
TUM School of Computation, Information and Technology
Technische Universität München

A Framework to Generate High-Performance
Time-stepped Agent-based Simulations

on Heterogeneous Hardware

Jiajian Xiao

Vollständiger Abdruck der von der TUM School of Computation, Information and
Technology der Technischen Universität München zur Erlangung des akademischen
Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender:
Prof. Dr. Florian Matthes

Prüfende der Dissertation:
1. Prof. Dr.-Ing. habil. Alois Christian Knoll
2. Prof. Wentong Cai, Ph.D.,

Nanyang Technological University

Die Dissertation wurde am 11.04.2022 bei der Technischen Universität München
eingereicht und durch die Fakultät für Informatik am 12.08.2022 angenommen.





Abstract

Agent-Based Simulation (ABS) is a modelling approach where simulated entities
i.e., agents, perform actions autonomously and interact with other agents based on
a set of rules. ABSs have demonstrated their usefulness in various domains such as
transportation, social science, or biology. Agent-based simulators commonly rely vastly
on Central Processing Unit (CPU)-based sequential execution. As a result, they often
suffer from long execution times, especially when the simulation model is complex and
the scale is large.

One approach to circumvent this problem is to employ heterogeneous hardware, e.g.,
systems equipped with both CPUs and Graphics Processing Units (GPUs). Although
existing works have shown this to be a promising solution, simulators that support
heterogeneous hardware are still not widely utilized. As this thesis demonstrates, blame
can be laid on the difficulties to find a viable partition of simulation components to
run on different hardware devices as well as steep programming requirements to enable
ABSs on heterogeneous hardware.

To ease the aforementioned issues, in this thesis, we present a full framework for
automated generation of high-performance simulation code targeting heterogeneous
hardware. The framework consists of two parts: OpenABLext and OptCL (short
for Optimise performance targetting high-performance domain-specifiC Languages).
OpenABLext significantly extends the existing OpenABL, a tool designed for gener-
ating high-performance ABS programs from sequential representations by parallelising
the execution of so-called step functions which implement the agent-based models. We
first extend its supported hardware to include multi-core CPUs, GPUs, and Field-
Programmable Gate Arrays (FPGAs) by designing an OpenCL backend, allowing the
incorporation of a wide range of hardware devices. We address OpenABL’s limitation of
2-dimensional and 3-dimensional simulation environments by supporting graph-based
simulation spaces in OpenABLext, opening it up for simulation types such as transport
simulation which commonly use graph-based networks. A conflict resolution mecha-
nism is introduced to ensure the simulation results of a parallel simulation run do not
deviate from a sequential run, significantly improving reproducibility. Eventually, an
online dispatcher is proposed as part of OpenABLext to enable automatic best suit-
able hardware selection for different simulation parts. In a comprehensive simulation
study, we show OpenABLext not only drastically simplifies the programming effort



but also produces simulation code that outperforms other similar state-of-the-art ap-
proaches. With OptCL, we extend the idea of the online dispatcher to further boost
the performance of the generated code on top of OpenABLext by enabling a collabo-
rative execution (co-execution) mode where multiple hardware devices work simulta-
neously on different simulation parts. Through static analysis of data dependencies
among compute-intensive code regions and performance predictions, the tool selects
the best hardware for each simulation part as well as the execution schemes. The
OptCL middleware operates at a language independent layer, a so-called Intermediate
Representation. Therefore, it can not only benefit OpenABLext but also many other
C-like Domain Specific Languages (DSLs). We demonstrate the power and versatility
of OptCL by applying it to OpenABLext as well as another commonly used DSL called
SYCL. In both scenarios, up to 21x speed-ups can be achieved.

The full framework proposed in this thesis significantly reduces the effort of employing
heterogeneous hardware environments for agent-based simulation and thereby paves the
way for the high-performance execution for a large variety of simulation models.
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Zusammenfassung

Agentenbasierte Simulation ist ein Modellierungsansatz. In der agentenbasierten Sim-
ulation, viele kleine Einheiten d.h. Agenten führen autonom Aktionen aus und inter-
agieren mit anderen Agenten . Es ist ein Ansatz zur Systembewertung, der in ver-
schiedensten Bereichen wie z.B. den Sozialwissenschaften, der Biologie, oder im Trans-
portwesen Anwendung gefunden hat. Gängige agentenbasierte Simulatoren verlassen
sich immer noch stark auf hauptsächlich CPU-gestützte Ausführung, was dazu führte,
dass sie oft unter langen Ausführungszeiten leiden, insbesondere wenn der Simulation-
sumfang groß oder komplex ist.

Durch den Einsatz heterogener Hardware, wie z.B. Systemen, die sowohl mit CPUs
als auch mit GPUs ausgestattet sind, lässt sich, wie in vielen Arbeiten bereits vielver-
sprechend gezeigt, dieses Problem reduzieren. Was der Akzeptanz und Anwendung
heterogener Systeme im Simulationsbereich jedoch noch entgegensteht, ist die Tat-
sache, dass die Programmierung heterogener Hardware fundierte und auch spezialisierte
Kenntnisse erfordert. Dies wird in dieser Arbeit anhand zweier Machbarkeitsstudien
demonstriert, die zeigen, dass es einen erheblichen Aufwand erfordert, um eine op-
timierte Performanz für agentenbasierte Simulationen in heterogenen Hardwareumge-
bungen zu erreichen: Die erste Studie veranschaulicht dies an einer Plattform bestehend
aus GPU and CPU, die zweite an einem System mit einem FPGA und einer CPU. Um
die Programmierung von agentenbasierten Simulationen für heterogene Hardwareumge-
bungen zu vereinfachen, wird in dieser Arbeit das Framework OpenABLext entwickelt.
OpenABLext basiert auf OpenABL, welches darauf ausgelegt ist, hoch-performante
agentenbasierte Simulationen aus sequentiellen Repräsentationen zu generieren und die
Ausführung sogenannter Stufen-Funktionen (welche die eigentlichen agentenbasierten
Modelle implementieren) zu parallelisieren. OpenABLext erweitert diese Plattform um
die Unterstützung von Multicore-CPUs, GPUs und FPGA durch die Einführung eines
OpenCL-Backends. Da OpenABL nur 2D- und 3D-Simulationsräume unterstützt, wird
die Plattform in dieser Arbeit außerdem um die Fähigkeit ergänzt, graphenbasierte
Simulationsräume zu ermöglichen. Des Weiteren wird ein halbautomatischer Konflik-
tlösungsmechanismus entwickelt, um sicherzustellen, dass die Simulationsergebnisse in
der parallelen Ausführung nicht von der einer sequenziellen abweichen. Schließlich wird
ein Online-Dispatcher als Teil von OpenABLext vorgestellt, welcher automatisch die
am besten geeignete Hardware für die verschiedenen Teile einer Simulation auswählt. In



detaillierten Leistungsbewertungen zeigt sich die verbesserte Leistung von OpenABLext
sowie das Potenzial von FPGAs im Kontext der agentenbasierten Simulation. Als weit-
ere Leistungsverbesserung wird der Online-Dispatcher um einen kollaborativen Aus-
führungsmodus erweitert, der es erlaubt, verschiedene Simulationsteile auf mehreren
Hardwareumgebungen gleichzeitig auszuführen. Dies wird durch eine neu-entwickelte
Middleware namens OptCL unterstützt, welche durch statische Analyse von Daten-
abhängigkeiten zwischen rechenintensiven Coderegionen und Leistungsvorhersagen die
beste Hardware für jeden Simulationsteil auswählt und festlegt, ob diese Teile auf ho-
mogener Hardware oder in kollaborativer Ausführung abgearbeitet werden sollen. Die
Middleware selbst arbeitet auf einer IR-Ebene, die es erlaubt, dass sie nicht nur mit
OpenABLext, sondern auch mit anderen C-ähnlichen DLSs genutzt werden kann. Diese
Vielseitigkeit wird durch die Anwendung mit SYCL, ein verbreitetes DSL, demonstriert.

Das in dieser Arbeit vorgestellte Framework bestehend aus OpenABLext und OptCL
vereinfacht die Entwicklung von hoch-performanten agentenbasierten Simulationen er-
heblich.
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Some parts of this chapter are taken from a work published in the ACM Computing
Surveys (CSUR) Volume 51 Issue 6 [2].

1.1 Motivation

Due to the breakdown of Dennard scaling, clock frequencies of single Central Process-
ing Units (CPUs) are no longer increasing exponentially, even though transistor counts
are still growing [3]. Large CPU vendors such as Intel or Advanced Micro Devices
(AMD) tend to focus on developing multi-core processors. This in turn calls for par-
allel computing techniques, as compute-intensive programs such as simulations that
do not run in parallel can no longer be easily sped up by incorporating a newer and
faster CPU. The other trend is that today’s hardware has become more and more het-
erogeneous. A multi-core CPU with an integrated or commodity Graphics Processing
Unit (GPU) is the de facto standard for a modern personal computer. Cloud service
giants such as Amazon or Microsoft also offer instances equipped with gpu or even
Field-Programmable Gate Arrays (FPGAs). Intel introduced a hybrid architecture on
its latest generation CPU, with one die having both power efficient cores and high-
performance cores. This reveals a new era of heterogeneity on one piece of hardware.

However, choosing the best suitable hardware for a given computational task is not
trivial. Some types of hardware are better suited for certain types of computations than
others. For example, tasks with large amounts of fine-grained parallelism can benefit
greatly from the massively parallel architecture of modern GPUs with their thousands of
cores. Tasks that are largely sequential or characterised by unpredictable data access
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and control flow lend themselves better to CPUs with out-of-order execution, long
pipelines and large caches. Similarly, if offloading a task to a GPU requires copying
large amounts of data to and from graphics memory, execution on a CPU may be
preferable even if substantial parallelism is available. This issue can be addressed by
an Accelerated Processing Unit (APU), where CPU and an integrated graphics core (of
lower performance compared to stand-alone GPUs) share the same memory. Lastly,
compute-intensive and memory-light tasks can be outsourced to FPGAs which can be
programmed to carry out specific computations in hardware.

One field that has always more demand for better performance is simulation. Faster
computers allow an increase in complexity of the incorporated simulation models, al-
lowing researchers to obtain more accurate results in less time. Agent-Based Simulation
(ABS)s have received broad attention as they can be employed to study various do-
mains, such as road traffic [4], social networks [5], pedestrian movement [6], military [7],
biology [8], economics [9], privacy[10], and so on. The main characteristic of ABS is
that autonomous agents (e.g., individuals or entities) act and interact to create effects
of emergence on the entire system. The complex decision-making of agents and the huge
scale of many simulated systems can lead to enormous execution times, motivating the
need for high-performance computing platforms.

ABSs are a promising target for parallel computing techniques as agents are au-
tonomous and in many cases carry out independent computations. In mobility simula-
tions, for instance, interactions between agents usually only take place between close-by
agents in a somewhat regular 2-dimension environment, allowing researchers to employ
space partitioning without inducing too much synchronisation overhead. Moreover,
many ABSs are time-stepped and agents are often updated at the same logical time,
providing inherent independence and thus potentials for parallelised execution. How-
ever, being able to partition a problem and execute it in parallel is not a guarantee that
it can be accelerated using heterogeneous hardware. Improper mapping of simulation
parts to hardware could lead to little increase or even decrease in performance which
we will show through two feasibility studies presented in Chapter 3. The studies will
also reveal that tuning the hardware mapping manually requires in-depth knowledge
of the underlying hardware as well as significant programming efforts. This creates
burdens, especially for simulationists or domain experts, who might not be very fa-
miliar with hardware. Hence, there is an urgent need for a tool to abstract away the
implementation and hardware details. This thesis aims to close this gap.
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1.2 Problem Statement

To create such tool to accelerate ABSs on heterogeneous hardware, the following chal-
lenges have to be overcome:

• First, simulations have to be partitioned with heterogeneity in mind to decide
which part of the program lends itself best to a specific hardware device, con-
sidering the resulting overhead from data transfers between the different devices.
To solve this challenge requires a deep dive into the architectural characteristics
of different hardware.

• Second, depending on the available hardware, the mapping of simulation parts
to hardware devices will likely be different. Complex simulations typically also
exhibit scattered and unpredictable memory access and control flow as the model
state develops dynamically over time. This further complicates an efficient dis-
tribution to heterogeneous hardware. This implies that the partitioning problem
raised in the first point needs to be solved again, if the underlying hardware has
changed.

• Last but not least, in order to make heterogeneous accelerators available to simu-
lationists and modellers without having thorough knowledge of the specific hard-
ware platforms, the framework should abstract away from hardware specifics or
automate the key or the entire adoption process.

Prior to this thesis, there are frameworks aiming to achieve a similar goal but focus-
ing on one type of accelerator e.g., MASON [11], Repast-HPC [12], and EcoLab [13]
targeting traditional CPU-based environments. Other frameworks such as FLAME
GPU [14] and Many-Core Multi-Agent System (MCMAS) [15] support graphics cards.
There also exist a handful of Domain Specific Language (DSL)s such as SYCL [16]
and Liszt [17] for general high-performance computing which targets multiple hard-
ware platforms. In particular, OpenABL [18] is a novel DSL for ABSs targeting CPUs,
GPUs and a cloud environment. However, for most of the DSLs like OpenABL, users
have to specify which type of accelerator to use at each compilation. This may yield
another two issues: First, choosing an accelerator that leads to the best performance
again requires knowledge of the hardware or trial-and-error attempts. Second, the out-
putted programs target different hardware can not be executed collaboratively. This
leaves the power of the idle hardware untapped.

This thesis aims to build a framework based on OpenABL by overcoming its current
limitation. The framework abstracts away hardware details, allowing users to write
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sequential ABS code which is later translated by the framework to run on accelerators.
It also takes care of the hardware assignment, enabling collaborative execution (co-
execution) where multiple accelerators can work simultaneously, with little intervention
from the user.

1.3 Key Contributions

In addition to the framework, there are intermediate results and achievements along
the way which can benefit researchers, simulationists and modellers.

• (Chapter 2) A comprehensive survey of agent-based simulations on hardware
accelerators is given. We provide an overview and categorisation of the litera-
ture according to the applied techniques. It targets simulationists and modellers
seeking an overview of suitable hardware platforms and execution techniques for
a specific simulation model, as well as methodology researchers interested in po-
tential research gaps requiring further exploration.

• (Chapter 3) In order to understand the efforts, challenges, and oracle gains to
enable ABSs on heterogeneous hardware, two feasibility studies are conducted
where a typical Agent-Based Traffic Simulation (ABTS) is manually ported to
run on different accelerators. In the first study, starting from a pure CPU-based
execution mode, we evaluate the performance gains by varying different paralleli-
sation schemes and offloading them onto GPUs. We believe it is the first work to
systemically study the impact of simulation partition strategies on performance of
ABTSs. The second study drafts a design of accelerating ABS on FPGAs using
high-level synthesis. To the best of our knowledge, it is also the first FPGA-
accelerated ABTS to rely on models from the traffic engineering literature, and
the first to rely on high-level synthesis. The studies can be inspirational for re-
searchers who intend to accelerate their own applications on the given hardware
platforms.

• (Chapter 4) For simulationists intend to build their own ABS applications from
scratch and avoid diving deep into the hardware details, we provide the Open-
ABLext framework which extends an existing framework, OpenABL [18], to au-
tomatically generate high-performance ABS code from sequential representations
targeting heterogeneous hardware. The extension enriches the syntax of Open-
ABL to allow defining the simulation space as graphs as well as providing a
conflict resolution mechanism through user-specified code. Further, the original
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framework is also enhanced to output device-aware code in Open Computing Lan-
guage (OpenCL), enabling the co-execution of ABS on heterogeneous hardware
platforms consisting of CPUs, GPUs and FPGAs. OpenABLext can be seen as
an enabler to tap the computing power of heterogeneous hardware platforms for
ABS.

• (Chapter 5) To further optimise the performance, we propose a middleware
called Optimise performance targetting high-performance domain-specifiC Lan-
guages (OptCL) that complements OpenABLext by enhancing its co-execution
ability. Through a static analysis of data dependencies among compute-intensive
code regions and performance predictions, OptCL selects the best execution
schemes out of purely CPU/accelerator execution or co-execution in an auto-
mated manner. Notably, the middleware operates on Intermediate Represen-
tations (IRs) and, therefore, is completely independent of OpenABLext. That
implies many other existing DSLs similar to OpenABLext can also benefit from
employing OptCL.

1.4 Outline

The remainder of this thesis is structured as follows:
In Chapter 2, background knowledge of general ABS techniques as well as basics of

the hardware platforms is given, followed by a comprehensive review of techniques for
enabling ABSs on heterogeneous hardware.

In Chapter 3, two feasibility studies are conducted in which we try to port a CPU-
based ABS onto GPUs and FPGAs. The studies demonstrate the manual efforts re-
quired to enable a CPU-based ABS on heterogeneous hardware. Furthermore, by eval-
uating different simulation parallelisation schemes, we reveal the best parallelisation
scheme, i.e. how to partition and execute an ABS on available hardware.

To help reduce the aforementioned efforts for modellers and simulationists, Chap-
ter 4 introduces the OpenABLext framework which extends the existing OpenABL
framework.

The OpenABLext framework can be further automated and the performance of the
generated ABS code can be improved by enabling co-execution. In Chapter 5, we
describe and evaluate an extension plug-in to OpenABLext named OptCL to achieve
such goal.

With the framework comprised of OpenABLext and OptCL formed, Chapter 6 con-
cludes this thesis and sketches the future research directions.
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Prior to introducing the proposed framework, this chapter gives an overview of the
background knowledge and the state-of-the-art techniques.

2.1 Agent-based Simulation

Agent-Based Modelling and Simulation (ABMS) is a widely used approach [19] to evalu-
ate complex systems in various domains such as traffic, crowds, economics, information
propagation, and biology. The field of ABMS is extensive, leading to a large number
of tools and frameworks (e.g., MASON [11], Repast [12], NetLogo [20], Swarm [21],
MATSim [22]), some of them general purpose, others tailored to specific applications
or domains. A 2010 survey by Allen discusses a selection of ABMS frameworks and
their applications in a wide range of domains [23]. More recently, Abar et al. [24] pro-
vides a comprehensive overview of more than 70 agent-based simulation tools in terms
of programming languages, software and hardware requirements, and agent interaction
types, as well as the target domains and the difficulty in model development.

1 c l a s s Agent : Coord p o s i t i o n ;
2

3 whi le ( sim_time not end ) {
4 model_1 ( ) ;
5 model_2 ( ) ;
6 . . .
7 sim_time advances ;
8 }
9

10 void model_1 ( ) {
11 /∗∗ sense_begin ∗∗/
12 L i s t agents = getNeighbouringAgents ( p o s i t i o n ) ;
13 /∗∗ sense_end ∗∗/
14

15 /∗∗ think_begin ∗∗/
16 Coord v e l o c i t y = computeVelocity ( agents ) ;
17 /∗∗ think_end ∗∗/
18

19 /∗∗ act_begin ∗∗/
20 p o s i t i o n = p o s i t i o n + v e l o c i t y ∗ time ;
21 /∗∗ act_end ∗∗/
22 }
23
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24 void model_2 ( ) { . . . }

Listing 2.1: Example of an agent-based crowd simulation.

In ABSs, the simulated entities are agents that perform actions autonomously and
interact with other agents based on certain rules. Listing 2.1 gives an example pseudo
code of a typical ABS simulating the movement of crowd. Each agent-based model
ABS typically follows a Sense-Think-Act cycle (e.g., [25]): in the Sense stage, an agent
detects and analyses its neighbours as well as the environment in which it resides. In
the Think stage, an agent makes judgement based on the information collected during
the Sense stage. The update of states takes place in the Act stage. The simulation
time is typically advanced in fixed time steps following the Time-Stepped Simulation
(TSS) approach at which all agents update their states.

2.1.1 Constraints for the studied ABSs

Many agent-based simulators and models roughly follow a common set of constraints
which can be leveraged to simplify our extraction of parallelism. We identify the
following constraints which are held throughout the entire thesis:

1. Time-stepped execution: usually, the model time is advanced in fixed increments.
At each time step, all agents update their states.

2. Two states per agent: to decouple the simulation results from the order in which
agent updates are performed, simulators commonly support storing each agent’s
old state at t − 1 and the new state at t separately. During an update from t − 1
to t, only read accesses are performed to the agents’ states and the environment
state at t − 1, and only write accesses to the states at t. Thus, within an update,
there are no read-after-write dependencies across agents.

3. Agent-based models as function calls: the actions and interactions of agents are
implemented by executing a series of agent-based models. Conceptually, one
model can be represented by one function call. Notably, the models can carry
interdependencies. Therefore they may required to be executed in certain order.
A blind parallel execution of all models can possibly result in wrong simulation
results.

4. Sense-Think-Act cycle: we assume that each agent-based model follows the well-
known Sense-Think-Act cycle, with one such cycle per model.
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2.1.2 Computational Aspects of ABS

The literature on executing ABS using heterogeneous hardware can be organised ac-
cording to the challenges addressed by the individual works. In this literature review,
we identified five such challenges, which are consequences of features shared by most
ABS models.

1. Hardware assignment: A well-known challenge in parallel and distributed sim-
ulation lies in partitioning the simulation workload among the processing ele-
ments. Generally, there are two dimensions according to which a simulation can
be partitioned [26]: domain decomposition partitions according to the simulation
space (e.g., different roads in a traffic simulation), while functional decomposi-
tion partitions according to different models (e.g., different layers of the network
stack in a computer network simulation). In ABS on heterogeneous hardware,
the hardware assignment is further complicated by the shifting workload due
to the agents’ autonomy and mobility, and by the heterogeneity of the hard-
ware platform, in which devices may differ in their suitability for certain types
of computations. Existing techniques to approach this challenge either attempt
to determine static boundaries within the simulation that allow for an efficient
partitioning without further adaptation, or dynamic hardware assignments that
are updated at simulation runtime.

2. Data transfer overhead: As a result of the agents’ mobility and interactivity,
even under an efficient static or dynamic partitioning, frequent data transfers are
usually necessary among the hardware devices to migrate agents or to reflect inter-
agent communications. Techniques have been proposed to exploit the limited
agent velocity and interaction range to reduce the impact of the data transfers
on the simulation performance.

3. Scattered memory accesses: The dynamic and largely unpredictable agent
movement and interaction translates to memory access patterns that are in con-
flict with the regular, i.e., linear, accesses preferred by common accelerators. The
literature proposes representations of irregular structures using regular memory
layouts and caching heuristics to improve the efficiency when accessing the sim-
ulation data.

4. Maximisation of parallelism: A defining characteristic of simulations is the
notion of simulated time, which puts constraints on the simulation progress during
parallel execution. Although there may be a substantial amount of computation
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scheduled, processing elements may frequently be blocked waiting in order to
maintain synchronisation with the other processing elements. The field of parallel
and distributed simulation proposes a wide range of algorithms to extract as
much parallelism as possible while maintaining the synchronisation of simulated
time [27]. In recent years, a number of works have re-evaluated and adapted these
approaches targeting the execution of ABS on accelerators.

5. Abstraction from hardware specifics: Given the frequent adaptations and
extensions commonly made during the development of an ABS model and dur-
ing the verification and validation process, it is necessary to provide frameworks
to simplify the modellers’ implementation work while still maintaining high per-
formance. In past years, a number of frameworks have been presented in the
literature that abstract from the hardware details as well as libraries for unified
access to the memory of different devices.

2.2 Hardware Platforms

In this section, the technical characteristics of hardware platforms that have been used
to accelerate agent-based simulations are given.

2.2.1 Many-Core CPU

Architecture: A many-core (or many integrated core, MIC) CPU contains a group of
CPU cores on a single chip. A many-core CPU can be connected to the host machine
via PCI-E or can be a standalone CPU with direct access to the system memory.

Benefits: A notable advantage of some many-core CPUs over GPUs and FPGAs
is their capability to execute largely unmodified parallelised code written for regular
CPUs [28]. Since the individual cores support out-of-order execution, employ deep
instruction pipelines, and have access to comparatively large caches, the need to adapt
a program’s control flow to the hardware is less pressing than with, e.g., GPUs [29].
Further parallelism may be extracted using a Single Instruction Multiple Data (SIMD)
style of programming using instruction set extensions such as AVX-512 [30].

Recent work showed that many-core CPUs can substantially accelerate Discrete-
Event Simulation (DES) [31, 32]. A number of authors also evaluated the acceleration
of various types of simulations such as fluid dynamics and seismic wave propagation
using non-x86 many-core CPUs [33, 34].
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Limitations: In light of the relatively high cost of recent many-core CPUs (≈
US$3368.00 as of 03/2018 for an Intel Xeon Phi Processor 7290F) compared to other
accelerators, the performance gains compared to traditional multi-core CPUs have fre-
quently been relatively low (e.g., [35]). Since the performance depends strongly on
parameters such as the number of threads and on the use of the different available
types of memory, parameter tuning may be necessary [36].

2.2.2 GPU

Architecture: GPUs utilise a massively parallel architecture, which makes them more
efficient than CPUs when large volumes of data can be processed using the same in-
structions in parallel. This type of parallelisation is called SIMD. Their original purpose
was to accelerate the processing of three-dimensional scenes to be displayed on two-
dimensional screens. However, modern GPUs have evolved to support a wide range of
computational tasks using programming frameworks such as Compute Unified Device
Architecture (CUDA), OpenACC [37], and OpenCL [38]. CUDA and OpenCL follow
a similar programming model, with some differences in terminology.

We sketch the GPU architecture and programming model using NVIDIA’s terminol-
ogy. AMD hardware follows a similar design. A modern GPU consists of a scalable
number of Streaming Multiprocessors (SMs), which contain a number of Streaming
Processors (SPs) that carry out most of the computations, Special Function Units
(SFUs) for special operations such as trigonometric functions, and low-latency on-chip
memory. Off-chip RAM is shared among all SMs [39].

GPU computations are organised hierarchically: at the lowest level, there are threads
representing a sequential control flow. Threads are grouped into warps of a hardware-
specific size (32 threads on current NVIDIA hardware). Threads within a warp are
executed in lockstep, i.e., if the control flow diverges, the branches are serialised. Thus,
it is important to minimise intra-warp divergence. A configurable number of warps
form a block, within which efficient memory synchronisation is possible. Per-SM warp
schedulers dynamically assign runnable warps to the available SP to minimise stalling
on high-latency memory accesses. Typically, programs schedule many more threads
than there are physical SP to support this type of memory latency hiding [40].

Memory access overheads can be reduced by adhering to memory access patterns
that allow for coalescing, i.e., aggregated execution of memory accesses by multiple
threads [40]. Generally, the number of memory requests is minimised when adjacent
threads access adjacent memory locations. Achieving memory coalescing is a common
focus of research on GPU acceleration (e.g., [41, 42]).
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Figure 2.1: GPU architecture

Benefits: GPUs lend themselves best to problems that can be formulated so that
large numbers of similar code segments are executed on different data. Often, GPUs
accelerate such data-parallel tasks by one to two orders of magnitude compared to
implementations on multi-core CPUs.

Frameworks such as CUDA, OpenCL, and OpenACC, as well as libraries such as
Thrust [43] and CUBLAS [44], enable relatively simple development compared to plat-
forms such as FPGAs [45]. Programming frameworks are available even for more
specialised tasks such as ABS [14].

Limitations: The main requirements for high performance GPU code are a large
degree of parallelism, the possibility to achieve coalesced memory access, and a largely
common control flow among the threads within a warp. Thus, memory-intensive
tasks with complex data dependencies are typically difficult to execute efficiently on
GPUs [46, 47].

