
Technische Universität München
TUM School of Computation, Information and Technology

Safe Reinforcement Learning Methods for
Complex Dynamical Systems Based on Model

Order Reduction Techniques

Zhehua Zhou

Vollständiger Abdruck der von der TUM School of Computation, Information and Technol-
ogy der Technischen Universität München zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs (Dr.-Ing.)

genehmigten Dissertation.

Vorsitzende/-r: Prof. Dr.-Ing. habil. Dr. h.c. Alexander W. Koch

Prüfende/-r der Dissertation:

1. Prof. Dr.-Ing./Univ. Tokio Martin Buss

2. Prof. Dr.-Ing. Klaus Diepold

Die Dissertation wurde am 31.03.2022 bei der Technischen Universität München eingereicht
und durch die Fakultät für Elektrotechnik und Informationstechnik am 17.09.2022 angenom-
men.

Preamble
This dissertation summarizes my research conducted over the past years at the Chair of
Automatic Control Engineering (LSR), at the Technical University of Munich (TUM), Ger-
many. In this chair, I have experienced an excellent and inspiring atmosphere. I would
like to take this opportunity to thank all the people who have provided a great help and
supported me in achieving my goals.

Foremost, I would like to sincerely thank my advisor and head of the chair Prof. Martin
Buss for his valuable support during my years in LSR. His trust and confidence in me
encouraged me a lot for completing my research. I have benefited greatly from his insightful
comments and suggestions, as well as the freedom he granted in this lab, so that I am able
to concentrate on the research topics that I am interested in. I appreciate all his valuable
contributions to my work. Furthermore, I would like to thank Dr. Marion Leibold and
Dr. Ozgur S. Oguz for their constructive advice and helpful support on my works. The
valuable discussions with them have inspired me a lot and made it possible for me to finish
my researches.

I thank the whole team at LSR for both the productive and the fun times we shared.
A special thanks goes to my friends and colleagues in LSR: Volker Gabler, Khoi Hoang
Dinh, Gerold Huber, Rameez Hayat, Stefan Friedrich, Yingwei Du, Markus Schill, Zengjie
Zhang, Tim Bruedigung, Tong Liu, Yuhong Chen, Ni Dang, Cong Li, Yongchao Wang,
Sebastian Kerz, Salman Bari and Larissa Schimid. Without our extensive discussions, your
constructive feedback, and your help during my stay, this work would not have been possible.
I would also like to thank Dr. Fangzhou Liu, Dr. Qingchen Liu and Dr. Yi Ren for their
constructive suggestions and help with my academic career.

Most importantly, no words can fully express my gratefulness to my family. I would like
to thank my parents for their love, continuous support and valuable advice in all these years.
Last but not least, I am grateful to all my friends for their support and encouragement
during my doctor career.

i

Abstract
Reinforcement learning is used in many recent studies for solving complicated control tasks,
e.g., control of a manipulator or a humanoid. However, although these approaches demon-
strate attractive achievements, their results are mostly only presented in simulations. One
major concern about applying reinforcement learning methods to real-world dynamical sys-
tem is safety. Due to the inherent random exploration mechanism, it is unavoidable that
the intermediate policy may lead to a dangerous behavior of the system, which is not only
harmful to the system itself but also to the environment. Therefore, a safe reinforcement
learning method is desired for extending state-of-the-art reinforcement learning algorithms
to real-world systems. Moreover, often the motivation of using reinforcement learning for
designing the controller is to overcome the computational difficulty in employing traditional
controller design techniques. In such cases, the dynamical system usually possesses a com-
plex dynamics, i.e., high-dimensional and highly nonlinear, which hinders the application
of many recently proposed safe reinforcement learning approaches. Hence, in this disserta-
tion, we focus on proposing general safe reinforcement learning methods that are suitable
for complex dynamical systems.

By using a supervisory control strategy, a safe reinforcement learning framework is realized
by switching the actual applied action between the reinforcement learning-based controller
and a predefined corrective controller. The central idea is that, through defining a proper
control invariant safe region, the learner is able to freely choose its action if the system is
inside the safe region. Once the system approaches the boundary of the safe region, the cor-
rective controller is activated for keeping the system safe. For identifying a reliable safe region
for complex dynamical systems, we first propose to use a physically inspired model order
reduction technique to construct a simplified system model, which then provides estimates
about the high-dimensional safe region. Moreover, for having more accurate predictions
about safety, the derived safety estimates are updated online by using the observed real sys-
tem behavior. The results show that, the proposed safe reinforcement learning framework
has a satisfying performance in multiple control tasks, and gives an insight about how to
safely apply reinforcement learning methods to real-world dynamical systems.

Furthermore, to overcome the limitations of physically inspired model order reduction, we
also propose a novel data-driven model order reduction approach for efficiently identifying a
low-dimensional representation of the safe region for the safe reinforcement learning frame-
work. This is achieved by learning a representative low-dimensional safety feature from the
training data that are obtained by simulating a nominal system model. A modified online
adaptation method is also proposed for ensuring the reliability and accuracy of the derived
safety estimates. The data-driven approach highly increases the applicability of the safe re-
inforcement learning framework, and is implementable on a wide range of dynamical systems
and learning scenarios.

Finally, considering the fact that the quality of training data significantly affects the
performance of data-driven approaches, we present a data generation method for produc-
ing training data that are most useful to the safe reinforcement learning framework. The
proposed approach results in a training dataset that achieves a satisfying balance between
finding an optimal control policy and maintaining the safety of the system, and provides an
insight about how different training data will affect the accuracy in predicting safety.

iii

Zusammenfassung

Reinforcement Learning wird in vielen neueren Studien zur Lösung komplizierter Steuerungsauf-
gaben eingesetzt, z.B. zur Steuerung eines Manipulators oder eines Humanoiden. Obwohl
diese Methoden attraktive Leistungen zeigen, werden ihre Ergebnisse jedoch meist nur in
Simulationen präsentiert. Ein Hauptanliegen bei der Anwendung von Reinforcement Learn-
ing auf reale dynamische Systeme ist die Sicherheit. Aufgrund des inhärenten Zufallsex-
plorationsmechanismus ist es unvermeidlich, dass die Zwischenpolitik zu einem gefährlichen
Verhalten des Systems führen kann, das nicht nur für das System, sondern auch für die
Umwelt schädlich ist. Daher ist ein sicheres Reinforcement Learning Methode erwünscht,
um moderne Reinforcement Learning Algorithmen auf reale Systeme auszudehnen. Darüber
hinaus besteht die Motivation für die Verwendung von Reinforcement Learning zum Entwer-
fen des Controllers häufig darin, die Rechenschwierigkeiten bei der Verwendung traditioneller
Controller-Entwurfsmethoden zu überwinden. In solchen Fällen besitzt das dynamische Sys-
tem normalerweise eine komplexe Dynamik, d.h. hochdimensional und hochgradig nichtlin-
ear, was die Anwendung der vielen vorgeschlagenen sicheren Reinforcement Learning Metho-
den behindert. Daher konzentrieren wir uns in dieser Dissertation darauf, allgemeine sichere
Reinforcement Learning Methoden vorzuschlagen, die für komplexe dynamische Systeme
geeignet sind.

Durch die Verwendung einer Überwachungssteuerungsstrategie wird ein sicheres Reinforce-
ment Learning Framework realisiert, indem die tatsächlich angewendete Aktion zwischen
dem auf Reinforcement Learning basierenden Controller und einem vordefinierten Korrek-
turcontroller umgeschaltet wird. Die zentrale Idee ist, dass der Lernende durch die Definition
eines geeigneten kontrollinvarianten sicheren Bereichs in der Lage ist, seine Aktion frei zu
wählen, wenn sich das System innerhalb des sicheren Bereichs befindet. Sobald sich das Sys-
tem der Grenze des sicheren Bereichs nähert, wird die Korrektursteuerung aktiviert, um das
System sicher zu halten. Um einen zuverlässigen sicheren Bereich für komplexe dynamische
Systeme zu identifizieren, schlagen wir zunächst vor, eine physikalisch inspirierte Methode
zur Reduktion der Modellordnung zu verwenden, um ein vereinfachtes Systemmodell zu kon-
struieren, das dann Schätzungen über den hochdimensionalen sicheren Bereich liefert. Um
genauere Vorhersagen über die Sicherheit zu erhalten, werden die abgeleiteten Sicherheitss-
chätzungen außerdem online aktualisiert, indem das beobachtete reale Systemverhalten ver-
wendet wird. Die Ergebnisse zeigen, dass das vorgeschlagene sichere Reinforcement Learning
Framework eine zufriedenstellende Leistung bei mehreren Steuerungsaufgaben aufweist und
einen Einblick darüber gibt, wie man Reinforcement Learning Methoden sicher auf reale
dynamische Systeme anwenden kann.

Um die Einschränkungen der physikalisch inspirierten Modellordnungsreduktion zu über-
winden, schlagen wir außerdem einen neuartigen datengesteuerten Modellordnungsreduk-
tionsmethode vor, um eine niedrigdimensionale Darstellung der sicheren Bereich für das
sichere Reinforcement Learning Framework effizient zu identifizieren. Dies wird erreicht, in-
dem ein repräsentatives niederdimensionales Sicherheitsmerkmal aus den Trainingsdaten gel-
ernt wird, die durch Simulation eines nominellen Systemmodells erhalten werden. Außerdem
wird eine modifizierte Online-Anpassungsmethode vorgeschlagen, um die Zuverlässigkeit und
Genauigkeit der abgeleiteten Sicherheitsschätzungen sicherzustellen. Die datengesteuerte
Methode erhöht die Anwendbarkeit des sicheren Reinforcement Learning Frameworks erhe-
blich und ist auf einer Vielzahl dynamischer Systeme und Lernszenarien umsetzbar.

iv

In Anbetracht der Tatsache, dass die Qualität der Trainingsdaten die Leistung datenges-
teuerter Methoden erheblich beeinflusst, stellen wir schließlich eine Datengenerierungsmeth-
ode zur Erzeugung von Trainingsdaten vor, die für das sichere Reinforcement Learning
Framework am nützlichsten sind. Die vorgeschlagene Methode führt zu einem Trainings-
datensatz, der ein zufriedenstellendes Gleichgewicht zwischen der Suche nach einer optimalen
Steuerungsrichtlinie und der Aufrechterhaltung der Sicherheit des Systems erreicht und einen
Einblick darüber gibt, wie sich unterschiedliche Trainingsdaten auf die Genauigkeit bei der
Vorhersage der Sicherheit auswirken.

v

Contents

Notation xi

List of Figures xvii

List of Tables xix

List of Algorithms xxi

1. Introduction 1
1.1. Challenges . 2

1.1.1. Safe Reinforcement Learning . 4
1.1.2. Model Order Reduction Techniques 6

1.2. Contributions and Outline . 7

2. Reinforcement Learning in Dynamical Systems 11
2.1. Components of Reinforcement Learning Problem 11
2.2. Value Function Based Approaches and Policy Search 12

2.2.1. Value Function Based Approaches . 13
2.2.2. Policy Search . 15
2.2.3. Actor-critic Method . 15

2.3. SRL Based on ROA and Supervisory Control 16
2.3.1. System Model and ROA . 16
2.3.2. SRL Framework . 17

3. Safe Reinforcement Learning Based on Physically Inspired Model Order
Reduction 19
3.1. Overview of the Approach . 19
3.2. Initialization of the Supervisor with Simplified System Model 20

3.2.1. Simplified System . 21
3.2.2. Probabilistic Estimate of Safety . 22
3.2.3. Supervisor Initialization . 25

3.3. Online Adaptation of the Safe Region . 26
3.3.1. Belief Function Theory . 26
3.3.2. Belief Map . 28
3.3.3. Prior and Feedback Belief Map . 29
3.3.4. Weighted Belief Fusion . 30
3.3.5. Supervisor Update . 32
3.3.6. Validation . 33

3.4. SRL Algorithm . 33
3.5. Experimental Results . 35

3.5.1. Two-link Inverted Pendulum . 35

vii

Contents

3.5.2. Quadcopter Flight Control . 38
3.5.3. Humanoid Control . 45

3.6. Discussion . 49
3.6.1. Safety in Complex Dynamical Systems 49
3.6.2. Safety and Learning Performance . 50
3.6.3. Applications . 51
3.6.4. Limitations . 52

3.7. Summary . 52

4. Safe Reinforcement Learning Based on Data-driven Model Order Re-
duction 55
4.1. Overview of the Approach . 56

4.1.1. SRL for Complex Dynamical Systems 56
4.1.2. SRL with Data-driven MOR . 57

4.2. Learning a Low-dimensional Representation of the Safe Region 61
4.2.1. Identifying the State Mapping with t-SNE 61
4.2.2. Defining the DSAF with Belief Function Theory 63
4.2.3. Initializing the DSAF from Training Data 65

4.3. Online Adaptation of the Safe Region . 67
4.3.1. Update of the Prior DSAF with Feedback Data 67
4.3.2. Feedback DSAF . 69
4.3.3. Fusion of Prior and Feedback DSAFs 70

4.4. Experimental Results . 71
4.4.1. Quadcopter Example . 71
4.4.2. Humanoid Example . 78

4.5. Discussion . 79
4.5.1. Relevance to Different SRL Tasks . 80
4.5.2. Strengths and Limitations . 81

4.6. Summary . 83

5. Data Generation for Data-driven Safe Reinforcement Learning 85
5.1. SRL as Binary Classification . 85
5.2. Learning Performance and Classification Error 87

5.2.1. Training Data and Classification Error 87
5.2.2. Classification Error and SRL . 89

5.3. Data Generation Method . 89
5.4. Experimental Results . 91

5.4.1. Experimental Setup . 91
5.4.2. Low-dimensional Representation of the Safe Region 94
5.4.3. Performance of the SRL Framework 96

5.5. Discussion . 96
5.5.1. Connection to Transfer Learning . 97
5.5.2. Limitations . 97

5.6. Summary . 98

6. Conclusion and Outlook 99
6.1. Conclusion . 99

viii

Contents

6.2. Outlook . 100

A. SOS Programming for Estimating the ROA 103

B. Sensitivity Analysis of Parameter δ 105

C. Computations of t-SNE 107

Bibliography 109

ix

Notation

Acronyms and Abbreviations
CoM center of mass

MOR model order reduction

ROA region of attraction

SRL safe reinforcement learning

TD temporal difference

SOS sum-of-squares

GPR Gaussian process regression

NN neural network

BBA basic belief assignment

PPO proximal policy optimization

SAF safety assessment function

DSAF discretized safety assessment function

t-SNE t-distributed stochastic neighbor embedding

DTW dynamic time warping

Belief Function Theory
B(v) belief map

BP(v) prior belief map

BF(v) feedback belief map

BC(v) combined belief map

bv,s belief mass of the event x ∈ S for index vector v

bP
v,s belief mass of the event x ∈ S for index vector v in prior belief map

xi

Notation

bF
v,s belief mass of the event x ∈ S for index vector v in feedback belief map

bC
v,s belief mass of the event x ∈ S for index vector v in combined belief map

bi
s belief mass of the event x ∈ S obtained from the i-th training data

bprior
v,s belief mass of the event x ∈ S in Bprior

v

bfeedback
v,s belief mass of the event x ∈ S in Bfeedback

v

bfuse
v,s belief mass of the event x ∈ S in Bfuse

v

bv,u belief mass of the event x /∈ S for index vector v

bP
v,u belief mass of the event x /∈ S for index vector v in prior belief map

bF
v,u belief mass of the event x /∈ S for index vector v in feedback belief map

bC
v,u belief mass of the event x /∈ S for index vector v in combined belief map

bi
u belief mass of the event x /∈ S obtained from the i-th training data

bprior
v,u belief mass of the event x /∈ S in Bprior

v

bfeedback
v,u belief mass of the event x /∈ S in Bfeedback

v

bfuse
v,u belief mass of the event x /∈ S in Bfuse

v

σv subjective uncertainty for index vector v

σP
v subjective uncertainty for index vector v in prior belief map

σF
v subjective uncertainty for index vector v in feedback belief map

σC
v subjective uncertainty for index vector v in combined belief map

σi subjective uncertainty of the i-th training data

σprior
v subjective uncertainty in Bprior

v

σfeedback
v subjective uncertainty in Bfeedback

v

σfuse
v subjective uncertainty in Bfuse

v

Bv BBA for the index vector v

Bi BBA obtained from the i-th training data

Bini initial estimate of Bv

Bprior
v prior estimate of Bv

Bfeedback
v feedback estimate of Bv

Bfuse
v fused estimate of Bv

B∅ empty BBA

xii

Notation

Functions
f(x) function for system dynamics

g(x) function for system dynamics related to input

d(x) unknown and unmodelled part of the system dynamics

fs(x) function for simplified system dynamics

gs(x) function for simplified system dynamics related to input

K(x) corrective controller

π(x) reinforcement learning-based controller

fK(x) closed-loop system dynamics w.r.t the corrective controller K(x)

Ψ(x) state mapping

P(·) probability of an event

E(·) expectation

F (x) function approximator for estimating the safety of x

L(x) locating function

Cp(v) counter of positive feedback data for index vector v

Cn(v) counter of negative feedback data for index vector v

Γ(xs) safety assessment function defined over the simplified state space

Γd(v) discretized safety assessment function defined over the index vector v

Γprior
d (v) prior discretized safety assessment function

Γfeedback
d (v) feedback discretized safety assessment function

F(Bv) weighted belief fusion among the set Bv

P (x) function for the probability that system state x has the same safety label
both in simulation and reality

l(x) ground-truth labeling function for the safety label of system state x

h(x) hypothesis for the safety label of system state x

xiii

Notation

Parameters
pt probability threshold for the supervisor of the SRL framework

p initial probabilistic estimate of safety for states with Ψ(x) ∈ Ss

p initial probabilistic estimate of safety for states with Ψ(x) /∈ Ss

σ0 initial subjective uncertainty for the prior belief map

α initial value of subjective uncertainty for computing σF
v

β decay rate of subjective uncertainty for computing σF
v

γ decay rate for updating the subjective uncertainty in Bi

dt distance threshold for updating the supervisor

δ constant for compensating the difference in safety labels

σini initial subjective uncertainty for constructing Bi

σmin minimum kept subjective uncertainty in Bi

kmin minimum required number of BBAs for performing weighted belief fusion

pth threshold of pi
std for updating Bi

λ weighting factor for generating the training dataset

States and Variables
x n-dimensional original system state

u m-dimensional control input to the original system

xs ns-dimensional simplified system state

us ms-dimensional control input to the simplified system

v index vector of the grid cells in simplified system state space

ssim(x) safety label of system state x obtained by simulating the nominal system

sreal(x) safety label of system state x obtained from the real system

ωij pairwise trajectory distance between the i-th and j-th training data

Ωij distance between the i-th and j-th training data

pi
mean predicted mean value of P (xi

sim) for the i-th training data

xiv

Notation

pi
std corresponding standard deviation of pi

mean

kv,s number of safe feedback data for index vector v

kv,u number of unsafe feedback data for index vector v

Sets
R set of real numbers

Z+ set of positive integers

X state space of the original system

Xs state space of the simplified system

U action space of the original system

R ROA of the origin under the corrective controller K(x)

S safe region of the original system

Ss safe region of the simplified system

Sl low-dimensional representation of the safe region

Xreal set of feedback data

Xest set of safety estimates for updating the supervisor

Dtrain training dataset

Dfeedback feedback dataset

Bv set of Bi for the index vector v

Dud sub-dataset generated by using the uniform distribution Nud

Dmnd sub-dataset generated by using the multivariate normal distribution Nmnd

xv

Notation

Other Symbols
Φ(t; x) original system trajectory that starts at initial state x when time t = 0

Φs(t; xs) simplified system trajectory that starts at initial state xs when time t = 0

Φsim(t; x) system trajectory in simulation that starts at initial state x when time t = 0

Φreal(t; x) system trajectory in reality that starts at initial state x when time t = 0

Di
train the i-th training data

Di
feedback the i-th feedback data

N distribution of system states of the real system

Nn distribution of system states of the nominal system contained in the training
dataset

Nud uniform distribution among the system state space

Nmnd multivariate normal distribution used for approximating the real distribution
N

xvi

List of Figures

2.1. SRL framework . 18

3.1. Overview of the practical realization of the SRL framework 20
3.2. Relationship between safety of the original system state and the simplified

system state . 22
3.3. Reasons for the inaccuracy of estimating safety through the simplified system 23
3.4. Different original system states mapped to the same simplified system state

have the same probabilistic estimate of safety 24
3.5. The probabilistic estimate of safety is represented by the corresponding belief

mass . 27
3.6. The prior belief map of the examples . 28
3.7. Two-link inverted pendulum model . 36
3.8. Probability from the function approximator for the first slice in the inverted

pendulumn example . 38
3.9. Probability from the function approximator for the second slice in the inverted

pendulumn example . 39
3.10. Belief masses for different index vectors in the inverted pendulumn example . 40
3.11. Accuracy and false positive ratio of the two-link inverted pendulum example 41
3.12. Crazyflie with four tracking markers . 42
3.13. Crazyflie model in Gazebo simulation environment 43
3.14. Learning rewards of quadcopter simulations 44
3.15. Cumulated failures of quadcopter simulations 44
3.16. Initialization of the combined belief map in quadcopter simulations 45
3.17. Update of the combined belief map in quadcopter simulations 46
3.18. Learning reward of the real-world quadcopter experiment 47
3.19. Cumulated failures of the real-world quadcopter experiment 47
3.20. Update of the combined belief map in the real-world quadcopter experiment 48
3.21. Accuracy and false positive ratio of the real-world quadcopter experiment . . 49
3.22. Atlas model in Gazebo simulation environment 50
3.23. Physically inspired MOR for a humanoid robot 51

4.1. Overview of the proposed approach . 57
4.2. Full work-flow of the proposed approach . 59
4.3. Computations of the simplified states via t-SNE 62
4.4. Discretization of the simplified state space 64
4.5. Update of the subjective uncertainty in training data 68
4.6. Quadcopter model . 72
4.7. Simplified states computed via t-SNE . 73
4.8. Simplified states computed from the neural network 73
4.9. Update of the prior DSAF . 75

xvii

List of Figures

4.10. Update of the feedback DSAF . 76
4.11. Update of the final DSAF . 77
4.12. The initial DSAF from physically inspired MOR 78
4.13. The DSAFs obtained by considering a smaller original system state space . . 79
4.14. The DSAF obtained from physically inspired MOR by considering the com-

plete original system state space . 80
4.15. Humanoid model in simulation . 81
4.16. The prior and the updated DSAF for the humanoid example 82

5.1. Three-link inverted pendulum model . 90
5.2. Distribution of training data points . 91
5.3. Distribution of the computed simplified states 92
5.4. The learned low-dimensional representation of the safe region 93
5.5. Learning performance of the SRL framework 94
5.6. Number of failures during the learning process 95

B.1. Results of the sensitivity analysis . 105

xviii

List of Tables

3.1. Parameters of the SRL framework . 37
3.2. Hyperparameters of the PPO algorithm . 41

xix

List of Algorithms

1. SRL Algorithm . 34

xxi

Introduction 1.

Reinforcement learning methods are approaches that attempt to solve the common control
problem: what an agent should do in different situations [1]. Usually, such a problem includes
three aspects: (1) sensation, which means the agent should be able to sense the state of the
environment; (2) actions, which are taken by the agent to affect the state; (3) goal, which
describes the desired behavior of the agent and is in general represented by a reward function
that is related to the states. Through constructing a policy function, reinforcement learning
methods map states to actions such that the total reward obtained over the long run is
maximized [2]. Like most of the machine learning algorithms, the learner must explore the
environment and test the outcomes of different actions in order to find the optimal policy.
Reinforcement learning methods often present two characteristics: the trial-and-error policy
search process and the delayed rewards, i.e., the actions may not only affect the current
reward but also the rewards received in future actions.

The history of reinforcement learning dates back to the early 1950s. At that time, two
independent academic disciplines contribute to the formulation of reinforcement learning:
optimal control and trial-and-error learning (also referred to as animal learning [3]). While
trial-and-error learning is based on psychological concepts and is originated in classical con-
ditioning [4] and instrumental conditioning [5], optimal control solves problems by using the
Bellman equation and dynamic programming [6]. These two threads are initially studied
independently until the proposition of an influential method called temporal difference (TD)
learning in 1970s [7], [8]. TD learning arises from the interdisciplinary study of the two afore-
mentioned threads and hence is used to solve both the trial-and-error learning and optimal
control problems [9]. The work of Klopf [10]–[12] is in general considered as the beginning
of bringing TD learning methods together with trial-and-error animal learning theories. In
1989, the notable work of Watkins [13], which proposes a method that is well known as
Q-learning, fully combines TD learning and optimal control. The integration of these three
research directions, trial-and-error learning, optimal control and TD learning, leads to the
development of modern reinforcement learning methods.

In the past several decades, thanks to the advances in electrical engineering and compu-
tational power, a new concept of reinforcement learning called deep reinforcement learning
arises and draws more and more attentions [14]. The name of deep reinforcement learning
comes from the fact that it integrates reinforcement learning and deep learning [15], where
an artificial neural network that usually contains multiple layers is used to represent the pol-
icy, the value or the Q-functions [16] given in the reinforcement learning methods. Since the
agent governed by deep neural networks is able to make decisions based on raw inputs [17],
deep reinforcement learning provides possibilities of solving complicated control problems
without a manual engineering of the state space. Thus, the controller design process could
be significantly simplified.

1

1 Introduction

State-of-the-art reinforcement learning or deep reinforcement learning methods have demon-
strated attractive achievements in dealing with various tasks, including decision making [18]–
[20], image processing [21], [22], natural language processing [23], [24], etc. This encourages
the trend of connecting reinforcement learning to traditional control-theoretical disciplines
to solve complicated control problems related to dynamical systems [25]. For example, re-
cent studies employ reinforcement learning methods to control humanoids [26], [27], robotic
manipulators [28], [29] or autonomous vehicles [30], [31].

However, although these researches show impressive results in controlling dynamical sys-
tems with reinforcement learning methods, most of them only perform simulation-based
experiments. There still exists a huge gap between simulations and the implementations on
real-world dynamical systems. One major impediment for this is that, for real-world systems,
safety becomes a significant concern that has to be tackled with in high priority [32]. Note
that, from the aspect of control theory, the exact definition of safety could vary depending
on the actual task, e.g., from the stability of the controlled system to the avoidance of vi-
olations of certain safety constraints. Generally speaking, we consider safety as neither the
dynamical system itself nor the environment will be damaged. In traditional reinforcement
learning problems, e.g., playing chess or recognizing an image, safety is unfortunately less
discussed as it is unimportant or even irrelevant. Hence, if a real-world dynamical system is
directly controlled by a standard reinforcement learning method, then due to the inherent
trial-and-error learning process, it is very likely that the system or the environment may suf-
fer from severe consequences or damages as the intermediate policies could lead to dangerous
behaviours. For example, a quadcopter may crash many times before it learns a successful
flying policy.

In order to apply reinforcement learning methods to real-world dynamical systems, a safe
reinforcement learning (SRL) method that is able to impose safety guarantees to the learning
process is desired. Moreover, often the motivation of using reinforcement learning methods
to find the optimal controller is to overcome the computational limitations of traditional
model-based controller design techniques [33]. In such cases, the dynamical system is usually
highly nonlinear and high-dimensional (referred to as complex dynamical system in this
dissertation). Hence, considering the practicality, the SRL method should be able to operate
on complex dynamical systems. In this dissertation, we therefore focus on proposing general
SRL methods that can be effectively used on complex dynamical systems. We believe that the
proposed methods are applicable to a wide range of dynamical systems, and they provide
a possible solution to the challenging problem of safely extending modern reinforcement
learning methods to real-world scenarios.

1.1. Challenges

Depending on the characteristics of the system under consideration, reinforcement learning
methods generally can be categorized into two types: for systems that have discrete state and
action spaces, and for those with continuous state and action spaces [34]. In this dissertation,
we consider SRL methods that are applicable to continuous state and action spaces, as most
of the practical dynamical systems that we are interested in belong to this category [35],
[36]. For having such a SRL method that is well-performing for complex dynamical systems,
following challenges have to be addressed:

2

1.1 Challenges

(i) How to deal with the highly nonlinear and high-dimensional system dy-
namics such that the SRL method can be effectively applied to complex
dynamical systems.

(ii) In SRL, how to achieve a satisfying balance between finding an optimal
control policy with reinforcement learning methods and keeping the system
safe.

(iii) If a thorough understanding of the dynamical system is not available, e.g.,
the system dynamics is partially unknown, how to resolve this problem such
that the SRL method is still implementable.

The first challenge comes from the problem that, although there exist multiple researches
about SRL, those approaches are not directly applicable to complex dynamical systems
due to limitations in computational feasibility. In practical engineering tasks, when the
direct operation over the original system is not possible, often a simplified system model
is introduced to relax computational burdens [37]–[40]. Inspired by this, we design a SRL
framework for complex dynamical systems by using the physically inspired model order
reduction (MOR) technique [41] to solve the first challenge.

The second challenge is similar to the well-known exploration and exploitation dilemma
in reinforcement learning [42], which states that, on the one hand, the agent must exploit
actions that have been already executed before to obtain higher rewards, but on the other
hand, it also has to explore unknown actions to make better movements in the future.
Similarly, in SRL, providing the learner with more flexibility in action selection is able to
result in a better final policy, but meanwhile, this also increases the risk of encountering an
unsafe intermediate policy. Moreover, if the learning process is overly restricted for ensuring
safety, then the learned final policy may have a poor performance and cannot accomplish
the planned control task. To deal with this challenge, we introduce an online adaptation
method in the proposed SRL framework that adjusts the estimates about safety by using the
observed actual system’s behavior. Through a predefined control parameter, the user is able
to decide the tendency of the SRL framework between searching for policy and maintaining
safety.

The last challenge is a consideration based on the fact that, physically inspired MOR
techniques usually require a thorough understanding about the system dynamics [41]. Un-
fortunately, in many practical scenarios, such an understanding is often not available or
difficult to obtain. Under this circumstance, a different way of deriving a simplified system
model has to be employed. We assume that at least rough knowledge about the complex
dynamical system is known, despite that it could be inaccurate or not complete. This of-
fers us a nominal system model that is able to predict the behaviour of the actual complex
dynamical system. Hence, by using a data-driven MOR approach, we propose an extended
SRL framework to address the last challenge, which overcomes the limitations of physically
inspired MOR. Moreover, as the quality of training data significantly affects the performance
of the data-driven MOR, we also present a data generation method that is able to produce
representative training data for constructing a well-performed SRL framework.

In the following subsections, we first present an overview about state-of-the-art SRL meth-
ods, as well as their limitations. Then, as our approaches are based on the MOR techniques,
we give a brief introduction to researches related to this field. In the end of this chapter, we
highlight the contributions and outline the structure of this dissertation.

3

1 Introduction

1.1.1. Safe Reinforcement Learning
SRL in Markov decision process

The purpose of SRL is to find an optimal control policy by reinforcement learning while
ensuring that certain safety conditions are not violated during the learning process. For
systems with discrete action and state spaces, SRL is usually considered in the form of a
Markov decision process [43]. In such a case, safety can be realized in two ways: modifying
the optimization criterion, or limiting the exploration process.

Often the purpose of modifying the optimization criterion is to include the concept of risk
into the learning process. This can be done by, e.g., using the worst case criterion where
a policy is considered as optimal if it has the maximum worst-case expected return of the
rewards [44]. Besides, an additional risk term can be added to the optimization criterion for
balancing the return and the sensitivity to dangerous behaviors [45]. For example, the risk
of driving the system to an error state can be included in the expected return to increase
safety [46].

Alternatively, the exploration process can be directly controlled to avoid actions that can
lead to undesirable or catastrophic situations of the system. However, this usually requires
external knowledge about the system and the control task. For instance, initial knowledge
gathered from a teacher [47] or a finite set of demonstrations [48] can be incorporated into the
learning process for guiding the exploration. Moldovan and Abbeel [49] also proposed a safe
exploration algorithm for Markov decision processes, where a constraint about being able
to go back to the initial state is imposed. The probabilistic formulation of safety guarantee
in [49] inspired later work of using Bayesian optimization as a tool for the safety analysis [50].

Manual control mechanism and transfer learning

SRL in dynamical systems with continuous action and state spaces is in general a more
complicated problem and has been a topic of research for over a decade [51]. In earlier works
of applying SRL to real-world dynamical systems, safety is often achieved by introducing
an additional manual control mechanism. For example in [52], [53], a human pilot takes
over the control of the helicopter in case of failures. However, monitoring the entire learning
process requires a considerable amount of resources, which limits the applications of these
approaches.

It is also worth mentioning that, recent studies that are based on the so called transfer
learning [54] concept also attempt to solve the problem of implementing reinforcement learn-
ing methods on real-world systems. In these approaches, a satisfying control policy is first
trained in the simulator and then transferred to the real dynamical system [55]. However,
although transfer learning may reduce the total required learning time on the real system, no
safety guarantee has been proposed for the learning process. Due to the inevitable mismatch
between simulation and reality (also referred to as the simulation-to-reality gap or reality
gap [56]), there exists still a high risk of having an unsafe intermediate policy, especially in
the early learning phase on the real-world dynamical systems [57].

