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Abstract

In reliability assessments, it is useful to compute importance measures that
provide information on the influence of the input random variables on the
probability of failure. Classical importance measures are the α-factors, which
are obtained as a by-product of the first-order reliability method (FORM).
These factors are the directional cosines of the most probable failure point in
an underlying independent standard normal space. Alternatively, one might
assess sensitivity by a variance decomposition of the indicator function, i.e.,
the function that indicates membership of the random variables to the failure
domain. This paper discusses the relation of the latter variance-based sen-
sitivity measures to the FORM α-factors and analytically shows that there
exist one-to-one relationships between them for linear limit-state functions
of normal random variables. We also demonstrate that these relationships
enable a good approximation of variance-based sensitivities for general re-
liability problems. The derived relationships shed light on the behavior of
first-order and total-effect indices of the failure event in engineering reliability
problems.

Keywords: Reliability analysis, Sensitivity analysis, α-factors, FORM

1. Introduction

In reliability analysis, the interest is in the evaluation of the probabil-
ity of failure of an engineering system. Let X denote a continuous ran-
dom vector of dimension n modeling the uncertain system variables; it is
described by a joint probability density function (PDF) f(x). The failure
event F can be defined as the collection of the outcomes of X for which
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the so-called limit-state function (LSF) g(x) takes non-positive values, i.e.,
F = {x ∈ Rn : g(x) ≤ 0} [1]. The probability of failure can be expressed as

pF = Pr(F ) =

∫
g(x)≤0

f(x)dx . (1)

The LSF often depends on a computationally intensive numerical model
of the engineering system, which makes evaluation of pF a nontrivial task.
Standard Monte Carlo, although suitable for estimating high-dimensional
integrals, becomes inefficient when F is a rare event and pF is small, as is
typically the case for failure probabilities. Various tailored methods have
been developed to efficiently estimate the integral in Eq. (1) when pF is
small [1, 2]. These include approximation methods such as the first/second
order reliability method (FORM/SORM) [3], simulation-based methods, e.g.,
[4, 5, 6, 7, 8], and methods based on surrogate modeling [9].

In many applications of reliability analysis, one is interested in under-
standing the influence of components of X or the parameters of their joint
PDF on the probability of failure. The sensitivity to distribution parameters
can be quantified through local reliability sensitivity analysis, which involves
evaluating partial derivatives of the probability of failure at the nominal val-
ues of the parameters, e.g., [10, 11, 12, 13, 14]. Global reliability sensitivity
analysis examines the average effects of the variables in X on the proba-
bility of failure [15, 16, 17, 18, 19, 20, 21, 22]. These sensitivity measures
can be viewed as extensions of variance-based sensitivity analysis [23] and/or
moment-independent sensitivity analysis [24].

The global sensitivity indices introduced in [18, 19] are based on the vari-
ance decomposition of the indicator function of the event F , i.e., the function
that indicates membership ofX to the failure domain ΩF = {g(x) ≤ 0}. The
first-order indices [18] indicate the contribution of the variance of individual
components of X to the variance of the indicator function and can be viewed
as a modified version of the moment-independent sensitivity measure of [24]
for the probability of failure. Higher-order and total-effect indices [19] re-
spectively represent the combined contribution of collections of components
of X and the total contribution of all variance terms that include a cer-
tain component. Several methods have been proposed to estimate the first-
and higher- order indices, including single-loop sampling methods [19], the
state dependent parameter method [18] and an approach that post-processes
failure samples from sampling-based reliability methods [25, 26].
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A more traditional sensitivity measure that is widely used in structural
reliability is the α-factors, obtained as a by-product of FORM [3, 27]. FORM
performs a first-order Taylor series approximation of the boundary of the
LSF in an equivalent independent standard normal space, at the point of
ΩF with largest probability density value. The evaluation of this so-called
most probable failure point (MPFP) (also known as design point) requires
the solution of an optimization problem. The α-factors are the directional
cosines of the MPFP and they can be interpreted as variance-based sensitivity
measures of the linearized LSF [3]. Generalizations of the α-factors have been
proposed for dependent inputs in [3] and for multimodal failure domains in
[28].

This contribution explores the relation of the FORM α-factors and the
variance-based sensitivities of the indicator function and analytically derives
one-to-one relationships between them for linear LSFs of normal random vari-
ables. The derived relationships motivate an investigation of the first-order
and total-effect indices of the failure event for linear problems from which one
can draw conclusions on the behavior of these indices in general engineering
reliability problems. We also demonstrate that these relationships provide
good approximations of the variance-based indices of general problems with
independent inputs.

