
Technical University of Munich

Department of Mathematics

Master’s Thesis in Mathematics

Discontinuous Galerkin Schemes for Dispersive

Non-Hydrostatic Shallow Water Equations

Discontinuous-Galerkin-Schemata für dispersive, nicht

hydrostatische Flachwassergleichungen

Author David Jonathan Schneller
Supervisor Prof. Dr. Hans-Joachim Bungartz
Advisors M. Sc. Leonhard Rannabauer, M. Sc. Lukas Krenz
Date of Submission March 15, 2022

Eidesstattliche Erklärung

Ich versichere, dass ich diese Masterarbeit selbstständig verfasst und nur die angegebenen
Quellen und Hilfsmittel verwendet habe.

I confirm that this Masters’s thesis is my own work and I have documented all sources
and material used.

Place / Date / Signature

iii

Abstract

We consider the H-BMSS-γ system published in [Escalante et al., 2019]. It is a shal-
low water-like system which captures non-hydrostatic pressure effects. In addition to
that, it is a non-conservative hyperbolic system. We consider two types of solutions to
the H-BMSS-γ system: firstly, we look at a solitary wave, for which we suggest better
values for the constants compared to the already existing solutions. Secondly, we com-
pute the solution to Riemann Problem without bathymetry, but also in the dry case.
Furthermore, we implement a numerical discretization of the H-BMSS-γ system using
both a finite volume method, and an ADER-DG (Adaptive DERivative Discontinuous
Galerkin) method. The ADER-DG method which we implemented uses an additional
a posteriori limiter with our finite volume method, in order to handle discontinuities
better. We also construct four well-balanced fluxes for said system, and compute a Roe
average matrix. Finally, we show experimentally that our scheme observes the Resting
Lake Property, the convergence of it to reference solutions. Additionally, we verify that
it conforms to our two solutions to the H-BMSS-γ system.

Keywords: ADER-DG, BMSS, H-BMSS, Riemann Problem, Solitary Wave, sam(oa)²

Zusammenfassung

Wir betrachten das H-BMSS-γ-System, welches in [Escalante et al., 2019] veröffentlich
wurde. Es ist ein Flachwasser-artiges Gleichungssystem, welches nicht hydrostatis-
che Druckeffekte einfängt. Zudem ist es ein nicht konservatives, hyperbolisches Sys-
tem. Wir betrachten zwei Typen von Lösungen zum H-BMSS-γ-System: Erstens be-
trachten wir ein Soliton, für welches wir bessere Konstanten vorschlagen, als diese
in bestehenden Lösungen verwendet werden. Zweitens berechnen wir die Lösung des
Riemann-Problems ohne Bathymetrie, aber auch im trockenen Fall. Zudem implemen-
tieren wir eine numerische Diskretisierung des H-BMSS-γ-Systems mit sowohl einem
Finite-Volumen-Schema, also auch mit der ADER-DG-Methode (Abkürzung für Adap-
tive DERivative Discontinuous Galerkin). Die ADER-DG-Methode, so wie wir sie imple-
mentiert haben, benutzt einen zusätzlichen a posteriori angewandten Finite-Volumen-
Limiter, um Unstetigkeiten besser behandeln zu können. Zusätzlich konstruieren wir vier
gut ausgeglichene, numerische Flussfunktionen und berechnen eine Roe-Matrix. Zuletzt
zeigen wir experimentell, dass unsere Implementierung die Ruhige-See-Bedingung einhält
und dass die berechneten Lösungen zu Referenzlösungen konvergieren. Ebenfalls veri-
fizieren wir, dass unsere zwei berechneten Lösungen zum H-BMSS-γ-System korrekt
simuliert werden.
Schlüsselwörter: ADER-DG, BMSS, H-BMSS, Riemann-Problem, Soliton, sam(oa)²

v

Acknowledgments

I thank the Almighty God, and my parents for their continuous support not only through
this thesis, but also during all of my higher education. Moreover, I would like to thank
my advisors and my supervisor for their help and assistance with any questions I had
while writing this thesis, and for many helpful discussions which I had with them. Fur-
thermore, my thanks go to the Hanns Seidel Foundation (Hanns-Seidel-Stiftung) for
their financial support, funded by means from the Federal Ministry of Education and
Research (Bundesministerium für Bildung und Forschung).

vii

Contents

Contents ix

1 Introduction 1
1.1 Notation and Basic Definitions . 2

2 The Governing Equations 3
2.1 Structure of the Equations . 6

2.1.1 Special Cases . 6

2.1.2 Derivation of the Model . 8

2.2 Basic Properties . 9

2.2.1 Re-Writing in Vector Notation . 10

2.2.2 Rotational Invariance . 12

2.2.3 Steady States . 12

2.2.4 Eigenstructure and Hyperbolicity 13

2.3 Solitary Waves . 16

2.3.1 Solitary Wave Solution for the BMSS system 16

2.3.2 Solitary Wave for the Governing Equations 17

2.3.3 Evaluation . 23

2.4 Handling Non-Conservativity . 23

2.4.1 DLM Path Theory . 28

2.4.2 The Riemann Problem . 34

2.5 Examining the Riemann Problem . 39

2.5.1 Examining the Characteristic Fields 40

2.5.2 The Rankine-Hugoniot Conditions 44

2.5.3 Constructing the Intermediate States 51

2.5.4 Special States . 56

2.5.5 Computing a Solution . 58

2.5.6 Evaluation . 59

2.6 Reformulations of the Equation System 62

2.6.1 Formulation in Primitive Variables 66

2.6.2 Conservative Re-Formulation . 66

3 Numerical Discretization 69
3.1 Geometric Setting . 69

3.1.1 Spatial Setting . 69

3.1.2 Time Discretization . 70

ix

CONTENTS

3.1.3 Choice of Basis . 70

3.2 Finite Volume Discretization . 72

3.2.1 Finite Volume Part . 72

3.2.2 Source Term . 73

3.2.3 Combining Flux and Source Term 74

3.3 The Numerical Flux . 74

3.3.1 Examining the Approximate Flux 76

3.3.2 Roe Averages . 76

3.3.3 Path-Independent Fluxes . 80

3.3.4 DOT Flux . 83

3.4 Boundary Conditions . 83

3.5 The ADER-DG Method . 84

3.5.1 Predictor Step . 85

3.5.2 Corrector Step . 89

3.5.3 Limiter . 93

3.5.4 Projection Initial Conditions . 95

3.5.5 Timestepping . 95

4 Implementation in sam(oa)² 99
4.1 An Introduction to sam(oa)² . 99

4.1.1 General Structure of sam(oa)² . 99

4.1.2 The Mesh . 100

4.1.3 The SFC Traversals . 101

4.2 Implementation of the Governing Equations 103

4.2.1 Scenarios . 103

4.2.2 ADER-DG Implementation . 104

4.2.3 Generating Matrices . 107

4.2.4 Implementation of Numerical Fluxes and Quadrature Evaluation . 107

4.3 Further Extensions . 108

5 Evaluation 109
5.1 Test Setup . 109

5.2 Well-Balancedness Tests . 110

5.2.1 Vacuum Scenario . 110

5.2.2 Resting Lake Scenario . 111

5.2.3 Almost Resting Lake Scenario . 111

5.2.4 Resting-Lake with Island . 111

5.3 Solitary Wave . 117

5.3.1 Running the Solitary Wave . 117

5.3.2 Convergence Test in sam(oa)² . 119

5.4 Riemann Problems . 120

5.4.1 One-Dimensional Riemann Problems 123

5.4.2 Two-Dimensional Riemann Problems 125

x

CONTENTS

6 Summary 141

References 143

List of Figures 149

List of Tables 151

List of Algorithms 153

xi

1 Introduction

This work stems from the fundamental search after good fluid dynamics models for use
cases where two-dimensional effects dominate. We want the model to capture dispersive
effects, complicated bathymetry and pressure-related effects well, and it should be com-
putationally simple at the same time. For example, taking models like the Navier-Stokes
equations or just the Euler equations in three dimensions are be accurate enough, but it
is usually computationally hard to use them. Or on the other hand, the shallow water
equations which read without bathymetry

∂th+∇ · (hu) = 0,

∂t(hu) +∇ · (huuT) +∇
(g
2
h2
)

= 0,
(1.0.1)

are computationally comparably easy to solve and form a hyperbolic system. Here, h
is the water height and u is the horizontal velocity vector. However, the shallow water
equations do not capture non-trivial pressure-related effects. This is because they assume
the pressure to be hydrostatic, i.e. only dependent on the water height [3]. To overcome
these problems, a system with an additional non-hydrostatic pressure contribution has
been introduced by [3]. It is constructed in the same way as the shallow water equations
are, that is by depth-averaging the Euler equations. The pressure is decomposed into a
hydrostatic and a non-hydrostatic part. The non-hydrostatic pressure is coupled with
the vertical velocity, and both become new variables we have to consider. However,
since the system includes a divergence-free condition, we lose the hyperbolicity in the
process. Thus, the system becomes computationally more difficult. In [15], a hyperbolic
system is proposed which relaxes the system from [3] by coupling the divergence-freedom
constraint with an evolution equation the non-hydrostatic pressure. The objective of this
is to obtain divergence freedom as time goes on. An artificial wavespeed c controls how
close the system [15] is to the original, non-hyperbolic system. While the new system
is hyperbolic, the equation for the non-hydrostatic pressure contains a non-conservative
part which makes the analysis and the construction of numerical fluxes more difficult.

Given this hyperbolic system, we look in Chapter 2 at two kinds of one-dimensional
solutions to it: first of all, we consider solitary waves, i.e. we introduce a similarity
variable (x − t) and solve the resulting system to obtain a quasi-exact solution. While
this was already done in [15], the derivations provided there did not work and contained
multiple errors in the formulas. Thus we re-do the work and correct some mistakes
and propose new, more correct values for the parameters. Secondly, we look at the
Riemann Problem, that is the equation as a Cauchy problem in a single dimension with
discontinuous initial conditions. This requires some additional theory, including the so-

1

1 Introduction

called DLM Paths [35, Definition 2.1], in order to deal with the non-conservative part
that is present in the new system.
Next, in Chapter 3, we discretize the system from [15] using both a Finite Volume and

the so-called Adaptive DERivative Discontinuous Galerkin (ADER-DG) method [11].
The ADER-DG method solves the time integration by a fixed-point iteration which is
done locally on each element, named the predictor step. After that, the data from the
neighboring elements is taken into account, in the so-called corrector step. In order to
make this method work for discontinuous data, we employ an a posteriori finite volume
limiter which uses the previously-constructed finite volume method for the system. In
addition, we construct and implement four numerical fluxes for the system. While [15]
uses a Rusanov flux and an unnamed PVM method [6], we implement a Roe average
matrix and the Roe method[36], as well as the DOT flux [13] and the HLL flux [6].
In Chapter 4, we implement the system from [15] using the ADER-DG and Finite

Volume discretizations in sam(oa)²[32, 40], that is, in a two-dimensional setting. In
addition, we gain immediate support of OpenMP and MPI through this implementation.
Finally, we evaluate our implementation in sam(oa)² in Chapter 5, and experimentally

confirm that our solution converges. In addition, we test and verify the correct behavior
with respect to our previously-calculated solutions for the solitary wave and the Riemann
Problem. Lastly, we summarize our achievements in Chapter 6 and close with remarks
on future work.

1.1 Notation and Basic Definitions

We use lower-case non-bold letters to denote scalar variables and scalar functions, e.g.
f, g. For vector-valued functions, we use bold letters, e.g. u,v. Bold letters with sub-
script are also used for left and right state vectors which are not functions. The element-
wise product of vector-valued functions is written as

u⊙ v. (1.1.1)

We use ∂x to denote the partial derivative operator with respect to the variable x.
The gradient ∇ = (∂x1 , ..., ∂xd

)T is the vector of partial derivatives w.r.t. the space
directions x1, ..., xd. Moreover, we denote the scalar product in Rd by a dot (e.g. u · v).
Subsequently, the divergence of a function u can be written as ∇·u. By DF , we denote
the Jacobian of a function F .

To write that a function f is equal to a constant c everywhere, we write f ≡ c.
For curves, we use the letters Ψ and Φ, or other uppercase greek letters. The curve

integral of a function F : RN → RM×N over an almost everywhere differentiable curve
ϕ : [a, b] → RN is written as

∫

ϕ
F(z) dz :=

∫ b

a
F(ϕ(s))ϕ′(s) ds ∈ RM . (1.1.2)

If not defined otherwise, we denote the dimension by d, e.g. if we say we consider the
case d = 2, we mean that we consider the two-dimensional case.

2

2 The Governing Equations

The equation which system we consider in this work is originally described in [15]. As
done in [16], we will call it H-BMSS-γ.

We will first explain how the equation system is built. The actual construction process
from the Euler equations using depth-averaging is briefly described in Section 2.1.2, and
also in [3, Sections 2, 3]. In particular, we look at depth-averaged variables in the
following description. Firstly, we have the mass conservation equation

∂th+∇ · (hu) = 0, (2.0.1)

where h(t, x) is the water height, and u(t, x) is the horizontal velocity vector. Sec-
ondly, we couple it with a conservation of momentum equation which is written without
bathymetry influence as

∂t(hu) +∇ · (huuT) +∇(hpT) = 0. (2.0.2)

Note that we have d equations in (2.0.2) at the same time. Here, d denotes the space
dimension, excluding the vertical axis. Thus, we have u = (u) in the one-dimensional
case (d = 1), and u = (u, v)T in the two-dimensional case (d = 2). pT is the pressure
which is decomposed into a hydrostatic, and a non-hydrostatic component

pT =
g

2
h+ p. (2.0.3)

Only the non-hydrostatic component needs a variable on its own which we name p(t, x).
The gravitational acceleration is denoted by g > 0. If we had p ≡ 0, we would get the
shallow water system. This equals the absence of non-hydrostatic pressure. In addition,
we would have (d+1) equations for (d+1) unknowns, h and hu. But because we assume
that p ≡ 0 does not hold in general, we now still need to close the equation system. Thus,
we need to specify the behavior of p. We couple it with the vertical velocity variable
w(t, x) which is a scalar, unlike u. It is logical to take a new conservation of vertical
momentum equation for w, but we allow p to contribute to w as a source term. We
obtain

∂t(hw) +∇ · (huw) = γp. (2.0.4)

Here, γ ≥ 0 is a parameter which controls the strength of the influence of p onto w. To
close the equation system, we additionally impose that the velocities (uT , w)T in both
horizontal and vertical directions are divergence-free (see the remark near [3, eq. (40)]).
After depth-averaging, this gives us the condition

w +
h

2
(∇ · u) = 0. (2.0.5)

3

2 The Governing Equations

Combining all these four equations gives us the so-called BMSS-γ system.1 However,
the divergence-free condition (2.0.5) gives us a non-hyperbolic system which makes it
computationally more difficult to solve.
To circumvent this, as suggested in [15], we look at (2.0.2) again. This time insert pT

(2.0.3) to obtain for a parameter c > 0

(
∂t(hu) +∇ · (huuT) +∇

(
1

2
gh2
))

+ c2∇
(

1

c2
hp

)
= 0. (2.0.6)

The approach is now re-interpret (hp/c2) as a correction term for the divergence con-
straint (2.0.5), and c2 as Lagrange multiplier. In addition, we couple the system with
an evolution equation for (hp/c2) which includes (2.0.5), given as2

1

c2
(∂t(hp) +∇ · (hup)) = −2

(
w +

h

2
(∇ · u)

)
. (2.0.7)

This equation becomes a mass conservation equation for (hp), iff (2.0.5) is fulfilled. Thus,
c ≥ 0 controls the relation the two equations in (2.0.7) are combined. In [15], c is chosen
to be c2 = α2gH, for α ≥ 0 being a real number (it is suggested to take α > 1), and
H ≥ 0 a reference water height level. Reformulating (2.0.5) by using the product rule
(to be able to write it in conservative variables, at least when it comes to derivatives)
gives

−(u · ∇)h+∇ · (hu) = −2w. (2.0.8)

Thus, we get for (2.0.7) the equation

∂t(hp) +∇ · (hu(p+ c2))− c2(u · ∇)h = −2c2w. (2.0.9)

Combining (2.0.1), (2.0.2), (2.0.4), (2.0.9), adding bathymetry and terms for friction and
wave breaking, we obtain the system which is handled in this work. It reads

∂th+∇ · (hu) = 0,

∂t(hu) +∇ · (huuT) +∇
(g
2
h2 + hp

)
= −(gh+ γp)∇b− τb(h,u),

∂t(hw) +∇ · (huw) = γp+Rb(U,∇U),

∂t(hp) +∇ · (hu(p+ c2))− c2(u · ∇)h = 2c2(u · ∇)b− 2c2w.

(2.0.10)

In [15], this system is written in one dimensions [15, eqs. (4), (8)] and two dimensions
[15, eq. (16)]. The only additional variable that is new in this system is the bathymetry
b(x). It is constant over time, so we could add the equation

∂tb = 0 (2.0.11)

1The name BMSS appears in [16] for γ = 2, and it is named after the authors of [3]. But since [3] also
publishes the whole family of equations, we decided to name the whole family of systems BMSS-γ.

2This choice stems from [15]. Other choices are possible, see [9], but they may not lead to a hyperbolic
system.

4

to the equation system and write b(t, x) to be dependent on time. The paper [15] uses
H as a variable for −b instead. In addition, we have the new parameter γ ≥ 0 which
controls the influence of the pressure onto the velocity. Depending onto which value γ
is set, we obtain a different model.
Given all these definitions, we define the vector of conservative variables

U =

h
hu
hw
hp
b

. (2.0.12)

It effectively works as a short-hand notation and will be used in the following on many
occasions. In addition, we have the vector of primitive variables

UP =

h
u
w
p
b

. (2.0.13)

Next, we have the two additional terms τb and Rb. They are not required for the
model itself to work, but they give them additional features. The friction term τb is
given as

τb(h,u) =
n2mg

h1/3
(|u| ⊙ u), (2.0.14)

using the point-wise vector multiplication symbol. nm is the bottom friction coefficient
has to be determined experimentally. The wave-breaking mechanism is defined as

Rb(U,∇U) =

{
2eB

(
∇·(hu)
B1

√
gh

− 1
)
h |∇ · (hu)| (w − (u · ∇)b) if |∇ · (hu)| ≥ B2

√
gh

0 else
(2.0.15)

For the wave breaking, we need two additional parameters: B1 is the wave breaking start
parameter. In [15], it is chosen as B1 = 0.5. B2 is the wave breaking end parameter, and
we require B1 > B2. In [15], it is chosen as B1 = 0.15. In addition, we define eB ∈ {0, 1}
as a switch to enable/disable the wave breaking. The rule used in [15] is to set eB = 1,
once |∇ · (hu)| ≥ B1

√
gh and set eB = 0, once |∇ · (hu)| < B2

√
gh. This is subsequently

re-evaluated at each time.
Finally, we impose to positivity conditions onto the system, namely the positivity of

water height which can be written as

h ≥ 0, (2.0.16)

as well as that the system has positive eigenvalues when writing it in matrix form. This
is achieved, if

C := gh+ p+ c2 ≥ 0. (2.0.17)

5

2 The Governing Equations

For hyperbolicity, we need C > 0, as we will see further below. Given these, we define
the hyperbolicity domain

Πd =
{
U ∈ Rd+4

∣∣∣ h > 0; gh+ p+ c2 > 0
}
. (2.0.18)

For d = 1, the equations without vector notation look as follows:

∂t

h
hu
hw
hp

+ ∂x

hu
hu2 + hp
huw

hu(p+ c2)

+

0
gh(∂xh+ ∂xb) + γp∂xb

0
−c2u(∂xh+ 2∂xb)

 =

0
−τb

γp+Rb(U,∇U)
−2c2w

 .

(2.0.19)

Throughout this work, we will often write the vector U with a subscript or diacritic,
e.g. U0, UL, UR, or Û. In these cases, the variable h0, refers to the first element of U0,
and (hu)0 to the second element of U0, and similarly for the others. This does sadly
create a small overload of notation, since UL and UR will usually refer to state vectors,
and not functions.3

2.1 Structure of the Equations

We will shortly highlight some aspects of the model, as they are also reported by [15].

2.1.1 Special Cases

Firstly, we consider some special cases, when setting the variables to specific values.
Some of them have already been mentioned, but we will look on how to get back to
them from (2.0.10).

Shallow Water Equations

If we set c = 0, w(0, ·) ≡ 0, and p(0, ·) ≡ 0, we retrieve the shallow water equations with
friction term and bathymetry: the hw equation becomes 0 since all its terms depend on
w. Additionally, the hp equation becomes 0, since all terms either depend on p or c.
Finally, we disable the wave-breaking term permanently. So we are left with:

∂th+∇ · (hu) = 0,

∂t(hu) +∇ · (huuT) +∇
(g
2
h2
)

= −gh∇b− τb.
(2.1.1)

In comparison to the introduction, this version of the shallow water equations contains
The shallow water equations form an important special case of (2.0.10), and they have
been studied and simulated in much more detail than the system we deal with here. For
a treatment of the shallow water equations, see e.g. [24, 37, 28].

3This is inspired by [15, eq. (20)], where that notation is used for the numerical flux.

6

2.1 Structure of the Equations

BMSS and Green-Naghdi System

Secondly, we may retrieve the system that the equation 2.0.10 is based on. That is, we
get back to the BMSS-γ system [15, eq. (1)] which is defined in [3, eq. (53)] and already
considered in the introduction to this chapter. In [16], it is called “BMSS” (if γ = 2) after
the initials of the authors of the paper [3], and Green-Naghdi if γ = 3/2 (see also [25,
eqs. (1.45), (1.46)] for the latter). For completeness, we will write the equation system
as a whole here. It is taken from [3, eq. (53)], but generalized to arbitrary dimensions.
The system reads

∂th+∇ · (hu) = 0

∂t(hu) +∇ · (huuT) +∇
(g
2
h2 + hp

)
= −(γp+ gh)∇b− τb

∂t(hw) +∇ · (huw) = −γp

∇ · u+
w − (u · ∇)b

h/2
= 0.

(2.1.2)

We may re-retrieve it from 2.0.10 in the limit, as mentioned in [15]. This is done by
sending c→ ∞. To do so, we divide the fourth equation by hc2 first, then we have

∂t(hp)

hc2
+

∇ · (hup)
hc2

+

(
∇ · u+

w − (u · ∇)b

h/2

)
= 0. (2.1.3)

And so, in the limit c→ ∞, we obtain again

∇ · u+
w − (u · ∇)b

h/2
= 0. (2.1.4)

Generalization of the Model

In addition to special cases, there is also an even more general formulation which aims
at capturing more different shallow-water-like models [16]. It reads

∂th+∇ · (hu) = 0,

∂t(hu) +∇ · (huuT) +∇
(g
2
h2 + hp

)
= −(gh+ 2(p− q))∇b− τb,

∂t(hw) +∇ · (huw − gh2ζ) + 2gh(ζ · ∇h) = 2(p− q) + κw,

∂t(hξ) +∇ ·
(
huξ − g

2
h2ζ
)
+ gh(ζ · ∇h) = q + κξ,

∂t(hp) +∇ · (hup) + γ1c
2(w + µh(∇ · u)) = γ1c

2µB ((u · ∇)b+ ∂tb) ,

∂t(hq) +∇ · (huq) + γ2c
2(ξ − βh(∇ · u)) = 0,

∂t(hζ) +∇ · (huζT) +∇
(
B

β
hξ

)
= 0.

(2.1.5)

Here, h is the water height, u is the horizontal velocity, w is the vertical velocity, and p
is the non-hydrostatic pressure, just an in [3] and [15]. ξ, q, and ζ are additional helper

7

2 The Governing Equations

variables. In particular, h,w, ξ, p, q are scalar-valued variables, and u, ζ are vector-
valued. 4 In addition, c, B, β, γ1, γ2, µB, and µ are all scalar constants. If β = 0, we
set B

β = 0. Furthermore, κ is a wave-breaking parameter similar to Rb [16, Section 3.2].
To retrieve (2.0.10) with γ = 2, we have to set B = 0, β = 0, γ1 = 2, γ2 = 0, µB = 2,

µ = 1, and ∂tb = 0 for all t.

2.1.2 Derivation of the Model

We will shortly outline how to get to the BMSS-γ system. The derivation process for this
system is shown in [3] (different derivation processes are shown in [16], or [25]). Since
it is described in detail there, we will only sketch it shortly in one dimension. While
the introduction to this chapter already intuitively motivated on how to construct the
equations, we will look into the actual process on how the equations were obtained in
the paper [3].

Depth Averaging

We begin with the Euler equations which are integrated in the vertical direction, and
averaged. This means that we have given at each position the bathymetry b(x), and our
water level η(x). Based on this, we can define the density

φ(x, z) =

{
1 −b(x) ≤ z ≤ η(x)
0 otherwise

(2.1.6)

as well as the depth-dependent variables U(x, z) (horizontal velocity), W (x, z) (vertical
velocity) and P (x, z) (pressure). Our model variables are then derived as

h =

∫

R
φ(z) dz =

∫ η

b
1 dz = η − b (2.1.7)

and

u =

∫ η
b U(z) dz

h
, w =

∫ η
b W (z) dz

h
, pT =

∫ η
b P (z) dz

h
(2.1.8)

In addition, we impose the kinematic boundary conditions at both the water surface and
the bottom. This means

∂tb+ Ub(∇ · b)−Wb = 0, (2.1.9)

∂tη + Uη(∇ · η)−Wη = 0. (2.1.10)

Here, Ub(x) = U(x, b(x)) and Uη(x) = U(x, η(x)), Wb and Wη are defined like-wise. We
assume ∂tb = 0.

4In [16], the system (2.1.5) is only derived for d = 1, so that u and ζ are also scalar-valued. However,
for d > 1, naturally u is a vector. In addition, w and p are also scalar by construction. ζ is introduced
to decompose the Laplace operator, so that B∆η = B(∇ ·∇η) = ∇ · ζ. Naturally, ζ must be vector-
valued as a result and have the same dimension as u. The variables ξ and q are both scalar-valued
as well.

8

2.2 Basic Properties

Pressure Decomposition

In contrast to the shallow water equations, the pressure P is decomposed into a hydro-
static and a non-hydrostatic component:5

P (z) = g(η − z) + Pnh(z) (2.1.11)

The first addend is the hydrostatic part, the second addend the non-hydrostatic pressure.
We subsequently define

pT :=

∫ η
b P (z) dz

h
(2.1.12)

Expanding this gives:

hpT = g

(
η(η − b)− η2 − b2

2

)
+

∫ η

b
Pnh(z) dz =

gh2

2
+ hp (2.1.13)

Inserting (2.1.11) into the depth-averaged system and integrating by parts, we also get
terms of the form

Pnh,η − Pnh,b = Pnh(· , η(·))− Pnh(· , b(·)) (2.1.14)

which have to be given a meaning, since they depend on the vertical position.

Energy Minimization

The third step is to minimize the depth-averaged energy from the Navier-Stokes system,
i.e. we minimize ∫

R
φ

(
U(z)2 +W (z)2

2
+ gz

)
dz (2.1.15)

w.r.t. U and W . Solving that yields us that U and W should be constant in z. All that
is left now is to choose a value for Pnh,η − Pnh,b, such that an additional energy balance
law is fulfilled, see [3, Proposition 1]. Thus, we get to the choice

Pnh,η − Pnh,b = γp (2.1.16)

with γ = 2. This is in fact the only place, where γ appears, and it is the only parameter
we have to vary to get different models, e.g. [3, eqs. (49), (50)]. This gives us (2.1.2).

2.2 Basic Properties

Next, we discuss some simple properties of the equation system (2.0.10).
However, we will note that we do not discuss the general well-posedness for (2.0.10)

in this work at all, since it was unfortunately out of scope. For a discussion of well-
posedness discussions in the context of DG methods, we refer e.g. to [10].

5Actually, we would have the atmospheric pressure pa as a third component. However, we assume
pa = 0.

9

2 The Governing Equations

2.2.1 Re-Writing in Vector Notation

Firstly, we introduce an additional notation for the equation system, just as it is done in
[15]. We begin by fixing a space dimension d ∈ {1, 2}. Higher space dimensions would
be possible, but they will probably not make any physical sense. After fixing d, we use
the following form:

∂tU+∇ · F(U) +B(U) · ∇U = S(U,∇U). (2.2.1)

Here, again we have the vector of conservative variables given as

U =

h
hu
hw
hp
b

, (2.2.2)

and we also have included b into it, since we can just add ∂tb = 0 as equation to (2.0.10),
in order to get a system which contains all variables. For given x ∈ Rd and t ∈ [0,∞),
we have U(t, x) ∈ Rd+4, since u(t, x) ∈ Rd. The gradient ∇U is understood as (shown
for d = 2)

∇U =

(
∂xU
∂yU

)
. (2.2.3)

Then, we define for each space direction i, the functions F = (F1, ...,Fd), and B =
(B1, ...,Bd). In particular, for all i, we have Fi : Πd → Rd+4, and Bi : Πd →
R(d+4)×(d+4). In both cases, we needed to restrict the area of definition to h > 0,
since we are dealing with primitive variables as well. They both read in vector notation,
where ui is the i-th component of u,

Fi(U) =

hui

h(uui + pI)
hwui

h(p+ c2)ui

0

, (2.2.4)

and

Bi(U) =

0 0 0 0 0
ghI 0 0 0 (gh+ γp)I
0 0 0 0

c2ui 0 0 0 2c2ui

0 0 0 0 0

. (2.2.5)

Note that in particular that each Bi is linear in the primitive variables h,u, w, p. The
source term S : Πd ×Πd → Rd+4 reads

S(U,∇U) =

0
τb(h,u)

γp+Rb(U,∇U)
−2c2w

 . (2.2.6)

10

2.2 Basic Properties

Given F and B, we write the multiplication with a vector v ∈ Rd as

F · v :=
d∑

i=1

Fivi (2.2.7)

B · v :=
d∑

i=1

Bivi (2.2.8)

For the scalar product with the gradient, we write in accordance to what we wrote above

B(U) · ∇U =
d∑

i=1

Bi(U)∂iU. (2.2.9)

Here ∂i denotes the partial derivative in the i-th cardinal direction.
We may now define A = (A1, ...,Ad) component-wise as

Ai(U) = DFi(U) +Bi(U) (2.2.10)

where DFi denotes the Jacobian matrix of Fi. The product A · v and A(U) · ∇U(U) is
defined like-wise. For the matrix A(U) without bathymetry, we write A∗(U). We close
with some examples for small d. In particular, for d = 1, we obtain

A∗
1(U) =

0 1 0 0
gh− u2 2u 0 1
−uw w u 0

−(c2 + p)u c2 + p 0 u

 . (2.2.11)

For d = 2, we have

A∗
1(U) =

0 1 0 0 0
gh− u2 2u 0 0 1
−uv v u 0 0
−uw w 0 u 0

−(c2 + p)u c2 + p 0 0 u

, (2.2.12)

and

A∗
2(U) =

0 0 1 0 0
−vu v u 0 0

gh− v2 0 2v 0 1
−vw 0 w v 0

−(c2 + p)v 0 c2 + p 0 v

. (2.2.13)

For A1 in d = 1, we have

A1(U) =

0 1 0 0 0
gh− u2 2u 0 1 γp+ gh
−uw w u 0 0

−(c2 + p)u c2 + p 0 u −2c2u
0 0 0 0 0

. (2.2.14)

11

2 The Governing Equations

2.2.2 Rotational Invariance

Next, we want to discuss and simplify a particular special case, namely one-dimensional
problems. This section is inspired by [43, Chapter 3]. Suppose that we are given a
normal vector n ∈ Rd, so that it holds ∥n∥2 = 1. Then, suppose that R ∈ SO(d) is a
rotation matrix, so that we have Rn = e1, where e1 is the first unit vector. Define then
T ∈ R(d+4)×(d+4) as

T =

1 0 0 0 0
0 R 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

. (2.2.15)

The goal of this section is to replace (A ·n) by applications of T and T T = T−1 and A1.
In particular, we want to ignore Ai for i > 1, because this simplifies many operations
computationally. We get the following result.

Proposition 2.1 (Rotational Invariance). It holds for all U ∈ Rd+4 that

T TF1(TU) = F(U) · n (2.2.16)

T TB1(TU)T = B(U) · n (2.2.17)

T TA1(TU)T = A(U) · n (2.2.18)

We will only mention the main idea here. It is to consider the rows concerning h, hw,
hp, and b separately from the rows concerning hu. The rows of h, hw, hp, and b depend
linearly on u, while the rows of hu are the sum of a term that is quadratic in u and a
term that does not depend on u.

2.2.3 Steady States

Next, we consider steady states, that is, initial states for which we have ∂tU = 0 in
time. Mainly, we consider two of them (as mentioned in [36, eqs. (5.88), (5.89)]), both
of which our equation conforms with, as the following definition and proposition show.

Definition 2.2 (Two Steady States). Suppose that we have one of the following initial
conditions:

• Dry/Vacuum Condition: U(0, ·) ≡ 0

• Resting-Lake Condition (also called C-Property [25]): η(0, ·) ≡ const, and u(0, ·) ≡
0, w(0, ·) ≡ 0, p(0, ·) ≡ 0.

Then U(t, x) = U(0, x) for t > 0 is a solution of the equation.

Proposition 2.3. Equation (2.0.10) fulfills both the Dry and the Resting-Lake Condi-
tion.

12

2.2 Basic Properties

Proof. For the vacuum condition: we note that inserting U0 = 0 into the equation
immediately gives ∂tU = 0.
For the resting-lake condition: inserting the initial conditions u = 0, w = 0, and p = 0

into (2.0.10) gives for all five terms

∂tU+ 0 +

0
∇(12gh

2)
0
0

 =

0
−(gh)∇b

0
0

+ 0. (2.2.19)

Next, since by the chain rule we get ∇(12gh
2) = gh∇h, we get the relation

gh∇(h+ b) = gh∇η = 0. (2.2.20)

Hence, we get ∂tU = 0.

2.2.4 Eigenstructure and Hyperbolicity

In the following, we will deal with the two-dimensional case d = 2, and we will ignore
bathymetry for now.
If C > 0, then A∗

1(U) is diagonalizable, and we get the following eigenvectors and
eigenvalues:

λ1 = u−
√
C, λ2 = λv = λw = u, λ3 = u+

√
C, (2.2.21)

r1 =

1

u−
√
C

v
w

p+ c2

, r2 =

1
u
0
0

−gh

, r3 =

1

u+
√
C

v
w

p+ c2

, rv =

0
0
1
0
0

, rw =

0
0
0
1
0

. (2.2.22)

The eigenvalues, when ordered, fulfill

λ1 ≤ λ2 = λv = λw ≤ λ3. (2.2.23)

For d = 1, λv and rv disappears, and the third component is erased in all remaining
eigenvectors. Other than that, nothing changes compared to the eigenvectors that are
written for d = 2. If C = 0, we lose the hyperbolicity: then u is the only eigenvalue, and
r1 = r3 = r2 + vrv + wrw. This leaves us with an eigenspace of dimension 3.
Note in particular that r1 and r3 do not correspond with the eigenvalues presented

in the paper [15, eq. (10)], nor are they a scalar multiple of them: the last component
of the corresponding vectors r1 and r3 in [15, eq. (10)] is 0. Since both the eigenspaces
associated with λ1 and λ3 are one-dimensional, there is no possibility that the vectors
could still be linearly dependent. We should also note that our computation of r1 and r3
conforms with the special case of taking the shallow water equations, where p+ c2 = 0,
hence

√
C =

√
gh. By that, the second component of r1 becomes u − √

gh, and r3
becomes u +

√
gh respectively. In comparison to that, [15, eq. (10)] yields 0 for the

second component in this case, and only a non-zero value, if p+ c2 ̸= 0 and w ̸= 0.

13

2 The Governing Equations

Characteristic Fields

Next, we may examine the characteristic field associated with each eigenvector (cf. Def-
inition 2.17). For this, we compute

∇λ2,v,w = ∇
(
hu

h

)
=

1

h

−u
1
0
0
0

, ∇λ1,3 =

1

h

−u± gh−p

2
√
C

1
0
0

± 1
2
√
C

. (2.2.24)

Then, we compute ∇λi · ri for all i = 1, 2, 3 and i = v, i = w. This gives us:

∇λ2 · r2 = ∇λv · rv = ∇λw · rw = 0 (2.2.25)

And as long as C > 0, we have

∇λ1,3 · r1,3 = −u± gh− p

2
√
C

+ u± C ± p+ c2

2
√
C

= ±2C + gh+ c2

2
√
C

̸= 0 (2.2.26)

since gh + c2 ≥ 0. So, the characteristic fields associated with λ2, λv, λw are linearly
degenerate, while the fields associated with λ1 and λ3 are genuinely nonlinear.