Model-free SRL

In model-free scenarios, SRL methods are usually designed by solving a constraint satis-
faction problem. For instance in [58], a neural network policy is used to learn a desired

4

1.1 Challenges

behaviour of the system, while a separate trajectory planning algorithm is employed to select
the final behavior and enforce the satisfaction of safety constraints. Besides, constrained pol-
icy optimization [59] introduces a constraint to the learning process such that the expected
return of cost functions should not exceed certain predefined limits. Alternatively, adding an
additional risk term to the reward function, such as risk-sensitive reinforcement learning [60],
can also increase the safety of reinforcement learning algorithms. A variety of approaches
have been proposed for designing a satisfying risk term in SRL, including variance [61], expo-
nential utility [62], percentile performance [63], etc. However, as no system model is directly
considered in these approaches, it is still highly likely that safety conditions are violated
during the learning process.

SRL with deterministic safety estimates

When at least an approximated system model is available, a more promising SRL can be
realized by combining control-theoretic concepts with reinforcement learning approaches.
For example in [64], [65], Lyapunov functions are employed to compute a sub-region of the
state space where safety conditions will never be violated. The system is then limited to this
sub-region during the learning process. However, finding suitable candidates for Lyapunov
functions is challenging if the system dynamics contains uncertainties or is highly nonlinear.

For uncertain dynamical systems, methods based on learning a model of unknown system
dynamics [66] or of environmental constraints [67] are proposed to ensure safety during
learning. For instance, by predicting the system behavior in the worst case, robust model
predictive control [68] is able to provide safety and stability guarantees to reinforcement
learning algorithms if the error in the learned model is bounded [69]. Besides, [70] introduces
an action governor to correct the applied action when the system is predicted to be unsafe.
However, limited by computational efficiency, these approaches with deterministic safety
estimates, i.e., the prediction about the safety of a system state is either safe or unsafe, are
usually only applicable to linear systems. Moreover, the accuracy of the learned model also
strongly affects the performance of these approaches.

SRL with probabilistic safety estimates

To relax demands placed on the accuracy of the system model and extend SRL to nonlinear
systems, instead of deterministic safety estimates, recent studies employ probabilistic safety
estimates, in which safety predictions are represented as probabilities. For example in [71],
modelling uncertainties are approximated by Gaussian process models [72], and a proba-
bilistic safe region is computed by solving the Hamilton-Jacobi-Isaacs equation [73] from the
reachability analysis [73]. Similarly, Gaussian process models are used in [74], [75] to model
unknown system dynamics. A safe region is then obtained from the probabilistic estimate
of the region of attraction (ROA) of a safe equilibrium state. The key component of these
studies is a forward invariant safe region, such that the learning algorithm has the flexibility
to execute desired actions within the safe region. Safety is ensured by switching to a safety
controller whenever the system approaches the boundary of the safe region. However, the
safe region is computed either by solving a partial differential equation in [71] or sampling
in [75], both of which suffer from the curse of dimensionality [76]. Furthermore, modeling
an unknown dynamics or disturbance with Gaussian process models also poses challenges
when the system is highly nonlinear and high-dimensional, since both making adequate as-

5

1 Introduction

sumptions about the distribution of dynamics and acquiring a sufficient amount of data
are difficult. Therefore, although approaches like [71], [75] enable promising results with
low-dimensional dynamical systems1, they are not directly applicable to complex dynamical
systems [77].

In most cases where a learning-based controller is preferred, it is likely that traditional
controller design techniques are difficult to be implemented, mainly due to the complex
system dynamics [78]. Hence, a desired SRL method should be capable of working on
complex dynamical systems. In this dissertation, we thus focus on proposing a novel SRL
framework for complex dynamical systems, which overcomes the computational limitations
of the aforementioned SRL methods.

1.1.2. Model Order Reduction Techniques
When it is infeasible to perform operations on the complete full system model, MOR tech-
niques are widely used to reduce the computational complexity of the control problem by
finding a reduced order model [79]. Such a simplified system model in general has a lower
dimensional state space and works as an approximation of the original system. MOR tech-
niques can be categorized into three types: physically inspired, projection-based and data-
driven [80]. In this subsection, we present a brief introduction to these approaches.

Physically inspired MOR

Physically inspired MOR techniques find the simplified model by taking into account domain
expertise and in-depth knowledge of the implementation details on the original system [41].
The identified simplified system model is able to describe the predominant characteristics
of the original system and estimate the output of interest with high enough precision. For
example, in control of a humanoid, it is common to use an inverted pendulum model of the
center of mass (CoM) for approximating the full system dynamics [81]. Then the controller
is designed such that the humanoid’s CoM follows a desired trajectory for the CoM that
is computed from the simplified system model. However, for applying physically inspired
MOR techniques, it often requires a thorough understanding of the dynamics of the controlled
system.

Projection-based MOR

Projection-based MOR derives a reduced order model by projecting the original system equa-
tions onto a low-dimensional subspace that is constructed to represent the essential character
of the system’s original input-output relationship [82]. Usually, the state of the original sys-
tem at selected inputs is used to construct a basis for the low-dimensional subspace with
different basis generation methods [83]. The lower-order approximation of the system model
is computed by neglecting system states that have relatively low effect on the overall model
response. For stable linear time-invariant systems, projection-based MOR approaches, e.g.,
balanced truncation [38], are able to guarantee a simplified system that is asymptotically

1In this dissertation, we consider dynamical systems with dimensions higher than six as high-dimensional,
as in such cases it is computationally difficult to implement traditional methods, e.g., reachability analysis
or sum-of-squares programming, in identifying the safe region.

6

1.2 Contributions and Outline

stable and has bounded errors for the output of interest [84]. However, limited by the com-
putational cost, it is difficult or impossible to find a reasonable basis for highly nonlinear
and high-dimensional system dynamics, which hinders the application of projection-based
MOR on complex dynamical systems.

Data-driven MOR

Data-driven MOR techniques are learning-based and use data obtained from the original
system that represent the input-output relation for deriving a lower dimensional system
model [85]. In general, the obtained simplified model uses combinations of different basis
functions to approximate the input-output relationship of the original system. For having
an accurate approximation, interpolation or regression methods are employed to adjust the
coefficients of the basis functions such that their combinations best reproduce the mapping
between the inputs and the outputs given by the training data. Depending on the actual task,
different forms of basis functions can be used, e.g., polynomials or radial basis functions [86].
The type of basis functions highly affects the quality of the identified simplified model. Due
to the high flexibility and applicability, impressive results of data-driven MOR are presented
in various scenarios and tasks, e.g., using support vector machines [87] or autoencoder [88] in
machine learning tasks. In this dissertation, we also employ data-driven MOR for designing
a more flexible SRL framework that is able to overcome the limitations of physically inspired
MOR techniques.

1.2. Contributions and Outline
In this dissertation, we provide a possible solution to the challenging problem how to safely
and efficiently apply state-of-the-art reinforcement learning methods to complex dynamical
systems. In Chapter 2, we first introduce preliminary knowledge about how reinforcement
learning methods are applied to dynamical systems with continuous state and action spaces,
as well as a SRL framework for low-dimensional dynamical systems that is based on a
supervisory control strategy. Then in Chapter 3, we present a general SRL framework
for complex dynamical systems that utilizes physically inspired MOR to find a simplified
system model. Such a low-dimensional system model approximates the behaviour of the
original system and predicts whether the original system is safe or not in its current state.
Besides, we also discuss in Chapter 3 how to achieve a satisfying balance between finding
an optimal policy and maintaining the safety by introducing an online adaptation method
in the proposed SRL framework. In Chapter 4, we explain in detail how to extend the
SRL framework with a data-driven MOR approach, such that the limitations of physically
inspired MOR are addressed. The data-driven MOR enables the application of the proposed
SRL framework to a wider range of dynamical systems and control scenarios. Moreover, in
Chapter 5, we introduce a data generation method that is able to produce representative
training data for the data-driven MOR. By using the proposed approach, we realize a SRL
framework that achieves a better performance in the early learning phase compared to the
cases where traditional data generation methods are used. Finally, Chapter 6 concludes this
dissertation and gives potential future work on the topic of SRL.

The contributions of this dissertation are summarized as follows:

7

1 Introduction

(i) Proposition of a SRL framework for complex dynamical systems (Chap-
ter 3)

We propose a generalizable SRL framework for complex dynamical systems that al-
lows autonomous systems to learn in the real-world safer than standard reinforcement
learning methods. With a proper definition of the safe region, the learner is able to
freely select its actions as long as the system is inside the safe region. A predefined
corrective controller is activated to keep the system safe once it reaches the boundary
of the safe region. By utilizing such a supervisory control strategy, the framework
is compatible with arbitrary reinforcement learning algorithms, and is also applicable
to various learning scenarios. For dealing with complex system dynamics, we utilize
physically inspired MOR to construct a simplified system model, which facilitates an
estimation for the safe region and leads to a good initialization of the SRL framework.
During the learning process, the safe region is modified through an online adaptation
method such that the flexibility of the learning-based controller is increased. The pro-
posed SRL framework enables applications of state-of-the-art reinforcement learning
algorithms in real-world scenarios, and provides practical insights on how to achieve a
good balance between safety and learning performance.
The method and results presented in Chapter 3 have been published in [89].

(ii) Proposition of a data-driven approach for SRL (Chapter 4)

To overcome the limitations of physically inspired MOR, we propose a novel data-driven
approach to identify the simplified system model. Inspired by transfer learning [90],
we assume that an approximated system model of the complex dynamical system
is available. By simulating this approximated model, we obtain training data that
represent safety of various original system states. Then, a data-driven approach that
computes probabilistic similarities between each training data is proposed to learn a
low-dimensional representation of the safe region. Such a low-dimensional safe region
is used as the starting point to SRL in the real system. For having more reliable
safety estimates, we also introduce a modified online adaptation method to account
for the inaccuracy in training data. The proposed data-driven approach is capable of
systematically identifying a low-dimensional representation of the safe region and is
implementable on a wide range of dynamical systems and control tasks, which highly
increases the applicability of the SRL framework.
The method and results presented in Chapter 4 have been published in [91].

(iii) Proposition of a data generation method for data-driven SRL (Chapter 5)

For the SRL framework where data-driven MOR is used to construct the simplified
system model, the quality of training data significantly affects the performance of
the identified low-dimensional safety feature. To improve the reliability of the SRL
framework, especially in the early learning stage where only limited feedback data is
available, we introduce a data generation method for producing representative training
data. This is achieved by first analyzing the factors that influence the generalization

8

1.2 Contributions and Outline

error of the obtained safety estimates, i.e., the error in predicting safety of the real sys-
tem by using information from the simulated nominal system. Then, a data generation
method that combines a uniform distribution and a multivariate normal distribution
is designed accordingly. By adjusting the weights of these two distributions, the pro-
posed approach realizes a satisfying balance between finding an optimal control policy
and keeping the system safe for the SRL framework. Moreover, taking the used data-
driven MOR as an example, we provide an insight about what could be a useful way
to generate training data when any other data-driven method is employed to predict
the safety of a dynamical system.
The method and results presented in Chapter 5 have been published in a preprint [92].

9

Reinforcement Learning in Dy-
namical Systems 2.

Reinforcement learning offers a framework and set of tools for the design of complicated and
hard-to-engineer behaviors of the dynamical systems. Instead of explicitly solving the control
problem, reinforcement learning finds the optimal controller via trial-and-error interactions
with the environment. Unlike most of the reinforcement learning problems discussed in
machine learning community, controlling a dynamical system is often a problem related to
continuous state and action spaces, as well as high-dimensional state space.

In this chapter, we first present a brief introduction to the components of a reinforcement
learning problem in Section 2.1. Then, details about how reinforcement learning methods
solve the control problem of a dynamical system are given in Section 2.2. In Section 2.3,
a SRL framework that is directly implementable on low-dimensional dynamical system is
explained.

2.1. Components of Reinforcement Learning Problem
Reinforcement learning problem is often formulated through the interaction between a learn-
ing agent and the environment. While the agent attempts to maximize the accumulated
reward over a long run, the environment reacts to the actions of the agent and results in a
new system state as well as a scalar reward for describing the performance of the applied
action. In such reinforcement learning problems, the status of the agent and the environment
is represented as a state s ∈ S, and the agent is able to perform an action a ∈ A to affect
the state. In this dissertation, we consider both the state space S and the action space A as
continuous and multi-dimensional.

A state s contains all relevant information about current system’s situation and is equiv-
alent to observation in control problems of a dynamical system. An action a is the control
signal applied to the dynamical system. To describe the influence of an action a on the state
s, a transition probability T (s′ , a, s) = P(s′ |s, a) is introduced to capture the dynamics of
the system. For every control step, the agent also receives a scalar reward r from the envi-
ronment, which is assumed to be a function of the state s and the action a, i.e., r = r(s, a).
Hence, the goal of reinforcement learning is to find a mapping, often referred to as a policy
π, that selects an action according to the current state such that the cumulative expected
reward is maximized. The policy π can be either deterministic or probabilistic, where the
former uses the exact same action a for a given state s, i.e., a = π(x), and the later draws a
sample from a distribution over actions, i.e, a ∼ π(s, a) = P(a|s). The fundamental problem
in reinforcement learning is to discover the relations between states, actions and rewards. To
this purpose, exploration in the state-action space is required, which can either be directly
embedded in the policy or performed separately and only as part of the learning process.

11

2 Reinforcement Learning in Dynamical Systems

In general, reinforcement learning methods search for an optimal policy π∗ that maximizes
the expected return J . However, based on the actual learning task, there exist different
definitions of the expected return J that lead to different optimal behaviors of the dynamical
system [93].

The most straightforward model of expected return is the finite-horizon model given as

J = E
{

H∑
h=0

rh

}
(2.1)

where H defines the length of the horizon. As only the rewards in next H timesteps are
considered in such a formulation, it is suitable to control problems where how many steps
are remaining is known. Alternatively, future rewards can be discounted by a discount factor
ν that leads to the following expected return

J = E
{ ∞∑

h=0
νhrh

}
(2.2)

where it holds that 0 ≤ ν < 1. Such a formulation is most frequently discussed in reinforce-
ment learning community and the discount factor ν qualitatively changes the form of the
optimal policy. Policies designed by optimizing with small discount factor ν are myopic and
greedy, and may lead to a poor performance if longer term rewards are important. Besides,
for dynamical systems, the optimal control law can be unstable if the discount factor ν is
too low. Therefore, discounted expected return is often not well suited for controlling a dy-
namical system. When the discount factor ν approaches 1, the discounted expected return
(2.2) becomes what is known as the average expected return

J = lim
H→∞

E
{

1
H

H∑
h=0

rh

}
(2.3)

This formulation has the problem that it cannot distinguish between policies that initially
gain a transient of large rewards and those that do not. However, in real-world dynamical
systems, the drawbacks of the discounted expected return are often more critical than those
of the average expected return, as stable behavior is often more important than a good
transient. In next subsection, we explain how reinforcement learning methods solve the
optimization problem of maximizing the expected return by using the average expected
return as an example. Similar results for finite-horizon and discounted expected return can
be found in many reinforcement learning literature, e.g. [1].

2.2. Value Function Based Approaches and Policy
Search

To enable the optimization in continuous state and action spaces, we denote the policy as a
conditional probability distribution π(s, a) = P(a|s), and consider it as parameterized by a
vector θ. By incorporating the policy, the average expected return is represented as

J(π) =
∑
s,a

µπ(s)π(s, a)r(s, a) (2.4)

12

2.2 Value Function Based Approaches and Policy Search

where µπ is the stationary state distribution generated by policy π with respect to the
system dynamics. The goal of reinforcement learning is hence to find an optimal policy π∗

(or equivalent policy parameters θ∗) that maximizes (2.4). Such a control problem can be
framed as the following optimization problem

max
π

J(π) =
∑
s,a

µπ(s)π(s, a)r(s, a), (2.5)

s.t. µπ(s′) =
∑
s,a

µπ(s)π(s, a)T (s′ , a, s), ∀s
′ ∈ S, (2.6)

1 =
∑
s,a

µπ(s)π(s, a) (2.7)

π(s, a) ≥ 0, ∀s ∈ S, a ∈ A (2.8)

where (2.6) defines stationarity of the state distributions µπ and (2.7) ensures a proper state-
action probability distribution. This optimization problem can be solved in two different
ways: either optimize in the Lagrange dual formulation of (2.5)-(2.8), or search the optimal
solution directly in the original problem. The former is known as value function based
approach, and the latter is referred to as policy search in reinforcement learning.

2.2.1. Value Function Based Approaches
For solving the optimization problem (2.5)-(2.8) in the dual form, we use Lagrange multipliers
V π(s′) and R̄ to express the Lagrangian of the problem as

L =
∑
s,a

µπ(s)π(s, a)r(s, a)

+
∑
s′

V π(s′)
[∑

s,a
µπ(s)π(s, a)T (s′ , a, s) − µπ(s′)

]
+ R̄

[
1 −

∑
s,a

µπ(s)π(s, a)
]

=
∑
s,a

µπ(s)π(s, a)
r(s, a) +

∑
s′

V π(s′)T (s′ , a, s) − R̄

−

∑
s′

V π(s′)µπ(s′)
∑
a′

π(s′ , a
′)

︸ ︷︷ ︸
=1

+R̄ (2.9)

Using the property ∑
s′ ,a′ V (s′)µπ(s′)π(s′ , a

′) = ∑
s,a V (s)µπ(s)π(s, a), we can obtain the

Karush-Kuhn-Tucker conditions by differentiating with respect to µπ(s)π(s, a), which yields
extrema at

∂L

∂µππ
= r(s, a) +

∑
s′

V π(s′)T (s′ , a, s) − R̄ − V π(s) = 0 (2.10)

This implies that there are as many equations as the number of states multiplied by the
number of actions. For each state there can be one or several optimal actions a∗ that result
in the same maximal value. The optimal value function can be written in terms of the
optimal action a∗ as V π∗(s) = r(s, a∗) − R̄ + ∑

s′ V π∗(s′)T (s′ , a∗, s). As a∗ is generated by
the same optimal policy π∗, we know the condition for the multipliers at optimality is

V π∗(s) = max
a∗

r(s, a∗) − R̄ +
∑
s′

V π∗(s′)T (s′ , a∗, s)
 (2.11)

13

2 Reinforcement Learning in Dynamical Systems

Such a statement is equivalent to the Bellman principle of optimality [6]. Thus, we have to
perform an optimal action a∗ and follow the optimal policy π∗ in order to achieve a global
optimum. When evaluating (2.11), the optimal value function V π∗(s) corresponds to the
long term additional reward, beyond the average reward R̄, gained by starting in state s
while taking optimal actions a∗ according to the optimal policy π∗.

Reinforcement learning approaches that are based on identifying solutions to the afore-
mentioned dual formulation of the optimization problem are known as value function based
approaches. Instead of directly learning a policy, these approaches first approximate the La-
grangian multipliers V π∗(s) and use it to reconstruct the optimal policy. The value function
V π(s) is defined equivalently, however instead of always taking the optimal action a∗, the
action a is picked according to a policy π

V π(s) =
∑

a

π(s, a)
r(s, a) − R̄ +

∑
s′

V π(s′)T (s′ , a, s)
 (2.12)

For increasing the computational efficiency, many reinforcement learning methods also utilize
the state-action value function Qπ(s, a) that is defined as

Qπ(s, a) = r(s, a) − R̄ +
∑
s′

V π(s′)T (s′ , a, s) (2.13)

which, compared to the value function V π(s), explicitly contains the information about the
effects of a specific action. The optimal state-action value function is

Qπ∗(s, a) = r(s, a) − R̄ +
∑
s′

V π∗(s′)T (s′ , a, s)

= r(s, a) − R̄ +
∑
s′

(
max

a′
Qπ∗(s′ , a

′)
)

T (s′ , a, s) (2.14)

It can be shown that an optimal and deterministic policy π∗(s) can be reconstructed by
always picking the action a∗ in the current state that leads to the state s with the highest
value V π∗(s)

π∗(s) = arg max
a

r(s, a) − R̄ +
∑
s′

V π∗(s′)T (s′ , a, s)
 (2.15)

If the optimal value function V π∗(s′) and the transition probabilities T (s′ , a, s) are known,
determining the optimal policy is straightforward for systems with discrete actions as an
exhaustive search is possible. However for continuous action spaces, determining the optimal
action a∗ is an optimization problem in itself. Function approximation is often employed in
this case to find a low-dimensional representation that matches the real value function. If
the state-action value function Qπ∗(s, a) is used instead of the value function V π∗(s)

π∗(s) = arg max
a

(
Qπ∗(s, a)

)
(2.16)

then the calculation of the weighted sum over the successor states is avoided. Thus no
knowledge of the transition function is required.

A wide variety of value function based approaches have been developed to estimate the
optimal value function V π∗(s) or the state-action value function Qπ∗(s, a), including dynamic
programming based approaches like policy iteration or value iteration [94], rollout based
Monte Carlo approaches [95], and TD methods [93]. The readers may refer to further
literature in reinforcement learning for more details about these approaches.

14

2.2 Value Function Based Approaches and Policy Search

2.2.2. Policy Search
In contrast to value function based approaches, the policy search finds the optimal policy
directly on the original optimization problem. It allows a natural integration of expert
knowledge, e.g., through initialization of the policy, to the controller design process, and is
usually computational efficient as optimal policies in general have many fewer parameters
than optimal value functions. In control problems of a dynamical system, policy search
approaches have become an important alternative to value function based approaches due
to a better scalability.

Most of the policy search approaches optimize locally around an existing policy π, which
is parameterized by a set of policy parameters θi, by computing changes in the policy pa-
rameters ∆θi that will increase the expected return. This results in iterative updates of the
policy in the following form

θi+1 = θi + ∆θi (2.17)

The key computation here is the determination of the policy change and a variety of ap-
proaches have been proposed to solve this problem. These approaches can be broadly cate-
gorized into "black box" and "white box" methods. Black box methods are general stochastic
optimization algorithms that use only the expected return of policies that is estimated by
sampling. These approaches leverage neither knowledge about the system nor the structure
of the control problem. While white box methods take advantage of some of additional
information within the reinforcement learning domain, e.g. the system dynamics.

One of the popular policy search approaches that is well suited for dynamical systems
is the gradient based approach. The updates of the policy parameters are based on a hill-
climbing approach that is following the gradient of the expected return J for a defined step
size ρ

θi+1 = θi + ρ∇θJ (2.18)

There exist many different methods for estimating the gradient ∇θJ , e.g., finite difference
gradients method [96], likelihood ratio method [97], etc. However, most of theses approaches
require tuning of the step size ρ.

As an alternative to gradient based approaches, approaches that are inspired by expectation-
maximization, e.g. Monte Carlo expectation-maximization [98], or dynamic programming,
e.g. differential dynamic programming method [99], have also been shown to be successful
for dynamical systems. However, how to choose an appropriate method that best solves the
given control task is still an open and challenging research problem, and a satisfying decision
often requires preliminary knowledge about the characteristic and structure of the control
problem.

2.2.3. Actor-critic Method
Value function based approaches are in general difficult to be applied to high-dimensional
dynamical systems, as they require a function approximation of the value function for finding
the optimal policy. With high-dimensional state and action spaces, most of the theoretical
guarantees in these approaches become invalid and even finding the optimal action can be a
challenging problem due to the brittleness of the approximation and the high computational
cost. Moreover, in value function based approaches, the largest local error determines the
quality of the resulting policy. This results in a error propagation problem in value functions,

15

2 Reinforcement Learning in Dynamical Systems

i.e., a small change in the policy may result in a large change in the value function, which
again causes a large change in the policy. Such a learning process often leads to an unstable
behaviour under the function approximation and is dangerous if applied to a real-world
dynamical system.

In contrast, policy search approaches usually only consider the current policy and its
neighborhood in order to gradually improve the performance. Although in most cases only
local optimal solutions are obtained, these approaches work well in conjunction with contin-
uous features. Besides, local coverage and local errors also result into improved scalability
in dynamical systems.

Policy search and value function based approaches are also referred to as actor-only and
critic-only methods, respectively. The idea of a critic is to first observe and estimate the
performance of the applied controller, and then derive a policy based on the gained knowl-
edge. Conversely, the actor directly tries to find the optimal policy. Based on this, a set of
algorithms called actor-critic methods attempts to incorporate the advantages of both policy
search and value function based approaches. In these approaches, the policy and the value
function are explicitly maintained. The value function, i.e., the critic, is not employed for
action selection. Instead, it observes the performance of the actor and decides when the pol-
icy needs to be updated and which action should be preferred. The resulting update process
features the local convergence properties of policy gradient algorithms while reducing the
update variance. Note that, there is a trade-off between the benefit of reducing the variance
and having to learn a value function, as the samples required to estimate the value function
could also be employed to obtain better gradient estimates for the policy update.

2.3. SRL Based on ROA and Supervisory Control
For safely applying reinforcement learning methods on dynamical systems, we explain a
SRL framework that is based on the usage of a supervisory control strategy in this section.
The purpose of the SRL framework is to learn a control policy with reinforcement learning
while satisfying certain safety constraints during the learning process. From the control
theoretical perspective, one major criterion related to the safety of a dynamical system is
stability. Therefore, we consider stability as the safety condition in this dissertation. In this
regard, if a given equilibrium state is known to be a safe state and is locally asymptotically
stable under a given control policy, then the ROA of this equilibrium state forms a safe
region of the system. A supervisory control scheme, which switches between the learning-
based controller and a predefined corrective controller that attempts to drive the system
back to the safe equilibrium state, is constructed based on the safe region, such that the
system remains safe during the training procedure. Details about the SRL framework are
presented in the remaining part of this section.

2.3.1. System Model and ROA
A general nonlinear control affine dynamical system is given by

ẋ = f(x) + g(x)u, (2.19)

where x ∈ X ⊆ Rn is the n-dimensional system state within a connected set X and u ∈ U ⊆
Rm is the m-dimensional control input. For a given control policy u = K(x) : X → U , the

16

2.3 SRL Based on ROA and Supervisory Control

closed-loop system dynamics is denoted as

ẋ = fK(x), (2.20)

where fK(x) = f(x) + g(x)K(x). A state x is said to be an equilibrium point if fK(x) = 0.
Through a state transform, any equilibrium point can be shifted to the origin, hence in this
dissertation, we only focus on the ROA of the origin. The following assumptions are made
for the system.

Assumption 1. fK(x) is Lipschitz continuous and bounded in X .

Assumption 2. The origin is a locally asymptotically stable equilibrium point under K(x).

Given these assumptions, the ROA of the origin under a given control policy K(x) is
defined as

R = {x0 ∈ X | lim
t→∞

Φ(t; x0) = 0}, (2.21)

where Φ(t; x0) denotes the system trajectory of (2.20) which starts at initial state x0 when
time t = 0.

If the origin is a known safe state, then by utilizing the ROA, we define the safe region as
follows.

Definition 1. A closed positive invariant subset of the ROA R containing the origin is
defined as the safe region S of the closed-loop dynamical system (2.20).

2.3.2. SRL Framework
Reinforcement learning methods learn a parameterized control policy u = π(x) : X → U by
iteratively updating its parameters through maximizing the expected return J , whereas SRL
algorithms additionally require that certain safety constraints have to be satisfied during the
learning process.

To formulate a SRL framework, a predefined corrective controller K(x) and its safe region
S are introduced to the learning process. As long as the system state x is inside the safe
region S, we can apply the control policy K(x) to drive the system back to a safe state.
Since the safe region S is a closed positive invariant set and the trajectory is continuous,
the only possibility that the system leaves the safe region S is by crossing the boundary
∂S. Thus, it is sufficient to apply K(x) on the boundary ∂S to keep the system safe, while
providing flexible control action executions in the interior of the safe region S.

Accordingly, we formulate the SRL framework by switching the actual applied control
action between the learning-based policy π(x) and the corrective controller K(x) for each
learning iteration as

u =
π(x), if t < t∗,

K(x), else,
(2.22)

where t∗ is the first time point where the system state x is on the boundary of the safe region
∂S. For each learning iteration, the system state x starts inside the safe region S for time
t = 0. The learning algorithm has the flexibility to evolve the trajectory within the safe
region S and update the control policy π(x). Once the system state x is on the boundary
of the safe region, i.e., x ∈ ∂S, this learning iteration is terminated at time t = t∗. The

17

2 Reinforcement Learning in Dynamical Systems

Supervisor

Agent

Environment

(Learning-based controller)

(Dynamical system)

Figure 2.1.: SRL framework with the supervisor that decides the actual control action applied
on the system.

corrective controller K(x) is then applied for the remaining time of this learning iteration to
drive the system back to a safe state, i.e., the origin in our case. After the safety recovery,
the learning environment is reset and the next learning iteration starts again with time t = 0.
Remark 1. In practice, the time point t∗ might be missed because of discretization of the
control. In such cases, the time point t∗ has to be modified by considering the tolerable
distance to the boundary of the safe region with respect to the actual control frequency.

Such a supervisory control strategy is applicable to arbitrary reinforcement learning algo-
rithms. We refer to this switching controller as the supervisor to the standard reinforcement
learning structure (see Fig. 2.1). It examines the current system state x at every time step
before applying the control action, and decides whether the learning-based controller has to
be replaced by the corrective controller in order to keep the system safe. The volume of the
safe region S depends on the corrective controller K(x). A good choice of controller K(x)
provides a large enough safe region S such that the system maintains sufficient flexibility
under the policy π(x).

One essential part of the SRL framework is to represent the safe region as accurately
as possible, however, the exact calculation of the ROA is usually not feasible [100]. In
literature, a sum-of-squares (SOS) programming approach is widely used to get at least an
inner approximation of the ROA [101] (see Appendix A for details). Since this approximation
is represented as a closed positive invariant subset of the ROA, it serves as an initial estimate
of the safe region. However, scalability is a major challenge in SOS programming [102] which
hinders its application on complex dynamical systems. Although there exist methods to relax
the computational limitation of SOS programming [102], it is still difficult to effectively
update the high-dimensional approximation of the ROA obtained through these methods.
Thus, in next chapter we propose a practically implementable SRL framework for complex
dynamical systems.
Remark 2. Using the ROA for defining the safe region provides computational efficiency,
however, other concepts can also be utilized to define the safe region. For example, maximal
control invariant set [103], invariance functions [104] or barrier functions [105] can be used
to construct a safe region. The SRL framework is generally compatible with these different
concepts, as long as a closed and control invariant safe region can be defined.

18

Safe Reinforcement Learning
Based on Physically Inspired
Model Order Reduction 3.

In this chapter, we introduce a general SRL framework that is designed for complex dynami-
cal systems. According to the aforementioned supervisory control strategy, safety in learning
is achieved by switching the actual applied controller between the reinforcement learning-
based controller and a predefined corrective controller. Such a switching happens when the
system is believed to be approaching the boundary of the safe region. In order to solve
the challenging problem of dealing with complex dynamics, we employ a physically inspired
MOR technique to construct a simplified system model that is able to provide estimates
about the safe region. For having more accurate safety estimates, the safe region is updated
online through an online adaptation method that utilizes the actual execution results of
the corrective controller. Note that, due to the computational difficulty of calculating the
exact safe region for complex dynamical systems [77], we have to relax the absolute safety
guarantee by allowing a reasonable amount of failures. The proposed SRL framework can
learn effectively from those failures, and later avoid similar dangerous behaviours.

The remainder of this chapter is organized as follows: an overview of the proposed SRL
framework is first given in Section 3.1. Thereafter, the practical realization of the SRL
framework on complex dynamical systems is proposed. In Section 3.2, we first explain
how to initialize the SRL framework by using physically inspired MOR. Then, we propose
an online adaptation method in Section 3.3 that modifies the identified safe region based
on the observed original system’s behaviour. An algorithm that summarizes the proposed
SRL framework is presented in Section 3.4. In Section 3.5, three examples are given to
demonstrate the performance of the proposed SRL framework; followed by a discussion of
several aspects of the framework in Section 3.6 and a summary in Section 3.7.

3.1. Overview of the Approach
In this section, we present an overview of the proposed SRL framework that is implementable
on complex dynamical systems. It uses the same supervisory control strategy as explained in
Section 2.3, where the actual applied action is switched between the learning-based controller
π(x) and the corrective controller K(x). The safe region S is defined by using the ROA of
the corrective controller K(x) such as given in Definition 1. However, in order to overcome
the computational limitations in determining a safe region under highly nonlinear and high-
dimensional system dynamics, we utilize a physically inspired MOR technique to extract a
simplified system model from the original complex dynamical system.

As illustrated in Fig. 3.1, since no actual data is available prior to the learning process,

19

3 Safe Reinforcement Learning Based on Physically Inspired Model Order Reduction

Initialization

Update

Update

Initialization

+

Belief about the safe region

Feedback data

Complex dynamical system

Simplified system model

Supervisor

Figure 3.1.: Overview of the practical realization of the SRL framework on complex dynam-
ical systems. The supervisor and the belief about the safe region is initialized
by using a simplified system model and is updated through feedback data.

the simplified system model provides an initial belief about the safe region and is used to
initialize the supervisor. To do this, the safe region of the simplified system is first computed
through SOS programming or identified via examining the influence of important physical
features. Then by learning a function approximator from the obtained safe region of the
simplified system, the supervisor is constructed accordingly. Details about the initialization
of the SRL framework are given in Section 3.2.

