally, Delta Di and Notch Ni in a cell i are produced at rate βD(x), (possibly depending
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on position x), and βN , respectively, and degraded at rate γD and γN :

Ḋi = βD(x)− γDDi + other

Ṅi = βN − γN Ni + other ,

where ‘+other’ is a placeholder for remaining terms, that we will subsequently introduce. (i)
During intercellular signaling, Delta Dj in cell j binds to Ni in a different cell i, leading to
the release of the Notch intracellular domain Si, Ṡi = NiDj/kt + other, and degradation of its
extracellular domain Ṅ = −DjNi/kt + other, with kt the transactivation strength. (ii) Delta
Di cis-inhibits Notch Ni in its own cell at cis-inhibition strength kc, Ṅi = −DiNi/kc + other.
(iii) Notch also cis-inhibits Delta, i.e. Ḋi = −DiNi/kc + other. Moreover, (iv) Notch Ni can, by
transcription of a ‘reporter’ Ri, down-regulate the rate of Delta production in cell i, modeled as
a repressive Hill function fR(Ri; βD, m, kDR) = βD

km
DR

km
DR+Rm

i
with Hill coefficient m and capacity

kDR. Transcription of the reporter Ri (‘Notch response’) is modeled as Hill type activation
function fA with Hill coefficient p and capacity kRS and is degraded at rate γR. Putting it
all together for a grid of cells, and denoting the summed Xj contribution of cells j that are
neighbors of cell i by ⟨Xj⟩i, with Xj = Dj or Nj, (i.e. ⟨Xj⟩i ≡ ∑⟨i,j⟩ Xj), we obtain:

Ṅi = βN − γN Ni − Ni
Di

kc
− Ni

⟨Dj⟩i

kt

Ḋi = fR(Ri; βD, m, kDR)− γDDi − Ni
Di

kc
− ⟨Nj⟩i

Di

kt

Ṡi = Ni
⟨Dj⟩i

kt
− γSSi

Ṙi = fA(Si; βR, p, kRS) .

This model can reproduce the following experimental findings (Sprinzak, Lakhanpal, Lebon,
et al. 2010a): A graded reporter response R of Notch activation by Delta transactivation,
a sharp trans-Delta independent inhibition of Notch response R by cis-Delta and lateral
inhibition, even without cooperativity (in contrast to the ‘classic’ model by Collier et al.
(Collier, N. A. Monk, Maini, and Lewis 1996)).

However, the above model of Delta Dll1 and NOTCH1 interaction is just one piece of
the puzzle. Within the mammalian pathway alone, there are four different Notch receptors
interacting in a promiscuous fashion with multiple Delta ligands, including Dll1 and Dll4
(P. Li and Elowitz 2019). For Dll1 and Dll4 it has been shown that they can have opposite
effect on cell fate, either promoting or inhibiting myogenesis in neural crest cells of chick
embryos (Nandagopal, Santat, LeBon, et al. 2018). Also it is still not quite understood how
in the presence of intrinsic noise (Yaron, Cordova, and Sprinzak 2014), the Notch pathway
can generate qualitatively different patterns such as dots and stripes (Sprinzak, Lakhanpal,
LeBon, et al. 2011). So, despite its importance, not all modes of Notch signaling are known
yet (Boareto 2020).
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This chapter is based on and uses parts of the manuscript: “Robust boundary formation in a
morphogen gradient via cell-cell signaling”, by M. Bojer, S. Kremser, U. Gerland, which has
been submitted for publication.

4.1. Introduction

The formation of sharp boundaries between different tissues at their precisely determined
positions is fundamental in the development of an embryo. Groups of cells with distinct
functions often must be kept physically separated. Also, boundary cells act as organizing
centers for subsequent patterning processes in many cases (Dahmann, Oates, and Brand
2011). In the presence of noise inherent to biological processes it is not fully understood
how the observed precision is achieved (Exelby, Herrera-Delgado, Perez, et al. 2021; Lander
2013; Gregor, Tank, Wieschaus, and Bialek 2007; Bollenbach, Pantazis, Kicheva, et al. 2008;
Jaeger, Irons, and N. Monk 2008) Here, we investigate the potential contributions and optimal
design of local signaling as a correction mechanism to ensure a sharp and straight, correctly
positioned boundary.
Common ancestor of many boundary formation models is the ’French Flag’ model (historically
’French Flag problem’) (Wolpert 1969). The basic idea is that a morphogen gradient activates
cell-fate-determining genes subject to different thresholds and thereby patterns the tissue.
However, each process — morphogen production (Bollenbach, Pantazis, Kicheva, et al. 2008;
Raser and O’Shea 2005), morphogen transport (Restrepo, Zartman, and Basler 2014; Staporn-
wongkul and J. P. Vincent 2021), morphogen uptake (Jaeger, Irons, and N. Monk 2008;
Bollenbach, Pantazis, Kicheva, et al. 2008; Colman-Lerner, Gordon, E. Serra, et al. 2005) and
signaling (Raser and O’Shea 2005) — is subject to noise.

On the other hand, short range signaling is commonly observed during embryogenesis,
such as short range morphogens, Delta-Notch signaling and ion transport via gap junctions
or ion channels (Levin 2021). To our knowledge, the potential of short range signaling
for boundary formation has not been systematically explored yet. Lander does mention
spatial pooling, but in a system where the cell’s state, once set, cannot change anymore
with morphogen concentration (Lander 2013). Also, in the well studied model system for
morphogenesis, Drosophila, (Gregor, Tank, Wieschaus, and Bialek 2007) and (He, Saunders,
Wen, et al. 2010; Erdmann, Howard, and Ten Wolde 2009; Okabe-Oho, Murakami, Oho, and
Sasai 2009) employed the the idea of spatial averaging to explain the observed high precision in
expression of the (gap) gene, Hunchback: Hunchback is induced in a concentration dependent
manner by the morphogen Bicoid during early Drosophila syncytia stage. The suggested
mechanism consists of nuclei-nuclei communication via a morphogen of comparable diffusion
constant as Bicoid.
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Our aim here is to identify underlying principles, rather than to restrict ourselves to a specific
biological model system. To this end (Hillenbrand, Gerland, and Tkačik 2016) studied the
positional information given by a morphogen gradient combined with a local interaction
between neighboring cells that could be either repulsive or attractive in one dimension. Their
model is based on an equilibrium Ising model with external field. It thus neglects any
dynamics during boundary formation and it assumes a specific signal integration logic.
A conceptual and systematic study of how local signaling can optimally be incorporated as
a correction mechanism for the global morphogen signal still seems to be missing. Here,
we investigate which signal processing logic meets best the following four key properties of
boundary formation, motivated by morphogenesis, in each noise regime: (i) Reduction in
boundary fuzziness, to ensure a sharp separation of different tissues. (ii) A short transition
time to stationary boundary position. Fast development generally is beneficial for the survival
of the embryo, e.g. to escape predators. (iii) A tuneable boundary position, as required, if
the same logic shall allow for observed variations of the same pattern in related species. (iv)
Scaling with system size, to conserve pattern proportions among embryos of different sizes.
Therefore we put forth a minimal model of tissue boundary formation based on signaling and
neglect cell migration, proliferation, cell death and cell shape change.
Assuming that the morphogen signal (global signal) is accompanied by a signal of short range
(local signal) we want to explore how to optimally combine these two signals with respect to
the criteria (i)-(iv). We focus on signal integration mechanisms that are parameterized by a
minimal number of variables, the morphogen signal gradient slope m and a threshold a for
the signal. The three candidates consist of signal integration by a SUM, AND or OR logic.
These logics can also be motivated by common input functions to gene transcription (Mayo,
Setty, Shavit, et al. 2006; Buchler, Gerland, and Hwa 2003; Bolouri and Davidson 2002): either
both signals, or their products within the signal processing pathway, can occupy the same
promoter — a regulation scheme modeled by the SUM logic, such as in (Kalir and Alon 2004).
Or there is a different promoter for each signal such that either both have to be occupied
to switch on gene transcription, corresponding to the AND logic, or occupation of one is
sufficient implying an OR logic.
In order to exclude effects independent or not essential to the local signaling, we constructed a
minimal model where the state of a cell is reduced to one gene either switched On or switched
Off and the tissue is reduced to a regular quadratic 2D grid of fixed shape.
The model presented here is not limited to regulation of a cell’s transcriptional state by
chemical signaling. It also applies to bioelectrical signaling during embryogeneis for patterning
processes involving a long ranged electric gradient (Levin 2021). Cell-cell signaling is then
performed via ion channels and gap junctions. The models’ simplicity also allows us to
systematically test the performance of the logics combining the long and short range signal
for all morphogen signal slopes m and thresholds a over a large range of noise levels on both
signals.
In the following we show that (i) correction by using information from neighbors outperforms
the pure gradient mechanism for nearly all noise regimes although it adds an additional
source of noise to the system. Among the correction mechanisms, the SUM logic performs
best for sufficiently large noises, but convergence to the correctly positioned boundary takes
longer for lower noise levels. The AND and OR logic perform equivalently. (ii) Correction
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i = 1 L…2
(local signal >𝑎𝐴𝑁𝐷)

morphogen 
signal

a) b)

c(i,t)= 
ON =

global signal)(local signal > 𝑎:

AND

+[SUM] if  
[AND] if (global signal > 𝑎):

(local signal >𝑎𝑂𝑅) OR[OR]   if (global signal > 𝑎):

else:

c(i,t) =   
OFF =

mL global signal > 𝑎:[GRAD] if  

Figure 4.1.: (a) Sketch of the minimal model. The morphogen signal is represented by blue
dots and nearest neighbor interaction by green triangles. A green cell is in state
On and signals this to its direct neighbors, a pink cell is Off, i.e. not signaling.
Periodic boundary conditions in y direction are depicted as arrows below the
grid. The left boundary at i = 0 is fixed to Off cells, while the right boundary
at i = L + 1 is fixed to On cells. (b) Summary of the three logics: (SUM) Given
a cell at position i at time i in state c(i, t): If the local signal including Gaussian
noise plus the global signal including noise exceed a global threshold a the cell
state c at the next time step t + 1 is On, else Off. (AND/OR) If the local signal
exceeds a local threshold AND/OR the global signal exceeds the global signal,
c(t + 1) =On. For example, the green cell highlighted by a dark gray frame in
(a) senses the local signal from it’s upper, lower, left and right neighbor (light
gray frames) canceling to one Off state plus local noise as well as a morphogen
concentration of 2m plus global noise.

mechanisms strongly differ with respect to the time it takes to reach the stationary boundary
position for a given noise level. The stationary boundary can be tuned to any position within
the grid by varying the global threshold (iii) and does scale linearly with system size (iv) for
all logics for a fixed morphogen slope. As boundary formation is a fundamental patterning
mechanism, insights about the potential of a local signal as a correction mechanism might
find applications in synthetic biology for constructing various patterns.

4.2. Model and Observables

Model

We consider a square grid of L × L cells, with cylindrical boundary conditions, see Fig. 4.1.
The state of a cell is reduced to either ‘On’ or ‘Off’, c = + 1

2 or − 1
2 . Along the axis of the

gradient (index i) the boundary conditions of our grid are fixed to Off on the left (i = 0) and
On on the right side of the grid (i = L). In the perpendicular direction (index j) we apply
periodic boundary conditions. The cell state is updated according to a signal processing rule
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ϕ, which we also refer to as signal integration rule. The state can change at discrete time steps.
The rule processes two different signals: the global signal at the cells position (i, j), sG

ij (t),
representing the morphogen gradient, and a local signal, sL

ij(t), encoding the state of the cells
within cij’s neighborhood,

cij(t + 1) = ϕ
[
sG

ij (t), sL
ij(t)

]
. (4.1)

A Boolean logic is the common simplification of the biologically observed Hill type regulation,
as the sigmoidal form becomes a sharp threshold in the limit of large Hill coefficients (Bolouri
and Davidson 2002).

Global signal The stochastic global signal at a cell with index (i, j) is given as

sG
ij (t) = m i + ξG

ij (t) , (4.2)

with m the morphogen gradient slope at i and ξG additive Gaussian white noise with mean
zero and standard deviation σG.

During embryogenesis, morphogen molecule concentration is commonly assumed to be
exponentially decaying within the tissue. Inspired by Ref. (Hillenbrand, Gerland, and Tkačik
2016), we interpret the logarithm of the molecule concentration as the actual signal (Weber-
Fechner law), resulting in a linear morphogen gradient signal.