Adding Bathymetry

Next, we examine the matrix A1 which includes the bathymetry component. It turns
out that the eigenvalues and eigenvectors of A∗

1 are also eigenvalues and eigenvectors
of A1, when adding a 0 in the b-component. In addition, we get a new eigenvalue and
eigenvector

λb = 0, rb =

2c2 + gh+ γp
0(

2c2 + gh+ γp
)
v(

2c2 + gh+ γp
)
w

2c2u2 + gh(p− c2) + γp(p+ c2)
u2 − C

. (2.2.27)

As we see immediately by λb = 0, the associated characteristic field is linearly degenerate.
For the hyperbolicity, the cases λi = 0 = λb for i = 1, 2, 3 are of interest.

• If λ1 = λ6, or λ3 = λb, (and C > 0) we get u2 = C. Thus, the last component of
rb becomes 0. As a result, the system loses its hyperbolicity, since rb can now be
represented as a linear combination of r1, r2, r3, rv, rw.

• If λ2 = λv = λw = λb, but C > 0, then we get u = 0. Yet, we do not lose the
hyperbolicity, since the last component of rb is still not equal to zero. Therefore,
it is not linearly dependent to r2, rv, rw.

14

2.2 Basic Properties

• If C = 0 and u = 0, then all eigenvalues conflate: we once again get that the
eigenspace has only dimension 3, since we especially also have λ1 = λ3 = λb.

Subsequently, if our system is hyperbolic, we have u2 ̸= C. Then, we may re-parametrize
rb to

r̃b =

2c2+gh+γp
u2−C

0
2c2+gh+γp

u2−C
v

2c2+gh+γp
u2−C

w
2c2u2+gh(p−c2)+γp(p+c2)

u2−C

1

. (2.2.28)

About Hyperbolicity

Since we now have all of these results, we can prove the hyperbolicity of the system in
arbitrary dimensions, and with bathymetry. The following proposition is similar as it is
shown in [43].

Proposition 2.4. The system (2.2.1) is hyperbolic (when ignoring S) at U, as long as
C > 0 and ∥u∥22 ̸= C. This means that for such U, and all normal vectors n ∈ Rd (i.e.
∥n∥2 = 1), we have that

A(U) · n (2.2.29)

is diagonalizable with real eigenvalues.

Proof. Let n ∈ Rd be a normal vector, and R and T be defined as in the section about
rotational invariance (Section 2.2.2). By Proposition 2.1, we obtain

A(U) · n = T TA1(TU)T. (2.2.30)

In addition, we have shown that A1(TU) is in fact diagonalizable, since C > 0, and
u2 ̸= C. At least we have shown this for d = 2, but the result can be generalized: all
other dimensions behave like v in A1 then. Since R is a rotation matrix, we have that
(Ru)1 = ∥u∥. So, let D(U), R(U) be matrices, so that D(U) is diagonal and R(U) is
invertible (they both exist, since A1(TU) is diagonalizable), and

A1(U) = R(U)D(U)(R(U))−1. (2.2.31)

And thus, we obtain

A(U) · n = T T (R(TU))D(TU)R(TU)−1T

= (T TR(TU))D(TU)(T TR(TU))−1.
(2.2.32)

This shows thatA(U)·n is diagonalizable for all n, and thus the system is hyperbolic.

Furthermore, the same technique makes it possible for us to say something about the
maximal eigenvalue of A · n.

15

2 The Governing Equations

Proposition 2.5. If C > 0 and ∥u∥2 ̸= C for U, then we have that

λmax(U) = max
∥n∥2=1

∥A(U) · n∥2 = ∥u∥2 +
√
gh+ p+ c2. (2.2.33)

Here, ∥A(U) · n∥2 denotes the maximal singular value of (A(U) · n).

Proof. We again apply Proposition 2.1. For clarity, let Rn and Tn be the rotation
matrices associated with the normal vector n. We get that

∥A1(TnU)∥2 = max{|λ1(TnU))| , |λ3(TnU))|} = |(Rnu)1|+
√
gh+ p+ c2, (2.2.34)

where the maximum singular value of A1(TU) conflates with the largest absolute eigen-
value, since A1(TU) is diagonalizable. Next, we take the maximum over all normal
vectors n ∈ Rd, and thus over all possible matrices T . Firstly, the maximum exists,
since Rd is finite-dimensional, so the unit circle is compact. Secondly, by the Cauchy-
Schwarz equation, we obtain (using that we set Rne

1 = n)

|(Rnu)1| =
∣∣(e1)TRnu

∣∣ =
∣∣nTu

∣∣ ≤ ∥n∥2 ∥u∥2 = ∥u∥2 . (2.2.35)

Equality is achieved on the unit circle, by the choice

n =
1

∥u∥2
u, (2.2.36)

given u ̸= 0 (otherwise we can take any normal vector we like). Thus, we obtain

λmax(U) = max
∥n∥2=1

∥∥T T
n A1(TnU)Tn

∥∥
2
= max

∥n∥2=1
∥A1(TnU)∥2 = ∥u∥2 +

√
gh+ p+ c2.

(2.2.37)

In particular, we may note that λmax is strictly monotonically increasing in h, p, and
∥u∥.

2.3 Solitary Waves

Next, we are concerned with deriving some stationary solutions which we will later-on
use as test cases.

2.3.1 Solitary Wave Solution for the BMSS system

Before we begin to derive such a system for (2.0.10), we mention the solitary wave
solution which was given for (2.1.2) in [3, eq. (69)] for arbitrary γ. We define

ξ =
x− cAt

l
, (2.3.1)

16

2.3 Solitary Waves

where A is the amplitude of the solitary wave, H is the assumed stillwater height. While
[3] also defines a convergence water height d, we will in this section assume that d = H
for simplicity. The re-scaling factor l is given as

l = H

√
2

γA
(A+H), (2.3.2)

as well as the wave propagation speed

cA =
l

H

√
γgA

2
=
√
g(A+H). (2.3.3)

Then, the solution reads as follows (cf. [3, eq. (69)])

h = H +A(sech(ξ))2

u = cA
h−H

h

w = −AcAH
lh

sech(ξ) sech′(ξ)

p =
Ac2AH

2

2l2h2

(
(2H − h)

(
sech′(ξ)

)2
+ hsech(ξ) sech′′(ξ)

)
.

(2.3.4)

2.3.2 Solitary Wave for the Governing Equations

A similar process can be done to obtain an at least quasi-exact solution for (2.0.10), as it
is done in Section 5.1.1 in [15]. However, the derivation done there contains (at least) two
errors in the relevant formulas which is why we will re-do this process in this work. We
assume nm = 0 and wave breaking to be disabled. Also, we consider a one-dimensional
plane, and we ignore bathymetry.

Next, we re-use the l as defined in the previous section6 which means that we use
(2.3.2). The parameter cA will be fixed later-on. It should be noted though that cA is
not the same parameter as c from (2.0.10). With all of that, we can define ξ as in (2.3.1).

Re-Derivation of the Solitary Wave ODE System

For that, we suppose that h, hu, hw, hp only depend on ξ. Therefore, we have

U(ξ) =

h(ξ)
hu(ξ)
hw(ξ)
hp(ξ)

 . (2.3.5)

6This is where the first error lies in [15]. This parameter is defined as l =
√

H(H +A), yet it is written

redundantly as H
√

(H +A)/H. Thus, we assume that this should actually mean l = H
√

(H +A)/A
which would give us the same as the l from [3] with γ = 2 as in (2.3.2).

17

2 The Governing Equations

For brevity, we write U′ = ∂ξU (just as in [15]). Then, we get the relations

∂xU = U′ · 1
l

(2.3.6)

∂tU = U′ · (−cA)
1

l
(2.3.7)

by the chain rule. Hence, we may re-write (2.2.1) to

1

l

(
−cAU′ +A(U)U′) = S

(
U,

1

l
U′
)
. (2.3.8)

This can in turn be rewritten to

(A(U)− cAI)U
′ = lS

(
U,

1

l
U′
)
, (2.3.9)

as written in the paper as well. Expanding A and S gives us the ODE system (again,
we have b′ ≡ 0)

(hu)′ − cAh
′ = 0

−u2h′ + 2u(hu)′ + (hp)′ + ghh′ − cA(hu)
′ = 0

−uwh′ + w(hu)′ + u(hw)′ − cA(hw)
′ = γpl

−uph′ + p(hu)′ + u(hp)′ + c2(hu)′ − c2uh′ − cA(hp)
′ = −2c2wl.

(2.3.10)

We have the initial conditions h(0) = H + A, and w(0) = 0. In addition, we impose
boundary conditions for ξ → ∞. So, we get7

h(ξ) → H

u(ξ) → 0

w(ξ) → 0

p(ξ) → 0.

(2.3.11)

Since we now have an under-determined system, we choose cA as our last free parameter.
It will be determined later on, but it will be not the same as in [15].

To begin with, we integrate the first equation to get

hu− cAh = Ch (2.3.12)

for some constant Ch. Inserting the asymptotic conditions for h and u, we obtain

Ch = −cAH, (2.3.13)

and thus we get an expression for hu. It reads

hu = cA(h−H). (2.3.14)

7This is the place where we set d = H. If not, we would have h → d here, according to [3].

18

2.3 Solitary Waves

This is the same expression as in [15, eq. (29)]. As an expression for u, we get immediately

u = cA

(
1− H

h

)
. (2.3.15)

Next, we use this and the first equation re-write the second equation in terms of h′ and
h. This gives us

−c2A
(
1− H

h

)2

h′ + 2c2A

(
1− H

h

)
h′ + (hp)′ + ghh′ − c2Ah

′ = 0. (2.3.16)

Now we put (hp)′ on one side to get

(hp)′ =

(
c2A

(
1− H

h

)2

− 2c2A

(
1− H

h

)
− gh+ c2A

)
h′, (2.3.17)

where we simplify

c2A

(
1− H

h

)2

− 2c2A

(
1− H

h

)
+ c2A = c2A

(
1− H

h
− 1

)2

= c2A
H2

h2
. (2.3.18)

Next, we integrate this term to get

hp+ Chp = −c2A
H2

h
− 1

2
gh2. (2.3.19)

Again, Chp is a constant. By looking at the case ξ → ∞, we get

Chp = −c2AH − 1

2
gH2. (2.3.20)

This gives us

hp = c2A

(
H − H2

h

)
+
g

2
(H2 − h2). (2.3.21)

This equation conforms with [15, eq. (30)]. For the third and the fourth equation, we
once again insert the first equation.

w(cA − u)h′ + (u− cA)(hw)
′ = lγp (2.3.22)

then we use the product rule on (hw)′ which reduces the equation to

h(u− cA)w
′ = lγp. (2.3.23)

Next, we have

h(u− cA) = h

(
cA − cA

H

h
− cA

)
= −cAH (2.3.24)

which in turn gives us

w′ =
−lγ
cAH

p. (2.3.25)

19

2 The Governing Equations

If we set γ = 2, we obtain the same expression as in [15, eq. (31)]. Lastly, we consider
the fourth equation. Re-writing it gives

−(p+ c2)uh′ + (p+ c2)(hu)′ + (u− cA)(hp)
′ = −2c2wl. (2.3.26)

Once again, we insert the relation between h and hu and obtain

(cA − u)(p+ c2)h′ + (u− cA)(hp)
′ = −2c2wl. (2.3.27)

Differentiating (2.3.21) hp and h gives us

(hp)′ =

(
c2A
H2

h2
− gh

)
h′. (2.3.28)

Inserting it into (2.3.27) yields

cA
H

h

(
c2 + p− c2A

H2

h2
+ gh

)
h′ = −2c2lw, (2.3.29)

and thus

h′ =
−2c2lh

cAH

(
c2 + p− c2A

H2

h2
+ gh

)−1

w. (2.3.30)

As the last step, we divide (2.3.21) by h to get

p = c2A

(
H

h
− H2

h2

)
+
g

2

(
H2

h
− h

)
, (2.3.31)

and insert it into (2.3.30) to finally get

c2 + p− c2A
H2

h2
+ gh = c2 + c2A

H

h
− 2c2A

H2

h2
+
g

2

(
H2

h
+ h

)
. (2.3.32)

This equation is almost as in [15], where it is written 2cA instead of 2c2A.
In summary, we get the following equation system.

h′ =
−2c2lh

cAH

(
c2 + c2A

H

h
− 2c2A

H2

h2
+
g

2

(
H2

h
+ h

))−1

w

w′ =
−lγ
cAH

p

h(0) = A+H

w(0) = 0

p = c2A

(
H

h
− H2

h2

)
+
g

2

(
H2

h
− h

)

u = cA
h−H

h

(2.3.33)

20

2.3 Solitary Waves

Comparison to the BMSS Solitary Wave Solution

If we let c→ ∞, we may retrieve a simpler system. In particular, we obtain

h′ =
−2lh

cAH
w

w′ =
−lγ
cAH

p

h(0) = A+H

w(0) = 0

p = c2A

(
H

h
− H2

h2

)
+
g

2

(
H2

h
− h

)

u = cA
h−H

h
.

(2.3.34)

In particular, the equation concerning h′ has become much simpler. Written differently,
we get the second-order ODE

h′′ =
−2γl2

c2AhH
2

(
c2A

(
H

h
− H2

h2

)
+
g

2

(
H2

h
− h

))
, (2.3.35)

with the initial conditions
h(0) = H +A,

h′(0) = 0.
(2.3.36)

Choice of cA

In [15], the parameter cA is set to
√
g(A+H). However, our calculations have shown

that this choice produces incorrect results. In the following, we will heuristically explain
why this is the case and derive an expression for cA that works for finite c.

For this, we may resolve (2.3.33) even further (the paper [15] ended its derivation at
(2.3.33)), by multiplying the equation for w′ and the equation for h′ with each other.
This gives us

γ

2hc2
p

(
c2 + c2A

H

h
− 2c2A

H2

h2
+

1

2
g(
H2

h
+ h)

)
h′ = ww′. (2.3.37)

The right-hand side can be integrated, since

(
1

2
w2

)′
= ww′. (2.3.38)

The left-hand side can be integrated as well, since p only depends on h, and so we have
an equation of the form (

1

2
w2

)′
= f(h)h′. (2.3.39)

21

2 The Governing Equations

where f can be represented as a Laurent sum.8 This means that there are coefficients
(an), so that

f(x) =

Nmax∑

n=−Nmin

anx
n. (2.3.40)

for some Nmin, Nmax. Thus, the antiderivatives of f possess a closed-form representation.
Take F to be any antiderivative of f (this ambiguity is resolved by the choice of Cw2

later). We get
1

2
w2 + Cw2 = F (h). (2.3.41)

Here, Cw2 is a constant which we determine so that we obey the conditions for ξ → ∞.
So, we set w = 0 and h = H to get

Cw2 = F (H). (2.3.42)

Finally, we may choose cA by enforcing the condition w(0) = 0 (and we lose all
dependence on γ by this). To fulfill this (in addition to all other conditions), we have
four possible choices. In particular, since we have w(0) = 0, we lose all dependence on
γ and l. We get

c2A,± = g(H +A) +
gA(A+H)

H

1

2
± 1

1 +
√

1 + 2gAH
c2(A+H)

 . (2.3.43)

If we require cA to be positive, and h to decrease in the positive ξ direction (and the
negative ξ therefore as well)9, we get to the choice

cA =
√
cA,− =

√√√√√g(H +A) +
gA(A+H)

H

1

2
− 1

1 +
√
1 + 2gAH

c2(A+H)

. (2.3.44)

For the limit of c → ∞, we get cA =
√
g(A+H) which equals (2.3.3), and it is also

the value given by [15]. However, if we were to use
√
g(A+H) with our finite values

of c, we would get a negative value for w2. This would result in w having a non-zero
imaginary component.

The difference between the different values for cA is seemingly only marginal: For
example, if we have A = 0.2, H = 1, and c = 5

√
gH, then we get cA ≈ 3.431603.

On the other hand, we have that
√
g(A+H) ≈ 3.431035. As we observe, the error

is smaller than 10−3. The difference becomes more noticeable for smaller c, since then
(2.0.10) and (2.1.2) differ more.

8We will not show the full expression of f here for brevity.
9This was determined empirically by experiments rather than formal calculations.

22

2.4 Handling Non-Conservativity

2.3.3 Evaluation

Lastly, we show some plots for the solitary wave, and compare it for different values
of c and cA. We used the formulation (2.3.33) to compute a quasi-exact solution using
the Python package scipy in version 1.8.0 [45], and there the scipy.integrate.solve_
ivp method with the DOP853 solver, though other solvers (both implicit and explicit,
including the RK45 solver) worked just as well – although here it really showed that the
solitary wave heavily depends on the numerical accuracy of all variables. Thus, we set
the relative numerical tolerance to 10−12 and the absolute numerical tolerance to 10−15.
With cA chosen as in (2.3.44), we get satisfactory results up to certain values of ξ (until
h < H, then the solution diverges). In all cases, we take ∆ξ = 10−3. We normalize
w.r.t. l, and so we plot l · ξ = x− cAt on the x-axis. Also, γ = 2 always.

In Figure 2.1, the results from [15] are reproduced. For this, we chooseH = 1, A = 0.2,
c = α

√
gH and α = 5. For this plot, we used a resolution of ∆ξ = 10−3, as well as the

cA we computed in (2.3.44). As it can be seen, the plots show the same function with
the same scaling as in [15, Figure 4-7]. In particular, [15, Figure 4] matches the plot
over h, [15, Figure 5] matches the plot over u, [15, Figure 6] matches the plot over w,
and [15, Figure 7] matches the plot over p.

Concerning the choice of cA, we observe: choosing cA too small lets the solution diverge
(this corresponds to the problem discussed in the previous section), and it crosses h = H
while having w ̸= 0. This is also what the solver produces when we choose

√
g(A+H).

The smaller cA, the larger w when h = H. If cA is too large, h = H cannot happen.
Instead, the solution oscillates between A +H and some value H̃ > H, and increasing
values of cA cause the period of the solution decreases. For example, this is the case
when we take

√
cA,+ from (2.3.43). See Figure 2.2 for a plot of different values of cA

for the same c. Whilst that, we have H = 1, A = 0.2, c = α
√
gH and α = 5, and

∆ξ = 10−3.

Figure 2.3 shows the error for α → ∞ w.r.t. (2.3.4) (where c = α
√
gH). As we can

see, the solution converges for α→ ∞ to (2.3.4). We also generated the plots for α = 1
or smaller, but these skewed the axes too much to be shown here. The error for h can be
explained by that we take (H+A) as initial condition for our quasi-exact solution. Then,
moving away from ξ = 0, we have an approximation error, and finally, the asymptotic
conditions become dominant. Similar behavior is seen for w, however, here we have
in addition the two extremal points of w. These do not only seem to lie at the same
position for all c, but also conform exactly to the extremal points of w from (2.3.4). In
total, the error is already smaller than 10−2 for both h and w here.

2.4 Handling Non-Conservativity

It is possible to write (2.2.1) with some functions F̃ = 0 and B̃ = A to ultimately get the
same equation – though the numerical discretization may differ dependent on how F̃ and
B̃ are used in a numerical method afterwards. But on the other hand, it is not possible
to get a representation where B̃ = 0, since we have a non-conservative component.

23

2 The Governing Equations

−20 −10 0 10 20

x− cAt

1.00

1.05

1.10

1.15

1.20

h

−20 −10 0 10 20

x− cAt

0.0

0.2

0.4

0.6

u

−20 −10 0 10 20

x− cAt

−0.10

−0.05

0.00

0.05

0.10

w

−20 −10 0 10 20

x− cAt

−0.15

−0.10

−0.05

0.00

0.05

p

Figure 2.1: Quasi-exact eproduction of the solitary wave shown in [15, Figure 4-7] using
an ODE solver. That is, we have H = 1, A = 0.2, c = α

√
gH and α = 5.

The quasi-exact solution was evaluated for ∆ξ = 0.001 (in between, we had
rtol = 10−12 and atol = 10−15).

24

2.4 Handling Non-Conservativity

−20 −15 −10 −5 0 5 10 15 20

x− cAt

0.4

0.6

0.8

1.0

1.2

1.4

h

cA =
√
cA,+ + 0.1 ≈ 3.8580

cA =
√
cA,+ ≈ 3.7580

cA =
√
cA,− ≈ 3.4316

cA =
√
g(H +A) ≈ 3.4310

cA =
√
g(H +A)− 0.1 ≈ 3.3310

Figure 2.2: Comparison of the quasi-exact solitary wave solution (or rather, the height)
for different values of cA. Here, cA,± is defined in (2.3.43). We also have
H = 1, A = 0.2, c = α

√
gH and α = 5. The quasi-exact solution was

evaluated for ∆ξ = 0.001 (in between, we had rtol = 10−12 and atol = 10−15).

25

2 The Governing Equations

−20 −15 −10 −5 0 5 10 15 20

x− cAt

0.0000

0.0005

0.0010

0.0015

0.0020

h
a
p
p
r
o
x
−
h
r
e
f

α = 3

α = 5

α = 10

α = 16

α = 100

−20 −15 −10 −5 0 5 10 15 20

x− cAt

−0.001

0.000

0.001

w
a
p
p
r
o
x
−
w
r
e
f

Figure 2.3: The error in h and w of the quasi-linear solution (2.3.33) w.r.t. the reference
solution for c → ∞. That is, (2.3.4) for different values of c = α

√
gH. We

have H = 1, A = 0.2, c = α
√
gH. The quasi-exact solution was evaluated

for ∆ξ = 0.001 (in between, we had rtol = 10−12 and atol = 10−15).

26

2.4 Handling Non-Conservativity

To quantify this, a framework which builds on path integrals has been introduced. We
will cite many definitions from [35] in this section for completeness, and since they are
useful for solving the Riemann problem.
For the scope of this section, we have the following definitions taken from [10]. We

define the Lp norms on some space with set A ⊆ RN which is supposed to be measurable
as

∥f∥Lp(A) =

(∫

A
|f(x)|p dx

) 1
p

(2.4.1)

for p ∈ [1,∞), and for p = ∞ as

∥f∥L∞(A) = ess sup
x∈A

(|f(x)|). (2.4.2)

Here f : A → R is assumed to be measurable w.r.t. the respective measures. We
additionally obtain the spaces

Lp(A) =
{
f : A→ RN

∣∣∣ ∥f∥Lp(A) <∞
}
. (2.4.3)

We need one further space definition. The BV norm is given as

∥f∥BV (A) =
N∑

k=1

sup

{∫

A
f∂kφ dx

∣∣∣∣ φ ∈ C∞
0 (A), ∥φ∥L∞(A) ≤ 1

}
, (2.4.4)

and so
BV (A) =

{
f : A→ R

∣∣∣ ∥f∥BV (A) <∞
}
. (2.4.5)

Subsequently, we also can define the product norm for f ∈ [Lp(A)]N or f ∈ [BV (A)]N

which maps from A to RN as

∥f∥[Lp(A)]N =

(
N∑

k=1

∥fk∥pLp(A)

) 1
p

, (2.4.6)

for p ∈ [1,∞) and for p = ∞ as

∥f∥[Lp(A)]N = max
k=1,...,N

∥fk∥L∞(A). (2.4.7)

Likewise, for matrices F ∈ [Lp(A)]N×N , we obtain

∥F∥[Lp(A)]N×N =

N∑

i,j=1

∥Fij∥pLp(A)

1
p

, (2.4.8)

for p ∈ [1,∞) and for p = ∞ as

∥F∥[Lp(A)]N×N = max
i,j=1,...,N

∥Fij∥L∞(A). (2.4.9)

27

2 The Governing Equations

2.4.1 DLM Path Theory

For the scope of this section, we will write

∥f∥L1 := ∥f∥[L1([0,1])]N , (2.4.10)

∥f∥L∞ := ∥f∥[L∞([0,1])]N . (2.4.11)

In particular, we obtain that for f : [0, 1] → RN we have

∥f∥L1 =

N∑

k=1

∥fk∥L1([0,1]) ≤
N∑

k=1

∥fk∥L∞([0,1]) ≤ ∥fL∞∥ . (2.4.12)

For G : [0, 1] → RN×N , we get by Hölder’s inequality that

∫ 1

0
G(s)f(s) ds ≤

N∑

j=1

∥Gjfj∥L1

=
N∑

i=1,j=1

∥Gijfj∥L1([0,1])

≤
N∑

i=1,j=1

∥Gij∥L∞([0,1]) ∥fj∥L1([0,1])

≤ N ∥G∥[L∞([0,1])]N×N ∥f∥L1 .

(2.4.13)

Here Gj denoted the j-th column of G.

We now begin with the main part. For that, we cite a small helper theorem.

Theorem 2.6 (Rademacher). Let Ω ⊆ RN be open, and let f : Ω → RM be Lipschitz
continuous. Then f is differentiable almost everywhere in Ω.

Proof. See [23, Theorem 3.1].

Next, we introduce the main definition (as found e.g. in [35, Definition 2.1]). DLM
stands for “DelMaso-LeFloch-Murat” which introduced this concept (cf. [18]).

Definition 2.7 (Admissible Paths / DLM Paths). Let Ω ⊆ RN be open. A map
Ψ[UL,UR]

Ψ : Ω× Ω → [C([0, 1])]N (2.4.14)

is called admissible, if it fulfills:

1. Ψ[UL,UR](0) = UL and Ψ[UL,UR](1) = UR.

2. For all [UL,UR] ∈ Ω× Ω, we have that Ψ[UL,UR] is (globally) Lipschitz contin-
uous.

28

2.4 Handling Non-Conservativity

3. For all bounded P ⊆ Ω, there is a constant CP > 0, such that for UL,UR ∈ P , we
have ∥∥Ψ′[UL,UR]

∥∥
L∞ ≤ CP ∥UL −UR∥ (2.4.15)

4. For all bounded P ⊆ Ω, there is a constant C ′
P > 0, such that for UL,UR ∈ P and

VL,VR ∈ P , we have

∥∥Ψ′[UL,UR]−Ψ′[VL,VR]
∥∥
L∞ ≤ C ′

P (∥UL −VL∥+ ∥UR −VR∥) (2.4.16)

In the definition, we get the existence of Ψ′[UL,UR] almost everywhere due to Theo-
rem 2.6. The exact choice of norm in the definition in properties 3 and 4 can be chosen
freely, since UL,UR are in a finite-dimensional space, and thus, we have norm equiv-
alence (and also, the exact values of CP and C ′

P are usually not important). For the
scope of this work, it suffices to look at piece-wise continuously differentiable paths.

Assumption 2.8. Let Ω ⊆ RN be open. For a family of paths Ψ[UL,UR] on Ω,
we assume in addition that Ψ[UL,UR] is piecewise C1 and continuous on [0, 1] for all
UL,UR ∈ Ω. This means that there are at most finitely many points, where Ψ[UL,UR]
is not C1.

Most likely, all the following results can be easily generalized to not needing Assump-
tion 2.8, using e.g. results from [23, Section 3]. However, we will not do that here. In
essence, the property that we require is that the Fundamental Theorem of Calculus can
be applied.

To begin with, we show why the definition is useful. We get for Ψ fulfilling Definition
2.7 and Assumption 2.8 by the chain rule that for the conservative part F of (2.2.1) we
have

D [F(Ψ[UL,UR](t))] = DF(Ψ[UL,UR](t))Ψ
′[UL,UR](t), (2.4.17)

and thus, by the Fundamental Theorem of Calculus, we obtain

∫ 1

0
DF(Ψ[UL,UR](t))Ψ

′[UL,UR](t) dt

= F(Ψ[UL,UR](1))− F(Ψ[UL,UR](0))

= F(UR)− F(UL).

(2.4.18)

and so for A:
∫

Ψ[UL,UR]
A(U) dU

=

∫ 1

0
(DF(Ψ[UL,UR](t)) +B(Ψ[UL,UR](t)))Ψ

′[UL,UR](t) dt

= F(UR)− F(UL) +

∫ 1

0
B(Ψ[UL,UR](t))Ψ

′[UL,UR](t) dt.

(2.4.19)

29

2 The Governing Equations

In the following, we are going to prove some simple results for convenience.10 Definition
2.7 and Assumption 2.8 implies that we have that Ψ[U,U] (for U ∈ Ω) is a constant
curve.

Lemma 2.9. Let Ψ be an admissible family of paths according to Definition 2.7 and
Assumption 2.8. Then it holds for all U ∈ Ω that for all t ∈ [0, 1]

Ψ[U,U](t) = U (2.4.20)

In particular, we get for all integrable F : Ω → RN×N that
∫

Ψ[U,U]
f(U) dU = 0 (2.4.21)

Proof. Let U ∈ Ω. By property 3 from Definition 2.7, we get if we set P = {U}, there
exists a CK , such that

∥∥Ψ′[U,U]
∥∥
L∞ ≤ CK ∥U−U∥ = 0. (2.4.22)

From that, we may infer directly for all integrable F : Ω → RN×N that
∫

Ψ[U,U]
F(U) dU =

∫ 1

0
F(Ψ[U,U](t))Ψ′[U,U](t) dt = 0. (2.4.23)

Thus, Ψ[U,U] is constant almost everywhere. To get that it is constant everywhere, we
use that it holds for all t due to Assumption 2.8 that

Ψ[U,U](t)−Ψ[U,U](0) =

∫ t

0
Ψ′[U,U](s) ds = 0. (2.4.24)

Thus, for all t > 0, we get

Ψ[U,U](t) = Ψ[U,U](0) = U. (2.4.25)

In addition, we obtain an easier-to-check condition, equivalent for Definition 2.7 and
Assumption 2.8.

Lemma 2.10. In Definition 2.7 and given Assumption 2.8, property 3 can be exchanged
for: for all U ∈ Ω we have

Ψ[U,U] ≡ U (2.4.26)

Proof. To see this, take a bounded set P , take UL,UR ∈ P , and apply property 4 onto
∥∥Ψ′[UL,UR]

∥∥
L∞

=
∥∥Ψ′[UL,UR]−Ψ′[UL,UL]

∥∥
L∞

≤ C ′
P ∥UR −UL∥ .

(2.4.27)

Here C ′
P > 0 was the constant from property 4. This is exactly property 3. The other

direction was proven with Lemma 2.9.

10We did not find these results in the literature we looked at.

30

2.4 Handling Non-Conservativity

For smooth paths, we obtain even easier conditions to check, similarly to when checking
the conditions for e.g. Picard-Lindelöf.

Corollary 2.11. Let Ω be open, and Φ[UL,UR] fulfills for all UL,UR ∈ Ω that:

1. Φ[UL,UR](0) = UL and Φ[UL,UR](1) = UR.

2. Φ[UL,UR](t) is continuously differentiable in t ∈ [0, 1].

3. For all U ∈ Ω, we have Φ[U,U] ≡ U.

4. (t,UL,UR) 7→ Φ′[UL,UR] is continuously differentiable w.r.t. UL and UR.

Then Φ[UL,UR] fulfills Definition 2.7, and Assumption 2.8.

Proof. (partially only sketched) By condition 2, Φ fulfills Assumption 2.8. Conditions
1 and 3 equal properties 1 and 3 from Definition 2.7 with Lemma 2.10. Condition 2
yields that Φ[UL,UR](t) is globally Lipschitz continuous, since its derivative w.r.t. t is
continuous, and thus bounded on [0, 1]. We only sketch how property 4 can be shown,
since it is technical and tedious, and therefore a detailed proof will be omitted here. For
P ∈ Ω bounded, its closure cl(P) which is compact. Thus, (t,UL,UR) 7→ Φ′[UL,UR] is
bounded in all three variables on [0, 1] × P × P . Then, we treat both the UL and UR

components separately, and look w.l.o.g. for UR at the function

T (s) = Φ′[W,U(1− s) +Vs](t). (2.4.28)

We apply the Mean Value Theorem onto vTT (s) for all v ∈ RN to obtain that there is
for each v a ξv ∈ (0, 1) for which

vT (T (1)− T (0)) = vTT ′(ξv). (2.4.29)

If we take v = T (1)− T (0), we obtain

∥T (1)− T (0)∥2 ≤ ∥T (1)− T (0)∥
∥∥T ′∥∥

∞ . (2.4.30)

Then, we can bound for some C > 0 which only depends on P that

∥∥T ′∥∥
∞ ≤ C ∥U−V∥ . (2.4.31)

Doing this for the UL component as well gives us property 4.

Next, we note that we also get an estimate for ∥Φ[UL,UR]−UL∥ from Definition 2.7
and Assumption 2.8.

Lemma 2.12. Let Ω be open, and Φ[UL,UR] fulfills Definition 2.7 and Assumption
2.8. Then, for P ⊆ Ω bounded, there is a constant CP > 0, such that for UL,UR ∈ P ,
we have for t ∈ [0, 1] the estimate

∥Φ[UL,UR](t)−UL∥ ≤ CP ∥UR −UL∥ . (2.4.32)

31

2 The Governing Equations

Proof. Let P be such a set, and UL,UR ∈ P . In addition, we get a CP by property 3
from Definition 2.7.
We have

UL = Φ[UL,UR](0). (2.4.33)

We obtain by the fundamental theorem of calculus, that we have

∥Φ[UL,UR](t)−UL∥

=

∥∥∥∥
∫ t

0
Φ′[UL,UR](s) ds

∥∥∥∥

≤
∫ 1

0

∥∥Φ′[UL,UR](s)
∥∥ ds

≤
∥∥Φ′[UL,UR]

∥∥
L∞

≤ CP ∥UL −UR∥ ,

(2.4.34)

where in the penultimate step, we used that the L1([0, 1]) norm is bounded above by
the L∞([0, 1]) norm, and in the last step, we used property 3.

Next, we look at the smoothness of the integrals with paths, with respect to their
endpoints.

Lemma 2.13. Suppose Φ fulfills Definition 2.7 and Assumption 2.8. Suppose we have
given f ∈ C(Ω,RN×N) is locally Lipschitz continuous, let UL,UR ∈ Ω. Define

IUL,f (UR) =

∫

Φ[UL,UR]
f(U) dU. (2.4.35)

Then IUL,f is differentiable at UR = UL, and we obtain

DIUL,f (UL) = f(UL). (2.4.36)

Similarly, we obtain that

JUR,f (UL) =

∫

Φ[UL,UR]
f(U) dU (2.4.37)

is differentiable for UR = UL and

DJUR,f (UL) = −f(UL). (2.4.38)

Proof. Let U ∈ Ω. Then we have P := B(U, ϵ) for ϵ > 0, so that f has the Lipschitz
constant L on P , and there is CP , so that property 3 from Definition 2.7 is fulfilled.
Let V ∈ P by arbitrary. To begin with, we note that If (U,U) = 0 by Lemma 2.9.
Subsequently, we may write

IU,f (V)− IU,f (U)− f(U)(V −U)

= IU,(f−f(U))(V).
(2.4.39)

32

2.4 Handling Non-Conservativity

Next, we use Lemma 2.12 with P , to get a constant C ′
P > 0 and

∥Φ[U,V](·)− Φ[U,V](0)∥L∞ ≤ C ′
P ∥U−V∥ . (2.4.40)

Applying Hölder’s inequality, and using the Lipschitz continuity, property 3, and using
that the norm of L1 is bounded from above by the L∞ norm, we obtain

∥∥IU,(f−f(U))(V)
∥∥

≤ N ∥f(Φ[U,V](·))− f(U)∥L∞

∥∥Φ′[U,V]
∥∥
L1

≤ LN ∥Φ[U,V](·)− Φ[U,V](0)∥L∞

∥∥Φ′[U,V]
∥∥
L∞

≤ (NLCPC
′
P) ∥U−V∥2 .

(2.4.41)

Thus, we get

∥IU,f (V)− IU,f (U)− f(U)(V −U)∥
∥V −U∥ ≤ (NLCPC

′
P) ∥U−V∥ . (2.4.42)

Sending ∥U−V∥ → 0 gives us the result. The result for JUR,f (UL) can be obtained
the same way, by swapping V and U, and subsequently reversing the sign.

Lastly, we are going to look at two examples for Definition 2.7. To begin with, we
define

P [UL,UR](t) = (1− t)UL + tUR. (2.4.43)

Firstly, we then have straight lines in conservative variables which is written

ΨC [UL,UR] = P [UL,UR]. (2.4.44)

Next, we have straight lines in primitive variables which read

ΨP [UL,UR] =

P [hL, hR]
P [hL, hR]P [uL, uR]
P [hL, hR]P [vL, vR]
P [hL, hR]P [wL, wR]
P [hL, hR]P [pL, pR]

P [bL, bR]

. (2.4.45)

The latter is of special interest, since then B is linear in primitive variables. However,
we need to restrict Ω to h > 0 for ΨP .

Corollary 2.14. ΨC fulfills Definition 2.7 and Assumption 2.8 on Ω = R6, and ΨP

fulfills Definition 2.7 and Assumption 2.8 on Ω = R+ × R5.

Proof. Apply Corollary 2.11, since both families of paths are just polynomials inUL,UR,
and t (therefore conditions 2 and 4 are fulfilled). Also, they are built out of linear paths,
so conditions 1 and 3 are fulfilled.