Due to the order reduction, it is unavoidable that the initial safety estimates might be
inaccurate. Hence, for having reliable safety estimates that reflect the actual safe region of
the original system, we propose an online adaptation method to update our belief about the
safe region. The central idea is to use the actual execution results of the corrective controller,
which are collected during the learning process and referred to as feedback data, as another
belief source for estimating the safe region. The beliefs derived from the feedback data and
the simplified system are later fused together for generating more accurate safety estimates.
While the learning-based policy π(x) is updated through reinforcement learning methods,
a more reliable supervisor is learned simultaneously by using these better safety estimates.
Details about the online adaptation method are given in Section 3.3.

3.2. Initialization of the Supervisor with Simplified
System Model

In this section, we explain how to initialize the supervisor of the SRL framework by using a
simplified system model that is identified via physically inspired MOR. A brief introduction
to the property of the simplified system and its connection to the original system is first
presented in Section 3.2.1. Then, we discuss reasons that cause inaccuracy in estimating the
safety with the simplified system model and present a probabilistic form of safety estimate in

20

3.2 Initialization of the Supervisor with Simplified System Model

Section 3.2.2. In Section 3.2.3, we show how to initialize the supervisor by using a function
approximator.

3.2.1. Simplified System
In practical engineering problems, various MOR techniques are used when the direct op-
eration over the original system is computationally infeasible [41], e.g. physically inspired
approaches [37], balanced truncation [38], system immersion [39] or abstraction [40]. In this
chapter, we perform the MOR by using physically inspired approaches. In general, if the
original system is represented by (2.19), then by considering important physical features,
the MOR finds a simplified system

ẋs = fs(xs) + gs(xs)us, (3.1)

where xs ∈ Rns , ns ≪ n is the ns-dimensional simplified system state and us ∈ Rms is the
ms-dimensional control input to the simplified system. The state mapping of the MOR,
which transfers the original system state x to the simplified system state xs, is defined as
xs = Ψ(x). For a given control policy us = Ks(xs), the safe region of the simplified system,
denoted as Ss, can be estimated through SOS programming [101] or derived by using known
information about system dynamics [81].

For obtaining an approximation of the safe region of the original system S, the following
assumption is made.

Assumption 3. There exists a region around the original system’s origin V = {x ∈
Rn | ||x|| ≤ ε} ⊆ S with a constant ε > 0, such that ∀x, if x ∈ V, then Ψ(x) = xs ∈ Ss.

Assumption 3 is a requirement on the quality of the combination of corrective controller
K(x) and simplified system. It says that if an original system state x is safe under the
corrective controller K(x), then the trajectory Φ(t; x) corresponds to a safe trajectory of the
simplified system. Thus it motivates the initialization of the safe region of the original system
S by using the safe region of the simplified system Ss. In general, if the original system state
x corresponds to a safe simplified system state xs ∈ Ss, then a suitable corrective controller
K(x) is most probably also able to control the original system state back to a safe state.
This can, e.g., be achieved if there exists a corrective controller K(x) that realizes ideal
trajectory matching

Ψ(Φ(t; x)) = Φs(t; xs), (3.2)

where Φs(t; xs) is the reference trajectory obtained from the simplified system that converges
to the origin (see Fig. 3.2). See Remark 3 for an optimization based approach. We will later
discuss other choices for the corrective controller K(x) that are found by physical insight or by
considering technical limitations. Nevertheless, the simplified system provides a reasonable
initialization of the SRL framework.

In this chapter, we assume that a simplified system satisfying Assumption 3 is available,
and a sufficiently accurate estimate of its safe region Ss is computable. The safe region of
the simplified system Ss is then utilized as an initial belief of the safe region of the original
system S. Such an initial belief is modified later by an online adaptation method explained
in the next section. A well-designed simplified system can provide an accurate belief which
in turn reduces the amount of data required in the adaptation process.

21

3 Safe Reinforcement Learning Based on Physically Inspired Model Order Reduction

Figure 3.2.: For an original system state x and its corresponding simplified system state xs,
if xs ∈ Ss, then it is most likely that x ∈ S can be achieved by e.g. solving
Ψ(Φ(t; x)) = Φs(t; xs).

Remark 3. To realize the ideal trajectory mapping given as (3.2), one possible choice for
the corrective controller K(x) is minimizing the discrepancy between the mapped trajectory
Ψ(Φ(t; x)) and the reference trajectory Φs(t; xs). Hence we have the following optimization
problem

min
u

||∇xΨ(x)(f(x) + g(x)u) − ẋs||, s.t. u ∈ U , (3.3)

where ẋs = fs(xs) + gs(xs)Ks(xs). However, since the original system has more degrees of
freedom than the simplified system, in general the set {u | ∇xΨ(x)(f(x) + g(x)u) = ẋs} is
not a singleton. In such cases, additional constraints or costs are required to find the optimal
control input u [104].

3.2.2. Probabilistic Estimate of Safety
Initially, the safety of an original system state x is estimated through the safety of its
corresponding simplified system state xs = Ψ(x). However, there are three reasons for the
inaccuracy when performing such an estimation.

First, due to different control input spaces, the ideal trajectory matching represented
by (3.2) may not be possible for all original system states x. Thus, the safety of an original

22

3.2 Initialization of the Supervisor with Simplified System Model

Figure 3.3.: Reasons for the inaccuracy of estimating the safety of an original system state
through the simplified system. The original system state x does not always have
the same safety property as its corresponding simplified system state xs, and
different original system states mapped to the same simplified system state may
have different safety properties.

system state x is not guaranteed by the safety of its corresponding simplified system state xs

(e.g. Ψ(Φ(t; x1)) in Fig. 3.3). Second, if an original system state x is mapped to a simplified
system state xs that is not in the safe region of the simplified system Ss, the original system
state x may still be a safe state (e.g. Ψ(Φ(t; x2)) in Fig. 3.3), since the control input of the
original system u is usually more flexible than the control input of the simplified system
us. However in this case, prior knowledge about the original system is required to design
the corrective controller K(x) as trajectory matching is not suitable here. Third, due to
the order reduction, it is unavoidable that multiple original system states x are mapped
to the same simplified system state xs (e.g. Ψ(x1) = Ψ(x3) = xs,1 in Fig. 3.3). Although
these original system states x have the same estimate of safety from the simplified system,
their actual safety properties are likely to be different, as the corrective controller provides
different control signals for different original system states x.

23

3 Safe Reinforcement Learning Based on Physically Inspired Model Order Reduction

Figure 3.4.: Different original system states x mapped to the same simplified system state
xs have the same probabilistic estimate of safety.

Due to these reasons, we propose that for a given original system state x, the estimate
of its safety obtained from the simplified system is represented in the following probabilistic
way

P(x ∈ S) = P(x ∈ S|Ψ(x) ∈ Ss)︸ ︷︷ ︸
p1(x)

P(Ψ(x) ∈ Ss)

+ P(x ∈ S|Ψ(x) /∈ Ss)︸ ︷︷ ︸
p2(x)

P(Ψ(x) /∈ Ss), (3.4)

where different original system states x mapped to the same simplified system state xs =
Ψ(x) have the same probabilities p1(x) and p2(x). As the safe region of the simplified system
Ss is fixed, we have either P(Ψ(x) ∈ Ss) = 1 or P(Ψ(x) /∈ Ss) = 1. Since P(Ψ(x) ∈
Ss) +P(Ψ(x) /∈ Ss) = 1, (3.4) is simplified with the corresponding conditional probability as

P(x ∈ S) =
p1(x), if Ψ(x) ∈ Ss,

p2(x), if Ψ(x) /∈ Ss,
(3.5)

which represents the probabilistic estimate of safety of an original system state x (see
Fig. 3.4).

24

3.2 Initialization of the Supervisor with Simplified System Model

3.2.3. Supervisor Initialization
For the initialization of the supervisor, the only available information about the safe region
of the original system S is the probabilistic estimate of safety derived from the simplified
system. We therefore design a function approximator F (x) as

F (x) = P(x ∈ S) ∼ [0, 1], (3.6)

which gives the probability of a given original system state x being inside the safe region of
the original system S. Then, with a probability threshold pt, the previous supervisor (2.22)
is transformed into the following form

u =
π(x), if t < t

′ ,
K(x), else,

(3.7)

where t
′ denotes the first time point that the probability obtained from the function approx-

imator is not larger than the threshold, i.e., F (x) ≤ pt. Based on the probability of being
in the safe region, the supervisor categorizes the original system states into safe and unsafe
classes. Such a supervisor can be considered as a probabilistic binary classifier [106].

To initialize the function approximator F (x) of the supervisor, we first sample k normally
distributed points in the original system state space {x1, x2, . . . , xi, . . . , xk}, where k depends
on the dimension of the state space. Then according to (3.5), the probabilistic estimate of
safety of each sample is calculated by using the safe region of the simplified system Ss. We
set the probability distributions to constants p1(x) = p, p2(x) = p, and obtain the initial
estimate

Pinit(xi ∈ S) =
p, if Ψ(xi) ∈ Ss,

p, if Ψ(xi) /∈ Ss,
(3.8)

where 0 < p < pt < p < 1. The values of p and p are chosen to be the same as in the prior
belief map which is explained in Section 3.3.3. An example is given in the following.

Example 1. Assume the original system state is 4-dimensional as x = [xa, xb, xc, xd]T ∈
X ⊆ R4, we define the simplified system state xs ∈ R2 and the safe region of the simplified
system Ss as

xs = Ψ(x) = [xe, xf]T = [xa + xb, xc + xd]T , (3.9)

Ss = {xs | x2
e + x2

f ≤ 9}. (3.10)
Then for one sampled state x1 = [0.1, 0.2, 0.3, 0.4]T , we have Pinit(x1 ∈ S) = p since xs,1 =
Ψ(x1) = [0.3, 0.7]T ∈ Ss.

The function approximator F (x) is then initialized by training with all sampled states and
their corresponding estimates obtained from (3.8). In general, this initialization is expected
to result in a restricted supervisor. To increase the performance of the SRL framework, we
update the supervisor with an online adaptation method that is described in Section 3.3.

Remark 4. Depending on the sample size k, we use either a Gaussian process regression
(GPR) model or a neural network (NN) for the function approximator F (x) in this chapter.
Although training a GPR model is more transparent compared to NN, it has computational

25

3 Safe Reinforcement Learning Based on Physically Inspired Model Order Reduction

difficulties when dealing with a large dataset. Therefore to enable efficient training, we use a
NN when the original system state space has dimensions higher than 8, where usually more
than a few thousand data points are required for a reliable approximation. The function
approximator F (x) can also be represented by other models, as long as reasonable predictions
can be made and efficient training is feasible.

3.3. Online Adaptation of the Safe Region
The simplified system model provides initial safety estimates and enables a proper initial-
ization of the supervisor. After the initialization, the SRL framework can be applied to
the actual complex dynamical system. During the learning process, a learning iteration is
terminated when the supervisor realizes that the trajectory is on the boundary of the esti-
mated safe region of the original system S. The predefined corrective controller K(x) is then
activated to recover safety by controlling the original system state x back to the origin. The
success of this recovery informs us about the ground-truth value of safety and is defined as
feedback data.

Definition 2. The feedback data of a learning iteration that requires safety recovery contains
two elements {x,P(x ∈ S) = {1, 0}}. x is the original system state where the corrective
controller K(x) is activated. P(x ∈ S) = {1, 0} represents whether this state can be controlled
back to the origin under the given corrective controller K(x). We call it positive feedback
data if P(x ∈ S) = 1, and negative feedback data if P(x ∈ S) = 0. The set of all feedback
data is denoted as Xreal.

Ideally, the supervisor is updated by only using feedback data so that if enough trials are
available, the supervisor will provide accurate predictions. However, for a system with high-
dimensional state space, it is not feasible to acquire such an amount of feedback data through
real trials. The proposed online adaptation method tackles this problem. The central idea
is to update the supervisor by a hybrid data source, comprising the feedback data and the
probabilistic estimate of safety obtained from the simplified system. For getting accurate
estimates, the belief about the safe region of the original system S is updated during the
learning process such that a reliable supervisor is obtained through the online adaptation
method.

In this section, we first introduce a mathematical tool called belief function theory that is
able to consider uncertainty in the probabilistic estimate of safety. Then, two belief maps, one
prior and one feedback, are constructed based on the belief function theory for representing
the belief about the safe region. Later these two belief maps are fused together for deriving
a combined belief map that gives more accurate safety estimates. The supervisor of the SRL
framework is thus updated by using the feedback data as well as the probabilistic estimates
of safety obtained from the combined belief map. Details of the proposed online adaptation
method are given in the following subsections.

3.3.1. Belief Function Theory
The probabilistic estimate of safety obtained from (3.5) comes from the simplified system.
However, as the exact mathematical relationship between the safe region of the original
system S and the safe region of the simplified system Ss is unclear, such an estimate is in

26

3.3 Online Adaptation of the Safe Region

Figure 3.5.: The probabilistic estimate of safety is represented by the corresponding belief
mass.

fact a subjective probability [107]. Moreover, for obtaining accurate estimates, the proba-
bility distributions p1(x) and p2(x) need to be updated using feedback data. Due to the
insufficiency of feedback data, there is an internal uncertainty affecting the accuracy of the
update. For example, when tossing a coin the probabilities of "heads" and "tails" are equal,
i.e. P(heads) = P(tails) = 0.5. But with only one toss, the probability we obtain from the ob-
servation is either P(heads) = 1 or P(tails) = 1. The same problem occurs when computing
probability from insufficient feedback data, which makes it also a subjective probability.

To deal with subjective probability, we integrate the belief function theory [108] into our
SRL framework. Belief function theory provides a general approach for modeling epistemic
uncertainty by using belief mass and basic belief assignment (BBA). While belief mass
represents the probability of the occurrence of an event, BBA denotes the assignment of
belief masses to all possible events. The subjective uncertainty is included as a belief mass
on the entire event domain, i.e. the probability that one arbitrary event happens [109].
Therefore, we reformulate the probabilistic estimate of safety into belief mass and design the
online adaptation method accordingly, this allows to adjust the belief about the safe region
by accounting for the subjective uncertainty.

27

3 Safe Reinforcement Learning Based on Physically Inspired Model Order Reduction

Figure 3.6.: The prior belief map BP(v) of the Examples. The BBA for each index vector v
is determined by the center point cv of the corresponding grid cell.

3.3.2. Belief Map
In order to efficiently employ the belief function theory, the simplified system state space is
discretized into grid cells. Each grid cell is indexed by an index vector v ∈ Zns

+ that indicates
its location in the simplified system state space. We then define a locating function L(x).

Definition 3. For an original system state x, the locating function L(x) returns the index
vector v of the grid cell that the corresponding simplified system state xs = Ψ(x) lies in.

We assume that all original system states x which have the same index vector v from the
locating function L(x), i.e. they map to the same grid cell in the simplified system state
space, have the same probabilistic estimate of safety. For taking the subjective probability
into consideration, we design a belief map that transforms (3.5) to belief masses.

Definition 4. A belief map B(v) that assigns a BBA to each index vector v is defined as

B(v) = (bv(x ∈ S), bv(x /∈ S), σv), (3.11)

where bv(x ∈ S) and bv(x /∈ S) are belief masses, σv is the subjective uncertainty. For each
BBA, it holds

bv(x ∈ S) + bv(x /∈ S) + σv = 1, (3.12)
and bv(x ∈ S), bv(x /∈ S), σv lie within the interval [0, 1].

28

3.3 Online Adaptation of the Safe Region

The belief masses bv(x ∈ S) and bv(x /∈ S) within each BBA represent the probabilities of
the occurrence of two complementary events x ∈ S and x /∈ S, i.e. given the fact that the
original system state x has the index vector v from the locating function L(x), whether x is
in the safe region of the original system S or not. The subjective uncertainty σv reflects the
confidence level of making such a probabilistic estimate. σv = 0 means we believe that the
estimate is absolutely correct. To simplify the notations, we denote bv(x ∈ S) as bv,s and
bv(x /∈ S) as bv,u for belief masses of the safe and unsafe events.

The belief map B(v) utilizes the index vector v to make the probabilistic estimate of safety
for different original system states x. The probability distributions p1(x) and p2(x) in (3.5)
are discretized and replaced accordingly with the belief mass bv,s for each index vector v.
For an original system state x, the probabilistic estimate of safety obtained from the belief
map B(v) is given as

P(x ∈ S) = bv(x ∈ S)|v=L(x) = bv,s, (3.13)
where the corresponding index vector v = L(x) is determined by the locating function L(x)
(see Fig. 3.5). An example of the belief map B(v) is given as follows.

Example 2. Continued from Example 1, we assume that all original system states x ∈ X
have their simplified system states xs in Xs = {xs | − 4 ≤ xe ≤ 4, −4 ≤ xf ≤ 4}. After the
discretization with step size 1 for both xe and xf in the simplified system state space, an index
vector v = [vf , ve]T , vf , ve ∈ {1, 2, . . . , 8} is assigned to each grid cell (see Fig. 3.6). For
original system states x1 = [0.1, 0.2, 0.3, 0.4]T , x2 = [0.2, 0.3, 0.4, 0.5]T , x3 = [0, 1.5, 1, 1.5]T ,
by locating the corresponding simplified system states xs,1 = [0.3, 0.7]T , xs,2 = [0.5, 0.9]T ,
xs,3 = [1.5, 2.5]T we thus have L(x1) = L(x2) = [4, 5]T , L(x3) = [2, 6]T . The probabilistic
estimates of safety are therefore given as P(x1 ∈ S) = P(x2 ∈ S) = b[4,5]T ,s, P(x3 ∈ S) =
b[2,6]T ,s.

3.3.3. Prior and Feedback Belief Map
As aforementioned, the subjective uncertainties are caused by the unknown reliability of
the simplified system and the insufficient amount of feedback data. In the proposed online
adaptation method, we consider these two types of subjective uncertainties with two different
belief maps.

For the subjective uncertainty in the simplified system, we construct a prior belief map
BP(v) with the constants p and p from (3.8) as

BP(v) = (bP
v,s, bP

v,u, σP
v)

=
(p, 1 − p − σ0, σ0), if cv ∈ Ss,

(p, 1 − p − σ0, σ0), if cv /∈ Ss,
(3.14)

where for each index vector v, the BBA is determined by identifying if the center point cv

of the corresponding grid cell lies inside the safe region of the simplified system Ss (e.g.
v = [2, 4]T in Fig. 3.6). The subjective uncertainty σP

v reflects the reliability of the simplified
system and is set to a constant σ0 for all index vectors v.

Apparently, the prior belief map BP(v) utilizes the simplified system as the belief source.
It represents the initial belief about the safe region of the original system S obtained from
the simplified system. As the simplified system is fixed during the learning process, we keep
the prior belief map BP(v) unchanged.

29

3 Safe Reinforcement Learning Based on Physically Inspired Model Order Reduction

The subjective uncertainty in feedback data decreases with more observations. Accord-
ingly, we first initialize two counters Cp(v) and Cn(v) to zero for every index vector v. For
each index vector v, Cp(v) counts the number of positive feedback data (similarly, Cn(v) for
negative feedback data) whose original system state x maps to the grid cell indexed by v, i.e.
L(x) = v. Every time the corrective controller K(x) has to be applied for an original system
state x, the counters Cp(v) and Cn(v) are updated based on the corresponding feedback data
as C+

p (v) = Cp(v) + 1, if P(x ∈ S) = 1,
C+

n (v) = Cn(v) + 1, if P(x ∈ S) = 0,
(3.15)

with the index vector v = L(x) obtained from the locating function L(x).
By utilizing the counters Cp(v) and Cn(v), we therefore construct another feedback belief

map BF(v), where the superscript F indicates that the belief is based on the feedback data.
For each index vector v, the BBA obtained from the feedback belief map BF(v) is defined
as

BF(v) = (bF
v,s, bF

v,u, σF
v), (3.16)

where if at least one feedback data is available for the given index vector v, i.e. Cp(v) +
Cn(v) > 0, we let

bF
v,s = Cp(v)

Cp(v) + Cn(v)(1 − σF
v), (3.17)

bF
v,u = Cn(v)

Cp(v) + Cn(v)(1 − σF
v), (3.18)

σF
v = α · e−β·(Cp(v)+Cn(v)−1), (3.19)

otherwise we set BF(v) to an empty BBA. The subjective uncertainty σF
v depends on the

amount of feedback data. If sufficient data is obtained, the subjective uncertainty σF
v ap-

proaches 0, and the belief mass bF
v,s becomes the actual probability. Coefficients α and β

define the initial value and the decay rate of the uncertainty, respectively.
During the learning, the counters Cp(v) and Cn(v) are iteratively modified when new

feedback data is obtained. Whenever an update of the supervisor is needed, the feedback
belief map BF(v) is calculated from the up-to-date counters Cp(v) and Cn(v).

While the prior belief map BP(v) stands for the model-based belief, the feedback belief
map BF(v) represents the data-driven belief. For getting a more accurate belief about the
safe region of the original system S, in the following we introduce a belief fusion operation
to combine these two belief maps.

Remark 5. The subjective uncertainty σF
v in (3.19) can be represented in different forms,

as long as it lies within the interval [0, 1] and satisfies that the uncertainty decreases with
more feedback data.

3.3.4. Weighted Belief Fusion
Combining the prior belief map BP(v) and the feedback belief map BF(v) is referred to as
weighted belief fusion [110], which results in a combined belief map BC(v). For each index

30

3.3 Online Adaptation of the Safe Region

vector v, the BBA of the combined belief map BC(v) is defined as

BC(v) = (bC
v,s, bC

v,u, σC
v)

=
BP(v), if BF(v) is empty,

BP(v) ⊕ BF(v), if BF(v) is not empty,
(3.20)

where the operator ⊕ is given as

bC
v,s =

bP
v,s(1 − σP

v)σF
v + bF

v,s(1 − σF
v)σP

v

σP
v + σF

v − 2σP
v σF

v

, (3.21)

bC
v,u =

bP
v,u(1 − σP

v)σF
v + bF

v,u(1 − σF
v)σP

v

σP
v + σF

v − 2σP
v σF

v

, (3.22)

σC
v = (2 − σP

v − σF
v)σP

v σF
v

σP
v + σF

v − 2σP
v σF

v

. (3.23)

The combined belief map BC(v) satisfies the following properties:

Proposition 1. If a sufficiently large set of feedback data is provided, the combined belief
map BC(v) converges to the actual probabilities and the prior belief map BP(v) has no effect
in making estimates.

Proof. The following holds for the weighted belief fusion

lim
Cp(v)+Cn(v)→∞

bC
v,s = bF

v,s,

lim
Cp(v)+Cn(v)→∞

bC
v,u = bF

v,u,

lim
Cp(v)+Cn(v)→∞

σC
v = σF

v = 0, (3.24)

which directly leads to Proposition 1.

An example is given as follows.

Example 3. Continued from previous examples, we now observe two feedback data {x1,P(x1 ∈
S) = 1}, {x2,P(x2 ∈ S) = 0} with x1 = [0.1, 0.2, 0.3, 0.4]T and x2 = [0.2, 0.3, 0.4, 0.5]T . Then
for the index vector v = [4, 5]T , we have Cp([4, 5]T) = 1, Cn([4, 5]T) = 1 and the correspond-
ing BBA obtained from the feedback belief map BF(v) is

BF([4, 5]T) = (0.47, 0.47, 0.06), (3.25)

if α = 0.1, β = 0.5. Assume the prior belief map BP(v) is constructed with p = 0.8, p = 0.1
and σ0 = 0.1, we obtain

BP([4, 5]T) = (0.8, 0.1, 0.1). (3.26)
Therefore the BBA of the combined belief map BC(v) for v = [4, 5]T is calculated as

BC([4, 5]T) = (0.59, 0.34, 0.07). (3.27)

The combined belief map BC(v) is then used to make the probabilistic estimate of safety for
other original system states, e.g. for x4 = [0.4, 0.3, 0.2, 0.1]T , we have P(x4 ∈ S) = bC

[4,5]T ,s =
0.59.

31

3 Safe Reinforcement Learning Based on Physically Inspired Model Order Reduction

In essence, the prior belief map BP(v) serves as the initial belief that facilitates the SRL
framework in the earlier phases. During the learning process, such an initial belief is improved
through weighted belief fusion. With more available feedback data, the combined belief map
BC(v) gets closer to the actual probabilities, and therefore, a more accurate probabilistic
estimate of safety is obtained. The update of the supervisor is thus performed by using the
combined belief map BC(v).

3.3.5. Supervisor Update
Although the set of feedback data Xreal contains the ground-truth information about the
safe region of the original system S, its limited size makes it inefficient for the update of
the supervisor. We solve this problem by generating another set of auxiliary data using
the combined belief map BC(v). Considering the computational efficiency, we perform one
update of the supervisor whenever ku feedback data are obtained, where the value of ku

depends on the task.
Similar to the initialization of the supervisor in Section 3.2.3, we first sample ke normally

distributed original system states {x1, x2, . . . , xi, . . . , xke}. To prevent repetition with the
set of feedback data Xreal, the samples have to be not in the neighborhood of any known
states with a distance threshold dt, i.e. ∀x ∈ Xreal, it holds ||x − xi|| > dt with i = 1 . . . ke.
Then according to (3.13), the probabilistic estimate of safety is assigned to each sample by
using the combined belief map BC(v) as

P(xi ∈ S) = bC
vi,s, (3.28)

where the index vector vi = L(xi) is computed by the locating function L(x). This set of
estimates is denoted as Xest and is used to support the update of the supervisor. While the
set of feedback data Xreal represents the absolute safety of already known states, Xest predicts
the safety of unknown states. In each supervisor update iteration, a new set of estimates
Xest is created with the up-to-date combined belief map BC(v). When the accuracy of the
combined belief map BC(v) is improved with more feedback data, more reliable estimates
are obtained.

The update of the supervisor is performed by training a new function approximator F (x)
from the combined dataset that includes the set of feedback data Xreal and the set of estimates
Xest. In the learning process, we incrementally extend the set Xreal after new feedback data
is obtained. The size ke of the set of estimates Xest is set to a fixed value since Xest only
works as supplementary data.

Although the combined belief map BC(v) converges to the actual probabilities with more
data points, acquiring a sufficient amount of data is usually not feasible in practice. There-
fore, it is unavoidable that some estimates are incorrect, especially in the early stage of
learning. Estimates with a high error rate will not only result in a poorly performing su-
pervisor, but also indicate that the prior belief map BP(v) constructed from the simplified
system is not reliable. In such a case, a considerable amount of feedback data is required
until the inaccuracy of the prior belief map BP(v) is offset through the weighted belief fu-
sion. As a result, our original intention of using the simplified system to provide initial belief
about the safe region becomes insignificant. To prevent this, we additionally introduce a
validation process into the SRL framework.

32

3.4 SRL Algorithm

3.3.6. Validation
The validation aims to identify the accuracy of the combined belief map BC(v). During
the learning process, we perform the validation prior to the update of the supervisor. Since
the supervisor works as a binary classifier, we use the confusion matrix obtained from the
classification for the validation [111].

For each original system state x in feedback data, the probabilistic estimate of safety
is obtained by using the combined belief map BC(v) with (3.28). Then according to the
estimate, a predicted class label is assigned to each feedback data by categorizing it into safe
and unsafe classes with respect to the same probability threshold pt in (3.7). Comparing
with the true class label of feedback data, i.e. P(x ∈ S) = {1, 0}, we acquire the number
of true positive (TP), true negative (TN), false positive (FP) and false negative (FN) data
points, respectively. The reliability of the combined belief map BC(v) is therefore represented
by the accuracy ACC = (TP + TN)/(TP + TN + TP + TN) and the false positive ratio
FPR = FP/(FP + TN).

Since the corrective controller is applied when the supervisor considers the current state
to be on the boundary of the estimated safe region, the set of feedback data Xreal in fact
only contains information about the boundary. In that sense, the validation process also
examines whether the combined belief map BC(v) can represent the real decision boundary
accurately. For a successful implementation of the proposed SRL framework, the simplified
system should fulfill the following assumption.

Assumption 4. The safe and unsafe regions of the original system are separable in the
simplified system state space, i.e. the decision boundary exists.

The accuracy ACC and the false positive ratio FPR reflect how well Assumption 4 is
satisfied. To ensure the performance of the supervisor, the combined belief map BC(v)
should possess a high accuracy ACC and a small false positive ratio FPR. Otherwise the
safe learning process is suggested to be terminated and restarted with another simplified
system model.

Remark 6. One possible way to find a better simplified system model is examining the
original system states that cannot be distinguished by the current simplified system model,
i.e., they have the same index vector v but show different safety properties. The state variables
(features) that differ significantly between these original system states could be incorporated
into the new simplified system model. However, this increases the complexity of the simplified
system.

3.4. SRL Algorithm
The practical realization of the proposed SRL framework is given in Algorithm 1. During
the learning process, a learning iteration is terminated if the supervisor believes that the
current state is on the boundary of the estimated safe region. The corrective controller
K(x) is then applied to attempt to drive the system back to the origin. The reinforcement
learning-based policy π(x) is updated based on a predefined reward function, while the
supervisor is updated according to the feedback data. Once new feedback data is obtained,
the set of feedback data Xreal is extended, and the counters Cp(v) and Cn(v) are updated.

33

3 Safe Reinforcement Learning Based on Physically Inspired Model Order Reduction

Algorithm 1 Practical realization of the proposed SRL framework.
Input: Safe region of the simplified system Ss, probability threshold pt, distance threshold
dt, initialization sampling size k, estimation sampling size ke, number of learning iterations
ki, supervisor update interval ku

1: Initialize F (x) with Ss and k;
2: Initialize BP(v) with Ss;
3: Initialize Cp(v) and Cn(v) as zeros;
4: Set Xreal as an empty set;
5: i = 0, j = 0;
6: while i < ki do
7: while current learning iteration is not terminated do
8: if F (x) > pt then
9: u = π(x);

10: else
11: Iteration is terminated;
12: end if
13: end while
14: Update π(x);
15: Apply K(x);
16: if ∀xi ∈ Xreal, ||x − xi|| > dt or P(x ∈ S) = 0 then
17: Append Xreal with {x,P(x ∈ S) = {0, 1}};
18: Update Cp(v) or Cn(v);
19: j = j + 1;
20: end if
21: if j = ku then
22: Calculate BF(v) from Cp(v) and Cn(v);
23: Calculate BC(v);
24: Validation;
25: if Valid then
26: Create Xest with BC(v) and ke, dt;
27: Update F (x) with Xreal and Xest;
28: j = 0;
29: else
30: Safe learning process is suggested to be terminated;
31: end if
32: end if
33: i = i + 1;
34: end while

To prevent repetition, this modification only happens if all original system states stored in
Xreal have distances to the new feedback data’s state x larger than a threshold dt, or the new
feedback data represents a failure. Whenever ku feedback data are obtained, the prior belief
map BP(v) and the feedback belief map BF(v) are employed to form the combined belief
map BC(v). The set of estimates Xest is then generated by using the combined belief map
BC(v). A new function approximator F (x) is therefore trained with the combined dataset,
and formulates an updated supervisor for the following learning iteration.

34

3.5 Experimental Results

Parameters of the SRL framework are chosen by considering the following aspects. First,
the probability threshold pt decides on the aggressiveness of actions and is selected based
on the actual task and the severity of failure. Second, the initialization of the prior belief
map BP(v) depends on the representation power of the simplified model. For an informative
simplified model, a high probability is assigned to p along with a low uncertainty σ0. p can
be chosen as 1 − p − σ0 such that it represents the complementary probability of an initial
unsafe estimate. In general, to ensure an adequate initial action space, p needs to be larger
than pt. Third, the parameters of the feedback belief map BF(v) are selected by considering
the number of positive feedback data needed to convert an initial unsafe estimate to a safe
estimate. For example, if three positive feedback data are required, then α, β satisfy that
bC

v,s > pt is obtained from (3.21) with Cp(v) = 3, Cn(v) = 0.
With the proposed algorithm, we are able to realize a feasible implementation of the SRL

framework on complex and real-world dynamical systems. The supervisor proposed in this
chapter provides predictions about the safety in an effective way. The results of this practical
yet accurate SRL framework are demonstrated in the next section.

3.5. Experimental Results
In this section, three examples are presented. First, a simple two-link inverted pendulum
example illustrates how the supervisor and the belief maps are updated based on the feed-
back data. Second, in a quadcopter control task the performance of the proposed SRL
framework for complex dynamical systems is demonstrated both in simulations and in a
real-world experiment. Third, a humanoid control experiment is provided to further show
the applicability of the proposed SRL framework to various learning tasks and scenarios.

3.5.1. Two-link Inverted Pendulum
We first demonstrate the online adaptation of the supervisor for a two-link inverted pendulum
given in Fig. 3.7. It is assumed that l1 = l2, m1 = m2 and the links have no masses. The
system state combines the two joint angles and the angular velocities, i.e. x = [θ1, θ2, θ̇1, θ̇2]T ,
and the control input u is the torques applied on the links. The origin, which is the upright
equilibrium point, is considered as the safe state. A simple PID controller is implemented
as the corrective controller K(x). By limiting the input torques, the inverted pendulum
cannot be driven back to the origin by the given corrective controller K(x) once it exceeds
a certain angle. The purpose of the online adaptation is therefore to find a supervisor that
can accurately represent the safe region of the original system, i.e. the two-link inverted
pendulum.