French Flag mechanism We refer to a signal processing rule that only depends on the
global signal and compares it to a global threshold a as pure gradient rule ϕGRAD [sG]. It is the
analogue of the French Flag mechanism (Wolpert 1969). More precisely

ϕGRAD
[
sG

ij (t)
]

:= Θ
[
sG

ij (t)− a
]
− 1

2
, (4.3)

with Θ denoting the Heaviside step function with convention Θ [0] = 0. The state of a cell at
position i at t + 1 is + 1

2 if the global signal exceeds the global threshold a and − 1
2 else.

Local signal The signal processing rules with correction ability additionally make use
of a local signal sL that stems from nearest neighbor cells communicating their state. We
conservatively assume that the central cell cannot sense from which neighbor the signal came
from and thus define sL to be the sum of these signals

sL
ij(t) = ∑

(k,l) ∈ neighbors(i,j)
ckl(t) + ξL

ij(t) . (4.4)

‘neighbors’ refers to the upper, lower, left and right neighbor (von Neumann’s neighborhood).
ξL is chosen to be Gaussian white noise with a mean of zero and standard deviation σL.

Correction mechanisms To implement a correction mechanism, each cell needs to combine
the two noisy signals sL and sG. It is by no means clear how this combination is optimally
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performed. Straight forwardly, we can add up both signals and compare the result to the
global threshold a. We will refer to this procedure as SUM rule ϕSUM,

ϕSUM
[
sL

ij(t), sG
ij (t)

]
= Θ

[
sL

ij(t) + sG
ij (t)− a

]
− 1

2
. (4.5)

Note that the contribution of the local signal to the full signal can take any value by rescaling
m and a simultaneously.
Alternatively, both signals could be processed separately and the results combined by an AND
or OR rule. SUM, AND and OR rule are not the only options to process two signals. Others
are XOR and PROD, but we can argue that they are not suited for the boundary formation
problem as we modeled it.
Let us start from an all Off grid with an XOR logic. In the next time step without noise it
would form the correct boundary. In the consecutive update step, all On cells except those at
the boundary would switch Off though, as each is subject to a local neighbor signal greater
than any (sensible) local threshold value. Consequently the boundary would not be stable.
The product rule PROD in the presence of noise reads

if (global signal(i) +ξG)· (local signal(i,t) + ξL) > a2:
cell(i,t+1) = On

which implies that the noise would

be multiplied by the signal. Consequently, we expect this rule to perform poorly in the
presence of sufficiently large noise.

Processing the local signal separately requires an additional threshold, aAND respectively
aOR,

ϕAND
[
sL

ij(t), sG
ij (t)

]
= Θ

[
sL

ij(t)− aAND
]

Θ
[
sG

ij (t)− a
]
− 1

2
,

ϕOR
[
sL

ij(t), sG
ij (t)

]
= Θ

[
sL

ij(t)− aOR
]
+ Θ

[
sG

ij (t)− a
]

− Θ
[
sL

ij(t)− aOR
]

Θ
[
sG

ij (t)− a
]
− 1

2
.

In the following paragraph we show that it makes sense to choose aAND = −1 and aOR = 1.

alocal optimization We want the AND and OR rule to be able to produce a boundary from
an arbitrary initial grid for all noise levels, equivalently to the pure gradient mechanism.
Here, we argue that the initial grids all Off and all On are sufficient to fix the additional local
thresholds aAND and aOR.

Let us consider an all Off initial grid. At the right border, i = L, the global signal exceeds
the global threshold a (otherwise the pure gradient rule could not form a non-trivial boundary
either). For the AND rule to exit the initial condition, we need aAND to be smaller or equal
than the local signal sL

ij(t) = −1 + ξL
ij(t). Thus, we need aAND ≤ −1. Similarly, for an all

On initial grid it follows that aOR
l ≥ 1. The second condition to determine the optimal local

threshold comes from demanding that it stabilizes a straight boundary. To this end, consider
a straight boundary, implying that the global signal is close to a, but with one On cell left of
the boundary. For the AND rule, we want aAND ≥ −1 in order to switch Off the defect cell.
Taken together this suggests choosing aAND = −1. The opposite scenario, one Off cell right of
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the boundary, yields aAND < 1, which is well satisfied by our choice. Equivalent reasoning
yields aOR = 1.

We confirmed these analytic arguments numerically for an exemplary small and large noise
level, see Fig. 4.2 and Fig. 4.3. We observe that the fuzziness decreases with increasing aAND

values. In the small noise example, aAND = −1 is the largest aAND value such that the AND
rule forms a non-trivial boundary (i.e. B

L ̸= 1 or 0) independent of starting from an all On grid
(red line) or an all Off grid (green line). If we drop the initial grid independence condition,
e.g., if it suffices that the AND rule only patterns when starting from an all On initial grid, the
optimal choice of aAND would depend on the magnitude of deviation of boundary position
from the one generated by pure gradient rule (dashed gray line) we are willing to accept. This
is deviation is particularly pronounced for large noise as shown in Fig. 4.3. Results for the OR
rule are depicted in the right column and findings are analogous.

For a choice of local thresholds such that aAND = −aOR we observe in simulations, and will
show a direct ‘particle-hole’ correspondence between the AND and the OR rule.
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Figure 4.2.: Left column: Relative boundary position BP and fuzziness Fuzz with respect to the
local threshold aAND for two different a and M = mL combinations, one plotted
full saturation, one light. Green (red) triangles show results for an initial all Off
(all On) grid, interpolated by solid lines. The dashed gray line shows the pure
gradient BP. The first column shows that the all Off initial condition can only
be exited for aAND ≤ −1. The second row shows the fuzziness decrease with
increasing aAND. Right column: Analogous results for the OR rule. A small noise
level of 0.1 = η =

√
3σ is used.

Figure 4.3.: Same quantities as in Fig. 4.2, but for a large noise level. Here, both initial
conditions yield the same boundary position independent of aAND choice, but the
boundary position deviates strongly from the pure gradient value.
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Relationship of AND and OR rule for aAND = −aOR The choice of aAND = −aOR implies
close correspondence of the AND and the OR rule in the stationary state. For an infinite grid
we have

⟨cAND
ij ⟩ = −⟨cOR

ĩ j ⟩ with ĩ = 2
a
m

− i ,

where ⟨⟩ denotes an ensemble average. Visually speaking ĩ is the mirror reflection of i at the
zero transition of the morphogen gradient minus its threshold at a

m . For a finite grid, this
relation still holds true for parameter combinations a, m such that the boundary is distant
from edges of the grid. Then we can assume that cells not covered by the ĩ index, which are
cells close to the grid-boundaries, do not change their state.
We can derive the above relation as follows:

cAND
i,j = ϕAND

(
sL

ij(t), sG
ij (t)

)
= Θ

(
sL

ij(t)− aAND
)

Θ
(

sG
ij (t)− a

)
− 1

2
,

whereas

−cOR
ĩ,j = −ϕOR

(
sL

ĩj, sG
ĩ,j

)
= −

{
1 −

[
1 − Θ

(
sL

ij(t)− aOR
)]

[
1 − Θ

(
sG

ĩ,j(t)− a
)]}

+
1
2

= Θ
(
−sL

ij(t) + aOR
)

Θ
(
−sG

ĩ,j(t) + a
)
− 1

2
,

using that 1 − Θ(x) = Θ(−x).
Now observe that

Θ
(
−sG

ĩ,j(t) + a
)
= Θ

(
−sG

ĩ,j(t) + a
)

= Θ
(
−ĩm − ξG

ĩ,j + a
)

= Θ
(

im − ξG
ij (t)− a

)
,

where we can neglect the sign change for ξG
ij (t) as it is symmetric around its zero mean. Thus,

the contribution by the global signal is by construction of ĩ the same as in the case of the AND
rule.
In the stationary state, we have on ensemble average that

〈
− ∑

(k,l)∈V(ĩ,j)
ck,l

〉
=

〈
∑

(k,l)∈V(i,j)
ck,l

〉

as the global signal is mirror antisymmetric with respect to the vertical i = ic line and the
local signal is independent of the absolute position.

68



4.2. Model and Observables

0

L/2

L
2 =0.3

1 L/2 L
t

L/2
L [s

ite
s]

2 =2

1 L/2 L
t

OR

Figure 4.4.: Exemplary time traces from simulation with same parameters as in the main text.
Green, pink and brown lines are for all Off, all On and random initial conditions,
respectively.

Thus, 〈
Θ
(
−sL

ĩ,j(t) + aOR
)〉

=

〈
Θ

− ∑
(k,l)∈V(ĩ,j)

ck,l − ξL
ĩ,j + aOR

〉

=

〈
Θ

 ∑
(k,l)∈V(i,j)

ck,l + ξL
ij(t)− aAND

〉 .

Inserting those observations yields

⟨cAND
ij ⟩ ≈ −⟨cOR

ĩ j ⟩, with ĩ = 2
a
m

− i . (4.6)

Exemplary time traces from simulation confirming this relation are shown in Fig. 4.4.

Transforming and reducing the parameter set The parameters characterizing the model
are the grid length L, morphogen gradient slope m, global threshold a and the standard
deviations of the global and local noise σG and σL. In order to arrive at a description in more
natural parameters, we transform m, a to m, a

m as a
m corresponds to the spatial position where

the morphogen signal equals its global threshold. Also, we transform the independent noises
to a total noise and the relative contributions. The total noise is defined as ξ := ξL + ξG with
standard deviation σ and local to total noise ratio α defined as

σ2 :=
(

σG
)2

+
(

σL
)2

, and α :=

(
σL)2

σ2 . (4.7)

If not stated otherwise, we set the local to total noise ratio α to α = 2
mL+2 as 2 is the maximal

deterministic local signal and mL the maximal global signal.
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Figure 4.5.: Upper: Overview plot for asynchronous update, Lower: Same for synchronous
update.
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Simulation scheme For simplicity and computational efficiency, we chose the dynamics to
consist of synchronous updates of the complete grid at equidistant, discrete time steps.

To make sure that our stationary state results for the boundary position and fuzziness do
not depend on the exact updating procedure, we compared the overview plot produced by
the synchronous update scheme to that of a random update scheme in Fig. 4.5. One time
step in the random update scheme corresponds to L2 times drawing a cell from the grid at
random and updating it according to the pure gradient, SUM, AND or OR rule. From Fig. 4.5,
we observe that the results qualitatively agree for all rules. Convergence for small noises is
different, which makes sense as an asynchronous update could help to exit the metastable
boundary position more quickly. From a computational perspective the synchronous update
scheme is by far more efficient than the asynchronous one.

Observables

We are interested in a correctly positioned boundary between different cell types that is
straight and sharp. In Fig. 4.6 we can observe in the first row for a small noise level an
exemplary grid for each rule as well as a representation for large noise in the second row. We
observe that all four rules construct the boundary at a similar position. To make this notion
quantitative, we define the boundary position B(t) of a grid at time t to be the number of cells
in Off state,

B(t) :=
1
L ∑

i,j
δ

(
cij,−

1
2

)
, (4.8)

with δ the Kronecker Delta. This boundary position definition is related to the magnetization
in Ising models and circumvents problems of other measures. One complication are ‘holes’
in the grid. Otherwise we would have to decide to either ignore them or introduce a left
(most) and right (most) boundary and combining these in an arguable way. Another common
definition that elegantly deals with ‘holes’ is fitting a tanh and using the x-value of it’s zero
crossing as the boundary position. Here, we want to work with grids ranging from 23 up to
213 cells. For the small grids, fitting a tanh gives poor results.
The other boundary property we want to study is its’ fuzziness. In Fig. 4.6, for small noise
levels, the SUM rule produces a sharp boundary, the AND, OR and GRAD rule show one to
two misplaced cells. For a larger noise level, also the boundary produced by the SUM rule
shows defects. The number of defects by the AND and OR rule is similar, although they seem
to occur at different sites of the boundary. One might even note that the number of cells in
the wrong state for the AND and OR rule is smaller than for the pure gradient. A definition
of boundary fuzziness is in order to discuss these heuristics.
The fuzziness F (t) of a grid at time t is defined as the number of sites in the wrong state with
respect to the boundary position, rounded to its closest integer, in percent of the total number
of cells,

F (t) :=
1
L2

(
∑

i<B,j
δ

(
cij,

1
2

)
+ ∑

i>B,j
δ

(
cij,−

1
2

))
. (4.9)

Note that this definition combines two notions characterizing the quality of a boundary,
its roughness and its softness. Given a unique boundary line, i.e., a grid configuration
without holes, the roughness quantifies the boundaries’ deviation from a straight line. In case
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4. Boundary Formation

Figure 4.6.: The first row shows an exemplary steady state grid for a small noise level of√
2σ = η = 0.5 for each rule, the second row for a large

√
2σ = η = 2. L =

11, m = 1, a = 5.5.

of frequent holes, the softness measures the width of the holey region that constitutes the
boundary. In the system presented here, holes do occur, but are rare, thus we don’t account for
them separately. The chosen definition of boundary fuzziness counts both types of boundary
errors equivalently. In Fig. 4.6 the instantaneous fuzziness F (t) is visualized in terms of cells
in the wrong state as crossed out cells, for the pure gradient rule. For a random grid, the
fuzziness reaches it’s maximum value of 50%.
The ensemble average of the time it takes for a system to reach its initial condition independent
state is taken to be the transition time T . Consequently the transition time is a mean first
passage time. As we are only interested in a rough estimate, we will use the maximum of
the first passage time from two runs starting at an initial grid of purely Off cells and purely
On cells as an approximation. The ensemble averages of the boundary position ⟨B⟩ and the
fuzziness ⟨F⟩ are approximated by their time averages in the stationary state.

