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Value of information from vibration-based structural health monitoring
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Abstract

Quantifying the value of the information extracted from a structural health monitoring (SHM) system is

an important step towards convincing decision makers to implement these systems. We quantify this value

by adaptation of the Bayesian decision analysis framework. In contrast to previous works, we model in

detail the entire process of data generation to processing, model updating and reliability calculation, and

investigate it on a deteriorating bridge system. The framework assumes that dynamic response data are

obtained in a sequential fashion from deployed accelerometers, subsequently processed by an output-only

operational modal analysis scheme for identifying the system’s modal characteristics. We employ a classical

Bayesian model updating methodology to sequentially learn the deterioration and estimate the structural

damage evolution over time. This leads to sequential updating of the structural reliability, which constitutes

the basis for a preposterior Bayesian decision analysis. Alternative actions are defined and a heuristic-

based approach is employed for the life-cycle optimization. By solving the preposterior Bayesian decision

analysis, one is able to quantify the benefit of the availability of long-term SHM vibrational data. Numerical

investigations show that this framework can provide quantitative measures on the optimality of an SHM

system in a specific decision context.

Keywords: Bayesian model updating, Value of Information, Structural Health Monitoring, Optimal

maintenance decisions, Structural reliability

1. Introduction

The advancements in the development of reliable and low-cost sensors, capable of measuring different

structural response quantities (e.g. accelerations, displacements, strains, temperatures, loads, etc.) have

led to vast scientific and practical developments in the field of Structural Health Monitoring (SHM) over

the last four decades [1]. Techniques for processing the raw measurement data and obtaining indicators of5
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structural “health” have been made readily available [2]. However, despite the advancements in the field,

SHM still remains predominantly applied within the research community [3] and has not yet translated to

extensive application on real-world structures and infrastructure systems. One main reason for this is that

the effect and the potential benefit from the use of SHM systems can only be appraised on the basis of the

decisions that are triggered by monitoring data. Key open-ended questions include [4]: How can information10

obtained from an SHM system provide optimal decision support? What is the Value of Information (VoI)

from SHM systems? How can it be maximized?

Preposterior Bayesian decision analysis can be employed as a formal framework for quantifying the VoI

[5], which adequately incorporates the uncertainties related to the structural performance and the associated

costs, the monitoring measurements, etc. A VoI analysis provides the necessary mathematical framework for15

quantifying the benefit of an SHM system prior to its installation. In the civil and infrastructure engineering

context, the computation of the VoI has been considered mainly related to optimal inspection planning for

deteriorating structural systems [6, 7, 8]. Recent works [9, 10, 11, 12, 13, 14, 15, 16] use the VoI concept in

an attempt to quantify the value of SHM on idealized structural systems within a Bayesian framework. All

works to date, however, adopt rather simplified assumptions regarding the type of information offered by20

the SHM system. They thus largely rely on hypothetical likelihood functions or observation models, which

render these demonstrations, although insightful, not easily transferable to realistic applications. A first

attempt towards modeling the entire SHM process and the monitoring information has been made by the

authors in [17], which is formalized and extended herein.

Installation of a continuous monitoring system on a structure allows for continuous measurement of25

the dynamic response of the structure (e.g., accelerations, strain). In an in-operation regime, a precise

measurement of the acting loads, which are usually distributed along a system (e.g., wind, traffic), is a

challenging task. Output-only operational modal analysis (OMA) [18, 19] techniques have been developed

to alleviate the burden of the absence of acting load measurements. Using an OMA procedure one can

identify the system eigenfrequencies and mode shapes of typical structures excited by unmeasured ambient30

(broadband) loads. This is beneficial, since the operation of the structure is not obstructed, as it would be

in the case of forced vibration testing.

Further to data acquisition and system identification, model updating forms a popular subsequent step

toward modeling the system performance on the basis of the monitoring information. This process is also

referred to as the process of establishing a digital twin via model updating [20]. Bayesian model updating35

(BMU) using identified modal data has proved successful in identifying damage on a global or local level

within a structure [21, 22, 23, 24, 25, 26]. These methods hold significant promise for application with actual

full-scale structures [27, 28, 29]. The vast majority of studies are focused on investigating how the BMU

framework performs in detecting, localizing and quantifying different types of artificially created damage

given some fixed set of modal data. A few recent studies are concerned with BMU using vibrational data40
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obtained in a continuous fashion from SHM systems [26, 30, 31]. However, no studies are available that

systematically quantify the benefit of BMU using continuous SHM data towards driving optimal informed

maintenance decision making.

This work embeds a sequential implementation of the BMU framework within a preposterior Bayesian

decision analysis, to quantify the VoI from long-term vibrational data obtained from an SHM system.45

We employ a numerical benchmark for continuous monitoring under operational variability [32] to test

and demonstrate the approach. The numerical benchmark serves as a tool to create continuous reference

monitoring data from a two-span bridge system subject to different types (scour, corrosion) of deterioration

at specific hotspots over its lifespan. The benchmark is used as a simulator for extracting dynamic response

data, i.e. simulated measurements (accelerations), corresponding to a typical deployment of accelerometers50

on the structure. Acceleration measurements are provided as input to an output-only OMA algorithm,

which identifies the system’s modal characteristics. We implement Bayesian model and structural reliability

updating methods in a sequential setting for incorporating the continuous OMA-identified modal data within

a decision making framework. This proposed procedure follows the roadmap to quantifying the benefit

of SHM presented in [4]. We employ a simple heuristic-based approach for the solution of the life-cycle55

optimization problem in the preposterior Bayesian decision analysis. The resulting optimal expected total

life-cycle costs are computed in the preposterior case, and compared against the optimal expected total

life-cycle costs obtained in the case of only prior knowledge, thus enabling the quantification of the VoI of

SHM.

2. VoI from SHM analysis60

The monitoring of a structural system through deployment of an appropriately designed SHM system is a

viable means to support decision-making related to infrastructure maintenance actions. But is gathering this

information worth it? Preposterior Bayesian decision analysis provides the necessary formal mathematical

framework for quantifying the VoI of an SHM system. A concise representation of a such an analysis with

the use of an influence diagram (ID) has been introduced in [4]. An adaptation of this ID for the purposes of65

the VoI analysis that we propose and apply on a simulated SHM benchmark study in this paper is offered in

Figure 1. In the next paragraph, we lay out a brief introduction of this ID. For more in-depth explanations,

the reader is referred to [4].

Influence diagrams build upon Bayesian networks (BN), which offer a concise graphical tool to model

Bayesian probabilistic inference problems, and extend these through the addition of decision and utility70

nodes to model decision-making under uncertainty [33]. In the ID of Figure 1, green oval nodes model

uncertain parameters and models/processes related to the structural system, the orange square node models

the decision on the SHM system, while the orange oval node models the monitoring data that is extracted

3
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Figure 1: Influence diagram of the SHM process for a preposterior Bayesian decision analysis to quantify the VoI.

via use of a specific SHM system. This data can be used to learn the structural condition via Bayesian

updating to then inform the decision on maintenance/repair actions (red square node). Finally, the grey75

diamond-shaped nodes represent the different costs that enter into the process. The decision to deploy an

SHM system is associated with a corresponding SHM cost, the decision to perform a repair action induces

a repair cost, and the risk (the expected cost of failures) can be quantified via the outcome of a structural

reliability analysis. Causality is important for the direction of the links among the nodes of this ID. For

example, the ‘Structural condition’ node points to the ‘Structural performance’ node, as one would expect,80

but also points to the ‘SHM Data’ node, which might not appear intuitive. However, the SHM measurement

that one obtains causally depends on the actual condition of the monitored structure. Note, however, that

the flow of information can go against the direction of the link; this is quantified via Bayesian analysis.