By using a physically inspired MOR, a one-link inverted pendulum is constructed based
on the CoM mc and is considered as the simplified system (see Fig. 3.7). The simplified
system state is xs = [θ, θ̇]T and the corresponding state mapping xs = Ψ(x) is

θ = arctan xmc

hmc

, θ̇ = vv

l
, (3.29)

where the link length l is assumed to be fixed to l = l1 + l2
2 . The joint angle θ is determined

from the horizontal and vertical positions of the CoM, xmc and hmc , and the angular velocity
θ̇ is obtained by the velocity of the CoM. Note that, the velocity of the CoM has two

35

3 Safe Reinforcement Learning Based on Physically Inspired Model Order Reduction

Figure 3.7.: Physically inspired MOR for a two-link inverted pendulum. By using the CoM,
a one-link inverted pendulum approximates the two-link inverted pendulum dy-
namics.

components, one is along the link vh and the other is perpendicular to the link vv. As the
link length l is considered to be fixed, vh is infeasible for the one-link inverted pendulum
and thus has to be neglected in the state mapping. The omission of vh represents the
expected drawback of losing information when the system order is reduced in terms of the
dimensionality of the state space.

Due to the simplicity of this example, the safe region of the simplified system Ss obtained
from SOS programming provides an accurate estimate about the safe region of the original
system S. To demonstrate the online adaptation clearly, instead of using SOS programming,
we select the safe region of the simplified system as Ss = {xs | θ2+θ̇2 ≤ 0.62}, where the units
of θ and θ̇ are rad and rad/s, respectively. The discrepancies caused by this selection are
compensated later by the feedback data. Moreover, no learning algorithm is implemented in
this example. Since if a learning-based controller is introduced, then under the given input
constraints, most of the grid cells in the simplified state space cannot be visited through a
natural movement of the system. For example, there exists no admissible control signal to
drive the system to states that have a large positive angle θ and a large negative angular
velocity θ̇ at the same time. Therefore, to fully illustrate the update process of the combined
belief map BC(v), the corrective controller K(x) is activated at randomly selected original
system states x such that more states can be visited.

The parameters of the SRL framework used in this example are given in Table 3.1. For
the two-link inverted pendulum, we set l1 = l2 = 1 m and m1 = m2 = 1 kg. The input
torque limit is selected as 12 N for both links. The simplified system state space xs = [θ, θ̇]T
is assumed to be within the range of θ ∈ [−1.6 rad, 1.6 rad], θ̇ ∈ [−2 rad/s, 2 rad/s], and is
discretized with 0.1 rad for θ and 0.1 rad/s for θ̇.

Fig. 3.8 gives the probability P(x ∈ S) from the function approximator F (x) for the

36

3.5 Experimental Results

Table 3.1.: Parameters of the SRL framework
Inverted Pen-
dulum

Crazyflie Simu-
lation

Crazyflie Real-
world

Humanoid

pt 0.5 0.2/0.5/0.8 0.5 0.6
p 0.8 0.8 0.8 0.8
p 0.1 0.1 0.1 0.1
σ0 0.1 0.1 0.1 0.1
α 0.2 0.2 0.1 0.3
β 0.3 0.5 0.4 0.1
k 1000 8000 8000 10000
ke 1000 8000 8000 10000
ku 100 50 20 200
dt 0.01 0.1 0.1 0.5

F (x) GPR model:
squared expo-
nential kernel

NN: two layers
with 128 neu-
rons in each

NN: two layers
with 128 neu-
rons in each

NN: two layers
with 128 neu-
rons in each

slice θ̇1 = θ̇2 = 0 in different supervisor update iterations, while Fig. 3.9 shows the slice
θ2 = θ̇2 = 0. The ground-truth values of safety P(x ∈ S) = {0, 1} are presented for
comparison. Fig. 3.10 illustrates the belief mass bC

v,s from the combined belief map BC(v) for
different index vectors v. In the first supervisor update iteration, i.e. the initialization, the
combined belief map BC(v) equals to the prior belief map BP(v). Due to the inaccuracy of
the prior belief map BP(v), the prediction differs from the ground-truth value (see Fig. 3.8a,
Fig. 3.9a and Fig. 3.10a). However, after 10 updates of the supervisor, the accuracy of
the prediction increases quickly. The combined belief map BC(v) also changes iteratively
according to the feedback data (see Fig. 3.8b, Fig. 3.9b and Fig. 3.10b). With more iterations,
e.g. 30 iterations in Fig. 3.8c, Fig. 3.9c and Fig. 3.10c, the prediction is quite close to the
ground-truth value. Besides, the combined belief map BC(v) turns out to have a similar
shape as the well-known ROA of the one-link inverted pendulum [81]. The performance
clearly depends on the amount of feedback data, i.e. as more feedback data are available,
not only the prediction, but also the combined belief map BC(v) becomes more accurate (see
Fig. 3.8d, Fig. 3.9d and Fig. 3.10d).

The accuracy ACC and the false positive ratio FPR of the combined belief map BC(v) in
different update iterations are given in Fig. 3.11. The probability threshold for the classifi-
cation is selected as 0.5. As expected, with more feedback data, the combined belief map
BC(v) gives more accurate estimates, while the FPR is kept small. Due to the selected α and
β for the feedback belief map BF(v), several iterations are required until a wrong estimate
obtained from the prior belief map BP(v) is corrected by the feedback data. As a result,
the belief about the safe region of the original system S is expanded cautiously which leads
to the presented slow improvement in the accuracy. The FPR does not reach to 0 because
there are some original system states x that, even though, they are mapped to the same grid
cell, show different safety properties, such as illustrated in Fig. 3.3.

Since in this example the corrective controller K(x) is activated on randomly selected
original system states x among the entire state space, more data are required for the update of
the supervisor. However in practice, we are only interested in locating the decision boundary,

37

3 Safe Reinforcement Learning Based on Physically Inspired Model Order Reduction

2
0

-2

0.5

00

1

-22

Estimation

Ground-truth

(a)

2
0

-2

0.5

00

1

-22

(b)

2
0

-2

0.5

00

1

-22

(c)

2
0

-2

0.5

00

1

-22

(d)

Figure 3.8.: Probability P(x ∈ S) from the function approximator F (x) for the slice θ̇1 =
θ̇2 = 0 in different supervisor update iterations N = 1, N = 10, N = 30 and
N = 70. The ground-truth values of P(x ∈ S), obtained by testing the given
corrective controller K(x) at each sampled point, are presented for comparison.

as in the example we described in the next subsection involving a complex dynamical system.

3.5.2. Quadcopter Flight Control
To demonstrate the utility and the performance of the proposed SRL framework for complex
and real-world dynamical systems, we control the Crazyflie1, a lightweight nano quadcopter
(see Fig. 3.12). The reinforcement learning-based controller π(x) aims to control the quad-
copter to fly while tracking a given constant reference velocity vd in Cartesian space, and
is trained by using the Proximal Policy Optimization (PPO) [112] from OpenAI Baselines2.
The corrective controller is a PID controller which keeps the quadcopter hovering at a given
height. By using the proposed SRL framework, we reduce the number of quadcopter crashes
during the learning process.

The system state of the quadcopter is x = [pg, θg, vb, ωb]T , where pg = [px, py, pz]T and
θg = [θr, θp, θy]T are the linear and angular positions in the ground frame, vb = [vx, vy, vz]T

1https://www.bitcraze.io/crazyflie-2/
2https://github.com/openai/baselines

38

https://www.bitcraze.io/crazyflie-2/
https://github.com/openai/baselines

3.5 Experimental Results

2
0

-2

0.5

00

1

-22

Estimation

Ground-truth

(a)

2
0

-2

0.5

00

1

-22

(b)

2
0

-2

0.5

00

1

-22

(c)

2
0

-2

0.5

00

1

-22

(d)

Figure 3.9.: Probability P(x ∈ S) from the function approximator F (x) for the slice θ2 =
θ̇2 = 0 in different supervisor update iterations N = 1, N = 10, N = 30 and
N = 70.

and ωb = [ωr, ωp, ωy]T are the linear and angular velocities in the body frame. Since positions
px and py have no effect on the corrective controller, the input to the function approximator
F (x) that decides on safety of an original system state x has 10 dimensions.

For obtaining the simplified system model, we assume that the thrust provided by the
motors is large enough, such that the height pz and the velocity vz play a less important
role in determining whether the current state is safe or not. Therefore, according to the
physical properties of the quadcopter, the simplified system state can be chosen as the
angular positions θr, θp and their angular velocities ωr, ωp in roll and pitch directions.
However, to be able to visualize the update of the combined belief map BC(v), we only use
the angular velocities ωr, ωp as the simplified system state in this example, i.e. xs = Ψ(x) =
[ωr, ωp]T . Considering the maximal motor speed of the Crazyflie, the simplified system state
space is assumed to be in the range of ωr, ωp ∈ [−30 rad/s, 30 rad/s] and is discretized with 1
rad/s. The safe region of the simplified system Ss is chosen as Ss = {xs | −4 ≤ ωr ≤ 4, −4 ≤
ωp ≤ 4}. Note that, if angular positions are included to form a more physical meaningful
simplified system, SOS programming can be introduced for getting a better initial estimate.
An example where SOS programming is used is given in the next subsection.

There are four steps in each learning trial. First, the quadcopter takes off from the

39

3 Safe Reinforcement Learning Based on Physically Inspired Model Order Reduction

-2 -1 0 1 2
-2

-1

0

1

2

0

0.2

0.4

0.6

0.8

1

(a)

-2 -1 0 1 2
-2

-1

0

1

2

0

0.2

0.4

0.6

0.8

1

(b)

-2 -1 0 1 2
-2

-1

0

1

2

0

0.2

0.4

0.6

0.8

1

(c)

-2 -1 0 1 2
-2

-1

0

1

2

0

0.2

0.4

0.6

0.8

1

(d)

Figure 3.10.: The belief mass bC
v,s from the combined belief map BC(v) for different index

vectors v in different supervisor update iterations N = 1, N = 10, N = 30 and
N = 70.

ground and hovers at the position pg = [0, 0, 1 m]T . Second, the reinforcement learning-
based controller π(x) starts to control the quadcopter. Third, once the supervisor suggests
that the current state is on the boundary of the estimated safe region, this learning trial is
terminated and the corrective controller K(x) is activated. Note that, in order to provide
enough physical space for the corrective controller, the switching also happens if the height
of the quadcopter is lower than 0.7 m, i.e. pz < 0.7 m. The corrective controller attempts to
balance the quadcopter back to a safe hovering state. In the end, if the balance is successful,
the quadcopter lands on the ground and waits for the next trial. The detailed experimental
setup can be viewed in the supplementary video given in [89].

We examine the performance of the proposed SRL framework both in simulation and in
reality, and present the results as follows.

Simulation

The learning process is simulated in Gazebo3 with the Crazyflie model provided by [113]
(see Fig. 3.13). The communication between the Gazebo simulator and the PPO algorithm

3http://gazebosim.org/

40

http://gazebosim.org/

3.5 Experimental Results

0 10 20 30 40 50 60 70

Iteration

0.7

0.75

0.8

0.85

0.9

0.95

1

A
C

C

0

0.02

0.04

0.06

0.08

0.1

F
P

R

Figure 3.11.: Accuracy ACC and false positive ratio FPR of the two-link inverted pendulum
example.

Table 3.2.: Hyperparameters of the PPO algorithm
Hyperparameter Crazyflie Humanoid
Number of steps 4096 8192

Number of epochs 20 20
Number of minibatches 128 256

Adam stepsize 3e-4 1e-4
Discount factor 0.99 0.99
GAE parameter 0.95 0.95

is established through the Robot Operating System4 using the Gym-Gazebo package [114].
To analyze how the supervisor affects the learning process, we perform the simulation in

the following different conditions:

• No supervisor (NS): no supervisor is implemented and the corrective controller is ac-
tivated only when pz < 0.7 m.

• Feedback data only (FO): the supervisor is trained only with the feedback data. In
addition to the height condition, the corrective controller is also activated when F (x) <
pt with pt = 0.5 in (3.7).

• With supervisor (WS): the proposed framework is implemented and three different
probability thresholds are investigated: pt = 0.2 (WS-0.2), pt = 0.5 (WS-0.5) and
pt = 0.8 (WS-0.8).

The learning-based controller π(x) controls the four motor speeds and runs at 200 Hz.
The parameters of the SRL framework and the hyperparameters of the PPO algorithm used

4https://www.ros.org/

41

https://www.ros.org/

3 Safe Reinforcement Learning Based on Physically Inspired Model Order Reduction

Figure 3.12.: Crazyflie with four tracking markers for the Qualisys motion capture system.

in this example are given in Table 3.1 and Table 3.2, respectively. The reward function is
designed as

r(t) = 1e5||pgoal − pg(t − 1)|| − 1e5||pgoal − pg(t)||
−||vb(t) − vd||2 − 0.1||ωb(t)||2 (3.30)

where pgoal = 100vd is a virtual target used for giving reward on making progress in the
direction of vd. We use vd = [1 m/s, 0, 0] in this example. Starting with a random initial
policy, we run the PPO algorithm for 307200 timesteps (75 updates with 4096 timesteps per
each update) and each condition is trained with three different seeds.

The rewards of the learning processes are presented in Fig. 3.14. If a supervisor is used,
the reward in the early learning phase is observed to be higher. Since each learning trial
is terminated before the system leaves the estimated safe region, the supervisor provides
an early-stopping functionality and helps with the policy update. However, more training
time is required, because more time is spent on balancing the quadcopter and training the
supervisor. The learning performance is affected by the probability threshold pt. While with
a low threshold (WS-0.2) the supervisor has a minor effect on the learning process, a high
threshold (WS-0.8) may lead to an over restricted safe region and thus decreases the final
learning performance.

The cumulated failures in the first 500 feedback data are given in Fig. 3.15. Since a small
threshold allows more risky actions, the probability threshold pt influences the total number
of failures as well as the speed of the expansion of the safe region. This can also be observed
from the update process of the combined belief map BC(v), where the initialization and the
results in different iterations are given in Fig. 3.16 and Fig. 3.17, respectively. Apparently, a
higher probability threshold pt leads to a more restricted expansion process. If only feedback
data is used (FO), the supervisor is initialized with the same prior belief map, as no feedback
data is available prior to the learning process. After the first supervisor update iteration,

42

3.5 Experimental Results

Figure 3.13.: Crazyflie model in Gazebo simulation environment.

failures happen immediately as predictions based only on the feedback data are unreliable
due to the insufficient data amount. The introduction of the belief maps improves the
performance of the supervisor, especially in the early learning phase. The overall success
rates of the corrective controller for the entire learning process are: 25% (NS), 58% (FO),
53% (WS-0.2), 77% (WS-0.5), 91% (WS-0.8). Note that, by only using the angular velocities
certain failures cannot be separated, e.g. in Fig. 3.17 some belief masses bC

v,s are close to
0.5. Therefore to increase the performance of the combined belief map BC(v), more features
need to be included in the simplified system state.

Real-world experiment

The proposed SRL framework is also tested for a real Crazyflie (see Fig. 3.12). The PPO
algorithm runs on a PC with Intel i5-3570 CPU and the corrective controller is implemented
on-board. Through the wireless communication provided by the Crazyflie, the learning
algorithm receives angular positions θg, linear velocities vb and angular velocities ωb from
the sensors of the quadcopter. The linear positions pg are obtained through a Qualisys5

motion capture system.
Considering the safety of the hardware, the learning process is performed only with super-

visor and a moderate probability threshold pt = 0.5 (WS-0.5). In addition, considering the
limited tracking area of the Qualisys system, the corrective controller is also activated if the
quadcopter exceeds the region given as −0.5 m ≤ px ≤ 2 m, −0.4 m ≤ py ≤ 0.4 m. Note
that, limited by the communication speed between the PC and the Crazyflie, we can only
run the learning-based controller at a frequency of 50 Hz. Under such a delay it is difficult
to achieve a stable flight control with motor speeds. To overcome this problem, we select the
output u of the learning-based controller as the desired angular positions θd

g = [θd
r , θd

p, θd
y]T

5https://www.qualisys.com/

43

https://www.qualisys.com/

3 Safe Reinforcement Learning Based on Physically Inspired Model Order Reduction

Figure 3.14.: Learning rewards of different learning conditions in simulation.

0 1 2 3 4 5

Number of Feedback Data [100]

0

1

2

3

4

C
u

m
u

la
te

d
 F

a
ilu

re
s
 [

1
0

0
]

NS

FO

WS-0.2

WS-0.5

WS-0.8

Figure 3.15.: Cumulated failures of different learning conditions in first 500 feedback data.

and the desired thrust td, i.e. u = [θd
g , td]. Then an on-board PID controller that runs at

500 Hz controls the quadcopter to follow the given command. The parameters used in this
experiment are given in Table 3.1 and Table 3.2.

Starting with a random initial policy, we perform 30 PPO update iterations (1024 timesteps
per each update) of the reinforcement learning-based controller. Details of the experimental
results are presented in the supplementary video given in [89]. The reward and the accu-
mulated failures are given in Fig. 3.18 and Fig. 3.19, respectively. The success rate of the
corrective controller is 89% for the entire learning process. Compared to the simulation,
less failures are observed since controlling through desired angular positions and thrust is in
general safer than directly controlling the motor speeds.

The belief mass bC
v,s of the combined belief map BC(v) in different supervisor update

iterations are shown in Fig. 3.20. In the early learning phase, due to the conservative
estimate of the safe region, the reinforcement learning-based controller is quickly replaced

44

3.5 Experimental Results

Figure 3.16.: Initialization (N = 1) of the belief mass bC
v,s of the combined belief map BC(v).

by the corrective controller. When more feedback data is obtained, the estimate of the safe
region is expanded and therefore the learning-based controller has more flexibility in choosing
its actions. The expansion stops when failures start to happen, which provide information
about the boundary of the safe region.

The accuracy ACC and the false positive ratio FPR are given in Fig. 3.21. Since in the
early learning phase the corrective controller is activated within the initial safe region, the
accuracy ACC starts from 1. Later, due to the expansion of the safe region, the accuracy
decreases as it requires a certain amount of feedback data to compensate the prediction
made by the prior belief map BP(v). Once a more reliable estimate of the safe region is
obtained, the accuracy remains high. However, we observe a high false positive ratio in this
example. As the simplified system state consists only of angular velocities ωr, ωp, it is not
precise enough to separate certain failures. For making a better prediction, more information
should be included in the simplified system state, e.g. the angular positions θr, θp.

3.5.3. Humanoid Control
In this example, a humanoid robot is used to further demonstrate the applicability and
the performance of the proposed SRL framework. The Atlas humanoid model (version 1)
from DRCSIM6 is utilized and is constrained to be able to move in the X-Z plane (see
Fig. 3.22). For simplicity, the arms are excluded from the robot model. Each leg has three
motors attached on the hip, the knee and the ankle joint, which constitute the 6 motor
torque commands. A reinforcement learning-based controller π(x) is trained by the PPO
algorithm with the purpose to control the robot to walk forward as fast as possible. By using
the proposed SRL framework, we aim to reduce the possibility of falling to avoid damages
to the system. The simulation is performed in Gazebo using OpenAI Baselines and the
Gym-Gazebo package.

The state of the humanoid is x = [pg, vg, qT , q̇T]T , where pg = [xg, zg, θg]T are the global
coordinates and orientation of the body frame with respect to the ground frame, vg =

6https://bitbucket.org/osrf/drcsim/

45

https://bitbucket.org/osrf/drcsim/

3 Safe Reinforcement Learning Based on Physically Inspired Model Order Reduction

0

-20
-20

0
0

0.5

2020

1

0

0.2

0.4

0.6

0.8

1

(a)

0

-20
-20

0
0

0.5

2020

1

0

0.2

0.4

0.6

0.8

1

(b)

0

-20
-20

0
0

0.5

2020

1

0

0.2

0.4

0.6

0.8

1

(c)

0

-20
-20

0
0

0.5

2020

1

0

0.2

0.4

0.6

0.8

1

(d)

0

-20
-20

0
0

0.5

2020

1

0

0.2

0.4

0.6

0.8

1

(e)

0

-20
-20

0
0

0.5

2020

1

0

0.2

0.4

0.6

0.8

1

(f)

Figure 3.17.: The belief mass bC
v,s of the combined belief map BC(v) for conditions WS-0.2,

WS-0.5 and WS-0.8 in the supervisor update iteration N = 10 and N = 40,
respectively.

[ẋg, żg, θ̇g]T are the body velocities. q and q̇ are vectors of 6 joint angles and 6 joint velocities,
respectively. As xg, zg have no effects on determining if the current state can be balanced or
not, the input to the function approximator F (x) is 16 dimensional. Based on the CoM mc

of the humanoid, an inverted pendulum is used as the simplified system (see Fig. 3.23). The
simplified system state is xs = [xc, zc, ẋc, żc]T , where xc and zc are the relative positions of the
CoM with respect to the contact point of the support foot, while ẋc and żc are the velocities of

46

3.5 Experimental Results

0 5 10 15 20 25 30

Timesteps [1000]

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

R
e

w
a

rd
 [

1
0

0
0

]

Figure 3.18.: Learning reward of the real-world quadcopter experiment.

0 1 2 3 4 5 6 7

Number of Feedback data [100]

0

20

40

60

80

100

C
u

m
u

la
te

d
 F

a
ilu

re
s

Figure 3.19.: Cumulated failures of the real-world quadcopter experiment.

the CoM [37]. Considering the physical limits of the system, the CoM properties are assumed
to be within the range as xc ∈ [−1 m, 1 m], zc ∈ [0.4 m, 1 m], ẋc, żc ∈ [−5 m/s, 5 m/s]. The
simplified system state space is discretized with 0.2 m for xc, zc and 1 m/s for ẋc, żc.

The corrective controller K(x) implemented here is a 1-step balance controller based on
the capture point concept, which defines a point on the ground that the robot can step
on to balance itself [115]. Along with the capture point, a reference trajectory for the
CoM is generated from the simplified system. The balance controller tries to control the
humanoid to step on the capture point while following the CoM reference trajectory. If
the trajectory following is not suitable, then the balance controller takes a step with the
maximal step length. As a result of stepping functionality for humanoids, the safe region
in the SRL framework is replaced by a concept called N -step viable-capture basin [115].
It represents the set of all initial states from which the robot, with an appropriate control
sequence, can come to a stop within n steps (e.g. n = 0 means the robot can stabilize

47

3 Safe Reinforcement Learning Based on Physically Inspired Model Order Reduction

0

-10
-10

0
0

0.5

1010

1

0

0.2

0.4

0.6

0.8

1

(a)

0

-10
-10

0
0

0.5

1010

1

0

0.2

0.4

0.6

0.8

1

(b)

0

-10
-10

0
0

0.5

1010

1

0

0.2

0.4

0.6

0.8

1

(c)

Figure 3.20.: The belief mass bC
v,s of the combined belief map BC(v) for different index vectors

v in supervisor update iterations N = 1, N = 10, N = 35, respectively.

itself without stepping). In this example, we use the 1-step viable-capture basin as the safe
region. It is infeasible to calculate such a basin directly on the original humanoid dynamics,
but it can be estimated from the simplified system. The 1-step viable capture basin of the
inverted pendulum, i.e. the safe region of the simplified system Ss, is obtained by applying
the approach described in [81].

The parameters used in this example are given in Table 3.1 and Table 3.2. The reward
function is designed as

r(t) = 1e4(xg(t) − xg(t − 1)) − 10θg
2 − 2nj (3.31)

where nj is the number of joints that are on the limit. During the learning, the balance
controller is activated if the supervisor believes that the current state is on the boundary of
the estimated safe region. By using the feedback data, the belief about the safe region of
the humanoid is expanded cautiously until the balance controller starts to fail. Such failures
are used to locate the decision boundary for the supervisor. The experimental setup and the
resulting behaviors are demonstrated in the supplementary video given in [89]. The overall
success rate of the corrective controller is 79%. Note that, while the safety is increased
with the proposed SRL framework, the learning performance is limited by the implemented
1-step balance controller. Since the volume of the safe region is restrictive if the humanoid
is only allowed to take one step to balance itself. A more satisfying walking behavior can be

48

3.6 Discussion

0 10 20 30

Iteration

0.85

0.9

0.95

1

A
C

C

0

0.1

0.2

0.3

0.4

0.5

F
P

R

Figure 3.21.: Accuracy ACC and false positive ratio FPR of the combined belief map BC(v)
for the real-world quadcopter experiment.

obtained if a better balance controller is provided. However, improving the balance controller
is not the focus of this work and thus is not discussed here.

3.6. Discussion
In this chapter, we propose a SRL framework to increase the safety of reinforcement learning
methods for autonomous systems. A supervisor is constructed to guide the exploration pro-
cess and prevent the generation of risky behaviors from the intermediate policy. For complex
dynamical systems, a simplified system is introduced to enable the practical implementa-
tion of the SRL framework. Several critical features of the framework are discussed in this
section.

3.6.1. Safety in Complex Dynamical Systems
In recent studies, e.g., [71], [75], the expansion of the safe region is performed based on
learning a model of unknown dynamics or disturbances. By executing control commands
within the current safe region, these approaches try to predict how the system will behave if it
is outside the region. Obtaining such a prediction relies on the assumption that the unknown
part follows a certain distribution, e.g. different kernel functions in the GPR model represent
different characteristics. However, for high-dimensional systems, not only providing suitable
assumptions about the distribution is nontrivial, but also a considerable amount of data is
required until an accurate model can be learned. Moreover, predicting the system behavior
based on complex dynamics is also computational difficult. Therefore, it is challenging to
implement such an expansion on complex dynamical systems.

Since both the direct computation of the safe region, and the estimation on the complex
dynamics pose feasibility challenges, the real safety boundary can effectively be determined
only by visiting it. While a prior belief about the safe region is constructed to provide
baselines for safety estimates, the decision boundary is modified by using feedback data.

49

3 Safe Reinforcement Learning Based on Physically Inspired Model Order Reduction

Figure 3.22.: Atlas model in Gazebo simulation environment.

With suitable α and β in (3.19), the decision boundary is expanded cautiously, i.e., only
when enough positive feedback data are observed. However, we have to relax the absolute
safety guarantee as it is unavoidable that failure will happen when the supervisor tries to
learn the real boundary. In that regard, we formulate our SRL framework with the purpose
that it can effectively learn from failures, so that in a later learning process similar dangerous
maneuvers are avoided.

3.6.2. Safety and Learning Performance
In general, the exploration process of the reinforcement learning algorithm needs to be re-
stricted to ensure safety, but meanwhile, too much constraining may lead to a poor learning
performance. Thus, one central problem of designing a well-performed SRL approach is to
find a suitable balance between maintaining the safety and maximizing the learning perfor-
mance. In the proposed approach, such a balance is provided by the supervisor decision
threshold pt, which determines the aggressiveness of actions. An appropriate probability
threshold pt not only results in a satisfying learning performance with less failures, but also
enables efficient policy update in the early learning process. Since in most tasks the de-
sired policy should fulfill the safety constraints of the system, the supervisor provides an
early-stopping functionality to the learning algorithm by preventing dangerous behaviours.

50

3.6 Discussion

Figure 3.23.: A humanoid robot is simplified to an inverted pendulum model with respect to
the CoM.

Finding a good balance between the supervisor and the learning algorithm requires prior
knowledge about the system and is usually task-dependent. Two measures may assist in
relaxing this issue. First, by improving the capability of the corrective controller, a larger safe
region can be acquired, which reduces the conflicts between safety and learning performance.
Second, safety can also be incorporated in the reward function of the reinforcement learning
algorithm [116]. By encouraging safe behaviours, the learning-based controller tends to stay
within the safe region such that less guidance is needed from the supervisor. However,
designing a versatile corrective controller or a well-performed reward function often requires
a thorough understanding of the task as well as the system.

3.6.3. Applications
The supervisory control strategy is compatible with arbitrary reinforcement learning algo-
rithms, thus the proposed SRL framework is generally applicable to various learning tasks.
For example, it can be used to increase safety when a parameterized model-based controller
updates its parameters through a learning algorithm [117]. Note that, in this dissertation we
treat safety as stability and consider no state constraints. For scenarios where environmental
constraints are critical, e.g. collision avoidance, the definition of the safe region has to be
modified. For example, control Lyapunov-barrier function [118] can be used in such cases
to incorporate state constraints along with stability. The applicability of the proposed SRL
framework can be increased with an appropriate description of the safe region. Nevertheless,
finding such a description might not be trivial in complicated learning tasks.

Moreover, when applying reinforcement learning algorithms in real-world scenarios, the
learning efficiency is limited by various practical factors, e.g. resetting the environment of
the learning algorithm. As demonstrated in the real-world quadcopter experiment, we have
to manually put the quadcopter back to a fixed starting position to reset the environment,
which requires a considerable amount of time. In general to reduce the total training time, a

51

3 Safe Reinforcement Learning Based on Physically Inspired Model Order Reduction

reasonable initial policy should be provided, especially when the learning-based controller is
expected to accomplish complicated tasks. In that case, the proposed SRL framework aims
to increase the safety when the reinforcement learning algorithm is improving the initial
policy according to the real system behavior.

3.6.4. Limitations
One major limitation of our SRL framework is that, in the early learning phase, the su-
pervisor can only learn about unsafe states by actually visiting them. Thus, although the
supervisor is able to adjust its predictions based on feedback data, the framework is only
applicable to cases where a reasonable amount of failures is tolerable. For extremely safety-
critical cases, where even a single failure is not allowed, an absolute safety guarantee has to
be given. However, how to impose such a guarantee for complex dynamical systems is still
an open research question.

Besides, since each learning iteration is terminated when the system state is outside the
safe region, the learner is only able to learn policies that are contained in this safe region.
Therefore, the upper limit of the learning performance is restricted by the choice of the
corrective controller. A corrective controller that provides a larger safe region is beneficial
for searching the optimal policy, but finding such a corrective controller requires more effort.

Furthermore, to reduce the computational cost, we utilize a simplified system and assume
that original system states x with the same corresponding simplified system state xs share
similar safety characteristics. Although this enables the proposed SRL framework to be
used on complex dynamical systems, the reliability of the safety estimates depends on the
representation capacity of the simplified system. In general, from the perspective of MOR,
there is a trade-off between preserving information, which usually results in higher dimensions
in the simplified system, and the computational cost. Thus, how to efficiently find a suitable
simplified system is a challenging task and further investigations are needed.

3.7. Summary
In this chapter, we propose a general SRL framework for complex dynamical systems. A
reinforcement learning-based controller is combined with a predefined corrective controller
to ensure that during the exploration process of the learning algorithm, the safety of the
dynamical system is maintained. This is achieved by using a supervisory control strategy
that switches the actual applied actions from the learning-based controller to the corrective
controller when the current system state is on the boundary of the estimated safe region.
We utilize the concept of ROA to define the safe region in this chapter. Note that, other
concepts, e.g., control invariant set or barrier function, can also be used, as long as a closed
and control invariant safe region can be identified. To enable the practical implementation
on complex dynamical systems, a simplified system that is found by physically inspired MOR
is introduced to give estimates about the safe region. Considering the potential inaccuracy
in the simplified system model, these safety estimates are presented in probabilistic form.
The supervisor is then initialized by using the probabilistic estimates of safety obtained from
the simplified system. For having a more reliable supervisor for the SRL framework, we also
propose an online adaptation method to modify our beliefs about the safe region. Based
on the belief function theory, two belief maps, the prior and the feedback belief maps, are

52

3.7 Summary

constructed accordingly. While the prior belief map uses the simplified system as the belief
source, the feedback belief map is generated from the feedback data, i.e., the actual execution
results of the corrective controller. These two belief maps are then combined via the weighted
belief fusion to have more accurate probabilistic estimates of safety, which lead to a better
performed supervisor for the SRL framework. Three examples are given to demonstrate the
performance of the proposed SRL framework. First, a simple two-link inverted pendulum
example is presented to explain in detail how the online adaptation method works. Second, a
quadcopter flight control example shows the performance of the SRL framework on complex
dynamical systems, both in simulations and in a real-world experiment. Third, a humanoid
control task is employed to further illustrate the applicability of the SRL framework to
different learning tasks. We believe that the proposed SRL framework is implementable on a
wide range of dynamical systems, and it gives an insight about how to safely extend modern
reinforcement learning methods to real-world control tasks.

One major limitation of the proposed SRL framework is that, the physically inspired MOR
usually requires a thorough understanding about the system dynamics. Unfortunately, this
is often not available for many practical control tasks. Hence in next chapter, we extend
the SRL framework with a data-driven MOR technique that is used to find the simplified
system model, such that the drawbacks of physically inspired MOR are addressed. Another
possible direction for the future work is that, an effective way of tuning the parameters of
the SRL framework is desired. Currently, the parameters are manually selected based on
experience and a considerable amount of effort is required until a satisfying performance can
be achieved. An automatic parameter tuning method could highly enhance the efficiency of
the proposed SRL framework and therefore increase its applicability.

53

Safe Reinforcement Learning
Based on Data-driven Model
Order Reduction 4.

The SRL framework based on physically inspired MOR has one major limitation that, it re-
quires a thorough understanding about the system dynamics such that representative physi-
cal features can be identified. Besides, multiple performance tests are often required before a
satisfying simplified system can be found. As a result, the application of the SRL framework
proposed in Chapter 3 is limited. To overcome these problems, we propose in this chapter
a SRL framework that uses a novel data-driven approach to identify the simplified system
model.