Further, since dedicated graphics cards are connected to the host CPU via the PCI-E
bus, overhead is introduced by the data transfers between CPU and GPU. For instance,
a PCI-E 3.0 x16 link allows an NVIDIA Titan X card to transfer data between host
and graphics memory at up to 16 GB/s, while the GPU can access its off-chip RAM at
up to 336.5 GB/s. However, the impact of data transfers may be lower when relying on
recent architectures’ interconnects such as NVIDIA’s NVLink [48] and AMD’s Infinity
Fabric [49], which achieve throughputs of up to 300 GB/s.

13



Chapter 2. State of the Art

Compared to many-core CPUs, programming for GPUs still requires profound knowl-
edge of the GPU architecture [50]. As with many-core CPUs, the large number of con-
figurable parameters render the performance tuning of GPU programs an important
but challenging task [51].

2.2.3 APU

Architecture: APUs integrate CPU and GPU on a single chip. Although the term
APU was coined by AMD, Intel CPUs with Intel HD Graphics follow a similar archi-
tecture. Unlike stand-alone GPUs, the fused GPU of an APU has direct access to the
host memory through a low-latency and high-bandwidth bus.

Benefits: The main benefit of APUs is the opportunity for zero-copy memory access:
since all memory is accessible both from the CPU and the GPU, costly data transfers
over a relatively low-bandwidth bus like PCI-E can be avoided. Zero-copy memory
access also provides memory savings, as only one copy of an object in memory is
required. Since memory access is shared, tasks can efficiently be assigned according to
their suitability for the CPU or GPU portion of the device.

Limitations: Existing APU products focus more on energy efficiency than high
performance. They typically contain fewer processing units than stand-alone CPUs
and GPUs of the same hardware generation. For example, the Ryzen 5 2400G APU by
AMD has 704 Vega-based stream processors, while the dedicated graphics card AMD
RX Vega 64 has 4096 stream processors. As a consequence, compared to high-end
stand-alone CPUs and GPUs, their computational power is relatively low. Still, as
will be discussed in Section 2.4, some works have considered APUs for accelerating
agent-based simulations.

2.2.4 FPGA

Architecture: An FPGA is an integrated circuit made of an array of interconnected
Configurable Logic Blocks (CLBs). FPGAs often provide various communication inter-
faces such as PCI-E, UART, and Ethernet. A CLB consists of several slices (sometimes
also called logic cells), each slice containing a set of storage elements and Look-Up Ta-
ble (LUT). A LUT has a number of inputs and outputs as well as flip flops that store
a mapping between possible inputs and outputs. The mapping between inputs and
outputs is defined by the users [52]. In addition, the FPGA may have access to off-chip
Dynamic Random Access Memory (DRAM).
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TimeCycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6

T2.1 T2.2 T2.3 T2.4
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Cycle 7

(a) Pipeline parallelism
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T4.1 T4.2 T4.3 T4.4

T1.1 T1.2 T1.3 T1.4

(b) SIMD parallelism

Figure 2.2: Pipeline parallelism versus SIMD parallelism. We assume four tasks, each task
being divided into four operations (e.g., T1.1 - T1.4).

The logic to be placed on an FPGA is typically specified in a Hardware Descrip-
tion Language (HDL) such as VHDL [53] or Verilog [54]. In recent years, there have
been intensive efforts to enable High-Level Synthesis, i.e., to generate FGPA layouts
directly from high-level programming languages such as C, C++, or Java. Recently,
big FPGA vendors such as Intel and Xilinx released dedicated SDKs to support FPGA
programming using OpenCL [55].

Benefits: Due to the flexibility and high energy efficiency of FPGAs, they are fre-
quently used for computationally intensive and highly parallelisable tasks. For instance,
FPGAs can be three orders of magnitude faster than GPUs when conducting specialised
tasks such as encrypting a single 64-bit block by the DES [56]. In contrast to CPUs
or GPUs, on which data paths are fixed, FPGAs provide flexible and customised data
paths [57]. In past years, FPGA have received more attention in the field of simulation,
particularly in Electronic Design Automation (EDA), since hardware designs can be
naturally expressed as FPGA layouts.

Limitations: FPGAs are usually connected to a host CPU without direct access
to system memory. The resulting need for data transfers can reduce the potential for
performance gains.

FPGAs are regarded as lacking in programmability when compared to CPUs and
GPUs [45, 56]. Although recent efforts towards high-level synthesis alleviate this limi-
tation, manual tuning is still necessary to achieve the best performance [58, 59].

Finally, FPGA are configured for a specific task. Since reconfiguration can take
multiple hours [60], FPGAs do not facilitate development processes that require fast
iteration. This may limit the applicability of FPGAs in early phases of simulation
model development, where changes to the simulation model frequently occur and require
immediate feedback for evaluation.
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2.2.5 Other Hardware Platforms

Application-Specific Integrated Circuits (ASICs) are integrated circuits fabricated to
support a particular application. System on Chip (SoC) devices, which integrate com-
ponents such as microprocessors, memory, and input/output, on a single chip are com-
monly fabricated as ASICs. To our knowledge, ASIC and SoC devices have not yet
been explored as platforms to accelerate ABS. However, in the field of DES, some works
have considered offloading to ASICs [61, 62, 63, 64, 65]. Notably, some of the envisioned
components were fabricated physically [64].

Recent ASIC and SoC devices include Google’s Tensor Processing Units (TPUs) and
NVIDIA’s Xavier. We briefly sketch potential uses of these hardware platforms in the
context of ABS. The core of a TPU is a matrix-multiply unit designed to accelerate
machine learning applications based on neural networks. At such tasks, TPUs can
outperform recent CPUs or GPUs by a factor of up to 30 [66]. A potential use case
for TPUs in ABS lies in the acceleration of agent models relying on neural networks
(e.g., [67]). When exploring the input parameter space of an ABS (e.g., [68]), TPUs
could also accelerate machine learning algorithms used to steer the exploration. Xavier
could be used to accelerate applications with feedback between an ABS and a real-world
system, e.g., for dynamic road traffic control based on simulation-based predictions
(e.g., [69]). The processing of sensor data and the execution of the simulation could be
assigned to the different processing elements of Xavier.

Although there are promising directions for future work based on these emerging
platforms, we are not aware of existing literature on the acceleration of ABS using
ASICs and SoCs. As our main focus is common accelerators, these types of special
hardware will be excluded in the rest of the thesis.

2.3 Open Computing Language (OpenCL)

A large part of this thesis will rely on the Open Computing Language (OpenCL) as
the programming language. We, therefore, give a brief introduction here. OpenCL is a
framework that allows users to write parallel programs in C-99 standard. It abstracts
away low-level hardware specifics. OpenCL is supported by a wide range of hard-
ware including CPUs, GPUs, APUs, and FPGAs, allowing it to target heterogeneous
hardware environments.

An OpenCL execution environment is comprised of a host (usually a CPU) and one
or multiple devices (e.g., CPUs, GPUs) (cf. Figure 2.3). A host program initialises the
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Host code

alloc_mem_acc1

alloc_mem_acc2

clenqueueNDRangeKernel(...)

clenqueueNDRangeKernel(...)

Device code

__kernel void kernel1(..){

}

__kernel void kernel2(..){

}

CPU Acceleators
(CPUs, GPUs, FPGAs,..)

Figure 2.3: OpenCL programming paradigm

environment, control, memory, and computational resources for the devices. A device
program consists mainly of so-called kernels that implement the computational tasks.

In OpenCL, threads that process the tasks are referred to as work-items. A config-
urable number of work-items form a work-group. Work-items belonging to the same
work-group have access to a certain amount of shared memory and can be synchronised
efficiently.

OpenCL offers a two-layer memory hierarchy. Low-latency local memory usually
maps to the on-chip memory, shared among work-items in the same work-group. Global
memory often binds to the massive but latency-prone off-chip memory to which all
work-items have access. In some research, the memory hierarchy is sometimes described
as a four-layer architecture which includes, other than the two layers introduced above,
a read-only memory layer for constants and a private memory layer which is usually
registers.

2.4 Addressing the Challenges of Agent-Based Simulation
on Accelerators

Agent-based simulation on hardware accelerators started to receive attention from the
research community from the early 2000s onwards. The vast majority of these works

17



Chapter 2. State of the Art

Domain/Hardware Many-Core CPU GPU APU FPGA
Mobility [70, 71, 72, 73, 74, 75, 76, 77, 69, 78] [79] [80]
Biology [15] [81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92] [93]
Ecology [94, 95] [96]
Social [28] [97, 98, 99, 100, 101, 50, 102] [103]

Physics and Chemistry [104, 105, 106, 107, 108, 109, 95] [110]
Networks [111, 112, 1, 113, 114, 115, 87, 116]

Domain-independent
Simulation Framework [15] [85, 91, 15, 117, 118, 119, 120, 18, 121]

Table 2.1: Simulation model domains considered in the works covered in the chapter.

Challenge Technique Publications

Hardware
assignment

Static assignment by type of computation Many-Core [28], GPU [69, 122, 1, 123, 112, 75, 76, 124, 106, 121]
[88, 89, 125], APU [79], FPGA [80, 93, 96, 103]

Dynamic assignment based on runtime measurements GPU [126, 127, 128, 129, 125, 130], FPGA [126]
Data transfer

overheads
Overlapping of communication and computation GPU [111, 131, 107]
Computation replication at partition boundaries GPU [83, 86]

Scattered

Manual caching in shared memory GPU [85, 86, 92]
Heuristics for agent update order GPU [78, 132, 97, 98]

memory accesses APU [79], GPU [109, 133, 84, 70, 71, 104, 81, 72, 100, 82]Representation of irregular data structures
by arrays and grids [134, 99, 105, 90, 135, 116, 136, 114, 137, 138], FPGA [57, 110]

Maximisation of
parallelism

Multiple replications in parallel GPU [122, 73, 94, 111, 101, 95]
Window-based event execution GPU [108, 139, 113, 114, 115, 116, 99, 87]

Speculative execution GPU [102, 136], FPGA [110]
Computation sorting GPU [111, 87, 90]

Abstraction from
hardware specifics

Frameworks to support simulation development Many-Core [15], GPU [85, 91, 15, 133, 77, 18]
Unified memory access GPU [118, 117, 119, 120]

Table 2.2: A classification of the challenges in ABS on accelerators along the relevant works
addressing them.

focus on GPUs, mainly because they are comparatively inexpensive, and because, in
recent years, the ease of programming of GPUs has slowly been approaching that
of CPUs. Furthermore, well-established programming frameworks such as OpenCL
enable the formulation of models in a less hardware-specific manner. For publications
that considered specific simulation models, Table 2.1 shows the simulation domains
and hardware platforms, providing researchers with pointers to relevant works in their
respective domain.

The literature is organised along the key challenges we identified in Section 2.1, that
is, hardware assignment, data transfer overheads, scattered memory accesses, maximi-
sation of parallelism, and abstraction from hardware specifics. In the following, we
discuss the techniques from the literature applicable to these key challenges in agent-
based simulation. Table 2.2 summarises the systematisation of knowledge presented in
this chapter. It contains our classification of challenges, techniques, publications, and
types of accelerators.
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2.4.1 Hardware Assignment

One of the main challenges in parallel and distributed computations in heterogeneous
hardware environments lies in finding a suitable partitioning, i.e., assignment of a given
problem to the available hardware [140]. We discuss techniques that have been used
to address this problem according to two different, yet interrelated, aspects: first,
we consider techniques to select suitable hardware for sub-tasks according to their
ability to efficiently execute certain types of computations. The minimisation of data
transfers among the partitions running on separate devices will be considered in the
next subsection.

The existing approaches can be roughly categorised as follows:

1. Static assignment: if the simulation model involves different types of com-
putations that clearly suggest a certain hardware mapping, it may be sufficient
to partition the model prior to a simulation run without any adaptation during
runtime. For instance, model segments involving large numbers of independent
floating point operations may be well-suited for execution on a GPU, whereas
segments with highly data-dependent control flow suggest the execution on a
CPU.

2. Dynamic assignment: frequently, the dynamic behaviour of a simulated sys-
tem at runtime translates to unpredictable computational patterns. In such cases,
maintaining high performance may require an adaptation of the hardware map-
ping based on performance measurements at runtime. An inherent challenge of
dynamic assignment is the trade-off between the performance increase through an
improved assignment and the costs of runtime measurements and re-assignment.

An ample body of research has considered the parallelisation of general programs onto
heterogeneous platforms, which is an enormous challenge due to the arbitrary control
flows and memory access patterns that can be present in general programs. Thus,
typically, the approaches limit themselves to program portions that are particularly
amenable to parallelisation on accelerators. In the case of ABS, constraints such as
the separation of data into a per-agent state and the limited sensing range of agents
somewhat simplify the problem of parallelisation, potentially enabling a higher degree
of automation in the hardware mapping. In Section 2.5, we outline the vision of an
automated approach.
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2.4.1.1 Static Assignment

The simplest hardware assignment is to execute the entire simulation on a single device.
This approach is common in the existing work on FPGA-based ABS. For instance,
Vourkas and Sirakoulis [96], who implement an environmental model simulation based
on Cellular Automata (CA). The authors note the structural similarity between a two-
dimensional cellular automaton and an FPGA and assign one cell to eachCLB. If the
number of cells exceeds the number of CLBs, the simulation lattice is partitioned into
several layers, which are processed one after the other. Similarly, Cui et al. [93] and
Georgoudas et al. [103] show high performance when assigning ABS models operating on
cellular grids to a single FPGA. A number of works on GPU-based ABS take the same
approach of assigning the entire simulation to the accelerator [69, 83, 84, 70, 71, 77].
In these works, the computations associated with the Sense-Think-Act cycle of the
individual agents are often assigned to one GPU thread each.

Often, the available hardware devices lend themselves to specific types of compu-
tations, or the memory consumption of the simulation exceeds the capacities of an
individual device. Then, it is necessary to find a partitioning for the ABS, which may
follow either a domain decomposition or a functional decomposition [26].

Domain decomposition: When using domain decomposition, the simulation space
is partitioned and each partition is assigned to a separate processing element. An ex-
ample is given by the work by Lai et al. [28], who implement Game of Life [141] and a
simulation of urban sprawl processes using cellular automata [41]. The authors compare
the performance achieved when using one CPU per execution node, one GPU per node
and 60 cores per CPU-based many-core accelerator, using MPI for inter-node commu-
nication in each instance. The authors conclude that the use of accelerators provides
a performance benefit over the purely CPU-based execution. Given a sufficiently large
number of assigned processors, using the CPU-based many-core accelerator with fully
device-based simulation achieves similar performance as the GPU-based acceleration.

Generally, a domain decomposition of an ABS targeting hardware accelerators is
suited to assign different parts of the simulation to devices of the same type. Since
different types of hardware device typically favour certain types of computations, when
assigning computations to different types of hardware, functional decomposition is
commonly applied instead. It is thus natural that most of the literature on hardware
assignment of ABS to heterogeneous hardware has focused on functional decomposition.

Functional decomposition: An efficient functional decomposition identifies static
functional boundaries in the considered simulation to maximise the computational per-
formance on each device, while minimising data transfers. Pavlov and Müller [122]

20



Chapter 2. State of the Art

discuss approaches for the hardware assignment of ABS and conclude that an approach
in which the CPU and the GPU hold duplicated or partial agent and environment data
is the most promising. An overall development process for a GPU-accelerated ABS
starting from a CPU-based implementation is proposed in [106, 124]. After the de-
composition of the simulation into small task modules, modules suitable for execution
on a GPU such as loops are identified heuristically and manually replaced with GPU-
executable counterparts. Several case studies [106, 88, 89] show substantial speedup
when employing this method.

Some works have focused on isolating simulation code that heavily relies on floating
point arithmetic to be executed on a GPU. Bauer et al. [123] assign the discrete part of
a combined continuous-discrete simulation to the CPU and the continuous part, which
relies on floating point arithmetic, to the GPU. The authors conclude that while keeping
the GPU fully utilised poses a challenge, models with large numbers of floating point
operations can benefit from GPU acceleration. Andelfinger et al. [1] compare different
GPU/CPU simulator architectures aiming to offload events associated with floating
point operations to a GPU. In a basic CPU/GPU hybrid scheme (cf. Figure 2.4a),
the CPU offloads each event to the GPU individually. The required data transfers
can be reduced by aggregating independent events to execute them in a single step
(cf. Figure 2.4b) and by leaving computation results required by subsequent events
in graphics memory (cf. Figure 2.4c). Finally, if the entire simulation is ported to
the GPU, data transfers are only required at the start of the simulation and once the
simulation terminates (cf. Figure 2.4d). While the simulation performance increases
with each of the above optimisations, the developer is burdened with some additional
complexity.

Since floating point arithmetic is a natural fit to the GPU’s capabilities, models
heavily relying on such operations are likely to benefit from a functional decomposi-
tion focusing on this aspect. Examples of such models include kinematic equations
as in microscopic traffic simulation or crowd simulation, as well as models of wireless
communication and of biological or chemical processes.

In another approach to functional decomposition, agent behaviour is left to the CPU
while environment dynamics are handled by the GPU [106]. With this approach, the
author aims to reduce the impact of the GPU acceleration on the maintainability of
the simulator code. To increase performance, portions of the agent behaviour that do
not depend on the agent state, e.g., perception of the environment, are carried out on
the GPU independently of individual agents for all locations.

21



Chapter 2. State of the Art

Device

CPU Event i Event i+1 Event i+2

ProcessingProcessing Processing

(a) Hybrid CPU/Device.
Device

CPU Event i

Processing

Event i+1 Event i+2

Processing

(b) Event Aggregation.
Device

CPU Event i

Processing

Event i+1 Event i+2

Processing

(c) Memory Reuse.
Device

CPU

Event i Event n...

(d) Fully Device-based Simulation.

Figure 2.4: Four CPU-device simulation schemes [1]. Devices can be GPUs or many-core
CPUs.

In contrast to the above works, a number of approaches partition the simulation
along functional boundaries specific to the given simulation models. For instance,
when the underlying simulation can be clearly separated into model computation and
management tasks, a master-worker scheduling approach can be applied, as shown
by Bilel et al. [112] in the context of large-scale mobile networks simulation. In the
proposed design, the model is executed on the GPU, while the CPU orchestrates the
event scheduling, simulation status monitoring, and memory allocation. Nguyen et
al. [121] propose a general approach to enable spiking neural network simulators on
heterogeneous hardware. The core of the simulator’s functionality called static parts,
are ported manually to run on accelerators such as GPUs, while the dynamic parts, i.e.
the neuron models, are transformed to OpenCL code automatically.

Finally, the nature of traffic simulation allows for a relatively straight-forward func-
tional decomposition according to different simulation aspects. Xu et al. [75] and Song
et al. [76] assign agent mobility in a mesoscopic traffic simulation to the GPU, whereas
the route calculation, agent generation, and file reading and writing remain on the
CPU. The two parts run asynchronously to avoid data transfer latencies. In the traffic
simulation on an APU presented by Wang et al. [79], sorting of agent states is required
to locate each agent’s neighbours. To reduce synchronisation overheads on the GPU
portion of the APU, the GPU portion only performs state updates and local sorting,
whereas the sorting across GPU blocks is handled by the CPU resources. The work
separation can be carried out efficiently using zero-copy memory access. Considering
FPGAs, Tripp et al. [80] show how the movement of agents on individual lanes can be
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computed on an FPGA, while the agents’ transitions from one road to another as well
as the behaviour at intersections are computed on the CPU.

In summary, most approaches relying on static hardware assignment split the sim-
ulation workload into coarse-grained functional tasks so that some tasks are clearly
suited for a certain hardware device. To minimise trial-and-error, heuristics may be
applied to identify a suitable mapping of tasks to the hardware. Tasks involving large
numbers of parallel floating point operations are among the most common portions of
simulations offloaded to accelerators.

2.4.1.2 Dynamic Assignment

While a wide range of literature has considered the problem of dynamically adapting
a partitioning of agent-based simulations to multiple CPUs (e.g., [142, 143, 144]), we
are not aware of such works that specifically target heterogeneous hardware environ-
ments. In the following, we outline recent works on dynamic assignment of general
computational workloads to heterogeneous hardware. Since these works are generic,
they cannot rely on knowledge of the general structure of ABS simulators or on model
knowledge. Still, the proposed methods to determine suitable hardware platforms for
given segments of code can be applied to ABS as well.

Belviranli et al. [126] propose a self-scheduling scheme for partitioning generic ap-
plication workloads into blocks and assigning them to CPUs, GPUs, and FPGAs. The
proposed system consists of two phases: in the first phase, the system performs an
online training with a small amount of data to estimate the maximum workload ca-
pacity of each hardware device. Fast convergence is achieved by fitting four sampled
data points to a logarithmic function. Once the capacity is determined, the processing
units’ performance can be inferred from the same data. When the change of processing
speed between two samples drops below a threshold, it is used as the final estimated
value. In the second phase, the remaining workload is partitioned based on the relative
processing speeds of the available processing units, assigning a larger portion of the
workload to faster processing units.

Some authors use machine learning techniques such as support vector machines,
artificial neural networks, and decision trees to distribute the workload of OpenCL
programs to CPUs and GPUs. For example, Grasso et al. [128, 129] and Zhang et
al. [125] translate a single-device OpenCL program to a multiple-device program, while
Wen et al. [127] focus on scheduling multiple OpenCL functions to run in parallel
on CPU/GPU. They train a machine learning algorithm according to a set of typical
OpenCL programs and benchmarks. The prediction generated by the machine learning
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algorithm guides the assignment of a portion of the computation to CPU or GPU.
Their results show that the above three machine learning approaches outperform purely
CPU- or GPU-based approaches. The scheduling scheme by Wen et al. achieves a
performance improvement compared to a first-come, first-served scheme and a scheme
where computation-heavy tasks are handled by the GPU.

To automate the compilation of sequential programs for parallelised execution on
heterogeneous hardware, Grosser and Hoefler [130] present a compiler that generates
CPU and GPU code. Regions with mostly static control flow and sufficient computa-
tional intensity are detected and transformed to a formal representation to facilitate
program transformations [145]. After optimisations have been performed to increase
memory access locality and parallelism, CUDA code for GPUs is generated from the
formal representation. A runtime library eliminates repeated memory allocations and
unnecessary data transfers between CPU and GPU. The decision whether a region is
compute-intensive enough for execution on the GPU is made either statically or at
runtime, using heuristics based on metrics such as the number of instructions. The
authors conclude that the compiler is able to translate CPU code into cross-platform
code with no performance penalty. For some computations, such as the correlation
benchmark from polybench [146], significant speedup of up to two orders of magnitude
can be achieved.

The main difficulty in automated hardware mapping lies in determining the control
flow and data dependencies of the original program. Current approaches either rely on
the program code being formulated in languages such as OpenCL that express inde-
pendent control flows explicitly, or only consider specific portions of programs such as
loops with largely static control flow. In ABS, however, most of the available paral-
lelism may exist across the update routines of separate agents. Thus, without semantic
information describing the code structure, automatic detection of the parallelism is
challenging. In Section 2.5, we sketch how the common structure of many ABS may
be utilised to support the extraction of parallelism.

2.4.2 Minimisation of Data Transfer Overheads

Since most hardware accelerators are equipped with their own memory, simulations
making use of accelerators typically require data transfers between host and accelerator
memory. Even with a high-quality domain decomposition or functional decomposition
of the simulation, agent mobility and communication or the data dependencies between
the different functional aspects make data transfers unavoidable. In this section, we
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survey works that focus on minimising the cost of such data transfers. The existing
approaches can be categorised according to the following techniques:

1. Overlapping of communication and computation: some authors proposed
techniques to hide communication overhead by transferring data while indepen-
dent computations are performed. This technique has sometimes been referred
to as latency hiding (e.g., [147]).

2. Computation replication at partition boundaries: another technique to
address communication overhead is to increase the amount of computation per-
formed before synchronisation among processing elements is required. This is
achieved by duplicating some computations on multiple processing elements, thus
delaying the need to resolve data dependencies across processing elements.

2.4.2.1 Overlapping of Communication and Computation

One way of mitigating the overhead from data transfers between the host and an
accelerator is to execute computations at the same time as data is being transferred.
In the approach described by Kunz et al. [111], event computations are overlapped
with data transfers across the CPU-GPU boundary, thus hiding data transfer latencies
in a pipelined fashion. Since events from multiple simulation instances are considered
concurrently, there are substantial opportunities for overlapping these steps. While
their approach is applied to a discrete-event simulation, it can be applied to time-
stepped ABS by initiating the transfer of output data of some agents’ state updates at
a given time step, while computations for other agents are still in progress.

Bauer et al. [131, 107] propose a generic API to optimise the data transfer between
global memory and shared memory of CUDA GPUs using so-called warp specialisa-
tion. The warps within one cooperative thread array are split into two groups: dedicated
memory warps are in charge of data transfer between the on-chip and off-chip mem-
ory, while compute warps process the data. The approach improves performance over
thread-level separation between communication and computation since separate warps
can follow divergent control flows without any performance penalty. While their general
idea can be applied to other types of independent processing elements, the warp-based
implementation is specific to GPUs.

2.4.2.2 Computation Replication at Partition Boundaries

In time-stepped ABS, at model time t each agent updates its state based on the states
of its neighbours and itself at time t−1. If the simulation is distributed across multiple
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processing elements, synchronisation and data transfers are required to provide this
information at each time step. The associated overhead may make up a substantial
portion of the total simulation runtime. Thus, some authors have proposed methods
to reduce synchronisation by replicating some computations on multiple processing
elements, similarly to performance optimisations in numerical computing [148]. The
main challenge when applying this approach to ABS is the consideration of the model-
specific sensing range of agents and the speed according to which the effect of an agent’s
actions can propagate throughout the simulation space.

Aaby et al. [83] present a multi-level data partitioning scheme for cellular simula-
tions on multi-CPU/GPU clusters. The simulation state is partitioned into blocks and
each block is executed by a thread, a core, or a node, depending on the configured
granularity. In contrast to the traditional data partitioning into blocks of B × B cells
and synchronisation at each time step, their approach partitions the data into several
overlapping (B + 2R) × (B + 2R) blocks where ((B + 2R)2 − B2) cells form the over-
lapping area. The computation in the overlapping area is performed redundantly by
multiple processing units. Thus, assuming that at each time step, a cell can only affect
its immediate neighbours, R time steps are required for a cell in the inner block to
be affected by cells in another processing element. Therefore, synchronisation is only
required every R time steps. Between synchronisation points, an error propagates in-
wards within the overlapping areas, but does not affect the inner B × B cells before a
new synchronisation occurs. This partitioning approach is further employed in multi-
GPU clusters on the node-, GPU-, block-, and thread-level, and for multi-CPU clusters
at the node-, socket-, core-, and thread-level.

While Aaby et al. illustrate the idea based on cellular grids, the approach applies to
general ABS. The sensing range of agents is generally limited and provides an upper
bound on the propagation of the effects of an agent’s actions within a time step. As
long as overlapping segments of the simulation space can be distributed to the process-
ing elements in a manner so that an effect requires at least R > 1 time steps, some
synchronisation can be avoided. The generality of the approach is illustrated by Zou
et al. [86], who extend the idea of computation replication to graph-based topologies
in a GPU-accelerated epidemic ABS.

