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Abstract

In the clinical setting, one of the major tasks of a clinician is to perform diagnosis. This
process involves an iterative collection, organization, and interpretation of information which
results in a working diagnosis. Only when enough information has been gathered the clinician
will decide what will be the diagnosis. Here, support could be provided to the clinician
using modern tools. This aspect is within the area of computer-aided diagnosis(CADx) where
data is used together with an algorithm to provide support to the clinician. This decision is
data-driven and is only created to support the clinician with their decision. Recently, with the
resurgence and success of artificial neural networks in different domains such as computer
vision, deep learning (DL) methods have been widely used and have proliferated applications
in the clinics. Applications in the clinics particularly related to diagnostic decision support
have received a lot of attention recently and research works are ongoing. Despite recent
successes, there are still open challenges which remain.

First is the challenge of incomplete information in clinical data. Most recent CADx methods in
DL do not give a lot of emphasis on the issue of data missingness. Often the assumption is
that all data is available during model training and evaluation. Such an assumption could be
restrictive in tackling real-world clinical data. Although there are simple techniques to address
this limitation such as using instance deletion or mean imputation, such solutions could lead
to a more biased analysis. In addition, often the solution is a two step process requiring
more specification, such as which data missingness to assume at the first step and then which
deep learning-based model to use. In this thesis, we propose a streamlined approach that
simultaneously performs data imputation and classification for diagnostic decision support.

Next, the challenge that requires attention in CADx is the notion of cost-aware and peri-
diagnostic support. Most recent deep learning-based methods for CADx are tailored to provide
support to the clinician at the end of the diagnostic process. This means all acquisitions for all
patients have to be performed to provide diagnostic support. Such an approach could also be
inefficient as all examinations for all patient are required even if they might not need it or
even if it could be costly. Further, the information regarding the cost of the examination is not
considered. However, in a real-world setting, clinicians could also need support during the
acquisition phase. Further, deciding which examination to select next should also consider
the associated cost for that examination. To this end, we propose a gradient-based feature
acquisition method for peri-diagnostic decision support that is cost-aware, called Accumulated
Integrated Gradients (AIG).

Lastly, translation of these approaches to the clinic is essential. To this end, we evaluated
different ML and DL methods for applications in neurological disease diagnosis, to showcase
the feasibility of these approaches in the clinic and highlight their strengths and limitations.

v





Zusammenfassung

Im klinischen Umfeld besteht eine der Hauptaufgaben des Arztes darin, eine Diagnose zu
stellen. Dieser Prozess beinhaltet eine iterative Sammlung, Organisation und Interpretation
von Informationen, die zu einer Arbeitsdiagnose führen. Erst wenn genügend Informationen
gesammelt wurden, entscheidet der Arzt, wie die Diagnose lautet. Hier könnte der Kliniker
durch moderne Hilfsmittel unterstützt werden. Dieser Aspekt fällt in den Bereich der compu-
tergestützten Diagnose, bei der Daten zusammen mit einem Algorithmus verwendet werden,
um den Kliniker zu unterstützen. Diese Entscheidung ist datengesteuert und dient dazu, den
Kliniker bei seiner Entscheidung zu unterstützen, nicht aber, ihn zu ersetzen. In jüngster Zeit
sind künstliche neuronale Netze in verschiedenen Bereichen wie Computer Vision wieder auf
dem Vormarsch und sehr erfolgreich. Diese Methoden sind weit verbreitet und haben zu einer
Vielzahl von Anwendungen in Kliniken geführt. Anwendungen in der Klinik, insbesondere im
Zusammenhang mit der Unterstützung von Diagnoseentscheidungen, haben in letzter Zeit viel
Aufmerksamkeit erregt und zahlreiche Forschungsarbeiten in Gang gesetzt. Trotz der jüngsten
Erfolge gibt es immer noch offene Herausforderungen.

Die erste Herausforderung sind unvollständige Informationen in klinischen Daten. In aktuellen
DL-basierten CADx-Methoden wird diesem Problem nicht viel Aufmerksamkeit geschenkt. Oft
wird davon ausgegangen, dass alle Daten während des Modelltrainings und der Auswertung
verfügbar sind. Eine solche Annahme könnte bei der Bearbeitung von realen klinischen Daten
einschränkend sein. Einfache Kompensationsansätze, wie z. B. die Löschung von Instanzen
oder die Imputation von Mittelwerten, könnten zu einer verzerrten Analyse führen. Darüber
hinaus ist die Lösung oft ein zweistufiger Prozess, der eine genauere Spezifizierung erfordert,
z. B. welche fehlenden Daten im ersten Schritt verwendet werden sollen und welches Deep-
Learning-basierte Modell dann zum Einsatz kommt. In dieser Arbeit schlagen wir einen
vereinfachten Ansatz vor, der gleichzeitig eine Datenimputation und eine Klassifizierung zur
Unterstützung diagnostischer Entscheidungen durchführt.

Die nächste Herausforderung, die bei CADx beachtet werden muss, ist der Begriff der kosten-
bewussten Peri-Diagnostik. Aktuelle DL-Methoden für CADx sind darauf zugeschnitten, den
Kliniker am Ende des Diagnoseprozesses zu unterstützen. Das setzt eine vollständige Daten-
erfassung für für alle Patientenvoraus, um die Diagnose zu unterstützen. Ein solcher Ansatz
könnte ebenfalls ineffizient sein, da nicht alle Untersuchungen für alle Patienten erforderlich
sind oder kostspielig sein könnten. In der Praxis könnten die Kliniker jedoch auch während
der Akquisitionsphase Unterstützung benötigen. Außerdem sollten bei der Entscheidung,
welche Untersuchung als nächstes ausgewählt wird, auch die damit verbundenen Kosten
berücksichtigt werden. Zu diesem Zweck stellen wir Accumulated Integrated Gradients (AIG)
vor, eine kostenbewusste, gradientenbasierte Methode zur Erfassung von Merkmalen für die
peri-diagnostische Entscheidungshilfe.
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Schließlich ist die Übertragung dieser Ansätze auf die Klinik unerlässlich. Zu diesem Zweck
haben wir verschiedene ML- und DL-Methoden für diagnostische Anwendungen bei neurologi-
schen Erkrankungen evaluiert, um die Durchführbarkeit dieser Ansätze in der Klinik zu zeigen
und ihre Stärken und Grenzen hervorzuheben.
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1Introduction

Contents
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 The necessity of automated Machine Learning-based CADx . . . . . . . . . 6

1.2.1 Improving diagnosis and reducing diagnostic errors . . . . . . . . 6

1.2.2 Access to quality healthcare for resource-limited areas . . . . . . . 7

1.2.3 Holistic decision support based on multimodal clinical data . . . . 7

1.3 Main Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.1 Addressing data missingness during model training and testing in
Diagnostic Decision Support Systems. . . . . . . . . . . . . . . . . 8

1.3.2 Transitioning from CADx to Computer-aided Peri-diagnosis . . . . 9

1.3.3 Translating Computer-aided Diagnosis (CADx) into clinical research
settings using benchmarks of shallow and deep learning models. . 9

1.4 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.1 Background

Data has become more and more important in science, and approaches have shifted to being
data-driven. Recent estimate suggests that there is about 40, 000 exabytes of digital data
in 2020 [18]. Harnessing such data to gain insights could potentially create value across
different domains. One domain where gaining new insights could create very valuable impact
is in healthcare [18]. Generating new insight in this domain is valuable as people’s general
well-being, and potentially their lives, are at stake.

Recently, Machine Learning (ML) using Deep Neural Networks (DNN) has been widely used
as a tool to gain insights from data. In the medical domain, for example, we have seen
widespread use of ML particularly for diagnostic applications. Such applications include heart
disease prediction [60], skin cancer diagnosis [21, 27], and thoracic disease diagnosis [53],
just to name a few.

We also see a lot of healthcare related companies being built, promising to provide the next
healthcare solution with the term AI or machine learning on their hat [18]. This trend also
includes large established companies heavily focusing on AI and machine learning. Those
who do not "embrace" AI could be left out and other competitors could take the lead. Small
to large companies are using machine learning in one way or the other, either to replace
existing tool-chains to faster and potentially more accurate methods, or to innovate entirely
new approaches.
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In literature, the use of data and machine learning for decisions related to clinical settings
are within the scope of Clinical Decision Support Systems (CDSS) [78]. To be more specific,
CDSS are categorized into knowledge-based and non-knowledge-based systems [78]. Under
knowledge-based systems are those which make use of rule-based systems in order to provide
decision support, while those that make use of "Artificial Intelligence" (AI) such as machine
learning are considered non-knowledge-based systems.

The umbrella term CDSS comprises of different levels of decision support in the clinic and
when the decision support is targeted towards diagnosis this falls within Diagnostic Decision
Support Systems (DDSS) or often referred to as Computer-aided Diagnosis (CADx) systems
[78]. The term CADx first appeared in scientific literature in the late 1950s where it was often
referred to as "expert systems in medicine" [94]. The more broader term CDSS can be traced
back to 1970s, and it encompasses not only diagnosis but all sorts of computer-based decision
support for the clinician such as disease management, prescription control, alert systems, and
many more [78]. Currently, CADx is more commonly used when referring to computer-based
decision support for medical diagnosis. For the purposes of this thesis, we refer to automated
CADx as a system which takes patient information as input and provides suggestions as output,
which the doctor can then use to make clinically informed expert-decisions.

In terms of the current state of CADx research, recent developments have been driven by
several factors such as the availability of a large amount of complex data, breakthroughs in
the field of Computer Science (especially AI), the existence of large amounts of diagnostic
knowledge, and the complexity of the medical diagnosis process itself [94]. However, despite
recent developments, there still remain key challenges in advancing CADx systems in medicine.
A major part of these challenges mainly concern the algorithmic aspect of a CADx system
[95]. To be specific, these challenges include the development of better classification and data
mining approaches, development of advanced feature extraction/selection approaches, and
dealing with big data, just to name a few. In this regard, the CADx research environment is
currently at a phase where ML/DL could potentially improve diagnostic decision support in
the medical domain if such massive data is managed and analyzed properly [18].

1.2 The necessity of automated Machine
Learning-based CADx

In this section, we will lay out the motivation for having an automatic diagnostic decision
support system. We focus on three important factors why we would need such a system.

1.2.1 Improving diagnosis and reducing diagnostic errors

From the healthcare providers point of view, such as a primary care provider, clinical diagnosis
is one of the most critical tasks [75], since the diagnosis lays the foundation for all the
following steps in the clinical workflow, such as pharmaceutical or surgical treatment, therapy
and rehabilitation. An accurate and timely diagnosis can have a profound influence on a
patient’s journey towards a positive health outcome. To this end, healthcare providers follow
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certain healthcare guidelines as to how to diagnose or treat certain conditions [46, 47]. If
confounding factors are present, such as co-morbidity, the clinical diagnosis becomes even
more complex [5]. In short, the clinical diagnostic task is not so straightforward. Despite
their education, theoretical knowledge, and year-long practical experience, there is still the
possibility for clinicians to diagnose a patient incorrectly, resulting to a diagnostic error which
could be harmful for the patient, and/or costly for the healthcare providers [75].

In this regard, the WHO recognizes diagnostic errors as an important problem that we should
prioritize [75]. A number of potential interventions to reduce diagnostic errors have been
reported [75] and ML-based CADx has the potential to be used as a technique for these
interventions. With such a CADx system, diagnostic errors could be reduced and potentially
result in a better diagnosis.

1.2.2 Access to quality healthcare for resource-limited areas

Another reason to use such a CADx system is to better ensure equality and inclusion in
healthcare. Medicine should treat all humans equally, and ideally should be available to
all humans on a similarly high quality level around the world. Unfortunately, not everyone
has the same quality of healthcare as healthcare systems around the world vary, resulting in
different quality of delivered care [62, 90].

Not only could such a CADx system potentially improve diagnostic decisions, but also poten-
tially enable access to quality healthcare. This applies particularly to countries where the
healthcare system is not as advanced as developed countries like Germany, the U.K, and the
USA, for example, healthcare systems in resource-limited countries in Asia, Africa, or South
America [56]. With such a CADx system, diagnostic support could be accessible to healthcare
providers, who lack the time and resources to diagnose every patient in need of healthcare.

In particular, in areas where there is limited to no access to healthcare providers such as in
developing countries or remote areas where one cannot easily find a clinical expert, CADx could
enable doctors to benefit from diagnostic knowledge of the medical community. Knowledge
from clinical experts could be accessible through CADx even for rare diseases, especially if
there are already existing signs and symptoms of a particular disease [68, 85]. With such
a CADx system, access to quality healthcare for everyone could be possible especially for
resource-limited areas.

1.2.3 Holistic decision support based on multimodal clinical
data

Lastly, with the increasing amount of data being collected and stored, it is important that
holistic decision-making is still achieved. A recent estimate suggests that there were 40,000
exabytes of digital data in 2020 [18] and this amount continuously grow. In healthcare alone,
every interaction of a patient to the healthcare providers their data are stored in one way
or the other resulting to enormous and complex patient information.Estimates by the World
Economic Forum for example indicate that 50 petabytes of data per year are produced by
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hospitals alone. With this wealth of information there could be data overload [18], which
could lead to cognitive overload and affect the diagnostic decision [75]. On the other hand,
this wealth of information has a big potential to improve clinical decision support if utilized
with advance methods in ML/DL [95].

In the clinic, this wealth of information is usually represented in a multimodal manner
containing imaging, non-imaging, and sequential-type information [94]. This multimodal
clinical data could be used to build ML-based CADx models. Such an approach could augment
the knowledge of clinical experts and pave the way for holistic decision support.

1.3 Main Objectives

To truly have an automated diagnostic decision support system, we would require an end-to-
end solution from the backend system up to the frontend interface of the end-user. For this
thesis, we mainly focus on the backend, i.e. on key challenges relevant to building the "brain"
of the system, which is the machine learning model, rather than focusing on matters of user
interface (UI) or user experience (UX) with the backend algorithms.

Specifically, we focused on three important challenges related to automated machine learning-
based CADx. First, an important challenge is how to handle incomplete data in CADx using
modern deep learning methods [20]. Second, we address how to provide diagnostic decision
support to the clinician during the diagnostic process including the acquisition phase in an
efficient manner. Finally, we looked at translation of CADx into the clinical research setting
using shallow and deep learning models in order to get the feedback from the clinical experts
whether the CADx system outputs made sense from a clinical point-of-view.

1.3.1 Addressing data missingness during model training and
testing in Diagnostic Decision Support Systems.

One challenge when dealing with healthcare data is data missingness [94]. A lot of publicly
available datasets, such as those implemented in common DL frameworks [1, 59], are often
curated such that data scientists have all available features for every patient instance. However,
in the medical domain, this is not always realistic. Often, real-world clinical datasets are
incomplete, since some information for a particular instance is not available. During model
training and testing we can not directly process instances with empty entries as input to the
model. This scenario adds complexity to the problem and makes the data analysis more
challenging.

Recent ML-based CADx methods often do not focus on this challenge of incomplete data [94].
Often, the focus of these approaches is on improving the disease classification performance
with the assumption that the input data is complete or has been fully observed. The most
common approach to handle missingness in data is via a pre-processing step that imputes
missing values [20]. Such an approach requires the ML practitioner to select the appropriate
imputation method. Once the missing values are numerically represent, this data can then be
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used for succeeding ML analysis steps. This approach involves a two-step process of imputation
and then ML model fitting. Such an approach could be time consuming as one has to try
different imputation methods that fit the classification task.

Further, in terms of classification methods for CADx, recent methods utilizing Graph Neural
Networks (GNN) have been shown to outperform standard ML models. Here, the focus is on
the classification task and again, the assumption is that the input data is feature-complete. To
this end, the first objective is to address data missingness in ML-based CADx.

1.3.2 Transitioning from CADx to Computer-aided
Peri-diagnosis

In the context of CADx, we use the prefix “peri-” to indicate the analogy to the term “peri-
operative” in Surgical Data Science [44], which takes into account all phases of the operative
process. In this context, peri-diagnosis refers to the overall workflow of the diagnostic process.
In this work, the focus is on providing diagnostic decision support to the clinician even during
the acquisition phase. Current methods in CADx are more tailored towards providing decision
support at the end of the diagnostic workflow. However, it is also possible that clinicians would
also need diagnostic support during the diagnostic workflow. Most recent CADx methods do
not focus on the timing of the decision support.

In this work, we address this challenge in CADx, i.e. to provide decision support to the
clinician during the diagnostic process. At this point we have to differentiate, what we mean
when using the terms “during” and “at the end” in the diagnostic workflow. We use the phrase
“during the diagnostic workflow” when providing support with decisions which data to acquire
next. While the phrase “at the end of the diagnostic workflow” is used when we refer to the
setting where observations have been done and all patient data is available.

Furthermore, the focus of recent works is non-cost aware CADx approaches. Here the
assumption is that patient examinations/observations are available for free or "cost-free". In
this context, the cost could mean money or anything valuable that needs to be optimized
such as time, hospital resources, or patient comfort. One drawback of such an assumption is
that it could make the method less effective in real-world applications. Therefore, the second
objective is to address peri-diagnostic decision support in a cost-aware and efficient manner.

1.3.3 Translating Computer-aided Diagnosis (CADx) into
clinical research settings using benchmarks of shallow
and deep learning models.

Another aspect that is also important in the domain of CADx is translational research into
the clinic. We want to ensure that the CADx system we are building is accurate and usable
in a real-world clinical setting. In particular, the CADx system we are building should be
applicable to real-world clinical datasets. Therefore, as part of the efforts of this thesis, we
strove to perform translational research into the clinic. To this end, we applied various ML
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and DL algorithms, both established ones and new ones proposed in this thesis. In particular,
we compared ML and DL models to datasets from our clinical partner institute, the German
Center for Vertigo and Balance Disorders (DSGZ) in Munich.

1.4 Outline of the thesis

The following thesis is organized into three parts.

In Part I, we provide background information as well as fundamental methodology relevant
to understanding recent machine learning-based CADx approaches.

Chapter 1 is this chapter, where we elaborated on key background information about CADx.
We discussed in this chapter the following: the definition of CADx in the context of this thesis,
specifically the scope of CADx which we consider, the necessity or motivation for automated
ML/DL methods in CADx, and the main objectives which we plan to address in this work.

In Chapter 2, we discuss key background information needed to provide additional context.
The following topics are discussed in this chapter: data representation in clinical settings,
machine learning models particularly Neural Network-based, training of Machine Learning
models, feature attribution methods, and the topic of Geometric Matrix Completion.

In Part II, we present and elaborate on our contributions. Six articles are presented in
this thesis: four journal articles, one conference article, and one award-winning workshop
article.

In Chapter 3, we elaborate on the topic of data missingness and present our contributions in
addressing data missingness during model training and testing in Diagnostic Decision Support
Systems.

We discuss in Chapter 4 peri-diagnostic decision support using Deep Learning. In this chapter,
we also present our contribution for peri-diagnostic decision support.

In Chapter 5, we elaborate on our key contribution towards translational research in clinical
settings focusing on applications related to Vertigo and Balance disorders.

Finally in the last part, Part III, we summarize our findings and provide future research
directions.

This last part contains Chapter 6 where we discuss key findings and provide a future outlook
regarding the three focus areas addressed in this thesis.
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In this chapter, we lay the theoretical foundations for understanding the following chapters in
this dissertation. Throughout, we will clarify the notations used in this dissertation to avoid
ambiguity. First, we cover how data is typically represented in the context of CADx. Next, we
discuss the notion of models wherein we cover key information about Deep Neural Networks
(DNN) and then discuss Graph Neural Network (GNN), which are networks that are suited
to process input data with an associated graph-information. We briefly cover how we learn
the parameters of these models. Then we explore Gradient-based feature attribution methods
which are mainly used to give explanations how a model does its prediction. Finally, we cover
geometric matrix completion. We expound these topics from a high-level to the point where it
would be sufficient to understand most recent Deep Learning-based CADx methods.

2.1 Data Representations

Clinical data can come in various forms, depending on the modality. In the context of CADx,
the most basic and common form is a collection of key characteristics which are considered as
random variables. These are often expressed in form of binary, ordinal or numeric variables.
For a single patient, this can be summarized as a vector. For multiple patients, the observations
can be summarized in form of a table or matrix. As shown in Figure 2.1, observations from a
single patient represented as a single row vector in this table can have different observations.
These observations are commonly also referred to as features.

For the purpose of this thesis, we will be considering three categories of features: imaging,
non-imaging, and meta-features. First, imaging features are typically values derived from an
imaging modality describing the morphological properties or first-order statistics of an anatomy
of interest. Second, non-imaging features can be observations or summary of observations
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Fig. 2.1 Illustration of tabular data from clinical observations containing a complete set of imaging, non-imaging,
and meta-features where each row denote patient information.

describing a patient not derived from imaging, for example clinical scores. Third, any feature
that does not fall within the first two categories will be referred to as meta-features, for
example, demographic information. We intend to use this separation in order to simplify the
explanation on the graph construction section at the latter part of this chapter.

More concretely, given N instances or patients with D features or attributes, we have a table
which can be represented as a matrix or two-dimensional tensor X œ RN◊D. Here, when
referring to a single instance it can be represented as a D-dimensional vector x œ RD. When
we have image inputs in 2D or 3D these are represented as three or four-dimensional tensors
in the system, respectively, wherein the additional dimension is for the channel intensities. We
can also have sequential data. For example, given N instances of a D-dimensional sequence
with length T time steps this is often represented as a tensor X œ RN◊D◊T . Numerically,
in computer languages and in memory, these are typically represented as 32-bit or 64-bit
floating-point format. Note that we denote an input feature representation as a matrix or
tensor X for brevity. We will keep using this notation as much as possible to avoid any
ambiguity.

In addition, before these data representations are used as input to the model, it is often
common to standardize the input representations. This is often referred to as normalization
as well. We will cover what we mean by the model in 2.2, but for now, this can be considered
as a function or a “black-box” that takes in these data representations as input. To standardize
these data representations, the most common approach for feature vector or sequential input
is to center each scalar random variable in the data to have a zero-mean and unit-variance
scaling. For image input, there are numerous ways to normalize the data, which often is
dependent on the imaging modality [70]. A generic and very simple way for normalization is
to scale the pixel intensities to a fixed range, e.g. [0, 1].

There is also a notion of shallow features and deep features. In the context of CADx, shallow
features are those features that are “hand-crafted” or clinically derived. These “hand-crafted”
features are very important as these often represent domain expertise, which is derived from
evidence-based research regarding a certain disease. On the other hand, are deep features,
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these are feature representations taken from a layer of a pre-trained deep neural network.
One common example is when taking the output feature vectors at the middle-most layer in
an Autoencoder architecture. Here, the feature vector is a compressed representation of the
raw input data.

2.1.1 Incomplete data in CADx

We also have to mention that the illustration in Figure 2.1 often does not depict real-world
medical datasets as such data missingness contributes to the main challenges in CADx research
[95]. Real-world datasets in the medical domain often contain incomplete observations
resulting in incomplete data representations during analysis. For this thesis, we will refer to
two forms of data missingness: (1) block-level missingness and (2) feature-level missingness.

We illustrate in Figure 2.2 how a real-world clinical dataset could look like when a “block” or
set of features are missing. This is what we will refer to as block-level missingness or blockwise
missingness. Such a setting could happen when there are no available imaging observations
from a patient or when clinical scores are not available.

Non-imaging features Meta-featuresImaging features

Fig. 2.2 Illustration of block-level missingness in clinical datasets containing incomplete set of imaging, non-
imaging, and meta-features.

Another scenario is when there are certain elements from the set of observations are missing.
Such a setting is what we will refer to as feature-level missingness as shown in Figure 2.3. Such
a setting in CADx could happen when certain observations from a questionnaire for example
is missing or when certain clinical observations are missing. Lastly, one could also encounter
a mixture of both forms of data missingness in certain datasets in the medical domain or in
CADx research specifically. There are certain simple strategies on how to address these forms
of data missingness and we will tackle this in more detail when we present our work in 3.
Now, we have a notion of how data is represented including the notion shallow/deep features
and block-level/feature-level data missingness. We consider next the notion of what a model
is.

2.1 Data Representations 13
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Fig. 2.3 Illustration of feature-level missingness in clinical datasets containing an incomplete set of imaging,
non-imaging, and meta-features.

2.2 Machine Learning Models

From Perceptrons [64] to Graph Convolutions [10], the ML field has seen its ups and downs,
including periods where artificial neural networks were left nearly unexplored in favour of
other ML models, a period that is often referred to as “winter seasons” [52]. Currently, Deep
Neural Networks (DNNs) [67] have mainly been the widely-used models in ML. Although
there have been a lot of other models which were proposed in between Perceptrons and
Graph Convolutions such as Tree-based models [8] and Support-Vector Machines [17], for the
purposes of this thesis we will only cover recent models related to DNN. In the next section,
we will elaborate on these DNN and also cover models which can process unstructured data
called Graph Neural Network (GNN) [93].

2.2.1 Deep Neural Networks

The first type of models we will cover are Deep Neural Networks (DNNs). In its simplest case,
we can view a DNN as a composition of functions that contains a linear function followed
by a non-linear function [26]. We can compose multiple different functions which we would
then call the neural network model architecture. For example, given L number of functions fi

containing both the linear and non-linear function we can have a composition of functions:

f := fL ¶ fL≠1 ¶ · · · ¶ f1 (2.1)

where fL is the last layer (output layer) and f1 is the first layer (input layer).

Another way to describe a DNN is by grouping this composition of functions into three layers
as depicted in Figure 2.4, i.e. input, hidden or intermediate, and output layers. The input
layer is the initial layer which will process the input data representations and will then pass
that information to the succeeding layers. The intermediate layers take the representations
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from the input layer and process them further. We can stack multiple hidden representations
together into layers of more than two or three NNs. Finally, the output layer typically is
the layer that outputs the prediction of the model, which then gets fed-forward into the
loss function. A gradient descent optimization algorithm is then used to find the optimal
parameters for the model that will minimize this loss function.

Input data Pre-processing Loss function

Optimizer

Model
Input layer Intermediate layers Output layer

Predictions

Ground truth

Update model
parameters

Fig. 2.4 Illustration of deep learning workflow from input data to loss function calculation including model
parameter updates using an optimizer(gradient descent optimization algorithm).

For our purposes, when we say DNN we are referring to the following models: fully-connected
feed-forward neural networks or Multi-layer Perceptrons (MLP) [26], Convolutional Neural
Networks (CNN) [42], Recurrent Neural Networks (RNN) [30], and Transformers (TN) [84].
Depending on the input feature being processed and how you would model your problem, one
is better suited over the other. A common way to match problems with model architectures is
to use MLPs for vector-valued inputs, CNNs for images, and RNNs/TN for sequential.

Driven by the advancement in computational power and availability of large labelled datasets
[52], DNNs have shown to be widely used models to model most learning-based problems.
One aspect of their wide use is their ability to learn good representations automatically in an
end-to-end manner while optimizing an objective function that satisfies a downstream task.
At its core, DNNs are composed of multiple artificial neurons which pass on information from
one neuron to the other neurons [26]. This is inspired by biological neural networks wherein
neurons activate or send information to other neurons [52]. In non-linear DNNs, artificial
neurons get “activated” using an activation function which determines how much information
should be passed on to the next artificial neuron. When multiple of these artificial neurons
are composed together they form an Artificial Neural Network (ANN). Multiple composition
of these ANN results to “deep” architecture resulting to DNN. For more in-depth discussion on
the different components of DNN we refer the reader the Deep Learning book by Goodfellow
et al. [26].

2.2.2 Graph Neural Networks

The next type of models which we will cover are Graph Neural Networks (GNN) [93]. These
are NN models which are suited to process graph-structured input. We first introduce some
background information about graph theory before we elaborate further on GNN.