33

2 The Governing Equations

In the following sections, families of paths Φ (or Ψ) will appear, always for the six
variables h, hu, hv, hw, hp, b. Thus, we will from now on denote the first component of
Φ by Φh, the second component by Φhu, the third component by Φhv, and so on. We
also extend this to the primitive formulation, so Φu stands for

Φu =
Φhu

Φh
. (2.4.46)

The process is similar for the other primitive variables v, w, and p.
We will have to deal with integrals which are written in the form

∫

Φ[UL,UR]
fh(h, hu, hv, hw, hp, b) dh, (2.4.47)

or for all other variables. This is defined as
∫

Φ[UL,UR]
fh(h, hu, hv, hw, hp, b) dh

=

∫

Φ[UL,UR]

(
fh(h, hu, hv, hw, hp, b) 0 0 0 0 0

)
dU

=

∫ 1

0
fh (Φh(t),Φhu(t),Φhv(t),Φhw(t),Φhp(t),Φb(t)) Φ

′
h(t) dt,

(2.4.48)

where we wrote for brevity Φ = Φ[UL,UR]. In particular, we also obtain by Lemma
2.13 that

∂R

∫

Φ[UL,UL]
fh(h, hu, hv, hw, hp, b) dh = fh(hL, (hu)L, (hv)L, (hw)L, (hp)L, bL).

(2.4.49)
Here ∂R denoted the derivative by the second argument in Φ.

2.4.2 The Riemann Problem

Next, we want to consider the Riemann problem, and solve it for (2.0.10). Before we do
that, we recapitulate some general facts about the Riemann problem and its structure.

In general, the Riemann problem for some smooth function Â : Ω ⊆ RN → RN×N is
written as

∂tU+ Â(U)∂xU = 0

U(0, x) =

{
UL x < 0

UR x > 0,

(2.4.50)

so that the system is strictly hyperbolic. This means Â has the eigenvalues λ̂1 < ... < λ̂N ,
and eigenvectors r̂1, ..., r̂N . In particular, the Riemann Problem is a one-dimensional
problem11, hence we are able to talk about left-hand side and right-hand side states for

11There are more-dimensional extensions to the Riemann Problem, see e.g. [46].

34

2.4 Handling Non-Conservativity

which we write UL and UR. The Riemann Problem has been extensively studied, and
there is a vast literature to it. For example, one may look at [27] for an overview of
the conservative case (including proofs), or [24] on how to compute it. For reference,
and since we will look at the Riemann problem of (2.0.10), we will cite some results
for the non-conservative case, with a focus on computing the Riemann problem. As a
general guideline, everywhere in the formulas, where F̂(U) appears in the conservative
case, we need to handle the non-conservativity once it appears. Everywhere, where only
Â appears for the conservative case, we may copy the argumentation. In essence, the
problem and the structure stay the same as in the conservative case.

The main change is the definition of the weak solution. As in the conservative case
[27], we cannot expect the existence of classical solutions for all time anymore, but the
regular concept of weak solutions fail in the non-conservative case as well [18]. Instead,
we will use the adjusted concept of weak solutions which also works for non-conservative
systems (see e.g. [18]). However, these introduce more ambiguity in the form of that
we have to choose a family of paths which fulfills Definition 2.7. Assumption 2.8 is
not required in [18]. In total, we will speak here of Φ-weak solutions, where Φ is an
admissible family of paths in the sense of Definition 2.7. The following definition taken
from [34, eq. (2.2)] and [18, Definition 3.1, eq. (3.3)].

Definition 2.15 (Weak Solutions). A function U ∈ [L∞(R+ × R) ∩BV (R+ × R)]N is a
Φ-weak solution, if we have for all φ : R+×R → R which are continuously differentiable
with compact support12 that

0 =

∫

R+

∫

R
∂tφ(t, x)U(t, x) dx dt

+

∫

R+

∫

R
φ(t, x)Â(U(t, x))∂xU(t, x) dx dt

+
∑

k

φ(t, xk(t))

∫

Φ[U−
k ,U+

k]
Â(V) dV.

(2.4.51)

Here, xk(t) is the k-th discontinuity at time t > 0, and U+
k and U−

k denote the limits in
positive and negative direction towards xk(t) at time t, respectively. There are at most
countably many discontinuities at all times t > 0.

Only the third term is new in comparison to the conservative case, and it is the
only term which depends on the family of paths Φ. With Definition 2.15, we obtain a
generalized notion of the Rankine-Hugoniot conditions.

Lemma 2.16 (Generalized Rankine-Hugoniot Conditions). Suppose that U∗ is a Φ-weak
solution to (2.4.50). If we have a discontinuity at a point ξ with values UL and UR on
the left and right-hand side respectively, the generalized Rankine-Hugoniot conditions

12It is be very well possible to let φ map to RN instead, but this would give us the same definition just
with more vector notation.

35

2 The Governing Equations

must be satisfied. That is, we require for s ∈ R that
∫

Φ[UL,UR]
sI − Â(U) dU = 0. (2.4.52)

Proof. See the comment near [18], or [27] for a proof in the conservative case and a single
conservation law.

As a remark which is also mentioned in [18], we may write (2.4.52) as
∫

Φ[UL,UR]
Â(U) dU = s(UR −UL). (2.4.53)

For a conservative equation, i.e. A = DF, we get the classical Rankine-Hugoniot condi-
tions. Then, we have

F̂(UR)− F̂(UL) =

∫

Φ[UL,UR]
Â(U) dU = s(UR −UL). (2.4.54)

While we now have a generalized concept for weak solutions, we have the problem
that the weak solutions are not unique, since they were even not so in the conservative
case. An approach that is usually chosen to select a useful weak solution is the artificial
viscosity approach which we will also follow here. That is, we consider for ϵ > 0 the
system (see also [18])

∂tU+ Â(U)∂xU = ϵ∂x(E(U)∂xU)

U(0, x) =

{
UL x < 0

UR x > 0,

(2.4.55)

where E is smooth and matrix-valued (see e.g. [18]), and E(U) ≥ 0 for all U where
it is defined. This problem is then solved for ϵ > 0, yielding a Uϵ as solution. Then,
the limit of the Uϵ is taken for ϵ → 0 (for the conservative case, see [27], for the non-
conservative case [29]), and this is then declared to be our desired solution. We obtain,
in the conservative case, a certain solution structure which is handled in [27]. In the
non-conservative case, the dependency on paths unfortunately cannot be removed this
way, although some heuristic techniques exist [18]. But at least, we obtain a solution
structure for a given family of paths Ψ.
So now, we will discuss said solution structure. It is, up to the Generalized Rankine-

Hugoniot conditions, exactly the same as in the conservative case. For completeness, we
provide here a small overview. We begin with the well-known classification of character-
istic fields, as it can be seen in e.g. [27, eq. (5.3)].

Definition 2.17. The characteristic field associated to r̂k is called linearly degenerate,
if it holds everywhere on Ω that

∇λ̂k · r̂k = 0. (2.4.56)

It is called genuinely nonlinear, if we have on Ω that

∇λ̂k · r̂k ̸= 0. (2.4.57)

36

2.4 Handling Non-Conservativity

In addition, there is the notion of Riemann invariants (see e.g. [26, Definition 8.1]).

Definition 2.18. A function i is called a Riemann invariant to the field associated with
r̂k (or a k-Riemann invariant), if

∇i · r̂k = 0. (2.4.58)

In particular, λ̂k is a Riemann invariant, if the field of r̂k is linearly degenerate. We
can say even more about Riemann invariants, namely that there are at most N − 1
of them (for RN being the space dimension) whose gradients are linearly independent
[26, Theorem 8.1]. In addition, we also use the Lax entropy condition just as in the
conservative case (see e.g. [35, Definition 2.2] or [27, eq. (5.5)], or [21]) in order to achieve
an empirically “good” solution which is related to the artificial viscosity approach. In
addition to that, it is rather simple to check.

Definition 2.19 (Lax Entropy Condition). Suppose A has eigenvalues λ̂1 < ... < λ̂N .
For this definition, we also set λ̂0 = −∞ and λ̂N+1 = ∞. A Φ-weak solution U is called
entropic, if at each discontinuity with left and right states UL and UR, and Rankine-
Hugoniot shock speed s, there is a k = 1, ..., N , such that we have:

• If rk is genuinely nonlinear, then we have

λ̂k−1(UL) <s < λ̂k(UL)

λ̂k(UR) <s < λ̂k+1(UR).
(2.4.59)

• If rk is linearly degenerate, then we have

λ̂k(UL) = s = λ̂k(UR). (2.4.60)

Given all these definitions, we are able to consider three types of simple waves (cf.
[27]) from which we are able to build a solution. All of these can be written in the
similarity variable ξ = x/t.

• Centered rarefaction. Continuous variation though a single, no discontinuity.
Thus, we need to examine the characteristic field of r̂. As described in [27], the
idea is to use the variable transformation to ξ = x/t. Inserting this into (2.4.50),
we obtain

−1

t
ξ∂ξU+

1

t
Â(U)∂ξU = 0 (2.4.61)

which is solved for t > 0, iff ∂ξU is an eigenvector of Â(U). In particular, for λ̂(ξ)
being an eigenvalue, and r̂(ξ) being an eigenvector of Â(U), we obtain the relation
(see e.g. [27])

ξ = λ̂(U(ξ)), (2.4.62)

and also the relation
∂ξU = a(ξ)r̂(ξ), (2.4.63)

37

2 The Governing Equations

where a is a normalization factor. Suppose we are able to solve (2.4.63) for U,
yielding us a solution U∗. Then, we obtain for some ξL, ξR the weak solution

wr(ξ) =

UL ξ < ξL

U∗(ξ) ξL < ξ < ξR

UR ξR < ξ.

(2.4.64)

• Shock wave. A discontinuity, we have to check the Generalized Rankine-Hugoniot
conditions (2.4.52) for our choice of path. Once we have checked the conditions,
we obtain a shock speed s. Then, the solution is given by

ws(ξ) =

{
UL ξ < s

UR ξ > s.
(2.4.65)

• Contact Discontinuity. In this case, both the relation ∂ξU = a(ξ)r̂(U(ξ)), and the
Generalized Rankine-Hugoniot conditions hold. Since we get a discontinuity, we
once again obtain the solution

wc(ξ) =

{
UL ξ < s

UR ξ > s
, (2.4.66)

where s = λ̂ is the speed of the discontinuity which in this case equals λ̂ itself.

Finally, we are able to give an existence and uniqueness theorem for the solution structure
we want.

Theorem 2.20. Let Φ be a family of paths fulfilling Definition 2.7. Suppose that the
characteristic fields of Â are either genuinely nonlinear or linearly degenerate, and let Â
be strictly hyperbolic with eigenvalues λ̂1 < ... < λ̂N . Let UL,UR ∈ Ω. Then, given that
∥UL −UR∥ is small enough, the Riemann problem (2.4.50) has a unique Φ-weak solution
U∗ with bounded variation which which consists of (N+1) states UL = U0,U1, ...,UN =
UR which are connected by simple waves. In particular, we have for all k that Uk−1 and
Uk are connected by

• a centered rarefaction, if r̂k is genuinely nonlinear and Definition 2.19 fails to hold,

• a shock, if r̂k is genuinely nonlinear and Definition 2.19 holds, or

• a contact discontinuity, if r̂k is linearly degenerate.

Proof. This is shown in [27, Section 5] for the conservative case. For the non-conservative
case, it is cited as [34, Theorem 3.3] in the non-conservative case, and proof details for
a more general setting can be found e.g. [29], and a sketch in [18, Theorem 3.1]13. The
latter mentions that we only need to exchange the definition of shocks.

13The fourth assumption in [18, Theorem 3.1] is shown by Lemma 2.13, once Assumption 2.8 is fulfilled,
since then we have

∂URΨ
′[UL,UL](1)− ∂URΨ

′[UL,UL](0) = ∂UR

∫
Ψ[UL,UL]

I dU = I. (2.4.67)

38

2.5 Examining the Riemann Problem

If we from now on speak of a solution to the Riemann Problem, we speak of a solution
of this type.

2.5 Examining the Riemann Problem

Next, we look at the Riemann Problem for (2.0.10). To our knowledge, it has not been
solved before. The problem reads

∂tU+A1(U) · ∇U = 0

U(0, x) =

{
UL x < 0

UR x > 0

(2.5.1)

We may instead write (2.5) with regard to any other normal vector, since it is rotational
invariant. Most notably, the dependence on S is removed. In comparison to models
like the shallow water equations (2.1.1), this does alter our model. Hence the Riemann
problem does not completely describe all of (2.0.10) anymore. However, we may nullify
the effect of S (even when it is present) by setting nm = 0, disabling wave breaking, and
also w(0) ≡ 0 and γ = 0. The latter two ensure that w ≡ 0 over time, and thus there is
no contribution to the equation concerning p.

In this analysis, we will skip the bathymetry for now, and consider the eigenvectors
of A∗

1(U) instead. Information on how to potentially include the bathymetry in this
analysis as well could be most likely also taken from corresponding papers which deal
with the problems in the shallow water equations, see e.g. [28, 22]. From now on, we
assume that bL = bR for the rest of this section.

Next, we consider the subsystem r1, r2, r3 which contains the non-hydrostatic pressure-
velocity coupling and is subsequently the most complex to analyze. Scaled down, it reads

∂t

h
hu
hp

+ ∂x

hu
h(u2 + p)
hu(c2 + p)

+

0
gh∂xh

−c2u∂xh

 = 0 (2.5.2)

With the theory we recapitulated in the last section, we obtain the following solution
structure. Throughout this section, we will write CL := C(UL) and CR := C(UR).

Corollary 2.21. Given a family of paths Ψ which is admissible in the sense of Definition
2.7, The equation system (2.5.2) has, for initial states UL,UR which are close enough
with hL, hR > 0, and CL, CR > 0, a unique solution of the structure as described in
Theorem 2.20. In particular, there are two intermediate states UML and UMR, and we
have that

1. the field of r1 connects UL and UML through a genuinely nonlinear field (which
we call the “left genuinely nonlinear field”),

39

2 The Governing Equations

2. the field of r2 connects UML and UMR through a contact discontinuity (which we
call the “central contact discontinuity”),

3. the field of r3 connects UMR and UR through a genuinely nonlinear field (which
we call the “right genuinely nonlinear field”).

Proof. Follows directly from Theorem 2.20.

It should be noted that once we have the solution for the subsystem h, u, and p,
we immediately obtain the solutions for v and w, since they are just passive contact
discontinuities. Since λv = λw = λ2, we need v and w to switch values when the field
associated with r2 switches its value (since it is a contact discontinuity). This means
that we can simply set vML = vL and vMR = vR, and do the same for w.

Other than that, we will mostly deal with the subsystem concerning the equations
h, hu, and hp. The eigenvectors rv and rw play only a passive role—for the latter
especially, since we removed the source term. Nonetheless, we will include rv and rw
in the analysis in the following sections, just to show that they do not play a role in
the system r1, r2, r3. This section is therefore concerned with computing the values for
hML and hMR, and also uML, uMR and pML, pMR for a possibly large amount of possible
paths Ψ. In practice, we will consider mostly ΨC and ΨP .

In the following subsections, UL, UML, UMR, and UR denote state vectors from R5,
and not functions.

2.5.1 Examining the Characteristic Fields

From now on, we assume that hR, hL > 0 and CR, CL > 0.

We now begin with the analysis of the system, and we do so by examining the char-
acteristic fields.

The Contact Discontinuities

We start by discussing the Riemann invariants of the contact discontinuities. Again, the
fields associated with λv and λw, respectively, are only passive and only receive influence
of the h, u, p subsystem. Thus, we can give their Riemann invariants immediately. We
look at rv: we have the Riemann invariants h, hu, hw, and hp. For rw, we get h, hu,
hv, and hp.

Next, we look at the field associated with r2. Here, we have that i2,1 = λ2 = u is
constant which we checked in the last section. Also, we see that i2,2 = 1

2gh
2 + hp is

constant as well: since h′ = 1, integrating

(hp)′(ξ) = −a(ξ)gh(ξ) = (−gh)h′ (2.5.3)

gives

hp− h0p0 = −g
2

(
h2 − h20

)
(2.5.4)

40

2.5 Examining the Riemann Problem

and so

i2,2 = hp+
g

2
h2 = h0p0 +

g

2
h20 (2.5.5)

And indeed, inserting it gives

∇i2,2 · r2 = gh− gh = 0 (2.5.6)

One might notice that therefore, the whole characteristic field of λ2 can be understood as
an exchange between hydrostatic and non-hydrostatic pressure—while the total amount
of pressure times water height hpT is conserved. This gives us a generalized view onto the
shallow water equations, where the conservation of hpT conflates with the conservation
of h itself.

Centered Rarefaction Solution

This part follows roughly [24, 30], since in essence, these parts can be handled like the
respective procedure for the shallow water equations.

For the genuinely nonlinear fields r1 and r3, we begin by looking at the centered
rarefaction solutions. That is, we want to solve (a(ξ) is a normalization factor) the
ordinary differential equation

U′
1,3(ξ) = a(ξ)r1,3(U1,3)

U1,3(0) = U0.
(2.5.7)

Here, U0 is a given initial vector. Expanding the equation gives us

h′(ξ) = a(ξ)

(hu)′(ξ) = a(ξ)
(
u±

√
gh+ p+ c2

)

(hv)′(ξ) = a(ξ)v
(hw)′(ξ) = a(ξ)w
(hp)′(ξ) = a(ξ)(p+ c2),

(2.5.8)

and initial values

h(0) = h0
hu(0) = h0u0
hv(0) = h0v0
hw(0) = h0w0

hp(0) = h0p0.

(2.5.9)

In our case, it is convenient to switch to primitive variables first. So, exemplary done
for hu, we write

(hu)′ = h′u+ hu′ = au+ hu′. (2.5.10)

41

2 The Governing Equations

Here, a(ξ) is the normalization function from above. Thus, by solving for u′, v′, w′, and
p′ respectively gives us

h′(ξ) = a(ξ)

u′(ξ) = ± a
h

√
gh+ p+ c2

v′(ξ) = 0
w′(ξ) = 0
p′(ξ) = c2 a

h .

(2.5.11)

Next, we remove a by inserting the first equation into the other four. This yields the
system

u′(ξ) = ±h′

h

√
gh+ p+ c2

v′(ξ) = 0
w′(ξ) = 0

p′(ξ) = c2 h
′

h .

(2.5.12)

Now we may start solving the equations. To begin with, we get that v = v0, and w = w0

which give us two Riemann invariants, so v and w stay constant throughout both r1
and r3. Secondly, we also note that the equation for p′ does now not depend on p itself
anymore. So we integrate it to get

p(ξ)− p0 = c2 (log h(ξ)− log h0) . (2.5.13)

Note that we substituted with h on the right-hand side. Equivalently, re-writing it in
terms of h, we get

p(h) = c2 log

(
h

h0

)
+ p0. (2.5.14)

We also get a Riemann invariant re-writing it to

i1,1 = i3,1 = p− c2 log h = p0 − log h0. (2.5.15)

And indeed, we have that

∇i1,1 ·r1 =

−hp
h2 − c2

h
0
0
0
1
h

·

1(
u±

√
gh+ p+ c2

)

v
w

p+ c2

= −p
h
− c2

h
+

1

h
(p+c2) = 0. (2.5.16)

Furthermore, since u′ only depends on h and p, we get

u±(ξ)− u0 = ±
∫ h(ξ)

h0

√
gs+ p(s) + c2

s
ds

= ±
∫ h(ξ)

h0

√
gs+ c2

(
log
(

s
h0

)
+ 1
)
+ p0

s
ds.

(2.5.17)

42

2.5 Examining the Riemann Problem

Thus, we may write u dependent on h

u±(h) = u0 ±
∫ h

h0

√
gs+ c2

(
log
(

s
h0

)
+ 1
)
+ p0

s
ds. (2.5.18)

We can also (this is convenient when evaluating the integral) substitute the log inside
to get the term

u±(h) = u0 ±
∫ log h

log h0

√
get + c2t+ c2 (1− log h0) + p0 dt. (2.5.19)

Unfortunately, the integral cannot be integrated exactly anymore using elementary and
trigonometric functions, at least multiple CAS did not give a positive answer. Most
notably since we have the sum of linear, and an exponential term under the square
root. For reference, integrating g(x) =

√
log(x) gave a solution that already involved

an integral over ex
2
. Likewise for u±(h), we would get an integral over W (ex

2
) where

W is the Lambert function [8]. On the opposite, once g = 0 or c = 0, a closed-form
representation could be found.
However, it is important to note that u±(h) is cannot be defined anymore for all h > 0,

if we want u to have a value in R. While u±(h) is real for all h ≥ h0, we have that for
s→ 0, we have

gs+ c2
(
log

(
s

h0

)
+ 1

)
+ p0 → −∞, (2.5.20)

and hence u(h) is not real anymore. If we define CU0(h) as

CU0(h) = gh+ c2
(
log

(
h

h0

)
+ 1

)
+ p0, (2.5.21)

we obtain the following result.

Lemma 2.22. Given g > 0, and an initial state U0 with h0 > 0, CU0 is strictly
monotonically increasing. In particular, there is a unique value hlow = C−1

U0
(0) for h, so

that for h < hlow, we have that A∗
1(U) has imaginary eigenvalues, and for h = hlow, the

matrix A∗
1(U) has only three eigenvalues.

Proof. Calculating the derivative gives us the result. It is given as

C ′
U0

(h) = g +
c2

h
> 0. (2.5.22)

Therefore C ′
U0

(h) is strictly montononically increasing.

Thus, we need to restrict the area of definition of u±(h) to [C−1
U0

(0),∞). (we allow the
corner case, where we lose hyperbolicity, since u(h) is perfectly valid there) For p(h), we
get that (0,∞) can be chosen for the area of definition.

43

2 The Governing Equations

2.5.2 The Rankine-Hugoniot Conditions

Next, we look at the Rankine-Hugoniot conditions. Essentially, we proceed similarly
to [24, 30, 43]. Also, this is the only place, where we are actually required to evaluate
paths. We begin with (2.4.52), and then we do the variable transformation û = u − s,
and Û = (h, hû, hv, hw, hp, b)T . We still assume bL = bR for now. Given û, we can
re-write the first equation

s(hR − hL) = hRuR − hLuL (2.5.23)

to
hRûR = hLûL. (2.5.24)

This can be done for the other equations as well, although for

s(hRuR − hLuL) = hRu
2
R − hLu

2
L +

g

2

(
h2R − h2L

)
+ hRpR − hLpL, (2.5.25)

we additionally need to use that

ûR − ûL = uR − uL. (2.5.26)

Transforming all equations, we obtain

hLûL = hRûR

hLû
2
L + hLpL +

g

2
h2L = hRû

2
R + hRpR +

g

2
h2R

hLûLvL = hRûRvR

hLûLwL = hRûRwR

hLûL(pL + c2) = hRûR(pR + c2)− c2
∫

Φ[UL,UR]
û dh.

(2.5.27)

We now assume ÛL to be known, and ÛR is unknown. In addition, we may switch ÛL

and ÛR and get the same equations for the other variable. Just as in [43], we use the
abbreviation

Q := hLûL = hRûR (2.5.28)

which lets us re-write the other conditions (all but the first) as

QûL + hLpL +
g

2
h2L = QûR + hRpR +

g

2
h2R

QvL = QvR

QwL = QwR

QpL = QpR − c2
∫

Φ[UL,UR]
û dh.

(2.5.29)

We also removed c2Q from the fourth equation on both sides. What will happen any
further depends on Q and the family of paths we choose for the remaining integral. In
the following, we need to distinguish the cases Q = 0 and Q ̸= 0.

44

2.5 Examining the Riemann Problem

Choice of Paths

Next, we will discuss some simple choices for the path integral, so that we may resolve
the equation concerning p. In order to cover a larger possible family of paths, we just
put together all assumptions we need to solve the problem in an easy way. So, we make
the following assumption on Φ.

Assumption 2.23. Given a family of paths Φ defined for CR, CL > 0 and hR, hL > 0,
there is a function pΨ(hL, hR), so that we obtain

QpΨ(hL, hR) =

∫

Φ[UL,UR]
û dh. (2.5.30)

In addition, we require if Q ̸= 0, that

1. pΨ(hL, hR) is continuously differentiable in both arguments

2. pΨ(hL, hR) is strictly monotonically decreasing in the first argument, strictly mono-
tonically increasing in the second argument

3. We have that pΨ(hL, hR) = −pΨ(hR, hL) for all hR, hL > 0

4. The function

qΨ(hL, hR) :=
hRpΨ(hL, hR)

hR − hL
(2.5.31)

is strictly monotonically increasing in hR for hR > 0 and hR ̸= hL.

For brevity, we will write ∂RpΨ(hL, hR) for ∂hR
pΨ(hL, hR), and for hL likewise.

Given Assumption 2.23, we can rewrite the fourth equation as

0 = Q(pR − pL − c2pΨ(hL, hR)). (2.5.32)

The last assumption assures that we may freely swap hL and hR.
We also get the following results for families of paths which have such a function pΨ

from Assumption 2.23.

Lemma 2.24. Suppose Q ̸= 0, and pΨ is the function from Assumption 2.23. Then, we
obtain for all h > 0 that

pΨ(h, h) = 0 (2.5.33)

∂hR
pΨ(h, h) =

1

h
(2.5.34)

∂hL
pΨ(h, h) = −1

h
. (2.5.35)

Proof. This follows directly from Lemmas 2.9 and 2.13 and the definition of pΨ from
Assumption 2.23. In particular, we have that by h > 0 we obtain

∂RpΨ(h, h) =
û

Q
=

Q

Qh
=

1

h
. (2.5.36)

(alternatively, two of the three statements could be obtained from the Assumption
2.23 by pΨ(hL, hR) = −pΨ(hR, hL), without even touching Lemma 2.9)

45

2 The Governing Equations

It remains to give some families of paths which fulfill Assumption 2.23. Namely, we
firstly discuss taking linear paths for h and hu, i.e. we take ΨC . Secondly, we discuss
taking linear paths for h and u; i.e. we take ΨP . Both will only matter for Q > 0.

For ΨC , we get by the fact that Q = hLûL = hRûR that we obtain

hû(t) = (hu)(t)− sh(t) = hLûL(1− t) + hRûRt = Q (2.5.37)

Thus, the path for hû is constant Q over the whole path. Therefore, we get
∫

ΨC [UL,UR]
û dh

=

∫

ΨC [UL,UR]

hû

h
dh

= Q(log(hR)− log(hL))

(2.5.38)

We emphasize that we really needed here that h and hu followed the same path.
For ΨP , we compute

∫

ΨP [UL,UR]
û dh

=

∫ 1

0
(uL + t(uR − uL))(hR − hL)− s(hR − hL) dt

=
((uR + uL)− 2s)(hR − hL)

2

=
(ûR + ûL)(hR − hL)

2
.

(2.5.39)

Given that hR, hL > 0, we may insert Q = hLûL = hRûR.

(ûR + ûL)(hR − hL)

2

= Q

(
1
hR

+ 1
hL

)
(hR − hL)

2

= Q
h2R − h2L
2hRhL

(2.5.40)

In total, we obtain the following result. Note that if Q = 0, the exact value of pΨ does
not matter anymore.

Proposition 2.25. Both ΨP and ΨC fulfill Assumption 2.23. We obtain the functions

pP (hL, hR) := pΨP
(hL, hR) =

h2R − h2L
2hRhL

, (2.5.41)

and
pC(hL, hR) := pΨC

(hL, hR) = log(hR)− log(hL). (2.5.42)

From now on, we will use pΨ and therefore assume that Assumption 2.23 holds for the
family of paths we chose.

46

2.5 Examining the Riemann Problem

Shock Solution: Q ̸= 0

We continue now with the analysis of the Rankine-Hugoniot conditions. If Q ̸= 0 in the
Rankine-Hugoniot conditions, we get vR = vL, wR = wL. Secondly, we get

ûR =
Q

hR
, ûL =

Q

hL
. (2.5.43)

This is the case, since hL, hR > 0 has to hold by Q ̸= 0. With that, we may re-write the
first equation as

Q2

hL
+ hLpL +

g

2
h2L =

Q2

hR
+ hRpR +

g

2
h2R. (2.5.44)

We reformulate this further to

Q2

(
1

hL
− 1

hR

)
= hRpR − hLpL +

g(h2R − h2L)

2
, (2.5.45)

and after some more manipulations, we get to

Q2 = hLhR

(
g
hR + hL

2
+
hRpR − hLpL
hR − hL

)
. (2.5.46)

In addition, we recapitulate our re-written fourth equation which reads now

QpL = QpR −Qc2pΨ(hL, hR). (2.5.47)

Dividing by Q gives us
pR(hR) = pL + c2pΨ(hL, hR). (2.5.48)

Inserting the fourth equation into the first one yields

Q2 = hLhR

(
g
hR + hL

2
+ pL + c2

hRpΨ(hL, hR)

hR − hL

)
. (2.5.49)

We may take the square root of it which solves Q, but gives us two values for it, namely

Q± = ±
√
hLhR

(
hR + hL

2
g + pL + c2

hRpΨ(hL, hR)

hR − hL

)
. (2.5.50)

Given Q±, we now solve for s, and obtain

s∓UL
(hR) = uL − Q±

hL
= uL ∓

√
hR
hL

(
hR + hL

2
g + pL + c2

hRpΨ(hL, hR)

hR − hL

)
. (2.5.51)

We write s+UL
for the shock speed expression that contains a plus, and s−UL

which contains
a minus. In particular, we also get an expression for uR which reads

u∓R(hR) = uL +

(
1

hR
− 1

hL

)
Q±

= uL ∓ hR − hL
hRhL

√
hLhR

(
hR + hL

2
g + pL + c2

hRpΨ(hL, hR)

hR − hL

)

= uL ∓
√
hR − hL
hRhL

(
h2R − h2L

2
g + (hR − hL)pL + c2hRpΨ(hL, hR)

)
.

(2.5.52)

47

2 The Governing Equations

Once again, we assign the plus sign to u−R, and the minus sign to u+R. Similarly, by

resolving the Rankine-Hugoniot conditions for ÛL and leaving ÛR fixed, we obtain with
the signs already switched

s±UR
(hL) = uR ±

√
hL
hR

(
hL + hR

2
g + pR + c2

hLpΨ(hR, hL)

hL − hR

)
. (2.5.53)

Similar terms can be derived for u±L . In particular, we have by the symmetry that for
given UR,UL it holds

s±UR
(hL) = s±UL

(hR). (2.5.54)

About the Shock Speed

Next, we are going to discuss the shock speed in more detail.
We begin by its area of definition. Since s±UL

contains a square root, we naturally
need

hR + hL
2

g + pL + c2
hRpΨ(hL, hR)

hR − hL
≥ 0. (2.5.55)

Firstly, we consider
pΨ(hL, hR)

hR − hL
. (2.5.56)

However, since we assumed that pΨ(hL, hR) is strictly increasing in the second argument,
and pΨ(hL, hL) = 0, we obtain that for both hR > hL and hR < hL, we have

pΨ(hL, hR)

hR − hL
≥ 0. (2.5.57)

In the case hR < hL, both pΨ(hL, hR) and (hR − hL) are negative, so the sign gets
cancelled out. Additionally, we get for hR → hL that

pΨ(hL, hR)

hR − hL
→ 1

hL
, (2.5.58)

due to Lemma 2.24. However, pL may be negative. So, we obtain the bound that we
require

hR + hL
2

g + c2
hRpΨ(hL, hR)

hR − hL
> −pL. (2.5.59)

The left-hand side is strictly monotonically increasing by Assumption 2.23. Thus, if
these is a h∗R > 0, so that

h∗R + hL
2

g + c2
h∗RpΨ(hL, h

∗
R)

h∗R − hL
= −pL, (2.5.60)

then it is unique. If it does not exist, we set h∗R = 0. Thus, we need to restrict the area
of definition for s±UL

to (h∗R,∞)\{hL}.
We may now prove some simple properties about s±UL

which help us for checking the
Lax Entropy Condition (Definition 2.19). They can be subsequently extended once again
to s±UR

, if we simply swap UR and UL.

48

2.5 Examining the Riemann Problem

Lemma 2.26. The following properties hold about s±UL
:

1. For hR → hL (given hL > 0), we have that s+UL
→ λ3 and s−UL

→ λ1.

2. For hR → ∞, we get s+UL
→ ∞, and s−UL

→ −∞.

3. s+UL
is strictly increasing on its area of definition, and s−UL

is decreasing on its
area of definition.

Proof. For convenience, we define

t(hR) =
hR
hL

(
hR + hL

2
g + pL + c2

hRpΨ(hL, hR)

hR − hL

)
(2.5.61)

Then, we may prove the above given properties for t and extend them to s±UL
later-on.

By Lemma 2.24, similarly to what we have just done before, we have that for hR → hL
that

hRpΨ(hL, hR)

hR − hL
→ hL(∂LpΨ(hL, hL)) = 1. (2.5.62)

Thus, we obtain for t that
t(hR) → hLg + pL + c2. (2.5.63)

This proves the first assertion for s±UL
by using the continuity of the square root.

For the second assertion, we again compute the limit for t to get for hR → ∞ that

t(hR) ≥
hR
hL

(
hR + hL

2
g + pL

)
→ ∞. (2.5.64)

We simply removed pΨ(hL, hR) which is a strictly increasing function. Once hR > hL,
we have pΨ(hL, hR) > 0 by Lemma 2.24. This shows the second assertion for s±UL

as
well.
The third assertion is given by Assumption 2.23, since

hRpΨ(hL, hR)

hR − hL
(2.5.65)

is strictly monotonically increasing by it. Thus, t(hR)/hR is strictly monotonically in-
creasing, and so t(hR) is strictly monotonically increasing as well.

As an immediate consequence, we get a statement about the Lax Entropy Condition
(Definition 2.19), and the genuinely nonlinear fields.

Lemma 2.27. Suppose hR, hL > 0 and CR, CL > 0. Suppose that hR lies in the area of
definition of s±UL

. Then fields associated with r1 and r3 fulfill the entropy condition, if
the following conditions are fulfilled.

• For the field associated with r1, it is fulfilled, iff hL < hR

• For the field associated with r3, it is fulfilled, iff hR < hL

49

2 The Governing Equations

Proof. We will show this only for s+UL
(hR) and r3, the other case goes similarly. So, we

need to show that

λ2,L < s+UL
(hR), (2.5.66)

λ3,L > s+UL
(hR), (2.5.67)

λ3,R < s+UL
(hR). (2.5.68)

The first inequality reads
uL < s+UL

(hR), (2.5.69)

and it is automatically fulfilled in the whole area of definition of s±UL
. The second

inequality
uL +

√
ghL + pL + c2 > s+UL

(hR) (2.5.70)

follows from Lemma 2.26, due to the strict monotonicity, and s+UL
(hR) → λ3,L for

hR → hL. As for the third inequality, we can rewrite it to

uR +
√
ghR + pR + c2 = λ3,R < s+UR

(hL) = s+UL
(hR). (2.5.71)

Then, by applying Lemma 2.26 onto s+UL
(hR), we obtain that this is exactly the case, if

and only if hR < hL.

The last question with which we need to concern us is when hR lies in the area of
definition of s±UL

. For the scope of this work, we will skip this question and simply

assume that hR always lies in the area of definition of s±UL
, when we need it. In fact,

it is enough to demand that C−1
UL

(0) ≥ h∗R, since then we will always lose hyperbolicity

through a rarefaction, before s±UL
cannot be defined anymore.

The Case Q = 0

If we have Q = 0, we cannot predict anything about vR nor about wR. The first equation
reduces to

hLpL +
g

2
h2L = hRpR +

g

2
h2R (2.5.72)

which is exactly the Riemann invariant i2,2. The last equation becomes (for c ̸= 0)

∫

Φ[UL,UR]
û dh = 0. (2.5.73)

If hL, hR > 0, then it means that ûL = ûR = 0, and so s = ûL = ûR. This gives us the
following result.

Lemma 2.28. Suppose hL, hR > 0. Then field associated with r2 fulfills the Lax Entropy
Condition (Definition 2.19).

Once hL = 0 or hR = 0, we will need special treatment [24], so we postpone this case
for later.

50

2.5 Examining the Riemann Problem

2.5.3 Constructing the Intermediate States

Next, we join the states together, as Theorem 2.20 and Corollary 2.21 told us that we
can do so, given that UL and UR lie close to each other, and C(UL), C(UR) > 0 and
hL, hR > 0.

The Genuinely Nonlinear Fields

We begin by looking at the genuinely nonlinear fields. Our goal is now to build, given an
initial state U0, to build a function which gives us the state U on the other side, if we
know its height h. Of course, we need the functions to obey the Lax Entropy Condition
(Definition 2.19) in order to fulfill Corollary 2.21. Thus, we obtain a case distinction: if
h > h0, we take the shock solution, and it h ≤ h0, we take the rarefaction solution. In
the case h = h0, we get that both cases conflate.
For the non-hydrostatic pressure in the genuinely nonlinear fields, we get the function

pU0(h) =

{
p0 + c2pΨ(h0, h) h > h0

p0 + c2 log(h
h0
) h ≤ h0.