2.4.3 Scattered Memory Accesses

Throughout the past decades, the increase in computational performance has out-
paced the decrease in memory access latencies, leading to modern hardware designs
tending towards large caches and deep memory hierarchies. In the context of ABS,
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the issue of memory access latencies is particularly pressing. Due to the autonomous
decision-making of agents, the runtime interactions between agents and their environ-
ment cannot easily be predicted before executing the simulation, significantly limiting
the opportunities for a priori optimisation of data access patterns. However, common-
alities between different simulation models can be exploited to propose data structures
supporting efficient simulation of an entire range of models on a specific type of accel-
erator.

Since dynamic memory allocation on GPUs is costly [149], most GPU-based simula-
tors allocate memory statically for data such as the agent states (e.g., [92]). Another
approach is to determine after each time step the required amount of memory and
perform allocations accordingly [114].

We categorise the existing approaches to address scattered memory accesses as fol-
lows:

1. Manual caching in shared memory: although the support for transparent
caching has improved in recent years, achieving highest performance frequently
still requires manual caching in low-latency memory. In ABS, agents often influ-
ence and are influenced by their direct neighbours. This fact can be exploited
when arranging the simulation data in memory, reducing high-latency memory
accesses during state updates.

2. Heuristics for agent update order: since the data dependencies between
agent state updates are typically not known prior to the execution of the simula-
tion, minimising cache misses during the state updates is non-trivial. Heuristics
have been proposed, which favour sequences of computations acting on the same
agent data.

3. Representation of irregular data structures by arrays and grids: the
hardware architecture of GPUs and FPGAs is designed so that highest perfor-
mance is achieved when acting on regular data structures such as arrays and
grids. Thus, efforts are taken to represent highly irregular data structures in a
regular fashion. When covering the techniques from the literature, we first cover
model-specific data structures such as graph representations of a simulated road
network. Subsequently, we discuss works covering two generic building blocks
commonly required as part of ABS engines: priority queues and sorting.
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2.4.3.1 Manual Caching in Shared Memory

Richmond et al. [85] propose utilising the shared memory of the GPU as a manual
cache. In their agent-based simulation framework for cellular models in biology based
on FLAME GPU [14], they copy sets of messages to be transferred between agents
into shared memory. Each thread within a block can then efficiently iterate through
the messages and identify those pertaining to the local agent. Once all threads have
iterated through the messages, the next sets of messages are loaded into shared memory.
Recently, Heywood et al. [150] specialise their messaging method for traffic simulations
on graph-based road networks. Messages are sorted by edge (road segment) or vertex
(intersection) so that each agent only considers messages that pertain to its immediate
neighbourhood in the road network.

Similarly, Zou et al. [86] implement a manual software cache in shared memory to
increase the performance of their graph-based epidemic simulation on GPU clusters.
Before the simulation commences on the GPU, the CPU sorts the edges of the directed
graph by the source vertex. Each thread block’s shared memory stores edges originating
from one specific node. Since each block processes only edges originating from this node,
a cache hit rate of at least 50% is ensured.

In the GPU-based ABS by Li et al. [92], assuming a constant number of agents,
each agent is assigned to a GPU thread and its state data is permanently kept in
global memory. The simulation space is partitioned into a grid of rectangles. When an
agent needs to search for its immediate neighbours, a search rectangle that encloses the
searching circle is created, so that only agents inside the search rectangle have to be
considered. Two approaches to utilise the GPU’s shared memory are proposed: in the
first approach, one block manages the searching process for a chunk C of close-by agents.
Per-block shared-memory loads the data of the agent and the agent’s neighbours. Each
agent in C has a high probability of being in the other agents’ neighbourhoods, so
that these agents can frequently be accessed through the current block’s low-latency
shared memory. However, since the limited shared memory capacity allows only for
small numbers of agents to be stored, it is still likely that some neighbours are managed
by another block and thus have to be accessed through global memory. In the second
approach, the shared memory loads the data of all agents located in the union of
search rectangles of the agents handled by the current block. If the shared memory is
not sufficient to hold all agents’ data, the data is loaded as a sequence of chunks. Of
course, the increase in the search space given by the union of search rectangles leads
to a higher number of unnecessary agent accesses through shared memory. To address
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this problem, the union rectangle can be constructed on the warp level instead of the
block level.

2.4.3.2 Heuristics for Agent Update Order

The order in which agent updates are performed must adhere to the causal dependencies
between the agent states and behaviours, e.g., in road traffic simulation, vehicles in
direct proximity must be at the same point in simulated time to be able to interact
according to the model specification.

Typically, this is achieved by a strictly time-stepped scheme in which agents always
reside at the same time step, after which conflicts in the resulting agent states are
resolved [151]. However, since in a typical simulation not all agents interact at each
point in time, some agents may be updated further into the simulated future than
others without affecting the simulation results [78]. Harris and Scheutz have shown that
distributed agent-based simulations can be accelerated by favouring agent updates that
resolve dependencies across multiple processing elements [132]. This way, processing
elements waiting for others to proceed can be unblocked, decreasing the amount of
idle time. Their approach can be applied independently of the underlying hardware
platform, but requires bounds on the sensing range and the agent movement per time
step.

Jin et al. [97] present an information propagation simulation supporting execution
on HPC systems and single GPUs and extend it to run on multiple GPUs [98]. Their
focus lies on maximising the cache hit rate when traversing a graph according to rules
defined by the simulation models. Two categories of approaches are developed for the
cascade model [152] and the threshold model [153], which both simulate the propagation
of information among nodes in a graph: vertex-oriented processing and edge-oriented
processing. For the vertex-oriented approach, the authors further describe two agent
update orders: one iterates starting from active vertices, i.e., those that already have
the information, and the other from inactive vertices. Since the costs depend on the
portion of active nodes, the simulation can switch dynamically between the two vertex-
oriented approaches. Finally, the edge-oriented approach iterates over the connecting
edges between two vertices. Since the number of edges is constant over a simulation
run, the cost of the edge-oriented approach is less variable than that of the vertex-
oriented approaches. The authors achieved the highest performance when dynamically
switching between the two vertex-oriented approaches.
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2.4.3.3 Representation of Irregular Data Structures by Arrays and Grids

GPUs and FPGAs are particularly suited for operations on regularly structured data.
However, many model types specify topologies that are more naturally expressed in
terms of irregular structures such as graphs. Further, execution of the simulator core
itself may require operations on irregular data structures.

A basic optimisation commonly applied in works on GPU-based computing to im-
prove memory access patterns is the transformation of the data layout in memory from
arrays of structures (AoS) to structures of arrays (SoA) (e.g., [85, 72]). Commonly,
sequential programs store data in an AoS representation. Since AoS bundles the prop-
erties associated with each object in object-oriented programming, or the states of
agents in agent-based simulations, it is a natural way to represent data within these
paradigms. However, with an AoS data layout, parallel operations on the same prop-
erty across many objects results in scattered memory accesses. An SoA data layout
bundles the same property across all objects, which can increase cache hits rates and
opportunities for memory access coalescing, thus improving performance substantially.

Beyond this simple optimisation, the data representation can be specialised for a
given model to further improve performance. In the following, we give an overview of
methods applicable to ABS to achieve high performance by translating irregular data
structures to a more regular form.

Model-specific data structures
Early works on executing ABS using GPUs frequently focused on cellular grids and

translated the required computations into the graphics processing domain. In a pioneer-
ing work by Harris et al. [109], GPU shaders are used for implementing computations on
the RGBA values in a texture that holds the agents’ states. The same idea is employed
by Lysenko et al. [133], Perumalla and Aaby [84], and Kolb et al. [104].

Perumalla et al. [84] evaluate the performance of running agent-based simulation
entirely on a GPU. They ported the cellular models Mood Diffusion [154, 155], Game
of Life [156] and Schelling Segregation [157]. Through the Open Graphics Library
(OpenGL), individual agent states are mapped to pixel colour values. The authors
report a speedup of 15 to 40 compared to CPU-based sequential execution. Kolb et
al. [104] develop a particle simulation and a GPU-based collision detection mechanism
built on the authors’ previous work [158]. Similarly, Richmond et al. [81] utilise the
GPU’s texture processing ability and map agent states onto texture data. To accelerate
neighbourhood detection, the simulation space is partitioned dynamically according to
the agents’ current states. The algorithm to generate partitions is borrowed from the
particle pinning problem in rigid body particles physics [159, 160]. Identification of the
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start and end of the partition boundary is performed similarly to the method described
in [161]. Textures are used to represent the agents’ states and vertex texture fetching
enables the search for the start and end of the partition boundary by comparing the
partition value to the previous agent’s state.

To enable traffic simulations on GPUs, Perumalla [70] (and Perumalla et Aaby [71])
proposes to model the road network as a grid made up of cells. A road network in
Cartesian coordinates is translated to a grid representation overlaying the network: a
cell in the grid is marked as occupied when an edge of the original road network starts
in the cell, passes the cell, or ends in the cell. In graphics memory, the cells’ properties
such as turning probabilities and length are stored in texture buffers. Simulation is
carried out by performing operations on the texture buffers.

A different method for traffic simulation on GPUs is presented by Strippgen and
Nagel [72], who propose a queue-based approach using CUDA. Each road is represented
as a single first-in, first-out (FIFO) queue stored in memory in the form of a ring buffer.
With the ring buffer, insertion of a vehicle entering a road and removal of a vehicle
exiting a road is achieved with constant time complexity. Coalesced memory access can
be achieved by processing adjacent roads using adjacent threads. Since the vehicles’
mobility is modelled by a fixed per-link velocity, their approach can be considered
mesoscopic. The representation of lanes as ring buffers relies on changes of the relative
position of vehicles being rare. Behaviours such as overtaking or lane-changing are
not modelled and would require random insertions and removals from the ring buffers,
which are associated with linear time complexity.

Other domains in which agent-based simulations have been successfully ported to
GPUs using model-specific data structures include collision detection [100] and a simu-
lation study of tuberculosis [82]. In the former, a grid is split into tiles and data at the
boundary of the tiles is replicated so that a consecutive space is occupied in the global
memory of the GPU. In the latter, the authors propose to use a sorted array according
to the liveness status of agents, so that the state of a new agent can be stored in a
memory location previously occupied by one of the dead agents.

Sorting and priority queues

Full or partial sorting is frequently required in agent-based simulations, e.g., for
neighbourhood discovery or to implement Priority Queues (PQs) if time advancement
is performed in a discrete-event manner. These operations can involve large amounts
of data-dependent and scattered memory access and are therefore challenging to imple-
ment efficiently on hardware accelerators. Since this operation can occupy a substantial
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portion of the simulation runtime [162], a number of works have focused on memory
layouts and algorithms for sorting and priority queues on accelerators.

As building blocks for time advancement in a discrete-event fashion, parallel re-
duction and bitonic sorting are commonly used in GPU- and FPGA-based simula-
tion [134, 79, 99, 105, 90]. We discuss these two operations jointly due to their struc-
tural similarities. In both cases, an input array is split into chunks, each chunk being
handled by one thread. At each cycle, the sorted arrays/minimum values of two threads
are then merged to form a new input array. Thus, at each cycle, the number of chunks
and active threads is cut into half. The algorithm iterates until only one thread is
active, leaving a sorted array or the global minimum value, respectively.

He et al. [163] propose a parallel heap-based PQ on GPU based on a previous CPU-
based design [164]. The data structure resembles a binary min-heap, but stores r

items per heap node. Items are inserted and extracted in a joint bulk operation that
inserts up to k ≤ 2r and extracts up to r elements. At any time the root node is
guaranteed to hold the highest-priority elements, while elements of lower priority are
gradually inserted into deeper levels of the tree over the course of multiple insert-
extract operations. Parallelism can be exploited across the sorting operations on the
items within a tree node, across the nodes on one level of the tree, and by processing
all even-numbered and odd-numbered levels of the tree in parallel. The costs of the
queue operations can be hidden by performing them in parallel with the processing of
extracted items.

Similarly, the FPGA-based DES simulator by Rahman et al. [57] relies on a pipelined
heap [165] for storing events. In contrast to the parallel heap by He et al., the pipelined
heap is designed to achieve near-constant access times, but does not provide bulk
operations.

A number of works avoid the need for a global PQ holding all future events. Instead,
the set of events is considered jointly in an unsorted fashion [135], split by model
segment [105] or simulated entity [99, 116, 136], split according to a fixed policy [114,
137], or split randomly [110]. To determine the events that can be executed without
violating the simulation correctness, a parallel reduction is performed to determine the
minimum timestamp among the events.

Baudis et al. [138] evaluate the performance of PQs on a GPU implemented as a single
parallel heap or as a set of ring buffers, implicit binary heaps, and splay trees [166] in
the context of DES and path finding on grids. Their results indicate that for up to
about 500 elements per PQ, ring buffers achieve the highest performance. At larger
element counts, implicit heaps outperform the other approaches in their study. Their
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results suggest that higher performance is achieved by relying on multiple PQs, one for
each agent or set of agents, compared to a single PQ holding all events.

2.4.4 Maximisation of Parallelism

The autonomous decision-making and mobility of agents can limit the exploitable par-
allelism in a simulation in two ways. First, variations in the computational intensity
among the model segments may leave some processing elements idle. Second, the
single-instruction multiple-thread execution model of GPUs requires divergent opera-
tions within a warp to be serialised.

The existing techniques to maximise the parallelism of ABS using accelerators can
be roughly categorised as follows:

1. Multiple replications in parallel: full utilisation of a massively parallel accel-
erator requires large numbers of computations that are independent and can thus
be executed in parallel. If a simulation involves a sequence of mostly dependent
computations, the overheads for communication may outweigh the gains from
parallelisation. Thus, techniques have been proposed to perform computations
from multiple simulation runs in parallel.

2. Window-based event execution: in simulations involving a discrete-event
mechanism, only a proper subset of the simulated entities may require an update
at a certain point in simulation time. Multiple authors have proposed gathering
events across a window in simulated time, and executing these events in parallel.
In effect, this approach forces a discrete-event approach into a time-stepped exe-
cution. A key difference among the window-based techniques lies in whether the
simulation correctness is strictly maintained.

3. Speculative execution: as in general optimistic parallel and distributed sim-
ulation [27], computations may be performed speculatively to improve hardware
utilisation. A rollback mechanism is required to revert to a correct simulation
state after erroneous computations.

4. Computation sorting: on a GPU, threads within a warp following divergent
branches of the control flow are serialised. Since each agent performs actions based
on its attributes, its current state as well as its environment and neighbouring
agents, the computations at each simulation step are often diverse across agents.
Some authors have proposed sorting of computations to minimise the serialisation
resulting from branch divergence.
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2.4.4.1 Multiple Replications in Parallel

If an individual simulation run does not provide sufficient parallelism to fully utilise the
available hardware, a Multiple Replications in Parallel (MRIP) approach [122] can be
applied, as shown by Shen et al. [73]: in their approach, multiple replications of a traffic
simulation [74] are executed in parallel on a GPU. Thus, both parallelism among agents
and the parallelism across replications can be exploited. Laville et al. [94] implement a
multi-agent simulation of microorganisms in soil for CPU/GPU in OpenCL. Each GPU
thread manages one agent and each block is responsible for one simulation instance so
that multiple simulation instances can run concurrently on one graphics card. This
idea is applied to discrete-event simulations by Kunz et al. [111], focusing on executing
parameter studies comprised of multiple replications on a GPU.

In addition to exploiting the parallelism across replications, Li et al. [101] aim to
avoid unnecessary redundant computations common to multiple replications. They
propose a cloning mechanism for ABS on the GPU: in an ensemble simulation run
comprised of multiple simulation instances, the computations that are common to mul-
tiple instances are only performed once. When the behaviour of an agent diverges
between two simulation instances, a clone of the agent is created. Since the agent may
affect other agents, cloning is performed according to the propagation of the effects
of the original change in agent behaviour. Similarly to the technique “computation
replication at partition boundaries” (cf. Section 2.4.2.2), cloning exploits the limited
propagation speed of agent updates due to the limited sensing ranges and movement
speeds of agents. If agents move and communicate arbitrarily across the entire simula-
tion space, the required number of clones is too large to achieve a performance benefit.
Across cloned simulation instances, neighbour detection can be aggregated to improve
the utilisation of the GPU resources. The benefit of cloning is limited when simulation
runs diverge strongly, e.g., across multiple runs of a stochastic simulation using different
seeds for random number generation. Recently, the cloning approach has been applied
to large-scale cellular simulations on GPU clusters [95].

2.4.4.2 Window-based Event Execution

On a GPU, all threads in a warp execute the same sequence of instructions on different
elements of data. If no input data is available for some of the threads within a warp,
hardware utilisation is reduced. In ABS, this issue is particularly obvious when time
advancement is performed in a discrete-event fashion to accommodate varying state
update intervals among the agents. Then, the probability that many events share the
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same timestamp may be low. Thus, a simple parallelisation across the events at a
certain point in model time may be insufficient. An approach to address this problem
is to execute DES models in a time-stepped fashion: all events within a certain time
interval are executed in parallel. The lower bound of this time interval is usually
referred to as Lower Bound on Time Stamp (LBTS), which is similar to Global Virtual
Time in optimistically synchronised parallel and distributed simulation [167]. With
a sufficiently large time step size, hardware utilisation is increased. However, since
dependencies between events are not considered, the simulation results may differ from
a sequential execution.

A study comparing the performance of time advancement mechanisms for simulations
on the CPU and the GPU is presented by Perumalla [108]. They study diffusion
simulations running in a time-stepped, discrete-event, and hybrid fashion. The GPU
variant is implemented in the GPU programming language Brook [139]. While the
GPU outperforms the CPU in the time-stepped variant, it does not perform as well
as the discrete-event implementation on the CPU. However, high speedup is achieved
using the hybrid approach, where at each cycle, the minimum gap between two events
is used as a time step. The simulation time then advances according to this time step.

Park and Fishwick [113, 114] present a method for queuing network simulation that
executes a DES model in a time-stepped fashion. The simulation time advances ac-
cording to a fixed time step size, but skips periods where no events occur. All events
within the current time step are executed without considering potential dependencies.
Although the results are affected by their approach, the authors show that for a queue-
ing network simulation, error bounds can be given. Other works assume a minimum
time delta between an event and its creation (lookahead) to guarantee the correctness
of the simulation results [115, 116, 99]. If lookahead is available, a window can be de-
termined within which events are independent, allowing for parallel execution without
affecting the results.

The current time window is extended dynamically in work by Tang and Yao [87]
to allow more events to be executed in parallel. After executing all events within the
current window, their algorithm evaluates the first event in the event queue with a
timestamp larger than the LBTS that can still safely be executed according to the
lookahead.

2.4.4.3 Speculative Execution

To maintain the correctness of the simulation results when executing in parallel on an
accelerator, the simulator must consider dependencies between state updates. In some
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of the approaches described above, a time window is determined where state updates
cannot affect each other. If it is difficult to determine a time window of sufficient size to
extract substantial parallelism, a speculative (or optimistic) approach can be employed:
state updates are performed without regard for correctness, and rolled back if errors
are detected.

Speculative execution of simulations on FPGAs has been first demonstrated by Model
and Herbordt [110]. They make use of predictions of the interaction between particles,
generating new events accordingly. Events may later be cancelled as a consequence of
a false prediction.

Targeting GPUs, Li et al. [102] present an execution model that achieves high paral-
lelism by speculative event execution. In an initial step, all events that may occur in the
simulation are created. Subsequently, all events are executed in parallel. A scanning
process detects and revokes causally invalid event executions: if an event leaves the
simulation in an incorrect state according to a model-specific criterion, the erroneous
event and all events created by it are revoked recursively.

A more general approach for GPU-based discrete-event simulation is presented by
Liu and Andelfinger [136]. An optimistic execution scheme based on the Time Warp
algorithm [167] implemented in CUDA is shown to be beneficial at low event density
in simulated time. To support rollbacks in case of erroneous computations, the authors
show how the default random number generator in CUDA can be reversed computa-
tionally without storing additional data.

2.4.4.4 Computation Sorting

The individual decision-making of the autonomous and heterogeneous agents often leads
to diverse computations being executed at the same simulation step. Some approaches
attempt to arrange the assignment of computations to the available threads on a GPU
so that the serialisation caused by branch divergence within a warp is minimised.

In their DES engine on the GPU, Tang and Yao [87] sort events by type before
execution, i.e., by the code associated with the event.

The idea is applied to GPU-based execution of multiple simulation instances at the
same time by Kunz et al. [111] (cf. Section 2.4.4.1). If the simulation instances do
not diverge too strongly, many events of the same type are available across multiple
instances, enabling efficient parallel execution.

Kofler et al. apply computation sorting to their ABS of mosquitoes [90]. In their
simulator, a one-to-one mapping between agents and threads is used. Depending on
their current state, agents may perform different operations, which can result in taking
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different control flow branches during the state updates. Thus, to reduce divergence
among threads within a warp, agents are sorted by their current state, so that the state
updates of adjacent agents share the same control flow.

In a recent work, Chimeh et al. [168] provide guidelines on formulating models to
be executed in FLAME GPU so that branch divergence is minimised. They suggest
modifying the state machines defining the agent behaviour to eliminate conditional
branches by creating a new state or even a new agent type for each branch. The state
updates of agents currently in the same state can then be executed without divergence.

2.4.5 Abstraction from Hardware Specifics

Compared to model development in CPU-based environments, development for accel-
erators can be cumbersome and error-prone. To avoid the need for modellers to gain
deep expertise in programming for specific accelerators, several frameworks have been
proposed that enable the specification of parts of the model structure and behaviour
in a hardware-agnostic fashion. Since ABS models are commonly developed, modified
and extended in an iterative process, it is critical to avoid the need for modellers to
consider low-level aspects of accelerators. The following works address the abstraction
from hardware specifics:

1. Frameworks to support simulation development: some authors have pro-
posed generating partial model code to be executed on accelerators from domain-
specific languages or the reliance on a library of pre-defined implementations of
common simulation tasks and models. However, in these approaches, developing
a full ABS will typically still require manual implementation work using compar-
atively low-level languages such as CUDA. Further, workload partitioning and
assignment to different hardware devices is currently not considered by these
approaches.

2. Unified memory access: since in most cases, the CPU and hardware accelera-
tors involved in a simulation operate on separate memory, resolving data depen-
dencies may involve cumbersome explicit data transfers. A number of authors
have proposed techniques to transparently access data in programs executed on
heterogeneous hardware.

2.4.5.1 Frameworks to Support Simulation Development

In the Flexible Large Scale Agent Modelling Environment (FLAME GPU) [85, 91],
agent states are specified using the state machine model X-Machine [169, 170]. Mod-
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ellers define agent states in an XML-based format, while state transitions, i.e., the
code segments describing the state updates, have to be manually specified as CUDA
code. Generic facilities for exchanging messages between agents are provided by the
framework. Traffic simulation has been presented as one of the use cases of FLAME
GPU [77].

The domain-specific language OpenABL [18] enables the specification of ABS models
in a C-like language in compact and platform-independent fashion. The OpenABL code
is translated to an intermediate representation, from which code is generated targeting
different backends such as CPU, GPU or cloud.

Another framework for GPUs and other many-core architectures is called Many-Core
Multi-Agent System (MCMAS) [15]. MCMAS provides a high-level Java interface to
OpenCL code as well as a set of pre-defined data structures and functions called plugins.
To implement agent models, users either rely on plugins or define their own plugins
as OpenCL code that can be called from Java code. The authors state that unlike
FLAME GPU, in which models are targeted exclusively at the framework, the models
defined in MCMAS can be reused by other agent-based simulators.

While FLAME and MCMAS both reduce the implementation work required to de-
velop agent-based simulations targeting accelerators, these frameworks do not provide
guidance or automation in distributing the simulation workload to the available hard-
ware. Thus, manual experimentation is required to determine a suitable hardware
mapping.

2.4.5.2 Unified Memory Access

GPGPU frameworks such as OpenCL or CUDA require the user to either explicitly
trigger data transfers between host and device memory, to explicitly select certain vari-
ables or memory regions for access from both CPU and GPU code [40], or to annotate
the program to manage data transfers [117, 118]. These manual steps complicate the
development of agent-based simulations in heterogeneous environments. Some works
aim to improve on this situation by transparently transferring required data between
host and graphics memory. However, in languages based on C or C++, static alias
analysis, i.e., determining which pointers refer to the same memory regions, is known
to be undecidable [119].

Jablin et al. [119, 120] present the first fully automated data management system
based on compilation steps and a runtime library. The developer formulates his program
and GPU code as if all data resides in host memory and can be accessed both from
the CPU and GPU. The proposed approach instruments the code to track accesses to
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different memory regions using code instrumentation and trapping of system calls. To
avoid the need for static pointer analysis, memory accesses through pointers are tracked
by the runtime library. In addition to transparently handling data transfers, CPU-GPU
communication is optimised during compile time by re-ordering the program flow to
reduce the alternation between computations and data transfers. Unnecessary data
transfers are avoided by leaving data in the GPU memory until it is accessed from the
host.

While the work of Jablin et al. could be applied to automate data transfers in
heterogeneous ABS, the detection of parallelism is not covered. In Section 2.5, we
sketch research directions towards automation in porting ABS to accelerators.

2.5 Towards an automated parallelisation framework for
ABS

From the observations in the previous sections, we can see that there is a vast range of
techniques covering the main challenges of high-performance ABS on hardware accel-
erators. However, there exist only a few ABS frameworks that support such accelera-
tors. Since existing agent-based simulation and model implementations typically target
purely CPU-based environments, there is a clear need for processes and tools to support
the transition to an execution on accelerators. More specifically, modellers and simula-
tionists should be supported in the parallelisation and hardware mapping as much as
possible. While methodologies have been proposed to systematise the steps of porting
a simulation to a GPU [106, 89] and more for general computing [130, 172, 173, 174],
there are few automated tools to support this process in the field of ABS.

Out of all the techniques reviewed, OpenABL seems to be one of the best candidates
to support the adoption of ABSs on heterogeneous hardware. However, there are
limitations in the current form of OpenABL: Firstly, the outputted code can only
target one specific type of hardware platform. A combined used of e.g. CPUs and
GPUs is not possible. FPGA, a promising hardware platform as can be seen from
the literature review, is not yet supported. Secondly, so far OpenABL only allows
simulation environment declared as a 2D or 3D space, limiting its usage in the domain
of e.g. traffic where the simulation environment is usually represented by a graph. An
extension of OpenABL is necessary, to addresses the aforementioned limitations.

To facilitate all hardware, the simulation needs to be first partitioned so that differ-
ent parts can be executed on available hardware. A design question also arises: which
parallelisation scheme should the envisioned tool employ? Current OpenABL requires
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Figure 2.5: Model-level vs Sense-Think-Act-level parallelisation schemes.

the simulation to be partitioned (cf. Figure 2.5a) at a model level (the smallest paral-
lelisable unit is then one simulation model). Each agent-based model represented by a
function call is offloaded to an accelerator.

Since each model is structured as a Sense-Think-Act cycle, the individual stages
of this cycle can also be offloaded to an accelerator (cf. Figure 2.5b). However, such
partitioning can bring both positive and negative impacts. On one hand, breaking down
models into smaller pieces would result in more potentially independent components
that can be executed simultaneously (e.g. the Think stage often involves only read
operations and therefore multiple Think stages from different agent-based model can
very likely be executed in parallel). On the other hand, more components may also
lead to more synchronisation efforts, counteracting the gains from parallel execution.