The link to the ‘Actions’ node with the box [t+1] describes the flow of information and shows that this ID

represents a decision process over the lifetime of the structure. Not explicitly shown here are the beginning85

and the end of the ID. The ID begins with the year when the installation of the SHM system is considered;

it ends with the structural performance in the last year of the anticipated service life. The blue text bubbles

introduce the different computational methods that are incorporated in the different parts of the process.

The large number of these bubbles highlights the modeling and computational challenges associated with a

full VoI analysis.90

In this paper, for the first time in existing literature, we avoid overly simplifying assumptions in some

4



parts of the modeling of the preposterior Bayesian decision analysis for quantifying the VoI from SHM, but

we still model other parts of the process in a simplistic way. The main contribution lies in the modeling of

the SHM data. As can be seen in Figure 1, we employ continuous SHM information over the lifetime of a

deteriorating structural system in the form of acceleration time series, which are subsequently processed by95

an OMA procedure that identifies the modal eigenfrequencies and mode shapes. These SHM modal data

are then used within a BMU procedure to sequentially identify the structural condition (see Section 3).

The way in which the SHM data sets are sampled within a preposterior Bayesian decision analysis with the

use of the benchmark structural model is described in detail in Section 6.3. We treat the modeling of the

structural performance node of the ID, as well as the incorporation of the monitoring information within100

a reliability updating, in a realistic and computationally efficient approach (see Section 4). To provide a

computationally viable solution to the VoI analysis, we adopt a rather simplified modeling of the action

decision node, and we perform the life cycle optimization with the use of heuristics (see Section 5).

The solution of the preposterior Bayesian decision analysis leads to monitoring-informed optimization

of the repair action, which in turn leads to the computation of the optimal expected total life-cycle cost in105

the case of having an SHM system installed. If the adopted SHM strategy is to implement no SHM system,

then life-cycle optimization is conducted on the basis of prior information only. By comparing the optimal

expected total life-cycle costs in the prior and preposterior cases, the VoI is implicitly quantified as the

difference between the two.

3. Bayesian model updating110

In this section, the Bayesian model updating framework with the use of OMA-identified modal data is

presented. The Bayesian formulation presented here corresponds to the state-of-the-art formulation [24, 25,

28].

3.1. Bayesian formulation

We consider deterioration that leads to local stiffness reductions. The random variables (RVs) describing115

the uncertainty within the employed deterioration models are θ ∈ IRd, with d being the total number of

RVs. The goal of the Bayesian inverse problem is to infer the deterioration model parameters θ given

noisy OMA-identified modal data. These are the modal eigenvalues λ̃m = (2πf̃m)2, where f̃m are the

modal eigenfrequencies, and/or mode shape vector components Φ̃m ∈ IRNs at the Ns degrees of freedom

(DOF) that correspond to the sensor locations, where m = 1, ..., Nm is the number of identified modes.120

Modal eigenvalues can be identified quite accurately, but an accurate identification of the mode shape

displacements requires the deployment of a relatively large number of sensors. Conditional on a fairly good

representation of the mode shape vector, one can then derive other modal characteristics, such as the mode
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shape curvatures K̃m ∈ IRNs , which are shown to be more sensitive to local damage [34]. If only the

eigenvalue data is available, damage can be detected on a global level, while damage localization requires125

the existence of spatial information, in the form of mode shape (or mode shape curvature) data.

Consider a linear finite element (FE) model, which is parameterized through the parameters θ of the

deterioration models. The goal of the Bayesian probabilistic framework is to estimate the parameters θ, and

their uncertainty, such that the FE model predicted modal eigenvalues λm(θ) and mode shapes Φm(θ), or

mode shape curvatures Km(θ), best match the corresponding SHM modal data.130

Using Bayes’ theorem, the posterior probability density function πpos of the deterioration model param-

eters θ given an identified modal data set [λ̃, Φ̃] is computed via equation (1); it is proportional to the

likelihood function L(θ; λ̃, Φ̃) multiplied with the prior PDF of the model parameters πpr(θ). The propor-

tionality constant is the so-called model evidence cE and requires the solution of a d-dimensional integral,

shown in equation (2).135

πpos(θ | λ̃, Φ̃) ∝ L(θ; λ̃, Φ̃)πpr(θ) (1)

cE =

∫

Ωθ

L(θ; λ̃, Φ̃)πpr(θ)dθ (2)

The model updating procedure contains significant uncertainties, which should be taken into account

within the Bayesian framework. According to [24], these are classified into i) measurement uncertainty,

including random measurement noise and variance or bias errors induced in the OMA procedure [35] (see

Figure 4), and ii) model uncertainty. In [26] the existence of inherent variability emerging from changing140

environmental conditions is highlighted. The combination of all the above uncertainties is called the total

prediction error in literature [24, 26]. In order to construct the likelihood function, the eigenvalue and mode

shape (similarly for mode shape curvature) prediction errors for a specific mode m are defined as in equations

(3) and (4).

ηλm
= λ̃m − λm(θ) ∈ IR (3)

145

ηΦm
= γmΦ̃m −Φm(θ) ∈ IRNs (4)

where γm is a normalization constant, which is computed as in equation (5). Γ is a binary matrix for

selecting the FE degrees of freedom that correspond to the sensor locations.

γm =
Φ̃T
mΓΦm∥∥∥Φ̃m

∥∥∥
2 (5)

The probabilistic model of the eigenvalue prediction error is a zero-mean Gaussian random variable with

standard deviation assumed to be proportional to the measured eigenvalues:

ηλm ∼ N
(

0, c2λmλ̃
2
m

)
(6)
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All the Ns mode shape prediction error components in the vector ηΦm are assigned a zero-mean Gaussian150

random variable with the same standard deviation, assumed proportional to the L2-norm of the measured

mode shape vector. A multivariate Gaussian distribution is used to model this error. Equation (7) implies

that the errors for the different degrees of freedom are uncorrelated, which is a common assumption, but

may be unrealistic [36].

ηΦm
∼ N (0,ΣΦm

)

ΣΦm
= diag

(
c2Φm

∥∥∥γmΦ̃m

∥∥∥
2
) (7)

The factors cλm and cΦm can be regarded as assigned coefficients of variation, and their chosen values reflect155

the total prediction error. In practical applications, usually very little (if anything) is known about the

structure or the magnitude of the total prediction error. At the same time, even if the assumption of an

uncorrelated zero mean Gaussian model for the errors has computational advantages and can be justified by

the maximum entropy principle, the choice of the magnitude of the factors cλm and cΦm clearly affects the

results of the Bayesian updating procedure. It appears that most published works do not properly justify160

this particular choice of the magnitude of the error. Alternatively, these factors can be added as hyper-

parameters with an assumed prior distribution and, thus, be included in the Bayesian parameter estimation

[26].

Assuming statistical independence among the Nm identified modes, the likelihood function for a given

modal data set can be written as in equation (8). N(.) denotes the value of the normal probability density165

function at a specified location.

L
(
θ; λ̃, Φ̃

)
=

Nm∏

m=1

N
(
ηλm

; 0, c2λmλ̃
2
m

)
N(ηΦm

; 0,ΣΦm
) (8)

The benefit of SHM is that the sensors can provide data in a continuous fashion, therefore resulting in an

abundance of measurements received almost continuously. Assuming independence among Nt modal data

sets obtained at different time instances, the likelihood can be expressed as:

L
(
θ; λ̃1...λ̃Nt

, Φ̃1...Φ̃Nt

)
=

Nt∏

t=1

Nm∏

m=1

N
(
λ̃tm − λtm(θ); 0, c2λmλ̃

2
tm

)
N
(
γtmΦ̃tm −Φtm(θ); 0,ΣΦtm

)
(9)

where the index tm indicates the modal data of mode m identified at time instance t. The formulation170

in equation (9) allows for sequential implementation of the Bayesian updating process. At any time step

ti when new data becomes available, the distribution of the parameters given all the data up to time ti,

πpos(θ | λ̃1:i, Φ̃1:i) or the one step ahead predictive distributions for time ti+1 can be obtained. The inclusion

of data in a continuous fashion can increase the level of accuracy of the Bayesian model updating procedure.