(2.5.74)

which is defined for (0,∞). We have pU0(h0) = p0, and so pU0 is continuous, since
pΨ(h0, h0) = 0. For the velocity, we get for the genuinely nonlinear fields the function

u±U0
(h) =

u0 ±

√
h−h0
hh0

(
h2−h2

0
2 g + (h− h0)p0 + c2hpΨ(h0, h)

)
h > h0

u0 ±
∫ log(h)
log(h0)

√
ges + c2(s+ 1− log(h0)) + p0 ds h ≤ h0.

(2.5.75)

which is defined for [C−1
U0

(0),∞). Once again, we have u±U0
(h0) = u0, and so u±U0

are
both continuous.
To begin with, we check that both of these functions are continuously differentiable.

Lemma 2.29. Suppose h, h0 > 0. Then pU0 is continuously differentiable, and strictly
monotonously increasing once c > 0.

Proof. We only need to check h = h0, since for h < h0 it is clear, and for h > h0 we
have Assumption 2.23. Once again, we only need to check if the one-sided derivatives
for h ↓ h0 (which we write ∂+h) and h ↑ h0 (which we write ∂−h) yield the same value.
We compute them using Lemma 2.24, and obtain

∂+h pU0(h0) = c2∂RpΨ(h0, h0) =
c2

h0
, (2.5.76)

∂−h pU0(h0) =
c2

h0
. (2.5.77)

Thus, the derivatives from both sides are the same, and thus p is differentiable. The
monotonicity is also visible from the derivative, since for h < h0, we have

pU0(h) =
c2

h
> 0, (2.5.78)

and for h > h0, we obtain the result immediately from Assumption 2.23.

51

2 The Governing Equations

Lemma 2.30. Suppose h, h0 > 0 and C0 = CU0(h0) > 0. In addition, suppose that
h ≥ C−1

U0
(0). Then, u± is continuously differentiable. In addition, u+U0

is strictly mono-

tonically increasing, and u−U0
is strictly monotonically decreasing.

We will prove the Lemma later-on.

Combining States

For the two genuinely nonlinear fields, we introduce the middle left and middle right
states, written UML and UMR respectively. This means that it holds

uML = u−UL
(hML) (2.5.79)

uMR = u+UR
(hMR) (2.5.80)

pML = pUL
(hML) (2.5.81)

pMR = pUR
(hMR). (2.5.82)

The two genuinely nonlinear fields are connected through the central contact discon-

tinuity, for which we know that u and gh2

2 + hp are both constant throughout it. In
other words, the contact discontinuity connects the middle left and right states with
each other. In particular, we get

gh2ML

2
+ hMLpML =

gh2MR

2
+ hMRpMR (2.5.83)

uML = uMR. (2.5.84)

Combining all these equations, we next introduce the short-hand function

ϕU0(h) =
gh2

2
+ hpU0(h). (2.5.85)

In addition, we set ϕU0(0) = 0 which makes ϕU0 continuous also in 0. Inserting ϕ gives
the two equations

ϕUL
(hML) = ϕUR

(hMR)

u−UL
(hML) = u+UR

(hMR).
(2.5.86)

We now have a system with two equations and two unknowns which we could now try
to solve for both of them, given that we knew that it was solvable. As it turns out, this
is the case under certain conditions. We will continue to prove it now. Conceptually,
the proof is essentially only based on applying monotonicity in a suitable way (it was
already hinted at in e.g. [20, Appendix B]).
To begin with, we note that there is only a single central state for both u and ϕ which

we will call uM and ϕM , respectively. Then, we have

ϕM = ϕUL
(hML) = ϕUR

(hMR)

uM = u−UL
(hML) = u+UR

(hMR).
(2.5.87)

52

2.5 Examining the Riemann Problem

Next, we look at ϕ, and compute its derivative. We already know that ϕ is continuously
differentiable for h > 0 by Lemma 2.29. We obtain

ϕ′U0
(h) =

{
CU0(h) + c2(h∂RpΨ(h0, h)− 1) h > h0

CU0(h) h ≤ h0
. (2.5.88)

It is immediate that ϕU0 is continuously differentiable even for h = h0 since it is built
out of continuously differentiable functions, due to Lemma 2.29. If we look at h = h0,
we obtain indeed that

lim
h↓h0

ϕ′U0
(h)

= CU0(h0) + c2h0∂RpΨ(h0, h0)− c2

= CU0(h0)

= lim
h↑h0

ϕ′U0
(h).

(2.5.89)

In addition, we are able to prove the following about ϕ.

Lemma 2.31. Suppose h, h0 > 0, C0 > 0, and g > 0. Then, ϕU0 is a strictly convex
function on (0,∞) with a global minimum at C−1

U0
(0). For h > h0, we have that ϕU0 is

strictly monotonously increasing.

Proof. We need to distinguish the cases c = 0 and c > 0. We begin with c > 0. Then,
the statement follows for 0 < h < h0 by noting that C−1

U0
(0) ≤ h, thus ϕ′U0

(h) = CU0(h)
which is a strictly monotonically increasing function for h > 0, thus ϕ is strictly convex
for h < h0, and C

−1
U0

(0) is the unique minimum.

For h0 < h, we have that pU0 is strictly monotonically increasing, and gh2/2 is also
strictly monotonically increasing, thus ϕU0 is build out of a strictly convex part (h0 >
h > 0) connected with a strictly monotonous part (h0 < h) which in total is strictly
convex as a whole. And for h = h0, we have ϕ′U0

(h0) = CU0(h0) = C0 > 0. This shows
that ϕU0 is a strictly convex function, and strictly increasing for h > h0.

Now, we turn to c = 0. Then, we can use for h ≥ 0 once again that x 7→ gx2/2 is
strictly increasing on R, thus also for the restriction onto [0,∞).

Therefore, we get that ϕU0 is strictly monotonous for CU0(h) ≥ 0 which is the required
condition for our system to stay hyperbolic. We are therefore going to write ϕ−1

U0
for

the inverse of ϕU0 on [C−1
U0

(0),∞). Interestingly enough, ϕ can also be continuously
extended for h→ 0.

Next, we examine u± a bit closer. Given ϕ, we may re-write u± to

u±U0
(h) =

u0 ±

√
h−h0
hh0

(ϕU0(h)− ϕU0(h0)) h > h0

u0 ±
∫ h
h0

√
CU0

(s)

s ds h ≤ h0

(2.5.90)

53

2 The Governing Equations

Once again, we know that u± is continuously differentiable, since ϕ and C are. For the
derivative of u±, we obtain

u′±U0
(h) = ±

1√
hh0

(ϕU0
(h)−ϕU0

(h0))+(h−h0)ϕ′
U0

(h)

2
√

(h−h0)(ϕU0
(h)−ϕU0

(h0))
h > h0

√
CU0

(h)

h h ≤ h0

, (2.5.91)

We can also directly show that for h = h0 the left-hand and right-hand side derivatives
coincide, as can be seen by the computation

lim
h↓h0

u′±U0
(h)

=
±1

2h0
lim
h↓h0

(√
ϕU0(h)− ϕU0(h0)√

h− h0
+

√
h− h0ϕ

′
U0

(h)√
ϕU0(h)− ϕU0(h0)

)

=
±1

2h0
lim
h↓h0

√
ϕ′U0

(h) +
ϕ′U0

(h)√
ϕ′U0

(h)

= ±
√
CU0(h0)

h0
= lim

h↑h0

u′±U0
(h).

(2.5.92)

In addition, we may finally prove some facts about u±.

Proof for 2.30. The derivative has been already calculated, so it remains to argue for
strict monotonicity. Once again, we will only concern ourselves with u+U0

. For C−1
U0

(h) <
h ≤ h0, the result is again imminent, since then

u′+U0
(h) =

√
CU0(h)

h
> 0. (2.5.93)

For h > h0, we have due to the previous lemma (Lemma 2.31) that

ϕU0(h) > ϕU0(h0), (2.5.94)

as well as
ϕ′U0

(h) > 0. (2.5.95)

From that, the result
u′+U0

(h) > 0 (2.5.96)

is immediate which gives us that u+U0
is strictly monotonous.

Since ϕ is invertible, we are able to re-write (2.5.86). We get

hML = ϕ−1
UL

(ϕM)

hMR = ϕ−1
UR

(ϕM)
(2.5.97)

54

2.5 Examining the Riemann Problem

Thus, by introducing the functions

φ±
U0

= (u±U0
◦ ϕ−1

U0
), (2.5.98)

we get that (2.5.86) is equivalent to

Φ[U](ϕM) := φ+
UR

(ϕM)− φ−
UL

(ϕM) = 0 (2.5.99)

This is the equivalent to the shallow water function Φi−1/2 from [20, Appendix B]. Thus,
in case we can show that there is a solution to Φ(ϕM) = 0, we are done. As soon as we
obtain ϕM , we can immediately compute uM , and all of UML and UMR.

But first, we need to clarify where these functions are defined at all. We have that
φ±
U0

(ϕ) is defined, given U, for

ϕ ≥ ϕU0(C
−1
U0

(0)). (2.5.100)

Subsequently, Φ[U](ϕ) is defined for

ϕmin := max
{
ϕUR

(C−1
UR

(0)), ϕUL
(C−1

UL
(0))

}
≤ ϕ. (2.5.101)

To prove that ϕM exists in most of the cases, we need a small helper Lemma.

Lemma 2.32. Suppose g > 0, and CR, CL, hR, hL > 0. Then, the following statements
hold:

• φ+
UR

is strictly monotonically increasing

• φ−
UL

is strictly monotonically decreasing

As a result, Φ[U] is strictly monotonous function as well, and Φ[U](ϕ) → ∞ for ϕ→ ∞.

Proof. The two statements follow from the fact that the concatenation of two strictly
monotonous functions, as shown by the Lemmas 2.30 and 2.31, is again a strictly
monotonous function, and that inverse functions of strictly monotonous functions are
also strictly monotonous as well. As a result, Φ[U] is strictly monotonically increasing as
well, since it is the difference between a strictly monotonically increasing and a strictly
monotonically decreasing function.

Finally, we are able to prove the following existence and uniqueness statement.

Theorem 2.33. Suppose g > 0, and CR, CL, hR, hL > 0. There is a solution ϕM to
Φ(ϕM) = 0, if and only if

Φ[U](ϕmin) ≤ 0 (2.5.102)

Furthermore, if the solution exists, it is unique.

55

2 The Governing Equations

Proof. By the previous Lemma, Φ is strictly increasing. Thus, if Φ[U](ϕmin) ≤ 0, it
means that since Φ[U](ϕ) → ∞ for ϕ → ∞ that by the Intermediate Value Theorem,
there is a ϕM which solves Φ[U](ϕM) = 0. The strict monotonicity of Φ[U] gives us the
uniqueness. On the other hand, if Φ[U](ϕmin) > 0, then we get for all ϕ ∈ [ϕmin,∞) that
Φ[U](ϕ) ≥ Φ[U](ϕmin) > 0, so there is no solution.

In addition, we obtain a small result which allows us to determine before we solve
Φ(ϕ) = 0, if we will get a shock or a rarefaction in each of the genuinely nonlinear
fields. Subsequently, this generalizes [20, eqs. (B.3)-(B.5)]. We write ϕL = ϕUL

(hL) and
ϕR = ϕUR

(hR).

Lemma 2.34. The following statement holds, given that hML, hMR, ϕM are the solutions
from Φ[U](ϕM) = 0. Suppose hL, hR > 0, we get:

• If ϕmin ≤ ϕL, then Φ[U](ϕL) < 0 ⇔ hL < hML

• If ϕmin ≤ ϕR, then Φ[U](ϕR) < 0 ⇔ hR < hMR

Proof. We will only concern ourselves with the first equation, since the second equation
can be proven in a similar fashion. To prove this, we combine Lemma 2.32 with Lemma
2.31. Due to Φ[U] being strictly increasing, we obtain from Φ[U](ϕL) < 0 that ϕL < ϕM ,

since Φ[U](ϕM) = 0. Next, we apply ϕ−1
UL

onto both sides which yields us hL < hML,

since ϕ−1
UL

is strictly increasing as well. All steps are possible in the other direction as
well.

Thus, we directly obtain the following result.

Corollary 2.35. Suppose hL, hR > 0 and hML, hMR, ϕM are the solutions from the
equation Φ[U](ϕM) = 0.

• If ϕL > ϕmin, we get Φ[U](ϕL) < 0, iff we have a shock for r1.

• If ϕR > ϕmin, we get Φ[U](ϕR) < 0, iff we have a shock for r3.

This helps us during implementation, since we subsequently do not need to solve
against functions which have a case distinction.

2.5.4 Special States

In (2.0.10), we have two positivity conditions (h ≥ 0 and C ≥ 0), both of which require
special attention once we have h = 0 or C = 0.
The above computation works in the case that we have Φ[U](ϕmin) ≤ 0. However,

we need a slightly different approach, once we consider dry states or states where the
hyperbolicity is lost which equals C = 0. See e.g. [24] for the shallow water equations in
this situation. In the case of the shallow water equations, the dry states and the states
where hyperbolicity is lost conflate: we get C = 0 ⇔ h = 0.

We will (for now) only handle the dry states.

56

2.5 Examining the Riemann Problem

Dry States

As we have seen during the computation of the rarefaction solutions, p and u cannot be
given a meaningful value, if h = 0.

Border Dry State Suppose hL = 0 and hR = 0. Then, it makes sense to just assume
that the whole solution is constant 0.
Now suppose hL = 0 and hR > 0. Then, we may take hML = 0 (similarly to [24] with

the shallow water equations) again, but hMR does is not zero anymore, as soon as c > 0.
So, we connect hR and hMR as normal, and we connect hML and hMR as normal. These
choices give us values uM and pML for the left-middle state. In addition, the values of u
and p can be varied freely between the left and middle-left state, since hL = hML = 0.
This behavior is equivalent to choosing ϕM = 0, so we obtain

hMR = ϕ−1
UR

(0). (2.5.103)

The case hL > 0 and hR = 0 is similar, in that we get hMR = 0, and

hML = ϕ−1
UL

(0). (2.5.104)

Central Dry States It turns out that once c > 0, solutions which have hML = 0 or
hMR = 0 cannot exist. This is because we then have for h → 0 that pU0(h) → −∞,
and thus CU0(h) → −∞. As a result, h = C−1

U0
(0) is the minimum water height we may

reach.
If we have c = 0, then CU0(h) = 0 conflates with h = 0, thus we can get dry states

again. Yet, unlike the shallow water equations, it may still be that only one of the
central states is 0, while the other state may have a non-zero water height, but negative
non-hydrostatic pressure instead. This is the case, if we have pL, pR ̸= 0, but c = 0.

States where C = 0

Note that (2.0.10) loses its hyperbolicity, if C = 0. The condition C = 0 can be seen as
“pressureless”. We note that C = 0 does not automatically imply h = 0, once c > 0.
Rather, it means that

h = −p+ c

g
. (2.5.105)

Of course, we also need h ≥ 0, and thus we obtain

p ≤ −c. (2.5.106)

And so, we have only h = 0 and C = 0, if p = −c.
We will not present a definite solution here, but instead just give some general obser-

vations for c > 0.

• If we get C = 0 for a border state (e.g. CUL
(hL) = 0), we can only have a shock

next to it, since otherwise we would get CML < 0 which violates the imposed
positivity conditions.

57

2 The Governing Equations

• If we get C = 0 for a central state, e.g. CML = 0, we have a rarefaction, or CL = 0
as well. This situation can for example occur, if |uR − uL| is very large. This is one
of the cases where Φ[U](ϕmin) > 0, i.e. Theorem 2.33 does not give us a solution.

2.5.5 Computing a Solution

Finally, we give an algorithm for the solving Riemann problem without bathymetry, and
given that Theorem 2.33 is fulfilled or we have a dry state. The result can be found in
Algorithm 2.1. Effectively, it takes more space to describe the behavior in the wet-dry
case. If hL, hR > 0, we just apply Theorem 2.33 and compute the output values, since
we for now ignore the C = 0 case.

After that, we have found hML and hMR, and subsequently know if we have a rar-
efaction wave or a shock for the genuinely nonlinear fields. In the following, we sketch
shortly on how to compute the solution for a given ξ = x/t. The result can be found in
Algorithm 2.2.
To do so, we need to define the rarefaction functions by

ρ+(h) = u+UR
(h) +

√
gh+ pUR

(h) + c2, (2.5.107)

ρ−(h) = u−UL
(h)−

√
gh+ pUL

(h) + c2. (2.5.108)

Here u± and p are the functions as we had them before, and ρ+ is defined for h > C−1
UR

(0),

and ρ− for h > C−1
UL

(0), respectively. For h ≤ hL, we have that ρ− is strictly monotonous,
thus we can invert it. The same is true for h ≤ hR and ρ+. Thus, we have that the
equation which describes the path of the rarefaction

ξ = ρ−(h) (2.5.109)

has a unique solution for hL ≤ h > C−1
UL

(0), and

ξ = ρ+(h) (2.5.110)

has a unique solution for hR ≤ h > C−1
UR

(0).
For a given ξ, we may then proceed as follows: we check if ξ < uM or ξ > uM . Thus

shows us which genuinely nonlinear field we need to evaluate. For ξ < uM , we check r1,
and for ξ > uM , we check r3. (in effect, we may entirely ignore the values of the other
side: if ξ < uM , then we only need hL and hML, but no hMR or hR) The next step
depends on if we have a shock or a centered rarefaction.

• If we have a shock, we compute s±U0
depending on the sign we chose, and compare

ξ against it.

• If we have a centered rarefaction, we work with ρ+ or ρ−. We first check ρ+ and
ρ− against the border states, e.g. if we have ξ < uM . Therefore, we check if ξ ∈
(ρ−(hML), ρ−(hL)). If this is the case, we solve ξ = ρ−(h) for h. If ξ ≤ ρ−(hML),
we output hML, and if ξ ≥ ρ−(hL), we output hL.

58

2.5 Examining the Riemann Problem

For v and w, we simply decide by ξ < uM or ξ > uM . If ξ < uM , we return vL and wL,
and if ξ > uM , we return vR and wR.

This procedure also works for dry states, since then we have hL = hML = 0, or
hR = hMR = 0, so we cannot end up in the rarefaction curve, nor in the shock.

Data: Constants c ≥ 0 and g > 0, as well as Ψ fulfilling Definition 2.7 and
Assumptions 2.8 and 2.23.

Input: Left-hand and right-hand states UL, UR

Output: Central states UML and UMR.
if hL = hR = 0 then

Set hML = hMR = 0, uML = uMR = 0, pML = pMR = 0;
else if hL = 0 then

Set hML = 0, pML = 0;

Compute hMR = ϕ−1
UR

(0);

Compute uML = uMR and pMR from hMR;

else if hR = 0 then
Set hMR = 0, pMR = 0;

Compute hML = ϕ−1
UL

(0);

Compute uML = uMR and pML from hML;

else
Solve Φ[U](ϕM) = 0 for ϕM ;

Compute hML = ϕ−1
UL

(ϕM), and hMR = ϕ−1
UR

(ϕM);

Compute uML = uMR, and pML, pMR from hML and hMR;

end
return UML and UMR

Algorithm 2.1: An algorithm for computing the intermediate states for the Riemann
Problem (2.5.1) without bathymetry, and ignoring the C = 0 case.

2.5.6 Evaluation

Finally, we will show some plots which show that our Riemann solution behaves simi-
larly to known Euler and shallow water Riemann problem solutions (cf. especially [24]).
We programmed a Python script which reproduces the Riemann solution for the case
which Corollary 2.21 covers, as well as the dry case. This essentially boiled down to im-
plementing both Algorithms 2.1 and 2.2. The rarefaction integral for u±U0

is discretized
using a 17-th order Gauss Legendre quadrature rule, to provide an exact-as-possible re-
sult. All equations which we did not resolve into a closed-form representation are solved
numerically, using the scipy [45] fsolve method. This means, we use if for computing
ϕ−1
U0

and solving Φ[U](ϕM) = 0. In all cases, unless mentioned otherwise, we will use ΨC

as shock parametrization, i.e. pΨ uses ΨC .

To begin with, we shall mention that we compared the values of the solution for c = 0
and pL = pR = 0 with the shallow water solver provided by [24], and we got the same

59

2 The Governing Equations

Data: Constants c ≥ 0 and g > 0, as well as Ψ fulfilling Definition 2.7 and
Assumptions 2.8 and 2.23.

Data: Intermediate states UL, UML, UMR UR.
Input: ξ ∈ R
Output: The value U of Riemann Problem solution at position ξ = x/t.
if ξ < uM then

if hL < hML then
if ξ < s−UL

(hML) then
return UL

else
return UML

end

else
if ξ ≤ ρ−(hML) then

return UML

else if ξ ≥ ρ−(hL) then
return UL

else
Solve ρ(h) = ξ for h∗;
return (h∗, u−(h∗), p(h∗))T

end

end

else
if hR < hMR then

if ξ < s+UR
(hMR) then

return UMR

else
return UR

end

else
if ξ ≥ ρ+(hMR) then

return UMR

else if ξ ≤ ρ+(hR) then
return UR

else
Solve ρ+ = ξ for h∗;
return (h∗, u+(h∗), p(h∗))T

end

end

end
Algorithm 2.2: An algorithm for computing the solution to the Riemann Problem
(2.5.1) at a given position ξ = x/t, and given the intermediate states computed using
Algorithm 2.1.

60

2.5 Examining the Riemann Problem

values out of it as our solver returned them.

Firstly, we show the solution, for g = 9.81 and c = 4, for five problems. See Figure 2.4.
The data for the five problems can be found in Table 2.1. One can clearly see the three
fields in the dam-break problem: on the left, we have a rarefaction, then the central
contact discontinuity, and finally a shock on the right-hand side. Especially interesting
here is the non-hydrostatic pressure: after it sinks to a negative value, it jumps to a
positive value during the contact discontinuity. For the symmetric expansion, we see
that u is connected from both sides to a central state via a rarefaction. Note that we
could only take ||uR| − |uL|| to be small, otherwise we would get the C = 0 problem.
The contact discontinuity has no effect in this case. The values of −2 and 2 lead to
us close to the C = 0 state. For the collision, we may take arbitrarily large differences
between uR and uL. The behavior here is just as in the shallow water case, i.e. we have
two shocks. But also, the non-hydrostatic pressure increases. Once again, since the
problem is completely symmetric, the contact discontinuity has no effect. The pressure
exchange shows a qualitative behavior exactly like in the dam break, except that h and
p are switched. The pressure exchange is an example which shows the difference to
systems which do not depend on non-hydrostatic pressure, since h and u have the same
boundary values on both sides—so we arrive at a constant solution for c → 0. Finally,
we get to the wet-dry front. Here, we can see the special case that we discussed: h starts
at 0 (and u and p have no real meaning here, we could in fact just set them to any value
and get the same result)

In addition to Figure 2.4, we also provide the computed values in Table 2.2. For
completeness, we provide the values of hML, hMR, uML = uM = uMR, pML, pMR. In
Table 2.3, we show the values of ϕL, ϕML, ϕMR, and ϕR. This also confirms that ϕML =
ϕMR holds true.

Secondly, we compare the solution of the dam break problem for different values of c,
to show the influence of c on the solution. Figure 2.5 shows the dam break problem for
c = 0, 2, 4. In particular, c = 0 equals the shallow water dam break solution. The plot
shows that increasing c penalizes changes in the non-hydrostatic pressure component
stronger. This can be best seen for h: the larger c grows, the larger is the exchange
between hydrostatic and non-hydrostatic pressure at the central contact discontinuity.
Subsequently, h is changed less and less during the genuinely nonlinear fields—since the
increase in c penalizes a non-hydrostatic pressure change during the genuinely nonlinear
fields more. Unsurprisingly, p varies still stronger the larger c is, and u becomes smaller
with growing c. This is all due to the penalization as well. The solution also expands
quicker, the larger c is which corresponds well to the increasing eigenvalue.

For all of these problems, it does essentially not matter. For both ΨP and ΨC , the
results are almost the same, since we only deal with little amounts of non-hydrostatic
pressure. However, this changes once we have larger numbers, the different grows rather
significantly, as seen in Figure 2.6 for an extreme example. As it is expected, since ΨP

lets the non-hydrostatic pressure grow linearly and ΨC lets it grow logarithmically, we
get that ΨP causes a significantly higher non-hydrostatic pressure in the shock, and as a
result, a lower increase in water height. In addition to that, the shock wave propagates

61

2 The Governing Equations

Name hL hR uL uR pL pR

(a) Dam break 4 1 0 0 0 0
(b) Symmetric expansion 1 1 −2 2 0 0
(c) Symmetric collision 1 1 1 −1 0 0
(d) Pressure exchange 1 1 0 0 10 0
(e) Wet-Dry state 0 1 0 0 0 0

Table 2.1: The sample Riemann problems we consider, with their initial data.

ID hML hMR uM pML pMR

(a) 2.78885177 1.53431854 2.44393171 −5.77063045 6.84938135
(b) 0.64116568 0.64116568 −0.00000000 −7.11147814 −7.11147814
(c) 1.20620312 1.20620312 0.00000000 2.99964013 2.99964013
(d) 0.85737710 1.18376253 0.89530099 7.53796115 2.69916721
(e) 0.00000000 0.78589889 −1.14934695 0.00000000 −3.85483407

Table 2.2: The intermediate state locations for the problems mentioned in Table 2.1. For
all problems, we set c = 4 and g = 9.81.

quicker.

2.6 Reformulations of the Equation System

We close this chapter by looking at some potential re-formulations of the equation sys-
tem. Naturally, the weak solutions are not preserved by these transformations. However,
they get very close to it.

ID ϕL ϕML ϕMR ϕR

(a) 78.48000000 22.05615704 22.05615704 4.90500000
(b) 4.90500000 −2.54322245 −2.54322245 4.90500000
(c) 4.90500000 10.75458715 10.75458715 4.90500000
(d) 14.90500000 10.06851874 10.06851874 4.90500000
(e) 0.00000000 0.00000000 0.00000000 4.90500000

Table 2.3: The values of ϕ = hpT during the Riemann solutions for the problems shown
in Table 2.1. For all problems, we set c = 4 and g = 9.81.

62

2.6 Reformulations of the Equation System

−10 0 10

ξ (a)

2

4

h

−10 0 10

ξ (a)

0

1

2

u

−10 0 10

ξ (a)

−5

0

5

p

−10 0 10

ξ (b)

0.8

1.0

h

−10 0 10

ξ (b)

−2

0

2
u

−10 0 10

ξ (b)

−5

0

p

−10 0 10

ξ (c)

1.0

1.1

1.2

h

−10 0 10

ξ (c)

−1

0

1

u

−10 0 10

ξ (c)

0

2

p

−10 0 10

ξ (d)

1.0

1.2

h

−10 0 10

ξ (d)

0.0

0.5u

−10 0 10

ξ (d)

0

5

10

p

−10 0 10

ξ (e)

0.0

0.5

1.0

h

−10 0 10

ξ (e)

−1.0

−0.5

0.0

u

−10 0 10

ξ (e)

−4

−2

0

p

Figure 2.4: Solving Riemann problems for (2.0.10) with initial data from Table 2.1 (a)-
(e). The problems are ordered by row, their number is written next to ξ.
For all problems, we set c = 4 and g = 9.81. The values for u and p in (e)
could be chosen arbitrarily on the left, so we set them to 0.

63

2 The Governing Equations

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0

ξ

1.0

1.5

2.0

2.5

3.0

3.5

4.0
h

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0

ξ

0

1

2

3

u

c = 0

c = 2

c = 4

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0

ξ

−6

−4

−2

0

2

4

6

p

Figure 2.5: The dam break (see Table 2.1 (a)), for different values of c = 0, 2, 4. The case
c = 0 corresponds to the situation with the shallow water equations (2.1.1).

64

2.6 Reformulations of the Equation System

−20 −15 −10 −5 0 5 10 15 20

ξ

0

10

20

30

40

h

ΨC

ΨP

−20 −15 −10 −5 0 5 10 15 20

ξ

−100

−50

0

50

100

u

−20 −15 −10 −5 0 5 10 15 20

ξ

0

50

100

150

200

p

Figure 2.6: The symmetric collision with uL = 100 and uR = −100 (see Table 2.1 (c) for
values with uL = 1 and uR = −1) for different families of paths, ΨC denotes
the linear paths in conservative variables, and ΨP denotes linear paths in
primitive variables.

65

2 The Governing Equations

2.6.1 Formulation in Primitive Variables

In order to re-write (2.0.10) in primitive variables, we just note that we can re-write for
any variable v to

∂t(hv) = ∂thv + ∂tvh = −∇ · (hu)v + ∂tvh. (2.6.1)

And also, we have
∇ · (huv) = ∇ · (hu)v + h(u · ∇)v. (2.6.2)

Combining these two equations, we obtain

∂t(hv) +∇ · (huv) = h(∂tv + (u · ∇)v). (2.6.3)

Inserting this into (2.0.10) and dividing the resulting equations for hu, hw, and hp by
h, we finally get the system

∂th+∇ · (hu) = 0,

∂tu+ (u · ∇)u+ g∇h+∇p+ p∇h
h

= −
(
g + γ

p

h

)
∇b− 1

h
τb(h,u),

∂tw + (u · ∇)w = γ
p

h
+

1

h
Rb(U,∇U),

∂tp+ (u · ∇)p+ c2(∇ · u) =
1

h

(
2c2(u · ∇)b− 2c2w

)
.

(2.6.4)

For the Green-Naghdi equations, i.e. γ = 3/2, and c → ∞, this formulation can also be
found in [25, eq. (1.45), (1.47)].
Unfortunately, the primitive formulation does not give us a division-free scheme, as

it is the case for the shallow water equations. The idea would have been to potentially
achieve a quadrature-free formulation which only uses tensor multiplication. However,
since (2.6.4) contains a division operation, this is not possible.

2.6.2 Conservative Re-Formulation

Yet, we may also re-formulate the system slightly to remove the (u · ∇)h term, without
changing the structure of the equation system too much. To begin with, we do this
by ignoring bathymetry once again. We assume h > 0. For this, we re-formulate the
equation to

(u · ∇)h

=
hu

h
· ∇h

= (hu) · ∇(log h)

= ∇ · (hu log h)− (log h)∇ · (hu).

(2.6.5)

Next, we insert the h-equation and use ∂x(x log x− x) = log x and get

∇ · (hu log h)− (log h)∇ · (hu)
= ∇ · (hu log h) + (log h)∂th

= ∇ · (hu log h) + ∂t(h log h− h).

(2.6.6)

66

2.6 Reformulations of the Equation System

This lets us re-write the fourth equation to

∂t(hp− c2h(log h− 1)) +∇ · (hup+ c2hu− c2hu log h) = 2c2u · ∇b− 2c2w. (2.6.7)

Introducing
π = p+ c2(1− log h) (2.6.8)

gives us the equation

∂t(hπ) +∇ · (huπ) = 2c2u · ∇b− 2c2w. (2.6.9)

so the fourth equation has been re-written as a conservative equation, given that we
ignore the bathymetry. Note that while the above calculation was valid mathematically,
to make it valid physically (at least in terms of dimensional analysis, that is), we would
need to introduce a reference water height H. For example one could take the same
water height as for c = α

√
gH. Then, we write (cf. e.g. [31])

hu

h
· ∇h =

hu
h
H

· ∇ h

H
= hu · ∇

(
log

h

H

)
, (2.6.10)

and h/H is dimension-less, hence this term is well-defined in the dimensional sense.
We keep the Galilean properties by doing this re-write. In addition, we remove p

entirely from the equation system, by re-writing the second and third equation in terms
of π as well. This gives us

∂th+∇ · (hu) = 0,

∂t(hu) +∇ · (huuT) +∇(
g

2
h2 + h(π − ℓ(h))) = −(gh+ γ(π − ℓ(h)))∇b,

∂t(hw) +∇ · (huw) = γ(π − c2(1− log h)),

∂t(hπ) +∇ · (huπ) = 2c2(u · ∇)b− 2c2w.

(2.6.11)

For brevity, we wrote ℓ(h) = c2(1 + log(h)).
We do not lose the hyperbolicity by this re-formulation in any way: for d = 2, we get

Aπ,∗
1 (Uπ) =

0 1 0 0 0
c2log(h) + gh− u2 2u 0 0 1

−uv v u 0 0
−uw w 0 u 0
−uπ π 0 0 u

, (2.6.12)

which has the eigenvalues

λπ1 = u−
√
Cπ, λπ2 = λπv = λπw = u, λπ3 = u+

√
Cπ. (2.6.13)

Here, we have Cπ defined as

Cπ := c2 log(h) + gh+ π. (2.6.14)

67

2 The Governing Equations

In particular, we have

C = c2 + gh+ p

= p+ c2(1− log(h)) + c2 log(h) + gh

= π + c2 log(h) + gh = Cπ.

(2.6.15)

In addition, the system is still rotationally invariant, so Proposition 2.4 can be still
applied.
It is natural that this conservative formulation yields different path-dependent weak

solutions in general. Compared to (2.0.10), the system (2.6.11) does not depend on the
family of paths anymore, as long as ∇b = 0. However, it is comparably close to the
original, non-conservative system. This can be also seen when comparing the Rankine-
Hugoniot conditions of (2.6.11). We re-insert p = π − c2(1 − log h), and ignore the
equation concerning w. We write again û = u − s, and Q = hRûR = hLûL. Then, the
Rankine-Hugoniot conditions read

hRûR = hLûL = Q

QûR +
g

2
h2R + hRpR = QûL +

g

2
h2L + hLpL

Q(pR + c2 − c2 log hR) = Q(pL + c2 − c2 log hL).

(2.6.16)

In the last equation, we may cross out Qc2 on each side. Then, we get

Q(pR − pL) = Q(log(hR)− log(hL)). (2.6.17)

This is exactly what we also got when we used ΨC for the Rankine-Hugoniot conditions
(2.4.52) for our equation system (2.0.10).
It should be noted that once again, converting this formulation to primitive variables

would still not give us a division-free scheme.

68

3 Numerical Discretization

Next, we describe the numerical discretization which we implemented. We follow again
[15] in that we use the ADER-DG method with integrated finite volume limiter. But in
contrast to [15], we implement both methods in a two-dimensional setting with triangles
as elements. As a comparison [15], only squares are used, and most tests in [15, Section
5] are seemingly only one-dimensional.

3.1 Geometric Setting

To begin with, we describe the geometric setting, in which we implemented the equations.
Many of the following definitions about the spatial setting can be found in [10, Section

1.2].

3.1.1 Spatial Setting

We work in two space dimensions, so d = 2. As a domain, we consider a scaled and
moved square Ω = [xmin, xmax]× [ymin, ymax] where xmin − xmax = ymin − ymax.

As a reference element, we take the triangle Tref which is spanned by the points
(0, 0)T , (1, 0)T , and (0, 1)T . Thus, we have Tref = int(conv({(0, 0)T , (1, 0)T , (0, 1)T })),
where conv(A) denotes the convex hull of the given set A, and int(A) denotes the interior
thereof. Then, we may define an element space

S =
{
Ph,R,b(Tref)

∣∣ h > 0, b ∈ R2, R ∈ SO(2)
}
, (3.1.1)

and the transformation Ph,R,b is defined as

Ph,R,b(x) = (hR)x+ b. (3.1.2)

Note that we defined Tref to be an open set, and in particular, it does not contain its
faces. If it is clear in context that a transformation Ph,R,b belongs to a triangle T ∈ T ,
then we will not explicitly state that T = Ph,R,b(Tref).

We will now consider a mesh T made out of the elements from S of Ω. That is we
have, is also done in e.g. [10], that

Ω =
⋃

T∈T
cl(T). (3.1.3)

Here, cl(A) denotes the closure of the set A. We also require that T1, T2 ∈ T with
T1 ̸= T2 are non-overlapping, that is T1 ∩ T2 = ∅. In short, T is a partition of Ω. In

69

3 Numerical Discretization

addition, we require T to be a conforming mesh, so if two triangles T1 ̸= T2 share part
of an edge, they share the whole edge.

Given a cell T ∈ T and h,R, b from Ph,R,b(Tref) = T , we define its outer normals ni(T)
for i = 1, 2, 3. These denote the normals w.r.t. the faces

F1(T) = Ph,R,b(conv{(0, 0)T , (1, 0)T }), (3.1.4)

F2(T) = Ph,R,b(conv{(1, 0)T , (0, 1)T }), (3.1.5)

F3(T) = Ph,R,b(conv{(0, 1)T , (0, 0)T }), (3.1.6)

The ni(T) point away from T , and are orthogonal to Fi(T), respectively.

The enumeration of the faces in this order is chosen so that we walk counter-clockwise
around the boundary of T , beginning with the point b. If T is clear, then we are going
to write ni = ni(T) and Fi = Fi(T). Furthermore, we may now compute the length of
all Fi(T). We obtain

|F1(T)| = h, |F2(T)| =
√
2h, |F3(T)| = h. (3.1.7)

In addition, we define Fref = conv{(0, 0)T , (1, 0)T }) which is F1 from Tref.