A graph is represented as G = (V, E , A) consisting of three entities, a set of nodes/vertices
V, a set of edges Ë, and an adjacency matrix A. The set of vertices or nodes are numbered
from 1 to n (V = {1, ..., n} ). The set E contains edges e = (i, j), which specify whether there
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is a link between the i-th and j-th node. The entry Ai,j denotes the weight wi,j of the edge
between the two nodes. In this thesis, we only consider scalar-valued edge features but note
that vector-valued edge features are completely possible [7]. When the edges are undirected
(cf. Fig. 2.5), we have a symmetric graph adjacency matrix as illustrated in Fig. 2.6. The sum
of the rows of the adjacency matrix can be represented in a diagonal matrix to denote the
degree matrix D. Additionally, a node within a graph may have attributes represented as a
vector xi. In matrix form, all node features can be denoted as a feature matrix X. We also
have the notion of graph Laplacian matrix L which is defined as L = D ≠ A [10]. An example
graph is shown in 2.5, including its adjacency matrix, degree matrix, and graph Laplacian
matrix in 2.6 to illistrated these concepts.

Fig. 2.5 Example undirected graph with seven nodes.

S
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0 0 1 0 0 0 0
1 1 0 1 0 0 0
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Adjacency Matrix (A) Degree Matrix (D) Graph Laplacian Matrix (L)

Fig. 2.6 Corresponding Adjacency matrix (left), Degree matrix (middle), and Graph Laplacian matrix (right) of
an example seven-node graph shown in 2.5.

For our purposes, we categorize recent approaches into spectral-based and spatial-based
approaches. Under spectral-based approaches, Bruna et al. [11] defined the convolutional
operation in the Fourier domain using spectral graph theory by taking the eigen-decomposition
of the graph Laplacian. There were two issues with this approach. First, the learned filters
are not localized. Second, when dealing with large matrices, it becomes computationally
expensive to compute the eigen-decomposition. Subsequent works proposed solutions to these
issues. One such work by Defferrard et al. [19] proposed to use Chebyshev Polynomials to
approximate the Graph Laplacian. Such approximation allowed the filters to be more localized
and reduced the computational requirement. Further works [41, 92] proposed other improved
solutions to address these issues and other approximations. Kipf and Welling [41] propose an
efficient layer-wise propagation rule that is based on a first-order approximation of spectral
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convolutions on graphs. Wu et al. [92] propose to successively remove nonlinearities and
collapsing weight matrices between consecutive layers that is faster and more scaleable to
larger datasets when compared with previous GCN formulations. As described in [9], the
hidden representation under this category can be calculated as,

h̨v = „

A
x̨v,

n

uœN v

cvuÂ (x̨u)
B

(2.2)

where h̨v denotes node v’s hidden representation, „ a non-linear function, node v’s current
feature representation denoted as x̨v, aggregation operator

m
such as summation, u œ N v

denotes node v’s neighbours or nodes with connection to it, cvu denotes constant weighting
factor derived from the adjacency matrix specifying the contribution of node u to node v, and
a local transformation function Â.

When convolutions are applied directly on the graph such as in [28, 49, 86], we call these
approaches spatial-based. One of the key ideas is to define an operator which works with
arbitrarily sized neighborhoods and in a permutation-invariant manner, and at the same time
has the weight sharing property of CNNs [86]. One such approach is GraphSAGE by Hamilton
et al. [28] which samples a local neighbourhood and aggregates its neighborhoods information.
This mainly operates on a fixed-size neighborhood of a node and learns to aggregate node
information using different aggregation functions. Another approach proposed by Veličković
et al. [86] is Graph Attention Networks (GAT). In GAT, all neighbors of a center node are
taken into account by learning an attention mechanism. This also works on arbitrary sized
neighborhoods, but learns self-attention scores on the full one-hop neighborhood. Unlike
GraphSAGE, all the neighbors of the node in GAT are allowed to contribute to the target node.
Their contributions are weighted via a single-layer feed forward neural network. As described
by Bronstein et al. [9], the hidden representation under this category can be calculated as,

h̨v = „

A
x̨v,

n

uœN v

–(x̨v, x̨u)Â (x̨u)
B

(2.3)

where h̨v denotes the hidden representation of node v, „ a non-linear function, x̨v current
feature representation of node v,

m
aggregation operator such as summation, –(x̨v, x̨u)

computes the coefficient for the contribution of node u to node v, and a local transformation
function Â. Here, the difference with the previous spectral-based approach is that the
weighting factor for the contribution of the neighbouring node is a learnable parameter.

For completeness, GNNs have also recently been categorized into three categories: (1)
Convolutional, (2) Attentional, and (3) Message-Passing GNN [9]. First, Convolutional GNNs
aggregate neighbouring features of a target node using a fixed weight that is directly dependent
on the adjacency matrix. Such examples under this category include ChebNet [19], GCN [41],
and Simple Graph Convolution (SGC) [92]. Second, when the aggregation of neighboring
features for a target node are implicit weights such as an attention-like mechanism these can be
categorized as Attentional GNNs [9]. Recent works such as Mixture Model Networks (MoNet)
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[49] and GAT [86] fall under this category. The third category are the Message-Passing GNNs
which are the most generic [9]. Here, instead of just aggregating the neighboring features of
a target node, arbitrary feature vectors (“messages”) are computed based on the sending and
receiving nodes’ feature vectors which are then sent across edges [9]. Such examples under
this category include Interaction Networks [6], Message-Passing Neural Networks (MPNN)
[24], and GraphNets [7]. Under the message-passing category, as described in [9], the hidden
representation can be calculated as,

h̨v = „

A
x̨v,

n

uœN v

Â (x̨u, x̨v)
B

(2.4)

where h̨v is the hidden representation of node v, non-linear function „, current feature
representation of node v denoted as x̨v, learnable message function Â (x̨u, x̨v), and aggregation
operator

m
as a form of message passing on the graph. We illustrate this message passing

concept visually in Figure 2.7 where corresponding “messages” (depicted in colour for brevity)
as shown on the left panel of this figure. In the same figure in 2.7 (right), messages from the
adjacent nodes are passed on.

Message
Passing

Fig. 2.7 Simplified illustration of message passing concept wherein at first step each node contains a feature
vector that represents the “message” it wants to send to all its neighbours (left panel). In the next step
(right panel), the messages are passed on to their neighbours.

Graph Construction for Population Modelling

The other important element in GNN-based CADx is the graph structure itself. In CADx, one
way to model a disease classification problem is via node classification. Here, the nodes in the
graph represent patients and the edge connections capture some form of similarity between
pairs of patients [58]. In addition, by creating a graph we can capture additional inductive
biases that represent certain medical knowledge about the task at hand. For example, we
create a population graph that captures the connectivity of patients in relation to their risk
of developing a certain disease based on clinical risk factors that are clinically known to
play a role in developing such a disease. Such factors could be the age of the patient, the
gender, general health markers like body-mass-index, bloodwork parameters, or the presence
of genetic markers that indicate predispositions for a disease. In such construction, we can
have a sparse graph which captures this higher level information regarding the disease.

An example graph is shown in Figure 2.8 to illustrate this idea. Every node in the graph
represents a patient with their corresponding feature vector. The binary edge weight can be
constructed using the meta-features using:
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Fig. 2.8 Population graph modelling of a tabular dataset in CADx where every row in the table (top) are patients
with corresponding imaging-, non-imaging-, and meta-features. Every patient is modelled as a node in
the graph (bottom) with their corresponding feature vector representations (row vectors).

Ai,j =

Y
]

[
1, if |dist(i, j)| Æ d

0, otherwise
(2.5)

wherein we link two nodes if the distance dist(i, j) between two nodes are below or equal a
given threshold d [58]. We can calculate the distance using the elements of the meta-features
to compare similarities between two patients. Alternatively, one could also use all the features
and link patients with their K number of neighbours in the feature space. Instead of using
KNN, one can also calculate a thresholded Gaussian kernel [73] using the feature matrix to
obtain non-binary weights.

Ai,j =

Y
]

[
exp(≠ |dist(i,j)|2

2◊2 ), if dist(i, j) Æ d

0, otherwise
(2.6)
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Finally, for completeness, there are more recent methods wherein we can instead learn this
graph in an end-to-end manner as part of the training process, as proposed in [16]. Instead of
calculating the graph in the feature space, they propose to learn latent embedding features
along with a differentiable soft-kNN layer which is used to link patients and derive the graph
structure.

Modelling problem in GNN
Given the feature matrix and graph structure, the next question is how to model the problem.
There are three common tasks related to GNNs [93]. The first one is node-level tasks. This
could either be a node-level classification or regression depending on the target variable. Most
GNN-based CADx methods so far have focused on node-level classification. The goal in a
node-level classification task is to predict the class labels of every node in the graph. In our
previous example in 2.8, we want to assign class labels ŷ to every node as shown in 2.9.

Fig. 2.9 Node-level classification task assigning class label ŷ to every node. Given a graph and node’s feature
representations (left) the goal is to assign class label ŷ to every node in the graph (right).

The other two tasks related to GNN are edge-level task and graph-level task [93]. For our
purposes, we will not go into much more detail about these two tasks as we will not be
talking about such tasks in this thesis. For a brief overview, edge-level tasks are related
to link prediction. Here, the task is to decide where there is a link between two nodes.
Typical applications include recommender systems in e-commerce, or friend suggestion in
social networks [93]. For graph-level tasks, every input sample is a graph itself as shown in
Figure 2.10 and the goal is to either perform graph-level classification or regression. A typical
application domain is molecular property prediction [72] or drug discovery [51]

2.3 Model Training

2.3.1 Supervised Learning

When there is a target label yi œ R associated with every input instance xi, we can train a
model in a supervised manner. The goal is to learn parameters using data that can generalize to
unseen samples [26]. This is typically done by partitioning your data into training, validation,
and test sets. We use the training set to estimate the parameters of a model and select optimal
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Fig. 2.10 Graph-level classification task assigning class label ŷ (illustrated based on the colour of the bounding
box) to every graph given their corresponding adjacency matrices Ai and feature matrices Xi.

hyper-parameters using the validation set. Then we evaluate the model’s generalization
performance on the test set [26].

In the context of CADx, this implies how to pick the model which can produce good results
given input from the left figure in 2.9 to the right figure in 2.9. To this end, we can follow the
same training workflow as in regular deep learning. Given an independent and identically
distributed dataset {(xi, yi), ..., (xn, yn)} we want to pick the parameters �ú of the model that
minimizes a given loss function as shown in Equation 2.7 and Equation 2.8 respectively.

�ú = arg min
�

L(�) (2.7)

L(�) = 1
N

ÿ

i

¸(f�(xi), yi) (2.8)

Both the DNN and GNN use the same training workflow. The parameters of the DNN or GNN
can be updated using stochastic gradient descent algorithms [66] or its variant such as Adam
optimizer [40]. We update the parameters of the model by following the gradient in the
opposite direction as in Equation 2.9. For simplicity, we denote all learnable parameters of a
model with �.

� = � ≠ ”(Ò�L(�)) (2.9)
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For completeness, when there are no associated target labels (or supervised ground truth
labels) and no rewards from the environment given for learning this is known as Unsupervised
learning [23], which will not be covered in this dissertation. Another category of learning
is self-supervised learning wherein an auxiliary task is performed using the training data as
a supervised information to initialize the weights of the model [32]. Another category of
learning which will not be discussed in this dissertation is Reinforcement Learning wherein
the goal it to have an agent that is able to maximize its rewards when placed in an unknown
environment [79].

2.3.2 Transductive and Inductive Learning

In the context of GNN-based CADx, one would also come across the notion of Transductive
Learning and Inductive Learning. In Transductive Learning, the setting typically involves
training the model by including the features and labels of the training set as well as the
features of the test set. In contrast, Inductive Learning only uses the features and labels of the
training set. The test dataset is held out fully and are not used to learn the parameters of the
model. In this regard, Transductive learning requires that the number of samples/instances
are known a priori including the test set. Such setting often can be observed in spectral-based
GNNs approaches.

2.4 Feature Attribution Methods

Deep learning models such as DNNs and GNNs have been successfully applied to different
machine learning problems. However, often such models are considered “black boxes” since it
is often not known what these models are doing to form the decision that an instance is labelled
as healthy and the other as having a disease. In the medical domain, understanding how a
network arrives at a particular prediction or decision is of great importance [3]. Healthcare
providers would like to know why a patient was predicted to have a disease.

To “understand” what the model is doing, we can provide model explanations in the form
of feature attributions. Feature attributions indicate how much a feature contributed to the
model for a given instance [45]. Although there has been a lot of criticism regarding the
“black-box” nature of neural network models, a growing body of knowledge has started to
tackle this issue. This new research field of “AI interpretability”, or “Explainable AI (XAI)” is
summarized by Molnar [48] in a comprehensive overview of this field. For our purposes, we
will mainly focus on a few selected gradient-based feature attribution methods.

One such approach is Saliency [74] which calculates the feature attribution by using the
gradient of the output with respect to the input. An extension of this called Gradient * Input
[71] which calculates feature attributions by taking the (signed) partial derivatives of the
output with respect to the input and multiplying them with the input feature values. Both
approaches has one drawback, that is it violates the sensitivity axiom for feature attribution.
This could result to having inaccurate feature attributions. To address this limitations, an
axiomatic feature attribution approach was introduced by Sundararajan et al. [77] called
Integrated Gradients (IG).
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The idea in IG is to integrate all the gradients of the outputs with respect to different
input features along a linear path from a given baseline starting point, up to the actual
input features. A baseline in this context means a neutral input. For example in images, a
baseline input would mean using a constant black image [77]. Compared to other gradient-
based methods for feature attribution, IG is superior as it satisfies axiomatic properties [77].
For instance, two important axioms that attribution methods must satisfy, as identified by
Sundararajan et al. [77] are Sensitivity and Implementation Invariance. Sensitivity axiom
states that non-zero attribution must be given to a feature if that feature changes the output
prediction. Implementation Invariance states that feature attributions should be identical for
two functionally equivalent networks.

Using such an axiomatic feature attribution method could be more sensitive and accurate in
terms of giving attribution to certain input features, based on the predicted class output. In
practice, IG is approximated using:

IGapprox
i,k (x̄i, classk) = (x̄i ≠ xÕ

i) ◊
mÿ

s=1

ˆF (xÕ + s
m ◊ (x̄ ≠ xÕ))
ˆx̄i

◊ 1
m

(2.10)

where x̄ is the input vector and xÕ
i the baseline at the i-th dimension, ˆF (.)

ˆx̄i
is the partial deriva-

tive of the network’s output with respect to input x̄i, and m is the number of approximation
steps of the path integral in IG

2.5 Geometric Matrix Completion

When dealing with clinical data it is common that healthcare experts provide the data in form
of tabular data and is represented numerically as a matrix. Here, every column represents
observations or clinically derived features and every row represents a patient. The ideal setting
is to have a matrix where all entries are filled, i.e. all observations are available, and the
resulting data matrix is complete, as illustrated in the left panel of Fig. Figure 2.8. However,
in practice, this is often not the case [20]. It is more common that not all observations will be
available for every patient resulting in a dataset that is incomplete or a matrix which contain
“holes” visually.

One approach to complete matrices with incomplete information is by matrix completion [15].
In general, the matrix completion problem is not well-posed [50] and one way to deal with
this is to impose certain assumptions. One such assumption is to assume that the matrix is
a low-rank matrix [13]. More formally, given a matrix X œ Rn◊m be an incomplete feature
matrix where a certain proportion of values is missing at random. The goal is to recover the
missing values in this matrix. One solution to this problem is by using rank minimization as
described in [50],

min
X̂œRn◊m

rank(X̂) s. t. x̂i,j = xi,j , ’(i, j) œ �, (2.11)
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where X̂ is the predicted matrix of size n ◊ m with values x̂i,j , � denotes the set of known
entries in matrix X with xi,j values. Here, we try to find a low-rank matrix such that the
values in matrix X̂ are equal to the known values in matrix X.

However, rank minimization is known to be computationally intractable and instead the
solution can be relaxed by solving for the nuclear norm ||X̂||ú [15]. In addition, to make the
model robust to noise, the equality constraint on the entries of the matrix can be replaced
with the squared Frobenius norm ||.||2F [14],

min
X̂œRn◊m

||X̂||ú + “

2 ||� ¶ (X ≠ X̂)||2F , (2.12)

where “ is a hyperparameter controlling the contribution of the second loss term, � is the
masking matrix of known entries in X with values 1 (known) and 0 (missing), and ¶ is the
Hadamard product.

An alternative approximation to the previous solution is to assume that the entries of the
matrix are smooth with respect to some geometric structure such as a graph [36, 50, 61].
Here, a graph structure is built based on the rows or columns of the matrix. Unlike previous
approaches that make use of the graph as a regularization term, the most recent formulation
to this approximation makes use of graph signal processing to complete the matrix, which is
referred as geometric matrix completion. One such approach was published by Monti et al.
[50], who proposed to complete the matrix using geometric matrix completion on graphs,
through a combination of GCN and LSTM networks. Here, the GCNs are used to learn filters
which compute feature representations that are smooth with respect to the graph structure,
while the LSTM is used to model the diffusion process. The problem boils down to minimizing
the loss,

¸(�, ”) = ||X̂�,”||2D,r + ||X̂�,”||2D,c + “

2 ||� ¶ (X̂�,” ≠ X)||2F (2.13)

where � and ” denote parameters of the GCNs and LSTMs, respectively, X̂�,” is the predicted
matrix which is dependent on the parameters of the GCN and LSTM, ||.||2D,r denotes the
Dirichlet norm on the row-graph, ||.||2D,c denotes the Dirichlet norm on the column-graph X is
the known matrix, � is the masking matrix of known entries in X, ||.||2F denotes the squared
Frobenius norm, and “ is a hyperparameter to weight the second term. In equation (2.13),
the first term on the right is defined as tr(X̂T LX̂) which contains a rescaled graph Laplacian
(L œ Rn◊n) term such that its eigenvalues are in the interval [≠1, 1]. The first two terms
keep the prediction smooth with respect to the row and column graph structure, respectively.
Additionally, the last term will keep the imputed values as close as possible to the observed
values.
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3.1 Problem Definition and Motivation

One of the major challenges when handling real-world data in healthcare is that data often con-
tain missing information [87]. This can happen when certain observations from a patient are
not available due to different reasons such as the invasiveness of an observation, compliance
of a patient, resource limitation or random unexpected scenarios. These random occurrences
result to an incomplete dataset. In literature [65], incomplete datasets can be categorized into
three types, based on the mechanism of missingness: (1) missingness completely at random
(MCAR), (2) missingness at random (MAR), and (3) missingness not at random (MNAR).

The first one is MCAR and happens if the probability of missingness is the same for all cases
[83]. This means that the missing data has no relationship to any of the observed features. An
example is a device failure, e.g. a broken ultrasound machine that prohibited the collection of
images and features for one or several patients. This is one form of missingness completely
at random and it has nothing to do with the observed features. Such assumption is often
considered unrealistic for the data [83] which makes the MAR assumption more favourable in
practice. When the mechanism of missingness has some form of relationship to the observed
features then it is considered as MAR [20]. This is often the assumption in practice wherein
the missing feature could be related to the characteristic of a certain group. One example is
when a certain group of individuals are more likely to do this observation than others. When
the mechanism of missingness is neither MCAR nor MAR, it is considered MNAR [20]. This
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implies that the missing data is related to an unobserved variable/feature. Here, the observed
data has no relationship with the missing data. In practice, understanding which mechanism
of missingness could be useful and in practice the MAR assumption is often used.

Beyond these three categorization on the mechanism of missingness, data missingness could
also come in another form based on the type of input. We often have data missingness at a
feature level or at a modality level when dealing with cross-sectional data. Missingness at the
feature level happens when individual features are missing. In contrast, when a block or group
of features from a multi-modal data is missing, this leads to a modality-level missingess. One
example of modality-level missingness in the context of CADx is when we are dealing with a
multi-modal dataset wherein the input features are coming from multiple input sources such
as T1-weighted MRI, T2-weighted MRI, and clinical scores but one full modality observation
is missing. Then we view this as a modality-level missingness. Depending on how we model
the problem, we can also view longitudinal data as modality level missing as there could be
missing modality at certain acquisition time points. As we are not only limited to these two
forms, it could also happen that both forms of missingness are present in the dataset.

There are also other forms of missingness that we will not cover in this thesis. For example,
when given an image but a part of the image is blocked or corrupted, this could also be
considered another form of missingness. When we are given a sequential data such as
measurements from the Intensive Care Unit (ICU) like heart rate, blood pressure, or body
temperature measured at different time points this is again a form of missingness in sequential
data.

In the context of CADx, often the issue with data missingness is not fully given much attention
[94]. The input data is often assumed to be complete. For example, methods developed for
automated disease diagnosis using GNN has shown to be successful. Particularly, GNN-based
models have been shown to outperform linear and non-linear ML models [58]. In their seminal
work, Parisot et al. [58] introduced how to leverage imaging and non-imaging modality for
population based modeling in CADx by using GNN. They succesfully showed that by modelling
a disease classification problem as a node level classification this could outperform previous
AD and ADHD classification approaches. Subsequent works followed to address limitations,
such as [57]. In order to perform analysis, it is common to either exclude the sample or
impute the missing value using the expected value of that variable which is the mean of that
feature using the training set. A more recent approach is to use geometric matrix completion
to address data missing in CADx. In this thesis, we propose such streamlined approach that
instead simultaneously imputes the missing information and performs classification using
geometric matrix completion, which we will elaborate in the next sections.

3.2 Related works

Recent works, dealing with missing information for CADx can be categorized into non-learning-
based and learning-based approaches [20] for this thesis. Those approaches that do not make
use of any learnable parametric function to deal with missing information are under a non-
learning-based approach. Those approaches that make use of the observed data to learn a
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parametric function to estimate the missing entries in the data are under the learning-based
approaches.

We start by looking at non-learning-based approaches. One of the simplest non-learning
based approaches to handle data missingness is to remove all instances that contain missing
information, which is also known as sample or row deletion [20]. This approach is very simple
but one drawback of this approach is that we could end up losing important information
from those deleted samples, or worse, it might even prohibit data analysis. Alternatively,
one could also just include all the features which are complete (i.e. column deletion), but
this might result in a biased analysis. In addition, we could also end up discarding valuable
information from instances which may contain useful information. So instead of removing
the instance, we can instead calculate what is the expected value of that missing information
by taking the mean of that particular feature using the training set. This is one example of
simple imputation approach. The advantage of this is that it is fast and simple, however
the resulting imputation could reduce the variance of the dataset and lead also to a biased
analysis [20]. A disadvantage is also that the mean over the entire dataset weighs all samples
equally, regardless of their distance to the current sample. Instead of taking the mean of
all the samples in the dataset equally, we can take the mean of the K-nearest neighbors in
Euclidean space and use that value to impute the missing information [82]. This requires that
the input are noise-free and that the proximity of instances in the input feature space is useful.
In addition, this approach requires the right balance as to how many neighbors should be
considered in calculating the mean.

Under learning-based methods, we can instead learn a parametric function to estimate the
values of the missing data. Unlike the previous methods which use heuristics, we can instead
impute the missing information using the observed values in the data. One approach that
imputes the missing data using the observed entries in the data is called Multiple Imputation
of Chained Equations (MICE) [12]. MICE works by iteratively building predictive models to
regress the missing values per instance. One drawback of this is that it is computationally time
consuming as every instance will be imputed one at a time. Another approach is Probabilistic
Principal Component Analysis (PPCA) [81], which is a learning based approach that makes
use of the Expectation-Maximization algorithm to estimate values of missing data points.

Another approach is Matrix Completion (MC) [15]. The MC problem is known to be ill-posed
unless certain assumptions about the matrix are imposed. One assumption is that the matrix
is of low-rank. However, rank-minimization turns out to be an NP-hard combinatorial problem
and as a proxy solution is to relax the rank-minimization problem into minimizing the sum of
the singular values of the matrix previously. Another method to relax the solution is to impose
that the solution is smooth with respect to some geometric structure like a graph. Previous
works which incorporate some graph information make use of it to regularize the solution
while others make use of graph signal processing. Motivated by the success of GNNs, we
utilized geometric matrix completion for CADx on datasets which contain missing information.
MGMC learns to simultaneously impute and classify the target class labels. We describe our
contributions on addressing data missingness during model training and testing in CADx in
the next section.
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3.3 Contributions

3.3.1 Addressing missingness in GNN-based CADx using
Geometric Matrix Completion (GRAIL-MICCAI 2018)

Modelling clinical diagnosis as a node-level classification problem using GNN has been
successfully applied [57, 58]. However, these approaches assume that the input data is
complete. To address the issue of missingness for GNN-based CADx we proposed a Geometric
Matrix Completion (GMC) that simultaneously imputes and classifies the target class of every
instance, following the approach from [50]. One difference of our proposed approach to
Monti et al. [50] is that we add a classification label as part of the matrix completion problem.
The inclusion of class labels for simultaneous imputation and classification has already been
explored previously by Goldberg et al. [25], which makes their approach similar to our
proposed GMC method. However, they did not include any graph information in their analysis,
neither did they consider graph signals within the nodes.
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Abstract. In large population-based studies and in clinical routine,
tasks like disease diagnosis and progression prediction are inherently
based on a rich set of multi-modal data, including imaging and other sen-
sor data, clinical scores, phenotypes, labels and demographics. However,
missing features, rater bias and inaccurate measurements are typical ail-
ments of real-life medical datasets. Recently, it has been shown that deep
learning with graph convolution neural networks (GCN) can outperform
traditional machine learning in disease classification, but missing fea-
tures remain an open problem. In this work, we follow up on the idea
of modeling multi-modal disease classification as a matrix completion
problem, with simultaneous classification and non-linear imputation of
features. Compared to methods before, we arrange subjects in a graph-
structure and solve classification through geometric matrix completion,
which simulates a heat di↵usion process that is learned and solved with a
recurrent neural network. We demonstrate the potential of this method
on the ADNI-based TADPOLE dataset and on the task of predicting
the transition from MCI to Alzheimer’s disease. With an AUC of 0.950
and classification accuracy of 87%, our approach outperforms standard
linear and non-linear classifiers, as well as several state-of-the-art results
in related literature, including a recently proposed GCN-based approach.

1 Introduction

In clinical practice and research, the analysis and diagnosis of complex pheno-
types or disorders along with di↵erentiation of their aetiologies rarely relies on
a single clinical score or data modality, but instead requires input from various
modalities and data sources. This is reflected in large datasets from well-known

? Data used in preparation of this article were obtained from the Alzheimers Disease
Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the inves-
tigators within the ADNI contributed to the design and implementation of ADNI
and/or provided data but did not participate in analysis or writing of this report.
A complete listing of ADNI investigators can be found at: http://adni.loni.usc.
edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf



multi-centric population studies like the Alzheimer’s Disease Neuroimaging Ini-
tiative (ADNI) and its derived TADPOLE grand challenge 3. TADPOLE data,
for example, comprises demographics, neuropsychological scores, functional and
morphological features derived from MRI, PET and DTI imaging, genetics, as
well as histochemical analysis of cerebro-spinal fluid. The size and richness of
such datasets makes human interpretation di�cult, but it makes them highly
suited for computer-aided diagnosis (CAD) approaches, which are often based
on machine learning (ML) techniques [10, 11, 16]. Challenging properties for
machine learning include e.g. subjective, inaccurate or noisy measurements or
a high number of features. Linear [11] and non-linear [16] classifiers for CAD
show reasonable success in compensating for such inaccuracies, e.g. when pre-
dicting conversion from mild-cognitive-impairment (MCI) to Alzheimer’s disease
(AD). Recent work has further shown that an arrangement of patients in a graph
structure based on demographic similarity [12] can leverage network e↵ects in
the cohort and increase robustness and accuracy of the classification. This is es-
pecially valid when combined with novel methods from geometric deep learning
[1], in particular spectral graph convolutions [7]. Similar to recent successes of
deep learning methods in medical image analysis [8], deep learning on graphs
shows promise for CAD, by modeling connectivity across subjects or features.