The structure of the paper is as follows. In Section 2, we review global
reliability sensitivity analysis and the variance-based sensitivity indices of
the indicator function. Section 3 discusses FORM and the α-factors. Section
4 introduces approximations of the variance-based sensitivities with FORM
and numerically investigates the relationship between the α-factors and the
derived first-order and total-effect indices. Section 5 presents two numerical
examples that test the accuracy of the FORM approximations. The paper
closes with the conclusions in Section 6.

2. Variance-based reliability sensitivity measures

2.1. Variance-based sensitivity analysis

Variance-based sensitivity analysis aims at identifying the input random
variables in X that have largest impact on the variance of a quantity of
interest (QOI) Q = h(X), where h : Rn → R defines an input-output
relationship. It is based on the functional analysis of variance (ANOVA)
decomposition of h(x), also known as high dimensional model representation
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(HDMR). Consider the case where the random vector X consists of statisti-
cally independent components, i.e., f(x) =

∏n
i=1 fi(xi) with fi(xi) denoting

the marginal PDF of Xi. Also assume that h(x) is square-integrable, i.e.,
E[h(X)2] <∞. The functional ANOVA decomposition of h(x) reads [29, 23]

h(x) = h∅ +
n∑
i=1

hi(xi) +
∑

1≤i<j≤n

hi,j(xi, xj) + · · ·+ h1,...,n(x1, . . . , xn) . (2)

The representation of Eq. (2) exists and is unique provided that

E[hv(Xv)|Xv\i] =

∫ ∞
−∞

hv(xv)fi(xi)dxi = 0, ∀i ∈ v,∀v ∈ P({1, . . . , n}) ,

(3)
with xv = {xi, i ∈ v} and P(S) denoting the power set of S. From Eq. (3)
it follows that h∅ = E[h(X)] and that the summands in Eq. (2) are mutually
orthogonal, i.e., it is E[hv(Xv)hw(Xw)] = 0 for v 6= w ∈ P({1, . . . , n}).
From the orthogonality property, one gets the following decomposition of
the variance of Q in terms of the variances of the ANOVA summands:

Var(Q) =
n∑
i=1

Vi +
∑

1≤i<j≤n

Vi,j + · · ·+ V1,...,n , (4)

where Vv = Var(hv(Xv)). The component variances can also be expressed
in terms of variances of conditional expectations as

Vv = Var(E[Q|Xv])−
∑

w∈P(v)\{∅,v}

Vw . (5)

Assume now that Var(Q) 6= 0. The Sobol’ sensitivity index associated to v
is defined as [23]

Sv =
Vv

Var(Q)
. (6)

For v = {i}, the first-order Sobol’ index Si measures the contribution of the
main effect of Xi on the variance of Q, whereas for |v| > 1 the index Sv
measures the portion of Var(Q) due to the high-order interactions between
variables Xv. It is ∑

v∈P(1,...,n)\{∅}

Sv = 1 . (7)

4



The first-order component indices Si can be used for factor prioritization: the
larger Si, the higher the reduction in the output variance upon full knowledge
of Xi. In other words, the indices Si enable one to identify those variables
that would have the greatest impact on the variance of Q, if their values
become known or if their uncertainties are decreased.

The total-effect index, measuring the contribution due to variables Xv

and their interactions with all other variables in X, is given by [30]

STv =
E[Var(Q|X∼v)]

Var(Q)
= 1− Var(E[Q|X∼v])

Var(Q)
, (8)

where “∼ v” denotes the set {1, . . . , n}\v. For v = {i}, it is

STi =
∑

v∈P(1,...,n),i∈v

Sv . (9)

The total-effect indices STi are used for factor fixing, i.e., to identify which
variables, if fixed, will impact the variance of Q the least.

