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Abstract

Autonomous systems either robot manipulators, unmanned aerial vehicles, or self-driving
cars are desired to safely accomplish predetermined tasks with guaranteed or optimal perfor-
mance despite uncertainties. Safety often interpreted as state and input constraints encoding
restricted operation ranges and actuation limits should be fully considered for reliable prac-
tical applications. Uncertainties arising from sources such as unmodelled dynamics, model
uncertainties, and external disturbances need to be appropriately addressed to empower
autonomous systems with adaptation capabilities to changing environments. Performance
objectives such as closed-loop stability, high tracking accuracy, and minimum energy con-
sumption ought to be satisfied to meet requirements or preferences to complete given tasks.
This dissertation presents our efforts applying set-theoretic and reinforcement learning ap-
proaches to formulate, analyze, and solve the aforementioned problem termed as safe learning
control under uncertainty with guaranteed performance.

The learning-supported set-theoretic methods, specifically the barrier Lyapunov function
and the control barrier function, are used in Part I to achieve the desirable robust safety
with guaranteed performance for continuous time nonlinear control applications. We first
learn uncertain dynamics via concurrent learning to improve the tracking performance safely
and gradually using the barrier Lyapunov function based control strategy. In particular, we
adopt concurrent learning to ensure that the learned parameters converge to actual values
using both realtime and historical data. Besides that, we utilize the barrier Lyapunov func-
tion to integrate safety (represented by predetermined tracking error bounds) with stability.
Thereby, our designed stable control strategy based on learned dynamics could achieve safe
tracking, while reducing uncertainty during the operation process at the same time. How-
ever, concurrent learning is restricted to address parametric uncertainties and demands a
knowledge of model structure. Regarding the limitations of concurrent learning, we next
leverage time-delayed signals to construct incremental systems to facilitate model-free con-
trol. These incremental systems are equivalent representations of original controlled plants
but without using explicit model knowledge. The utilized time-delayed signals reduce the
influence of uncertainties on controlled plants to the effect of a provably bounded time delay
estimation error in the afore-mentioned incremental systems. Through an input-to-state sta-
ble approach combining with barrier Lyapunov functions and backstepping, we thoroughly
analyze the time delay estimation error during the recursive controller design process. This
allows us to achieve provably safe control under uncertainty with high-accuracy tracking
performance. The preceding approaches follow a common mapping, planning, and control
decoupled approach to complete safe execution under uncertainties. Alternatively, we in-
tegrate perception with control levels to build safe learning systems resilient to unforeseen
environments. This is achieved by the control-level quadratic optimization with the con-
straints, referred to as instantaneous local control barrier functions and goal-driven control
Lyapunov functions, learned from perceptional signals. The integrated approach bypasses
gaps among levels in the common map-plan-track decoupled paradigm to facilitate the theo-
retically guaranteed collision avoidance and convergence to destinations. The instantaneous
local sensory data stimulates computationally-cheap safe control strategies with fast adap-
tation to diverse uncertain environments without building a map.

The reinforcement learning and the control theory are combined in Part II to achieve safe
learning and optimization in the presence of uncertainties. The reinforcement learning based
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optimization framework is embedded with safety and robustness guarantees applying theo-
retical analysis tools rooted in the control field. We first propose an off-policy risk-sensitive
reinforcement learning based control framework to jointly optimize task performance and
constraint satisfaction in a disturbed environment. In particular, we design risk-sensitive
state penalty terms to construct risk-aware value functions that penalize unsafe behaviours.
The above risk-aware value function is approximated by the safety critic employing an off-
policy weight update law. During the learning process, the associated approximate optimal
control policy is able to satisfy both input and state constraints under disturbances. How-
ever, the model-free property of reinforcement learning is traded off for theoretical guar-
antees in the approach mentioned above. Specifically, prior model information is used to
present provable safety and stability under uncertainty. Therefore, we subsequently develop
a time-delayed data informed reinforcement learning method, termed as incremental adap-
tive dynamic programming, to solve the optimal control problem in a model-free way and
guarantees rigorous stability. In particular, the time-delayed data informs the value func-
tion learning process about one model-free representation of the original controlled plant.
Thereby, we could achieve model-free control and also have a mathematical form of dynamics
to conduct rigorous theoretical analysis applying rich analysis tools from the control field.
Our developed incremental adaptive dynamic programming approach serves as an efficient
tool to learn the solutions to both the optimal feedback motion planning and the optimal
tracking control problems.
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Zusammenfassung

Autonome Systeme, ob Robotermanipulatoren, unbemannte Luftfahrzeuge oder selbstfah-
rende Autos, sollen trotz aller Unwägbarkeiten vorgegebene Aufgaben mit garantierter oder
optimaler Leistung sicher erledigen. Die Sicherheit wird oft als Zustands- und Eingabe-
beschränkung, resultierend aus einen eingeschränkten Betriebsbereiche und Stellgrößenbe-
schränkungen, interpretiert. Diese sollten für zuverlässige praktische Anwendungen um-
fassend berücksichtigt werden; Unsicherheiten, die sich aus Quellen wie nicht modellierter
Dynamik, Modellunsicherheiten und externen Störungen ergeben, müssen angemessen berück-
sichtigt werden, um autonome Systeme mit Anpassungsfähigkeiten an eine sich verändernde
Umgebung auszustatten; Vorgaben wie die Stabilität des geschlossenen Regelkreises, eine
hohe Verfolgungsgenauigkeit und ein minimaler Energieverbrauch sollten erfüllt werden, um
Voraussetzungen oder Präferenzen bei der Erfüllung bestimmter Aufgaben zu erfüllen. In
dieser Dissertation werden unsere Bemühungen vorgestellt, mit Hilfe von mengentheoretis-
chen Methoden und Reinforcement-Learning-Ansätzen das oben genannte Problem zu for-
mulieren, zu analysieren und zu lösen. Das Problem wird als sichere Lernregelung unter
Unsicherheit mit garantierter Leistung bezeichnet.

Die lernunterstützten mengentheoretischen Methoden, insbesondere Barriere-Lyapunov-
Funktionen und Kontroll-Barriere-Funktionen, werden in Teil I verwendet, um die wün-
schenswerte robuste Sicherheit für Anwedungen mit garantierter Leistung für zeitkontinuier-
liche nichtlineare Regelung zu realisieren. Zunächst lernen wir die unsichere Dynamik, um
die Verfolgungsleistung schrittweise durch gleichzeitiges Lernen und die auf der Barriere-
Lyapunov-Funktion basierende Regelungsstrategie sicher zu verbessern. Insbesondere setzen
wir das simultane Lernen ein, um sicherzustellen, dass die erlernten Parameter unter Ver-
wendung von Echtzeit- und historischen Daten zusammen mit den tatsächlichen Werten
konvergieren. Außerdem verwenden wir die Barriere-Lyapunov-Funktion, um die Sicher-
heit (dargestellt durch vorgegebene Grenzen für den Tracking Error) in die Stabilität zu
integrieren. Die von uns entwickelte stabile Regelungsstrategie, die auf der erlernten Dy-
namik basiert, könnte eine sichere Nachführung ermöglichen und gleichzeitig die Unsicher-
heit während des Betriebs reduzieren. Gleichzeitiges Lernen ist jedoch auf die Bewälti-
gung parametrischer Unsicherheiten beschränkt und erfordert Kenntnisse der Modellstruk-
tur. Bezüglich der Grenzen des gleichzeitigen Lernens, nutzen wir dann zeitverzögerte
Signale, um inkrementelle Systeme zu konstruieren, die äquivalente Darstellungen der ur-
sprünglich gesteuerten Anlagen sind, aber ohne explizites Modellwissen auskommen, um die
modellfreie Steuerung zu erleichtern. Die verwendeten zeitverzögerten Signale degradieren
den Einfluss von Unsicherheiten auf Regelstrecken zum Effekt eines nachweislich begrenzten
Zeitverzögerungsschätzfehlers auf die formulierten inkrementellen Systeme. Durch einen
Input-to-State Stabilitätsansatz, der mit Barriere-Lyapunov-Funktionen und Backstepping
kombiniert wird, analysieren wir rigoros den Zeitverzögerungsschätzungsfehler während des
rekursiven Reglerentwurfsprozesses. Dadurch können wir eine nachweislich sichere Regelung
unter Unsicherheit mit hoher Genauigkeit bei der Nachführung realisieren. Die vorange-
gangenen Ansätze verfolgen einen gemeinsamen, von der Planung und Regelung entkop-
pelten Ansatz, um eine sichere Ausführung unter Unsicherheiten zu erreichen. Alternativ
dazu integrieren wir die Wahrnehmung mit den Regelungsebenen, um sichere Lernsysteme
zu schaffen, die gegenüber unvorhergesehenen Umgebungen widerstandsfähig sind. Erre-
icht wird dies durch die quadratische Optimierung auf der Regelungsebene mit den aus
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den Wahrnehmungssignalen erlernten Beschränkungen, die als momentane lokale Kontroll-
Barriere-Funktionen und zielgetriebene Kontroll-Lyapunov-Funktionen bezeichnet werden.
Der integrierte Ansatz umgeht die Lücken zwischen den einzelnen Ebenen des üblichen
Paradigmas von entkoppelten Kartographieren, Plannen und Nachverfolgen, um die theo-
retisch garantierte Kollisionsvermeidung und Konvergenz zum Ziel zu erleichtern. Durch
die Verwendung von momentanen lokalen Sensordaten werden rechnerisch günstige und
sichere Kontrollstrategien mit schneller Anpassung an verschiedene unsicheren Umgebun-
gen gefördert, ohne eine Karte zu erstellen.

Das Reinforcment Learning und die Regelungstechnik werden in Teil II für sicheres Ler-
nen und Optimierung in Anwesenheit von Ungewissheiten zusammengeführt. Der auf Re-
inforcement Learning basierende Optimierungsrahmen ist mit Sicherheits- und Robustheits-
garantien durch theoretische Analysewerkzeuge aus dem Bereich der Regelungstechnik aus-
gestattet. Wir schlagen zunächst ein risikosensitives, auf Reinforcement Learning basierendes
Regelungssystem vor, um die Aufgabenerfüllung und die Erfüllung von Bedingungen in einer
gestörten Umgebung gemeinsam zu optimieren. Insbesondere entwerfen wir risikosensitive
Strafbedingungen, um risikobewusste Wertfunktionen zu konstruieren, die unsichere Verhal-
tensweisen bestrafen. Die obige risikobewusste Wertfunktion wird durch eine Sicherheitsbe-
wertung unter Verwendung eines off-policy Gewichts-Update-Regel approximiert. Während
des Lernprozesses ist die zugehörige approximative optimale Regelstrategie in der Lage,
sowohl die Eingangs- als auch die Zustandsbeschränkungen bei Störungen zu erfüllen. Die
modellfreie Eigenschaft des Reinforcement Learnings wird bei dem oben erwähnten Ansatz
jedoch gegen theoretische Garantien eingetauscht. Insbesondere werden Informationen über
frühere Modelle verwendet, um nachweisbare Sicherheit und Stabilität unter Unsicherheit
zu präsentieren. Daher entwickeln wir anschließend eine zeitverzögerte, dateninformierte
Methode des Reinforcement Learnings, die als inkrementelle adaptive dynamische Program-
mierung bezeichnet wird, um das optimale Regelungsproblem näherungsweise auf modellfreie
Weise zu lösen und dabei strenge Stabilitätsgarantien zu erhalten. Insbesondere liefern die
zeitverzögerten Daten den Wertfunktionslernprozess über eine modellfreie Darstellung der
ursprünglichen Regelstrecke. Auf diese Weise könnten wir eine modellfreie Regelung real-
isieren und haben auch eine mathematische Form der Dynamik, um eine strenge theoretische
Analyse unter Verwendung umfangreicher Analysewerkzeuge aus dem Bereich der Regelung-
stechnik durchzuführen. Der von uns entwickelte Ansatz der inkrementellen adaptiven dy-
namischen Programmierung dient als effizientes Werkzeug zum Erlernen der Lösungen für
das Problem der optimalen Bewegungsplanung mit Rückkopplung und das Problem der op-
timalen Nachführregelung.
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Introduction 1

The provable safe execution of uncertain systems to complete predetermined tasks is re-
quired for scenarios such as robot manipulators for public services, and quadrotors for search
and rescue in cave environments. Both control and learning communities attempt to build
paradigms to achieve provably safe control under uncertainty with guaranteed performance
(considered for given missions), although with different focuses. Traditional control meth-
ods (set-theoretic methods in particular) are favoured with formal guarantees of indexes such
as safety and stability. However, their adaptation ability to unforeseen contexts is limited.
Learning approaches (reinforcement learning specifically) allow generalization towards differ-
ent environments; however, no theoretical guarantees are provided. Therefore, it is natural
to bridge learning and control communities to design control schemes that enjoy rigorous
theoretical guarantees and generalization towards diverse tasks and environments.

Set-theoretic methods. Sets are appropriate tools to specify constraints concerning safety
issues and design specifications [1]. Thus, it is attractive to investigate our interested prob-
lem in a set-theoretic context. Recently, control barrier function (CBF) has emerged as a
promising set-theoretic tool to enforce safety at a control level, see [2], [3] and the references
therein. Besides, barrier Lyapunov function (BLF) [4], [5], combined with properties of bar-
rier and Lyapunov functions, is often used with backstepping to stabilize controlled plants
while confining certain states into prior-given safe regions. The effectiveness of both CBF
and BLF highly relies on accurate dynamics that are not always available. Towards model
uncertainties, function approximation based methods are widely utilized. The present func-
tion approximation related works could be categorized in terms of different approximation
schemes, such as polynomials [6], trigonometric series [7], orthogonal functions [8], splines
[9], and neural networks (NNs) [10], etc. Among these approximation schemes, NNs play a
vital role in learning-based control methods [11]. Normally, the NN approximation scheme
is firstly adopted to learn a model beforehand, and then a control law is designed based on
the learned model. However, the guaranteed weight convergence to the actual value is out of
consideration in most of NN approximation scheme related works. Furthermore, the influ-
ence of unavoidable approximation errors on safety issues remains to be rigorously analyzed
and addressed.

Reinforcement learning approaches. Reinforcement learning (RL) provides a mathe-
matical formulation for learning-based control strategies [12] and has shown superior per-
formance in multiple scenarios [13]–[15]. Although the distinguishable model-free feature
of RL overcomes the difficulty of applying traditional model-based control methods to the
unknown (or hardly modelled) plants, the rigorous system stability analysis is not provided
in most of related works [16], [17]. However, a system without stability guarantee is poten-
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tially dangerous [18]. More recently, adaptive dynamic programming (ADP) [19]–[21] has
emerged as a promising control-theoretic RL subfield featured for available system stability
proofs. ADP, implemented as an actor-critic or a critic-only NN learning structure [22], [23],
forwardly solves the algebraic Riccati equation (ARE) or Hamilton-Jacobi-Bellman (HJB)
equation via value function approximations. Although traditional ADP has been widely
adopted to investigate stability and robustness issues, input and state constraint satisfac-
tion during the learning process, mainly investigated for safety concerns (e.g., restrictions
on torques, joint angels, and angular velocities of robot manipulators), has not yet been
efficiently addressed. Violations of any constraints could lead to severe consequences such
as damage to physical components. Note that the provided stability proof of ADP com-
promises the attractive model-free feature of RL since a mathematical form of dynamics is
required to present the rigorous closed-loop stability analysis. Even though the required
explicit knowledge of dynamics could be avoided by using add-on techniques such as NNs
[24]–[26], Gaussian process (GP) [27], or observers [28], the accompanying identification pro-
cesses further increase analytical complexities, computational loads, and parameter tuning
efforts. Thereby, one computationally efficient and easily implemented RL based control
strategy, favoured with both a model-free feature and a stability guarantee, is required.

1.1 Challenges
The brief introduction illustrated above encourages us to formulate the following challenges
revolving around the provable safe control under uncertainty with guaranteed performance
from set-theoretic and RL perspectives.

Provable Safety under Uncertainty

Through convexing safe regions (predetermined or computed [29]) or unsafe spaces (often
overly approximated), the safety problem is often investigated on the basis of accurate dy-
namics via tools such as CBFs [2], BLFs [4], forward (backward) reachable sets [30], model
predictive control [31], penalty functions [32], and contraction theory [33], etc. The trust-
worthy safety checks of the safe control tools mentioned above build upon available perfect
dynamics. In the case of only uncertain dynamics accessible to practitioners, current works
use parametric or non-parametric methods to provide learned dynamics for safety checks.
However, the gap concerning safety check built on dynamics still in learning processes (i.e.,
potentially inaccurate dynamics) is not fully considered. Assumed available [33] or on-
line/offline estimated uncertainty bounds [34] provide designers with avenues to analyse the
influence of uncertainty on safety rigorously. However, the utilized conservative uncertainty
bounds might reduce allowable regions into unsafe regions. This results in conservative be-
haviours that deteriorate performance. Therefore, rigorously quantifying, analysing, and
addressing the influence of uncertainty on safety is yet to be determined.

Guaranteed Weight Convergence

Regrading the performance issue in adaptive control, in general, the weight convergence is not
required. It has been illustrated in [35], [36] that weight estimation errors may not converge
to zero (indeed it may not converge at all) even though an acceptable tracking performance
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is achieved. However, it is undesirable to verify safety using a constantly changing model.
Thereby, the guaranteed weight convergence, offering an ensured accurate learned dynamics,
is required to ensure safety under model uncertainties. Conventionally, the persistence of
excitation (PE) condition is used to check the weight convergence. The weight convergence
to the actual value is guaranteed if the PE condition is satisfied [36], [37]. Among existing
works [20], [38], the PE condition could be satisfied by incorporating external noises to
control inputs. However, this method lacks practicability given that the direct incorporation
of external noises into control inputs may suffer a degradation of control performance, and a
waste of energy, etc. Most importantly, the incorporated external noise, ignored during the
theoretical analysis process, would invalidate the provided safety and stability proofs. Hence,
a fundamental problem about the guaranteed weight convergence is yet to be discussed, and
one practical as well as efficient method to provide the required excitation remains explored.

RL for Control with Theoretical Guarantees

RL serves as one promising framework for synthesising control policies to satisfy multiple
objectives. However, RL is predominately used in simulated environments due to the lack
of guaranteed safety and stability. The difficulty of providing stability proofs for RL results
from noninterpretable neural network policies, unknown system dynamics, and random ex-
plorations. The control-theoretic RL method ADP relieves the stability issue via a linear
approximator, a given or an identified model, and an analytical deterministic optimal control
policy. However, the guaranteed safety during the learning process has not been efficiently
addressed in ADP. Most of previous ADP related works adopt the system transformation
technique to deal with state constraints [28], [39], [40]. This method, nonetheless, is limited
to simple constraint forms, e.g., restricted working space in a rectangular form. Besides, al-
though general state constraints could be tackled by the well-designed penalty functions [41],
[42], which become dominant in the optimization process when possible constraint violation
happens and thus punish potential dangerous behaviours, no strict constraint satisfaction
proofs are provided. However, in certain cases such as human-robot interaction scenarios,
even the violation of safety-related constraints in a small possibility is unacceptable. Through
the above analysis, it is meaningful to use theoretical analysis tools from the control commu-
nity to inform the RL based policy with stability and safety guarantees. These theoretical
guarantees form the basis to use RL for broad applications.

Curse of Dimensionality and Complexity

The optimal control problem is usually solved via the minimum principle of Pontryagin, or
dynamic programming [43]. Using dynamic programming to solve the optimal control prob-
lem faces the notorious curse of dimensionality problem, i.e., the volume of the state space
grows quickly as the number of dimension grows [44]. The RL based ADP mitigates the curse
of dimensionality problem by forwardly solving the ARE or HJB in an approximation way.
However, the so-called curse of complexity appears. In particular, the number of activation
functions required for the accurate value function approximation grows exponentially with
the system dimension [45]. Theoretically, practitioners could seek a sufficient large NN to
achieve a satisfying approximation of a high-dimensional value function [46]. However, prac-
tically, this is nontrivial considering that appropriate activation functions are usually chosen
by trial and error. This process is tedious and time-consuming. Even though a suitable
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set of activation functions and appropriate hyperparameters are found through engineer-
ing efforts, the accompanying computation load jeopardises the realtime performance of the
associated weight update law and control strategy [47]. Thus, experimental validations of
ADP based control strategy on a high-dimensional system is seldom found in existing works.
Applying ADP to solve the optimal control problems of high-dimension systems remains to
be explored.

1.2 Major Contributions and Dissertation Outline
This dissertation presents our efforts, set-theoretic methods in Part I (Chapter 2–Chapter
4) and reinforcement learning approaches in Part II (Chapter 5–Chapter 7), to solve the
challenges formulated above to enable autonomous systems to operate safely and meet task
requirements even under uncertainties.

Safe Parameter Learning and Control of Robot Manipulators (Chapter 2)

This chapter online learns the uncertain dynamics of robot manipulators during the opera-
tion process, and safely improves the tracking performance gradually. Our developed control
strategy deals with the following problems simultaneously: safety issues regarding output
constraints, guaranteed performance concerning tracking errors, and parametric uncertain-
ties of robot manipulators. In particular, we first combine the safety objective with the
performance requirement. Then, we use BLFs to account for the safety and performance-
related constraints simultaneously. Besides, the torque filtering technique is integrated into
concurrent learning to avoid using joint acceleration information for the parameter learning.
Finally, a novel double regressor matrix technique is developed to enable the combination of
the BLF based control and the torque filtering augmented concurrent learning aided online
system identification feasible. Numerical and experimental results validate that our pro-
posed strategy drives uncertain robot manipulators to track the desired trajectories with
guaranteed safety and performance.

The results presented in Chapter 2 have been published in IEEE Transactions on System,
Man, and Cybernetics [48].

Provably Safe Control under Uncertainty via ISS-PS-BLF (Chapter 3)

This chapter bridges the gap between the safe planning and the guaranteed performance con-
trol to accomplish provable safe execution of controlled plants suffering uncertainties. This is
accomplished by considering the achievable performance bound of the control level into the
planning level. In particular, we first utilize time-delayed signals to formulate an uncertain
and disturbed dynamics into an equivalent incremental system without using explicit model
knowledge. Then, our proposed input-to-state with provable safety barrier Lyapunov func-
tion (ISS-PS-BLF) is utilized with backstepping to design a guaranteed performance tracking
controller based on the above formulated incremental system. The realizable tracking per-
formance bound of the designed tracking controller is further considered in the planning level
to generate safe reference trajectories. The effectiveness of our developed safe planning and
guaranteed performance tracking control scheme is numerically validated via the task-space
tracking of robot manipulators and the safe flight of quadrotors.
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Constraint Learning for Safe Operation in Unforeseen Region (Chapter 4)

This chapter presents an integrated perception and control approach that provides limited-
performance mobile robots with a low-cost solution (regarding hardware requirements and
computation loads) to the safe operation problem in uncertain environments. In particular,
the instantaneous local control barrier functions (IL-CBFs) reflecting potential collisions and
the goal-driven control Lyapunov functions (GD-CLFs) encoding incrementally discovered
subgoals are first online learned from perceptual signals. Then, the learned IL-CBFs are
united with GD-CLFs in the context of a quadratic programming (QP) to generate safe
feedback control strategies. Rather importantly, an optimization over the admissible control
space of IL-CBFs is conducted to improve the QP feasibility. Numerical simulations are
conducted to reveal the effectiveness of our proposed safe feedback control strategy that
drives mobile robots to safely reach the destination incrementally in uncertain environments.

The contents shown in Chapter 4 have been submitted for possible publication in IEEE
Robotics and Automation Letters. The associated arXiv version is [49]

Joint Optimization for Task Performance and Safety (Chapter 5)

This chapter proposes an off-policy risk-sensitive RL based control framework to jointly
optimize task performance and constraint satisfaction in a disturbed environment. The risk-
aware value function, constructed using the pseudo control and the risk-sensitive input and
state penalty terms, is introduced to convert the original constrained robust stabilization
problem into an equivalent unconstrained optimal control problem. Then, an off-policy sin-
gle critic reinforcement learning algorithm is developed to learn the approximate solution
to the above constructed risk-aware value function. During the learning process, the asso-
ciated approximate optimal control policy satisfies both input and state constraints under
disturbances. By replaying experience data to the off-policy weight update law of the critic
neural network, the weight convergence is guaranteed. Moreover, online and offline algo-
rithms are developed to serve as principled ways to record informative experience data to
achieve a sufficient excitation required for the weight convergence. The proofs of system
stability and weight convergence are provided. Simulation results reveal the validity of our
proposed control framework.

The contents concerning robust constrained optimal stabilization shown in Chapter 5 have
been submitted for possible publication in IEEE Transactions on System, Man, and Cybernet-
ics and the associated arXiv version is [50]. The numerical simulations concerning optimal
tracking control with prescribed performance come from our arXiv paper [51].

Safe Approximate Optimal Control via Barrier Certified RL (Chapter 6)

This chapter presents a new formulation for model-free robust constrained optimal regulation
control of continuous time nonlinear systems. The proposed RL based approach, referred to
as incremental adaptive dynamic programming (IADP), utilizes measured input-state data
to allow the design of the approximate optimal incremental control strategy, stabilizing the
controlled system to the target point under model uncertainties, environmental disturbances,
and satisfying input saturation. In particular, we first use sensor data to reduce the require-
ment of a complete dynamics, where input-state data is adopted to construct an incremental
dynamics that reflects the system evolution in an incremental form. Then, the resulting
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incremental dynamics serves to design the approximate optimal incremental control strategy
based on RL, which is implemented as a simplified single critic learning structure to get
the approximate solution to the value function of the HJB equation. Rather importantly,
we incorporate a time delay estimation error bound related term into the cost function,
whereby the unintentionally introduced time delay estimation error is attenuated during the
optimization process. Finally, one safety filter is introduced to minimally correct the learned
approximate optimal control policy to ensure safe execution. The proofs of system stabil-
ity and weight convergence are provided. Numerical simulations are conducted to validate
the effectiveness and superiority of our proposed IADP, especially regarding the enhanced
robustness.

The contents concerning IADP presented in Chapter 6 have been published in International
Journal of Robust and Nonlinear Control [52]. The arXiv version is [53].

Time-Delayed Data Informed RL for Optimal Tracking Control (Chapter 7)

To achieve safe execution in uncertain environments, the planned or replanned safe reference
trajectories should be accurately tracked by a high-accuracy and robust tracking controller.
Thus, this chapter investigates the optimal tracking control problem (OTCP) with prefer-
ences on tracking accuracy and robustness. This chapter extends the IADP developed in
Chapter 6 to learn the approximate solution to the OTCP. Departing from available solu-
tions to the OTCP, our developed tracking control scheme settles the curse of complexity
problem in value function approximation from a decoupled way, circumvents the learning
inefficiency regarding varying desired trajectories by avoiding introducing a reference tra-
jectory dynamics into the learning process, and requires neither an accurate nor identified
dynamics using time-delayed signals to facilitate model-free control. Specifically, we first
convert the intractable OTCP of a high-dimensional uncertain system into multiple man-
ageable sub-problems of low-dimensional incremental error subsystems. Then, the resulting
sub-problems are approximately solved by a parallel critic learning structure. The proposed
tracking control scheme is developed with rigorous theoretical analysis of system stability
and weight convergence, and validated experimentally on a 3-DoF robot manipulator.

The contents shown in Chapter 7 have been submitted for possible publication in IEEE
Transactions on Cybernetics. The associated arXiv version is [54].
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Set-Theoretic Methods
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Concurrent Learning-Based Adaptive Control
with Guaranteed Safety and Performance 2

This chapter investigates the tracking control problem of an uncertain n-link robot manipu-
lator with guaranteed safety and performance. We employ BLFs and backstepping to design
a guaranteed tracking performance controller based upon dynamics learned from concur-
rent learning (CL). Our developed joint tracking controller could combine with joint-level
robot motion planning algorithms [55], [56] to achieve safe operation of robot manipulators.
This chapter is organized as follows. Section 2.1 firstly introduces the preliminaries and the
problem formulation. Then, the torque filtering (TF) technique is illustrated in Section 2.2,
which serves to Section 2.3 to construct a TF-CL aided parameter estimation update law
for online identification of unknown systems without using joint acceleration information.
The parameter convergence is guaranteed by exploiting current and historical data simul-
taneously. The developed TF-CL technique enjoys practicability compared with common
methods that need to incorporate external noises to satisfy the PE condition required for
the parameter convergence. Based on the learned model, Section 2.4 elucidates the recursive
controller design process using the backstepping technique, and presents stability proofs as
well as compact sets of both tracking errors and system outputs. By ensuring the boundness
of BLFs, the system outputs and the tracking errors are proved to lie in the safety set and
performance set, respectively. Numerical simulations in Section 2.5 and experimental valida-
tions in Section 2.6 illustrate the effectiveness of our proposed control strategy. Summaries
are finally provided in Section 2.7.

2.1 Preliminaries and Problem Formulation
The dynamics of an n-link robot manipulator follows the Euler-Lagrange (E-L) equation

M(q)q̈ + C(q, q̇)q̇ +G(q) + F q̇ = τ , (2.1)

where M(q) : Rn → Rn×n is the symmetric positive definite inertia matrix; C(q, q̇) : Rn ×
Rn → Rn×n is the matrix of centrifugal and Coriolis terms; G(q) : Rn → Rn represents
gravitational terms, and F ∈ Rn×n denotes values of viscous friction; q, q̇, and q̈ ∈ Rn are
the vectors of joint angles, velocities and accelerations, respectively; τ ∈ Rn represents the
vector of input torques applied at each joint.

Property 1. [57] The left side of the system equation (2.1) can be written as the following
linear in parameter (LIP) form

Y (q, q̇, q̈)θ∗ = τ , (2.2)

where Y (q, q̇, q̈) : Rn × Rn × Rn → Rn×m is the regressor matrix; θ∗ ∈ Rm is the desired
coefficient vector of the E-L equation.
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Remark 2.1. Property 1 exploits the known model properties at hands to construct the
regression matrix Y (q, q̇, q̈). Considering the E-L equation (2.1), model uncertainties include
varying masses or lengths of joints, varying friction parameters, and unknown payloads.
The aforementioned model uncertainties can all be incorporated into the coefficient vector θ∗

of (2.2). Note that for the model-free NN approximation scheme [10], the known physical
structure of the investigated system is abandoned, which usually suffers from the well known
sample inefficiency problem.

Let x1 = q and x2 = q̇, the E-L equation (2.1) is written in the state-space form as

ẋ1 = x2,
ẋ2 = M−1(x1)(τ − C(x1,x2)x2 −G(x1)− Fx2),
y = x1,

(2.3)

where y ∈ Rn is the system output that denotes the joint angles of the n-link robot manip-
ulator (2.1), and assuming that it lies in the following set

C = {y ∈ Rn : ke ≺ y ≺ kf} . (2.4)

Here we consider a trajectory tracking control problem where the robot manipulator is
driven to track the desired trajectory yd ∈ Rn precisely. Throughout this chapter, we confine
ourselves that the desired trajectory yd satisfies the following assumption.

Assumption 2.1. The desired trajectory yd satisfies −y
d
⪯ yd ⪯ yd, where y

d
and yd are

positive constant vectors.

Based on the system output y of (2.3) and the desired trajectory yd, we define the tracking
error e1 ∈ Rn as

e1 = y − yd. (2.5)

For the safety issues considered during the trajectory tracking process, following the barrier
function definition illustrated in [2], here the safety set regarding the system output y is
defined as

S = {y ∈ Rn : h(y) ≤ 0} , (2.6)

where h(y) : Rn → R is a continuous function. The explicit form of h(y) is determined by
considering various safety issues during the tracking process. As for the investigated n-link
robot manipulator, considering the human-robot interactions or limited spaces, its safety set
is usually defined as an allowable operation region [58], [59] that follows

S̄ = {y ∈ Rn : kc ≺ y ≺ kd} , (2.7)

where kc = [kc1 , · · · , kcn ]⊤ ∈ Rn and kd = [kd1 , · · · , kdn ]⊤ ∈ Rn are known constant vectors
determined by controller designers. The safety set S̄ in (2.7) is a representative and explicit
form of S in (2.6). Note that kc ≺ −yd and yd ≺ kd hold, i.e., yd lies in the safety set S̄.

For the performance issues, we demand that the tracking error e1 (2.5) lies in the following
performance set

P = {e1 ∈ Rn : −ka ≺ e1 ≺ kb} , (2.8)
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where ka = [ka1 , · · · , kan ]⊤ ∈ Rn and kb = [kb1 , · · · , kbn ]⊤ ∈ Rn are predefined constant
vectors. According to (2.5), the resulting working space based on the desired tracking error
bound (2.8) would be

P̄ =
{
y ∈ Rn : −ka − yd ≺ y ≺ kb + yd

}
. (2.9)

To counter the constraints concerning safety in (2.7) and performance in (2.8), BLF [4],
[5] emerges as an efficient tool. To deal with both symmetric and asymmetric constraints, a
simple indicator function based BLF is proposed as

V (z) = p(z) z2

k2
u − z2 + (1− p(z)) z2

k2
l − z2 , (2.10)

where z ∈ R is the system state; and kl, ku ∈ R are constraint bounds; When z → kl or
z → ku, V (z)→∞; p(z) is an indicator function that follows

p(z) =

1, z > 0
0, z ≤ 0

. (2.11)

According to Definition 2 in [4], the proposed BLF in (2.10) is an effective BLF.

Remark 2.2. From the perspective of the guaranteed performance represented by (2.8), pre-
scribed performance control (PPC) [60] is closely related to our work, which exploits the
prescribed performance function (PPF) based system transformation technique to guarantee
that, the tracking error converges to an explicit residual set, the convergence rate is no less
than a predefined value, and a maximum overshoot is less than a prespecified constant. How-
ever, although multiple performance criteria could be provided by PPC, we found in practice
that its efficient application requires extensive parameter tuning efforts because the adopted
PPF is sensitive and easier lead to singularity. Moreover, the system transformation process
results in additional complexity. Thus, a simple BLF is chosen here to achieve guaranteed
performance and safety. Although no explicit values of the final residual set and convergence
rate are provided by our designed BLF based control strategy in Section 2.4, both simulation
and experiment results in Section 2.5 and Section 2.6 have shown satisfying performance
comparable to the PPC based work [60].

For the investigated tracking control problem, the priority of safety is over performance. To
improve the tracking performance while always guaranteeing safety, C ⊆ S̄ and C ⊆ P̄ should
be satisfied together. For the purpose of achieving these considerations simultaneously, we
could firstly choose the values of −ka and kb to meet P̄ ⊆ S̄, and then design a tracking
controller to enforce C ⊆ P̄ . For example, consider a scenario that a robot manipulator works
close to humans where the pre-planned yd for given tasks ensures collision free with humans.
To guarantee the collision avoidance while accomplishing the predefined tasks, we need to
restrict the operation range of the robot manipulator such that C ⊆ S̄, and enable the robot
manipulator to track yd precisely to satisfy C ⊆ P̄ , respectively. The aforementioned safety
and performance requirements could be integrated together by choosing the explicit values
(i.e., −ka and kb) of the guaranteed tracking performance such that P̄ ⊆ S̄ holds. Then,
a BLF based controller that drives the robot manipulator to track yd with the guaranteed
tracking performance also enforces the executed trajectory to lie in the restricted operation
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range at the same time. Although it seems to be a conservative approach, comparing to
works that can only consider partial objectives of performance [61] or safety [62], the resulting
BLF based controller could drive the robot manipulator to track the desired trajectory while
satisfying requirements of both safety and performance together.

Based on the aforementioned settings, the tracking control problem with guaranteed safety
and performance is formulated as follows.

Problem 2.1. Given the uncertain robot manipulator (2.1), and the desired trajectory yd
within the prior known safety set S̄ (2.7). Choose appropriate bounds for the performance
set P (2.8), and design a stable adaptive control strategy based on the proposed BLF (2.10)
to drive the uncertain robot manipulator to track the desired trajectory yd while satisfying
requirements of safety characterized by S̄ and performance denoted as P together.

2.2 Torque Filtering Technique
For the LIP form of the E-L equation given in (2.2), measurements of the acceleration q̈
are required to construct the regressor matrix Y (q, q̇, q̈). Since the information of joint
acceleration is sensitive to measurement noises, it is not applicable to use it directly to
design a controller. To eliminate the need for this information, the torque filtering technique
is adopted here to reformulate the original LIP form (2.2) to get a new equivalent LIP form
without requirements for the joint acceleration information. Comparing to the common
Kalman filter that highly depends on prior knowledge (e.g., noises to be filtered) and requires
extensive parameter tuning efforts [63], the adopted torque filtering technique is a simple
and easily implemented method for practical applications.

To facilitate the introduction of the torque filtering technique, two auxiliary vectors
h(q, q̇) : Rn × Rn → Rn and g(q, q̇) : Rn × Rn → Rn are firstly defined as

h(q, q̇) = M(q)q̇ = Y1(q, q̇)θ∗,
g(q, q̇) = −Ṁ(q)q̇ + C(q, q̇)q̇ + G(q) + F q̇ = Y2(q, q̇)θ∗,

(2.12)

where Y1(q, q̇) : Rn × Rn → Rn×m and Y2(q, q̇) : Rn × Rn → Rn×m are two new regressor
matrices without incorporating the information of q̈.

Based on the auxiliary vectors in (2.12), the system equation (2.1) is rewritten as

ḣ(q, q̇) + g(q, q̇) = (Ẏ1(q, q̇) + Y2(q, q̇))θ∗ = τ , (2.13)

where ḣ(q, q̇) = Ṁ(q)q̇ +M(q)q̈ = Ẏ1(q, q̇)θ∗.
The advantage of writing the robot manipulator model in the form (2.13) is that this new

equivalent form of (2.1) has been separated in a way that allows q̈ to be filtered out. To
filter out q̈ existing in Ẏ1(q, q̇), a linear stable filter is introduced as

f(s) = 1
ks+ 1, (2.14)

where s is the Laplace operator and k ∈ R is a time constant. By filtering (2.13) based on
(2.14), we get the filtered version of (2.13) as

ḣf (q, q̇) + gf (q, q̇) = τf , (2.15)
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where ḣf (q, q̇) : Rn × Rn → Rn and gf (q, q̇) : Rn × Rn → Rn are the filtered versions of
ḣ(q, q̇) and g(q, q̇), respectively. τf ∈ Rn is the filtered version of τ .