Next to noise, a particular problem of real-life, multi-modal clinical datasets
is missing features, e.g. due to restrictions in examination cost, time or pa-
tient compliance. Most ML algorithms, including the above-mentioned, require
feature-completeness, which is di�cult to address in a principled manner [4].
One interesting alternative to address missing features is to model CAD and
disease classification as a matrix completion problem instead. Matrix comple-
tion was proposed in [5] for simultaneously solving the three tasks of multi-label
learning, transductive learning, and feature imputation. Recently, this concept
was applied for CAD in multi-modal medical datasets for the first time [15], for
prediction of MCI-to-AD conversion on ADNI data. The method introduced a
pre-computed feature weighting term and outperformed linear classifiers on their
dataset, however it did not yet leverage any graph-modeled network e↵ects of the
population as in [12]. To this end, several recent works incorporated a geometric
graph structure into the matrix completion problem [6, 9, 13]. All these methods
were applied on non-medical datasets, e.g. for recommender systems [9]. Hence,
their goal was solely imputation, without classification. Here, we unify previous
ideas in a single stream-lined method that can be trained end-to-end.

Contribution. In this work, we follow up on the idea of modeling multi-
modal CAD as a matrix completion problem [5] with simultaneous imputation
and classification [15]. We leverage cohort network e↵ects by integrating a pop-
ulation graph with a solution based on geometric deep learning and recurrent
neural networks [9]. For the first time, we demonstrate geometric matrix comple-
tion (GMC) and disease classification from multi-modal medical data, towards
MCI-to-AD prediction from TADPOLE features at baseline examination. In
this di�cult task, GMC significantly outperforms regular linear and non-linear

3 http://adni.loni.usc.edu k https://tadpole.grand-challenge.org/



machine learning methods as well as three state-of-the-art results from related
works, including a recent approach based on graph-convolutional neural net-
works.

2 Methods

2.1 Dataset and Preprocessing

As an example application, we utilize the ADNI-based TADPOLE dataset, with
the goal of predicting whether an MCI subject will convert to AD given their
baseline information. We select all unique subjects with baseline measurements
from ADNI1, ADNIGO, and ADNI2 in the TADPOLE dataset which were di-
agnosed as MCI including those diagnosed as EMCI and LMCI. Following [15],
we retrospectively label those subjects whose condition progressed to AD within
48 months as cMCI and those whose condition remained stable as sMCI. The
remaining MCI subjects who progressed to AD after month 48 are excluded
from this study. We use multi-modal features from MRI, PET, DTI, and CSF
at baseline, i.e. excluding longitudinal features. We use all numerical features
from this dataset to stack with the labels and include age and gender to build
the graph, following the intuition and methodology from [12].

2.2 Matrix Completion

We will start by describing the matrix completion problem. Suppose there exists
a matrix Y 2 Rm⇥n where the values in this matrix are not all known. The goal
is to recover the missing values in this matrix. A well-defined description of this
problem is to assume that the matrix is of low rank [2],

min
X2Rm⇥n

rank(X) s. t. xij = yij , 8ij 2 ⌦, (1)

where X is the m ⇥ n matrix with values xij , ⌦ is the set of known entries
in matrix Y with yij values. However, this rank minimization problem (1) is
known to be computationally intractable. So instead of solving for rank(X), we
can replace it with its convex surrogate known as the nuclear norm ||X||⇤ which
is equal to the sum of its singular values [2]. In addition, if the observations in
Y have noise, the equality constraint in equation (1) can be replaced with the
squared Frobenius norm ||.||2F [3],

min
X2Rm⇥n

||X||⇤ +
�

2
||⌦ � (Y �X)||2F , (2)

where ⌦ is the masking matrix of known entries in Y and � is the Hadamard
product. Alternatively, a factorized solution to the representation of the matrix
X was also introduced in [13, 14], as the formulation using the full matrix makes
it hard to scale up to large matrices such as the famous Netflix challenge. Here,
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Fig. 1. Illustration of the overall approach: the matrix Z comprising incomplete fea-
tures and labels is factorized into Z = WH

T . A connectivity graph is defined over
rows W. During optimization, GCNN filters are learned along with RNN parameters
and weight updates for W , towards optimal matrix completion of Z and simultaneous
inference of missing features and labels in the dataset.

the matrix X 2 Rm⇥n is factorized into 2 matrices W and H via SVD, where
W is m⇥ r and H is n⇥ r, with r ⌧ min(m,n). Srebro et al. [14] showed that
the nuclear norm minimization problem can then be rewritten as:

min
W,H

1

2
||W||2F +

1

2
||H||2F +

�

2
||⌦ � (WH

T �Y)||2F (3)

2.3 Matrix Completion on Graphs

The previous matrix completion problem can be extended to graphs [6, 13]. Given
a matrix Y, we can assume that the rows/columns of this matrix are on the
vertices of the graph [6]. This additional information can then be included into
the matrix completion formulation in equation (2) as a regularization term [6].
To construct the graph, we can use meta-information out of these rows/columns
or use the row/column vectors of this matrix to calculate a similarity metric
between pairs of vertices. Given that every row in the matrix has this meta-
information, Kalofolias et al. [6] showed that we can build an undirected weighted
row graph Gr = (Vr, Er, Ar), with vertices Vr = {1, ...,m}. Edges Er ✓ Vr ⇥ Vr

are weighted with non-negative weights represented by an adjacency matrix Ar 2
Rm⇥m. The column graph Gc = (Vc, Ec, Ac) is built the same way as the row
graph, where the columns are now the vertices in Gc. Kalofolias et al. [6] showed
that the solution to this problem is equivalent to adding the Dirichlet norms,
||X||2

D,r
= tr(XTLrX) and ||X||2

D,c
= tr(XLcXT ), where Lr and Lc are the

unnormalized row and column graph Laplacian, to equation (2),

min
X2Rm⇥n

||X||⇤ +
�

2
||⌦ � (Y �X)||2F +

↵r

2
||X||2

D,r
+

↵c

2
||X||2

D,c
(4)

The factorized formulation [9, 13] of equation (4) is

min
W,H

1

2
||W||2D,r +

1

2
||H||2D,c +

�

2
||⌦ � (Y �WH

T )||2F (5)



2.4 Geometric Matrix Completion with Separable Recurrent Graph

Neural Networks

In [9], Monti et al. propose to solve the matrix completion problem as a learnable
di↵usion process using Graph Convolutional Neural Networks (GCNN) and Re-
current Neural Networks (RNN). The main idea here is to use GCNN to extract
features from the matrix and then use LSTMs to learn the di↵usion process.
They argue that combining these two methods allows the network to predict ac-
curate small changes dX (or dW, dH of the matrices W, H) to the matrix X.
Further details regarding the main ideas in geometric deep learning have been
summarized in a review paper [1], where they elaborate how to extend convo-
lutional neural networks to graphs. Following [9], we use Chebyshev polynomial
basis on the factorized form of the matrix X = WH

T to represent the filters
on the respective graph to each matrix W and H. In this work, we only apply
GCNN to the matrix W as we only have a row graph and leave the matrix H

as a changeable variable. Figure 1 illustrates the overall approach.

2.5 Geometric Matrix Completion for Heterogeneous Matrix

Entries

In this work, we propose to solve multi-modal disease classification as a geometric
matrix completion problem. We use a Separable Recurrent GCNN (sRGCNN) [9]
to simultaneously predict the disease and impute missing features on a dataset
which has partially observed features and labels. Following Goldberg et al. [5],
we stack a feature matrix Y 2 Rm⇥n and a label matrix T 2 Rm⇥c as a matrix
Z 2 Rm⇥n+c, where m is the number of subjects, n is the dimension of the
feature matrix, and c is the dimension of the target values. In the TADPOLE
dataset, we stack the m⇥n feature matrix to the m⇥ 1 label matrix, where the
feature matrix contains all the numerical features and the label matrix contains
the encoded binary class labels for cMCI and sMCI. We build the graph by
using meta-information from the patients such as their age and gender, similar
to [12], as these information are known to be risk factors for AD. We compare
two row graph construction approaches, first from age and gender information
using a similarity metric [12] and second from age information only, using Eu-
clidian distance-based k-nearest neighbors. Every node in a graph corresponds
to a row in the matrix W, and the row values to its associated feature vector.
Since we only have a row graph, we leave the matrix H to be updated during
backpropagation. To run the geometric matrix completion method we use the
loss:

`(⇥) =
�a
2
||W||2D,r+

�b
2
||W||2F+

�c
2
||H||2F+

�d
2
||⌦a�(Z�WH

T )||2F+�e(`⌦b(Z,X)),

(6)
where ⇥ are the learnable parameters, where Z denotes the target matrix, X

is the approximated matrix, ||.||2
D,r

denotes the Dirichlet norm on a normalized
row graph Laplacian, ⌦a denotes the masking on numerical features, ⌦b is the
masking on the classification labels, and ` is the binary cross-entropy.



3 Results

We evaluate our approach on multi-modal TADPOLE data (MRI, PET, CSF,
DTI) to predict MCI-to-AD conversion and compare it to several other multi-
modal methods as baseline. We use a stratified 10-fold cross-validation strategy
for all methods. Hyperparameters were optimized using Hyperopt 4, through
nested cross-validation, targeting classification loss (binary cross-entropy) on a
hold-out validation set (10% in each fold of training data). Following [9], we use
the same sRGCNN architecture with parameters: rank=156, chebyshev polyno-
mial order=18, learning rate=0.00089, hidden-units=36, �a=563.39, �b=248.91,
�c=688.85, �d=97.63, and �e=890.14.

It is noteworthy that at baseline, the data matrix Y with above-mentioned
features is already feature-incomplete, i.e. only 53% filled. We additionally reduce
the amount of available data randomly to 40%, 30% etc. to 5%. Figure 2 shows
a comprehensive summary of our classification results in terms of area-under-
the-curve (AUC). Methods we compare include mean imputation with random
forest (RF), linear SVM (SVC) and multi-layer-perceptron (MLP), as well as
three reference methods from literature [10, 12, 15], which operated on slightly
di↵erent selections of ADNI subjects and on all available multi-modal features.
While implementations of [10, 15] are not publicly available, we tried to re-
evaluate the method [12] using their published code. Unfortunately, despite our
best e↵orts and hyperparameter optimization on our selection of TADPOLE
data, we were not able to reproduce any AUC value close to their published
value. To avoid any mistake on our side, we provide the reported AUC results
rather than the worse results from our own experiments.

4 http://hyperopt.github.io/hyperopt/

Fig. 2. Classification results: Area under the curve (AUC) of our method, for di↵er-
ent amounts of feature-completeness and in comparison to linear/non-linear standard
methods, and three state-of-the-art results in literature (Parisot et al. [12], Thung et al.
[15], Moradi et al. [10]).



At baseline, our best-performing method with a graph setup based on age and
gender (”GMC age-gender”) [12] achieves classification with an AUC value of
0.950, compared to 0.902 [10], ⇠ 0.87 [12] and 0.851 [15]. In terms of classification
accuracy, we achieved a value of 87%, compared to 82% [10] and 77% [12] (ac-
curacy not reported in [15]). Furthermore, our method significantly outperforms
standard classifiers RF, MLP and SVC at all levels of matrix completeness. The
second graph configuration for our method (”GMC age” only) performs signifi-
cantly worse and less stable than (”GMC age-gender”), confirming the usefulness
of the row graph construction based on the subject-to-subject similarity measure
proposed in [12]. Due to lower complexity of the GMC approach [9], training a
single fold on recent hardware (Tensorflow on Nvidia GTX 1080 Ti) is on average
2x faster (11.8s) than GCN (25.9s) [12].

4 Discussion and Conclusion

In this paper, we proposed to view disease classification in multi-modal but
incomplete clinical datasets as a geometric matrix completion problem. As an
exemplary dataset and classification problem, we chose MCI-to-AD prediction.
Our initial results using this method show that GMC outperforms three compet-
itive results from recent literature in terms of AUC and accuracy. At all levels
of additional random dropout of features, GMC also outperforms standard im-
putation and classifiers (linear and non-linear). There are several limitations
which are worthy to be addressed. Results in Figure 2 demonstrate that GMC
is still sensitive to increasing amounts of feature incompleteness, in particular
at feature presence below 15%. This may be due to our primary objective of
disease classification during hyper-parameter optimization. For the same rea-
son, we did not evaluate the actual imputation performed by GMC. However,
an evaluation in terms of RMSE and a comparison to principled imputation
methods [4] would be highly interesting, if this loss is somehow incorporated
during hyperparameter optimization. Furthermore, we only evaluated GMC on
ADNI data as represented in the TADPOLE challenge, due to the availability of
multiple reference AUC/accuracy values in literature. As mentioned, however,
disease classification in high-dimensional but incomplete datasets with multiple
modalities is an abundant problem in computer-aided medical diagnosis. In this
light, we believe that the promising results obtained through GMC in this study
are of high interest to the community.
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3.3.2 Simultaneous imputation and classification using
Multigraph Geometric Matrix Completion (MGMC):
Application to neurodegenerative disease classification.
(AI in Medicine 2021)

Following our previous GMC approach, we improved GMC to be more robust in terms of clas-
sification and imputation. We also included an additional evaluation of the imputation results.
We propose Multigraph Geometric Matrix Completion (MGMC) for disease classification in
clinical datasets with missing information. Previous approaches made use of single graph
and/or auto-regressive Recurrent Graph Neural Networks (RGCN), meaning that the output
from an LSTM cell is fed directly to the next LSTM cell block. Instead, our proposed MGMC
approach uses a multi-graph approach as well as non-autoregressive RGCN. We showed the
effectiveness and superiority of this approach including the use of a self-attention mechanism
to weight which information should be given more weight in order to yield better disease
classification results.
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A B S T R A C T   

Large-scale population-based studies in medicine are a key resource towards better diagnosis, monitoring, and 
treatment of diseases. They also serve as enablers of clinical decision support systems, in particular computer- 
aided diagnosis (CADx) using machine learning (ML). Numerous ML approaches for CADx have been pro-
posed in literature. However, these approaches assume feature-complete data, which is often not the case in 
clinical data. To account for missing data, incomplete data samples are either removed or imputed, which could 
lead to data bias and may negatively affect classification performance. As a solution, we propose an end-to-end 
learning of imputation and disease prediction of incomplete medical datasets via Multi-graph Geometric Matrix 
Completion (MGMC). MGMC uses multiple recurrent graph convolutional networks, where each graph represents 
an independent population model based on a key clinical meta-feature like age, sex, or cognitive function. Graph 
signal aggregation from local patient neighborhoods, combined with multi-graph signal fusion via self-attention, 
has a regularizing effect on both matrix reconstruction and classification performance. Our proposed approach is 
able to impute class relevant features as well as perform accurate and robust classification on two publicly 
available medical datasets. We empirically show the superiority of our proposed approach in terms of classifi-
cation and imputation performance when compared with state-of-the-art approaches. MGMC enables disease 
prediction in multimodal and incomplete medical datasets. These findings could serve as baseline for future 
CADx approaches which utilize incomplete datasets.   

1. Introduction 

Large population-based studies in medicine, acquired at multiple 
institutions, are instrumental resources for a better clinical under-
standing of the diagnosis, progression and treatment of diseases. In 

medical health informatics, they serve as fundamental enablers for the 
design and analysis of novel clinical decision support systems (CDSS) 
and CADx [1]. Often, such datasets incorporate multimodal data, both 
imaging and non-imaging, in order to capture as many aspects of the 
disease as possible. 
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Two prominent examples for such datasets in neurology and 
neuroscience were published by the Alzheimer’s Disease (AD) Neuro-
imaging Initiative (ADNI) [2] and the Parkinson’s disease (PD) Pro-
gressive Marker Initiative (PPMI) [3]. Together, AD and PD are the most 
common neurodegenerative diseases, with AD accounting for 60–80% of 
dementia cases, and PD affecting 1–2% of the global population over the 
age of 65. Neurodegenerative diseases result in a progressive decay and 
death of nerve cells [4]. Increasing rates of up to a million new AD cases 
per year [4], along with the prospect of novel models and care frame-
works for dementia [5] as well as novel neuroprotective and 
disease-modifying therapeutics, in both AD and PD [6], motivate an 
early diagnosis of these diseases, ideally already at a pre-symptomatic 
stage. 

Population-based datasets in medicine are often feature-incomplete, 
due to missing examinations of patients. Most ML-based CADx ap-
proaches require imputation before classification [7], and treat these 
steps sequentially and independently. Incomplete features are catego-
rized into missing completely at random (MCAR), missing at random 
(MAR), and missing not at random (MNAR), with MAR often lying at the 
basis of most modern imputation methods [8]. 

Related works: A recent review paper [9] on ML techniques for AD 
diagnosis has found that most recent methods treated multimodal 
feature modeling and classification separately, with a focus on the 
former. In addition, they suggested that more work is required in 
multimodal ML methods towards early AD diagnosis. In line with these 
findings, our proposed method addresses multimodal CADx for AD, with 
simultaneous feature imputation and classification. 

Two commonly used methods to treat missing values in datasets are 
sample deletion or Mean-imputation, which either result in expensive 
loss of data or in biased and sub-optimal features. More advanced 
methods use multiple imputation or ML. Hedge et al. [7] compared 
Multiple Imputation Using Chained Equations (MICE) [10] with Prob-
abilistic Principal Component Analysis (PPCA) on healthcare data, and 
found PPCA to be superior. A fundamentally different approach is matrix 
completion. Thung et al. [11,12] use Low-Rank Matrix Completion 
(LRMC) to predict conversion of the disease in patients with Mild 
Cognitive Impairment (MCI) to Alzheimer’s Disease (AD). Zhou et al. 
[13] proposed to solve AD diagnosis using latent representation 
learning, by projecting both complete and incomplete modalities onto a 
common subspace. Both approaches by [12] and [13] assume a linear 
relationship between the input features and the target variable, and 
latent embeddings and linear classification are trained in two separate 
steps [13], which does not take advantage of end-to-end learning. 

Recently, graph convolutional networks (GCN) have been introduced 
for CADx on multimodal medical datasets. Parisot et al. [14] introduced 
a novel concept for modeling patient populations as a graph: patient 
meta-data like demographics (e.g. sex, age, etc.) are used to compute 
similarities between patients, leading to an adjacency matrix with an 
associated graph Laplacian. Intuitively, the graph is akin to a “social 
network” of patients in the cohort. Several works since then have 
demonstrated that GCNs can significantly improve the accuracy of CADx 
in medicine [15–19]. Importantly, the graph definition crucially affects 
the CADx accuracy, and we have shown previously that parallel 
multi-graph models with attention, i.e. one graph for each meta-feature, 
can make GCNs more robust [16,17]. 

Importantly, like most other ML methods, GCNs assume feature- 
completeness and depend on imputation as a pre-processing step. 
Regarding incomplete datasets, Monti et al. [20] showed that geometric 
deep learning provides a principled framework for non-linear imputa-
tion, through geometric matrix completion (GMC). In our own previous 
work [21], we extended upon this work through multi-target training, 
which combined GMC with supervised classification, into a Recurrent 
Graph Convolutional Network (RGCN). Similar to [15], we constructed 
a patient graph from clinical meta-data (e.g. age and sex of patients). We 
concatenated the incomplete feature matrix and incomplete labels, and 
trained a GCN for signal diffusion, along with a Long-Short Term 

Memory (LSTM) network for iterative matrix reconstruction. Both GCN 
and LSTM were combined into a single-graph RGCN, which was trained 
end-to-end towards MCI to AD conversion prediction, with two 
weighted losses for simultaneous classification and imputation. 

Contribution: We propose to solve disease classification in multi-
modal and incomplete datasets using Multi-graph Geometric Matrix 
Completion (MGMC). The contributions of this work are threefold: (1) 
we formulate the disease classification problem in multimodal and 
incomplete datasets using MGMC; (2) we propose a novel method which 
uses multiple non-autoregressive Recurrent Graph Convolutional Net-
works (RGCN) and a transformer-inspired self-attention mechanism for 
multi-graph fusion; (3) we validate the superiority of the proposed 
approach on two publicly available medical datasets and evaluate the 
effect of autoregressive LSTMs on MGMC architectures. 

2. Materials and methods 

We first introduce the notation used throughout the rest of the paper 
in Table 1, then elaborate on key background information in order to 
provide more context on our proposed approach. 

2.1. Dataset and preprocessing 

We used two publicly available datasets in this work: The Alz-
heimer’s Disease Prediction Of Longitudinal Evolution (TADPOLE) [2] 
obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 
database (adni.loni.usc.edu) and the Parkinson’s Progressive Marker 
Initiative (PPMI) dataset [3]. TADPOLE requires classification of sub-
jects into three categories, normal control (NC), mild cognitive 
impairement (MCI), and Alzheimer’s disease (AD). PPMI requires 
detection of Parkinson’s disease (PD) vs. normal controls (NC). 

In TADPOLE, we used 813 subjects coming from the ADNI protocol 
with 229 NC, 396 MCI and 188 AD diagnosed at baseline. This dataset 
contains pre-processed features [2] from cerebro-spinal fluid (CSF) 
markers, magnetic resonance imaging (MRI), positron emission to-
mography FDG (PET), diffusion tensor imaging (DTI), cognitive assess-
ment scores, genetic information such as alipoprotein E4 (APOE4), and 
demographic information. Further pre-processing entailed a normali-
zation of real-valued TADPOLE features to zero-mean and unit-variance. 
To match the classification task, we selected only features at baseline, 
and excluded features containing longitudinal information. We further 

Table 1 
Description of notations.  

Notation Dimension Description 

X  n× m  Observed feature matrix with n samples and m features  
Y  n× c  Class label matrix with n samples and c number of class  
Z  n× (m+ c) Concatenated X and Y matrices  

X̂  n× m  Predicted feature matrix X  

Ẑ  n× (m+ c) Predicted matrix Z  

Z  n× (m+ c) Predicted matrix Z from a single RGCN   

||.||2F  – Frobenius norm 

||.||2D  – Dirichlet norm 

ℒce(.) – Cross-entropy loss 
ℒR(.) – Reconstruction loss from GMC 

M(i) – The ith meta-information  

M  – Set containing {M(1),…,M(I)}
Gi  – The ith graph constructed using meta-information M(i)

Ωx, Ωy  – Denote whether input features and class lables, 
respectively, are known (1) or missing (0) 

Θ,δ  – Parameters from GCN and LSTM, respectively 
γ{a,b,c} – Hyper-parameters weighting loss terms 
∘  – Hadamard product  

G. Vivar et al.                                                                                                                                                                                                                                   
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removed features that were available for less than 10% of the available 
entries. In the end, the feature matrix had a dimensionality of 813 ×
435, excluding label information. 

In the PPMI dataset, we used all 75 healthy controls (HC) and 249 
subjects with PD. PPMI data consists of brain MRI as well as non-imaging 
information such as Unified Parkinson’s Disease Rating Scale (UPDRS), 
Montreal Cognitive Assessment (MoCA) scores, and demographic in-
formation (age and gender). The MRI information is used as input to the 
network while non-imaging information is used for the graph con-
struction. As described in our previous GCN CADx approach [17], we 
pre-processed MRI volumes by co-registering each images to a norma-
tive space (SRI24 atlas [22]) to reduce variability in appearance, and 
further performed skull stripping using ROBEX [23]. Then we scaled 
each volume to an intensity range of [0,1]. Finally, to obtain a lower 
dimensional representation as input to the graph network, we used 
encoded raw image intensities coming from a 3D-autoencoder, which 
was pretrained towards anomaly detection. We refer the reader to [24] 
for a detailed discussion on the implementation of the pre-processing 
and 3D-autoencoder. The output at the bottleneck layer of the 3D-autoe-
coder was then used as the feature representation of the brain MRI 
volume. 

Notably, our pre-processed PPMI dataset was 100% feature com-
plete. In contrast, the TADPOLE dataset is inherently incomplete in 
native form, and was 83% feature-complete after our pre-processing 
pipeline. In the experimental section, we further removed known fea-
tures artificially, to test classification and imputation robustness at 
various levels of data missingness. For better clarity throughout the rest 
of the paper, when denoting e.g. 50% data availability, we refer to the 
amount of data available at baseline (e.g. 50% for PPMI, and 41.5% for 
TADPOLE). 

2.2. Graph construction 

We use meta-information to construct separate graphs for each 
dataset. In the TADPOLE dataset, we use meta-information such as age, 
gender, and genetic risk factor (APOE4), all of which are known risk 
factors related to AD. For every given meta-information feature M, we 
calculate a separate graph using a pairwise similarity function. An edge 
between nodes i and j is defined using W(i, j) = f(M(i),M(j)) where 

f (M(i),M(j)) =
{

1 if |(M(i) − M(j)| ≤ θ
0 otherwise (1) 

M(i) and M(j) denote meta information of node i and j of a given 
meta-information M, and θ denotes a threshold value which is chosen 
empirically by the user, given domain expertise and depending on what 
can be regarded as a similar trait across patients [14,15]. 

To construct the graphs for the PPMI dataset, we use the same 
formulation in Eq. (1) and build graphs for every meta-information. 
Here we again use age and gender, along with two PD-related clinical 
scores of motor function (UPDRS) and of cognitive function (MoCA) to 
build the graph, following [17]. 

2.3. Geometric matrix completion 

Consider an incomplete feature matrix X ∈ ℝn×m where a certain 
proportion of values is missing at random. The goal is to recover the 
missing values in this matrix. One solution to this problem is by using 
rank minimization. However, as this is known to be computationally 
intractable, an alternative approximation is to constrain the predicted 
values to be smooth with respect to some geometric structure [25,26, 
20]. Here a graph structure is built based on the rows or columns of the 
matrix. Monti et al. [20] proposed to solve this using geometric deep 
learning on graphs, through a combination of GCN and LSTM networks. 
Compared to GMC recommender systems in [20], our CADx problem 
does not allow us to build a semantically meaningful column graph, 

especially since features stem from different modalities. Therefore, we 
modify the GMC approach to consider only a row graph derived from 
patient similarities to model the population. Nodes within a graph are 
the patient instances, their corresponding row vectors are the nodes’ 
feature vectors, and the graph edges are based on patient similarities 
which are computed from meta-features, according to the metric in Eq. 
(1). Pair-wise similarities between nodes in the population graph con-
nect patients that share the same risk-factor characteristics. The graph is 
then represented as G = (V, E,W), with vertices V = {1, 2, …, n}, and 
edges E⊆V × V, which are weighted with non-negative weights. We 
represent the graph with a symmetric adjacency matrix W ∈ ℝn×n. The 
geometric matrix completion problem reduces to minimizing the loss: 

ℓ(Θ, δ) = ||X̂Θ,δ||2D + γ
2||Ωx∘(X̂Θ,δ − X)||2F (2)  

where X̂Θ,δ is the predicted matrix conditioned on the parameters of the 
GCN and LSTM, and ∘ denotes the Hadamard product. In Eq. (2), the first 

term on the right can be expressed as tr(X̂T
LX̂) [27] which contains a 

rescaled graph Laplacian (L ∈ ℝn×n) term such that its eigenvalues are in 
the interval [ − 1,1]. This term keeps the prediction smooth with respect 
to the graph structure. 

GMC can also be extended to multi-target training on heterogeneous 
matrix entries. Consider a matrix Z ∈ ℝn×(m+c), which contains a mixture 
of feature and label information, which is implemented by concatena-
tion of the feature matrix X ∈ ℝn×m and class label matrix Y ∈ ℝn×c, 
similarly to Goldberg et al. [28]. Following Eq. (2), we can add a clas-
sification loss term on the imputed class label matrix [21]. The com-
bined loss for completion of matrix Z is then: 

ℓ(Θ, δ) = γa

2 ||ẐΘ,δ||2D + γb

2 ||Ωx∘(ẐΘ,δ − Z)||2F

+γc(ℒce(ẐΘ,δ∘Ωy,Z∘Ωy))
(3)  

where ẐΘ,δ is the predicted matrix containing predictions for both X̂ and 
Ŷ. 

2.4. Multigraph Geometric Matrix Completion 

MGMC2 consists of multiple non-autoregressive RGCNs and 
Transformer-like self-attention. We first describe the motivation why we 
use multiple RGCNs then elaborate on the self-attention inspired ag-
gregation scheme including the use of non-autoregressive RGCNs. First, 
as we described in our previous works [16,17], the rules for constructing 
a population graph from a medical dataset are crucial to the accuracy of 
a GCN’s downstream task, e.g. diagnostic classification accuracy. 
Instead of collapsing all meta-features into a single patient similarity 
measure, we therefore construct multiple graphs, one for each 
meta-feature. We then propose to integrate multi-graph GCNs into ma-
trix completion by training a dedicated GCN and LSTM for each graph in 
an end-to-end manner. We do this to learn better imputed feature rep-
resentations for each graph which could be useful in the downstream 
classification task. 