2.2. Variance-based reliability sensitivities

To apply variance-based sensitivity analysis to the reliability problem of
Eq. (1), one needs to choose an appropriate QOI that describes the failure
event F as a function of the input variables X. Define the random variable
Z = I(g(X) ≤ 0), where I(g(x) ≤ 0) is the indicator function that defines
the failure domain. It is I(g(x) ≤ 0) = 1 if g(x) ≤ 0 and I(g(x) ≤ 0) = 0
otherwise. The variable Z follows the Bernoulli distribution with parameter
pF ; it has mean E[Z] = pF and variance Var(Z) = pF (1− pF ). A decompo-
sition of the variance of Z leads to the following Sobol’ reliability sensitivity
index:

SF,v =
VF,v

Var(Z)
=

VF,v
pF (1− pF )

, (10)

with
VF,v = Var(E[Z|Xv])−

∑
w∈P(v)\{∅,v}

VF,w . (11)

For a scalar v = {i}, the first-order Sobol’ index SF,i associated to random
variable Xi is given as follows:

SF,i =
Var(E[Z|Xi])

pF (1− pF )
. (12)
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The conditional expectation in the numerator of Eq. (12) can also be writ-
ten as the conditional probability of F given Xi, i.e., E[Z|Xi] = Pr(F |Xi).
Therefore, the index SF,i is equivalent to the moment-independent impor-
tance measure δpi of [18], since it holds

δpi = E[(Pr(F )− Pr(F |Xi))
2] = Var(Pr(F |Xi)) = Var(E[Z|Xi]) . (13)

The measure of Eq. (13) can also be extended for groups of variables Xv

[18], in which case it corresponds to the first term of the right hand side of
Eq. (11), which if normalized with the total variance is also known as the
closed Sobol’ index of the failure event [31].

The total-effect reliability sensitivity index is given by [19]

STF,v = 1− Var(E[Z|X∼v])
Var(Z)

= 1− Var(Pr(F |X∼v))
pF (1− pF )

. (14)

The first-order reliability component index SF,i can be used to identify which
random variable Xi if learned (e.g., through investing in measurement cam-
paigns) will increase the accuracy of pF the most. The total-effect reliabil-
ity component index STF,i can be used to identify the random variables with
STF,i ≈ 0, which, if fixed, will not impact the prediction of pF . Fixing variables
with small STF,i can decrease the modeling and possibly the computational
complexity of further analyses.

The Sobol’ and total-effect reliability sensitivity indices of Eqs. (10) and
(14) can be estimated by several sampling based approaches, e.g [18, 19, 25,
26]. Here, we derive approximations of these indices based on the FORM
approach to reliability analysis. Before discussing these approximations, we
review FORM and the classic related sensitivity indices, the so-called FORM
α-factors.

3. FORM and the α-factors

FORM is an approximation method for solving the reliability problem of
Eq. (1). It approximates the probability integral through linearizing the LSF
at the most probable failure point (MPFP) in an equivalent standard nor-
mal space, the U -space, where U is an n-dimensional vector of independent
standard normal random variables. The first step of FORM is to transform
the problem to the U -space. The vector U can be expressed in terms of the
original random vector X through an isoprobabilistic mapping U = T (X)
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[32, 33]. For the case where the variables X are statistically independent and
have strictly increasing marginal cumulative distribution functions (CDFs)
Fi(xi), i = 1, . . . , n, this mapping is T (x) = [Φ−1(F1(x1)); · · · ; Φ−1(Fn(xn))],
with Φ denoting the standard normal CDF. The LSF can be expressed in
the U -space as G(u) = g[T−1(u)] with T−1 denoting the inverse mapping
X = T−1(U). The probability integral of Eq. (1) can then be transformed
as

pF = Pr(F ) =

∫
G(u)≤0

ϕn(u)du , (15)

where ϕn is the n-variate independent standard normal PDF. Next, the
MPFP u∗ is found as the point of the limit-state surface G(u) = 0 that
maximizes ϕn(u), or equivalently that minimizes the distance to the origin
‖u‖, through solving

u∗ = argmin{‖u‖ | G(u) = 0} . (16)

The program of Eq. (16) can be solved by a variety of optimization algo-
rithms, e.g., [34]. Assuming that the LSF G(u) is continuous and differen-
tiable in the neighborhood of u∗, we can approximate G(u) in this neighbor-
hood through its linearization at u∗,

G(u) ∼= G1(u) = ∇G(u∗)(u− u∗) = ‖∇G(u∗)‖(β −αu) . (17)

Here ∇G(u∗) = [∂G/∂u1|u=u∗ , . . . , ∂G/∂un|u=u∗ ] is the gradient row vector,
α = −∇G(u∗)/‖∇G(u∗)‖ is the normalized negative gradient vector at the
MPFP (directed towards the failure domain) and β = αu∗ is the FORM
reliability index. The linearization G1(u) is illustrated in Figure 1. The
FORM approximation of the failure event is

F ∼= F1 = {u ∈ Rn : G1(u) ≤ 0} = {u ∈ Rn : αu ≥ β} , (18)

which leads to the following approximation of the probability of failure:

pF ∼= pF1 = Pr(αU ≥ β) = Φ(−β) . (19)

The latter follows from the fact that the random variable Y = αU follows
the standard normal distribution.