To answer the design question as well as to identify whether there are other unfore-
seen challenges, two feasibility studies are conducted in the next chapter. In the first
feasibility study, a system equipped with a multi-core CPU and GPU or an APU is em-
ployed to compare the two parallelisation schemes shown in Figure 2.5. In the second
study, we try to extend the knowledge gained on the GPU platform to draft a design
for ABSs to run on FPGAs. To the best of our knowledge, automated generation
of high-performance ABS code on FPGAs has never been addressed in the previous
works. Therefore, through this study, we also intend to learn what extra facilitates are
required to enable ABSs on FPGAs. Through these two studies, we can also get a taste
of the oracle gains by employing hardware accelerators as well as showcase the amount
of manual efforts required without any help from existing tools.
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Chapter 3. Feasibility Studies: Accelerating Agent-based Simulations on
Heterogeneous Hardware

3.1 Introduction

This chapter constitutes of two feasibility studies. In both studies, an ABTS named
City Mobility Simulator (CityMoS), originally designed for CPU-based systems, is man-
ually ported to run on different accelerators. As mentioned in Chapter 2, the goal of
the studies is twofold. Firstly, we try to answer the design question by evaluating dif-
ferent simulation parallelisation schemes presented in Section 2.5. The second goal is
to demonstrate the amount of programming efforts needed and the performance gain
achieved.

The first feasibility study mainly focuses on the evaluation of parallelisation schemes.
Starting from pure CPU-based execution, we accelerate using CPU-GPU systems (ded-
icated CPU-GPU or APU). Two parallelisation schemes described in Section 2.5 are
applied, yielding two simulation variants. In the first variant, each simulation model is
decomposed according to the Sense-Think-Act cycle. We will consider offloading parts
of the Sense, Think or Act stages onto the GPUs (therefore called partial offloading).
In the second variant, we offload the entire model to run on the GPUs (full offloading).
Their respective performance will be evaluated.

The second study focuses on porting CityMoS to run on FPGAs using high-level
synthesis. The aim of the study is to learn what are the essential steps to enable a
typical ABS to run on FPGAs. Then, we try to generalise the methodology to all types
of ABSs.

As OpenABL currently supports neither ABTSs, of which the simulation space is
represented by a graph, nor FPGA as a target platform, the knowledge built up in both
studies can also vastly help us identify what are currently lacking in the framework.

The reminder of this chapter is organised as follows: In Section 3.2, we give an
overview of related work. In Section 3.3, the set of models that constitute CityMoS
are introduced. In Section 3.4, we demonstrate the first feasibility study where we
accelerate CityMoS using CPU and GPU systems. In Section 3.5, the second feasibility
study is provided to port CityMoS onto FPGA platforms. Section 3.6 concludes this
chapter.

3.2 Related Work

Considering the existing works on ABTS using many-core devices, two general ap-
proaches can be differentiated: offloading approaches using a host CPU and a many-
core device, and purely GPU-based approaches.
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While offloading approaches have been widely explored in the context of discrete-
event simulation [176, 177], most existing works on traffic simulation using many-
core devices have focused on purely GPU-based execution. In purely GPU-based
approaches, the entire simulation is executed on the GPU so that significant com-
munication with the host CPU is only required at the start and end of the simulation.
However, this approach makes it necessary to adapt the data structures and the con-
trol flow to the hardware properties of the GPU. Further, debugging and extending the
simulator may require expert knowledge in parallel computing and the consideration
of hardware-specific details.

Perumalla [178] proposes to map a graph-based network onto a grid in a GPU-based
traffic simulation. Since this representation is highly suited to a GPU architecture,
the approach enables simulations at the scale of road networks covering entire states
of the USA. The considered model is field-based, i.e., vehicles probabilistically move
in a certain direction at each cell in the grid, each cell storing the number of agents
currently residing at the cell.

In the approach proposed by Strippgen and Nagel [72], each road is represented
by a first-in, first-out queue stored as a ring buffer, one GPU thread processing one
road. Since a vehicle’s mobility to the end of each road is determined directly from the
speed limit and road length, their simulation can be considered mesoscopic instead of
microscopic.

Hirabayashi et al. [69] compare two approaches to purely GPU-based ABTS on a
single-lane road based on the Optimal Velocity model [179]: as in most other works,
in the first approach, the CPU calls GPU kernels to execute the agent updates at each
step in model time. In the second approach, the entire simulation is performed within
a single kernel call. Since synchronisation across thread blocks is not supported within
a kernel, the authors quantify the error incurred by the lack of synchronisation.

Wang et al. [79] execute road traffic simulations of an infinite-length two-lane road
on a dedicated GPU or the GPU portion of an APU. The main focus of their work
is an efficient neighbour discovery algorithm on an APU. While all main parts of the
simulation run on the GPU, a merging step required when agents enter a lane can be
performed on the CPU. As in our work, the Intelligent Driver Model [180] is employed
to simulate car-following. For lane-changing, authors rely on the Minimizing Overall
Braking Induced by Lane change (MOBIL) model [181]. Of the existing works, this
is the closest to our present work, since it shares our intention to compare execution
approaches on heterogeneous hardware and employs common driver behaviour models.
The main difference to our work is the reliance on a single road instead of a road
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network. Thus, Wang et al. rely on bulk GPU operations on two large arrays holding
all vehicles, whereas our simulation using a graph-based road network requires fine-
grained operations on hundreds of thousands of small arrays representing one lane
each.

Heywood et al. [182] use their FLAME GPU framework to execute a traffic simula-
tion running entirely on a GPU. Vehicles accelerate according to Gipps’ car-following
model [183] on grid road networks. Neighbouring agents are not stored in a joint
data structure associated with each lane but communicate each update in position and
velocity using a messaging system. In contrast to our work, their focus lies more on dif-
ferent messaging systems than on exploring the possibilities for offloading to many-core
devices.

Finally, an approach to accelerate parameter studies is proposed by Shen et al. [73].
They consider simulations of a small road network of six intersections, executing multi-
ple replications of the traffic simulation in parallel on a GPU. Their work relies on the
GM car-following model [184], but disregards lane-changing. The focus is on exploring
the possibility to execute large numbers of simulations in parallel.

While many options for GPU-based simulations have been investigated by the exist-
ing works, we are not aware of any previous work evaluating offloading opportunities
under the constraint of maintaining a graph-based road network representation and
well-known models for car-following and lane-changing as in common CPU-based sim-
ulators. Thus, our results can support simulationists in the parallelisation of their
simulation systems without the need to rely on models tailored to the GPU platform.

Challenges for speeding up ABTSs using FPGAs deviates from using GPUs due to
the manifold architectural differences between an FPGA and a GPU, such as smaller
memory bandwidths and lower frequencies.

Cong et al. [185] compare the performance of running Rodinia, a widely used GPU
benchmark suite, on a GPU and on an FPGA, respectively. They conclude that mod-
ern FPGAs can achieve comparable or even better performance for certain tasks. A
maximum speedup of 7x over GPU is achieved running a bioinformatics application.

A general FPGA-based discrete event simulation accelerator is presented by Rahman
et al. [186]. Their work focuses on the efficient maintaining of the event queues on
FPGAs. However, event queues are not necessarily needed in our case.

In previous works, FPGAs are mostly applied to CA-based models owing to the
natural mapping of cells to logic blocks [2]. FPGAs have demonstrated performance
benefits when applied to CA-based models such as an environment simulation [96],
Game of Life [93] and a crowd evacuation model [103]. Schäck et al. [187] implement
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a traffic simulation on a single lane road based on so-called Global CA model in which
a set of cells change their states simultaneously. Tripp et al. [80] develop a CA-based
traffic simulation running on a grid of roads. The movement of agents on individual
lanes is computed on an FPGA while the agents’ transitions from one road to another
and at intersections are computed on the CPU. Our implementation does not rely on
transforming models to a CA-based format, and thus can be extended to traffic models
beyond those discussed in this chapter.

3.3 City Mobility Simulator(CityMoS)

City Mobility Simulator (CityMoS) [188] is a holistic agent-based, time-stepped, city-
scale mobility simulator, designed for CPU-based platforms. It aims to study the whole
mobility system which involves traffic, power, vehicle from a holistic perspective, allow-
ing to investigate the whole complex interaction and dependencies between different
simulation participants. In addition to private vehicles, it is also able to simulate many
elements of urban mobility systems such as public buses or railway-based system. It has
lent itself to many successful use cases in investigating various traffic-related problems
such as charging station placement in city areas [189], ride-sharing problems [190], etc.

Each vehicle is an agent moving in a road network represented as a graph. An
agent is represented by a so-called Driver-Vehicle-Unit consisting of driver behaviour
and vehicle component models. Driver behaviour models include e.g. car-following
model, lane-changing model or charging models. Vehicle component models describe
the properties of a vehicle such as battery or air-conditioner, etc. Among all these
models, the movement of the agents, which is the core part of the traffic simulation, is
governed by two essential models: a car-following model and a lane-changing model.

Each car follows the vehicle ahead and avoids collisions by adjusting its acceleration
and deceleration at every time step. The Intelligent Driver Model (IDM) [180] is one
of the most popular car-following behavioural models. The input parameters of IDM
include the current velocity, a desired velocity, and the distance and speed of the vehicle
in front. IDM returns the acceleration for the next time step limited by a maximum
possible acceleration.

While the car-following model controls the longitudinal movement of the vehicle, lat-
eral movement is handled by the lane-changing model. Typically, the simulated vehicle
evaluates whether changing the lane could allow it to accelerate (Discretionary Lane
Change, DLC) or whether a lane change is necessary to continue its route (Mandatory
Lane Change, MLC). Usually, lane changing decision is modelled as an incentive-based
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Table 3.1: Average and peak number of agents on the road depending on the agent generation
rate.

Generation Rate Average Peak
2 4 557 6 257
5 7 257 20 745
10 9 788 35 423
20 11 291 44 922
50 12 218 48 964
100 12 717 49 652

decision that evaluates potential lane changing manoeuvres and generates a decision
that balances the current vehicles acceleration with the required braking by other vehi-
cles. Widely used lane changing models include Ahmed’s lane-changing model[191, 192]
and MOBIL [181].

3.4 Feasibility Study 1: Model-level vs
Sense-Think-Act-level Parallelisation

In the first study, we parallelise CityMoS on CPU-GPU systems using the parallelisation
schemes described in Section 2.5. We also discuss the required changes to an existing
simulator architecture and assess the performance gains compared to an optimised
CPU-based execution.

3.4.1 Simulation Settings

We consider a scenario where CityMoS runs on an arbitrary road network represented
as a graph. Edges represent road segments while nodes represent intersections. Each
road segment may have multiple lanes.

The traffic intensity is varied by configuring the generation rate, which is the number
of agents generated at each time step of 250ms, creating different levels of congestion
(cf. Table 3.1). In total, around 50 000 agents are generated.

The considered traffic simulation is executed on a model of the road network of the
city-state of Singapore. The agents’ routes are pre-calculated based on the shortest
path given a origin-destination pair drawn uniformly at random.

The performance measurements are performed on a system equipped with an Intel
Core i7-4770, 16 GB of RAM and a dedicated NVIDIA GTX 1060 graphics card with
6 GB of RAM. An execution scheme for partial offloading is evaluated on an APU
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platform with a dual-core Intel Core i5-4278U, an integrated Intel Iris Graphics 5100
GPU and 16 GB of RAM.

3.4.2 Overview

As a starting point, we briefly discuss how CityMoS originally works.

1 whi le ( te rminat ion c r i t e r i o n not s a t i s f i e d ) {
2 f o r each ( agent ) {
3 /∗Model 1∗/
4 agent . model1 . s ense ( ) ;
5 agent . model1 . th ink ( ) ;
6 agent . model1 . act ( ) ;
7

8 /∗Model 2∗/
9 agent . model2 . s ense ( ) ;

10 agent . model2 . th ink ( ) ;
11 agent . model2 . act ( ) ;
12

13 . . .
14 }
15 advance s imu la t i on time
16 }

Listing 3.1: Pseudocode of the core execution loop of an agent-based simulation. The agent
interactions during the Act stage prohibit trivial parallelisation of the loop
iterations.

Each vehicle is represented by an agent, whose behaviour is determined by several
models, each following the Sense-Think-Act cycle. Pseudocode of the core simulation
loop is given in Listing 3.1.

To identify potentials for parallelisation, we consider the dependencies among the
stages and within each stage (cf. top of Figure 3.1). We can observe that the Sense and
Think stages are independent across agents and are thus candidates for parallelisation.
During the Act stage, agents may affect their neighbours, e.g., by attempting to enter
the same position on a lane as another agent. Since these interactions are difficult
to predict, parallelisation of the Act stage is non-trivial. Thus, in our CPU-based
execution scheme (OMP-SENSE-THINK-CPU), used as a baseline in our experiments,
we parallelise only the Sense and Think stages.

1 whi le ( te rminat ion c r i t e r i o n not s a t i s f i e d ) {
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2 f o r each ( agent ) in p a r a l l e l {
3 agent . model1 . s ense ( ) ;
4 agent . model2 . s ense ( ) ;
5 . . .
6 }
7

8 f o r each ( agent ) in p a r a l l e l {
9 agent . model1 . th ink ( ) ;

10 agent . model2 . th ink ( ) ;
11 . . .
12 }
13

14 f o r each ( agent ) in p a r a l l e l {
15 agent . model1 . act ( ) ;
16 agent . model2 . act ( ) ;
17 . . .
18 }
19

20 advance s imu la t i on time
21 }

Listing 3.2: Pseudocode of the core execution loop of an agent-based simulation after applying
loop fission. Since the Sense and Think stages are independent across agents, the
first two for-loops can both be trivially parallelised.

Considering opportunities for offloading the stages to a GPU, we note that for each
agent, the Sense stage requires access to a portion of the road network and agent states
to gather the relevant neighbour states. In effect, the Sense stage requires access to
most or all of the simulation state and is thus not well-suited for offloading. Similarly,
updating the agent states in the Act stage requires access to most or all of the agent
states. Thus, we propose two variants of an offloading scheme, corresponding to the
Sense-Think-Act-level execution scheme, that executes the Think stage on a GPU: in
OCL-THINK-GPU, we execute the Think stage on a dedicated GPU, which requires
data transfers over the PCI-E bus before and after the computations. In OCL-THINK-
AGPU, we offload to the GPU portion of an APU. Although the limited computing
resources of the integrated GPU constrain the performance benefits in terms of pure
computation, the shared access to main memory by the CPU and the GPU portion
allows us to eliminate data transfer delays.

Finally, we explore a fully GPU-based execution scheme i.e. model-level execution
scheme (OCL-ALL-GPU), in which all stages (the entire model) are executed on a
dedicated GPU. This scheme eliminates all major data transfers during the main simu-
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OCL-THINK-GPU CPU PCI-E GPU PCI-E CPU --

OCL-ALL-GPU GPU - GPU - GPU GPU-

Agent 1:

Agent 2:

Agent N:

...

Figure 3.1: Top: dependencies among the stages in a simulation time step. If inter-agent
dependencies are ignored during the Act stage, a separate conflict resolution stage
is required. Bottom: the execution schemes considered in our experiments and
the means of data transfer from one stage to the next.

lation loop but requires porting the entire simulator engine to the GPU. Since properties
of a graph-based road network representation are exploited, OCL-ALL-GPU is specific
to the considered models, whereas the other execution schemes are applicable to other
agent-based models that follow a Sense-Think-Act cycle.

Since our OpenCL implementation also allows for execution on a CPU, we compare
the execution schemes with the same implementations running in parallel on a CPU
(OCL-THINK-CPU), the CPU portion of an APU (OCL-THINK-ACPU), and a fully
parallelised CPU-based execution (OCL-ALL-CPU).

The bottom of Figure 3.1 lists the execution schemes together with the means to
carry out the required data transfers. In the remainder of this section, we describe
each execution scheme in detail. For each scheme, we discuss the overall design and
implementation concerns as well as the results of our performance measurements.

3.4.3 Baseline: CPU-Based Execution

The starting point is a sequential CPU-based implementation. To acquire a fair baseline
for performance comparisons, we parallelise the portions of the simulation that do not
require substantial changes to the existing architecture.

3.4.3.1 Architecture

In the CPU-based execution scheme, we execute the entire simulation on the CPU. As
discussed above, the Sense and Think stages can be executed independently for each
agent. Parallelisation of the Act stage requires efficient synchronisation and conflict
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resolution and thus profound changes to the simulator architecture, which a variety
of existing works have explored [193, 194]. Since our focus is on the transition from a
CPU-based simulator to a heterogeneous execution, we restrict the parallelisation of our
initial CPU-based implementation to the Sense and Think stage. A fully parallelised
execution scheme will be explored in Section 3.4.5. We focus on parallelisation within
a single execution node.

Considering the pseudocode of Listing 3.1, there is one loop iteration for each agent,
each iteration covering all models for the current agent. Since the agent states are
only updated in the Act stage, Sense and Think can be parallelised across all agents.
However, the data dependencies given by the interactions among agents in the Act
stage prohibit a straightforward parallelisation. Thus, we adapt the control flow to
separate the Sense and Think stage from the Act stage.

The required transformation of splitting a loop into multiple loops is known as loop
fission [195]. Listing 3.2 gives the pseudocode after loop fission. Although the compu-
tational steps are unchanged on a conceptual level, loop fission distributes the accesses
to each agent’s state variables across multiple loops. Due to the decrease in memory
access locality, a performance decrease must be expected. We study the effect of loop
fission on the performance in Section 3.4.3.3.

3.4.3.2 Implementation

We restructured the simulator code by applying loop fission. The parallelisation is
performed using OpenMP by annotating the for-loops of the Sense and Think stages.
To limit contention for the workload among the CPU threads, we configured a chunk
size of 1000 agents. During the Sense stage of the car-following and lane-changing
models, the respective output is stored in a per-agent element of an array. The two
resulting arrays form the input to the Think stage of the two models.

For lane-changing behaviour, we rely on Ahmed’s model, which requires drawing two
uniformly distributed random numbers in [0, 1] for each agent at each time step. To
achieve a fair comparison with the GPU-based implementations, we use the MWC64X
generator1, for which efficient implementations exist both in plain C and OpenCL.

3.4.3.3 Performance Evaluation

The experiment is conducted on a platform equipped with a dedicated GPU. As il-
lustrated in Figure 3.2, loop fission slightly decreases performance. The runtime was

1http://cas.ee.ic.ac.uk/people/dt10/research/rngs-gpu-mwc64x.html

50

http://cas.ee.ic.ac.uk/people/dt10/research/rngs-gpu-mwc64x.html


Chapter 3. Feasibility Studies: Accelerating Agent-based Simulations on
Heterogeneous Hardware

 0.5

 1

 1.5

 2

 2.5

 2  5  10  20  50  100

S
p

e
e

d
u

p

Generation rate [agents / time step]

OMP-SENSE-THINK-CPU
OMP-SENSE-CPU

SEQ-FISSION-CPU

Figure 3.2: Speedup with standard errors when parallelising Sense (OMP-SENSE-CPU) or
Sense and Think (OMP-SENSE-THINK-CPU) over sequential execution (SEQ-
CPU). Loop fission (SEQ-FISSION-CPU) results in a slight slowdown.

increased by 15% in the worst case. When applying the OMP-SENSE-CPU scheme,
i.e., with only the Sense stage parallelised by OpenMP, a performance gain of at least
1.30x is observed. The speedup is increased by also parallelising the Think stage (OMP-
SENSE-THINK-CPU), achieving at least 1.68x for all cases. The highest speedup is
achieved when the agent generation rate is 5 per time step for both the OMP-SENSE-
CPU and OMP-SENSE-THINK-CPU schemes, with a respective speedup of 1.58x and
1.95x.

3.4.4 Sense-Think-Act-level parallelisation (Partial Offloading)

In the following, we aim at accelerating the simulation in a heterogeneous CPU/GPU
environment using the Sense-Think-Act-level execution scheme described in Section 2.5.
We first explore an offloading approach [196, 140], where computationally intensive
portions of the simulation are offloaded to the GPU.

3.4.4.1 Architecture

The offloading approach follows the idea of the parallelised CPU-based execution: we
exploit the independence of per-agent stages. However, since the GPU does not have
direct access to the host memory, data transfers over the PCI-E bus are introduced.
The Think stage is a natural candidate for offloading, since it relies only on the output
of the Sense stage. In contrast to this, the Sense stage accesses both the static envi-
ronment, i.e., the lengths and speed limits of nearby road segments, and the states of
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nearby agents. Similarly, an agent’s Act stage relies on the static environment and may
interfere with the agent’s neighbours. Thus, offloading the Sense or Act stage would
require transferring substantial parts of the simulation state to the GPU at each time
step, which instead suggests porting the entire simulation to the GPU. Based on this
reasoning, we offload only the Think stage. As in the CPU-based scheme, the Sense
stage is executed in parallel on the CPU. The Act stage is executed sequentially on the
CPU.

At the start of each Think stage, the CPU transfers the data needed for the com-
putation from the host memory to the graphics memory. The GPU processes the data
and transfers the results back to the host memory. Further, we explore the offloading
scheme using an APU, allowing us to avoid data transfers over the PCI-E bus.

3.4.4.2 Implementation

The implementation of the scheme follows the general approach used for the Think
stage in the CPU-based scheme, replacing the for-loop of the Think stage with a call
to GPU code that executes the stage in parallel for all agents. Our implementation
is based on OpenCL, which allows us to execute the same code on a CPU, GPU, or
APU. OpenCL API calls are used to transfer the model input data to the GPU, to
call an OpenCL kernel executing the model, and to transfer the model output data
back to the host memory. On the GPU, each thread executes the model for one agent.
The OpenCL implementation of the models is nearly identical with the plain C++
implementation, apart from the indexing based on GPU threads required in OpenCL.
Additional arrays in graphics memory are used to store the model input and output
for each agent. The input array is filled by a data transfer from host memory prior to
the OpenCL call. After the OpenCL call has finished, the content of the output array
are transferred to host memory. On the CPU, each agent reads the respective output
values from the output array during the subsequent Act stage. Quantitatively, the
input data comprises 16 bytes per agent for the car-following model and 52 bytes for
the lane-changing model. The output for each models comprises 4 bytes per agent. The
implementation targeting APUs follows the same general process. However, to utilise
the zero-copy technique, the input and output arrays accessed by the OpenCL kernels
are created using the OpenCL memory flag CL_MEM_USE_HOST_PTR [197], which
allocates memory in a shared space that can be accessed by the CPU and the GPU
portion, avoiding data transfers.
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Figure 3.3: Total execution time on the dedicated CPU for the Think stage of the car-following
model and lane-changing model when varying the workgroup size.

3.4.4.3 Performance Evaluation

We evaluate partial offloading with respect to purely CPU-based execution and of-
floading of the Think stage to the GPU, both for the platform with a dedicated GPU
(OCL-THINK-CPU and OCL-THINK-GPU) and for the APU platform (OCL-THINK-
ACPU and OCL-THINK-AGPU).

The configured workgroup size in OpenCL can have a substantial impact on the
overall performance. The best-performing workgroup size depends on properties of the
hardware and the computation to be performed [198]. To find the best configuration,
we vary the workgroup size from 128 to 8192 for the CPU and 128 to 1024 for the GPU
both for the car-following and the lane-changing kernels. As depicted in Figure 3.3, the
smallest workgroup size 128 always leads to best performance on the CPU. In contrast,
we observe that the workgroup size configurations we studied do not have an obvious
impact on the GPU performance. We set the GPU’s workgroup size to 128. The same
value of 128 was identified to achieve the best performance on both the CPU and GPU
portion of the APU platform. In the remainder of the section, we will use the best
configurations in all measurements.

Figure 3.4 shows a comparison of partial offloading execution schemes. A speedup of
1.8x over sequential execution on the CPU (SEQ-CPU) is achieved for OCL-THINK-
GPU, i.e., offloading the Think stage to the dedicated GPU. OCL-THINK-CPU pro-
duces a slightly better result, achieving a speedup up to 2.0x, due to the relatively
lightweight computations in relation to the data transfer overheads introduced by OCL-
THINK-GPU.

53



Chapter 3. Feasibility Studies: Accelerating Agent-based Simulations on
Heterogeneous Hardware

However, on the APU, on which the data transfer overhead for offloading is elimi-
nated, OCL-THINK-AGPU achieves an overall speedup of up to 1.7x over CPU-SEQ
on the CPU portion of the APU, outperforming both the OCL-THINK-ACPU and
OMP-SENSE-THINK-ACPU schemes (cf. Figure 3.5).

Although the Think stage can be accelerated substantially by offloading, the overall
performance gain is limited by Amdahl’s law: since the Think stage constitutes about
18.6% of the runtime on the APU platform given the Sense stage has already been
parallelised, an upper bound on the speedup is given by 1/(1 − 0.186) = 1.23. Thus,
our aforementioned speedup of 1.18x is close to the theoretical maximum if offloading
is limited to the Think stage.
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Figure 3.4: Speedup with error bars showing standard errors over sequential execution when
parallelising Sense by OpenMP and Think by OpenCL (OCL-THINK-CPU) and
when offloading Think to the dedicated GPU (OCL-THINK-GPU).

3.4.5 Model-level parallelisation (Full Offloading)

In the previous section, we observed that offloading the Think stage can already give
some performance gains. However, even if we avoid data transfers using zero-copy
memory access on an APU, the performance gains are limited by Amdahl’s law. As
discussed in Section 3.4.4, offloading Sense and Act requires access to nearly all of the
simulation state and static environment data. This situation suggests using a model-
level execution scheme i.e. full offloading to accelerators instead. In the following, we
present and evaluate a fully offloaded traffic simulator running entirely on a many-
core GPU. Thanks to the implementation in OpenCL, the simulator also supports a
parallelised execution on a CPU.
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Figure 3.5: Speedup with error bars showing standard errors over sequential execution when
parallelising Sense by OpenMP and Think by OpenCL on the CPU portion of an
APU (OCL-THINK-ACPU) and when offloading Think to the GPU portion of an
APU (OCL-THINK-AGPU).

3.4.5.1 Architecture

In this execution scheme, major data transfers are only required during initialization
to set up the static environment and to provide the simulator with the initial scenario
parameters. Subsequently, the simulation proceeds as a sequence of OpenCL kernel
calls, with minor data transfers to signal the termination of the simulation. Output of
simulation statistics may be performed either by data transfers during the simulation
or once the termination criterion is met.

Considering the dependencies between the agent stages, the Sense and Think stages
are now both trivially parallelisable. However, when parallelising the Act stage, the
potential interactions among agents must be considered: when moving, multiple agents
may enter overlapping positions in the simulation space. While a sequential execution
with one-by-one position updates can avoid such situations, a parallelised execution
requires a conflict resolution mechanism to achieve consistent, i.e., collision-free, agent
states. We perform conflict resolution after the Act stage.

3.4.5.2 Implementation

In our implementation of the fully GPU-based execution scheme, each agent is a struc-
ture composed of a numerical identifier as well as the current and desired lane, position,
and velocity. Each lane in the road network is represented by a ring buffer holding the
agents currently on the lane, ordered by their positions (cf. Figure 3.6). As in the
offloading version, apart from the indices used to access the input and output data, the
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(a) Example of a portion of the graph-based road network, showing 3 links with a total of 4 lanes (l1
to l4) and 7 vehicles (a1 to a7).
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(b) Representation of the road network in memory. Each lane li is a ring buffer holding vehicles aj

ordered by their position on the lane, with associated indexes for the head (circle) and the initial
index of vehicles entering from other lanes (rectangles).

Figure 3.6: Road network representation in OCL-ALL-CPU and OCL-ALL-GPU.

OpenCL code for the car-following and lane-changing model are nearly identical with
the CPU implementation.

Six OpenCL kernels are called at each time step:

1. SpawnVehicles: in this kernel, a single thread creates and initialises a configurable
number of new vehicles.

2. CollectActiveLanes: as preparation for the Sense and Think stages, lanes with at
least one vehicle are gathered in an array. Each GPU thread evaluates one lane.