To aggregate separate signals from parallel RGCNs, we use a self- 
attention aggregation mechanism inspired by Transformer networks 
called Scaled Dot-Product Attention [29]. We do this by training sepa-
rate RGCNs (which consists of GCN and LSTM) in an end-to-end manner 
as shown in Fig. 1, then aggregate every RGCN outputs using the weights 
learned from the self-attention layer. We calculate self-attention weights 

for every RGCN by first stacking the outputs of RGCN (Ẑ
(i)
Θ,δ) into a tensor 

of size (BxMxF) where B is the full-batch-size, M denotes number of 
RGCNs, and F the dimensionality of the RGCN output. Weights for every 

2 Code: https://github.com/pydsgz/MGMC. 
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graph output are then calculated using Scaled-Dot-Product Attention 
[29]: 

Attention(Q,K,V) = softmax
(

QKT
̅̅̅̅̅
dk

√
)

V (4)  

where Q,K and V are the linearly transformed outputs after stacking 
using learnable weight matrices (WQ, WK, WV). In the end, this self- 
attention aggregation mechanism (denoted as ⊕ in Fig. 1) for outputs 
of every RGCN will yield an output Ẑ. Furthermore, we use muliple 
RGCNs, wherein each (unrolled) RGCN consists of a GCN and a non- 
autoregressive LSTM. Although multiple graphs and LSTMs have been 
used in previous methods ([20,19], one important difference of our 
proposed approach is the use of non-autoregressive LSTMs. As shown in 
Fig. 1, we only use the original input feature as input to the next timestep 
including the learned parameters from the previous LSTM cell-block. 
Such a non-autoregressive strategy is motivated in several ways. First, 
it limits the number of neighborhood hops and graph signal diffusion 
steps, as the input feature matrix to the GCN layer is the same at every 
time-step in the RGCN. Second, it allows the model to have better con-
trol on which graph-relevant information is useful for the imputation 
and downstream classification task. Third, by using the original input 
features as prior information at every optimization step, we reinforce the 
reconstruction of the input data, and prevent the model from diverging 
from the input data. As a result, this strategy prevents the model from 
suggesting non-realistic features as outputs. For the GCN layers, we use a 
Cheb-Net implementation [30,20]. This uses a Chebyshev polynomial 
basis (

∑K
k=0Tk(L̃)XΘk) to represent the spectral filters. For a more 

in-depth discussion regarding deep learning on graphs we refer the 
reader to [27]. The optimization loss for multi-graph GMC then boils 
down to minimizing the loss: 

ℓ(Θ,δ) =
∑M

i

(γa

2 ||Z
(i)

Θ,δ
||2D,r +

γb

2 ||Ωx∘(Z
(i)

Θ,δ

−Z)||2F
)
+ γc(ℒce(ẐΘ,δ∘Ωy,Z∘Ωy))

(5)  

where Z(i)
Θ,δ is the ith predicted matrix from the ith graph (noting that this 

is conditioned on the parameters of the ith GCN and LSTM) and Ẑ
(i)
Θ,δ is 

the aggregated predicted matrix coming from all GCNs and LSTMs. 

3. Results 

3.1. Implementation details 

We used a 10-fold stratified cross-validation strategy to split the 
dataset into 10% test and 90% train (of which 10% as validation set) on 
all methods. For all deep learning based methods we use Adam opti-
mization [31], with implementations in PyTorch [32], on a workstation 
with a single GPU (Nvidia GTX 1080 Ti). We automatically determine 
hyperparameters in Eq. (5) using hyperparameter optimization on the 
validation set with 120 iterations [33], with the following search spaces 
for the Chebyshev Polynomial parameters (K ∈ range(1, 20)), learning 
rate = uniform([0.00001, 0.1]), intermediate layers’ hidden units ∈
range(8,512), and γ(a,b,c) = uniform([0.001,1000])). 

We compared the proposed method with shallow learning methods 
in machine learning, gradient-based Matrix Completion (MC), and state- 
of-the-art (SOTA) graph-based methods which have shown to be highly 
effective for disease prediction. For shallow learning, we used Logistic 
Regression (LR) as the linear baseline, and Random Forest (RF) [34] as a 
competitive non-linear baseline. We also compared against MC which is 
a simple non-graph-based gradient based matrix completion approach. 
Previous graph-based methods included GCNs [14,15], GMC [21], and 
MG-RGCN [19]. As several algorithms (LR, RF and GCN) assume 
feature-completeness, we first need to impute the missing values in the 
feature matrix. We used five approaches to accomplish this: the 
commonly used Mean-imputation method, kNN imputation [35], MICE 
with linear regression (MICE_LR) [10], MICE with random regression 
forest (MICE_RF) [10], and PPCA [36]. For GCN, we use the empirically 
best-performing imputer. To test imputation performance, we artifi-
cially reduce the percentage of known data in the ADNI/PPMI feature 
matrices and perform imputation/classification at {100,75,50,25}% 
data availability (MAR assumption [8]). At each percentage level, we 
report the worst and the best performance for each imputer+ classifier 
combination, to give an indication of the spread of possible outcomes. 
To report and compare classification outcomes, we visualize the three 
metrics Accuracy/F-measure/ROC-AUC in Fig. 2, and compare them 

Fig. 1. Network architecture of MGMC which uses multiple Recurrent Graph Convolutional Network (RGCN) (top) including non-autoregressive RGCN layer 
(bottom). Information from a single RGCN branch will be aggregated (⊕) together with the other outputs from other RGCN branches using a Scaled Dot-Product 
Attention mechanism. This output from a single RGCN is also used to calculate the reconstruction loss ℒR, which is the first term of the right-hand side of Eq. (5). 
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quantitatively via a two-tailed Wilcoxon rank-sum hypothesis test, at an 
alpha-level of p ≤ 0.05). 

We use Scikit-learn [37] implementations for cross-validation, 
pre-processing, imputation (PPCA [38]) and shallow classifier models 
(LR and RF). To make baseline algorithms as competitive as possible, we 
also perform hyperparameter optimization (also 120 max. iterations) for 
the standard machine learning models (i.e. LR and RF) [39]. We 
concatenate the meta-features (e.g. demographics) with the feature 
vectors for all baseline methods, to further ensure fairness, as our pro-
posed graph-based method utilizes this information as well (i.e. for 
graph construction). 

3.2. PPMI and TADPOLE dataset results 

We plot classification (Fig. 2 rows 1–3) and imputation (Fig. 2 row 4) 
results on the PPMI dataset (Fig. 2 left panels) and on the TADPOLE 
dataset (Fig. 2 right panels). 

In PPMI, the classification metrics show that our proposed MGMC 
method is consistently among the top-performing methods. In terms of 
ROC-AUC and Accuracy (cf. Fig. 2, rows 1 and 3), MGMC is often 
significantly better than other classifiers, at all levels of data availability. 
In the following, we will describe our results by focusing mainly on the 
aggregate metric F-measure, as it reflects the harmonic mean between 

precision and recall and is therefore better suitable to asses the classi-
fication of rare positives (as it is often desired in medicine). In Fig. 2 
(middle-left panel), we can see that the average F-measure over the 10 
folds for MGMC stays consistently high at 0.852/0.897/0.904/0.913 
(25/50/75/100% data availability, respectively). The only other 
method that performs comparably high is another graph deep learning 
method, GCN with PPCA-imputation. The difference is significant at 
25% data availability (0.905, p < 0.05), but not at the other levels 
(0.914/0.918/0.926, p > 0.05). It is important to note that all algo-
rithms that require prior imputation have a noticeable difference of 
performance, given the same amount of available data. For example, LR 
combined with kNN performs on average lower than when combined 
with PPCA, especially at 25% of data (F-measure difference: 0.044) and 
50% of data (F-measure difference: 0.053). The best vs. worst imputa-
tion combination of imputer+ classifier is not consistent across models: 
for RF, PPCA is on average worst, kNN is best, while for GCN, MICE_LR is 
worst and PPCA is best. Compared to our previously proposed GMC 
method, MGMC performs significantly better at 100% data availability 
(0.913 vs. 0.850, p < 0.05), not significantly better on average (not 
significant, p > 0.05) at 50% (0.896 vs. 0.881) and 75% (0.904 vs. 
0.872) data availability, and not significantly worse at 25% (0.852 vs. 
0.870, p > 0.05). Another striking result in PPMI is that the matrix 
completion methods MC and MG-RGCN more or less failed to learn a 

Fig. 2. PPMI (left panel) and TADPOLE (right panel) classification results (boxplots indicate the distribution of metrics over the 10 folds for each model): ROC-AUC 
(first-row), F-measure (second-row) and Accuracy (third-row). Imputation results (fourth-row) for PPMI and TADPOLE. Asterisk symbols (*) and dotted vertical lines 
denote that the tested model is statistically significantly different (two-tailed Wilcoxon rank-sum test, p ≤ 0.05) to our proposed model (MGMC). X-axis values denote 
the percentage of available/known features prior to imputation and model training. (Best viewed in digital format). 
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good classification, at all levels of data availability (F-measure <0.7). 
The implications of this low performance will be discussed in Section 4. 

In TADPOLE, compared to PPMI, the classification accuracy does not 
benefit as clearly from the population graph or imputation in our 
method. Similar to PPMI, the metrics ROC-AUC and Accuracy show 
some cases where MGMC is significantly better than other methods, 
notably at 25% and 50% data availability, and compared to LR or al-
gorithms that are matched with the worst imputation method. For a 
further analysis, as in PPMI, we focus on the F-measure. As Fig. 2 
(middle-right panel) shows, most classifiers perform in a similar range if 
matched with a suitable imputation method. As with PPMI, the choice of 
imputation method can have a noticeable effect though. Again, this 
choice is not consistent across classifier models. For LR/RF/GCN, the 
worst/best classifiers are kNN/MICE_RF, MICE_LR/Mean, and PPCA/ 
Mean, respectively. A noteworthy performance is achieved by the 
combination of RF classifier with Mean-imputation. This combination 
achieves a significantly higher F-measure than MGMC (and all other 
methods) at 100% data availability (and a significantly higher ROC- 
AUC/Accuracy also at 75% data availability). However, RF paired 
with the worst imputer MICE_LR leads to a significantly worse perfor-
mance for 25% and 50% data availability. 

In terms of imputation quality (RMSE), Fig. 2 (bottom row) shows that 
in both PPMI and TADPOLE, our method imputes better (i.e. lower 
RMSE) than all other methods, and highly significantly (p < 0.001) in all 
comparisons, except when comparing to our previously proposed 
method GMC at 50% and 75% data availability. Among the other 
methods, the best-performing imputers for PPMI were Mean-imputation 
and the two matrix completion methods MC and MG-RGCN, while for 
TADPOLE, the best imputer was PPCA at 25%, and MICE_RF at 50% and 
75% data availability. MICE_LR was the worst-performing data imputer 
in both datasets. Furthermore, the trend is visible that all imputation 
methods impute with higher RMSE errors as fewer data is available in 
the feature matrix, whereas our proposed MGMC method provides fairly 
robust imputation results. 

In our ablation experiments, we investigated how non-autoregressive 
LSTMs affect the imputation and classification performance. In Fig. 3 
top, we observe that for the PPMI dataset, the non-autoregressive model 
yields significantly better results in terms of ROC-AUC, F-measure, and 
Accuracy at all levels of data missingness. For the TADPOLE dataset 
(Fig. 3 bottom), the proposed method classifies comparably well at 50%, 
75% and 100% data availability, but significantly outperforms the auto- 
regressive model at 25% data availability, demonstrating better classi-
fication robustness at lower levels of data availability. 

4. Discussion 

4.1. Classification performance when using all available data 

In PPMI, we observed that our proposed approach achieved a 
consistently high classification performance in terms of ROC-AUC, 
F-measure, and Accuracy for PD prediction when compared with stan-
dard ML models (LR and RF), MC, MG-RGCN and GMC approaches, as 
shown in Fig. 2 (left panel row 1–3). The only method that was able to 
perform equally well (and significantly better at 25% data availability) 
was GCN, when optimally paired with PPCA imputation. In TADPOLE, 
we observed that our approach is mostly at par with baseline ML 
methods and SOTA approaches from literature, and could only be 
significantly outperformed by RF and at 75–100% data availability, and 
only if RF was optimally paired with Mean-imputation. As mentioned in 
the dataset descriptions, PPMI is 100% feature-complete at baseline, 
whereas TADPOLE is only 83% complete at baseline. It is noteworthy 
that at 100% data availability, MGMC already performs imputation in 
TADPOLE, but we cannot validate the imputed values due to a lack of 
groundtruth data for those missing features. Compared to previous 
studies, Zhou et al. [13] reported ∼60% classification accuracy and ∼0.6 
ROC-AUC for the same AD classification problem posed in this paper for 
the TADPOLE dataset. Gray et al. [40] reported ∼60% classification 
accuracy and ∼0.7 ROC-AUC. In our study, we also achieve a classifi-
cation accuracy on the order of ∼60%, however with higher ROC-AUC 
values on the order of ∼0.8. To interpret these results, we recall that 
the Accuracy metric represents the number of true positive and true 
negative cases among the total population, at a fixed threshold of the 
model’s posterior. In comparison, the ROC-AUC gives an estimate of the 
likelihood that a classifier simultaneously achieves a high true positive 
rate and low false positive rate. This indicates that MGMC, compared to 
related works, and compared to baseline models at 25% data avail-
ability, achieves a more robust classification outcome, not only in terms 
of sensitivity, but also in form of a lower likelihood for type I errors. A 
likely reason for the ROC-AUC difference of ∼0.1 compared to [40] is 
that earlier (2013) versions of the ADNI dataset had a smaller sample 
size, which also makes comparisons to our work somewhat unfair. 
Compared to [13], the ROC-AUC difference of ∼0.2 can be likely 
attributed to the use of multi-graph convolutions in our work, which are 
trained end-to-end in a semi-supervised manner. 

4.2. Classification performance with artificially removed data 

To investigate the robustness of MGMC and baseline methods with 
respect to missing data, we randomly reduced the amount of available 
data in the feature matrix relative to the number of observed entries at 

Fig. 3. PPMI (top) and TADPOLE (bottom) ablation results. ROC-AUC (left), F-measure (middle), and Accuracy (right) results on test dataset. Asterisk (*) and dotted 
vertical line denote model is statistically significantly different (p ≤ 0.05) to proposed model. Values in x-axis denote relative percentage of features which are 
available to the network. 
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baseline, as shown in Fig. 2. We observed that the proposed approach 
has better and more stable classification and imputation results for PD 
prediction in PPMI when more information is missing. This effect is 
particularly visible in the ROC-AUC values, which may increase in 
standard deviation over the ten cross validation folds, but stay relatively 
stable in terms of median values above 0.9, even at low level of data 
availability around 25%. In comparison, LR, RF, MC, and MG-RGCN 
suffer from a noticeable drop in classification robustness. Interest-
ingly, the single-graph GMC also yields relatively constant ROC-AUC 
values, but at a significantly lower level than MGMC. Furthermore, 
MC and MG-RGCN have an unstable and lower classification perfor-
mance. This has two important implications. First, end-to-end learning 
of simultaneous imputation and classification, e.g. via geometric matrix 
completion, can improve the robustness of the CADx model towards the 
level of incompleteness in datasets up to a certain degree. Second, 
multiple RGCNs in parallel, e.g. fused by self-attention, improve both 
downstream tasks significantly, compared to using a single-graph or 
multiple graphs with a single RGCN. It is important to mention that we 
re-implemented MG-RGCN for comparison [19], as no reference 
implementation was available open-source. The on-par performance 
with many other algorithms on TADPOLE demonstrates a working 
re-implementation, however we have no clear explanation for the 
comparably low performance on PPMI. One factor that could partially 
contribute is that each graph in [19] utilizes a different feature set due to 
a graph-wise feature selection step as pre-processing. However, as none 
of the other algorithms in our comparison experiments used any sort of 
feature selection in the pre-processing stage, we also applied the full 
feature matrix to each branch of the RGCN, to make the comparison on 
same grounds. In MGMC, it is important to note that the two down-
stream tasks do not always benefit equally. In TADPOLE, for example, 
we observe a comparably stable classification performance at 75%, 50% 
and 25% data availability. However, a similar behaviour is observed for 
all other classifiers, and all classifiers in general classify similarly well. 
The only exception is the combination of Mean + RF where we observe a 
higher classification performance in TADPOLE. We hypothesize that one 
reason for this advantage could be due to the transductive imputation 
bias introduced in this model, since we performed imputation of the 
training set features together with the test set features. Another reason 
could also be the fact that we performed a hyperparameter tuning with 
nested cross-validation for all classifiers, including RF. For certain 
problems or datasets, apparently including TADPOLE, such hyper-
parameter optimization can achieve a noticeable performance boost, but 
not all translational studies of ML in medicine apply this step during 
their analyses. Only at 25–50% data availability, MGMC significantly 
outperforms other classifiers like GCN and LR, but only if these classi-
fiers are matched with the worst-performing imputer (LR + kNN, and 
GCN + PPCA). As such, we consider this a negligible advantage for 
MGMC. Clearly, the main benefit of our proposed method on TADPOLE 
data lies not in an improved classification, but in a significantly more 
accurate imputation of missing values. 

4.3. Joint classification and imputation performance 

Most related literature in CADx naturally puts a focus on classifica-
tion performance. Imputation is an often overlooked factor, even though 
it plays an important role in population-based and multimodal studies in 
medicine, as data missingness is a common problem here [41]. 
Considering the imputation performance in Fig. 2, our proposed 
approach is able to significantly outperform standard imputations (such 
as mean, kNN, and MICE, and PPCA) and other matrix completion ap-
proaches (MC and MG-RGCN) at all levels of missingness, on both 
datasets. This suggests that the proposed approach is able to take 
advantage of using known (semi-supervised) class label information in 
order to impute the features while simultaneously predicting the un-
known class labels. It further suggests that the proposed method learns 
more class relevant feature representations compared to standard 

imputation approaches (mean, kNN, MICE, and PPCA) and other matrix 
completion methods (MC, MG-RGCN). We can also observe that popu-
lation modeling and graph incorporation cannot always compensate for 
sub-optimal imputation, we would always have to find the right com-
bination of imputer and classifier in order to achieve a comparable result 
with MGMC. Interestingly, even though MC and MG-RGCN also make 
use of the class label information, just like our GMC or MGMC ap-
proaches, their model performance did not significantly improve on 
both datasets. We hypothesize that this could be due to the feature 
representational capacity of MC and MG-RGCN. Additionally, MG-RGCN 
only makes use of a single RGCN which is autoregressive, just like GMC, 
and our experiments have shown that this could have a significant in-
fluence as can be seen in Fig. 3. One limitation to note is that we were 
not able to compare the imputation results to further matrix completion 
works in literature, e.g. [11–13], as those works do not report imputa-
tion fidelity, e.g. via RMSE. However, as a surrogate, we implemented an 
MC approach which is gradient-based and non-graph-based learning MC 
approach, and its results can serve as a stand-in for this family of 
methods. Furthermore, we can compare classification performance on 
TADPOLE data with [13], who used the same subjects (examinations at 
baseline) and classes (NC, MCI and AD) in TADPOLE as we did in our 
study. Here, authors explored classification performance of their pro-
posed method, given 10% and 20% data missingness on either the MRI 
or SNP modality. As authors in [13] report, the results of our proposed 
approach are in line with their classification accuracy results at 20% 
data missingness (∼60% Accuracy) which corroborates our results on 
75% data availability in Fig. 2 middle row. Finally, it is noteworthy that 
our proposed approach achieved a more accurate and stable classifica-
tion performance for the PPMI prediction task than for the TADPOLE 
prediction task. A possible explanation is that distinguishing healthy 
controls from PD may be a simpler classification task than the three-class 
classification problem in TADPOLE (NC vs. MCI vs. AD). This notion is 
supported by clinical studies arguing that distinguishing NC, MCI, and 
AD based on clinical characteristics is a difficult problem at baseline 
[42]. 

4.4. Ablation experiments 

In Section 2.4, we described our proposed improvements for usage of 
multiple RGCNs, specifically the usage of non-autoregressive LSTMs 
over autoregressive ones. Autoregressive RGCNs always use the output 
from the previous timestep and information from the previous LSTM 
cell-block as input. In contrast, non-autoregressive RGCNs always use 
the original input features as input at every timestep. Our motivation for 
using non-autoregressive LSTMs in MGMC is that the current output is 
always conditioned on the original input features. Intuitively, this 
should help the reconstructed output to avoid diverging from the input 
data, which is a desirable behaviour in matrix completion. Here, we 
perform and discuss an ablation experiment, where we compare the 
effect of both, as shown for PPMI and TADPOLE in Fig. 3. We observe 
that by using non-autoregressive LSTMs, we obtain a significantly better 
classification performance for all levels of data availability in PPMI. In 
TADPOLE, this tendency is not as clear, and a significant improvement is 
only achieved at 25% relative available data. At 50%, 75% and 100% 
available data, non-autoregressive LSTMs do not improve classification, 
but neither do they worsen the performance. This result suggests that it 
is indeed preferable to use non-autoregressive LSTMs in each parallel 
graph branch in MGMC. We attribute this to the intuitive notion 
explained above: by conditioning the reconstructed output on the 
original input data at every optimization timestep, we stabilize the 
reconstruction and achieve a better classification performance. 

4.5. Overall implications 

The main differences of our proposed approach to recent works that 
use RGCNs for matrix completion [21,19,20] are three-fold, namely (i) 
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the use of multiple LSTMs which are non-autoregressive, (ii) the use of 
self-attention weighting to aggregate information from (iii) multiple 
graphs representing different neighborhood relationships between pa-
tients in the population. Previous RGCN/GMC methods [21,19] use a 
single LSTM, while in our approach, we utilize one separate LSTM for 
every graph, which results to multiple recurrent graph convolutional 
networks. Notably, Monti et al. [20] also use a multi-graph formulation, 
but their approach differs from our method, since they consider both the 
rows and columns of the feature matrix as two separate graph structures. 
Instead, in this work, we consider multiple meta-information as separate 
graphs that contain rows of a feature matrix as the node features, 
similarly to [17]. 

A general take-away from our experiments is that the best choice of 
the imputation method is apparently not really dependent on the data, 
but mostly depends on the classification algorithm following imputation 
instead. Almost every imputation method that we tested in this work 
(Mean, kNN, MICE_RF and PPCA) appeared either as the best or worst 
imputation method, depending on which data it was applied and in 
combination with which classification algorithm. Only MICE_LR was 
consistently a bad match, for any classifier, and the RMSE analyses 
revealed that it was probably due to a consistently bad imputation 
performance. Overall, the data under observation, the chosen imputa-
tion and the classification models together form a complex interplay, 
which makes a careful examination and benchmarking necessary. In 
translational ML works on medical data, e.g. for CADx, such exhaustive 
analyses are rarely made. This is probably due to the fact that an 
exhaustive testing of all possible combinations of classifiers and impu-
tation methods can quickly lead to very large numbers of experiments. 
When adding hyper-parameter optimization for every possible combi-
nation (as we did in our experiments), the required computational effort 
for nested cross-validation and the evaluation of all model setups may 
become a challenge. It is precisely this variability that highlights the 
attractiveness of our proposed MGMC approach. Imputation and clas-
sification are learned end-to-end, in a single model. Although it is not 
guaranteed that MGMC always achieves the best classification perfor-
mance, our experiments provide evidence that the imputation is 
significantly better in all settings, and the classification is top-ranking 
compared to a wide range of classification methods, both shallow and 
deep, both transductive and inductive, and using matrix completion or 
not. 

Finally, our work has certain limitations, which may suggest inter-
esting avenues for future contributions. Following [14,15], our graph 
construction heuristic assumes a simple static graph. Recently, it has 
been shown that is possible to learn a clinical population graph 
end-to-end, along with the classification downstream task [43]. The 
resulting graph is optimally suited for e.g. classification. Consequently, 
an alternative approach would be to use the meta-information and the 
feature matrix information in parallel to build or learn the graph adja-
cency. The advantages could be potentially several-fold: (i) the classi-
fication accuracy might benefit from a better graph, (ii) the robustness 
might increase even further, compared to our applied heuristics for 
graph construction, (iii) no domain expertise would be necessary to 
manually define the optimal thresholds θ (cf. Eq. (1)) that determine 
patient similarity and connectedness in the graph, and (iv) the learned 
graph might be an end in itself, and serve as a form of knowledge dis-
covery in medicine (e.g. discovery of previously unknown, yet con-
nected sub-populations) [43]. Both approaches could potentially lead to 
better performances of the downstream tasks (classification and impu-
tation). Another limitation is that we benchmarked our proposed MGMC 
method to several baseline methods (LR and RF) which are all inductive 
learning approaches. In contrast, our approach is inherently trans-
ductive, as we rely on spectral graph convolutions in the parallel 
graph-convolutional layers. We believe that it should be possible to 
incorporate imputation losses into the objective functions of GraphSAGE 
[44] or GAT [45] to obtain an inductive form of MGMC, and it is worth 
investigating whether the same benefits can be observed as in our 

experiments. Furthermore, future works could compare against other 
non-deep learning based techniques that tackle missing data such as 
[46] and [47] and address non-MAR scenarios of missingness. 

5. Conclusion 

In conclusion, we propose a novel automatic disease classification 
method which can handle multimodal data with missing information, a 
common setup in medical population based studies and datasets. We 
accomplish this by using Multi-graph Geometric Matrix Completion 
(MGMC). We train our architecture through Multiple Recurrent Graph 
Convolutional Networks, which are optimized in an end-to-end manner. 
Experimental results suggest the effectiveness of our proposed approach 
on two well-known and challenging population based studies of 
neurodegenerative Parkinson’s and Alzheimer’s diseases. Furthermore, 
ablation experiments highlight the importance of using non- 
autoregressive LSTM including the effect of self-attention weighting. 
These results could serve as a baseline for future works on disease 
classification in incomplete datasets. In addition, this could be useful in 
other domains where incomplete, multimodal, and high-dimensional 
data is an issue. 
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4.1 Motivation

Medical diagnosis is the process of determining a medical condition based on a patient’s
signs and symptoms [5]. A patient complaining of headaches could be a result of different
conditions. Paleness or redness in the skin could also be attributed to a number of conditions.
Through years of practice including evidence-based knowledge, medical doctors have mastered
what to do based on the patient’s signs and symptoms. They are able to do this by following
medical guidelines including their own experiences in order to support their decisions.

In a clinical setting, this is what is known as the diagnostic process [5]. This process is an
iterative process of gathering, integration, and interpretation of information resulting in a
working diagnosis [5]. This iterative process involves the gathering of clinical history and
interview, physical examination, diagnostic testing, referral and consultation. Only when
sufficient information has been collected a diagnosis will be communicated. For certain
diseases, this diagnostic process is laid out in the form of guidelines. In the UK for example,
they have the National Institute of Health and Care Excellence (NICE) that sets out these
guidelines to ensure evidence-based medicine [22].

Medical diagnosis is one of the most important processes in a clinical workflow [75]. Being
able to arrive at the correct diagnosis at the right time is critical as people’s general well-being
could be affected. The diagnosing clinician will have to interpret all the information presented
to them and make sense of it in relation to the situation of the patient. With the complexity
of the clinical presentation of the disease, any tool which can reduce the uncertainty of the
condition will be very useful for the clinician.
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Recent methods in CADx research has been mostly deep learning-based [94] and do not
consider the cost of every examination. It is assumed that the examination/feature from
a patient comes for free [69]. This could be due in part that most CADx methods using
deep learning are mainly focused on improving the classification performance targeted to a
particular medical application. Furthermore, since it is assumed that these examination or
features are freely available, most recent CADx methods assume that all examinations of a
patient are all present before CADx methods start to be applied. However, the diagnosing
physician can benefit from decision support beforehand, i.e. during the diagnostic process and
while the diagnostic information or sensor data is still being acquired. The notion of decision
support during the sequential acquisition of information about the patient is the focus of this
chapter.