Based on (2.13), the corresponding LIP form of the filtered system (2.15) reads

(Ẏ1f
(q, q̇) + Y2f

(q, q̇))θ∗ = τf , (2.16)

where Y1f
(q, q̇) : Rn × Rn → Rn×m and Y2f

(q, q̇) : Rn × Rn → Rn×m are the filtered versions
of the regressor matrices Y1(q, q̇) and Y2(q, q̇), respectively.

For the filter given in (2.14), the filtered variables and their original forms satisfy the
following equations

kẎ1f
(q, q̇) + Y1f

(q, q̇) = Y1(q, q̇), Y1f
(q, q̇)|t=0 = 0,

kẎ2f
(q, q̇) + Y2f

(q, q̇) = Y2(q, q̇), Y2f
(q, q̇)|t=0 = 0,

kτ̇f + τf = τ , τf |t=0 = 0.
(2.17)

Substituting the first equation of (2.17) into (2.16), finally we get the filtered LIP form of
the E-L equation (2.1) as

Yf (q, q̇)θ∗ = τf , (2.18)

where Yf (q, q̇) = (Y1(q, q̇) − Y1f
(q, q̇))/k + Y2f

(q, q̇) : Rn × Rn → Rn×m is the new filtered
regressor matrix without requirements for the joint acceleration information.

Now the new filtered regressor matrix Yf (q, q̇) and the resulting filtered LIP form (2.18) can
be adopted to identify the unknown coefficient vector θ∗ without using the joint acceleration
knowledge, which is detailly clarified in the next section.

2.3 Concurrent Learning Aided System Identification
Since the ideal coefficient vector θ∗ in (2.18) is unknown, and only the estimated parameter
vector θ̂ is available, the identification problem to be addressed here is to obtain θ̂ online
based on the system input u, the output state y, and the filtered regression matrix Yf .
The online identification of θ̂ is an adaptive parameter estimation problem where the PE
condition needs to be satisfied before the estimated parameters converge to the desired values.
Unlike common methods that introduce external noises to satisfy the PE condition, based
on the LIP form in (2.18), the TF-CL method is adopted here to guarantee the parameter
convergence by utilising both current and historical data.

2.3.1 Parameter Estimation Update Law
Denote the parameter estimation error as θ̃ = θ̂ − θ∗ ∈ Rm. Then, the corresponding model
approximation error follows

ef = Yf θ̃. (2.19)

Define the quadratic cost of the approximation error as Vef
= 1/2e⊤

f ef . Following the
common gradient descent method to minimize Vef

, the adaptive parameter estimation update
law is derived as

˙̂
θ = −ΓY ⊤

f ef , (2.20)
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where Γ ∈ Rm×m is a constant positive definite matrix. It is well known that the estimated
θ̂ converges to the desired θ∗, iff the regression matrix Yf satisfies the PE condition [64]:∫ t+T

t
Y ⊤
f (τ)Yf (τ)dτ ≥ γI, (2.21)

where γ, T ∈ R are appropriate positive constants. The PE condition in (2.21) could be
interpreted as requirements for a degree of data richness: when the regressor matrix Yf varies
sufficiently enough over the time interval T so that the entire γ dimension parameter space
is spanned, the estimated parameters are guaranteed to converge to the desired values.

Common methods usually adopt the parameter estimation update law in (2.20) and in-
troduce external noises, e.g. signals in sin or cos form, to satisfy the PE condition shown as
(2.21). However, the PE condition in (2.21) is hard to check online whether it is satisfied
or not. An online verification condition is desirable to tell practitioners that under this
condition, the estimated parameters are guaranteed to converge to the desired values. We
observe that the PE condition is in essence a condition about data richness, and only current
data contributes to the common parameter estimation update law (2.20). Therefore, to get
rich enough data, it is natural to also exploit historical data to construct the parameter
estimation update law.

In this section, a parameter estimation update law is proposed by using current and histori-
cal data simultaneously. The need of adding external noises to satisfy the PE condition (2.21)
is avoided with the benefit of the recorded historical data. Based on the TF-CL method,
the parameter estimation update law for the unknown coefficient vector θ∗ is designed as

˙̂
θ = −ΓktY ⊤

f ef −
P∑
j=1

ΓkhY ⊤
fj
efj

, (2.22)

where kt, kh ∈ R+ are positive constant gains to trade off the relative importance between
current and historical data to the parameter estimation update law. P ∈ R+ denotes the
volume of the history stacksH and E . The history stacksH and E are collections of historical
data, where the filtered regressor matrix Yfj

and the filtered approximation error efj
denote

the j-th collected data of the history stacks H and E , respectively.
The parameter estimation update law (2.22) contains two parts. The first part −ΓktY ⊤

f ef
relates to current data, which is a common gradient descent update law to minimize the
quadratic model approximation error Vef

, as like (2.20). However, an update law only with
the first part cannot guarantee parameter convergence. Thus, the second part−∑P

j=1 ΓkhY ⊤
fj
efj

,
which is constructed by historical data, is introduced to provide the sufficient excitation re-
quired for the parameter convergence. To analyse the parameter convergence problem based
on the parameter estimation update law (2.22), a rank condition is firstly clarified in As-
sumption 2.2.

Assumption 2.2. Given a history stack H = [Y ⊤
f1 , ...,Y ⊤

fP
] ∈ Rm×(n×P ), where Yfj

∈ Rn×m

is the j-th collected data of H, there holds rank(HH⊤) = m.

Note that comparing to the traditional PE condition in (2.21), the rank condition of a
history stack H in Assumption 2.2 provides an index about the richness of the historical
data that could be checked online. If the rank condition is satisfied, it guarantees that
the estimated parameters will converge to the desired values and vice versa. Proofs for the
desirable parameter convergence are given as follows.
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2.3 Concurrent Learning Aided System Identification

Theorem 2.1. Given Assumption 2.2 and the parameter estimation update law in (2.22),
the parameter estimation error θ̃ converges to zero asymptotically.

Proof. Let Vcl : Rm → R be a candidate continuously differential Lyapunov function as

Vcl = 1
2 θ̃

⊤Γ−1θ̃. (2.23)

The bound of the Lyapunov function is

1
2λmin(Γ−1)

∥∥∥θ̃∥∥∥2
≤ Vcl ≤

1
2λmax(Γ−1)

∥∥∥θ̃∥∥∥2
. (2.24)

Calculating the time derivative of Vcl and substituting (2.22) into it yields

V̇cl = θ̃⊤Γ−1 ˙̃θ = θ̃⊤Γ−1 ˙̂
θ = −ktθ̃⊤Y ⊤

f ef − θ̃⊤
P∑
j=1

khY
⊤
fj
efj

= −ktθ̃⊤Y ⊤
f Yf θ̃ − θ̃⊤

P∑
j=1

khY
⊤
fj
Yfj

θ̃ ≤ −θ̃⊤
P∑
j=1

khY
⊤
fj
Yfj

θ̃ = −θ̃⊤Qθ̃,
(2.25)

where Q = ∑P
j=1 khY

⊤
fj
Yfj
∈ Rm×m. According to Assumption 2.2, Q is positive definite and

λmin(Q) is a positive constant. Thus, the following inequality holds:

V̇cl ≤ −λmin(Q)
∥∥∥θ̃∥∥∥2

. (2.26)

It is concluded that the parameter estimation error will converge to zero asymptotically.

2.3.2 History Stack Management Algorithm
The parameter estimation update law and the corresponding convergence proof have been
provided in Theorem 2.1. The premise of Theorem 2.1 is the satisfaction of the rank condition
in Assumption 2.2, i.e., a history stack H containing sufficiently different data is needed.
Besides, according to (2.26) and Q = HH⊤, the convergence rate of the estimated parameters
is related to the minimum eigenvalues of the history stack H, i.e., λmin(HH⊤). With the
above analysis, we know that the convergence of the estimated parameters to the desired
values with a fast speed equals to (a) the satisfaction of the rank condition in Assumption 2.2,
and (b) the enlargement of the minimum eigenvalue λmin(HH⊤). Thus, to achieve parameter
convergence with a fast speed, in our algorithm, the history stack H and E are updated with
new data points based on two criteria: one is the data threshold ε that acts as a criterion
for data difference, and guides the algorithm to collect different enough data to satisfy the
rank condition; the other is the minimum eigenvalue of the history stack H that relates to
the convergence rate of the estimated parameters. Note that for computation simplicity, the
minimum singular value σmin(HH⊤) replaces with λmin(HH⊤) to act as a criterion for data
storage given that σmin(HH⊤) =

√
λmin(HH⊤).

Details of Algorithm 1 are as follows. Firstly, the hyperparameter data threshold ε ensures
that only new data that is sufficiently different from the latest collected data will be incor-
porated into the history stacks H and E . Secondly, to improve the parameter convergence
speed, when H reaches its volume limit P , only data points that lead to an increment of
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2 Concurrent Learning-Based Adaptive Control with Guaranteed Safety and Performance

the minimum singular values of the history stack H will be collected. As for the method
proposed in [65], the same data might be used multiple times in the history stack H (data
richness deteriorates), and the monotonic increment of the minimum singular values cannot
be guaranteed (the convergence rate of the estimated parameter is discouraged). To ensure
monotonic increment of the minimum singular values, in our algorithm, the newly coming
data always compares with the latest data inserted into the history stack H. Note that
the history stack volume P is a hyperparameter that requires careful tuning, which requires
P ≥ m to satisfy the rank condition in Assumption 2.2, where m is the dimension of the
desired coefficient vector θ∗. The pseudocode of the history stack management algorithm is
shown as Algorithm 1.

Algorithm 1 History Stack Management Algorithm
Input: Iteration number: i ≥ 1; Data threshold: ε; Volume: P ; Auxiliary variables: Th, Te;

Index: I = P ; Empty set: S; State dimension: n.
Output: History stacks H, E .

1: if i ≤ P then
2: if ∥Yf −H(:,ni− n+ 1 : ni)∥ / ∥Yf∥ ≥ ε then
3: H(:,ni− n+ 1 : ni) = Y ⊤

f in (2.18)
4: E(:,n) = ef in (2.19)
5: i = i+ 1
6: end if
7: else
8: if ∥Yf −H(:,nI − n+ 1 : nI)∥ / ∥Yf∥ ≥ ε then
9: Th = H; Te = E ; V = σmin(HH⊤)

10: for l = 1 : P do
11: H(:,nl − n+ 1 : nl) = Y ⊤

f in (2.18)
12: S(l) = σmin(HH⊤); H = Th
13: end for

[Vmax, I] = max(S)
14: if Vmax ≥ V then
15: H(:,nI − n+ 1 : nI) = Y ⊤

f in (2.18)
16: E(:, I) = ef in (2.19)
17: else
18: H = Th; E = Te
19: end if
20: end if
21: end if

Remark 2.3. In very special cases, it is still possible that the collected historical data from
one single trajectory might not be rich enough to satisfy the rank condition in Assumption
2. To counter this potential data deficiency problem, in the initial learning period, a random
noise ∆ could be incorporated into the regressor matrix, i.e., Yf ← Yf+∆, within a short time
to enable Algorithm 1 to collect the historical data that the real system does not experience.
The random noise ∆ is abandoned once the rank condition in Assumption 2.2 is satisfied.
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2.4 Robot Manipulator Controller Design

Figure 2.1: Schematic of the proposed method that consists of the TF-CL aided system
identification process followed by the BLF based controller design.

2.4 Robot Manipulator Controller Design
In this section, based on the identified system from Section 2.3, a recursive controller design
process is clarified to yield a stable adaptive control strategy using the backstepping tech-
nique and Lyapunov analysis, as shown in Figure 2.1. The resulting control strategy renders
the time derivative of the BLF (2.10) to be always negative semi-definite. This guarantees
that with a finite initial value of the BLF, the BLF value will always be bounded during
the tracking process. The boundness of the BLF implies that the safety set (2.7) and the
performance set (2.8) will not be transgressed, i.e., requirements of safety and performance
are both satisfied.

Recall the tracking error e1 = x1 − yd in (2.5) and define the error e2 = x2 − α, where
α ∈ Rn is a stabilizing function to be designed.

Step 1. The following BLF candidate is chosen to design a controller:

V1 = 1
2

n∑
i=1

p(e1i
)

e2
1i

k2
bi
− e2

1i

+ (1− p(e1i
))

e2
1i

k2
ai
− e2

1i

. (2.27)

Taking time derivative of V1 yields

V̇1 =
n∑
i=1

p(e1i
)
k2
bi
e1i
ė1i

(k2
bi
− e2

1i
)2 + (1− p(e1i

))
k2
ai
e1i
ė1i

(k2
ai
− e2

1i
)2 . (2.28)

The time derivative of e1 is

ė1 = ẋ1 − ẏd = x2 − ẏd = e2 + α− ẏd. (2.29)

Substituting (2.29) into (2.28) yields

V̇1 =
n∑
i=1

p(e1i
)
k2
bi
e1i

(e2i
+ αi − ẏdi

)
(k2
bi
− e2

1i
)2 + (1− p(e1i

))
k2
ai
e1i

(e2i
+ αi − ẏdi

)
(k2
ai
− e2

1i
)2 , (2.30)

where αi and ẏdi
are i-th dimension of α and ẏd, respectively. In order to make (2.30) be

negative semi-definite, the stabilizing function α is designed as

α = ẏd − p(e1)(k⊤
b kb − e⊤

1 e1)2k1e1 − (1− p(e1))(k⊤
a ka − e⊤

1 e1)2k1e1, (2.31)
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2 Concurrent Learning-Based Adaptive Control with Guaranteed Safety and Performance

where k1 ∈ Rn×n is a diagonal matrix of positive constants, and its i-th diagonal entry is
denoted as k1i. Since asymmetric constraints are considered in this chapter, the last two
terms of (2.31) are designed to characterize the upper and lower constraint boundaries, i.e.,
kb and −ka, respectively.

For simplicity, we denote L = ∑n
i=1 p(e1i

)
k2

bi
e1i

e2i

(k2
bi

−e2
1i

)2 +(1−p(e1i
)) k2

ai
e1i

e2i

(k2
ai

−e2
1i

)2 . Then, combining
with (2.31), we rewrite (2.30) as

V̇1 = −
n∑
i=1

p(e1i
)k1i

k2
bi
e2

1i
+ (1− p(e1i

))k1i
k2
ai
e2

1i
+ L

= −e⊤
1 k1[p(e)k⊤

b kb + (1− p(e))k⊤
a ka]e1 + L = −e⊤

1 K1e1 + L,
(2.32)

where K1 = k1[p(e)k⊤
b kb + (1− p(e))k⊤

a ka] ∈ Rn×n is a positive definite matrix.
Step 2. We define

V2 = 1
2e

⊤
2 M(x1)e2, (2.33)

and choose
Vblf = V1 + V2. (2.34)

The time derivative of Vblf is

V̇blf = V̇1 + V̇2 = V̇1 + e⊤
2 M(x1)ė2 + 1

2e
⊤
2 Ṁ(x1)e2. (2.35)

Combining with (2.3), the time derivative of e2 follows

ė2 = ẋ2 − α̇ = M−1(x1)(τ − C(x1,x2)x2 −G(x1)− Fx2)− α̇. (2.36)

Invoking (2.32), (2.35), and (2.36) yields

V̇blf = −e⊤
1 K1e1 + L+ e⊤

2 [τ − C(x1,x2)x2 −G(x1)− Fx2 −M(x1)α̇ + 1
2Ṁ(x1)e2].

(2.37)
where the stabilizing function α is defined in (2.31).

If an accurate model is available, a stabilizing control law could be directly designed as

τ = M(x1)α̇ + C(x1,x2)x2 +G(x1) + Fx2 − k2e2 − (e⊤
2 )†L− 1

2Ṁ(x1)e2, (2.38)

where k2 ∈ Rn×n is a matrix of positive constants to be designed; (e⊤
2 )†L is a stabilizing

term, wherein † stands for the Moore-Penrose inverse.
Accurate model information is required in (2.38) to design a stabilizing control law. How-

ever, but it is unavailable in our problem. To provide an approximation of the unknown
model information existing in the right side of (2.38), comparing the difference between
(2.2) and (2.38), a double regressor matrices technique for the TF-CL is introduced here. In
particular, like the regressor matrix Y (q, q̇, q̈) that is proposed for approximation of the sys-
tem (2.2), a new regressor matrix X(x1,x2,α, α̇) is formulated to approximate the unknown
model in (2.38). Based on the newly designed X(x1,x2,α, α̇), the following approximation
equation establishes:

X(x1,x2,α, α̇)θ∗ = M(x1)α̇ + C(x1,x2)x2 +G(x1) + Fx2 −
1
2Ṁ(x1)e2, (2.39)
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where X(x1,x2,α, α̇) ∈ Rn×m is a regressor matrix constructed based on the information of
x1, x2, α and α̇. We defer a detailed discussion of the relationship between regressor matrices
X(x1,x2,α, α̇) and Y (q, q̇, q̈) in Remark 2.4, and focus now on the design of the parameter
estimation update law for the BLF based controller with help of the new regressor matrix
X(x1,x2,α, α̇).

Based on (2.39), the model based control law (2.38) is reformulated as

τ = X(x1,x2,α, α̇)θ∗ − k2e2 − (e⊤
2 )†L. (2.40)

Since θ∗ is unknown, and only θ̂ is available, based on the double regressor matrices
technique, a TF-CL aided parameter estimation update law for the BLF based controller
(2.40) is designed as

˙̂
θ = −ΓX⊤e2 − ΓktY ⊤

f ef −
P∑
j=1

ΓkhY ⊤
fj
efj

. (2.41)

Comparing the difference between (2.22) and (2.41), the first term of (2.41) is designed as
a stabilizing term, which serves to provide the stability proof in Theorem 2. By adjusting the
values of Γ, kt, and kh, the importance of each part to the parameter estimation update law
is traded off. Finally, based on the estimated parameter vector θ̂ from the TF-CL method,
the stabilizing control law (2.40) is rewritten as

τ = X(x1,x2,α, α̇)θ̂ − k2e2 − (e⊤
2 )†L. (2.42)

Remark 2.4. Observing (2.2) and (2.39), we find that these two equations share the same
coefficient vector θ∗ but with different regressor matrices. The double regressor matrices
technique illustrated here makes a combination of the TF-CL method and the BLF based
control strategy feasible. Y (q, q̇, q̈) is a regressor matrix fully depends on the model struc-
ture. X(x1,x2,α, α̇) is a regressor matrix constructed based on both model properties and the
stabilizing function α.

In the reaming part of this section, the main conclusions of this chapter and the corre-
sponding proofs are given based on the parameter estimation update law (2.41) and the
stabilizing control strategy (2.42).

Theorem 2.2. Consider an n-link robot manipulator in (2.1), the parameter estimation
update law (2.41) and the control policy (2.42). Given Assumptions 2.1-2.2, for initial val-
ues of the system output and the tracking error lying in the predefined safety set (2.7) and
performance set (2.8), the following properties hold:

(i) The tracking error e1, the error e2, and the parameter estimation error θ̃ are stable
and converge to zero asymptotically.

(ii) The tracking error e1 is bounded by Ωe1 where

Ωe1 =
{
e1 ∈ Rn : −U e1 ≤ e1 ≤ U e1

}
∈ P , (2.43)

where U e1 = [U e1i
, ...,U e1n

]⊤ ∈ Rn, U e1i
= kai

√
2V (0)

1+2V (0) ; U e1 = [U e1i
, ...,U e1n

]⊤ ∈ Rn,

U e1i
= kbi

√
2V (0)

1+2V (0) ; V (0) is the value of the BLF at t = 0.
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The error e2 remains in the compact set Ωe2

Ωe2 =

e2 ∈ Rn : ∥e2∥ ≤

√√√√ 2V (0)
λmin(M)

 . (2.44)

(iii) For all t > 0, there holds y(t) ∈ Ωy, where

Ωy =
{

y ∈ Rn : −U e1 − y
d
≺ y ≺ U e1 + yd

}
∈ S̄. (2.45)

Proof. Proof of (i): For the stability proof, let Z = [e1, e2, θ̃]⊤ ∈ R2n+m and consider the
following Lyapunov function

V (Z) = Vblf + Vcl. (2.46)
Combining with (2.25) and (2.37), the time derivative of (2.46) yields

V̇ (Z) = V̇blf + V̇cl

= −e⊤
1 K1e1 + L+ e⊤

2 [τ − C(x1,x2)x2 −G(x1)

− Fx2 −M(x1)α̇ + 1
2Ṁ(x1)e2] + θ̃⊤Γ−1 ˙̃θ

(2.47)

Substituting (2.39), (2.41) and (2.42) into (2.47) reads

V̇ (Z) = −e⊤
1 K1e1 + L+ e⊤

2 [Xθ̂ − k2e2 − (e⊤
2 )†L−Xθ∗] + θ̃⊤Γ−1 ˙̂

θ

= −e⊤
1 K1e1 − e⊤

2 k2e2 + e⊤
2 Xθ̃ + θ̃⊤Γ−1[−ΓX⊤e2 − ΓktY ⊤

f ef −
P∑
j=1

ΓkhY ⊤
fj
efj

]

= −e⊤
1 K1e1 − e⊤

2 k2e2 − ktθ̃⊤Y ⊤
f Yf θ̃ − θ̃⊤

P∑
j=1

khY
⊤
fj

(Yfj
θ̂j − τfj

)

= −e⊤
1 K1e1 − e⊤

2 k2e2 − ktθ̃⊤Y ⊤
f Yf θ̃ − θ̃⊤

P∑
j=1

khY
⊤
fj

(Yfj
θ̂j − Yfj

θ∗)

≤ −e⊤
1 K1e1 − e⊤

2 k2e2 − θ̃⊤
P∑
j=1

khY
⊤
fj
Yfj

θ̃.

(2.48)

Let N = diag(K1, k2,Q) ∈ R(2n+m)×(2n+m), wherein Q = ∑P
j=1 khY

⊤
fj
Yfj
∈ Rm×m, (2.48)

could be rewritten as

V̇ (Z) ≤ −Z⊤NZ ≤− λmin(N) ∥Z∥2 , (2.49)

where λmin(N) = min(λmin(K1),λmin(k2),λmin(Q)). Finally, it is concluded that the tracking
error e1, the error e2, and the parameter estimation error θ̃ converge to zero asymptotically.

Proof of (ii): Since V (Z) is positive definite and V̇ (Z) < 0 according to (2.49), V (Z) ≤
V (Z(0)) establishes. From V (Z) = V1(e1) + V2(e2) + Vcl(θ̃) and the fact that V2(e2) and
Vcl(θ̃) are positive functions, it is concluded that V1(e1) < V (Z(0)), i.e., V1(e1) is bounded.
According to the characteristics of the BLF (2.27), when e1 → −ka or e1 → kb, we get
V1(e1) → ∞. Thus, the boundness of V1(e1) implies that e1 ̸= −ka or e1 ̸= kb. Given that
−ka ≺ e1(0) ≺ kb, it is concluded that −ka ≺ e1(t) ≺ kb,∀t > 0. This means that the
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tracking error always lies in the required performance set (2.8). Besides, from the analysis
mentioned above, we know that V1(e1) < V (0). To get the bound of e1, firstly we take the
i-th element of e1 as an example. For e1i

, the following inequalities establish

V (0) >


e2

1i

2(k2
bi

−e2
1i

) 0 < e1i
< kbi

e2
1i

2(k2
ai

−e2
1i

) −kai
< e1i

< 0
. (2.50)

We represent the above (2.50) as the following equivalent form

e2
1i
<

k
2
bi

2V (0)
1+2V (0) 0 < e1i

< kbi

k2
ai

2V (0)
1+2V (0) −kai

< e1i
< 0

. (2.51)

From above it is concluded that for e1i
> 0, e1i

< kbi

√
2V (0)

1+2V (0) holds, and e1i
> −kai

√
2V (0)

1+2V (0)

establishes when e1i
< 0. Furthermore, since

√
2V (0)

1+2V (0) < 1, −kai
< −kai

√
2V (0)

1+2V (0) < e1i
<

kbi

√
2V (0)

1+2V (0) < kbi
establishes. Consider all elements of e1 and the performance set P in (2.8),

(2.43) establishes.
Consider the case of e2, since V2(e2) = 1

2e
⊤
2 Me2 < V (0), ∥e2∥ ≤

√
2V (0)

λmin(M) establishes, i.e.,
e2 remains in the set Ωe2 .

Proof of (iii): The output follows y = x1 = e1 + yd. According to (2.43), −U e1 ≤ e1 ≤ U e1

establishes. We know that −y
d
≤ yd ≤ yd from Assumption 2.1. Thus, it is easy to get that

−U e1 − yd ≤ y ≤ U e1 + yd. Since U e1 ≺ ka and U e1 ≺ kb, −ka − yd ≺ −U e1 − yd ≺ 0 and
0 ≺ U e1 + yd ≺ kb + yd establishes, i.e., Ωy ∈ P̄ . Since −ka and kb are chosen to satisfy
P̄ ⊆ S̄, Ωy ∈ S̄ also establishes, i.e., system outputs will not transgress the predefined safety
set (2.7).

2.5 Numerical Simulation
This section implements numerical simulations based on a 2-DoF robot manipulator [20],
[66] to show the effectiveness of the parameter estimation update law (2.41) and the BLF
based control strategy (2.42). The utilized 2-DoF robot manipulator serves as a benchmark
to test whether the TF-CL method could ensure the estimated parameters converge to the
actual values.

2.5.1 Static Coefficient Vector
The white-box model of the 2-DoF robot manipulator follows

M(q)q̈ + C(q, q̇)q̇ + F q̇ = τ ,

where q = [q1, q2]⊤ ∈ R2, q̇ = [q̇1, q̇2]⊤ ∈ R2, M(q) =
[
p1 + 2p3c2 p2 + p3c2
p2 + p3c2 p2

]
∈ R2×2,

C(q, q̇) =
[
−p3q̇2s2 −p3(q̇1 + q̇2)s2
p3q̇1s2 0

]
∈ R2×2, F =

[
f1 0
0 f2

]
∈ R2×2, c2 = cos q2, and s2 =

21



2 Concurrent Learning-Based Adaptive Control with Guaranteed Safety and Performance

(a) Trajectory of the estimated parameter θ̂. (b) Trajectory of the estimation errors θ̃.

Figure 2.2: The trajectories of θ̂ and θ̃ using the parameter estimation update law (2.41).

sin q2. The regressor matrices Y1(q, q̇) ∈ R2×5, Y2(q, q̇) ∈ R2×5, and the coefficient vector
θ∗ ∈ R5 for the TF-CL method are given as

Y1(q, q̇) =
[
q̇1 q̇2 2q̇1c2 + q̇2c2 0 0
0 q̇1 + q̇2 q̇1c2 0 0

]
,

Y2(q, q̇) =
[
0 0 0 q̇1 0
0 0 q̇1q̇2s2 + q̇2

1s2 0 q̇2

]
,

θ∗ =
[
p1 p2 p3 f1 f2

]⊤
.

According to [66], the desired values of θ∗ are set as p1 = 3.473, p2 = 0.196, p3 = 0.242,
f1 = 5.3, and f2 = 1.1. The regressor matrix X(q, q̇,α, α̇) ∈ R2×5 used in (2.42) follows

X(q, q̇,α, α̇) =
[
α̇1 0 X1 q̇1 0
0 α̇1 + α2 X2 0 q̇2

]
,

where α = [α1,α2]⊤ ∈ R2, X1 = 2α̇1c2 + α̇2c2 − 1/2q̇2
2s2 − q̇1q̇2s2 + (1/2α2 − α1)q̇2s2,

X2 = α̇1c2 + q̇2
1s2 + 1/2q̇1q̇2s2 − 1/2α̇1. The hyperparameters for the TF-CL part are set as

Γ = diag(I5×1), kt = 200, kh = 0.001, P = 7, and ε = 0.1. The time constant of the filter is
set as k = 0.001. Initial values of the estimated parameters are set as θ̂(0) = [0, 9, 6, 0, 0]⊤.

As for the BLF based control strategy (2.42), the parameters are set as k1 = diag(40, 30),
k2 = diag(30, 40). The desired trajectory is chosen as yd = [sin 0.5t, 2 cos 0.5t]⊤. The required
safety and performance issues for two joints are set as follows. For joint 1, the safety set is
chosen as S̄1 = {−1.17 < q1 < 1.2}, the performance set follows P1 = {−0.17 < e11 < 0.2};
For joint 2, the safety set is S̄2 = {−2.17 < q2 < 2.2}, the performance set is chosen as
P2 = {−0.17 < e12 < 0.2}. To ensure that the 2-DoF robot manipulator tracks the desired
trajectory while satisfying the safety and performance criteria illustrated above, we set kc =
[−1.17,−2.17]⊤, kd = [1.2, 2.2]⊤, ka = [0.17, 0.17]⊤, and kb = [0.2, 0.2]⊤. In order to ensure
initial values lie in the corresponding safety and performance sets, we choose x1(0) = [0, 2]⊤,
x2(0) = [0.5, 0]⊤.

The parameter estimation update law (2.41) is adopted for online estimation of the un-
known coefficient vector θ∗. In Figure 2.2a, the estimated parameters converge to their actual
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2.5 Numerical Simulation

(a) Trajectories of q1 and q1r. (b) Trajectories of q2 and q2r.

Figure 2.3: The trajectories of joint angles q1, q2, reference trajectories q1r, q2r, and associated
safety bounds kdi

, kci
, i = 1, 2 under the proposed control strategy (2.42).

(a) Trajectories of e11 , e12 , and kb,−ka. (b) Trajectories of the control τ .

Figure 2.4: The trajectories of the joint 1 tracking error e11 , joint 2 tracking error e12 , the
associated performance bounds kb,−ka, and the control input τ .

values without incorporating external noises to satisfy the PE condition. The correspond-
ing parameter estimation errors are shown in Figure 2.2b where they finally converge to a
small neighbourhood around zero. This means that an estimated model with high quality
is gotten. However, even though a good tracking performance achieves in [67], the norm of
the estimated weights does not converge.

The proposed control law (2.42) is applied to the 2-DoF robot manipulator. It is displayed
in Figure 2.3 that the trajectories of q1 and q2 follow their desired trajectories q1r and
q2r precisely. The safety set S̄1 (the upper bound kd1 and the lower bound kc1) for q1,
and the safety set S̄2 (the upper bound kd2 and the lower bound kc2) for q2 are never
be violated during the operation process. The tracking errors of two joints displayed in
Figure 2.4a finally converge to zero and always lie in the required performance set P1 and
P2 respectively. Note that P1 and P2 share the same upper bound kb and lower bound
−ka. The associated control trajectory is shown in Figure 2.4b where τ oscillates when
the estimated parameter vector is in the converging process. From the above analysis, it is
concluded that the proposed parameter estimation update law (2.41) guarantees that the
estimated parameters converge to their desired values. The control strategy given in (2.42)
drives the 2-DoF robot manipulator to track the reference trajectory precisely and satisfy
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2 Concurrent Learning-Based Adaptive Control with Guaranteed Safety and Performance

(a) Trajectory of the estimated parameter θ̂. (b) Trajectory of the estimation error θ̃.

Figure 2.5: The trajectories of θ̂ and θ̃ where an disturbance is incorporated at t = 50 s.

the requirements of safety and performance together.

2.5.2 Time-Varying Coefficient Vector
This subsection randomly reset the initial coefficient vector θ∗ = [3.473, 0.196, 0.242, 5.3, 1.1]⊤
as a new desired parameter vector θ∗

d = [4, 0.2, 0.3, 5.6, 0.8]⊤ at time t = 50 s to simulate
time-varying uncertainties in terms of unknown payloads or friction parameters. In practice,
only parts of the coefficient vector will change due to environmental effects on the mass,
length or friction parameters. Here a hard disturbance is deliberately chosen to exemplify
the effectiveness of the parameter estimation update law (2.41) to counter time-varying
uncertainties.

As displayed in Figure 2.5a, the estimated parameters converge to the initial desired values
of θ∗ in the first 50 seconds. When an additional disturbance is added at t = 50 s, the TF-
CL method collects new data and enables the estimated parameters to finally converge to
the new desired values of θ∗

d. As shown in Figure 2.5b, the trajectories of the parameter
estimation errors abruptly change at t = 50 s when an additional disturbance is added.
Then, the parameter estimation errors still converge to a small neighbourhood around zero.
Figure 2.6a and Figure 2.6b demonstrate that under the proposed control strategy (2.42),
two joints track their reference trajectories precisely and will not violate their corresponding
predefined safety sets S̄1 and S̄2 even when an additional disturbance is added. Besides, it is
observed in Figure 2.7a that the tracking errors e11 and e12 oscillate when the disturbance is
added at time t = 50 s. Then, they finally converge to zero. The tracking errors always lie
in the given performance set defined by the lower bound −ka and the upper bound kb. The
control trajectories given in Figure 2.7b provide additional information about the influence
of the time-varying uncertainties on the control strategy. When the disturbance is added
at t = 50 s, the magnitude of the control τ1 increases, and the magnitude of the control τ2
decreases to drive the robot to track the desired trajectory.

2.6 Experimental Validation
This section experimentally validates the effectiveness of the parameter estimation update
law (2.41) and the proposed control strategy (2.42) using the 3-DoF robot manipulator
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2.6 Experimental Validation

(a) Trajectories of q1 and reference q1r, and the as-
sociated safety bounds kd1 ,kc1 .

(b) Trajectories of q2 and reference q2r, the associ-
ated safety bounds kd2 ,kc2 .

Figure 2.6: The trajectories of joint angles q1, q2 and reference trajectories q1r, q2r where an
additional disturbance is incorporated at t = 50 s.

(a) Trajectories of e11 , e12 , and kb,−ka. (b) Trajectories of τ .

Figure 2.7: The trajectories of the joint 1 tracking error e11 , joint 2 tracking error e12 , the
associated performance bounds kb,−ka, and the control input τ where a distur-
bance is incorporated at t = 50 s.

illustrated in Appendix A.1.
According to the detailed model structure provided in Appendix A.1, the unknown coef-

ficient vector θ∗ ∈ R11 reads

θ∗ = [p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, f ]⊤.

The corresponding regressor matrices Y1(q, q̇), Y2(q, q̇) ∈ R3×11 are given as

Y1(q, q̇) = [Y11,Y12,Y13]⊤,

where Y11, Y12, Y13 ∈ R1×11 are in the following forms,
Y11 = [q̇1, c23q̇1, c2q̇1, c3q̇1 + c3q̇2, q̇2, c23q̇2 + c23q̇3, c2q̇2, q̇3, c3q̇3, 0, 0],
Y12 = [0, 0, 0, c3q̇1, q̇1 + q̇2, c23q̇1, c2q̇1, q̇3, c3q̇3, c3q̇2, 0],
Y13 = [0, 0, 0, 0, 0, c23q̇1, 0, q̇1 + q̇2 + q̇3, c3q̇1 + c3q̇2, 0, 0].

Y2(q, q̇) = [Y21,Y22,Y23]⊤,
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2 Concurrent Learning-Based Adaptive Control with Guaranteed Safety and Performance

(a) Reference trajectories for three joints. (b) Trajectories of the tracking error e11 .

(c) Trajectories of the tracking error e12 . (d) Trajectories of the tracking error e13 .

Figure 2.8: The trajectories of the tracking error e for three joints under different payloads.

where Y21, Y22, Y23 ∈ R1×11 follows,
Y21 = [0, s23(q̇2 + q̇3)q̇1 − s23q̇1q̇2 − s23q̇1q̇3 − s23q̇2q̇3, 0, 0, 0, s23(q̇2 + q̇3)q̇2 + s23(q̇2 + q̇3)q̇3 −

s23q̇
2
2 − s23q̇

2
3, 0, 0, 0, 0, q̇1],

Y22 = [0, 0, 0,−s3q̇2q̇3, 0, s23(q̇2 + q̇3)q̇1 + s23q̇
2
1, s2q̇1q̇2 + s2q̇

2
1, 0, 0, s3q̇2q̇3, q̇2],

Y23 = [0, 0, 0, s3q̇1q̇2, 0, s23(q̇2 + q̇3)q̇1 + s23q̇
2
1, 0, 0, s3q̇1q̇3 + s3q̇2q̇3 + s3q̇

2
2 + s3q̇

2
1, 0, q̇3].

The explicit form of the regressor matrix X(q, q̇,α, α̇) ∈ R3×11 used in (2.42) follows

X(q, q̇,α, α̇) = [X1,X2,X3]⊤,

where X1, X2, X3 ∈ R1×11 are defined as
X1 = [α̇1, c23α̇1 − s23q̇1q̇2 − s23q̇1q̇3 − s23q̇2q̇3 + 0.5s23(q̇2 + q̇3)(q̇1 − α1), c2α̇1 − s2q̇1q̇2 +

0.5s2q̇2(q̇1−α1), c3α̇2 + c3α̇1−s3q̇1q̇3−s3q̇2q̇3 +0.5s3q̇3(q̇1−α1)+0.5s3q̇3(q̇2−α2), α̇2, c23α̇2 +
c23α̇3−s23q̇

2
2−s23q̇

2
3 +0.5s23(q̇2+q̇3)(q̇2−α2)+0.5s23(q̇2+q̇3)(q̇3−α3), c2α̇2−s2q̇

2
2 +0.5s2q̇2(q̇2−

α2), α̇3, c3α̇3 − s3q̇
2
3 + 0.5s3q̇3(q̇3 − α3), 0, q̇1],

X2 = [0, 0, 0, c3α̇1 − s3q̇1q̇3 − s3q̇2q̇3 + 0.5s3q̇3(q̇1 − α1), α̇1 + α̇2, c23α̇1 + s23q̇
2
1 + 0.5s23(q̇2 +

q̇3)(q̇1−α1), c2α̇1 +s2q̇
2
1 +0.5s2q̇2(q̇1−α1), α̇3, c3α̇3−s3q̇

2
3 +0.5s3q̇3(q̇3−α3), c3α̇2 +0.5s3q̇3(q̇2−

α2), q̇2],
X3 = [0, 0, 0, s3q̇1q̇2, 0, s23q̇

2
1 + c23α̇1 + 0.5s23(q̇2 + q̇3)(q̇1−α1), 0, α̇1 + α̇2 + α̇3, c3α̇1 + c3α̇2 +

s3q̇
2
1 + s3q̇

2
2 + 0.5s3q̇3(q̇1 − α1) + 0.5s3q̇3(q̇2 − α2), 0, q̇3].