3. SenseAndThink: this kernel combines the Sense and Think stage of both the car-
following and lane-changing model. Each workgroup operates on one active lane,
with each thread handling one agent at a time.

4. Act: this kernel actualises the desired lane, position and velocity determined
in SenseAndThink. Since the Act stage may affect the number and indexes of
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agents on each lane, we avoid synchronisation by executing only a single thread
per lane. However, when an agent enters a lane, synchronisation is still needed
to avoid inconsistencies when multiple agents enter the same lane at the same
time step. To this end, an atomic operation increments the index of the insertion
position at the tail of the target ring buffer (rectangles in Figure 3.6b), retrieving
the old index. The agent can then safely be stored at the old index. The insertion
into the sorted ring buffer is performed in the next kernel. We mark agents that
leave the current lane so they can be removed by the next kernel.

5. SortLanes: during the Act stage, agents may change lanes, which may affect
the relative positions of agents on the target lane. To restore the ordering on
each lane, we sort the vehicles by position, including new agents entering the
lane. Agents that leave a lane are removed from the ring buffer. Since each lane
typically holds at most a few dozen agents, we apply sequential quicksort using
one thread per lane.

6. ResolveConflicts: overlaps between the agents are resolved by moving a vehicle
that has performed a lane change or advanced to the next link back to the original
lane. If more than one vehicle involved in a conflict has entered a new link, the
vehicle that is further behind is moved. Each conflict resolution round may affect
the ordering at each lane, and may also create new conflicts. Thus, SortLanes
and ResolveConflicts are executed until no further conflicts occur.

The implementation based on ring buffers and the synchronisation based on atomic
operations closely resemble GPU-based discrete-event simulations, which have been
shown to achieve high speedup over a CPU-based execution [199, 138]. Our approach
to conflict resolution postpones the conflict resolution to after the Act stage and it-
erates until all conflicts have been resolved based on the relative position of agents.
Alternative approaches to conflict resolution for agent-based simulations on GPUs, as
well as considerations of determinism and bias, have been studied in [151].

Since the CPU-based and partially offloaded versions execute the Act stage sequen-
tially, conflicts can be avoided entirely. However, our conflict resolution approach affects
the results only marginally compared to SEQ-CPU, with deviations in average travel
times smaller than 3% for all tested parameter combinations.

3.4.5.3 Performance Evaluation

Initial performance evaluation runs showed that the performance of OCL-ALL-CPU
and OCL-ALL-GPU was only marginally affected by the workgroup size. The mea-
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Figure 3.7: Overall comparison of the execution schemes over sequential execution with error
bars showing standard errors.

surements described in the following were executed with a workgroup size of 64 for all
kernels.

As shown in Figure 3.7, the speedup achieved when parallelising all stages on the
CPU (OCL-ALL-CPU) is up to 6.7x. A maximum speedup of 28.7x is achieved for
OCL-ALL-GPU at low traffic density (agent generation rate of 2). In a more congested
traffic scenario with an agent generation rate of 100, the performance gain by the
parallelised execution is counteracted by the increasing overhead for conflict resolution,
leading to a smaller overall performance gain. However, even in the most congested
scenario, a speedup of 14.8x is achieved.

3.4.6 Discussion

Figure 3.7 gives an overview of the speedup gained by the different schemes on the plat-
form with the dedicated GPU. Table 3.2 (generation rate = 2) and Table 3.3 (generation
rate = 100) show the percentages of runtime per time step spent on the Sense, Think
and Act stages. For the OCL-ALL-CPU and the OCL-ALL-GPU schemes, CollectAc-
tiveLanes and SenseAndThink are considered jointly as a single “Sense and Think”
stage. The time spent on Act, SortLanes and ResolveConflicts is counted towards the
Act stage.

OpenMP parallelisation in OMP-S-T-CPU (OMP-SENSE-THINK-CPU) halves the
runtime for the Sense stage compared with SEQ-CPU, whereas the runtime spent on
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Table 3.2: Absolute and relative time spent on one iteration of each stage. Agent generation
rate: 2 per time step.

Absolute [ms] Relative [%]
Sense Think Act Sense Think Act

SEQ-CPU 7.94 2.41 4.92 52.0 15.8 32.2
OMP-S-T-CPU 3.64 0.71 4.74 40.0 7.8 52.2

OCL-THINK-CPU 3.69 0.20 4.90 42.0 2.3 55.7
OCL-THINK-GPU 3.78 0.39 4.58 43.2 4.5 52.3

OCL-ALL-CPU 0.60 1.67 26.5 73.5
OCL-ALL-GPU 0.32 0.21 59.8 40.2

Table 3.3: Absolute and relative time spent on one iteration of each stage. Agent generation
rate: 100 per time step.

Absolute [ms] Relative [%]
Sense Think Act Sense Think Act

SEQ-CPU 15.29 5.95 9.77 49.3 19.2 31.5
OMP-S-T-CPU 6.65 1.58 9.14 38.3 9.1 52.6

OCL-THINK-CPU 7.03 0.41 9.58 41.3 2.4 56.3
OCL-THINK-GPU 7.37 0.53 10.31 40.5 2.9 56.6

OCL-ALL-CPU 1.50 4.05 27.0 73.0
OCL-ALL-GPU 0.43 1.66 20.4 79.6

Think is reduced to less than a third. Offloading reduces the runtime spent on the
Think stage by a factor of up to 16.

Due to the small contribution of the Think stage to the runtime, the speedup through
partial offloading is modest, while a maximum speedup achieved through offloading is
only up to 19%. On the hardware used in our experiments, the performance gains
from parallelisation using OpenMP and OpenCL on the platform with the dedicated
GPU are close (cf. Figure 3.7). Substantial speedup is achieved by the OCL-ALL-GPU
scheme, i.e., executing the entire simulation on the GPU. The jointly considered Sense
and Think stages are accelerated by a factor of 34.3 and 49.4 with an agent generation
rate of 2 and 100, respectively. With the more congested scenario, a considerable
amount of time is spent on the conflict resolution, with 79.6% spent on the Act stage.

When considering the pure OpenCL simulator implementation, there are still obvious
opportunities for runtime reduction. At high traffic density, more than three quarters
of the simulation runtime is spent in the Act stage, which includes conflict resolution.
Currently, each round of conflict resolution checks for conflicts with respect to every
agent on every lane of the road network. However, rules could be formulated to limit
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the set of agents that may be involved in a conflict: for instance, depending on the
considered models, conflicts may only result from agents either performing a lane change
or advancing to the next lane. In such a case, considering only those agents that have
entered a new lane may substantially reduce the cost of each round of conflict resolution.

From the performance evaluation results, we can make a number of general obser-
vations: firstly, in the considered models, the Think stage takes up a relatively small
portion of the overall runtime. Even in a scenario with a peak of about 50 000 vehicles
concurrently on the road, Think only contributes about 20% to the runtime. Hence, the
gains achievable by offloading the Think stage are inherently limited: we achieved up
to about 18% speed-up by offloading to an APU, only slightly exceeding the speed-up
by a simple parallelisation of the Sense and Think stage on a CPU. For simplicity, a
purely CPU-based parallelisation of these two stages may be preferable.

Secondly, substantial speed-up can be achieved when parallelising all stages i.e. the
entire model execution on one accelerator. The achieved runtime reduction by a factor
of more than 28 on a GPU may put some large-scale parameter studies into reach that
would be considered overly time-consuming using a sequential simulator. Since even
on a multi-core CPU our OpenCL implementation achieves a speedup of more than 6,
our results show the suitability of common traffic simulation models for fine-grained
parallelisation. Since only small amounts of computation are required at each time
step of the simulation, retaining all simulation data within a single device contributes
positively to the performance.

Our measurements are specific to the selected driver behaviour models: the Intelli-
gent Driver Model for car-following, and Ahmed’s model for lane-changing. However,
we expect other microscopic traffic simulation models or even some other agent-based
models in various domains to exhibit similar demands in terms of input data. Thus, for
offloading approaches to achieve significant speed-up even with the cost of the added
data transfers, the computational demands of the models would need to be substan-
tially larger than those of the models considered in this chapter. This implies that
although the Sense-Think-Act-level parallelisation seems to provide more opportuni-
ties to parallelise, it would not lead to sustainable performance benefits. Performance
gains are larger when the entire model is executed on the accelerators.

Notably, OCL-ALL-CPU and OCL-ALL-GPU make use of properties specific to traf-
fic simulation on a graph-based road network and require a model-specific conflict res-
olution step. Compared to the other execution schemes, programming efforts increase
significantly.
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In summary, from the first feasibility study, two conclusions can be drawn. First,
the model-level parallelisation scheme is preferable and therefore will be employed in
the rest of this thesis. Second, programming efforts grow almost proportionally to the
performance gain. To achieve the best performance as indicated by OCL-ALL-CPU
and OCL-ALL-GPU, in-depth knowledge of the hardware and significant amount of
programming efforts are required.

3.5 Feasibility Study 2: ABTS on FPGAs

We explore design options to port CityMoS to run on FPGAs. In the last decade, a
growing interest can be observed in FPGAs as high-performance and energy-efficient
accelerators for compute-intensive tasks. Previous works [80, 187] also show the fea-
sibility of accelerating ABTSs using FPGAs. Those works often rely on converting
common traffic models to models based on CA, which naturally map to the FPGA’s
hardware building blocks. In these works, the FPGA applications were expressed in
HDL, which describes the required functionality at a low level in terms of logical op-
erations and data transferred among hardware registers. The emergence of high-level
synthesis toolchains for FPGAs from vendors such as Intel and Xilinx enables devel-
opment of FPGA programs in C-like languages, reducing the development effort [200]
and enabling portability to and from other hardware platforms.

3.5.1 Simulation Settings

Due to limited hardware resources available on FPGAs as mentioned in Section 2.2,
especially owing to the lack of massive high-speed memory to store e.g. a large road
network, we simplify the traffic simulation scenario to be a proof-of-concept but which
still exercises both car-following and lane-changing models. For the simulation envi-
ronment, we consider a single road with a configurable number of parallel lanes.

We still focus on the heterogeneous hardware scenario, i.e., a PC or a cluster equipped
with an FPGA accelerator connected via PCI-E. The traffic simulation is run on a road
with four lanes for 1,000 time steps, varying the total number of agents from 24 to 214.
Initially, agents are spawned at the leftmost two lanes of the road. For acceleration
using FPGAs, we will only consider a full FPGA-based execution scheme owing to
two reasons. The first reason is that, as concluded in Section 3.4.6, for the simulation
models we studied, performance benefits are larger with a full offloading approach.
The second reason is, although commonly both GPU and FPGA are connected to
the host via PCI-E channel, FPGA typically has a slow data transfer speed, when
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compared to GPU [201]. This would further increase the data transfer overhead, causing
a downgrade in the partial offloading approach.

3.5.2 FPGA-based Execution

3.5.2.1 Architecture

We present our design of an FPGA-accelerated ABTS generated from OpenCL code
using the SDAccel tool by Xilinx. OpenCL offers a two-layer memory hierarchy for
FPGAs: Local memory maps to the Block RAM (BRAM) of an FPGA, which is shared
among work-items in the same work-group. Global memory binds to the massive but
latency-prone off-chip memory to which all work-items have access.

Unlike GPUs which utilise Single Instruction Multiple Data (SIMD) parallelisation,
an FPGA’s parallelisation is two-fold. Each operation (store/load, arithmetic oper-
ation, etc.) is compiled to a small circuit called a Function Unit (FU). An FPGA
can generate many FUs for the same operation so that multiple data elements can be
processed simultaneously. Further, many FUs are wired together to form a pipeline.
A work-item steps over one FU at a time while many work-items start successively
to fill the different stages of the pipeline (Fig. 2.2a). The start interval between two
consecutive work-items is called Initiation Interval (II). The performance of an FPGA
is influenced mainly by two factors: the initiation interval and the operating frequency.
Dependencies across work-items may cause a bigger II. The operating frequency is
guided by the cycles spent on the slowest pipeline stage.

SDAccel is a High-Level Synthesis (HLS) tool from Xilinx for programming FPGAs
for x86 systems. It allows users to express an OpenCL kernel using HDL, HLS (high-
level synthesis from C or C++), or OpenCL. We explore designs with the latter two
approaches. The C or C++ used for HLS is close to sequential code in terms of style,
with extra syntax provided for FPGA-specific data mappings and optimisation, making
porting code from existing sequential code trivial. The resulting program presents as a
single work-item to the host. The body of an HLS kernel is typically a loop where one
data point is dealt with per iteration. When parallelised on an FPGA, many iterations
start a number of cycles apart (as defined by the II), yielding pipelined parallelism.
Two types of OpenCL kernels are supported when programming in OpenCL [202].
Single-work-item kernels are intrinsically equivalent to HLS with extra use of OpenCL
primitives such as __kernel, __global. NDRange kernels are a type of kernel widely
used for programming GPUs, and thus offer good portability to and from GPU code.
When executed on FPGAs, NDRange kernels can either yield SIMD parallelism as
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GPUs or pipelined parallelism if dependencies exist across work-items. Due to the
similarity between kernels written as Single-work-item and in HLS, we will omit Single-
work-item and focus on HLS and NDRange for the remainder of the chapter.

3.5.2.2 Implementation

In a typical ABTS, an agent autonomously performs neighbour searches, makes de-
cisions based on its neighbours’ states and updates its own state in each time step.
Neighbour search is a crucial step and potentially consumes a significant amount of ex-
ecution time. Therefore, we start this section with a simple neighbour search algorithm
that can be executed efficiently on FPGAs. Then, we discuss two design considerations
that can further improve the performance. Lastly, we assemble everything and present
our overall design.

Agent Update and Neighbour Search As our simulation scenario, we consider a
long road with multiple parallel lanes. Initially, agents are assumed to be stored in a
per-lane array, sorted by ascending agent positions in driving direction. After a single
step of the car-following model or lane-changing model is executed, the agents remain
sorted: 1) The car-following model drives the agent to follow but not to overtake the
agent in the front; 2) To carry out a lane change, the lane-changing agent is removed
from its original lane and inserted between its leader and follower on the target lane.
We present a simple algorithm that relies on the per-lane agent order to efficiently
determine the neighbours of all agents on the road. The basic idea is to iterate through
the agents in the order of their position considering all lanes, updating per-lane pointers
to efficiently identify their neighbours.

Figure 3.8a illustrates the neighbour search: For each lane l, a pointer current[l] is
maintained, initially pointing to the rearmost agent. The neighbour search iterates
through the agents by their position across all lanes, until the foremost agent has been
reached. Once an agent’s neighbours have been identified on lane l, the pointer cur-
rent[l] is updated to point to the agent’s leader on lane l (cf. Figure 3.8b). During
the iterations, the invariant holds that the neighbours of each current agent are iden-
tified by the current pointers as follows: the leader and the follower, if any, on the
current lane l are located by current[l]+1 and current[l]-1 . The leaders and followers
on neighbouring lanes li, if any, are identified by current[li] and current[li]-1.
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current[laneB]

current[laneC]

current[laneA]
 

(a) Neighbour search of the first agent (coloured in red). Neighbours are indicated by the dash arrowed
lines.

current[laneB]

current[laneC]
 

current[laneA]
 

(b) Neighbour search of the second agent (coloured in red). Neighbours are indicated by the dash
arrowed lines.

Figure 3.8: Neighbour search.

Design Considerations To maximise the parallelisation opportunities and tailor
the computing workload to the underlying FPGA hardware, we consider the following
two design concerns:

• Single and Double Buffering

Single and double buffering (SB and DB) are two design principles for ABSs,
both of which have implications on parallelized execution, model behaviour and
the potential for state conflicts [151]. With SB, each agent overwrites its state
immediately after the agent behaviours have been executed, whereas with DB,
the new agent state is first written to an intermediate buffer and consequently
applied for all agents at once. The SB design may cause write-read or write-write
dependencies, resulting in larger initiation interval when pipelined on FPGA.
Further, with SB, inconsistent agent states may be read as the agent updates
gradually progress throughout the pipeline. To avoid these complications, we
rely on DB in our implementation.

• Number Representation
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Figure 3.9: Illustration of pipelined processing of agents

As the high dynamic range of floating point numbers is not required to represent
positions and velocities on individual roads, we rely on fixed-point arithmetic to
achieve better power and space efficiency [203].

We use 24 bits to represent the integer part and 8 bits for the fractional part,
which enables a minimum number increment of 2−8, i.e., a precision of 0.4cm or
cm/s.

Main Simulation Loop In the HLS implementation, the main body of the kernel
function is a nested loop. The outer loop iterates through the simulation steps. The
inner loop, which is pipelined, iterates through the agents to carry out the neighbour
search and agent update.

In the NDRange kernel implementation, the loop that counts the simulation steps
resides in the host code. The loop that updates the agents is replaced by an NDRange
function call. Due to the incremental updating of the current pointers in the neighbour
search algorithm, SIMD processing of multiple agents is infeasible. However, pipeline
parallelization across work-items is possible.

Unintended vehicle collisions may occur due to the employment of DB design [204]:
as illustrated in Fig. 3.10, the red vehicle and the yellow vehicle are close in longitudinal
positions and both intend to change lanes to the middle lane. As the vehicles are two
lanes apart, they are unaware of each other. As a result, both of them may decide to
change to the middle lane, causing a collision. To resolve such conflicts, before writing
to the buffer holding the new state, we check whether the last stored agent on the target
lane collides with the current agent. The pipelined execution on the FPGA ensures
that at this point, the last agent has finished updating its state (cf. Figure 3.9).
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Figure 3.10: Illustration of a possible collision due to our double-buffering design.

3.5.2.3 Performance Evaluation

We evaluate our HLS and NDRange kernels on an Amazon f1.2xlarge instance equipped
with an 8-core Intel Xeon E5-2686, 122GB RAM and an Xilinx Virtex UltraScale+
XCVU13P FPGA. The FPGA has a maximum frequency of 500MHz, 3,780K Logic
Cells, 12,288 DSPs and 455Mb RAM. The version of the Xilinx OpenCL Compiler is
2018.2 with GCC version 4.8.

The run time is compared to that of a sequential CPU implementation on an Intel
Xeon-E5 CPU and a SIMD implementation on an NVIDIA GTX 1060 GPU. How-
ever, the proposed neighbour search and conflict resolution implementations rely on
the pipelined execution and strict update order guaranteed on the FPGA, as GPUs
process many agents in an undefined order. The GPU implementation is based on the
one described in Section 3.4.5. When a conflict is detected, the agent that is further
behind on the lane is rolled back to its original lane. As shown in Fig. 3.11, FPGA-
HLS is slower than the CPU at small scales due to the initialisation and data transfer
overheads. However, FPGA-HLS outperforms the CPU for 256 and more agents. In-
terestingly, the GPU performs similarly to the CPU and is slower than FPGA-HLS.
This is due to the substantial overheads in the conflict resolution step on the GPU,
which constitutes 60-90% of the total execution time. FPGA-HLS achieves a 24.35x
speed up over the CPU and 8.9x over the GPU when simulating 16,384 agents. No-
tably, FPGA-NDRange is the slowest implementation in all cases. One reason for this
is the dependencies among work-item on the current pointers, which prevent paral-
lel processing of the agents. Moreover, FPGA-NDRange cannot rely on pre-fetching:
in the HLS implementation, agent data is pre-fetched from the latency-prone off-chip
memory to the fast BRAM before the main simulation loop is entered. The pre-fetching
contributes to the initialisation overhead, resulting in a slowdown at small scales, but
a performance increase at larger scales. However, in the NDRange implementation,
where multiple work-groups are presented and the BRAM address space can only be
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Figure 3.11: Performance comparison between CPU, GPU, FPGA-HLS and FPGA-NDRange

shared within the same work-group, the memory required to pre-fetch all agent data for
each work-group exceeds the available BRAM at large scales. Pre-fetching a chunk of
data per work-group is infeasible as it is only beneficial when the neighbouring agents
are pre-fetched, which naturally cannot be done before the neighbour search.

Instead, each work-item fetches agent data from the slow off-chip memory, causing a
decrease in performance.

Our kernels consume less than 6% of the FPGA’s resources. This indicates a good
potential to extend our approach to full road network topologies by generating multiple
pipelines on the same FPGA, each pipeline dealing with one road. Extra logic might
be required in this case for transmitting agents between pipelines.

3.6 Summary

Two feasibility studies were demonstrated in this chapter. In the first study, we evalu-
ated two parallelisation schemes proposed in Section 2.5 on a CPU-GPU as well as an
APU system. In the second study, an ABTS was ported onto FPGAs using high-level
synthesis.

There are several essential messages that can be taken away:
First, as shown in Section 3.4.6, although partitioning the simulation using Sense-

Think-Act-level paradigm appears to provide more potentially parallelisable compo-
nents, it also increases the data transfer overheads. While a performance gain could
still be achieved, the benefit was larger when offloading the entire model on one accel-
erator. Therefore, when extending OpenABL, we will keep the design of model-level
parallelsation.
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Another important message is that, while accelerating ABS using FPGAs is feasible,
the challenges are different from e.g. using a CPU or a GPU. As revealed in Sec-
tion 3.5.2.3, the code that tailored for an FPGA architecture does not perform equally
well on a SIMD architecture e.g. on a GPU and vice versa. This is due to the substan-
tial architectural differences in terms of memory hierarchy and the computing power
of a single processing unit (in FPGA a processing unit is a FU). Therefore, when con-
sidering OpenCL-based parallelisation for the aforementioned accelerators, CPU and
GPU can be treated similarly, whereas FPGA should be dealt with separately.

As can be seen, parallelising an ABS on heterogeneous hardware require model- and
hardware-specific implementations. Many common constructs are not easily available
for accelerators and will typically need to be substituted with implementations devel-
oped from scratch. Such constructs include the container types from the C++ standard
template library, libraries for computing output statistics, facilities for input and out-
put or for coupling with other simulation tools. Thorough knowledge of the hardware
is needed to achieve peak performance. This puts burdens on the simulationists, who
may not be an expert in parallel programming. Users should be provided by a frame-
work like OpenABL with easy-to-use facilities for steering the simulation. However, as
discussed in the previous chapters, the current form of the OpenABL framework has
its limitations, preventing it from being widely applied to all types of ABSs. In next
chapter, we start to build our framework by first extending OpenABL to fill the gaps
with the lessons learnt in this chapter in mind.
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4.1 Introduction

As shown in the last chapter, a prevalent way to speed up ABS to meet the increasing
performance needs is to make use of accelerators. However, the studies in Chapter 3 il-
lustrate two challenges to optimising simulation code on the target hardware platforms.
Firstly, programming for accelerators requires in-depth knowledge of the hardware. Al-
though employing programming languages such as OpenCL or CUDA abstracts away
some hardware details, the programming efforts can still be significant, as displayed
in the first feasibility study. The second challenge is that code tailored for one spe-
cific hardware type may not be simply used by another type and achieve a similar
optimal performance (the second feasibility study). This degrades maintainability as
well as portability of the code [59]. The introduction of a new abstraction layer in the
form of a domain-specific language can help alleviate this problem. In the context of
agent-based simulations, OpenABL [18] has been proposed to enable code generation
from high-level model and scenario specifications using a C-like syntax. It features a
number of backends to generate parallelised code for CPUs, GPUs, clusters, or cloud
environments.

The original OpenABL targeted one specific type of hardware platform, i.e., co-
execution on combinations of CPUs, GPUs, and FPGAs was not possible. This leaves
a large range of computational resources untapped, even though previous work has
demonstrated a high level of hardware utilisation using co-execution [126]. However,
once enabled, co-execution poses the additional challenge of determining a suitable
combination of hardware devices for execution to maximise performance. Further, the
original OpenABL limited the simulation environment to continuous 2D or 3D spaces,
which excludes graph-based simulation spaces as commonly used in domains such as
road traffic and social sciences. Lastly, through the studies in Chapter 3, we identified
the necessity of conflict resolution in a heterogeneous setting. However OpenABL does
not provide a mechanism for conflict resolution, requiring modellers to manually provide
code to detect and resolve situations where multiple agents request the same resources.

In this chapter, we address these limitations by introducing OpenABLext, an exten-
sion to the OpenABL language. We improve the OpenABL framework in the following
aspects:

• We extend the declaration of simulation environments to feature user-defined
types, the possibility to support graph-based simulation spaces, and an efficient
neighbour search for GPUs and FPGAs to achieve efficient memory access.
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• We present an OpenCL backend to support automatic code generation for CPUs,
GPUs, and FPGAs.

• We propose an online dispatching method to optimise the hardware assignment
during co-execution.

• We define an interface that enables the generation of parallel conflict resolution
code based on user-specified rules.

The remainder of the chapter is organised as follows: In Section 4.2, we introduce
OpenABL fundamentals and discuss related work in the respective fields. We present
OpenABLext in detail in Section 4.3 and evaluate its performance in Section 4.4. Sec-
tion 4.5 gives a summary.

4.2 Background

4.2.1 Related Work

The acceleration of ABS through parallelisation has received wide attention from the
research community. A number of CPU-based frameworks such as MASON [11],
Repast [207], Swarm [21], or FLAME [208] simplify the process of developing parallel
ABS. Variants that exploit CPU-based parallelisation or distributed execution include
D-MASON [209] and Repast-HPC [210]. However, these frameworks target CPU-based
hardware and require modellers to be knowledgeable in parallel or distributed comput-
ing.

A number of papers propose frameworks that abstract away from hardware specifics
in order to simplify the porting to hardware accelerators. One of these frameworks is
FLAME GPU [211], which is an extension of FLAME. It provides a template-driven
framework for agent-based modelling targeting GPUs based on a state machine model
called X-machine. The Many-Core Multi-Agent System (MCMAS) [15] provides a Java-
based toolkit that supports a set of pre-defined data structures and functions called
plugins to abstract from native OpenCL code. Agent models can be implemented using
these data structures or plugins. In contrast to our work, MCMAS and FLAME GPU
target GPUs only.

To achieve domain-independent code generation for heterogeneous platforms, meth-
ods such as pattern-matching to detect parallelisable C snippets [212] and the use of
code templates [213] have been proposed. Most of these approaches focus on detecting
localized sections of the source code that can be parallelised, e.g., nested loops with
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predictable control flows, whereas our work addresses the more irregular control flow
of ABSs.

Generating OpenCL code for FPGAs from sequential loop-based code for grid-based
applications was studied in [214] and [215]. To the best of our knowledge, we are the
first to generate OpenCL code for FPGAs in the context of ABS, which on the one
hand usually exhibits more irregular workloads, but on the other hand also exhibits
common computational patterns that can be utilised for better performance. Open
Accelerators (OpenACC) [216] and Open Multi-Processing (OpenMP, version 4.0 and
above) provide directive-based application programming interfaces to parallelise general
sequential code to run on heterogeneous systems. There are also efforts to translate
OpenACC code to OpenCL targeting FPGAs [217]. Unlike OpenCL, both OpenACC
and OpenMP provide only limited control over low-level performance-critical aspects
such as memory access patterns and control flow. Further, as general programming
standards, they do not include domain-specific optimisations as our framework does for
ABS. DSLs are another group of methods to simplify development for high-performance
code generation on heterogeneous hardware platforms [218, 17]. However, to the best
of our knowledge, none of the existing works consider ABS.