Inspired by transfer learning [90], we assume that an approximated system model of the
complex dynamical system is available. Even though, inevitably, the approximated model
displays discrepancies compared with the real system behavior, an initial estimate of safety
can usually be obtained by simulating the approximated model. For example, while the
dynamics of a real-world humanoid cannot be known perfectly, an approximated humanoid
model can be constructed in simulation for making predictions. Hence, by simulating the
system, we obtain training data that represents the safety of various original system states.
However, as the state space is high-dimensional, it is infeasible to acquire a sufficient amount
of training data to directly learn the safe region of the original system. To solve this problem,
a data-driven approach that computes probabilistic similarities between each training data
is proposed to first learn a low-dimensional representative safety feature of the complex
dynamical system. Such a safety feature constitute the simplified system model and leads
to a low-dimensional representation of the safe region, which is used as the starting point to
SRL in the real system.

Due to the inevitable simulation-to-reality gap, the initial low-dimensional representation
of the safe region learned from training data displays discrepancies compared to the real
system behavior. To compensate for this mismatch, we also propose a modified online
adaptation method to update the low-dimensional representation of the safe region. During
the learning process, we receive feedback data about the actual safe region of the real system.
These feedback data are not only used to generate new safety estimates, but they also allow
us to adjust our confidence in the reliability of the safety estimates obtained from training
data. The online adaptation method then updates the low-dimensional representation of
the safe region by simultaneously considering the safety estimates derived from training and
feedback data.

The remainder of this chapter is organized as follows: to better clarify our approach, an
overview of the proposed approach is first given in Section 4.1. Then in Section 4.2, we
explain in detail a data-driven method to derive a low-dimensional representation of the safe
region. This is followed by the online adaptation method presented in Section 4.3, which is

55

4 Safe Reinforcement Learning Based on Data-driven Model Order Reduction

used to update the identified low-dimensional representation. Two examples are provided in
Section 4.4 to demonstrate the performance of the proposed approach. In Section 4.5, we
discuss several properties of the approach, and Section 4.6 concludes this chapter.

4.1. Overview of the Approach
In this chapter, we consider the same supervisory control strategy as explained in Section 2.3
for constructing a SRL framework. Guided by the supervisor, the actual applied action
during the learning process is switched between the learning-based controller π(x) and the
corrective controller K(x). The safe region S is defined by using the ROA of the corrective
controller K(x) such as given in Definition 1. Note that, it is infeasible to employ physically
inspired MOR when a thorough understanding about the system dynamics is not available, or
there exists unknown part of the system dynamics or disturbance. We address this problem
by adapting a data-driven MOR technique to find a simplified system model. To better
explain the proposed approach, we present an overview of the approach in this section.

4.1.1. SRL for Complex Dynamical Systems
For realizing a feasible implementation of the SRL framework on complex dynamical system,
a simplified system model is introduced to provide an approximation of the high-dimensional
safe region of the original system. This is achieved by first mapping each original system
state x to a simplified system state xs through a state mapping xs = Ψ(x). The state
mapping xs = Ψ(x) is chosen such that safe and unsafe states are separated in the simplified
state space Xs. Nevertheless, due to the order reduction, multiple original system states that
have different safety properties can map to the same simplified state. Then, the safety of
the original system state x is estimated by the safety of its corresponding simplified state xs

in a probabilistic form as

P(x ∈ S) = Γ(xs)|xs=Ψ(x) ∼ [0, 1] (4.1)

where Γ(xs) is a function defined over the simplified state space Xs and is referred to as
the safety assessment function (SAF) in this chapter. Not only does the SAF Γ(xs) encode
information relating to the safety of the simplified state xs, it also includes the uncertainty
involved in making predictions for a high-dimensional state by using a low-dimensional re-
duction.

For a given SAF Γ(xs), the probability P(x ∈ S) depends only on the simplified state xs.
By using a probability threshold pt, we thus obtain a low-dimensional representation of the
safe region, denoted as Sl, in the simplified state space Xs

Sl = {xs ∈ Xs | Γ(xs) > pt} (4.2)

which works as an approximation of the high-dimensional safe region S. Accordingly, the
supervisor of the SRL framework that switches between the learning-based controller π(x)
and the corrective controller K(x) is represented as

u =
π(x), if t < t

′

K(x), else
(4.3)

56

4.1 Overview of the Approach

Figure 4.1.: Overview of the proposed approach. The low-dimensional representation Sl

is initialized using the training dataset Dtrain obtained from the nominal sys-
tem. Once we collect the feedback dataset Dfeedback on the real system, the
low-dimensional representation Sl is updated using the proposed online adapta-
tion method.

where t
′ denotes the first time point at which the system state x has a corresponding sim-

plified state xs on the boundary of the low-dimensional representation of the safe region
Sl, i.e., P(x ∈ S) = Γ(xs) ≤ pt. Apparently, the essential part of the SRL framework for
complex dynamical systems is finding a SAF Γ(xs) that is as accurate as possible. To solve
this problem, we demonstrate in this chapter how to efficiently identify the SAF Γ(xs) as
well as the state mapping xs = Ψ(x) using a data-driven MOR technique, i.e., by learning a
simplified system from the observed training data about safety.

4.1.2. SRL with Data-driven MOR

We propose in this chapter a novel data-driven approach to identity the SAF Γ(xs), together
with a new online adaptation method to efficiently update the learned low-dimensional rep-
resentation of the safe region Sl.

We consider a scenario in which the complex dynamical system (also referred to as the real
system) has partially unknown dynamics. However, we assume that a nominal approximated
system model is available and can be used to roughly predict the real system behavior. The
nominal system model is assumed to be

ẋ = f(x) + g(x)u (4.4)

57

4 Safe Reinforcement Learning Based on Data-driven Model Order Reduction

which is the same as given in (2.19). The real system model is then given as

ẋ = f(x) + g(x)u + d(x) (4.5)

where d(x) is the unknown, unmodelled part of the system dynamics. For brevity, we refer
to the nominal and the real systems as simulation and reality, respectively.

Due to the highly nonlinear and high-dimensional system dynamics, the direct calculation
of the safe region is computationally infeasible for both the nominal and the real systems.
Besides, although the real system provides exact safety information, in general it is expensive
to collect data directly on the real system. In contrast, simulating the nominal system is
usually efficient and allows a sufficient amount of data to be obtained for finding a low-
dimensional safety representation. However, due to the unknown term d(x), such data is
inaccurate and has to be modified to account for the real system behavior.

Based on these facts, to construct a reliable low-dimensional representation of the safe
region Sl for the real system, we propose the approach outlined in Fig. 4.1 (a complete
work-flow is given in Fig. 4.2). It consists of two parts that solve the following two problems,
respectively:

(i) How to derive and initialize the low-dimensional representation of the safe region Sl

by using the nominal system model.

(ii) How to update the low-dimensional representation of the safe region Sl online with the
observed real system behavior.

Part 1) Derivation and Initialization
Since no information about uncertainty d(x) is available prior to the learning process, the
corrective controller K(x) is designed for the nominal system model (2.19). Although the
safe region of the nominal system is unknown, its simulation is possible and delivers a dataset
as follows.

Definition 5. The training dataset of kt training data is given as

Dtrain = {D1
train, D2

train, . . . , Dkt
train}. (4.6)

It contains the simulation results that state whether the safety recovery controlled by the
corrective controller K(x) is successful or not for different system states x. The i-th training
data consists of three elements

Di
train = {xi

sim, ssim(xi
sim), Φsim(t; xi

sim)}. (4.7)

xi
sim is the initial system state in which the corrective controller K(x) is activated. ssim(xi

sim)
is the safety label that represents the result of safety recovery for the state xi

sim. We denote
ssim(xi

sim) = 1 if the system state xi
sim is safe under the corrective controller K(x), and

ssim(xi
sim) = 0 if it is not. Φsim(t; xi

sim) is the corresponding system trajectory of the safety
recovery that starts at xi

sim when time t = 0. The subscript sim indicates that the data is
collected by simulating the nominal system model.

58

4.1 Overview of the Approach

tra
in

in
g

da
ta

se
t

no
m

in
al

 s
ys

te
m

fe
ed

ba
ck

 d
at

as
et

tra
je

ct
or

y
di

st
an

ce

di

st
an

ce

si

m
pl

ifi
ed

 s
ta

te
s

st
at

e
m

ap
pi

ng

BB
A

of
 tr

ai
ni

ng
 d

at
a

pr

io
r e

st
im

at
e

pr

io
r D

SA
F

re
al

 s
ys

te
m

sa
m

pl
es

 o
f f

un
ct

io
n

G

PR
 m

od
el

pr
ed

ic
te

d
m

ea
n

va
lu

e

st
an

da
rd

 d
ev

ia
tio

n

fe
ed

ba
ck

 D
SA

F

fe
ed

ba
ck

 e
st

im
at

e

fu
se

d
es

tim
at

e

D
SA

F

lo
w

-d
im

en
si

on
al

re
pr

en
se

nt
at

io
n

of
 th

e
sa

fe
re

gi
on

eq
. (

3.
9)

eq
. (

3.
10

)
t-S

N
E

eq
. (

3.
16

)

eq
. (

3.
19

)
eq

. (
3.

24
)

eq
. (

3.
26

)

up
da

te

eq
. (

3.
27

)

eq
. (

34
)

eq
. (

3.
33

)

eq
. (

3.
39

)

in
iti

al
iz

e

eq
. (

3.
15

)
eq

. (
3.

35
)

eq
. (

3.
35

)

D
er

iv
at

io
n

an
d

in
iti

al
iz

at
io

n

O
nl

in
e

ad
ap

ta
tio

n

Fi
gu

re
4.

2.
:D

et
ai

le
d

wo
rk

-fl
ow

of
th

e
pr

op
os

ed
ap

pr
oa

ch
.

T
he

lo
w

-d
im

en
sio

na
lr

ep
re

se
nt

at
io

n
of

th
e

sa
fe

re
gi

on
S l

is
in

iti
al

iz
ed

us
in

g
th

e
tr

ai
ni

ng
da

ta
se

t
D

tr
ai

n
an

d
is

up
da

te
d

us
in

g
th

e
fe

ed
ba

ck
da

ta
se

t
D

fe
ed

ba
ck

.

59

4 Safe Reinforcement Learning Based on Data-driven Model Order Reduction

A first low-dimensional representation of the safe region Sl is thus derived and initialized
by using the training dataset Dtrain. To do this, we first identify the state mapping xs =
Ψ(x) using a data-driven method that computes the probabilistic similarity between each
training data (see Section 4.2.1). Then to facilitate an efficient computation, we discretize the
simplified state space Xs into grid cells and assign an index vector v ∈ Zns

+ to each grid cell.
By assuming that the SAF Γ(xs) is constant in each grid cell, we thus obtain a discretized
safety assessment function (DSAF) Γd(v). A discretized low-dimensional representation of
the safe region Sl is then given by introducing the probability threshold pt to the DSAF Γd(v)
(see Section 4.2.2). To enable the implementation of the SRL framework on the real system,
we also calculate an initial estimate of the DSAF Γd(v), denoted as the prior DSAF Γprior

d (v),
from the training dataset Dtrain. It is then used as the initial low-dimensional representation
of the safe region Sl (see Section 4.2.3). Further details of Part 1) are given in Section 4.2.

Part 2) Online Adaptation
After the initialization given in Part 1), we obtain an initial estimate of the low-dimensional
representation of the safe region Sl that is identified by using the training dataset Dtrain.
However, due to the unknown part of the system dynamics d(x), there is inevitably a mis-
match between simulation and reality. In order to compensate for this mismatch, we update
the obtained initial estimate of the low-dimensional representation of the safe region Sl by
accounting for the real system behavior.

Each time the corrective controller K(x), which is designed according to the nominal
system, is activated during the learning process, we observe feedback data that reflects the
real safe region, i.e., whether the corrective controller K(x) is still able to keep the real
system safe or not. The set of feedback data is defined as follows.

Definition 6. The feedback dataset of kf feedback data is given as

Dfeedback = {D1
feedback, D2

feedback, . . . , D
kf

feedback}. (4.8)

It contains the results of safety recovery from implementing the corrective controller K(x)
on the real system. The i-th feedback data is

Di
feedback = {xi

real, sreal(xi
real), Φreal(t; xi

real)}. (4.9)

While xi
real, sreal(xi

real) and Φreal(t; xi
real) have the same meaning as in Definition 5, the sub-

script real indicates here that the data is collected on the real system.

Since collecting data on the real system, e.g., real-world robots, is usually expensive and
time-consuming, in most cases the feedback dataset Dfeedback has a limited size. Therefore,
the estimate of the low-dimensional representation of the safe region Sl needs to be updated
in a data-efficient manner. To achieve this, we propose an online adaptation method, as given
in Section 4.3. It comprises three steps: First, we modify the prior DSAF Γprior

d (v) by chang-
ing our confidence in its reliability using the feedback dataset Dfeedback (see Section 4.3.1).
Second, to fully utilize the valuable information contained in the feedback dataset Dfeedback,
we generate another feedback DSAF Γfeedback

d (v) (see Section 4.3.2). Third, the two DSAFs
are fused to obtain a more accurate DSAF Γd(v), which is then used to update the low-
dimensional representation Sl (see Section 4.3.3).

60

4.2 Learning a Low-dimensional Representation of the Safe Region

4.2. Learning a Low-dimensional Representation of the
Safe Region

To derive the low-dimensional representation of the safe region Sl, two components have to be
determined: the state mapping xs = Ψ(x), which gives the low-dimensional safety feature,
and the SAF Γ(xs), which predicts the safety of original system states. In this section,
we present a data-driven method for identifying the low-dimensional representation of the
safe region Sl. It utilizes a technique called t-distributed stochastic neighbor embedding
(t-SNE) [119], which is originally proposed for visualizing high-dimensional data. Through
measuring the similarity between each high-dimensional data point, t-SNE defines a two- or
three-dimensional data point such that similar high-dimensional data points are represented
by nearby low-dimensional data points with high probability. Details are presented in the
following subsections.

4.2.1. Identifying the State Mapping with t-SNE
To identify the state mapping xs = Ψ(x), we first find the realization of the low-dimensional
safety feature, i.e., the values of simplified states x1

s, . . . , xkt
s , that best corresponds with the

training dataset Dtrain by revising t-SNE. Unlike the original t-SNE, which uses Euclidean
distance between each pair of high-dimensional data points as the metric for measuring
similarity, we propose a new similarity metric that considers similarity and safety at the
same time. The reason for this is that, since our purpose is to construct the low-dimensional
representation of the safe region Sl, we are more interested in safety rather than just distance.

The general motivation for determining the simplified state xs is that the safe and unsafe
original system states x should be separated in the simplified state space Xs. Since, in this
dissertation, the safe region is defined with respect to the ROA, the trajectories of safe initial
states will converge to the origin, while unsafe initial states will have divergent trajectories.
Hence, if two original system states x have similar trajectories under the corrective controller
K(x), then ideally they should also have nearby corresponding simplified states xs (see
Fig. 4.3). Based on this, we first calculate the pairwise trajectory distance ωij between the
i-th and j-th training data, using dynamic time warping (DTW) as

ωij = dtw(Φsim(t; xi
sim), Φsim(t; xj

sim)) (4.10)

where dtw(·) represents the DTW measurement. We thus have ωij = 0 if i = j, and the
more similar the trajectories are, the smaller the value of ωij is.

Remark 7. Besides DTW, other trajectory distance measures, e.g., Fréchet distance [120],
can be used in (4.10). Changing the distance metric does not affect the applicability of the
proposed approach. However, DTW turns out to be a more suitable metric for trajectories of
the dynamical systems we investigated.

While, in general, the trajectory distance ωij reflects the probability that original system
states xi

sim and xj
sim have the same safety property, it is still possible that safe and unsafe

states have similar trajectories. To obtain a better low-dimensional safety feature, we thus
modify the trajectory distance ωij in relation to the safety label ssim(xsim) and compute the

61

4 Safe Reinforcement Learning Based on Data-driven Model Order Reduction

Figure 4.3.: The distances Ω12 and Ω13 are computed for three training data D1
train, D2

train,
D3

train using the trajectory distances ω12, ω13 and the safety labels ssim(x1
sim),

ssim(x2
sim), ssim(x3

sim). Based on these distances, t-SNE calculates the values of
corresponding simplified states xs, where similar and dissimilar training data
are modeled by nearby and distant simplified states, respectively.

distance Ωij between the i-th and j-th training data as

Ωij =

ωij

ωmax
+ δ, if ssim(xi

sim) ̸= ssim(xj
sim)

ωij

ωmax
, if ssim(xi

sim) = ssim(xj
sim)

(4.11)

where δ is a constant and ωmax = maxi,j ωij is the maximum trajectory distance within the
training dataset Dtrain. The distance Ωij is then used as the new metric for t-SNE to measure
the similarities between different training data.

In our experiments, we find that a small value of δ is sufficient for providing a satisfying

62

4.2 Learning a Low-dimensional Representation of the Safe Region

result of t-SNE (in this chapter, for example, we use δ = 0.01). A large value of δ, in
contrast, may lead to information contained in trajectories being ignored, which can reduce
the representation power of the learned simplified states xs. A sensitivity analysis of the
parameter δ is provided in Appendix B.

After computing the distance Ωij between each pair of training data, we apply t-SNE on
the training dataset Dtrain to derive a realization of the low-dimensional safety feature. To
do this, we modify the conditional probability pj|i of t-SNE [119] using the distance Ωij as

pj|i =
exp(−Ω2

ij/2σ2
i)∑

k ̸=i

exp(−Ω2
ik/2σ2

i)
(4.12)

where σi is the variance of the Gaussian distribution that is centered on the state xi
sim. The

remaining computations are the same as in t-SNE. The main steps involved in performing
t-SNE are given in Appendix C.

Using t-SNE, we obtain the values of simplified states x1
s, . . . , xkt

s that correspond to the
training dataset Dtrain as an initial realization of the low-dimensional safety feature. Such
a realization models similar training data with nearby simplified states, e.g., x1

s and x2
s in

Fig. 4.3, and dissimilar training data with distant simplified states, e.g., x1
s and x3

s in Fig. 4.3.
In general, the simplified state xs is chosen to be two- or three-dimensional, i.e., xs ∈ Rns

with ns = 2 or ns = 3. In this chapter, we set ns = 2.
Note that t-SNE only determines the values of simplified states but gives no expression

of the state mapping xs = Ψ(x). Therefore, to identify the state mapping xs = Ψ(x), we
learn a function approximator using the values of simplified states x1

s, . . . , xkt
s obtained from

t-SNE and the original system states x1
sim, . . . , xkt

sim contained in the training dataset Dtrain.
This function approximator, e.g., we use a neural network in this chapter, is then utilized to
represent the state mapping xs = Ψ(x) = NN(x).

Remark 8. Different forms of function approximator, for instance, a Gaussian process, can
be used to describe the state mapping xs = Ψ(x). The selection of function approximator
depends mainly on the available number of training data.

Due to the approximation error in the function approximator, some original system states
x may have slightly different values in their simplified states xs when comparing the initial
realization obtained from t-SNE with the one computed from the learned state mapping
xs = Ψ(x) (for an example, see the simulations in Section 4.4.1 and in particular Fig. 4.8).
Hence, to reduce the influence of this issue on deriving the low-dimensional representation of
the safe region Sl, we compute the values of simplified states x1

s, . . . , xkt
s once again with the

learned state mapping. This final realization of the low-dimensional safety feature is then
used for formulating the SAF Γ(xs), which is detailed in next subsection.

4.2.2. Defining the DSAF with Belief Function Theory
Once the state mapping xs = Ψ(x) is determined, we are able to calculate a SAF Γ(xs)
that predicts whether a given original system state x is safe or not. As for now, all available
information regarding safety is contained in the training data, we will use the training dataset
Dtrain for computing the SAF Γ(xs). However, due to the limited size of the training data,

63

4 Safe Reinforcement Learning Based on Data-driven Model Order Reduction

Figure 4.4.: The simplified state space Xs is discretized into grid cells. The location of
each grid cell is indicated by the index vector v. The safety of a new original
system state, e.g. x∗, is estimated by way of the corresponding belief mass as
P(x∗ ∈ S) = Γd([2, 3]) = b[2,3],s, where L(x∗) = v = [2, 3]. The prior estimate
Bprior

v of an index vector v is either obtained by fusing all BBAs within the set
Bv, e.g., Bprior

[2,3] = F(B[2,3]), or set to an initial estimate, e.g., Bprior
[3,6] = Bini.

it is computationally infeasible to construct the SAF Γ(xs) over the continuous simplified
state space Xs. Therefore, we discretize the simplified state space Xs.

The range of the simplified state space Xs is determined by the maximum and minimum
values of the simplified states x1

s, . . . , xkt
s in each dimension. We then discretize the simplified

state space Xs into grid cells with a predefined step size. Each grid cell is assigned an index
vector v ∈ Z2

+ to indicate its position in the simplified state space Xs; for example, v = [2, 3]
refers to the grid cell that is located at the second row and third column (see Fig. 4.4). A
same locating function L(x) as in Definition 3 is also introduced here.

Definition 7. By locating the simplified state xs = Ψ(x) for an original system state x in
the simplified state space Xs, the locating function L(x) returns the index vector v of the grid
cell that it belongs to.

By assuming that the SAF Γ(xs) is constant in each grid cell, we obtain a DSAF Γd(v)
that we will have to define. Then, instead of using the simplified state xs, the safety of an
original system state x is estimated by using the index vector v as

P(x ∈ S) = Γd(v)|v=L(x) ∼ [0, 1]. (4.13)

In general, the DSAF Γd(v) for an index vector v can be approximated by the number
of safe and unsafe original system states x that map to the corresponding grid cell, i.e.,
L(x) = v. However, due to the high-dimensional original system state space, it is, in most

64

4.2 Learning a Low-dimensional Representation of the Safe Region

cases, infeasible to acquire a sufficient amount of data to derive an accurate estimate. To
solve this problem, we use the belief function theory [108] (see Section 3.3.1) to describe the
DSAF Γd(v), where the uncertainty caused by insufficiency in the data amount is considered
by a subjective probability [109]. We therefore define a BBA Bv separately for each index
vector v as follows.

Definition 8. The BBA Bv for an index vector v is given as

Bv = (bv,s, bv,u, σv) (4.14)

which represents the belief about the value of the DSAF Γd(v) for the index vector v. The
belief masses bv,s and bv,u and the subjective uncertainty σv have the same meaning as in
Definition 4.

Hence the DSAF Γd(v) is given by the belief masses bv,s of the corresponding BBAs Bv as

Γd(v) = bv,s. (4.15)
The low-dimensional representation of the safe region Sl is then defined among the discretized
simplified state space as

Sl = {v | Γd(v) = bv,s > pt} (4.16)
where pt is the predefined probability threshold. In the next subsection, we explain how to
initialize the DSAF Γd(v) from the training dataset Dtrain so as to enable the application of
the SRL framework on the real system.

4.2.3. Initializing the DSAF from Training Data
Since each training data provides information on the value of the DSAF Γd(v), the low-
dimensional representation of the safe region Sl is initialized using the training dataset
Dtrain. This is done by considering each training data as a belief source and then fuse all
beliefs together. The result is a prior estimate of the DSAF Γd(v), which is used to initialize
the SRL framework.

We first formulate a BBA for each training data as follows.

Definition 9. The BBA Bi obtained from the i-th training data Di
train is defined as

Bi = (bi
s, bi

u, σi). (4.17)

It represents the belief about the value of the DSAF Γd(v) for the index vector v = L(xi
sim),

where the belief source is the i-th training data. bi
s, bi

u and σi are equivalent to bv,s, bv,u and
σv, with the superscript i indicating the index of the training data.

Due to the inevitable simulation-to-reality gap, we initialize the BBA of each training data
with a constant initial uncertainty σini > 0 as

Bi =
(1 − σini, 0, σini), if ssim(xi

sim) = 1
(0, 1 − σini, σini), if ssim(xi

sim) = 0
(4.18)

where i = 1, . . . , kt. Since no information about the unknown term d(x) is available prior to
the learning process on the real system, the initial subjective uncertainties are chosen to be

65

4 Safe Reinforcement Learning Based on Data-driven Model Order Reduction

the same for all BBAs. Later in the online adaptation method, the subjective uncertainties
are updated by using the feedback data to realize more accurate safety estimates.

For each index vector v, the BBA Bv is then estimated by using the BBAs of the training
data. To achieve this, we first generate a set of BBAs Bv for each index vector v

Bv = {Bi | L(xi
sim) = v}. (4.19)

which contains the BBAs of the training data whose original system state xsim corresponds
to the index vector v. The size of the set Bv is denoted as kv.

Every BBA in the set Bv provides a belief about the value of the DSAF Γd(v) for the
index vector v. Hence, an estimate of the BBA Bv is derived by fusing all BBAs within the
set Bv as

Bprior
v = (bprior

v,s , bprior
v,u , σprior

v) =
F(Bv), if kv ≥ kmin

Bini, else
(4.20)

where Bini is an initial estimate that represents our guess about the BBA Bv when no training
data is available (see Fig. 4.4). F(·) is a fusion operation among the set Bv, which is the
weighted belief fusion for multiple belief sources and is defined according to [110] as

bprior
v,s =

∑
Bi∈Bv

bi
s(1 − σi)

∏
Bj∈Bv

i ̸=j

σj

 ∑
Bi∈Bv

∏
Bj∈Bv

i ̸=j

σj

− kv

∏
Bi∈Bv

σi

(4.21)

bprior
v,u =

∑
Bi∈Bv

bi
u(1 − σi)

∏
Bj∈Bv

i ̸=j

σj

 ∑
Bi∈Bv

∏
Bj∈Bv

i ̸=j

σj

− kv

∏
Bi∈Bv

σi

(4.22)

σprior
v =

kv −
∑

Bi∈Bv

σi

 ∏
Bi∈Bv

σi

 ∑
Bi∈Bv

∏
Bj∈Bv

i ̸=j

σj

− kv

∏
Bi∈Bv

σi

. (4.23)

We refer to this estimate of the BBA Bv as the prior estimate Bprior
v . Since it is still likely

to be imprecise if the available number of training data is too small, the fusion is performed
only when the number of BBAs contained in the set Bv is not smaller than a minimum
number kmin. Otherwise, the prior estimate Bprior

v is set to the initial estimate Bini. We use
Bini = (0.05, 0.55, 0.4) in our experiments. This means that if there is very little experience
available in the form of training data for one grid cell, then the respective states will initially
be considered as unsafe. The resulting prior estimate Bprior

v is a BBA that satisfies

bprior
v,s + bprior

v,u + σprior
v = 1 (4.24)

66

4.3 Online Adaptation of the Safe Region

and bprior
v,s , bprior

v,u , σprior
v all lie within the interval [0, 1].

After computing the prior estimate Bprior
v for all index vectors v, we thus obtain a prior

DSAF Γprior
d (v)

Γprior
d (v) = bprior

v,s (4.25)

which delivers an estimate of the DSAF Γd(v) that is derived from the training data. The low-
dimensional representation of the safe region Sl is then initialized by letting Γd(v) = Γprior

d (v).
In next section, we propose an online adaptation method to update the DSAF Γd(v) using
feedback data, to account for the unknown part of the system dynamics d(x).

4.3. Online Adaptation of the Safe Region
In the early learning phase on the real system, together with the identified state mapping
xs = Ψ(x), the prior DSAF Γprior

d (v) allows the supervisor to perform a rough estimate of
the safety of an original system state. During the learning process, the feedback data is used
to update the DSAF Γd(v) to achieve more accurate safety estimates. Note that each time
the corrective controller K(x) is activated for the real system, we obtain new feedback data.
Hence the size of the feedback dataset Dfeedback increases incrementally during the learning
process. For simplicity, we consider the feedback dataset Dfeedback of size kf in this section.

Each update iteration of the DSAF Γd(v) consists of three steps. First, we modify the
prior DSAF Γprior

d (v) by revising our beliefs about the reliability of the training data (see
Section 4.3.1). Second, we compute a feedback DSAF Γfeedback

d (v) using the feedback data
(see Section 4.3.2). Third, the updated DSAF Γd(v) is obtained by fusing the prior and
feedback DSAFs (see Section 4.3.3). Details of the online adaptation method are given in
the following.

4.3.1. Update of the Prior DSAF with Feedback Data
Due to the simulation-to-reality gap, the prior DSAF Γprior

d (v) derived from the training data
has discrepancy compared to the real system behavior. For compensating such a discrepancy,
we use feedback data to update our beliefs about the reliability of each training data, which
then results in an updated and more accurate prior DSAF Γprior

d (v).
In the prior DSAF Γprior

d (v), the uncertainty caused by the unknown term d(x) is repre-
sented by the subjective uncertainty σi of each BBA Bi. Hence, the update of the prior DSAF
Γprior

d (v) is done by modifying the subjective uncertainties using new information given by
feedback data. As a prerequisite for relating the training and the feedback data, we assume
that the following assumption holds, which states that original system states that are in
close proximity to each other most probably have similar safety properties.

Assumption 5. The probability P(sreal(x1) = sreal(x2)) that two original system states x1

and x2 have the same safety property on the real system is inversely proportional to their
Euclidean distance in the original state space ||x1 − x2||.

We then define a function P (x) to quantify the similarity with respect to the safety of
nominal and real system trajectories that start in the same initial original system state x

P (x) = P(ssim(x) = sreal(x)) ∼ [0, 1]. (4.26)

67

4 Safe Reinforcement Learning Based on Data-driven Model Order Reduction

Figure 4.5.: As given in (4.29), the subjective uncertainty σi in the BBA Bi of the i-th train-
ing data is determined using the corresponding standard deviation pi

std obtained
from the GPR model GP(x).

It represents the probability that for a given original system state x, its safety label ssim(x)
obtained with the nominal system is the same as the safety label sreal(x) obtained with the
real system. Then, according to Assumption 5, if we observe an original system state x that
has the same safety property both in simulation and in reality, it is likely that other original
system states that are close to the observed state will also show the same safety property.

In order to predict the value of the function P (x), we approximate it with a GPR model
P (x) = GP(x). For each original system state xreal contained in the feedback dataset
Dfeedback, we examine its safety label ssim(xreal) in simulation. This leads to a set of samples
{P (x1

real), . . . , P (xkf

real)} for the function P (x), in which

P (xi
real) =

1, if ssim(xi
real) = sreal(xi

real)
0, if ssim(xi

real) ̸= sreal(xi
real)

(4.27)

for i = 1, . . . , kf . Hence the GPR model GP(x) is trained with the sets {x1
real, . . . , x

kf

real} and
{P (x1

real), . . . , P (xkf

real)}, which are obtained from the current feedback dataset Dfeedback.

Remark 9. If the real system is a real-world dynamical system, then it is usually difficult
to test the corrective controller K(x) with arbitrary initial original system states x in reality,
since there is a high risk of encountering unsafe behaviors. However in contrast, the simu-
lation can be initialized with any original system state xreal contained in the feedback data,
which then makes it possible to approximate the function P (x).

The trained GPR model GP(x) is then used to update the BBA Bi. The general motivation
is that, we decrease the subjective uncertainty σi if we are confident about the reliability of
this training data. Hence for the i-th training data, we compute a predicted mean value of the
function P (xi

sim), denoted as pi
mean, from the GPR model GP(x), along with a corresponding

standard deviation pi
std of the predicted value. Since a low value of the standard deviation

68

4.3 Online Adaptation of the Safe Region

pi
std means we have observed enough feedback data to make a reliable prediction, we only

update the BBA Bi if the standard deviation pi
std is smaller than a predefined threshold pth

Bi =

(pi

mean(1 − σi), (1 − pi
mean)(1 − σi), σi),

if pi
std ≤ pth and ssim(xi

sim) = 1
((1 − pi

mean)(1 − σi), pi
mean(1 − σi), σi),

if pi
std ≤ pth and ssim(xi

sim) = 0

(4.28)

with the new subjective uncertainty σi calculated as

σi = σini − σmin

γpth − 1 (γpi
std − 1) + σmin (4.29)

where σini is the same initial subjective uncertainty as that given in (4.18) (see Fig. 4.5 for a
graphical representation of (4.29)). BBAs Bi with pi

std > pth remain unchanged, as in (4.18).
Such an update of the BBA Bi considers the predicted value of the function P (xi

sim) and the
reliability of this prediction at the same time.

(4.29) is designed by considering two aspects: first, the subjective uncertainty σi is set
equal to σini when pi

std ≥ pth. This means that in this case we do not have the confidence
to update the BBA Bi, as not enough information is observed from the feedback data;
second, due to the inevitable reality gap, the subjective uncertainty σi maintains a minimum
uncertainty σmin even when the standard deviation pi

std is 0. We use the exponential form
such that the decrease in σi is faster when the standard deviation pi

std is near the threshold
pth. The parameter γ > 1 determines the decay rate and is selected by considering the actual
learning task.

Note that for the same training data, the relationship between the standard deviation pi
std

and the threshold pth can change during the learning process. For example, we might obtain
pi

std ≤ pth in the current update iteration, but in the next update iteration it changes to
pi

std > pth. This happens primarily when we first observe a safe original system state but
followed by a nearby unsafe state, such that the safety of the states in between these two
observed states becomes uncertain. In such cases, we set the BBA Bi back to the initial
BBA given in (4.18).