During the experiment, the 3-DoF robot manipulator is driven to track the desired sinu-
soidal trajectory qr ∈ R3 designed as

qr = (1 + sin ( t2 −
π

2 ))kamp, 5 ≤ t ≤ 143,
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2.7 Summary

where kamp = [0.2, 0.5, 0.8]⊤ is the coefficient vector to distribute different amplitudes to
each joint. The desired trajectories of three joints are displayed in Figure 2.8a. Con-
sidering the required safety and performance issues, for joint 1, the safety set is set as
S̄1 = {−0.1 < q1 < 0.52}, the performance set is chosen as P1 = {−0.1 < e11 < 0.12};
For joint 2, the safety set is designed as S̄2 = {−0.1 < q2 < 1.15}, the performance set
follows P2 = {−0.1 < e12 < 0.15}; The safety set and performance set for joint 3 follows
S̄3 = {−0.15 < q3 < 1.8} and P3 = {−0.15 < e13 < 0.2}, respectively. To ensure that the
3-DoF robot manipulator track the desired trajectory while satisfying the above safety and
performance criteria, parameters are set as ka = [0.1, 0.1, 0.15]⊤, kb = [0.12, 0.15, 0.2]⊤,
kc = [−0.1,−0.1,−0.15]⊤, and kd = [0.52, 1.15, 1.8]⊤. The parameters for the TF-CL
method are set as: Γ = diag(0.06I11×1), kh = 0.4, kt = 0.8, P = 15, and ε = 0.1. The
time constant of the filter is set as k = 0.001. Initial values of the estimated parameters
are set as θ̂(0) = 011×1. For the BLF based control law (2.42), the parameters are set
as k1 = diag(20, 20, 20), k2 = diag(25, 25, 25). Initial values are set as x1(0) = [0, 0, 0]⊤,
x2(0) = [0, 0, 0]⊤.

To verify the robustness of our proposed method, the experiment is conducted with differ-
ent payloads under the same parameter settings mentioned above. The payloads are installed
to the end-effector of the manipulator. The tracking errors of three joints with different pay-
loads are displayed in Figure 2.8b, Figure 2.8c and Figure 2.8d, respectively. It is observed
that the robot manipulator could track the desired trajectory precisely even under different
payloads, and the tracking errors always lie in the required performance set Pi, i = 1, 2, 3.

2.7 Summary
This chapter presents a stable adaptive control strategy with guaranteed safety and perfor-
mance based on BLF, TF-CL, and backstepping. The TF-CL based parameter estimation
update law guarantees that the estimated parameters converge to their desired values fast
without incorporating external noises to satisfy the PE condition. The joint acceleration
information is avoided using the torque filtering technique. Based on the estimated model,
our proposed control strategy drives the uncertain n-link robot manipulator to track the
desired trajectory efficiently, while satisfying the requirements of safety and performance
simultaneously. It is proven that the system output always remains in the predefined safety
set, the tracking error is bounded by the performance set, and the parameter estimation er-
ror finally converges to zero asymptotically. Both simulation and experiment results validate
the effectiveness of our proposed approach.

The adopted BLF and TF-CL work together to safely improve the performance. How-
ever, the initial system state should lie in the safe set. Otherwise, the singularity problem
would happen. To improve the generality and practicability of our method, the future work
aims to extend the developed method to provide guaranteed performance and safety on full
states even under the consideration of input saturation. Besides, the considered safety issue
regarding restricted operation range in this paper allows us to integrate objectives of both
safety and performance. The future work aims to extend the proposed method to tackle
general safety concepts, e.g., collision avoidance with dangerous regions.
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Input-to-State Stability Meets Barrier Lya-
punov Function for Provable Robust Safety 3

The preceding chapter focuses on the design of joint-space tracking controllers. This chapter
devotes to task-space tracking control of robot manipulators. The common BLF used in
Chapter 2 is extended to formulate the input-to-state stable with provable safety BLF (ISS-
PS-BLF), which is utilized with backstepping to design a tracking controller with provable
stability and safety under uncertainty. Combining with available safe planning algorithms
[68]–[71], our developed tracking controller in this chapter could drive controlled plants to
accomplish provable safe execution under uncertainties. The organization of this chapter is
as follows. Section 3.1 first presents the preliminaries and the problem formulation. Then,
incremental system is developed in Section 3.2 using time-delayed signals. The formulated
incremental system allows us to achieve kinematics and dynamics free control of robot ma-
nipulators. This departs from Chapter 2 that a known model structure is required for the
model learning. The incremental system mentioned above serves as basis for the recursive
controller design process illustrated in Section 3.3. Our developed approach is numerically
validated in Section 3.4. Finally, Section 3.6 summarizes this chapter

3.1 Preliminaries and Problem Formulation

3.1.1 Input-to-State Stable with Provable Safety BLF
This subsection clarifies the required preliminaries to develop our approach by focusing on
the state evolution model

ẋ = f(x) + g(x)u(x) + g(x)d, (3.1)
where x ∈ Rn, u(x) : Rn → Rm are the system state and control input, respectively.
f(x) : Rn → Rn, g(x) : Rn → Rn×m are bounded and locally Lipschitz. d ∈ Lm∞ is the
assumed bounded disturbance with the (essential) supremum norm |d|∞ := sup |d(t)| , t ≥ 0.

As stated in [72], iff the system (3.1) admits an input-to-state stable (ISS) Lyapunov
function as Definition 3.1, the system (3.1) is ISS as Definition 3.2. Therefore, designers
could realize the ISS control by using one ISS-Lyapunov function to perform the controller
design.
Definition 3.1 (ISS-Lyapunov Function [72]). A smooth function V (x) : Rn → R+

0 is an
ISS-Lyapunov function for system (3.1) if there exists α1,α2,α3,α4 ∈ K∞ such that ∀ x, d

α1(|x|) ≤ V (x) ≤ α2(|x|) (3.2a)
V̇ (x, d) ≤ −α3(|x|) + α4(|d|). (3.2b)

Definition 3.2 (ISS [73]). The system (3.1) is ISS if there exists λ ∈ KL and γ ∈ K∞

|x(t,x0, d)| ≤ λ(|x0| , t) + γ(|d|∞),∀x0, d,∀ t ≥ 0.

29



3 Input-to-State Stability Meets Barrier Lyapunov Function for Provable Robust Safety

The Definitions 3.1-3.2 inspire us to extend the original BLF [74], which is defined on an
ideal accurate dynamics ẋ = f(x) + g(x)u(x), to the uncertainty scenario. The resulting
ISS-PS-BLF formulated in Definition 3.3 is a valid ISS-Lyapunov function in Definition 3.1
given the establishment of the inequalities (3.3a), (3.3b), (3.3c). Furthermore, (3.3d) implies
that a bounded ISS-PS-BLF would confine the state x1 into the predetermined safe region
S. Thereby, our defined ISS-PS-BLF (3.3) provides designers with an efficient tool to realize
the desired input-to-sate stabilization with provable safety.

Definition 3.3 (ISS-PS-BLF). A smooth function V (x) := V1(x1) + V2(x2) ∈ R+
0 , where

x := [x⊤
1 ,x⊤

2 ]⊤ ∈ Rn1+n2, x1 ∈ Rn1, x2 ∈ Rn2, is an ISS-PS-BLF for the system (3.1) on
the open region S := {x1 ∈ Rn1 : −ϵ ≺ x1 ≺ ϵ}, where ϵi, ϵi ∈ R+, ∀i ∈ {1, · · · ,n1}, if there
exist functions βi ∈ K∞, i = 1, · · · , 6, such that ∀ x, d

β1(|x1|) ≤ V1(x1) ≤ β2(|x1|) (3.3a)
β3(|x2|) ≤ V2(x2) ≤ β4(|x2|) (3.3b)
V̇ (x, d) ≤ −β5(|x|) + β6(|d|) (3.3c)
V1(x1)→∞, x1 → ∂S. (3.3d)

Combining with (3.3) and the result in [74], this work utilizes the following candidate
ISS-PS-BLF

V (x) := 1
2

n1∑
i=1

[
ϵiϵix1i

(ϵi − x1i
)(ϵi + x1i

)

]2

︸ ︷︷ ︸
V1(x1)

+ 1
2x

⊤
2 x2︸ ︷︷ ︸

V2(x2)

, (3.4)

to conduct the controller design.

3.1.2 Problem Formulation
This work attempts to realize the provable safe execution of uncertain autonomous systems
in obstacle-filled environments. Our solution to this nontrivial problem is our developed SP-
PGC scheme: combination with the performance-guaranteed control that explicitly quantifies
the control-level performance under uncertainty, and the safe planning where the collision-
free desired trajectory is planned within the consideration of the attainable performance of
the utilized controllers, see Fig. 3.1.

This work adopts the safe planning algorithms that satisfy the requirement presented in
Assumption 3.1.

Assumption 3.1. The planning level outputs a collision-free desired trajectory pd ∈ Rm

lying in a safe set C :=
{
p(t) ∈ Rm : p(t) ≺ p(t) ≺ p(t)

}
, where p(t), p(t) ∈ Rm.

Assumption 3.1 easily holds using off-the-self planning algorithms [75] conducted based on
buffered obstacles 1, whose buffer size is ϵ ∈ Rm, ϵi ∈ R+, ∀i ∈ {1, · · · ,m} (see the left below
figure in Fig. 3.1). The safe execution region is C :=

{
p ∈ Rm : p := pd − ϵ ≺ p ≺ p := pd + ϵ

}
.

Regarding this case, the tracking error e1 := p − pd ∈ Rm should satisfy e1 ∈ E :=
1This case matches the robot manipulator numerical and experimental validations displayed in Section 3.4

and Section 3.5.
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3.2 Data Informed Incremental System

Planned Trajectory
Real Trajectory
Performance-Guaranteed Region

Planned Trajectory

Buffered Obstacle

Planned Trajectory
Safe Corridor

Figure 3.1: Schematic of the SP-PGC scheme. The safe reference trajectory is planned within
the consideration of the control-level performance bound ϵ, either establishing
safe corridors with radius ϵ (the left above figure), or floating obstacles via size
ϵ (the left below figure). The control level guarantees tracking performance even
under uncertainties and disturbances ignored in the planning level (the right
figure).

{e1 ∈ Rm : −ϵ := −ϵ ≺ e1 ≺ ϵ := ϵ} to achieve safety, where ϵ, ϵ ∈ Rm are lower and up-
per performance bounds of e1. Alternatively, Assumption 3.1 is easily satisfied by reachable
set based algorithms [69], or corridor (funnel) based algorithms [70], [71] (see the left above
figure in Fig. 3.1). In this case, e1 ∈ E :=

{
e1 ∈ Rm : −ϵ := p− pd ≺ e1 ≺ p− pd := ϵ

}
should be guaranteed to avoid collision during practical executions 2.

Through the aforementioned analysis, we interpret the provable safe execution under un-
certainty problem as a robust performance-guaranteed tracking control problem. This prob-
lem is nontrivial given that both state and input constraints are considered under model
uncertainties and environmental disturbances. We solve this nontrivial problem via our
formulated incremental system in Section 3.2 and the ISS-PS-BLF facilitated controller in
Section 3.3.

3.2 Data Informed Incremental System
This section utilizes time-delayed data to formulate the incremental system that equivalently
describes the movement of the original autonomous system (3.1). By doing so, no explicit
model knowledge (kinematics and/or dynamics) is required. The formulated incremental

2This case matches the quadrotor numerical simulation in Section 3.4.2.
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system serve as the basis for the controller design process presented in Section 3.3.

3.2.1 Development of Incremental System
In the following, we focus on the system (3.1) satisfying Assumption 3.2 to clarify the
formulation of the associated time-delayed data informed incremental system.

Assumption 3.2. The columns g1, g2, · · · , gm ∈ Rn of the input function g = [g1, g2, · · · , gm]
are linearly independent.

Remark 3.1. Here g(x) is assumed to be full column rank such that its pseudo inverse
g† could be expressed as a simple algebraic formula (the inverse of g⊤(x)g(x) exists). This
property is widely observed in many physical systems, such as the quadrotor presented in
Example 1, and the robot manipulator shown in Example 2 fulfill such a property.

Firstly, introducing a prior-chosen constant matrix ḡ ∈ Rn×m and multiplying its pseudo
inverse ḡ† on (3.1), we obtain

ḡ†ẋ = h+ u, (3.5)

where h := (ḡ†− g†)ẋ+ g†f + d ∈ Rn embodies the unknown knowledge of the system (3.1).
Then, we use time-delayed data to estimate h as

ĥ = h0 = ḡ†ẋ0 − u0, (3.6)

where (•)0 = (•)(t− ts) denotes time-delayed data, and ts ∈ R+ is the sampling time.
Finally, substituting (3.6) into (3.5), we get the incremental system:

ẋ = ẋ0 + ḡ∆u+ ḡξ, (3.7)

where ∆u := u−u0 ∈ Rn, and ξ := h− ĥ ∈ Rn is the estimation error proved to be bounded
and vanishing in Lemma 3.1 under the properly chosen ḡ.

Remark 3.2. The theoretical derivation processes (3.5)–(3.7) mentioned above exploits time-
delayed data to transform model uncertainties and external disturbances of (3.1) into a prov-
ably bounded estimation error ξ of (3.7). This is beneficial to achieve provable safety under
uncertainty given that the influence of the estimation error ξ on safety could be rigorously an-
alyzed via an ISS approach. To achieve the same goal with our work, however, related works
either estimate disturbance bounds explicitly using computation-intensive methods such as
GP [34] or directly assume a known bound of uncertainty [76], which often results in con-
servative behaviours.

Through the processes (3.5)-(3.7), we get an equivalent form of (3.1) without using explicit
model information. In the subsequent Section (3.3), we use the above formulated incremental
system (3.7) and our proposed ISS-PS-BLF (3.4) together to design the robust tracking
controller with guaranteed performance.

Before proceeding to the controller design process, we provide two explicit examples to
clarify how to derive the associated incremental systems from the quadrotor dynamics and
the robot manipulator kinematics and dynamics.
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3.2 Data Informed Incremental System

Example 1 (Quadrotor). The Euler-Lagrange (E-L) equation of a quadrotor follows [77]

mζ̈ +mgcIz = RTB + Td (3.8a)
J(η)η̈ + C(η, η̇)η̇ = τB + τBd, (3.8b)

where ζ := [x, y, z]⊤ ∈ R3, and η := [ϕ, θ,ψ]⊤ ∈ R3 represent the absolute linear position
and Euler angles defined in the inertial frame, respectively; m ∈ R+ denotes the mass of
the quadrotor; gc ∈ R+ is the gravity constant; Iz := [0, 0, 1]⊤ represents a column vector;
TB = [0, 0,T ]⊤ ∈ R3, where T ∈ R is the thrust in the direction of the body z-axis; τB :=
[τϕ, τθ, τψ]⊤ ∈ R3 denotes the torques in the direction of the corresponding body frame angles;
Td =∈ R3 and τd ∈ R3 denote the external disturbance; R, J(η), C(η, η̇) ∈ R3×3 represent
the rotation matrix, Jacobian matrix, and Coriolis term, respectively. We could rewrite the
above translation dynamics (3.8a) or the attitude dynamics (3.8b) as

ẋ1 = x2 (3.9a)
ẋ2 = f + gu+ gd, (3.9b)

via letting x1 := ζ or η ∈ R3, x2 := ζ̇ or η̇ ∈ R3, f := −gcIz or −J−1C(η, η̇)η̇ ∈ R3,
g := R/m or J−1 ∈ R3×3, u = TB or τB ∈ R3, d := R−1Td or τBd ∈ R3, respectively.
Applying the theoretical derivation processes (3.5)–(3.7) mentioned above on (3.9b), we get

ẋ1 = x2 (3.10a)
ẋ2 = ẋ2,0 + ḡ∆u+ ḡξ, (3.10b)

which is an equivalent representation of (3.8) but without explicit knowledge of quadrotor
dynamics.

Example 2 (Robot Manipulator). The Cartesian-space position p ∈ Rm of the robot ma-
nipulator end-effector is expressed as

p = h(q), (3.11)

where q ∈ Rn is the joint-space angle vector, and h(q) : Rn → Rm is the differential forward
kinematics. Note that m ≤ n holds. The end-effector velocity and acceleration ṗ, p̈ ∈ Rm

are related to the joint velocity and acceleration q̇, q̈ ∈ Rn as

ṗ = J(q)q̇ (3.12a)
p̈ = J̇(q)q̇ + J(q)q̈, (3.12b)

where J(q) := ∂h(q)/∂q ∈ Rm×n is the Jacobian matrix. Besides, the robot manipulator
dynamics follows [48]

M(q)q̈ + C(q, q̇)q̇ +G(q) + Fv(q̇) = τ + τd, (3.13)

where M(q) : Rn → Rn×n is the symmetric positive definite inertia matrix; C(q, q̇) : Rn ×
Rn → Rn×n is the matrix of centrifugal and Coriolis terms; G(q) : Rn → Rn represents the
gravitational term; Fv(q̇) : Rn → Rn denotes the viscous friction; τd ∈ Rn represents the
external disturbance.
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3 Input-to-State Stability Meets Barrier Lyapunov Function for Provable Robust Safety

Substituting (3.12) into (3.13) yields

Mp(q)p̈+ Cp(q, q̇)ṗ+G(q) + Fv(q̇) = τ + τd, (3.14)

where Mp(q) := M(q)J†(q) : Rn → Rn×m, Cp(q, q̇) := C(q, q̇)J†(q) −M(q)J†(q)J̇(q)J†(q) :
Rn × Rn → Rn×m. The pseudo inverse follows J†(q) := (J⊤(q)J(q))−1J⊤(q) : Rn → Rn×m.
Then, the integrated kinematics and dynamics form (3.14) could be rewritten as the form
(3.10) by denoting x1 := p ∈ Rm, x2 := ṗ ∈ Rm, f := −M †

p(q)(Cp(q, q̇)ṗ + G(q) + Fv(q̇)) ∈
Rm, g := M †

p(q) ∈ Rm×n, u := τ ∈ Rn, and d := τd ∈ Rn. Through the theoretical
derivation processes (3.5)–(3.7), we would get one associated incremental system of the robot
manipulator (in the same form as (3.10)) without using explicit information of kinematics
and dynamics.

Remark 3.3. Examples 1-2 build on the assumption that singularities are always avoided
during the whole execution process for the quadrotor and the robot manipulator. The sys-
tematic method to avoid singularity is beyond the scope of this paper. Besides, we use the
pseudo-inverse of the manipulator Jacobian in (3.14) to deal with the redundancy problem of
the robot manipulator case.

Remark 3.4. Note that the formulated (3.14) in Example 2 departs from the common method
[78] that attempts to write (3.11), (3.12), and (3.13) together to formulate an integrated
kinematics and dynamics form as M̄p(q)p̈ + C̄p(q, q̇)ṗ + J(q)G(q) + J(q)Fv(q̇) = J(q)τ +
J(q)τd, where M̄p(q) := J(q)M(q)J†(q) : Rn → Rm×m, C̄p(q, q̇) := J(q)C(q, q̇)J†(q) −
J(q)M(q)J†(q)J̇(q)J†(q) : Rn × Rn → Rm×m. Based on this form, the kinematics free
control is impossible following the controller design process illustrated in Section 3.3. In
particular, a controller in the form τp := J(q)τ will be firstly designed. Then, an inversion
calculation using the explicit kinematic knowledge, τ = J†(q)τp in particular, is required to
recover the torque applied at each joint. Our formulated (3.14) directly links the joint-space
control input τ with the task-space position p. This allows us to use time-delayed data to
realize kinematics free control later.

3.3 Model-Free Performance-Guaranteed Control
This section utilizes our proposed ISS-PS-BLF (3.4) to develop a model-free performance-
guaranteed tracking controller through a recursive controller design process. The ISS-PS-
BLF provides explicit quantification of realizable tracking errors. This control-level per-
formance quantification could feedback to the planning level to refine planned trajectories
accounting for actual implementation tracking errors. The recursive controller design process
based on the incremental system formulated in the previous section is illustrated as follows.

Step 1: Focusing on (3.10), the position tracking error follows e1 := x1 − pd ∈ Rm. To
ensure that the tracking error e1 always lies in a predetermined performance bound, e1 ∈
E := {e1(t) ∈ Rm : −ϵ ≺ e1(t) ≺ ϵ} in particular, we use the following Lyapunov function

V1 := 1
2

m∑
i=1

[
ϵiϵie1i

(ϵi − e1i
)(ϵi + e1i

)

]2

, (3.15)
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to facilitate the controller design. The derivative of (3.15) follows

V̇1 =
m∑
i=1

e1i

ϵ3
i ϵ

3
i + ϵ2

i ϵ
2
i e

2
1i

(ϵi − e1i
)3(ϵi + e1i

)3︸ ︷︷ ︸
pi

ė1i
= e⊤

1 P ė1, (3.16)

where P := diag(p1, p2, · · · , pm) ∈ Rm×m.
Let e2 := x2− z ∈ Rm, where z ∈ Rm is a stabilizing term designed later. Combining with

(3.10a), the explicit form of ė1 used in (3.16) follows

ė1 = ẋ1 − ṗd = x2 − ṗd = e2 + z − ṗd. (3.17)

Then, we design z := ṗd−P−1L1e1, wherein L1 := diag(l11, l12, · · · , l1m) ∈ Rm×m, l1j ∈ R+,
j = 1, · · · ,m. Substituting (3.17) into (3.16) yields

V̇1 = −e⊤
1 L1e1 + e⊤

1 Pe2. (3.18)

Step 2: We choose the ISS-PS-BLF as V := V1 + V2, wherein the explicit of V2 follows

V2 := 1
2e

⊤
2 e2. (3.19)

Then, combining with (3.10b) and (3.16), we get

V̇ = V̇1 + V̇2

= −e⊤
1 L1e1 + e⊤

1 Pe2 + e⊤
2 (ẋ2,0 + ḡ∆u+ ḡξ − ż).

(3.20)

Finally, we develop the incremental control input as

∆u = ḡ†(ż − ẋ2,0 − L2e2 − Pe1), (3.21)

to input-to-state stabilize the tracking errors e1 and e2 to a small neighbourhood around zero
as proved in Theorem 3.1, wherein L2 := diag(l21, l22, · · · , l2m) ∈ Rm×m is a positive definite
matrix, l2j ∈ R+, j = 1, · · · ,m. Accordingly, the control input applied at the controlled
plant is recovered as

u = u0 + ∆u. (3.22)

In the following, we theoretically analyze the properties of our designed performance-
guaranteed control strategy (3.22). We firstly present the rigorous proof of the bounded
estimation error in Lemma 3.1. Then, the proved bounded estimation error allows us to
analyse the desirable provable safety under uncertainty in Theorem 3.1.

Lemma 3.1. Given a sufficiently high sampling rate, there exists a positive constant ξ̄ ∈ R+

such that |ξ| ≤ ξ̄.

Proof. Combining with (3.5), (3.6) and (3.10), we get

ξ = h− h0 = (ḡ† − g†)(ẋ2 − ẋ2,0) + (g†
0 − g†)ẋ2,0

+ g†(f − f0) + (g† − g†
0)f0 + d− d0.

(3.23)
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Besides, focusing on (3.10b), the following equation holds

ẋ2 − ẋ2,0 = f + gu+ gd− f0 − g0u0 − g0d0

= g∆u+ (g − g0)u0 + f − f0 + g(d− d0) + (g − g0)d0.
(3.24)

Then, substituting (3.24) into (3.23) reads

ξ = (ḡ†g − In×n)∆u+ δ1, (3.25)

where δ1 := ḡ†(g − g0)u0 + ḡ†(f − f0) + ḡ†g(d− d0) + ḡ†(g − g0)d0 ∈ Rn. For representation
simplicity, let v := ż − L2e2 − Pe1. Accordingly, v0 := ż0 − L2e2,0 − P0e1,0. Then, invoking
(3.5), (3.6) and (3.21), we get

∆u = ḡ†(v − ẋ2,0) = ḡ†v − h0 − u0

= ḡ†v − (ḡ† − g†
0)ẋ2,0 + g†

0f0 − u0

= ḡ†v − (ḡ† − g†
0)(f0 + g0u0) + g†

0f0 − u0

= ḡ†v − ḡ†(f0 + g0u0)
= ḡ†(v − v0)− ḡ†(ẋ2,0 − v0).

(3.26)

Combining (3.10b) with (3.21) yields

ẋ2 = v + ḡξ. (3.27)

Besides, according to (3.27), we get

ξ = ḡ†(ẋ2 − v), ξ0 = ḡ†(ẋ2,0 − v0). (3.28)

Substituting (3.28) into (3.26) implies

∆u = ḡ†(v − v0)− ξ0. (3.29)

Finally, substituting (3.29) into (3.25), we get

ξ = (In×n − ḡ†g)ξ0 + δ1 + δ2, (3.30)

where δ2 := (ḡ†g − In×n)ḡ†(v − v0) ∈ Rn.
For theoretical analytical purpose, we rewrite (3.30) into a discrete-time domain as

ξ(k) = (In×n − ḡ†g(k))ξ(k − 1) + δ1(k) + δ2(k). (3.31)

Given a sufficiently high sampling rate, it is reasonable to assume that there exist positive
constants δ1, δ2 ∈ R+ such that |δ1| ≤ δ1, and |δ2| ≤ δ2 hold. We choose the value of ḡ to
satisfy

∣∣∣In×n − ḡ†g(k)
∣∣∣ ≤ l < 1, l ∈ R+. Then, the following equation holds

|ξ(k)| ≤ l |ξ(k − 1)|+ δ̄1 + lδ̄2

≤ l2 |ξ(k − 2)|+ (l + 1)(δ̄1 + lδ̄2)

≤ · · · ≤ lk |ξ(0)|+ δ̄1 + lδ̄2

1− l := ξ̄

(3.32)

As k →∞, ξ̄ → δ̄1+lδ̄2
1−l .
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Theorem 3.1. Consider the system (3.10) with the controller (3.22). Given Assumption
3.1 for initial conditions lying in the safe set C, the following properties hold:

1) The tracking errors e1 and e2 are input-to-state stabilizing to a small neighbourhood
around zero.

2) The Cartesian position tracking error e1 satisfies e1 ∈ E.
3) The controlled plant realizes provable safe execution p ∈ C under model uncertainties

and environmental disturbances.
Proof. Proof of 1) Substituting (3.21) into (3.20) yields

V̇ = −e⊤
1 L1e1 − e⊤

2 L2e2 + e⊤
2 ḡξ

= −e⊤
1 L1e1 − e⊤

2 (L2 − Im×m)e2 − (e⊤
2 e2 − e⊤

2 ḡξ)
= −e⊤

1 L1e1 − e⊤
2 (L2 − Im×m)e2

−
∣∣∣∣e2 −

1
2 ḡξ

∣∣∣∣2 + 1
4 |ḡξ|

2

≤ −e⊤
1 L1e1 − e⊤

2 (L2 − Im×m)e2 + 1
4 |ḡ|

2 |ξ|2

= −e⊤Le+ |ḡ|
2

4 |ξ|
2 ≤ −ηmin(L) |e|2 + |ḡ|

2

4 |ξ|
2

≤ −(ηmin(L) + |ḡ|
2

4 ) |e|2 , ∀ |e| > |ξ| ,

(3.33)

where e := [e⊤
1 , e⊤

2 ]⊤ ∈ R2m, L := diag(L1,L2 − Im×m) ∈ R2m×2m, and the minimum eigen-
value of L is ηmin(L) := min {ηmin(L1), ηmin(L2 − Im×m)}. Note that L2 − Im×m > 0 is
required to make L as one positive definite matrix. This requirement provides practitioners
with guidelines to choose suitable values of L2. It is concluded that the tracking errors e1

and e2 are ISS with α3(•) = −ηmin(L) |•|2, α4(•) = |ḡ|2
4 |•|

2 based on Definition 3.1. Then,
|e(t)| ≤ λ(e(t0), t) + γ(|ξ(t)|∞) holds according to Definition 3.2, i.e., the tracking error e
remains in a ball with radius λ(e(t0), t)+γ(|ξ(t)|∞). Besides, as time t increases, the tracking
error e approaches to a smaller ball of radius γ(|ξ(t)|∞) given that for fixed e(t0), the KL
function λ decreases to zero as t→∞.

Proof of 2) The establishment of (3.33) implies that V is bounded. Thereby, V1 is bounded.
Given that e1 → −ϵ or e1 → ϵ leads to V1 →∞ according to (3.3d). Thus, the bounded V1
proves that the tracking error e1 lies in the set E.

Proof of 3) The actual execution position of the controlled plant is p = pd+e1. Based on the
fact that e1 ∈ E, the possible trajectory lies in the set C̄ := {p(t) ∈ Rn1 : pd − ϵ ≺ p(t) ≺ pd + ϵ}.
By choosing−ϵ > p(t)−pd and ϵ ≺ p(t)−pd and combining with Assumption 3.1, p(t) ≺ pd−ϵ
and pd + ϵ ≺ p(t) hold. Thus, it is proved that C̄ ∈ C, i.e., the actual execution trajectory
p(t) always lies in the safe region C even the controlled plant (3.1) suffers from model un-
certainties and environmental disturbances.

3.4 Numerical Simulation

3.4.1 Safe Operation of Robot Manipulator
This subsection concentrates on a 2-DoF robot manipulator Cartesian-space tracking task
under varying kinematics settings to exemplify the kinematics free property of our method.

37



3 Input-to-State Stability Meets Barrier Lyapunov Function for Provable Robust Safety

(a) 2-DoF robot and tool.
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(b) Trajectories of x(t), y(t) and safe boundary.

Figure 3.2: The robot and the end-effector Cartesian-space position under varying kinematics
settings (Task 1 case).

The explicit kinematic and dynamic knowledge of the robot manipulator used for simulation
purposes is referred to in [79].

The robot manipulator in one restricted environment is required to grasp diverse tools
(tools in different lengths lt, and grasping angles qt) to complete different tracking tasks in a
provable safe way, see Fig. 3.2a. In particular, the working space of the end-effector should
be always confined to one specific region that is treated as a prohibited area for humans or
other robots. Note that the information of kinematics, dynamics, and tool (i.e., values of
lt and qt) are unavailable to practitioners to perform the controller design. To accomplish
the above task, the collision-free desired trajectory pd ∈ R2 (a circle with center c := (cx, cy)
and radius r) is firstly planned under buffered obstacles with buffer size ϵ = 0.3. This buffer
size then serves as the performance bound of our designed performance-guaranteed control
strategy (3.22) to ensure that the tool end track the collision-free desired trajectory pd with
the predetermined tracking accuracy ϵ = [−0.3,−0.3]⊤, and ϵ = [0.3, 0.3]⊤.

The initial conditions are set as q(0) = [0, 0]⊤, τ(0) = [0, 0]⊤. The parameters required for
the incremental control input (3.21) are set as: ḡ = diag(10, 10), L1 = diag(1, 1), and L2 =
diag(2, 2). The sampling rate is 1kHz. Note that we always keep the same parameter setting
to conduct the following different numerical simulations. This exemplifies the robustness of
our developed method.

The robot manipulator uses different tools (different initial lengths lt0) installed with
different initial angles qt0 to complete the following four Cartesian-space tracking tasks.
Task 1: c1 = (2.1, 0), r1 = 0.2 m, lt0 = 0.2 m, qt0 = π/6; Task 2: c2 = (2.3, 0.1), r2 = 0.2 m,
lt0 = 0.4 m, qt0 = π/4; Task 3: c3 = (2.3, 0.6), r3 = 0.2 m, lt0 = 0.6 m, qt0 = π/3; and Task
4: c4 = (2, 0.9), r4 = 0.2 m, lt0 = 0.8 m, qt0 = π/2. To fully exemplify the kinematics free
property of our method, we additionally consider the non-trivial varying kinematics setting
here. In particular, we purposely set the tool length as lt = lt0 − 0.0002 t and the grasping
angle as qt = qt0 − 0.002 t during the working process, where t denotes the current time.
The above varying tool length lt and grasping angle qt might be caused by wear and tear or
poor fixation in industrial productions. This varying kinematic setting invalidates common
approaches that require the inverse kinematics calculation.

The Cartesian-space position trajectories displayed in Fig. 3.2b illustrate that the tool
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Figure 3.3: The trajectories of the Cartesian-space tracking error e1 := [ex, ey]⊤ under vary-
ing kinematics and different tasks.

end always lies in the predetermined safe region. Furthermore, the high-accuracy tracking
performance shown in Fig. 3.3 validates the flexibility and adaptability of our developed
approach towards different tasks under the varying kinematic settings mentioned above.

3.4.2 Safe Flight of Quadrotor
This subsection numerically validates the generality of our proposed SP-PGC scheme under
one safety-critical task of a 6-DoF quadrotor. The quadrotor is required to safely execute in
an obstacle-filled environment and finally reach the target position, see Fig. 3.4.

To realize this goal, we firstly use the reachable set based planning algorithm [69] to
generate a collision-free desired trajectory pd := [xd, yd, zd] ∈ R3 inside a tube considering
the distance from the quadrotor center of mass to the rotor center dq = 0.27 m. Thereby,
Assumption 3.1 is satisfied. Then, we follow the procedures illustrated in Section 3.2 and
Section 3.3 to design an online performance-guaranteed position tracking controller (3.22)
to ensure that the quadrotor always flies in the planned safe tube. The incremental dynamic
inversion method (a reformulation of the dynamic inversion method [80] based on the incre-
mental system formulated in Section 3.2) is adopted to design the attitude controller given
that we have no specific performance requirements for the attitude control.

Denoting the boundary of the reachable set as b(t) ∈ R3. Given that the desired trajectory
points pd(t) are on the center line of the reachable sets, the allowable control-level tracking
error (performance bound) to ensure safety follows k(t) = b(t)− pd(t)− dq. Note that rather
than using this varying k(t) to construct ISS-PS-BLFs, we use the minimum value of k(t) (ϵ =
[−0.05,−0.05,−0.05]⊤, and ϵ = [0.05, 0.05, 0.05]⊤ in particular) to exemplify the realizable
high-accuracy tracking performance of our designed control strategy (3.22). The simulation
parameters for the position controller are set as: p0(t) = [1, 0, 5]⊤, ḡ = diag(6.5, 6.5, 6.5),
L1 = diag(0.25, 0.25, 0.25), and L2 = diag(8, 8, 8).

We validate the effectiveness of our approach in six randomly generated environments.
The associated videos are referred to https://youtu.be/VKlaqWJBxus. The interactions
between the quadrotor and the environment at specific time instants are displayed in Fig.
3.4. Our designed controller enables the quadrotor to always fly inside the safe tunnels (see
Fig. 3.4a-3.4c) and finally reach the target position (see Fig. 3.4d).
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(a) The flight trajectory at t = 0.8 s. (b) The flight trajectory at t = 2.3 s.

(c) The flight trajectory at t = 6.9 s. (d) The global view of flight trajectory.

Figure 3.4: The illustration of the safe execution of quadrotor in one safety-critical environ-
ment (red line: planned trajectory; blue line: real trajectory).

3.5 Experimental Validation

This section experimentally validates the robustness enhancement brought by the dynamics
free property of our method via the task-space tracking task of the 3-DoF robot manipulator
(see Fig. 3.5) in the Chair of Automatic Control Engineering (LSR), Technical University of
Munich (TUM). More details about the hardware are referred to in our previous work [48].

An industrial welding and cutting task is considered here. We choose ϵ = [−0.01,−0.01]⊤,
ϵ = [0.01, 0.01]⊤ for our designed performance-guaranteed tracking controller (3.22) to drive
the robot manipulator end-effector to realize precision machining. To ensure robust safety,
the above determined performance bounds (ϵ and ϵ in particular) are considered in the
planning level to inflate obstacles by a ϵ = 0.01 margin before generating circle reference
signals pd := [xd, yd] ∈ R2 (encoding the industrial task). The remaining parameters required
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Figure 3.5: The 3-DoF robot manipulator, load and external torque.
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(a) Trajectories of x, xd, safe bound. (b) Tracking error e1 (960 g case).

Figure 3.6: The experimental validation of the SP-PGC scheme under different loads and
external disturbances.

for the tracking controller (3.22) are set as ḡ =
[
120 0 0
0 120 80

]
, and L1 = diag(0.1, 0.1), L2 =

diag(20, 20). The initial position is set as x1(0) = [0.88, 0]⊤, x2(0) = [0, 0]⊤, u = [0, 0, 0]⊤.
The sampling rate is 1kHz.

The Cartesian-space trajectory x(t) displayed in Fig. 3.6a (the trajectory y(t) is similar
to Fig. 3.6a, thus omitted for page limit) show that the robot manipulator driven by our
developed control strategy (3.22) efficiently tracks the desired trajectory precisely without
crossing the predefined safe boundary even under different loads. To further demonstrate
the robustness property of our method, we use one stick to apply additional torque to the
robot manipulator. As shown in Fig.3.6b, the trajectories of the tracking error e1(t) firstly
oscillate due to the external disturbance and then converge to a small value around zero.

3.6 Summary
This work realizes the safe control under uncertainty via our formulated ISS-PS-BLF and
incremental system. The utilized time-delayed data reformulates kinematic and dynamic un-
certainties as well as environmental disturbances into a provably bounded estimation error,
which allows us to rigorously analyze the robustness of safety via an input-to-state stable
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approach. The safe planning algorithm and the ISS-PS-BLF facilitated tracking controller
work together to ensure that autonomous systems realize the safe execution under uncer-
tainty with guaranteed performance. Experimental and numerical validations are conducted
to show the efficiency of our proposed SP-PGC scheme.