One of the major challenges for the efficient use of heterogeneous hardware en-
vironments is the partitioning of the workload and the assignment of these parti-
tions to the most suitable hardware device. To this end, machine-learning based ap-
proaches [219, 220, 221] have been proposed. However, these methods usually require
substantial offline training. The runtime behaviour of ABS not only potentially varies
based on input parameters but can also substantially change over the course of a sim-
ulation run, requiring regular retraining of machine-learning models to achieve good
performance. To partition generic programs dynamically at runtime, several authors
have shown that partitioning on a data level is a viable option for both regular and
irregular problems [222, 223, 224, 225]. Some works [226, 227, 228] tackle the problem
of accelerating numerical algorithms such as matrix multiplication and the fast Fourier
transform on heterogeneous systems using data partitioning approaches. In agent-
based simulations, however, we observe a strong locality of dependencies, as agents
primarily interact with nearby agents, i.e., their neighbours. This can cause additional
application-specific overhead when generic data-level partitioning methods are applied
to ABS, e.g., by regularly repartitioning data geographically [229]. Therefore, we pro-
pose a generalisable approach to partition the workload on the function level. Other
works that partition on the function level either require periodic re-evaluation of the
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current assignment to adjust to the irregularly evolving workload [230], or they need
to profile the hardware and program offline [231].

To reduce overhead, we propose a heuristic to dynamically trigger re-evaluation of
the hardware assignment. Further, the computations carried out as part of the re-
evaluation at runtime are used to advance the simulation. Unlike the above mentioned
methods, our approach is tailored to ABSs to reduce the assignment overhead.

Another challenge in parallel ABS is that conflicting actions may occur, e.g., when
two agents move to the same position at the same point in time. Approaches proposed
to detect and resolve such conflicts typically rely either on the use of atomic opera-
tions during the parallel agents updates [133] or on enumerating the agents involved in
conflicts once an update cycle has completed [232]. In both cases, the winner of each
conflict is determined according to a tie-breaking policy, which may be stochastic or
rely on model-specific tie-breaking rules. A taxonomy and performance evaluation of
the conflict resolution methods from the literature is given by Yang et al. [151]. In the
present work, we provide a generic interface to define a conflict search radius and a
tie-breaking policy from which low-level code is generated automatically.

4.2.2 OpenABL

OpenABL is a domain-specific language to describe the behaviour of agent-based sim-
ulations and a framework to generate code targeting various execution platforms [18].
It acts as an intermediate layer to generate parallel or distributed time-stepped ABS,
given sequential simulation code written in a C-like language. An overview of the
OpenABL framework is shown in Figure 4.1. The framework consists of a frontend
and a backend. Listing 4.1 shows an example of frontend OpenABL code, where users
can define agents with a mandatory position attribute (keyword agent, L.1), constants
(keyword param, L.3-5), simulation environments (keyword environment, L.7), agent-
based model defined as step functions (keyword step, L.9-13), and a main function
(keyword main(), L.17-19).

1 agent Agent { p o s i t i o n f l o a t 2 coord ina te ; }
2

3 param i n t num_of_agents = 1000 ;
4 param i n t sim_steps = 100 ;
5 param f l o a t env_size = 100 ;
6

7 environment { max : f l o a t 2 ( env_size ) }
8
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Figure 4.1: An overview of the OpenABL framework.

9 s tep stepFunc1 ( Agent in -> out ) {
10 f o r ( Agent ne ighbours : near ( in , 5) {
11 /∗ do something to the agent ∗/
12 }
13 }
14

15 s tep stepFunc2 ( Agent in -> out ) { . . . }
16

17 void main ( ) {
18 . . . /∗ i n i t i a l i s e the agents ∗/
19 s imulate ( sim_steps ) { stepFunc1 , stepFunc2 }
20 }

Listing 4.1: Example OpenABL simulation definition.

The OpenABL compiler parses this code and compiles it to an Intermediate Represen-
tation (IR) called an Abstract Syntax Tree (AST). The AST IR is then further relayed
to one of the available backends. The backend reconstructs simulation code from the
AST IR and generates parallel code for the step functions that can then be executed
on CPUs, GPUs, clusters or cloud environments. OpenABL supports the following
backends: C, FLAME [208], FLAME GPU [211], MASON [11], and D-MASON [209].

4.3 From OpenABL to OpenABLext

In this section, we propose OpenABLext, an extension to the OpenABL language and
framework, to support a wider range of simulation models as well as additional types of
hardware. Our extensions, each described in detail in the following subsections, include:
1) The support of a more extensive environment declaration, featuring user-defined
types, the possibility to support graph-based simulation space, and a more efficient
neighbour search to achieve efficient memory access. 2) The introduction of an OpenCL
backend with specific compilation rules for GPUs and FPGAs as well as support for
multi-device co-execution. 3) An online dispatcher that profiles step functions and
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assigns them to the most suitable hardware device. 4) A conflict resolution mechanism
which automatically detects conflicts and resolves them using a tie-breaking function.

4.3.1 User-Specified Environments

The original OpenABL limits the simulation environment to continuous 2D or 3D
spaces, parametrised by the max, min, and granularity attributes in the environment

declaration. Furthermore, user-defined types can only be used to define agent types,
and not in function bodies or the environment, further complicating model specification.
We extend the OpenABL syntax and frontend to lift these limitations.

User-defined types for arbitrary variables in function bodies as well as in the definition
of the simulation environment can be specified as shown in the following example:
Lane {

int laneId;

float length;

int nextLaneIds[MAX_LANE_CONNECTIVITY];

}

environment { env : Lane

lanes[env_size] }

The keyword env inside the environment declaration defines the simulation environ-
ment. It accepts an environment array of all native types supported by the original
OpenABL as well as user-defined types. In this example, the environment is defined as
an array of the user-defined type Lane. The Lane type encapsulates a lane’s identifier,
its length, and its connections to other lanes.

Accelerators typically employ a memory hierarchy composed of global memory acces-
sible to all work-items and one or more types of local memory accessible to groups or
individual work-items. Global memory is used for massive data storage, e.g., an array
of all agents, while local memory only holds the agent and a set of relevant agents to be
processed by each or a group of work-items. Due to the high latency of global memory
accesses, data locality is an important consideration in ABS development [18]: accesses
of adjacent work-items to adjacent memory addresses can frequently be coalesced, i.e.,
translated to a single memory transaction, allowing for peak memory performance on
OpenCL devices such as GPUs. In common ABS models, agents tend to only inter-
act with agents within a certain radius or with agents on the same edge in a graph
environment. To achieve data locality during execution, we implemented the efficient
neighbour search method presented in [233]. Spatial locality is exploited by partitioning
the simulation space into a grid of cells. Each cell’s side length equals the largest search
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radius that appears in the model. When searching for neighbours, only the agents in
the same or adjacent cells are considered. In the original OpenABL, data locality is
achieved in 2D or 3D space by specifying a radius using the following neighbour search
query:
for (AgentType neighbours : near (currentAgent, radius))

We extend the language to allow for a similar neighbour search query for graph-based
models:
for (AgentType neighbours : on (env))

Given traffic simulation as an example where edges in a graph represent lanes, the
following query retrieves all agents on a lane:
for (Vehicles neighbours : on (lanes[currentVehicle.currentLane]))

Coalesced memory access is achieved by always keeping the array of agents in the
global memory sorted according to the individual dimensions of the position at-
tributes. Each element in the environment array keeps track of its start and end address
in global memory. As illustrated in Figure 4.2, two attributes mem_start and mem_end

record the start and end address of each single lane in the global array of agents. The
two attributes are updated after all step functions have terminated. When the neigh-
bour search query is called, instead of iterating through global memory, only a chunk
of memory needs to be visited. In a graph-based setting, the chunk of memory is indi-
cated by env.mem_start and env.mem_end. For 2D or 3D simulation spaces, we load
the chunks of memory holding the agents in the current cell and all the neighbouring
cells (Figure 4.3).

Index 0 1 2 3 4 5 6
AgentID 5 3 2 7 1 6 4
Position (1, 4.5)(1, 15.8) (2, 9.1) (2, 38.3) (3, 0.5) (3, 62.5)

LaneID 1 2 3
mem_start 0 3 5
mem_end 2 4 6

(LaneID, PositionOnLane) (1, 35.3)

Figure 4.2: Agents are sorted by their position (e.g., EdgeID and PositionOnEdge). Each
element in the environment array keeps a mem_start and a mem_end pointer to
its agents in global memory.

4.3.2 OpenCL code generation for Heterogeneous Hardware

The architecture of OpenABL allows the addition of new backends without modifying
the frontend, which allows us to support heterogeneous hardware environments by
adding an OpenCL backend. OpenCL enables co-execution across multiple devices
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Figure 4.3: In a grid with cell width at least the search radius, the neighbour search of the
red agent loads itself and adjacent cells.

of different types, while the existing backends only support single-platform execution.
With this new backend, we aim to allow modellers to fully utilise the available hardware
without specifying simulation code for each device manually.

To allow co-execution, we extend the syntax of the simulate(sim_steps) statement
so that each step function can be annotated with the identifier of the OpenCL device on
which the step function should execute, e.g.: simulate(sim_steps) {stepFunc1(0),

stepFunc2(1)}.
If all the step functions are assigned to the same hardware, OpenABLext will generate

code targeting this single device. Otherwise, OpenABLext will assume a co-execution
setting with the requirement for the users to define a merge function. The merge

function describes how the output data from different devices should be merged per
simulation step. The co-execution scenario will be discussed in Sec. 4.3.2.3.

In the following, we will discuss how the structure of the generated code changes
depending on the target device (GPU, FPGA, Co-execution). To this end, we assume
Listing 4.1 on page 73 as the input of OpenABLext.

4.3.2.1 OpenCL for GPUs and CPUs

The OpenCL backend takes as input the AST IR generated by the OpenABL frontend.
The output of the OpenCL backend consists of a host program and a device program,
compiled for the respective devices. Listing 4.2 and Listing 4.3 show pseudo code for
the host and device programs (extraneous details omitted; assumed input OpenABLext
syntax as shown in Listing 4.1). Agents, the environment, constant declarations, and
all auxiliary functions are duplicated in both the host and device programs, as they
may be referenced on either side.
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The generated host program initialises the device, allocates the required memory,
and initialises the agent state variables as well as the environment.

One compute_kernel function is created for each step function in the device pro-
gram. They are called in the sequence defined in the simulate(sim_steps) body
to ensure dependencies between step functions are respected. In the step functions,
the appearances of on or near statement is replaced by the neighbour search method
detailed in Sec. 4.3.1. Parallel bitonic sort is used to efficiently sort the agents in the
global memory. The work-items execute in parallel with each one processing one agent’s
step functions on the device.

The main loop of the simulation located in the host program calls the compute_kernel

iteratively until the step count defined in the parameter of simulation() has been
reached.

1 . . . /∗ f unc t i on and v a r i a b l e d e c l a r a t i o n s ∗/
2 i n t main ( )
3 {
4 i n i t i a l i s e ( agentArray [LENGTH] ) ;
5 i n i t i a l i s e ( clEnvironment , c l D e v i c e B u f f e r s ) ;
6 c lWr i t eBu f f e r ( agentArray [LENGTH] , c l D e v i c e B u f f e r s ) ;
7

8 f o r ( i n t i =0; i<NUM_STEPS; i++) {
9 clExecuteNDRangeKernel ( compute_kernel_1 ) ;

10 clExecuteNDRangeKernel ( compute_kernel_2 ) ;
11 }
12

13 c lReadBuf fer ( c lDev i c eBu f f e r s , agentArray [LENGTH] ) ;
14 }

Listing 4.2: Host code.

1 . . . /∗ f unc t i on and v a r i a b l e d e c l a r a t i o n s ∗/
2 void stepFunc1 ( Agent ∗ agent ) {
3 f o r ( agents i n s i d e the nine surrounding c e l l s ) { . . . }
4 }
5

6 void stepFunc2 ( Agent ∗ agent ) { . . . }
7

8 __kernel void compute_kernel_1 ( __global Agent ∗ agentArray )
9 {

10 i f ( get_global_id (0 ) >= LENGTH ) return ;
11 stepFunc1(&agentArray [ id ] ) ;

78



Chapter 4. Generating High-Performance Code for Agent-Based Simulations on
Heterogeneous Platforms Using OpenABLext

12 }
13

14 __kernel void compute_kernel_2 ( __global Agent ∗ agentArray )
15 {
16 i f ( get_global_id (0 ) >= LENGTH ) return ;
17 stepFunc2(&agentArray [ id ] ) ;
18 }

Listing 4.3: Device caode.

4.3.2.2 OpenCL code generation for FPGAs

Just as the OpenCL code for GPUs and CPUs, the code generated for the FPGA
also takes the AST IR as input. Again, a host program (Listing 4.4) for initiating
the OpenCL and simulation environment and a device program (Listing 4.5) with one
compute_kernel function are generated. The difference compared to GPU or CPU
code is that the main loop of the simulation resides in the body of the compute_kernel

function, following the single-work-item kernel guidelines described in Section 2.2.4.
The main body of the compute_kernel function is a nested loop with the outer loop
counting simulation steps. Each step function in the simulate body creates an inner
loop which iterates through the agents, calling the designated step function. OpenABL
employs a double buffering mechanism where two different buffers are used to store
agent’s states before and after executing each step function [18]. The read and write
buffers are therefore swapped after each step function as shown in Listing 4.5. The on

or near statement is replaced by the efficient neighbour search method. Radix sort,
rather than bitonic sort is used to sort the agents, which has been shown to perform
well on FPGAs [234].

When pipelining a loop on FPGAs, dependencies across tasks increase the initial
interval (II) between tasks. As in each simulation time step, the agents react to the
states updated in the last time step, pipelining the outer loop causes the pipeline to
stall until the last time step finishes, resulting in a sequential execution of the outer
loop. We thus only consider pipelining the inner loop. All step functions as well as
the updating of mem_start and mem_end pointers are pipelined with the minimum
possible IIs. Notably, dependencies inside step functions, e.g., looping through agents
to accumulate a value, can still cause a large II. Further, radix sort iterates through
the data digit by digit. Since each iteration relies on the results produced in the last
iteration, sorting of agents is also not fully pipelined.
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1 . . . /∗ f unc t i on and v a r i a b l e d e c l a r a t i o n s ∗/
2 i n t main ( )
3 {
4 i n i t i a l i s e ( agentArray [LENGTH] ) ;
5 i n i t i a l i s e ( clEnvironment , c l D e v i c e B u f f e r s ) ;
6 c lWr i t eBu f f e r ( agentArray [LENGTH] , c l D e v i c e B u f f e r s ) ;
7 c lExecuteKerne l ( compute_kernel ) ;
8 c lReadBuf fer ( c lDev i c eBu f f e r s , agentArray [LENGTH] ) ;
9 }

Listing 4.4: Host code.

1 . . . /∗ f unc t i on and v a r i a b l e d e c l a r a t i o n s ∗/
2 void stepFunc1 ( Agent ∗agentRead , Agent ∗ agentWrite ) {
3 #pragma p ipe l ine_loop
4 f o r ( agents i n s i d e the nine surrounding c e l l s )
5 { . . . }
6 }
7 void stepFunc2 ( Agent ∗ agent ) { . . . }
8

9 __kernel void compute_kernel ( __global Agent ∗ agentArrayReadBuffer ,
__global Agent ∗ agentArrayWriteBuffer )

10 {
11 f o r ( i n t i = 0 ; i < NUM_STEPS ; i++)
12 {
13 f o r ( i n t j = 0 ; j < NUM_AGENTS ; j++)
14 stepFunc1(&agentArrayReadBuffer [ j ] , &agentArrayWriteBuffer [ j ] ) ;
15 agentArrayReadBuffer = agentArrayWriteBuffer ;
16 f o r ( i n t j = 0 ; j < NUM_AGENTS ; j++)
17 stepFunc2(&agentArrayReadBuffer [ j ] , &agentArrayWriteBuffer [ j ] ) ;
18 }
19 agentArrayReadBuffer = agentArrayWriteBuffer ;
20 }

Listing 4.5: Host code.

4.3.2.3 Code Generation for Co-execution

In a co-execution setting, the output of the OpenCL backend consists of a host program
(Listing 4.6) and multiple device programs, one for each available device (Listing 4.7 and
Listing 4.8). One compute_kernel function is created for each step function assigned to
this device. On each device, the work-items execute in parallel with each one processing
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Device B work-items
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Figure 4.4: Co-execution on device A (acts as host) and B. Each work-item of device A and
device B processes the step functions assigned to them in parallel. After that, the
data is merged at the host and assigned to device A and B respectively for the
next step.

one agent’s step function. This means that parallelisation is achieved not only on the
device-level with many devices working in parallel but also inside the devices where
multiple work-items are executed simultaneously. It is also possible that two or more
devices process different step functions on the same agent at the same time (Figure 4.4).

The host program orchestrates the data exchange between devices. After each sim-
ulation iteration, data processed by different devices is transferred back to the host.
Users are required to specify a merge_function, which takes as arguments the states
of a single agent returned by different devices at the end of each simulation iteration
and describes how those states should be combined. The merging is carried out on the
host by iterating through all agents and calling the merge_function in parallel using
OpenMP.

The parallel co-execution of step functions may introduce inconsistent agent states
across kernels. Some inconsistencies can be resolved also by the merge_function. As
an example, in a traffic simulation, two models guide the movement of an agent: a car-
following model and a lane-changing model. When executing these models in parallel,
an inconsistency occurs when the car-following model advances an agent to a lane on
the next road whereas the lane-changing model moves the agent to a parallel lane on
the current road. In this situation, the merge_function could simply use the lane given
by the car-following model in the merged agent state. However, if the step functions
defined by the model are fully sequentially dependent, co-execution cannot be applied.

1 . . . /∗ f unc t i on and v a r i a b l e d e c l a r a t i o n s ∗/
2 i n t main ( )
3 {
4 i n i t i a l i s e ( agentArray [LENGTH] ) ;
5 i n i t i a l i s e ( clEnvironment , c lDeviceBuf fersDev0 , c lDev iceBuf fe r sDev1 )

;
6 c lWr i t eBu f f e r ( agentArray [LENGTH] , c lDev iceBuf fe r sDev0 ) ;
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7 c lWr i t eBu f f e r ( agentArray [LENGTH] , c lDev iceBuf fe r sDev1 ) ;
8 f o r ( i n t i = 0 ; i < NUM_STEPS ; i++) {
9 clExecuteNDRangeKernel ( compute_kernel_dev0 ) ;

10 clExecuteNDRangeKernel ( compute_kernel_dev1 ) ;
11 c lReadBuf fer ( c lDeviceBuf fersDev0 , agentArray0 [LENGTH] ) ;
12 c lReadBuf fer ( c lDeviceBuf fersDev1 , agentArray1 [LENGTH] ) ;
13 agentArray [LENGTH] = merge ( agentArray0 [LENGTH] , agentArray1 [

LENGTH] ) ;
14 c lWr i t eBu f f e r ( agentArray [LENGTH] , c lDev iceBuf fe r sDev0 ) ;
15 c lWr i t eBu f f e r ( agentArray [LENGTH] , c lDev iceBuf fe r sDev1 ) ;
16 }
17 }

Listing 4.6: Host code.

1 . . . /∗ f unc t i on and v a r i a b l e d e c l a r a t i o n s ∗/
2 void stepFunc1 ( Agent ∗ agent ) {
3 f o r ( agents i n s i d e the 9 surrounding c e l l s ) { . . . }
4 }
5

6 __kernel void compute_kernel_dev0 ( __global Agent ∗ agentArray )
7 {
8 i f ( get_global_id (0 ) >= LENGTH ) return ;
9 stepFunc1(&agentArray [ id ] ) ;

10 }

Listing 4.7: Code for device ID 0.

1 . . . /∗ f unc t i on and v a r i a b l e d e c l a r a t i o n s ∗/
2 void stepFunc2 ( Agent ∗ agent ) { . . . }
3

4 __kernel void compute_kernel_dev1 ( __global Agent ∗ agentArray )
5 {
6 i f ( get_global_id (0 ) >= LENGTH ) return ;
7 stepFunc2(&agentArray [ id ] ) ;
8 }

Listing 4.8: Code for device ID 1.
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4.3.2.4 Hardware Selection with Online Dispatcher

While co-execution can lead to better hardware utilisation, it may not lead to better
performance. In the OpenABLext syntax, we allow users to manually assign each step
function to a piece of hardware. When a step function (i.e., one OpenCL kernel func-
tion) that would perform well on a GPU is assigned to a CPU, simulation performance
potentially suffers. The burden is again put on simulationists to find the best suitable
hardware for each step function. To alleviate this problem, we propose a light-weight
online dispatcher that assigns step functions to the most suitable device.

In agent-based simulation, most of the workload occurs in the main simulation body
which iteratively calls the step functions. In these functions, an agent’s behaviour
and its interaction with near-by agents is defined. The computing intensity of step
functions therefore depends on two factors: the complexity of the behaviour models
and the amount of agent interactions. While the complexity of a behavioural model
is fixed, the distribution of agents in the simulation space varies over the course of
a simulation, resulting in a non-constant number of agent interactions per time-step.
Therefore, the workload of ABS shows irregularities. We use a dynamic assignment
approach that re-evaluates the hardware assignment to better fit into the irregular
workloads.

Our proposed online dispatcher has two phases: a profiling phase and an execution
phase. Unlike existing generic approaches that evaluate the hardware assignment pe-
riodically, we can reduce the evaluation frequency by evaluating the assignment only
if there is a sharp change in the amount of agent interactions. The dispatcher learns
about the performance of each device through its profiling phase, which profiles all step
functions on all available hardware devices in parallel over a few simulation steps. All
profiling is done with the most up-to-date agent data so that after profiling, the devices
can continue their execution by reusing the results generated during profiling. This way
the profiling contributes to advancing the simulation at the cost of the data transfer
overheads to distribute the most up-to-date agent data to all available hardware before
the profiling process starts. The workflow of the proposed online dispatcher is depicted
in Fig. 4.5.

Users are required to specify three parameters for the online dispatcher: the number
of profiling iterations NUM_PRO_ITER, a threshold for the change of agent interactions in
percentage THRES_INTERACT, and a frequency to check this threshold FREQ_CHK_THRES.
At the beginning of the simulation, initial agent data is distributed among all available
devices. The simulation enters the profiling phase in which each hardware redundantly
executes all step functions for NUM_PRO_ITER iterations. After NUM_PRO_ITER iterations,
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Figure 4.5: Workflow of the online dispatcher.

the host assigns each step function to the piece of hardware on which it executed the
fastest. Once all step functions are assigned a current_device, the simulation can
enter the execution phase.

In the execution phase where there is a one-to-one assignment of step function to
hardware device, an agent interaction counter is maintained for each step function, mon-
itoring the amount of agent interactions per simulation step. Every FREQ_CHK_THRES

simulation steps, the host will check these counters and if one counter has changed more
than THRES_INTERACT percent compared to the last profiling, the profiling phase is re-
activated for the corresponding step function of this counter. The up-to-date agent data
on current_device is distributed among all available devices and the profiling starts
for another NUM_PRO_ITER iterations. Again, the hardware device which computes the
step function the fastest is selected as the new current_device. The execution of this
step function continues on the new current_device. In the scope of this article, we
do not consider resource limitations of each device but assume that each connected
device will have enough capacities to execute the assigned step functions. We leave the
accounting for resources and other constraints as future work.

4.3.3 Conflict Resolution

In parallel ABS, simultaneous updates of multiple agents can result in multiple agents
being assigned the same resource at the same time, e.g., a position on a road or consum-
ables [235]. Unlike desired spatial collisions, e.g., in particle collision models, conflicts
introduced purely by the parallel execution must be resolved to achieve results consis-
tent with a sequential execution.

Conceptually, conflict resolution involves two steps: First, conflict detection deter-
mines pairs of conflicting agents, and second, tie-breaking determines the agent that
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acquires the resource. The loser of a conflict can be rolled back to its previous state.
Since roll-backs may introduce additional conflicts, this process repeats until no further
conflicts occur. A number of approaches for conflict resolution on parallel hardware
have been studied in [151]. Here, we propose a generic interface for the users to specify
a spatial range for conflict detection and a policy for tie-breaking, from which low-level
implementations are generated.

Users can define a conflict resolution as follows:
conflict_resolution(env, search_radius, tie_breaking)

All pairs of agents residing on the same element in the env array are checked for con-
flicts based on the agents’ state variables. In 2D and 3D simulation environments, the
environment array is comprised of the internally generated partitions of the simulation
space as described in Section 4.3.1, with search_radius specifying the search radius.
tie_breaking has different meanings for graph-based simulations and for 2D/3D sim-
ulations. For graph-based simulations, it is a binary predicate with two agents A and B

as arguments. The predicate returns true if A should be rolled back and false if the
agents are not in conflict or agent B needs to be rolled back. For 2D/3D simulations, it
returns true if agents A and B are in conflict and returns false if there is no conflict.
The generated conflict resolution runs in parallel for both types of simulation spaces.
By default, conflict resolution runs on GPUs. It can also run on CPUs, if no GPU is
present.

As an example, in a graph-based traffic simulation, the simulation environment con-
sists of an array of roads[]. Assuming the desired position of an agent is indicated
by the state variables (LaneID, PositionOnLane), the tie_breaking function can be
defined so that the agent with a larger PositionOnLane wins the conflict. The position
and velocity of the other agent involved in the conflict are reverted to their previous
values. The generated conflict resolution code is executed once all step functions have
been executed. The conflict detection relies on the neighbour search methods intro-
duced in Section 4.3.1. As the step functions may change the agents’ positions, the
environment array is sorted and the mem_start and mem_end pointers are updated after
each iteration (Section 4.3.1). As the parallel execution of conflict resolution may also
result in conflicts, the process of conflict resolution is executed iteratively until there
is no conflict detected.

For 2D/3D simulations, conflict resolution can be achieved in the following way: all
agents are checked in parallel against other agents within search_radius using the
tie_breaking function. If agent A and agent B are in conflict, they are added to
a conflict set. Hence, if another agent C conflicts with either agent A or agent B,
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Figure 4.6: Illustration of Conflict Resolution (CR) for 2D/3D simulations.
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Figure 4.7: Comparison of the OpenCL backend with the FLAME GPU using the Circle
application.

agent C is also added to the set. The result of the conflict detection step is a list of
non-overlapping conflict sets (Fig. 4.6, Step 1) on each of which the conflict resolution
can be carried out simultaneously. In each set, a randomly selected agent is rolled
back to its previous state and the remaining agents inside the set are again checked for
conflicts (Fig. 4.6, Step 2). If no more conflicts exist, the processing of this conflict set
ends, otherwise, another randomly selected agent is rolled back (Fig. 4.6, Step 3). This
repeats until there is only one agent left in this conflict set.
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(where applicable).
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Table 4.1: Configuration of the tested platforms
Platform 1 Platform 2 Platform 3

CPU Intel Core i7-4770 Ryzen Threadripper 2950X Intel Xeon E5-2686 v4
RAM 16 GB DDR3 64 GB DRR4 122 GB DDR4
Accelerator NVIDIA GTX NVIDIA GTX Xilinx Virtex Ultra-

1060 GPU 2080Ti GPU Scale+ VU9P FPGA
GCC Version 5.4 7.4 4.8
OpenCL Version 1.2 1.2 1.2
Accelerator Compiler CUDA 10.0 CUDA 10.1 XOCC 2018.2

4.4 Evaluation

In this section, we use three typical hardware platforms (Table 4.1) to conduct a compre-
hensive performance analysis and evaluate the performance of OpenABLext, including
co-execution and online dispatching. We compare the performance of the new OpenCL
backend with the existing backends, i.e., C with OpenMP, FLAME GPU, and MA-
SON. For this, we evaluate a range of different simulation models: Circle, a benchmark
for accessing neighbours within a certain radius provided in [236]; Conway’s Game of
Life [156], a cellular-automata based simulation of the evolution of agents based on the
neighbouring agents’ states; Sugarscape [237], a social model where each agent searches
for nearby resources (a piece of sugar) to metabolise; and Ants [238], which simulates
the foraging behaviour of ants by leaving pheromones between their home and the food.
We based our implementation on the OpenABL code provided in the OpenABL reposi-
tory (https://github.com/OpenABL/OpenABL). To gain insights into the performance
of our co-execution method as well as the online dispatcher, we utilise two additional
simulation models: Traffic, a traffic simulation based on the implementation in [171]
and Crowd, which simulates the flocking behaviour of people following leaders (fire war-
dens) during a building evacuation [239]. While the Traffic simulation is graph-based,
all others exhibit 2D/3D simulation spaces. OpenABLext detects the simulation type
without any user intervention by checking if a user-specified environment is used. All
neighbour search queries, indicated by the keywords on or near in the step functions,
are replaced with the respective efficient neighbour search algorithm as described in
Section 3.1. Additionally, if users specify whether to generate simulation code with
conflict resolution, OpenABLext detects the conflict resolution interface and generates
the respective code based on the simulation type.
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4.4.1 OpenCL backend

During preliminary experiments, we observed that the performance of FLAME GPU is
severely affected by I/O to store intermediate simulation statistics. Since these have no
effect on the simulation results, we disabled them in our measurements. The generated
FPGA code for the traffic simulation consumed 11% of the available Look Up Tables
(LUTs) and less than 4% of other resources such as random access memory, flip flops
etc. and ran at a frequency of around 288MHz. For the other 2D/3D simulations 6-
17% of LUTs and at most 6% of other resources were utilised and the FPGA ran at a
frequency of 310-318MHz. We ran all simulations at least 5 times for 100 time steps to
enable comparison with the existing results in [18]. All 95% confidence intervals of the
execution time measured are smaller than 16% of the mean values for C backend and
8% for other backends.