However, one should be aware that the assumption of independence in equation (9) typically does not hold.175

This could be addressed by a hierarchical modeling of θ [26].
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3.2. Solution methods

The solution of the Bayesian updating problem in the general case involves the solution of the d-

dimensional integral for the computation of the model evidence. Analytic solutions to this integral are

available only in special cases, otherwise numerical integration or sampling methods are deployed. The180

two solution methods that we employ within this work are the Laplace asymptotic approximation and an

adaptive Markov Chain Monte Carlo (MCMC) algorithm.

3.2.1. Laplace approximation

A detailed presentation of this method can be found in [37, 22]. The main idea is that for globally

identifiable cases [37], and for a sufficiently large number of experimental data, the posterior distribution185

can be approximated by a multivariate Gaussian distribution N(µ,Σ). The mean vector µ is set equal

to the most probable value, or maximum aposteriori (MAP) estimate, of the parameter vector, which is

obtained by minimizing the negative logposterior:

µ = θMAP = arg min
θ

(− lnπpos(θ | λ̃, Φ̃)) = arg min
θ

(− lnL(θ; λ̃, Φ̃)− lnπpr(θ)) (10)

and the covariance matrix Σ is equal to the inverse of the Hessian of the log-posterior evaluated at the MAP

estimate. When new data becomes available, the new posterior distribution has to be approximated. The190

MAP estimate of the previous time step is used as the initial point for the optimization at the current time

step, to facilitate a faster convergence of the optimization algorithm.

3.2.2. MCMC sampling

For more accurate estimates of the posterior distributions than the one obtained by using the Laplace

approximation, one can resort to MCMC sampling methods. Among the multiple available MCMC algo-195

rithms, here we employ the adaptive MCMC algorithm from [38], in which the adaptation is performed on

the covariance matrix of the proposal PDF. Whenever new data becomes available, the MCMC algorithm

has to be rerun to obtain the new posterior distribution. The posterior mean of the parameters estimated

via MCMC at the previous time step is used as seed of the new Markov chain, which allows the chain to

converge faster.200

4. Structural reliability of a deteriorating structural system and its updating

Estimation of the structural reliability, and the use of vibrational data to update this, is instrumental

for the framework that we are presenting here. A detailed review of the ideas presented in this section can

be found in [39, 40].
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4.1. Structural reliability analysis for a deteriorating structural system205

In its simplest form, a failure event at time t can be described in terms of a structural system capacity

R(t) and a demand S(t). Both R and S are random variables. With D(θ, t) we define a parametric stochastic

deterioration model. Herein we assume that the structural capacity R(t) can be separated from the demand

S(t), and that the capacity is deterministic and known for a given deterioration D(θ, t), hence we write

R (D(θ, t)). More details on how this deterministic curve can be obtained for specific cases are given in210

Section 6, which contains the numerical examples. Therefore, at a time t the structural capacity includes

the effect of the deterioration process. The uncertain demand acting on the structure is here modeled by the

distribution of the maximum load in a one-year time interval. The cumulative distribution function (CDF)

of this distribution is denoted Fsmax
. Such a modeling choice simplifies the estimation of the structural

reliability, as will be made clear in what follows, which is vital within a computationally expensive VoI215

analysis framework.

We discretize time in intervals j = 1, .., T , where the j-th interval represents t ∈ (tj−1, tj ]. For the

type of problems that we are considering, the time-variant reliability problem can be replaced by a series

of time-invariant reliability problems [40]. F ∗
j is defined as the event of failure in interval (tj−1, tj ]. For a

given value of the deterioration model parameters θ and time tj , the capacity R (D(θ, tj)) is fixed, and the220

conditional interval probability of failure is defined as:

Pr(F ∗
j | θ, tj) = 1− Fsmax

(R (D(θ, tj))) (11)

We define Pr[F (ti)] = Pr(F ∗
1 ∪ F ∗

2 ∪ ...F ∗
i ) as the accumulated probability of failure up to time ti. One can

compute Pr[F (ti)] through the conditional interval probabilities Pr(F ∗
j |R(θ, tj)) as:

Pr[F (ti) | θ] = 1−
i∏

j=1

[1− Pr(F ∗
j | θ, tj)] (12)

Following the total probability theorem, the unconditional accumulated probability of failure is:

Pr[F (ti)] =

∫

Ωθ

Pr[F (ti) | θ]πpr(θ)dθ (13)

The solution to the above integral is approximated using Monte Carlo simulation (MCS). We draw samples225

from the prior distribution πpr(θ) of the uncertain deterioration model parameters and the integral in (13)

is approximated by:

Pr[F (ti)] ≈
1

nMCS

nMCS∑

k=1

Pr[F (ti) | θ(k)] (14)

Having computed the probabilities Pr[F (ti)], one can compute the hazard function h(ti) for the different

time intervals ti, which expresses the failure rate of the structure conditional on survival up to time ti−1:

h(ti) =
Pr[F (ti)]− Pr[F (ti−1)]

1− Pr[F (ti−1)]
(15)
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4.2. Structural reliability updating using SHM modal data230

The goal of SHM is to identify structural damage. Monitoring data can be employed in order to identify

the parameters θ of the deterioration models and obtain their posterior distribution, as shown in Section 3.

Consequently this leads to the updating of the accumulated probability of failure at time ti, which can now

be conditioned on data Z1:i−1 obtained up to time ti−1.

Pr[F (ti) | Z1:i−1] = Pr(F ∗
1 ∪ F ∗

2 ∪ ...F ∗
i | Z1:i−1) (16)

The accumulated probability of failure up to time ti conditional on modal data obtained up to time ti−1 is:235

Pr[F (ti) | Z1:i−1] =

∫

Ωθ

Pr[F (ti) | θ]πpos(θ|λ̃1:i−1, Φ̃1:i−1)dθ (17)

In (17), one needs to integrate over the posterior distribution of the parameters θ. As described in Section

(3.2), two different methods for obtaining samples from this posterior distribution at each time step are

implemented. In the case that an adaptive MCMC algorithm is used, at every step of the sequential updating

we obtain the desired posterior distribution of the parameters in the form of correlated MCMC samples.240

In the case that the posterior distributions are approximated by multivariate Gaussian distributions using

the Laplace approximation, independent posterior samples can be drawn from this approximate posterior

density. Using npos samples θ(k) from either MCMC or the asymptotic approximation , the integral in

equation (17) can be approximated:

Pr[F (ti) | Z1:i−1] ≈ 1

npos

npos∑

k=1

Pr[F (ti) | θ(k)] (18)

The hazard function conditional on the monitoring data can then be obtained as:245

h(ti | Z1:i−1) =
Pr[F (ti) | Z1:i−1]− Pr[F (ti−1) | Z1:i−1]

1− Pr[F (ti−1) | Z1:i−1]
(19)

5. Life-cycle cost with SHM

5.1. Life-cycle optimization based on heuristics

The VoI is the difference in life-cycle cost between the cases with and without SHM system. To calculate

the life-cycle cost we optimize the maintenance strategy. A strategy S is a set of policies that determine

which action to take at any time step ti, conditional on all the information at hand up to that time [33],250

[41]. One may define policies based on simple decision rules, also called heuristics, which may emerge from

basic engineering understanding.

A detailed presentation of the use of heuristics in optimal inspection and maintenance planning can be

found in [7, 41]. With the use of heuristics, the space of solutions to the decision problem is drastically

reduced, but the problem is solved only approximately. Here, we utilize a simple heuristic for maintenance255
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decisions. The simple heuristic chosen in this work is the following: Perform a repair action whenever the

estimate of the hazard function (the conditional failure rate) is larger than a predefined threshold hthres.