The time-delayed data informed incremental dynamics serve as one easily implement ap-
proach to realize the model-free control. The additional consideration of the control-level
performance at the planning level realizes the practical safe operation under uncertainty
from a systematic perspective. The proposed SP-GPC scheme requires the initial states of
autonomous systems belonging to the safe region. However, this requirement might not be
satisfied in practice. The performance bound needs to be adjusted automatically to avoid
singularity in case the initial states are outside of the safe region. Besides, the influence
of noisy measurements on our developed approach remains to be investigated to improve
the practicability of the proposed method . To show the superiority of the method, future
works aim to extend the kinematics free and dynamics free control strategy to soft robot
manipulators.
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Online Learned Instantaneous Local Control
Barrier Function for Collision Avoidance 4

The previous Chapter 2 and Chapter 3 follow a decoupled mapping, planning and tracking
control paradigm to realise safe execution under uncertainties. This decoupled paradigm
forgoes theoretical guarantees for efficient and practical applications. Specifically, each level
in the above decoupled paradigm is designed assuming perfect operations of its connected
levels. However, it is often the case that the actual performance of each level in real-word
environments deviates from the desired one. These gaps (deviations) between different levels
mentioned above are difficult to be systematically characterized and addressed. Besides, the
decoupled paradigm is computationally intensive and poses high hardware requirements for
efficient operation of each level.

Towards the above analyzed deficiencies of the decoupled approach, this chapter proposes
an integrated perception and control approach to achieve safe execution in unforeseen en-
vironments and accomplish given tasks. The integrated approach avoids gaps among levels
and utilizes control-theoretical tools to design feedback control strategies with theoretical
guarantees of safety (collision avoidance) and task fulfilment (convergence to goal positions).
We exploit instantaneous local sensory data in the control-level to stimulate safe feedback
control strategies in prior unknown environments, rather than firstly conduct a computation-
ally intensive mapping process and then planning on the constructed map. The organization
of this chapter is as follows. Section 4.1 presents the preliminaries and the problem formula-
tion. Then, instantaneous local control barrier functions (IL-CBFs) and goal-driven control
Lyapunov functions (GD-CLFs) constraints are learned from sensory data to encode safety
and task requirements, which are clarified in Section 4.2 and Section 4.3, respectively. There-
after, the learned IL-CBFs and GD-CLFs are united through QP in Section 4.4. Moreover,
an optimization over the volume of the shared control space among IL-CBFs, GD-CLFs, and
input constraints is developed in Section 4.5 to improve the QP feasibility. The safe feedback
control strategy is numerically validated in Section 4.6. Finally, Section 4.7 summarizes this
chapter.

4.1 Problem Formulation and Preliminaries

4.1.1 Problem Formulation
This work investigates the safe operation problem of a mobile robot in previously unforeseen
environments. We model the investigated mobile robot as[

ṗ
v̇

]
︸︷︷︸
ẋ

=
[
02×2 I2×2
02×2 02×2

] [
p
v

]
︸ ︷︷ ︸

f(x)

+
[
02×2
I2×2

]
︸ ︷︷ ︸
g(x)

u, (4.1)
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where p := [px, py]⊤, v := [vx, vy]⊤, and u := [ux,uy]⊤ ∈ R2 are the positions, velocities, and
control inputs, respectively. For simplicity, we assume that the robot localization is perfect,
i.e., the accurate vehicle state is available. The localization is realizable by the low-cost dead
reckoning method. Dealing with its cumulative error is a different research direction, which
is beyond the scope of this chapter.

Assume that there exist multiple prior unknown obstacles Ol in an environment E , where
l ∈ L := {l|l = 1, 2, · · · ,L} and L ∈ N+ is an uncertain value. The objective is to design
a feedback controller u to drive the mobile robot (4.1) to operate safely in an uncertain
environment E and finally reach the predetermined target position pd := [pdx , pdy ]⊤ ∈ R2.
We formulate the safe operation problem mentioned above as a constrained optimization
problem stated as

min
u
J :=

∫ tf

t0
u⊤u dt (4.2a)

s. t. (4.1)
p(t0) = p0; v(t0) = v0 (4.2b)
u(t) ∈ U ,∀t ∈ [t0, tf ] (4.2c)

p(t) ∩
L⋃
l=1
Ol = ∅,∀t ∈ [t0, tf ] (4.2d)

∥p (tf )− pd∥ ≤ δ. (4.2e)

where U ⊆ R2 in (4.2c) denotes the bounded input space of the considered dynamics (4.1).
δ ∈ R+ in (4.2e) is a prior set threshold to check whether the reach task is completed. A
quadratic control energy function is adopted in (4.2a) to reflect designers’ preference on the
control effort minimization.

The aforementioned safe operation problem (4.2) is nontrivial given the constraints indi-
cating different (might conflicting) objectives of safety and performance maximization; and
the requirement of constraint satisfaction under uncertainty (limited knowledge of the en-
vironment E). This work seeks for an integrated perception and control approach to solve
(4.2), whose mechanism is illustrated in Figure 4.1. In particular, we directly use perceptual
inputs to learn IL-CBFs and GD-CLFs that are used in the control level to achieve collision
avoidance and accomplish given tasks.

4.1.2 Preliminaries
Before proceeding to the development of IL-CBFs and GD-CLFs, we first present the def-
initions of classic High-order CBF (HO-CBF) and CLF focusing on (4.1). The introduced
HO-CBF and CLF here serve as theoretical basis to develop our IL-CBF and GD-CLF later.

Definition 4.1 (HO-CBF). [81, Definition 1] Given the control system (4.1), a Cr function
h(t,x) ∈ R with a relative degree r is called a (zeroing) control barrier function (of order r)
if there exists a column vector α := [α1, · · · ,αr]⊤ ∈ Rr such that ∀x ∈ Rn, t ≥ 0,

sup
u∈U

[
LgL̄

r−1
f h(t,x)u+ L̄rfh(t,x) + α⊤ξ(t,x)

]
≥ 0, (4.3)
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Figure 4.1: Schematic of the integrated approach that maps sensory data to control inputs.
The IL-CBFs learned from sensory data in Section 4.2 characterize the obstacle
boundaries; The decomposed short-horizon subtasks are encoded by GD-CLFs
clarified in Section 4.3; The LP optimization is conducted to enlarge the ACSs
in Section 4.5 to improve the feasibility of the QP formulated in Section 4.4.

where L̄rfh :=
(
∂
∂t

+ Lf
)r
h is the modified Lie derivative of h(t,x) along f and r ∈ N+, and

the roots of the polynomial

Pr(λ) := λr + α1λ
r−1 + · · ·+ αr−1λ+ αr, (4.4)

are all negative.

Definition 4.2 (CLF). [82, Definition 1] For the control system (4.1), a continuously
differential function V (x) ∈ R is an exponentially stabilizing control Lyapunov function if
there exists c1, c2, c3 ∈ R+ such that the following equations hold

c1 ∥x∥2 ≤ V (x) ≤ c2 ∥x∥2 (4.5a)
inf
u∈Rm

[LfV (x) + LgV (x)u+ c3V (x)] ≤ 0. (4.5b)

4.2 IL-CBF Online Learning
This section elucidates the mechanism of learning IL-CBFs from sensory data. In particular,
the detected local obstacle information is utilized to learn the local barrier functions to
describe the partial obstacle boundaries; and the learned local barrier functions update along
with continuously coming data to tackle the uncertain environment. Our developed IL-CBFs
are employed to formulate the QP problem in Section 4.4 to conduct collision avoidance in
the control level with prior-unforeseen obstacles.

As illustrated in Figure 4.2, the whole boundaries of the obstacles Ol in E could be descried
by the barrier functions hl(p) ∈ R using the complete knowledge of obstacles [2]. However,
the obstacle information is unavailable in our investigated problem (4.2). Thus, the explicit
forms of hl(p) that characterize the dangerous region ⋃L

l=1Ol are unavailable. We observe
in Figure 4.2 that only partial obstacle boundaries of Ol pose threats to the mobile robot
safety at certain period. This motivates us to utilize local sensory data to learn the local
barrier functions, corresponding to the partial obstacle boundary within the mobile robot’s
sensor horizon, to address the collision avoidance problem.
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Figure 4.2: Graphical illustration of IL-CBFs and obstacles. The whole boundary of obstacles
Ol are described by explicit CBFs hl = (x− xol

)2 + (y− yol
)2− r2

l , cl = (xol
, yol

),
l = 1, · · · , 5. The mobile robot observes D = {p̄1, p̄2, · · · , p̄7} and classifies D
into sub-groups Dk, k = 1, 2. Thus, K = 2, and I1 = 4, I2 = 3 here. The mobile
robot learns ĥk based on Dk.

Assume that the mobile robot is embedded with a sensor with a restricted angle Sθ and a
limited horizon Sr. The value of Sθ is given, and the value of Sr satisfies

Sr ≥ Dbrake := ∥vmax∥2 / ∥amax∥ , (4.6)
where vmax, amax ∈ R2 are the maximum velocity and breaking acceleration of the mobile
robot (4.1). Dbrake denotes the travelled distance when the mobile robot in the maximum
velocity brakes using the maximum breaking acceleration.
Remark 4.1. The setting of the sensor horizon (4.6) is beneficial to the emergence case
where our developed safe feedback control strategy fails to guarantee safety. In this scenario,
the mobile robot brakes to avoid collisions.

The sensor provides a point cloud L. We term D := {p̄1, p̄2, · · · } ⊂ L as the data
group of the sensed obstacle boundaries, wherein p̄i := [x̄i, ȳi]⊤ ∈ R2 is the position of
the i-th detected obstacle boundary point. In an environment E with densely populated
obstacles, data points in D might concern multiple isolated obstacles, as displayed in Fig-
ure 4.2. Therefore, we adopt the robust classifying algorithm–density-based spatial clus-
tering of applications with noise (DBSCAN) [83]–to classify D into multiple sub-groups
Dk := {p̄k1 , p̄k2 , · · · }, wherein p̄ki

:= [x̄ki
, ȳki

]⊤ ∈ R2 denotes the i-th data point of the
k-th data group, i ∈ I := {i|i = 1, · · · , Ik} with Ik ∈ N+ being the volume of Dk, and
k ∈ K := {k|k = 1, · · · ,K} with K ∈ N+ being the sum of the local obstacle boundary
considered in current period.
Remark 4.2. The DBSCAN algorithm is compatible with our IL-CBF learning process
given that it could determine the number of to be learned IL-CBFs (i.e., the values of K)
automatically without using prior knowledge of environments.
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Algorithm 2 IL-CBF Online Learning Algorithm
Input: Point cloud D;
Output: ĥk, k = 1, · · · ,K;

1: K = DBSCAN (D) ▷ Robust classifying
2: for k = 1 : K do
3: ζ̂k = M-estimate (Dk) (4.9) ▷ Robust regression
4: ĥk = y −F(x, ζ̂k) (4.10)
5: end for

In the following, we clarify the mechanism of the IL-CBF learning focusing on the k-th
data group Dk. Assume that i-th data pair p̄ki

satisfies

ȳki
= F(x̄ki

, ζk) + εk, (4.7)

where F(x̄ki
, ζk) ∈ R is one n-th degree polynomial function with a parameter ζk ∈ Rn+1 to

be learned; and εk ∼ N(0,σ2) denotes an assumed Gaussian sensor noise with a zero mean
and a constant variance σ ∈ R.

Remark 4.3. There exist multiple choices for F , such as Gaussian models, linear fitting,
and rational polynomials [84]. Considering the generality and simplicity issues, a polynomial
model is chosen here.

Based on (4.7) and the point cloud Dk from the sensor, ζk is learned to minimize the
approximation error:

ζ̂k = arg min
ζk

Ik∑
i=1

(ȳki
−F(x̄ki

, ζk))2 . (4.8)

To address potential noises and outliers that exist in the measurement data, the robust
regression technique–M-estimate [85]–is adopted here. By using the M-estimate, the learning
of ζk in (4.8) is rewritten as

ζ̂k = arg min
ζk

Ik∑
i=1

ρ

(
ȳki
−F(x̄ki

, ζk)
γ

)
, (4.9)

where ρ(r) = c2/(1 − (1 − (r/c)2)3) is a robust loss function with c = 1.345; γ is a scale
parameter estimated as γ = 1.48 [medi |(ȳki

−F(x̄ki
, ζk0))−medi (ȳki

−F(x̄ki
, ζk0))|], ζk0 is

the initial value of ζk. Details about the M-estimate approach are referred to [85].
Using the learned ζ̂k (4.9), we construct the IL-CBF ĥk as

ĥk = y −F(x, ζ̂k). (4.10)

The IL-CBF learning process mentioned above is summarized in Algorithm 2. The mobile
robot uses Algorithm 2 to update the learned IL-CBFs continuously based on the newly
observed sensory data during the operation process. The IL-CBF learning is favored with
computation simplicity. Thus, it is practical to update the learned IL-CBFs each step. This
is favourable for the mobile robot to adapt to diverse environments.
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Algorithm 3 GD-CLF Online Learning Algorithm
Input: Point cloud A := {p̃1, p̃2, · · · }; Robot position p.
Output: p̃dj

, and Vj, j = 1, · · · , J ;
1: p̃d1 = arg minp̃i∈A ∥p̃i − pd∥ and get V1 (4.11)
2: if

∥∥∥p− p̃dj

∥∥∥ ≤ δ then
3: p̃dj

= arg minp̃i∈A ∥p̃i − pd∥
4: j = j + 1 and update Vj (4.11)
5: end if

Remark 4.4. Alternatively, we are able to achieve the CBF learning in an incremental way
along with a steady stream of data, i.e., attempting to gradually learn one global barrier func-
tion that describes the whole obstacle boundary. However, authors found in practice that this
increment learning approach shows no obvious advantage in terms of collision avoidance but
introduces additional computational loads. Thus,we forgo using all detected data to gradually
build a perfect map, rather only using instantaneous local sensory information.

Remark 4.5. The clarified IL-CBF learning in this section is especially compatible with
low-end sensors that only provide low-dimensional data. These limited data, however, is not
enough to build a global map or describe the whole obstacle boundary.

4.3 GD-CLF Automatic Construction
The data group D concerning the detected obstacle boundaries is utilized in Section 4.2
to facilitate the collision avoidance in uncertain environments. This section exploits the
remaining local collision-free sensory data group A := L ⊖D to complete the long-horizon
task. Specifically, we first utilize the data group A to discover subgoals using a Euclidean
distance metric. Then, we construct the associated GD-CLF for each subtask (subgoal). The
automatically constructed GD-CLFs serve as constraints of the QP optimization in Section
4.4, whose solution ensures that the mobile robot travels toward the discovered subgoals
incrementally and reach the destination finally.

Normally, the common CLF in Definition 4.2 is inefficient to account for a long-horizon
goal. Thus, through a divide-and-conquer perspective, we use sensory data A to discover
the subgoals p̃dj

:= [xdj
, ydj

]⊤ ∈ R2, j ∈ J := {j|j = 1, · · · , J} with J ∈ N+, based on
a Euclidean distance metric (line 3 of Algorithm 3). In particular, we choose the nearest
collision-free waypoint toward the goal position pd as the next subgoal . These automatically
determined intermediate waypoints (such as p̃d1 , p̃d2 , and p̃d3 in Figure 4.3) forwardly progress
toward the final desired position pd (same with p̃d4).

The automatically determined subgoals p̃dj
from Algorithm 3 divide the long-horizon task

into J short-horizon subtasks. For each subtask, we construct the GD-CLF :

Vj = (p− p̃dj
)⊤P (p− p̃dj

) + (v − vdj)⊤Q(v − vdj), j ∈ J (4.11)

where P , Q ∈ R2×2 are predetermined positive definite matrices; and vdj
∈ R2 could be a

zero or a prior-given constant velocity vector. The constructed GD-CLF Vj (4.11) updates
as the subgoal p̃dj

refreshes using Algorithm 3.
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Figure 4.3: Graphical illustration of GD-CLFs and subgoals. The mobile robot uses the
collision-free data group A = {p̃1, p̃2, · · · , p̃9} and Algorithm 3 to determine the
position p̃4 ∈ A as its first subgoal p̃d1 . Then, the constructed GD-CLF V1 guides
the robot toward p̃d1 . The robot would determine its j + 1-th subgoal when it
arrives at δ-neighboured (descried as a green dotted circle with radius δ) around
the j-th subgoal .

Remark 4.6. Note that we construct the IL-CBFs (4.10) in Section 4.2 and the GD-CLFs
(4.11) in Section 4.3 assuming that U = R2 for convenience, i.e., the influence of input
saturation is ignored temporally. This problem is later tackled in Section 4.5 by explicitly
analysing the potential conflicts between IL-CBFs, GD-CLFs, and input constraints.

4.4 Safe Feedback Control Strategy
This section incorporates the learned IL-CBFs (4.10) and the constructed GD-CLFs (4.11)
in a QP optimization to generate the safe feedback control strategy that drives the mobile
robot to safely reach the target position incrementally.

By dividing the period [t0, tf ] into multiple intervals [t0 +mT , t0 + (m+ 1)T ] [86], where
m ∈ N+, and T ∈ R+ is the sampling time, we reformulate the original safe operation
problem (4.2) into a sequence of QPs at each interval:

min
u,ν

u(t)⊤u(t) + c̄1ν
2(t) (4.12a)

s. t. (4.1), (4.2b), (4.2c)
¨̂
hk + αk1

˙̂
hk + αk2ĥk ≥ 0, k ∈ K (4.12b)

V̇j + c̄2Vj ≤ ν, j ∈ J , (4.12c)

where ν(t) ∈ R is a relaxation variable to relax the GD-CLF constraint to improve the QP
feasibility [87]; αk1 , αk2 , c̄1, c̄2 ∈ R are parameters to be determined. The reformulated
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QP problem (4.12) unifies safety requirement (4.2c), (4.12b), task requirements (4.12c), and
optimization over control efforts (4.12a) to generate a multi-objective feedback controller
that drives the mobile robot to progressively reach subgoals while avoiding obstacles. Note
that our developed safe feedback control strategy from (4.12) only requires the information
of the mobile robot position p and the target position pd to solve the safe operation problem
(4.2) in uncertain environments.

4.5 Optimized Admissible Control Space
The potential conflicts between the constraints (4.2c), (4.12b), and (4.12c) might result in
the infeasibility problem of the QP (4.12) formulated in Section 4.4. This section formulates
an optimization over the ACS of the IL-CBF associated constraint (4.12b) to improve the
QP feasibility.

For analytical convenience, we denote the ACSs for constraints (4.12b) and (4.12c) as
A1 :=

{
u ∈ R2|¨̂hk + αk1

˙̂
hk + αk2ĥk ≥ 0, k ∈ K

}
, and A2 :=

{
u ∈ R2|V̇j + c2Vj ≤ ν

}
, respec-

tively. Thereby, the shared control space concerning constraints (4.2c), (4.12b), and (4.12c)
would be S = A1 ∩ A2 ∩ U . It is desirable that S ≠ ∅ always holds, i.e., the feasibility of
the QP problem is always guaranteed. This is a nontrivial problem; especially multiple con-
straints are considered. Improving the possibility of satisfying S ≠ ∅ is equivalent to enlarge
the volume of S. Given that the relationship between sets A1 and A2 is hard to be described
and the volume of U is predetermined, we could transform the enlargement of the volume
of S into the enlargement of the volumes of ACSs A1 and A2 independently. A relaxation
variable ν has been used in (4.12c) to enlarge the volume of A2. In the following, we attempt
to enlarge the volume of the ACS A1 to improve the feasibility of the QP problem (4.12).
In particular, we firstly seek for a criterion for the volume of the ACS A1 in Section 4.5.1
by investigating the relationship between sets A1 and U . Then, a linear programming (LP)
optimization problem is formulated in Section 4.5.2 to optimize the volume criterion found
above to enlarge the volume of the ACS A1.

4.5.1 Criterion of ACS
The enlargement of A1 is equivalent to enlarge each IL-CBF ĥk associated ACS that is
denoted as A1k

:=
{
u ∈ R2|¨̂hk + αk1

˙̂
hk + αk2ĥk ≥ 0

}
, k ∈ K. The explicit form of the

learned k-th IL-CBF follows ĥk = y − ζ̂⊤
k Φ, where Φ = [1, x,x2, · · · ,xn]. We substitute the

explicit ĥk into (4.12b) and rewrite the inequality as

Aux + uy + a⊤
k Ψ > 0, (4.13)

where A = ζ̂⊤
k
∂Φ
∂x
∈ R, αk = [αk1 ,αk2 ]⊤ ∈ R2, Ψ =

[
ζ̂⊤
k
∂Φ
∂x
vx − vy, ζ̂⊤

k
∂2Φ
∂x2 v

2
x + ζ̂⊤

k Ψ− y
]⊤
∈ R2.

Based on the reformulated (4.13), the geometric interpretations of the ACS A1k
as well as

the limited control input set U are depicted in Figure 4.4. We found that a smaller value of
a⊤
k Ψ implies a larger area of the ACS A1k

. Thus, it is reasonable to choose the value of a⊤
k Ψ

as a metric to quantify the volume of the ACS A1k
, which is optimized in the subsequent

subsection.
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Figure 4.4: The geometric interpretation of the setsA1k
and U . Here lk = Aux+uy+a⊤

k Ψ = 0.
The comparison of the volume of A1k

follows Al21k
> Al11k

> Al01k
> Al31k

for two
cases. For the l3 case, A1k

∩ U = ∅, i.e., there is no feasible control input to
ensure safety based on the current chosen IL-CBF.

4.5.2 Optimization of ACS
This subsection clarifies the optimization over the metric a⊤

k Ψ, which is formulated as a LP:

min
αk

α⊤
k Ψ (4.14a)

s. t. 0 < αk1 ,αk2 < αk (4.14b)
a2
k1 − 4αk2 ≥ 0 (4.14c)

where αk ∈ R+ is the predetermined bound for the optimization variable. The formulated LP
(4.14) is solved by the off-the-self fmincon solver. The core idea of the above LP is to select
suitable values of αk1 and αk2 to minimize α⊤

k Ψ while respecting constraints (4.14b) and
(4.14c). A decreased α⊤

k Ψ leads to a enlarged A1k
. Thereby, the QP feasibility is improved.

Remark 4.7. The constraints (4.14b) and (4.14c) are the simplification of the following three
constraints: (1) a2

k1 − 4αk2 ≥ 0; (2) −αk1 +
√
a2

k1−4αk2
2 < 0; (3) −αk1 −

√
a2

k1−4αk2
2 < 0. These

three constraints ensure that the roots of (4.12b)’s related polynomials are all negative. These
constraints ensure that the optimized parameter α∗

k leads to valid HO-CBFs in Definition 4.1.

4.6 Numerical Simulation
This section conducts numerical simulations to validate the efficiency of our proposed safe
feedback control strategy (4.12). In particular, Section 4.6.1 focuses on a benchmark [86] to
validate the effectiveness of the LP optimization (4.14). The resulting enlarged ACS leads
to a better control performance. Then, we validate the efficiency of our integrated approach
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under two representative environments: an obstacle-filled outdoor scenario in Section 4.6.2,
and a maze indoor scenario in Section 4.6.3. The mobile robot safely operate in the unfore-
seen outdoor or maze indoor environment and complete the given long-horizon reach task
using the safe feedback control strategy, generated by solving the QP (4.12) within consid-
eration of our developed IL-CBF (4.10) and GD-CLF (4.11). During the whole operation
process, the QP feasibility is preserved via the LP optimization (4.14).

4.6.1 Validation of Optimized ACS

This subsection validates the effectiveness of our developed optimized ACS strategy (4.14)
clarified in Section 4.5.2 based on a benchmark reach-avoid task [86]. A mobile robot mod-
elled as (4.1) is desired to move from an initial position p0 to a desired position pd while
avoiding one circle obstacle O (centered at c = (1, 1) and with radius r = 1). The detailed
simulation settings are referred to Table 4.1. Note that to avoid IL-CBFs and GD-CLFs’
influence on the QP feasibility, this subsection uses a prior-known CBF to achieve collision
avoidance, and a well-tuned Proportional–Derivative (PD) controller (assumed with desired
performance) to accomplish the reach task. We formulate the following QP (4.15) to solve

Table 4.1: The parameter settings of the reach-avoid task.
Initial values p0 = [−0.2, 0.1]⊤, v0 = [0, 0]⊤, T = 10 Hz
Target values pd = [2, 1.5]⊤, vd = [0, 0]⊤

CBF h = (x− 1)2 + (y − 1)2 − 1
PD controller upd = −0.2(p− pd)− 0.9(v − vd)
QP and LP ux, uy = 0.3, α1(t0) = [5, 6]⊤, α1 = 7.
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Figure 4.5: The performance comparison between the optimized α∗
1 and the predetermined

α2, α3 associated QP solutions. The green rectangle represents the input con-
straint set. The arrows point toward the ACS.
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the reach-avoid task mentioned above.

min
u
∥u− upd∥2 (4.15a)

s. t. − 0.3 < ux,uy < 0.3 (4.15b)
ḧ+ α∗

11ḣ+ α∗
12h ≥ 0, (4.15c)

where α∗
11 and α∗

12 are the optimized variables after solving the LP (4.14) based on the known
CBF h. For comparison, prior-chosen constant vectors α2 = [4, 1]⊤, α3 = [4, 2]⊤ are picked
to construct the constraint (4.15c). Note that the feasibility of the QP (4.15) is easily lost
without choosing suitable values of α required for the HO-CBF (4.3) in Definition 4.1. Here
α2 and α3 are well debugged parameters to ensure the QP feasibility.

As displayed in Figure 4.5a, the nominal upd is an unsafe control input given that the mobile
robot driven by the upd crosses the obstacle O. The minimally corrected upd by solving the
QP (4.15) drives the mobile robot to safely reach the destination. Furthermore, as shown
in Figure 4.5a, the trajectory of the optimized α∗

1 case is tighter around the obstacle as a
consequence of enlarged ACS, i.e., closer to the desired trajectory (the cyan line) associated
with upd. The ACSs of the constraint (4.15c) at t = 2s and t = 17s are displayed in Figure
4.5b. It is shown that the α∗

1’s associated ACS is larger than the related ones of α2 and α3.
This validate the effectiveness of the LP optimization (4.14).
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(d) The whole trajectory of p.

Figure 4.6: The illustration of the outdoor scenario.
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4.6.2 Validation in An Outdoor Scenario

This subsection validates the efficiency of our proposed safe feedback control strategy (4.12)
in an obstacle densely cluttered environment (see Figure 4.6). The numerical simulation
is conducted on the basis of the Mobile Robotics Simulation Toolbox [88] and the quad-
prog solver of the Optimization Toolbox [89]. The detailed parameter settings to solve the
formulated QP (4.12) and LP (4.14) are presented in Table 4.2.

Table 4.2: The parameter settings of the outdoor scenario.
Initial values p0 = [2, 4]⊤, v0 = [1, 1]⊤, T = 10 Hz
Target values pd = [10, 10]⊤, vd = [0, 0]⊤

IL-CBF Φ = [1,x,x2], Sθ = [−π/2,π/2], Sr = 0.5 m

GD-CLF P =
[

25 12.5
12.5 25

]
, Q =

[
50 25
25 50

]
,

Sθ = [−π, π], Sr = 4 m, c̄2 = 1.5
QP and LP ux, uy = 20, c̄1 = 1, α(t0) = [5, 6]⊤, α = 6

It is shown in Figure 4.6a-Figure 4.6c that the mobile robot exploits the sensed obstacle
boundary data to learn the IL-CBFs ĥ1, ĥ2 based on Algorithm 2, and uses collision-free data
to discover the subgoals p̃d1 , p̃d2 via Algorithm 3. As displayed in Figure 4.6d, the mobile
robot safely reaches the subgoals p̃d1 , p̃d2 sequentially and finally reach the destination pd
(same with p̃d3). Thus, it is concluded that the learned IL-CBFs (4.10) ensure collision
avoidance with unforeseen obstacles, and the constructed GD-CLFs (4.11) based on the
discovered subgoals guarantee the task fulfillment.

The evolution trajectories of the control inputs, and the optimized parameter α∗ are
displayed in Figure 4.7a and Figure 4.7b, respectively. The input saturation is satisfied, and
the LP (4.14) outputs the optimized α∗ to ensure the feasibility of the QP (4.12) during
the whole operation process. A supplemental video for the outdoor scenario is referred to
https://youtu.be/FZsNc0UzEVs.

0 5 10
-20

0

20

(a) The trajectory of input u.

0 5 10
0

2

4

6

(b) The trajectory of optimized α∗.

Figure 4.7: The trajectories of u, and α∗ for the outdoor scenario.
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4.6.3 Validation in An Indoor Scenario
This subsection further validates the effectiveness of our designed safe feedback control strat-
egy in a maze environment (see Figure 4.8). It is worth mentioning that the application of
common CBFs in a maze environment is seldom found in existing works. This is because
multiple typical CBFs are required to achieve collision avoidance in such a maze environ-
ment, and certain CBFs would unavoidably treat collision-free spaces as unsafe regions. In
this case, the mobile robot behaves conservatively and the QP might lost its feasibility. In
particular, it is nontrivial to design barrier functions to separate safe and unsafe regions even
though we have the full knowledge of the maze environment displayed in Figure 4.8. How-
ever, our developed IL-CBFs could efficiently deal with this maze environment. The detailed
parameters to accomplish the safe operation in the maze environment is displayed in Table
4.3. The accompanying simulation videos are available at https://youtu.be/FZsNc0UzEVs.

𝑡1 = 2.4

𝑡2 = 9.9𝑠

𝑡3 = 13.1𝑠

𝑡4 = 21.5𝑠

𝑡5 = 26.4𝑠

𝑡6 = 32.5𝑠

෥𝒑𝒅𝟏

෥𝒑𝒅𝟐
෥𝒑𝒅𝟑

෥𝒑𝒅𝟒

𝒑𝒅

෡𝒉𝟏

෡𝒉𝟐

෡𝒉𝟑

෡𝒉𝟒

𝒑𝟎

Figure 4.8: The illustration of the indoor scenario.

Table 4.3: The parameter settings of the indoor scenario.
Initial values p0 = [2, 2]⊤, v0 = [0, 0]⊤, T = 10 Hz
Target values pd = [22, 18]⊤, vd = [0, 0]⊤

IL-CBF Φ = [1,x,x2], Sθ = [−π/2,π/2], Sr = 0.5 m

GD-CLF P =
[

25 12.5
12.5 25

]
, Q =

[
50 25
25 50

]
,

Sθ = [−π, π], Sr = 4 m, c̄2 = 1.5
QP and LP ux, uy = 20, c̄1 = 1, α(t0) = [5, 6]⊤, α = 6

As displayed in Figure 4.8 and Figure 4.9a, the mobile robot operates safely in the maze
environment and finally reach the goal position pd. However, we observe inefficient oper-
ation (shown in the blue rectangle of Figure 4.9a) of the mobile robot in this unforeseen
maze environment. This is due to the simple heuristic (i.e., shortest distance rule) used in
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𝒑𝟎
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(a) The trajectory of position p.
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(b) The trajectory of velocity v.
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(c) The trajectory of input u.
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(d) The trajectory of optimized α∗.

Figure 4.9: The trajectories of position p, velocity v, control input u, and optimized α∗ for
the indoor scenario.

Algorithm 3. This problem could be avoided by changing the sensor range in an adaptive
way. We deliberately present this incomplete case to show the potential drawback of our
method. The trajectories of the mobile robot’s velocity, control input and optimized α∗ are
displayed in Figure 4.9b, Figure 4.9c, and Figure 4.9d, respectively. The input saturation is
always satisfied and α∗ updates to ensure the QP feasibility.

4.7 Summary
This work presents a safe feedback control policy that couples sensor with control to fulfill
safe operation in uncertain environments. Our developed IL-CBFs are united with GD-
CLFs in a QP optimization framework to generate the safe feedback control strategies. The
formulated LP optimization improves the QP feasibility by enlarging the ACSs of IL-CBFs.
Multiple comparative numerical simulations are conducted to validate the effectiveness of
the proposed method.

The proposed integrated perception and control approach provides the limited-performance
mobile robot with a low-cost solution (regarding hardware requirements and computation
loads) to the nontrivial safe operation problem in uncertain environments. Our method en-
joys the theoretical guarantees (safety and optimality regarding control efforts) favoured in
the traditional control field, but also achieve the same promising performance as end-to-end
learning methods. However, our method is in essence a local and reactive method. Thus,
comparing to the global method, the solution might trap in local minimum. The current
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4.7 Summary

approach are developed under perfect measurement data and system dynamics. The future
work aims to systematically analyze the influence of model uncertainties and environmental
disturbances to the safe feedback control strategy. Besides, the developed IL-CBF will be
extended to a high-dimensional system in a dynamic uncertain environment, and also the
agent-to-agent collision avoidance in a multi-agent system.

57





Part II

Reinforcement Learning Approaches
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Off-Policy Risk-Sensitive Reinforcement Learn-
ing Based Constrained Optimal Control 5

The set-theoretic methods in Part I mainly investigate the guaranteed performance control;
however, optimality is not considered. After that, RL based approaches are used in Part II
to solve optimal control problems within consideration of robustness and safety.

This chapter proposes an off-policy risk-sensitive RL based control framework to jointly
optimize the task performance and the constraint satisfaction in a disturbed environment.
The provable robust safety guarantee is provided employing nominal model knowledge and
an assumed known disturbance bound. The organization of this chapter is as follows. The
risk-aware value function, constructed using the pseudo control and the risk-sensitive input
and state penalty terms, is introduced in Section 5.1 to convert the original constrained
robust stabilization problem into an equivalent unconstrained optimal control problem. The
optimal control solutions of continuous time nonlinear systems are extremely difficult to
determine, if not impossible. Therefore, practitioners turn to suboptimal schemes and ap-
proximate solutions. Section 5.2 elucidates the approximate solution to the value function of
the HJB equation, which results in the approximate optimal control policy that satisfies both
input and state constraints under disturbances. Besides, the critic NN weight convergence
is guaranteed by replaying experience data to the weight update law. Moreover, online and
offline algorithms are developed to serve as principled ways to record informative experience
data, which contributes to provide the sufficient excitation required for the weight conver-
gence. Simulation results shown in Section 5.3 illustrate the effectiveness of our proposed
control framework. Finally, Section 5.4 summarizes this chapter.

5.1 Problem Formulation

5.1.1 Formulation of Constrained Robust Stabilization Problem
Consider the continuous time nonlinear dynamical system:

ẋ = f(x) + g(x)u(x) + k(x)d(x), (5.1)

where x ∈ Rn and u(x) ∈ Rm are system states and inputs. f(x) : Rn → Rn, g(x) : Rn →
Rn×m are the known drift and input dynamics, respectively. k(x) : Rn → Rn×r represents
the known differential system function. d(x) : Rn → Rr denotes the unknown additive
disturbance. The general case that the additive disturbance is unmatched (i.e., k(x) ̸= g(x))
is considered here. Assuming that f(0) = 0 and d(0) = 0, which means that the equilibrium
point is x = 0.

Before proceeding, the following assumptions are provided. These assumptions are com-
mon in ADP related works and facilitate the theoretical analysis.
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Assumption 5.1. [90] f(x) + g(x)u is Lipschitz continuous on a set Ω ⊆ Rn that contains
the origin, and the system is stabilizable on Ω. There exists gM ∈ R+ such that the input
dynamics is bounded by ∥g(x)∥ ≤ gM .

Assumption 5.2. [91] The unknown additive disturbance d(x) is bounded by a known
nonnegative function dM(x): ∥d(x)∥ ≤ dM(x), and dM(0) = 0.

Based on the aforementioned settings, we formulate the constrained robust stabilization
problem (CRSP) as follows.

Problem 5.1 (CRSP). Given Assumptions 5.1-5.2, design a control strategy u(x) to stabilize
the closed-loop system (5.1) to the equilibrium point under additive disturbances d(x), input
saturation

Uj = {uj ∈ R : |uj| ≤ β} , j = 1, · · · ,m, (5.2)

where β ∈ R+ is a known saturation bound; and state constraints

Xi = {x ∈ Rn : hi(x) < 0} , i = 1, · · · ,nc, (5.3)

where Xi is a closed and convex set that contains the origin in its interior; hi(x) : Rn → R
is a known continuous function that relates with the i-th state constraint; nc ∈ N+ is the
number of considered state constraints.

5.1.2 Transformation to Optimal Control Problem
Problem 5.1 consists of three sub-problems: disturbance rejection, input saturation, and state
constraint. It is nontrivial for ADP to directly deal with these sub-problems together [92].
Thus, in this section, with the pseudo control technique proposed in [91], [93], reformulated
risk-sensitive input penalty terms based on [90], and our newly designed risk-sensitive state
penalty terms, we first transform the CRSP clarified as Problem 5.1 into an equivalent
optimal control problem. Then, we attempt to solve the sub-problems mentioned above
simultaneously under an optimization framework.

A. Pseudo Control and Auxiliary System

As illustrated in [91], for a system suffering a matched disturbance, its disturbance-rejection
control strategy could be designed by solving its nominal system’s optimal control problem,
wherein a cost function including the square of the disturbance bound is considered. For
the unmatched disturbance k(x)d(x) considered in (5.1), however, the above robust control
design strategy cannot be directly applied. Thus, to address the unmatched k(x)d(x) under
an optimization framework as well, it is firstly decomposed as [93]

k(x)d(x) = g(x)d̄(x) + h(x)d(x), (5.4)

where d̄(x) = g†(x)k(x)d(x) : Rn → Rm, and h(x) = (I − g(x)g†(x))k(x) : Rn → Rn×r. Here
† denotes the Moore-Penrose inverse. Then, we introduce the following auxiliary system
with a pseudo control v(x) : Rn → Rr

ẋ = f(x) + g(x)u(x) + h(x)v(x), (5.5)
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Figure 5.1: Schematic of the off-policy risk-sensitive RL based control framework containing
three key components: 1) Robustness: pseudo control based auxiliary system
enables us to address additive disturbances under an optimization framework in
Section 5.1.2; 2) Constraint satisfaction: risk-sensitive input and state penalty
terms are incorporated into the cost function to enforce input and state con-
straint satisfaction during the optimization process in Section 5.1.3; 3) Weight
convergence: online or offline recorded informative experience data are replayed
to support the online learning of the critic NN in Section 5.2.

to accomplish that both g(x)d̄(x) and h(x)d(x) are matched disturbances with respect to the
range of g(x) and h(x), respectively. Finally, similar to the robust control design strategy
proposed in [91], by solving the optimal control problem of the auxiliary system (5.5) with
a cost function including the square of the bounds of d̄(x) and d(x), we could address the
disturbance-rejection problem of the system (5.1) under an optimization framework. The
corresponding rigorous proof is provided later in Theorem 5.1 and the following assumption
is introduced for the later analysis.