4.1.1 Towards peri-diagnostic decision support

Providing decision support throughout the diagnostic process is what we refer to as peri-
diagnostic decision support [88]. We use the prefix “peri-” to indicate the analogy to the
term “peri-operative” in Surgical Data Science [44], which takes into account all phases of
the operative process, including pre-operative planning, intra-operative support, and post-
operative therapy decision support. From a doctor’s perspective it answers the question "Given
what is known so far about the medical status of the patient, which diagnostic examination
should be taken next?". In short, peri-diagnostic decision support is a step further in CADx,
wherein the system could provide support even at the start of the diagnostic workflow
unlike previous CADx methods. An algorithm that provides decision support throughout the
diagnostic process or even at the start of the diagnostic process could be very helpful. The
process of diagnosing a condition is complex and a system that could provide diagnostic
support could reduce the uncertainty of the condition and support the clinician with their
decisions. Such a system could optimize the diagnostic process and lead to an efficient
peri-diagnostic decision support.

4.1.2 E�cient peri-diagnostic decision support

In the context of peri-diagnostic decision support, efficiency means that we can achieve the
best classification with the least cost and fewest examinations possible. The cost could be
in the form of monetary expense, time spent on the diagnostic step, the burden imposed on
the patient (e.g. pain, or risk), or any other variable which is very important and has value
depending on the domain. One example in CADx would be assigning a monetary cost for every
examination of a patient and considering this information when providing diagnostic decision
support. Assigning more "cost" to an invasive procedure than a non-invasive procedure is
another form of cost. If a medical observation would use more hospital resources than another
medical observation then the latter would have a lower cost. Cost allocation could vary
depending on what is valuable in a domain.

Next to cost, the number of diagnostic iterations is also important. It is also desirable to
reach a final diagnostic decision in the quickest possible way, by using an optimal sequence of
examinations among the known set of possible examinations. For example, if a model could
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already have enough certainty that on average the 4th or 5th examination would no longer
improve the classification performance of a model then we would no longer need to perform
more than five examinations for a particular disease classification problem.

Such efficiency has the potential to optimize hospital resources. Efficiency is at the core of
healthcare services. With the recent global COVID-19 pandemic, we have seen that healthcare
systems around the world have been put to the test and pushed to the limits. There were
not enough spaces for people to receive healthcare services during the global pandemic of
2019. Demand was too high and healthcare service supply could not cope with it. Having
a diagnostic decision support system that is geared towards efficiency could potentially be
very useful in such situations. Even though the focus of this thesis is on accurate and efficient
CADx in medicine, an algorithm which considers a cost within the domain and provides the
best decision support could be even be applied in other non-medical related domains. This
raises further motivation to consider efficiency in peri-diagnostic decision support.

4.1.3 Patient-specific peri-diagnostic decision support

Next to efficiency, the notion of patient-specific CADx is highly valuable and thus requires
attention as well as this has the potential to positively impact healthcare [29]. This means that
decisions are specialized towards an individual rather than for a group of individuals. The
decision which examination to examine next is not only based on guidelines for a group of
individuals. Instead, it is also based on the currently known information about the individual.
This means the whole diagnostic process should be individualized. The way information is
gathered, combined, and interpreted requires individualized approaches.

An individualized or patient-specific approach is necessary as every individual is unique. Not
only are we unique, but the human body is also complex. Every individual is different from
one another. We also have to mention the complexity of a clinical condition if co-morbidities
are present, which often results in a more challenging diagnostic process [5].

4.2 Problem Definition

Ultimately, we want a model that can suggest which examination to do next in an efficient
manner, given what is known about the patient so far. Efficiency, as previously described,
applies in terms of cost and the number of examinations requested. Not only should this model
suggest the most efficient feature but it should also increase the classification performance
best. Given this new examination including the previous examinations from a particular
patient of interest, this should increase the classification performance the most. Only when
there are no longer any examination methods available, we can stop the examination process
or when a pre-determined budget has been exhausted.

Concretely, we formulate this problem in form of cost-sensitive feature acquisition. In this
problem, the decision on which examination to do next can be posed as a feature acquisition
problem wherein for every acquired feature a cost is also taken into consideration. In the
context of CADx, the model is given a feature vector representing observations that are known
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so far about the patient. Note that this vector could be incomplete at the start. Based on this
information, the model should be able to suggest which examination should be done next, by
suggesting which index in the remaining set of examination should be done next. We use this
index to get the new observation for the patient of interest and evaluate if this new feature
will increase the disease classification performance the most. We repeat this until there are
no more remaining set of examinations to be done or alternatively one can also pre-defined
budget to determine when to stop.

4.3 Related work

Recent works dealing with the problem of cost-sensitive feature acquisition at test-time can be
roughly categorized based on which learning method was used: reinforcement-learning-based
and non-reinforcement-learning-based.

Under reinforcement-learning-based approaches, recent approaches were mainly based on
Q-learning [31, 34, 69]. The problem on which examination to select next is formulated as
a Markov decision process. An agent is trained by setting the states based on the currently
known or observed features and the action is the decision on which feature to select next.
This newly acquired feature is then added to the currently known observations and a cost is
paid or the budget is reduced. When the agent decides to perform the final prediction as the
next action, the currently known observations are used as input to perform the final prediction
and the acquisition process is terminated. The agent is then rewarded if the prediction on the
currently known observations are correct, otherwise it is penalized.

Among non-reinforcement-learning-based works, there are methods which are attention-based
[35] and gradient-based [33]. Attention-based methods directly estimate which feature to
select next via an attention vector. Gradient-based methods, on the other hand, make use of
the gradients of a trained network to select which feature to select next. Here, the gradient of
a trained network is used to calculate feature attributions for every feature of every instance.
Using the feature attributions and scaling this value with the cost of that feature, the next
feature to select next is decided based on which has the feature attributions after the cost has
been considered.

Lastly, to distinguish between active learning and the problem of cost-sensitive feature ac-
quisition at test-time, we describe the difference in terms of the goal. In the context of
active learning, the goal is to find which instance should be considered next to improve
the learning performance [63]. In contrast, in active feature acquisition, the goal is to find
which examination/feature should be selected next. In the context of CADx, this means the
active learning strategy will suggest which patient should be labelled next to improve the
classification performance. In contrast, the active feature acquisition strategy will suggest
which feature/examination to select next.

4.4 Contribution
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Peri-Diagnostic Decision Support Through Cost-E�cient
Feature Acquisition at Test-Time (MICCAI 2020)

The goal in this work is to provide guidance to the clinician in the entire diagnostic process
including the acquisition phase. To tackle this, we propose a gradient-based method for active
feature acquisition at test time. This method is a cost-sensitive feature acquisition method that
makes use of Integrated Gradients (IG). IG is an axiomatic feature attribution method that
assigns feature attributions for every class of interest. Since we do not know the actual class
of interest at test-time in the diagnostic process, we have to devise a strategy how to make use
of these feature attributions for active feature acquisition. We further elaborate on this topic
in the next section.
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Abstract. Computer-aided diagnosis (CADx) algorithms in medicine
provide patient-specific decision support for physicians. These algorithms
are usually applied after full acquisition of high-dimensional multimodal
examination data, and often assume feature-completeness. This, how-
ever, is rarely the case due to examination costs, invasiveness, or a lack
of indication. A sub-problem in CADx, which to our knowledge has not
been addressed by the MICCAI community so far, is to guide the physi-
cian during the entire peri-diagnostic workflow, including the acquisition
stage. We model the following question, asked from a physician’s per-
spective: “Given the evidence collected so far, which examination should
I perform next, in order to achieve the most accurate and e�cient diag-
nostic prediction?”. In this work, we propose a novel approach which is
enticingly simple: use dropout at the input layer, and integrated gradi-
ents of the trained network at test-time to attribute feature importance
dynamically. We validate and explain the e↵ectiveness of our proposed
approach using two public medical and two synthetic datasets. Results
show that our proposed approach is more cost- and feature-e�cient than
prior approaches and achieves a higher overall accuracy. This directly
translates to less unnecessary examinations for patients, and a quicker,
less costly and more accurate decision support for the physician.

Keywords: Computer-aided diagnosis; peri-diagnostic decision support;
cost-sensitive feature attribution; integrated gradients

1 Introduction

The diagnostic workflow in medicine is “an iterative process of information
gathering, information integration and interpretation” [2]. Information is first
acquired through a clinical history and interview, followed by alternating exam-
inations and working diagnoses, until su�cient information has been aggregated
for a final diagnosis. The decision which examination to perform next lies in
the responsibility of the physician, who has to consider its medical indication,
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its invasiveness towards the patient, and often also its financial cost. Machine
learning (ML) and computer-aided diagnosis (CADx) have a large potential for
decision support in the clinic [16]. From a ML perspective, CADx is the task
to learn the mapping of a multimodal feature vector onto a diagnostic label.
Most CADx algorithms studied so far, however, ignore the acquisition stage,
and provide decision support only at the end of the diagnostic workflow when
all examination data is acquired and the feature vector is complete. As such, cur-
rent CADx approaches miss out on the opportunity to aid the physician during
the entire, peri-diagnostic workflow, including the acquisition stage. In this work,
we address this problem by i) iteratively suggesting the next most important ex-
amination/feature to acquire, while ii) considering the overall examination cost
and aiming for a maximally accurate and e�cient diagnostic prediction. To the
best of our knowledge, the problem of peri-diagnostic decision support has not
been addressed in the MICCAI community so far.

Related works: In ML literature, this problem is often described as bud-
geted or cost-sensitive feature acquisition. Most recent approaches can be roughly
categorized into reinforcement learning (RL) and non-RL approaches. Among
RL approaches, [14] applied cost-sensitive n-step Q learning to CADx on Phy-
sionet (2012) and proprietary data. Kachuee et al. [7] classify diabetes with
Deep Q-networks (DQN) and Monte-Carlo dropout, and select the feature with
the maximum confidence gain of the predictor network while considering cost.
[5] classify non-medical data with a DQN-variant that penalizes accumulated
feature cost and incorrect predictions. RL-approaches have two important limi-
tations: first, agent and predictor only work in tandem, neither has any utility
or generalizability on its own. Second, unless agent and predictor are perfectly
tuned, the network can quickly settle on a sub-optimal final classification ac-
curacy in favor of low cost. Among the non-RL approaches, [3] classify fetal
heartbeat patterns using Recurrent Neural Networks (RNN), which suggest the
next feature through learned attention vectors as masks at every timestep. This
can lead to suggesting several or repeated features at each timestep, and requires
a fixed number of timesteps before its final prediction which can be ine�cient.
Kachuee et al. classify non-medical data [8] and detect hypothyroidism [6] using
denoising autoencoders (DAE). The DAE is trained with dropout at the input
layer, and learns to reconstruct complete feature vectors from incomplete inputs.
Next, the encoder part is fine-tuned and trained in tandem with a predictor net-
work towards the final prediction task. At test time, the partial derivatives of all
outputs with respect to each input feature are aggregated to form the total “fea-
ture attribution”. In this context, it is important to note that feature attribution
needs to fulfill four axioms, which have been derived in [15]. The gradient-based
attribution only with respect to the input as performed in [8,6] violates the
“Sensitivity Axiom” of feature attribution. This can lead to an acquisition of
ine�cient features [15] and ultimately, unnecessary patient examinations.

Contributions: 1) We propose for the first time to apply Integrated Gradi-
ents (IG), an axiomatic feature attribution method, to the problem of dynamic,
budgeted feature acquisition. 2) We propose Accumulated IG (AIG), for dynam-
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ically suggesting the next most important feature to acquire at test-time, and 3)
we highlight the advantages of our proposed approach on two medical datasets
and two explanatory datasets for illustration of its working principles.

2 Materials and Methods

2.1 Datasets and Preprocessing

To evaluate our method, we utilized four datasets. The first two are publicly
available medical datasets, to demonstrate the e�cacy of our method on real-life
data. The latter two datasets are non-medical, for further benchmarking as well
as to illustrate the inner workings and limitations of the di↵erent methods we
evaluate. For pre-processing, we perform outlier removal and scaling in NHANES
and Thyroid (Winsorization of real-valued features to [5, 95]-percentile, normal-
ization to range [0,1]). NHANES: The “National Health and Examination Sur-
vey” dataset [1] contains demographic information, laboratory results, question-
naire, and physical examination data. The goal here is to predict diabetes (nor-
mal, pre-diabetes, and diabetes) based on measured fasting glucose levels. Costs
for features were established in a crowd-sourcing approach [9], and represent the
total ‘inconvenience’ of feature acquisition from a patient-perspective (including
time burden, financial cost, discomfort, etc.) [7]. The cost varies from 1 to 9
on a relative, numeric scale. We use all 92062 samples and 45 features in this
dataset. Thyroid: The UCI Thyroid disease dataset [13,4] poses a three-class
classification problem (normal thyroid function vs. hyperfunction vs. or sub-
normal function). There are 21 features, representing demographic information,
questionnaires and laboratory results that are important for thyroid disease clas-
sification. Feature costs are provided as part of the public dataset “ann-thyroid”
[13], and range from 1.00 to 22.78. We use all 7200 samples and 21 features.
MNIST: In the MNIST dataset [11], we classify handwritten digit images in
vectorized form, to simulate a tabular dataset. We use all 70,000 images with
784 features. We further assume a uniform cost of 1 for every pixel, to make
our results comparable to related works. Synthesized: We also use a synthe-
sized dataset as in [6], to further explain and visualize the feature attribution
process. The dataset consists of 16,000 samples with 64 dimensions. The first 32
dimensions contain salient information for classification, at a linearly increasing
cost from 1 to 32. The second 32 dimensions contain no valuable information for
classification, again at a linearly increasing cost of 1 to 32. Hence, intuitively, an
e�cient feature acquisition approach should choose only features from the first
32 dimensions. For a more detailed explanation, we refer the reader to [6].

2.2 Problem Setting

In this work, we consider the problem of patient-specific, dynamic feature acqui-
sition at test time. The goal is to sequentially acquire features that can achieve
the maximum prediction performance, as e�ciently as possible. We aim for a
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model that is both cost- and feature-e�cient, i.e. a model that achieves the
maximum prediction performance with the least accumulated cost and smallest
number of features possible. Formally, we consider the problem of predicting a
target value ŷ 2 Y based on a feature vector x̄ 2 R

d, which initially contains
incomplete information about the patient at test-time. For clarity, we denote a
complete feature vector as x and an incomplete feature vector as x̄.

2.3 E�cient Feature Acquisition at test-time using Integrated

Gradients.

To e�ciently acquire features at test-time, we propose to use feature attribution
by Integrated Gradients (IG) [15]. Previous works make use of backpropagation
for feature acquisition [6,8], by calculating the gradients of the network at the
current input value. This, however, violates the “Sensitivity(a)” axiom of feature
attribution [15], which states that if an input di↵ers in one feature compared to
a neutral baseline input, and if this leads to a di↵erent output, then that feature
should be given a non-zero attribution. IG can be shown to uniquely satisfy the
axiom “Sensitivity(a)”, as well as the axiom “Implementation Invariance”, which
states that two di↵erent networks that produce the exact same outputs for the
same inputs should produce the same feature attribution [15].
Where previous gradient-based approaches [8,6] only take the gradient at the
current input, IG takes a path integral of the gradients while linearly blending
between a baseline input x0 2 R

d and the actual input x 2 R
d, to avoid local

gradients becoming saturated [15]. The baseline input x0 represents an “absence”
of features and can be encoded as a zero-valued vector. Importantly, IG was
originally designed for inference explanation, by computing feature attributions
with respect to the known correct output class and model posterior. In our
scenario, however, we do not know the output label of interest at test-time. We
thus propose Accumulated IG (AIG), i.e. to aggregate the attributions of all
input features from all possible output classes (see eqns. 1 and 2). In addition,
since we have an input x̄ which is initially empty at test-time, we have to use
a di↵erent baseline in order to be able to calculate AIG. We thus represent
missing features with a neutral baseline at the central tendency (i.e. mean),
analogous to mean-imputation in regular machine learning. Here, accumulating
the gradients implies combining attributions from K di↵erent functions. This
follows the “Linearity Axiom” of attribution theory, keeping AIG axiomatic as
in the original IG formulation [15].

To handle missing information at test-time, previous works [6,8] proposed
to use denoising autoencoders (DAE). We validate a combination of DAE with
AIG in our experiments, but we also propose a simplified version without the
need for auto-encoding. The simplified model is a vanilla multi-layer perceptron
(MLP) trained end-to-end, while applying a Beta-distributed dropout layer to
the input [6] to simulate missing information during training (see Fig. 1).

Implementation Details: We approximate the continuous IG as in [15] by
a few discrete steps. We calculate the attribution along the i-th dimension with
respect to one specific class (k) using:
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IGapprox

i,k
(x̄i, classk) = (x̄i � x0

i
)⇥

mX

s=1

@F (x0 + s

m
⇥ (x̄� x0))

@x̄i

⇥ 1

m
(1)

where x̄ is the input vector and x0
i
the baseline at the i-th dimension, @F (.)

@x̄i

is the partial derivative of the network’s output with respect to input x̄i, and
m is the number of approximation steps of the path integral in IG. We then
sum up all the attributions for the current feature from all classes and aggregate
both positive and negative gradients. To account for cost-e�ciency, we scale the
attribution to a feature by the inverse feature cost:

f (i) =
|
P

K

k=1 IG
approx(x̄i, classk)|

ci
(2)

where f (i) denotes the AIG feature attribute of input x̄i and ci denotes
its cost. Then ft 2 R

d is a vector which consists of AIG attributions of all

features [f (1)
t

, f (2)
t

, ..., f (d)
t

] at timestep t. To determine which feature to acquire
next, we take the index of the feature attribute with the maximum value: aft =
argmax (ft), where aft denotes the feature to acquire at timestep t as illustrated
in 1. Using this newly acquired feature and previously acquired features we then
perform classification (act) on this incomplete feature vector and obtain the
label yt. We repeat this process until there are no more remaining features to
acquire. Alternatively, one can set a maximum allowed cost to constrain feature
acquisition to a maximum allowed budget. The network architecture and an
unrolled feature acquisition process are illustrated in Fig. 1.
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Testing

stage

Complete 

vector

Incomplete

vector

Output
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Trained Predictor

Incomplete vector (dynamic

feature acquisition)
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"dropout"
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Fig. 1: Illustration of our proposed network architecture (left panel) and an un-
rolled feature acquisition sequence at test-time (right panel).

3 Results and Discussion

3.1 Experimental setup

Baseline model comparison: We evaluate our work against several base-
line and state-of-the-art approaches in budgeted feature acquisition, including
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a recent deep-RL [7], two non-RL [6,8], and a random feature selection based
approaches. We split the datasets into 15% test set and 85% training set, where
15% of the latter is used for validation. We use Adam optimization [10] imple-
mented in PyTorch [12] on a single-GPU workstation (Nvidia GTX 1080 Ti). For
RL, we used the author implementation and parametrizations of Opportunistic
Learning [7], to train an agent for 11,000 episodes. For comparison, all methods
including our own are based on a two-layer multilayer perceptron (MLP) [64
and 32 units]. The non-RL approaches we compare against are Dynamic Fea-
ture Query (DPFQ) [8] and Feature Acquisition Considering Cost at Test-time
(FACT) [6]. Again, we use the same MLP architecture for the encoder [64, 32],
decoder [32, 64], and predictor [32, 16, K classes]. For the binary layer in FACT,
we use the identical 8-bit representation as in [6]. Further, to randomly drop
entries, we use a Beta-distribution with ↵ = 1.5 and � = 1.5, following [6].
Proposed: We use a vanilla MLP (encoder [64, 32], and predictor [32, 16, K
classes]). We used the Adam optimizer in PyTorch with a low learning rate
(lr = 1e � 4). We use m = 50 for the number of steps in the integral approxi-
mation in eqn. (1).

3.2 Feature acquisition performance

We compare our work with previous deep-RL [7] and non-RL [6,8] techniques to
evaluate the e↵ectiveness of our proposed method. We observe that our proposed
AIG approach with and without DAE outperforms the SOTA methods, with a
particularly large margin in the two medical datasets. Overall, our approach is
the most cost- and feature-e�cient (see Fig. 3) and consistently achieves the
highest overall classification accuracy. The only exception is RL for Synthesized
data, but otherwise RL lacks robustness. Our method’s feature-e�ciency is ev-
ident e.g. in Thyroid and NHANES, on average, it is able to outperform the
SOTA and reach the maximum classification accuracy after just 7 (⇠ 33%) and
10 (⇠ 22%) features, respectively (see Fig. 3). Importantly, this directly trans-
lates to the avoidance of unnecessary examinations and a much faster time-to-
diagnosis, without requiring patients to undergo all examinations. Apart from
feature-e�ciency, our approach is also cost-e�cient, e.g. spending only ⇠ 20
(⇠ 25%) units of cost in Thyroid, and ⇠ 50 (⇠ 29%) units in NHANES to achieve
maximum classification performance. Further, methods like RL or DPFQ may
choose cheaper features first, despite little gain in classification accuracy (see
Fig. 3, right Thyroid panel), whereas our method suggests more costly features
in the beginning, at the benefit of reaching the highest classification accuracy
almost instantly.

3.3 Interpretation of patient-specific feature acquisition

We also use test samples of each dataset to visualize and discuss the order of
feature selection by the di↵erent methods. We show heatmaps in Fig. 2, where
warmer colors denote higher priority in the feature acquisition. We plot ten test
samples for datasets Thyroid, NHANES and Synthesized, and one test image
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from MNIST. In Fig. 2, we observe that our proposed approach initially always
acquires the most informative feature, before starting to acquire features in an
instance- or patient-specific manner. For example, in the Thyroid dataset, fea-
tures 21, 2, and 3 are consistently selected first by the model, while at feature 1
or 19, model suggestions start to diverge which feature to acquire next. Similarly
in NHANES, features 2 and 30 form an initial decision baseline, before the model
diverges into patient-specific decisions at features 33 or 45. In contrast, FACT
and RL may change the feature acquisition order almost instantly, already at the
first or second acquisition step, which may not always be justified or e↵ective.
In MNIST, FACT heatmaps show an outlining of the digit, as FACT multiplies
the output of the de-noising auto-encoder with the feature-aggregation score.
This strategy prioritizes high-intensity/-amplitude features, and leads to intu-
itive visualizations on MNIST, but does not directly translate to an e�cient
feature acquisition performance, as seen e.g. in the NHANES dataset. Further,
approaches like RL may choose features in random order (MNIST), or in or-
der of least cost instead of relevance (Synthesized). In future work, we aim at
investigating such phenomena from a medical perspective.

Ours w/ DAE Random DPFQ FACT RL

Fig. 2: Feature acquisition heatmaps for all datasets. From top to bottom: UCI-
Thyroid (10 patient samples), NHANES (10 patient samples), Synthesized (10
samples), and MNIST. Warmer colors denote higher priority for feature acqui-
sition.
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Fig. 3: Comparison of feature aggregation methods against our proposed ap-
proach, on four datasets (row 1: Thyroid; row 2: NHANES; row 3: Synthesized;
row 4: MNIST with uniform feature cost). Left column: Feature count vs. ac-
curacy curves; right column: Accumulated feature cost vs. accuracy. The com-
pared baseline approaches denote: Random (random feature selection), DPFQ
[8], FACT [6], RL [7]. Our approach is consistently most feature- and cost-
e�cient and achieves the highest classification final accuracy.
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4 Conclusion

We propose a novel method which can e�ciently acquire features at test-time,
through Accumulated Integrated Gradients (AIG) and network training with
dropout at the input layer. We empirically show that our approach is cost- and
feature-e�cient when evaluated on two medical datasets and two explanatory
toy datasets. Our proposed method enables patient-specific, peri-diagnostic deci-
sion support for clinicians, which could potentially optimize spending, maximize
hospital resources, and reduce examination burden for patients. Future work
could address two important limitations of our work, which occur frequently in
real-life clinical data, namely how to train a peri-diagnostic CADx system from
data that is i) incomplete at training time and ii) made up of features from
di↵erent modalities which are organized into blocks with acquisition costs that
increase blockwise instead of one feature at a time.
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istry of Education and Health (BMBF) in connection with the foundation of the
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0901].
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5.1 Motivation and Problem Definition

Machine learning has progressed quite rapidly throughout the past decade. We have seen
a lot of successful applications of ML in different domains including healthcare. However,
the translation of these successes into the clinic as well as into clinical research is not often
straightforward. This step is essential and there are many regulations to go through before they
can be officially used in regular clinical practice. It is important to consider such compliance
aspects, including the societal and ethical impact of one’s approach. Nonetheless, it is very
important that we are able to put these advancement in DL to good use. Therefore, as part of
the efforts of this thesis, we strove to perform translational research into the clinic. To this
end, we applied various ML and DL algorithms, both established ones and new ones proposed
in this thesis, to datasets at our clinical partner institute, the German Center for Vertigo and
Balance Disorders (DSGZ).

The goal of expert physicians at the specialized in-patient clinic of the DSGZ is to correctly
diagnose the clinical presentation of patients with vertigo, dizziness, and postural/gait im-
balance complaints. For certain conditions, doctors can easily perform diagnostic decisions.
However, there are cases where the clinical presentation of the complaints are very difficult

69



to diagnose as they are confounding with symptoms of other diseases [2, 43, 89, 91]. As a
result, it is not straightforward to determine whether the complaints could be attributed to a
problem in the peripheral or central vestibular system making the diagnosis very difficult and
potentially dangerous if not diagnosed correctly.

For example, one scenario with potential danger is the emergency department (ED), when
patients present themselves with dizziness symptoms (around 4% of patients, [54]). Stroke
is the underlying cause in 4–15% of those patients, but about 10% of strokes are missed at
first contact [80]. If patients get discharged from the ED with a suspected benign diagnosis,
they face a 50-fold increased risk of stroke in the first week compared to matched controls
[4]. Naturally, this is scenario where every practitioner would like to avoid a false negative
diagnosis.

In a collaboration between the DSGZ and the Chair for Computer-Aided Medical Procedures
(CAMP) at TUM, we took several translational efforts to apply ML/DL-based CADx methods
to address diagnostic challenges in posturography, emergency vertigo, and large dizziness
registry datasets.

5.2 Contributions

5.2.1 Towards computerized diagnosis of neurological stance
disorders: data mining and machine learning of
posturography and sway (Journal of Neurology 2019)

Neurological disorders of posturography and balance could offer clues to the underlying
neurological disorder. Diagnosis can be done easily for some conditions (e.g. Persistent
Postural-Perceptual Dizziness, PPPD, [76]) while others are much more difficult requiring
further tests (e.g. polyneuropathy, PNP, [2]). One way to assess such difficult cases is using
static posturography while undergoing different levels of controlled conditions to put the
vestibular system to the test. Here, the displacement of the center-of-pressure is measured
as a time-sequence. From this, clinically-relevant features can be derived, such as various
frequency bands using Fourier analysis as well as accumulated sway paths and root-mean-
square values.