The components of the vector α, also known as α-factors, are used in
reliability analysis to assess the contribution of each random variable in U
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Figure 1: Illustration of the FORM approximation of the LSF G1(u) and the α-factors.

to the probability of failure. The α-factors are the directional cosines of the
MPFP u∗ (Figure 1). They can be evaluated in terms of the coordinates of
the MPFP through1 αi = u∗i /β. The variance of the function G1(U) is given
by

Var(G1(U)) = ‖∇G(u∗)‖2
n∑
i=1

α2
iVar(Ui) = ‖∇G(u∗)‖2 . (20)

Comparing Eq. (20) with Eq. (4) we see that the squares of the α-factors are
proportional to the contributions of the variablesU on the variance of G1(U).
In fact it is easy to see that VG1,i = Var(E[G1(U)|Ui]) = ‖∇G(u∗)‖2α2

i , which
gives

SG1,i =
Var(E[G1(U)|Ui])

Var(G1(U))
=
‖∇G(u∗)‖2α2

i

‖∇G(u∗)‖2
= α2

i . (21)

That is, the squared α-factors are the first-order Sobol’ indices of the lin-
earized LSF in U -space. They are also identical to the total-effect indices
of G1(U ), since G1(u) is a linear function and, hence, the components of u
enter only as main effects in G1(·).

We note that for the case where the random variables X are statistically

1The reliability index β can also be evaluated in terms of the MPFP. It is β = ‖u∗‖ if
G(0) > 0 and β = −‖u∗‖ if G(0) < 0.
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independent, the same decomposition as in Eq. (20) applies for the variance
of the linearized LSF transformed back to the X-space. However this does
not apply if X consists of dependent random variables. Extensions of the
α-factors for dependent inputs are given in [3, 28].

4. Variance-based reliability sensitivity analysis with FORM

We now derive expressions for the reliability sensitivity indices defined in
Eq. (10) and Eq. (14) of the reliability problem described by the linearized
LSF of Eq. (17). Define the Bernoulli random variable Z1 = I(G1(U) ≤ 0),
describing the geometry of the failure domain of the FORM approximation in
U -space. Z1 has mean E[Z1] = pF1 and variance Var(Z1) = pF1(1−pF1). The
Sobol’ index of the indicator of the failure event F1 associated to component
indices v is given by Eq. (10) as

SF1,v =
VF1,v

Var(Z1)
=

VF1,v

pF1(1− pF1)
, (22)

with
VF1,v = Var(E[Z1|Uv])−

∑
w∈P(v)\{∅,v}

VF1,w . (23)

Evaluating the indices of Eq. (22) amounts to evaluating the variances of con-
ditional expectations in Eq. (23), Var(E[Z1|Uv]), for all v ∈ P({1, . . . , n}).
The main result of the paper is given by the following proposition.

Proposition 4.1. The variance of conditional expectation of the random
variable Z1 = I(G1(U) ≤ 0), Var(E[Z1|Uv]), with Uv = {Ui, i ∈ v} can be
expressed through the following integral:

Var(E[Z1|Uv]) =

∫ ‖αv‖2

0

ϕ2(−β,−β, r)dr , (24)

with ϕ2(·, ·, r) denoting the bivariate standard normal PDF with correlation
parameter r,

ϕ2(−β,−β, r) =
1

2π
√

1− r2
exp

(
− β2

1 + r

)
. (25)
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Proof. The variance Var(E[Z1|Uv]) can be expanded as follows:

Var(E[Z1|Uv]) = Var(Pr(F1|Uv)) = E[Pr(F1|Uv)
2]− E[Pr(F1|Uv)]

2 . (26)

The mean of the conditional probability of F1 is equal to the unconditional
probability,

E[Pr(F1|Uv)] = Pr(F1) = Φ(−β) . (27)

The conditional probability of F1 given {Uv = uv} reads

Pr(F1|Uv = uv) = Pr(α∼vU∼v ≥ β −αvuv) . (28)

The random variable α∼vU∼v follows the normal distribution with zero mean
and variance ‖α∼v‖2. Therefore,

Pr(F1|Uv = uv) = Φ

(
αvuv − β
‖α∼v‖

)
= Φ

(
αvuv − β√
1− ‖αv‖2

)
. (29)