3.1.2 Time Discretization

In addition to the space discretization, we also need to introduce a time discretization.
For that, we introduce the reference time interval Iref = [0, 1]. Suppose that we have
time steps t0, t1,

1 We have the transformation

Qtn,tn+1(t) = (tn+1 − tn)t+ tn. (3.1.8)

3.1.3 Choice of Basis

Before we discuss the steps of the method itself, we choose a basis in space and time.
In our particular case, we will just define a basis for the reference space-time element
Iref×Tref and then transform from all other elements from it. In addition, we choose the
same basis for all variables h, hu, hv, hw, hp, and b. Note that we might get interesting
results from e.g. choosing more compatible bases (see e.g. [10]) or other basis functions
like splines, however this was out of the scope for this work.

Once again, it suffices to define a basis on the reference space element Tref and the
reference space-time element Iref×Tref. As a convention, we will always mention the time
interval before the space interval. We do the following: in space, we take the monomials
in two dimensions. We write NP for the space and time polynomial degree. Let

P1
NP

= span
{
xi
∣∣ 0 ≤ i ≤ NP

}
(3.1.9)

P2
NP

= span
{
xiyj

∣∣ 0 ≤ i+ j ≤ NP

}
. (3.1.10)

1We may not know all timestep values in advance.

70

3.1 Geometric Setting

In space, we choose an orthogonal polynomial basis with respect to the L2(Tref) scalar
product, e.g. by orthogonalizing the monomial basis. We will also need the tensor
product between P1

NP
and P2

NP
which in this case becomes

P1
NP

⊗ P2
NP

= span
{
tkxiyj

∣∣∣ 0 ≤ k ≤ N, 0 ≤ i+ j ≤ NP

}
. (3.1.11)

Given these polynomial bases, we define the basis on the reference element. It is given
as

BC = {w1, ..., wbC} , (3.1.12)

BP = {v1, ..., vbP } , (3.1.13)

so that span(BC) = P2
NP

, and span(BP) = P1
NP

⊗ P2
NP

. We choose the w1, ..., wbC , so
that they are orthonormal with respect to the scalar product on the triangle area. That
means ∫

Tref

wi(x)wj(x) dx = δij , (3.1.14)

where δij is the Kronecker delta. Likewise, we want
∫

Iref×Tref

vi(t, x)vj(t, x) d(t, x) = δij . (3.1.15)

Both of this is done e.g. by applying the Gram-Schmidt procedure. Given BC and BP

on the reference element, we define for T ∈ T and Ph,R,b, Qtn,tn+1 the transformed basis
functions as

wi,T (x) = wi(P
−1
h,R,b(x)) (3.1.16)

vi,T (t, x) = vi(Q
−1
tn,tn+1

(t), P−1
h,R,b(x)). (3.1.17)

We get the element bases BC(T) = {w1,T , ..., wbC ,T } and BP (T) = {v1,T , ..., vbP ,T }. In
particular, BC(Tref) = BC and BP (Tref) = BP .

Transformation to the Reference Element

Suppose now that we are given a cell T ∈ T and the time interval I = [tn, tn+1].
Then, we have parameters h,R, b associated with T , so that T = Ph,R,b(Tref). Also,
I = Qtn,tn+1(Iref). We write ∆t = tn+1 − tn. Then:

detDQtn,tn+1 = ∆t (3.1.18)

and since |detR| = 1
|detDPh,R,b| = |dethR| = h2 (3.1.19)

Also, we need to differentiate vT ∈ BP in both time and space, and get

∂tvT =
1

∆t
vT

∇vT = (DvT)
T =

(
1

h
DvTR

T

)T

=
1

h
R∇vT .

(3.1.20)

For wT ∈ BC , latter equation holds like-wise. In addition, ∂twT = 0.

71

3 Numerical Discretization

Defining the Function Spaces

Given all these definitions, we may define the function spaces VP and VC we will subse-
quently work with, similarly to [10], where these constructions are used in the space-only
setting. We define for the corrector

VC =
{
f ∈ L2(Ω)

∣∣ f |T ∈ [span(BC(T))]
6 ∀T ∈ TDG

}
, (3.1.21)

and for the predictor

VP =
{
f ∈ L2([0,∞)× Ω)

∣∣ f |T ∈ [span(BP (T))]
6 ∀T ∈ TDG

}
. (3.1.22)

Essentially, the predictor basis is just the corrector basis, but a tensor product with
polynomials in time. These definitions mean that on each element T ∈ T , we have
continuous functions, but between elements, this does not need to be the case. But this
way, we are able to describe a function on all of Ω. We choose the same basis for all
variables, hence we get a vector of six functions.
Furthermore, given a U ∈ VC or VP , some edge F and an outer normal n, and two

adjacent triangles T+, T− to F . We want that n points away onto T+ from F , we may
define the boundary projections

U+(y) = lim
x∈T+,x→y

U(x), (3.1.23)

U−(y) = lim
x∈T−,x→y

U(x). (3.1.24)

In essence, U− is the projection of U on T− on F , and U+ is the projection of U on T+
onto F . For our case of polynomial basis functions, this amounts to applying continuity.

3.2 Finite Volume Discretization

To begin with, we implement (2.0.10) using a finite volume scheme. [42, 21] That is, we
take (2.2.1) and integrate it over some T ∈ T .

Suppose that U is some (unknown) function. We get the equation

∂t

∫

T
U dx =

∫

T
∇ · F(U) dx+

∫

T
B · ∇U dx+

∫

T
S(U,∇U) dx. (3.2.1)

Next, split this into the first two terms which involve F and B, and the source term S,
using Godunov/Lie-Trotter splitting [44, 30]. Thus, we consider the two parts separately,
and merge them afterwards.

3.2.1 Finite Volume Part

The following part is inspired partially by [21, Chapter 4]. For the first term, we intro-
duce the general flux term between two cells as D̂(U−,U+) · n for the outer normal n,2

2See [35] for more details and the construction. In contrast to the conservative case, the term D̂ yields
us a path-dependent result.

72

3.2 Finite Volume Discretization

so that we obtain the semi-discrete equation

∂t

∫

T
Uf dx =

∫

∂T
D̂(Uf,−,Uf,+) · n dS. (3.2.2)

Next, we introduce the average of Uf over T which we write as Ūf , and it is a (constant)
vector. In addition, we define the values from the neighbors over edge Fi of U

f and write
Ūf,i for them (and also use that they are constant in time). Thus, the boundary integral
simplifies to

∫

∂T
D̂(Uf,−,Uf,+) · n dS

≈
3∑

i=1

|Fi|D(Ūf , Ūf,i) · ni

= h
(
D(Ūf , Ūf,1) · n1 +

√
2D(Ūf , Ūf,2) · n2 +D(Ūf , Ūf,3) · n3

)
.

(3.2.3)

Here, D is the numerical flux. The time derivative of the integral over the whole triangle
becomes

∂t

∫

T
U dx = |T |∂tŪ . (3.2.4)

Next, we discretize this equation in time using the explicit Euler scheme. Then, we
obtain

Ūf
n+1 = Ūf

n − 2∆t

h

(
D(Ūf

n , Ū
f,1
n) · n1 +

√
2D(Ūf

n , Ū
f,2
n) · n2 +D(Ūf

n , Ū
f,3
n) · n3

)
. (3.2.5)

3.2.2 Source Term

Now, we deal with the source term. For the scope of this work, we ignore the wave-
breaking term Rb(U,∇U) in the finite volume discretization.3 Then, we can write in a
simplified manner

∂tU = S(U). (3.2.6)

This is a first-order ordinary differential equation for each cell, and we look for an implicit
Euler discretization for it. Thus, we need to solve

Un+1,s = Un,s +∆tS(Un+1,s, 0). (3.2.7)

3It would be very well possible to use finite differences to discretize it. However, this has not been
implemented so far.

73

3 Numerical Discretization

for Us
n+1. In addition, S now does not depend on b in any way. Solving (3.2.7) using a

CAS gives us

S−1
h (U) =

h

(2(∆t)gn2m)−1sign(hu)

(
−h 7

3 + h
7
6

√
h

7
3 + sign(hu)4(∆t)gn2mhu

)

(2(∆t)gn2m)−1sign(hv)

(
−h 7

3 + h
7
6

√
h

7
3 + sign(hv)4(∆t)gn2mhv

)

(2(∆t)2γc2 + h2)−1
(
h((∆t)γhp+ h2w)

)

(2(∆t)2γc2 + h2)−1
(
h(2(∆t)c2hw + h2p)

)

b

.

(3.2.8)
In total, we get

Un+1,s = S−1
h (Un,s). (3.2.9)

3.2.3 Combining Flux and Source Term

After we discretized both the flux and the source term, we now combine them using
Lie-Trotter splitting, also called Godunov splitting [44, 30]. That is, given the matrix

Un ∈ RNT×6 as input, interpret it as Ūf , solve for Ūf
n+1, and subsequently use this as

U s
n to obtain U s

n+1 = Un+1. Here NT denotes the number of triangles. In particular,
this gives us for each row Un

i (i.e. each cell) that

Un+1,fv
i = D(Un

i , U
1,n
i) · ni,1 +

√
2D(Un

i , U
2,n
i) · ni,2 +D(Un

i , U
3,n
i) · ni,3, (3.2.10)

and

Un+1
i = S−1

h

(
Un
i − 2∆t

h
Un+1,fv
i

)
. (3.2.11)

Here, ni,k are the normals of the cell i, and Uk,n
i is the neighbor at face k.

It remains to discuss the timestep. As natural for such a splitting scheme, the timestep
is bounded by the maximum timesteps of both parts. Yet, since we used an implicit Euler
scheme for the source, and all eigenvalues of DS lie in the stability region of the implicit
Euler scheme, or at the boundary thereof. Thus, the scheme for S is stable. During all
of this, we ignore the wave-breaking term Rb. For the fluxes, we need the condition

∆t <

√
2h

4|λmax(Un+1)| . (3.2.12)

3.3 The Numerical Flux

It is left to specify what the numerical flux term D(U−,U+) · n is supposed to be. In
this work, we use the following scheme which describes many approximate fluxes (see
[15] or [6]). For more background on the theory of the path-dependent numerical fluxes,
see [35]. In Table 3.1, an overview over the numerical fluxes we consider here can be

74

3.3 The Numerical Flux

Handle Name Θ(n,U) Φ Ψ

llfh h-preserving Rusanov Flux ΘR,h ΨP -
llfb η-preserving Rusanov Flux (default) ΘR,η ΨP -
hll HLL Flux α0I + α1(A1/2 · n) ΨP -

roe Roe Flux
∣∣A1/2 · n

∣∣ ΨR -

dot DOT Flux |A(U) · n| ΨP ΨP

Table 3.1: A list of the implemented fluxes, and their names in the implementation.
All fluxes are available for the DG as well as the finite volume limiter part.
The matrix Θ(n,U) specifies the correction term which essentially defines
the behavior of the flux. Φ is the path that is used to parametrize the non-
conservative part, and Ψ is the path which parametrizes Θ(n,U). If the choice
of path does not matter here, we write “-”.

found. Given two families of paths Ψ and Φ, we define the numerical flux from UR to
UL as

D(UL,UR) · n

=
1

2

(
(F(UL) · n) + (F(UR) · n) +

∫

Ψ[UL,UR]
(B(U) · n) dU

)

− 1

2

∫

Φ[UL,UR]
Θ(n,U) dU.

(3.3.1)

It can be alternatively written as

D(UL,UR) · n =(F(UL) · n) +
1

2

∫

Ψ[UL,UR]
(A(U) · n) dU

− 1

2

∫

Φ[UL,UR]
Θ(n,U) dU.

(3.3.2)

Using rotational invariance, we are able to write

D(UL,UR) · n

=
1

2
T T

(
F1(TUL) + F1(TUR) +

∫

Ψ[UL,UR]
B1(TU)T dU

)

− 1

2
T T

∫

Φ[UL,UR]
TΘ(n,U) dU.

(3.3.3)

If Θ(n, ·) is rotationally invariant, depends on the exact choice of flux. However, for
all numerical fluxes we consider here, it is true: there is Θ̂(U), so that T T Θ̂(TU)T =
Θ(n,U).

75

3 Numerical Discretization

3.3.1 Examining the Approximate Flux

Most of the time, we want to compute D(UL,UR) ·n and D(UR,UL) · (−n) at the same
time. The latter is computed as

D(UR,UL) · (−n)

=
1

2

(
−(F(UR) · n)− (F(UL) · n)−

∫

Ψ[UR,UL]
(B(U) · n) dU

)

+
1

2

∫

Φ[UR,UL]
Θ(n,U) dU.

(3.3.4)

If we now assume for Ψ and Φ that we have

Ψ[UL,UR] = −Ψ[UR,UL], (3.3.5)

we receive

D(UR,UL) · (−n)

=− 1

2

(
(F(UR) · n) + (F(UL) · n)−

∫

Ψ[UL,UR]
(B(U) · n) dU

)

+
1

2

∫

Φ[UL,UR]
Θ(n,U) dU.

(3.3.6)

Hence, D can be computed in both directions by simply computing the parts containing
F, B, and Θ separately, and then adding them up with different signs—instead of having
to compute D(UL,UR) ·n and D(UR,UL) ·(−n) separately. With rotational invariance,
it can be written as

D(UR,UL) · (−n)

=− 1

2
T T

(
F1(TUR) + F1(TUL)−

∫

Ψ[UL,UR]
T TB1(TU)T dU

)

+
1

2
T T

∫

Φ[UL,UR]
TΘ(n,U) dU.

(3.3.7)

3.3.2 Roe Averages

Before we begin discussing the numerical fluxes, we look at Roe averages and their
extension to the non-conservative case, as found in [36]. Since the equations naturally
become rather long, introduce the jump notation [x] = xR − xL for any variable x. We
begin by looking at the equation system without bathymetry (cf. [6, eq. (2.8)]), and after

76

3.3 The Numerical Flux

applying the rotational invariance. Thus, we consider A∗
1 again and get

[hu] = [hu]

(gĥ− û2)[h] + 2û[hu] + [hp] = [hu2] +
g

2
[h2] + [hp]

−ûŵ[h] + ŵ[hu] + û[hw] = [huw]

−ûv̂[h] + v̂[hu] + û[hv] = [huv]

−û(c2 + p̂)[h] + (c2 + p̂)[hu] + û[hp] = c2[hu] + [hup]− c2
∫

Φ[UL,UR]
u dh.

(3.3.8)

We follow [24], i.e. we solve these equations for ĥ, û, v̂, ŵ, and p̂. If we manage to do
so (and we do that), we fulfill [36, Definition 3] immediately (if we remove the rows
concerning v̂, ŵ), if we remove the third and fourth row to get a strictly hyperbolic
system as usual. In [24], this is done for the shallow water equations using the variation
of constants. This means that we want the Roe-averaged variables to hold for all possible
values the constants of our system can take. For our case, the constants are g, γ, and c.
In addition to that, we need to choose the family of paths Φ.

A Simple Roe Matrix Computation

We start by looking at the second equation, since the first equation does not give us any
information. Here, we note that the term depending on pR and pL is redundant, and we
are left with

(gĥ− û2)(hR − hL) + 2û(hRuR − hLuL) = hRu
2
R − hLu

2
L +

g

2
(h2R − h2L). (3.3.9)

This however is just the same equation as in the shallow water case, so we will simply
take the corresponding Roe averages. So, as they are mentioned in [24], the Roe averages
for ĥ and û read

ĥ =
hL + hR

2
, (3.3.10)

û =

√
hRuR +

√
hLuL√

hR +
√
hL

. (3.3.11)

Next, we look at the third equation. Solving it for ŵ gives us

ŵ =
wRhR(uR − û)− wLhL(uL − û)

hR(uR − û)− hL(uL − û)
. (3.3.12)

We compute

hR(uR − û) = hR
√
hL

uR − uL√
hR +

√
hL

=
√
hR
√
hRhL

uR − uL√
hR +

√
hL
, (3.3.13)

and

hL(uL − û) =
√
hR
√
hRhL

uL − uR√
hR +

√
hL
. (3.3.14)

77

3 Numerical Discretization

Cancelling out (3.3.13) and (3.3.14) from (3.3.12) gives us

ŵ =

√
hRwR +

√
hLwL√

hR +
√
hL

, (3.3.15)

and so in the same way for v̂

v̂ =

√
hRvR +

√
hLvL√

hR +
√
hL

. (3.3.16)

For p̂, we may remove c2(hRuR−hLuL) from both sides, and ignore the remaining parts
which depend on c2. Then, we apply the same procedure as before to get

p̂ =

√
hRpR +

√
hLpL√

hR +
√
hL

. (3.3.17)

For all of these variables, it holds that if UR → UL, then Û → UL as well.

The Non-Conservative Part

Next, we look at the non-conservative part, that is, all remaining parts which depend
on c2. It reads ∫

Φ[UL,UR]
u− û dh = 0. (3.3.18)

So now, we need to choose a family of paths. Thus, we heuristically choose linear paths
for h and b. Then, we may pull out Φ′

h[UL,UR] from the integral and obtain the equation

û =

∫ 1

0
Φu[UL,UR](s) ds. (3.3.19)

In addition, we need Φu(0) = uL, and Φu(1) = uR. Thus, we may choose a second-degree
polynomial for Φu. We get the approach

Φu(t) = α0 + α1t+ α2t
2, (3.3.20)

and we have the three unknown coefficients α0, α1, α2. Then, the third condition becomes

û =

∫ 1

0
Φu[UL,UR](s) ds = α0 +

1

2
α1 +

1

3
α2. (3.3.21)

So, we can write the three conditions on the coefficients into an equation system and get

1 0 0
1 1/2 1/3
1 1 1

α0

α1

α2

 =

uL
û
uR

 . (3.3.22)

Solving it yields α0 = uL, α1 = 2(3û− 2uL − uR), and α2 = 3(uL + uR − 2û).

78

3.3 The Numerical Flux

Extension to Bathymetry

Following [36, eq. (4.57) etc.], it suffices to look at the part which depends on bathymetry
only. We get the system

(gĥ+ γp̂)[b] = g

∫

Φ[UL,UR]
h db+ γ

∫

Φ[UL,UR]
p db

−2c2û[b] = −2c2
∫

Φ[UL,UR]
u db.

(3.3.23)

This justifies our previous choice of linear paths for b, since we may pull out the path
derivative Φ′

b[UL,UR] = [b]. This simplifies everything to

gĥ+ γp̂ = g

∫ 1

0
Φh[UL,UR](s) ds+ γ

∫ 1

0
Φp[UL,UR](s) ds,

−2c2û = −2c2
∫ 1

0
Φu[UL,UR](s) ds.

(3.3.24)

We can even take the same paths for h and u as before. Thus, our equation system
reduces to

p̂ =

∫ 1

0
Φp[UL,UR](s) ds. (3.3.25)

Thus, we simply take the same path which we use to connect u to connect p as well. In
order to get a full family of paths, we may choose any paths we use to connect v and
w as we like. Since v̂ and ŵ are in structure similar to û, we choose the same paths we
used for u here as well. In summary, we may define what we will here call the Roe path
family ΨR. We define

Q[UL, Û,UR](t) = UL + 2(3Û− 2UL −UR)t+ 3(UL +UR − 2Û)t2. (3.3.26)

Then, we can write

ΨR[UL,UR] =

P [hL, hR]
Q[uL, û, uR]
Q[vL, v̂, vR]
Q[wL, ŵ, wR]
Q[pL, p̂, pR]
P [bL, bR]

. (3.3.27)

This fulfills Corollary 2.11, since ΨR is merely composed of polynomials. Hence it fulfills
Definition 2.7 and Assumption 2.8 as well for Ω = R+ × R5.

The Roe Matrix

Since we could explicitly specify variables ĥ, û, v̂, ŵ, and p̂, we get a Roe matrix with
the same structure as A1. Using rotational invariance by Proposition 2.1, we set

A1/2[UL,UR] · n = T TA1(T Û)T. (3.3.28)

79

3 Numerical Discretization

Here, Û = (ĥ, ĥû, ĥv̂, ĥŵ, ĥp̂, b̂)T . For completeness, we set b̂ = (bR + bL)/2. By con-
struction, Û we obtain that computing Û from TUL and TUR gives the same result
as computing T Û from UL and UR. It is also imminent that A1(Û) posseses four real

eigenvalues (û three times, as well as 0, and û±
√
gĥ+ p̂+ c2 each one time), unless we

have û2 = Ĉ or Ĉ = 0. In the definition of [36], we therefore only have a Roe matrix, if
we ignore the rows concerning v and w and obtain a strictly hyperbolic system. This is
the same situation as with the Riemann Problem. If UL and UR are clear, we will leave
them away and just write A1/2.

Another method from which a bathymetry-respecting Roe matrix can be constructed
is discussed in [36].

3.3.3 Path-Independent Fluxes

We begin with the case where Θ is constant in (3.3.1). Subsequently, we get

∫

Φ[UL,UR]
Θ dU = Θ

∫ 1

0
Φ′[UL,UR](t) dt = Θ(UR −UL). (3.3.29)

Rusanov Flux

The simplest case when using constant Θ, is to just take as in [15],

Θ = ΘR,h :=

s 0 0 0 0 0
0 s 0 0 0 0
0 0 s 0 0 0
0 0 0 s 0 0
0 0 0 0 s 0
0 0 0 0 0 0

. (3.3.30)

The last row is left constant, since b should stay constant throughout the flux. s is
defined as

s := max
U∈[UL,UR]

∥A1(U)∥2. (3.3.31)

This can be simplified even further by parametrizing U. This means that we use that
for t ∈ [0, 1] we have

s = max
t∈[0,1]

∥A1(ΨP (t))∥2. (3.3.32)

Since

∥A1(ΨP (t))∥2 = |u|+
√
gh+ p+ c2 (3.3.33)

is a monotone function and ΨP is linear and thus convex, we get that we maximum value
must lie at t = 0 or t = 1. So, it remains to check

s = max
U∈{UL,UR}

(
|u|+

√
gh+ p+ c2

)
. (3.3.34)

80

3.3 The Numerical Flux

We need to make a small modification so that the Resting-Lake property is fulfilled
for the Rusanov flux. With ΘR,h, it is not the case, as it can be seen by the following
example. Suppose that we have g > 0, ηL = ηR, uL = uR = 0 and vL = vR = 0, but
bL < bR. Then hL > hR, i.e. the first component of D becomes

hLuL + hRuR − s(hR − hL) = s(hL − hR) > 0, (3.3.35)

since we have hL > hR ≥ 0, and thus s >
√
ghL > 0. Subsequently, we may have a large

flux, where no flux should be.

This problem depends entirely on the correction term

Θ(UR −UL). (3.3.36)

Therefore, we modify it: in the first component, we replace hR by ηR and hL by ηL.
Then, under the same setting as before, we get

uL + uR − s(ηR − ηL) = 0 (3.3.37)

by construction. This is as if we would replace in (2.2.1) the vector U by a vector Ũ
which reads

Ũ =

η
hu
hv
hw
hp
b

(3.3.38)

and change F and B to give the same results We have ∂tη = ∂t(h+ b) = ∂th, since b is
constant over time. As a result, we keep the same PDE as we had before. In summary,
we get the following Θ:

Θ = ΘR,η :=

s 0 0 0 0 s
0 s 0 0 0 0
0 0 s 0 0 0
0 0 0 s 0 0
0 0 0 0 s 0
0 0 0 0 0 0

. (3.3.39)

Note that due to this fix, we lose the preservation of the vacuum property. Thus, it makes
sense to employ the modified Rusanov flux for the DG part only due to its simplicity.
Secondly, we will always use the limiter, once we get to a dry state.

As in both ΘR,h and ΘR,η we have a scaled identity matrix in the rows for hu and hv,
we get that both matrices yield a rotationally invariant Θ.

81

3 Numerical Discretization

Roe Flux

We can also use the Roe matrix which computed in Section 3.3.2 as a flux. The Roe
flux reads, as discussed in [36] or [6] as

Θ =
∣∣A1/2 · n

∣∣ . (3.3.40)

Here, the absolute value of a diagonalizable matrix A is defined as

|A| = R |D|R−1, (3.3.41)

where A = RDR−1 is an eigenvector decomposition of A, andD is a diagonal matrix. |D|
is the element-wise absolute value of D. In particular, this does not prevent rotational
invariance: ∣∣A1/2 · n

∣∣ =
∣∣∣T TA1(T Û)T

∣∣∣ = T T
∣∣∣A1(T Û)

∣∣∣T, (3.3.42)

using the same argumentation as when proving the hyperbolicity in Proposition 2.4.

For the Roe flux, and only for the Roe flux, we also choose ΨR for the path which
parametrizes the integral over B ·n in D. All other fluxes from Table 3.1 use ΨP instead.

PVM Methods

A generalization of the two previous methods, introduced in [6], are the so-called PVM
methods, where we take Θ = P (A1/2 · n) where P is a polynomial in the Roe matrix.
The coefficients are also problem-dependent and may be completely nonlinear.

For the Rusanov flux, it is obvious that it can be represented in such a way, and the
Roe flux (or rather: the absolute value of the matrix) can be written as a polynomial of
degree N − 1 (where N is so that (A1/2 · n) ∈ RN×N).

Another flux which can be written in the PVM format is the HLL method. We get

P (A) = α0I5,6 + α1A, (3.3.43)

where

α0 =
SR |SL| − SL |SR|

SR − SL
(3.3.44)

α1 =
|SR| − |SL|
SR − SL

, (3.3.45)

and

SL = min{λ1(A(UL) · n), λ1(A1/2 · n)} (3.3.46)

SR = max{λ3(A(UR) · n), λ3(A1/2 · n)}. (3.3.47)

82

3.4 Boundary Conditions

We implemented the HLL flux as well. It is also rotationally invariant, since it is a linear
combination of two rotationally invariant matrices. The matrix I5,6 is defined as

I5,6 =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 0

. (3.3.48)

3.3.4 DOT Flux

The DOT flux [5, 13]4 is written as

Θ(U) = |A(U) · n| . (3.3.49)

It may look similar to the Roe flux, yet the matrix varies w.r.t. U this time.5This makes
the exact computation of the integral more difficult, even in the case of ΨP : we would
need to determine the points where all the eigenvalues switch sign.
We implemented the most simple version of the DOT flux which is also suggested in

[13]. That is, we use linear paths in primitive variables, i.e. ΨP , and we use a three-point
Gauss-Legendre quadrature to approximate it.
Just as we have done with the Roe flux, we obtain that the DOT flux is rotationally

invariant as well.

3.4 Boundary Conditions

We allow four different boundary configurations, mainly based on empirical behavior.
For all numerical methods which we consider, we only need to deal with the boundary
over the numerical flux. This means that we are given UL (or UR) at a face F ⊆ ∂Ω, and
we need to return UR (or UL). Write UL = (hL, (hu)L, (hw)L, (hp)L, bL)

T , and UR =
(hR, (hu)R, (hw)R, (hp)R, bR)

T , and we are some position (tb, xb). Then, we consider the
folloing choices which are also written into Table 3.2.

• A given target solution: we are given a Ubnd(t, x) for x ∈ ∂Ω. Ideally, Ubnd(t, x)
should be the solution to the given initial conditions, or at least close to it. Then,
we set UR = Ubnd(tb, xb).

• Absorbing boundary conditions, or resting lake boundary conditions. This means
that we set hu, hw, and hp to zero, and h = −b, and so we get

UR = (−bL, 0, 0, 0, bL)T . (3.4.1)
4In [15] also called the “generalized Osher-Solomon” flux. In fact, the name DOT seems to be introduced
by [5] and stands for “Dumbser-Osher-Toro”.

5One may even conjecture, if it is useful to consider a generalization of PVM methods by replacing the
Roe average matrix by the path integral. e.g. for the HLL flux above, we would replace A1/2 · n in
SL and SR, as well as in P itself by the parameter A · n which varies during the path.

83

3 Numerical Discretization

Handle hout (hu)out (hv)out (hw)out (hp)out

scenario hbnd (hu)bnd (hv)bnd (hw)bnd (hp)bnd
absorbing −bin 0 0 0 0
keep_height hin 0 0 0 0
keep_no_velocity hin 0 0 (hw)in (hp)in
keep_all hin (hu)in (hv)in (hw)in (hp)in

Table 3.2: A list of the available boundary conditions in our implementation. Here, Uin

is the data from the adjacent cell, Ubnd is the prescribed boundary condition,
and Uout is the boundary value.

• Height-preserving boundary conditions. We keep the height value h, but all other
values are set to zero. Thus, hu, hw, hp are set to zero. Thus, we get UR =
(hL, 0, 0, 0, bL)

T .

• All-but-velocity-preserving boundary conditions. We keep the boundary values as
they are, and only set hu to zero. Therefore, we have

UR = (hL, 0, (hw)L, (hp)L, bL)
T . (3.4.2)

While we could also attempt to set UR = UL, this has shown to lead to unstable
solutions in practice. We conjecture that this is related to the equation for (hp), see e.g.
[9].
Given UL and UR, we then compute the flux D(UL,UR) · n. In particular, we do

not need to evaluate the flux into the other direction—or if we do, we discard the other
value.

3.5 The ADER-DG Method

Next, we discuss the main method which we are going to use. It is the ADER-DG
method, similarly to as done in [15]. The ADER-DG method is a space-time DG method.
This means that it uses the Discontinuous Galerkin formalism not only for space dis-
cretization, but also for the time evolution. As a result, we have space-time cells—which
is why we introduced the space-time bases above in the first place. This contrasts with
the regular, well-known method of lines approach where we only use the DG method in
space to get a semi-discrete equation which is then solved with a “normal” ODE solver,
or a variant thereof. For an analysis of the semi-discrete DG methods, we refer to [10].
We will not handle them any further here, although the finite volume implementation
described in the previous section can be seen as a DG method as well.
There have been numerous papers which describe the method itself. To give a small

overview over two papers that were most useful for applying the method, we suggest
the following papers: the paper [11] introduces the method itself for A ≡ const, and
analyzes the method. This paper also includes a von Neumann stability analysis. In

84

3.5 The ADER-DG Method

addition, the paper [47] offers a good introduction to the discrete maximum principle
limiter.6

The ADER-DG method can be split into two main steps, plus an additional finite
volume limiter. See Algorithm 3.1 for a high-level description of a single step in the
procedure.

Input: Timestep ∆t, cell-local previous solution Un, cell state S
Output: The next timestep solution Un+1.
if Cell state S is DG then

Predictor: Solve (3.5.3) with Un and ∆t, get Qn;
Corrector: Compute (3.5.21), get Un+1;

end
if If S is FV, an error occurred or Un+1 violates Definition 3.1 then

Limiter: Solve (3.2.11) with the projected averages;
end

Algorithm 3.1: A step of the ADER-DG method with limiter.

In total, we need the following ingredients to define an ADER-DG method:

• A mesh TDG which was defined in Section 3.1, and a subdivided mesh TFV for the
limiter. We need TFV to be subdivision of TDG, i.e. each cell in TFV is contained
in exactly one cell in TDG.

• A predictor function space VP in space and time defined on TDG.

• A corrector function space VC in space only, also defined on TDG.

We will now explain the two steps of the ADER-DG method, as well as the inclusion of
the finite volume limiter afterwards.

3.5.1 Predictor Step

For the predictor step, we assume that we know the solution for the previous time
step Un(x) ∈ VC . The goal is to determine a predictor function Q(t, x) ∈ VP which
should follow the local behavior of the PDE, i.e. of (2.2.1). For this, we multiply our
equation with a test function V ∈ VP , then we integrate the equation in space and time.
For brevity, we will write point-wise multiplication between vector-valued functions by
writing nothing in-between them. So the following means the multiplication of the
equation with the test function V in each component. So, we have

∫

[tn,tn+1]×T
V(t, x)⊙ (∂tQ+∇ · F(Q) +B(Q) · ∇Q− S(Q,∇Q)) d(t, x) = 0. (3.5.1)

6The DMP check is actually introduced in [14], however, the value for δ suggested there is not the one
used in later works.

85

3 Numerical Discretization

Next, we use Fubini’s Theorem (once again, separately on each component) and integrate
the right-hand side by parts in time, and replace Q(0, x) by Un(x), and obtain

∫

[tn,tn+1]×T
V(t, x)⊙ ∂tQ(t, x) d(t, x)

=

∫

T
V(1, x)⊙Q(1, x) dx−

∫

T
V(0, x)⊙Un(x) dx

−
∫

[tn,tn+1]×T
∂tV(t, x)⊙Q d(t, x).

(3.5.2)

Inserting this into equation (3.5.1) and re-ordering some terms gives us

∫

T
V(1, x)⊙Q(1, x) dx−

∫

[tn,tn+1]×T
∂tV(t, x)⊙Q(t, x) d(t, x)

=

∫

T
V(0, x)⊙Un(x) dx

−
∫

[tn,tn+1]×T
V(t, x)⊙ (∇ · F(Q) +B(Q) · ∇Q− S(Q,∇Q)) d(t, x).

(3.5.3)

We now solve (3.5.3) for Q which will be done used a fixed-point iteration. To make this
more clear, note that the right-hand side is linear in V, and the left-hand side is bilinear
(in V and Q). Hence, if we fix Q on the right-hand side, this problem ultimately has
the structure

a(Q,V) = f [Un,Q](V) (3.5.4)

Thus, if we are able to invert a, we can try to solve for Q by using a fixed-point iteration.

We note that the predictor is an entirely local operation and no communication with
other elements is required. Yet, since we need to solve a fixed-point iteration, it is in
practice a rather compute-intensive operation.

Transformation to the Reference Element

Inserting the transformation to the reference element (3.1.20) into the predictor equation
(3.5.3), we get

h2
∫

Tref

V(1, x)⊙Q(1, x) dx− (∆t)h2
∫

Iref×Tref

1

∆t
∂tV(t, x)⊙Q(t, x) d(t, x)

=h2
∫

Tref

V(0, x)⊙Un(x) dx

− (∆t)h2
∫

Iref×Tref

V(t, x)⊙
(
1

h
A(Q) · (R∇Q)− S(Q,

1

h
R∇Q)

)
d(t, x).

(3.5.5)

86

3.5 The ADER-DG Method

Simplifying the equation (including removing the h2 term) gives
∫

Tref

V(1, x)⊙Q(1, x) dx−
∫

Iref×Tref

∂tV(t, x)⊙Q(t, x) d(t, x)

=

∫

Tref

V(0, x)⊙Un(x) dx

− (∆t)

∫

Iref×Tref

V(t, x)⊙
(
1

h
A(Q) · (R∇Q)− S(Q,

1

h
R∇Q)

)
d(t, x).

(3.5.6)

Most notably, the left-hand side does not depend on ∆t.
Here, the application of R ∈ SO(2) onto ∇Q is defined as

R∇Q =

(
R11∂xQ+R12∂yQ
R21∂xQ+R22∂yQ

)
. (3.5.7)

Matrix Formulation

Next, we want to formulate (3.5.6) using the previously-defined bases BP and BC . There-
fore, we need to introduce a coefficient vector for each of the variables h, hu, hv, hw,
hp, and b. Since they all have the same basis, we can also write their coefficients conve-
niently into a matrix. Suppose we have Un ∈ RbC×6 as matrix of basis coefficients. We
now want to write (3.5.6) in matrix form, so that we may compute the predictor update
coefficient matrix Qn ∈ RbP×6. Conveniently, we can handle each line of the equation
(3.5.6) separately.
Firstly, we introduce the matrix R ∈ RbP×bP for the left-hand side of the predictor

equation. This is for the first line in (3.5.6). That is, we have

Rij =

∫

Tref

vi(1, x)vj(1, x) dx−
∫

Iref×Tref

∂tvi(t, x)vj(t, x) d(t, x). (3.5.8)

Naturally, we need R to be invertible. In practice, this is always the case for our choice
of VP . For the second line of (3.5.6) which the first term of the right-hand side, we
introduce the matrix Un,init ∈ RbP defined as

(Un,init)ij = Un
ij

∫

Tref

vi(0, x)vj(0, x) dx (3.5.9)

which is essentially an extension of Un to the space-time cell. We do not introduce a
separate symbol for the mass matrix of BP here, since we do not need it anywhere other
than here.
The nonlinear part, i.e. the last line of (3.5.6) needs more discussion. We discretize it

by choosing a grid of quadrature points for Iref×Tref. Let dC be the number of quadrature
points, and pC ∈ RdC be the vector of quadrature points in space and time. That means
that pCi ∈ Iref ×Tref. Then let qC ∈ RdC be the vector of weights of the quadrature rule,
and so qCi ∈ R+. Next, we introduce the collocation matrix C ∈ RdC×bP , defined as

Cij = vj(p
C
i) (3.5.10)

87

3 Numerical Discretization

as well as the collocation matrices Cx, Cy ∈ RdC×bP for the derivatives

Cx
ij =

1

h
(R11∂xvj(p

C
i) +R12∂yvj(p

C
i)) (3.5.11)

Cy
ij =

1

h
(R21∂xvj(p

C
i) +R22∂yvj(p

C
i)), (3.5.12)

and the weighted transposed collocation matrix D ∈ RbP×dC as

Dij = vi(p
C
j)q

C
j . (3.5.13)

Thus, we get for a quadrature rule of sufficiently high order that

(DC)ij =
∫

Iref×Tref

vi(t, x)vj(t, x) d(t, x). (3.5.14)

And we also write

(Df(Cy))i ≈
∫

Iref×Tref

vi(x)f

∑

j

yjvj(x)

 d(t, x) (3.5.15)

for any function f : R → R. Here, we mean by f(Cx) that f is applied on each quadrature
point separately. For the order of the quadrature dC , we will have to integrate over an
expression of the form VA(Q)∇Q, where V is a polynomial of degree NP . Since we
take the derivative, ∇Q has degree (NP − 1), and A(Q) · n only contains primitive
variables other than h. Therefore, A(Q) · n only contains rational functions, with the
same degree in denominator and numerator. Thus, we choose for the scope of this work
dC = (2NP + 1), since we cannot compute A(Q) · n exactly. Other orders, with at least
(2NP − 1) would be possible as well.
In total, we get the following fixed-point iteration

Qn,i+1

= R−1Un,init

+ (∆t)R−1D
(
A1(CQn,i)CxQn,i +A2(CQn,i)CyQn,i

)

+R−1S(CQn,i, (CxQn,i, CyQn,i)).