Before the resurgence of neural networks, Support-Vector Machines and Random Forest
were established methods for CADx. With the breakthroughs of deep neural networks in
computer vision applications, we explore the utility of these recent advancements for medical
applications such as in CADx. To this end, we explore the utility of neural- and non-neural
network based models and applied ensemble methods to improve classification performance
in neurological stance disorders.
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5.2.2 Modern machine-learning can support diagnostic
di�erentiation of central and peripheral acute vestibular
disorders (Journal of Neurology 2020)

In the emergency department, one of the most important aspects for the diagnosing clinician
is to distinguish whether a patient suffering from acute vestibular syndrome is due to a central
or peripheral acute vestibular disorder. Acute vestibular disorder or acute vestibular syndrome
(AVS) is characterized by abrupt onset of acute, ’continuous’ vertigo (lasting for more than 24
hours). Individuals suffering from this condition also suffer head motion intolerance, nausea,
and vomiting [37]. Patients with central acute vestibular disorder are associated with stroke
and periphercal acute vestibular disorder is more associated with pathology of the inner ear
vestibular structures. One way to assess and detect stroke in acute vestibular syndrome is
using HINTS (Head Impulse–Nystagmus–Test of Skew) [38] and ABCD2 (Age, Blood, Clinical
features, Duration, Diabetes) [55]. HINTS is performed to test the presence of any of the
three oculomotor signs. ABCD2 is used to score the risk for stroke in the days following
transient ischaemic attack (TIA). Although previous works suggest that HINTS could yield
sensitivity and specificity >90% [39], it still remains a challenge in the emergency department
to differentiate patients central AVS from peripheral AVS due to the subjectivity of the test
and reliance to clinical expertise of the examining physician. In this work, we compared
state-of-the-art scoring tests with ML approaches, in order to assess their efficacy for diagnostic
differentiation.
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Abstract
Background Diagnostic classification of central vs. peripheral etiologies in acute vestibular disorders remains a challenge 
in the emergency setting. Novel machine-learning methods may help to support diagnostic decisions. In the current study, 
we tested the performance of standard and machine-learning approaches in the classification of consecutive patients with 
acute central or peripheral vestibular disorders.
Methods 40 Patients with vestibular stroke (19 with and 21 without acute vestibular syndrome (AVS), defined by the presence 
of spontaneous nystagmus) and 68 patients with peripheral AVS due to vestibular neuritis were recruited in the emergency 
department, in the context of the prospective EMVERT trial (EMergency VERTigo). All patients received a standardized 
neuro-otological examination including videooculography and posturography in the acute symptomatic stage and an MRI 
within 7 days after symptom onset. Diagnostic performance of state-of-the-art scores, such as HINTS (Head Impulse, gaze-
evoked Nystagmus, Test of Skew) and  ABCD2 (Age, Blood, Clinical features, Duration, Diabetes), for the differentiation 
of vestibular stroke vs. peripheral AVS was compared to various machine-learning approaches: (i) linear logistic regression 
(LR), (ii) non-linear random forest (RF), (iii) artificial neural network, and (iv) geometric deep learning (Single/MultiGMC). 
A prospective classification was simulated by ten-fold cross-validation. We analyzed whether machine-estimated feature 
importances correlate with clinical experience.
Results Machine-learning methods (e.g., MultiGMC) outperform univariate scores, such as HINTS or  ABCD2, for dif-
ferentiation of all vestibular strokes vs. peripheral AVS (MultiGMC area-under-the-curve (AUC): 0.96 vs. HINTS/ABCD2 
AUC: 0.71/0.58). HINTS performed similarly to MultiGMC for vestibular stroke with AVS (AUC: 0.86), but more poorly for 
vestibular stroke without AVS (AUC: 0.54). Machine-learning models learn to put different weights on particular features, 
each of which is relevant from a clinical viewpoint. Established non-linear machine-learning methods like RF and linear 
methods like LR are less powerful classification models (AUC: 0.89 vs. 0.62).
Conclusions Established clinical scores (such as HINTS) provide a valuable baseline assessment for stroke detection in acute 
vestibular syndromes. In addition, machine-learning methods may have the potential to increase sensitivity and selectivity 
in the establishment of a correct diagnosis.

Keywords Acute vestibular syndrome · HINTS · Machine-learning · MRI · Vestibular neuritis · Vestibular stroke
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Introduction

Patients with acute vertigo and dizziness account for about 
4% of all visits to the emergency department (ED) [1]. 
Stroke is the underlying cause in 4–15% of all patients, and 
up to 25% of patients with the presentation of acute vestibu-
lar syndrome (AVS, defined by the presence of spontaneous 
nystagmus) [1, 2]. About 10% of strokes are missed at first 
contact [3]. Patients discharged from the ED with a sus-
pected benign diagnosis of acute vertigo or dizziness have a 
50-fold increased risk of stroke in the first week compared 
to matched controls [4]. Reasons for this deplorable situa-
tion are an overreliance on symptom quality and intensity 
as distinctive features, inadequate knowledge or application 
of bedside ocular motor examinations, and a blind trust in 
cerebral imaging results [5]. Consequently, ED physicians 
worldwide rank vertigo and dizziness as one of the top prior-
ities for the development of better diagnostic algorithms [6].

Different concepts exist to differentiate peripheral and 
central etiologies of acute vertigo and dizziness [7, 8]. One 
strategy relies on a comprehensive examination of vestibular, 
ocular motor, and postural functions. For AVS, the HINTS 
test (Head Impulse, gaze-evoked Nystagmus, Test of Skew) 
has a high sensitivity and specificity (> 90%) for identifica-
tion of stroke [9]. The diagnostic accuracy of HINTS can be 
further improved by video oculographic quantification of the 
head impulse test (vHIT) [10, 11]. Examination-based clas-
sification approaches require a profound knowledge of exam-
ination techniques and expertise in interpretation of find-
ings. Another idea is to stratify the risk of vestibular stroke 
by diagnostic index tests, which aggregate information on 
symptom characteristics (such as symptom onset and dura-
tion, triggers, accompanying complaints) and cardiovascular 
risk factors (CVRF). For example, the  ABCD2 score (Age, 
Blood pressure, Clinical features, Duration, Diabetes) can 
help to estimate the risk of vestibular stroke, but is inferior 
to HINTS in diagnostic accuracy [12, 13]. The advantage of 

index tests based on history taking is that they are easy to 
apply and not restricted to clinical subtypes such as AVS. 
Diagnostic approaches by magnetic resonance imaging 
(MRI) only, have a high rate of false-negative results (50% 
for lesions < 10 mm) in the first 48 h after symptom onset 
and are, therefore, not reliable during the acute stage [5, 14].

In the current study, we applied modern machine-learning 
algorithms to classify vestibular stroke vs. peripheral AVS due 
to vestibular neuritis based on a multimodal data set (including 
a standardized assessment of symptom features, CVRF, and 
detailed quantitative testing of ocular motor, vestibular, and 
postural functions). Machine-learning approaches were com-
pared to state-of-the-art tests (such as HINTS,  ABCD2) to eval-
uate their feasibility and value for diagnostic decision support.

Methods

Patient cohorts and study protocol

In total 108 patients, who were admitted to the ED of the 
University Hospital (LMU Munich), were included in this 
study and received a standardized assessment (of symptom 
features, CVRF, and vestibular, ocular motor and postural 
functions) following the EMVERT trial protocol [15]. Based 
on the findings of MRI (performed within 7 days after 
symptom onset) and videooculography (vHIT gain thresh-
old: 0.7, refixation saccades, gaze-evoked nystagmus, skew 
deviation), 40 patients were diagnosed as having vestibular 
stroke (64.1 ± 12.2 years, 67.5% men, 19 with presentation 
of AVS), and 68 as having peripheral AVS due to vestibular 
neuritis (55.6 ± 14.6 years, 64.7% men). Classification algo-
rithms (established index tests vs. modern machine-learning 
techniques) were applied post hoc to test their diagnostic 
accuracy for differentiation of both groups.

Protocol approval and patient consent

The study was approved by the Ethics Committee of the 
University of Munich on February 23, 2015 (57–15). The 
study was conducted according to the Guideline for Good 
Clinical Practice (GCP), the Federal Data Protecting Act 
and the Helsinki Declaration of the World Medical Asso-
ciation in its current version (revision of Fortaleza, Brazil, 
October 2013). All subjects gave their informed, written 
consent to participate in the study.

Assessment of symptom characteristics 
and cardiovascular risk factors

In all patients, a standardized history was taken in the ED, 
including the following features: symptom quality (vertigo, 
dizziness, double vision), symptom onset (acute, lingering), 
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symptom duration (10–60 min, > 60 min), symptom inten-
sity (by visual analogue scale), preceding triggers (yes, no), 
accompanying features (ear symptoms, central neurologi-
cal symptoms), and CVRF (diabetes, high blood pressure 
(> 140 mmHg), nicotine abuse, atrial fibrillation, family his-
tory, prior stroke or myocardial infarction). Health-related 
quality of life and functional impairment was assessed by 
questionnaires: European Quality of Life Score—5 dimen-
sions—5 levels (EQ-5D-5L), including subscores for anxi-
ety, pain, activity, self-care, and mobility (ranging from 1–5 
each with 5 indicating worst impairment) [16], EQ visual 
analogue scale (EQ-VAS) (ranging from 0–100 with 100 
being the best status), Dizziness Handicap Inventory (DHI) 
(ranging from 0–100 points (maximum)) [17], and modified 
Rankin scale (mRS) (ranging from 0–6 points).

Quantitative assessment of vestibular, ocular motor 
and postural functions

Videooculography (VOG): Vestibular and ocular motor signs 
were documented by VOG (EyeSeeCam®, EyeSeeTec GmbH, 
Munich, Germany) during the acute stage of symptoms, 
including nystagmus in straight ahead position (slow phase 
velocity (SPV) (°/sec), amplitude (°), horizontal and vertical 
component, with and without fixation), horizontal vestibulo-
ocular reflex (VOR) function by vHIT (gain, presence of refix-
ation saccades), gaze-evoked nystagmus (SPV (°/sec), horizon-
tal and vertical component, lateral and vertical gaze positions), 
saccades (velocity (°/sec), horizontal and vertical direction), 
smooth pursuit (gain, horizontal and vertical direction), fixa-
tion suppression of the VOR (gain, horizontal direction), and 
skew deviation (cover test in six gaze positions). VOR gain was 
rated as pathological for values < 0.7. Suppression of spontane-
ous nystagmus (SPN) was positive, if the horizontal or vertical 
component of the SPV decreased by at least 40% on fixation.

Testing of subjective visual vertical (SVV): The SVV was 
measured by the bucket test method as described previously 
[18, 19]. Ten repetitions (5 clockwise/ 5 counter clockwise 
rotations) were performed and a mean of the deviations was 
calculated. The normal range was defined as 0 ± 2.5° [19].

Posturography: A posturographic measurement of body 
sway was performed using a mobile device (Wii Balance 
Board®, Nintendo Co. Ltd., Kyoto, Japan). Four conditions 
were tested: bipedal standing with eyes open/closed, upright 
tandem standing with eyes open/closed. For each condition, 
the sway pattern, normalized path length, root mean square, 
and peak-to-peak values in medio-lateral and anterior–pos-
terior direction were analyzed.

MRI protocol

The standardized protocol included whole brain and brain-
stem fine slice (3 mm) diffusion-weighted images (DWI), 

whole brain fluid attenuated inversion recovery (FLAIR)- 
and T2-weighted images including brainstem fine slicing 
(3 mm), T2*-weighted images, 3D-T1-weighted sequences 
(FSPGR 1 mm isovoxel) and time-of-flight angiography. All 
images were evaluated for the presence of ischemic stroke or 
bleeding by two specialized neuro-radiologists.

Classi"cation methods

We prospectively evaluated two established diagnostic index 
tests, the HINTS and  ABCD2 clinical scores for stroke detec-
tion, to establish a baseline classification performance. We 
compared these baselines against the performance of vari-
ous modern machine-learning techniques. The latter learn 
the mapping of 305 input features (from history taking, 
questionnaires, and instrumentation-based examinations) 
to the output class of stroke vs. peripheral AVS. The clas-
sification performance is quantified with three diagnostic 
test measures [20], namely the area-under-the-curve of a 
receiver-operating-characteristic (ROC-AUC), accuracy, and 
F1-score, defined as:

Here, TP/TN/FP/FN indicate the number of true-posi-
tive/true-negative/false-positive/false-negative detections, 
respectively, and N indicates the number of test samples 
overall. The established diagnostic index tests and each of 
the machine-learning techniques are described briefly in the 
following.

HINTS: The HINTS clinical scoring system aggregates a 
risk score for detection of vestibular stroke, as proposed in 
[9]. HINTS constitutes a 3-step examination, based on Head 
Impulse, gaze-evoked Nystagmus, and Test of Skew. HINTS 
indicates a central pattern, if horizontal head impulse test is 
normal, and/or a direction-changing nystagmus in eccentric 
gaze, and/or a skew deviation is detected. Consequently, in 
our data set we give 1 point per central HINTS item and 
define a HINTS score cutoff value of ≥ 1 as indicative for 
vestibular stroke. From this binary value for stroke diag-
nosis, we compute the detection accuracy and F1-score. 
Additionally, we perform a receiver-operator-characteristic 
(ROC) analysis, varying the HINTS cutoff over our data set, 
to obtain an area-under-the-curve (AUC) score.

ABCD2:  ABCD2 is an aggregative scoring system for 
clinical detection of stroke as proposed in [21] and vali-
dated in [22].  ABCD2 is based on the following features: 

Accuracy = TP + TN
N

F1 − score =
2 ∙ precision ∙ recall

precision + recall
;

precision =
TP

TP + FP
;recall =

TP

TP + FN
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age ≥ 60 years (1 point); blood pressure ≥ 140/90 mm Hg 
(1 point); clinical features: unilateral weakness (2 points), 
speech impairment without weakness (1 point); dura-
tion ≥ 60 min (2 points) or 10–59 min (1 point); and diabe-
tes (1 point). For stroke detection in our study, we consider 
 ABCD2 scores at a cutoff value of ≥ 3. We apply this cutoff 
to our dataset prospectively, and obtain the accuracy and 
F1-score, as well as a ROC-AUC score.

Logistic Regression (LR): In descriptive statistics, LR is 
used to report the goodness-of-fit of a linear set of equa-
tions, mapping a set of input features (i.e., observations) to 
a binary descriptor variable (e.g., stroke indicator variable). 
In this work, we use LR in a prospective/predictive man-
ner. We regularize LR with a combined L1 and L2 loss, 
which allows learning of a Lasso-like sparse model, while 
still maintaining the regularization properties of a ridge clas-
sifier [23, 24]. The balancing ratio between the L1 and L2 
losses is optimized during learning as a hyper-parameter. 
After fitting the LR parameters to samples in a training set, 
we apply the fitted model to samples in a holdout test set, to 
obtain a logistical posterior probability of stroke. We bina-
rize the soft decision output of LR at a posterior probability 
p(stroke�features) > 0.5 , from which accuracy and F1-score 
are calculated. The AUC value is obtained by computing 
an ROC analysis on the probabilistic predictions for all 
samples.

Random Forest (RF): RF bundles an ensemble of decision 
tree (DT) models to compensate for tree overfitting [25] by 
vote aggregation [26]. In this work, we tune the number of 
DTs within the range of 5 to 50 trees towards optimal pre-
diction performance. Due to the vote aggregation from the 
ensemble, an RF yields a probabilistic posterior. Accuracy, 
F1-score, and ROC-AUC are calculated on this posterior.

Artificial neural network (ANN): Computer-aided diag-
nosis has advanced due to the application of machine-learn-
ing techniques [27]. In particular, our own previous work 
[28–30], as well as numerous works in related literature [31] 
have demonstrated the effectiveness and modeling flexibility 
of ANNs for computer-aided diagnosis in medicine. Here, 
we apply a multilayer perceptron (MLP) with 305 input neu-
rons, two hidden layers (128 and 64 neurons each), and two 
softmax-activated output neurons for classification. Due to 
the non-linear activation at the output layer, our ANN also 
yields a probabilistic posterior, allowing the calculation of 
accuracy, F1-score and ROC-AUC.

Geometric matrix completion (GMC): Geometric deep 
learning [32] is a novel field of deep learning, and has been 
introduced for computer-aided diagnosis in medicine only 
recently [33]. In previous work, we have shown that it is 
advantageous to construct multiple population graphs from 
meta-features of patients [34, 35]. We further proposed 

GMC [36] (denoted in the following as SingleGMC) to alle-
viate the common problem of missing values in medical data 
sets [37]. Recently, we have combined these ideas into multi-
graph matrix completion (MultiGMC) [38]. Here, we apply 
both the original SingleGMC approach [36] and MultiGMC 
to our data set. In SingleGMC, we used a single graph and 
constructed it using age and  ABCD2 scores. Graph connec-
tions are calculated based on similarity measures using age 
(age difference ± 5 years) and  ABCD2 scores (± 1 score). For 
SingleGMC, the graph connectivity is the sum of these simi-
larity measures. In MultiGMC, instead of taking the sum, we 
use them as two separate graphs. We learn separate patient 
representations within these two graphs (a single spectral 
convolutional layer per graph) and aggregate them via self-
attention, before computing the classification posterior [38]. 
The calculation of accuracy, F1-score, and ROC-AUC is per-
formed as for LR/RF/ANN.

The models LR, RF, and ANN were based on implemen-
tations in the scikit-learn machine-learning library [39], 
while GMC [36] and MultiGMC [38] are custom imple-
mentations, based on PyTorch [40].

Statistical analysis

Compared to HINTS and  ABCD2, which are evaluated pro-
spectively on the entire data set, the training of machine-
learning models on the entire data set would result in overfit-
ting and an overly optimistic performance estimate. Instead, 
we split the data into a training set and a test set, to obtain a 
prospective classification performance for our investigated 
models. All machine-learning based classification results 
were thus obtained following a rigorous ten-fold cross-vali-
dation scheme [41], with stratified label sampling to account 
for class imbalance, and a data split ratio of 90% training vs. 
10% testing data. To perform hyper-parameter tuning for all 
methods, we monitored the tuned model performances on a 
withheld validation set (10% of the training set). We com-
pared the best-performing model to the other four models, 
in terms of classification accuracy by pair-wise, two-tailed, 
non-parametric hypothesis tests (Wilcoxon signed-rank test) 
at a level of significance p < 0.05.

Furthermore, to make the results of the machine-learn-
ing classifier more explainable, we used the RF classifier 
to compute, which features contribute the most towards the 
detection of stroke. Such analysis constitutes a fundamen-
tal technique in the domain of machine-learning interpret-
ability [42]. Feature importance was calculated according 
to the Mean Decrease in Impurity (MDI) measure [43], as 
implemented in scikit-learn [39]. We ranked the discrimina-
tive power of features by sorting the MDI coefficients, and 
reported the top 10 most important features utilized by the 
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RF during classification. For these features, univariate analy-
sis of quantitative values was performed for patients with 
vestibular stroke and vestibular neuritis (% for categorical 
variables, mean ± SD for continuous variables). The param-
eters were compared between groups using either the Chi-
square test or Mann–Whitney U-test applying a significance 
level of p < 0.05.

Results

Prospective evaluation of HINTS and  ABCD2 
diagnostic performance

In a prospective analysis, we validated the classification 
scores of HINTS and  ABCD2 for detection of all ves-
tibular strokes (AVS and non-AVS presentation) against 

Fig. 1  a Accuracy, b ROC-AUC, and c F1-score (F-measure) of 
five machine-learning classifiers used in this work (LR: Logistic 
regression, RF: Random Forest, ANN: Artificial neural network, 
SingleGMC: Single-graph geometric matrix completion [36], Mul-
tiGMC: Multi-graph geometric matrix completion). As a baseline 

comparison we additionally indicate HINTS and  ABCD2 perfor-
mances (accuracy, ROC-AUC). The prospective validation of univari-
ate clinical scores is illustrated as grey horizontal baselines (HINTS: 
dash-dotted line,  ABCD2: dotted line)
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peripheral AVS. In our data set, HINTS was able to detect 
all strokes with an accuracy of 72.7%, at a ROC-AUC of 
0.71. In comparison,  ABCD2 detected stroke with a lower 
accuracy of 45.4%, at a ROC-AUC of 0.58. We indicate 
these univariate baseline methods as dashed horizontal 
lines in Fig. 1, to which we compare our machine-learning 
based models. HINTS had a diagnostic accuracy of 82.8%, 
at a ROC-AUC of 0.86 for stroke with AVS, and a diagnos-
tic accuracy of 66.7%, at a ROC-AUC of 0.54 for stroke 
without AVS.  ABCD2 performed with an accuracy of 
37.7 (ROC-AUC of 0.59) for stroke with AVS, and 38.6% 
(ROC-AUC of 0.62) for stroke without AVS.

Machine-learning models for vestibular stroke 
detection

The median accuracy of all machine-learning methods 
ranged between 52% (LR) and 82% (MultiGMC). Two 
models, the linear LR and the non-linear ANN, achieved 
lower classification accuracy than the univariate meas-
ures HINTS and  ABCD2 for all vestibular strokes vs. 
peripheral AVS, while RF/SingleGMC/MultiGMC were 
able to achieve better accuracy (Fig. 1a). Similar results 
were obtained for AUC and F1-score (Fig. 1b, c). Nota-
bly, two methods (RF and MultiGMC) were also able 
to achieve perfect classification accuracy, F1-score, and 

ROC-AUC for one of the five cross-validation folds, while 
LR and ANN, achieved a zero (0.0) F1-score for one of 
five folds. In general, MultiGMC yields comparably stable 
results over all five folds, with consistently high accuracy, 
F1-score, and ROC-AUC values. Comparing machine-
learning classifiers statistically, MultiGMC classifies sig-
nificantly better than LR (p < 0.01), ANN (p < 0.05), and 
SingleGMC (p < 0.05), but not significantly better than 
RF (p = 0.69).

Feature importance ranking

We used RF to rank features according to their discrimina-
tive performance. The top 10 selected features can be seen 
in Table 1. Features from device-based measurements such 
as VOG, SVV testing, and posturography, were considered 
as single parameters (e.g., vHIT-gain right, vHIT-gain left) 
or in an aggregated manner (vHIT pathological or normal 
based on a gain cutoff of 0.7 or presence of refixation sac-
cades). No posturographic or SVV features were selected by 
the RF classifier as being among the top 10 important fea-
tures. Instead, two aggregated VOG features (vHIT patho-
logical, presence of horizontal SPN) and eight VOG-based 
single features were identified (e.g., vHIT gain, gaze-evoked 
nystagmus left, right).

Quantitative univariate analysis of the 10 most important 
features revealed significant intergroup differences for all 

Table 1  Top 10 most important features, ranked by RF classifier (i.e., ranked by discriminative power for classification) (left side)

Quantification of the respective features (as % or mean ± STD) in patients with vestibular neuritis or vestibular stroke and statistical intergroup 
comparison (Mann–Whitney U test for features 2–4 and 6–10, Chi-square test for features 1 and 5) (right side). GEN gaze-evoked nystagmus, 
SPN spontaneous nystagmus, SPV slow phase velocity, STD standard deviation, VOG videooculography, VOR vestibulo-ocular reflex, vHIT 
video head impulse test; *vHIT was pathological in vestibular stroke lesions affecting the vestibular nucleus or medial longitudinal fascicle; 
**Gain is depicted for the affected side in vestibular neuritis; ***In three patients without apparent SPN, symptoms of vestibular neuritis had 
already started ≥ 3 days before VOG recording

Rank in RF Feature Feature type Vestibular neuritis Vestibular stroke P value

1 vHIT pathological (gain < 0.7/refixation saccades) VOG (aggregated) 100% 12.5%*  < 0.0001
2 vHIT gain (right) VOG (single feature) 0.6 ± 0.3** 0.9 ± 0.3  < 0.0001
3 Fixation suppression of VOR gain (horizontal) VOG

(single feature)
0.03 ± 0.03 0.09 ± 0.06  < 0.0001

4 Smooth pursuit gain (downward direction) VOG
(single feature)

0.75 ± 0.17 0.67 ± 0.2 0.01

5 SPN present without fixation (horizontal) VOG
(aggregated)

95.5%*** 47.5%  < 0.0001

6 SPV of SPN (0° position, vertical component) VOG
(single feature)

2.0 ± 2.5°/s 1.0 ± 1.5°/s 0.09

7 SPV of GEN (15° right, horizontal component) VOG
(single feature)

1.2 ± 1.5°/s 0.4 ± 0.6°/s 0.004

8 SPV of SPN (0° position, horizontal component) VOG
(single feature)

4.7 ± 4.0°/s 1.0 ± 1.0°/s  < 0.0001

9 SPV of GEN (15° left, horizontal component) VOG
(single feature)

1.6 ± 2.5°/s 0.3 ± 0.4°/s 0.002

10 STD of SPN amplitude (0° position, horizontal) VOG
(single feature)

2.3 ± 1.4° 1.8 ± 0.8° 0.0005
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but one feature (i.e., rank 6, vertical component of SPN in 
0° position, p = 0.09) (Fig. 1). The following features dis-
criminated best between groups: (1) vHIT was pathologic 
in 100% of patients with vestibular neuritis (gain: 0.6 ± 0.3 
at affected side), but only in 12.5% of patients with ves-
tibular stroke (gain: 0.9 ± 0.3) (p < 0.0001). (2) SPN was 
found more frequently in vestibular neuritis (95.5%) than in 
vestibular stroke (47.5%), and was more intense (horizontal 
SPV in 0° position: 4.7 ± 4.0°/s vs. 1.0 ± 1.0°/s) (p < 0.0001). 
(3) Fixation suppression of the VOR was abnormal in ves-
tibular stroke (gain: 0.09 ± 0.06), but intact in vestibular neu-
ritis (gain: 0.03 ± 0.03). SPN was suppressed by fixation in 
94% of patients with vestibular neuritis. Ranking of feature 
importance by RF reflected clinically important parameters 
with significant intergroup differences.

Discussion

Analysis of various approaches for the detection of patients 
with vestibular stroke (with the clinical presentation of 
AVS or non-AVS) vs. patients with peripheral AVS due to 
vestibular neuritis revealed the following findings: HINTS 
achieves better classification than  ABCD2 and two of the 
tested machine-learning methods (LR, ANN), but is not 
as accurate as the more modern tested machine-learning 
methods (RF, Single-/MultiGMC) for differentiation of all 
vestibular strokes against peripheral AVS. In the following, 
we discuss the methodological and clinical implications of 
these findings.

Comparison of the di#erent methodological 
approaches

In the current study, we compared two established clini-
cal classification scores (HINTS,  ABCD2) to a number of 
machine-learning techniques, both classical methods (LR, 
RF, ANN) and deep learning techniques based on popula-
tion-modeling with graphs (SingleGMC, MultiGMC). In 
terms of median accuracy and area-under-the-curve (AUC), 
all machine-learning classifiers outperformed the detec-
tion rate of stroke as indicated by  ABCD2. Compared to 
HINTS, however, several machine-learning classifiers per-
formed similarly (LR, ANN, SingleGMC), while only RF 
and MultiGMC were able to reliably outperform HINTS. 
For vestibular stroke with AVS, the diagnostic accuracy of 
HINTS was comparable to MultiGMC. From a methodologi-
cal perspective, our results provide a reliable estimate of a 
potential prospective classification performance for future 
validation studies, due to the usage of a rigorous cross-
validation scheme and hyper-parameter optimization of all 

machine-learning models. More training data in prospective 
studies may improve results further, as data set size is usu-
ally a limiting factor in machine-learning studies [41]. The 
RF models yielded satisfactory results, while deep learn-
ing models, particularly MultiGMC, were able to improve 
results further. In general, the possibility to incorporate a 
semantic population model built from disease-relevant meta-
features in form of a graph is attractive from a clinical point 
of view. The efficacy of this approach in everyday life clini-
cal scenarios needs to be further validated in future studies.