We then have

E[Pr(F1|Uv)
2] = E

Φ

(
αvUv − β√

1− ‖αv‖2

)2


= E

[
Pr

(
Ũ1 ≤

αvUv − β√
1− ‖αv‖2

∣∣∣∣∣Uv

)
Pr

(
Ũ2 ≤

αvUv − β√
1− ‖αv‖2

∣∣∣∣∣Uv

)]

= E

[
Pr

({
Ũ1 ≤

αvUv − β√
1− ‖αv‖2

}
∩

{
Ũ2 ≤

αvUv − β√
1− ‖αv‖2

}∣∣∣∣∣Uv

)]

= Pr

({
Ũ1 ≤

αvUv − β√
1− ‖αv‖2

}
∩

{
Ũ2 ≤

αvUv − β√
1− ‖αv‖2

})
,

(30)

where Ũ1 and Ũ2 are auxiliary independent standard normal random vari-
ables. Define the random variables Ỹi = Ũi

√
1− ‖αv‖2 − αvUv, i = 1, 2.

The variables Ỹi, i = 1, 2, have zero means, unit variances, correlation coef-
ficient ρ̃12 = ‖αv‖2, and, since they are linear functions of normal random
variables, they follow the bivariate standard normal distribution. We have

E[Pr(F1|Uv)
2] = Pr

({
Ỹ1 ≤ −β

}
∩
{
Ỹ2 ≤ −β

})
= Φ2(−β,−β, ‖αv‖2) ,

(31)
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where Φ2(·, ·, r) is the bivariate standard normal CDF with correlation pa-
rameter r. The bivariate normal CDF can be expressed in terms of a single-
fold integral (e.g., [35]), such that

Φ2(−β,−β, ‖αv‖2) = Φ(−β)2 +

∫ ‖αv‖2

0

ϕ2(−β,−β, r)dr . (32)

Combining Eqs. (26), (27), (31) and (32), we arrive at the final result of
Eq. (24).

Proposition 4.1 shows that the quantity Var(E[Z1|Uv]) and, hence, the
Sobol’ index SF1,v can be computed as functions of the reliability index β
and the factors αv. These functions are integrals of the bivariate standard
normal PDF over the correlation parameter r, with both arguments set equal
to −β and can be evaluated efficiently through one-dimensional numerical
integration. From Proposition 4.1, Eqs. (22) and (23), and setting v = {i},
the first-order Sobol’ index, SF1,i, takes the following form:

SF1,i =
1

pF1(1− pF1)

∫ α2
i

0

ϕ2(−β,−β, r)dr . (33)

The total-effect index of Z1 associated to component indices v is given
by Eq. (14) as

STF1,v
= 1− Var(E[Z1|U∼v])

Var(Z1)
= 1− Var(Pr(F1|U∼v))

pF1(1− pF1)
. (34)

Corollary 4.1. The total-effect index of Z1, STF1,v
, associated to component

indices v can be expressed through the following integrals:

STF1,v
= 1− 1

pF1(1− pF1)

∫ 1−‖αv‖2

0

ϕ2(−β,−β, r)dr (35)

=
1

pF1(1− pF1)

∫ 1

1−‖αv‖2
ϕ2(−β,−β, r)dr . (36)

Proof. From Proposition 4.1 and since ‖α‖ = 1 we have

Var(E[Z1|U∼v]) =

∫ ‖α∼v‖2

0

ϕ2(−β,−β, r)dr =

∫ 1−‖αv‖2

0

ϕ2(−β,−β, r)dr .

(37)
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Substitution to Eq. (34) gives the first result of Eq. (35). From Eq. (32) and
since Φ2(−β,−β, 1) = Φ(−β), we get∫ 1

0

ϕ2(−β,−β, r)dr = Φ(−β)[1− Φ(−β)] = pF1(1− pF1) . (38)

Combining Eqs. (38) and (35) gives the second result of Eq. (36).

From Corollary 4.1, it follows that the total-effect index of Z1 associated
to random variable Ui, S

T
F1,i

, can be expressed as

STF1,i
=

1

pF1(1− pF1)

∫ 1

1−α2
i

ϕ2(−β,−β, r)dr . (39)

Hence, both the first-order and total-effect indices for an individual com-
ponent Ui can be determined by knowledge of the reliability index β and
the factor αi. This is not surprising, since the linearized failure event is
completely defined by β and the factors α, cf. Eq.(18). Also, through ob-
serving Eqs. (33) and (39) and noting that ϕ2(−β,−β, r) is a non-negative
function, it is straightforward to see that α2

i < α2
j implies SF1,i < SF1,j and

STF1,i
< STF1,j

. That is, the ranking obtained by the squared α-factors is
the same as the one obtained by both the first-order Sobol’ indices and the
total-effect indices of the failure event F1.