(3.5.16)

Here, A1 andA2 come from expanding (A(Q)·(R∇Q)). Once again, the termA1(CQn,i)
is understood as computing the values at the quadrature points for the coefficients from
Qn,i, and then sending each quadrature point through A1. The other terms are under-
stood similarly. We abort with iterating by (3.5.16), once we reach

∥∥Qn,i −Qn,i+1
∥∥
F
< ϵc (3.5.17)

for some i. Then Qn is set to Qn,i. Here, ϵc > 0 is given as a parameter. If we do not get
to (3.5.17) after some iterations (which is also a parameter which can be chosen freely),

88

3.5 The ADER-DG Method

we declare the predictor to be divergent. The actual norm we use in (3.5.17) does not
matter, so for the ease of use, we choose the Frobenius norm. As initial guess Qn,0, we
simply take Un,init.

The convergence of the predictor iteration (3.5.16) is not much discussed in the papers
to our knowledge. Only [4] includes some proof ideas for the convergence of the predictor,
however the proof given there only works if F is defined on all of RN , and it is globally
Lipschitz continuous. Furthermore, [11] argues about the convergence, for the linear
case.

3.5.2 Corrector Step

For the corrector step, we again take the given Un(x) ∈ VC , as well as a predictor
solution Q(t, x) ∈ VP . We now want to determine the solution for the next step, i.e.
we have the unknown function Un+1(x) ∈ VC . This time, we a test function W ∈ VC .
This will be again symbolized by the symbol ⊙. Once again, we will write the function
arguments (t, x), and (x) only to reduce ambiguity, when this is needed. Next, we again
integrate in space and time and get again

∫

[tn,tn+1]×T
W(x)⊙ (∂tQ+∇ · F(Q) +B(Q) · ∇Q− S(Q,∇Q)) d(t, x) = 0. (3.5.18)

Next, we integrate by parts in time for each element. We insert, again, Un(x) for
Q(tn, x), and now also Un+1(x) for Q(tn+1, x). This gives us

∫

[tn,tn+1]×T
W(x)⊙ ∂tQ(t, x) d(t, x)

=

∫

T
W(x)⊙Un+1(x) dx

−
∫

T
W(x)⊙Un(x) dx.

(3.5.19)

Note that in comparison to the predictor, the integral over ∂tW(x)Q(t, x) disappears.
This is due to the fact that W does not depend on t, hence ∂tW ≡ 0. In addition to that,
we now take F and integrate it by parts in space (compare Gauss divergence theorem).
For the now needed boundary integral, we use the previously-introduced numerical flux
D, and get ∫

[tn,tn+1]×T
W(x)⊙ (∇ · F(Q)) d(t, x)

=

∫

[tn,tn+1]×∂T
W(x)⊙ (D(Q−,Q+) · n) d(t, x)

−
∫

[tn,tn+1]×T
F(Q) · ∇W(x) d(t, x).

(3.5.20)

89

3 Numerical Discretization

In total, by inserting (3.5.19) and (3.5.20) into (3.5.18), we obtain the equation

∫

T
W(x)⊙Un+1(x) dx

=

∫

T
W(x)⊙Un(x) dx

−
∫

[tn,tn+1]×∂T
W(x)⊙ (D(Q−,Q+) · n) d(t, x)

+

∫

[tn,tn+1]×T
F(Q) · ∇W(x) d(t, x)

−
∫

[tn,tn+1]×T
W(x)⊙ (B(Q) · ∇Q+ S(Q,∇Q)) d(t, x).

(3.5.21)

While this equation is more complicated than the equation for the predictor (3.5.3), we
only need it to run once to compute Un+1. However, it is not an element-local operation
anymore, since we need the boundary values from neighboring cells or the boundary
conditions.

Transformation to the Reference Element

Next, we insert the transformations (3.1.20) into the corrector equation (3.5.21) to get

h2
∫

Tref

W ⊙Un+1 dx

=h2
∫

Tref

W ⊙Un dx

− (∆t)h

∫

[0,1]×∂Tref

W(x)⊙ (D(Q−,Q+) · n) d(t, x)

+ (∆t)h2
∫

[0,1]×Tref

F(Q) · 1
h
R∇W(x) d(t, x)

− (∆t)h2
∫

[0,1]×Tref

W ⊙
(
1

h
B(Q) ·R∇Q− S(Q,

1

h
R∇Q)

)
d(t, x)

(3.5.22)

90

3.5 The ADER-DG Method

It should be noted that the face integral (i.e. line 3) only gets the scaling factor h instead
of h2, since the faces are all one-dimensional. Next, we again divide by h2 to obtain

∫

Tref

W ⊙Un+1 dx

=

∫

Tref

W ⊙Un dx

− ∆t

h

∫

[0,1]×∂Tref

W(x)⊙ (D(Q−,Q+) · n) d(t, x)

+
∆t

h

∫

[0,1]×Tref

F(Q) ·R∇W(x) d(t, x)

− (∆t)

∫

[0,1]×Tref

W ⊙
(
1

h
B(Q) ·R∇Q− S(Q,

1

h
R∇Q)

)
d(t, x).

(3.5.23)

Matrix Formulation

In order to convert to the corrector equation (3.5.23) into a matrix formulation, we
proceed as we did for the predictor. Let Un be the coefficients of the previous timestep,
and Qn the result from the predictor iteration (3.5.16), and let Un+1 be the coefficient
vector we are looking for. For convenience, we decompose Un+1 into

Un+1 = Un + Un+1,local + Un+1,edge, (3.5.24)

where Un+1,edge shall contain the discretized face integral, and Un+1,local the rest. In com-
parison to (3.5.23), Un+1 corresponds to the first line, Un to the second line, Un+1,edge

to the third line, and Un+1,local to the fourth and fifth line.

We introduce the spatial mass matrix M ∈ RbC×bC defined element-wise as

Mij =

∫

Tref

wiwj dx. (3.5.25)

With our choice of basis, M has shown to be always invertible in practice. With M, we
are able to write

(MUn)ij = Un
ij

∫

Tref

wiwj dx, (3.5.26)

(MUn+1)ij = Un+1
ij

∫

Tref

wiwj dx. (3.5.27)

In addition, we re-use the collocation matrices C and Cx, and Cy. This is because we
are inserting the predictor into the equation again. But this time, we need space-only
weighted and transposed collocation matrices E , Ex, Ey ∈ RbC×dC . Therefore, we define

91

3 Numerical Discretization

for the same quadrature grid (pC , qC) the matrices

Eij = wi(p
C
j)q

C
j , (3.5.28)

Ex
ij =

1

h
(R11∂xwi(p

C
j) +R12∂ywi(p

C
j))q

C
j , (3.5.29)

Ey
ij =

1

h
(R21∂xwi(p

C
j) +R22∂ywi(p

C
j))q

C
j . (3.5.30)

We have wi ∈ BC being functions, and qCj being constants. Note that again, we included
the rotation matrices here already. Thus, we obtain for lines four and five from (3.5.23)

Un+1,local =(∆t)M−1 (Ex∂xF1(CQn) + Ey∂yF2(CQn))

− (∆t)M−1E (B1(CQn)CxQn +B2(CQn)CyQn)

+ (∆t)M−1S(CQn, (CxQn, CyQn)).

(3.5.31)

Once again, the application of a matrix on Fi, Bi, and S is understood as the application
on each quadrature point separately. That is, the functions are applied on each row.
It remains define Un+1,edge. For this, we need to discretize the face integrals. Thus,

we require a new quadrature rule with dF points over Iref×Fref which we write (pF , qF).
We choose a Gauss-Legendre quadrature of degree 2N in space and time, and trans-
form (pF , qF) to each face F1,ref, F2,ref, F3,ref, to get (pFk , qFk) ∈ RdF × RdF which is a

quadrature for Fk, and k = 1, 2, 3. In particular, we get that wF1
i =

√
2wF2

i = wF3
i for

all i, since as the hypotenuse, F2,ref is longer than F1,ref and F3,ref. We order the points
additionally in counter-clockwise order around the triangle. In particular, pF1 lets its
points go from (0, 0)T to (1, 0)T , for pF2 , they go from (1, 0)T to (0, 1)T , and for pF3 ,
they go from (0, 1)T to (0, 0)T . Then, we introduce matrices Fk and Gk for each face
(i.e. k = 1, 2, 3), so that

Fk
ij = wj(p

Fk
i), (3.5.32)

Gk
ij = wi(p

Fk
j)qFk

j . (3.5.33)

While qFk
j denoted the quadrature weights, wi, wj ∈ BC denoted functions from the

basis. Suppose for now that we have a cell T that does not touch the boundary. Let
Q̂n,1, Q̂n,2, and Q̂n,3 be the predictor results from the neighboring cells over the edges
F1, F2 and F3, respectively. Then, the face integral (row three from (3.5.23)) can be
written as

Un+1,edge = −∆t

h
M−1

∑

k=1,2,3

Gk(D(FkQn,FkQ̂n,k) · nk). (3.5.34)

Again, this notation is understood as that D is evaluated for each quadrature point, i.e.
for each row of FkQn and FkQ̂n,k, respectively. Three peculiarities have to be observed.

• If a cell touches the boundary at face k, we replace FkQ̂k by the chosen boundary
values Q̂k

bnd which can be determined per quadrature point, as considered in Section
3.4.

92

3.5 The ADER-DG Method

• Suppose we have two cells Q1 and Q2 which share a face F with matrices FQ1

and FQ2
, then the respective quadrature point evaluations of FQ1

Q1 and FQ2
Q2

are not the same. In fact, they have their spatial order exactly reversed, e.g. if
the points from the side on Q1 run from (0, 0)T to (1, 0)T , they run from (1, 0)T

to (0, 0)T on the other side. This is the case, because if we go through Q1 and Q2

in counter-clockwise order, we go through F in opposite directions, and thus, the
quadrature points (which we have ordered before), are reversed as well. This is
also the case for the finite volume patches.

• In its current formulation, we compute D at each quadrature point. This way, we
can experiment with the effect of different numerical fluxes in the DG formulation,
and it is better to test the correctness of the model itself. However, we note that it
may be in the long run preferrable to switch to a different method which evaluates
and integrates over D before-hand on each cell and uses some approximation for
Θ, as it is e.g. used in [37].

3.5.3 Limiter

Since the ADER-DG method fails at wet-dry boundaries, we also include a finite volume-
style limiter (again following [15]). This means that we subdivide each cell T ∈ TDG into
smaller cells on which we run the finite volume method described in Section 3.2, and
we obtain a mesh TFV which contains all subcells which will from now on be referred to
as patches. Thus, we require that for τ ∈ TFV, there is a T ∈ TDG, so that τ ⊆ T . In
addition, TFV should be conforming as well.

This can be seen as if we take VC to just cover all constant functions, and VP to
be constant in space. This amounts to that we could in the corrector equation simply
remove all references to W (which now just represented a constant function), as well
as all derivatives of W or Q. Also, we remove the predictor iteration, and assume a
constant evolution in time. The only part which may not be constant in this formulation
is the flux which potentially arrives from a valid DG cell (since a finite volume and a
DG cell might lie next to each other).

Projection to the Limiter

Given a cell T ∈ TDG, denote by τ1,T , ..., τk,T ∈ TFV its patches. This means that we
have τi,T ∈ T for all i = 1, ..., k. It is important that we have k ≥ |BC |, so that the
projection to the limiter and back is possible without a loss. We subsequently use the
L2 projection to obtain a matrix Plim which is defined as

(Plim)ij =
1

|τi,T |

∫

τi,T

wj,T (x) dx. (3.5.35)

Here, |τi,T | denotes the volume of τi,T , and wj,T is the basis function wj transformed to
T . The normalization mass matrix normally seen in the L2 projection has just become
the 1/|τi|, since the closures of τ1, ..., τk forms a partition of T . For the projection from

93

3 Numerical Discretization

τ1,T , ..., τk,T back to T , we apply the Moore-Penrose inverse P†
lim. Since we required

k ≥ dim(VP), we get P†
limPlim = I by construction.

For simplicity, we choose the same set of patches for all cells (although this is not
required by the formulation we just considered). Then Plim is the same matrix for
all cells. To see this, consider the reference patches τ1,ref, ..., τk,ref. Naturally, we get
τi,T = Ph,R,b(τi,ref) for all i = 1, ..., k. Subsequently, we obtain

|τi,T | = h2|τi,ref|, (3.5.36)

as well as
∫

τi,T

wj,T (x) dx = h2
∫

τi,ref

wj,T

(
1

h
Rx+ b

)
dx = h2

∫

τi,ref

wj(x) dx. (3.5.37)

This shows that Plim is the same matrix for all cells (and all variables).
We will write Ūi,T,n for the value in patch cell τi,T and timestep n.

When to Activate the Limiter

For the limiter, we have several situations when it is activated (as done in e.g. [37]):

1. We encounter positivity-violating and wet-dry situations, i.e. when we have some
τi,T where h < 0 or C < 0.

2. The predictor iteration does not converge on T .

3. If the two previous situations are encountered for a neighboring cell. This is
checked, after the predictor is run, and it is done in order to facilitate the transition
between DG and finite volume cells.

4. The Discrete Maximum Principle (Definition 3.1) is violated [12].

The last step is included for scenarios, when for example a shock runs through T . For
this, we employ an a posteriori finite volume limiter as described in [12]. It is executed
after we completed the corrector which gives us Un+1. Then, we run the limiter which
checks a variant of Definition 3.1 (defined below). If Un+1 passes, we go on to the next
step. If Un+1 fails to pass, we resort to the finite volume limiter, but we take the averages
computed from Un instead of Un+1.
The limiter itself checks the discrete maximum principle.

Definition 3.1 (Discrete Maximum Principle [12]). Un+1 fulfills the discrete maximum
principle, if for a fixed δ, it holds for all x ∈ T for each triangle T

−δ + min
y∈V(T)

Un(y) ≤ Un+1(x) ≤ δ + max
y∈V(T)

Un(y). (3.5.38)

The minimum and maximum is taken over each component (i.e. h, hu etc.) of Uh

separately.

94

3.5 The ADER-DG Method

In [12], δ is chosen as

δ = max

{
δ0, ϵ0

(
max

y∈V(T)
Un(y)− min

y∈V(T)
Un(y)

)}
. (3.5.39)

Here δ0 > 0 and ϵ0 > 0 are two given parameters which are set to δ0 = 10−4 and
ϵ0 = 10−3 in [12]. In addition, V(T) denotes the Voronoi region around T which is the
area of all triangles which share at least one vertex with T . We can write it as

V(T) =
{
x ∈ Ω

∣∣∣ x ∈ cl(T̂), cl(T̂) ∩ cl(T) ̸= ∅, T̂ ∈ T
}
. (3.5.40)

In practice, it is difficult to check Definition (3.1) over Un and Un+1. Hence, we will
resort to checking it for all Ūi,T,n only. Thus, we obtain

−δ + min
(i,T ′)∈V ′(T)

Ūi,T ′,n ≤ min
i=1,...,k

Ūi,T,n+1, (3.5.41)

as well as
δ + max

(i,T ′)∈V ′(T)
Ūi,T ′,n ≥ max

i=1,...,k
Ūi,T,n+1. (3.5.42)

Here, V ′(T) is the Voronoi region of the average cells.
After the limiter has been run, we check, if a cell is dry (or C < 0). If it is not dry, we

run the predictor iteration in the next step. If it is dry, then we ignore the predictor.

3.5.4 Projection Initial Conditions

For the initial conditions, we interpolate over an equidistant grid. That is, we take the
points xi,j for 0 ≤ i+ j ≤ N , defined as

xi,j =
1

N

(
i
j

)
(3.5.43)

on the reference cell. We want there to be exactly as many points as basis functions.
Suppose then that we flatten the index (i, j) to k = 1, ..., bC . Then, we once again
compute a collocation matrix Pinit ∈ RbC×bC as

(Pinit)ik = wi(x
k). (3.5.44)

Once again, this matrix yields the same functions wi for all triangles, given that we
consider the points Ph,R,b(x

k) for T ∈ TDG.

3.5.5 Timestepping

Finally, we decide about the timestepping for the ADER-DG and the finite volume
method. For a given T ∈ TDG, as mentioned in papers like [12, eq. (17)], one can simply
take the estimate

∆t <
h

(2N + 1)d ∥λmax(Un+1)∥∞,T

, (3.5.45)

95

3 Numerical Discretization

where h is the edge length of the triangle, d = 2 is the dimension in space, NP is the
polynomial degree in space, and ∥λmax(Un+1)∥∞,T is the maximum eigenvalue of A of
the computed Un+1 on T . In particular, ∥ · ∥∞,T denotes the maximum norm on T .
Since it is difficult to actually compute ∥λmax(Un+1)∥∞,T , we resort to computing the
maximum eigenvalue over all finite volume patches, as it is done in [37]. This means
that we compute for T ∈ TDG the value

∥λmax(Un+1)∥∞,T ≈ max
τi∈TFV,τi⊆T

∣∣λmax(Ūi,T,n+1)
∣∣. (3.5.46)

This however does not work well, if Un+1 has a high total variation. In this case,
we adjust the CFL condition, and we will not handle better approximations here (e.g.
evaluation e.g. at some nodes on the triangle).

Source-Involved Timestep Estimates

In practice, this timestep has shown to be insufficient at least for small mesh sizes. The
reason for this is, as we conjecture, the influence of S. In particular, the last component
reads −2c2w. Thus, if we have a large c, this could cause the solution to diverge. 7

While it is very well possible to just hide this using the CFL condition, we also derived
a heuristic formulation. That is, we choose the timestep

∆t < tDG(T) :=
1

∥K−1∥2
(
h−1 ∥Z∥2 (maxτ∈TFV,τ⊆T

∣∣λmax(Ūi,T,n+1)
∣∣) + max{2c2, γ}

) .

(3.5.47)
Here K is the same matrix as in the discretization of the predictor which is defined in
(3.5.8). The matrix Z is given by

(Z)ij =
√
2

∫

Iref×Tref

vi∂xvj d(t, x). (3.5.48)

Here, vi, vj ∈ BP . It is used as a rough estimate for the matrix which relates the basis
functions from bP to their derivatives. We get that

∥∥K−1
∥∥
2
∥Z∥2 is roughly as big as

(2(2N + 1)) for triangles. For example, for NP = 4, we obtained
∥∥K−1

∥∥
2
∥Z∥2 ≈ 19.7

compared to 18. The value max{2c2, γ} is meant as a rough approximation to S. It
should be noted that for h→ 0, the dependence on the new term disappears or at least
becomes irrelevant.
The idea for this stems from the conjecture that the Picard-Lindelöf can be used to

prove the convergence of the predictor step, generalizing the result from [4], so that
A does not need to be defined on the whole space. In addition, we would be able to
remove the dependence on a Lipschitz constant, and obtain a sufficient estimate for the
convergence of a single predictor step. If we simplify and approximate this sufficient
estimate, we conjecture that we can arrive at (3.5.47). In practice, this timestep has
shown to work in most cases, if the water is sufficiently deep and the solution sufficiently
smooth.
7Large in the sense of α = 5, g = 9.81, and H = 1, i.e. c ≈ 15.66.

96

3.5 The ADER-DG Method

Combining the Timesteps

If the limiter is activated, we just take the finite volume timestep (and discard the DG
timestep estimate). In particular, we get

∆t < tFV(T) :=
h

2
√
2
(
maxτi∈TFV,τi⊆T

∣∣λmax(Ūi,T,n+1)
∣∣) . (3.5.49)

In total, we can define the timestep estimate for a cell T ∈ TDG as

test(T) =

{
tFV(T) T is limited

tDG(T) T is unlimited.
(3.5.50)

And so, we obtain the estimate over the whole grid TDG by

test(TDG) = min
T∈TDG

test(T). (3.5.51)

Thus, with CCFL ∈ (0, 1) being the CFL number, we get the timestep estimate for the
next step as

∆t = CCFLtest(TDG). (3.5.52)

97

4 Implementation in sam(oa)²

After we described the numerical method we want to use, we now present our imple-
mentation of the scheme in the sam(oa)² software [32]. Its repository can be found at
[40]. Our contributions lie in the dswe branch of the repository. The algorithms which
we implemented were already described in the last chapter. The purpose of this chapter
is to detail how we implemented the equations.

4.1 An Introduction to sam(oa)²

sam(oa)² is an acronym for “Space-Filling Curves and Adaptive Meshes for Oceanic
And Other Applications” [32]. It is mostly written in FORTRAN90 or higher, and
it implements a two-dimensional, structured grid made out of triangles (from now on
termed “cells”). The grid is based on a space-filling curve [1] which can be refined at
will. In particular, cells can be split or merged whenever needed. In addition, has
integrated support for MPI and OpenMP, and load balancing with respect to the mesh
refinement. The main operation which sam(oa)² is the traversal over such grid spanned
by the space-filling curve. Therefore, we see and process a single cell, a single edge, or a
single vertex (also termed node) at a time and need to formulate our algorithms in this
way. This section describes briefly how to work with sam(oa)².

4.1.1 General Structure of sam(oa)²

sam(oa)² uses scons [19] as build system. The src/ folder contains the source code. In
src/ itself, the basic files and tools for traversals are included. The indivdual imple-
mentations of the different applications (e.g. PDEs like the heat equation, the shallow
water equation etc.) are placed into their own folders inside src/. For example, the
finite volume implementation of the shallow water equations is placed in src/SWE.

To compile a particular equation (termed “scenario” is sam(oa)²), we have to supply
its name to scons using the scenario parameter. For the shallow water equations, we
subsequently have to call scons with scenario=swe. As for the master branch (and
also on the dswe branch), there are currently only two SConscript files for all scenarios
together. In addition, the build system currently compiles all files for all scenarios, even
though they are not needed for all others.

Additional scripts are placed into the scripts/ folder. Furthermore, the .gitignore
script reserves the folders bin/ (which is used by default by scons to build), and output/

for output files.

99

4 Implementation in sam(oa)²

Running sam(oa)² with MPI and OpenMP follows standard procedures,1 and it is also
described in [41].

Include Process

We will shortly describe the include process which is used in sam(oa)². Firstly, each
file includes the Compilation_control.f90 file which defines only C-preprocessor style
macros. Subsequently, macros or files containing macros have to be included into
Compilation_control.f90. Secondly, data types relevant for the traversals like data
which should reside on nodes, edges, or cells are included via the file SFC_data_types.
f90. It is also C-preprocessor style includes2 Compilation_control.f90 into SFC_data_
types. Thus, each scenario includes a FORTRAN module which implements its specific
data types. The modules which define the data types must not include files which con-
tain traversals as to avoid a cyclic dependency. Lastly, we have all other code files. These
C-preprocessor style include Compilation_control.f90 and contain a use Samoa state-
ment inside every module. The Samoa module (defined in the file src/Samoa/Samoa)
includes the SFC_data_types module, i.e. a use SFC_data_types statement.

Program Execution Process

The FORTRAN main program is defined in the file src/SFC_main.f90. First, it reads
the given input arguments from the src/Config.f90 file. Then, it calls the subroutine
sfc_generic() from src/SFC_traversal.f90 which finally calls the scenario-specific
code.

4.1.2 The Mesh

Next, we describe the mesh that is used in sam(oa)². It is built out of the triangles
which we used in the last chapter, and finer meshes are created by splitting a triangle
in two parts which equals an additional refinement in the space-filling curve. We define
the subdivision factor N is a parameter which shows how often the space-filling curve
is applied. Figure 4.1 shows the lowest-order subdivisions which sam(oa)² produces,
without further adaptive mesh refinement. If we look at the even subdivisions, we can
see that for (N + 2), each square (made out of two triangles) has been replaced by four
squares itself, thus halving the side lengths. The same is true for the odd subdivisions,
except that squares are made out of four triangles there. We can therefore give the
following formula to obtain the number of cells n on one side, based on the subdivisions.
It reads

n(N) =

{
2

N
2 N is even

2
N−1

2 N is odd
. (4.1.1)

1That is: all OpenMP parameters are available, and to use MPI, we simply need to run sam(oa)² using
mpirun with the desired parameters.

2That means: #include "Compilation_control.90"

100

4.1 An Introduction to sam(oa)²

0 1 2

3 4 5

Figure 4.1: The mesh subdivision in sam(oa)² for N = 0 to N = 5.

In addition, we see that in each step (from even to odd and from odd to even), the
cathetes become hypotenuses, and the hypotenuses are split in half. Thus, if h(N) is
the maximum edge length for subdivision N , and given h(0) = h0, then we can use the
recursion h(N + 1) = h(N)/

√
2, and obtain that

h(N) = h02
−N

2 (4.1.2)

is the mesh diameter (the smallest edge length), if we ignore the adaptive mesh refine-
ment.

4.1.3 The SFC Traversals

A traversal over a grid is implemented in FORTRAN module which contains a use Samoa
statement. In addition, it has:

1. Data structures of permanent and temporary data. These are usually mostly
defined in a file which is included in SFC_data_types, but they may also be defined
directly in the model instead. The needed data structures have the prefix num_,
and most of the time, only num_traversal_data is defined anew for each traversal.

101

4 Implementation in sam(oa)²

2. Macro directives which define the name of the resulting traversal type using the
macro _GT_NAME, as well as macros which enable extra features as needed (e.g.
_GT_EDGES to include the handling of edges), and the names of functions which
handle the visiting of a node, an edge, or a cell (e.g. _GT_CELL_UPDATE_OP to
update the data of each cell during a traversal).

3. Finally, the C-preprocessor style inclusion of the file SFC_generic_traversal_

ringbuffer.f90 for a static traversal or SFC_generic_adaption_traversal.f90
for an adaptive traversal.

For the algorithms in sam(oa)², we refer to [32].

The following two paragraphs give a short overview over the traversals, but they are
by no means exhaustive. In addition, they focus on the current state of implementation
on the master and dswe branch only.3

Static Traversals

The traversal over cells is enabled by default. To enable the handling of edges, we
additionally need to define _GT_EDGES, and for nodes, we need to define _GT_NODES.

Interaction between nodes, edges, and cells is done via the operators _GT_CELL_

UPDATE_OP, and _GT_ELEMENT_OP. _GT_ELEMENT_OP has access to the data of all nodes,
edges, and cells, and can update them all as well. _GT_CELL_UPDATE_OP has only access
to the cell, and to skeleton update data. The skeleton update data is only available if
_GT_SKELETON is defined, and it works as follows: first of all, _GT_CELL_TO_EDGE_OP is
called for each edge (before and after _GT_CELL_UPDATE_OP) to set the num_cell_rep

data structure. Then, the skeleton operators _GT_SKELETON_OP and _GT_BND_SKELETON_

OP are called on each edge with the projections from _GT_CELL_TO_EDGE_OP, and they
compute a result in form of the data structure num_cell_update. This is then passed
to the _GT_CELL_UPDATE_OP which has access to the cell update data structures from
all three edges.

For cells, edges, and nodes, we have additionally the hooks FIRST_TOUCH, and LAST_

TOUCH.4 These are, as their names suggest, called on the first occasion of meeting the
respective simplex, and on the last occasion of meeting the respective simplex during the
traversal. For MPI handling, both nodes and edges have extra hooks for the MPI data
type (MPI_TYPE_OP), writing the data to MPI (WRITE_OP), and combining data from two
different MPI results (MERGE_OP).

Furthermore, there are hooks for operations which happen before and after the com-
plete traversal.

3For the dswe branch, a commit towards near the completion of this thesis is found at the hash
b41d46e4288c2902198d689e3ffe2728604b0509.

4There is also REDUCE which is in all cases called directly after the LAST_TOUCH hook with the same
arguments. Thus, it can be treated as equivalent to the LAST_TOUCH hook, and does not need to be
considered.

102

4.2 Implementation of the Governing Equations

Adaption Traversals

The adaption traversal allows refining or coarsen the grid as needed. To determine what
to do for which cell is told by a refinement parameter which is given for each cell, and
it can be set during the traversals. Depending on this parameter, one of the three extra
refinement hooks is called. If the refinement parameter is 0, then _GT_TRANSFER_OP is
called for this cell which means that the cell will be simply transferred to the new grid.
In case the refinement parameter is negative, then _GT_COARSEN_OP is called, and the
cell is merged with one of its neighbors. If the refinement parameter is positive, the
operation _GT_REFINE_OP is called for each new subcell. Each cell can only be split into
at maximum four parts or merged with one of its neighbors in a single adaptive traversal.
For further refinement or coarsening, additional traversals are needed.

4.2 Implementation of the Governing Equations

Finally, we describe our implementation for the system (2.0.10) which we generally refer
to as “DSWE” (short for “Dispersive Shallow Water Equations”). We heavily use the
matrices we defined in the previous chapter (Chapter 3).

The implementation is located in the dswe branch, and there it can be found in the
src/ADERDG and the src/ADERDG/DSWE folder. The sam(oa)² scenario is called aderdg_

dswe.

In general, our implementation is constructed so that we can add any other shallow-
water-like equation system, without having to modify any sam(oa)²-specific traversal
logic. For this, we encapsuled all equation system-specific logic into subroutines which
are placed inside the src/ADERDG/DSWE folder for the H-BMSS-γ system. Generic traver-
sal and sam(oa)²-specific logic which is the same for all equations is placed into the
src/ADERDG folder directly.

Thus, to implement a system, we need to specify some macros, data types, and func-
tions only, but we do not need to deal with any traversal-related issues. The most
important macros as the number of variables (_ADERDG_Q_VARS), the number of con-
stant variables (_ADERDG_AUX_VARS). In our case, we set these parameters to 5 and 1; Q
gets h, hu, hv, hw, hp, and AUX gets b.

Note however that in our implementation, no matrix logic has been abstracted away so
far. Therefore, any new equation system that is added has to implement the predictor
iteration completely from scratch, unless we re-use existing code. This is because we
could not exclude the case that we might want to change the basis for one of the variables
in the future.

In the following, all methods that are prefixes with ADERDG_Impl_ can be found in
src/ADERDG/DSWE/Impl.

4.2.1 Scenarios

We have a scenario file in src/DSWE/DSWE_Scenario.f90 which contains the settings
for the code which we are going to run. In general, the scenario is hard-coded into the

103

4 Implementation in sam(oa)²

executable at compile time. It can be used for both initial conditions, and also prescribed
scenario boundary conditions (cf. Table 3.2) which can be different for each point and
time. The scenario is supplied over the compile-time parameter swe_scenario. A list
of scenarios can be found in Table 5.1 in the next chapter (Chapter 5).

4.2.2 ADER-DG Implementation

Conceptually, our implementation is similar to the existing ADER-DG implementation
for the shallow water equations [37]. That is we use two traversals, one for the predictor,
and one for the corrector.

ADER-DG Loop

We begin by describing only the ADER-DG part for the traversals. We use two traver-
sals per step, and an additional traversal for refinement.5 After the first traversal, the
projection on the edges are available everywhere by the skeleton operators. After the
second traversal, the timestep for the next iteration is reduced globally.

Predictor Traversal The first traversal (src/ADERDG/ADERDG_predictor.f90) com-
putes the predictor, and prepares the local part of the corrector. This means that on
each cell, we give Un, and get Un+1,local back. For that, internally the predictor iter-
ation (3.5.16) is run. We copied the matrix evaluations from (3.5.16) directly into the
FORTRAN code, using the matmul operation. The nonlinear quadrature point eval-
uation was done using a function which was marked as elemental, i.e. it is applied
element-wise to a vector we input, and we are able to input vectors of any size. The
computation of Un+1,local from Qn also utilizes these ideas. In addition, this traver-
sal computes the projections on the edges FkQn for k = 1, 2, 3 and each element. All
these computations happen in the ADERDG_Impl_Predictor subroutine which is called
in the _GT_ELEMENT_OP hook. In addition, the values FkQn are sent to the edges by
the _GT_CELL_TO_EDGE_OP hook. As a result, the predictor is in practice the compute-
intensive operation, as it was hinted at in the last Chapter.

The wave-breaking switch is only enabled and disabled by checking all quadrature
points of the derivatives of the basis functions. In addition, its state is only changed at
the beginning of the predictor iteration. This is to prevent that the iteration diverges,
since the switch is enabled and disabled multiple times during the iteration.

Corrector Traversal The second traversal (src/ADERDG/ADERDG_corrector.f90) ex-
changes the boundary quadrature values, and completes the corrector. In the end, we
obtain Un+1.

For this, the skeleton hooks are used. Since it has for each edge F the quadrature
points evaluated from both sides, write Q+ and Q−, we compute D(Q−, Q+) · n and

5The refinement traversal can also be merged into the predictor traversal, see [37]. There are even more
compact schemes, see e.g. [7], or [2].

104

4.2 Implementation of the Governing Equations

D(Q+, Q−) · (−n) for each quadrature point. This is done in ADERDG_Impl_inner_edge.
Before and after D is applied, one of Q+ and Q− has to be reversed in space. If F
lies on the boundary, we insert one of the boundary conditions which is mentioned
in Table 3.2. Which condition to choose is supplied as the command line argument
dswe_boundary_condition. The choice is then propagated over C-preprocessor style
macros to ADERDG_Impl_boundary_edge which also computes one of D(Q+, Q−) ·n and
D(Q−, Q+) · (−n) after inserting the boundary value. We do not compute both fluxes
here anymore. The flux which is used here can be decided over the command line
argument dswe_dg_flux_solver which accepts all arguments as presented in Table 3.1.

Finally, the corrector is completed over the _GT_CELL_UPDATE_OP hook which gets
the fluxes which were computed over the quadrature points in the skeleton part. The
corrector is completed in ADERDG_Impl_corrector_complete which essentially applies
M−1Gk to all computed flux quadrature points to obtain Un+1,edge. By that, we finally
compute Un+1 = Un + Un+1,local + Un+1,edge.

The corrector traversal also computes the timestep per cell and takes the minimum
over all cells of it, so that it can be used in the next predictor step.

Adapt Traversal Additionally, we have implemented a refinement traversal (located
in src/ADERDG/ADERDG_adapt.f90) for the system. It requires the implementation of
the split subroutine ADERDG_Impl_adapt_split_cell, and merge subroutine ADERDG_

Impl_adapt_merge_cells. In addition, ADERDG_Impl_corrector_complete can specify
whether we should refine or coarsen a cell. However, for our current implementation,
this traversal is currently not much in use.

Limiter Implementation

Next, we describe the addition to the limiter. Our implementation uses the generic finite
volume implementation from [17] as a basis and utilizes a lot of code from it for the finite
volume part. The interplay between finite volume and DG part is mostly taken from
[37], and slightly abstracted.

Finite Volume Procedure Most of the finite volume step is handled in the corrector
traversal. To begin with, we have the averages Ūi,T,n from the previous time step.
Using the _GT_CELL_TO_EDGE_OP, the indices i which border another cell are sent to the
boundary. In the skeleton operators, the fluxes are not computed there already, so we can
handle all flux computations in the _GT_CELL_UPDATE_OP. Only the boundary conditions
are set in the skeleton operators, over the subroutine ADERDG_Impl_FV_boundary which
makes use of the same boundary condition as the DG part.

The actual finite volume computations happen in the subroutines ADERDG_Impl_FV_
compute_flux which computes the numerical fluxes for a specified number of edges. It
can be controlled over the parameter _ADERDG_FV_FLUX_CHUNK_SIZE. This is the idea
from [17], to chunk the flux computation in order to improve performance. After that,
the source term is added in the method ADERDG_Impl_FV_update_cells which is called

105

4 Implementation in sam(oa)²

for each finite volume cell. In addition, this cell also checks the positivity conditions
(i.e. h ≥ 0 and C ≥ 0) and resets cells which violate them. This means, if h < 0, then
all variables are set to 0, and if C < 0, then p = −c2 − gh. The positivity checks are
marked as elemental.