Assumption 5.3. [93] The continuous function h(x) is bounded as ∥h(x)∥ ≤ hM ; d̄(x) is
bounded by a nonnegative function lM(x) :

∥∥∥d̄(x)
∥∥∥ ≤ lM(x), and lM(0) = 0.

B. Risk-Sensitive Input and State Penalty Terms

To tackle input and state constraints under an optimization framework, here we follow the
idea of risk-sensitive RL where multiple risk measures, e.g., high moment or conditional value
at risk, are used to deal with constraints of Markov decision processes [94]. However, the
available risk measures in the risk-sensitive RL field cannot guarantee strict constraint sat-
isfaction and/or not efficient (even inappropriate) to address constraints of continuous time
nonlinear systems. Thus, we propose risk-sensitive input penalty term (RS-IP) in Definition
5.1 and risk-sensitive state penalty term (RS-SP) in Definition 5.2 as new risk measures
during the learning process to enforce strict satisfaction of input and state constraints of
continuous time nonlinear systems.

Definition 5.1 (RS-IP). A continuous and differential function ϕ(u) is a risk-sensitive input
penalty term if it has the following properties:
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(1) A bounded monotonic odd function with ϕ(0) = 0;
(2) The first-order partial derivatives of ϕ(u) is bounded.
Here the RS-IP term is a reformulation of the nonquadratic functional used in [90], [95]

to confront input constraints.
Definition 5.2 (RS-SP). Given the closed region Xi, i = 1, · · · ,nc, defined as (5.3), a
continuous scalar function Si(x) : Xi → R, i = 1, · · · ,nc, is a risk-sensitive state penalty
term if the following proprieties hold:

(1) Si(0) = 0, and Si(x) > 0,∀x ̸= 0;
(2) Si(x)→∞ if x approaches ∂Xi;
(3) For initial value x(0) ∈ Int(Xi), there exists s ∈ R+ such that Si(x(t)) ≤ s,∀t ≥ 0

along solutions of the dynamics.
Comparing with similar works [41], [42] that use state penalty functions to tackle state con-

straints but without strict constraint satisfaction proofs, our proposed RS-SP term enables
us to provide the strict constraint satisfaction proofs in Theorem 5.1. Here the novel RS-SP
term is inspired by the so-called barrier Lyapunov function [4] that we utilized in Chapter 2
and Chapter 3. The first point of Definition 5.2 denotes that Si(x) is an effective Lyapunov
function candidate, which enables Si(x) to serve as part of Lyapunov function for the system
stability proof. The last two points imply that infx→∂Xi

Si(x) =∞ and infx∈Int(Xi) Si(x) ≥ 0,
which means that Si(x) serves as a barrier certificate for an allowable operating region Xi.

C. Optimal Control Problem

Based on the auxiliary system (5.5) and Definitions 5.1-5.2, an equivalent optimal control
problem (OCP) of the CRSP in Problem 5.1 is clarified as Problem 5.2. Comparing with
traditional ADP that accomplishes partial objectives of performance, robustness, and in-
put/state constraint satisfaction [41], [90], [92], [96], the applied problem transformation
here enables us to consider such multiple objectives together.
Problem 5.2 (OCP). Given Assumptions 5.1-5.3, consider the auxiliary system (5.5), find
u(x) and v(x) to minimize the cost function

V (x(t)) =
∫ ∞

t
r(x(τ),u(x(τ)), v(x(τ))) dτ , (5.6)

where the utility function follows r(x,u(x), v(x)) = rd(x) + ρv⊤(x)v(x) + rc(x,u(x)) with
ρ ∈ R+, rd(x) = l2M(x) + ρd2

M(x), and rc(x,u(x)) = W(u(x)) + L(x). The input penalty
function W(u(x)) follows

W(u(x)) =
m∑
j=1

2
∫ uj

0
βRjϕ

−1(ϑj/β) dϑj, (5.7)

where ϕ(·) is the RS-IP term in Definition 5.1; Rj is the j-th diagonal element of a positive
definite diagonal matrix R ∈ Rm×m. The state penalty function L(x) is defined as

L(x) = x⊤Qx+
nc∑
i=1

kiSi(x), (5.8)

where Q ∈ Rn×n is a positive definite matrix; ki is the risk sensitivity parameter that follows
ki = 1/(1 + d2

i ), where di is the distance from the state x to the boundary of hi(x); Si(·) is
the RS-SP term in Definition 5.2 for the i-th state constraint.
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Figure 5.2: Graphical illustration of the working scheme of the input penalty function
W(u(x)) with β = 1, z1 = βRj tanh−1(uj/β), z2 ∈ R and uj ∈ (−1, 1).

Unlike ADP related works [41], [90] that incorporate nonquadratic functionals to tackle
input saturation but without considering control effort related performance, W(u(x)) in
(5.7) could take into consideration of requirements for both control limits and control energy
expenditures by choosing a suitable matrix R. More details are introduced in Section 5.1.3.
The common used risk-neutral quadratic function x⊤Qx [92], [96] (capturing the desired state
performance) is augmented with the newly designed weighted RS-SP term ∑nc

i=1 kiSi(x) (ad-
dressing multiple state constraints) to construct L(x) in (5.8), which enables us to consider
the state-related performance and constraints together. The incorporation of Si(x) into L(x)
deteriorates the desired performance represented by x⊤Qx. Therefore, we propose the risk
sensitivity parameter ki, which relates with the distance from the constraint boundary, to
specify the inevitable trade-off between the state-related performance and constraint satis-
faction during the learning process. Note that this kind of trade-off is ignored in existing
related works [41], [42]. The detailed mechanism of L(x) is illustrated in Section 5.1.3.

5.1.3 Mechanism of Input and State Penalty Functions
The mechanism ofW(u(x)) and L(x) to enable the learning process to preserve performance
without violating strict input/state constraint satisfaction is detailly clarified here.

A. Mechanism of Input Penalty Function W(u(x))

By Definition 5.1, the explicit form of the RS-IP term is chosen as ϕ(·) = tanh(·) [90], [97].
Given the inevitable trade-off between input-related performance and constraint satisfaction,
W(u(x)) is designed to address the input constraints (5.2) and approximate u⊤R̄u (a common
desired performance criterion for control efforts) simultaneously, where R̄ ∈ Rm×m is a prior-
chosen positive definite matrix reflecting designers’ preferences. The mechanism ofW(u(x))
to tackle input constraints could be clarified from two perspectives, see Figure 5.2a and
Figure 5.2b, respectively. In the first perspective, input constraints are considered in a long
time-horizon. W(u(x)) in (5.7) is an integration of βRj tanh−1(uj/β) that is denoted as z1
in Figure 5.2a. When any uj, j = 1, · · · ,m, approaches to the input constraint boundaries
±β, it follows that the value ofW(u(x)) will be infinity. Since the optimization process aims
to minimize the cost function, the resulting optimal control strategy will be away from ±β;
Otherwise, a high value of the cost function occurs. From the other perspective, according
to the later result in (5.12), the resulting optimal control strategy based on W(u(x)) is in a
form of tanh(·) whose boundness enforces strict satisfaction of input constraints, as shown
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(a) Plot of S1(x1, x2). (b) Plot of the sum of S2(x3) and S3(x4).

(c) Plot of k1 for S1(x1, x2). (d) Plot of k2 for S2(x3) (left) and k3 for S3(x4)
(right).

Figure 5.3: Graphical illustration of the working scheme of the RS-SP terms S1(x1,x2),
S2(x3), S3(x4) and their corresponding risk sensivity parameters k1, k2 and k3.

in Figure 5.2b. The construction of W(u(x)) to reflect the desired performance for control
energy is shown in Figure 5.2c. Consider Wj(uj), the j-th summand of W(u(x)). It follows

Wj(uj) = 2βRjuj tanh−1(uj/β) + β2Rj log
(
1− u2

j/β
2
)
. (5.9)

As displayed in Figure 5.2c,Wj(uj) approximates the desired control energy criterion u⊤
j R̄uj

well via adjusting the value of Rj. Based on the above discussion, we know that W(u(x))
in (5.7) tackles input constraints while preserving performance concerning control energy
expenditures.

B. Mechanism of State Penalty Function L(x)

According to Definition 5.2, when a potential state constraint violation happens, the corre-
sponding RS-SP term will approach to infinity. Since the optimal control strategy aims to
minimize the total cost, states will be pushed away from the direction where a high value
of the RS-SP based L(x) occurs. Thus, the state constraint violation is avoided. To satisfy
Definition 5.2, we choose Si(x) = log (hi(x)) here. Note that the explicit form of log(hi(x)) is
adjusted based on given state constraints, which is exemplified later. For a better explanation
of the mechanism of the RS-SP term Si(x) and the corresponding risk sensitivity parameter
ki, we present a four-dimensional system example with the safe regions defined as X1 =
{x1,x2 ∈ R : h1(x1,x2) = x2

1 + x2
2 − 1 < 0} [98], X2 = {x3 ∈ R : h2(x3) = |x3| − 2 < 0}, and

X3 = {x4 ∈ R : h3(x4) = |x4| − 3 < 0} [39]. The corresponding RS-SP terms are designed

66



5.1 Problem Formulation

as S1(x1,x2) = log(α(x2)/(α(x2)− x2
1)) with α(x2) = 1− x2

2, S2(x3) = log(4/(4− x2
3)), and

S3(x4) = log(9/(9− x2
4)), respectively. As displayed in Figure 5.3a-5.3b, these RS-SP terms

act as barriers at constraint boundaries and confine the states remain in the safe regions.
This inherent risk-sensitive property enables us to tackle state constraints under an opti-
mization framework. As long as initial states lie in the safe regions and the cost function
is always bounded as time evolves, the subsequent state evolution will be restricted to the
safe regions. From Figure 5.3c-5.3d, we know that the role of Si(x) will be discouraged by ki
when states are far away from the boundary of hi(x). Therefore, state-related performance
is maintained when no state constraint violation occurs.

5.1.4 HJB Equation of OCP
Aiming at the transformed OCP in Problem 5.2, for any admissible control policies u, v ∈
Ψ(Ω), where Ψ(Ω) is the admissible control set [90, Definition 1], the associated optimal cost
function follows

V ∗(x(t)) = min
u,v∈Ψ(Ω)

∫ ∞

t
r(x(τ),u(x(τ)), v(x(τ))) dτ , (5.10)

and the HJB equation satisfies

0 = min
u,v∈Ψ(Ω)

[∇V ∗T (f(x) + g(x)u(x) + h(x)v(x)) + r(x,u(x), v(x))]. (5.11)

Assuming that the minimum on the right side of (5.11) exits and is unique [19]. Then, the
closed forms of optimal control policies u∗(x) and v∗(x) are obtained as [90]

u∗(x) = −β tanh
(

1
2βR

−1g⊤(x)∇V ∗
)

, (5.12)

v∗(x) = − 1
2ρh

⊤(x)∇V ∗. (5.13)

5.1.5 Problem Equivalence
Here we defer a detailed explanation of the method to get the optimal control policies (5.12)
and (5.13) in Section 5.2, and focus now on the proof of equivalence between Problem 5.1
and Problem 5.2. Comparing with the result provided in [91] that merely considers additive
disturbances, as shown in Theorem 5.1, the additional consideration of input and state
constraints further complicates the theoretical analysis.

Theorem 5.1. Consider the system described by (5.1) and controlled by the optimal control
policy (5.12). Suppose Assumptions 5.1-5.3 hold and the initial states and control inputs lie
in the predefined constraint satisfying sets (5.2) and (5.3). The optimal control policy (5.12)
guarantees robust stabilization of the system (5.1) without violating the input constraint (5.2)
and state constraint (5.3), if there exists a scalar ϵs ∈ R+ such that the following inequality
is satisfied

L(x) > 2ρv∗⊤(x)v∗(x) + ϵs. (5.14)
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Proof. (i) Proof of stability. As for V ∗(x) defined as (5.10), we know that when x = 0,
V ∗(x) = 0, and V ∗(x) > 0 for ∀x ̸= 0. Thus, it can serve as a Lyapunov function candidate
for stability proofs. Taking time derivative of V ∗(x) along the system (5.1) yields

V̇ ∗ = ∇V ∗⊤(f(x) + g(x)u∗(x) + k(x)d(x))
= ∇V ∗⊤(f(x) + g(x)u∗(x) + h(x)v∗(x))

+∇V ∗⊤g(x)g†(x)k(x)d(x) +∇V ∗⊤h(x)(d(x)− v∗(x)).
(5.15)

In light of (5.11), we get

∇V ∗⊤(f(x) + g(x)u∗(x) + h(x)v∗(x)) = −W(u∗(x))− L(x)− ρv∗⊤(x)v∗(x)− l2M(x)− ρd2
M(x).

(5.16)
From (5.12), we get

∇V ∗⊤g(x) = −2βR tanh−1(u∗(x)/β). (5.17)
Based on (5.13), the following equation establishes

∇V ∗⊤h(x) = −2ρv∗(x). (5.18)

Substituting (5.16), (5.17) and (5.18) into (5.15) yields

V̇ ∗ = −W(u∗(x))− L(x)− ρv∗⊤(x)v∗(x)− l2M(x)− ρd2
M(x)

− 2βR tanh−1(u∗(x)/β)g†(x)k(x)d(x)− 2ρv∗⊤(x)d(x) + 2ρv∗⊤(x)v∗(x).
(5.19)

By setting ςj = tanh−1(τj/β), we get

W(u∗(x)) = 2β
m∑
j=1

∫ u∗
j

0
Rj tanh−1(τj/β) dτj

= 2β2
m∑
j=1

∫ tanh−1(u∗
j/β)

0
Rjςj(1− tanh2(ςj)) dςj

= β2
m∑
j=1

Rj(tanh−1(u∗
j(x)/β))2 − ϵt,

(5.20)

where ϵt = 2β2∑m
j=1

∫ tanh−1(u∗
j (x)/β)

0 Rjςj tanh2(ςj) dςj. Based on the integral mean-value the-
orem, there exist a series of θj ∈ [0, tanh−1(µ∗

j(x)/β], j = 1, · · · ,m, such that

ϵt = 2β2
m∑
j=1

Rj tanh−1(µ∗
j(x)/β)θj tanh2(θj). (5.21)

Bearing in mind the relation (5.17) and the fact 0 < tanh2(θj) ≤ 1, it follows that

ϵt ≤ 2β2
m∑
j=1

Rj tanh−1(µ∗
j(x)/β)θj

≤ 2β2
m∑
j=1

Rj(tanh−1(µ∗
j(x)/β))2

= 1
2∇V

∗⊤g(x)R−1g⊤(x)∇V ∗.

(5.22)
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According to the definition of the admissible policy [90], V ∗ is finite. Moreover, there exists
wM > 0 such that ∥∇V ∗∥ ≤ ωM . Based on Assumption 5.1, we could rewrite (5.22) as

ϵt ≤ bϵt . (5.23)

where bϵt = 1
2 ∥R

−1∥ g2
Mω

2
M . Based on Assumption 5.2, the following equations establish:

−2βR tanh−1(u∗(x)/β)g†(x)k(x)d(x) ≤
∥∥∥βR tanh−1(u∗(x)/β)

∥∥∥2
+
∥∥∥g†(x)k(x)d(x)

∥∥∥2

≤ β2
m∑
j=1

R2
j (tanh−1(u∗(x)/β))2 + l2M(x),

(5.24)

− 2ρv∗⊤(x)d(x) ≤ ρ ∥v∗(x)∥2 + ρ ∥d(x)∥2 ≤ ρ ∥v∗(x)∥2 + ρd2
M(x). (5.25)

Substituting (5.20), (5.23), (5.24) and (5.25) into (5.19), we have

V̇ ∗ ≤ −L(x) + 2ρv∗⊤(x)v∗(x) + bϵt + β2
m∑
j=1

(R2
j −Rj)(tanh−1(u∗(x)/β))2

= −L(x) + 2ρv∗⊤(x)v∗(x) + ϵs.
(5.26)

where ϵs = bϵt + β2∑m
j=1(R2

j − Rj)(tanh−1(u∗(x)/β))2. Thus, V̇ ∗ < 0 establishes, if the
condition (5.14) holds. It yields that the optimal control policy u∗(x) robustly stabilizes the
system (5.1).

(ii) Proof of input and state constraint satisfaction. Denote V ∗(0) as the value of the
Lyapunov function candidate V ∗ at t = 0. According to the definition of admissible control
policies, V ∗(0) is a bounded function. If L(x) > 2ρv∗⊤(x)v∗(x)+ϵs, V̇ ∗ < 0 establishes, which
means that V ∗(t) < V ∗(0), ∀t. The boundness of V ∗(t) implies that state constraints will
not be violated; Otherwise, V ∗(t)→∞ if any state constraint violations happens according
to Definition 5.2. Since the hyperbolic tangent function satisfies −1 ≤ tanh(·) ≤ 1, the
optimal control policy in (5.12) follows −β ≤ u∗(x) ≤ β, i.e., inputs are confined into the
safety set (5.2). The proof provided here means that the optimal control policy u∗(x) for the
system (5.1) guarantees satisfaction of both constraints in terms of the system states and
control inputs.

It is proven in Theorem 5.1 that the CRSP (Problem 5.1) is equivalent to the OCP
(Problem 5.2) under the inequality (5.14). Thus, in order to solve the original CRSP, the
current task is to obtain the optimal control law (5.12) focusing on the transformed OCP,
which is detailly clarified in the next section.

5.2 Approximate Solution to OCP
To get the approximate solution to the OCP, instead of introducing a common actor-critic
structure used in [19], [90], here we adopt a single critic structure which enjoys lower compu-
tation complexity [95]. Furthermore, departing from traditional methods that directly add
additional noises into inputs to meet the PE condition required for the NN weight conver-
gence [19], [24], here we reply experience data to the off-policy weight update law to achieve
a sufficient excitation required for the critic NN weight convergence. Additionally, an on-
line PER algorithm and an offline experience buffer construction algorithm are proposed as
principled ways to provide the sufficient rich experience data.
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5.2.1 Value Function Approximation
According to the Weierstrass high-order approximation theorem [99], there exists a weighting
matrix W ∗ ∈ RN such that the continuous value function is approximated as

V ∗(x) = W ∗⊤Φ(x) + ϵ(x), (5.27)

for x ∈ Ω with Ω being a compact set, where Φ(x) : Rn → RN is the NN activation function
in a polynominal form, and ϵ(x) ∈ R is the approximation error. Denote ∇Φ ∈ RN×n and
∇ϵ(x) ∈ Rn as the partial derivatives of Φ(x) and ϵ(x), respectively. As N →∞, both ϵ(x)
and ∇ϵ(x) converge to zero uniformly. Without loss of generality, the following assumption
is given.

Assumption 5.4. [19] There exist constants bϵ, bϵx, bΦ, bΦx ∈ R+ such that ∥ϵ(x)∥ ≤ bϵ,
∥∇ϵ(x)∥ ≤ bϵx, ∥Φ(x)∥ ≤ bΦ, and ∥∇Φ(x)∥ ≤ bΦx.

For fixed admissible control policies u(x) and v(x), inserting (5.27) into (5.11) yields the
Lyapunov equation (LE)

W ∗⊤∇Φ(f(x) + g(x)u(x) + h(x)v(x)) + r(x,u(x), v(x)) = ϵh, (5.28)

where the residual error follows ϵh = −(∇ϵ(x))⊤(f(x)+g(x)u(x)+h(x)v(x)) ∈ R. According
to Assumption 5.1, the system dynamics is Lipschitz. This leads to the bounded residual
error, i.e., there exists bϵh ∈ R+ such that ∥ϵh∥ ≤ bϵh .

Unlike the common analysis and derivation process in well-known ADP related works [92],
[96], here we rewrite the NN parameterized LE (5.28) into a linear in parameter (LIP) form
that reads

Θ = −W ∗⊤Y + ϵh, (5.29)
where Θ = r(x,u(x), v(x)) ∈ R, and Y = ∇Φ(f(x) + g(x)u(x) + h(x)v(x)) ∈ RN . Note that
both Θ and Y could be obtained from real-time data.

Given the LIP form and the measurable Y , Θ in (5.29), from the perspective of adaptive
control, we transform the critic NN weight W ∗ learning into a parameter estimation problem
of an LIP system, where Y and W ∗ are treated as the regressor matrix and the unknown
parameter vector of a LIP system, respectively. This novel transformation enables us to
design a simple weight update law with guaranteed weight convergence in Section 5.2.2.

5.2.2 Off-Policy Weight Update Law
The ideal critic NN weight W ∗ in (5.29) is approximated by an estimated weight Ŵ which
satisfies the following relation

Θ̂ = −Ŵ⊤Y , (5.30)

where Θ̂ ∈ R is the estimated utility function. Denoting the weight estimation error as
W̃ = Ŵ −W ∗ ∈ RN . Then, we get

Θ̃ = Θ− Θ̂ = W̃⊤Y + ϵh. (5.31)

To achieve Ŵ → W ∗ and Θ̃ → ϵh, Ŵ should be updated to minimize E = 1
2Θ̃⊤Θ̃. Fur-

thermore, in order to guarantee the weight convergence while minimizing E, here we exploit
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experience data to support the online learning process. The utilized experience data could
achieve the sufficient excitation required for the weight convergence. This departs from re-
lated works [19], [24] that incorporate external noises to satisfy the PE condition. Finally,
we design a simple yet efficient off-policy weight update law of the critic NN that follows

˙̂
W = −ΓkcY Θ̃−

P∑
l=1

ΓkeYlΘ̃l, (5.32)

where Θ̃ = Θ + Ŵ⊤Y according to (5.30) and (5.31). Γ ∈ RN×N is a constant positive
definite gain matrix. kc, ke ∈ R+ are constant gains to balance the relative importance
between current and experience data to the online learning process. P ∈ N+ is the volume of
the experience buffers B and E, i.e., the maximum number of recorded data points. Yl ∈ RN

and Θl ∈ R denote the l-th collected data of the corresponding experience buffers B and
E, respectively. Our developed critic NN weight update law (5.32) is in a different form
comparing with the counterpart in well-known ADP related works (see [19], [92], [96] and
the references therein). Our proposed weight update law (5.32) is easily implemented and
enjoys guaranteed weight convergence without causing undesirable oscillations and additional
control energy expenditures.

To analyse the weight convergence of the critic NN, a rank condition about the experience
buffer B, which serves as a richness criterion of the recorded experience data, is firstly
clarified in Assumption 5.5.

Assumption 5.5. Given B = [Y1, ...,YP ] ∈ RN×P , there holds rank(B) = N .

Comparing with the traditional PE condition given in [64], the rank condition regarding
B in Assumption 5.5 provides an index about the data richness that could be checked online,
which is favourable to controller designers.

Based on the aforementioned settings, the NN weight convergence proof is shown as follows.

Theorem 5.2. Given Assumption 5.5, the weight learning error W̃ converges to a small
neighbourhood around zero.

Proof. Consider the following candidate Lyapunov function

Ver = 1
2W̃

⊤Γ−1W̃ . (5.33)

The time derivative of Ver reads

V̇er = W̃⊤Γ−1(−ΓkcY Θ̃− Γ
P∑
l=1

keYlΘ̃l)

= −kcW̃⊤Y Θ̃− W̃⊤
P∑
l=1

keYlΘ̃l

≤ −W̃⊤BW̃ + W̃⊤ϵer,

(5.34)

where B = ∑P
l=1 keYlY

⊤
l , and ϵer = −kcY ϵh −

∑P
l=1 keYlϵhl

. The boundness of Y and ϵh
results in bounded ϵer, i.e., there exists bϵer ∈ R+ such that ∥ϵer∥ ≤ bϵer . Since B is positive
definite according to Assumption 5.5, (5.34) could be written as

V̇er ≤ −
∥∥∥W̃∥∥∥ (λmin (B)

∥∥∥W̃∥∥∥− bϵer

)
. (5.35)
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Therefore, V̇er < 0 if
∥∥∥W̃∥∥∥ > bϵer

λmin(B) . Finally, it is concluded that the weight estimation error
of the critic NN will converge to the residual set

ΩW̃ =
{
W̃ |

∥∥∥W̃∥∥∥ ≤ bϵer

λmin(B)

}
. (5.36)

By observing (5.36), the size of ΩW̃ relates with the bound of ϵer. As N → ∞, we
know that ϵh → 0 results in ϵer → 0. Then, we get V̇er ≤ −λmin(B)

∥∥∥W̃∥∥∥2
, i.e., W̃ → 0

exponentially as t→∞. Equivalently, it is guaranteed that Ŵ converges to W ∗. Finally, in
conjugation with (5.12) and (5.13), the approximate optimal control policies are obtained as

û(x) = −β tanh
(

1
2βR

−1g⊤(x)∇Φ⊤(x)Ŵ
)

, (5.37)

v̂(x) = − 1
2ρh

⊤(x)∇Φ⊤(x)Ŵ . (5.38)

In the following part, the main conclusions are provided based on the off-policy weight
update law (5.32) and the approximate optimal control policies (5.37), (5.38).

Theorem 5.3. Consider the dynamics (5.5), the off-policy weight update law of the critic
NN in (5.32), and the control policies (5.37) and (5.38). Given Assumptions 5.1-5.5, for
sufficiently large N , the approximate control policies (5.37) and (5.38) stabilize the system
(5.5). Moreover, the critic NN weight learning error W̃ is uniformly ultimately bounded.

Proof. Consider the following candidate Lyapunov function

J = V ∗(x) + 1
2W̃

⊤Γ−1W̃ . (5.39)

Taking time derivative of (5.39) along the system (5.5) yields

J̇ = L̇V + L̇W . (5.40)

where L̇V = V̇ ∗(x) and L̇W = W̃⊤Γ−1 ˙̂
W .

The first term L̇V follows

L̇V = ∇V ∗⊤(f(x) + g(x)û(x) + h(x)v̂(x))
= ∇V ∗⊤(f(x) + g(x)u∗(x) + h(x)v∗(x))

+∇V ∗⊤g(x)(û(x)− u∗(x)) +∇V ∗⊤h(x)(v̂(x)− v∗(x)).
(5.41)

According to (5.16), (5.17) and (5.18), (5.41) is rewritten as

L̇V = −L(x)−W(u∗(x))− ρv∗(x)⊤v∗(x)− l2M(x)− ρd2
M(x)

− 2βR tanh−1(u∗(x)/β)(û(x)− u∗(x))− 2ρv∗⊤(x)(v̂(x)− v∗(x)).
(5.42)

72



5.2 Approximate Solution to OCP

Besides, we get

−2βR tanh−1(u∗(x)/β)(û(x)− u∗(x)) ≤ β2
∥∥∥R tanh−1(u∗(x)/β)

∥∥∥2
+ ∥û(x)− u∗(x)∥2

≤ β2
m∑
j=1

R2
j (tanh−1(u∗

j(x)/β))2 + ∥û(x)− u∗(x)∥2 .

(5.43)
Based on (5.20)-(5.26), the following equation also establishes

−W(u∗(x))− 2β tanh−1(u∗(x)/β)(û(x)− u∗(x))

≤ β2
m∑
j=1

(R2
j −Rj)(tanh−1(u∗

j(x)/β))2 + bϵt + ∥û(x)− u∗(x)∥2

≤ ϵs + ∥û(x)− u∗(x)∥2 .

(5.44)

Substituting (5.44) into (5.42) yields

L̇V ≤ −L(x)− ρv∗(x)⊤v∗(x)− l2M(x)− ρd2
M(x) + ϵs + ∥û(x)− u∗(x)∥2 − 2ρv∗⊤(x)(v̂(x)− v∗(x))

= −L(x)− l2M(x)− ρd2
M(x) + ϵs − ρv̂⊤(x)v̂(x) + ∥û(x)− u∗(x)∥2 + ρ ∥v̂(x)− v∗(x)∥2 .

(5.45)
As for ρv̂⊤(x)v̂(x) in (5.45), according to (5.38), we get

ρv̂⊤(x)v̂(x) = 1
4ρŴ

⊤∇Φ(x)h(x)h⊤(x)∇Φ⊤(x)Ŵ

= 1
4ρ(W ∗ + W̃ )⊤∇Φ(x)h(x)h⊤(x)∇Φ⊤(x)(W ∗ + W̃ )

= 1
4ρW

∗⊤H W ∗ + 1
4ρW̃

⊤H W̃ + 1
2ρW

∗⊤H W̃ .

(5.46)

where H = ∇Φ(x)h(x)h⊤(x)∇Φ⊤(x).
As for ρ ∥v̂(x)− v∗(x)∥2in (5.45), according to (5.38), we get

ρ ∥v̂(x)− v∗(x)∥2 = ρ

∥∥∥∥∥ 1
2ρh

⊤(x)∇Φ(x)W̃
∥∥∥∥∥

2

= 1
4ρW̃

⊤H W̃ . (5.47)

For simplicity, denote G ∗ = 1
2βR

−1g⊤(x)∇Φ⊤(x)W ∗ and Ĝ = 1
2βR

−1g⊤(x)∇Φ⊤(x)Ŵ , Ĝ =
[Ĝ1, · · · , Ĝm] ∈ Rm with Ĝj ∈ R, j = 1, · · · ,m. Based on (5.12) and (5.37), the Taylor series
of tanh(G ∗) follows

tanh(G ∗) = tanh
(
Ĝ
)

+
∂ tanh

(
Ĝ
)

∂Ĝ
(G ∗ − Ĝ ) +O((G ∗ − Ĝ )2)

= tanh
(
Ĝ
)
− 1

2β (Im×m −D(Ĝ ))R−1g⊤(x)∇Φ⊤(x)W̃ +O((G ∗ − Ĝ )2),
(5.48)

where D(Ĝ ) = diag(tanh2(Ĝ1), · · · , tanh2(Ĝm)), O((G ∗ − Ĝ )2) is a higher order term of the
Taylor series. By following [100, Lemma 1], the higher order term is bounded as∥∥∥O((G ∗ − Ĝ )2)

∥∥∥ ≤ 2
√
m+ 1

β

∥∥∥R−1
∥∥∥ gMbΦx

∥∥∥W̃∥∥∥ . (5.49)
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Using (5.12), (5.37) and (5.48), we get

û(x)− u∗(x) = β(tanh(G ∗)− tanh
(
Ĝ
)
) + ϵ∗

u

= −1
2(Im×m −D(Ĝ ))R−1g⊤(x)∇Φ⊤(x)W̃ + βO((G ∗ − Ĝ )2) + ϵ∗

u.
(5.50)

where ϵ∗
u = β tanh

(
1

2βR
−1g⊤(x)(∇Φ⊤(x)W ∗ +∇ϵ)

)
− β tanh

(
1

2βR
−1g⊤(x)∇Φ⊤(x)W ∗

)
, and

assuming that it is bounded by ∥ϵ∗
u∥ ≤ bϵ∗u .

As for ∥û(x)− u∗(x)∥2 in (5.45), since
∥∥∥Im×m −D(Ĝ )

∥∥∥ ≤ 2 [100], combining (5.49) with
(5.50), we get

∥û(x)− u∗(x)∥2 ≤ 3β2
∥∥∥O((G ∗ − Ĝ )2)

∥∥∥2
+ 3 ∥ϵ∗

u∥
2 + 3

∥∥∥∥−1
2(Im×m −D(Ĝ ))R−1g⊤(x)∇Φ⊤(x)W̃

∥∥∥∥2

≤ 6
∥∥∥R−1

∥∥∥2
g2
Mb

2
Φx

∥∥∥W̃∥∥∥2
+ 12mβ2 + 3b2

ϵ∗u
+ 12β

√
m
∥∥∥R−1

∥∥∥ gMbΦx

∥∥∥W̃∥∥∥ .
(5.51)

Substituting (5.46), (5.47), (5.51) into (5.45) yields

L̇V ≤−
1
2ρW

∗⊤H W̃ − L(x)− l2M(x)− ρd2
M(x)− 1

4ρW
∗⊤H W ∗ + ϵs

+ 6
∥∥∥R−1

∥∥∥2
g2
Mb

2
Φx

∥∥∥W̃∥∥∥2
+ 12mβ2 + 3b2

ϵ∗u
+ 12β

√
m
∥∥∥R−1

∥∥∥ gMbΦx

∥∥∥W̃∥∥∥ .
(5.52)

As for the second term L̇W , based on (5.32) and (5.34),

L̇W ≤ −W̃⊤XW̃ + W̃⊤ϵer. (5.53)

Finally, as for J̇ , substituting (5.52) and (5.53) into (5.40), and based on the fact that
∥W ∗∥ ≤ bW ∗ , ∥∇Φ(x)∥ ≤ bΦx , ∥h(x)∥ ≤ hM , we get

J̇ ≤− L(x)− l2M(x)− ρd2
M(x)− 1

4ρW
∗⊤H W ∗ − W̃⊤XW̃ +MW̃

+ 6
∥∥∥R−1

∥∥∥2
g2
Mb

2
Φx

∥∥∥W̃∥∥∥2
+ 12β

√
m
∥∥∥R−1

∥∥∥ g2
Mb

2
Φx

∥∥∥W̃∥∥∥+ 12mβ2 + 3b2
ϵ∗u

+ ϵs

≤− L(x)− l2M(x)− ρd2
M(x)− 1

4ρW
∗⊤H W ∗ − (λmin(B)− 6

∥∥∥R−1
∥∥∥2
g2
Mb

2
Φx

)
∥∥∥W̃∥∥∥2

+ 12mβ2 + 3b2
ϵ∗u

+ (12β
√
m
∥∥∥R−1

∥∥∥ g2
Mb

2
Φx + bM)

∥∥∥W̃∥∥∥+ ϵs

= −A− B
∥∥∥W̃∥∥∥2

+ C
∥∥∥W̃∥∥∥+D,

(5.54)
where M = ϵer − 1

2ρW
∗⊤H , and there exists bM = bϵer + 1

2ρb
2
Φxh

2
MbW ∗ ∈ R+ such that

∥M∥ ≤ bM ; A = L(x) + l2M(x) + ρd2
M(x) + 1

4ρW
∗⊤H W ∗ is positive definite; B = λmin(B)−

6 ∥R−1∥2
g2
Mb

2
Φx

, C = 12β
√
m ∥R−1∥ g2

Mb
2
Φx + bM and D = 12mβ2 + 3b2

ϵ∗u
+ ϵs.

Let the parameters be chosen such that B > 0. Since A is positive definite, the above
Lyapunov derivative is negative if

∥∥∥W̃∥∥∥ > C
2B +

√
C2

4B2 + D
B

. (5.55)
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5.2 Approximate Solution to OCP

Algorithm 4 Online Prioritized Experience Replay Algorithm
Input: Iteration index: nr; Buffer size: P ; Threshold: ξ.
Output: Experience buffers: B, E.

1: if nr ≤ P then
2: Record current Y , Θ into B, E respectively.
3: else
4: if ∥Wnr −Wnr−1∥ > ξ then
5: Record prioritized Y , Θ leading to high λmin(B).
6: else
7: Record current Y , Θ sequentially to update B,E.
8: end if
9: end if

Thus, the critic weight learning error converges to the residual set defined as

Ω̃W̃ =

W̃ | ∥∥∥W̃∥∥∥ ≤ C2B +
√
C2

4B2 + D
B

 . (5.56)

Assumption 5.5 used in Theorem 5.3 is the prerequisite to ensure that Ŵ converges to W ∗.
The guaranteed weight convergence enables us to directly apply Ŵ in (5.32) to construct the
approximate optimal control policies (5.37), (5.38). Assumption 5.5 is not restrictive and
could be satisfied by the algorithms proposed in the next subsection.

5.2.3 Online and Offline Experience Buffer Construction
To get rich enough experience data to satisfy Assumption 5.5, given the sampling deficiency
problem of the sequent way of data usage in existing ADP related works [39], [101], [102] and
inspired by the concurrent learning technique developed for system identification [65], here
we design both online and offline principled methods to provide the sufficient rich experience
data. These recorded informative experience data are then relayed to the weight update law
to achieve the required excitation for the guaranteed critic NN weight convergence.

A. Online PER Algorithm

Before the estimated weight converges (line 4-5), Algorithm 4 chooses the minimum eigen-
value (i.e., λmin(B)) as the priority scheme to filter experience data Y and Θ recorded into
the experience buffers B and E, respectively. Here the prioritized criterion is different from
ones used in existing PER algorithms [103]. We prefer experience data accompanied with
a larger λmin(B) given the facts that: a) a nonzero λmin(B) ensures that rank(B) = N in
Assumption 5.5 holds [65], [104], i.e., the convergence of Ŵ to W ∗ is guaranteed; b) ac-
cording to (5.35) and (5.36), a larger λmin(B) leads to a faster weight convergence rate and
a smaller residual set. Although efficient, the priority scheme λmin(B) accompanies with
additional computation loads. Thus, once the convergence is achieved (line 6-7), i.e., we
have obtained sufficient excitation, we alternate to a low-cost mode where recent data are
sequentially recorded. This kind of cyclic replacement way of data usage enjoys robustness
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Algorithm 5 Offline Experience Buffer Construction Algorithm
Input: Mesh size : δ ∈ Rn, or data point number: c ∈ Rn;

A = [A,A] with A,A ∈ Rn; Empty sets: X ∈ Rn×d.
Output: F ; G; H; K; R; P .

1: Sampling: X ; P = ∏n
i=1(Ai − Ai)/δi, or ∏n

i=1 ci.
2: Data collection: F ← ∇Φ⊤(X )f(X ); R ← rd(X );
G ← ∇Φ⊤(X )g(X ); H ← ∇Φ⊤(X )h(X ); K ← L(X )

to a dynamic environment since collected real-time data could reflect environmental changes
in time. Unlike standard methods that first construct a huge experience buffer and then
sample partial data [105], to reduce computation loads and relieve hardware requirements,
we directly build experience buffers with a limited buffer size P here, and all of the recorded
experience data are replayed to the critic NN for the online weight learning. The buffer size
P is a hyper-parameter that requires careful tuning. In order to satisfy Assumption 5.5, P
is selected such that P ≥ N holds.