4.3. Results

For a boundary established by a global signal in the form of a gradient with slope m and local
signaling between neighboring cells, we want to measure the dependence of the boundary
position B and its fuzziness F on the total noise. The total noise with standard deviation σ

sums up independent Gaussian noise on the global and the local signal.
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4.3.1. Kinetics of approaching the stationary State

We start our investigation of the correction mechanisms SUM, AND and OR by studying the
boundary position B(t) and fuzziness F (t) as a function of time using a synchronous update
scheme of the whole grid. Towards that end, we consider an arbitrary but fixed threshold a,
morphogen slope m and grid length L, here chosen such that the boundary position of the
pure gradient mechanism is in the middle of the grid.

AND and OR rule We characterize the evolution under the AND rule, plotted in Fig. 4.7a)
for three different initial conditions: a random initial grid, a grid of all cells in state Off (‘all
Off’), and a grid of all cells in state On (‘all On’). The first column shows for an exemplary
low noise level the boundary position in the first row and the fuzziness in the second row in
dependence of time.

Starting from an all Off grid the boundary position B moves roughly one cell per time
step, until it reaches its stationary value, see Fig. 4.7a), first row. The fuzziness F increases
until it drops sharply when the stationary boundary position has been reached. Note that
already for low noise the fuzziness time trace remains wiggly for all times implying that the
stationary boundary is fuzzy. Remarkably, for larger noise the boundary position moves at
the same rate. Only the stationary boundary is more fuzzy compared to the boundary in
the low noise regime, see right column of Fig. 4.7a). Consequently, the transition time to the
initial condition independent, stationary, boundary position does not depend on the noise
level. We also observe that the transition time is on the order of magnitude of the stationary
boundary position. The last row of Fig. 4.9 confirms this independence more generally.
An intuitive picture is the following: By definition, the AND rule only allows cells to switch
on if they have at least one On neighbor and the gradient signal exceeds its threshold a. The
second condition is satisfied for all cells to the right of position i =

⌊ a
m

⌋
(up to noise on the

global signal of mean zero). When starting from an all Off grid, the first condition implies
that only cells at the right boundary can switch on due to cells at i = L + 1 being On (fixed
grid-boundary condition choice). Each boundary cell can move at most one cell forward per
time step, see Fig. 4.7i) and ii). Quantitatively, a cell with exactly one On neighbor switches
on with probability 1/2 independent of the total noise level, as

ϕAND
(

sL, sG
)
+

1
2
= Θ

(
sL

ij(t) + 1
)

Θ
(

sG
ij (t)− a

)
≈ Θ

 ∑
j∈V(i)

cj(t) + ξL
ij(t) + 1

 · 1

= Θ
(

ξL
ij(t)

)
.

In words, the condition of the global signal exceeding its threshold is nearly always fulfilled
and with one On neighbor the deterministic local neighbor signal equals it threshold, thus
the sign of the local noise with mean zero determines the cells state at the next time step.
Further, a cell with more than one On neighbor switches on with a probability close to one.
Note that our choice of grid-boundary conditions, c0,j = 0 and cL+1,j = 1 for all rows j, does

73



4. Boundary Formation

(ii)zoom in (i)

(iii)

LL-6 L/2+5L/2-1
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Figure 4.7.: Exemplary boundary position B and fuzziness F (in terms of number of wrong
cells) time traces starting from different initial conditions at t = 0, depicted in
different colors, for the AND rule in the upper panel (a) and the SUM rule in the
lower panel (b) subject to a small (first column) and a large (second column) noise
value. Note that for the AND rule time is measured in terms of grid length. The
grid length L = 256 is even and a = 64.5 and m = 0.5 are chosen such that the
stable boundary is in the grid center, only t ≥ 1 are shown for better visibility.
Inserts (i)-(iii) provide a zoom in of 6×6 sites to the grid, for few time steps. For
the AND rule, starting from an all Off initial grid, zoom in (i) sketches the first
three time steps, whilst zoom in (ii) provides a potential time trace of reaching
the stable boundary position, which is L/2 here. For the SUM rule, zoom in (iii)
sketches boundary destabilization and transition to a straight and sharp boundary.
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4.3. Results

not substantially simplify the patterning task for the rules. The AND rule (and also the OR
and SUM rule as we will see later) cannot just shift the sharp cell state boundary at L to its
stationary position. Even if we had only one cell in On state at i = L + 1 the rules could
still establish a boundary at the center of the grid. However, this choice of grid-boundary
would artificially destabilize the correct stationary pattern due to local signaling, as the correct
pattern requires that cells at i = L are On.
The OR rule by definition can only switch off one cell width at a time when starting from an
initial grid of On cells. Consequently, the time traces of the OR rule qualitatively correspond
to the ones of the AND rule with On-Off inverted initial conditions, see Fig. 4.4. This was to
be expected from the AND-OR relationship, Eq. 4.6.

SUM rule Fig. 4.7b) shows evolution under the SUM rule and exhibits qualitatively different
dynamics. The right column displays the large noise regime. We see that already within
20 time steps the different boundary position traces have converged. We also note that the
boundary is fuzzy in contrast to the low noise regime. For a low noise level, as depicted in
the left column of Fig. 4.7b), the dynamics is more complex. Whilst for all initial conditions,
the boundary quickly reaches a position close to its stationary value, full convergence is very
slow. Thus, in contrast to the AND and OR rule the transition time strongly depends on
the noise level. Starting from any initial condition, the boundary reaches a position close
to its stationary value within few time steps. Movement towards its final position happens
when noise induces a seed at the boundary linearly spreading until all cells within the same
column have switched state. As sketched in Fig. 4.7iii), one seed induces a switch of both of
its neighbors in the next time step and so forth until the complete column of former boundary
cells has switched state, in case of an odd grid height. Then the boundary remains straight
until the next seed occurs. This intuition for sufficiently small noise of the ‘boundary jump
process’ we further substantiated by resolving the process in time for an ensemble of runs
Fig. 4.8. In case of an even grid length, the pattern with every second boundary cell switched
on corresponds to a metastable state. The waiting time distribution for the next seed to
destabilize the metastable boundary is strongly noise level dependent. In fact, the transition
time until the stationary state at

⌊ a
m

⌋
is reached can be approximated by

T (σ) ≈ 12
L

exp
(

1
2σ2

)
for sufficiently small σ, as we show in the following. This functional form clearly shows the
non-linear dependence of the transition time on the noise level. As expected, the transition
time is inversely proportional to the system length as a seed is more likely the more sites in
the column next to the boundary noise is acting on.

Quantitative take on transition time of SUM rule To get a better understanding of SUM
rule dynamics, we quantitatively work out the transition time for (very) small noise. The
scaling with noise level

√
3σ of the resulting transition time approximation will moreover

explain, why we cannot just simulate long enough get the SUM rules stationary state behavior
in this noise regime.
The probability density of the first passage time (FPT) from boundary position i to i + 1
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4. Boundary Formation

depends on the probability of a seed for the jump, P(seed), as follows

P(FPT of i → i − 1 = t) = (1 − P(seed))t−1P(seed)

=

(
1

1 − P(seed)

)−t P(seed)
1 − P(seed)

≈ λ exp(−λt)

with λ = P(seed) and using P(seed) ≪ 1. The approximation to an exponential distribution
is also confirmed numerically, see 4.8 and Fig. 4.8.

Consequently, the mean first passage time (MFPT) of the boundary jump from i to i − 1
is given by λ−1. P(seed) is the probability of a single cell at the boundary to switch to the
wrong state, which we call a ‘defect’. For an On defect at the left side of the boundary it is
given by grid height L times the probability that any of the boundary cells switches state. The
probability of a single cell to switch equals the cumulative Gaussian total noise distribution
with standard deviation σ for noise realizations exceeding the threshold a reduced by the
local signal sL and global signal sG = im contribution. A cell left of the boundary has three
Off neighbors and one On neighbor, thus sL = −1. With that

P(seed) = L
∞∫

a+1−im

1
σ
√

2π
exp

(
1
2

(n
σ

)2
)

dn

=
L
2

erfc
(

1√
2

a + 1 − im
σ

)
. (4.10)

We can read off that the mean first passage time rapidly increases with decreasing i thus to
get an estimation of the transition time towards the stationary boundary position, we can
neglect all previous boundary jumps

T (σ) ≈ MFPT(ic + 1 → ic)

≈ 2
L

erfc−1
(

1√
2

1
σ

)
≈ 12

L
exp

(
3
2

1√
3σ2

)
where in the last step we have used an approximation of the complementary error function
valid for small σ. We immediately see that simulating the stationary state of very small σ is
not feasible.
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Figure 4.8.: Shown are boundary jumps occurring within 105 simulation time steps in an
ensemble of 5000 SUM rule runs. Results are for an L = 11 square grid and a
noise level of

√
3σ = 0.3. Upper left: Plotted is the waiting time distribution τ until

the next boundary jump for the ensemble of 5000 runs. In orange the fit result for
the distribution is shown, P(τ, i) ∝ exp (−λ(i)τ), with i denoting the boundary
position. Lower left: Comparison of the simulation results for the scale λ(i) of each
boundary jump to the analytic prediction, λ−1 = L

2 erfc
(

1√
2

a+1−im
σ

)
. Jumps are

numbered in order of their occurrence starting from 0, i.e. jump 0 corresponds to
i = 11 → i = 10, jump 1 to i = 10 → i = 9, ect. Right: The fuzziness time trace
in number of cells is plotted in a separate panel for each boundary jump. At t = 0
we start from an all Off grid in the last panel and a boundary position at L = 11
and observe that the fuzziness on average within the first 50 time steps reaches its
maximum at 4, before it drops again to zero, implying that a new sharp boundary
at i = 10 has been established. Different colors indicate different runs. The full
run time is limited to 105 time steps, consequently in the jump 7 to 6 and 6 to
5 panel there are significantly fewer runs plotted, as for most simulations those
jumps haven’t happened within the time simulated.

77



4. Boundary Formation

4.3.2. Characterizing the stationary State’s dependence on the Noise Level
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Figure 4.9.: Overview of different stationary state behavior of the pure gradient, SUM, AND
and OR rule depending on noise level regime, exemplary for L = 256, a =

64.5, m = 0.5. On the x-axis, we use noise level
√

3σ instead of σ for better intuition
of the strength of the total noise: more than 90% of all noise realizations are within
the interval

[
−
√

3σ,+
√

3σ
]
. Also, a uniform distribution within

[
−
√

3σ,+
√

3σ
]

has variance σ2. In the first row, the time averaged boundary position B for each
rule is shown, where dashes indicate that the lines overlap. The light green and
red lines show the analytical estimate of the boundary position for the AND and
OR rule. In the second row, time averaged fuzziness F in % of the total number
of grid sites is plotted. The last row shows the transition time until the initial
condition independent state was reached, where a value of 106 implies that it has
not converged within the simulation time.