The use of the hazard function as a decision criteria for condition assessment and maintenance planning

is a popular choice in literature [42]. The parameter w = hthres describing the heuristic is a parameter of

the strategy S. For simplicity, we assume herein that performing a repair action results in replacing the260

damaged components and bringing them back to the initial state, and that no failure will occur once a repair

action has been performed. In this way, after a repair action, the computation of the total life cycle cost

stops. This modeling choice is simplifying, but does allow for a viable computation of the VoI herein.

The total life-cycle cost Ctot is here taken as the total cost of maintenance and the risk of failure costs

over the lifetime of the structure. The initial cost is not included in Ctot, because it is the same with or265

without SHM, therefore it cancels out when calculating the VoI.

With the use of heuristics, solving the decision problem boils down to finding the optimal value of the

heuristic parameter w which minimizes the expected total cost, i.e., to the solution of the optimization

problem:

w∗ = arg min
w

E[Ctot | w] (20)

5.2. Computation of the expected total life-cycle cost in the prior case270

In the prior case, where only the prior deterioration model is available, the expectation in equation

(20) is with respect to the system state, i.e. the deterioration model parameters θ. The total cost of

maintenance and risk is the sum of the repair costs and the risk of failure costs over the lifetime of the

bridge, Ctot(w,θ) = CR(w) + CF(w,θ), therefore the expected total life-cycle cost for a given heuristic

parameter w is:275

Eθ[Ctot | w] = Eθ[CR(w) | w] + Eθ[CF(w,θ) | w] (21)

The first part of the right hand side of equation (21) can be computed in the following way. We draw

samples θ(k), k = 1, .., nMCS, from the prior distribution πpr(θ) and use them to compute the accumulated

probability of failure via equation (14), and subsequently compute the hazard function with equation (15).

When the hazard function exceeds the threshold, i.e. when h(ti) ≥ w, then we define trepair(w) = ti−1 as

the time that the repair takes place. The time of repair is thus a function of our chosen heuristic. Hence280

the expected total cost of repair over the lifetime is given as:

Eθ[CR(w) | w] = ĉRγ(trepair(w)) (22)

where ĉR is the fixed cost of the repair, and γ(t) = 1
(1+r)t is the discounting function, r being the annually

compounded discount rate.
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The risk of failure over the lifetime can be computed via MCS, using the samples θ(k), k = 1, .., nMCS,

that were drawn from the prior distribution πpr(θ), with the following formula:285

Eθ[CF(w,θ) | w] ≈ 1

nMCS

nMCS∑

k=1

CF(w,θ(k)) (23)

where:

CF(w,θ(k)) =

trepair(w)∑

i=1

ĉF γ(ti){Pr[F (ti) | θ(k)]− Pr[F (ti−1) | θ(k)]} (24)

and ĉF is the fixed cost of the failure event.

Following the solution of the optimization problem in (20), the expected total life-cycle cost associated

with the optimal decision in the prior case without any monitoring data is Eθ[Ctot | w∗
0 ].

5.3. Computation of the expected total life-cycle cost in the preposterior case290

The goal of a preposterior analysis is to act as a decision tool on whether collecting SHM data is

beneficial, and to quantify and optimize the VoI of an SHM system, prior to its installation. Therefore this

type of analysis is performed before any actual SHM data are obtained. Instead, the SHM monitoring data

histories must be sampled over the lifetime from the prior distribution of the uncertain deterioration model

parameters θ, as will be explained shortly. A sampled monitoring data history vector Z = [Z1, ...,ZnT
]295

contains the OMA identified modal data at fixed time instances over the structure lifetime.

In a preposterior analysis, the expectation in equation (20) is operating over both the system state θ

and on the monitoring outcomes Z.

Eθ,Z [Ctot | w] =

∫

Ωθ

∫

ΩZ

Ctot(w,θ, z)fΘ,Z(θ, z)dzdθ (25)

The total cost of maintenance and risk is again the sum of the repair cost and the risk of failure cost over

the lifetime of the structure, which now both depend also on the monitoring outcomes Z, Ctot(w,θ,Z) =300

CR(w,Z) + CF(w,θ,Z).

The integral in equation (25) is computed with crude MCS. We draw samples from the uncertain de-

terioration model parameters θ, which correspond to a deterioration history over the lifetime, as given by

the deterioration model equation D(θ, t). For each of these histories, we generate noisy acceleration mea-

surements every year, feed them into the stochastic subspace identification (SSI) algorithm [18], and obtain305

one vector of monitoring modal data Z (one identified modal data set per year). In this way we are jointly

sampling the system state space and monitoring data space, and equation (25) is approximated as:

Eθ,Z [Ctot | w] =
1

nMCS

nMCS∑

k=1

[CR(w, z(k)) + CF(w,θ(k), z(k))] (26)

For each of the sampled system states and corresponding monitoring data, we compute the updated hazard

rate as given by equation (19), and when h(ti | z(k)
1:i−1) ≥ w, then trepair(w, z

(k)) = ti−1.
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The cost of repair is:310

CR(w, z(k)) = ĉRγ(trepair(w, z
(k))) (27)

The risk of failure is:

CF(w,θ(k), z(k)) =

trepair(w,z
(k))∑

i=1

ĉF γ(ti){Pr[F (ti) | θ(k)]− Pr[F (ti−1) | θ(k)]} (28)

Comparing equations (24) and (28) it is evident that adoption of the same samples of θ in both prior and

preposterior analysis, leads to an identical estimate of the risk of failure for the two analyses up to the time

of the repair. The only difference between prior and preposterior case is the resulting trepair(w, z
(k)).

Solving equation (20), we obtain the optimal expected total life-cycle cost given the monitoring data,315

Eθ,Z [Ctot | w∗
mon].

5.4. Summary of the proposed methodology to calculate the VoI

The proposed procedure for the VoI analysis consists of the following steps:

1. Choose a prior stochastic deterioration model describing the structural condition over the lifetime

of the structure. Define a decision analysis time discretization, maintenance/repair actions, costs of320

actions and cost of failure event. Choose a heuristic parameter w (threshold on hazard rate) for a

heuristic-based solution of the decision problem.

2. Draw Monte Carlo samples θ of the stochastic deterioration model parameters.

3. Perform a prior decision analysis:

• Use the prior θ samples to estimate the lifetime accumulated probability of failure Pr[F (ti)] and325

the corresponding hazard rate h(ti).

• Solve the LCC optimization problem to obtain the optimal value of the heuristic parameter w∗
0

and the corresponding optimal trepair. Obtain the optimal expected LCC in the prior case:

Eθ[Ctot(θ, w) | w∗
0 ].

4. Perform a preposterior decision analysis:330

• For each individual prior sample θ realization and given value of the heuristic parameter w do

the following:

(a) Sample the corresponding noisy acceleration time series data for every year over the lifetime

of the structure. Feed the accelerations into the SSI algorithm to identify the structure’s

modal data vectors Z.335
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(b) Perform a posterior Bayesian analysis: BMU to sequentially learn the posterior distributions

of θ and subsequently obtain an updated estimate of the accumulated probability of failure

Pr[F (ti) | Z1:i−1] and the hazard rate h(ti | Z1:i−1).

(c) Find the time to perform the repair action for this specific deterioration and monitoring data

realization, conditional on a value of the heuristic parameter w.340

• Solve the LCC optimization problem to obtain the optimal value of the heuristic parameter w∗
mon

which minimizes the expected LCC in the preposterior case Eθ,Z [Ctot(θ,Z, w) | w∗
mon].