Remark 4.1. We remark that the results discussed here directly apply to
the Sobol’ and total-effect indices of Z1 with respect to the original variables
X for the case where X consists of statistically independent components.
This can be understood by examining the variance of the conditional expec-
tation of Z1 given Xv, Var(E[Z1|Xv]) = Var(Pr[F1|Xv]). Because of in-
dependence of the components, the conditional probability Pr[F1|Xv = xv]
is evaluated under the probability measure of X∼v, i.e., the conditional den-
sity of X∼v given Xv = xv is identical to the marginal density of X∼v.
Since the transformation of each component Ui = Ti(Xi) is one-to-one and
probability-preserving, it is Pr[F1|Xv = xv] = Pr[F1|Uv = T v(xv)], where
T v(·) collects the component-wise transformations. It directly follows that

Var(Pr[F1|Xv]) = Var(Pr[F1|Uv]) . (40)

Figure 2 shows the behavior of the first-order and total-effect indices SF1,i

and STF1,i
with changing α2

i for different values of the FORM probability ap-
proximation pF1 . We see that SF1,i differs significantly from STF1,i

, indicating
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that the variance of the indicator function Z1 of the linearized failure do-
main is dominated by high-order effects. This can be explained by the fact
that the majority of the probability mass in the failure region of the in-
dependent standard normal joint PDF tends to concentrate in areas closer
to the origin, i.e., in the vicinity of the MPFP. Therefore, even for the case
where a single random variable dominates the linearized LSF, the probability
mass in the failure domain will be at areas where the remaining variables are
also important. This is illustrated in Figure 3, which shows the bulk of the
probability mass in the failure domain of a two-dimensional linear LSF with
α = [0.44, 0.9] and pF = 10−3. In this example, it is clear that the variable
U2 is the dominating one, it has α2

2 = 0.81 whereas α2
1 = 0.19. In spite of

this, one can see that the probability mass in the failure domain significantly
increases for larger values of U1.

The more the linearized LSF moves away from the origin the more prob-
ability mass concentrates around the MPFP (e.g, see the asymptotic results
in [36]). Therefore, the difference between SF1,i and STF1,i

increases as pF1

becomes smaller. Consider for example the case where pF1 = 10−5. For
α2
i = 0.9, which indicates a high contribution of variable Ui, it is SF1,i = 0.31

and STF1,i
≈ 1. We postulate that this result is generalizable to the first-order

and total-effect indices of nonlinear problems for which FORM provides a
good approximation to the probability of failure. This is verified in the nu-
merical examples in Section 5. Similar observations can be found in [19, 37].

Variables with small |αi| are often fixed at their mean values in further
reliability assessments or simpler probablistic models are used to describe
them, e.g., [38, 39, 40, 41]. This is consistent with the information obtained
from the total-effect index. For example for pF1 = 10−5 and |αi| = 0.01 it is
STF1,i

= 0.025. Hence, one can conclude that the α-factors provide consistent
information with the total-effect indices, and they can be reasonably applied
for variable fixing. The threshold value for application of the α-factors for
variable fixing depends on the value of β (or, equivalently, pF1), which can
also be observed from Figure 2. Hence, if one wants to use a factor fixing
threshold in terms of α2

i , such a threshold is ideally determined by fixing a
threshold on STF1,i

and translating it to α2
i for a specific β.

Figure 2 also shows that the α-factors are better behaved than both SF1,i

and STF1,i
, which tend to take values close to 0 and 1, respectively, especially

for small failure probabilities. We remark that a sensitivity factor that serves
a similar purpose than the total-effect index is the omission sensitivity index
[42]. This index measures the effect on the reliability index when a random
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Figure 2: Illustration of the first-order and total-effect indices for different values of pF1
.

variable is replaced by a deterministic value and is often used for variable
fixing.
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Figure 3: Probability density of U in the failure domain for a problem with linear LSF,
α = [0.44, 0.9] and pF = 10−3.