Fig. 4.9 shows the characteristic stationary state properties of the three correction mechanisms
SUM, AND and OR as a function of the total noises’ standard deviation σ, for an exemplary
threshold a and morphogen signal slope m choice. For direct comparison, the results without
correction mechanism (pure gradient) are plotted in blue. Each row shows a different
observable — the time averaged boundary position B, fuzziness F and, in the last column,
the transition time T . For simplicity, we here use the maximal number of time steps until
reaching the stationary state from an all On and an all Off grid as a measure of T . We will
discuss the different phenomenologies starting from low noise levels and ending with large
noise levels.
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Small noise levels In the last row of Fig. 4.9 we observe that the SUM rule results have not
converged to stationary state within the simulation time of 106 time steps in the regime of
very low noise levels. This is expected from the previous transition time discussion. Loosely
speaking, noise is needed to forget the initial grid state. In contrast, the AND and OR rule’s
transition time scales linearly with the boundary position, irrespective of the noise level as
discussed in Subsec. 4.3.1. Turning to the second row of Fig. 4.9, we note that the boundary
fuzziness for the SUM rule is remarkably close to zero, for small yet sufficiently large noise
levels to allow for convergence of the SUM rule pattern. An effectively non-fuzzy regime is not
observed for other rules. In the first row, we observe that the SUM’s boundary position agrees
well with the pure gradient rules’ for zero noise, whilst the AND and OR rules’ boundary
position slightly deviate up to a cell width. In the following we derive analytic approximations
for the stationary boundary positions of the different logics.

Condition for stationary boundary position We have two conditions to be satisfied such
that the stationary boundary position is at cell index i = ic: The probability to destabilize
a boundary at ic − 1 by an Off-in-On defect has to be smaller or equal to the probability
destabilizing a boundary at ic by an On-in-Off defect. For a sketch, see the first grid of Fig. 4.7,
inset (iii) and (iv), respectively. For the right-hand side of ic we can formulate the conditions
as:

(i) P(OffInOn |b = ic − 1) > P(OnInOff |b = ic)

(ii) P(OffInOn |b = ic) < P(OnInOff |b = ic + 1)

with, e.g., P(OffInOn |b = ic − 1) denoting the probability of an Off-in-On defect, if the sharp
boundary position is at b = ic + 1.

Stationary boundary position for the SUM rule For the SUM rule the individual probabili-
ties are given by

P(OnInOff |b = i) = P(sG(i) + sL(i) ≥ a)

= P

mi + ∑
(k,l)∈V(i,j)

ck,l + ξ ≥ a


= P (ξ ≥ a + 1 − mi) ,

with V(i, j) the Von Neumann neighborhood of the cell at (i, j), i.e., it’s upper, lower, right and
left neighbor and ξ = ξL + ξG the total noise. We at first used that with a straight boundary
at i a cell at (i, j) (j arbitrary) has one On and three Off neighbors.
Further,

P(OffInOn |b = i) = P(sG(i + 1) + sL(i + 1) < a)

= P

m(i + 1) + ∑
(k,l)∈V(i+1,j)

ck,l + ξ < a


= P (ξ < a − m(i + 1)− 1) .
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Inserting both into conditions (i) and (ii) and that ξ has the same distribution as −ξ gives

(i) P(ξ < a − mic − 1) > P(ξ ≤ −(a − mic)− 1)

⇒ a − mic ≥ 0 ,

(ii) P(ξ < a − m(ic + 1)− 1) <

P(ξ ≤ −(a − m(ic + 1))− 1)

⇒ a − m(ic + 1) < 0 .

As ic ∈ N, these two inequalities are satisfied by

iSUM
c =

⌊ a
m

⌋
= iGrad

c . (4.11)

The stationary boundary will scale with system size in the same way as for the pure boundary
formation by gradient mechanism for zero noise.
Note that in the stationary state, implying that i = ic, the probabilities for an On-In-Off defect
and an Off-In-On defect only depend on the morphogen slope m and the deviation of a

m from
its subsequent integer:

P(OffInOn |b = ic) = P (ξ < a − m(ic + 1)− 1)

= P
(

ξ < m
( a

m
−
⌊ a

m

⌋
+ 1
)
− 1
)

and equivalently for P(OnInOff |b = ic).

Stationary boundary position for the AND and OR rule Let us consider the AND rule.
The individual probabilities are given by

P(OnInOff |b = i)

= P
(

sG
ij (t) + ξG

ij (t) > a
)

P

 ∑
(k,l)∈V(i,j)

ck,l + ξL
ij(t) ≥ −1


= P(sG

ij (t) + ξG
ij (t) > a)P

(
ξL

ij(t) ≥ 0
)

= P(sG
ij (t) + ξG

ij (t) > a)
1
2

,

where we at first used that with a straight boundary at i a cell at i has one On and three Off
neighbors. Then we observed that the for non-zero noise the probability of the local noise to
exceed its mean 0 is 1/2, independent of its precise distribution (as long as it is symmetric).
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Further,

P(OffInOn |b = i)

= 1 − P(sG
i+1,j + ξG

ij (t) > a)

· P

 ∑
(k,l)∈V(i+1,j)

ck,l + ξL
ij(t) ≥ −1


= 1 − P(sG

i+1,j + ξG
ij (t) > a)P

(
ξL

ij(t) ≥ −2
)

≈ 1 − P(sG
i+1,j) + ξG

ij (t) > a)

Here we used that for an Off-in-On defect given the boundary is at i, we need to consider a
cell at i + 1, which consequently has one Off and three On neighbors.
For the noise level regime,

√
3σ ∈ [0, 2.5] that we consider in this paper, P

(
ξL ≥ −2

)
≈ 1 is a

good approximation.
With that follows from condition (i)

P
(

sG
iAND
c ,j + ξG

ij (t) > a
)
<

2
3

,

which is easily satisfied for iGrad
c =

⌊ a
m

⌋
as sG(iGrad

c ) ≈ 0.
From condition (ii) follows

P
(

sG
iAND
c +1,j + ξG

ij (t) > a
)
≥ 2

3
,

which consequently determines iAND
c . For the Gaussian noise distribution with mean zero

and standard deviation σG = σ
√

1 − 2
2+mL , it follows

iAND
c =

⌊ a
m

⌋
−

√
3σ

m

√
1 − 2

2 + mL

(√
2
3

erfc−1
(

4
3

))

≈
⌊ a

m

⌋
+ 0.25

√
3σ

m

√
1 − 2

2 + mL
. (4.12)

We see that iAND
c ≈ iGrad

c +
√

3σ
4m for mL ≫ 2 which agrees nicely with simulation results shown

in Fig. 4.9.
For the OR rule, it follows

iOR
c ≈

⌊ a
m

⌋
− 0.25

√
3σ

m

√
1 − 2

2 + mL
, (4.13)

respectively by the AND-OR equivalence established in Eq. 4.6.
From this calculation we can also see that the probabilities for an On-in-Off defect and

an Off-in-On defect at ic depend only on m and a
m −

⌊ a
m

⌋
. These findings suggest that the

fuzziness in stationary state only depends on the deviation of a
m to the next integer value.

This is also confirmed by numeric results. Intuitively, the morphogen changes at the same
rate everywhere in the system and the local interaction is independent of the position per
definition.
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Intermediate noise levels For larger noise levels the AND and the OR rule qualitatively
exhibit the same behavior as for low noise, in contrast to the SUM rule. In the second row of
Fig. 4.9 we observe a rapid increase in fuzziness for the SUM rule. Time averaged fuzziness
seems to arise from alternating between time intervals of a straight, sharp boundary and
time intervals with a disturbance, seeded by a single defect cell, that grows and shrinks for
some time before it decays. The probability for a seed is highly non-linearly, but smoothly,
increasing with noise level as discussed in the previous section.

Large noise levels In the regime of large noise we see in the second row in Fig. 4.9 that the
SUM rule yields a less fuzzy boundary than the AND and OR rule, which behave similarly.
Indeed, all correction mechanisms outperform the pure gradient rule. We will show that this
result is robust for all a, m parameter combinations determining the three rules in subsection
4.3.4, for all grid lengths (Subsec. 4.3.3) and for a surprisingly large range of local to total
noise ratios α (Subsec. 4.3.5).

The boundary position B resulting from the SUM rule agrees well with the boundary
position from the pure gradient as analytically deduced. Although the boundary positions
from the AND and OR rules deviate linearly with the standard deviation of the total noise σ,
we will show in Subsec. 4.3.3 that both nevertheless scale linearly with system size.

4.3.3. All rules conserve scaling of the Boundary Position with System Size

In embryogenesis, proportions commonly remain the same irrespective of different embryo
or compartment sizes (see Inomata 2017 for a review). The pure gradient mechanism also
exhibits this scaling behavior, provided that the maximal morphogen concentration and the
threshold remain constant. In our model these conserved proportions translate to a fixed
fraction of On to Off cells within grids of different size for a fixed maximal morphogen signal
mL. In Fig. 4.9 we have observed that the stable boundary position formed by the AND and
OR rule deviates from the position established by the pure gradient rule. Thus we need to
investigate if also the AND and OR rule ensure this property, just with a different fraction.
For an exemplary parameter set, a = 2, mL = 8 at a large noise level

√
3σ = 2, we can see

in Fig. 4.10 that this is indeed the case. The reason that AND (OR) rules’ boundary position
tends to larger (smaller) B values is that it discourages (encourages) On cells. As the slope m
becomes smaller and smaller (mL fixed) the regime around the boundary in which this effect
plays a role increases linearly with system length. This leads to a constant boundary position
B over grid length L ratio. The deviation of this value from the pure gradient rules’ result can
be approximated by Eq. 4.12 and Eq. 4.13, respectively.

For small grid sizes, we see that the relative boundary position of any rule has not yet
converged to its large grid limit. The reason why the boundary position and fuzziness for
small lengths deviate from the values for large grids is of technical nature, as our parameter
choice yields a boundary at

⌊ a
m

⌋
= a

m = 1
4 L. For the pure gradient rule, for instance, this

choice implies

cic,j = Θ(mic + ξG
ij (t) ≥ a)− 1

2
= Θ(ξG

ij (t) ≥ 0)− 1
2

,

thus on average the cell at ic is switched On every second time step due to noise. In contrast,
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for c(ic+1,j) these parameters more stably yield On as

cic+1,j = Θ(mic+1 + ξG
ic+1,j ≥ a)− 1

2
= Θ(ξG ≥ −m)− 1

2
.

Thus defect cells at the left of the boundary are more common than at its right.

Fig. 4.10 shows that the fraction of sites in the wrong state converges to a stable value for
large system lengths. Consequently, the improved boundary sharpness is not only a finite
grid size effect. The observation that the SUM rule performs best, the AND and OR rule not
as well, but better than pure gradient also holds true for all tested grid lengths.
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Figure 4.10.: (a) Relative time averaged boundary position B for all three rules and pure
gradient for increasing grid lengths L for a fixed noise level of

√
3σ = 2, a =

2, mL = 8, and all Off initial grid. (b) Time averaged boundary fuzziness F in
percent of the number of cells in the grid. For sufficiently large grids the relative
fuzziness converges to a constant value that is smallest for the SUM rule, larger
for the AND and OR rule and highest for the pure gradient rule.
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4.3.4. Systematic Exploration of the Parameter Space
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Figure 4.11.: For a fixed noise level
√

3σ = 2 and grid length L = 256 the fuzziness F fraction
of the boundary formed by a correction rule (SUM, AND, OR) and the boundary
fuzziness due to pure gradient is shown in dependence of the gradient slope m.
Single markers correspond to the average fuzziness fraction over all a values and
are interpolated by a solid line. The shaded area is restricted by the interpolation
of the minimal (lower edge) and maximal (upper edge) fuzziness fraction with
respect to all threshold a values.

We want to know, how much smoother the boundary established by the correction mechanisms
is compared to the boundary established by the pure gradient rule. Until now, we have shown
results for isolated points in the parameter space. Now, we want to study the whole parameter
space spanned by threshold a and morphogen signal slope m. It is equivalent to varying m
and a

m from
⌊ a

m

⌋
to
⌈ a

m

⌉
as discussed in Subsec. 4.3.2.