B. Offline Experience Buffer Construction Algorithm

Algorithm 5 aims to construct experience buffers F ,G,H,K,R ∈ RN×P full with offline
recorded experience data, which are then used to support the online weight learning. For
simplicity, here the offline experience data are generated from pre-simulation within the given
operation region A. Specifically, for i-th dimension of an allowable operation region Ai ∈ R,
we sample data isometrically with a defined mesh size δi ∈ R+, or a prior given number
ci ∈ N+. The resulting sampling state space is denoted as X . Note that ← in Algorithm 5
means that experience data are recorded into corresponding experience buffers. Rather than
sampling partial data from the offline constructed experience buffers based on a uniform or
a prioritized way [105], we replay all the offline recorded experience data in an average way
for the online weight learning. Thereby, the off-policy weight update law (5.32) based on
Algorithm 5 is redesigned as

˙̂
W = −ΓkcY Θ̃− 1

P

P∑
l=1

ΓkeYlΘ̃l. (5.57)

The implementation of using the offline recorded experience data to support the online learn-
ing process enjoys two advantages: the rank condition in Assumption 5.5 is easily satisfied,
and the possible influence of data noises is offset by averaging. It is worth mentioning
that the mere exploitation of offline recorded data cannot tackle a dynamic environment
well. Thus, during the online operation, the offline experience data recorded into experience
buffers F ,G,H,K,R will be sequentially replaced with online counterparts.

Remark 5.1. The adopted simple three-layer NNs provides us with opportunities to revisit
the ER technique and investigate principled ways to exploit experience data to support the
online learning process. This is difficult in deep RL field because the complexity of deep NNs
hinders researchers from understanding the mechanism of the ER technique [105].
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5.3 Numerical Simulation

5.3 Numerical Simulation
This section numerically validates the effectiveness of the developed off-policy weight up-
date laws (5.32), (5.57), the approximate optimal control policy (5.37), and Algorithms 4-5.
Firstly, we consider an optimal regulation problem (ORP) of a nonlinear system [19] in Sec-
tion 5.3.1. This ORP serves as a benchmark to prove that both Algorithm 4 based (5.32)
and Algorithm 5 based (5.57) enable the estimated critic NN weight to converge to the ac-
tual value, which is marginally considered in existing single critic structure related works
[95], [106]. Then, a reach task for a 2-DoF robot manipulator [48] is considered in Section
5.3.2 to validate the real-time performance of our proposed control framework. Finally, our
developed RS-SP terms in Definition 5.2 are extended to achieve optimal tracking control
with prescribed performance in Section 5.3.3.

5.3.1 ORP of Benchmark Nonlinear System
To validate that based on our proposed off-policy weight update laws (5.32), (5.57), and Al-
gorithms 4-5, the estimated weight guarantees convergence to the actual value, a benchmark
problem [19] is investigated here. Note that only an ORP without considering disturbances
nor input/state constraints is investigated here. Otherwise, the actual value of the NN weight
is unknown. The benchmark continuous time nonlinear system is given as

ẋ = f(x) + g(x)u, x ∈ R2,

where f(x) =
[
−x1 + x2,−0.5x1 − 0.5x2(1− (cos 2x1 + 2)2)

]⊤
, g(x) =

[
0, cos(2x1) + 2

]⊤
.

The standard quadratic cost function follows

V (x) =
∫ ∞

0
x⊤Qx+ u⊤Rudt,

where Q = I2×2 and R = 1. Following the method in [107], we obtain the optimal value
function as V ∗ = 0.5x2

1 + x2
2. Thus, the optimal weight follows W ∗ = [0.5, 0, 1]⊤ by choosing

the activation function as Φ(x) = [x2
1,x1x2,x2

2]⊤. Initial values are set as x(0) = [1, 1]⊤,
û(0) = 0. For the off-policy weight update law (5.32) based on Algorithm 4, we choose
P = 5, kc = 1, ke = 1, Γ = diag(2, 1.4, 1), and ξ = 10−3. It is displayed in Figure 5.4a that
after 1 s, the estimated weight converges to

Ŵ1 = [0.5040, 0.0592, 1.0625]⊤.

Regarding the weight update law (5.57) under Algorithm 5, we start with constructing
offline experience buffers by sampling 10 data points separately for x1 ∈ A1 = [−2, 2],
x2 ∈ A2 = [−4, 4]. P = 100, kc = 1, ke = 1, and Γ = diag(5, 0.5, 0.01) are chosen during the
online operation. As displayed in Figure 5.4b, the estimated weight converges to

Ŵ2 = [0.50721,−0.0417, 0.9783]⊤.

Thus, it is concluded that the weight update laws (5.32), (5.57) under Algorithms 4-5 ensure
that Ŵ converges to W ∗. Comparing with the results shown in [19], our proposed off-
policy weight update laws enable Ŵ converge to W ∗ with a fast speed without incorporating
external noises to satisfy the PE condition.
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(a) Ŵ1 under the online Algorithm 4.
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(b) Ŵ2 under the offline Algorithm 5.

Figure 5.4: The trajectories of the estimated critic NN weight.

5.3.2 CRSP of Robot Manipulator

To further demonstrate the real-time performance of our proposed control framework, a
reach task of a 2-DoF robot manipulator is considered here. In particular, a robot starting
from multiple initial positions is driven to reach the desired point under disturbances, input
and state constraints. The model of the robot manipulator follows [48]

M(q)q̈ + C(q, q̇)q̇ = τ ,

where q = [q1, q2]⊤ ∈ R2. The explicit model knowledge about M(q), C(q, q̇) is referred to
Section 2.5.1 of Chapter 2.

Let x = [x1,x2,x3,x4]⊤ = [q1, q2, q̇1, q̇2]⊤ ∈ R4, the robot dynamics could be written in
the state-space form as (5.1), where f(x) = [x3,x4, (M−1(−C)[x3,x4]⊤)⊤]⊤, and g(x) =
[[0, 0]⊤, [0, 0]⊤, (M−1)⊤]⊤. Besides, with k(x) = [[1, 0]⊤, [0, 1]⊤, 02×2]⊤, we assume that the
robot suffers a disturbance d(x) = [δ1x1 sin(x2), δ2x2 cos(x1)]⊤ , where δ1, δ2 ∈ [−1, 1]. Given
∥d(x)∥ ≤ ∥x∥, and g†(x)k(x)d(x) = 0, Assumptions 5.2-5.3 are satisfied by setting dM(x) =
∥x∥, and ∥lM(x)∥ = 0. The input constraints are considered as Uj = {uj ∈ R : |uj| ≤ 3},
j = 1, 2. A circular state constraint X = {x ∈ R2 : h(x1,x2) = x2

1 + x2
2 − 1 < 0} is considered

here. To approximate the value function well, we choose the activation function as Φ(x) =
[x2

1,x2
2,x2

3,x2
4,x1x2,x1x3,x1x4,x2x3,x2x4,x3x4]⊤, and the parameters for the weight update

law (5.32) are set as P = 15, kc = 0.2, ke = 0.01, Γ = I10×10, and ξ = 10−3.
To fully demonstrate the effectiveness of our method to address state constraints even

under input saturation and disturbances, the robot joint trajectories under multiple initial
positions are shown in Figure 5.5a. We observe that the robot is driven to reach the desired
point (i.e., zero point) while obeying the predefined state constraints. It is shown that when
states approach to the constraint boundary, they will be driven back to safe states under
our proposed method. As displayed in Figure 5.5b, the weight convergence result achieves
at t = 12 s under our proposed weight update law (5.32). The aforementioned simulation
results based on a 2-DoF robot manipulator validate that the off-policy weight update law
(5.32) and the approximate optimal control policy (5.37) fulfill real-time requirements for
practical applications.
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(a) The trajectories of x1 and x2. (b) The trajectories of Ŵ .

Figure 5.5: The phase plot of states x1 and x2 under different initial values and the trajectory
of the estimated weight Ŵ of the 2-DoF robot manipulator.

5.3.3 Optimal Tracking Control with Prescribed Performance

0 10 20 30 40 50 60
-0.5

0

0.5

1

Figure 5.6: The weight convergence result of Ŵ for the PP-OTCP case.

This subsection extends our developed RS-SP terms to the optimal tracking control prob-
lem (OTCP) of the 2-DoF robot manipulator used in Section 5.3.2. The reference trajectory
follows xr(t) = [0.5 cos (2t), cos t,− sin (2t),− sin (t)]⊤. The utilized RS-SP terms contribute
to achieve prescribed performance of the tracking error e = x− xr ∈ R4. The simulation is
conducted based on the tracking control scheme illustrated in our work [51].

To encode the requirements of the tracking error, we choose the following prescribed
performance function (PPF):

ρi(t) = (60π/180− 3π/180)e−0.1t + 3π/180, i = 1, 2, 3, 4.
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The PPF inspired RS-SP terms are utilized to construct the state penalty function

L =
4∑
i=1

ki log α2
i

α2
i − ζ2

i

+ hi log β2
i

β2
i − δ2

i

,

where ζi = ei/ρi, δi = xri
/ρi, and ki, hi are risk awareness parameters to be designed. For

simulation, we choose k1 = 1, α1 = 0.20; k2 = 0.3, α2 = 0.25; k3 = 1, α3 = 0.25; k4 = 1,
α4 = 0.25; and hi = 0.01, βi = 10, i = 1, 2, 3, 4. Denoting η = [e⊤,x⊤

r ]⊤ ∈ R8, the chosen
basis set Φ(η) ∈ R23 to approximate the value function reads

Φ(η) = 1
2[η2

1, η2
2, 2η1η3, 2η1η4, 2η2η3, 2η2η4, η2

1η
2
2, η2

1η
2
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2
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2
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4η
2
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2
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2
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4η
2
8]⊤.

As shown in Figure 5.6, the weight convergence result achieves after 50 s. The tracking
error comparison results displayed in Figure 5.7 validate the effectiveness of using L to achieve
the tracking control with prescribed performance described by the PPF. In particular, the
trajectories of e1 and e2 based on the common quadratic cost function [20] (termed as OTCP
in Figure 5.7) violate the boundaries of the PPF. However, our proposed method (termed
as PP-OTCP in Figure 5.7) efficiently drives the robot manipulator to track the reference
trajectory xr precisely and satisfy the performance requirements described by the PPF.
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(a) Trajectories of e1.
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(b) Trajectories of e2.

Figure 5.7: The comparison results of the tracking errors.

5.4 Summary
An off-policy risk-sensitive RL-based control framework is proposed to stabilize a nonlin-
ear system that subjects to additive disturbances, input and state constraints. The pseudo
control and the resulting auxiliary system are firstly introduced to address additive dis-
turbances under an optimization framework. Then, risk-sensitive input and state penalty
terms, incorporated into the value function as optimization criteria, allow us to tackle both
input and state constraints in a long time-horizon. This helps to avoid abrupt changes of
control inputs that are unfavourable for the online learning process. The transformed OCP
is approximately solved by a single critic learning structure with our developed off-policy
weight update law. Multiple numerical comparison simulations validate the effectiveness of
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5.4 Summary

our developed control framework. One interesting point is that risk-sensitive state penalty
terms allow us to realize the prescribed performances for full states of the optimal tracking
control problem.

Our adopted single critic learning structure leads to computation simplicity and eliminates
approximation errors caused by an actor NN. Furthermore, the exploitation of experience
data to guarantee the weight convergence enables the proposed control strategy to be ap-
plicable to practical applications. However, the proposed control framework requires the
knowledge of a nominal dynamics, which is not always available in practical applications.
The future work aims to develop a low-cost model-free control strategy while preserving
rigorous stability analysis.
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Safe Approximate Optimal Control Through
Reinforcement Learning and Safety Filter 6

The previous Chapter 5 requires a known disturbance bound to provide the robust safety
guarantee. However, the utilized disturbance bound often results in controllers with con-
servative behaviors. Besides, Chapter 5 interprets safe regions as convex constraints, and
construct associated RS-SP terms to encourage system states to remain at predetermined
safe regions. However, computing these safe regions in advance is computationally expensive.

This chapter attempts to develop a novel RL augmented control approach, termed as in-
cremental adaptive dynamic programming (IADP), to solve the problems mentioned above.
In particular, measured input-state signals are used to facilitate model-free control. Thereby,
the knowledge of dynamics and disturbances are avoided. The safety issue is investigated
through a different perspective. We first formulate unsafe regions as convex constraints,
then employ barrier functions to encode unsafe regions that should be stay away. The or-
ganization of this chapter is as follows. The problem formulation of the robust stabilization
problem is first provided in Section 6.1. Then, measured input-state data is leveraged to get
an equivalent incremental dynamics (no explicit model knowledge is used) to the original
investigated system. Thereby, we sidestep the online identification process, as well as its ac-
companying computation complexity and parameter tuning efforts. Thereafter, the resulting
incremental dynamics serves as a basis to allow the design of the model-free approximate
optimal incremental control strategy in Section 6.2. Furthermore, we design a safety filter
to ensure safety and achieve the trade-off between safety and performance under a satisfying
framework in Section 6.3. Numerical simulation results shown in Section 6.4 demonstrate the
effectiveness and the superiority of our developed approach. Finally, Section 6.5 summarizes
this chapter.

6.1 Problem Formulation
Considering the following continuous time control-affine nonlinear system:

ẋ = f(x) + g(x)u(x) + d(t), (6.1)
where x ∈ Rn, u(x) ∈ Rm are system states and inputs, respectively. f(x) : Rn → Rn,
g(x) : Rn → Rn×m are continuous and locally Lipschitz drift and input dynamics. d(t) ∈ Rn

represents a bounded time-varying external disturbance. Assume that no knowledge of
dynamics (6.1) is available except for the dimensions of system states and inputs.

The main objective is to tackle the robust stabilization problem of the highly uncertain
dynamics (6.1) operating in a disturbed environment, which is formulated as follows.
Problem 6.1. Design a control strategy u(x) such that the system (6.1) perturbed by a
bounded disturbance d(t) is stable under input saturation Uj = {uj ∈ R : |uj| ≤ β} , j =
1, · · · ,m, where β ∈ R+ is a known saturation bound.
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Remark 6.1. Although the explicit form of the controlled plant (6.1) is provided here, which
is introduced for the analytical purpose and facilitates the controller design as well as the
stability analysis in the following sections, our developed control approach relies on neither
model parameters nor environmental information.

6.1.1 Incremental Dynamics
The highly uncertain dynamics (6.1) cannot be directly used to design a controller to solve
Problem 6.1. Therefore, based on measured input-state data, this section leverages the TDE
technique [108], [109] to get an incremental dynamics that is an equivalent of (6.1). This
formulated incremental dynamics reflects the system response of the controlled plant (6.1)
without using explicit model parameters, or preceding identification procedures. Here, the
attempt to relieve dependence on the accurate knowledge of dynamics departs from existing
works where additional computation-intensive tools such as NNs [24]–[26], fuzzy models [110],
GP [27], or observers [28] are required to address model uncertainties and/or environmental
disturbances. The constructed incremental dynamics in this section serves as a basis for the
development of the desired model-free control strategy and the rigorous closed-loop system
stability analysis in the following sections.

Before proceeding, the following assumption is provided to facilitate the formulation of an
incremental dynamics.

Assumption 6.1. [20] The input dynamics g = [g1, g2, · · · , gm] is bounded, and its columns
g1, g2, · · · , gm ∈ Rn are linearly independent. The function g† = (g⊤g)−1g⊤ : Rn → Rm×n is
bounded and locally Lipschitz continuous.

Remark 6.2. Assumption 6.1 is common in ADP related works [20], [111]. Here, g(x) is
assumed to be full column rank such that its pseudo inverse g† could be expressed as a simple
algebraic formula (the inverse of g⊤(x)g(x) exists). The introduced g† is used to extend the
TDE method usually applied to the E-L equation [108], [109] to the control-affine nonlinear
system (6.1). Note that it is a common assumption that the input dynamics g is bounded.
This property is widely observed in many physical systems, such as robot manipulator systems
[48], vehicle dynamics [112], and aircraft models [113].

To get the incremental dynamics, we start with introducing a constant matrix ḡ ∈ Rn×m

and multiply ḡ† on the dynamics (6.1),

ḡ†ẋ = ḡ†f(x) + ḡ†g(x)u(x) + ḡ†d(t) = H(x, ẋ) + u(x), (6.2)

where H(x, ẋ) = (ḡ†−g†(x))ẋ+g†(x)f(x)+g†(x)d(t) : Rn×Rn → Rm. It is a lump term that
embodies all the unknown model knowledge (i.e., f(x), g(x)) as well as external disturbances
(i.e., d(t)).

Then, with a sufficiently high sampling rate, based on the TDE technique [108], [109], the
unknown H(x, ẋ) in (6.2) could be estimated by time-delayed signals as

Ĥ(x, ẋ) = H(x0, ẋ0) = ḡ†ẋ0 − u0, (6.3)

where x0 = x(t − L), u0 = u(x(t − L)). L ∈ R+ is the delay time chosen as one or several
sampling periods in practical digital implementations. Given that the smallest achievable L
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in digital devices is the sampling period [114], thus we finally take the delay time L to be
the same as the sampling period to get an accurate estimation of H(x, ẋ) in (6.3). In other
words, x0, u0 are the values of states and inputs at the previous sampling period.

Finally, substituting (6.3) into (6.2), we get the incremental dynamics as

∆ẋ = ḡ∆u+ ḡξ, (6.4)

where ∆ẋ = ẋ − ẋ0 ∈ Rn, and ∆u = u(x) − u0 ∈ Rm are incremental states and control
inputs, respectively. ξ = H(x, ẋ) − Ĥ(x, ẋ) ∈ Rm denotes the so-called TDE error, which
is proved to be bounded as given in Lemma 6.1. Here, with a predefined ḡ, the measured
input-state data (i.e., ẋ, ẋ0, u, and u0) are adopted to reflect the system response in an
incremental way without using model or environmental information.

Remark 6.3. The so-called sufficiently high sampling rate, which is a prerequisite for esti-
mating the unknown H(x, ẋ) by reusing past measured input-state data, can be chosen as the
value that is larger than 30 times the system bandwidth [114], [115]. In this setting, a digital
control system can be regarded as a continuous system so that H(x, ẋ) in (6.2) does not vary
significantly during the sampling period. Thus, the TDE error ξ in (6.4) is sufficiently small.

Remark 6.4. The TDE technique, which is usually used in the robotic field [108], [109], is
extended to the continuous time control-affine nonlinear system (6.1) in this section. From a
practical perspective, the applied TDE technique enables us to switch from the requirement of
accurate mathematical models to sensor capabilities of providing accurate measurements of
∆ẋ (constructed from ẋ and ẋ0) and ∆u (constructed from u(x) and u0). Though the derived
incremental dynamics (6.4) suffers a practical utility problem given that state derivatives, or
even partial state variables are not directly measurable for certain cases, authors argue that
state derivative estimation techniques [116], [117], numerical differential techniques [118],
or state observer [119] could help. These potential solutions mentioned above deviate from
the main objective of this chapter and thus remain as future works.

However, although an equivalent of (6.1) is provided in (6.4) without using explicit knowl-
edge of dynamics, the unknown TDE error ξ hinders us to directly utilize (6.4) to design
controllers. Therefore, a method will be developed to address the TDE error ξ in the
next subsection. Before proceeding, here we first provide the theoretical analysis about the
boundness property of ξ, which facilitates the method to tackle the TDE error ξ under an
optimization framework in Section 6.1.2.

Lemma 6.1. Given a sufficiently high sampling rate, ∃ξ̄ ∈ R+, there holds ∥ξ∥ ≤ ξ̄.

Proof. Combining (6.2) with (6.3), the TDE error follows

ξ = H(x, ẋ)− Ĥ(x, ẋ) = H(x, ẋ)−H(x0, ẋ0)
= (ḡ† − g†(x))(ẋ− ẋ0) + (g†

0 − g†(x))ẋ0 + g†(x)f(x)− g†
0f0 + g†(x)d(t)− g†

0d0

= (ḡ† − g†(x))∆ẋ+ (g†
0 − g†(x))ẋ0 + g†(x)(f(x)− f0) + (g†(x)− g†

0)f0

+g†(x)(d(t)− d0) + (g†(x)− g†
0)d0. (6.5)

Besides, based on the system (6.1), we get

∆ẋ = f(x) + g(x)u(x) + d(t)− f0 − g0u0 − d0

= g(x)∆u+ (g(x)− g0)u0 + f(x)− f0 + d(t)− d0. (6.6)
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Then, substituting (6.6) into (6.5) yields

ξ = (ḡ† − g†(x))g(x)∆u+ (ḡ† − g†(x))[(g(x)− g0)u0 + f(x)− f0 + d(t)− d0] + (g†
0 − g†(x))ẋ0

+g†(x)(f(x)− f0) + (g†(x)− g†
0)f0 + g†(x)(d(t)− d0) + (g†(x)− g†

0)d0

= (ḡ†g(x)− Im×m)∆u+ δ1, (6.7)

where δ1 = ḡ†(g(x)− g0)u0 + ḡ†(f(x)− f0) + ḡ†(d(t)− d0).
For a sufficiently high sampling rate, the gap between successive states is sufficiently

small. Thus, it is reasonable to assume that there exists a positive constant δ̄1 ∈ R+ such
that ∥δ1∥ ≤ δ̄1. In addition, the bounded control input u implies that ∥∆u∥ ≤ 2β holds. By
choosing a suitable ḡ such that

∥∥∥ḡ†g(x)− Im×m

∥∥∥ ≤ c establishes, we could get

∥ξ∥ ≤
∥∥∥ḡ†g(x)− Im×m

∥∥∥ ∥∆u∥+ ∥δ1∥ ≤ c ∥∆u∥+ δ̄1 ≤ 2βc+ δ̄1 = ξ̄. (6.8)

Remark 6.5. By using the Taylor series expansion based incremental control technique,
previous works [120]–[124] attempt to provide the incremental dynamics by offering the first-
order approximation of ẋ in the neighbourhood of [x0,u0]. It follows

ẋ = f(x) + g(x)u(x)

= f0 + g0u0 + ∂[f(x) + g(x)u(x)]
∂x

|x=x0,u=u0(x− x0)

+∂[f(x) + g(x)u(x)]
∂u

|x=x0,u=u0(u− u0) +H.O.T .
∼= ẋ0 + F [x0,u0]∆x+G[x0,u0]∆u,

where F [x0,u0] = [∂(f(x) + g(x)u(x))/∂x]|x=x0,u=u0 ∈ Rn×n is the system matrix, and
G[x0,u0] = [∂(f(x) + g(x)u(x))/∂u]|x=x0,u=u0 ∈ Rn×m is the control effectiveness matrix.
However, a recursive least square method is demanded to search for suitable gain matrices
F [x0,u0] and G[x0,u0] to construct the incremental dynamics [120]–[122]. This required
online identification of F [x0,u0] and G[x0,u0] introduces additional computational burden.

6.1.2 Problem Transformation to Optimal Incremental Control
To address the unknown TDE error in the incremental dynamics (6.4), here we attempt to
investigate the original robust stabilization problem shown as Problem 6.1 from an optimal
control perspective, whereby the TDE error could be reflected in the performance index and
further be attenuated during the optimization process. This departs from existing TDE
related works [108], [109], [120]–[124] that directly ignore the influence of the TDE error on
the controller performance. Moreover, the effort to solve Problem 6.1 under an optimization
framework enables us to take the desired performance indexes regarding state deviations
and control energy expenditures into consideration. These considered performance indexes
endow the resulting TDE based model-free control strategy with guaranteed optimality.

The TDE error ξ in (6.4) is unknown. Thus, the available incremental dynamics to design
a controller to solve Problem 6.1 follows

∆ẋ = ḡ∆u. (6.9)
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To attenuate the TDE error ξ that is overlooked in (6.9), as well as to optimize the
performance of states and control inputs, we consider the cost function of (6.9) as

V (x(t)) =
∫ ∞

t
r(x(τ), ∆u(τ)) dτ , (6.10)

where r(x, ∆u) = x⊤Qx+W(u0+∆u)+ ξ̄2
o : Rn×Rm → R+. The common quadratic positive

definite term x⊤Qx reflects users’ preference for the controller performance concerning state
deviations, where Q ∈ Rn×n is a positive definite matrix. The nonquadratic positive definite
control penalty function W(u0 + ∆u), which relates to the measured u0 and to be designed
∆u, is introduced to enforce the control limit on u(x) based on the bounded tanh function.
The explicit form of this part follows [90]

W(u0 + ∆u) = 2
m∑
j=1

∫ u0j
+∆uj

0
β tanh−1(ϑj/β) dϑj. (6.11)

where ϑj ∈ Rm. Originally, we could incorporate the quadratic TDE error bound ξ̄2 into
r(x, ∆u) to attenuate the TDE error ξ during the optimization process. However, according
to (6.8) of Lemma 6.1, the explicit value of ξ̄ is unknown. Thus, we seek for a bounded
ξ̄2
o , where ξ̄o = c̄ ∥∆u∥ and c̄ ∈ R+ is chosen as illustrated in Theorem 6.1, to replace ξ̄2 to

accomplish the same goal. It is worth noting that the designed utility function r(x, ∆u) here
enables us to perform the optimization of incremental control inputs.

Remark 6.6. Note that there exist other options to address the TDE error ξ. For example,
by treating the unknown TDE error ξ in (6.4) as a kind of disturbance, we can introduce the
widely used disturbance-observer based methods [125] or sliding mode control methods [126]
to compensate the TDE error ξ. Comparing to these add-on methods, our strategy enjoys
computational simplicity.

The above settings allow us to formulate an optimal incremental control problem presented
as Problem 6.2, whose equivalence to Problem 6.1 will be later proved in Theorem 6.1.

Problem 6.2. Given Assumption 6.1 and Lemma 6.1, consider the incremental dynamics
(6.9), find an incremental control strategy ∆u to minimize the cost function defined as (6.10).

Before proceeding to formally solve Problem 6.2, by following [90, Definition 1] where
admissible controls are defined based on (6.1), here we define the set of incremental control
inputs that are considered admissible for Problem 6.2 dealt with in this section. The ad-
missible incremental control given in Definition 6.1 facilitates the following derivation of the
closed-form optimal incremental control strategy.

Definition 6.1 (Admissible incremental control). An incremental control ∆µ(x) is defined
to be admissible with respect to (6.10) on Ω ⊆ Rn, denoted by ∆µ(x) ∈ Ψ(Ω), if ∆µ(x)
is continuous on Ω, ∆µ(0) = 0, ∆u(x) = ∆µ(x) stabilizes (6.9) on Ω, and V (x) is finite
∀x ∈ Ω.

For any admissible incremental control policies ∆u ∈ Ψ(Ω), using Leibniz’s rule [127] to
differentiate V in (6.10) yields the following relation

0 = r(x, ∆u) +∇V T ẋ = r(x, ∆u) +∇V T (∆ẋ+ ẋ0) = r(x, ∆u) +∇V T (ḡ∆u+ ẋ0). (6.12)
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Define the Hamiltonian function as

H(x, ∆u,∇V ) = r(x, ∆u) +∇V T (ḡ∆u+ ẋ0). (6.13)

Let V ∗(x) be the optimal cost function defined as

V ∗(x) = min
∆u∈Ψ(Ω)

∫ ∞

t
r(x(τ), ∆u(τ)) dτ . (6.14)

Combining with (6.13), V ∗(x) satisfies the HJB equation

0 = min
∆u∈Ψ(Ω)

[H(x, ∆u,∇V ∗)]. (6.15)

Assume that the minimum on the right side of (6.15) exists and is unique [19]. By using
the stationary optimality condition, i.e., ∂H(x, ∆u,∇V ∗)/∂∆u = 0, we get the closed-form
optimal incremental control strategy as

∆u∗ = −β tanh
(

1
2β ḡ

⊤∇V ∗
)
− u0. (6.16)

Then, we could construct the corresponding optimal control strategy as

u∗ = u0 + ∆u∗ = −β tanh
(

1
2β ḡ

⊤∇V ∗
)

. (6.17)

Departing from traditional ADP related works [19], [20] where the total optimal control
input u∗ is directly designed, here we first get the theoretically derived incremental optimal
control strategy ∆u∗ in (6.16), and then construct u∗ based on the measured u0 and the
designed ∆u∗. This difference lies in that Problem 6.2 is formulated based on the incremental
dynamics (6.9) that relates to incremental states and control inputs.

Remark 6.7. Alternatively, we could replace the utilized W(u0 + ∆u) with W(∆u) =
2∑m

j=1
∫∆uj

0 α tanh−1(ϑj/α) dϑj. This enforces the constraint satisfaction of the incremental
control inputs, which is denoted as −α ≤ ∆uj ≤ α, α ∈ R+, j = 1, · · · ,m. By follow-
ing the aforementioned derivation processes (6.14)-(6.17), the corresponding optimal incre-
mental control follows ∆u∗ = −α tanh

(
1

2α ḡ
⊤∇V ∗

)
. Then, the resulting optimal control is

u∗ = u0 + ∆u∗. However, in this case, the control limit on u(x) cannot be addressed. Given
that input saturation is common in real life and violations of it might lead to serious conse-
quences, we prefer to incorporate (6.11) into r(x, ∆u) to enforce the control limit on u(x).

To get ∆u∗ (6.16) and u∗ (6.17), ∇V ∗ remains to be determined. We defer the explicit
method to acquire ∇V ∗ in Section 6.2, and focus now on the equivalence proof to show that
after solving Problem 6.2, the resulting u∗ (6.17) constructed from the designed ∆u∗ (6.16)
is the robust stabilization solution to Problem 6.1.

Theorem 6.1. Given Assumption 6.1 and Lemma 6.1, consider the system described by
(6.1), if there exists a scalar c̄ ∈ R+ such that

ξ̄ < c̄ ∥∆u∥ , (6.18)

the system (6.1) is robustly stabilized by the optimal control strategy (6.17) with the optimal
incremental control strategy (6.16).
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Proof. Given that V ∗(x = 0) = 0, and V ∗ > 0 for ∀x ̸= 0, V ∗ defined in (6.14) could serve
as a Lyapunov function candidate for the stability proof. Taking time derivative of V ∗ along
the incremental dynamics (6.4), which is an equivalent of the original dynamics (6.1), we get

V̇ ∗ = ∇V ∗⊤(∆ẋ+ ẋ0) = ∇V ∗⊤(ḡ∆u∗ + ḡξ + ẋ0) = ∇V ∗⊤(ḡ∆u∗ + ẋ0) +∇V ∗⊤ḡξ. (6.19)

According to (6.15) and (6.16), the following equations hold:

∇V ∗⊤(ḡ∆u∗ + ẋ0) = −x⊤Qx−W(u0 + ∆u∗)− ξ̄2
o , ∇V ∗⊤ḡ = −2β tanh−1

(
u0 + ∆u∗

β

)
.

(6.20)
Substituting (6.20) into (6.19) reads

V̇ ∗ = −x⊤Qx−W(u0 + ∆u∗)− ξ̄2
o − 2β tanh−1

(
u0 + ∆u∗

β

)
ξ. (6.21)

As for W(u0 + ∆u∗) in (6.21), based on the explicit form in (6.11) and by setting ςj =
tanh−1 (ϑj/β), it follows

W(u0 + ∆u∗) = 2β
m∑
j=1

∫ u0j
+∆u∗

j

0
tanh−1(ϑj/β) dϑj

= 2β2
m∑
j=1

∫ tanh−1

(
u0j

+∆u∗
j

β

)
0

ςj(1− tanh2(ςj)) dςj

= β2
m∑
j=1

(
tanh−1

(
u0j

+ ∆u∗
j

β

))2

− ϵu, (6.22)

where ϵu = 2β2∑m
j=1

∫ tanh−1

(
u0j

+∆u∗
j

β

)
0 ςj tanh2(ςj) dςj. Based on the integral mean-value

theorem, there exists a series of θj ∈ [0, tanh−1
(
u0j

+∆u∗
j

β

)
], j = 1, · · · ,m, such that

ϵu = 2β2
m∑
j=1

tanh−1
(
u0j

+ ∆u∗
j

β

)
θj tanh2(θj). (6.23)

Based on (6.20) and the fact 0 ≤ tanh2(θj) ≤ 1, it follows

ϵu ≤ 2β2
m∑
j=1

(
u0j

+ ∆u∗
j

β

)
θj ≤ 2β2

m∑
j=1

(
tanh−1

(
u0j

+ ∆u∗
j

β

))2

= 1
2∇V

∗⊤ḡḡ⊤∇V ∗. (6.24)

The definition of admissible incremental control in Definition 6.1 implies that V ∗ is finite.
Additionally, there exists b∇V ∗ ∈ R+ such that ∥∇V ∗∥ ≤ b∇V ∗ . Thus, we could rewrite
(6.24) as

ϵu ≤ bϵu = 1
2 ∥ḡ∥

2 b2
∇V ∗ . (6.25)

Then, substituting (6.22), (6.25) into (6.21) yields

V̇ ∗ ≤ −x⊤Qx− (ξ̄2
o − ∥ξ∥

2)− [β tanh−1
(
u0 + ∆u∗

β

)
+ ξ]2 + bϵu . (6.26)
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By choosing ξ̄o = c̄ ∥∆u∥, and c̄ is chosen to satisfy c̄ ∥∆u∥ > ξ̄, where ξ̄ is defined in (6.8),
the following inequality holds

V̇ ∗ ≤ −x⊤Qx+ bϵu . (6.27)

Thus, V̇ ∗ < 0 holds if −λmin(Q) ∥x∥2 + bϵu < 0. Finally, it concludes that states converge to
the residual set

Ωx = {x| ∥x∥ ≤
√
bϵu/λmin(Q)}. (6.28)

The aforementioned proof means that based on the optimal cost function (6.14), the derived
optimal incremental control policy (6.16) of the system (6.9) robustly stabilizes the system
(6.4). Given the equivalence between (6.1) and (6.4) clarified in Section 6.1.1, thus the op-
timal control input (6.17), which is constructed from the designed (6.16), robustly stabilizes
the system (6.1).

We have proved in Theorem 6.1 that the optimal incremental control problem clarified in
Problem 6.2 is equivalent to the robust stabilization problem shown as Problem 6.1. Thus,
to stabilize the highly uncertain dynamics (6.1) operating in a disturbed environment, the
remaining part devotes to solving Problem 6.2.

6.2 Approximate Optimal Solution
To solve Problem 6.2, this section seeks for the approximate solution to the value function
of the HJB equation (6.15) that is hard to solve directly. Departing from common ADP
related works [19], [20] using an actor-critic learning structure, we use a single critic learning
structure here, which decreases the computational burden and simplifies the theoretical
analysis. The associated critic NN learning process adopts the off-policy weight update law
developed in Chapter 5.

6.2.1 Approximated Value Function
Based on the Weierstrass high-order approximation theorem [46], for x ∈ Ω with Ω ⊂ Rn

being a compact set, the optimal value function is approximated as [19]

V ∗(x) = W ∗⊤Φ(x) + ϵ(x), (6.29)

where W ∗ ∈ RN is a weighting matrix, Φ(x) : Rn → RN represents the activation function,
and ϵ(x) ∈ R denotes the approximation error. The partial derivative of V ∗(x) follows

∇V ∗(x) = ∇Φ⊤(x)W ∗ +∇ϵ(x), (6.30)

where ∇Φ(x) ∈ RN×n, ∇ϵ(x) ∈ Rn. As N → ∞, both ϵ(x) and ∇ϵ(x) converge to zero
uniformly. Without loss of generality, the following assumption is given, which is common
in ADP related works.

Assumption 6.2. [19] There exist constants bϵ, bϵx, bΦ, bΦx ∈ R+ such that ∥ϵ(x)∥ ≤ bϵ,
∥∇ϵ(x)∥ ≤ bϵx, ∥Φ(x)∥ ≤ bΦ, and ∥∇Φ(x)∥ ≤ bΦx.
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Considering a fixed incremental control input ∆u, inserting (6.30) into (6.15) yields

W ∗⊤∇Φ(ḡ∆u+ ẋ0) + r(x, ∆u) = ϵh, (6.31)

where the residual error follows ϵh = −∇ϵ⊤(ḡ∆u + ẋ0) ∈ R. Assume that there exists
bϵh ∈ R+ such that ∥ϵh∥ ≤ bϵh . Focusing on the NN parameterized (6.31), we rewrite it into
the following LIP form

Θ = −W ∗⊤Y + ϵh, (6.32)
where Θ = r(x, ∆u) ∈ R, and Y = ∇Φ(ḡ∆u + ẋ0) ∈ RN . Given that Θ and Y could be
obtained from real-time data, this formulated LIP form enables the learning of W ∗ to be
equivalent to a parameter identification problem of an LIP system from the perspective of
adaptive control. The above applied transformation allows us to directly use our developed
off-policy weight update law in Chapter 5 to solve Problem 6.2.

6.2.2 NN Weight Update Law
Following our previous results in Section 5.2.2, the critic NN weight updates as

˙̂
W = −ΓkcY Θ̃−

P∑
l=1

ΓkeYlΘ̃l, (6.33)

to get the approximate solution to the HJB function (6.15).
The guaranteed weight convergence of Ŵ to W ∗ permits us to directly use the estimated

critic NN weight Ŵ to construct the approximate optimal incremental control strategy.
Therefore, based on the optimal incremental control strategy in (6.16), the approximate
optimal incremental control strategy follows

∆û = −β tanh
(

1
2β ḡ

⊤∇Φ⊤Ŵ

)
− u0. (6.34)

Accordingly, the approximate optimal control strategy applied at the plant (6.1) follows

û = u0 + ∆û = −β tanh
(

1
2β ḡ

⊤∇Φ⊤Ŵ

)
. (6.35)

Remark 6.8. From a practical perspective, our designed model-free approximate optimal in-
cremental control strategy (6.34) only requires one manually tuned constant matrix ḡ. This
feature of IADP decreases the required parameter tuning efforts comparing to existing identi-
fication based methods to fulfill model-free control strategies [24]–[28], [110], where multiple
hyperparameters or gains need to be tuned.

Based on the off-policy weight update law (6.33), and the approximate optimal incremental
control strategy (6.34) mentioned above, we provide the main conclusions as follows.