5. Compute the VoI.

V oI = Eθ[Ctot(θ, w) | w∗
0 ]− Eθ,Z [Ctot(θ,Z, w) | w∗

mon] (29)

5.5. Value of Partial Perfect Information

The case of partial perfect information is related to a hypothetical situation, in which the SHM system345

provides perfect information on the condition of the structure. This means that there is no uncertainty on

the parameters θ of the deterioration model, and the optimal decision is found conditional on this perfect

knowledge of θ. Because the SHM system is not able to provide any information about the load acting on

the structure, which here is modeled by an uncertain Gumbel random variable, therefore one uses the term

“partial”.350

Estimation of the value of partial perfect information is given by:

V PPI = min
w

Eθ[Ctot(θ, w)]− Eθ{min
w

[Ctot(θ, w) | θ]} (30)

min
w

Eθ[Ctot(θ, w)] is the optimal expected total life-cycle cost in the prior case, exactly as presented in

Section 5.2. To evaluate Eθ{min
w

[Ctot(θ, w) | θ]}, first the optimal heuristic is found for a given value of θ,

then the expected value of the total life-cycle costs associated with these optimal decisions is computed. This

quantity corresponds to the value of information that one would obtain in the case of perfect monitoring355

and perfect decision making with the chosen heuristic.

The VPPI provides an upper limit on the value that the VoI can obtain. Since it can be computed much

easier than the VoI, the VPPI can provide a first estimate on the maximum investment that should be made

for SHM systems. Therefore, we motivate the idea that a VPPI computation should always be performed

first.360

6. Numerical investigations

6.1. Numerical benchmark: Continuously monitored bridge system subject to deterioration

We consider the two-span bridge model of Figure 2, with its reference behavior [32] simulated by a FE

model of isoparametric plane stress quadrilateral elements. This benchmark structure has been developed
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Figure 2: Benchmark model

as part of the TU1402 COST Action and serves for verification of analysis methods and tools for SHM. 200365

elements are employed to mesh the x direction, and 6 elements are assumed per height (y direction). The

beam dimensions form configurable parameters of the benchmark and are set as: height h = 0.6m, width

w = 0.1m, while the lengths are L1 = 12m for the first span and L2 = 13m for the second span. A linear

elastic material with Young’s modulus E = 30GPa, Poisson ratio ν = 0.2, and material density ρ = 2000

kg/m3 is assigned. Elastic boundaries in both directions are assumed for all three support points, in the370

form of translational springs with Kx = 108 N/m and Ky = 107 N/m.

It is assumed that the simulated two-span bridge is continuously monitored using a set of sensors measur-

ing vertical acceleration, whose locations correspond to predefined FE nodes. A distributed Gaussian white

noise excitation F (x) is used as the load acting on the bridge, to simulate the unknown ambient excitation.

A dynamic time history analysis of the model, for a given realization of the load, results in the measured375

vertical acceleration signals at the assigned sensor locations.

6.2. Deterioration modeling

A prior model describing structural deterioration is a prerequisite for a VoI analysis. A detailed presen-

tation of probabilistic deterioration models for life-cycle performance assessment of structures can be found

in [42, 43, 44]. For time-dependent reliability assessment purposes, the use of simple empirical models, which380

are still flexible enough to model different kinds of deterioration mechanisms, can be adopted [42]. Within

this work, we model structural deterioration with a simple rate equation of the form [42]:

D(t) = AtB (31)

where D(t) is the unit-less deterioration parameter (loss of stiffness) entering in the assumed damage model,

and A,B are random variables driving the uncertainty in this model. Parameter A models the deterioration

rate, while parameter B is related to the nonlinearity effect in terms of a power law in time. We consider385

herein the following two case studies related to structural deterioration of the bridge structure.

6.2.1. Bridge system subject to scour

We assume that the middle elastic support (pier) of the bridge structure is subjected to gradual deteri-

oration, simulating the case of scour [45]. Damage is introduced as a progressive reduction of the stiffness

in y-direction of the spring K
(2)
y at the middle elastic support of the bridge (Figure 2). The evolution of the390
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stiffness reduction of the vertical spring support over the lifespan of the bridge is described by employing

the damage model of equation (32), where K
(2)
y,0 is the initial undamaged value, and D(t) is the stiffness

reduction described by equation (31). We consider a lifespan of T=50 years for the structure. The uncertain

parameters of the deterioration model are summarized in Table 1. The mean and coefficient of variation

of the parameters A and B are chosen to reflect a significant a-priori uncertainty. They result in a 10%395

probability that D(t = 50) > 9 at the end of the lifespan.

K(2)
y (t) =

K
(2)
y,0

(1 +D(t))
=

K
(2)
y,0

(1 +AtB)
(32)

Table 1: Parameters of the stochastic deterioration model for scour.

Parameter Distribution Mean CV

A Lognormal 7.955×10-4 0.5

B Normal 2.0 0.15

6.2.2. Bridge system subject to corrosion deterioration

As a second separate case study, we assume that the bridge structure is subjected to gradual deterioration

from corrosion in the middle of both midspans (elements in black in Figure 2). At both locations, damage

is introduced as a progressive reduction of the stiffness at the bottom 2 elements of the FE mesh. For the400

deterioration hotspots at the left and right midspans, the evolution of the elements’ stiffness reduction over

the lifespan of the bridge is described by employing the damage model of equation (33). E(0) is the initial

undamaged value of the Young’s modulus, and D1(t), D2(t) are the deterioration models (reduction of stiff-

ness) employed for each location, as described by equation (31). The random variables of the deterioration

models are summarized in Table 2. According to [42], for this simple empirical deterioration model, a value405

of B=0.5 corresponds to diffusion-controlled damage processes. Therefore the mean values of B1 and B2

have been chosen equal to 0.5. The mean and coefficient of variation of the four uncertain parameters are

chosen so that they result in a 1% probability that D(t = 50) >9 at the end of the lifespan.

Ej(t) =
E(0)

(1 +Dj(t))
=

E(0)

(1 +AjtBj )
, j = 1, 2 (33)

Table 2: Parameters of the stochastic deterioration model for corrosion.

Parameters Distribution Mean CV

A1, A2 Lognormal 0.506 0.4

B1, B2 Normal 0.5 0.15
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Figure 3: Process for generating the SHM data

6.3. Synthetic monitoring data creation

For the purpose of the VoI analysis, for every deterioration time instance at which one wants to simulate410

a monitoring data set obtained from the deployed SHM system, the corresponding stiffness reduction is

implemented in the FE benchmark model, a dynamic time history analysis is run and the “true” vertical

acceleration signals ẍ at the sensor locations (FE nodes) are obtained. This noise-free acceleration time

series data set is then contaminated with Gaussian white noise of 2% root mean square noise-to-signal ratio,

simulating a sensor measurement error. Subsequently, the noisy accelerations ˜̈x are fed into an output-only415

operational modal analysis (OMA) scheme. Specifically, the SSI algorithm is used to identify a set of the

lower eigenvalues (squares of natural frequencies) and mode shapes [18].

The data creation process is summarized in Figure 3. First, we draw samples of the deterioration

parameters, defining the evolution of sample deterioration curves. For each of these deterioration curves we

then create one monitoring history, i.e., we generate one set of OMA-identified modal data every year over420

the fifty years of the lifetime. Here, the influence of environmental (temperature, humidity) and operation

(non stationary effects due to traffic) variability on the structural properties are not accounted for. We

generate one data set for each year that the bridge is in service. Using this data, we then employ the

sequential Bayesian deterioration model updating framework of Section 3.

6.4. Continuous Bayesian model updating425

We demonstrate how the Bayesian framework performs in learning the parameters of the deterioration

model on the basis of availability of the SHM modal data. In this work, the model predicting the eigenvalues

and mode shapes for the Bayesian updating process is the same FE model as the one described in Section

6.3 for the creation of the noise-contaminated synthetic data. Despite addition of artificial noise, adoption of

the same model constitutes a so-called inverse crime [46]. However, this is a built-in feature of preposterior430

analysis.