5. Numerical examples

We test the quality of the FORM approximation of the sensitivity indices
of nonlinear reliability problems with two numerical examples. We consider
examples where FORM is expected to give a reasonable approximation to
the probability of failure. The goal is to assess whether the FORM approxi-
mation of the sensitivity indices can be applied to problems where FORM is
routinely applied. The first example is concerned with the safety assessment
of a steel column and the second with a deformation-sensitive elastic truss
structure. The FORM estimates of the first-order and total-effect indices are
compared with the estimates obtained by Monte Carlo (MC) simulation. MC
estimates are obtained using the classical estimators (e.g., see [31]), which
require ns(n+ 2) LSF evaluations, where ns denotes the number of samples.

5.1. Steel column

The first example consists of a wide flange steel column that is simply sup-
ported, as depicted in Figure 4. It is based on the test bed example presented
in [43]. The dimensions of the cross-section are taken as b = h = 250 mm,
tb = 15 mm and th = 10 mm. The column is subjected to a compressive
load P consisting of two components P = Pp + Pe, where Pp denotes the
permanent load and Pe the environmental (snow) load. The column is as-
sumed to have an initial deformation due to construction imperfections. The
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deformation has a parabolic shape with maximum amplitude δ0 at the centre
of the column.

P

δ0

tb

th
h

b

y

x

x

z

Figure 4: Wide flange steel column with initial deflection.

The column has a length of L = 7.5 m. The critical limit-state function
that governs the performance of the column is given as follows:

g(X) = 1−
(

P

fyAs

+
Pδ0
fyWs

· Pb

Pb − P

)
, (41)

where X = [Pp;Pe; δ0; fy;E] is the vector of basic random variables. Pb is
the Euler buckling load and is given by

Pb =
π2EIs
L2

. (42)

As, Ws and Is denote the area, section modulus and moment of inertia of the
cross section around its weak axis and are given by

As = 2btb + hth , (43)

Ws =
ht3h
6b

+
tbb

2

3
, (44)

Is =
ht3h
12

+
tbb

3

6
. (45)

fy denotes the yield strength and E the Young’s modulus of the steel material.
The random vector X consists of statistically independent random variables
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Table 1: Uncertain parameters of the steel column example.

Parameter Distribution Mean St. Dev.

Pp [kN] Normal 200 20
Pe [kN] Gumbel 400 60
δ0 [mm] Normal 30 10
fy [MPa] Lognormal 400 32
E [MPa] Lognormal 2.1× 105 8.4× 103

with marginal distributions given in Table 1. The MC reference solutions are
computed with 100 independent runs with ns = 107 samples.

The obtained MC estimate of the probability of failure is pF = 8.35×10−5,
whereas the FORM solution is pF1 = 8.19 × 10−5. Table 2 shows the mean
and coefficient of variation of the first-order and total-effect indices together
with the FORM estimates and the FORM squared α-factors. The first-order
and total-effect indices are also plotted in Figs. 5 and 6, respectively. We
see that the only variables that have first-order index values that are not
practically zero are the the environmental load Pe and the initial displacement
δ0. The load Pe is the dominant variable (with highest first-order index),
which indicates that investing in reducing its uncertainty will have the highest
impact on the probability of failure. The situation is different for the total-
effect indices, as in this case all variables have considerable index values. The
results also show that the FORM results agree well with the MC estimates,
which is to be expected because of the high accuracy of the FORM probability
estimate.

5.2. Elastic truss structure

Next, we consider an elastic truss that consists of 23 rods as depicted in
Figure 7 [44]. Horizontal and diagonal rods have cross-sections A1, A2 and
Young’s moduli E1, E2, respectively. The truss sustains 6 vertical point loads
P1 - P6. The variables X = [A1;A2;E1;E2;P1; . . . ;P6] are modeled by inde-
pendent random variables with marginal distributions given in Table 3. The
considered limit-state function restricts the maximum vertical displacement
of the truss and is given by

g(X) = ulim − umax(X) , (46)
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Figure 5: First-order indices for the steel column example. Comparison of MC and FORM
estimates.

Table 2: Estimates of the first-order and total-effect indices for the steel column example.
The MC results include the coefficient of variation of the estimate in brackets.

Variable
SF,i ST

F,i α2
i

MC FORM MC FORM

Pp 1.7× 10−4 (16.1%) 1.5× 10−4 0.2365 (0.2%) 0.2331 0.0149
Pe 0.1974 (0.2%) 0.1997 0.9896 (< 0.1%) 0.9919 0.7524
δ0 0.0044 (1.8%) 0.0044 0.7354 (< 0.1%) 0.7224 0.1836
fy 4.8× 10−4 (7.4%) 4.2× 10−4 0.3595 (0.1%) 0.3605 0.0368
E 1.6× 10−4 (15.1%) 1.3× 10−4 0.2145 (0.2%) 0.2132 0.0124

where we set ulim = 0.1 m. For this example, the MC reference solutions are
computed with 100 independent simulation runs with ns = 105 samples.