Theorem 6.2. Consider the incremental dynamics (6.9), the off-policy weight update law
of the critic NN in (6.33), and the approximate optimal incremental control policy (6.34).
Given Assumption 5.5 and Assumptions 6.1-6.2, for a sufficiently large N , the approximate
optimal incremental control policy (6.34) stabilizes the incremental dynamics (6.9), and the
critic NN weight learning error W̃ is uniformly ultimately bounded.
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Proof. Consider the following candidate Lyapunov function

J = V ∗(x) + 1
2W̃

⊤Γ−1W̃ . (6.36)

By denoting L̇V = V̇ ∗(x) and L̇W = W̃⊤Γ−1 ˙̂
W , the time derivative of (6.36) reads

J̇ = L̇V + L̇W . (6.37)

The first term L̇V follows

L̇V = ∇V ∗⊤(ḡ∆û+ ḡξ + ẋ0) = ∇V ∗⊤(ḡ∆u∗ + ẋ0) +∇V ∗⊤ḡξ +∇V ∗⊤ḡ(∆û−∆u∗). (6.38)

Then, substituting (6.20) into (6.38) gets

L̇V = −x⊤Qx−W(u0+∆u∗)−ξ̄2
o−2β tanh−1

(
u0 + ∆u∗

β

)
ξ−2β tanh−1

(
u0 + ∆u∗

β

)
(∆û−∆u∗).

(6.39)
According to (6.22)-(6.24), (6.39) follows

L̇V ≤− x⊤Qx− (ξ̄2
o − ∥ξ∥

2)− [β tanh−1
(
u0 + ∆u∗

β

)
+ ξ]2 + 1

2∇V
∗⊤ḡḡ⊤∇V ∗

− 2β tanh−1
(
u0 + ∆u∗

β

)
(∆û−∆u∗).

(6.40)

The term −2β tanh−1
(
u0+∆u∗

β

)
(∆û−∆u∗) in (6.40) follows

−2β tanh−1
(
u0 + ∆u∗

β

)
(∆û−∆u∗) ≤ β2

∥∥∥∥∥tanh−1
(
u0 + ∆u∗

β

)∥∥∥∥∥
2

+ ∥∆û−∆u∗∥2 . (6.41)

By using (6.16), (6.30), and the mean-value theorem, the optimal incremental control is
rewritten as

∆u∗ = −β tanh
(

1
2β ḡ

⊤∇Φ⊤W ∗
)
− ϵ∆u∗ − u0, (6.42)

where ϵ∆u∗ = 1
2(1 − tanh2(η))ḡ⊤∇ϵ, and η ∈ Rm is chosen between 1

2β ḡ
⊤∇Φ⊤W ∗ and

1
2β ḡ

⊤∇V ∗, 1 = [1, · · · , 1]⊤ ∈ Rm. According to ∥∇ϵ∥ ≤ bϵx in Assumption 6.2, ∥ϵ∆u∗∥ ≤
1
2 ∥ḡ∥ bϵx holds. Then, combining (6.34) with (6.42), we get

∆û−∆u∗ = β(tanh
(

1
2β ḡ

⊤∇Φ⊤W ∗
)
− tanh

(
1

2β ḡ
⊤∇Φ⊤Ŵ

)
+ ϵ∆u∗ . (6.43)

Denoting G ∗ = 1
2β ḡ

⊤∇Φ⊤W ∗, and Ĝ = 1
2β ḡ

⊤∇Φ⊤Ŵ , where Ĝ = [Ĝ1, · · · , Ĝm] ∈ Rm with
Ĝj ∈ R, j = 1, · · · ,m. Based on (6.16) and (6.34), the Taylor series of tanh(G ∗) follows

tanh(G ∗) = tanh
(
Ĝ
)

+
∂ tanh

(
Ĝ
)

∂Ĝ
(G ∗ − Ĝ ) +O((G ∗ − Ĝ )2)

= tanh
(
Ĝ
)
− 1

2β (Im×m −D(Ĝ ))ḡ⊤∇Φ⊤W̃ +O((G ∗ − Ĝ )2),
(6.44)
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where D(Ĝ ) = diag(tanh2(Ĝ1), · · · , tanh2(Ĝm)), and O((G ∗ − Ĝ )2) is a higher order term of
the Taylor series. By following [100, Lemma 1], this higher order term is bounded as

∥∥∥O((G ∗ − Ĝ )2)
∥∥∥ ≤ 2

√
m+ 1

β
∥ḡ∥ bΦx

∥∥∥W̃∥∥∥ . (6.45)

Based on (6.44), we rewrite (6.43) as

∆û−∆u∗ = β(tanh(G ∗)−tanh
(
Ĝ
)
)+ϵ∆u∗ = −1

2(Im×m−D(Ĝ ))ḡ∇Φ⊤W̃+βO((G ∗−Ĝ )2)+ϵ∆u∗ .
(6.46)

According to [100],
∥∥∥Im×m −D(Ĝ )

∥∥∥ ≤ 2 holds. Then, combining (6.45) with (6.46), ∥∆û−∆u∗∥2

in (6.41) follows

∥∆û−∆u∗∥2 ≤ 3β2
∥∥∥O((G ∗ − Ĝ )2)

∥∥∥2
+ 3 ∥ϵ∆u∗∥2 + 3

∥∥∥∥−1
2(Im×m −D(Ĝ ))ḡ⊤∇Φ⊤W̃

∥∥∥∥2

≤ 6 ∥ḡ∥2 b2
Φx

∥∥∥W̃∥∥∥2
+ 12mβ2 + 3

4 ∥ḡ∥
2 b2

ϵx + 12β
√
m ∥ḡ∥ bΦx

∥∥∥W̃∥∥∥ .
(6.47)

Based on (6.20), (6.30), Assumption 6.2, and the fact that ∥W ∗∥ ≤ bW ∗ ,
∥∥∥tanh−1((u0 + ∆u∗)/β)

∥∥∥2

in (6.41) follows∥∥∥∥∥tanh−1
(
u0 + ∆u∗

β

)∥∥∥∥∥
2

=
∥∥∥∥∥ 1

4β2∇V
∗⊤ḡḡ⊤∇V ∗

∥∥∥∥∥
≤ 1

4β2 ∥ḡ∥
2 b2

Φxb
2
W ∗ + 1

4β2 b
2
ϵx ∥ḡ∥

2 + 1
2β2 ∥ḡ∥

2 bΦxbϵxbW ∗ .
(6.48)

Using (6.47) and (6.48), (6.41) reads

−2β tanh−1
(
u0 + ∆u∗

β

)
(∆û−∆u∗) ≤1

4 ∥ḡ∥
2 b2

Φxb
2
W ∗ + 1

4b
2
ϵx ∥ḡ∥

2 + 1
2 ∥ḡ∥

2 bΦxbϵxbW ∗ + 12mβ2

+6 ∥ḡ∥2 b2
Φx

∥∥∥W̃∥∥∥2
+ 3

4 ∥ḡ∥
2 b2

ϵx + 12β
√
m ∥ḡ∥ bΦx

∥∥∥W̃∥∥∥ .
(6.49)

Substituting (6.49) into (6.40), finally the first term L̇V follows

L̇V ≤− x⊤Qx− (ξ̄2
o − ξ⊤ξ)− [β tanh−1

(
u0 + ∆u∗

β

)
+ ξ]2 + 3

4 ∥ḡ∥
2 b2

Φxb
2
W ∗ + 3

4b
2
ϵx ∥ḡ∥

2

+ 3
2 ∥ḡ∥

2 bΦxbϵxbW ∗ + 6 ∥ḡ∥2 b2
Φx

∥∥∥W̃∥∥∥2
+ 12mβ2 + 3

4 ∥ḡ∥
2 b2

ϵx + 12β
√
m ∥ḡ∥ bΦx

∥∥∥W̃∥∥∥ .
(6.50)

As for the second term L̇W , based on (6.33) and the weight convergence proof already
illustrated in Theorem 5.2 , it follows

L̇W ≤ −W̃⊤BW̃ + W̃⊤ϵW̃ . (6.51)

Finally, as for J̇ , substituting (6.50) and (6.51) into (6.37), we get

J̇ ≤ −A− B
∥∥∥W̃∥∥∥2

+ C
∥∥∥W̃∥∥∥+D, (6.52)
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where A = x⊤Qx + (ξ̄2
o − ξ⊤ξ) + [β tanh−1

(
u0+∆u∗

β

)
+ ξ]2, B = λmin(B) − 6 ∥ḡ∥2 b2

Φx, C =
12β
√
m ∥ḡ∥ bΦx + ϵ̄W̃ , and D = 3

4 ∥ḡ∥
2 b2

Φxb
2
W ∗ + 3

2b
2
ϵx ∥ḡ∥

2 + 3
2 ∥ḡ∥

2 bΦxbϵxbW ∗ + 12mβ2. Let
the parameters be chosen such that B > 0. Since A is positive definite, the above Lyapunov
derivative (6.52) is negative if

∥∥∥W̃∥∥∥ > C
2B +

√
C2

4B2 + D
B . Thus, the critic weight learning error

converges to the residual set Ω̃W̃ =
{
W̃ |

∥∥∥W̃∥∥∥ ≤ C
2B +

√
C2

4B2 + D
B

}
.

6.3 Safety Filter Implementation
Under a satisfying framework [128], this section introduces a safety filter to correct the
learned approximate optimal control policy (6.35) via a minimally invasive way to ensure
safe operation. The safety filter is implemented as a CBF based QP formulation:

us = arg min
us
∥us − û∥

s. t. ḧj + α1j
ḣj + α2j

hj ≥ 0, j = 1, 2, · · ·
(6.53)

where us ∈ Rn is the corrected safe control input; hj is the j-th HO-CBF characterizing the
j-th unsafe region, which is prior-given or learned via the method developed in Chapter 4;
α1j

, α2j
∈ R+ are chosen using the method developed in Section 4.5.2 to guarantee that

the utilized hj is a valid HO-CBF. The barrier certified approximate optimal control policy
from (6.53) are used for future data collection to support the value function learning process
illustrated in Section 6.2.

The presented QP (6.53) implies the potential conflict between safety and performance.
For practical applications, safety should be prioritized over performance. Therefore, the
solution is to safely achieve a performance that is as close as possible to the desired per-
formance. This is achieved by (6.53), wherein the relaxation of strict optimality allows us
to introduce safety considerations into our method. This add-on safety filter method en-
joys flexibility towards multiple tasks and environments, although the promising theoretical
optimality guarantee is lost. This is satisfying for practical applications.

6.4 Numerical Simulation
This section conducts comparative numerical simulations to validate the effectiveness and su-
periority of our proposed IADP. Besides, the influence of different sampling rates on IADP’s
performance is investigated.

Here, we choose the widely investigated pendulum in ADP related works [129], [130] as a
benchmark. The dynamics of the pendulum follows

dθ
dt

= ϑ+ d

J dϑ
dt

= u−Mgl sin θ − fd dθdt ,
(6.54)

where θ,ϑ ∈ R denote the angle and the angular velocity of the pendulum, respectively.
M = 1/3 kg and l = 3/2 m are the mass and length of the pendulum, respectively. Let
g = 9.8 m/s2 be the gravity, J = 4/3Ml2 kg ·m2 be the rotary inertia, and fd = 0.2 be the
frictional factor. Here d represents an external disturbance.
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6.4 Numerical Simulation

(a) The trajectory of ŴI of IADP. (b) The trajectory of û.

Figure 6.1: The estimated weight trajectory of IADP and the control trajectories of IADP,
ZSADP, and TADP.

6.4.1 Validation in Complex Environment
To highlight the enhanced robustness of our proposed IADP over the zero-sum game based
ADP (ZSADP) [131] and the transformed optimal control based ADP (TADP) [132], this
subsection conducts numerical simulations under a complex simulation environment. The
details are as follows: during the time from 20 s to 60 s, the added non-vanishing disturbance
d(t) is a square wave with amplitude 0.5 and period 1s; the incorporated measurement noise
is set as a white Gaussian noise with 10 dBW; Besides, the pendulum (6.54) is reset as[

ẋ1
ẋ2

]
=
[

−x2
4.9 sin x1 − 0.2x2

]
︸ ︷︷ ︸

f(x)

+
[

0
−0.25

]
︸ ︷︷ ︸

g(x)

u+
[

1
−0.2

]
︸ ︷︷ ︸
k(x)

d1(x), (6.55)

at t = 20 s to model a significant physical change. The state-dependent disturbance is
chosen as d1 = ω1θ sin(ω2ϑ), where ω1 and ω2 are randomly generated within the scope
[−
√

2/2,
√

2/2] and [−2, 2], respectively. The sampling rate is chosen as 1000 Hz. The
detailed simulation settings for IADP, ZSADP, and TADP are as follows.

For IADP, we choose ḡ = [0, 0.1]⊤. Its cost function is considered as

VI =
∫ ∞

t
x⊤Qx+W(u0 + ∆u) + ξ̄2

o dτ , (6.56)

whereQ = I2×2,W(u0+∆u) = 2β(u0+∆u) tanh−1((u0+∆u)/β)+β2 log(1− (u0 + ∆u)2/β2),
and ξ̄o = 2 ∥∆u∥. The approximate optimal incremental control ∆û and the approximate
optimal control û follow (6.34) and (6.35), respectively. IADP requires neither explicit model
nor environmental information except for a predefined constant matrix ḡ.

For ZSADP, following the method in [131], the cost function is chosen as

VZ =
∫ ∞

t
x⊤Qx+W(uZ)− γd⊤

ZdZ dτ , (6.57)

where W(uZ) = 2βuZ tanh−1(uZ/β) + β2 log(1− u2
Z/β

2), γ = 1. For this case, the approx-
imate optimal control policy follows ûZ = −β tanh

(
1

2βg
⊤∇Φ⊤ŴZ

)
, and the approximate

worst-case disturbance policy is d̂Z = 1
2γ2k

⊤∇Φ⊤ŴZ . Here ûZ and d̂Z depend on the concert
g(x) and k(x) in (6.55), respectively.

95



6 Safe Approximate Optimal Control Through Reinforcement Learning and Safety Filter

(a) The trajectories of x1(t). (b) The trajectories of x2(t).

Figure 6.2: The state trajectories of IADP, ZSADP, and TADP under a complex simulation
environment.

For TADP, according to [132], the corresponding cost function follows

VT =
∫ ∞

t
x⊤Qx+W(uT ) + ρv⊤

T vT + l2M + d2
M dτ , (6.58)

where ρ = 0.1. The approximate optimal control follows ûT = −β tanh
(

1
2βg

⊤∇Φ⊤ŴT

)
, and

the approximate pseudo control follows v̂T = − 1
2ρh

⊤∇Φ⊤ŴT , where h = (I2×2 − gg†)k. For
TADP, the explicit knowledge of g(x) and k(x) in (6.55) is required to construct ûT and v̂T .

The aforementioned IADP, ZSADP, and TADP all adopt the single critic structure and
our developed off-policy weight update law (6.33). To achieve a fair comparison, sim-
ulation parameters for three methods are set as same, which is detailly clarified as fol-
lows. To get the approximate solutions to the above value functions (6.56)-(6.58), Φ(x) =
[x2

1,x1x2,x2
2,x3

2,x1x
2
2,x2

1x2]⊤ is chosen. To guarantee the weight convergence, parameters
are set as P = 8, Γ = 10−3I6×6, kc = 0.5, and ke = 0.3. The initial values are chosen as
x(0) = [2,−2]⊤, û(0) = 0, d̂Z(0) = 0 (for ZSADP), and v̂T (0) = 0 (for TADP).

The estimated weight trajectory of IADP shown in Figure 6.1a illustrates that our pro-
posed off-policy weight update law (6.33) enables us to collect real-time data in time and
finally achieve weight convergence even under multiple sources of uncertainties and distur-
bances,. The control trajectories shown in Figure 6.1b, and the state trajectories displayed
in Figure 6.2 clarify the enhanced robustness of IADP. Specifically, IADP successfully sta-
bilizes the pendulum under multiple sources of uncertainties and disturbances; however, the
robustness of ZSADP and TADP are not enough to tackle such a complex environment.
Thus, the control inputs and states of ZSADP and TADP diverge far away immediately
when the simulation environment significantly changes at t = 20 s.

6.4.2 Validation of IADP under Different Sampling Rates
This subsection conducts multiple comparative numerical simulations to investigate the in-
fluence of different sampling rates on IADP’s performance. Note that except for different
values of the sampling rate, the conducted simulations in this subsection follow the same
simulating environment and parameter settings as Section 6.4.1.

The evolution trajectories of the states x1, x2 under different sampling rates are displayed
in Figure 6.3. It is shown that a higher sampling rate leads to better performance. Specif-
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(b) The trajectories of x2(t).

Figure 6.3: The state trajectories of IADP under different sampling rates.

ically, for the considered robust optimal regulation control task, the sampling frequency of
50 Hz is enough to achieve a satisfying performance. However, a system working under
a higher sampling rate is more sensitive to measurement noises, requires faster converters
and more storage, and consumes more computational resources. Thus, in practical applica-
tions, practitioners need to be aware of the trade-offs mentioned above and choose a suitable
sampling rate accordingly.

6.5 Summary
This paper presents an efficient and low-cost model-free control strategy for robust opti-
mal stabilization of continuous-time nonlinear control-affine systems. To reduce dependence
on accurate mathematical models, the TDE technique permits us to obtain a measured
input-state data based incremental dynamics, which is an equivalent representation of the
original dynamics, without requiring explicit model knowledge or tedious identification pro-
cedures. Then, the HJB equation, which is constructed based on the incremental dynamics,
is approximately solved through a single critic structure. The resulting approximate opti-
mal incremental control strategy stabilizes the controlled plant incrementally. Besides, by
transforming the critic NN weight learning as a parameter identification process and fur-
ther using the collected experience data, we develop an efficient weight update law with
guaranteed weight convergence. Multiple conducted numerical simulations have shown that
IADP outperforms common ADP methods in terms of reduced control efforts and enhanced
robustness.

The following properties of our proposed IADP are promising for practical applications:
the simultaneous consideration of stability, optimality and robustness, the utilized simplified
single critic structure, and the easily implemented off-policy weight update law. However, our
proposed IADP builds on the assumption that the full internal states and their derivatives
are available, which restricts IADP’s generality and practicality. Thus, future works attempt
to combine state observer and state derivative estimation techniques with IADP to address
the scenario when internal states and their derivatives are not measurable. In addition,
since the efficacy of IADP depends on accurate sensor measurements, we will investigate
and address the influence of sensor biases or delays on our developed IADP.
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Time-Delayed Data Informed Reinforcement
Learning for Optimal Tracking Control 7

This chapter develops a time-delayed data informed RL approach to enable autonomous
systems precisely track planned safe reference trajectories in a disturbed environment. This
chapter is organized as follows. Section 7.1 first presents the OTCP formulation. Then,
the development of the incremental subsystems using the decoupled control and the time-
delayed signals is clarified in Section 7.2. The utilized decoupled control technique endows
our proposed tracking control scheme with scalability to systems in arbitrary dimensions.
By reusing the time-delayed signals to estimate the unknown model knowledge, a laborious
system identification process is avoided to achieve model-free tracking control. Thereafter,
Section 7.3 presents our proposed tracking control scheme. Section 7.4 elucidates the approx-
imate solution to the OTCP, wherein the intractable value function approximation problem
of a high-dimensional system is conquered by solving multiple manageable low-dimensional
subsystem value function approximation problems. Our developed tracking control scheme
is experimentally and numerically validated in Section 7.5 and Section 7.6, respectively.
Finally, the summary is drawn in Section 7.7.

7.1 Problem Formulation
This section assumes that the investigated plant (unknown dynamics) could be described by
the E-L equation:

M(q)q̈ +N(q, q̇) + F (q̇) = τ , (7.1)

where M(q) : Rn → Rn×n is the symmetric positive definite inertia matrix; N(q, q̇) =
C(q, q̇)q̇ +G(q) : Rn × Rn → Rn, C(q, q̇) : Rn × Rn → Rn×n is the matrix of centrifugal and
Coriolis terms, G(q) : Rn → Rn represents the gravitational terms; F (q̇) : Rn → Rn denotes
the viscous friction; q, q̇, q̈ ∈ Rn are the vectors of angles, velocities, and accelerations,
respectively; τ ∈ Rn represents the input torque vector. Note that the mathematical model
(7.1) is provided here for later theoretical analysis. The explicit value of M(q), C(q, q̇), G(q),
and F (q̇) are unavailable to practitioners.

The objective is to design a model-free tracking control strategy τ to enable the plant
(7.1) to track a bounded and smooth reference signal xd = [q⊤

d , q̇⊤
d ]⊤ ∈ R2n while minimizing

a predefined performance function. The considered high-dimensional and highly uncertain
controlled plant (7.1) provides difficulty in solving the OTCP mentioned above.

7.2 Incremental Subsystem
This section benefits from the decoupled control technique and time-delayed signals [114],
[133] to develop model-free incremental subsystems. The formulated incremental subsys-
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tems are equivalent to the dynamics (7.1), but no explicit model information is required.
Specifically, the decoupled control technique is utilized to divide the high-dimensional sys-
tem into multiple low-dimensional subsystems. Then, time-delayed data is used to estimate
the unknown dynamics as well as the decoupled control related coupling terms. Here the
constructed incremental subsystems serve as basis to design the model-free tracking control
strategy in Section 7.3, and allow us to address the scalability problem of the value function
approximation in Section 7.4.1.

The high-dimensional system (7.1) can be decoupled into multiple subsystems, wherein
the i-th subsystem reads

Miiq̈i +
n∑

j=1,j ̸=i
Mij q̈j +Ni + Fi = τi, i = 1, 2, · · · ,n. (7.2)

Let xi = [xi1 ,xi2 ]⊤ = [qi, q̇i]⊤ ∈ R2, and ui = τi ∈ R. We rewrite (7.2) as

ẋi1 = xi2 , (7.3a)
ẋi2 = fi + giui, (7.3b)

where fi = −(∑n
j=1,j ̸=iMij q̈j +Ni +Fi)/Mii ∈ R, and gi = 1/Mii ∈ R are unknown. Clearly,

fi and gi are upper bounded since M(q), N(q, q̇), and F (q̇) in (7.1) are upper bounded [134].
Throughout this article, each subsystem is assumed to be controllable.

The unknown functions fi and gi hinder us to directly design tracking controllers based
on the subsystem (7.3). Departing from common methods that identify the unknown fi, gi
explicitly through a tedious identification process [47], [135]–[139], we exploit time-delayed
signals to estimate the unknown model knowledge. To achieve time delay estimation, we
first introduce a predetermined constant ḡi ∈ R+ and multiply ḡ−1

i on (7.3b),

ḡ−1
i ẋi2 = hi + ui, (7.4)

where hi = (ḡ−1
i − g−1

i )ẋi2 + g−1
i fi ∈ R is a lumped term that embodies the unknown model

knowledge fi, gi of (7.3b).
Then, with a sufficiently high sampling rate (see Remark 6.3), by utilising time-delayed

signals [52], [108], [109], the unknown hi in (7.4) could be estimated as

ĥi = hi,0 = ḡ−1
i ẋi2,0 − ui,0, (7.5)

where ui,0 = ui(t− L), ẋi2,0 = ẋi2(t− L). We directly choose the delay time L ∈ R+ as the
sampling period (the smallest achievable value of L in practical implementations) to achieve
an accurate estimation of hi [52].

Substituting (7.5) into (7.4), we get

ẋi2 = ẋi2,0 + ḡi(∆ui + ξi), (7.6)

where ∆ui = ui − ui,0 ∈ R is the incremental control input; ξi = hi − ĥi ∈ R denotes the
so-called TDE error that is proved to be bounded in Lemma 7.1 of Section 7.3.

Combining (7.3) with (7.6), we finally obtain the i-th incremental subsystem dynamics

ẋi1 = xi2 , (7.7a)
ẋi2 = ẋi2,0 + ḡi(∆ui + ξi), (7.7b)
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which is an equivalent of the original i-th subsystem (7.3) but without using explicit model
information. The guideline to select the required suitable ḡi to construct the i-th incre-
mental subsystem (7.7) is provided in Remark 7.1. Here the time-delayed data (ẋi2,0 and
ui,0 in particular) informs the value function learning process clarified in Section 7.4 about
one model-free representation (7.7) of the original controlled plant (7.1). Thereby, we could
achieve model-free control and also have a mathematical form of dynamics to conduct rig-
orous theoretical analysis using rich analysis tools from the control field.

Remark 7.1. According to [134], it is reasonable to assume that mi ≤ Mii ≤ mi, where
mi,mi ∈ R+. According to (7.3), gi = 1

Mii
. Thus, 1

mi
≤ gi ≤ 1

mi
holds. To achieve∥∥∥1− gi(k)ḡ−1

i

∥∥∥ < 1 required in (7.31), ḡi > 1
2gi needs to be satisfied. Therefore, we could

choose ḡi >
1

2mi
. The prior knowledge of Mii provides designers with hints to choose a

suitable ḡi.

This section has decoupled the original n-D (7.1) into n equivalent 2-D incremental sub-
systems (7.7). Accordingly, we transform the OTCP of (7.1) into n sub-OTCPs regarding
(7.7). The following section will present our developed tracking control scheme by focusing
on the sub-OTCP of (7.7).

Remark 7.2. The decoupled control technique facilitates realtime control for a high-dimensional
system by distributing the computation load into multiple processors. However, the utilized
decoupled control technique presents a challenge of getting the value of the coupling terms,
which is usually addressed by add-on tools such as (RBF) NNs [140], [141] that accompany
with additional parameter tuning efforts and computational loads. Unlike these works, the
time-delayed signals, which are initially used to achieve model-free control in a low-cost and
easily implemented way (only a constant ḡi to be debugged), enjoys an additional benefit that
compensates the coupling terms in (7.2).

Remark 7.3. The required state derivative information (i.e., ẋi2,0) to construct the incre-
mental subsystem dynamics (7.7) may not be directly measurable. In practice, the unmea-
surable state derivative is usually obtained via numerical differentiation [118], [133]. Section
7.5 experimentally validates the effectiveness of the numerical differentiation technique. Al-
ternatively, the state derivative could be estimated by the robust exact differentiator [117], or
derivative estimator [116], [142], which is beyond the scope of this chapter.

7.3 Tracking Control Scheme
This section details our proposed tracking control scheme, as displayed in Figure 7.1, to solve
the sub-OTCP of (7.7). The incremental control input to be designed follows

∆ui = ∆uif + ∆uib , (7.8)

where the incremental dynamic inversion based ∆uif ∈ R serves to transform the time-
varying sub-OTCPs into equivalent time-invariant sub-robust optimal regulation control
problems (sub-RORCPs) in Section 7.3.1; and ∆uib ∈ R is the incremental control policy to
optimally drive the tracking error to zero in Section 7.3.2. The detailed procedures to design
∆uif and ∆uib are detailly clarified in Section 7.3.1 and Section 7.3.2, respectively.
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Figure 7.1: Schematic of the tracking control strategy. The original OTCP is first decoupled
into the sub-OTCPs of the incremental subsystems, as illustrated in Section 7.2;
Then, the sub-OTCPs are converted into the equivalent sub-RORCPs of the
incremental error subsystems, as clarified in Section 7.3.1; Finally, the solutions
to the transformed sub-RORCPs are learned via parallel training, as described
in Section 7.3.2 and Section 7.4.

7.3.1 Generation of Incremental Error Subsystem
This subsection formulates the i-th incremental error subsystem via the properly chosen
∆uif . The formulated incremental error subsystem converts the sub-OTCP regarding (7.7)
into its sub-RORCP, and facilitates the development of the optimal incremental control pol-
icy in Section 7.3.2. The detailed procedures to design ∆uif and to generate the incremental
error subsystem are as follows.

Let ei = [ei1 , ei2 ]⊤ ∈ R2, where ei1 = xi1 − qdi
∈ R and ei2 = xi2 − q̇di

∈ R. Combining
with (7.7b) and (7.8) yields

ėi2 = ẋi2,0 + ḡi(∆uif + ∆uib + ξi)− ẍri
. (7.9)

Designing the required ∆uif in (7.9) as

∆uif = ḡ−1
i (ẍri

− ẋi2,0 − ki1ei1 − ki2ei2), (7.10)

and substituting (7.10) into (7.9), we get

ėi2 = −ki1ei1 − ki2ei2 + ḡi∆uib + ḡiξi, (7.11)

where ki1 , ki2 ∈ R+. Recall that ėi1 = ei2 . Then, combining with (7.11), we obtain the i-th
incremental error subsystem

ėi = Aiei +Bi∆uib +Biξi, (7.12)

where Ai =
[

0 1
−ki1 −ki2

]
∈ R2×2, and Bi =

[
0
ḡi

]
∈ R2. The sub-OTCP of (7.7) illustrated in

Section 7.2 aims to drive the values of ei to zero in an optimal manner. This is equivalent to
the sub-RORCP of the incremental error subsystem (7.12) given the unknown ξi. In other
words, this subsection transforms the sub-OTCP of (7.7) into the sub-RORCP regarding
(7.12) by designing ∆uif in the form of (7.10).
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Remark 7.4. The developed ∆uif (7.10) here acts as a supplementary control input to the
∆uib designed in Section 7.3.2. In particular, the utilized ∆uif generates an incremental
error subsystem (7.12). Then, we train ∆uib in Section 7.3.2 based on the incremental error
subsystem formulated in this subsection. This practice departs from most of existing ADP
related works for the OTCP [20], [26], [143], wherein the tracking control strategies are
trained on one specific reference trajectory dynamics. Thus, the flexibility of our developed
tracking control scheme against varying desired trajectories is improved without directly using
reference signals during the learning process.

7.3.2 Optimal Incremental Control Policy
This subsection develops an optimal incremental control policy to solve the sub-RORCP of
(7.12), i.e., robustly stabilizing the tracking error to zero in an optimal manner. Departing
from common solutions to OTCPs [20], [26], [143], we additionally introduce a TDE error
related term into the value function such that the influence of the TDE error on the controller
performance is lessened under an optimization framework.

Given ξi in (7.12) is unknown, thus the available incremental error subsystem for later
analysis follows

ėi = Aiei +Bi∆uib . (7.13)
To stabilize (7.13) in an optimal manner, the value function is considered as

Vi(t) =
∫ ∞

t
ri(ei(ν), ∆uib(ν)) dν, (7.14)

where ri(ei, ∆uib) = e⊤
i Qiei+Wi(∆uib)+ ξ̄2

oi. The quadratic term e⊤
i Qiei, where Qi ∈ R2×2 is

a positive definite matrix, is introduced to improve the tracking precision. The input penalty
function Wi(∆uib) follows

Wi(∆uib) = 2
∫ ∆uib

0
β tanh−1(ϑ/β) dϑ, (7.15)

which is utilized to punish and enforce the optimal incremental control input as ∥∆uib∥ ≤
β ∈ R+. The limited ∆uib is beneficial since a severe interruption might lead to an abrupt
change of ∆uib , which might destabilize the learning process introduced in Section 7.4. The
utilized TDE error related term ξ̄2

oi in ri(ei, ∆uib) allows designers to attenuate the TDE
error during the optimization process. The explicit form of ξ̄oi follows ξ̄oi = c̄i ∥∆uib∥, where
c̄i ∈ R+. The rationality of designing ξ̄oi in the above form and the requirement for an
appropriate c̄i are provided in Theorem 7.1.

For ∆uib ∈ Ψ, where Ψ is the set of admissible incremental control policies [52, Definition
1], the associated optimal value function follows

V ∗
i = min

∆uib
∈Ψ

∫ ∞

t
ri(ei(ν), ∆uib(ν)) dν. (7.16)

Define the Hamiltonian function as

Hi(ei, ∆uib ,∇Vi) = r(ei, ∆uib) +∇V T
i (Aiei + Bi∆uib), (7.17)

where ∇(·) = ∂(·)/∂ei. Then, V ∗
i satisfies the HJB equation

0 = min
∆uib

∈Ψ
[Hi(ei, ∆uib ,∇V ∗

i )]. (7.18)
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Assume that the minimum of (7.16) exists and is unique [19], [52]. By using the station-
ary optimality condition on the HJB equation (7.18), we gain an analytical-form optimal
incremental control strategy as

∆u∗
ib

= −β tanh
(

1
2βB

⊤
i ∇V ∗

i

)
. (7.19)

To obtain ∆u∗
ib

, we need to solve the HJB equation (7.18) to determine the value of ∇V ∗
i ,

which is detailly clarified in Section 7.4. In the following part of this subsection, based on the
TDE error bound given in Lemma 7.1, we prove in Theorem 7.1 that the optimal incremental
control policy ∆u∗

ib
(7.19) regarding (7.13) is the solution to the sub-RORCP of (7.12).

Lemma 7.1. Given a sufficiently high sampling rate, ∃ξ̄i ∈ R+, there holds ∥ξi∥ ≤ ξ̄i.

Proof. combining (7.4) with (7.5), the TDE error for the i-th subsystem (7.7) follows

ξi = hi − ĥi = hi − hi,0
= (ḡ−1

i − g−1
i )∆ẋi2 + (g−1

i,0 − g−1
i )ẋi2,0 + g−1(fi − fi,0) + (g−1

i − g−1
i,0 )fi,0,

(7.20)

where ∆ẋi2 = ẋi2 − ẋi2,0 . Combining with (7.3b) , (7.7b) and (7.8), ∆ẋi2 follows

∆ẋi2 = fi + giui − fi,0 − gi,0ui,0 = gi∆ui + (gi − gi,0)ui,0 + fi − fi,0
= gi(∆uif + ∆uib) + (gi − gi,0)ui,0 + fi − fi,0.

(7.21)

Substituting (7.21) into (7.20), we get

ξi = (giḡ−1
i − 1)∆uif + (giḡ−1

i − 1)∆uib + δ1i, (7.22)

where δ1i = ḡ−1
i (gi − gi,0)u0 + ḡ−1

i (fi − fi,0).
For simplicity, we denote µi = ẍri

− ki1ei1 − ki2ei2 ∈ R. According to (7.5) and (7.10),
∆uif in (7.22) follows

∆uif = ḡ−1
i (µi − ḡihi,0 − ḡiui,0)

= ḡ−1
i µi − (ḡ−1

i − g−1
i,0 )ẋi2,0 − g−1

i,0 fi,0 − ui,0
= ḡ−1

i µi − (ḡ−1
i − g−1

i,0 )(fi,0 + gi,0ui,0)− g−1
i,0 fi,0 − ui,0

= ḡ−1
i µi − ḡ−1

i (fi,0 + gi,0ui,0) = ḡ−1
i (µi − µi,0)− ḡ−1

i (ẋi2,0 − µi,0),

(7.23)

where µi,0 = ẍri,0 − ki1ei1,0 − ki2ei2,0 . Besides, combining (7.7b) with (7.8), we get

ẋi2 = ẋi2,0 + ḡi(∆uif + ∆uib) + ḡiξi

= ẋi2,0 + ḡiḡ
−1
i (µi − ẋi2,0) + ḡi∆uib + ḡiξi

= µi + ḡi∆uib + ḡiξi.
(7.24)

Based on the result shown in (7.24), we get

ξi = ḡ−1
i (ẋi2 − µi − ḡi∆uib). (7.25)

Accordingly, the following equation establishes

ξi,0 = ḡ−1
i (ẋi2,0 − µi,0 − ḡi∆uib,0). (7.26)

104



7.3 Tracking Control Scheme

Based on the result given in (7.26), (7.23) is rewritten as

∆uif = ḡ−1
i (µi − µi,0)− ḡ−1

i (ẋi2,0 − µi,0 − ḡi∆uib,0)−∆uib,0

= ḡ−1
i (µi − µi,0)− ξi,0 −∆uib,0 .

(7.27)

Substituting (7.27) into (7.22) yields

ξi =(1− giḡ−1
i )ξi,0 + (1− giḡ−1

i )ḡ−1
i (µi,0 − µi) + (1− giḡ−1

i )(∆uib,0 −∆uib) + δ1i. (7.28)

In discrete-time domain, (7.28) could be represented as

ξi(k) =(1− gi(k)ḡ−1
i )ξi(k − 1) + (1− gi(k)ḡ−1

i )∆ũib + δ1i + δ2i, (7.29)

where ∆ũib = ∆uib(k − 1)−∆uib(k), δ2i = (1− gi(k)ḡ−1
i )ḡ−1

i (µi(k − 1)− µi(k)).
The constrained input ∥∆uib(k)∥ ≤ β implies that the following equation holds

∥∆ũib∥ ≤ ∥∆uib(k − 1)∥+ ∥∆uib(k)∥ ≤ 2β. (7.30)

We choose the value of ḡi to meet
∥∥∥1− gi(k)ḡ−1

i

∥∥∥ ≤ ιi < 1, where ιi ∈ R+. Under a
sufficiently high sampling rate, it is reasonable to assume that there exists δ̄1i, δ̄2i ∈ R+ such
that ∥δ1i∥ ≤ δ̄1i , and ∥δ2i∥ ≤ ιiδ̄2i. Then, the following equations hold:

∥ξi(k)∥ ≤ ιi ∥ξi(k − 1)∥+ ιi ∥∆ũib∥+ δ̄1i + ιiδ̄2i

≤ ι2i ∥ξi(k − 2)∥+ (ι2i + ιi) ∥∆ũib∥+ (ιi + 1)(δ̄1i + ιiδ̄2i)
≤ · · ·

≤ ιki ∥ξi(0)∥+ δ̄1i + ιiδ̄2i

1− ιi
+ ιi ∥∆ũib∥

1− ιi

≤ ιki ∥ξi(0)∥+ δ̄1i + ιiδ̄2i

1− ιi
+ 2ιiβ

1− ιi
= ξ̄i.

(7.31)

As k →∞, ξ̄i → δ̄1i+ιiδ̄2i

1−ιi + 2ιiβ
1−ιi .

Theorem 7.1. Consider the system (7.12) with a sufficiently high sampling rate, if there
exists a scalar c̄i ∈ R+ such that the following inequality is satisfied

ξ̄i < c̄i ∥∆uib∥ , (7.32)

the optimal incremental control policy (7.19) regulates the tracking error to a small neigh-
bourhood around zero while minimizing the value function (7.14).