Clinical implications

There is increasing discussion about the use of computer-
aided diagnostic support systems in the context of com-
plex clinical scenarios. The differentiation of central and 
peripheral etiologies of acute vertigo and dizziness poses 
such a challenge. Established diagnostic algorithms such 
as HINTS perform very well for AVS, which accounts 
for about half of acute presentations of vertigo or diz-
ziness [9, 10]. Stroke detection remains particularly dif-
ficult, if patients have non-AVS presentations, transient 
or mild symptoms [3]. Therefore, in the current study we 
analyzed all vestibular stroke patients (AVS, non-AVS) 
against peripheral AVS. In our data set,  ABCD2 had a 
low diagnostic performance to indicate vestibular stroke 
and HINTS outperformed  ABCD2. Nevertheless, for all 
vestibular stroke patients (AVS, non-AVS), the diagnostic 
accuracy of HINTS was lower than previously reported 
for AVS only [9]. Modern machine-learning techniques 
(such as MultiGMC) had the highest diagnostic accu-
racy in separating vestibular stroke from peripheral AVS. 
Interestingly, ranking of feature importance by machine-
learning algorithms (such as RF) closely resembled exist-
ing clinical experience. The top two features are derived 
from head impulse testing (vHIT pathologic, vHIT gain). 
In accordance, HIT has been previously considered the 
most important component of HINTS with a 18-fold stroke 
probability if normal in presence of SPN [44]. Two other 
features (ranks 7, 9) are concerned with gaze-evoked nys-
tagmus, which is also part of HINTS. Skew deviation was 
not included in the 10 top features, which may be due to its 
low rate of manifestation (present in only about one quar-
ter of vestibular stroke patients) [45]. Intensity of SPN was 
weighted prominently (ranks 5, 6, 8, 10). An additional 
feature with a high importance was a disturbed fixation 
suppression of the VOR (rank 3). This sign is regularly 
found in cerebellar lesions involving the uvula, pyramis, 
nodulus, and flocculus, which are common in patients with 
vestibular stroke [46, 47]. Notably, all the top-ranked fea-
tures resulted from VOG examination, while SVV testing 
and posturography seemed to be less important. It is well-
known that SVV deviation is found both in peripheral and 
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central vestibular lesions, because it reflects a peripheral 
or central tone imbalance of graviceptive input originating 
from the vertical semicircular canals and otoliths [48]. The 
underrepresentation of postural parameters in our data set 
is in partial contrast to previous clinical studies, which 
have shown a high diagnostic relevance of the extent of 
falling tendency in AVS [49]. This discrepancy may be 
explained by the fact that the overall sway pattern cannot 
be derived from one or two features, but rather from a 
complex interplay of parameters [30].

Conclusions

This feasibility study shows the potential of modern 
machine-learning techniques to support diagnostic deci-
sions in acute vestibular disorders. The current algorithm 
is tailored for the differentiation of vestibular neuritis vs. 
vestibular stroke only, and heavily depends on a quantita-
tive and comprehensive assessment of vestibular and ocu-
lar motor functions by VOG, which limits its application 
under everyday life conditions in the ED. Therefore, future 
studies should focus on tailored VOG-protocols, include 
other qualitative factors (like triggers, acuity of onset, 
accompanying symptom features), and test the validity of 
machine-learning approaches in larger multicenter data 
sets for a wider range of differential diagnoses, such as 
Menière’s disease and vestibular migraine.
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5.2.3 Using Base-ml to Learn Classification of Common
Vestibular Disorders on DizzyReg Registry Data
(Frontiers in Neurology 2021

Machine learning with massive datasets has the potential to provide clinical decision support.
One such application is in vestibular research. Particularly, the disease classification of
vestibular disorders. In the context of ML-based CADx, there exist a large selection of ML/DL
methods available one could build for disease classification. This increases the complexity
of the data analysis. To this end, we build a Python software package called base-ml that
combines the use of different open-source python python packages for fast-prototyping of
baseline models and baseline state-of-the-art approaches in CADx. To evaluate different ML
models, we utilize a comprehensive clinical database of patients with symptoms of vertigo
and dizziness from the German Center for Vertigo and Balance Disorders (DSGZ).

84 Chapter 5 Translating Computer-aided Diagnosis (CADx) into clinical research settings using benchmarks

of shallow and deep learning models.
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Background: Multivariable analyses (MVA) and machine learning (ML) applied on large

datasets may have a high potential to provide clinical decision support in neuro-otology

and reveal further avenues for vestibular research. To this end, we build base-ml, a

comprehensive MVA/ML software tool, and applied it to three increasingly difficult clinical

objectives in differentiation of common vestibular disorders, using data from a large

prospective clinical patient registry (DizzyReg).

Methods: Base-ml features a full MVA/ML pipeline for classification of multimodal patient

data, comprising tools for data loading and pre-processing; a stringent scheme for

nested and stratified cross-validation including hyper-parameter optimization; a set of 11

classifiers, ranging from commonly used algorithms like logistic regression and random

forests, to artificial neural network models, including a graph-based deep learning model

which we recently proposed; a multi-faceted evaluation of classification metrics; tools

from the domain of “Explainable AI” that illustrate the input distribution and a statistical

analysis of the most important features identified by multiple classifiers.

Results: In the first clinical task, classification of the bilateral vestibular failure (N = 66)

vs. functional dizziness (N = 346) was possible with a classification accuracy ranging up

to 92.5% (Random Forest). In the second task, primary functional dizziness (N= 151) vs.

secondary functional dizziness (following an organic vestibular syndrome) (N= 204), was

classifiable with an accuracy ranging from 56.5 to 64.2% (k-nearest neighbors/logistic

regression). The third task compared four episodic disorders, benign paroxysmal

positional vertigo (N = 134), vestibular paroxysmia (N = 49), Menière disease (N = 142)

and vestibular migraine (N = 215). Classification accuracy ranged between 25.9 and

50.4% (Naïve Bayes/Support Vector Machine). Recent (graph-) deep learning models

classified well in all three tasks, but not significantly better than more traditional ML

methods. Classifiers reliably identified clinically relevant features as most important

toward classification.

Conclusion: The three clinical tasks yielded classification results that correlate with

the clinical intuition regarding the difficulty of diagnosis. It is favorable to apply an
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array of MVA/ML algorithms rather than a single one, to avoid under-estimation of

classification accuracy. Base-ml provides a systematic benchmarking of classifiers,

with a standardized output of MVA/ML performance on clinical tasks. To alleviate

re-implementation efforts, we provide base-ml as an open-source tool for the community.

Keywords: chronic vestibular disorders, classification, machine learning, multivariable statistics, clinical decision

support (cdss), episodic vestibular symptoms

INTRODUCTION

Multivariable statistical analysis (MVA), and modern machine
learning (ML) methods have the potential to serve as clinical
decision support systems (CDSS) (1–3), including the computer-
aided diagnosis (CADx) of vestibular disorders (4–8). In
combination with large datasets andmulti-site cohorts, MVA/ML
classification algorithms allow for investigating interactions
between patient variables, which is why recent works advocate
that these methods should be used more widely in neuro-otology
and vestibular neuroscience (9). However, there is a wide variety
of MVA/ML methods available, and recent advances in deep
learning (DL) with artificial neural networks (ANN) (10) add to
the complexity of the field.

In this work, we followed three clinical three clinical
scenarios in the differential diagnosis of vestibular disorders,
and defined three respective classification problems
with increasing difficulty. We applied a wide variety of
MVA/ML/DL methods to investigate the suitability of
automated classification for these clinical questions, and
to compare the algorithmic outcomes with clinical expert
intuition, both from the perspective of supposed task difficulty,
and from the perspective of how the algorithms weighted
feature importances toward diagnostic classification. For
validation, we took advantage of the DizzyReg dataset, a
large prospective registry of patients with vestibular disorders
(11). The dataset is multimodal and contains three main
categories of variables, namely patient characteristics, symptom
characteristics, and quantitative parameters from vestibular
function tests.

The first classification problem addresses two groups of
patients, suffering either from bilateral damage to peripheral
vestibular afferents (i.e., bilateral vestibular failure), or functional
dizziness without evidence for relevant structural or functional
vestibular deficits. Both syndromes present with the chief
complaint of persistent dizziness. However, additional symptom
features (e.g., triggers, extent of concomitant anxiety and
discomfort) may vary considerably. We expected that machine
learning can reliably differentiate both disorders based on
patient characteristics (e.g., different age spectra), symptom
characteristics, and vestibular function test (e.g., head impulse
test or caloric testing).

The second classification task is, whether patients with
primary functional dizziness (based on psychological triggers
and stressors) can be separated against patients with secondary
functional dizziness following a preceding organic vestibular
disorder (such as acute unilateral vestibulopathy, or benign
paroxysmal positional vertigo) (8). This setting is more complex,

as patient and symptom characteristics may be similar, but the
vestibular function tests may differ.

The third problem is directed to the differentiation of
four episodic vestibular disorders, namely benign paroxysmal
positional vertigo (BPPV), vestibular paroxysmia (VP), Menière
disease (MD) and vestibular migraine (VM). This multi-class
problem is supposed to be the most complex, because the
demographic characteristics of patients and the spectrum of
symptoms can be diverse andmay overlap (e.g., betweenMD and
VM), and vestibular function tests may be normal (e.g., in VP
or VM).

To investigate classification on these three clinical objectives,
we developed base-ml, a comprehensive test-bench for initial
ML experimentation on clinical data. With this tool, we aim to
provide clinical experts with a better intuitive feeling for the range
ofML outcomes that can be expected on the given data. For better
transparency, several methods can and should be investigated
at the same time, subject to a comparable data pre-processing
and cross-validation strategy. To this end, we compare several
linear, non-linear and neural-network based ML algorithms,
along with a novel graph deep learning method that we
recently proposed (6, 12, 13). Following insights from multiple
classification experiments for diagnostic decision support in our
research over the last few years (4, 6, 13, 14), we also provide
a multi-faceted analysis of algorithm outcomes, including an
examination of class imbalance, multiple classification metrics,
patient feature distributions, and feature importances as rated
by the classifiers. To alleviate the implementation burden for
multi-algorithm comparison and multivariate evaluation, we
provide base-ml as an open-source tool1 to the vestibular
research community, as a starting point for further studies
in this direction.

MATERIALS AND METHODS

DizzyReg Registry and Dataset
The objective of the DizzyReg patient registry is to provide a
basis for epidemiological and clinical research on common and
rare vertigo syndromes, to examine determinants of functioning
and quality of life of patients, to identify candidate patients for
future clinical research, to integrate information of the different
apparative measurements into one data source, and to help
understanding the etiology of the vestibular disorders.

The DizzyReg patient registry is an ongoing prospective
clinical patient registry which collects all information currently
stored in electronical health records and medical discharge

1Base-ml source code and documentation: https://github.com/pydsgz/base-ml.

Frontiers in Neurology | www.frontiersin.org 2 August 2021 | Volume 12 | Article 681140



Vivar et al. Vestibular Classification With Base-ml

letters to create a comprehensive clinical database of patient
characteristics, symptoms, diagnostic procedures, diagnosis,
therapy, and outcomes in patients with vertigo or dizziness (11).
Study population includes patients with symptoms of vertigo and
dizziness referred to the specialized out-patient center for vertigo
and balance disorders. Recruitment into the registry commenced
in December 2015 at the German Center for Vertigo and Balance
Disorders (DSGZ), Munich University Hospital of the Ludwig-
Maximilians-Universität. Inclusion criteria into the registry are
symptoms of vertigo and dizziness, age 18 years and above, signed
informed consent and sufficient knowledge of German.

Questionnaires were issued on first day of presentation
to the study center to assess lifestyle and sociodemographic
factors as well as self-reported perception of vertigo symptoms,
attack duration and the time since first occurrence. Lifestyle
and sociodemographic factors assessed using questionnaires
include age, gender, education, physical activity, alcohol,
smoking, sleep quality. The type of symptoms of patients
included: vertigo, dizziness, postural instability, problems while
walking, blurred vision, double vision, impaired vision, nausea,
vomiting. Concomitant ontological or neurological symptom
are documented with a focus on otological symptoms, i.e.,
hearing loss, tinnitus, aural fullness, pressure, hyperakusis, and
neurological symptoms, i.e., headache, type of headache, photo-
/phonophobia, double vision, other symptoms (ataxia, sensory
loss, paresis, aphasia).

The evolution of symptoms was reconstructed by the
frequency and duration of attacks. All aspects of history taking
in the DizzyReg follow established concepts such as “So stoned”
(15), the “Five Keys” (16) and the “Eight questions” (17).
Frequency or time of onset of symptoms was included as a
categorial variable with the following categories: “less than 3
month,” “3 months to 2 years,” “more than 2 years,” “more
than 5 years,” and “more than 10 years.” The duration of
symptoms is registered in the categories “seconds to minutes,”
“minutes to hours,” “hours to days,” “days to weeks,” “weeks to
months,” “continuous.”

The registry further collects information on symptoms,
quality of life (EQ5D) and functioning (DHI and VAP) in a few
standardized questionnaires. Information on triggers is gathered
by the respective categories of the Dizziness Handicap Inventory
and by elements of the Vertigo Activity and Participation
Questionnaire (VAP) (e.g., head movement, position change,
physical activity etc).

DHI
The Dizziness Handicap Inventory (DHI) is a well-known and
widely used measure to assess self-perceived limitations posed
by vertigo and dizziness (18). A total of 25 questions are used to
evaluate functional, physical, and emotional aspects of disability.
Total score ranging from 0 to 100 is derived from the sum of
responses (0= No, 2= sometimes, 4= Yes).

Quality of Life
Health-related quality of life was assessed with the generic
EuroQol five-dimensional questionnaire (EQ-5D-3L). This
is subdivided into five health state dimensions namely

mobility, self-care, usual activities, pain/discomfort, and
anxiety/depression, with each dimension assessed in three levels:
no problem, some problem, extreme problems. These health
states were converted into EQ5D scores using the German time
trade-off scoring algorithm (19). The resulting total EQ5D score
ranges from 0 to 1 with higher scores indicating better quality
of life.

Vertigo Activity and Participation Questionnaire (VAP)
Functioning and participation were assessed based on the Vertigo
Activity and Participation Questionnaire (VAP). The VAP is
specifically designed for persons with Vertigo and Dizziness and
can be used for people of different countries (20–22). The VAP
measures functioning and participation in two scales consisting
of six items each. Using weights derived from Rasch analysis the
first scale has a range of 0–23 points and the second of 0–20
points with higher scores indicating more restrictions.

Data protection clearance and institutional review board
approval has been obtained (Nr. 414-15).

Classification Tasks and Cohorts
As mentioned in the introduction, three classification problems
with increasing complexity were tested: (1) bilateral vestibular
failure vs. functional dizziness; (2) primary vs. secondary
functional dizziness; (3) BPPV vs. VP vs. MD vs. VM. Table 1
provides information about the group cohorts for each task.

Classification Pipeline
A typical machine learning pipeline comprises several steps
that interplay toward a high-accuracy prediction (23). After
data import, a set of pre-processing routines are applied to
patient features, before data is split into several folds for training
and testing, using one or several classification algorithms. The
classifier performance is evaluated using several quantitative
metrics, and finally presented and explained to a clinical expert
on vestibular disorders, for a critical review. Figure 1 presents an
overview of our methodological pipeline in this work.

Pre-processing
Multimodal medical datasets commonly pose several challenges
for CADx algorithms, including noisy or missing patient features
with spurious outliers (24–26), a mixture of categorical and
continuous variables (27), and different statistical distribution of
variables (23). To account for outliers and different data ranges
in DizzyReg variables with continuous distributions, we perform
a 90% winsorization which sets extreme values to the 5th and
95th percentiles, before applying a z-transformation (27) which
normalizes all variables into a comparable zero-mean and unit-
variance data range. Categorical variables are binarized where
possible, or represented in form of a one-hot encoding (a.k.a.
one-of-K encoding), which creates a binary column for each
category and sparsely represents the categories with a value of 1 in
the respective column and 0 in all the other columns. To account
for missing values, we perform a mean-imputation (24) if <50%
of values are missing in the population, otherwise the feature is
omitted from the patient representation.
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TABLE 1 | Clinical tasks with respective classes of chronic/episodic vestibular disorders, and respective cohort details.

Diagnosis

abbreviation

N Age

mean (s.d.)

EQ5D DHI Female/Male

Task 1

Bilateral vestibular failure BVF 66 65.0 (17.0) 0.8 (0.2) 46.2 (22.6) 27/39

Functional dizziness FD 346 47.2 (14.5) 0.8 (0.2) 43.3 (18.4) 178/168

Task 2

Functional dizziness (Secondary) FDS 204 52.1 (14.7) 0.8 (0.2) 48.0 (18.8) 130/74

Functional dizziness (Primary) FDP 151 45.4 (14.6) 0.8 (0.2) 42.6 (17.6) 77/74

Task 3

Benign Parox. Pos. Vertigo BPPV 134 57.0 (12.1) 0.8 (0.2) 45.0 (19.6) 88/46

Menière disease MM 142 53.4 (13.3) 0.9 (0.2) 43.9 (19.8) 78/64

Vestibular migraine VM 215 44.5 (14.0) 0.8 (0.2) 41.8 (18.6) 145/70

Vestibular paroxysmia VP 49 51.6 (14.2) 0.9 (0.2) 38.8 (22.5) 20/29

FIGURE 1 | Components and methods of the classification workflow applied to vestibular data in DizzyReg. Raw tabular data is pre-processed and split into 10-folds

for stratified cross-validation and for estimation of prospective classification performance. Various linear, non-linear and neural classifiers are repeatedly trained on all

folds in the data, the evaluation is performed with various classification metrics. The metrics, along with model explanations, are presented to experts in form of a

report panel, who can review the classification outcome and model performance. All pipeline components are implemented in base-ml, a comprehensive software tool

which we provide open-source to the vestibular community as a starting point for similar studies. Implemented in Python, and centered around scikit-learn, it

comprises various modules for data science, machine learning, descriptive statistics, explainable AI and visualization. Details on base-ml are described in section

Base-ml Framework.

Data Splitting
In predictive statistics, in particular in the machine learning
community, it is common to assess the prediction performance
via hold-out test datasets, which are often randomly sampled
and kept separate from the training dataset until the time
of pseudo-prospective evaluation (27). Sampling a single test
set could result in a biased selection and thus in an overly
optimistic or pessimistic test evaluation. To avoid this, it is

recommendable to evaluate with multiple test sets, which are
sampled either through random shuffling, or through a k-
fold splitting. Following common recommendations, we set k
to 10 in this work (28). This yields exactly one prediction
for each subject in DizzyReg, and exactly ten estimates for
the prospective classification performance of each classifier.
As recommended by Kohavi in (29), we additionally apply
a stratified cross-validation to make sure that each fold has
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approximately the same percentage of subjects from each class,
which is important especially in the case of class imbalance
in the dataset. To ensure that individual classifiers are being
trained in a suitable parametrization, we additionally perform
hyper-parameter optimization using random search, in a nested
cross-validation setup (for details, see section Appendix C).

Classification Algorithms and Metrics
Intuitively, ML classifiers try to assign class labels to samples
(e.g., patients, represented as multivariable numerical vectors),
by fitting separation boundaries between classes in high-
dimensional space. Mathematically, these boundaries are
expressed in form of a classification function = f (x), which
separate the statistical distributions of classes C in the input space
X. The past decades of ML research have yielded a diverse set of
mathematical models for separation boundaries, and algorithms
to fit them to a set of training data X, including linear regression
boundaries, rule-based, instance-based, tree-based, kernel-based
or Bayesian methods (23), as well as the recent renaissance of
artificial neural networks and deep learning (10). Importantly, no
single method is guaranteed to perform best on all datasets (30),
which is why it is recommendable to test multiple algorithms and
let their performances be compared and critically reviewed by a
domain expert, instead of deciding on a single algorithm a priori.
Therefore, as described in the introduction, we compare several
linear, non-linear and neural-network based ML algorithms,
along with a novel graph deep learning method that we recently
proposed (6, 12, 13). Details on all classifier models and their
parametrization are given in section Overview of Selected
Classification Algorithms. We quantitatively evaluate the
classification performance with three metrics: area-under-the-
curve of a receiver-operating-characteristic (ROC-AUC), as well
as accuracy and f1-score, defined as (TP/TN/FP/FN denote true
or false positives or negatives):

Accuracy =
TP + TN

N
; f1− score =

2 Prec Rec

Prec+ Rec
;

Prec =
TP

TP + FP
; Rec =

TP

TP + FN

Model Explanation
A necessary tradeoff in predictive statistics and ML is to
choose between model accuracy and model interpretability
(31). While linear methods like logistic regression are typically
more interpretable, non-linear models, depending on their
complexity, are often compared to black boxes. By now,
however, “Explainable AI” is a dedicated branch in ML research,
and numerous model-specific and model-agnostic methods are
available that can partially explain ML prediction outcomes (32).
Two common ways to explain model performance is to analyze
the distribution of input samples (4, 33), and to analyze feature
importance (34), especially in a clinical setting (35).

First, we perform a non-linear mapping of the d-dimensional
input distribution after pre-processing onto the 2D plane, and we
visualize whether class distributions were already visible in the
input data, or whether the input data distribution has unexpected
or undesired properties, a technique which has been elucidating
in our research before, e.g., in the mapping of posturography data

(4). To this end, we utilize “Uniform Manifold Approximation
and Projection” (UMAP) (33), a topology-preserving manifold
learning technique for visualization and general non-linear
dimensionality reduction.

Second, we analyze which patient features contributed to
classification outcomes the most, which is a clinically interesting
aspect of classifiers.We obtain the “feature importances” for non-
ANN-based models and “feature attributions” for ANN-based
models. For linear classifiers (see section Linear Classifiers), these
can be obtained through the model coefficients (27). For non-
linear classifiers (see section Non-linear Classifiers), such as tree-
based models, we obtain their feature importance using the
Gini-impurity criterion (36). For neural-network based models
such as MLP and MGMC (see section Neural Network and
Deep Learning Classifiers), we use the Integrated Gradients
algorithm (37) and calculate the feature importance by taking
the feature attributions of every sample in the training dataset
toward their respective ground truth class labels. Obviously,
not every classification algorithm yields the same ranking for
feature importances. It is argued that a combination of several
feature importance rankings can provide more reliable and
trustworthy (34). Therefore, for our report to the expert, we
aim at presenting a single table with the top 10 most important
features for the given classification problem. Tomerge the feature
importance rankings of the different classifiers into a single list,
we propose and apply a heuristic for Relative Aggregation of
Feature Importance (RAFI), which comprises the following three
steps. First, we take the absolute values of all feature importances,
to account for algorithms with negative weights (e.g., negative
coefficients in linear regression). Second, we normalize the range
of importance scores across different classifiers, by computing
the percentual importance. Third, we aggregate all normalized
global importances by summation, and report the top 10
most important features across all classifiers to the experts
for review. In detail, for each feature ϕi

(

i ε
[

1, . . . , d
])

, and
across F different classifiers, each with feature importances
Ij (ϕi)

(

j ε [1, . . . , F]
)

, we calculate the global feature importance
I0 (ϕi) as follows:

I0 (ϕi) =

F
∑

j=1

abs
(

Ij (ϕi)
)

∑d
i=1 abs

(

Ij (ϕi)
)

Overview of Selected Classification
Algorithms
In this work, we apply and compare the outcomes for a total of
11 classification methods, which we chose to represent a wide
range of algorithmic approaches. This collection is larger than
what is typically encountered in CDSS research, as mentioned, to
provide the expert with a better intuitive feeling for the range of
outcomes that can be expected on the given data. The algorithms
are grouped into three general categories: linear, non-linear, and
ANN-based classifiers. Since explaining the inner workings of all
methods in detail is out of scope for this work, each algorithmwill
be outlined only briefly in the following, with its most important
parametrizations (if any), and a reference to explanatory material
for the interested reader.
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Linear Classifiers
As linear classifiers, we apply Linear Discriminant Analysis
(LDA), Logistic Regression (LR) and Support Vector Classifiers
(SVC). All three methods try to fit a set of linear hyperplanes
between the d-dimensional distributions of the classes. LDA
[(19), chapter 4.3] models the distribution for each class with a
Gaussian and calculates the probability of belonging to a class
as the maximum posterior probability in a Bayesian manner.
We apply LDA in a default parametrization, without additional
regularizations such as shrinkage. LR [(19), chapter 4.4] directly
learns the posterior distribution of the target class and models
it using a sigmoid-activated linear function. We apply LR with
simple L2 regularization to avoid overfitting the parameters of
the model on the training set. SVC (38) is a support-vector
machine (SVM) with a linear kernel, which learns a hyperplane
that maximizes the gap between the classes, giving slack to key
samples (“support vectors”) to account for class overlap in the
joint distribution. To avoid overfitting, we apply a standard
squared l2 penalty term using a regularization parameter of 0.25.

Non-linear Classifiers
Gaussian Naïve Bayes (GNB)
GNB [(19), chapter 6.6.3] is a variant of Naïve Bayes (NB)
that allows continuous input features, under the assumption of
Gaussian distribution and mutual independence. Class posterior
probabilities for new samples are calculated using Bayes Rule.
We parametrize GNB to estimate class prior probabilities directly
from training data, rather than imposing them a-priori.

Gaussian Process Classifier (GP)
GP (39) are a Bayesian alternative to kernel methods like non-
linear SVMs. In classification, it models and approximates the
class posterior probability as a Gaussian distribution. We set the
initial kernel used for GP fitting to a zero-mean, unit-variance
radial basis function (RBF), which is then refined during the
fitting to training data.

K-Nearest Neighbors Classifier (KNN)
KNN [(19), chapter 2.3.2] classification is an instance-based
method, where a sample’s class is determined by the majority
class label vote of the sample’s k-nearest neighbors. We compute
similarity as Euclidean distance between two patients’ feature
vectors, and we use 10 nearest neighbors in the training set to
predict the class label of a test input.

Decision Tree Classifier (DT)
DT (36) are a form of rule-based classifiers. A tree represents a
hierarchical set of rules or decisions, each decision splitting the
feature space in a single feature dimension, using an optimal
splitting threshold which is calculated using information-
theoretic criteria. Each new sample is passed down the tree,
following splitting rules, until a leaf is hit in which a class
distribution andmajority class is stored. In this work, we use trees
with Gini impurity as the splitting criterion, and we allow trees to
expand up to a maximum depth of five.

Random Forest Classifier (RF)
RF (40) are an ensemble of multiple decision trees, where each
tree is trained using a random subset of training data and
a random subset of features. Due to the randomization, the
individual trees are highly uncorrelated. Therefore, the ensemble
output, which is calculated as an average vote from all trees,
weighted by their confidences, is highly robust against various
data challenges, such as high dimensional input spaces, noisy
data, or highly different data distributions across variables. In
this work, we use an ensemble of 10 trees, each with a maximum
depth of 5 decision levels.

Adaptive Boosting Classifier (AB)
AB (41), similar to RF, is another ensemblemethod that combines
multiple “weak” classifiers in order to form a much “stronger”
classifier. A key difference is the boosting mechanism, i.e., the
ensemble is allowed to iteratively add new weak classifiers, which
are trained with a higher weight on those input instances that are
still being misclassified. In this work, we use decision stubs (i.e.,
decision trees with a depth of (1) as the weak base classifiers, and
we allow the maximum number of classifiers to reach up to 50.

Neural Network and Deep Learning Classifiers
Multi-Layer Perceptron (MLP)
MLP [(19), chapter 11] consider input features as activated
neurons followed by one or several fully connected layers (so-
called hidden layers) of artificial neurons which weight and sum
incoming neuronal connections, before applying a non-linear
activation function. The network weights are estimated using
the backpropagation algorithm. In this work, we parametrized
an ANN with two hidden layers (64 and 32 neurons), and
protect every layer against overfitting, as is commonly achieved
by applying dropout (p = 0.3) (42), followed by batch
normalization (43).

Multi-Graph Geometric Matrix Completion (MGMC)
MGMC (13) is a graph-based neural network (GNN) model
which we proposed recently, as an extension to our previously
published geometricmatrix completion approach formultimodal
CADx (12). It models the classification problem as a transductive
geometric matrix completion problem. Importantly, MGMC is
designed to deal with the common problem of missing values
in large medical datasets (25), by simultaneously learning an
optimal imputation of missing values, along with the optimal
classification of patients. MGMCmodels the patients as nodes in
a graph, and computes the edges in the graph through a similarity
metric between patients. The similarity is based on a few meta-
features (e.g., sex, age, geneticmarkers etc.), which allowsMGMC
to span a graph between patients akin to a social network. In
previous works, GNNs have shown promising results and a
complementary approach in the field of CADx. In this work,
we compute multiple patient graphs, each based on similarity
measures of a single meta-feature, namely gender (same gender),
age (age difference ± 6 years), EQ5D score (score difference of
± 0.06), and DHI score (score difference of ± 11). As advanced
model parameters, we use five timesteps for the recurrent graph
convolutional network, Chebyshev Polynomials of order five, and
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a single hidden layer before the output (16, 32, or 64 neurons,
depending on the classification task).