Even in absence of model error and environmental/ambient effects, as assumed in this work, there remains

measurement uncertainty, caused by the added random sensor measurement noise and by the variance or

bias errors induced in the SSI procedure [35]. Figure 4 demonstrates this measurement uncertainty. It shows

the discrepancy between the “true” eigenfrequencies of the deteriorating structure over time, obtained via a435
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Figure 4: Demonstration of the measurement uncertainty. Identified eigenfrequencies (in red) against “true” underlying

eigenfrequencies (in black) obtained from a realization of the structural deterioration following the second case study presented

in section 6.4.2.

modal analysis with the FE model, and the SSI-identified eigenfrequencies. The presence of noise is evident

for all the displayed eigenfrequencies, while for the higher modes a clear bias in the estimation is present.

We note that the noise shown in Figure 4 depends on the amount of data considered in the analysis.

Here, we make the simplifying assumption of considering one data point per year. Naturally, this is here

a simplification for the purpose of our exploration. A continuous monitoring system (as is typically the440

requirement for SHM), can deliver more dense data and reduce the measurement noise (not the bias though),

in the limit to a value of zero. The reason why we nevertheless choose to consider only a single data point

per year is that, in this example which ignores other sources of uncertainty (such as environmental and

operational variability), we wish to mimic the practical SHM setting, where the effects of noise cannot be

eliminated. In a real SHM setting, the Bayesian analysis is subject to an unknown model error. As a result,445

the noise does not go to zero with increasing amounts of data [21, 26]. However, this is not reflected in

preposterior analysis, which requires the use of the same model for generating the data and conducting the

Bayesian analysis. As an alternative to using only a limited amount of data, one could also investigate the

use of hierarchical models [26]. However, the associated computational cost would be significantly larger.

The sequential Bayesian analysis framework requires a substantial number of evaluations of the likelihood450

function, implying multiple forward runs of the FE model. Within a VoI framework, Bayesian analysis must

be performed numerous times. For this reason a VoI analysis can quickly become intractable. To enable the

VoI analysis, we employ simple surrogate models to replace the structural FE model, which are described

in the following two subsections.

6.4.1. Bridge system subject to scour deterioration - Global damage identification455

In this assumed damage scenario we are interested in identifying damage in a global scale, for which use

of the OMA-identified eigenvalue data alone may be sufficient. The benefit is that eigenvalue data can be

successfully identified from an OMA procedure, even when only a rather small number of accelerometers are

employed on the structure. The sensor placement that we assume here is the one corresponding to Figure

5, with twelve employed sensors. This configuration is selected on the basis of engineering judgment, when460

seeking to identify the type of damage (local stiffness reduction) considered herein. Using the SSI algorithm,
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Figure 5: Bridge system subject to scour damage

we identify the lower Nm = 6 modes, which we then use for the updating.

We employ a surrogate model to replace the structural FE model for facilitating the Bayesian updating

procedure. To this end, we create a fine uniform grid of values for D(t); for each of these, we execute a modal

analysis using the FE model and store the output eigenvalues. Eventually, we replace the modal analysis465

run of the structural FE model with a simple nearest neighbor lookup in the precomputed database.

For illustrating the data sampling and updating process, we assume a scenario where the underlying

“true” deterioration model corresponds to parameters values A∗=9.85×10-4 and B∗ = 2.28. The “true”

deterioration curve can be seen in black in all the subfigures of Figure 7.

Figure 6 demonstrates how the distribution of the deterioration model parameters is updated by com-470

paring the prior PDF of A and B with the posterior PDF of A and B at year 25 and year 50. For this

analysis, both factors cλm and cΦm are assumed equal to 0.02, i.e. we assume that the total prediction error

causes up to two percent deviation on the nominal model predicted values. 5000 MCMC samples are used

for the Bayesian analysis at each time step. The posterior PDFs are given via a kernel density estimation

using the 5000 posterior MCMC samples of the parameters. It is observed that using one SHM data set per475

year, the uncertainty in the deterioration model parameters gradually decreases, the PDFs become narrower

and peak around the underlying “true” values for which the data was created.

Figure 7 contains the following: The mean estimated deterioration model together with its 90% credible

interval in the prior case, obtained via a MCS from the prior distribution of the uncertain parameters, is

plotted in the left panel in green. In red we plot the posterior predictive mean models together with their480

90% credible intervals, which are estimated with posterior MCMC samples using monitoring data up to the

three different time instances. For example in the second column, we use the monitoring data of the first

ten years to obtain the posterior distribution πpos(θ | λ̃1:10, Φ̃1:10), and then we use the posterior MCMC

samples to predict the evolution of the deterioration model over the structural lifetime. We observe that

already the data obtained during the first few years of the deterioration process (up to year 10) help in485

shifting the mean posterior model towards the underlying “true” deterioration curve, however the posterior

uncertainty in the estimation is still relatively large. The posterior uncertainty is reduced significantly as

more SHM modal data become gradually available (year 25, year 50).
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Figure 6: Prior PDF and posterior PDF at years 25 and 50 for deterioration model parameters (cλm = cΦm = 0.02)
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Figure 7: Sequential Bayesian learning of the scour deterioration model. The true model corresponds to a single randomly

generated realization of the deterioration process.

6.4.2. Bridge system subject to corrosion deterioration - Damage detection and localization

In the assumed scenario with two potential corrosion damage locations, the employed Bayesian model490

updating framework should be able to both detect and localize damage. Therefore both eigenvalue as well as

mode shape displacement data should become available. As discussed in Section 3, a relatively large number

of sensors is required for an accurate measurement and representation of the mode shape displacements.

The sensor placement that we assume here is the one corresponding to Figure 8, with 24 equally distributed

accelerometers. By using a finite difference scheme, we can also obtain the mode shape curvatures, which495

are used instead of the mode shapes in the likelihood function, which seems to enhance the localization

capabilities of the framework. Also in this case we identify the lower Nm=6 modes.

For defining a surrogate model, we create a two-dimensional grid of values for D1(t), D2(t), and for each

of the grid points we run a modal analysis with the FE model, and we store the output eigenvalues and mode

shape vectors. Eventually we employ the following surrogates: For each of the eigenvalues, we fit a two-500

dimensional polynomial regression response surface model. For the mode shape displacement vector data,

we replace the run of the structural FE model with a simple nearest neighbor lookup in the precomputed

two-dimensional database.

For illustration purposes, we draw one sample θ∗, which corresponds to the underlying “true” deterio-

F(x)

L1=12m L2=13m

Kx
(1)

Ky
(1) Kx

(2)
Ky

(2) Kx
(3)

Ky
(3)

h

Corrosion damage D1 Corrosion damage D2

Figure 8: Bridge system subject to corrosion damage in two locations
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Figure 9: Prior PDF and posterior PDF at year 10 for deterioration models parameters (cλm = cΦm = 0.02)
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Figure 10: Prior PDF and posterior PDF at year 25 for deterioration models parameters (cλm = cΦm = 0.02)
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Figure 11: Prior PDF and posterior PDF at year 50 for deterioration models parameters (cλm = cΦm = 0.02)

ration parameter values A∗
1 = 0.65, B∗

1 = 0.55, A∗
2 = 0.42 and B∗

2 = 0.48 (“true” deterioration curves can505

be seen in black in all the subfigures of Figure 12).

Figures 9, 10, 11 demonstrate how the distribution of the deterioration models’ parameters is updated,

by comparing the prior PDFs with the posterior PDFs at three different time instances. Both factors cλm

and cΦm in the likelihood function are assumed equal to 0.02. In Figure 12, we compare the underlying

“true” deterioration model with the deterioration model estimated using MCS in the prior case, and with510

the ones estimated with 5000 posterior MCMC samples at three different time instances.

Section 3 discusses the fact that quite often the choice of the magnitude of factors cλm and cΦm for

constructing the likelihood function can be arbitrary, since usually very little is known about the magnitude

of the total prediction error. Figure 13 attempts to demonstrate how crucial this choice can be for the

results of the Bayesian updating, by performing it additionally for cλm = cΦm = 0.05. Comparing Figure 13515

to Figure 11 (both at year 50), it can be clearly observed that the posterior distribution of the deterioration

model parameters that one learns is significantly affected by the choice of these factors.