Once the BBAs Bi of all training data have been updated with the up-to-date feedback
dataset Dfeedback, the prior estimate Bprior

v for each index vector v is recomputed using (4.20).
This results in an updated prior DSAF Γprior

d (v), which is used later for revising the DSAF
Γd(v).

4.3.2. Feedback DSAF
The feedback data contain the information about the real safety properties of different orig-
inal system states x. On the one hand, this information is used to estimate the reliability of
training data such as given in the update process of the prior DSAF Γprior

d (v). On the other
hand, the feedback data also provides new information about the actual safe region of the
real system. To fully utilize this valuable information, we construct an additional DSAF,
denoted as the feedback DSAF Γfeedback

d (v), using the feedback dataset Dfeedback.
As the amount of data is insufficient, we also consider the estimate obtained from the

feedback data as a subjective probability [89]. Then, as with the prior estimate Bprior
v , we

69

4 Safe Reinforcement Learning Based on Data-driven Model Order Reduction

formulate another estimate of the BBA Bv for each index vector v as

Bfeedback
v = (bfeedback

v,s , bfeedback
v,u , σfeedback

v) (4.30)

which is referred to as the feedback estimate Bfeedback
v .

For each index vector v, the feedback estimate Bfeedback
v is determined by the number of

safe and unsafe feedback data that correspond to this grid cell. Thus, we formulate the
feedback estimate Bfeedback

v accordingly. By sorting the feedback dataset Dfeedback with the
locating function L(x), we denote the number of safe feedback data that have the index
vector v from the locating function, i.e., L(xreal) = v and sreal(xreal) = 1, as kv,s (and kv,u for
the number of unsafe feedback data). If at least one feedback data is available for the index
vector v, i.e., kv,s + kv,u ≥ 1, we compute the feedback estimate Bfeedback

v as follows

bfeedback
v,s = kv,s

kv,s + kv,u
(1 − σfeedback

v) (4.31)

bfeedback
v,u = kv,u

kv,s + kv,u
(1 − σfeedback

v) (4.32)

σfeedback
v = α · e−β(kv,s+kv,u−1). (4.33)

The subjective uncertainty σfeedback
v decreases if more feedback data are observed for the

index vector v. It satisfies that, if a sufficient number of feedback data is obtained, the
subjective uncertainty σfeedback

v approaches 0. In such a case, the belief masses bfeedback
v,s and

bfeedback
v,u can be considered as the actual probabilities. The parameters α and β define the

initial value and the decay rate of the subjective uncertainty σfeedback
v , respectively. If no

feedback data is observed for the index vector v, we set the feedback estimate Bfeedback
v to an

empty BBA B∅ defined as Bfeedback
v = B∅ = (0, 0, 1), which indicates that no safety estimate

can be made.
Using the feedback estimate Bfeedback

v , we obtain the following feedback DSAF Γfeedback
d (v)

Γfeedback
d (v) = bfeedback

v,s (4.34)

which represents the estimate of the DSAF Γd(v) derived from the feedback data only. In
the next subsection, we fuse the feedback DSAF Γfeedback

d (v) with the updated prior DSAF
Γprior

d (v) to derive a more accurate DSAF Γd(v).

4.3.3. Fusion of Prior and Feedback DSAFs
The prior and feedback DSAFs both provide beliefs about safety by using different datasets
as their belief source. To obtain a more accurate estimate of the DSAF Γd(v), we fuse these
two functions using weighted belief fusion as given in (4.21-4.23). This leads to a fused
estimate Bfuse

v for each index vector v

Bfuse
v = (bfuse

v,s , bfuse
v,u , σfuse

v) (4.35)

which is computed as

Bfuse
v =

F({Bprior
v ,Bfeedback

v }), if Bfeedback
v ̸= B∅

Bprior
v , if Bfeedback

v = B∅.
(4.36)

70

4.4 Experimental Results

If the feedback estimate Bfeedback
v is non-empty, we find the fused estimate Bfuse

v through
weighted belief fusion F(·) of the set {Bprior

v ,Bfeedback
v }. Otherwise, we set the fused estimate

Bfuse
v equal to the prior estimate Bprior

v .
The fused estimate Bfuse

v fulfills the following property, which is the same as Proposition 1

Proposition 2. If the number of feedback data approaches infinity, the fused estimate Bfuse
v

becomes the actual probabilities, and the prior estimate Bprior
v has no effect in making safety

estimates.

Proof. Proposition 2 is justified by the following equations

lim
kv,s+kv,u→∞

bfuse
v,s = bfeedback

v,s (4.37)

lim
kv,s+kv,u→∞

bfuse
v,u = bfeedback

v,u (4.38)

lim
kv,s+kv,u→∞

σfuse
v = σfeedback

v = 0 (4.39)

which are obtained by simplifying (4.21-4.23) with the set {Bprior
v ,Bfeedback

v }.

Considering computational efficiency, the update of the DSAF Γd(v) is generally performed
once when every ku feedback data is obtained, where the value of ku is selected according to
the actual learning task. In each update iteration (indexed by number N , see Section 4.4.1),
we first use the up-to-date feedback dataset Dfeedback to update the prior DSAF Γprior

d (v) and
to construct the feedback DSAF Γfeedback

d (v). Then, the fused estimate Bfuse
v is computed

from these two functions for each index vector v. The updated DSAF Γd(v) is thus obtained
using the fused estimate Bfuse

v as
Γd(v) = bfuse

v,s (4.40)
which also gives the latest low-dimensional representation of the safe region Sl according
to (4.16). With further feedback data, the DSAF Γd(v) becomes more accurate and more
reliable safety estimates are obtained.

4.4. Experimental Results
In this section, we present two examples, a quadcopter and a humanoid, to demonstrate the
performance of using the proposed approach for identifying the low-dimensional representa-
tion of the safe region Sl.

4.4.1. Quadcopter Example
Experimental setup

We simulate the quadcopter using the system dynamics given in [121] with MATLAB
Simulink1 (Version R2019b) running on a laptop powered by an Intel i7-7700HQ CPU.
The 12-dimensional system state is defined as x = [pg, θg, vb, ωb]T , where pg = [px, py, pz]T
and θg = [θr, θp, θy]T are the linear and angular positions defined in the ground frame,
vb = [vx, vy, vz]T and ωb = [ωr, ωp, ωy]T are the linear and angular velocities defined in the

1https://www.mathworks.com/products/simulink.html

71

https://www.mathworks.com/products/simulink.html

4 Safe Reinforcement Learning Based on Data-driven Model Order Reduction

Figure 4.6.: The system state x of a quadcopter is defined using the ground frame and the
body frame.

body frame (see Fig. 4.6). The control input u consists of the four motor speeds of the
quadcopter. For the nominal system model, we set the mass of the quadcopter to m = 1 kg
and the maximal lifting force to f = 200 N. The safety of a given state x is determined
by simulating the controlled dynamics with the corrective control K(x) that starts in initial
state x, and checking if the controller is able to successfully drive the quadcopter back to a
hovering state without crashing. In this example, we use the PID controller given in [121]
as the corrective controller K(x). It stabilizes the quadcopter’s height as well as its roll,
pitch and yaw rotations. The coefficients of the PID controller are: KP ,h = 1.5, KI,h = 0,
KD,h = 2.5 for the height control, and KP ,r = KP ,p = KP ,y = 6, KI,r = KI,p = KI,y = 0,
KD,r = KD,p = KD,y = 1.75 for the roll, pitch and yaw rotations control, respectively.

To generate the training dataset Dtrain, we first create kt = 10000 original system states x.
We set px = py = 0 and pz = 2 m to leave enough space and time for the corrective controller
K(x). All other variables are sampled with a uniform distribution within the following range:
0 ≤ θr, θp, θy ≤ 2π rad, −3 m/s ≤ vx, vy, vz ≤ 3 m/s, −10 rad/s ≤ ωr, ωp, ωy ≤ 10 rad/s.
The training dataset Dtrain is then obtained by examining the performance of the corrective
controller K(x) for all these initial values.

Identifying the low-dimensional representation of the safe region

The initial realization of the low-dimensional safety feature, i.e., the values of simplified
states x1

s, . . . , xkt
s , obtained from t-SNE is given in Fig. 4.7. We use δ = 0.01 in (4.11) and

set the perplexity and tolerance of t-SNE (see Appendix C) to 40 and 1e−4, respectively.
The result shows that the safe and unsafe original system states are clearly separated in the
two-dimensional simplified state space Xs ⊆ R2.

The state mapping xs = Ψ(x) is represented by a two-layer neural network with 128 neu-
rons in each layer, which is trained using the initial realization of simplified states x1

s, . . . , xkt
s

and the set of original system states {x1
sim, . . . , xkt

sim}. By recomputing the outputs of the
learned neural network, we obtain the final realization of the low-dimensional safety feature,
i.e., the values of the simplified states x1

s, . . . , xkt
s , given in Fig. 4.8. Due to approximation

72

4.4 Experimental Results

-30 -20 -10 0 10 20 30

-30

-20

-10

0

10

20

30

unsafe

safe

Figure 4.7.: The initial realization of simplified states x1
s, . . . , xkt

s obtained from t-SNE. The
safe and unsafe training data are denoted by green and blue points, respectively.

-30 -20 -10 0 10 20 30

-30

-20

-10

0

10

20

30

unsafe

safe

Figure 4.8.: The final realization of simplified states x1
s, . . . , xkt

s obtained by recomputing
with the learned neural network that represents the state mapping xs = Ψ(x) =
NN(x).

73

4 Safe Reinforcement Learning Based on Data-driven Model Order Reduction

error, certain simplified states have a slightly changed position compared to the values ob-
tained from t-SNE. However, this does not affect the computation of the low-dimensional
representation of the safe region Sl, as the results are updated later in the online adaptation
using the feedback data.

We set the simplified state space as {Xs | − 30 ≤ y1, y2 ≤ 30}. By discretizing the
simplified state space Xs into grid cells with step size 1 in both xs,1 and xs,2, we obtain
the index vector v ∈ {1, 2, . . . , 60}2. The prior DSAF Γprior

d (v) is thus computed from the
training dataset Dtrain using the index vector v. The results are given in Fig. 4.9a, where
the initial subjective uncertainty, the initial estimate and the minimum number are selected
as σini = 0.4, Bini = (0.05, 0.55, 0.4) and kmin = 3, respectively. Depending on the number
of safe and unsafe training data in each grid cell, the prior DSAF Γprior

d (v) estimates the
probability P(x ∈ S) for original system states x that take the index vector v from the
locating function L(x). In Fig. 4.11a, the DSAF Γd(v) is initialized by the prior DSAF
Γprior

d (v). In the next subsection, we demonstrate the update process of the DSAF Γd(v)
using the proposed online adaptation method.

Updating the low-dimensional representation

To simulate a mismatch between the nominal and the real systems, we set the mass and
the maximal lifting force of the real system to m = 0.8 kg and f = 145 N, respectively. To
eliminate the influence of a specific learning task or algorithm and focus on illustrating the
update process, the feedback dataset Dfeedback is obtained by randomly selecting states xreal
where the corrective controller K(x) is activated, such that the entire original system state
space can be visited.

The following parameters are used in the online adaptation method: σmin = 0.1, pth = 0.3,
α = 0.3, β = 0.4, γ = 3e5. The GPR model GP(x) uses a squared exponential kernel.
To demonstrate the online update process, we collect the feedback data one by one and
incrementally extend the feedback dataset Dfeedback. The DSAF Γd(v) is updated once when
every ku = 20 feedback data are obtained.

The results of the online adaptation are given in Fig. 4.9-4.11. Prior to the update (up-
date iteration N = 0), the DSAF Γd(v) is initialized as the prior DSAF Γprior

d (v), while the
feedback DSAF Γfeedback

d (v) is constructed using the empty BBA B∅ (see Fig. 4.9a, 4.10a
and 4.11a). Once the learning procedure has started, we collect the feedback data incremen-
tally. In the early updating phase, e.g., update iteration N = 10 with 200 feedback data, the
DSAF Γd(v) is mainly determined by the prior DSAF Γprior

d (v). The subjective uncertainties
of each training data are modified using the feedback data, where we become confident about
the safety of certain training data when we observe a nearby feedback data that has the same
safety property. Since the amount of feedback data is insufficient for providing a reliable
safety estimate, the feedback DSAF Γfeedback

d (v) has a smaller effect on the computation of
the low-dimensional representation of the safe region Sl (see Fig. 4.9b, 4.10b and 4.11b).

When more feedback data are available, e.g., update iteration N = 50, the feedback DSAF
Γfeedback

d (v) is able to provide more accurate safety estimates, hence its influence on the DSAF
Γd(v) also becomes more significant. Due to the high dimensionality of the original system
state x and the limited amount of feedback data, it is difficult to acquire an estimate with
high confidence from the GPR model GP(x). As a result, changes are marginal in the
prior DSAF Γprior

d (v) (see Fig. 4.9c, 4.10c and 4.11c). With even more feedback data, e.g.,
update iteration N = 100, the DSAF Γd(v) is able to provide reliable estimates about the

74

4.4 Experimental Results

(a) (b)

(c) (d)

Figure 4.9.: The prior DSAF Γprior
d (v) in different update iterations N . N = 0 refers to the

initialization prior to the online adaptation. The values of the safety estimates
are represented by different colors. For example, blue and red colors represent
unsafe and safe regions, respectively. While yellow color indicates the grid cells
where no strong safety estimate can be made.

probability P(x ∈ S) for each index vector v. While the prior and feedback DSAFs are
updated accordingly, the DSAF Γd(v) represents the actual low-dimensional representation
of the safe region Sl under the unknown part of the system dynamics d(x) (see Fig. 4.9d, 4.10d
and 4.11d).

Comparison with physically inspired MOR

We compare the proposed approach with the physically inspired MOR in terms of the rep-
resentation power of the identified low-dimensional representation of the safe region Sl, i.e.,
how well the safe and unsafe states are separated. To do this, we compute another DSAF
Γd(v) using physical features. As in Chapter 3, the low-dimensional safety feature, i.e., the
simplified state xs, is selected for the velocities in x and y directions y = [vx, vy]T . To avoid
any dangerous behavior in early learning phase, the low-dimensional representation of the

75

4 Safe Reinforcement Learning Based on Data-driven Model Order Reduction

-20 0 20
-30

-20

-10

0

10

20

30

0

0.2

0.4

0.6

0.8

1

(a) (b)

(c) (d)

Figure 4.10.: The feedback DSAF Γfeedback
d (v) in different update iterations N . The values of

the safety estimates are represented by different colors such as in Fig. 4.9. Grid
cells with less observed feedback data appear to be small dots in the figures.

safe region Sl is initialized conservatively by setting Γd(v) = 0.6 for grid cells that satisfy
−0.5 ≤ vx, vy ≤ 0.5 (see Fig. 4.12).

If the learning task of the quadcopter is relatively simple, e.g. flying forward as given in
Chapter 3, then a satisfying policy can be found without an extensive exploration in the
state space. In such a case, the exploration is limited to a small subspace around the origin
of the original system state space (see Section 4.5.1 for more discussions on this point).
Therefore, to make a fair comparison, we also generate another feedback dataset D′

feedback
that has the same size as the dataset Dfeedback. However, instead of using the complete
original system state space, the states xreal in the set D′

feedback are sampled from a smaller
state space, where the ranges of angular positions and angular velocities are changed to
−1

3π ≤ θr, θp, θy ≤ 1
3π rad and −3 rad/s ≤ ωr, ωp, ωy ≤ 3 rad/s, respectively.

We first compare the performance of both approaches by considering a small state space,
i.e., the feedback dataset D′

feedback is used for the update. The results show that, in this case,
physical features are able to provide reasonable predictions about safety, i.e., the safe and
unsafe regions are separated (see Fig. 4.13a). Meanwhile, the proposed data-driven MOR

76

4.4 Experimental Results

(a) (b)

(c) (d)

Figure 4.11.: The final obtained DSAF Γd(v) in different update iterations N . The values of
the safety estimates are represented by different colors such as in Fig. 4.9.

approach also produces a satisfying result with a marginally better separation between safe
and unsafe states (see Fig. 4.13b).

However, if the learning task becomes more complex, the complete state space has to be
explored to enable an optimal policy to be found. To simulate this scenario, we update the
initial DSAF Γd(v) using the feedback dataset Dfeedback. As seen in Fig. 4.14, when consid-
ering the entire original system state space, it is difficult to make reliable safety estimates
based only on physical features. The boundary between safe and unsafe regions becomes
unclear, and there are numerous grid cells that lead to a safety estimate close to 0.5. In
contrast, the proposed approach is still able to find a representative low-dimensional repre-
sentation of the safe region Sl for the complete state space. As the identified simplified state
xs can describe the safety of original system states x more precisely, a satisfying separation
between safe and unsafe regions is achieved (see Fig. 4.11d) and more useful safety estimates
are obtained. The independence of the size of the state space indicates the possibility of
implementing the proposed approach on different learning tasks, which in turn increases the
applicability of the SRL framework.

77

4 Safe Reinforcement Learning Based on Data-driven Model Order Reduction

Figure 4.12.: For physically inspired MOR, the DSAF Γd(v) is initialized conservatively.

4.4.2. Humanoid Example

To further verify the performance of the proposed approach, an example of a humanoid robot
is presented in this section. We employ the same Atlas humanoid model used in Section 3.5.3
and constrain it so that it is only able to move in the X-Z vertical plane (see Fig. 4.15). The
18-dimensional system state of the humanoid consists of the global positions and velocities
of the body frame with respect to the ground frame, six joint angles and six joint velocities.
The control input comprises the six motor torques applied to the hip, knee and ankle joints
of both legs. We consider the safe region as the set of system states in which the humanoid
can be controlled back to a safe standing posture without falling. The balance controller,
i.e., the corrective controller K(x), is a 1-step balance controller that allows the humanoid
to take one step to balance itself with a predefined maximum step length. See literature on
humanoid control, e.g., [37], for more details about this balance controller. We perform the
simulation in Gazebo simulator with Open Dynamics Engine as the physics engine.

The training dataset Dtrain is generated by randomly sampling 10000 system states within
the state space given by the DRCSIM2. We use the same parameters as in the quadcopter
example for identifying the low-dimensional representation of the safe region of the humanoid.
The initial low-dimensional representation of the safe region, i.e., the prior DSAF Γprior

d (v),
is given in Fig. 4.16a. For simulating the reality gap, we consider the mass of the torso as
30% heavier. A feedback dataset Dfeedback with 2000 randomly generated system states is
then constructed for updating the low-dimensional representation of the safe region using
the proposed online adaptation method. The updated low-dimensional representation of the
safe region, i.e., the DSAF Γd(v), is presented in Fig. 4.16b. Similar results are observed to
those obtained with the example of the quadcopter, which verifies both the performance and
the applicability of the proposed approach to different learning tasks.

2https://bitbucket.org/osrf/drcsim/

78

https://bitbucket.org/osrf/drcsim/

4.5 Discussion

(a)

(b)

Figure 4.13.: The DSAFs Γd(v) obtained by using physically inspired MOR and the proposed
approach, respectively. The feedback dataset D′

feedback is used for the update.
The values of the safety estimates are represented by different colors such as in
Fig. 4.9.

4.5. Discussion

In this work, we propose a general data-driven approach to efficiently identify a low-dimensional
representation of the safe region for the SRL framework. Two important aspects of the pro-

79

4 Safe Reinforcement Learning Based on Data-driven Model Order Reduction

Figure 4.14.: The DSAF Γd(v) obtained by using physically inspired MOR and the feedback
dataset Dfeedback. The values of the safety estimates are represented by different
colors such as in Fig. 4.9.

posed approach are discussed in this section.

4.5.1. Relevance to Different SRL Tasks

In Chapter 3, the SRL framework utilizes a low-dimensional representation of the safe region
Sl that is obtained using physically inspired MOR. Such a low-dimensional representation is
useful when the learning task is relatively simple, e.g., teaching a quadcopter to fly forwards
as given in Section 3.5.2, such that a satisfying control policy can be found without requiring
an extensive exploration in the original state space. Since, in this case, the system state is
likely to stay in a sub-state space near the origin, physical features are able to provide
reliable safety estimates. However, when the learning task becomes more difficult, e.g.,
the quadcopter needs to track a complex 3D trajectory, the learning algorithm in general
has to explore a large portion of the state space to find an optimal policy. Under these
circumstances, at least a rough safety assessment of the complete state space is needed.
Unfortunately, being restricted by the representation power, the physically inspired low-
dimensional representation of the safe region Sl fails to provide useful safety estimates when
considering the entire state space. Hence, the performance of the SRL framework is affected.

Therefore, to overcome this problem, we propose in this chapter a data-driven approach
for identifying a low-dimensional representation of the safe region Sl that is able to make
more precise predictions about safety. Meaningful safety estimates are obtained for the entire
original state space. This not only gives the learning algorithm more flexibility in choosing
its actions to find the optimal policy, but also indicates the applicability of the proposed
approach to more complex learning tasks.

80

4.5 Discussion

Figure 4.15.: Atlas humanoid model in the Gazebo simulation environment.

4.5.2. Strengths and Limitations

The presented approach has three particular strengths. First, it finds a low-dimensional
representation of the safe region Sl that allows safe and unsafe states to be clearly separated
for large portions of a high-dimensional state space; see also Section 4.4.1. Second, the
effort required for identifying the low-dimensional representation of the safe region Sl is low.
While, for instance, physically inspired MOR usually needs a comprehensive analysis of the
system dynamics, the proposed approach relies solely on training data that can be collected
efficiently even for complex dynamical systems through parallel computing and a suitable
simulation environment. Third, it fully utilizes the information contained in the feedback
data using two DSAFs. Hence, the update can be performed with few feedback data while
providing a satisfying result.

However, the performance of the identified low-dimensional representation of the safe re-
gion Sl is affected by the quality of the nominal system, i.e. the magnitude of the discrepancy
between the nominal and the real systems. While the state mapping xs = Ψ(x) is deter-
mined using only training data, the online adaptation method attempts to find an accurate
DSAF Γd(v) based on the learned low-dimensional safety feature. If the reality gap is too
large, then it is possible that the learned safety feature is not sufficiently representative and
we might therefore observe more grid cells with final safety estimates that are close to 0.5,

81

4 Safe Reinforcement Learning Based on Data-driven Model Order Reduction

(a)

(b)

Figure 4.16.: (a) The prior DSAF Γprior
d (v) used as the initial low-dimensional representation

of the safe region. The values of the safety estimates are represented by different
colors such as in Fig. 4.9. (b) The updated DSAF Γd(v) for the low-dimensional
representation of the safe region.

i.e., Γd(v) ≈ 0.5, which are less useful for guiding the learning process. In general, if the
nominal system is assumed to be unreliable, a high probability threshold pt should be used
for constructing the low-dimensional representation of the safe region Sl (see (4.16)), such
that the learning process becomes more conservative for keeping the system safe. However,

82

4.6 Summary

we usually consider the unknown system dynamics d(x) as bounded within a reasonable
range, since it makes less sense to use a dissimilar nominal system to predict the behavior
of the real system. To further generalize the proposed approach, more studies are required
to quantify the influence of the simulation-to-reality gap on the reliability of the obtained
safety estimates.

4.6. Summary
To apply SRL to complex dynamical systems, we propose in this chapter a novel data-
driven approach to identify a low-dimensional representation of the safe region for realizing
a general SRL framework. Using a nominal system model that predicts the behavior of
the real system, we first collect training data about the safety of different system states.
Then, by computing the probabilistic similarities between each training data using a data-
driven method called t-SNE, an initial realization of simplified states that best represents
the training data is obtained. Such a realization determines the state mapping that maps
each original system state to a corresponding simplified state. Afterwards, we generate an
initial low-dimensional representation of the safe region according to the training data and
the identified state mapping. To compensate for the mismatch between the nominal and the
real systems, an efficient online adaptation method based on belief function theory is also
proposed to update the low-dimensional representation of the safe region by accounting for
the real system behavior. Each update iteration consists of three steps: first, the prior belief
about the safe region obtained from the training data is modified by using the feedback
data; second, the observed system behaviour is used to construct another belief about the
safe region; third, the two beliefs are fused together to formulate a more accurate and
reliable low-dimensional representation of the safe region. Two examples, one quadcopter
and one humanoid, are presented to demonstrate the performance of the proposed approach.
Experimental results show that, compared to the physically inspired MOR, a more reliable
and representative low-dimensional representation of the safe region is found using the data-
driven approach. However, our approach has one major limitation that its performance is
affected by the magnitude of discrepancy between the nominal and real systems. If the
reality gap is assumed to be large, then it is likely that a less meaningful low-dimensional
representation of the safe region will be obtained.

For future work, we intend to combine the data-driven method with model-based MOR
techniques, e.g., projection-based MOR, to find an approach that is more robust to the
simulation-to-reality gap when identifying the low-dimensional representation of the safe
region. This is inspired by recent studies where data-driven approaches are used to solve
complicated equations [73]. While the major problem of employing projection-based MOR
on complex dynamical systems is the computational difficulty in solving the relevant partial
differential equations, data-driven approaches may provide a solution to this challenging
problem. If a more clear mathematical connection between safety of the original and the
simplified systems can be derived, then it is also possible to realize a more reliable safety
guarantee for complex dynamical systems. Another possibility of future work is that, finding
a way to quantify the similarity between different dynamical systems, such that the learned
safety feature can be generalized from one system to other similar systems. If this can be
achieved, then the training data can also be collected from multiple similar systems, which
will highly increase the learning efficiency. However, how the similarity between dynamical

83

4 Safe Reinforcement Learning Based on Data-driven Model Order Reduction

systems will be measured is still an open research problem.

84

Data Generation for Data-driven
Safe Reinforcement Learning 5.

While the data-driven MOR enables the application of the SRL framework to a wider range
of dynamical systems and learning scenarios, the performance is affected by the quality of
the training data. This is due to the fact that, the low-dimensional safety feature and the
state mapping are determined only by using the training data. If the identified safety feature
is less representative, i.e., the safe and unsafe system states cannot be well separated in the
simplified state space, then it is difficult to achieve meaningful safety estimates even if the
proposed online adaptation method tries to modify the estimated safe region by accounting
for the real system behavior.

Therefore, to ensure a satisfying performance of the data-driven SRL framework, especially
in the early learning phase when only limited feedback data are available, we propose in this
chapter a data generation method for producing representative training data. To do this, we
first consider the estimation of safety of a given original system state as a binary classification
problem. Then, we analyze how the classification error is affected by the training data as
well as its relationship to the learning performance. Based on the results of this analysis,
we design accordingly a data generation method that combines a uniform distribution and a
multivariate normal distribution. While the uniform distribution preserves conservativeness
during the learning, the multivariate normal distribution encourages explorations for a better
policy. Hence, by adjusting the weights of these two distributions in the data generation
process, a balance between finding an optimal control policy and keeping the system safe
is achieved. The results show that, by using the proposed approach, we obtain a better
initialization of the identified low-dimensional representation of the safe region, which leads
to a better performance of the SRL framework.

The remainder of this chapter is organized as follows: we first explain how the exami-
nation of safety of original system states is considered as a binary classification problem in
Section 5.1. Then, we discuss the relationship between learning performance and the classi-
fication error in Section 5.2. Thereafter, a data generation method, which is able to produce
training data that are most useful to the SRL framework, is proposed in Section 5.3. A three-
link inverted pendulum example is presented in Section 5.4 to demonstrate the performance
of the proposed approach. Finally, a discussion and a summary are given in Section 5.5 and
Section 5.6, respectively.

5.1. SRL as Binary Classification
The essential part of realizing a SRL approach is the determination of safety of a given
original system state, i.e., whether the corrective controller is able to drive the system back
to a safe state or not. In this section, we explain the relation between the examination of

85

5 Data Generation for Data-driven Safe Reinforcement Learning

safety and the binary classification.
We consider the real system as

ẋ = f(x) + g(x)u + d(x) (5.1)

which is the same as given in (4.5). The safe region of the real system is denoted as S. Then
according to the SRL framework that is based on the supervisory control strategy, a labeling
function l(x) : X → Z = {1, 0} categorizes the system states into safe and unsafe classes as

l(x) = z =
1, if x ∈ S\{∂S}

0, else
(5.2)

where safe and unsafe states have their safety labels as z = 1 and z = 0, respectively.
Such a classification can be considered as a binary classification problem [122]. However,
due to the computational difficulty under complex dynamicas, as well as the unknown and
unmodelled part of system dynamics d(x), it is infeasible to compute the safe region S and
the ground-truth labeling function l(x).

To solve this problem, a simplified system is introduced to compute a low-dimensional
representation of the safe region Sl. By mapping each system state x to a low-dimensional
simplified state xs with a state mapping xs = Ψ(x), the safety of system state x is estimated
through safety of the corresponding simplified state xs in a probabilistic form as

P(l(x) = 1) = Γ(xs)|xs=Ψ(x) ∼ [0, 1] (5.3)

where Γ(xs) is a SAF defined over the simplified state space Xs (see also Section 4.1.1). The
low-dimensional representation of the safe region Sl is thus given by employing a probability
threshold pt as

Sl = {xs ∈ Xs | Γ(xs) > pt} (5.4)
which approximates the high-dimensional safe region S.

A data-driven MOR approach can be used to find a reliable low-dimensional representation
of the safe region Sl. For this, we assume that a nominal system model is available as

ẋ = f(x) + g(x)u (5.5)

By simulating the nominal system with a predefined corrective controller K(x), we obtain a
set of training data Dtrain that is defined as follows.
Definition 10. The training dataset of kt training data is given as

Dtrain = {D1
train, D2

train, . . . , Dkt
train}. (5.6)

It contains the simulation results that state whether the safety recovery controlled by the
corrective controller K(x) is successful or not for different system states x. The i-th training
data consists of three elements

Di
train = {xi, s(xi), Φ(t; xi)}. (5.7)

xi is the initial system state in which the corrective controller K(x) is activated. s(xi) is the
safety label that represents the result of safety recovery for the state xi. We denote s(xi) = 1
if the system state xi is safe under the corrective controller K(x), and s(xi) = 0 if it is not.
Φ(t; xi) is the corresponding system trajectory of the safety recovery that starts at xi when
time t = 0.

86

5.2 Learning Performance and Classification Error

Provided with the training dataset Dtrain, data-driven approaches, e.g., t-SNE as given in
Chapter 4, can be used to find a state mapping xs = Ψ(x) and a SAF Γ(xs) that best rep-
resent the training data. This results in an initial low-dimensional representation of the safe
region Sl. The data-driven SRL framework then utilizes the low-dimensional representation
of the safe region Sl for estimating the safety of different real system states, which leads to
the following hypothesis h(x) : X → Z

h(x) = z =
1, if Ψ(x) = xs ∈ Sl

0, if Ψ(x) = xs /∈ Sl

(5.8)

which works as an approximation of the ground-truth labeling function l(x). The reliability
of the hypothesis h(x) depends, on the one hand, on the magnitude of discrepancy between
the nominal and the real systems. On the other hand, the quality of training data also
affects the performance of the hypothesis h(x). In next section, we discuss how to acquire a
well-performed training dataset Dtrain for the data-driven SRL framework by analyzing the
influence of training data on the classification error.

5.2. Learning Performance and Classification Error
In this section, we first analyze factors that affect the classification error in the binary
classification problem in SRL. Then, as the goal of SRL is to find a satisfying controller
for completing the given control task, we also discuss the relationship between learning
performance and the classification error. Details of the analysis are given as follows.

5.2.1. Training Data and Classification Error
By considering the estimation of safety of real system states as a binary classification prob-
lem, we utilize the classification error as the first criterion when generating the training
dataset Dtrain.

We assume that during the learning, all system states of the real system, in which the
corrective controller K(x) is activated, are drawn from an unknown distribution N . Mean-
while, the distribution of the nominal system states contained in the training dataset Dtrain is
denoted as Nn. Then for the learned hypothesis h(x), its classification error on the real sys-
tem ϵ(h, l) (referred to as the generalization error [123]) and on the nominal system ϵn(h, ln)
(referred to as the source error [123]) are

ϵ(h, l) = Ex∼N [I(h(x) ̸= l(x))] (5.9)

ϵn(h, ln) = Ex∼Nn [I(h(x) ̸= ln(x))] (5.10)

where ln(x) is the ground-truth labeling function that corresponds to the actual safe region of
the nominal system. The generalization error and the source error represent the probability
that according to the distribution N or Nn, the hypothesis h(x) disagrees with the ground-
truth labeling function l(x) given by the real system, or the ground-truth labeling function
ln(x) given by the nominal system, respectively. By extending Theorem 1 given in [123]
based on the H∆H-divergence, the following theorem that bounds the generalization error
holds for the hypothesis h(x).