Let us fix a high noise level,
√

3σ = 2. We measure the boundary smoothing capability of a
correction rule in terms of the ratio of the boundary fuzziness resulting from a correction
mechanism to the boundary fuzziness caused by the pure gradient rule, FLOGIC(

√
3σ =

2)/FGRAD(
√

3σ = 2). In order to show the full range of fuzziness ratios caused by varying a
and m in Fig. 4.11, we choose for each m to display the ratios’ minimal and maximal value
for any a (interpolated by the lower and upper edge of the shaded area), as well as the ratios’
average over a (data points interpolated by sold line).
We observe that F ratios are below one and that the SUM ratio is smallest for all morphogen
slopes m. This implies that all three rules perform better for every threshold a and gradient
slope m than the pure gradient rule with respect to fuzziness reduction. The performance gap
between the pure gradient and the correction rules is smaller for larger morphogen slopes,
thus the most conservative choice for m is m = 1.0. Intuitively, this is because the steepest
gradient provides the largest signal differences between neighboring cells in i direction.
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4.3.5. Variation of local to total Noise Ratio
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Figure 4.12.: Fuzziness F at
√

3σ = 2 in dependence of the local to total noise variance, α

for m = 1.0, one row for each correction mechanism. The blue line depicts the
pure gradient performance, while the differently colored lines correspond to the
correction mechanism result for different a/m combinations, L = 256.

The magnitude and ratio of local to global noise representing a variety of different processes
as mentioned in the introduction is not known. Still, for a fixed maximum morphogen signal
mL, we have only considered one particular ratio of the local noise ξL to total noise ξL + ξG

ratio α, α = (σL)2

(σL)2+(σG)2 = 2
2+mL so far. Intuitively, the pure gradient rule should perform

better than the correction mechanisms for large α. By definition, the pure gradient rule only
experiences noise on the global signal, which approaches zero for the local to total noise
ratio α approaching one. The correction mechanisms, however, process an additional highly
error-prone signal, the local signal. To test this intuition, we vary the local to total noise ratio
α between 0.1 and 0.9, see Fig. 4.12 for all different a

m combinations with m = 1.0, depicted in
different colors. The maximal slope m = 1.0 is chosen to ensure the best relative pure gradient
performance, as discussed in Sec. 4.3.4.
Per definition, the SUM rule (first column) is independent of α. The AND and OR rule
perform worse relative to the SUM rule the larger α is. Surprisingly, the α value, where pure
gradient (blue line) performs equally well than the correction mechanisms (other colors) is
well beyond one half. This implies that a correction mechanism can sharpen the boundary,
even if it is subject to more than twice as much noise than the pure gradient rule.

4.4. Discussion

Precise boundary formation is a remarkable phenomenon in developing systems and aspiring
goal in synthetic systems. Here, our objective was not to study any specific system, but to sys-
tematically explore how different logical couplings of cell-cell communication with a gradient
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4. Boundary Formation

signal can aid boundary formation. A comparison to the Ising model and Hillenbrandt et al.’s
work (Hillenbrand, Gerland, and Tkačik 2016) can be found in the appendix B.1.

In a minimal model of boundary formation consisting of cells that are either signaling (On)
or inactive (Off), we studied three different correction mechanisms using this nearest neighbor
interaction in addition to a global (grid spanning) signal gradient. Those three rules either
sum up both signals (SUM) and subsequently compare the result to a global threshold a or
compare each signal to a local and global threshold separately (AND, OR). Consequently, for
a signal processing cell to switch to or maintain an On state, in case of the SUM rule the sum
of both signals has to exceed the global threshold. The AND rule requires both signals to
exceed their respective thresholds independently, while the OR rule requires only one signal
to exceed its threshold. We examined which rule performs best in which regime of total noise,
consisting of additive Gaussian noise on the local and the global signal. As motivated in the
introduction, performance is measured in terms of: (i) Reduction in boundary fuzziness, (ii)
short transition time to stationary boundary position, (iii) position tuneable by threshold and
(iv) scaling with system size.

We found that (i) the SUM rule achieves the strongest fuzziness reduction, while the AND
and OR rule yield comparably less reduction. Only if the noise on the global signal is much
smaller than the noise on the local signal, the pure gradient ensures a sharper separation of
cells with different gene expression states. (iii) However, transition to stationary state takes
more time for any correction mechanism than for the pure gradient rule, which establishes
the stationary boundary within one time step. The SUM rule generates a boundary position
that deviates by few sites within one time step for sufficiently steep morphogen slopes. Exact
convergence strongly depends on the noise level — the smaller, the slower. Qualitatively
different, convergence of the AND and OR rule does not depend on the noise level, but on
the initial state of the grid. In the best case it happens within one time step, in the worst case
in order of grid length L time steps. A short transition time is desirable in development, as
boundary cells often act at organizing cells for the next patterning process Dahmann, Oates,
and Brand 2011. Also, fast morphogenesis is favorable to protect against predators. (ii) The
boundary position can be tuned by changing the global threshold value a in a similar manner
than for the pure gradient mechanism. This is programability is of biological significance, as
the threshold a was motivated by the binding affinity of the signals’ transcription factor to the
promoter of the gene, that is switched on. Possibly, variations of same theme among related
species, such as a stripe that differs in width, can be explained as variations of the binding
affinity. (iv) For fixed threshold value a and morphogen signal slope m the SUM rule yields
the same boundary position as the pure gradient, while the AND and OR rules’ boundary
positions deviate by a small amount. Nevertheless, the boundary position established by any
rule scales linearly with system size. The scaling property ensures compatibility with the
observation that embryos of the same species differ (slightly) in size, but pattern ratios are
often conserved Inomata 2017.

What is the underlying reason that the SUM rule outperforms the AND and OR rule in terms
of fuzziness reduction? We believe this is because the SUM rule first averages the involved
noises allowing them to cancel, before applying the non-linearity in the form of comparing
to a threshold. The deterministic signal is summed up, while the Gaussian noise’s standard
deviations only add in quadrature. For the AND and OR rule it is the other way round:
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they threshold each signal separately before combining the pieces of information. However,
there are biological problems where this signal processing scheme — first thresholding, then
combining — is actually optimal, for example in case of a rare signal. Rod cells in retina
specialized to detecting very dim light first threshold before transmitting information to their
common bipolar cell, that consecutively sums up those digitized signals Field and Rieke 2002.
If the bipolar cell would first sum the signal of its numerous rod cells, the simultaneously
summed up noise would make it likely for the bipolar cells to confuse total darkness (no
photon) with dim light (three or more photons) Bialek 2012. Consistent with the system
presented here, it has been found that only those rod cells specialized for dim light detection
process signal by thresholding before summing up.

In a synthetic setup it is feasible to experimentally test our predictions as all necessary
components have already been designed. On one hand, tuning of local interactions has
been successfully realized in multicellular systems, for example, AND-like, OR-like and
in between, graded, SUM-like, regulatory behavior in yeast Bashor, Patel, Choubey, et al.
2019. A remarkably customizable signal processing scheme in the form of a synthetic Notch
pathway is presented in Ref. Toda, Frankel, and Lim 2019, and also reviewed in Ref. Chen
and Elowitz 2021 among other protein based synthetic circuits in eukaryotic cells. On the
other hand, tuneable processing of synthetic gradients has been demonstrated, such as toggle
switch processing of a signal gradient in E.coli Barbier, Perez-Carrasco, and Schaerli 2020.
A setup close to developmental biology was constructed within Drosophila wing primordia
Stapornwongkul, De Gennes, Cocconi, et al. 2020. A combination of a synthetic gradient and
a signal processing pathway that can in principle be customized to the rules discussed in this
paper, is the synthetic GFP morphogen that regulates target gene expression by a synNotch
circuit Toda, Mckeithan, Hakkinen, and Lopez 2020.

Remarkably, the study presented in Ref. Stapornwongkul, De Gennes, Cocconi, et al.
2020 raises the question of which additional mechanisms are required for sharp boundary
formation as the explored setups did not give rise to sharp boundaries Barkai and Shilo 2020.
The toolboxes listed above might be able to test whether the three different rules studied in
this paper are candidates for the actual boundary correction necessary to ensure the exact
results observed in nature. Also, insights about the potential of local signaling as a correction
mechanism might find applications in synthetic biology more generally, as boundary and
stripe formation are fundamental tasks in patterning and morphogenesis. To better meet
such applications, the presented model can be trivially extended to stripe generation by
introducing extra thresholds accordingly. It can be further generalized or modified, by
including more complex rules or smoothing the hard threshold via Hill-type functions, by
considering irregular and dynamic cell grids, or by including additional mechanisms such as
cell sorting.

Outlook: Possible implications for Synthetic Systems modeling biological boundary
formation and further research

In a synthetic setup it is feasible to experimentally test our predictions as all necessary
components have already been designed. On one hand, tuning of local interactions has been
successfully realized in multicellular systems, for example, AND-like, OR-like and in between,
graded, SUM-like, regulatory behavior in yeast (Bashor, Patel, Choubey, et al. 2019). A
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remarkably customizable signal processing scheme in the form of a synthetic Notch pathway
is presented in (Toda, Frankel, and Lim 2019), and also reviewed in (Chen and Elowitz 2021)
among other protein based synthetic circuits in eukaryotic cells. On the other hand, tuneable
processing of synthetic gradients has been demonstrated, such as toggle switch processing
of a signal gradient in E.coli (Barbier, Perez-Carrasco, and Schaerli 2020). A setup close
to developmental biology was constructed by (Stapornwongkul, De Gennes, Cocconi, et al.
2020) within Drosophila wing primordia. A combination of a synthetic gradient and a signal
processing pathway that can in principle be customized to the logics discussed in this paper,
is the synthetic GFP morphogen that regulates target gene expression by a synNotch circuit
(Toda, Mckeithan, Hakkinen, and Lopez 2020).
Remarkably, (Stapornwongkul, De Gennes, Cocconi, et al. 2020) does pose the question which
additional mechanisms are required for sharp boundary formation as the explored setups did
not give rise to sharp boundaries (Barkai and Shilo 2020). These toolboxes might be able to test
whether the three different logics studied in this paper are candidates for the actual boundary
correction necessary to ensure the exact results observed in nature. Also, insights about the
potential of local signaling as a correction mechanism might find applications in synthetic
biology more generally, as boundary formation is a fundamental patterning mechanism.

To better meet such applications, the presented model could be generalized or modified
in interesting ways, as for instance by including more complex logics or smoothing the
hard threshold by modeling actual Hill type dynamics, by modeling irregular grids and cell
number as well as form changes, or by including additional correction mechanisms such as
cell sorting.
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5. Drosophila Bristle and Intestine Epithelium
cell-type Pattern

In the following two sections we will briefly present an extended CA modeling approach to
the formation of bristles for Drosophila and the small intestine homeostasis. A discussion of
all three biological systems follows in Chap. 6.

5.1. Dots in Drosophila Bristle Formation

Here, we want to sketch a ‘proof of principle’ that simple threshold CA rules combined with a
global gradient can not only generate of sharp boundaries or stripes in the presence of noise,
but also to produce regularly spaced rows of dots. The biological system we are referring to
is the generation of sensory organ precursor (SOP) cell patterns at the Drosophila thorax that
will mature to bristles, thoroughly studied by Corson et al. (Corson, Couturier, Rouault, et al.
2017).

Corson et al. added fluorescent reporters of proneural factors, Achaete (Ac) and Scute
(Sc), as well as of an early-response Notch factor. So they could observe the development of
evenly spaced bristle rows one to five, called position ‘Pos-1’ to ‘Pos-5’ here (see Fig. 1 and
supplementary Fig. 2 and Fig. 3 in (Corson, Couturier, Rouault, et al. 2017) for Drosophila-
thorax snapshots at different time points, and spatially resolved Delta, Ac and Sc levels, that
provide evidence for, and visualize the following paragraph):
About 2.5h after pupal formation (APF), i.e., before onset of proneural activity, Delta is expressed
as a smooth bimodal concentration profile, peaking at Pos-1 and Pos-5 with a minimum at the
center (i.e. Pos-3). Notch activity is maximal at intermediate Delta levels, i.e., at Pos-2 and
Pos-4, presumably as a result of cis-inhibition of Notch competing with trans-activation.
At about 6h APF, proneural genes Ac and Sc inducing Delta activity are beginning to be
expressed at Pos-1, Pos-3 and Pos-5.
7h APF the proneural stripes at Pos-1 and Pos-5 are refined via Notch mediated lateral
inhibition. Cells in the stripe at position 3 begin to express Ac and Sc. The Delta gradient at
Pos-1 and Pos-5 has decreased, while increasing at Pos-3.
8h APF the stripe at Pos-3 got refined. Expression of Ac and Sc has started at Pos-2 and Pos-4.
The Delta gradient at Pos-1, Pos-3 and Pos-5 has decreased, while it began to peak at Pos-2
and Pos-4.
12h APF all stripes of proneural activity have been resolved into regularly spaced SOPs and
any other cell has become an epidermis cell. The average distance between SOPs exceeds two
cells, suggesting that Notch signaling also affects next nearest neighbors, e.g. via filopodia.
Also, cells do not divide during the patterning process and rarely move.