As discussed in Section 6.4, we employ one set of sampled OMA-identified modal data per year and

use these to update the deterioration model. However, an SHM system can provide an abundance of

measurement points (which produce corresponding modal estimates) in a continuous fashion. To investigate520

the effect of this choice, in Figure 14 we plot the results of the posterior distribution of the deterioration

model parameters at the final estimation time (year 50), in a case where we employ 50 OMA-identified
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Figure 12: Sequential Bayesian learning of the two corrosion deterioration models. The true model corresponds to a single

randomly generated realization of the deterioration process.
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Figure 13: Prior PDF and posterior PDF at year 50 for deterioration models parameters (cλm = cΦm = 0.05)

modal estimates per each year (2500 modal estimates in total). Upon comparison of Figure 14 and Figure

11, it becomes evident that adoption of more sets of modal data leads in reduced uncertainty in the posterior

estimate, although the posterior distributions seem to not be centered around the underlying “true” value525

of the parameters, which is possibly the result of a bias in the estimation of higher eigenfrequencies.
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Figure 14: Prior PDF and posterior PDF at year 50 for deterioration models parameters (cλm = cΦm = 0.02) in the case when

50 OMA-identified modal data per year are used (2500 modal estimates from the different years are employed for the updating

at year 50)

6.5. Time-dependent structural reliability and its updating using monitoring data

The uncertain demand acting on the structure is modeled by the maximum load in a one-year time interval

with a Gumbel distribution (left subfigure of Figure 15). The parameters of the Gumbel distribution are

chosen such that the probability of failure in the initial undamaged state is equal to 10−6 and the coefficient530
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Figure 15: left: CDF of the Gumbel distribution for the load with location an = 0.0509, scale bn = 0.297. middle: Structural

capacity in function of scour deterioration, right: Time-dependent structural reliability curves estimated with the prior model

in the scour deterioration case.

of variation of the random load is 20%.

6.5.1. Bridge system subject to scour deterioration

The deterministic capacity curve R(D(θ, t)) of the damaged structure for any realization of the scour

deterioration D(θ, t) can be seen in the middle panel of Figure 15. To determine this curve, we consider that

when scour damage occurs in the middle support, the critical quantity that increases is the normal stress at535

the middle of the second, slightly longer, midspan. We create a fine one-dimensional grid of possible values

as input for D(θ, t), for each of those we run a static analysis of our model, and we evaluate the loss of load

bearing capacity of the structure relative to the initial undamaged state.

In the right panel of Figure 15 we plot the time-dependent accumulated probability of failure and

the hazard function in the prior case, together with the 95% credible intervals, estimated using 104 prior540

samples. Because of the skewness of the assumed prior deterioration model, the mean estimated curves are

not contained within the 95% credible intervals.

6.5.2. Bridge system subject to corrosion deterioration

When damage (stiffness reduction) occurs in the elements at the bottom of each midspan, the quantity

that increases critically are the normal stresses at the top of each midspan. We create a two-dimensional grid545

of possible values of the two corrosion deteriorations D1 and D2. For each of those possible combinations, we

run a static analysis with our model, and we evaluate the loss of load bearing capacity of the bridge structure

relative to the undamaged state. Eventually we fit a two-dimensional polynomial regression response surface

curve that describes R(D(θ, t)); it can be seen in the left panel of Figure 16.

As presented in Section 4.2, learning the parameters of the deterioration models, and the reduction of the550

uncertainty in their estimation through the sequential acquisition of SHM modal data, affects the estimation

of the time-dependent structural reliability. In Figure 16, we plot in green the accumulated probability of

failure and the hazard rate of the bridge structure in the case of using the prior deterioration model, and we

compare it with the red plots of the accumulated probability of failure and the hazard rate conditional on the
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continuous monitoring data (1 data set per year), which correspond to the underlying “true” deterioration555

models described by A∗
1 = 0.65, B∗

1 = 0.55, A∗
2 = 0.42 and B∗

2 = 0.48. The prior estimates are obtained

with 5000 Monte Carlo samples following equations (14), (15). The posterior estimates are obtained via

equations (18), (19) using 5000 MCMC samples at each time step. The 95% credible intervals are computed

using the Monte Carlo prior samples in the prior case, and the MCMC posterior samples in the posterior

case. It is observed that the uncertainty in the estimation of the structural reliability is reduced in the560

posterior case. This reduction of the uncertainty and the updated estimate of the structural reliability form

the basis for the VoI analysis.
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Figure 16: left: Polynomial regression response surface for structural capacity in function of corrosion deterioration, right: time

dependent structural reliability curves in the prior/posterior corrosion case.

6.6. VoI analysis

The VoI is computed with equation (29) following the Bayesian preposterior decision analysis framework

presented in Section 5. The expected total life-cycle costs, Eθ[Ctot | w] in the prior case and Eθ,Z [Ctot|w]565

in the preposterior case, are both computed with MCS. In the preposterior case, as already explained in

Section 5.3, the system state space θ and the monitoring data space Z are jointly sampled. For each full

history of modal data, one sequential Bayesian posterior analysis has to be performed, which is a costly

procedure by itself. It is clear that such an analysis can be very computationally expensive, therefore some

considerations on the available computational budget, and how to distribute it, have to be made in advance.570

The computational cost of the VoI analysis is approximately proportional to the number of MCS samples

used in the expected life-cycle cost computation and the necessary corresponding synthetic monitoring data

creation, and by the computational cost of the employed method for performing the sequential Bayesian

updating.

For our investigation we assume ĉF = 107e, and for the repair cost ĉR we investigate different ratios575

ĉR
ĉF

= [10−1, 10−2, 10−3], and for each of those we calculate the VoI. The discount rate is taken as r = 2%.

The solution to the stochastic life-cycle optimization problem of equation (20) is performed through an

exhaustive search among a large discrete set of values of the heuristic parameter (the threshold at which a

repair is performed).
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6.6.1. VoI results for bridge system subject to scour deterioration580

For this example, we draw 1000 samples of θ, which are used in both prior and preposterior analysis. In

the preposterior case, for each θ sample we create one continuous set of identified modal data Z1:50. For

the 1000 different sequential Bayesian analyses that have to be performed, we employ the adaptive MCMC

algorithm. For the estimation of the different posterior accumulated probabilities of failure in equation (18),

2000 posterior MCMC samples are used.585

Tables 3a and 3b summarize the results of the life cycle optimization, documenting the optimal value of

the heuristic parameter w∗, and the optimal expected total life cycle costs that correspond to w∗. Table 3a

documents also the optimal time for a repair action in the prior case. This is not documented in Table 3b,

since in the preposterior case there is not one single optimal trepair value, but trepair varies for each sample

θ and the corresponding monitoring history.590

Table 3c documents the resulting VoI values that we obtain with the 1000 samples via equation (29) for

the three different cost ratios, while Table 3d reports the VPPI values obtained via equation (30), related to

the hypothetical case when we learn perfectly the condition of the structure from the SHM system. We also

include the coefficient of variation (CV) of the mean VoI, VPPI estimates, which quantifies the uncertainty

in the estimates obtained via MCS. In cost ratio cases for which the optimal action in the prior case is not595

to perform any repair, the VoI estimate has a quite large variability. This is because the samples in the

preposterior analysis that lead to a different optimal trepair than in the prior case are only a few, which

is an indication that a larger number of Monte Carlo samples or more efficient sampling techniques (e.g.,

importance sampling) should be used to reduce the variance. It is important to take into account that

equation (30) for computing the VPPI can easily be solved even for a very large number of MC samples,600

which would reduce the variability of the estimate shown here.