87

5 Data Generation for Data-driven Safe Reinforcement Learning

Theorem 1. The generalization error ϵ(h, l) of hypothesis h(x) satisfies

ϵ(h, l) ≤ ϵn(h, ln) + 1
2dH∆H(N , Nn)

+ min{Ex∼Nn [I(l(x) ̸= ln(x))] , Ex∼N [I(l(x) ̸= ln(x))]} (5.11)
where dH∆H is the H∆H-distance.
Proof. Let ϵn(h, l) = Ex∼Nn [I(h(x) ̸= l(x))], we have

ϵ(h, l) = ϵ(h, l) + ϵn(h, ln) − ϵn(h, ln) + ϵn(h, l) − ϵn(h, l)
≤ ϵn(h, ln) + |ϵn(h, l) − ϵn(h, ln)| + |ϵ(h, l) − ϵn(h, l)|
≤ ϵn(h, ln) + Ex∼Nn [I(l(x) ̸= ln(x))] + |ϵ(h, l) − ϵn(h, l)| (5.12)

According to Lemma 3 in [123], the following holds for any two hypothesis h1 and h2

|ϵ(h1, h2) − ϵn(h1, h2)| ≤ 1
2dH∆H(N , Nn) (5.13)

By considering the labeling function l(x) as a hypothesis, (5.12) becomes

ϵ(h, l) ≤ ϵn(h, ln) + Ex∼Nn [I(l(x) ̸= ln(x))] + 1
2dH∆H(N , Nn) (5.14)

If in the first line we use ϵ(h, ln) = Ex∼N [I(h(x) ̸= ln(x))] instead of ϵn(h, l), we have

ϵ(h, l) ≤ ϵn(h, ln) + Ex∼N [I(l(x) ̸= ln(x))] + 1
2dH∆H(N , Nn) (5.15)

Combining (5.14) and (5.15) hence gives the Theorem 1.

The upper bound of the generalization error given in (5.11) contains three terms: the
first term is the source error; the second term represents the divergence in distributions; the
third term is the difference in labeling functions and cannot be changed, as it is affected
only by the discrepancy between the nominal and the real systems. Hence for achieving a
low generalization error, Theorem 1 suggests to move closer the two distributions N and Nn

while keeping the source error small. Based on this, it is motivated to generate the training
dataset Dtrain by using an accurate estimate of the unknown distribution N .

In Chapter 4, the training dataset Dtrain is generated by sampling system states with a
uniform distribution Nud among the entire state space. However when controlling a dynam-
ical system, the probability that a system state x will be visited is affected by the system
dynamics (see Section 5.4.2 and in particular Fig. 5.2a for an example). Hence, in general
the UD Nud is expected not to be close to the real distribution N .

Although the distribution N is unknown prior to the learning process on the real system,
it can be approximated by simulating the nominal system. To do this, we first set the initial
state of the nominal system as the origin. Then, we control the nominal system with a
random policy and record all system states observed in the system trajectory. Repeating
this multiple times results in a dataset of system states that reflects the probability that
different states will be visited during control. A multivariate normal distribution Nmnd(µ, Σ)
is then fitted to the collected dataset of system states and is considered as an approximation
of the real distribution N . Apparently, the accuracy of such an approximation is affected
by the magnitude of discrepancy between the nominal and the real systems. Nevertheless,
the training dataset Dtrain drawn from the multivariate normal distribution Nmnd becomes
closer to the distribution N .

88

5.3 Data Generation Method

5.2.2. Classification Error and SRL
The motivation of using the multivariate normal distribution Nmnd for generating training
data points is from the prospective of reducing the generalization error. However, if the data
generation is decided only based on the generalization error, the performance of the SRL
framework might be affected due to the following reason.

The generalization error consists of two parts

ϵ(h, l) = Ex∼N [I(h(x) = 1, l(x) = 0)] + Ex∼N [I(h(x) = 0, l(x) = 1)] (5.16)

While the first error type (false positive) will cause unsafe behaviours of the dynamical sys-
tem, the second error type (false negative) only means conservativeness in the SRL process.
The purpose of SRL is to find a satisfying reinforcement learning-based policy π(x) while
keeping a high probability that the system is safe. Hence, conservativeness is acceptable as
long as a well-performed policy can be learned within the subregion of state space restricted
by the supervisor. In that regard, considering only the generalization error in the training
data generation is likely to deteriorate the performance of the SRL framework, as reducing
the conservativeness usually also means a higher chance of encountering an unsafe system
behavior. This is also the reason why the probability threshold pt of the SRL framework
is usually chosen to be a high value, e.g., 0.8, instead of 0.5, which in the ideal case is the
optimal value that minimizes the classification error according to the Bayes classifier [124].

Therefore, for taking the performance of the SRL framework into consideration, we in
general would like to keep a certain degree of conservativeness during the learning process.
This can be achieved by reducing our confidence in considering a system state x as safe unless
enough evidence is provided. In that sense, using the uniform distribution Nud for generating
the training dataset Dtrain is helpful. The reason is that, compared to the multivariate normal
distribution Nmnd that has a majority of data points being close to the origin, the training
data points are now placed among the entire state space (see Section 5.4.2 for an example).
Thus the proportion of safe data points is reduced. Note that, the underlying principle
of using data-driven method for making safety predictions is to use known data points for
estimating the safety of unseen data points. Therefore, the hypothesis h(x) learned from the
uniform distribution Nud tends to make an unsafe prediction, since it is less likely to find a
nearby safe training data point. As a result, although the uniform distribution Nud gives a
higher generalization error, it preserves the conservativeness in the SRL framework, which
then ensures a higher probability that the system is safe during the learning process. For
simultaneously considering the classification error and the learning performance, we propose
in next section a data generation method that combines the uniform distribution Nud and
the multivariate normal distribution Nmnd.

5.3. Data Generation Method
While using the multivariate normal distribution Nmnd for generating the training dataset
Dtrain reduces the conservativeness of the SRL framework, it also increases the risk of en-
countering an unsafe behavior. In contrast, the uniform distribution Nud keeps the conserva-
tiveness and limits the learning process. However, if the reinforcement learning algorithm is
overly restricted, it might not be able to find a satisfying policy for accomplishing the given

89

5 Data Generation for Data-driven Safe Reinforcement Learning

Figure 5.1.: Three-link inverted pendulum with a target circle given in the Cartesian space.
The connection point between the pendulum and the ground is the origin of the
Cartesian coordinate system. When the pendulum is at the zero configuration,
the end-effector point locates at (0, 3). The target circle has its centre at (0, 2.7)
and its radius as r = 0.3.

control task. Hence for achieving a good balance between the learning performance and the
probability of being safe, we propose to divide the training dataset Dtrain into two parts

Dtrain = Dud + Dmnd (5.17)

with |Dud| = λkt, |Dmnd| = (1 − λ)kt and 0 ≤ λ ≤ 1, where kt is the size of the complete
training dataset Dtrain. The sub-datasets Dud and Dmnd are generated by using the uniform
distribution Nud and the multivariate normal distribution Nmnd, respectively.

The coefficient λ determines the size of sub-datasets as well as the tendency of the SRL
framework to perform exploration or to keep the safety. If the unknown dynamics d(x)
is assumed to be small, or failure of the corrective controller K(x) is considered as less
critical, it is suggested to use a small value of λ for ensuring a satisfying performance of the
reinforcement learning algorithm, where training data points are mostly sampled by using
known knowledge about the system trajectories. On the contrary, if it is more important to
avoid unsafe behaviours, then a large value of λ should be used to keep the conservativeness
in learning, i.e., most training data points are drawn from the uniform distribution Nud.

It is also worth mentioning that, while the probability threshold pt stands for the mini-
mal performance expectation of the SRL framework, the proposed data generation method
provides more flexibility in balancing between learning and keeping the safety. It can work
together with a high value of the probability threshold pt for having a safer SRL framework,
especially when the discrepancy between the nominal and the real systems is assumed to be
large.

90

5.4 Experimental Results

-2 -1 0 1 2
-10

-5

0

5

10
Safe

Unsafe

(a)

-2 -1 0 1 2
-10

-5

0

5

10

(b)

-2 -1 0 1 2
-10

-5

0

5

10

(c)

Figure 5.2.: Distribution of joint angle and angular velocity of the first link in the sampled
system states for λ = 0, λ = 0.5 and λ = 1, respectively.

5.4. Experimental Results
In this section, we examine the influence of the proposed data generation method on the
performance of the SRL framework with a three-link inverted pendulum example.

5.4.1. Experimental Setup
We consider a three-link inverted pendulum given as in Fig. 5.1. The system state is 6-
dimensional that consists of three joint angles and three joint angular velocities as x =
[θ1, θ2, θ3, θ̇1, θ̇2, θ̇3]T . The origin of the system state space is the upright equilibrium point.
The inputs u = [u1, u2, u3]T are the torques applied on the three joints, where the maximal
and minimal allowed torques are umax = 100 N m and umin = −100 N m for all three joints.
The lengths of the links are set to l1 = l2 = l3 = 1 m. We assume that the masses are
concentrated on the CoMs that are located at the middle point of each link. For the nominal
system, we consider the masses as m1 = m2 = m3 = 1 kg. The discrepancy between
the nominal and the real systems is assumed to be caused by the mismatch in the masses

91

5 Data Generation for Data-driven Safe Reinforcement Learning

-20 -10 0 10 20

-20

-10

0

10

20

(a)

-20 -10 0 10 20

-20

-10

0

10

20

(b)

-20 -10 0 10 20

-20

-10

0

10

20

(c)

Figure 5.3.: The realization of simplified states computed by using t-SNE for λ = 0, λ = 0.5
and λ = 1, respectively.

of the first and the second links as m1 = m2 = ∆ · 1 kg. The sample ranges of each
state variable used in the uniform distribution Nud are chosen as: −π

2 rad < θ1 < π
2 rad,

−πrad ≤ θ2, θ3 ≤ πrad, −10rad/sec ≤ θ̇1 ≤ 10rad/sec, −20rad/sec ≤ θ̇2, θ̇3 ≤ 20rad/sec.
The learning task is to find a control policy π(x) that makes the end-effector point of the

pendulum track a trajectory given as a circle in the Cartesian space with an angular velocity
with respect to the centre of the circle as π rad/sec (see Fig. 5.1). We consider the connection
point between the pendulum and the ground as the origin (0, 0) of the Cartesian coordinate
system. In each learning trial, the pendulum starts with the zero configuration x = 0, where
the end-effector point is located at (0, 3). The target circle has its centre located at (0, 2.7)
and its radius as r = 0.3. During the learning process, we attempt to keep the system safe
by preventing the first link from hitting the ground.

We use the PPO algorithm [112] as the learning-based controller. The following reward
function is used

R = Rc − 10 · ||pe − pd|| (5.18)

where Rc = 2 is a constant reward for being safe, ||pe −pd|| is the Euclidean distance between

92

5.4 Experimental Results

(a) (b)

(c)

Figure 5.4.: The learned low-dimensional representation of the safe region Sl. The output of
the SAF Γ(xs) is represented by different colors.

the current end-effector position pe and the desired position pd given by the trajectory of the
target circle. Following parameters are used for the PPO: the number of steps per update is
2048, the value function loss coefficient is 1, the gradient norm clipping coefficient is 10, the
learning rate is 1e−4, the number of training epochs per update is 10, the number of training
minibatches per update is 128, the discounting factor is 0.99, the advantage estimation
discounting factor is 0.95, the policy entropy coefficient is 0, the number of hidden layers of
the neural network is 2 with 128 neurons in each layer.

The corrective controller K(x) is a LQG controller that is derived from the linearized
nominal system model. When activated, the corrective controller K(x) tries to control the
system back to the upright configuration. For the SRL framework, the probability threshold
is set to pt = 0.8. Each learning condition is trained with three different seeds, and the
averaged results are presented in the following subsections.

93

5 Data Generation for Data-driven Safe Reinforcement Learning

(a) (b)

(c)

Figure 5.5.: Learning performance of the SRL framework with different low-dimensional rep-
resentations of the safe region obtained with λ = 0, λ = 0.5, λ = 1 as well as
the case that no supervisor is implemented (none), for ∆ = 1.1, ∆ = 1.5 and
∆ = 4, respectively.

5.4.2. Low-dimensional Representation of the Safe Region

We first examine the influence of the parameter λ on the learned low-dimensioanl represen-
tation of the safe region Sl. We consider the training dataset Dtrain with size kt = 1000
and generate it with three different values of λ: λ = 0 (using only the multivariate normal
distribution Nmnd), λ = 0.5, and λ = 1 (using only the uniform distribution Nud). The
corresponding results are presented in Fig. 5.2-5.4.

Fig. 5.2 shows the distributions of sampled system states contained in the generated train-
ing dataset Dtrain by displaying the joint angle and angular velocity of the first link. As the
learning starts at the origin, it is more likely to observe a system state in the neighbourhood
of the origin. Hence, the system states generated from the multivariate normal distribution
Nmnd are more dense in the subregions near the origin (see Fig. 5.2a). As a result, the pro-
portion of safe data points increases, since the closer to the origin, the higher the probability
that a system state can be controlled back to the upright position. Moreover, limited by the

94

5.4 Experimental Results

1637

 856

 30

8465 8537

 9474

10196

 =
 0

=0.5 =1
none

0

2000

4000

6000

8000

10000

12000

ti
m

e
s

Failures Activated times

(a)

2205

1115

 47

7768

8481
8946

9552

 =
 0

=0.5 =1
none

0

2000

4000

6000

8000

10000

12000

ti
m

e
s

(b)

 4397

 2381

 452

10028 9804 9987 10258

 =
 0

=0.5 =1
none

0

2000

4000

6000

8000

10000

12000

ti
m

e
s

(c)

Figure 5.6.: The total number of times that the corrective controller K(x) is activated and the
corresponding number of failures for ∆ = 1.1, ∆ = 1.5 and ∆ = 4, respectively.

natural dynamics, there exists no feasible control sequence to control the system to a state
that simultaneously has a large positive angle and a large negative angular velocity (right-
bottom of Fig. 5.2a), or a large negative angle and a large positive angular velocity (left-top
of Fig. 5.2a) of the first link. Therefore, no system states are sampled in those subregions.
For the uniform distribution Nud, the sampled system states are placed among the entire
state space, and as a consequence, a smaller proportion of safe data points is obtained (see
Fig. 5.2c).

Fig. 5.3 gives the realizations of simplified states {x1
s, . . . , xkt

s } derived by using t-SNE.
The safe and unsafe training data points are clearly separated in the simplified state space
Xs. The corresponding learned low-dimensional representation of the safe region Sl are
presented in Fig. 5.4. With less observed safe training data points, the initial estimate of the
low-dimensional representation of the safe region Sl becomes more conservative and tends to
make an unsafe prediction. Note that, the axes xs,1 and xs,2 obtained with different training
datasets have different meanings and cannot be directly compared, as they are the outputs
of different t-SNE computations.

95

5 Data Generation for Data-driven Safe Reinforcement Learning

5.4.3. Performance of the SRL Framework

We then examine the influence of the low-dimensional representation of the safe region Sl

learned from different training datasets Dtrain on the performance of the SRL framework.
We compare the performance with three different levels of discrepancy between the nominal
and the real systems as ∆ = 1.1, ∆ = 1.5 and ∆ = 4. Note that, since in this chapter
we focus only on the training data generation, we use the initially learned hypothesis h(x)
throughout the entire learning process, such that its influence is better illustrated. As a
baseline for comparisons, we also investigate the learning performance of implementing the
PPO directly without the supervisor. The corresponding results are shown in Fig. 5.5 and
Fig. 5.6.

As illustrated in Fig. 5.5, for all three levels of discrepancy, the training dataset that
uses only the uniform distribution Nud, i.e., λ = 1, results in a final policy with a lower
reward, since the learning process is overly restricted. For training dataset that uses only
the multivariate normal distribution Nmnd (λ = 0) or that combines the uniform distribution
Nud and the multivariate normal distribution Nmnd (λ = 0.5), the SRL framework is able to
find a satisfying final policy. It is also worth noting that, as each learning trial is terminated
when an unsafe behaviour is predicted to occur, an early-stopping functionality is introduced
to the learning process by using the SRL framework, which then helps with searching for an
optimal policy. This effect becomes more significant when the system is hard to control due
to heavier masses (∆ = 4), where compared to the free learning case, a better final policy is
found when using the SRL framework.

Fig. 5.6 shows the total number of times that the corrective controller K(x) is activated
during the entire learning process as well as the corresponding number of failures among
these safety recoveries. As a comparison, the total number of times that the safety con-
straint is violated during the free learning case is also given. When the discrepancy is small,
i.e., ∆ = 1.1, the multivariate normal distribution Nmnd results in a success rate of the
corrective controller K(x) (80.8%) that is close to the probability threshold pt = 0.8. While
increasing the value of λ makes the learning process more conservative, it also ensures a
higher probability that the system is safe, e.g. 91.0% for λ = 0.5 and 99.7% for λ = 1.
Similar behaviours can also be observed for ∆ = 1.5 and ∆ = 4, though the success rate of
the corrective controller K(x) decreases according to the level of the discrepancy. In general,
the low-dimensional representation of the safe region Sl learned from the uniform distribu-
tion Nud is more robust to the mismatches due to its higher conservativeness. However, if
the discrepancy is assumed to be large, then an online adaptation method such as the one
given in Chapter 4, needs to be introduced for ensuring a satisfying performance of the SRL
framework.

5.5. Discussion

In this chapter, we introduce a data generation method for producing representative training
data for the data-driven SRL framework. Two important aspects of the proposed approach
are discussed in this section.

96

5.5 Discussion

5.5.1. Connection to Transfer Learning

The proposed data generation method utilizes a multivariate normal distribution Nmnd to
estimate the unknown distribution of real system states N during the learning process.
This is achieved by first sampling states from the nominal system with a random control
policy, and then fitting the multivariate normal distribution Nmnd into the corresponding
collected dataset. Such a process is in a way similar to the idea of transfer learning, where a
control policy is first trained in simulation and then transferred to the real system. Hence,
it is possible to connect the data generation method to the transfer learning method. For
example, a reinforcement learning method can be first applied on the nominal system to
find a satisfying control policy. And in the meantime, instead of using a random policy, the
visited states during this pre-training process can be recorded for learning a more accurate
estimate of the distribution of real system states N . Later, when transfer learning attempts
to transfer the learned policy from the nominal system to the real system, such a better
estimate of distribution N can be used to construct a more representative training dataset
for identifying the low-dimensional representation of the safe region. The SRL framework
therefore focuses on ensuring safety of the real system when the initial policy is further
improved during the learning process on the real system. Such a combination, on the one
hand, increases the learning efficiency as the initial policy provided by transfer learning
usually has a minimum expected performance and hence outperforms than a random policy.
On the other hand, as the actual learning process is better imitated by the pre-training
process, more useful training data points can be generated by using the proposed data
generation method, which then leads to a better low-dimensional representation of the safe
region for the SRL framework.

5.5.2. Limitations

One major limitation of the proposed data generation method is that, there is no clear
guidance on how to select the parameter λ that balances the two sub-datasets. Currently, it
is chosen by using experience and a rough estimation about the behaviour of the real system.
Due to the uncertainty in such a selection, the performance of the SRL framework might
not be the same as expected. Hence, a method that is able to find an optimal parameter
λ according to the characteristics of the dynamical system and the learning task is desired.
However, how to design such a method is a challenging problem.

Moreover, the performance of the proposed approach depends on the magnitude of dis-
crepancy between the nominal and the real systems. Such a problem often happens when an
approximated system model is used to predict the behaviour of the real system. Apparently,
if the discrepancy is too large, then the derived low-dimensional representation of the safe
region is less meaningful no matter how the training data are generated. Therefore, it is re-
quired that the simulation-to-reality gap should be bounded in a reasonable range, otherwise
the introduction of the nominal system becomes less useful. Besides, if we are not confident
about the reliability of the nominal system model, then a high value of parameter λ should
be used in the data generation process, i.e., the training data are mostly drawn from the
uniform distribution, such that high conservativeness is preserved in the SRL framework for
keeping the system safe during the learning process.

97

5 Data Generation for Data-driven Safe Reinforcement Learning

5.6. Summary
In this chapter, we propose a data generation method that is able to provide representa-
tive training data for increasing the performance of the data-driven SRL framework. By
considering the estimation of safety of real system states as a binary classification problem,
we first analyze the influence of training data on the classification error. Then, we discuss
the relationship between the classification error and the learning performance. Based on the
analysis, a data generation method that divides the training dataset into two parts is pre-
sented accordingly. It utilizes a multivariate normal distribution and a uniform distribution
to generate two sub-datasets, respectively. By adjusting the sizes of these two sub-datasets,
a balance between finding a satisfying control policy and keeping the system safe is achieved.
A three-link inverted pendulum example is provided to demonstrate the effectiveness of the
proposed approach. The proposed data generation method not only improves the perfor-
mance of the SRL framework, but also gives an insight about how different training data
will affect the reliability of the safety estimates made via data-driven methods.

One possibility of the future work is to find a metric for quantifying the magnitude of
discrepancy between the nominal and the real systems, such that a better estimate about
the reliability of the nominal system model can be made. Then, the data generation process
can be guided accordingly based on this estimate of reliability, such that the user is able to
have more flexibility in choosing the tendency of the SRL framework.

98

Conclusion and Outlook 6.

In this dissertation, we provide general SRL methods for complex dynamical systems by
using MOR techniques. A conclusion regarding the proposed approaches is presented in this
chapter, followed by an outlook about potential future research directions in this field.

6.1. Conclusion
While state-of-the-art SRL approaches given in recent studies demonstrate attractive results
in low-dimensional dynamical systems, the computational limitations of these approaches
hinder their applications to complex dynamical systems. To solve the challenging prob-
lem of employing SRL on dynamical systems with high-dimensional state space and highly
nonlinear dynamics, we propose in Chapter 3 a general SRL framework that is based on
physically inspired MOR. Provided with a predefined corrective controller, the SRL frame-
work utilizes a supervisory control strategy that switches the actual applied action between
the reinforcement learning-based controller and the corrective controller. The central idea is
that, by finding a control invariant safe region, the learning-based controller has the flexibil-
ity in choosing its action if the system is within the safe region. Once the system approaches
the boundary of the safe region, the corrective controller is activated to drive the system back
to a safe state. However, computing an accurate safe region for complex dynamical systems
is difficult. Therefore, by examining important physical features of the original system, we
identify a simplified system model for predicting the safety of different original system states.
Though a state mapping that maps each high-dimensional system state to a corresponding
low-dimensional safety feature, a probabilistic estimate of safety is calculated accordingly,
which is used by the supervisor to determine whether the current system state is safe or not.
While the simplified system model enables the application of the SRL framework to complex
dynamical systems, it is unavoidable that its prediction about the behaviour of the original
system might be inaccurate. For having more reliable safety estimates, we hence propose
an online adaptation method for modifying our belief about the safe region of the original
system. By using a method called belief function theory, we generate two belief maps, one
prior and one feedback belief maps, to consider the uncertainty contained in the simplified
system model and the feedback data, i.e., the actual execution results of the corrective con-
troller, respectively. Then, these two belief maps are fused via an operation referred to as
weighted belief fusion to construct a more accurate estimate about the safe region. Such an
estimate leads to a well-performed supervisor for the SRL framework, and realizes a satis-
fying balance between finding an optimal control policy and maintaining the safety of the
dynamical system.

One major limitation of physically inspired MOR is that it requires a thorough under-

99

6 Conclusion and Outlook

standing about the system dynamics so that representative physical features can be selected.
However, in many practical control tasks, such an understanding is often not available or
difficult to obtain. To overcome this problem, we propose a novel data-driven approach to
identify a low-dimensional representation of the safe region for the SRL framework in Chap-
ter 4. Inspired by transfer learning, we assume that the known information about the system
dynamics provides us a nominal system model, which is used to generate training data for
approximating the behaviour of the real system. By computing the probabilistic similar-
ity between each pair of training data via a method called t-SNE, a realization of simplified
states that best represents the training data is obtained. Such a realization, on the one hand,
determines the state mapping, and on the other hand, leads to an initial estimate of the low-
dimensional representation of the safe region. Due to the unknown and unmodelled part of
system dynamics, there exists an inevitable mismatch between the nominal and the real sys-
tems. To account for this reality gap, a modified online adaptation method is also proposed.
Each update iteration of the low-dimensional representation of the safe region consists of
three steps. First, by learning a GPR model from the feedback data, the reliability of each
training data is computed and an updated prior DSAF is derived. Second, a feedback DSAF
is constructed from the feedback data for fully utilizing the valuable information about the
real system behavior. Third, the two DSAFs are fused together for having a more reliable
low-dimensional representation of the safe region. The SRL framework based on data-driven
MOR is applicable to a wide range of dynamical systems and learning tasks, and provides an
insight about how to safely extend reinforcement learning methods to real-world dynamical
systems.

Like most of the data-driven approaches, the quality of training data affects the perfor-
mance of the data-driven MOR significantly. For having a well-performed training dataset,
we propose a data generation method in Chapter 5. By considering the estimation of safety
as a binary classification problem, we analyze how training data will affect the classification
error. Then, by simultaneously taking the classification error and the learning performance
of the SRL framework into consideration, we design a data generation method that combines
two distributions: one uniform distribution that is used to preserve conservativeness in the
learning process, and one multivariate normal distribution for encouraging explorations for
an optimal control policy. By balancing the sizes of the two sub-datasets, the proposed data
generation method is able to produce training data that are most useful to the identification
of the low-dimensional representation of the safe region, and hence leads to a better per-
formance of the SRL framework. Moreover, it also provides an insight about how different
training data will affect the accuracy in safety estimates that are obtained from data-driven
approaches.

6.2. Outlook
Although the SRL methods proposed in this dissertation provide a possible solution to the
challenging problem of safely extending state-of-the-art reinforcement learning methods to
complex dynamical systems, there still exist multiple open problems for future researches.
Some of these potential research directions are discussed as follows.

(i) Combination of data-driven and projection-based MOR
While data-driven MOR has the strength that it is applicable as long as a training

100

6.2 Outlook

dataset is provided, it is usually not possible to result in a detailed mathematical
relationship between the real and the simplified systems. Hence, it is difficult to quan-
tify the reliability of the safety estimates obtained from the simplified system, e.g.,
what is the expected error when compared to the real system behaviour. In contrast,
projection-based MOR is able to present a mathematical model that strongly connects
the real and the simplified systems. However, projection-based MOR often requires
solving partial differential equations for deriving a simplified system model, which is
computationally infeasible for complex dynamical systems.
In recent studies, methods that utilize neural networks as an approximated solution
to complicated equations, e.g., Hamilton–Jacobi–Isaacs equation [73], draw more and
more attentions. By learning from observed data, a function approximator is con-
structed accordingly for estimating the possible solutions. This inspires us about the
possibility of combining data-driven and projection-based MOR approaches. For ex-
ample, by using data collected from the nominal system model, an approximator of
the solutions to the relevant equations of projection-based MOR could be obtained. If
a precise mathematical model that describes the connection between the real and the
simplified systems can be derived, then a more reliable safety guarantee can also be
proposed for the SRL methods. However, more investigations are needed for solving
this challenging problem.

(ii) Quantification of the discrepancy between nominal and real systems

Simulation-to-reality gap is a frequently discussed problem when an approximated
system model is used to predict the behaviour of the real system. Such a problem
also occurs in the proposed SRL framework where a nominal system model is used to
estimate the safety of real system states. Although many researches, both in machine
learning and control theory, have investigated this problem, most of their solutions
are task dependent and lack generality. Considering the usage of the nominal system
in our SRL framework, one possible way to overcome the reality gap is to quantify
the discrepancy between the nominal and the real systems. For example, this can be
achieved by first measuring the trajectory similarities between the two systems. Then,
by introducing a probabilistic model, e.g., a GPR model, among the similarities, the
reliability of safety estimates for different system states can be predicted. The SRL
framework therefore is able to give more flexibility to the learning-based controller when
the current system state is believed to be safe with a high confidence, and restrict the
exploration of the learning algorithm if it is not. However, how to design a metric
for properly measuring the similarity and how to generalize the measurements with
sampled system states to the entire system state space are both still open research
problems.

(iii) Extension to model predictive control

In recent studies, instead of using a supervisory control strategy, robust model predic-
tive control is also used for realizing SRL, e.g., in [66], [67]. As the real system model
is included in computing the safety estimates, a bounded error is often provided by
these approaches. However, if the dynamical system has a high-dimensional and highly

101

6 Conclusion and Outlook

nonlinear dynamics, then it is computationally difficult to predict the system’s behav-
ior in a long horizon, which is unfortunately essential for model predictive control. A
potential solution to this problem is, similar as in the proposed SRL framework, finding
a simplified system model via MOR as an approximation for the real system. Then
for saving computational costs, the predictions within the horizon can be made by
using the two models: for timesteps that are close to the current step, the real system
model can be used for having accurate estimates, while for far future, the simplified
system model should be utilized for increasing the computational efficiency. However,
further studies are required for properly integrating a simplified system model with
model predictive control.

102

SOS Programming for Estimat-
ing the ROA A.

We outline here a method described in [101], which is based on SOS programming to get an
inner approximation of the ROA. Since this approximation is represented as a closed positive
invariant subset of the ROA, it also provides an estimate of the safe region S.

Let P be the set of all polynomials in n variables, then the set of SOS polynomials in n
variables is defined as

Pn = {p ∈ P | p ∈
t∑

i=1
f 2

i , fi ∈ P , i = 1, 2, . . . , t} (A.1)

SOS programming solves an optimization problem to identify if a given polynomial is a SOS
polynomial. It is shown that p ∈ Pn if and only if ∃Q ⪰ 0 such that p = z(x)T Qz(x) with
z(x) as a vector of suitable monomials, and the existence of Q is a linear matrix inequality
feasibility problem [125].

Consider a system described by (2.19) where f(x) and g(x) are represented as vectors of
polynomials. For those f(x) and g(x) with non-polynomial forms, an approximated polyno-
mial expression can be obtained through suitable Taylor expansion [81]. If the origin of the
system is a locally asymptotically stable equilibrium point, the ROA can be estimated by
the following calculations.

Suppose that a semialgebraic set M is given by a Lyapunov function V (x) as M = {x ∈
X | V (x) ≤ 1}, then an estimate of the ROA is found by maximizing a variable sized region
Mγ = {x ∈ X | p(x) ≤ γ} subject to Mγ ⊆ M [126], where p(x) is a fixed and positive
definite polynomial. This leads to the following optimization problem

max
V ∈P

γ, (A.2)

with the requirement that following sets are all empty

{x ∈ X | V (x) ≤ 0, l1(x) ̸= 0}, (A.3)
{x ∈ X | p(x) ≤ γ, V (x) > 1}, (A.4) x ∈ X

V (x) ≤ 1, l2(x) ̸= 0,
∂V

∂x
(f(x) + g(x)K(x)) ≥ 0

 , (A.5)

where l1, l2 are fixed positive definite and SOS polynomials which replace the constraints
x ̸= 0. In order to formulate SOS programming from (A.2-A.5), Positivstellensatz theo-
rem [127] and S-procedure [128] are employed, such that the previous optimization problem
is transformed to the following form

max
V ,s1,s2,s3

γ, (A.6)

103

A SOS Programming for Estimating the ROA

with V ∈ P , s1, s2, s3 ∈ Pn such that

V − l1 ∈ Pn, (A.7)
− ((γ − p)s1 + (V − 1)) ∈ Pn, (A.8)

−
(

(1 − V)s2 + ∂V

∂x
(f + gK)s3 + l2

)
∈ Pn. (A.9)

Constraints as in (A.7-A.9) can be efficiently solved by semidefinite programming and an
iterative algorithm can be used to obtain the approximation of the ROA. Note that, if the
control policy is also given as a polynomial K ∈ P , then the synthesis of the controller
which enlarges the ROA can also be introduced into the optimization problem. For such
cases, readers may refer to a two-step algorithm presented in [101] for more details.

SOS programming usually produces a conservative inner approximation of the ROA which
can be used as an initial estimate of the safe region. However, for high-dimensional dynamical
systems, performing such an estimation is generally infeasible, as the computational cost of
SOS programming increases rapidly with respect to the dimensionality of system states.

104

Sensitivity Analysis of Parame-
ter δ B.

-30 -20 -10 0 10 20 30
-30

-20

-10

0

10

20

30
safe

unsafe

(a)

-30 -20 -10 0 10 20 30
-30

-20

-10

0

10

20

30

(b)

-30 -20 -10 0 10 20 30
-30

-20

-10

0

10

20

30

(c)

-30 -20 -10 0 10 20 30
-30

-20

-10

0

10

20

30

(d)

Figure B.1.: The initial realization of simplified states x1
s, . . . , xkt

s obtained from t-SNE by
using δ = 0, δ = 0.01, δ = 0.1 and δ = 0.3, respectively.

To analyze the influence of the parameter δ on the values of simplified states x1
s, . . . , xkt

s

obtained from t-SNE, we provide a sensitivity analysis in Fig. B.1, where the same training
dataset Dtrain as the one given in the quadcopter example (see Section 4.4.1) is used.

It can be observed in Fig. B.1a that, when δ = 0, i.e., the safety label is not considered
in the computation of the distance Ωij (see (4.11)), there exist certain training data points
that are not well separated according to their safety properties. This means that using only

105

B Sensitivity Analysis of Parameter δ

the information contained in the pairwise trajectory distance ωij is not sufficient for finding
a well-performed low-dimensional safety feature. To solve this problem, we add a constant
parameter δ with a small value, e.g., δ = 0.01, to (4.11). By doing this, the distance Ωij

now also takes the difference in safety labels between training data points into consideration.
Hence, as illustrated in Fig. B.1b, safe and unsafe training data points are better separated
in the simplified state space.