In a first experiment, we evaluate the performance of the OpenCL backend compared
with the existing FLAME GPU backend. In preliminary experiments, executing the
generated OpenCL code on CPUs was slower than on GPUs in all cases. Therefore,
we only show the GPU performance. Our results are shown in Figure 4.7. We observe
that the OpenCL backend is on par with the FLAME GPU backend as both implement
an efficient neighbour search and make use of the massive parallelism of the GPU.
When agents are evenly distributed in the simulation space (Figure 4.7a), FLAME
GPU performed slightly better compared to OpenCL on the older hardware platform
(Intel + 1060) and similarly on the more recent one (Ryzen + 2080) in large scale
settings. In a second setting, we changed agents’ spawn points to be closer together
(Figure 4.7b). We observe that the performance of FLAME GPU is more sensitive to
these higher agent densities as it uses a message passing mechanism that generates one
message per agent in the current cell. When the amount of messages is too high to fit
in local memory, more accesses to global memory are required, causing a decrease in
performance. In contrast, the OpenCL backend sorts all agents in global memory after
each simulation step to ensure their correct cell assignment. The performance of sorting
is thus barely affected by the density of agents. The OpenCL backend performed better
on both hardware platforms for this application. For the sake of readability and since
all other simulation models showed similar trends, we primarily show the performance
of the OpenCL backend on hardware platform 1 and omit curves for FLAME GPU in
the following experiments.

In a second experiment, we put the performance of the OpenCL backend into per-
spective by comparing it to the C with OpenMP backend as well as the MASON
backend. Furthermore, we show how feasibly agent-based simulations can be executed
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on an FPGA using OpenABLext. Our findings are summarised in Figure 4.8. First, we
demonstrate the performance of three simulation models with a 2D/3D environment
(Fig. 4.8a to 4.8c). Unsurprisingly, the GPU performed best for higher agent numbers,
as the relative initialisation overhead decreased and the workload was sufficient to bene-
fit from the massive parallelisation. We confirm the findings from [18] that the MASON
backend performed considerably better than the C with OpenMP backend when the
agent number is high enough. Interestingly, the performance of the FPGA which is
restricted by the relatively low operating frequency and slow off-chip global memory
access is able to catch-up with OpenMP at 214 agents and even outperform it for the 216

agent scenario in both Game-of-Life and Sugarscape (Fig. 4.8a to 4.8b). This is caused
by the efficient neighbour search and the pipelining parallelism the FPGA implements.
As mentioned in Section 4.3.2.2, we employ a double-buffering design where we swap
read/write buffers after each step function. The three step functions in the Ants appli-
cation (Fig. 4.8c) are computationally lightweight so that the FPGA is not fully utilised
while they cause more memory-intensive buffer swaps, slowing down the performance
of the FPGA. Since to our knowledge these measurements represent the first results
on FPGA-accelerated agent-based simulations from high-level model specifications, the
performance results demonstrate the promise of FPGAs in this context.

As described above, OpenABLext enables modellers to utilise graph-based simulation
environments. As a proof of concept, we developed a traffic simulation based on our
previous implementation [171]. Our results are shown in Figure 4.8d. Note that we
do not include MASON or C with OpenMP as these backends are unable to support
graph-based simulation spaces. We observe that the FPGA performs comparably to the
OpenCL CPU variant in small scale scenarios (≤ 210 agents). The performance of both
GPUs is similar. However, with a larger number of agents, platform 2 could benefit
from its larger memory, avoiding the performance drop we experienced on platform 1.

4.4.2 Conflict resolution

Due to limited space, we do not show figures for the OpenABLext automated conflict
resolution from user-specified rules, but instead briefly report our findings: On the
traffic application, we specify a tie-breaking function so that the winner of each conflict
is the agent further ahead on the same lane. The performance of the generated conflict
resolution is evaluated by running 213 agents in both a low agent density and a high
agent density scenario. The conflict resolution takes 6% of the overall runtime on a
CPU and 9% of the overall runtime on a GPU with an average of 0.06 rollbacks per
agent in 100 simulation steps for the low agent density setting. In the high density
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setting, the percentages are 13.67% for a CPU and 39% for a GPU with an average of
2.23 rollbacks per agent.

4.4.3 Online dispatcher

Lastly, we present results on the performance of the co-execution schemes introduced
with OpenABLext where an online dispatcher automatically assigns each step function
to a suitable piece of hardware. We demonstrate the benefit of the online dispatcher
as well as the co-execution capability using three simulation models: Circle, Crowd,
and Traffic. The former two were simulated using 216 agents, while the more complex
traffic simulation was populated by 213 agents. The merge_functions are defined as
combining the results from the path finding model and the social force model for Crowd,
and taking the result of the car-following model for Traffic. To further understand the
impact of agent interactions on the simulation performance, we use three different
Traffic scenarios: short, medium, and long average agent trip length. As shown in
Fig. 4.9a, in the short trip-length setting, most of the agents finish their trips in the
first one-third of the simulation, resulting in a sharp reduction of agent interactions
plater in the simulation. In the medium setting, around half of all agents stayed active
throughout the entire simulation time while in the long trip setting, almost all agents
remained. In these experiments, we set the online dispatcher parameters as follows:
NUM_PRO_ITER = 20, THRES_INTERACT = 0.4 and FREQ_CHK_THRES = 100. We run the
above three applications for 1,000 steps.

Naturally, co-execution requires at least two step functions to be distributed among
different devices. However, the online dispatcher can still be employed in cases where
there is only one step function in order to find the most suitable device. Fig. 4.9b
shows the speed up over running the generated OpenCL code on CPU. For the circle
application which has only one step function, the online dispatcher manages to identify
the GPU as the most suitable device with only 7% overhead introduced by profiling. In
the Crowd simulation with its two step functions, we notice a considerable speed-up of
the co-execution scheme over the pure GPU (2.28x) or CPU (1.47x) variants, though
10% of the total execution time is spent on merging. The online dispatcher variant was
able to identify the most suitable device for each step function with only 1% overhead
compared to a manual assignment.

In the traffic-med and traffic-long scenarios, we also observe an advantage of co-
execution over pure GPU and CPU execution with a merging overhead of 1%. The
online dispatcher succeeds in finding the co-execution setting with less than 3% over-
head in both cases. Interestingly, this does not hold for the traffic-short scenario, as
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during the simulation the number of agents drops below a point where parallelisation
can no longer make up for the data merging overhead. In these cases, co-execution will
effectively slow down the simulation. As the online dispatcher recognises the decrease of
agent interactions, it switches from co-execution to a pure GPU execution (the switch
point is marked in red in Figure 4.9a), resulting in a total overhead of about 7%.
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Figure 4.9: Evaluation of the proposed online dispatcher on Platform 1.

4.5 Summary

In this chapter, we presented OpenABLext, an open-source automatic code-generation
framework for ABS on heterogeneous hardware environments. OpenABLext extends
the OpenABL framework to overcome limitations in terms of the supported hardware
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platforms and opens up new possibilities such as multi-device co-execution. The ad-
dition of an OpenCL backend to the OpenABL framework enables the execution on
CPUs and accelerators such as GPUs and FPGAs. Furthermore, OpenABLext fea-
tures automated conflict resolution based on user-specified rules, supports graph-based
simulation spaces, and utilises an efficient neighbour search algorithm. To ease de-
ployment in a co-execution setting, a light-weight online dispatcher is proposed, which
automatically chooses the most suitable hardware assignment.

We evaluated the performance of OpenABLext using a range of different simulation
models. On GPUs, the new OpenCL backend outperforms FLAME GPU in high agent
density settings and also delivers a better and more stable total deployment time. We
showed that using FPGAs for agent-based simulation is a promising approach as our
experiments exhibited shorter execution times for scenarios with a larger agent count
compared to the OpenMP backend. The main reason for this is the more efficient
neighbour search and the pipeline parallelism of the FPGA. Lastly, we demonstrated
that for some applications, co-execution can outperform single-device simulation, and
that our online dispatcher was able to find the best hardware assignment in all tested
cases with less than 7% overhead.

The online dispatcher assigns step functions to hardware. However, it assumes no
dependencies among step functions. Two data-dependent step functions could be as-
signed to different hardware and executed at the same time, causing simulation outputs
to deviate from a sequential run. To prevent this situation, the proposed framework
should be able to identify such data dependencies while assigning the hardware. Ide-
ally, to not put burdens back on the users, this detection process should be carried
out without much user invention. Therefore, in the next chapter, we propose OptCL,
a middleware that can be directly plugged into OpenABLext to automatically detect
data dependencies.
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5.1 Introduction

With OpenABLext introduced in Chapter 4, simulationists are able to generate high-
performance ABS code targeting heterogeneous hardware settings. However, the prob-
lem remains of how to efficiently map simulation models, which can display versatile
workload patterns, to their best suitable hardware. Such mapping is not trivial as
demonstrated in the studies in Chapter 3. Thorough knowledge of the hardware is
again required to make optimal mapping of workloads to accelerators, limiting the
benefits of OpenABLext. The online dispatcher introduced in the OpenABLext frame-
work partially solves this problem by automatically choosing the best suitable hardware
for each step function at run time and enabling co-execution. However, the dispatcher
does not consider possible data dependencies among step functions.

To tackle this problem, we propose a middleware called OptCL (Optimise perfor-
mance targeting high-performance domain-specifiC Languages) to enhance the co-
execution ability of OpenABLext. The middleware enables co-execution determined
through data dependency analysis and performance predictions on the available hard-
ware. OptCL is based on Clang, operating on Abstract Syntax Tree (AST) IR level
where the OpenABLext backend works on as well, making it possible to be seamlessly
integrated with OpenABLext. Further, since AST IR is language independent, the mid-
dleware can also benefit a wide range of C-based High-Performance Domain Specific
Language (HPDSL) similar to OpenABLext. It can complement an original HPDSL
compiler, enabling it to also work for closed-source HPDSLs, provided that the HPDSL
can output IR of OpenCL kernels in the shape of Standard Portable Intermediate Rep-
resentation (SPIR), a binary OpenCL IR for CPUs and AMD GPUs or Parallel Thread
Execution (PTX) for NVIDIA GPUs.

Accelerator

CPU

Processing

Merge

Processing

Idle Idle
Task 1 Task 2

(a) Offload mode. CPU is idle while accelerator is processing.
Accelerator

CPU

Processing

Merge

Processing

Processing Processing
Task 1 Task 2

(b) Co-execution mode. CPU and accelerator are processing simultaneously.

Figure 5.1: Offload mode vs co-execution mode.
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The remainder of this chapter is organised as follow: In Section 5.2, we present
background and an overview of related work. In Section 5.3, we describe the OptCL
middleware in detail. We present our case studies and evaluate the performance of
OptCL in Section 5.4. Section 5.5 concludes the chapter.

5.2 Background and Related Work

5.2.1 OpenABLext

The workflow of OpenABLext overlaps with the middleware. The middleware can
be completely integrated into the OpenABLext compilation flow to generate high-
performance OpenCL code.

5.2.2 SYCL

1 gpu_se lector d e v i c e _ s e l e c t o r ;
2 queue deviceQueue ( d e v i c e _ s e l e c t o r ) ;
3

4 bu f f e r <f l o a t , 1> dev_a ( a , range <1>(N) ) ;
5 bu f f e r <f l o a t , 1> dev_b(b , range <1>(N) ) ;
6 bu f f e r <f l o a t , 1> dev_c ( c , range <1>(N) ) ;
7

8 deviceQueue . submit ( [& ] ( handler& ch ) {
9 a c c e s s o r a = dev_a . get_access<mode : : read >(ch ) ;

10 a c c e s s o r b = dev_b . get_access<mode : : read >(ch ) ;
11 a c c e s s o r c = dev_c . get_access<mode : : write >(ch ) ;
12 auto k e r n e l = [= ] ( id<1> wid ) {
13 c [ wid ] = a [ wid ] + b [ wid ] ; }
14 }) ;

Listing 5.1: An example of SYCL code

Other than OpenABLext, we illustrate the versatility of OptCL by plugging it into
another DSL called SYCL. SYCL is a specification developed by Khronos targeting
heterogeneous hardware platforms. It allows code portability to enable the same code
running on versatile accelerators such as GPUs, FPGAs as well as CPUs. SYCL ab-
stracts away from hardware details, enabling developers to code parallel programmes
using normal C++ style. The backend of SYCL varies from implementations which is
usually but not limited to OpenCL.
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SYCL utilises a so-called single-source concept, meaning one source file consolidates
both host and device programs. Listing 5.1 illustrates an example to sum up two N-
dimensional vectors in parallel using SYCL. Users are required to first select a device
to run the kernels on (L.1-2), followed by allocating memory space on the device-side
(L.4-6). L.8-14 is a special function marked by the key word submit defining a kernel
in the form of a lambda expression by first declaring the inputs and outputs using
a data type called accessor. L.12-13 implements the logic of a kernel. Many SYCL
implementations also support heterogeneous platforms by providing facilities such as
asynchronous scheduling of kernels by overlapping data transfer and computation.

ComputeCpp is a commercial implementation of SYCL (a free community edition is
also available) [240]. Following the SYCL specification, ComputeCpp consists of two
parts: a device compiler and a run-time library, both of which are closed source. So
far, only AMD GPUs and x86/ARM CPUs (as accelerators) are fully supported. The
support for NVIDIA GPUs was experimental (and was superseded in the most recent
version).

By inputting SYCL code, ComputeCpp can output SPIR (CPU and AMD GPU)
or PTX (NVIDIA GPU), and an integration file to be loaded by the ComputeCpp
run-time. During compilation, users have to choose one IR (SPIR or PTX) to output.
Therefore, NVIDIA GPUs cannot be used together with other accelerators in a multiple-
device environment.

Although ComputeCpp supports offloading to multiple devices, it leaves the assign-
ment of individual kernels to hardware to the user. Further, as ComputeCpp focuses
more on portability than performance, it was reported that ComputeCpp did not fully
utilise the power of OpenCL [241]. In this chapter, we will demonstrate that by plugging
OptCL into ComputeCpp, the performance of the generated OpenCL code can indeed
be improved, both through reducing the kernel invocation overhead and co-execution.
OptCL reconstructs an OpenCL program that supports a mix use of PTX and SPIR
binaries. As a side effect, we also re-enable using NVIDIA GPUs with ComputeCpp,
and more importantly enable using NVIDIA GPUs along with other accelerators which
was not supported in the original ComputeCpp.

5.2.3 Abstract Syntax Tree (AST)

AST are a widely used tree representation to display the syntactic structure of a pro-
gram. An example of the AST generated from an if-else clause is depicted in Figure 5.2.
Compared to raw code, an AST presents a clean structure omitting non-essential syn-
tactic elements such as blank spaces or punctuation. An AST records the position of
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Branch

Compare
Op: > Assignment

Left Op.
a

Right Op.
b

Left Op.
a

Right Op.
b

Left Op.
b

Right Op.
a

Assignment

if (a>b) 
  a=b;
else 
  b=a;

Figure 5.2: An example AST generated from an if-else clause.

each syntactic element, which allows analysis tools to determine, e.g., the scope and
the read and write dependencies of variables.

We are mainly interested in data dependencies between High Performance Regions
(HPRs), defined as the code regions compiled to OpenCL kernels. Therefore, instead
of generating an AST for the entire program, we generate ASTs only for those HPRs.
Data dependencies are then identified by analysing these ASTs. HPRs possessing no
data dependencies are candidates for co-execution.

5.2.4 Related work

Previous efforts parallelise sequential code using a set of pre-defined rewrite rules [243],
code templates [244] or special syntax for loops [225, 245], enabling translation to
programs in OpenCL, CUDA, or Threading Building Blocks code. These frameworks
pursue a goal of generating parallel programs from sequential representations similar to
HPDSLs. Necessary structural amendments have to be made for existing HPDSL pro-
grams to use these frameworks, while our OptCL aims to parallelise existing programs
without any changes required.

Several works [130, 246, 247] automatically detect parallelisable loops in sequential
representations and translate the loops to OpenCL kernels. The existing approaches
targeting OpenCL follow a similar workflow as OptCL: a sequential program is first
converted into an IR. Data parallel loops or static control regions are detected in the
IR and translated to OpenCL kernels. These existing works assume that parallelisable
regions are explicitly stated as loops in the sequential code. However, this assump-
tion may not hold for HPDSL programs. As HPDSLs abstract away implementation
details, they usually only require users to code loop bodies, i.e., the HPRs. The iter-
ative behaviour is handled internally by the HPDSL runtime (and eventually by the
OpenCL runtime). Further, none of these approaches consider co-execution opportu-
nities. In contrast to the existing works on automatic parallelisation, our approach
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relies on HPDSL-level code segments to identify regions for co-execution. The com-
bination of existing automatic parallelisation methods with our approach for mapping
computations to heterogeneous hardware is an interesting avenue for future work.

There exist a handful of DSLs providing different levels of native co-execution sup-
port. Habanero-C (HC) [248] features shared virtual memory and smart data layout
to achieve performance portability on CPU-GPU systems. CnC-HC [249], which maps
the Concurrent Collections (CnC) model to the HC runtime, extends the supported
hardware to include FPGAs. HC and CnC-HC both use work-stealing approaches to
achieve load-balancing between CPU and accelerators. Unlike our work, which auto-
matically determines data dependencies, in HC, the data dependencies are ensured by
the users based on async and finish constructs. Performance on the individual piece
of hardware is also estimated based on a user-specified machine description. The work
reported in [250] extends the PetaBricks language which allows users to specify mul-
tiple algorithmic paths for the same input and output. The compiler then chooses
the path leading to the best performance given hardware settings determined using an
evolutionary mechanism. However, users still need to produce parallel code explicitly.

Two co-execution schemes are extensively used in the literature: data partitioning
and task partitioning. Task partitioning has been carried out offline using performance
analytical models [251] or using machine learning-based approaches [219, 220, 252, 253].
In the evaluation section, we will conduct a comparison study between a representative
offline machine learning-based approach and a sampling-based approach similar to [205]
but applicable beyond the ABS domain. Other works [225, 254, 255] propose novel
adaptive scheduling mechanisms to partition the workload at the data level aiming
at achieving load-balancing or power-saving. Many frameworks built based on these
designs [224, 222, 223] can operate directly on OpenCL kernels. They typically start
with a small portion of workload assigned to CPUs and the remainder to the accelerators
(or vice versa). A balancing phase then incrementally balances the workload assigned
to the CPUs and to the accelerators until convergence is reached. If the workload is
irregular, this balancing phase can be re-triggered if certain imbalance criteria are met.
Data layout and transfer among different devices are also dealt with by the frameworks
automatically.

A study comparing data partitioning and task partitioning schemes on a CPU-FPGA
system is carried out in [256]. The authors concluded that both schemes can be ben-
eficial. OptCL partitions the workload at the task level, which is a natural choice
following the specification of HPDSLs, as each HPR will be typically translated to one
OpenCL kernel. Data partitioning will only be used in a special case as an additional
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optimisation (cf. Sec. 5.3.4.3). Future work could explore the combination of task and
data partitioning in OptCL by employing one of the aforementioned designs.

5.3 The OptCL Middleware
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Figure 5.3: An overview of OptCL.

An overview of OptCL is given in Figure 5.3. OptCL generates OpenCL code in
three steps: 1) data dependency analysis, 2) profiling, 3) hardware assignment, and
code reconstruction. In the first step, OptCL identifies the sub-AST containing HPRs
from the AST generated for the entire program. The sub-AST is further split up into
smaller ASTs, each representing an HPR or the code region between two HPRs. A
Data Dependency Graph (DDG) derived from those small ASTs identifies the data
dependencies and distinguishes HPRs that are free of interdependencies, which can
thus be co-executed. The second step profiles the kernels generated out of the HPRs
on the available hardware. Based on the profiling results, the third step decides on the
execution scheme and reconstructs the program accordingly.

Users are required to specify two inputs to OptCL at installation time: the keyword
used to annotate the start of HPRs (HPR keyword), and the data type used to define in-
and output (in other words, to allocate memory on the devices) of those HPRs (e.g.,
accessor in SYCL or agent in OpenABLext), which is referred to as device variable
keyword. Notably, this setup is done once per language and is application-agnostic.
After this initial set up, OptCL can run in a fully automated way. In what follows, we
will discuss each step in detail.

5.3.1 Step 1: Data Dependency Analysis

Common compilers also produce ASTs during compilation, from which data depen-
dencies for the entire code base are deduced. OptCL only focuses on a portion of the
entire AST i.e. the sub-AST around the HPRs, and eliminates code snippets that are
not targeted for parallel execution, e.g., reading inputs, initialisation of variables, etc.
This can reduce evaluation complexity, tailored to the structure of HPDSL code.
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Figure 5.4: DAG generation.

Firstly, OptCL triggers a partial compilation of the input HPDSL code. This step
assembles code if multiple source files are available and sorts HPRs according to the
required execution order. The partial compilation stops when the AST for the en-
tire program is generated. At a glance, this step seems to be redundant with the
HPDSL’s own compilation step. However, it is essential to enable OptCL on closed-
source HPDSLs, since OptCL does not have access to the intermediate compiling stages
of a closed-source compiler. For open source compilers, this partial compilation can be
embedded into the real compilation process.

1 HPR1( g loba l_id i ) {
2 B[ i ] = A[ i ] + 1 ;
3 C[ i ] = A[ i ] ∗ 5 ;
4 }//ϵ = {A:R, B:W, C:W}
5 //ICS1
6 f o r ( each element B[ i ] in B) {
7 B[ i ]++;
8 } //ϵ = {B:W}
9 HPR2( g loba l_id i ) {

10 B[ i ] = B[ i ] + C[ i ] ;
11 }//ϵ = {B:W, C:R}
12 //ICS2
13 f o r ( each element A[ i ] in A) {
14 A[ i ]++;
15 } //ϵ = {A:W}
16 HPR3( g loba l_id i ) {
17 C[ i ]++;
18 }//ϵ = {C:W}
19 HPR4( g loba l_id i ) {
20 D[ i ] = A[ i ] + B[ i ] + C[ i ] ;

102



Chapter 5. Squeezing more Performance - Enhancing Co-execution Capability with
OptCL

21 }//ϵ = {A:R, B:R, C:R, D:W}

Listing 5.2: Pseudo-code of a 4-HPR HPDSL program

The AST of the entire program is first traversed to locate HPRs and usage of device
variables. The traversal is implemented based on the RecursiveASTVisitor class of
Clang. HPRs are identified in the raw code using the HPR keyword inputted by the
users. The scope of each HPR is to the end of the function (e.g., for OpenABLext)
or lambda expression (e.g., for SYCL) following the keyword. Device variables are
identified by the device variable keyword (e.g. the Device_Var keyword in Listing 5.2)
for both their device part (variables which are mapped to the device’s memory space)
and their host counterpart (variables declared on the host to initialise device variables
or to store the results read from the device) as well as their aliases determined by
the clang alias analysis. There can be code snippets between two consequent HPRs
where the host counterpart of a device variable can be amended. Data dependency can
thus also occur, preventing the neighbouring HPRs from parallel execution. Therefore,
during data dependency analysis, those code snippets, further referred to as In-between
Code Snippets (ICSs), should also be taken into consideration.

While traversing the AST of the entire program, it can be identified whether an HPR
or an ICS is within a loop. This information is recorded to be applied later in Step 1
as well as in Step 3. With all HPRs detected, the key code regions encapsulating all
HPRs and ICSs can be identified, and its corresponding sub-AST is extracted from the
overall AST. The sub-AST is further split into small ASTs, each AST representing an
HPR or an ICS.

Within one small AST, we trace read and write operations on the device variable for
both their device part and host counterpart. Each AST is traversed to check for three
basic patterns and combinations thereof that may indicate a read or write operation:

• Assignment statement (A = B or A = func(B, C)): the former case entails a write
operation on A and a read operation on B. The latter entails a write operation
on A. As we do not analyse the function func(), we conservatively assume that
func() may cause both read and write on B and C.

• Binary operation (A = B + C): a binary operation incurs a write operation on A

and read operations on B and C respectively.

• Unary operation (A++ or !A): for unary operations, we distinguish between
increment (A++ or ++A) and decrement (A-- or --A) on the one hand, which
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incur both read and write operations on A; and other unary operations which
incur only read operations on A on the other hand.

The results of the above checks are summarised by an expression: ϵ = {A : R|W, B :
R|W, C : R|W, ..} where A, B, C.. are the device variables touched in this HPR and
R|W indicates either Read(R), if all operations on this device variable in this HPR
are read operations, or Write(W ) if at least one write operation on this device variable
exists in this HPR with W always overrides R.

Listing 5.2 illustrates an example HPDSL program with four HPRs and two ICSs.
HPRs or ICSs within a loop are treated as a single node in DDG, as the data de-
pendency remains unchanged in each iteration. The generation of DDG starts with
assuming dependencies everywhere, resulting in a DDG representing sequential execu-
tion (Figure 5.4a). OptCL then tries to parallelise as many HPR nodes as possible.
ICS nodes are not considered for parallelisation, as they by user’s design have to be
executed sequentially on the host. However, they are taken into count when evaluating
their surrounding HPRs, as they play an essential role to determine the data depen-
dencies and can influence the co-execution possibility. The attempt begins with the
last HPR node (e.g., HPR4 in Figure 5.4a) by evaluating the dependencies between its
preceding node and itself. Two consecutive HPR nodes can touch the same device vari-
able, for example, HPR1 and HPR2 touch variable A, B and C, yielding four types of
dependencies: Read-After-Read (RAR) , Write-After-Read (WAR), Read-After-Write
(RAW) and Write-After-Write (WAW). This can be determined as the element-wise
union of the ϵ expressions. For example, an element-wise union of the epsilon expres-
sions of HPR1 (ϵ = {A : R, B : W, C : W}) and HPR2 (ϵ = {B : W, C : R}) is
{B : WAW, C : RAW}.