The obtained MC estimate of the probability of failure is pF = 4.32×10−2,
whereas the FORM solution is pF1 = 2.81× 10−2. The first-order and total-
effect indices computed by the two methods are shown in Table 4 and Figs. 8
and 9. For this example FORM significantly underestimates the probability
of failure. This is reflected in a loss of accuracy in the estimates of the first-
order and total-effect indices as compared to the steel column example, where
the FORM probability estimate is highly accurate. However, the FORM
sensitivity estimates still compare fairly well with the MC results and provide
the same ranking, both for the first-order and the total-effect indices.
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Table 3: Uncertain parameters of the elastic truss example.

Parameter Distribution Mean St. Dev.

A1 [m2] Lognormal 2× 10−3 2× 10−4

A2 [m2] Lognormal 1× 10−3 1× 10−4

E1, E2 [MPa] Lognormal 2.1× 105 2.1× 104

P1 − P6 [kN] Gumbel 50 7.5

Table 4: Estimates of the first-order and total-effect indices for the elastic truss example
for umax = 0.1 m. The MC results include the coefficient of variation of the estimate in
brackets

Variable
SF,i ST

F,i α2
i

MC FORM MC FORM

A1 0.1202 (0.5%) 0.1044 0.7002 (0.1%) 0.7410 0.3713
A2 0.0024 (5.3%) 0.0013 0.1172 (0.3%) 0.1229 0.0086
E1 0.1199 (0.4%) 0.1044 0.7017 (0.1%) 0.7410 0.3713
E2 0.0022 (9.0%) 0.0013 0.1181 (0.3%) 0.1229 0.0086
P1 0.0010 (13.5%) 0.0006 0.0775 (0.4%) 0.0809 0.0037
P2 0.0096 (2.4%) 0.0056 0.2309 (0.2%) 0.2457 0.0346
P3 0.0241 (1.4%) 0.0144 0.3411 (0.2%) 0.3737 0.0818
P4 0.0247 (1.4%) 0.0144 0.3414 (0.2%) 0.3737 0.0818
P5 0.0101 (2.4%) 0.0056 0.2298 (0.2%) 0.2457 0.0346
P6 0.0008 (16.9%) 0.0006 0.0779 (0.4%) 0.0809 0.0037
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Total-effect indices
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Figure 6: Total-effect indices for the steel column example. Comparison of MC and FORM
estimates.
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Figure 7: 2-D elastic truss structure.

6. Concluding remarks

This paper discusses the estimation of variance-based reliability sensitiv-
ities with FORM. It derives expressions for the first-order and total-effect
indices of the indicator function of the linearized failure domain that de-
pend on the FORM reliability index and the α-factors. These expressions
are one-dimensional integrals and can be computed efficiently with numeri-
cal integration. A study on the dependency of the sensitivity indices on the
corresponding α-factor at different probability levels showed that the first-
order indices take significantly smaller values than the total-effect indices,
especially at low values of the probability of failure. Nevertheless, the rank-
ing obtained by the α-factors is the same as the one obtained by both the
first-order and total-effect indices of the linearized problem. The absolute
value of the α-factors gives consistent results with the the total-effect index,
which supports the regular use of the α-factors for model simplification in
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Figure 8: First-order indices for the elastic truss example. Comparison of MC and FORM
estimates.

reliability analysis.
Two numerical examples illustrated that the derived expressions for the

sensitivity indices of the FORM failure event provide good approximations of
the variance-based sensitivities for nonlinear reliability problems for which
the FORM approximation of the probability of failure is adequate. The
second example showed that the FORM approximation of the sensitivities
becomes worse if the approximation of the failure probability is inaccurate.
We do not recommend application of the proposed approach in strongly non-
linear problems where the FORM approximation is expected to be poor.

The studied variance-based reliability sensitivities can be used in prob-
lems where the input random variables are statistically independent. A pos-
sible future research direction is to study variance-based reliability indices of
dependent inputs and their relation to the FORM-indices for dependent in-
puts proposed in [3]. Additionally, the proposed FORM approximations can
be extended to estimate the sensitivity indices of series- and parallel-system
problems. These approximations could potentially be used to address non-
linear component problems with multiple design points.
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