Inspired by this research, we wondered, which extensions of a two-state CA model are
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5. Drosophila Bristle and Intestine Epithelium cell-type Pattern

sufficient for a minimal model of the sensory-organ precursor patterning process. Is it
sufficient to assume a nearest-neighbor range for the local signal? What happens without the
decaying long-range signal gradient? We therefore chose a bottom up approach. Concretely,
our cellular-automata system runs on a 2D grid with a dimension of 13×21 cells, and periodic
boundary conditions. Each grid cell is assigned a cellular automaton that can be either in SOP
state (red or ‘1’), or in epidermis state (green or ‘0’). The CA synchronously update their state.
In the most simplistic model version, we started our exploration with, the update function
only the takes state of it’s four direct neighbors, and its own state, as an input. Essentially, it
compares the signal, corresponding to its neighbors’ summarized states, to a threshold a0 or
a1, depending on its own state:

signal = 0
for neighbor in neighbor_state_list:

signal += neighbor

if cell_state == 0:
if signal <= a_0:

newState = 1
else:

newState = 0
elif cellstate == 1:

if signal <= a_1:
newState = 1

else:
newState = 0

We started the simulation from a grid with all cells in epidermis state ‘0’ (green). At every
consecutive time step, the whole grid flips state, see Fig. 5.1(a). In order to break the symmetry,
we introduce noise by adding a uniformly distributed random number r, r ∈ [−η/2,+η/2],
different for each cell at each time step, to the signal. This noise can be seen to represent a
readout error of the cell. The ‘noise level’ η, determining the length of the interval a random
number is drawn from, is used as a measure of the strength of the noise. Within few time
steps, the dynamics changes from ‘the majority of cells switch state every time step’ to ‘only
few cells change state’, and cells are arranged in a salt-and-pepper pattern (Fig. 5.1(b)).
In the biological system however, SOP cells do not change back anymore, thus we at least
aim for a stationary state that is a fixed point. Also, SOP cells are arranged in orderly lines
of equally spaced dots with an average distance larger than one neighbor. Consequently, we
extended the neighborhood to also include the diagonal cells, i.e., to a Moore neighborhood,
consisting of N = 9 cells. The simulation results are shown for two different noise levels,
η = 3 in the upper row of Fig. 5.1(c) and for η = 1 in the lower row. For the larger noise level,
the system does not run into a fixed point within 100 time steps. For η = 1 we observe a fixed
point with SOP cells being roughly homogeneously distributed within the grid. However,
the SOPs are not arranged in lines, and the pattering process requires quite some switching
back and forth between cell fates. Thus we included a representation of the initial Delta
gradient, by adding to the signal one of the simplest non-monotonic functions, a piece wise
linear V-shape with a maximum value of M(t) and a minimum of 0, see Fig. 5.1(d), second
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5.1. Dots in Drosophila Bristle Formation

row. We assumed that the local, inhibitive dynamics would be much faster than the decay
of the graded prepattern, and consequently decreased the maximum value of the external
signal by a small amount only when the grid was in the same state at two consecutive time
steps. In Fig. 5.1(d) we can observe that switching back from SOP fate to epidermis fate occurs
rarely. The final fixed point pattern shows SOP cells in neatly organized rows, except from
the outermost ones, due to periodic boundary conditions.
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Figure 5.1.: Exemplary snapshots of the dynamics generated by different stages of the bottom-up model.



5.1. Dots in Drosophila Bristle Formation

Figure 5.1.: continued (a) Snapshots of the dynamics for the first model without noise η = 0,
with a Von Neumann neighborhood N and without external signal M(t) = 0.
(b) Snapshots for the second model extending the first one by including noise,
η = 3. (c) Snapshots for the third model extending the second model to a Moore
neighborhood N = 9 for two different noise levels: η = 3 in the first and η = 1 in
the second row. (d) Snapshots for extending the model to an additional external
V-shaped signal (second row) with a maximal value M(t = 0) = 5.

We conclude that, when adding noise, and a non-monotonous global signal decaying in time,
we could qualitatively reconstruct aspects of the Drosophila patterning process, in the sense
of generating a pattern of roughly evenly spaced SOP cells, organized in rows, in a process
that consecutively patterns each row. However, we do not claim to have modeled the actual
underlying signal mechanism: Delta-Notch signaling has many different aspects as outlined
in Sec. 3.2, but we only used a simplistic inhibitive two-threshold rule. Nevertheless, it would
be interesting to further test, if we can fully eliminate SOP to epidermis back transitions, by
introducing an intermediate state that can either switch back to epidermis, or mature to an
SOP state in the next time step. Also, simulation on a hexagonal grid with a next nearest cell
neighborhood would probably give biologically more realistic results. Implementing both
aspects might be sufficient to compare to the actual data in (Corson, Couturier, Rouault, et al.
2017).
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5.2. Homeostatis of the small Intestine Epithilium cell-type
Distribution

The following section is based on Max Knicker’s work, documented in Ref. (Knicker 2021). He also
kindly provided all figures. Max Knicker was jointly supervised by Stephan Kremser and the author, as
well as by Ulrich Gerland.

The small intestine epithelium consists of crypts and villi to enlarge its surface for tak-
ing up nutrients. At the base of the crypts, stem cells divide and differentiate primarily to
paneth, goblet, or enterocyte cells (Haber, Biton, Rogel, et al. 2017). As they are small in
numbers (Haber, Biton, Rogel, et al. 2017), we decided to neglect enteroendocrine and tuft
cells. All differentiated cells, except paneth cells, travel in a ‘conveyor belt’ like fashion to
the tip of the villus, were they get aborted into the lumen (Chin, D. R. Hill, Aurora, and
Spence 2017). Paneth cells move into the opposite direction (Gassler 2017). It is known that
the differentiation frequencies of the cell types are influenced by an external, long-range Wnt
signal gradient and by Notch-mediated lateral inhibition (Takahashi and Shiraishi 2020). We
chose to model the small intestine crypts as a 1D stochastic CA system. A cell can ‘update’ to
four different cell types — stem cell, enterocyte, paneth or goblet cell. Update probabilities of
a cell depend on the cell types of its left and right neighbor, as well as the local concentration
of the Wnt gradient (reduced to be either ‘On’ or ‘Off’), see Fig. 5.2. Note that this update
effectively summarizes conveyor-belt movement towards the villus and differentiation. We
thus obtain a model with 3× 2× 43 update probabilities as parameters. This large number can
be reduced by biologically motivated assumptions such as, (i) goblet and enterocytes in the
Wnt ‘On’ regime are essentially noise, i.e., the probability to update to a goblet or enterocyte
is equal ‘noise’ n, n ≪ 1, and vice versa for stem and paneth cells in the Wnt ‘Off’ regime.
(ii) A cell cannot sense the direction of a signal, i.e. update probabilities for neighborhoods
should be equal to those with the left and the right neighbor interchanged. Depending on
how many additional assumptions were used, the automata system has 384, 128 or 80 free
parameters. In order to model stem-cell differentiation and paneth-cell movement, we add
two additional parameters pdivide and pmove. An exemplary run from an initial grid with only
stem cells is shown in Fig. 5.2.

In order to obtain biologically reasonable values for the free parameters, we use experimental
data from Ref. (Chwalinski and Potten 1989) and Ref. (Paulus, Loeffler, Zeidler, et al. 1993)
showing a spatial probability distribution of how probable a certain cell type at each position
is, see Fig. 5.3. Parameters are optimized with a particle-swarm algorithm, using the Canberra
distance of the stationary CA probability distribution and this data. More precisely, first,
a set of (‘swarm’ of) either 250 or 150 parameter sets (‘particles’) is chosen. Then the CA
simulation is run 20 times, starting from an ‘all stem cells’ initial condition, for each parameter
set for 100 time steps, in order to extract a stationary cell-type probability distribution. As
a loss function, to update the parameter set, we decided for the Canberra distance between
those distributions and the experimental data. Subsequently, the parameters, i.e., update
probabilities, are changed to reduce the loss function, following the particle-swarm-algorithm:
essentially, each particle ‘moves’ to its new coordinate (i.e. probability-value set) by a velocity,
determined by it’s own smallest loss value obtained so far, the swams’ smallest loss value,
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Figure 5.2.: Left: Schematic model description. Each cell of the 1D grid is assigned one of four
cell states (goblet, stem, paneth or enterocyte). (a) The state of a cell is updated
by an extended probabilistic cellular automaton. The CA is determined by the
update probabilities it assigns to each of the cell states, given the neighborhood
configuration and the presence or absence of the external signal (Wnt). (b) The
external signal is On for positions 0 to 4 and Off elsewhere. (c) In addition,
backwards movement of paneth cells is explicitly modeled by the probability
pmove and stem cell division by pdivide. Right: Exemplary simulation run with an
optimized set of update probabilities.
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Figure 5.3.: Dots display experimental results, i.e., the spatial distribution frequency of paneth
(green, (Chwalinski and Potten 1989)) and goblet (yellow, (Paulus, Loeffler, Zeidler,
et al. 1993)) in the crypts of the mouse’ small intestine. Shaded areas interpolate
numerical results from the 100 update-probability sets resulting in smallest devi-
ation of the generated patterns from the experimental data. The discrepancy at
position 5 stems from our simplification of the Wnt gradient to switch from On to
Off there.

and the direction it has been moving in before. This step is repeated 600 times. The results of
44 such optimization runs are displayed as a t-SNE representation in Fig. 5.4 for the largest
parameter set.

The first panel shows the runs colored by the number of their run. Clusters of different
colors do not mix, thus either the exploration of the particle swarm algorithm is not sufficient
(despite parameter tuning) or the loss landscape is rather flat with many similarly deep local
minima. The second panel shows that the Canberra distances of the 100 best solutions of
each run are quite similar between the runs. In the last panel, each rule’s entropy, defined as

∑128
i=0

(
−∑3

k=0 pk,j log2 pk,j

)
is shown as a measure of its bias.

As a global minimum could not be found, we analyzed the ensemble of the 100 rules with
the lowest Canberra distance, see Fig. 5.5 for results in the Wnt On regime. The upper row
shows that in all those models paneth cells move about 10 to 25 times as fast than stem cells
divide. As stem-cell division occurs roughly once a day (Schepers, Vries, Van Den Born, et al.
2011), and paneth cells move about one position per hour (Qiu, Roberts, and Potten 1994),
this result is of the same order of magnitude. The remaining results shown are probabilities
of becoming a stem cell for different neighborhood configurations, sorted with decreasing
occurrence frequency. For example, the configuration listed in the 1st segment occurs most
often during the simulation, the ones in the 2nd segment similarly often, and less frequent
than the configuration in the first segment. All the rules of the ensemble have in common
that the probability of becoming a stem cell (‘1’) is close to zero, if the central cell, and the
left neighbor are also paneth cells (‘2’) ([2,2,2], [2,2,1]), except from the configuration with
an enterocyte as a right neighbor. For this by far less frequent configuration, there is a wide
spread in the probability of becoming a stem cell. These observations match the biological fact
that differentiated cells rarely, if at all, reverse back to stem cells. Probabilities of updating to
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Figure 5.4.: t-SNE representation of 128’157 solutions of 44 particle swarm optimization runs
in the Wnt On regime. Left: Different runs are plotted in different colors. Center:
Solutions are colored with respect to the Canberra distance of the ensemble
averaged stationary cell type distribution they generated and the experimental
distributions. The ensemble average is over 20 duplicates and the stationary
distribution was determined from the last 60 out of 100 time steps. Right: Solutions
are colored by their entropy value, ∑128

i=0

(
−∑3

k=0 pk,j log2 pk,j

)
.