Two or more consecutive HPR nodes can be parallelised if: 1) There is no ICS node
in between carrying write dependencies of the device variables that are used in the
latter node in the DDG graph; and 2) They touch a disjunct set of device variables or
all device variables they touch have either RAR or WAR dependency.

While RAR intuitively causes no dependency, WAR also results in no dependency.
This is because when executing in parallel on different devices, each device keeps a local
copy of the variable. Modifying the local copy on one device has no effect on other
devices. For instance, as shown in Listing 5.2, when co-executing HPR2 and HPR3
on different devices, HPR2 and HPR3 each keep a local copy of C which reflects the
values after HPR1. The write operations on C (e.g., C[i]++) in HPR3 do not change
the values of C in HPR2.
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As illustrated in Figure 5.4b, HPR4 cannot be parallelised with HPR3 due to RAW
dependency on C (HPR3 writes to C and then HPR4 reads from C). Node HPR3 can
be parallelised with node HPR2 (Figure 5.4c and 5.4d), because only WAR dependency
exists (HPR2 reads from C and HPR3 writes to C) and ICS2 carrying write-dependency
to A while A is not used in the latter node i.e. node HPR3. Node HPR1 cannot be
parallelised with node HPR2 and node HPR3 (Figure 5.4e) for two reasons. First, there
is RAW dependency on device variable B and C. Second, ICS1 modifies variable B

which is overwritten in HPR2.
This parallelisation process traverses a DDG iteratively until no more nodes can be

parallelised.

5.3.2 Step 2:Profiling

We propose two design options for the profiling stage: a sampling-based profiling ap-
proach executing a small portion of the application to estimate the performance of the
whole program and an offline mechanism using a machine-learning based approach to
predict the performance. The usability and accuracy of two different approaches will
be compared in Section 5.4.

Sampling-based Profiling Device programs encapsulating OpenCL kernels (e.g.
PTX or SPIR) are generated using HPDSL’s own compiler. OptCL produces one
temporary host program per device (including CPUs), assuming a sequential execution
order and a single device environment. These temporary host programs are functionally
similar to the ones generated by the original HPDSL compiler with extra utilities to
measure the execution time of individual kernels, including both kernel invocation and
data transfers (for using CPUs as accelerators, only kernel invocation time is counted, as
there is no data transfer). Further, after each kernel invocation, the data is transferred
back to the host in order to measure the data transfer overhead.

Each kernel is profiled with the real data with a timer or the time used for one full
kernel invocation, whichever takes longer. In the case that multiple rounds of kernel
invocations can be done within the time limit set by the timer, the throughput is
recorded. If one kernel invocation takes longer than the timer, the execution time is
used to indicate the performance.

Offline Profiling The offline approach implements an established performance pre-
diction model using so-called architecture-independent features introduced in work [219].
Each OpenCL kernel is abstracted as a series of architecture-independent features rang-
ing from opcode counts to branch deviation entropies. The Architecture Independent
Workload Characterization (AIWC) tool [219] developed based on the idea is employed
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to characterise the OpenCL kernels generated by the HPDSL’s compiler. The AIWC
tool acts as a plugin to an OpenCL simulator, Oclgrind, which has been widely used to
debug OpenCL kernels [257]. Oclgrind simulates the execution of OpenCL kernels on
the IR level, and therefore it is hardware independent. During the simulation, Oclgrind
generates events, e.g., on a conditional branch, based on the encountered IR instruc-
tions. AIWC acts as an event handler which counts the appearance of certain events.
When a full kernel invocation is completed, AIWC conducts a statistical summary of
the counters and produces metrics. These features are later fed into a prediction model
based on a Random Forest [258] to predict the execution time on a CPU, a GPU or any
other accelerator. By iteratively partitioning the data, the algorithm builds decision
trees. Then, the forest, which is an ensemble of decision trees, provides the prediction
based on the mean among the trees, providing a more reliable and robust prediction
result. The experiments conducted by the authors in [219] showed an average of 1.2%
deviation between the predicted execution time and measured time.

5.3.3 Step 3: Hardware Assignment and Program Reconstruction

In this step, a hardware assignment is determined with the aim of maximising perfor-
mance. It is based on the results from the profiling stage, following these rules:

• If the throughput/execution time of a kernel on one device outperforms other
devices, the kernel is assigned to this winning device.

• When co-execution is possible as indicated by the DDG: 1) If the co-executed
kernels have different winning devices, they are assigned to their respective win-
ning devices. 2) If some of them share a winning device 1, the second best device
2 of a kernel is chosen, given the total execution time of these kernels on device
1 is larger than co-execution on device 1 and 2 (cf. Figure 5.5).

Based on the hardware assignment, OptCL reconstructs the HPDSL program. OptCL
employs the Clang rewrite method to replace the HPRs with their OpenCL kernel in-
vocations, together with the necessary initialisation and data transfer. Other parts
such as ICSs and I/Os are copied over from the original HPDSL program. During the
reconstruction, a couple of measures are taken to reduce the kernel invocation over-
head: firstly, all OpenCL kernels are compiled only once prior to the start of the first
HPR. The compiled binaries stay in memory and are used when needed. Secondly, we
optimise for the situation where HPRs reside in a loop. This can cause data transfer
redundancies if every single call to the HPR in a loop iteration is treated as a new
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Figure 5.5: An example showing that co-execution may still lead to a performance gain even
if some kernels are assigned to sub-optimal hardware. T: execution time.

OpenCL kernel, which entails bi-directional data transfer to/from the host. The infor-
mation of whether an HPR is within a loop is collected in Step 1. In case all HPRs
residing in the same loop are assigned to the same device and there is no ICS in the
loop, the data transfer between host and device is extracted and executed outside the
loop to eliminate redundant data transfer.

In a multi-device execution environment, different devices usually do not share the
same memory space. OptCL also inserts code that is responsible for allocating memory
on the respective devices. In the case where a shift of devices is required between two
consecutive kernels, a data path is built in between. There are special cases where data
exchange can be avoided, e.g. when an Accelerated Processing Unit (APU) is used. We
will showcase this in the evaluation section. OptCL smartly decides which data should
be copied over to the other devices and performs the copies only when necessary based
on the data dependency information collected in Step 1 as well as the hardware type.

After the co-execution, the host may receive inconsistent outputs from different de-
vices. The correct output is then restored using the dependency information recorded
in Step 1. A merge_function is inserted into the host program in two scenarios: In
a WAR dependency scenario, the merge_function picks the output from the device
conducting the write operation. In the scenario where co-executed kernels write to
different device variables, the merge_function gathers the individual outputs from the
devices that carried out the write operation and merges them together on the host. For
example, HPR2 and HPR3 illustrated in Listing 5.2 can be co-executed on different
devices. The merge_function then merges device variable B outputted by HPR2 and
device variable C by HPR3 on the host. The merged data is re-distributed to the
devices if the next kernel is not executed on the host (CPUs).

A piece of clean-up code concludes the host program, freeing buffers and kernels as
well as outputting the results if required. Eventually, OptCL lets Clang compile the
reconstructed code and generate the final executables.
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5.3.4 Optimisation

5.3.4.1 Enhanced Dependency Detection

Device variables can be declared using user-defined structures. For example, when
using OpenABLext to program a traffic ABS, a device variable can be an array of
car agents where each car possesses its identifier, position, velocity, etc. Dependencies
may be overestimated if OptCL were to treat the structure as a whole. In a given
program, it may occur that two consecutive kernels write to disjoint sets of members of
the same structure. In this case, these two kernels can potentially still be co-executed.
However, given the dependency detection rules described in Section 5.3.1, they would
be identified as having a WAW dependency.

To solve this issue, an enhanced dependency detection is introduced. Device variables
declared as structures are broken down to the member level. Given device variable A

defined using structure T{type member1, type member2, ...},
the new ϵ expression of a kernel that operates on A will be {A.member1 : R|W, A.member2 :
R|W, ..., B : R|W, ...}. With this new ϵ expression, the dependency detection rules can
be applied in the same way as described in Section 5.3.1.

5.3.4.2 User-specified merge_function

If extra logic is provided to resolve dependency conflicts, parallelisation of HPRs with
RAW or WAW dependencies is also possible. In some use cases, RAW or WAW depen-
dency may even be tolerated, e.g., in stochastic ABSs [259].

To fulfill such needs, we allow users to define their own merge_functions following the
naming convention kernel1_kernel2_merge_function in the respective HPDSL’s syn-
tax. Once a RAW or WAW dependencies are detected, OptCL will search for the exis-
tence of an optional merge_function. Users can also define an empty merge_function to
allow RAW or WAW dependency to exist. This also implies that OptCL will not check
if the dependency conflicts are resolved by applying the user-specified merge_functions.
Users are then responsible for ensuring the logic of the program is still correct by pro-
viding the merge_functions. An example of a user-specified merge_function will be
given in Sec. 5.4.

5.3.4.3 Single Kernel

When an HPDSL program contains only a single HPR, co-execution is still possible
if the data partitioning scheme is used. It is safe to do so because the input data is
processed in parallel even on one device. Each device receives a subset of the data
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proportional to its computational power as profiled in Step 2. After processing, the
output is transferred back to the host for merging.

To prevent discrepancies in the outcome of the HPDSL programs, this optimisation
only applies to single kernels possessing no intra-read-and-write dependency. That
means, e.g., if the kernel touches device variable A[i], there has to be no write to
A[j] where i ̸= j in the same kernel. This is because A[i] and A[j] can be potentially
processed on different devices where there is no guaranteed synchronisation. This rule
can be imposed using an additional intra-dependency check during the data dependency
analysis in Step 1.

5.4 Evaluation

We evaluate OptCL by plugging it into OpenABLext as well as SYCL. Both of the stud-
ied HPDSLs target CPU-GPU heterogeneous platforms. Our evaluation was, therefore,
conducted on CPU-GPU systems. To cover possible hardware configurations, we in-
clude two types of CPU-GPU systems: a dedicated CPU-GPU (dCPU-GPU) platform
equipped with an Intel Core i5-11400F CPU with 16 GB of RAM and an NVIDIA GTX
1070 graphics card with 8 GB of RAM; and an integrated CPU-GPU (iCPU-GPU) plat-
form equipped with an Intel i5-7400 CPU with 16 GB of RAM and an integrated Intel
HD 630 iGPU. Both systems run Ubuntu 18.04. The key difference between the two
platforms is that while data transfer is often required between the CPU and the GPU in
the dCPU-GPU setting, physical memory is shared between the CPU and the iGPU in
the iCPU-GPU setting. Thus, the CPU and the iGPU can directly access each other’s
data, eliminating the data transfer overhead.

For SYCL, six applications covering domains ranging from physics simulation to
machine learning were selected to evaluate the performance of OptCL. The applications
are:

Back Propagation (BP) is an algorithm used for training neural networks in su-
pervised machine learning tasks. By determining the gradient of the error function with
respect to the model parameters, BP enables the use of gradient-based optimization
methods to search local minima of the error function.

K-Means (KM) is a clustering algorithm. The algorithm partitions N nodes into
K clusters with each node assigned to a cluster with the shortest distance to the mean
defined as the centroid of this cluster. The algorithm initially assigns nodes randomly
to clusters and then iteratively re-computes the new mean of each cluster and re-assigns
nodes to clusters until convergence.
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Speckle Reducing anisotropic diffusion (SR) is a widely used image processing
algorithm to remove noise from ultrasonic and radar images. Based on partial differen-
tial equations, the algorithm iteratively diffuses the value of each pixel using the value
of its four neighbours.

Hot Spot (HS) is a simulation to model the thermal dynamics of a processor based
on its floor plan. Inputting the power and initial temperatures, HS simulates the heat
dissipation and propagation among the blocks on the chip.

CirCle (CC) is a molecular simulation that models the potential and relocation of
molecules driven by mutual forces in a 2-D space. Molecules only interact with their
neighbours within a cut-off radius when computing the forces.

hierarchical-Matrix-Vector multiplication (MV), is a method proposed in [260].
We employ this idea to implement a large matrix-vector multiplication which completes
after several iterations. In each iteration, two independent matrix-vector multiplica-
tions are performed and merged.

The tested applications all follow a pattern where HPRs are executed iteratively.
We were not aware of any off-the-shelf SYCL implementations of these applications.
Therefore, we implemented them from scratch, applying our best efforts to optimise
for a general SIMD architecture such as those of GPUs.

5.4.1 Profiling Approaches Comparison

In the first evaluation, we compare the sampling-based approach and the offline ap-
proach introduced in Sec. 5.3.2. The goal is to select the approach with higher accuracy
while also evaluating the usability. The evaluation is done on the dCPU-GPU system.

No setup is needed for the sampling-based approach. For the offline approach, the
Random Forest model must be pre-trained with an extensive number of kernel pat-
terns. We trained the model using the OpenDwarfs Extended Benchmark Suite1, the
same suite used for training in the original AIWC work [219]. The suite covers applica-
tions ranging from solvers to mathematical problems to image processing algorithms,
demonstrating versatile kernel patterns. By varying the input sizes, the suite provided
∼5,000 kernel patterns and their execution times.

The Random Forest model intakes three major parameters. num.trees: the num-
ber of trees in a random forest; mtry: number of possible independent features; and
min.node.size: the minimal node size per tree. We employed the values suggested by
the AIWC authors which are num.trees = 505, mtry = 30 and min.node.size = 9. For
the sampling-based approach, we profile the applications with a timer set to 1 second.

1https://github.com/BeauJoh/OpenDwarfs
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The profiling step is to guide the hardware assignment. Therefore, it is more im-
portant to learn the relative performance comparison between different hardware types
rather than the individual execution time. Further, for the sake of creating an application-
independent metric to quantify the two profiling approaches, we employ a performance
ratio metric RC/G defined as the execution time on the CPU divided by the time on
the GPU. In case throughput is taken, RC/G is defined as the throughput on the GPU
divided by the one on the CPU.
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Figure 5.6: Comparison of different RC/G results.

Figure 5.6 illustrates RC/G outputted by the sampling-based approach, the offline
approach as well as the measured RC/G on the CPU and the GPU. The x-axis labels
are of the form NAME-SCALE, where NAME refers to the name of the application and
SCALE is the input size. Due to limit space, here we demonstrate three applications:
BP, CC, and KM, but varying different input scales. As depicted in Figure 5.6, a base
line RC/G = 1 (meaning the performance on the CPU and the GPU is equal) splits the
space into two sides. The sampling-based approach managed to identify correctly the
better-performing hardware between the CPU and the GPU in all cases but one (CC-
4096), albeit with a certain estimation error (defined as the estimated ratio divided by
the measured ratio). It failed in the CC-4096 case because the workload in each iteration
of CC depends strongly on the changing positions of the molecules, and, therefore, it
changes from iteration to iteration. Using the first few iterations to estimate the full
execution time thus leads to deviations. Although the offline approach also succeeded
in estimating the performance deviation in most of the cases (7 out of 9), it came with
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much bigger estimation errors (82% on average versus 22% with the sampling-based
approach). Significant errors are observed in KM-1024 as well as in KM-65536, as the
training data lacked of such kernel pattern or input size.

In summary, the sampling-based approach led to better accuracy in all tested ap-
plications with zero setup effort, compared to a moderately trained (training data
size/test data size = 555.6) offline machine-learning based approach. Hence, we choose
to use the sampling-based approach in the rest of this chapter. However, the offline
approach could still produce valid results when trained to more comprehensively cover
the possible kernel patterns and input sizes, which we defer to future work.

5.4.2 Case Study 1: SYCL

We relied on ComputeCpp version 2.21, which still supports NVIDIA GPUs. All the
tested applications were compiled with -O3 optimisation.

Six applications are categorised into two groups based on the observed speed up
types: Group 1: BP, KM and SR. These applications consist of several kernels.
Owing to the dependencies between kernels, co-execution is not feasible. However,
performance improvements are still possible through kernel invocation overhead re-
duction introduced in Sec. 5.3.3 as well as by executing them on the best suitable
hardware. Group 2: HS, CC and MV. Co-execution is feasible. In addition to
the performance benefits achieved by less invocation overhead, further performance
improvements are observed due to co-execution. We report the performance of these
two groups separately.
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Figure 5.7: Speed up of SYCL applications on the dedicated CPU-GPU system. CompCpp-
C/G: performance of the SYCL code compiled by ComputeCpp and executes on
CPU/GPU. Hip-C/G: performance of the same code compiled by HipSYCL on
CPU/GPU. Each application is normalised to the throughput of its respective
CompCpp-C.
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To put the performance of OptCL into perspective, we provide another baseline.
The performance of the same SYCL code compiled by hipSYCL, an open-source SYCL
implementation using OpenMP (for CPU) and CUDA (for GPU) as the backends.
hipSYCL supports NVIDIA graphics cards (via clang-CUDA), and for CPUs it uses
OpenMP, which incurs only little invocation overhead.

Figure 5.7a and 5.7b show the throughput of CompCpp-C/G (the throughput of
the SYCL code compiled by ComputeCpp and executed on CPU/GPU), Hip-C/G
(the same code compiled by hipSYCL and run on CPU/GPU) with each application
normalised to the throughput of its respective CompCpp-C. As depicted in the two
figures, OptCL achieved the best performance in all settings. The performance was not
optimal for the ComputeCpp variants as shown in Figure 5.7a, due to the incomplete
support of NVIDIA GPUs and the kernel invocation overheads as the HPR in each
iteration was treated as a new kernel. The runtime freshly compiles the kernel and
redundantly transfers data to accelerators each time an HPR is invoked, which can
be verified by running the executables in the Oclgrind simulation. By compiling the
same SYCL code using hipSYCL, substantial speed-ups up to 120x were achieved. The
performance was improved further by employing the OptCL middleware, thanks to the
kernel invocation overhead reduction and using the most suitable hardware.

To better illustrate the power of co-execution, in Figure 5.7b we also show the ‘oth-
erwise’ scenarios, where we suppose OptCL would assign the kernels to only CPU
(OptCL-CPU-only) or GPU (OptCL-GPU-only). Notably, Hip-C (OpenMP) per-
formed worse than the ComputeCpp executables in the CC application. This is because
in CC, each molecule traverses the global memory for other nearby molecules, caus-
ing large numbers of cache misses. As can be seen in the ‘otherwise’ scenarios, while
running the OptCL variants on a single accelerator (OptCL-CPU-only and OptCL-
GPU-only) already produced similar or even better performance than other variants,

113



Chapter 5. Squeezing more Performance - Enhancing Co-execution Capability with
OptCL

co-execution further boosted the throughputs. A maximum speed-up of 1.67x over the
‘otherwise’ scenarios and 13x over the baseline CompCpp-C was observed for the MV
application.

The performance on the iCPU-GPU system is displayed in Figure 5.8. As both
ComputeCpp and hipSYCL do not well support iGPU (the support is experimental in
hipSYCL), we exclude them from the evaluation. The iGPUs are usually not as pow-
erful as the dedicated ones due to fewer cores and thermal concerns. As a consequence,
co-execution for the MV application was not feasible in the iCPU-GPU setting, because
of the large throughput deviation between the CPU and the iGPU, causing long execu-
tion time on the iGPU even with a small amount of data. However, for the applications
(CC and HS) that are eligible for co-execution, more significant performance benefits
were obtained owing to the zero-copy technology reducing the data transfer overhead.
We achieved a speed-up of 7x and 5x over the Hip-C executables and 3x and 21x over
the CompCpp-C executables in CC and HS, respectively.

5.4.3 Case Study 2: OpenABLext

In this study, we apply OptCL on OpenABLext. Three ABS models were selected from
three domains: social science, transportation, and biology.

CRowd (CR) simulates the flocking behaviour of people following fire wardens to
escape from a single-entrance room in case of a fire accident. The fire wardens perform
a path finding every few steps, and the other agents follow the closest fire warden within
their sight. The path finding of fire wardens and the flocking of people are independent.

TRaffic (TR), a traffic simulation comprised of a car following model, which controls
the agent to follow the vehicle in the front and avoid collisions, and a lane changing
model for the agent to switch to less crowded lanes. Both model may modify the
current lane of an agent. A user-specified merge_function is hence needed in order to
co-execute these two models. For experimentation purposes, we set the merge_function
such that the car following model always overwrites the output of the lane changing
model.

AnTs (AT) is a model simulating the foraging behaviour of ants by leaving pheromones
between their home and the food. Ants follow the pheromone trail towards food
while pheromones diffuse over time. The movement of ants and the diffusion of old
pheromones are independent, and can thus be co-executed.

Despite the fact that data transfer overhead was avoided, co-execution was not feasi-
ble for the tested applications on the iCPU-GPU system. Similarly to the MV applica-
tion, this is caused by the large performance deviation between the CPU and the iGPU.
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Therefore, in what follows, we only report the performance using the dCPU-GPU sys-
tem. As shown in Figure 5.9, compared to running on a single device, co-execution
led to the best performance in all three applications. In the CR application, the path
finding is slow on the GPU owing to the heavy memory operations, causing an over-
all performance reduction on the GPU as indicated by the ABL-G bar in Figure 5.9.
Similarly, for the TR application, the car following model requires memory-intensive
search for nearby vehicle which is again slow on the GPU. Using co-execution, i.e., as-
signing the memory-intensive kernel to the CPU and the rest to the GPU, a speed-up
of 1.15x and 1.13x over running on the CPU was achieved by OptCL for the TR and
CR application.

Although all kernels run faster on the GPU than the CPU in the AT applications
due to GPU’s massive parallelism, overlapping execution of kernels on the CPU and
the GPU can still lead to performance benefits. This is because of the reason explained
in Fig. 5.5. For the AT applications, co-execution was also 1.15x faster than running
on the GPU.

5.5 Summary

In this chapter, we presented OptCL, a middleware to complement the co-execution
ability of OpenABLext. The middleware works at an IR level. Therefore, it can
not only benefit the OpenABLext framework but also a wide range of HPDSLs like
OpenABLext. Through a data dependency analysis among High Performance Regions
(HPRs) and performance predictions, OptCL assigns each kernel to the most suitable
hardware device and selects the best execution strategy out of purely CPU-based execu-
tion, offloading to an accelerator, or co-execution. Kernel invocation and data transfer
overheads are also minimised in the generated code.

The workflow of OptCL consists of three steps. Starting from HPDSL code, OptCL
triggers a partial compilation, where an Abstract Syntax Tree (AST) is generated. By
identifying all High Performance Regions (HPRs), the sub-ASTs containing all HPRs
are extracted. A data dependency graph is built using the information gathered from
analysing the sub-ASTs, revealing the dependencies between HPRs and thus possi-
bilities for co-execution. In Step 2, kernels converted from HPRs are profiled on the
available hardware devices. The profiling results are used to assign each kernel to its
best suitable hardware and to enable co-execution where possible. Two profiling ap-
proaches are studied to estimate the power of each device: a sampling-based approach
executing the applications with a small amount of data and an offline approach using
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a prediction model. In our comparison study, the sampling-based approach enabled
higher performance than the offline approach. Finally, in Step 3, OpenCL executables
are generated reflecting the hardware assignment.

We demonstrated the versatility of OptCL by plugging it to OpenABLext as well as
another HPDSL named SYCL. Two different hardware settings were used: a system
using a CPU and a discrete GPU as well as an integrated CPU-GPU system. In
an extensive study using various applications at different scales, OptCL outperformed
existing solutions and exhibited significant speed ups. We showed that OptCL can be
used to enable high-performance execution on heterogeneous hardware environments
without in-depth knowledge of programming paradigms for the underlying hardware.
Maximum speed-ups of 13x and 21x over the original compiler were achieved on the
dCPU-GPU system and iCPU-GPU system respectively.

With OptCL, the workflow to generate high-performance ABS code is simple First,
OpenABLext is used to write ABS code using the sequential OpenABL specifications.
The OpenABLext compiler then generates OpenCL kernels optimised for the avail-
able hardware architectures. Eventually, the OptCL middleware decides the optimal
distribution of kernels to available hardware and choose the best suitable execution
scheme.
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6.1 Summary

Agent-based Simulation (ABS) has been widely employed to conduct system analysis
and answer what-if questions in a wide variety of domains. However, the increasingly
growing model complexity and simulation scale can lead to substantial execution time.
Anxiety over performance arises. While exploiting the power of accelerators such as
Graphics Processing Units (GPUs) or Field-Programmable Gate Arrays (FPGAs) in
a heterogeneous hardware setting helps to improve the performance, we demonstrated
that thorough knowledge of the hardware and substantial programming efforts were
required in order to achieve an optimal performance. Further, the code tailored for
one specific type of hardware can not be trivially ported to another as the performance
may suffer. Significant burdens are put on the simulationists to keep the performance
optimal.

To tackle this issue, we present OpenABLext, an extension to OpenABL, a model
specification language for agent-based simulations. By providing a device-aware OpenCL
backend, OpenABLext enables generating high-performance agent-based simulation
code targetting heterogeneous hardware platforms consisting of Central Processing
Units (CPUs), GPUs and FPGAs. We present a novel online dispatching method
which efficiently profiles partitions of the simulation during run-time to optimise the
hardware assignment while using the profiling results to advance the simulation itself.
In addition, OpenABLext features automated conflict resolution based on user-specified
rules, supports graph-based simulation spaces, and utilises an efficient neighbour search
algorithm. We show the improved performance of OpenABLext and demonstrate the
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potential of FPGAs in the context of ABS. We illustrate how co-execution can be used
to further lower execution times.

While the online dispatcher deals with hardware assignment, it does not take into
account the possible data dependencies between the different parts of the simulation. A
middleware named Optimise performance targetting high-performance domain-specifiC
Languages (OptCL) is proposed to complement OpenABLext. The middleware requires
little set up effort, and it can run in a fully automated way afterwards. Through a static
analysis of the source code, the middleware first detects data dependencies between
step functions. Based on performance predictions, the middleware assigns OpenCL
kernels generated by the OpenABLext framework to the most suitable hardware device
and selects the best execution mode out of pure CPU-based execution, offloading to an
accelerator, or co-execution. The OptCL is language independent. Hence, it can benefit
a wide range of Domain Specific Languages (DSLs) like OpenABLext. We show that
substantial performance gains can be achieved by plugging OptCL to OpenABLext as
well as other widely used DSLs such as SYCL.

The framework consisting of OpenABLext and OptCL is an ideal tool for the simula-
tionists to program high-performance ABS code on heterogeneous hardware. It requires
no profound knowledge of the hardware. This frees the simulationists from exhaustive
efforts on improving the performance so that they can focus on the modelling aspect
instead.

6.2 Outlook

The framework is made up of two major parts: OpenABLext and the OptCL middle-
ware. Both parts could enable interesting future research avenues:

OpenABLext Future work includes optimising the FPGA code outputted by Open-
ABLext by e.g. generating more computing units per simulation instance. This may
require a redesign of the simulation structure, e.g., dealing with limited on-chip memory
bandwidth of FPGAs when multiple computing units are present.

So far, we do not consider a heterogeneous cluster setting e.g. a machine equipped
with a CPU cluster and a GPU cluster. Following our current workflow, each accelerator
is treated as an individual device. This could limit the performance benefits, as some
homogeneity aspects can potentially be exploited to further speed up the simulation
e.g. rapid data transfer in between GPU clusters via NVLink.
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OptCL The performance prediction accuracy can be further improved by introducing
e.g. some heuristics modelling the computational power of the hardware. Currently,
OptCL selects hardware devices solely based on the performance. Other criteria such
as energy efficiency also constitute possible future research directions.
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