However, further increasing the value of the parameter δ will not provide more benefits in
finding a low-dimensional safety feature. As demonstrated in Fig. B.1c and Fig. B.1d with
δ = 0.1 and δ = 0.3, the results are similar to those obtained with δ = 0.01. In fact, a
large value of the parameter δ leads to the similarity between safe and unsafe data points
being measured almost entirely in terms of the difference in their safety labels. Therefore,
the information contained in trajectories is highly likely to be ignored, which may reduce the
representation power of the learned simplified states. To prevent this, it is suggested that
the parameter δ is set to a small value, e.g., we use δ = 0.01 in Chapter 4.

106

Computations of t-SNE C.

In the original version of t-SNE [119], Euclidean distances are used to compute a conditional
probability pj|i as

pj|i = exp(−||xi − xj||2/2σ2
i)∑

k ̸=i

exp(−||xi − xk||2/2σ2
i)

(C.1)

which stands for the probability that the high-dimensional state xi picks the state xj as its
neighbor according to their probability density under a Gaussian distribution. However in
our approach, to derive a realization of the low-dimensional safety feature that corresponds to
the training dataset Dtrain, we compute the conditional probability pj|i by using the proposed
distance metric as given in (4.12). Any particular value of the parameter, i.e., the variance
σi, results in a distribution Pi of the conditional probability pj|i over all other data points.
A binary search is then performed to find the value of the variance σi, which produces a
distribution Pi with a fixed perplexity that is selected by the user. The perplexity is defined
as

Perplexity(Pi) = 2H(Pi) (C.2)
where H(Pi) is the Shannon entropy of the distribution Pi measured as

H(Pi) = −
∑

j

pj|i log2 pj|i (C.3)

As stated in [119], the perplexity can be considered as a smooth measure of the effective
number of neighbors.

To alleviate the identification problem caused by outliers, the similarity between two
training data points is then defined by the joint probability pij

pij = pj|i + pi|j

2kt

(C.4)

where kt is the size of the training dataset Dtrain. Since we are only interested in the pairwise
similarities, we set pij = 0 if i = j.

Thereafter, we compute the values of simplified states x1
s, . . . , xkt

s that best represent the
similarity pij. This is achieved through a similar joint probability qij of two simplified states
xi

s and xj
s

qij = (1 + ||xi
s − xj

s||2)−1∑
k ̸=i

(1 + ||xi
s − xk

s ||2)−1 (C.5)

where || · || is the Euclidean distance and we have qij = 0 if i = j. A heavy-tailed Student t-
distribution is used here to measure the similarity. The values of simplified states x1

s, . . . , xkt
s

107

C Computations of t-SNE

are determined by minimizing a cost function C given as

C = KL(P ||Q) =
∑

i

∑
j

pijlogpij

qij

(C.6)

where KL(·) is the Kullback-Leibler divergence. P and Q are the joint probability distri-
butions in the high-dimensional and low-dimensional state spaces, respectively. The cost
function C represents how well the identified simplified states can reproduce the similarities
between different training data.

The minimization is solved using a gradient descent method, where the gradient is com-
puted as

∂C

∂xi
s

= 4
∑

j

(pij − qij)(xi
s − xj

s)(1 + ||xi
s − xj

s||2)−1 (C.7)

The initial solution to the values of simplified states x1
s, . . . , xkt

s , denoted as Q(0), is obtained
by sampling points randomly from an isotropic Gaussian. To speed up the optimization and
to avoid poor local minimum, the update of the solution is performed with a momentum
term

Q(t) = Q(t−1) + η
∂C

∂Q(t−1) + m(t)
(
Q(t−1) − Q(t−2)

)
(C.8)

where Q(t) is the solution at iteration t, η is the learning rate, and m(t) is the momentum at
iteration t. More implementation details of t-SNE are presented in [119].

108

Bibliography

[1] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction. Cambridge,
MA, USA: MIT press, 2018.

[2] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement learning: A sur-
vey,” Journal of Artificial Intelligence Research, vol. 4, pp. 237–285, May 1996.

[3] N. J. Mackintosh, The Psychology of Animal Learning. New York, NY, USA: Aca-
demic Press, 1974.

[4] W. F. Prokasy and K. L. Kumpfer, “Electrodermal activity in psychological research,”
in W. F. Prokasy and D. C. Raskin, Eds. New York, NY, USA: Academic Press, 1973,
ch. Classical Conditioning, pp. 157–202.

[5] A. Dickinson, “Animal learning and cognition,” in N. J. Mackintosh, Ed. New York,
NY, USA: Academic Press, 1994, ch. Instrumental Conditioning, pp. 45–79.

[6] R. Bellman, “Dynamic programming,” Science, vol. 153, no. 3731, pp. 34–37, Jul.
1966.

[7] I. H. Witten, “An adaptive optimal controller for discrete-time markov environments,”
Information and Control, vol. 34, no. 4, pp. 286–295, Aug. 1977.

[8] R. S. Sutton and A. G. Barto, “A temporal-difference model of classical conditioning,”
in Proceedings of the 9th Annual Conference of the Cognitive Science Society, Jul.
1987, pp. 355–378.

[9] R. S. Sutton, “Learning to predict by the methods of temporal differences,” Machine
Learning, vol. 3, no. 1, pp. 9–44, Aug. 1988.

[10] A. H. Klopf, Brain function and Adaptive Systems: A Heterostatic Theory. Cam-
bridge, MA, USA: Air Force Cambridge Research Laboratories, 1972.

[11] ——, “A drive-reinforcement model of single neuron function: An alternative to the
hebbian neuronal model,” in Proceedings of the AIP Conference on Neural Networks
for Computing, vol. 151, Mar. 1986, pp. 265–270.

[12] ——, “A neuronal model of classical conditioning.,” Psychobiology, vol. 16, no. 2,
pp. 85–125, Jun. 1988.

[13] C. J. C. H. Watkins, “Learning from delayed rewards,” Ph.D. dissertation, King’s
College, 1989.

[14] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath, “Deep rein-
forcement learning: A brief survey,” IEEE Signal Processing Magazine, vol. 34, no. 6,
pp. 26–38, Nov. 2017.

[15] J. Schmidhuber, “Deep learning in neural networks: An overview,” Neural Networks,
vol. 61, pp. 85–117, Jan. 2015.

109

Bibliography

[16] C. J. Watkins and P. Dayan, “Q-learning,” Machine Learning, vol. 8, no. 3-4, pp. 279–
292, May 1992.

[17] P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and D. Meger, “Deep rein-
forcement learning that matters,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 32, Feb. 2018, pp. 3207–3214.

[18] V. Mnih, K. Kavukcuoglu, D. Silver, et al., “Playing atari with deep reinforcement
learning,” arXiv preprint arXiv:1312.5602, 2013. [Online]. Available: http://arxiv.
org/abs/1312.5602.

[19] V. Mnih, K. Kavukcuoglu, D. Silver, et al., “Human-level control through deep rein-
forcement learning,” Nature, vol. 518, no. 7540, pp. 529–533, Feb. 2015.

[20] D. Silver, A. Huang, C. J. Maddison, et al., “Mastering the game of go with deep
neural networks and tree search,” Nature, vol. 529, no. 7587, pp. 484–489, Jan. 2016.

[21] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
Jun. 2016, pp. 770–778.

[22] Z. Ren, X. Wang, N. Zhang, X. Lv, and L.-J. Li, “Deep reinforcement learning-based
image captioning with embedding reward,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, Jul. 2017, pp. 290–298.

[23] T. Mikolov, M. Karafiát, L. Burget, J. Černocký, and S. Khudanpur, “Recurrent
neural network based language model,” in Proceedings of the Annual Conference of
the International Speech Communication Association, Sep. 2010, pp. 1045–1048.

[24] A. R. Sharma and P. Kaushik, “Literature survey of statistical, deep and reinforce-
ment learning in natural language processing,” in Proceedings of the IEEE Inter-
national Conference on Computing, Communication and Automation, May 2017,
pp. 350–354.

[25] K. Doya, “Reinforcement learning in continuous time and space,” Neural Computa-
tion, vol. 12, no. 1, pp. 219–245, Jan. 2000.

[26] P.-C. Yang, K. Sasaki, K. Suzuki, K. Kase, S. Sugano, and T. Ogata, “Repeatable
folding task by humanoid robot worker using deep learning,” IEEE Robotics and
Automation Letters, vol. 2, no. 2, pp. 397–403, Nov. 2016.

[27] X. B. Peng, G. Berseth, K. Yin, and M. Van De Panne, “Deeploco: Dynamic loco-
motion skills using hierarchical deep reinforcement learning,” ACM Transactions on
Graphics, vol. 36, no. 4, pp. 1–13, Jul. 2017.

[28] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training of deep visuomotor
policies,” Journal of Machine Learning Research, vol. 17, no. 39, pp. 1–40, Apr. 2016.

[29] I. Akkaya, M. Andrychowicz, M. Chociej, et al., “Solving rubik’s cube with a robot
hand,” arXiv preprint arXiv:1910.07113, 2019. [Online]. Available: http://arxiv.
org/abs/1910.07113.

[30] M. Al-Qizwini, I. Barjasteh, H. Al-Qassab, and H. Radha, “Deep learning algorithm
for autonomous driving using googlenet,” in Proceedings of the IEEE Intelligent Ve-
hicles Symposium, Jun. 2017, pp. 89–96.

110

http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1910.07113
http://arxiv.org/abs/1910.07113

Bibliography

[31] S. Grigorescu, B. Trasnea, T. Cocias, and G. Macesanu, “A survey of deep learning
techniques for autonomous driving,” Journal of Field Robotics, vol. 37, no. 3, pp. 362–
386, Apr. 2020.

[32] P. S. Thomas, “Safe reinforcement learning,” Ph.D. dissertation, University of Mas-
sachusetts Amherst, 2015.

[33] A. R. Mahmood, D. Korenkevych, G. Vasan, W. Ma, and J. Bergstra, “Benchmarking
reinforcement learning algorithms on real-world robots,” in Proceedings of the 2nd
Annual Conference on Robot Learning, Oct. 2018, pp. 561–591.

[34] H. Van Hasselt and M. A. Wiering, “Reinforcement learning in continuous action
spaces,” in Proceedings of the IEEE Symposium on Adaptive Dynamic Programming
and Reinforcement Learning, Apr. 2007, pp. 272–279.

[35] T. P. Lillicrap, J. J. Hunt, A. Pritzel, et al., “Continuous control with deep reinforce-
ment learning,” arXiv preprint arXiv:1509.02971, 2015. [Online]. Available: http:
//arxiv.org/abs/1509.02971.

[36] Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel, “Benchmarking deep
reinforcement learning for continuous control,” in Proceedings of the 33rd Interna-
tional Conference on Machine Learning, Jun. 2016, pp. 1329–1338.

[37] T. Koolen, M. Posa, and R. Tedrake, “Balance control using center of mass height
variation: Limitations imposed by unilateral contact,” in Proceedings of the IEEE-
RAS International Conference on Humanoid Robots, Nov. 2016, pp. 8–15.

[38] S. Gugercin and A. C. Antoulas, “A survey of model reduction by balanced truncation
and some new results,” International Journal of Control, vol. 77, no. 8, pp. 748–766,
Apr. 2004.

[39] A. Astolfi and R. Ortega, “Immersion and invariance: A new tool for stabilization
and adaptive control of nonlinear systems,” IEEE Transactions on Automatic control,
vol. 48, no. 4, pp. 590–606, Apr. 2003.

[40] G. J. Pappas and S. Sastry, “Towards continuous abstractions of dynamical and
control systems,” in Proceedings of the International Hybrid Systems Workshop, Oct.
1996, pp. 329–341.

[41] W. H. Schilders, H. A. Van der Vorst, and J. Rommes, Model Order Reduction:
Theory, Research Aspects and Applications. New York, NY, USA: Springer, 2008.

[42] D. Laureiro-Martinez, S. Brusoni, N. Canessa, and M. Zollo, “Understanding the
exploration-exploitation dilemma: An fmri study of attention control and decision-
making performance,” Strategic Management Journal, vol. 36, no. 3, pp. 319–338,
Mar. 2015.

[43] R. Bellman, “A markovian decision process,” Journal of Mathematics and Mechanics,
vol. 6, no. 5, pp. 679–684, Oct. 1957.

[44] S. P. Coraluppi and S. I. Marcus, “Risk-sensitive and minimax control of discrete-
time, finite-state markov decision processes,” Automatica, vol. 35, no. 2, pp. 301–309,
Feb. 1999.

[45] R. A. Howard and J. E. Matheson, “Risk-sensitive markov decision processes,” Man-
agement Science, vol. 18, no. 7, pp. 356–369, Mar. 1972.

111

http://arxiv.org/abs/1509.02971
http://arxiv.org/abs/1509.02971

Bibliography

[46] P. Geibel and F. Wysotzki, “Risk-sensitive reinforcement learning applied to control
under constraints,” Journal of Artificial Intelligence Research, vol. 24, no. 1, pp. 81–
108, Jul. 2005.

[47] K. Driessens and S. Džeroski, “Integrating guidance into relational reinforcement
learning,” Machine Learning, vol. 57, no. 3, pp. 271–304, Dec. 2004.

[48] P. Abbeel, A. Coates, and A. Y. Ng, “Autonomous helicopter aerobatics through
apprenticeship learning,” International Journal of Robotics Research, vol. 29, no. 13,
pp. 1608–1639, Jun. 2010.

[49] T. M. Moldovan and P. Abbeel, “Safe exploration in markov decision processes,” in
Proceedings of the 29th International Conference on Machine Learning, Jun. 2012,
pp. 1451–1458.

[50] J. Mockus, Bayesian Approach to Global Optimization: Theory and Applications. Dor-
drecht, Netherlands: Springer, Dordrecht, 2012.

[51] J. Garcıa and F. Fernández, “A comprehensive survey on safe reinforcement learning,”
Journal of Machine Learning Research, vol. 16, no. 42, pp. 1437–1480, Aug. 2015.

[52] P. Abbeel, A. Coates, M. Quigley, and A. Y. Ng, “An application of reinforcement
learning to aerobatic helicopter flight,” in Proceedings of Advances in Neural Infor-
mation Processing Systems, Dec. 2007, pp. 1–8.

[53] A. Coates, P. Abbeel, and A. Y. Ng, “Learning for control from multiple demonstra-
tions,” in Proceedings of the 25th International Conference on Machine Learning, Jul.
2008, pp. 144–151.

[54] S. J. Pan, Q. Yang, et al., “A survey on transfer learning,” IEEE Transactions on
Knowledge and Data Engineering, vol. 22, no. 10, pp. 1345–1359, Oct. 2010.

[55] P. Christiano, Z. Shah, I. Mordatch, et al., “Transfer from simulation to real world
through learning deep inverse dynamics model,” arXiv preprint arXiv:1610.03518,
2016. [Online]. Available: http://arxiv.org/abs/1610.03518.

[56] S. Koos, J.-B. Mouret, and S. Doncieux, “The transferability approach: Crossing the
reality gap in evolutionary robotics,” IEEE Transactions on Evolutionary Computa-
tion, vol. 17, no. 1, pp. 122–145, Feb. 2012.

[57] S. Huang, N. Papernot, I. Goodfellow, Y. Duan, and P. Abbeel, “Adversarial at-
tacks on neural network policies,” arXiv preprint arXiv:1702.02284, 2017. [Online].
Available: http://arxiv.org/abs/1702.02284.

[58] S. Shalev-Shwartz, S. Shammah, and A. Shashua, “Safe multi-agent reinforcement
learning for autonomous driving,” arXiv preprint arXiv:1610.03295, 2016. [Online].
Available: http://arxiv.org/abs/1610.03295.

[59] J. Achiam, D. Held, A. Tamar, and P. Abbeel, “Constrained policy optimization,” in
Proceedings of the 34th International Conference on Machine Learning, Aug. 2017,
pp. 22–31.

[60] Y. Shen, M. J. Tobia, T. Sommer, and K. Obermayer, “Risk-sensitive reinforcement
learning,” Neural Computation, vol. 26, no. 7, pp. 1298–1328, Jul. 2014.

112

http://arxiv.org/abs/1610.03518
http://arxiv.org/abs/1702.02284
http://arxiv.org/abs/1610.03295

Bibliography

[61] L. Prashanth and M. Ghavamzadeh, “Variance-constrained actor-critic algorithms for
discounted and average reward mdps,” Machine Learning, vol. 105, no. 3, pp. 367–
417, Aug. 2016.

[62] V. S. Borkar, “Learning algorithms for risk-sensitive control,” in Proceedings of the
19th International Symposium on Mathematical Theory of Networks and Systems,
Sep. 2010.

[63] Y. Chow, M. Ghavamzadeh, L. Janson, and M. Pavone, “Risk-constrained reinforce-
ment learning with percentile risk criteria,” Journal of Machine Learning Research,
vol. 18, no. 1, pp. 6070–6120, Jan. 2017.

[64] T. J. Perkins and A. G. Barto, “Lyapunov design for safe reinforcement learning,”
Journal of Machine Learning Research, vol. 3, no. Dec, pp. 803–832, Dec. 2002.

[65] Y. Chow, O. Nachum, E. Duenez-Guzman, and M. Ghavamzadeh, “A lyapunov-based
approach to safe reinforcement learning,” in Proceedings of Advances in Neural In-
formation Processing Systems, Dec. 2018, pp. 8103–8112.

[66] C. J. Ostafew, A. P. Schoellig, and T. D. Barfoot, “Robust constrained learning-based
nmpc enabling reliable mobile robot path tracking,” International Journal of Robotics
Research, vol. 35, no. 13, pp. 1547–1563, May 2016.

[67] D. Sadigh and A. Kapoor, “Safe control under uncertainty with probabilistic signal
temporal logic,” in Proceedings of Robotics: Science and Systems, Jun. 2016, pp. 171–
181.

[68] M. Zanon and S. Gros, “Safe reinforcement learning using robust mpc,” IEEE Trans-
actions on Automatic Control, vol. 66, no. 8, pp. 3638–3652, Aug. 2021.

[69] A. Aswani, H. Gonzalez, S. S. Sastry, and C. Tomlin, “Provably safe and robust
learning-based model predictive control,” Automatica, vol. 49, no. 5, pp. 1216–1226,
May 2013.

[70] Y. Li, N. Li, H. E. Tseng, A. Girard, D. Filev, and I. Kolmanovsky, “Safe reinforcement
learning using robust action governor,” in Proceedings of the 3rd Annual Learning for
Dynamics and Control Conference, Jun. 2021, pp. 1093–1104.

[71] J. F. Fisac, A. K. Akametalu, M. N. Zeilinger, S. Kaynama, J. Gillula, and C. J.
Tomlin, “A general safety framework for learning-based control in uncertain robotic
systems,” IEEE Transactions on Automatic Control, vol. 64, no. 7, pp. 2737–2752,
Jul. 2019.

[72] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine Learning.
Cambridge, MA, USA: MIT Press, 2006.

[73] S. Bansal, M. Chen, S. Herbert, and C. J. Tomlin, “Hamilton-jacobi reachability: A
brief overview and recent advances,” in Proceedings of the IEEE 56th Conference on
Decision and Control, Dec. 2017, pp. 2242–2253.

[74] F. Berkenkamp, R. Moriconi, A. P. Schoellig, and A. Krause, “Safe learning of regions
of attraction for uncertain, nonlinear systems with gaussian processes,” in Proceedings
of the IEEE 55th Conference on Decision and Control, Dec. 2016, pp. 4661–4666.

113

Bibliography

[75] F. Berkenkamp, M. Turchetta, A. Schoellig, and A. Krause, “Safe model-based rein-
forcement learning with stability guarantees,” in Proceedings of Advances in Neural
Information Processing Systems, Dec. 2017, pp. 908–919.

[76] M. Köppen, “The curse of dimensionality,” in Proceedings of the 5th Online World
Conference on Soft Computing in Industrial Applications, Sep. 2000, pp. 4–8.

[77] J. F. Fisac, N. F. Lugovoy, V. Rubies-Royo, S. Ghosh, and C. J. Tomlin, “Bridging
hamilton-jacobi safety analysis and reinforcement learning,” in Proceedings of the
IEEE International Conference on Robotics and Automation, May 2019, pp. 8550–
8556.

[78] S. James, Z. Ma, D. R. Arrojo, and A. J. Davison, “Rlbench: The robot learning
benchmark & learning environment,” IEEE Robotics and Automation Letters, vol. 5,
no. 2, pp. 3019–3026, Apr. 2020.

[79] B. Peherstorfer, K. Willcox, and M. Gunzburger, “Survey of multifidelity methods in
uncertainty propagation, inference, and optimization,” SIAM Review, vol. 60, no. 3,
pp. 550–591, 2018.

[80] A. Forrester, A. Sóbester, and A. Keane, “Multi-fidelity optimization via surrogate
modelling,” Proceedings of the Royal Society A: Mathematical, Physical and Engi-
neering Sciences, vol. 463, no. 2088, pp. 3251–3269, Dec. 2007.

[81] M. Posa, T. Koolen, and R. Tedrake, “Balancing and step recovery capturability via
sums-of-squares optimization,” in Proceedings of Robotics: Science and Systems, Jul.
2017, pp. 12–16.

[82] P. Benner, S. Gugercin, and K. Willcox, “A survey of projection-based model re-
duction methods for parametric dynamical systems,” SIAM Review, vol. 57, no. 4,
pp. 483–531, 2015.

[83] M. Rathinam and L. Petzold, “A new look at proper orthogonal decomposition,”
SIAM Journal on Numerical Analysis, vol. 41, no. 5, pp. 1893–1925, 2003.

[84] A. Antoulas, Approximation of Large-Scale Dynamical Systems. Philadelphia, PA,
USA: SIAM, 2005.

[85] S. Klus, F. Nüske, P. Koltai, et al., “Data-driven model reduction and transfer oper-
ator approximation,” Journal of Nonlinear Science, vol. 28, no. 3, pp. 985–1010, Jan.
2018.

[86] A. Forrester and A. Keane, “Recent advances in surrogate-based optimization,” Progress
in Aerospace Sciences, vol. 45, no. 1-3, pp. 50–79, Jan. 2009.

[87] B. Peherstorfer, K. Willcox, and M. Gunzburger, “Optimal model management for
multifidelity monte carlo estimation,” SIAM Journal on Scientific Computing, vol. 38,
no. 5, A3163–A3194, Oct. 2016.

[88] G. Zhang, Y. Liu, and X. Jin, “A survey of autoencoder-based recommender systems,”
Frontiers of Computer Science, vol. 14, no. 2, pp. 430–450, Apr. 2020.

[89] Z. Zhou, O. S. Oguz, M. Leibold, and M. Buss, “A general framework to increase
safety of learning algorithms for dynamical systems based on region of attraction
estimation,” IEEE Transactions on Robotics, vol. 36, no. 5, pp. 1472–1490, Oct. 2020.

114

Bibliography

[90] A. Marco, F. Berkenkamp, P. Hennig, et al., “Virtual vs. real: Trading off simulations
and physical experiments in reinforcement learning with bayesian optimization,” in
Proceedings of the IEEE International Conference on Robotics and Automation, May
2017, pp. 1557–1563.

[91] Z. Zhou, O. S. Oguz, M. Leibold, and M. Buss, “Learning a low-dimensional represen-
tation of a safe region for safe reinforcement learning on dynamical systems,” IEEE
Transactions on Neural Networks and Learning Systems, early access, Sep. 2021.

[92] Z. Zhou, O. S. Oguz, Y. Ren, M. Leibold, and M. Buss, “Data generation method for
learning a low-dimensional safe region in safe reinforcement learning,” arXiv preprint
arXiv:2109.05077, 2021. [Online]. Available: http://arxiv.org/abs/2109.05077.

[93] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in robotics: A survey,”
International Journal of Robotics Research, vol. 32, no. 11, pp. 1238–1274, Aug. 2013.

[94] B. Luo, Y. Yang, H.-N. Wu, and T. Huang, “Balancing value iteration and policy
iteration for discrete-time control,” IEEE Transactions on Systems, Man, and Cyber-
netics: Systems, vol. 50, no. 11, pp. 3948–3958, Mar. 2019.

[95] A. Lazaric, M. Restelli, and A. Bonarini, “Reinforcement learning in continuous action
spaces through sequential monte carlo methods,” in Proceedings of Advances in Neural
Information Processing Systems, Dec. 2007, pp. 833–840.

[96] F. Sehnke, C. Osendorfer, T. Rückstieß, A. Graves, J. Peters, and J. Schmidhuber,
“Parameter-exploring policy gradients,” Neural Networks, vol. 23, no. 4, pp. 551–559,
May 2010.

[97] R. J. Williams, “Simple statistical gradient-following algorithms for connectionist
reinforcement learning,” Machine Learning, vol. 8, no. 3, pp. 229–256, May 1992.

[98] N. Vlassis, M. Toussaint, G. Kontes, and S. Piperidis, “Learning model-free robot
control by a monte carlo em algorithm,” Autonomous Robots, vol. 27, no. 2, pp. 123–
130, Aug. 2009.

[99] C. Atkeson, “Nonparametric model-based reinforcement learning,” in Proceedings of
Advances in Neural Information Processing Systems, Dec. 1997, pp. 1–7.

[100] A. Vannelli and M. Vidyasagar, “Maximal lyapunov functions and domains of attrac-
tion for autonomous nonlinear systems,” Automatica, vol. 21, no. 1, pp. 69–80, Jan.
1985.

[101] Z. Jarvis-Wloszek, R. Feeley, W. Tan, K. Sun, and A. Packard, “Some controls appli-
cations of sum of squares programming,” in Proceedings of the IEEE 42nd Conference
on Decision and Control, Dec. 2003, pp. 4676–4681.

[102] A. A. Ahmadi and A. Majumdar, “Dsos and sdsos optimization: More tractable alter-
natives to sum of squares and semidefinite optimization,” SIAM Journal on Applied
Algebra and Geometry, vol. 3, no. 2, pp. 193–230, 2019.

[103] F. Blanchini, “Set invariance in control,” Automatica, vol. 35, no. 11, pp. 1747–1767,
Nov. 1999.

[104] M. Sobotka, J. Wolff, and M. Buss, “Invariance controlled balance of legged robots,”
in Proceedings of European Control Conference, Jul. 2007, pp. 3179–3186.

115

http://arxiv.org/abs/2109.05077

Bibliography

[105] L. Wang, E. A. Theodorou, and M. Egerstedt, “Safe learning of quadrotor dynamics
using barrier certificates,” in Proceedings of the IEEE International Conference on
Robotics and Automation, May 2018, pp. 2460–2465.

[106] H. Nickisch and C. E. Rasmussen, “Approximations for binary gaussian process clas-
sification,” Journal of Machine Learning Research, vol. 9, no. Oct, pp. 2035–2078,
Oct. 2008.

[107] D. Kahneman and A. Tversky, “Subjective probability: A judgment of representative-
ness,” Cognitive Psychology, vol. 3, no. 3, pp. 430–454, Jul. 1972.

[108] G. Shafer, A Mathematical Theory of Evidence. Princeton, NJ, USA: Princeton Univ.
Press, 1976.

[109] A. Jøsang, Subjective Logic. New York, NY, USA: Springer, 2016.
[110] ——, “Categories of belief fusion,” Journal of Advances in Information Fusion, vol. 13,

no. 2, pp. 235–254, Dec. 2018.
[111] S. V. Stehman, “Selecting and interpreting measures of thematic classification accu-

racy,” Remote Sensing of Environment, vol. 62, no. 1, pp. 77–89, Oct. 1997.
[112] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy

optimization algorithms,” arXiv preprint arXiv:1707.06347, 2017. [Online]. Available:
http://arxiv.org/abs/1707.06347.

[113] F. Furrer, M. Burri, M. Achtelik, and R. Siegwart, “Rotors: A modular gazebo mav
simulator framework,” in Robot Operating System, Springer, 2016, pp. 595–625.

[114] I. Zamora, N. G. Lopez, V. M. Vilches, and A. H. Cordero, “Extending the openai gym
for robotics: A toolkit for reinforcement learning using ros and gazebo,” arXiv preprint
arXiv:1608.05742, 2016. [Online]. Available: http://arxiv.org/abs/1608.05742.

[115] T. Koolen, T. De Boer, J. Rebula, A. Goswami, and J. Pratt, “Capturability-based
analysis and control of legged locomotion, part 1: Theory and application to three sim-
ple gait models,” International Journal of Robotics Research, vol. 31, no. 9, pp. 1094–
1113, Jul. 2012.

[116] T.-H. Pham, G. De Magistris, and R. Tachibana, “Optlayer-practical constrained
optimization for deep reinforcement learning in the real world,” in Proceedings of the
IEEE International Conference on Robotics and Automation, May 2018, pp. 6236–
6243.

[117] S. R. Friedrich and M. Buss, “A robust stability approach to robot reinforcement
learning based on a parameterization of stabilizing controllers,” in Proceedings of the
IEEE International Conference on Robotics and Automation, May 2017, pp. 3365–
3372.

[118] M. Z. Romdlony and B. Jayawardhana, “Stabilization with guaranteed safety using
control lyapunov–barrier function,” Automatica, vol. 66, pp. 39–47, Apr. 2016.

[119] L. v. d. Maaten and G. Hinton, “Visualizing data using t-sne,” Journal of Machine
Learning Research, vol. 9, no. 86, pp. 2579–2605, Nov. 2008.

[120] B. Aronov, S. Har-Peled, C. Knauer, Y. Wang, and C. Wenk, “Fréchet distance for
curves, revisited,” in Proceedings of European Symposia on Algorithms, Sep. 2006,
pp. 52–63.

116

http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1608.05742

Bibliography

[121] T. Luukkonen, Modelling and control of quadcopter, Independent Research Project in
Applied Mathematics, Aalto University, Espoo, Finland, Aug. 2011.

[122] R. Kumari and S. K. Srivastava, “Machine learning: A review on binary classification,”
International Journal of Computer Applications, vol. 160, no. 7, pp. 11–15, Feb. 2017.

[123] S. Ben-David, J. Blitzer, K. Crammer, A. Kulesza, F. Pereira, and J. W. Vaughan, “A
theory of learning from different domains,” Machine Learning, vol. 79, no. 1, pp. 151–
175, Oct. 2010.

[124] L. Devroye, L. Györfi, and G. Lugosi, A Probabilistic Theory of Pattern Recognition.
New York, NY, USA: Springer, 2013.

[125] P. A. Parrilo, “Semidefinite programming relaxations for semialgebraic problems,”
Mathematical Programming, vol. 96, no. 2, pp. 293–320, Apr. 2003.

[126] Z. W. Jarvis-Wloszek, “Lyapunov based analysis and controller synthesis for poly-
nomial systems using sum-of-squares optimization,” Ph.D. dissertation, University of
California, Berkeley, 2003.

[127] G. Stengle, “A nullstellensatz and a positivstellensatz in semialgebraic geometry,”
Mathematische Annalen, vol. 207, no. 2, pp. 87–97, Jun. 1974.

[128] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in
System and Control Theory. Philadelphia, PA, USA: SIAM, 1994.

117

	Notation
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Challenges
	Safe Reinforcement Learning
	Model Order Reduction Techniques

	Contributions and Outline

	Reinforcement Learning in Dynamical Systems
	Components of Reinforcement Learning Problem
	Value Function Based Approaches and Policy Search
	Value Function Based Approaches
	Policy Search
	Actor-critic Method

	SRL Based on ROA and Supervisory Control
	System Model and ROA
	SRL Framework

	Safe Reinforcement Learning Based on Physically Inspired Model Order Reduction
	Overview of the Approach
	Initialization of the Supervisor with Simplified System Model
	Simplified System
	Probabilistic Estimate of Safety
	Supervisor Initialization

	Online Adaptation of the Safe Region
	Belief Function Theory
	Belief Map
	Prior and Feedback Belief Map
	Weighted Belief Fusion
	Supervisor Update
	Validation

	SRL Algorithm
	Experimental Results
	Two-link Inverted Pendulum
	Quadcopter Flight Control
	Humanoid Control

	Discussion
	Safety in Complex Dynamical Systems
	Safety and Learning Performance
	Applications
	Limitations

	Summary

	Safe Reinforcement Learning Based on Data-driven Model Order Reduction
	Overview of the Approach
	SRL for Complex Dynamical Systems
	SRL with Data-driven MOR

	Learning a Low-dimensional Representation of the Safe Region
	Identifying the State Mapping with t-SNE
	Defining the DSAF with Belief Function Theory
	Initializing the DSAF from Training Data

	Online Adaptation of the Safe Region
	Update of the Prior DSAF with Feedback Data
	Feedback DSAF
	Fusion of Prior and Feedback DSAFs

	Experimental Results
	Quadcopter Example
	Humanoid Example

	Discussion
	Relevance to Different SRL Tasks
	Strengths and Limitations

	Summary

	Data Generation for Data-driven Safe Reinforcement Learning
	SRL as Binary Classification
	Learning Performance and Classification Error
	Training Data and Classification Error
	Classification Error and SRL

	Data Generation Method
	Experimental Results
	Experimental Setup
	Low-dimensional Representation of the Safe Region
	Performance of the SRL Framework

	Discussion
	Connection to Transfer Learning
	Limitations

	Summary

	Conclusion and Outlook
	Conclusion
	Outlook

	SOS Programming for Estimating the ROA
	Sensitivity Analysis of Parameter
	Computations of t-SNE
	Bibliography