Figure 5.5.: Update probabilities for the 100 solutions of the 128’157 of Fig. 5.4 with lowest
distance to experimental data in the Wnt On regime are shown. In the upper part,
pdivide and pmove values are plotted. In the lower part, the probability of becoming
a stem cell in the next time step is on the x-axis and on the y-axis different
neighborhood configurations, ordered by how often they occurred during the
simulation. 1st segment thereby refers to the most abundant configurations, ect.
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a stem cell are greater than zero for input configurations with a stem cell as a left neighbor,
and a differentiated cell in the center (i.e. [1,2,2], [1,2,1], [1,3,1]). However, this does not imply
that cells ‘de-differentiate’, as cell movement to the right is modeled by the same update rule.
For future work we suggest to allow for one more parameter, by introducing a cell-moving
probability, for all but the paneth cells, such that cellular automata updates purely model cell
differentiation instead of mixing time scales of differentiation and cell movement towards the
tip.
Also, using additional data for optimizing the update probabilities would be beneficial, as in
the current simulation up to 386 parameters where optimized with an input of 33 experimental
data points. Therefore, we have unsuccessfully1 tried to extract a spatial profile from small-
intestine crypt single-cell RNA sequencing data (Haber, Biton, Rogel, et al. 2017) with the
NovoSpaRc algorithm (Nitzan, Karaiskos, Friedman, and Rajewsky 2019). This algorithm
essentially minimizes the difference of, the distance distribution of all pairwise cell distances
in a chosen grid, and the pairwise distance between cells in gene-expression space.
A general limitation when comparing to experimental data is that the small intestine crypt is
neither 1D, nor of the same size, even within the same mouse. Also cell type distributions are
generally subject to many other factors than chemical signaling, e.g., nutrition dependent.

Despite the discussed shortcomings and the exploratory character of this work, the minimal
extended CA model with parameters optimized by comparing to the stationary state frequency
distributions of paneth and goblet cells could qualitatively reproduce two aspects of the
patterning dynamics: the time scale ratio of stem cell division to movement of paneth cells and
that differentiated cells generally do not become stem cells again.

1The algorithms performs best if additional marker genes are provided, which were not available in our case.
Our results with single-cell spatial resolution are neither consistent among the two ‘unbiased’ data sets used,
nor with the spatial cell-type distributes of (Paulus, Loeffler, Zeidler, et al. 1993) and (Chwalinski and Potten
1989). These two issues might stem from a different aim of the small-intestine study, which was to identify
new cell types, not to faithfully represent distributions of known ones. Further, we observed that the algorithm
clustered cells of the same type. This behavior was to be expected to some extend, as the algorithm is based on
the assumption that cells close in gene expression space are also close in physical space. However, the small
intestine is highly dynamic, and different cell-types often alternate spatially. Excluding the cell type marker
genes from the gene expression profiles and feeding them to the algorithm only partly resolved the clustering
issue.
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6. Discussion of Part II

In Part II, we have studied three different developmental-biology systems, modeled in a
minimal, extended CA framework — boundary formation, Drosophila bristle formation, and
the small-intestine epithelial cell-type distribution. In the boundary formation system, the
extended CA rules combine a noisy external morphogen with a noisy local signal, encoding the
neighboring cell states. We find that first summing up both signals, and then comparing to a
common threshold (SUM rule), outperforms an AND or OR logic combination of both signals,
that first compare to separate thresholds. Even if noise on the local signal is significantly higher
compared to noise on the global signal, all three correction mechanisms reduce boundary
‘fuzziness’. For a more thorough discussion of this example see Sec. 4.4.
In the Drosophila bristle-formation example, we found that qualitatively reproducing the
biological patterning process was possible if we included noise, used a larger neighborhood,
and added a decaying global signal.
The small-intestine epithelium system was different in the sense that we allowed for the
full range of parameters, rather than a minimal set: Each neighborhood configuration is
assigned three probabilities of updating to one of four possible cell types. Ensemble averages
of stationary-state 1D grid configurations generated by these sets of parameters are then
compared to experimental data of stationary cell-type distributions. We optimize the CA
parameters by comparing the CA generated and experimental cell-type distribution, but
each particle-swarm optimization run found a different local minimum. One reason might
be that the number of free parameters significantly exceeds the number of experimental
data points. Nevertheless, studying the 100 ‘best’ solutions allows us to draw order-of-
magnitude conclusions of the ratio of paneth-cell movement to differentiation speed, that
matches biological findings. We also observed that the model has apparently ‘learned’ that
differentiated cells generally do not ‘de-differentiate’ back to stem cells.

All three examples have in common that noise and a global signal are crucial ingredients to
the model. Due to the idealizations the model introduces — synchronous updates, symmetric
grids, discrete cell states — noise is needed to break artificially introduced symmetries. In
the boundary-formation model, noise destabilized the metastable, intermediate boundary
positions, and thereby aided quick convergence to its stationary position, when established
via the SUM rule. For the Drosophila bristle formation noise broke the spatial symmetry and
ensured that we do not observe flickering behavior, despite the inhibitive nature of the rule.
In the small intestine, we start from a 1D grid of just stem cells. If we had no noise, they
could only update to one other cell type. The role of noise for increasing cellular diversity,
has indeed been observed in developmental processes. For example photoreceptors sensitive
to different wavelenghts are distributed in stochastic patterns, in Drosophila and human eyes
(Ebadi, Perry, Short, et al. 2018).
The interplay of local and global signal as a successful patterning strategy seems to be a
common motif in developmental systems. Morales, Raspopovic and Macron see ‘embryonic
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development as a guided self-organization process, where patterning and morphogenesis are
controlled by a combination of exogenous signals and endogenous self-organization’ (Morales,
Raspopovic, and Marcon 2021). They substantiate this notion by numerous examples, many
of them from embryonoids and organoids. For embryonic development, they, inter alia, list:
digit formation, where a self-organized Turing mechanism creates periodic stripes that are
aligned by an external Fgf gradient (Raspopovic, Marcon, Russo, and Sharpe 2014); formation
of the primitive streak in mouse embryo, where self-organized anterior-posterior symmetry
breaking in the epiblast is modulated by external inhibitors Dkk and Lefty (Yamamoto, Saijoh,
Perea-Gomez, et al. 2004); and cells in the early stage zebrafish embyro, where dorso-ventral
patterning is guided by the marginal and drosal organizer (Schier 2001). Schweisguth and
Corson state that purely self-organized patterns are by essence variable, but for a reproducible
outcome, such as digits in mammals, or a gradient with an invariant orientation, like Nodal
in zebrafish, it requires particular initial or boundary conditions that may arise from the
geometry of the tissue or pre-existing positional cues (Schweisguth and Corson 2019). They
further point out that ‘there is much evidence to suggest that cell-cell interactions can refine
the interpretation of morphogen gradients, or even that the receiving cells contribute to
shaping the gradient’ and mention the example of the vertebrate neural tube patterned by
Sonic Hedgehog.

Another point, we wish to discuss at the example of the small-intestine model, is the
potential of CA modeling, when optimized with actual data. In the small-intestine model,
we could determine candidate ensembles of update probabilities by comparing to stationary,
spatial data of paneth and goblet cells. With more data, e.g., spatial distributions of stem cells
and enterocytes, the ensembles might be reduced to a single optimal update-probability set.
The field of single-cell data, including spatially resolved methods, multiplex transcriptomics,
and temporally resolved single-cell methods, is quickly progressing, see (Mayr, D. Serra, and
Liberali 2019) for a recent review. Nature Methods, for instance, has selected spatially resolved
transcriptomics to be the ‘Method of the Year’ 2020 (Marx 2021). Thus, we are optimistic that
data to compare the CA-generated cell distributions to will not be a bottleneck in the near
future.
Assuming that we can find a global minimum, corresponding to a unique set of update
probabilities, what do we actually model? The probabilities determine how probable it is for
a cell at a certain position, of a certain type, to change to another type in the next time step,
given the state of its neighboring cells, and an external gradient. First of all, these updates
combine cell differentiation with cell movement, processes that could be disentangled by
introducing an additional movement probability. Nevertheless, differentiation probabilities
of a cell, in addition to chemical signaling, also depend on other factors, such as cell cycle,
circadian rhythm, nutrients, mechanics and microenvironments, such as the extracellular
matrix, and cell crowding (Mayr, D. Serra, and Liberali 2019). We can either use an extended
CA model to infer ‘effective’ update probabilities, as parameters for all those processes are
difficult to obtain. Or, we can extend it further to include more factors, and maybe make
statements about how strongly each factor actually influences differentiation. Also, we can
adjust time scales to average out some factors, such as cell cycle effects. In any case, we need
to be careful, which factors are present in the data, and what the CA update probabilities
consequently mean.
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The purpose of this work is to explore cellular automata models for pattern formation in
biological tissues. In the first part, our aim is to characterize the dynamical behavior, or
‘phenotype’, of two-dimensional, outer-totalistic cellular automata, and to relate it to their
‘genotype’, their rule table (which uniquely defines a cellular-automaton rule). Therefore, we
studied information-theoretic quantities to characterize the range of dynamical behaviors of
the cellular-automata rules. In this context, we reviewed classification attempts based on their
dynamical behavior resulting from single, an ensemble of, or all possible initial conditions.
We have found that the single-site entropy of a pattern is a comparably robust information-
theoretic observable that might aid as a pragmatic proxy of a rule’s ‘complexity’. However, we
could not identify any rule-table based quantity that can predict a rule’s ensemble averaged
entropy.
In the second part, we explored how biologically inspired ‘extended’ stochastic cellular au-
tomata rules, extended to processing an additional global signal, can model pattern formation
observed in tissues. More precisely, these extended cellular automata combine cell-cell com-
munication with long-range morphogen input signals. Concretely, we modeled patterning
processes of increasing biological specificity, starting from gene-expression boundary forma-
tion, Drosophila bristle-prosecutor formation and the stationary small-intestine epithelium
cell-type distribution. In all three examples a long-range signal was experimentally observed,
although the patterns are qualitatively different. With the biologically motivated cellular-
automata-rule families we chose, the global signal was necessary for fast and robust formation
of the observed pattern. We also observed that in our minimal models noise implicitly aided
the pattern formation, by breaking spatial or cell-type symmetries. For a more detailed
discussion of the interplay of local and global signaling and the role of noise, see Chap. 6.

Our hope to gain some general insights about cellular automata in Part I, in order to
apply them to concrete biological pattern-formation problems in the second part has not
substantiated. On a purely theoretical level, characterization naturally aims at distinguishing
‘complex’ cellular automata from chaotic or periodic ones. Indeed, a part of the problem
is to define what ‘complex’, ‘chaotic’ and ‘periodic’ behavior for those discrete dynamical
systems actually is. Complex CAs, capable of universal computation, attract most attention
(C. G. Langton 1990; Wuensche, M. Lesser, and M. J. Lesser 1992; Wolfram 1984a). However,
these CAs are the ones that we would not expect in a biological system: their space-time
traces strongly depend on initial conditions, and their transients to ‘typical behavior’ can
be of undetermined length due to Turing’s halting problem. Nevertheless, meaningful and
decidable classification of cellular automata is a highly interesting problem, unsolved for more
than 50 years and we could outline some ideas on how to further tackle it.
Finally, we are excited to see that quite different biological pattern-formation processes can
indeed be phrased in a CA-based framework — possibly by extending it to, e.g., cell movement,
division, apoptosis. In case of boundary formation, we could make statements on which of the
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elementary signal-processing logics works best, in the sense of creating a sharp boundary at
the correct position that scales with system size. In particular, boundary fuzziness was reduced
by adding a local signal of the neighboring cell’s states to the morphogen concentration — even
when noise on the local signal was twice as strong as noise on the morphogen. In the small-
intestine epithelium example, the CA model allowed order-of-magnitude statements about
the relation of different time scales in the system. In principle, differentiation probabilities
for the distinct cell types, based on their neighbors and longer-ranged morphogen signals,
could be extracted with the CA modeling pipeline. The optimal CA rule could allow for
conclusions about the involved type of cell-cell communication: inductive, inhibitive or more
complex. That requires more complete cell-type, or higher spatially resolved gene-expression
data, subject of a quickly evolving research field. The potential of the modeling framework, to
infer time scales and direct-neighbor communication, in principle extends to any biological
system that — is effectively one or two dimensional and of fixed size, for which the global
signal(s) are known qualitatively, and spatially resolved cell-type data is available.
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A. Appendix for Part I

A.1. Additional plots for m-site Entropy expansion

Figure A.1.: Same data as main-text Fig. 2.7, here plotted versus λ. Snapshots for the rules
with λ = 0.55, 0.60, 0.65 are shown below. This random-table sampling has
actually created a k = 3 rule, with a single non-zero state being more frequent
than the quiescent state, i.e. the rule with λ = 0.6. Such ‘artifacts’ that can be
circumvented by the RTE.
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Figure A.2.: For a randomly sampled outer-totalistic rule with λ ≈ 0.55 and k = 3 states, we show
exemplary grid snapshots (first column), spatial autocorrelation of the grid (second
column), and histograms for different block sizes (third to fifth column), at t = 5
(upper row), t = 10 (middle row) and t = 75 (bottom row). The rule starts from are
random initial grid of 200 × 200 sites. Although we can observe structures of more
than one site, the difference in frequency between different blocks is rather small.