For all the cost ratio cases, the VoI is positive, which indicates a potential benefit of installing an SHM

system on the deteriorating bridge structure. It is interesting to compare the obtained VoI values to the

VPPI values. We observe that in this example the VoI from SHM extracted via Bayesian model updating is

close to optimal, as it is very close to the VPPI value. This indicates that the choice of using only a single605

data point each year does not lead to a relevant reduction of the information content in the monitoring

data. Clearly, in this case the monitoring system is able to identify damage with little uncertainty and can

be used effectively for decision making.

6.6.2. VoI results for bridge system subject to corrosion deterioration

For this second example, we draw 2000 samples of θ, which are used in both prior and preposterior610

analysis. In the preposterior case, for each θ sample we create one continuous set of identified modal

data Z1:50. For the 2000 different sequential Bayesian analyses that have to be performed, we employ the

Laplace approximation method of Section 3.2.1 for the solution, which introduces an approximation error in
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Table 3: Results of preposterior Bayesian decision analysis for the scour example

(a) Life-cycle optimization in the prior case.

ĉR
ĉF

w∗
0 E[Ctot|w∗

0 ] trepair

10−1 ≥ 2× 10−3 45395 no repair

10−2 ≥ 2× 10−3 45395 no repair

10−3 2×10−5 5924 year 31

(b) Life-cycle optimization in the preposterior case.

ĉR
ĉF

w∗
mon E[Ctot|w∗

mon]

10−1 2.1×10−2 12552

10−2 1.2×10−3 3125

10−3 9.9×10−5 1109

(c) Value of information (VoI)

ĉR
ĉF

VoI (CV)

10−1 32843 (0.34)

10−2 42270 (0.30)

10−3 4815 (0.02)

(d) Value of partial perfect information (VPPI)

ĉR
ĉF

VPPI (CV)

10−1 35013 (0.23)

10−2 42717 (0.21)

10−3 4918 (0.02)

Table 4: Results of preposterior Bayesian decision analysis for the corrosion example

(a) Life-cycle optimization in the prior case.

ĉR
ĉF

w∗
0 E[Ctot|w∗

0 ] trepair

10−1 ≥ 2.8× 10−4 26792 no repair

10−2 ≥ 2.8× 10−4 26792 no repair

10−3 2× 10−5 9308 year 8

(b) Life-cycle optimization in the preposterior case.

ĉR
ĉF

w∗
mon E[Ctot|w∗

mon]

10−1 ≥ 9× 10−3 26792

10−2 7.5× 10−4 25334

10−3 1.83× 10−5 9200

(c) Value of information (VoI)

ĉR
ĉF

VoI (CV)

10−1 0

10−2 1458 (0.42)

10−3 108 (0.08)

(d) Value of partial perfect information (VPPI)

ĉR
ĉF

VPPI (CV)

10−1 132 (0.30)

10−2 2871 (0.22)

10−3 497 (0.05)

the posterior solution, especially in the initial years, when the data set is not so large, yet is computationally

much faster than an MCMC solution. For the estimation of the posterior accumulated probability of failure in615

equation (18), 10000 samples are drawn from the approximate multivariate Gaussian posterior distribution.

The computed VoI and VPPI estimates can be seen in Table 4. We observe that the VoI is 0 in the

case when the costs have a ratio ĉR
ĉF

= 10−1, which means that one does not get any benefit from the data

obtained from the SHM system. This is related to the fact that, for this cost ratio, the optimal decision is to

not perform a repair action in the lifespan of the bridge, in both the prior and all the preposterior samples,620

since at all time steps the cost of a repair is much larger than the the risk of failure cost. For the cost ratio

ĉR
ĉF

= 10−2, we observe that the VoI from SHM extracted via Bayesian model updating is not optimal, as

it does not provide the full VPPI value, but 51% of this value, while for the cost ratio ĉR
ĉF

= 10−3 it only

provides around 22% of the VPPI value.

We note that the VoI depends on the assumed prior uncertainty of the deterioration model, and how this625

propagates in time, among other factors. For the purpose of the numerical investigations that are conducted
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in this paper, we chose prior models which reflect sufficiently large uncertainty apriori. In practice, it is

expected that the analyst has a prior model of the uncertainty and will use this to perform a VoI analysis.

Without a prior model of this uncertainty, it is not possible to quantify the value of SHM a-priori.

6.6.3. VoI results - Sensor placement study630

The purpose of this section is to demonstrate that the presented VoI analysis can be employed as a formal

decision analysis tool for performing various parametric studies related to different choices in designing the

SHM system and performing the Bayesian model updating procedure.

One critical choice when designing an SHM system is the number and position of the sensors to be

employed on the structure. One could employ the proposed VoI analysis to perform optimal sensor placement635

studies for a deteriorating structural system. Each sensor arrangement choice will result in a VoI value, and

the choice which leads to the highest VoI would be the preferred one.

Herein we demonstrate this with the use of the second example of the bridge system subject to corrosion

deterioration at two locations. For the decision problem, we now fix the cost of failure to ĉF = 107e and

the cost of repair to ĉR = 3.5× 104e. We consider the following two different arrangements of the sensors:640

i) 24 uniformly distributed accelerometers along the structure, ii) 12 uniformly distributed accelerometers

along the structure. In both cases the VoI analysis is performed by drawing 1000 samples of θ.

It becomes evident that in the case that the structure is subjected to deterioration at two different

damage locations, the number of sensors and consequently the quality of the mode shape displacement or

curvature information that one obtains clearly affects the BMU results and therefore leads to a notable645

difference in the heuristic-based life-cycle optimization and the VoI result that we obtain.

Table 5: Parametric study for the effect of the number of sensors on VoI result

(a) Life-cycle optimization in the prior case.

w∗
0 t∗repair

6.1× 10−5 21

(b) Life-cycle optimization in the preposterior case.

sensors w∗
mon

24 1× 10−4

12 3.2× 10−4

(c) Effect of number of sensors on the VoI

VPPI (CV) sensors VoI (CV) VoI
VPPI

7681 (2.6%) 24 4614 (5.3%) 60%

12 2711 (15%) 35%

7. Concluding remarks

This paper investigates the quantification of the VoI yielded via adoption of SHM systems acting in

long-term prognostic mode for cases of deterioration. It focuses on demonstrating, for the first time, a VoI

analysis on the full SHM chain, from data acquisition to utilization of a structural model for the purpose of650
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the updating and reliability calculation. A preposterior Bayesian decision analysis for quantifying the VoI,

specifically tailored for application on an employed numerical benchmark structural model, is presented.

Two different structural damage case studies are investigated, for which a simple stochastic deterioration

model with prior parameter uncertainties is assumed to be available. The modeling of the acquired SHM

data is done in a realistic way, following a state-of-the-art operational modal analysis procedure. The data655

is used within a Bayesian model updating framework, implemented in a sequential setting, to continuously

update the uncertain structural condition, which subsequently leads to the updating of the estimate of the

structural reliability. A heuristic-based solution to the simplified decision problem is provided for finding the

optimal time to perform a single repair action, which might be needed during the lifetime of the structure.

We discuss specific computational aspects of a VoI calculation. The VoI analysis requires the integration over660

the monitoring data, which are here modeled in a realistic way, adding an extra computationally expensive

layer in the analysis. In addition to the VoI solution, an upper limit to the VoI through the value of partial

perfect information is also provided, related to hypothetical situations of perfect knowledge on the system

condition.

It should be noted that the resulting VoI estimates are affected by the fact that only a single repair665

action case is explored. In the present exemplary analysis, we do not take into account nonlinearities of the

underlying system, dependence on varying ambient/environmental effects (e.g dependence on temperature),

or modeling errors. To partly account for these effects, as well as unknown errors in the structural model, we

consider only a limited number of data points from the SHM. However, further investigations are necessary

into how these types of uncertainties can be addressed within a VoI analysis.670
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