Projection between DG and Finite Volume Representations The projection from
DG and to finite volume and vice-versa is handled over the methods ADERDG_Impl_

proj_from_subpatch, ADERDG_Impl_proj_to_subpatch, and ADERDG_Impl_proj_to_

subpatch_permanent. The latter is for the projection of b, while the former projects
all other variables. Internally, they only apply Plim or its Moore-Penrose inverse. In
addition, ADERDG_Impl_proj_to_subpatch checks the positivity conditions and resets
any cells which violate them.

DMP Checking After Un+1 has been computed, the discrete maximum principle is
checked using Ūi,T,n+1. These values have then just been computed, and Ūi,T,n from the
previous step.

To compute a minimum and maximum over the Voronoi region, we do a reduction
the observable values using the hooks for the nodes. This is because for T ∈ TDG, we
have that V(T) contains exactly all triangles which share at least a vertex with T . In
particular, we set initial values −∞ for the maximum computation and ∞ for the mini-
mum computation in _GT_NODE_FIRST_TOUCH. Subsequently, we compare the minimum
and maximum against new values from a cell over the _GT_ELEMENT_OP operator. Over
_GT_NODE_MERGE, two node values from different MPI implementations are combined.

Input and Output

The input is handled in a traversal on its own (src/ADERDG/ADERDG_init.f90). It
is called in conjunction with the adapt traversal. Thus, we first refine the mesh, and
then set the initial data. This is done through the methods ADERDG_Impl_init and
ADERDG_Impl_init_permanent. The ADERDG_Impl_init_permanent subroutine sets up
the bathymetry and is re-used in the adaptive traversal, and the method ADERDG_Impl_

init sets up all other variables. Support for ASAGI exists in theory as it has jus been
ported from src/swe, but it has not been used or tested so far.

As output, the implementation currently only supports VTK XML output, for which
it has its own traversal. In general, we allow an arbitrary number of points and an arbi-
trary cell type to be used in the output which is given through ADERDG_Impl_output_

reference. For our equations in particular, we implemented an arbitrary high-order
output, but supporting the VTK cell type VTK_LAGRANGE_TRIANGLE (cell type 69). Ef-
fectively, it is a generalization of the VTK_TRIANGLE and VTK_QUADRATIC_TRIANGLE out-
puts. This requires a specific ordering of the points which we programmed in our Python
script.

The output subroutine ADERDG_Impl_output_labels specifies the output labels and
the data per cell. The subroutine ADERDG_Impl_output_preprocess_data converts the

106

4.2 Implementation of the Governing Equations

cell data to output data the data per cell, respectively. We output all variables, and if
the wave-breaking switch is active or not.

4.2.3 Generating Matrices

The matrices are generated in Python with the help of the sagemath toolkit [38]. As for
the quadrature rules, we used the rules which the toolkit quadpy [39] suggested to us.

The function bases BC and BP were created from orthogonalizing monomials.

Given the bases, we have three basic matrix computation methods. The first one is
the computation of a collocation matrix, potentially of the derivatives. That is, we for
an operator D (e.g. D = Id, D = ∂x or similar), the matrix M defined by

Mij = wjD(ϕi)(pj). (4.2.1)

Here, w is a weight vector which can also be set to 1 everywhere to get an unweighted
collocation matrix. (ϕi) is a set of basis functions. Using this structure, we are able to
compute C, Cx, Cy (both for R = I), D, E , Ex and Ey, as well as also Fk and Gk. Also
PI can be computed in this way, and the same is true for the output matrix. The second
method is for the computation of mass matrices, again potentially over derivatives. That
is, we compute for two bases (ϕi) and (ψi) over some area A the matrix N as

Nij =

∫

A
ϕi(x)ψj(x) dx. (4.2.2)

This lets us compute M, K, and the matrix to obtain Un,init. Finally, as a third method,
we have the limiter projection matrix Plim which needs an additional custom implemen-
tation.

In addition to the matrices, we decided to generate the adjacency data for the patches
inside Python as well. This means that we generate the adjacency data for τ1,T , ..., τk,T
for T ∈ TDG. This was previously computed by [3] in FORTRAN in the file src/Tools_
patch.f90. However, since we need to compute Plim, it was less error-prone to pre-
compute the adjacency data inside the Python file as well. We obtain arrays with the
normals of the patches in Tref, of the patch cells which are located at each edge, and
which patches lie at the boundary. These then are relayed over the functions ADERDG_
Impl_subpatch_data and ADERDG_Impl_subpatch_border which replace the functions
from the patch_geometry class, i.e. the functions get_edge and get_boundary_cell,
respectively.

4.2.4 Implementation of Numerical Fluxes and Quadrature Evaluation

Finally, we discuss the implementation of the numerical fluxes and the nonlinear parts
of predictor and corrector.

To begin with, we implemented the model in Python. For that, we implemented the
functions F, B, and S in Python using the sympy [33] and the sagemath [38] toolkit.
From them, we could compute A automatically.

107

4 Implementation in sam(oa)²

Next, we computed basic functions, as S−1
h , the implicit Euler evaluation in the finite

volume step, the matrix |A1|, and the Rusanov flux using sagemath and sympy, and
generated FORTRAN code from it.6 Further functions, like the HLL, DOT or Roe flux
could be easily written manually with these basic kernels. All functions were marked as
elemental in FORTRAN which allows us to insert vectors into them, and FORTRAN
executes the function on each element in the input. For all numerical flux kernels, we
made use of the rotational invariance, since the application of T and T T could also
be written into an elemental function. For the nonlinear parts in the predictor and
corrector, we also generated code and marked the resulting functions as elemental.
All the PDE and flux-specific kernels can be found in the src/DSWE folder. This is, so

that at least the fluxes can be re-used later for other potential Discontinuous Galerkin
implementations.

4.3 Further Extensions

Besides the implementation of the equation system, we also created some small modifi-
cations and extensions to sam(oa)². To begin with, the master branch did not run with
the gfortran compiler correctly any more due to some smaller syntax inconsistencies.
After fixing these small errors, it did work again. And so, we could run all our tests
using gfortran in the end.
Furthermore, we wrote a small VTK reader in Python which is able to read the pvtu

and vtu files. It uses the existing vtk package, and wraps the data arrays which describe
cells and points into Python arrays.
The scripts used in Chapter 2 to compute the Riemann Problem and the solitary wave

are placed as Python scripts into scripts/DSWE.

6In the beginning, we tried to generate even more code, involving matrices using sympy—with the goal
to be able to auto-generate the predictor as a whole from symbolic formulas. However, sympy did
not seem to be yet ready for such operations which involve symbolic matrix multiplications inside
code generation. We already started work on a small code generator which we used for generating
the matrix data, but it cannot yet replace the sympy code generation, nor supports matrices.

108

5 Evaluation

Given our implementation as described in the previous two chapters (Chapters 3 and
4), we will now proceed to show some examples which we computed with our program.
These should not only confirm the correctness of the program itself, but also of our
calculations of the solitary wave and the Riemann problem solution from Chapter 2. All
tests shown in this chapter are run in sam(oa)² only, and compared with our (reference)
solutions which we computed in Python in Chapter 2.

Most of the time, we will show one-dimensional solutions which were extracted using
our VTK reader which we programmed. It looks for cells which lie exactly on the y = 0-
axis and interpolates through them with an NP polynomial, where NP is the polynomial
degree which we used for the simulation. Since we lie at the boundary between two cells,
we take the average of them. If we have symmetric initial conditions, this gives us an
exact representation in the case of an even subdivision scheme. But it still introduces a
slight error due to rotation, if we use an uneven subdivision level.

We always run the aderdg_dswe sam(oa)² scenario. For a list of aderdg_dswe sce-
narios, see Table 5.1. Mainly, the scenarios are concerned with the reproduction of the
solitary wave and the Riemann Problem. In all cases, we will refer to the fluxes by their
name from Table 3.1. Therefore, we write llfb for the Rusanov flux which preserves the
Resting-Lake condition, dot for the DOT flux, and similar. The boundary conditions
are also mentioned by their names from Table 3.2.

5.1 Test Setup

For all tests we showcase here, we used a simple laptop. Furthermore, the goal was to
simply reproduce the equation system, not to test if it scales. The laptop has an AMD
Ryzen 4800H CPU with 8 cores and 2 threads per core, making 16 logical cores in total.
In addition, it has 32 GiB of RAM. As operating system, it uses Linux with the kernel
in version 5.16.10-arch1-1. More specifically, it is the Arch Linux distribution. As
compiler, gfortran in version 11.2.0. was used.

109

5 Evaluation

Handle Description

LINEAR_DAM_BREAK Riemann Problem, Table 2.1 (a)
PULLAWAY_STRONG Riemann Problem, Table 2.1 (b)
COLLISION Riemann Problem, Table 2.1 (c)
PRESSURE_EXCHANGE Riemann Problem, Table 2.1 (d)
WETDRYFRONT Riemann Problem, Table 2.1 (e)
SQUARE_DAM_BREAK Table 2.1 (a) in a square
RESTING_LAKE_EMPTY Empty resting lake, q = −1, r = 0
RESTING_LAKE_STILL Still resting lake, q = 2, r = 0
RESTING_LAKE_EXCITED Still resting lake, q = 2, r = 1
RESTING_LAKE_ISLAND Still resting lake, q = 0.4, r = 0
SOLITARY_WAVE Solitary wave with A = 0.01, α = 5
SOLITARY_WAVE2 Solitary wave with A = 0.2, α = 3
SOLITARY_WAVE_ON_BEACH Solitary wave α→ ∞ against beach

Table 5.1: A list of all implemented scenarios which were tested. They were set over the
compile-time parameter swe_scenario.

5.2 Well-Balancedness Tests

First of all, we test if our scheme fulfills the two steady-state solutions from Definition
2.2. For this, we use the following scenario:

b(x) =
1

4

(
e−40∥x∥2 − q

)
, (5.2.1)

h(0, x) = max{0,−b}+ r

4
sin(∥x∥2). (5.2.2)

Here, q ∈ R is a parameter which controls how submerged the bottom topology is. For
q > 1, we have only water, for q ∈ (0, 1], we have water and land, and for q ≤ 0, we
only have land. All other parameters are set to zero, therefore u(0, ·) ≡ 0, v(0, ·) ≡
0, w(0, ·) ≡ 0, and p(0, ·) ≡ 0. The parameter r ∈ R adds some optional excitation for
r ̸= 0. This is order to test the stability of slight perturbations of the steady states.

5.2.1 Vacuum Scenario

The first test is with q = −1, r = 0, i.e. we test the case where we only have dry land.
This is scenario RESTING_LAKE_EMPTY from Table 5.1. As expected, the simulation skips
all cells as a result—yielding a perfectly dry solution for all fluxes. We note that this
is not the case, if we did not skip all cells automatically—the llfb flux would generate
water in this case. We simulated for 10s.

Since the system was solved perfectly, we will not show any plots for this case.

110

5.2 Well-Balancedness Tests

5.2.2 Resting Lake Scenario

In the second test, we set q = 2 and r = 0, i.eẇe look at a fully-submerged resting-lake
scenario without excitation. This is scenario RESTING_LAKE_STILL from Table 5.1. We
use subdivision factor 10 which yields 2048 cells, absorbing boundary conditions, and
c = a

√
gH with a = 3 and H = 1. We run the simulation for 100s and use a CFL of

0.5. As shown in Figure 5.1, the non-hydrostatic pressure p, as well as the water level η
oscillate at around 10−14 and 10−15 respectively. However, w and ∥u∥2 seem to increase
over the course of time, both with a similar slope. Looking at the output at the end of
the simulation, the plots for u, v, and w show a more or less random pattern (respecting
rotational symmetry). The limiter never active during the entire simulation, and the
DMP check was deactivated.

In order to further verify the Resting Lake behavior, we ran the same simulation with
degree 5 polynomials in space and time, as well as subdivision level 6. The result after
100s is shown in Figure 5.2, and it shows very similar results to the simulation with
polynomials of degree 2 in Figure 5.1. The only small differences are that w seems to
be oscillating a bit in the maximum and minimum values, and h and p show to initially
oscillate a little more, until they get into an equilibrium state. However, we noticed
here a phenomenon which existed throughout all of our tests, that is that we have a
larger error at the corners of the elements. This problem especially existed for the non-
hydrostatic pressure component. In Figure 5.3, the variable hp is shown at 0.7s. At all
corners, we have small deviations from the equilibrium at 0, and the error depends on
if the vertex has eight or four neighbors. After more timesteps, the oscillations became
smaller.

5.2.3 Almost Resting Lake Scenario

Thirdly, we set q = 2 and r = 1, i.e. we look again at fully-submerged resting lake
scenario, but this time, the water is not completely still. This is RESTING_LAKE_EXCITED
from Table 5.1. This should test that the solution still stays bounded compared to the
original. Otherwise, we use the same settings as for the resting lake scenario, except
that we only run the simulation for 10s. As it can be seen in Figure 5.4, the simulation
stays bounded, and does not necessarily cause an increase in any variable: instead they
simply all oscillate. Looking at the plot (Figure 5.5) shows that most of the excitation
has an effect at the boundary. This is not surprising, since we force absorbing boundary
conditions. However, we have a interesting effect, namely the peaks near the boundary
in Figure 5.5. The peaks are probably again caused by the triangle topology, as the error
is mostly at the vertices of the triangles again.

5.2.4 Resting-Lake with Island

Lastly, we set q = 0.4, so that we have an island in a resting lake. This is to test
the interplay between the finite volume limiter and the DG simulation, as well as the
bathymetry.

111

5 Evaluation

0 20 40 60 80 100

t

−2

0

2

η

×10−15

0 20 40 60 80 100

t

0

1

2

√
u

2
+
v

2

×10−12

0 20 40 60 80 100

t

−5

0

5

w

×10−13

0 20 40 60 80 100

t

−1.0

−0.5

0.0

0.5

1.0

p

×10−14

Figure 5.1: Minimum, average and maximum value of η, ∥u∥2, w, and p during the
resting lake simulation.

112

5.2 Well-Balancedness Tests

0 20 40 60 80 100

t

−7.5

−5.0

−2.5

0.0

2.5

η

×10−13

0 20 40 60 80 100

t

0

2

4

√
u

2
+
v

2

×10−12

0 20 40 60 80 100

t

−5

0

5

w

×10−13

0 20 40 60 80 100

t

−1

0

1

p

×10−12

Figure 5.2: Minimum, average and maximum value of η, ∥u∥2, w, and p during the
resting lake simulation.

113

5 Evaluation

Figure 5.3: The behavior of hp on triangles. Blue means small (≥ −10−12) negative
values, and red means small (≤ 10−12) positive values. The snapshot was
taken at 0.7s in the simulation.

114

5.2 Well-Balancedness Tests

0.0 2.5 5.0 7.5 10.0

t

−0.10

−0.05

0.00

0.05

0.10

η

0.0 2.5 5.0 7.5 10.0

t

0.00

0.01

0.02

0.03

0.04

√
u

2
+
v

2

0.0 2.5 5.0 7.5 10.0

t

−0.2

0.0

0.2

w

0.0 2.5 5.0 7.5 10.0

t

−0.50

−0.25

0.00

0.25

0.50

0.75

p

Figure 5.4: Minimum, average and maximum value of η, ∥u∥2, w, and p during the
excited resting lake simulation.

115

5 Evaluation

Figure 5.5: A plot of the water level at 10s into the almost resting lake simulation. The
color indicates hw.

116

5.3 Solitary Wave

This test does unfortunately not work yet. The reason is that, no matter if we pick
dot or roe as a flux, the pressure accumulates at the wet-dry fronts and subsequently
forces an abrupt change in water height. We conjecture that this is due to the choice of
linear or quadratic paths for these numerical fluxes, as seen in Table 3.1. To begin with,
we have a projection error after the first timestep.

For all the following tests, we used a CFL of 0.8.

5.3 Solitary Wave

Next, after we have looked at the Resting Lake scenario, we begin with reproducing our
two solutions for the equation system (2.0.10). That is, we start with the solitary wave.
The goal here is not only to reproduce it, but also to do a convergence test with it in
sam(oa)².

5.3.1 Running the Solitary Wave

The first test is to simply simulate the solitary wave for about 40 seconds. The scenario
in sam(oa)² is called SOLITARY_WAVE2.

We run the solitary wave computed in Section 2.3 with A = 0.2, H = 1, α = 3,
and γ = 2, and compute it to an accuracy of ∆ξ = 10−3, and linear interpolation to
approximate the function between. The domain is 160m long and wide, and the wave
starts at 10m from the left-hand side. Then, it moves to the right, until it is exactly
10m away from the right-hand side—which is where we measure. This is done in order
to capture the highest point at a place, where it sits exactly between two elements.
As boundary conditions, we use the quasi-exact computed wave from Section 2.3, i.e.
scenario boundary conditions. We use 14 as subdivision factor, i.e. we have 27 cells
per side which gives us ∆x = 1.25m.

This whole test is similar to what is done [15, Section 5.1.2]. In comparison to there,
we use a different c, and we could not use periodic boundary conditions, since sam(oa)²
does not support them.

See Figure 5.6 for an overview, where we plot on the left-hand side the solitary wave, as
computed, overlayed over the reference solution. On the right-hand side, the difference
between the two solutions can be seen. In total, the computed solution is very close to
our computed quasi-exact compute wave from Section 2.3. The next thing we notice
is the small visible error in w and p on the right-hand side. This is most likely due
to an approximation error during the projection of the solitary wave to the grid in the
beginning. However, such an error is also shown in [15, Figure 7] for p and slightly visible
for [] the only difference is that it is present on the right-hand side. While the error is
slightly higher in Figure 5.6 than what is shown in [15, Figure 7], this is most likely
due to us using ∆x > 1m. In [15, Section 5.1.2], it is ∆x = 1m, and so, each element
seems to cover a much smaller interval compared to our simulation. Furthermore, the
simulation in [15] appears to happen in a single dimension only which means that a
potential error from having a triangle mesh is not present.

117

5 Evaluation

−10 −5 0 5 10

x− cAt

1.0

1.1

1.2
h

−10 −5 0 5 10

x− cAt

−0.002

0.000

0.002

h

−10 −5 0 5 10

x− cAt

0.0

0.2

0.4

0.6

h

−10 −5 0 5 10

x− cAt

0.000

0.005

0.010

h

−10 −5 0 5 10

x− cAt

−0.1

0.0

0.1

h

reference

computed

−10 −5 0 5 10

x− cAt

−0.005

0.000h

−10 −5 0 5 10

x− cAt

−0.1

0.0

h

−10 −5 0 5 10

x− cAt

−0.02

0.00

0.02

h

Figure 5.6: Reproduction of the solitary wave from Figure 2.1 in sam(oa)², and compar-
ison with a simulation after ≈ 41s have passed.

118

5.3 Solitary Wave

5.3.2 Convergence Test in sam(oa)²

Next, we consider the convergence against the quasi-exact solitary wave solution from
Section 2.3. We still run the solitary wave computed in Section 2.3 with A = 0.01 and
H = 1, α = 5, and γ = 2, but we simply stop after

50m

cA
≈ 15.88s (5.3.1)

of runtime.
The quasi-exact solution is again computed using the Python scipy toolkit [45] with

∆ξ = 10−5, and until about |ξ| ≈ 7.58 in both the positive and the negative direction. At
this point, the difference |h−H| was in the order of 10−13, i.e. close to the prescribed
conditions at infinity. For this accuracy of ∆ξ = 10−5, the generated Python and
FORTRAN files had a size of 151.6 MiB and 209.4 MiB, respectively. We simply hard-
coded the arrays into the code. The scenario in sam(oa)² is called SOLITARY_WAVE.
Instead of using a periodic domain, we use the solitary wave as target boundary

condition; that is, scenario boundary conditions. Thus, we use a domain of size 200m,
and we start the solitary wave at 75m, and let it run right-wards until we arrive at 125m.
Note that it was beneficial to take a solitary wave of amplitude A = 0.01 instead of

A = 0.2, since higher amplitudes may be interpolated incorrectly. This is because higher
amplitudes cause the waves to become smaller in total horizontal size, and thus the drop
from the peak with h = (A+H) to the limit conditions h = H happens quicker. Thus,
we may get due to the projection to initial values for h which are lower than the initial
water height H. This subsequently causes small oscillations in the long run, as seen in
Figure 5.6.

In Table 5.2, we show the result, and a plot of the L2 error in Figure 5.7. As it can
be seen, the convergence is as expected for low degrees, but slightly lower than expected
for the higher degrees. Most likely was our reference solution computed too coarsely to
give a better result here: since the errors appeared around 10−5 to 10−6, we conjecture
that here the error of the linear interpolation begins to influence the result at about
this range. This is supported by the following fact: over time, the solitary wave with
polynomial degree 4 and subdivision level 12 showed a small, smooth error function in
h which had the same shape as w in Figure 2.1. In short, the solitary wave was tilted
slightly. This error function periodically reduced in amplitude and then rose again.
For reference, the error for NP = 4 and subdivision 12 was in the range of 10−6, but
periodically reduced to the range 10−7. The initial projection error was in the range of
10−8. An additional reason could be that we get the influence of the problem we have
already seen in Figure 5.3. This would mean that the non-hydrostatic pressure causes
larger errors, due to it having a high variation. We show an additional table with Table
5.3, where we took the minimum error over the last 25 steps which is when the wave
passed the 100m mark on its way to 125m. As it can be seen, the convergence rate is
generally higher in this case, and it almost reaches the theoretical order in some cases.
In total, this still shows us that experimentally, we have convergence up to the accuracy

of the reference solution for the lower polynomial degrees, and suboptimal convergence

119

5 Evaluation

22 23 24 25 26

Number of cells

10−5

10−4

10−3

10−2

L
2

er
ro

r
fo

r
h

w
.r

.t
.

re
fe

re
n

ce
so

lu
ti

on

NP = 1

NP = 2

NP = 3

NP = 4

(a) Even subdivisions 4, 6, 8, 10, 12

22 23 24 25

Number of cells

10−5

10−4

10−3

10−2

L
2

er
ro

r
fo

r
h

w
.r

.t
.

re
fe

re
n

ce
so

lu
ti

on

NP = 1

NP = 2

NP = 3

NP = 4

(b) Odd subdivisions 5, 7, 9, 11

Figure 5.7: L2 error with respect to the reference solitary wave computed with ∆ξ =
10−5, and linearly interpolated in between, for the polynomial degrees NP =
1 through NP = 4.

for the higher (i.e. NP ∈ {3, 4}) polynomial degrees.

Interestingly enough, once we had a high-enough order (order 4 or higher), and a
high enough resolution, the number of predictor iterations was almost always as high as
twice the number of cells: e.g. if we had 8192 cells, then there would be exactly 16384
iterations.

5.4 Riemann Problems

Since we have computed the solution to the Riemann Problem in Section 2.5, we can
also run sam(oa)² on the same initial data, and compare its output. From now on, we
will refer to the solution which we computed in Section 2.5 as reference solution.

Naturally, this will involve the limiter. To get to the situation of the Riemann problem
(2.4.50), we assume that ∇b ≡ 0, the friction is set to nm = 0, and wave breaking is
disabled. We also need to ensure that w ≡ 0 over time which can be achieved by setting
γ = 0, and w(0, ·) ≡ 0. Then, ∂t(hw) = 0 follows from (2.0.10). Since (hw)(0, ·) ≡ 0,
we get w ≡ 0 by h > 0.

For all Riemann problems which will be computed in the following, we take the initial
conditions c = 4, g = 9.81. Both are taken in order to conform with the solutions
from Figure 2.4. The subdivision is set to 14, and the simulation is run for 10ms unless
mentioned otherwise. This short simulation time is chosen this way, in order to reduce
the influence from the boundary. Sometimes we will also run the simulation for a longer
time, up to 50ms, then the effects from the boundary become noticeable.

Throughout this section, we assume a CFL condition of 0.2. Such a low CFL number
is expected, since we compute the timestep from the limiter averages. Thus, we do

120

5.4 Riemann Problems

NP N L2 error in h rate for h target

1 4 3.4859 · 10−02 - 2
1 8 1.9901 · 10−02 0.8087 2
1 16 1.0513 · 10−02 0.9207 2
1 32 3.7654 · 10−03 1.4813 2
1 64 9.0505 · 10−04 2.0567 2

2 4 2.2042 · 10−02 - 3
2 8 9.3317 · 10−03 1.2400 3
2 16 2.1679 · 10−03 2.1058 3
2 32 2.4450 · 10−04 3.1484 3
2 64 4.0904 · 10−05 2.5795 3

3 4 1.5042 · 10−02 - 4
3 8 4.1102 · 10−03 1.8717 4
3 16 3.8001 · 10−04 3.4351 4
3 32 3.2966 · 10−05 3.5270 4
3 64 5.4039 · 10−06 2.6089 4

4 4 8.7371 · 10−03 - 5
4 8 1.9712 · 10−03 2.1481 5
4 16 1.3348 · 10−04 3.8844 5
4 32 2.5311 · 10−05 2.3988 5
4 64 4.4606 · 10−06 2.5045 5

Table 5.2: Convergence rate for even subdivisions when comparing the L2 error of h at
t = 50/cA seconds in the solitary wave simulation. The scenario is SOLITARY_
WAVE, the theoretical estimate is taken from [15].

121

5 Evaluation

NP N L2 error in h rate for h target

1 4 3.4074 · 10−02 - 2
1 8 1.7099 · 10−02 0.9948 2
1 16 8.6860 · 10−03 0.9772 2
1 32 2.9606 · 10−03 1.5528 2
1 64 7.1119 · 10−04 2.0576 2

2 4 1.9642 · 10−02 - 3
2 8 7.4062 · 10−03 1.4071 3
2 16 1.8438 · 10−03 2.0061 3
2 32 1.9548 · 10−04 3.2375 3
2 64 3.4243 · 10−05 2.5132 3

3 4 1.3053 · 10−02 - 4
3 8 2.8242 · 10−03 2.2084 4
3 16 2.9878 · 10−04 3.2407 4
3 32 2.9773 · 10−05 3.3270 4
3 64 2.3363 · 10−06 3.6717 4

4 4 5.2688 · 10−03 - 5
4 8 9.2690 · 10−04 2.5070 5
4 16 8.7349 · 10−05 3.4076 5
4 32 3.1612 · 10−06 4.7883 5
4 64 7.1681 · 10−07 2.1408 5

Table 5.3: Convergence rate for even subdivisions when comparing the L2 error of h when
taking the minimum of the error over the last 25 of 50 total steps for each run
indiviually in the solitary wave simulation. The scenario is SOLITARY_WAVE,
the theoretical estimate is taken from [15].

122

5.4 Riemann Problems

not capture the oscillations which are bound to occur at the contact discontinuities and
shocks.

If not stated otherwise, the DMP check is enabled.

5.4.1 One-Dimensional Riemann Problems

We begin with the reproduction of the Riemann problems stated in Table 2.1, and we are
going reproduce of all of them in a qualitative way. Naturally, since they are problems
in one dimension, we will mostly show one-dimensional plots again.

As reference solution, we take the family of paths ΨC , since visually, it will not make a
difference. However, we conjecture that this is due to the fact that the numerical fluxes
use ΨP , i.e. linear paths in primitive variables. Therefore, we will most likely not obtain
a completely perfect result, but still a very good one.

Dam Break Problem

We begin by comparing to the dam break, for which we take the values from Table 2.1 (a).
As boundary conditions, we use the initial conditions. See Figure 5.8 for a comparison
of the Riemann problem to our reference solution, as it can be seen in 2.4 in row 1 where
the As we see in the plots, the solution structure is identical to the one we computed,
but slightly smoothed out. This is perfectly in line with the back-projection from the
finite volume grid to the DG grid, since we preserve the averages. We can see small
artifacts at the contact discontinuity and the shock. Other than that, it approximates
the solution very well. The only notable artifact is for u around the area where h and p
have the contact discontinuity. Here, we see that it slightly dips down at this point. We
also ran the simulation with γ = 2, however the results were so similar to what is seen
in Figure 5.8 that we decided to omit them. This is most likely, since we only simulated
for 10ms.

The DMP check shown at 5ms is shown in Figure 5.11. This shows clearly that
the DMP check limits the solution in the center, with occasional misses away from
the dam break. Other than that, the DMP check seems to limit cells again that has
already limited, so it looks almost as it would oscillate. For comparison, we ran the
implementation from [37] on the shallow water dam break with limiter, and we got
similar results regarding to where the limiter activated. If we disable the DMP check,
we get a slightly different result, as it is seen in Figure 5.9. This time, we are able to
see more unsteady artifacts at the DG cells which are adjacent to a shock or a contact
discontinuity. For the rarefaction, there is no apparent visible difference.

In Figure 5.10, we ran the simulation a bit longer, and for more different fluxes. It
can be seen that the llfb flux has the most smoothening effect, directly followed by the
hll flux, and then the roe and dot flux which nearly give a completely identical result.
Only for the roe and dot flux, we see the dip in u around the contact discontinuity,
while llfb and hll slightly overshoot at the shock.

In total, that the Riemann problem can be successfully reproduced by our implementa-
tion in sam(oa)² which is completely unrelated to the Python reference script we wrote,

123

5 Evaluation

it indicates effectively two things at once. Firstly, our implementation in sam(oa)² is
correctly implemented for such problems, and secondly, the calculations to the Riemann
problem are correct, up to the choice of paths.

Symmetric Expansion

In Figure 5.12, the symmetric expansion (Table 2.1 (b), scenario PULLAWAY_STRONG) is
plotted after 10ms. It is visible that the rarefactions are approximated, and the non-
differentiable points are smoothed out. To verify that the rarefactions are correctly
computed, we run the simulation a bit longer, until we reach 40ms. The plot for this
timestep can be seen in Figure 5.13. Naturally, we plot a larger area. However, the
rarefactions approximate the computed solution from Figure 2.4 better. This leads us
to the conclusion that the rarefactions are indeed correctly computed, and the visible
error is solely the approximation error. The small error in the middle is due to a small
projection error in the initial conditions, where the velocity is set to the wrong values
at the discontinuity.

Symmetric Collision

The symmetric collision (Table 2.1 (c), scenario COLLISION) is plotted in Figure 5.14
after Figure 5.12 shows the symmetric expansion and Figure 5.14 the symmetric collision,
compared with the reference solution. As it can be seen, it behaves exactly as the
reference solution, with the discontinuities slightly smoothed out as with the dam break.
However, the initial data we chose is in the end too small to give a conclusive answer to
the question which family of paths for the shocks is the correct one. In addition, this
is also influenced by the fact that our numerical fluxes mostly use the linear paths in
primitive variables ΨP .

Pressure Exchange

The pressure exchange (Table 2.1 (d)) is shown in Figure 5.15. It is the scenario
PRESSURE_EXCHANGE. Once again, the behavior is as usual in the sense that it behaves
exactly like the dam break, but with h and p switched. Other than that, we see no
particularly different behavior here, even the small dip seen in u is seemingly the same
as from the dam break.

Wet-Dry Front

Finally, we look at the wet-dry front problem (Table 2.1 (e)) which is the scenario
WETDRYFRONT. The results can be seen in Figure 5.16. As the plots show, this time the
approximation is not as exact as in the previous plots, however it qualitatively follows
the same behavior, i.e. we have the rarefaction on the right-hand side, and the contact
discontinuity to h = 0 in the middle. However, the computed values for u and p are
rather low compared to our reference.

124

5.4 Riemann Problems

We tried to compare the fluxes for this scenario, i.e. we let it run a bit longer. Then,
we compare the values from the llfb, roe, hll, and dot fluxes for the finite volume
part. For the DG part, we continue to use llfb only. The result can be seen in Figure
5.17. Surprisingly, the dot flux shows to be the most divergent of all the fluxes, and
the roe flux performs best. The llfb and hll flux behave almost similarly. Again,
all of the fluxes go to 0 before the reference solution does so, but the llfb, roe, and
hll fluxes show a much better approximation of the values for u and p, than the dot

flux does. However, there is still a small problem with the roe implementation near the
actual wet-dry front, in the sense that it cannot yet handle the case C = 0 correctly.

As a result, we conclude that the roe flux behaves best over the two test cases we
tested it in which contradicts the intuition from e.g. [13] which tells us the opposite.
Therefore, we conjecture that the reason is the more sophisticated choice of paths, i.e.
the choice of ΨR.

5.4.2 Two-Dimensional Riemann Problems

In order to test in a two-dimensional setting, we now look at the whole two-dimensional
problems.

One-Dimensional Problems in Two Dimensions

The previous, one-dimensional tests were all run in two dimensions. We will in particular
report the behavior for the symmetric expansion (scenario PULLAWAY_STRONG), as we
had absorbing boundary conditions as scenario boundary conditions. Subsequently, we
gained an additional non-symmetric collision at each border. This can be seen in Figure
5.18. The two additional asymmetric collisions move inwards, while the expansion moves
outwards. From both sides, there is a smoothing effect visible, since water flows into the
expansion, and out of the collision.

Square Dam Break

Finally, we are going to consider a two-dimensional version of the dam break, with the
initial values from Table 2.1 (a). This is the scenario SQUARE_DAM_BREAK from Table
5.1. In addition, we set γ = 2 this time. Running this gives us the results as shown in
Figure 5.19 for h (or rather, η). The simulation is run until 50ms. As we can see there,
the results show, once again, a very similar structure to the reference solution which we
computed in Chapter 2, at least in the cardinal directions. That is, we have a smooth
transition from red to white-red which is the centered rarefaction. The next hard drop
is the contact discontinuity. Finally, the jump from light blue to deep blue is the shock,
and it can be seen to propagate very quickly. In the corners, we can see at the beginning
a smoothening effect, but also a drop in water height between the contact discontinuity
and the rarefaction. This could help to determine the behavior, if we should consider a
two-dimensional Riemann problem. But still, it may be more useful for this case to use
γ = 0, unlike here. However, the influence of γ is negligible in the beginning, as w is

125

5 Evaluation

near 0 then. The effect grows stronger over time, as it can be seen in Figure 5.20. We
show w there, overlaying it with the plot of η at this timestep shows that the influence
of w is the strongest around the contact discontinuity. It is interesting to see that the
contact discontinuity seems to hold for w as well in the sense that it varies smoothly on
both outside and inside the contact discontinuity ring.

126

5.4 Riemann Problems

−0.10 −0.05 0.00 0.05 0.10

x

1

2

3

4

h

reference

computed

−0.10 −0.05 0.00 0.05 0.10

x

−0.50

−0.25

0.00

0.25

0.50

h
s
im
−
h
r
e
f

−0.10 −0.05 0.00 0.05 0.10

x

0.0

0.5

1.0

1.5

2.0

2.5

u

−0.10 −0.05 0.00 0.05 0.10

x

−0.5

0.0

0.5

1.0

1.5

2.0
u
s
im
−
u
r
e
f

−0.10 −0.05 0.00 0.05 0.10

x

−5.0

−2.5

0.0

2.5

5.0

7.5

p

−0.10 −0.05 0.00 0.05 0.10

x

−5.0

−2.5

0.0

2.5

5.0

p
s
im
−
p
r
e
f

Figure 5.8: Comparing the sam(oa)²-computed dam break solution (Table 2.1 (a)) with
the reference solution from Figure 2.4, while the DMP check is active. On the
left-hand side, the two solutions are overlayed over one another, and on the
right-hand side, the difference between reference and computed solution is
shown. The constants are set to g = 9.81, c = 4, γ = 0. The final simulation
time is 10ms.

127

5 Evaluation

−0.10 −0.05 0.00 0.05 0.10

x

1

2

3

4
h

reference

computed

−0.10 −0.05 0.00 0.05 0.10

x

−1.00

−0.75

−0.50

−0.25

0.00

0.25

h
s
im
−
h
r
e
f

−0.10 −0.05 0.00 0.05 0.10

x

0

1

2

u

−0.10 −0.05 0.00 0.05 0.10

x

−1.5

−1.0

−0.5

0.0

0.5

u
s
im
−
u
r
e
f

−0.10 −0.05 0.00 0.05 0.10

x

−5

0

5

p

−0.10 −0.05 0.00 0.05 0.10

x

−5.0

−2.5

0.0

2.5

5.0

7.5

p
s
im
−
p
r
e
f

Figure 5.9: Comparing the sam(oa)²-computed dam break solution (Table 2.1 (a)) with
the reference solution from Figure 2.4, while the DMP check is not active.
On the left-hand side, the two solutions are overlayed over one another,
and on the right-hand side, the difference between reference and computed
solution is shown. The constants are set to g = 9.81, c = 4, γ = 0. The final
simulation time is 10ms.