Figure A.3.: Same as Fig. A.2 for a randomly sampled rule with λ ≈ 0.65.



A.1. Additional plots for m-site Entropy expansion

Figure A.4.: λ ≈ 0.60
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A.2. Kurkas attractor-based classification of infinite CA

Every dynamical system (X, r) falls in exactly one of the following classes:

A1 There exists a pair of disjoint attractors

A2 There exists a unique minimal quasi-attractor Q of r

A3 There exists a unique minimal attractor different from ω(X)

A4 There exists a unique attractor ω(X) ̸= X

A5 There exists a unique attractor X

According to (Kůrka 1997) (and cited by (Vispoel, Daly, and Baetens 2021)) Wolfram Class I
and II CA’s belong to A2 ∪ A3, Class III CA belong to A4 ∪ A5 and Class IV CA belong to A1.

However, the original work of Hurley states that ‘a possible description of the relation of
Wolfram’s classes to [his classification stated above] is [...] Class 4: Case 2’. Note that Hurley’s
Case 3 corresponds to Kurka’s Class A1. Moreover, Hurley gives an example for a rule in
his Case 3, the identity rule, which obviously does not belong to Wolfram’s complex cellular
automata.

A.3. Extension of Quax work to 2D

An interesting extension of Quax work would be to check if it generalizes to outer-totalistic
2D Cellular Automata. In contrast to the elementary cellular automata there is no heuristic
classification to measure the Synergies’ mutual information with. However, we can use a
finite-time classification as a proxy. Parameters to decide on are the maximal simulation time
tmax, the grid size L and the number of initial conditions Nini and the number of states k.

Choosing k = 2 In order not having to rely on a sampling scheme for rules, let us start with
only two states (k = 2). Thus there are 10 different neighborhood configurations: either 0, 1, 2,
3, or 4 neighbors in state 1 times the two options for the central cell. Consequently we have
210 = 1024 rules. A number still computationally feasible.
A small k obviously also strongly decreases the number of possible initial conditions.

Choosing the grid length L A somewhat natural choice of grid size is one such that each
neighborhood configuration can in principle occur at least once. Also some measures we
discussed, like the transition time, depend on change of number of neighborhood configu-
rations. As there are only 10, we have L ≥ 4. Also, the initial grids should be large enough
to avoid feedback due to periodic boundary conditions, when measuring the synergy after t
time steps. Quarx has shown that for the ECA t = 3 is sufficient to reach maximal predictive
power. For 2D Cellular Automata, information can also only spread one cell per time step.
Also, the outer-totalistic Cellular Automata are 1D in the sense that they don’t use any di-
rectional information. Thus we expect t = 3 to give reliable results also for our 2D system.
Consequently, we choose a grid size of L = 2 × 3 + 1 = 7. After obtaining results with those
choices, we need to check, if these are robust with respect to larger grid sizes.
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A.3. Extension of Quax work to 2D

Choosing the number of initial conditions Nini For the choices of grid size L = 7 and
k = 2, it is not computationally feasible to sample all initial conditions: kL2

= 249. For the
smallest grid that would allow for every neighborhood configuration to occur at least once, i.e.
L = 4, we would have 216 = 65′536 initial configurations. We consequently start with testing
Nini = 216 random initial conditions.

Choosing tmax The maximal simulation time has to be sufficiently small to be computa-
tionally feasible given the above choices and large enough to allow transient effects to die
out.

Finite time characterization of the rules For a given initial condition, a rule is classified as
follows:

• Type I rules (fixed point rules): stationary pattern reached within tmax time steps

• Type II rules (cyclic rules): cyclic sequence of patterns reached within tmax time steps

• Type III (somewhat chaotic rules): The rule is neither Type I nor Type II and no new
neighborhood configurations are found after some time t < tmax, as this is a necessary
condition for having converged to typical behavior. The simplest chaotic rule realizes
only neighborhood conditions with two different states

• Type IV (highly chaotic rules): all possible, i.e. 25 = 32 neighborhood configurations
have been realized (not counting the initial grid)

• Undetermined

An obvious question is, how to characterize rules that are in one class for some initial
conditions and in another for others. We could actually just use a vector of three entries to
characterize a rule: the first entry describes the fraction of initial conditions that displayed
‘Type I’ behavior, the second ‘Type II’ behavior and the third ‘Type III’ behavior. With this
characterization, we could also study, if there actually exist rules that show Type I and Type
III behavior, but no Type II behavior - a result that would not really fit in the rule space
picture Langton is drawing. If such rules don’t exist, we could pragmatically also average
over the class values: ‘1’ for Type I, ‘2’ for Type II, ‘3’ for ’Undetermined’ and ‘4’ for ’Clearly
chaotic’. With this approach we might repeat (Quax, Chliamovitch, Dupuis, et al. 2017)
procedure to measure the mutual information between our finite time classification and the
set of information theoretic quantities including Synergy.
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B. Appendix for Part II

B.1. Comparison of our boundary-formation model to other models

Comparison to the Ising model

The Ising model fundamentally is an equilibrium model, whereas the CA model also describes
dynamics. To nevertheless compare both models, we choose Monte Carlo Updates for Ising
and random updates (i.e. only one cell at a time) for the cellular automaton.
For all possible grid configurations we need to compare transition probabilities. As the
interaction is local and only one site is changed at a time, it is sufficient to compare PIsing

−1→1 and

PCA
−1→1 for a configuration s such that sk(t) = −1 as well as PIsing

1→−1 and PCA
1→−1 for sk(t) = 1.

P−1→−1 and P1→1 follow as one minus the checked ones.
Concretely we can pose the following question: if it is possible to find a noise distribution for
the cellular automaton s.t. the Ising MC-update probability PIsing

−1→1 = PCA
−1→1 , can PIsing

1→−1 =

PCA
1→−1 also be fulfilled?

For the Ising model with an MC updating scheme: Choose a random site k in state sk:
If r ∝Uni[0,1] < P = Min

[
1, exp

(
−∆E

T

)]
: flip state,

with kB set to 1, and Uni[0,1] referring to the uniform distribution within the Interval [0, 1]
and

∆E = ∆H (sk(t + 1), sk(t))

= −J ∑
j∈N (k)

(sk(t + 1)− sk(t)) sj(t) ,

with

H = −J ∑
⟨i,j⟩

sisj − ∑
i
(gxi + c)si .

For the CA model choose a random site k
If signal(k) + noise(n, k) > a: remain respectively switch ON,
with signal(k)= ∑

j∈V(k)
sj + km

⇔ if noise(n, k) > − ∑
j∈V(k)

sj + km : sk(t + 1) = 1

A comparison to the Ising model with MC updates suggests that if there exists a probability
distribution noise(n, k) such that Ising corresponds to CA then it also exists for 0 external
field and J = 1 and vice versa.
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Let us start with the actual comparison.
Assume sk = −1, then for the Ising model

PIsing
−1→1 =

exp
(
−∆E

T

)
for ∆E > 0

= 1 for ∆E < 0

=


exp

(
−
−2 ∑j∈V(i) sj

T

)
for − ∑

j∈V(i)
sj > 0

= 1 for − ∑
j∈V(i)

sj < 0

In case of the CA noise(n, k) is a random number r, r ∝ f (r) implying

PCA
−1→1 = P

r > − ∑
j∈V(i)

sj

 =

∞∫
−∑j∈V(i) sj

r f (r)dr

This form suggests the choice of an exponential distribution:

PCA
−1→1 =


exp

(
−
−2 ∑j∈V(i) sj

σ

)
for − ∑

j∈V(i)
sj > 0

= 1 for − ∑
j∈V(i)

sj < 0

Consequently PCA
−1→1 = PIsing

−1→1. But as PCA
−1→1 = PCA

1→1 and PIsing
1→1 = 1 − PIsing

−1→1 the transition

probabilities PCA
1→1 and PIsing

1→1 cannot coincide.

Comparison to Hillenbrandt et al.

The linear form of the morphogen gradient signal is due to interpreting the signal to be the
logarithm of the actual morphogen molecule concentration, which is commonly assumed
to be approximately exponentially decaying. This choice of interpretation is inspired by
(Hillenbrand, Gerland, and Tkačik 2016)s work showing a one to one correspondence between
gene regulation by a Hill type thermodynamic model and a Boltzmann distribution, if the
logarithm of the exponential morphogen profile contributes to the Hamiltonian as a linear
external field, as we will discuss below. Note that the additive noise Ng on the global signal
consequently maps to fluctuations proportional to the morphogen molecule concentration
representing extrinsic noise on the morphogen molecule concentration.
First, we explain the biological Hill-type gene regulation model we want to map to, then we
explain how this is achieved in a simplified version of (Hillenbrand, Gerland, and Tkačik
2016)s work. I.e. the thermodyamic Hill-type gene regulation is mapped to a Bolzmann
distribution representing internal noise in the system. Finally we compare this work to the
system studied in the main text with the result that both models share the same external noise,
but our system has no internal noise in that sense.
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Thermodynamic Hill-type gene regulation For simplicity let use a 1 dim grid and denote
by σ(x) = ±1 the state of a cell at position x in order to comply with notation used in
(Hillenbrand, Gerland, and Tkačik 2016). In the Hill type thermodynamic model of gene
regulation, we have

P(σ(x) = 1) =
c(x)ñ

c(x)ñ + K̃ñ
, (B.1)

with c(x) the morphogen concentration at x, ñ the number of binding sites to the promoter
that have to be occupied simultaneously in order to trigger gene expression and K̃ñ = koff

kon
the

promoter affinity [Alon 2019, An Introduction to Systems Biology Design, A.3].

(Hillenbrand, Gerland, and Tkačik 2016) model For an equilibrium thermodynamic system
in an external field represented by the morphogen concentration and nearest neighbor
interaction, we have

Qθ (⃗σ) =
1

Zθ
exp (−βHθ (⃗σ)) , (B.2)

with θ a set of parameters and

Hθ (⃗σ) = −
N

∑
x=1

h(m(x))σ(x)− J
N−1

∑
x=1

σ(x)σ(x + 1), (B.3)

and h(x) = n(m(x)− E).
Now comes the crucial step: if we assume that m(x) = log(c(x)), then ’there is an exact
mathematical relation between the probability that the patterning gene is ON, P(σ(x) = 1)
and the Hill-type thermodynamic model of regulation for a gene σ. [...] it is easy to show that
the parameters n and E relate the bias h(x) to the morphogen signal m(x) in our model up to
a multiplicative factor, to ñ and log(K̃).’ (Hillenbrand, Gerland, and Tkačik 2016).

For J = 0 it follows that

PIsing, J=0(σ(x) = 1) =
exp (βh(m(x)))

exp (βh(m(x))) + exp (−βh(m(x)))
using the Ansatz h(m(x)) = n (log(c(x))− E)

=
e−βnEc(x)βn

e−βnEc(x)βn + eβnEc(x)−βn

=
c(x)2nβ

c(x)2nβ + e2nβE .

Setting ñ = 2nβ and log(K) = E, it follows that PIsing, J=0 = PHill.
Note that this mapping has not taken the external noise on the gradient into account, i.e. that
the morphogen concentration is subject to multiplicative Gaussian noise. This noise is con-
sequently an additive Gaussian noise on the signal, log(m(x)), caused by the morphogen m(x).
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Comparison to Morphogen Only model discussed in the main text For the cellular au-
tomata though, i.e. the Gradient only version without correction mechanisms, this external
noise is the only noise we consider. The internal noise is neglected and we assume a sharp
threshold rule corresponding to Hill type regulation in the limit ñ → ∞.
For the CA we have

P(σ(x) = 1) =
∞∫

a−mx

N
(

n; µ = 0, Var =
η2

3

)
dn . (B.4)

This expression is in general different from a Boltzmann distribution.
|
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