Proof. V ∗
i is a positive definite function, i.e., V ∗

i (ei) ≥ 0 and iff ei = 0, V ∗
i (ei) = 0. Thus,

V ∗
i could serve as a candidate Lyapunov function. Taking time derivative of V ∗

i along the
i-th incremental error subsystem (7.12) yields

V̇ ∗
i = ∇V ∗

i (Aiei +Bi∆u∗
ib

) +∇V ∗
i Biξi. (7.33)

According to (7.17) and (7.18), the following equations establish

∇V ∗
i (Aiei +Bi∆u∗

ib
) = −e⊤

i Qiei −Wi(∆u∗
ib

)− ξ̄2
oi

∇V ∗
i Bi = −2β tanh−1(∆u∗

ib
/β).

(7.34)
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Substituting (7.34) into (7.33) yields

V̇ ∗
i = −e⊤

i Qiei −Wi(∆u∗
ib

)− ξ̄2
oi − 2β tanh−1(∆u∗

ib
/β)ξi. (7.35)

As for the Wi(∆u∗
ib

) in (7.35), according to our previous result [52, Theorem 1], it follows
that

Wi(∆u∗
ib

) = β2
m∑
j=1

(
tanh−1(∆u∗

ib
/β)

)2
− ϵui

, (7.36)

where ϵui
≤ 1

2 ḡ
2
i∇V ∗

i
⊤∇V ∗

i . Given that there exists b∇V ∗
i
∈ R+ such that ∥∇V ∗

i ∥ ≤ b∇V ∗
i

.
Thus, we could rewrite the bound of ϵui

as ϵui
≤ bϵui

≤ 1
2 ḡ

2
i b

2
∇V ∗

i
.

Then, substituting (7.36) into (7.35), we get

V̇ ∗
i =− e⊤

i Qiei − [β tanh−1(∆u∗
ib
/β) + ξi]2 − (ξ̄2

oi − ξ⊤
i ξi) + bϵui

. (7.37)

We choose ξ̄oi = c̄i ∥∆uib∥, and c̄i is picked to satisfy c̄i ∥∆uib∥ > ξ̄i, where ξ̄i is defined in
(7.31). Then, the following equation holds

V̇ ∗
i ≤ −e⊤

i Qiei + bϵui
. (7.38)

Thus, if −λmin(Qi) ∥ei∥2 + bϵui
< 0, V̇ ∗

i < 0 holds. Here λmin(·) denotes the minimum eigen-
values of a symmetric real matrix. Finally, it concludes that states of the i-th incremental
error subsystem (7.12) converges to the residual set

Ωei
= {ei| ∥ei∥ ≤

√
bϵui

/λmin(Qi)}. (7.39)

Theorem 7.1 implies that the optimal incremental control policy ∆u∗
ib

(7.19) robustly
stabilize (7.12). It has been clarified in Section 7.3.1 that the sub-RORCP of (7.12) equals
to the sub-OTCP of (7.7) based on our designed ∆uif (7.10). Thus, the designed ∆u∗

ib
and

∆uif solve the sub-OTCP of (7.7) together.

7.4 Approximate Solutions
This section uses a parallel critic learning structure to seek for the approximate solutions to
the value functions of the HJB equations (7.18) of n incremental error subsystems (7.12).
By reinvestigating the online NN weight learning process from a parameter identification
perspective, we develop a simple yet efficient off-policy critic NN weight update law with
guaranteed weight convergence by exploiting realtime and experience data together.

7.4.1 Value Function Approximation
For ei ∈ Ω, where Ω ⊂ R2 is a compact set, the continuous optimal value function (7.16) is
approximated by an critic agent as [19]

V ∗
i = W ∗

i
⊤Φi(ei) + ϵi(ei), (7.40)

where W ∗
i ∈ RNi is the critic NN weight, Φi(ei) : R2 → RNi represents the activation

function, and ϵi(ei) ∈ R denotes the approximation error.
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Remark 7.5. The utilized decoupled control technique in Section 7.2 solves the curse of
complexity problem in (7.40). In particular, the constructed critic NN (7.40) relies on the
error ei ∈ R2 of the incremental error subsystem (7.12). The 2-D ei allows us to construct
a low-dimensional Φi(ei) (easy to choose) to approximate its associated V ∗

i regardless of the
value of the system dimension n. For example, the 4-D activation functions Φi(ei) in a fixed
structure are chosen for subsystems of a 3-DoF robot manipulator in Section 7.5, and 6-DoF
quadrotor in Section 7.6. Otherwise, for a global approximation, i.e., V ∗ = W ∗⊤Φ(e) + ϵ(e)
with the tracking error e = x − xd ∈ R2n, the dimension of Φ(e) increases exponentially as
n increases.

To facilitate the later theoretical analysis, an assumption that is common in ADP related
works is provided here.

Assumption 7.1. [19] There exist constants bϵi , bϵei
, bϵhi

, bΦi
, bΦei

∈ R+ such that ∥ϵi(ei)∥ ≤
bϵi, ∥∇ϵi(ei)∥ ≤ bϵei

, ∥ϵhi∥ ≤ bϵhi
, ∥Φi(ei)∥ ≤ bΦi

, and ∥∇Φi(ei)∥ ≤ bΦei
.

Given a fixed incremental control input ∆uib , combining (7.18) with (7.40) yields

W ∗
i

⊤∇Φi(Aiei +Bi∆uib) + ri(ei, ∆uib) = ϵhi
, (7.41)

where the residual error ϵhi
= −∇ϵ⊤

i (Aiei + Bi∆uib) ∈ R. The NN parameterized (7.41) is
able to be written into a LIP form as

Θi = −W ∗
i

⊤Yi + ϵhi
, (7.42)

where Θi = ri(ei, ∆uib) ∈ R, and Yi = ∇Φi(Aiei + Bi∆uib) ∈ RNi . The values of Θi and
Yi are both available to practitioners given the measurable ei and ∆uib . This formulated
LIP form (7.42) enables the learning of W ∗

i to be equivalent to a parameter identification
problem of a LIP system, which facilitates the development of an efficient weight update law
in the subsequent subsection.

7.4.2 Critic NN Weight Update Law
An approximation of (7.42) follows

Θ̂i = −Ŵ⊤
i Yi, (7.43)

where Ŵi ∈ RNi , Θ̂i ∈ R are estimates of W ∗
i and Θi, respectively. To enable Ŵi converge

to W ∗
i , we design an off-policy critic NN weight update law for each subsystem as

˙̂
Wi = −ΓiktiYiΘ̃i −

Pi∑
l=1

Γikei
YilΘ̃il , (7.44)

to update the critic NN weight Ŵi in a parallel way to minimize Ei = 1
2Θ̃⊤

i Θ̃i, where
Θ̃i = Θi− Θ̂i ∈ R. Here Γi ∈ RNi×Ni is a constant positive definite gain matrix; kti , kei

∈ R+

are used to trade-off the contribution of realtime and experience data to the online NN
weight learning process; Pi ∈ R+ is the number of the utilized recorded experience data.

To guarantee the weight convergence of (7.44), as proved in Theorem 7.2, the exploited
experience data should be sufficient rich to satisfy the rank condition in Assumption 7.2.
This assumption could be satisfied by sequentially reusing experience data in practice [52].
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Assumption 7.2. Given an experience buffer Bi = [Yi1 , ...,YiPi
] ∈ RNi×Pi, there holds

rank(Bi) = Ni.

Theorem 7.2. Given Assumption 7.2, the NN weight learning error W̃i converges to a small
neighbourhood around zero.

Proof. The proof is similar to Theorem 5.2. Thus, it is omitted here for simplicity.

The guaranteed weight convergence of Ŵi to W ∗
i in Theorem 7.2 permits us to use a

computation-simple single critic NN learning structure for each subsystem, where the esti-
mated critic NN weight Ŵi is directly used to construct the approximate optimal incremental
control strategy:

∆ûib = −β tanh
(

1
2βB

⊤
i ∇Φ⊤

i Ŵi

)
. (7.45)

Finally, combining with (7.8), (7.10), and (7.45), we get the overall control input applied at
the i-th subsystem (7.3)

ûi = ui,0 + ∆uif + ∆ûib . (7.46)
Based on the theoretical analysis mentioned above, we provide the main conclusions in the
following theorem.

Theorem 7.3. Given Assumptions 7.1–7.2, for a sufficiently large Ni, the off-policy critic
NN weight update law (7.44), and the approximate optimal incremental control policy (7.45)
guarantee the tracking error and the NN weight learning error uniformly ultimately bounded.

Proof. Consider the candidate Lyapunov function for the i-th incremental error subsystem
(7.12) as

Li = V ∗
i + 1

2W̃
⊤
i Γ−1

i W̃i. (7.47)

By denoting Li1 = V ∗
i , its derivative follows

L̇i1 = ∇V ∗
i

⊤(Aiei +Bi∆ûib +Biξi)
= ∇V ∗

i
⊤(Aiei +Bi∆u∗

ib
) +∇V ∗

i
⊤Biξi +∇V ∗

i
⊤Bi(∆ûib −∆u∗

ib
).

(7.48)

Substituting (7.34) into (7.48) reads

L̇i1 = −e⊤
i Qiei −W(∆u∗

ib
)− ξ̄2

oi − 2β tanh−1
(
∆u∗

ib
/β
)
ξi

− 2β tanh−1
(
∆u∗

ib
/β
)

(∆ûib −∆u∗
ib

).
(7.49)

Combining with (7.36) and (7.37), (7.49) follows

L̇i1 ≤− e⊤
i Qiei − (ξ̄2

oi − ∥ξi∥
2)−

[
β tanh−1

(
∆u∗

ib
/β
)

+ ξi
]2

+ 1
2∇V ∗

i
⊤BiB

⊤
i ∇V ∗

i − 2β tanh−1
(
∆u∗

ib
/β
)

(∆ûib −∆u∗
ib

).
(7.50)

The term −2β tanh−1
(
∆u∗

ib
/β
)

(∆ûib −∆u∗
ib

) in (7.50) follows

−2β tanh−1
(
∆u∗

ib
/β
)

(∆ûib −∆u∗
ib

) ≤β2
∥∥∥tanh−1

(
∆u∗

ib
/β
)∥∥∥2 ∥∥∥∆ûib −∆u∗

ib

∥∥∥2
. (7.51)
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According to (7.19) and (7.40), and the mean-value theorem, the optimal incremental control
is rewritten as

∆u∗
ib

= −β tanh
(

1
2βB

⊤
i ∇Φ⊤

i W
∗
i

)
− ϵ∆u∗

i
, (7.52)

where ϵ∆u∗
i

= 1
2(1 − tanh2(ηi))B⊤

i ∇ϵi, and ηi ∈ R is chosen between 1
2βB

⊤
i ∇Φ⊤

i W
∗
i and

1
2βB

⊤
i ∇V ∗

i . According to ∥∇ϵi∥ ≤ bϵei
in Assumption 7.1,

∥∥∥ϵ∆u∗
i

∥∥∥ ≤ 1
2 ∥Bi∥ bϵei

holds. Then,
by combining (7.45) with (7.52), we get

∆ûib −∆u∗
ib

= β(tanh(G ∗
i )− tanh

(
Ĝi
)
) + ϵ∆u∗

i
. (7.53)

where G ∗
i = 1

2βB
⊤
i ∇Φ⊤

i W
∗
i , and Ĝi = 1

2βB
⊤
i ∇Φ⊤

i Ŵ . Based on (7.19) and (7.45), the Taylor
series of tanh(G ∗

i ) follows

tanh(G ∗
i ) = tanh

(
Ĝi
)

+
∂ tanh

(
Ĝi
)

∂Ĝi
(G ∗
i − Ĝi) +O((G ∗

i − Ĝi)2)

= tanh
(
Ĝi
)
− 1

2β
(1− tanh2(Ĝi))B⊤

i ∇Φ⊤
i W̃i +O((G ∗

i − Ĝi)2),
(7.54)

where O((G ∗
i − Ĝi)2) is a higher order term of the Taylor series. By following [100, Lemma

1], this higher order term is bounded as∥∥∥O((G ∗
i − Ĝi)2)

∥∥∥ ≤ 2 + 1
β
∥Bi∥ bΦei

∥∥∥W̃i

∥∥∥ . (7.55)

Based on (7.54), we rewrite (7.53) as

∆ûib −∆u∗
ib

= β(tanh(G ∗
i )− tanh

(
Ĝi
)
) + ϵ∆u∗

i

= −1
2(1− tanh2(Ĝi))B⊤

i ∇Φ⊤
i W̃i + βO((G ∗

i − Ĝi)2) + ϵ∆u∗
i
.

(7.56)

Then, by combining (7.55) with (7.56), and given that
∥∥∥1− tanh2(Ĝi)

∥∥∥ ≤ 2,
∥∥∥∆ûib −∆u∗

ib

∥∥∥2

in (7.51) follows∥∥∥∆ûib −∆u∗
ib

∥∥∥2
≤ 3β2

∥∥∥O((G ∗
i − Ĝi)2)

∥∥∥2
+ 3

∥∥∥ϵ∆u∗
i

∥∥∥2
+ 3

∥∥∥∥−1
2(1− tanh2(Ĝi))B⊤

i ∇Φ⊤
i W̃i

∥∥∥∥2

≤ 6 ∥Bi∥2 b2
Φei

∥∥∥W̃i

∥∥∥2
+ 12β2 + 3

4 ∥Bi∥2 b2
ϵei

+ 12β ∥Bi∥ bΦei

∥∥∥W̃i

∥∥∥ .
(7.57)

Based on (7.34), (7.40), Assumption 7.1, and the fact that ∥W ∗
i ∥ ≤ bW ∗

i
,
∥∥∥tanh−1(∆u∗

ib
/β)

∥∥∥2

in (7.51) follows∥∥∥tanh−1
(
∆u∗

ib
/β
)∥∥∥2

=
∥∥∥∥ 1

4β2∇V ∗
i

⊤BiB
⊤
i ∇V ∗

i

∥∥∥∥
≤ 1

4β2 ∥Bi∥2 b2
Φei

b2
W ∗

i
+ 1

4β2 b2
ϵei
∥Bi∥2 + 1

2β2 ∥Bi∥2 bΦeibϵeibW ∗
i
.

(7.58)

Using (7.57) and (7.58), (7.51) reads

− 2β tanh−1
(
∆u∗

ib
/β
)

(∆ûib −∆u∗
ib

) ≤ 1
4 ∥Bi∥2 b2

Φei
b2
W ∗

i

+ 1
4b

2
ϵei
∥Bi∥2 + 1

2 ∥Bi∥2 bΦei
bϵei

bW ∗
i

+ 6 ∥Bi∥2 b2
Φei

∥∥∥W̃i

∥∥∥2

+ 12β2 + 3
4 ∥Bi∥2 b2

ϵei
+ 12β ∥Bi∥ bΦei

∥∥∥W̃i

∥∥∥ .

(7.59)
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Substituting (7.59) into (7.50), finally the first term L̇i1 follows

L̇i1 ≤− e⊤
i Qiei − (ξ̄2

oi − ξ⊤
i ξi)−

[
β tanh−1

(
∆u∗

ib
/β
)

+ ξi
]2

+ 3
4 ∥Bi∥2 b2

Φei
b2
W ∗

i
+ 3

4b2
ϵei
∥Bi∥2 + 3

2 ∥Bi∥2 bΦeibϵeibW ∗
i

+ 12β2 + 3
4 ∥Bi∥2 b2

ϵei

+ 6 ∥Bi∥2 b2
Φei

∥∥∥W̃i

∥∥∥2
+ 12β ∥Bi∥ bΦei

∥∥∥W̃i

∥∥∥ .

(7.60)

As for the second term L̇W = 1
2W̃

⊤
i Γ−1

i W̃i, based on (7.44) and Theorem 1 in our previous
work [52], it follows

L̇i2 ≤ −W̃⊤
i YiW̃i + W̃⊤

i ϵW̃i
. (7.61)

where Yi = ∑Pi
l=1 kei

YilY
⊤
il
∈ RNi×Ni , and ϵW̃i

= −ktiYiϵhi
− ∑Pi

l=1 kei
Yilϵhil

∈ RNi . The
boundness of Yi and ϵhi

results in bounded ϵW̃i
. Thus, there exists ϵ̄W̃i

∈ R+ such that∥∥∥ϵW̃i

∥∥∥ ≤ ϵ̄W̃i
. According to Assumption 7.2, Yi is positive definite. Thus, (7.61) could be

rewritten as
L̇i2 ≤ −λmin(Yi)

∥∥∥W̃i

∥∥∥2
− ϵ̄W̃i

∥∥∥W̃i

∥∥∥ . (7.62)

Finally, as for L̇i, substituting (7.60) and (7.61) into (7.47), we get

L̇i ≤ −Ai − Bi
∥∥∥W̃i

∥∥∥2
+ Ci

∥∥∥W̃i

∥∥∥+Di, (7.63)

where Ai = e⊤
i Qiei + (ξ̄2

oi − ξ⊤
i ξi) +

[
β tanh−1

(
∆u∗

ib
/β
)

+ ξi
]2

, Bi = λmin(Yi)− 6 ∥Bi∥2 b2
Φei

,
Ci = 12β ∥Bi∥ bΦei

+ ϵ̄W̃i
, and Di = 3

4 ∥Bi∥2 b2
Φei
b2
W ∗

i
+ 3

2b
2
ϵei
∥Bi∥2 + 3

2 ∥Bi∥2 bΦei
bϵei

bW ∗
i

+ 12β2.
Let the parameters be chosen such that Bi > 0. Since Ai is positive definite, the above
Lyapunov derivative (7.63) is negative if

∥∥∥W̃i

∥∥∥ > Ci
2Bi

+

√√√√ C2
i

4B2
i

+ Di
Bi

. (7.64)

Thus, the weight learning error of the critic agent converges to the residual set

Ω̃W̃i
=

W̃i|
∥∥∥W̃i

∥∥∥ ≤ Ci2Bi
+

√√√√ C2
i

4B2
i

+ Di
Bi

 . (7.65)

7.5 Experimental Validation
This section experimentally validates the efficiency of our proposed tracking control scheme
on a 3-DoF robot manipulator (see Figure A.1 in Appendix A.1). Note that the common
ADP based tracking control scheme [20] is impractical to conduct the experimental vali-
dation presented here. The tracking control scheme developed in [20] requires one 12-D
augmented system [20]. It is not trivial to pick a suitable high-dimensional activation func-
tion to accomplish the accurate approximation of the value function of the constructed 12-D
augmented system. Even though a high-dimensional activation function is available, the re-
altime performance of the corresponding weight update law is poor for practical experiments.
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(c) The tracking error e21 of joint 2.
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(f) The estimated weight Ŵ3 of joint 3.

Figure 7.2: The trajectories of the tracking error ei1 and the estimated weight Ŵi under
different payloads, i = 1, 2, 3.

During our experiment, the measured angular position is numerically differentiated to
compute the angular velocity and acceleration of the robot [118], [133]. The robot ma-
nipulator is driven to track the desired trajectory xd = [q⊤

d , q̇⊤
d ]⊤ ∈ R6, where qd = (1 +

sin ( t2 −
π
2 ))kp ∈ R3. To simulate varying tasks, we set kp = [0.3, 0.6, 1]⊤ for t ∈ [0, 5), and

kp = [0.2, 0.5, 0.8]⊤ for t ∈ [5, 10]. Our developed approach adopts the 4-D activation func-
tion Φi(ei) = [e2

i1 , e2
i2 , ei1ei2 , e3

i2 ]⊤ for the i-th decoupled subsystem, i = 1, 2, 3. The utilized
low-dimensional activation function Φi(ei) in a fixed structure exemplify the scalability and
practicability. Given the sampling rate is 1kHz, accordingly, we choose the delay time as
L = 0.001s. The simulation parameters for subsystems 1-3 are set as: Qi = diag(300, 40000),
c̄i = 200, Γi = diag(100, 4, 0.1, 16), kti = 0.2, kei

= 0.01, Pi = 10, ki1 = 8, ki2 = 8, i = 1, 2, 3;
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(d) The trajectory of e1 (no load case).

Figure 7.3: The joint space trajectories under different payloads.

and β = 0.1, ḡ1 = 40, ḡ2 = 46, and ḡ3 = 54.
The trajectories of ei1 , i = 1, 2, 3 under different payloads (installed to the end effector of

the robot manipulator) are displayed in Figure 7.2a, Figure 7.2c, and Figure 7.2e, respec-
tively. It is shown that our developed tracking control scheme efficiently tracks the desired
trajectory xd with a satisfying tracking precision and robustness against varying payloads.
The parallel training results (the 500g payload case is displayed for demonstration) of Ŵi

are displayed in Figure 7.2b, Figure 7.2d, and Figure 7.2f. We obtain the desired weight
convergence for each subsystem using the realtime and experience data together. This vali-
dates the realtime learning performance of our developed weight update law (7.44) even for
a high-dimensional system.

To further show the superiority of our developed tracking control scheme under different
tasks, we drive the end effector of the robot manipulator to track three different reference
circles in task space sequentially. Circle 1: center c1 = (0.68, 0.05) and radius r1 = 0.2;
Circle 2: center c2 = (0.72, 0.05) and radius r2 = 0.16; Circle 3: center c3 = (0.75, 0.05)
and radius r3 = 0.12. We use the Robotics toolbox [144] to conduct the inverse kinematics
calculation to get the associated joint space trajectories of Circles 1-3, which are inputs of
our proposed tracking control scheme. The required kinematics information to conduct the
inverse kinematics calculation is referred to Appendix A.1. More details of experimental
settings are referred to Table 7.1. The associated tracking trajectories in joint space and
task space are displayed in Figure 7.3 and Figure 7.4, respectively. The satisfying tracking
performance validates the efficiency of our developed tracking control scheme.
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Table 7.1: The parameter settings for the robot manipulator.
Initial value x(0) = [0, 0, 0, 0]⊤, u(0) = [0, 0]⊤,
conditions ḡ1 = 14, ḡ2 = 32, ḡ3 = 80,

ki1 = 8, ki2 = 8, Ŵi(0) = 04×1, i = 1, 2, 3
Cost function Q1 = diag(16, 10), Q2 = diag(18, 10),

parameters Q3 = diag(0.2, 0.1), β = 1, c̄i = 4 , i = 1, 2, 3
Weight learning kti = 0.1, kei

= 0.1, Pi = 10, i = 1, 2, 3
parameters Γ1 = 0.01 diag(I1×4), Γ2 = 0.03 diag(I1×4),

Γ3 = 0.01 diag(I1×4).
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(a) The trajectory of the robot end effector.
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(b) The trajectory of the tracking error.

Figure 7.4: The task space trajectories of the circle tracking scenario.

7.6 Numerical Simulation
This section further certifies the effectiveness of our proposed tracking control scheme un-
der a high-dimensional quadrotor tracking task. The quadrotor [145] is driven to track the
desired spiral reference trajectory xr = [ 3

10 sin(t) , cos(t), t
10π , 0]⊤ ∈ R3, t ∈ [0, 50]. The associ-

ated parameter settings to conduct the numerical simulations are referred to Table 7.2. The
detailed procedures to decouple the 6-DoF quadrotor into 6 subsystems are referred to Ap-
pendix A.2. For subsystems 1-6, we adopt the same activation functions used in Section 7.5.
As displayed in Figure 7.5, we obtain a satisfying tracking performance via our developed
approach.

Table 7.2: The parameter settings of a quadrotor OTCP.
Initial value ξ(0) = [0.1, 1.1, 0]⊤, η(0) = [0, 0, 0]⊤, u(0) = [0, 0, 0.5]⊤

conditions ḡi = 300, i = 1, 2, 3; ḡi = 60000, i = 4, 5, 6,
ki1 = 3, ki2 = 3, Ŵi(0) = 04×1, i = 1, · · · , 6.

Cost function Qi = diag(1, 1), c̄i = 4,
parameters β = 0.1, i = 1, · · · , 6.

Weight learning kti = 1, kei
= 0.01, Pi = 6,

parameters Γi = 0.01 diag(I1×4), i = 1, · · · , 6.
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(b) The position tracking error.

Figure 7.5: The position tracking performance of a quadrotor.

7.7 Summary
This chapter develops a time-delayed data informed RL based tracking control scheme to
address the limitations of existing RL based solutions to the OTCP. Through the decou-
pled control and time-delayed data, the investigated OTCP of a high-dimensional system
is divided into multiple sub-OTCPs of incremental subsystems. Then, the sub-OTCPs are
transformed into sub-RORCPs that are approximately solved by a parallel critic learning
structure. The proposed tracking control scheme is developed with rigorous theoretical anal-
ysis of system stability and weight convergence. The experimental and numerical simulation
results validate that our proposed model-free tracking control strategy could be applied to
high-dimensional systems with the flexibility of different tracking tasks.

Departing from available solutions to the OTCP, our developed tracking control scheme
settles the curse of complexity problem in value function approximation from a decoupled
way, circumvents the learning inefficiency regarding varying desired trajectories by avoiding
introducing a reference trajectory dynamics into the learning process, and requires neither
an accurate nor identified dynamics through the time delay estimation technique. However,
the input saturation is not addressed in the current work, which remains our future work.
Besides, the effectiveness and the superiority of the parallel critic learning structure will be
validated under a high-dimensional system.
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Conclusion and Future Directions 8

This dissertation presents our works to empower autonomous systems with resilience to
safely interact with unforeseen environments and guaranteed or even optimal performance
to accomplish given tasks. The techniques from the control and learning communities are
used interchangeably to develop methods with theoretical guarantees and generalization to
uncertain scenarios.

8.1 Conclusion

8.1.1 Part I Conclusion

Our works in Part I are mainly rooted in the control community, concerning domains in-
cluding system identification, adaptive control, robust control, and backstepping. Chapter
2 safely improves the tracking performance of one partially unknown robot manipulators
based on BLF, TF-CL, and backstepping. Chapter 3 explicitly considers the control-level
attainable performance bound into the planning level and uses time-delayed data to achieve
the model-free (kinematics-free and/or dynamics-free) control. Thereby, the provable safe
execution of autonomous systems suffering from uncertainties and disturbances is realized.
Chapter 4 presents an integrated perception and control approach that utilizes instanta-
neous local sensory data to stimulate safe feedback control strategies with fast adaptation
to diverse uncertain environments without building a global map.

The less information on dynamics and environment that is required, the stronger the
robustness. Chapter 2 accomplishes online identification of the partially unknown dynamics
using the physical structure. Chapter 3 relaxes the model structure by exploiting time-
delayed signals to achieve model-free control. The methods developed in Chapter 2 and
Chapter 3 both require a nominal understating of the operating environment given that
the inputs (i.e., safe reference trajectories) to our designed tracking controllers are planned
using prior-developed maps. Chapter 4 moves one step further to remove the requirement
of an accurate map by directly coupling perceptional signals with control inputs. Regarding
safety issues, Chapter 2 and Chapter 3 confine states into safe regions. Chapter 4 ensures
safety by enforcing controlled plants to stay away from unsafe regions. In summary, Part I
utilizes informative data (historical data in Chapter 2, time-delayed data in Chapter 3, and
perceptual data in Chapter 4 in particular) to refresh the traditional control methods. The
resulting learning-based control strategies in Chapters 2-4 safely improve the closed-loop
performance despite uncertainties.

115



8 Conclusion and Future Directions

8.1.2 Part II Conclusion
In Part II, we attempt to achieve the safe approximate optimal control under uncertainty
via RL based optimization framework. RL provides designers with avenues to solve the
optimal control problem of continuous time nonlinear systems. We additionally embed the
RL based optimal control with robustness and safety guarantees. Chapter 5 proposes an off-
policy risk-sensitive RL based control framework to jointly optimize task performance and
constraint satisfaction in a disturbed environment. Chapter 6 presents a new formulation for
model-free robust optimal regulation of continuous-time nonlinear systems. The proposed
RL based approach utilizes measured input-state data to allow the design of the approximate
optimal incremental control strategy, stabilizing the controlled system incrementally under
model uncertainties, environmental disturbances, and input saturation. Chapter 7 develops
one time-delayed data informed RL based approximate optimal tracking control strategy.
Departing from available solutions to the optimal tracking control problem, our developed
tracking control scheme settles the curse of complexity problem, circumvents the learning
inefficiency, and requires neither an accurate nor identified dynamics.

The nominal knowledge and an assumed disturbance bound is utilized in Chapter 5 to
present the closed-loop stability and safety under uncertainty. A further step is taken in
Chapter 6 and Chapter 7 where time-delayed signals are used to represent the controlled
plant in an incremental form. The resulting model-free incremental system facilitates model-
free control and also provides a mathematical form of dynamics for the stability analysis.
Towards the safe control, Chapter 5 studies the safe optimization problem via introducing
the risk-sensitive input and state penalty terms into the value function. Chapter 6 utilizes
a safety filter to enforce the safety constraint satisfaction after the learning process. Chap-
ter 7 investigates the safe operation problem through a systematic view. An approximate
optimal tracking control strategy with high tracking accuracy and strong robustness drives
autonomous systems to track the planned safe reference trajectory precisely even in a dis-
turbed environment. In summary, Part II builds on the RL based optimization framework
and enables the approximate optimal control strategy to cope with uncertain and unsafe
scenarios.

8.2 Future Directions
The topic investigated in this dissertation intertwines multiple disciplines. Potential future
research directions are listed as follows.

Revisit the data quality. The techniques developed in Part I and Part II are data-hungry.
For example, the realtime and historical data are required in CL to ensure the parameter
convergence, and the time-delayed data are needed in IADP to achieve model-free control.
The efficacy of the data-based techniques is heavily dependent on perfect measurement data.
Current works assume available perfect measurements without considering potential missing
data, process and observation noises. Considering practicability, expanding our developed
approaches to imperfect measurements is essential.

Explore deep neural network and deep reinforcement learning. Current works
adopt the linear function approximator to facilitate the theoretical analysis of the system
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stability and weight convergence. However, the utilized simple architecture lacks the gener-
ality to complex and high-dimensional problems. The solution is to turn to the nonlinear
function approximator – deep neural network. Deep reinforcement learning gets state-of-
the-art performance on control tasks due to the powerful approximation ability of the deep
neural network, which fully captures the complexities and nonlinear proprieties of the in-
vestigated problems. However, the accompanying problem is that conducting theoretical
analysis based on this complicated representation scheme is nontrivial. It remains to explore
novel algorithm structures and training strategies to learn deep neural network based control
policies with theoretical guarantees.

Bridge the gap between planning and control. To accomplish the safe autonomous
operation, common approaches often firstly plan a safe desired trajectory that a tracking
controller then follows. However, the planned collision-free trajectory does not imply ac-
tual safe execution given the tracking controllers’ inefficiency caused by model uncertainties
and/or environmental disturbances. The deviation between the actual execution trajectory
and the planned safe trajectory might result in unsafe scenarios. It is promising to use tools
from the control and learning communities to solve the safe autonomous operation problem
in an end-to-end way to avoid gaps among different levels.

Inform reinforcement learning algorithms with theoretical guarantees. This dis-
sertation mainly focuses on the control field and utilises RL to support the controller design.
It remains to investigate how to exploit theoretical-analysis tools and available knowledge
in the control field to improve the transparency and interpretability of RL algorithms. An
exciting point is to preserve the promising exploration ability of RL while meeting specific
theoretical guarantees during the online learning process.

Competitive game among different algorithms. Our works attempt to empower au-
tonomous systems with intelligence to survive in an uncertain environment. Different strate-
gies are developed. Besides, there also exist works that uses different algorithms to achieve
the same goal. Then, the question arise, which algorithm is more efficient to solve certain
problems? Except from comparing different algorithms using common performance indexes
such as time, computational resources, one interesting comparison is to design a properly
competitive game for different algorithms. In competitive games, such as autonomous racing
game and soccer game, intelligent robots driven by different algorithms would compete with
each other to check which kind of algorithm is more efficient.
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Background Information A

A.1 Dynamics and Kinematics of Robot Manipulator
This section provides detailed dynamics and kinematics knowledge of the 3-DoF robot ma-
nipulator (see Figure A.1) used for the experimental validations of our developed approaches.

This 3-DoF robot manipulator is created by Chair of Automatic Control Engineering
(LSR), Technical University of Munich (TUM). The manipulator is confined in the horizontal
plane and actuated by 3 Maxon torque motors with a turn ration of 1:100. The incremental
encoders offer the joint position measurements with a resolution of 2000. The sensors and
actuators are connected with the computer using a peripheral component interconnect (PCI)
communication card. The executable algorithm is created by MATLAB 2017a in Ubuntu
14.04 LTS with the first-order Euler solver at the sampling rate of 1kHz.

Dynamics Information

The E-L equation of the 3-DoF robot manipulator follows

M(q)q̈ + C(q, q̇)q̇ + F q̇ = τ , (A.1)

where q = [q1, q2, q3]⊤ ∈ R3, q̇ = [q̇1, q̇2, q̇3]⊤ ∈ R3, M(q) =

m11 m12 m13
m12 m22 m23
m13 m23 m33

 ∈ R3×3,

C(q, q̇)q̇ = [N1,N2,N3]⊤ ∈ R3, and F =

f1 0 0
0 f2 0
0 0 f3

 ∈ R3×3. For brevity, f1 = f2 = f3 = f

is assumed for the viscous friction. Note that the robot manipulator is confined in the
horizontal plane. Thus, the gravity term is omitted in (A.1).

Each element of the inertial matrix M(q) reads

m11 = p1 + p2c23 + p3c2 + p4c3

m12 = p5 + p6c23 + p7c2 + p4c3

m13 = p8 + p6c23 + p9c3

m22 = p5 + p10c3

m33 = p8

where c2 = cos(q2), c3 = cos(q3), and c23 = cos(q2 + q3).
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Figure A.1: The 3-DoF robot manipulator for experimental validations.

The explicit forms of N1, N2 and N3 follows

N1 =− p2(s23q̇1q̇3 + s23q̇2q̇3 + s23q̇1q̇2)− p3s2q̇1q̇2 − p4(s3q̇1q̇3 + s3q̇2q̇3)
− p6(s23q̇

2
2 + s23q̇

2
3)− p7s2q̇

2
2 − p9s3q̇

2
3

N2 =p7s2q̇
2
1 + p6s23q̇

2
1 − p9s3q̇

2
3 − p4s3q̇1q̇3 − p4s3q̇2q̇3

N3 =p9(s3q̇
2
1 + s3q̇

2
2) + p6s23q̇

2
1 + p4s3q̇1q̇2

where s2 = sin q2, s3 = sin q3, and s23 = sin(q2 + q3).

Kinematics Information
The Cartesian space position p = [x, y]⊤ ∈ R2 of the robot manipulator’s end-effector reads

p = h(q), (A.2)

where h(q) : R3 → R2 is the forward kinematics. The explicit form of h(q) follows

h(q) =
[
l1c1 + l2c12 + l3c123
l1s1 + l2s12 + l3s123

]
, (A.3)

where l1 = 0.3 m, l2 = 0.24 m, l3 = 0.34 m are lengths of joint 1, joint 2 and joint 3; and
c123 = cos(q1 + q2 + q3), s123 = sin(q1 + q2 + q3).

A.2 Incremental Subsystems of Quadrotor
This section presents the detailed procedures to decouple a 6-DoF quadrotor into 6 incre-
mental subsystems.

Let ζ = [x, y, z]⊤ ∈ R3, and η = [ϕ, θ,ψ]⊤ ∈ R3 represent the absolute linear position and
Euler angles defined in the inertial frame, respectively. The E-L equation of a quadrotor
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follows (see [77])

mζ̈ +mgIz = RTB (A.4a)
J(η)η̈ + C(η, η̇)η̇ = τB, (A.4b)

where m ∈ R+ denotes the mass of the quadrotor; g ∈ R+ is the gravity constant; Iz =
[0, 0, 1]⊤ represents a column vector; TB = [0, 0,T ]⊤ ∈ R3, where T ∈ R is the thrust in the
direction of the body z-axis; τB = [τϕ, τθ, τψ]⊤ ∈ R3 denotes the torques in the direction of
the corresponding body frame angles; R, J(η), C(η, η̇) ∈ R3×3 represent the rotation matrix,
Jacobian matrix, and Coriolis term, respectively. Their explicit forms and values are referred
to [77].

Expanding the translational dynamics (A.4a) yields

ẍ = 1
m
T (CψSθCϕ + SψSϕ)

ÿ = 1
m
T (SψSθCϕ − CψSϕ)

z̈ = −g + 1
m
TCθCϕ,

(A.5)

where C(·) and S(·) denote cos (·) and sin (·), respectively.
Introducing pseudo controls u1 = T (CψSθCϕ + SψSϕ), u2 = T (SψSθCϕ − CψSϕ), and

u3 = TCθCϕ, and denoting x11 = x, x12 = ẋ, x21 = y, x22 = ẏ, x31 = z, x32 = ż, we finally
decouple the transnational dynamics (A.4a) into the following three subsystems

ẋ11 = x12, ẋ12 = 1
m
u1 (A.6a)

ẋ21 = x22, ẋ22 = 1
m
u2 (A.6b)

ẋ31 = x32, ẋ32 = −g + 1
m
u3. (A.6c)

Following the same procedures (7.2)–(7.7) clarified in Section 7.2, we get three subsystems
for the rotational dynamics (A.4b):

ẋ41 = x42, ẋ42 = −H1

J11
+ 1
J11

u4 (A.7a)

ẋ51 = x52, ẋ52 = −H2

J22
+ 1
J22

u5 (A.7b)

ẋ61 = x62, ẋ32 = −H3

J33
+ 1
J33

u6, (A.7c)

where Hi = ∑3
j=1,j ̸=i Jij η̈j + Ciη̇j ∈ R, i = 1, 2, 3; u4 = τϕ, u5 = τθ, and u6 = τψ.

The aforementioned procedures (A.5)-(A.7) allow us to get 6 subsystems. Then, we design
controllers to drive the quadrotor (A.4) to track the predefined reference trajectory xr =
[xd, yd, zd,ψd]⊤. Note that after the explicit values of pseudo controls u1, u2, and u3 are
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gotten, we obtain the trust T , and reference angles ϕd, θd as

T =
√
u2

1 + u2
2 + u2

3 (A.8)

ϕd = arctan
 u1Sψ − u2Cψ√

(u1Cψ + u2Sψ)2 + u2
3

, ϕd ∈ (−π2 , π2 ) (A.9)

θd = arctan
(
u1Cψ + u2Sψ

u3

)
, θd ∈ (−π2 , π2 ). (A.10)
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