128

5.4 Riemann Problems

−0.2 0.0 0.2

x

1

2

3

4

h

−0.2 0.0 0.2

x

−0.75

−0.50

−0.25

0.00

0.25

0.50

h
s
im
−
h
r
e
f

−0.2 0.0 0.2

x

0.0

0.5

1.0

1.5

2.0

2.5

u

−0.2 0.0 0.2

x

0.0

0.5

1.0

1.5

2.0

2.5

u
s
im
−
u
r
e
f

reference

llfb

roe

hll

dot

−0.2 0.0 0.2

x

−5.0

−2.5

0.0

2.5

5.0

7.5

p

−0.2 0.0 0.2

x

−5

0

5

p
s
im
−
p
r
e
f

Figure 5.10: Comparing the sam(oa)²-computed dam break solution (Table 2.1 (a)) with
the reference solution from Figure 2.4, while the DMP check is active. On
the left-hand side, the two solutions are overlayed over one another, and on
the right-hand side, the difference between reference and computed solution
is shown. The result is plotted for different numerical fluxes. The roe flux
is always hidden behind the dot flux and essentially yields the same result
here. The constants are set to g = 9.81, c = 4, γ = 0. The final simulation
time is 40ms.

129

5 Evaluation

Figure 5.11: The locations where the DMP checker triggered at 5ms for the dam break,
i.e. Table 2.1 (a). The dam break is located in the center.

130

5.4 Riemann Problems

−0.10 −0.05 0.00 0.05 0.10

x

0.7

0.8

0.9

1.0

h

reference

computed

−0.10 −0.05 0.00 0.05 0.10

x

−0.04

−0.02

0.00

0.02

0.04

h
s
im
−
h
r
e
f

−0.10 −0.05 0.00 0.05 0.10

x

−2

−1

0

1

2

u

−0.10 −0.05 0.00 0.05 0.10

x

−0.2

0.0

0.2

u
s
im
−
u
r
e
f

−0.10 −0.05 0.00 0.05 0.10

x

−6

−4

−2

0

p

−0.10 −0.05 0.00 0.05 0.10

x

−0.5

0.0

0.5

1.0

p
s
im
−
p
r
e
f

Figure 5.12: Comparing the sam(oa)²-computed symmetric expansion solution (Table
2.1 (b)) with the reference solution from Figure 2.4, while the DMP check
is not active. On the left, reference and computed solutions are shown
and on the right, their difference is plotted. The constants are set to g =
9.81, c = 4, γ = 0. The final simulation time is 10ms.

131

5 Evaluation

−0.2 0.0 0.2

x

0.7

0.8

0.9

1.0
h

reference

computed

−0.2 0.0 0.2

x

−0.02

−0.01

0.00

0.01

0.02

h
s
im
−
h
r
e
f

−0.2 0.0 0.2

x

−2

−1

0

1

2

u

−0.2 0.0 0.2

x

−0.1

0.0

0.1

u
s
im
−
u
r
e
f

−0.2 0.0 0.2

x

−6

−4

−2

0

p

−0.2 0.0 0.2

x

−0.4

−0.2

0.0

0.2

0.4

p
s
im
−
p
r
e
f

Figure 5.13: Comparing the sam(oa)²-computed symmetric expansion solution with the
reference solution from Figure 2.4, while the DMP check is active. On the
left, reference and computed solutions are shown and on the right, their
difference is plotted. The constants are set to g = 9.81, c = 4, γ = 0. The
final simulation time is 40ms.

132

5.4 Riemann Problems

−0.10 −0.05 0.00 0.05 0.10

x

1.00

1.05

1.10

1.15

1.20

h

−0.10 −0.05 0.00 0.05 0.10

x

−0.05

0.00

0.05

0.10

h
s
im
−
h
r
e
f

−0.10 −0.05 0.00 0.05 0.10

x

−1.0

−0.5

0.0

0.5

1.0

u

reference

computed

−0.10 −0.05 0.00 0.05 0.10

x

−0.4

−0.2

0.0

0.2

0.4

u
s
im
−
u
r
e
f

−0.10 −0.05 0.00 0.05 0.10

x

0

1

2

3

p

−0.10 −0.05 0.00 0.05 0.10

x

−1

0

1

p
s
im
−
p
r
e
f

Figure 5.14: Comparing the sam(oa)²-computed symmetric collision solution (Table 2.1
(c)) with the reference solution from Figure 2.4, while the DMP check is
not active. On the left, reference and computed solutions are shown and on
the right, their difference is plotted. The constants are set to g = 9.81, c =
4, γ = 0. The final simulation time is 10ms.

133

5 Evaluation

−0.10 −0.05 0.00 0.05 0.10

x

0.9

1.0

1.1

1.2
h

reference

computed

−0.10 −0.05 0.00 0.05 0.10

x

−0.1

0.0

0.1

h
s
im
−
h
r
e
f

−0.10 −0.05 0.00 0.05 0.10

x

0.0

0.2

0.4

0.6

0.8

u

−0.10 −0.05 0.00 0.05 0.10

x

−0.4

−0.2

0.0

0.2

0.4

u
s
im
−
u
r
e
f

−0.10 −0.05 0.00 0.05 0.10

x

0

2

4

6

8

10

p

−0.10 −0.05 0.00 0.05 0.10

x

−3

−2

−1

0

1

p
s
im
−
p
r
e
f

Figure 5.15: Comparing the sam(oa)²-computed pressure exchange solution (Table 2.1
(d)) with the reference solution from Figure 2.4, while the DMP check is
active. On the left, reference and computed solutions are shown and on
the right, their difference is plotted. The constants are set to g = 9.81, c =
4, γ = 0. The final simulation time is 10ms.

134

5.4 Riemann Problems

−0.10 −0.05 0.00 0.05 0.10

x

0.0

0.2

0.4

0.6

0.8

1.0

h

reference

computed

−0.10 −0.05 0.00 0.05 0.10

x

−0.8

−0.6

−0.4

−0.2

0.0

h
s
im
−
h
r
e
f

−0.10 −0.05 0.00 0.05 0.10

x

−1.00

−0.75

−0.50

−0.25

0.00

u

−0.10 −0.05 0.00 0.05 0.10

x

−0.2

−0.1

0.0

0.1

0.2

0.3
u
s
im
−
u
r
e
f

−0.10 −0.05 0.00 0.05 0.10

x

−4

−3

−2

−1

0

p

−0.10 −0.05 0.00 0.05 0.10

x

0

1

2

3

p
s
im
−
p
r
e
f

Figure 5.16: Comparing the sam(oa)²-computed wet-dry front solution (Table 2.1 (e))
with the reference solution from Figure 2.4, while the DMP check is active.
On the left, reference and computed solutions are shown and on the right,
their difference is plotted. The constants are set to g = 9.81, c = 4, γ = 0.
The final simulation time is 10ms.

135

5 Evaluation

−0.10 −0.05 0.00 0.05 0.10

x

0.0

0.2

0.4

0.6

0.8

1.0
h reference

llfb

roe

hll

dot

−0.10 −0.05 0.00 0.05 0.10

x

−0.8

−0.6

−0.4

−0.2

0.0

0.2

h
s
im
−
h
r
e
f

−0.10 −0.05 0.00 0.05 0.10

x

−1.25

−1.00

−0.75

−0.50

−0.25

0.00

u

−0.10 −0.05 0.00 0.05 0.10

x

−0.2

0.0

0.2

0.4

u
s
im
−
u
r
e
f

−0.10 −0.05 0.00 0.05 0.10

x

−10

−5

0

p

−0.10 −0.05 0.00 0.05 0.10

x

−5

0

5

p
s
im
−
p
r
e
f

Figure 5.17: Comparing the sam(oa)²-computed wet-dry front solution Table 2.1 (e))
with the reference solution from Figure 2.4, while the DMP check is active.
On the left, reference and computed solutions are shown and on the right,
their difference is plotted. We test for different fluxes, and run for 40ms.
The constants are set to g = 9.81, c = 4, γ = 0. Near the wet-dry front,
artifacts can be seen for the roe flux.

136

5.4 Riemann Problems

Figure 5.18: A two-dimensional plot of the symmetric expansion (Table 2.1 (b)) at 40ms.
The initial conditions were set in the left and right half-plane, respectively;
g = 9.81, c = 4. Boundary conditions were U ≡ 0. Red is higher, blue is
lower.

137

5 Evaluation

(a) t = 0ms (b) t = 10ms

(c) t = 20ms (d) t = 30ms

(e) t = 40ms (f) t = 50ms

Figure 5.19: Water level η during the square dam break at different times. Initial con-
ditions are similar to Table 2.1 (a). The constants are set to g = 9.81, c =
4, γ = 2.

138

5.4 Riemann Problems

(a) t = 0ms (b) t = 10ms

(c) t = 20ms (d) t = 30ms

(e) t = 40ms (f) t = 50ms

Figure 5.20: Vertical velocity w during the square dam break at different times. Initial
conditions are similar to Table 2.1 (a). In particular, w ≡ 0 in the beginning.
The constants are set to g = 9.81, c = 4, γ = 2.

139

6 Summary

To summarize, we considered a hyperbolic equation system (2.0.10) which introduces a
non-hydrostatic pressure component. We have considered and computed two types of
solutions for this system. That is, we have improved the existing solitary wave solution,
and we have computed the Riemann Problem for (2.0.10) without source and bathymetry,
but for a larger families of paths and also for dry states. The structure of the Riemann
Problem has shown to be a generalization of the shallow water equations, with the
difference that we have a central contact discontinuity which exchanges water height
with non-hydrostatic pressure. The effective influence of the contact discontinuity is
dependent on the size of the approximation parameter c.
Next, we have described and implemented a finite volume method, and the ADER-

DG method with a posteriori limiter in sam(oa)², and we empirically demonstrated that
our scheme converges, and the rate matches the theoretical order for low polynomial
degrees. Furthermore, we have shown its well-balancedness for a still resting lake in
four test cases. In addition, we could reproduce both the solitary wave, as well as the
Riemann problem. Especially for the latter, the fact that we were able to reproduce the
previously-calculated solution for the Riemann problem is a strong indicator that both
our implementation in sam(oa)², and our calculations of the reference solutions from
Chapter 2 are both correct.
Further work can be made to improve the behavior of the system near wet-dry fronts,

as well as extending the Riemann problem solution to varying bathymetry and vacuum
situations. In addition, while we made first steps towards a more generic ADER-DG
implementation inside sam(oa)², more work can be done in this direction as well.

141

References

[1] M. Bader. Space-Filling Curves: An Introduction with Applications in Scientific
Computing. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. isbn: 978-3-642-
31046-1. doi: 10.1007/978-3-642-31046-1. url: https://doi.org/10.1007/
978-3-642-31046-1.

[2] A. Breuer, A. Heinecke, and M. Bader. “Petascale Local Time Stepping for the
ADER-DG Finite Element Method”. In: 2016 IEEE International Parallel and
Distributed Processing Symposium (IPDPS). 2016, pp. 854–863. doi: 10.1109/
IPDPS.2016.109.

[3] M.-O. Bristeau, A. Mangeney, J. Sainte-Marie, and N. Seguin. “An energy-consis-
tent depth-averaged Euler system: Derivation and properties”. In: Discrete & Con-
tinuous Dynamical Systems - B 20.4 (2015), pp. 961–988.

[4] S. Busto, S. Chiocchetti, M. Dumbser, E. Gaburro, and I. Peshkov. “High Order
ADER Schemes for Continuum Mechanics”. In: Frontiers in Physics 8 (2020),
p. 32. issn: 2296-424X. doi: 10.3389/fphy.2020.00032. url: https://www.
frontiersin.org/article/10.3389/fphy.2020.00032.

[5] M. J. Castro, J. M. Gallardo, and A. Marquina. “Approximate Osher-Solomon
Schemes for Hyperbolic Systems”. In: Trends in Differential Equations and Appli-
cations. Ed. by F. Ortegón Gallego, M. V. Redondo Neble, and J. R. Rodŕıguez
Galván. Cham: Springer International Publishing, 2016, pp. 1–16. isbn: 978-3-319-
32013-7. doi: 10.1007/978-3-319-32013-7_1. url: https://doi.org/10.
1007/978-3-319-32013-7_1.

[6] M. J. Castro Dı́az and E. Fernández-Nieto. “A Class of Computationally Fast First
Order Finite Volume Solvers: PVM Methods”. In: SIAM Journal on Scientific
Computing 34.4 (2012), A2173–A2196. doi: 10.1137/100795280. eprint: https:
//doi.org/10.1137/100795280. url: https://doi.org/10.1137/100795280.

[7] D. E. Charrier and T. Weinzierl. “Stop talking to me - a communication-avoiding
ADER-DG realisation”. In: CoRR abs/1801.08682 (2018). arXiv: 1801.08682.
url: http://arxiv.org/abs/1801.08682.

[8] R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E. Knuth. “On
the LambertW function”. In: Advances in Computational Mathematics 5.1 (1996),
pp. 329–359. issn: 1572-9044. doi: 10.1007/BF02124750.

143

https://doi.org/10.1007/978-3-642-31046-1
https://doi.org/10.1007/978-3-642-31046-1
https://doi.org/10.1007/978-3-642-31046-1
https://doi.org/10.1109/IPDPS.2016.109
https://doi.org/10.1109/IPDPS.2016.109
https://doi.org/10.3389/fphy.2020.00032
https://www.frontiersin.org/article/10.3389/fphy.2020.00032
https://www.frontiersin.org/article/10.3389/fphy.2020.00032
https://doi.org/10.1007/978-3-319-32013-7_1
https://doi.org/10.1007/978-3-319-32013-7_1
https://doi.org/10.1007/978-3-319-32013-7_1
https://doi.org/10.1137/100795280
https://doi.org/10.1137/100795280
https://doi.org/10.1137/100795280
https://doi.org/10.1137/100795280
https://arxiv.org/abs/1801.08682
http://arxiv.org/abs/1801.08682
https://doi.org/10.1007/BF02124750

References

[9] A. Dedner, F. Kemm, D. Kröner, C.-D. Munz, T. Schnitzer, and M. Wesenberg.
“Hyperbolic Divergence Cleaning for the MHD Equations”. In: Journal of Compu-
tational Physics 175.2 (2002), pp. 645–673. issn: 0021-9991. doi: 10.1006/jcph.
2001.6961. url: https://www.sciencedirect.com/science/article/pii/
S002199910196961X.

[10] D. A. Di Pietro and A. Ern. Mathematical Aspects of Discontinuous Galerkin
Methods. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. isbn: 978-3-642-
22980-0. doi: 10.1007/978-3-642-22980-0. url: https://doi.org/10.1007/
978-3-642-22980-0.

[11] M. Dumbser, D. S. Balsara, E. F. Toro, and C.-D. Munz. “A unified framework
for the construction of one-step finite volume and discontinuous Galerkin schemes
on unstructured meshes”. In: Journal of Computational Physics 227.18 (2008),
pp. 8209–8253. issn: 0021-9991. doi: 10.1016/j.jcp.2008.05.025. url: https:
//www.sciencedirect.com/science/article/pii/S0021999108002829.

[12] M. Dumbser and R. Loubère. “A simple robust and accurate a posteriori sub-
cell finite volume limiter for the discontinuous Galerkin method on unstructured
meshes”. In: Journal of Computational Physics 319 (2016), pp. 163–199. issn:
0021-9991. doi: 10.1016/j.jcp.2016.05.002. url: https://www.sciencedire
ct.com/science/article/pii/S0021999116301292.

[13] M. Dumbser and E. F. Toro. “A Simple Extension of the Osher Riemann Solver to
Non-conservative Hyperbolic Systems”. In: Journal of Scientific Computing 48.1
(2011), pp. 70–88. issn: 1573-7691. doi: 10.1007/s10915-010-9400-3.

[14] M. Dumbser, O. Zanotti, R. Loubère, and S. Diot. “A posteriori subcell limiting
of the discontinuous Galerkin finite element method for hyperbolic conservation
laws”. In: Journal of Computational Physics 278 (2014), pp. 47–75. issn: 0021-
9991. doi: 10.1016/j.jcp.2014.08.009. url: https://www.sciencedirect.
com/science/article/pii/S0021999114005555.

[15] C. Escalante, M. Dumbser, and M. Castro. “An efficient hyperbolic relaxation
system for dispersive non-hydrostatic water waves and its solution with high or-
der discontinuous Galerkin schemes”. In: Journal of Computational Physics 394
(2019), pp. 385–416. issn: 0021-9991. doi: 10.1016/j.jcp.2019.05.035. url:
https://www.sciencedirect.com/science/article/pii/S0021999119303730.

[16] C. Escalante and T. M. de Luna. “A General Non-hydrostatic Hyperbolic For-
mulation for Boussinesq Dispersive Shallow Flows and Its Numerical Approxima-
tion”. In: Journal of Scientific Computing 83.3 (2020), p. 62. issn: 1573-7691. doi:
10.1007/s10915-020-01244-7.

[17] C. R. Ferreira and M. Bader. “A Generic Interface for Godunov-Type Finite Vol-
ume Methods on Adaptive Triangular Meshes”. In: Computational Science – ICCS
2019. Ed. by J. M. F. Rodrigues, P. J. S. Cardoso, J. Monteiro, R. Lam, V. V.
Krzhizhanovskaya, M. H. Lees, J. J. Dongarra, and P. M. Sloot. Cham: Springer
International Publishing, 2019, pp. 402–416. isbn: 978-3-030-22741-8.

144

https://doi.org/10.1006/jcph.2001.6961
https://doi.org/10.1006/jcph.2001.6961
https://www.sciencedirect.com/science/article/pii/S002199910196961X
https://www.sciencedirect.com/science/article/pii/S002199910196961X
https://doi.org/10.1007/978-3-642-22980-0
https://doi.org/10.1007/978-3-642-22980-0
https://doi.org/10.1007/978-3-642-22980-0
https://doi.org/10.1016/j.jcp.2008.05.025
https://www.sciencedirect.com/science/article/pii/S0021999108002829
https://www.sciencedirect.com/science/article/pii/S0021999108002829
https://doi.org/10.1016/j.jcp.2016.05.002
https://www.sciencedirect.com/science/article/pii/S0021999116301292
https://www.sciencedirect.com/science/article/pii/S0021999116301292
https://doi.org/10.1007/s10915-010-9400-3
https://doi.org/10.1016/j.jcp.2014.08.009
https://www.sciencedirect.com/science/article/pii/S0021999114005555
https://www.sciencedirect.com/science/article/pii/S0021999114005555
https://doi.org/10.1016/j.jcp.2019.05.035
https://www.sciencedirect.com/science/article/pii/S0021999119303730
https://doi.org/10.1007/s10915-020-01244-7

[18] P. L. Floch. “Shock Waves for Nonlinear Hyperbolic Systems in Nonconservative
Form”. In: 1989.

[19] S. Foundation. SCons: A software construction tool. url: https://scons.org/
(visited on 03/13/2022).

[20] D. L. George. “Augmented Riemann solvers for the shallow water equations over
variable topography with steady states and inundation”. In: Journal of Compu-
tational Physics 227.6 (2008), pp. 3089–3113. issn: 0021-9991. doi: 10.1016/j.
jcp.2007.10.027. url: https://www.sciencedirect.com/science/article/
pii/S0021999107004767.

[21] E. Godlewski and P.-A. Raviart. Numerical Approximation of Hyperbolic Systems
of Conservation Laws. New York, NY: Springer New York, 1996. isbn: 978-1-4612-
0713-9. doi: 10.1007/978-1-4612-0713-9. url: https://doi.org/10.1007/
978-1-4612-0713-9.

[22] E. HAN and G. WARNECKE. “EXACT RIEMANN SOLUTIONS TO SHAL-
LOW WATER EQUATIONS”. In: Quarterly of Applied Mathematics 72.3 (2014),
pp. 407–453. issn: 0033569X, 15524485. url: http://www.jstor.org/stable/
43639119.

[23] J. Heinonen. Lectures on Lipschitz Analysis. 2004. url: http://www.math.jyu.
fi/research/reports/rep100.pdf (visited on 03/02/2022).

[24] D. I. Ketcheson, R. J. LeVeque, and M. J. del Razo. Riemann Problems and Jupyter
Solutions. Philadelphia, PA: Society for Industrial and Applied Mathematics, 2020.
doi: 10.1137/1.9781611976212. eprint: https://epubs.siam.org/doi/pdf/
10.1137/1.9781611976212. url: https://epubs.siam.org/doi/abs/10.1137/
1.9781611976212.

[25] G. Khakimzyanov, D. Dutykh, Z. Fedotova, and O. Gusev. Dispersive Shallow
Water Waves: Theory, Modeling, and Numerical Methods. Cham: Springer Inter-
national Publishing, 2020. isbn: 978-3-030-46267-3. doi: 10.1007/978-3-030-
46267-3. url: https://doi.org/10.1007/978-3-030-46267-3.

[26] P. D. Lax. “Hyperbolic systems of conservation laws II”. In: Communications on
Pure and Applied Mathematics 10.4 (1957), pp. 537–566. doi: 10.1002/cpa.
3160100406. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/
cpa.3160100406. url: https://onlinelibrary.wiley.com/doi/abs/10.1002/
cpa.3160100406.

[27] P. D. Lax. Hyperbolic Systems of Conservation Laws and the Mathematical Theory
of Shock Waves. Society for Industrial and Applied Mathematics, 1973. doi: 10.
1137/1.9781611970562. eprint: https://epubs.siam.org/doi/pdf/10.1137/
1.9781611970562. url: https://epubs.siam.org/doi/abs/10.1137/1.
9781611970562.

[28] P. G. LeFloch and M. D. Thanh. “The Riemann problem for the shallow water
equations with discontinuous topography”. In: Communications in Mathematical
Sciences 5.4 (2007), pp. 865–885. url: https://doi.org/.

145

https://scons.org/
https://doi.org/10.1016/j.jcp.2007.10.027
https://doi.org/10.1016/j.jcp.2007.10.027
https://www.sciencedirect.com/science/article/pii/S0021999107004767
https://www.sciencedirect.com/science/article/pii/S0021999107004767
https://doi.org/10.1007/978-1-4612-0713-9
https://doi.org/10.1007/978-1-4612-0713-9
https://doi.org/10.1007/978-1-4612-0713-9
http://www.jstor.org/stable/43639119
http://www.jstor.org/stable/43639119
http://www.math.jyu.fi/research/reports/rep100.pdf
http://www.math.jyu.fi/research/reports/rep100.pdf
https://doi.org/10.1137/1.9781611976212
https://epubs.siam.org/doi/pdf/10.1137/1.9781611976212
https://epubs.siam.org/doi/pdf/10.1137/1.9781611976212
https://epubs.siam.org/doi/abs/10.1137/1.9781611976212
https://epubs.siam.org/doi/abs/10.1137/1.9781611976212
https://doi.org/10.1007/978-3-030-46267-3
https://doi.org/10.1007/978-3-030-46267-3
https://doi.org/10.1007/978-3-030-46267-3
https://doi.org/10.1002/cpa.3160100406
https://doi.org/10.1002/cpa.3160100406
https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpa.3160100406
https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpa.3160100406
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpa.3160100406
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpa.3160100406
https://doi.org/10.1137/1.9781611970562
https://doi.org/10.1137/1.9781611970562
https://epubs.siam.org/doi/pdf/10.1137/1.9781611970562
https://epubs.siam.org/doi/pdf/10.1137/1.9781611970562
https://epubs.siam.org/doi/abs/10.1137/1.9781611970562
https://epubs.siam.org/doi/abs/10.1137/1.9781611970562
https://doi.org/

References

[29] P. G. LeFloch and A. E. Tzavaras. “Representation of Weak Limits and Definition
of Nonconservative Products”. In: SIAM Journal on Mathematical Analysis 30.6
(1999), pp. 1309–1342. doi: 10 . 1137 / S0036141098341794. eprint: https : / /
doi.org/10.1137/S0036141098341794. url: https://doi.org/10.1137/
S0036141098341794.

[30] R. J. LeVeque. Numerical Methods for Conservation Laws. Basel: Birkhäuser Basel,
1992. isbn: 978-3-0348-8629-1. doi: 10.1007/978- 3- 0348- 8629- 1_1. url:
https://doi.org/10.1007/978-3-0348-8629-1.

[31] C. F. Matta, L. Massa, A. V. Gubskaya, and E. Knoll. “Can One Take the Loga-
rithm or the Sine of a Dimensioned Quantity or a Unit? Dimensional Analysis In-
volving Transcendental Functions”. In: Journal of Chemical Education 88.1 (2011).
doi: 10.1021/ed1000476, pp. 67–70. issn: 0021-9584. doi: 10.1021/ed1000476.

[32] O. Meister, K. Rahnema, and M. Bader. “Parallel Memory-Efficient Adaptive Mesh
Refinement on Structured Triangular Meshes with Billions of Grid Cells”. In: ACM
Trans. Math. Softw. 43.3 (Sept. 2016). issn: 0098-3500. doi: 10.1145/2947668.
url: https://doi.org/10.1145/2947668.

[33] A. Meurer, C. P. Smith, M. Paprocki, O. Čert́ık, S. B. Kirpichev, M. Rocklin, A.
Kumar, S. Ivanov, J. K. Moore, S. Singh, T. Rathnayake, S. Vig, B. E. Granger,
R. P. Muller, F. Bonazzi, H. Gupta, S. Vats, F. Johansson, F. Pedregosa, M. J.
Curry, A. R. Terrel, Š. Roučka, A. Saboo, I. Fernando, S. Kulal, R. Cimrman,
and A. Scopatz. “SymPy: symbolic computing in Python”. In: PeerJ Computer
Science 3 (Jan. 2017), e103. issn: 2376-5992. doi: 10.7717/peerj-cs.103. url:
https://doi.org/10.7717/peerj-cs.103.

[34] Muñoz-Ruiz, Maŕıa Luz and Parés, Carlos. “Godunov method for nonconservative
hyperbolic systems”. In: ESAIM: M2AN 41.1 (2007), pp. 169–185. doi: 10.1051/
m2an:2007011. url: https://doi.org/10.1051/m2an:2007011.

[35] C. Parés. “Numerical methods for nonconservative hyperbolic systems: a theoret-
ical framework.” In: SIAM Journal on Numerical Analysis 44.1 (2006), pp. 300–
321. doi: 10.1137/050628052. eprint: https://doi.org/10.1137/050628052.
url: https://doi.org/10.1137/050628052.

[36] Parés, Carlos and Castro, Manuel. “On the well-balance property of Roe’s method
for nonconservative hyperbolic systems. applications to shallow-water systems”.
In: ESAIM: M2AN 38.5 (2004), pp. 821–852. doi: 10.1051/m2an:2004041. url:
https://doi.org/10.1051/m2an:2004041.

[37] L. Rannabauer, M. Dumbser, and M. Bader. “ADER-DG with a-posteriori finite-
volume limiting to simulate tsunamis in a parallel adaptive mesh refinement frame-
work”. In: Computers & Fluids 173 (2018), pp. 299–306. issn: 0045-7930. doi:
10.1016/j.compfluid.2018.01.031. url: https://www.sciencedirect.com/
science/article/pii/S0045793018300392.

[38] The Sage Developers. SageMath, the Sage Mathematics Software System (Version
x.y.z). https://www.sagemath.org. 2022.

146

https://doi.org/10.1137/S0036141098341794
https://doi.org/10.1137/S0036141098341794
https://doi.org/10.1137/S0036141098341794
https://doi.org/10.1137/S0036141098341794
https://doi.org/10.1137/S0036141098341794
https://doi.org/10.1007/978-3-0348-8629-1_1
https://doi.org/10.1007/978-3-0348-8629-1
https://doi.org/10.1021/ed1000476
https://doi.org/10.1145/2947668
https://doi.org/10.1145/2947668
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.1051/m2an:2007011
https://doi.org/10.1051/m2an:2007011
https://doi.org/10.1051/m2an:2007011
https://doi.org/10.1137/050628052
https://doi.org/10.1137/050628052
https://doi.org/10.1137/050628052
https://doi.org/10.1051/m2an:2004041
https://doi.org/10.1051/m2an:2004041
https://doi.org/10.1016/j.compfluid.2018.01.031
https://www.sciencedirect.com/science/article/pii/S0045793018300392
https://www.sciencedirect.com/science/article/pii/S0045793018300392

[39] N. Schlömer, N. Papior, D. Arnold, J. Blechta, and R. Zetter. nschloe/quadpy:
None. Version v0.16.10. Sept. 2021. doi: 10.5281/zenodo.5541216. url: https:
//doi.org/10.5281/zenodo.5541216.

[40] T. sam(oa)² Team. sam(oa)². url: https : / / gitlab . lrz . de / samoa / samoa
(visited on 03/02/2022).

[41] T. sam(oa)² Team. sam(oa)² User Manual. url: https://samoa.readthedocs.
io/en/latest (visited on 03/02/2022).

[42] E. Toro. “Computational Methods for Hyperbolic Equations”. In: Jets From Young
Stars III: Numerical MHD and Instabilities. Ed. by S. Massaglia, G. Bodo, A.
Mignone, and P. Rossi. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 3–
69. isbn: 978-3-540-76967-5. doi: 10.1007/978-3-540-76967-5_1. url: https:
//doi.org/10.1007/978-3-540-76967-5_1.

[43] E. F. Toro. Riemann Solvers and Numerical Methods for Fluid Dynamics: A Prac-
tical Introduction. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. isbn: 978-
3-662-03490-3. doi: 10.1007/978-3-662-03490-3. url: https://doi.org/10.
1007/978-3-662-03490-3.

[44] H. F. Trotter. “On the product of semi-groups of operators”. In: Proceedings of the
American Mathematical Society 10.4 (1959), pp. 545–551. doi: 10.1090/s0002-
9939-1959-0108732-6. url: https://doi.org/10.1090/s0002-9939-1959-
0108732-6.

[45] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Courna-
peau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M.
Brett, J. Wilson, K. J. Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern,
E. Larson, C. J. Carey, İ. Polat, Y. Feng, E. W. Moore, J. VanderPlas, D. Lax-
alde, J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Harris, A. M.
Archibald, A. H. Ribeiro, F. Pedregosa, P. van Mulbregt, and SciPy 1.0 Contrib-
utors. “SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python”.
In: Nature Methods 17 (2020), pp. 261–272. doi: 10.1038/s41592-019-0686-2.

[46] D. H. Wagner. “The Riemann Problem in Two Space Dimensions for a Single Con-
servation Law”. In: SIAM Journal on Mathematical Analysis 14.3 (1983), pp. 534–
559. doi: 10.1137/0514045. eprint: https://doi.org/10.1137/0514045. url:
https://doi.org/10.1137/0514045.

[47] O. Zanotti, F. Fambri, M. Dumbser, and A. Hidalgo. “Space–time adaptive ADER
discontinuous Galerkin finite element schemes with a posteriori sub-cell finite vol-
ume limiting”. In: Computers & Fluids 118 (Sept. 2015), pp. 204–224. issn: 0045-
7930. doi: 10.1016/j.compfluid.2015.06.020. url: http://dx.doi.org/10.
1016/j.compfluid.2015.06.020.

147

https://doi.org/10.5281/zenodo.5541216
https://doi.org/10.5281/zenodo.5541216
https://doi.org/10.5281/zenodo.5541216
https://gitlab.lrz.de/samoa/samoa
https://samoa.readthedocs.io/en/latest
https://samoa.readthedocs.io/en/latest
https://doi.org/10.1007/978-3-540-76967-5_1
https://doi.org/10.1007/978-3-540-76967-5_1
https://doi.org/10.1007/978-3-540-76967-5_1
https://doi.org/10.1007/978-3-662-03490-3
https://doi.org/10.1007/978-3-662-03490-3
https://doi.org/10.1007/978-3-662-03490-3
https://doi.org/10.1090/s0002-9939-1959-0108732-6
https://doi.org/10.1090/s0002-9939-1959-0108732-6
https://doi.org/10.1090/s0002-9939-1959-0108732-6
https://doi.org/10.1090/s0002-9939-1959-0108732-6
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1137/0514045
https://doi.org/10.1137/0514045
https://doi.org/10.1137/0514045
https://doi.org/10.1016/j.compfluid.2015.06.020
http://dx.doi.org/10.1016/j.compfluid.2015.06.020
http://dx.doi.org/10.1016/j.compfluid.2015.06.020

List of Figures

2.1 Reproduction of the solitary wave shown in [15] 24

2.2 Comparison of the quasi-exact solitary wave solution for different values
of cA . 25

2.3 The error in h and w of the quasi-linear solution (2.3.33) w.r.t. the refer-
ence solution (2.3.4) for c→ ∞. 26

2.4 Riemann Problem solutions for (2.0.10) 63

2.5 The dam break for different values of c . 64

2.6 Comparison of the behavior of different families of paths for the Riemann
problem . 65

4.1 The mesh subdivision in sam(oa)² for N = 0 to N = 5. 101

5.1 Error during the resting lake simulation for polynomials of degree 2 112

5.2 Error during the resting lake simulation for polynomials of degree 5 113

5.3 A snapshot of the resting lake simulation 114

5.4 Minimum, average and maximum value of the variables during the excited
resting lake simulation . 115

5.5 A plot of the water level at 10s into the almost resting lake simulation . . 116

5.6 Reproduction of the solitary wave in sam(oa)² 118

5.7 L2 error with respect to a reference solitary wave, after about 16s 120

5.8 Comparison of the sam(oa)²-computed dam break solution with the ref-
erence solution with DMP check enabled 127

5.9 Comparison of the sam(oa)²-computed dam break solution with the ref-
erence solution with DMP check disabled 128

5.10 Comparison of the sam(oa)²-computed dam break solution with the ref-
erence solution for different limiter fluxes 129

5.11 DMP check during the dam break. 130

5.12 Comparison of the sam(oa)²-computed symmetric expansion with the ref-
erence solution . 131

5.13 Comparison of the sam(oa)²-computed symmetric expansion with the ref-
erence solution for a longer time . 132

5.14 Comparison of the sam(oa)²-computed symmetric collision with the ref-
erence solution . 133

5.15 Comparison of the sam(oa)²-computed pressure exchange solution with
the reference solution . 134

149

LIST OF FIGURES

5.16 Comparison of the sam(oa)²-computed wet dry front solution with the
reference solution . 135

5.17 Comparison of the sam(oa)²-computed wet dry front solution with the
reference solution for a longer time, and for different numerical fluxes . . . 136

5.18 2D plot of the symmetric expansion at 40ms 137
5.19 Water level η during the square dam break at different times 138
5.20 Vertical velocity w during the square dam break at different times 139

150

List of Tables

2.1 Initial data for sample Riemann Problems 62
2.2 Solved Riemann Problem intermediate states 62
2.3 Solved Riemann Problem total pressure 62

3.1 A list of the implemented fluxes, and their names in the implementation . 75
3.2 List of boundary conditions which have been implemented 84

5.1 List of all implemented scenarios . 110
5.2 Convergence rate for even subdivisions when comparing the L2 error of h

at t = 50/cA seconds in the solitary wave simulation 121
5.3 Convergence rate for even subdivisions when comparing the L2 error of h

when taking the minimum of the error over the last 25 of 50 total steps
for each run indiviually in the solitary wave simulation 122

151

List of Algorithms

2.1 An algorithm for computing the intermediate states for the Riemann Problem 59
2.2 An algorithm for computing the solution to the Riemann Problem 60

3.1 A step of the ADER-DG method with limiter. 85

153

	Contents
	Introduction
	Notation and Basic Definitions

	The Governing Equations
	Structure of the Equations
	Special Cases
	Derivation of the Model

	Basic Properties
	Re-Writing in Vector Notation
	Rotational Invariance
	Steady States
	Eigenstructure and Hyperbolicity

	Solitary Waves
	Solitary Wave Solution for the BMSS system
	Solitary Wave for the Governing Equations
	Evaluation

	Handling Non-Conservativity
	DLM Path Theory
	The Riemann Problem

	Examining the Riemann Problem
	Examining the Characteristic Fields
	The Rankine-Hugoniot Conditions
	Constructing the Intermediate States
	Special States
	Computing a Solution
	Evaluation

	Reformulations of the Equation System
	Formulation in Primitive Variables
	Conservative Re-Formulation

	Numerical Discretization
	Geometric Setting
	Spatial Setting
	Time Discretization
	Choice of Basis

	Finite Volume Discretization
	Finite Volume Part
	Source Term
	Combining Flux and Source Term

	The Numerical Flux
	Examining the Approximate Flux
	Roe Averages
	Path-Independent Fluxes
	DOT Flux

	Boundary Conditions
	The ADER-DG Method
	Predictor Step
	Corrector Step
	Limiter
	Projection Initial Conditions
	Timestepping

	Implementation in sam(oa)²
	An Introduction to sam(oa)²
	General Structure of sam(oa)²
	The Mesh
	The SFC Traversals

	Implementation of the Governing Equations
	Scenarios
	ADER-DG Implementation
	Generating Matrices
	Implementation of Numerical Fluxes and Quadrature Evaluation

	Further Extensions

	Evaluation
	Test Setup
	Well-Balancedness Tests
	Vacuum Scenario
	Resting Lake Scenario
	Almost Resting Lake Scenario
	Resting-Lake with Island

	Solitary Wave
	Running the Solitary Wave
	Convergence Test in sam(oa)²

	Riemann Problems
	One-Dimensional Riemann Problems
	Two-Dimensional Riemann Problems

	Summary
	References
	List of Figures
	List of Tables
	List of Algorithms