Statistical Methods
The most important features detected by RAFI (cf. section
Classification Pipeline) are presented for expert review and
interpretation. Each of these features is compared across patient
classes via hypothesis tests, to provide a first glance whether
there are significant differences across groups. For continuous
variables, and in the case of two classes, we first test each variable
for normal distribution in each of the patient group with a
Shapiro-Wilk test (44). If so, we apply an unpaired two-tailed
t-test (27), if not, we apply a Mann-Whitney U test (45). For
more than two classes, we apply a one-way ANOVA test (27), or a
Kruskal-Wallis (46) as an alternative for non-parametric testing,
and report the group-level p-value. For categorical values, we
apply a Chi-squared independence test (47). We report p-values
for hypothesis tests on all variables, and assume significance at an
alpha-level of p < 0.05.

Base-ml Framework
As described in the previous sections Classification Pipeline-
Statistical Methods numerous methods are necessary to
imple1ment a full data science andmachine learning pipeline, for
a multimodal clinical problem like vestibular classification, and
in a multi-site dataset like DizzyReg. Naturally, re-implementing
this stack of methods is a time-consuming effort, which should
ideally be avoided across research groups. To alleviate future
classification experiments similar to this work, and to provide
the community with a starting point, we developed base-ml, an
open-source Python package1 provided by the German Center
of Vertigo and Balance Disorders. The package can enable a
rapid evaluation of machine learning models for prototyping
or research. As illustrated in Figure 1 (lower panel), it is built
around scikit-learn (48) as a backbone, which is a reference
toolkit for state-of-the-art machine learning and datascience.
We complement scikit-learn with various Python modules:
pandas (49) for data IO and analysis; scipy and numpy (50)
for fast linear algebra on array-shaped data; PyTorch (51) for
implementation of ANNs and more advanced deep learning
models like MGMC; skorch2 for integration of PyTorch models
into the scikit-learn ecosystem; the Captum3 library for model
interpretability and understanding, which we use for calculation
of feature importance in ANNs using Integrated Gradients (37);
UMAP (33) for non-linear 2D mapping and visualization of the
patients’ input distribution; statsmodels (52) and pingouin (53),
two Python libraries for descriptive statistics and hypothesis
testing; and matplotlib for plotting and scientific visualization.
Importantly, using skorch, we enable potential adopters of base-
ml to integrate both inductive and transductive neural training
workflows and even deep learning models into a comparative
benchmark with more traditional MLmethods. Skorch combines
the ease of use of scikit-learn training workflows and PyTorch’s

2Scorch source code and documentation: https://github.com/skorch-dev/skorch
3Captum source code and documentation: https://github.com/pytorch/captum

GPU-enabled neural network models. In addition, with base-ml,
one can easily evaluate graph-based neural network models.

RESULTS

The following sections reproduce the classification reports
produced by base-ml on the three clinical tasks described in
the introduction. It is important to note that base-ml is not
restricted to vestibular classification scenarios. As a sanity check
for base-ml, regarding classification outcomes, and comparability
to baseline results in literature, we perform two additional
experiments. Those two base-ml experiments are performed on
non-vestibular datasets, i.e., one artificially generated dataset,
and one Alzheimer’s disease classification dataset, which has
been widely studied in literature. To keep the main body of
this manuscript dedicated to vestibular analysis, we report on
non-vestibular results in the Appendix.

Results on Task 1 (Bilateral Vestibular
Failure vs. Functional Dizziness)
The results panel for this classification task, as produced by the
base-ml framework, is visible in Figure 2. The boxplots with
metrics illustrate a wide range of classification performances
for all classifiers, with an accuracy over the 10 folds between
78.7% ± 6.4% (AdaBoost) and 93.0% ± 3.5% (RF), an f1-score
between 0.683 ± 0.144 (DecisionTree) and 0.848 ± 0.091
(GaussianProcess), and an average ROC-AUC between 0.727
± 0.145 (DecisionTree) and 0.937 ± 0.050 (GaussianProcess),
followed closely by a ROC-AUC of 0.921 ± 0.056 (RF).
Quantitatively, Gaussian Process classifiers are the top-
performing model on this task, and slightly outperform
the best-performing neural network model MGMC (mean
accuracy/f1-score/ROC-AUC: 90.8%/0.782/0.893). In fact, on
this task, even one of the best linear models, LR, performs better
than MGMC and almost as good as RF (mean accuracy/f1-
score/ROC-AUC: 91.3%/0.831/0.917). The confusion matrices
reveal that the group with functional dizziness was detected with
a very high sensitivity between 95% (LR) and 98% (MGMC/RF),
compared to a much lower sensitivity between 53% (MGMC)
and 71% (LR) for patients with bilateral vestibular failure.
Notably, hyper-parameter optimization had a positive effect on
the outcomes of Task 1, and the average accuracy of all classifiers
increased from 87.0 to 89.6% after parameter tuning.

Regarding class imbalance, which is important to consider
in context with classification performance, the pie chart (cf.
Figure 2, bottom left) shows that BVF is strongly under-
represented in this DizzyReg subset, at 66 vs. 346 patient samples
(16.0% of patients). Finally, the UMAP embedding shows that
the FV subjects (colored in yellow) are already clustered and
topologically separated from the BVF subjects (colored in purple)
at the level of normalized input data. This underlines that the
patients have clearly separate characteristics at a feature level,
and classifiers have a good chance at fitting decision boundaries
between the two groups. The UMAP plot reveals another
interesting point, namely that the input data is clearly separated
into two clusters, the implications of which are discussed below.
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FIGURE 2 | Results panel produced by base-ml for Task 1. It comprises: boxplots for the three classification metrics, accuracy, f1-score and ROC-AUC; a pie chart to

highlight potential class imbalances for this task; the UMAP 2D embedding of all patients’ input feature vectors; and a more detailed overview of classification

outcomes in form of confusion matrices, for three classifiers, LR, MGMC and RF.

The base-ml output also produces Table 2, with feature
importance scores aggregated with the RAFI heuristic (cf. section
Classification Pipeline). Among the top ten features, six features
are related to (Video-) Head Impulse Testing (HIT/vHIT; HIT
left/right abnormal, vHIT normal result, vHIT gain left/right)
or caloric testing, all of which are also statistically significantly
different between the two groups at a level of p < 0.001. The
most important feature is patient age, also with a significantly
different expression between the two groups (63.8 ± 15.6 vs.
47.3 ± 14.1 years, p < 0.0001). The remaining three features
are related to subjective judgement of disability by patients,
namely the depression score in EQ5D (p < 0.001), a perceived
handicap in DHI (p < 0.01), and the actual perceived health
condition (p= 0.133).

Results on Task 2 (Primary vs. Secondary
Functional Dizziness)
Compared to task 1, the performance of the 11 classifiers on
task 2 is more homogeneous (cf. Figure 3), i.e., all classifiers
classify with a within a similar accuracy range between 55.2%
(DecisionTree) and 62.8% (GaussianProcess), a f1-score range
between 0.498 (MLP) and 0.596 (SVC), and ROC-AUC range
between 0.571 (DecisionTree) and 0.689 (SVC). Overall, this
classification task is dominated by the linear classification
algorithm SVC and the non-linear GaussianProcess classifiers,
while the DecisionTree and neural network classifier MLP/ANN
are the worst-performing algorithms in terms of accuracy and f1-
score. The graph neural network method MGMC and RF had an
accuracy of 60.6 and 62.2%, both are close to the average accuracy
of all classifiers (60.4%). The confusion matrices reveal that LR
and RF have an equally high sensitivity for secondary functional
dizziness (77%), compared to MGMC (65%), but a comparably
lower sensitivity for primary function dizziness (LR/RF: 42%,
MGMC: 54%). Notably, hyper-parameter optimization had very
little effect on the outcomes of Task 2, as the average accuracy

of all classifiers stayed at 60.4% both with and without the
parameter tuning.

Again, the lower classification performance could partly be
due to class imbalance, i.e., a slight underrepresentation of
primary functional dizziness in this DizzyReg subset (42.5%
primary vs. 57.5% secondary), however the class imbalance is
not as severe as in task 1. The UMAP feature embedding shows
that after pre-processing, two clearly separated clusters emerge
in the topology of the data. Again, the source for this data
separation is not clear and will be discussed further below.
However, in the smaller cluster, most of patients are from the
group with secondary functional dizziness (purple points), while
in the larger cluster, there is a mix of both groups, and this mix is
not clearly separable by data topology alone. The classification
algorithms still can achieve a certain level of data separability
in high-dimensional space, but it is noteworthy that the UMAP
embedding reflects that task 2 is more challenging compared to
task 1, even before the classifiers are applied.

The top 10 most important features for task 2 (cf. Table 3)
are largely different from task 1. Expectedly, a normal caloric
result (rank 1) and the vHIT gain left/right (ranks 4 and 2)
and abnormal HIT result on the right (rank 9) differ in both
groups. Patients with primary functional dizziness are younger
(rank 3) and tend to drink more alcohol (≥1 drink in the last
week, rank 6). One item from the DHI plays an important role
for separation, related to problems turning over while in bed
(rank 7), and another life quality factor, LIFEQ Q7, i.e., the
actual perceived health condition, is relevant as well (rank 8). The
duration of vertigo is important as well, in particular whether
the duration is between 20 and 60min (rank 6). Finally, the
depression/fear score in the EQ5D questionnaire is relevant (rank
10). All features except EQ5D fear/depression and LIFEQ Q7 are
significantly different between the two groups. It is important
to note though that multivariable classifiers do not need to
depend on univariate feature significance. In high-dimensional
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TABLE 2 | Top 10 most important features in Task 1, aggregated over multiple classifiers.

Rank Feature Feature Type Bilateral vestibular failure Functional dizziness P-Value

1 Age (yrs) Questionnaire 63.83 ± 15.64 47.33 ± 14.12 <0.0001

2 HIT: right, abnormal Neurological investigation P1 77.40% 3.40% <0.0001

3 HIT: left, abnormal Neurological investigation P1 77.40% 2.30% <0.0001

4 vHIT: normal result Apparative tests 14.30% 92.20% <0.0001

5 vHIT: gain left Apparative tests 0.8 ± 0.04 0.97 ± 0.12 <0.0001

6 EQ5D: fear, depression Questionnaire 28.60% 66.40% <0.0001

7 Caloric: normal result Apparative tests 31.90% 91.80% <0.0001

8 vHIT: gain right Apparative tests 0.71 ± 0.09 0.92 ± 0.15 <0.001

9 DHI: Q21, perceived handicap DHI 81.20% 92.60% <0.01

10 LIFEQ: Q7, Actual perceived health condition LIFEQ 62.51 ± 18.48 58.11 ± 18.9 0.133

FIGURE 3 | Results panel produced by base-ml for Task 2.

TABLE 3 | Top 10 most important features in Task 2, aggregated over multiple classifiers.

Rank Feature Feature type Functional dizziness

(secondary)

Functional dizziness

(primary)

P-Value

1 Caloric: normal result Apparative tests 73.10% 96.20% <0.0001

2 vHIT: gain right Apparative tests 0.87 ± 0.18 0.92 ± 0.19 <0.0001

3 Age (yrs) Questionnaire 51.79 ± 13.91 45.61 ± 14.21 <0.0001

4 vHIT: gain left Apparative tests 0.92 ± 0.13 0.97 ± 0.12 <0.0001

5 Vertigo time: 20–60min Questionnaire 13.20% 5.30% <0.05

6 >= 1 alcoholic drink last week Questionnaire 43.60% 58.30% <0.01

7 DHI: Q13, problems turning over in bed DHI 43.80% 25.70% <0.001

8 LIFEQ: Q7, Actual perceived health condition LIFEQ 57.28 ± 19.61 59.34 ± 18.53 0.111

9 HIT: right, abnormal Neurological investigation P1 13.70% 1.40% <0.0005

10 EQ5D: fear, depression Questionnaire 60.0% 70.0% 0.069

space, these two univariately non-significant features may still
contribute to a better separation boundary.

Results on Task 3 (BPPV vs. VP vs. MD vs.
VM)
Already at first glance (cf. Figure 4), and as clinical intuition
suggested, task 3 is the most challenging of the three classification

tasks. Compared to the average classifier accuracy of task 1
(89.6%) and task 2 (60.4%), the accuracy on task 3 is much
lower (48.0%). Individually, the classifiers have an accuracy range
between 40.6% (DecisionTree) and 54.3% (LDA), a f1-score range
between 0.269 (DecisionTree) and 0.461 (LDA), and a ROC-AUC
range between 0.564 (DecisionTree) and 0.764 (LDA). Overall
on task 3, linear classifiers, and LDA in particular, classify with
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FIGURE 4 | Results panel produced by base-ml for Task 3.

the highest accuracy. The RF classifier, on the other hand, only
has an average performance on task 3 (accuracy/f1-score/ROC-
AUC: 48.5%/0.372/0.702), in comparison to tasks 1 and 2. The
confusion matrices reveal that the disorders VM, BPPV, MD
and VP can be classified with a decreasing order of classification
sensitivity (e.g., for LR approximately: 70%, 50%, 40%, 20%). On
task 3, hyper-parameter optimization had amuch higher effect on
the classifierd outcomes than in tasks 1 and 2, i.e., after parameter
tuning, the average classification accuracy of all models increased
from 44.2 to 48.0%.

Class imbalance probably plays a role here as well, as this
ordering almost coincides with the class representation in the
dataset (VM: 39.8%, BPPV: 24.8%, MD: 26.3%, VP: 9.1%).
Looking at the UMAP embedding, the same separation of the
data cloud into two clusters is clearly visible, and the four
episodic vestibular disorders are visually not clearly separable
within the two clusters, which again anticipates the difficulty of
the classification task.

Regarding the 10 most important features (cf. Table 4), mean
patient age ranks on the top (BPPV oldest, VM youngest). Second
most important is vertigo time<2min (which is most frequent in
BPPV and VP). Expectedly, several features are related to body
relocation, e.g., problems getting into, out of, or turning over
inside the bed (DHI Q13, rank 3; VAP Q2, rank 4), bending
over (DHI Q25, rank 7), or vertical climbing (VAP Q7, rank 10).
Accompanying headache is ranked in 6th position and indicative
for VM. There is only one apparative feature relevant for task 3
(normal caloric test, rank 5), with MD being the only group with
relevantly abnormal results.

DISCUSSION

In this paper, we have described several approaches for
multivariable analysis and machine learning classification of
three different patient cohorts from the vestibular registry
dataset DizzyReg, i.e., functional dizziness vs. bilateral vestibular

failure, primary vs. secondary functional dizziness, and BPPV
vs. Meniére’s disease vs. vestibular migraine vs. vestibular
paroxysmia. Clinically, the three tasks were rated with an
increasing difficulty and the machine learning classifier
performances reflected this grading, with an average accuracy
of 87.0, 60.5, and 44.3%, respectively. Using results produced
by base-ml, we put these accuracy scores into context with class
imbalance, input feature embedddings, confusion matrices and
sensitivity scores, as well as tables with the top 10 most important
features, aggregated over several classifiers using the proposed
RAFI heuristic. In the following, we are going to discuss these
results, both from a technical and clinical perspective.

Technical Aspects
The results of the three classification experiments highlight
several important points. We believe it to be apparent from
the results that it is beneficial to run and benchmark several
classification algorithms, ideally from different categories, such
as linear, non-linear and neural models. Even a supposedly easy
task from a medical perspective does not necessarily lead to
a matching classifier performance, depending on which model
is used (e.g., 78% classification accuracy in task 1 with Naïve
Bayes), hence an a-priori selection could result in too pessimistic
an assessment of classification potential using machine learning.
Therefore, a wide range of methods in one comprehensive
framework might benefit research groups that are new to the
field of ML on clinical data. Further, linear models should
always be tested along with non-linear and neural network
models, as the best linear model (e.g., in task 1, SVC with mean
accuracy/f1-score/ROC-AUC: 91.7%/0.819/0.926) may match or
even outperform the performance of more complex models,
especially if the task has a wide, rather than long data matrix, or
if the classes are clearly separable.

Analyzing classifier performance purely using quantitative
metrics provides only a narrow view, however. Our analysis
reports additionally provide plots on class imbalance, input
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TABLE 4 | Top 10 most important features in Task 3, aggregated over multiple classifiers.

Rank Feature Feature type BBPV MD VM VP P-Value

1 Age (yrs) Questionnaire 56.6±11.4 53.3±13.0 44.7±13.3 51.6±13.6 <0.0001

2 Vertigo time: < 2min Questionnaire 44.80% 12.70% 17.20% 71.40% <0.0001

3 DHI: Q13, problems turning over in bed DHI 87.90% 47.50% 44.20% 34.70% <0.0001

4 VAP: Q2, problems to get in/out/turn over in bed. VAP 93.30% 68.60% 58.50% 49.00% <0.0001

5 Caloric: normal result Apparative tests 85.90% 49.50% 84.80% 100.00% <0.0001

6 Accompanying headache Questionnaire 16.80% 19.00% 53.50% 15.00% <0.0001

7 DHI: Q25, bending over increases problems DHI 76.10% 60.30% 61.20% 61.20% <0.05

8 DHI: Q6, restricted participation in social activities DHI 71.40% 82.90% 75.50% 65.30% <0.05

9 DHI: Q22, increased stress on family/friend relationships DHI 23.10% 48.90% 45.60% 38.80% <0.0001

10 VAP: Q7, Vertical climbing (stairs/lift) VAP 60.00% 64.90% 62.00% 45.70% 0.139

data distribution, and confusion matrices, all of which provide
different insights into the experiment. Class representation in
the dataset correlated with the sensitivity for each class in all
three experiments, which the confusion matrices highlighted.
The input data distribution additionally revealed that DizzyReg
data in our study had a fundamental separation into two
clusters (cf. UMAP embeddings in Figures 2–4). At least in
task 1 this did not affect classification outcomes to match the
clinical intuition, however, for future ML-based studies, this
separation would need to be investigated further. Counteracting
such a data separation, e.g., with input data transforms (54),
or more advanced techniques like domain adaptation (55),
could improve classification results further. As such, the results
obtained through the base-ml tool provide not only information
about which machine learning models to pursue further, but they
also indicate starting points regarding the optimization of the
input data with classical data science and statistical methods.
For clinicians, an important part of the results are the most
important features selected by the classifiers, which we present
in an aggregated form using the proposed RAFI heuristic. These
features will be discussed in more detail and put into a clinical
context in section Clinical Implications.

The method presented in this work, and comprised in the
base-ml tool have several noteworthy limitations. In general,
base-ml is intended as a first screening tool for ML experiments,
rather than as a complete ML solution that leads to a trained
model for prospective studies and/or deployment. It has been
shown previously that hyper-parameter optimization using
nested cross-validation can lead to significant improvements of
classification performance (6, 12, 13). In our study, while hyper-
parameter tuning had no noticeable effects on Task 2, there were
noticeable improvements in the average classification outcomes
across all models in Tasks 1 and 3. Further, not only the models
themselves have hyper-parameters, but every part of the ML
pipeline in base-ml could be individually optimized further.
This could include alternative input normalization strategies
[e.g., power transforms (54, 56)] and imputation methods [e.g.,
kNN imputation or multiple imputation by chained equations,
MICE (57, 58)] or the inclusion of feature selection methods
(e.g., based on univariate hypothesis testing), all of which are
important toward optimal classifier performance (9). A default

treatment made in our experiments, for example, is to discard
variables that were recorded for <50% of the population.
In clinical practice, however, some variables may be missing
because the according examinations or apparative tests were
not ordered by the physician, maybe due to time, cost, lack
of indication, or expected inefficacy toward diagnosis. In that
case, individual rules for variable rejection, imputation and/or
normalization may be necessary. For base-ml, we chose to
avoid such in-depth treatment, in favor of an ease-of-use at the
exploratory stage. However, base-ml is built on top of scikit-
learn and already provides an interface to modern deep learning
methods with skorch, and explainable AI solutions through
Captum. This makes it easy to include many further methods
for feature selection, imputation and normalization, as well as
further classification explainable AI algorithms (32). However,
at a certain level of complexity that aims at deployment rather
than exploration, it is recommendable to consider more in-
depth analyses and tool, ideally in close collaboration with
data science and ML experts, and potentially starting off
from insights obtained with base-ml. A particularly interesting
avenue is the current research direction of Automated Machine
Learning (AutoML), which aims at an optimization of the entire
classification pipeline end-to-end (59). Importantly though,
small to medium-size datasets might not provide enough data
samples to train such complex pipelines. Until more cross-
institutional vestibular registry datasets like DizzyReg come to
existence, and with sufficient data to apply AutoML, the methods
which we wrapped in base-ml and presented in this work still
provide a solid starting point for ML-based analysis. As such,
and for the time being, we believe these tools to be a valuable
contribution for the vestibular research community.

Clinical Implications
Clinical reasoning in the diagnostic differentiation of common
vestibular disorders is based on a “mental aggregation” of
information from patient characteristics (such as age and
gender), symptom characteristics (namely quality, duration,
triggers, accompanying symptoms), clinical examination (e.g.,
positioning maneuvers), and quantitative tests of vestibular
function (such as vHIT, calorics) (16). It is an open and relevant
question, whetherML-basedmethods are able to identify features
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from a multimodal vestibular patient registry, which resemble
this clinical thinking and feature weighting. In the current study,
we tested three clinical scenarios of different complexity on the
DizzyReg database to further address this issue.

The first classification task represented two groups of
patients suffering from chronic dizziness of almost diametrical
etiology. In bilateral vestibular failure, imbalance can be directly
assigned to an organic damage of vestibular afferents, which
is accompanied by a low degree of balance-related anxiety
(60, 61), while in functional dizziness the vestibular system is
physiologically intact, but the subjective perception of balance
is severely disturbed due to fearful introspection (62). It can
be expected that ML-based algorithms will predominantly select
features as most important for the segregation of both disorders,
which represent either measurements of vestibular function
or scales for anxiety and perceived disability. Indeed, the
top 10 important features exactly meet this assumption with
six of them reflecting low and high frequency function of
the vestibular-ocular reflex (HIT left/right normal, vHIT gain
left/right, bilateral vHIT normal, caloric response normal), and
further three features healthy-related quality of life, depression
and fear. Furthermore, age was an important differential feature,
which is in good accordance to the fact that bilateral vestibular
failure appears more frequently in older patients and functional
dizziness in younger and mid-aged patients.

In the second classification task, two groups of patients with
functional dizziness were compared, who were presumably very
similar in their symptomatic presentation, but differed in the
evolution of their symptoms: patients with primary functional
dizziness, where chronic psychological stress or anxiety is
the driving force, and patients with secondary functional
dizziness, which develops after a preceding somatic vestibular
disorders (e.g., BPPV) due to altered balance perception
and strategies of postural control (8). Accordingly, top 10
features for classification included vestibular function tests (such
as vHIT gain left/right and caloric response normal). The
subtle differences between groups may speak for a partially
recovered acute unilateral vestibulopathy or MD as some
causes underlying secondary functional dizziness. Furthermore,
symptom provocation by position changes in bed may point
to BPPV as another vestibular disorder triggering secondary
functional dizziness. This findings agree with previous literature
(8). Interestingly, patients with primary functional dizziness
had higher fear and depression scales, which may indicate a
more intense psychological symptom burden. Indeed, previous
studies have shown a psychiatric comorbidity in primary
functional dizziness in 75 vs. 42% in secondary functional
dizziness (63). The more frequent consumption of alcohol in
primary functional dizziness may also show that those patients
subjectively profit from its relaxing effects to a higher extent
than patients with secondary functional dizziness, who have
some degree of vestibular deficits, which may exacerbate on
alcohol (e.g., partially compensated unilateral vestibulopathy or
vestibular migraine).

The third classification task was designed to differentiate
common episodic vestibular disorders like BPPV, MD, vestibular
migraine and vestibular paroxysmia. Expectedly, a set of features

was most indicative for BPPV, namely short attack duration
and provocation by position changes. MD as compared to the
other vestibular disorders was associated with the highest rate of
pathological vestibular function tests (caloric test abnormal). It is
well-known that long-standingMD can cause vestibular function
deficits (64), while this is less frequent in vestibular migraine
(65). The latter was associated with the highest frequency of
headache and the youngest mean patient age, in accordance
to literature (66). Vestibular paroxysmia was mostly defined
by a short-symptom duration. The overall moderate accuracy
for classification of the four episodic vestibular disorders
can be explained by several factors: (i) one methodological
explanation could be that this was a multi-class task, which
is more challenging; (ii) despite the exhaustive history taking
and examination details for patients recorded in DizzyReg, it
is possible that not all relevant information is included. For
example, systematic audiological test results are only available for
patients with Menière’s disease and vestibular migraine, but not
for BPPV or vestibular paroxysmia. Therefore, audiological test
results could not be generally included in the third classification
task as a variable; (iii) there are potential overlaps of symptom
characteristics and features. A prominent example is an overlap
syndrome of MD and vestibular migraine, which could point
toward a common pathophysiology (67); (iv) although the
guidelines “International Classification of Vestibular Disorders
(ICVD)” of the Barany Society give clear criteria for diagnosis
mostly based on history taking, complex clinical constellations
such as overlapping syndromes or atypical presentations appear
regularly in the practice of a tertiary referral center, which
may cause some difficulties in clear-cut classification. Limited
classification accuracy may be partly explained by this selection
bias, and further testing in primary care settings will be needed;
(v) given the difficulty of task 3, the low ML classification
performance is neither surprising nor a sign of a failure of
ML classification approaches. Instead, our results suggest that
ML algorithms, even given considerable data to learn from,
may not automatically be able to solve difficult clinical tasks.
The wide range of tuned ML algorithm performances presented
by base-ml can reveal such difficulty better than a narrow
selection of ML results without tuning; (vi) previous studies
suggest that expert consensus may not always be unanimous,
and may indicate the difficulty of patient diagnosis, despite clear
guidelines and diagnostic criteria. For example, authors in (68)
tried to validate diagnostic classifications through multi-rater
agreement between several experienced otoneurological raters,
and an acceptable consensus was achieved only in 62% of the
patients. This study indicates that some diagnostic inaccuracy
persists in the clinical setting, despite established international
classification criteria. This could be taken as a further
argument to augment clinical decision making by ML-based
support systems.

CONCLUSION

Analysis of large multimodal datasets by novel
ML/MVA-methods may contribute to clinical decision making
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in neuro-otology. Important features for classification can be
identified and aligned with expert experience and diagnostic
guidelines. The optimal ML/MVA-method depends on the
classification task and data structure. Base-ml provides an
innovative open source toolbox to test different methods and
clinical tasks in parallel. The multi-faceted presentation of
results and explainable AI features, including an identification
of clinically relevant features and their statistical analysis,
enables clinicians to better understand ML/MVA outcomes,
and identify avenues for further investigation. Future research
needs to be extended to larger multicenter datasets and new data
sources to improve the performance of automated diagnostic
support tools.
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APPENDIX

Appendix A. Supplementary Experiments
on TADPOLE Dataset
Data Description
TADOLE (69) is an ADNI-based dataset consisting of imaging-
derived features and non-imaging features. The task is to
classify whether observations at a baseline timepoint are
from healthy normal controls (NC), patients with mild
cognitive impairment (MCI), and Alzheimer’s disease (AD). It
consists of 813 instances (229 NC, 396 MCI, and 188 AD).
Imaging features are computed using standard ADNI feature
extraction pipelines.

Results and Discussion
We evaluated all models on this dataset as supplementary
experiment to understand the strengths and limitations
of our proposed model. For our purposes we only look
at the F1-score, as this metric is more robust to class
imbalance, which is present in TADPOLE. We observe
that the best performing models are the hyper-parameter-
optimized tree-based models such as Random Forest and
AdaBoostClassifier. Furthermore, neural network based models
such as MLPClassifier and MGMC yield comparable results
but do not outperform other models. We also observe from
the confusion matrices that the biggest source of error in
most models is to distinguish patients with diagnosed AD
from patients with MCI. Likewise, the confusion matrices
reveal that models almost never mistake healthy controls
with AD patients and vice-versa. Overall almost all models
perform comparably, except notable mis-classification rates
in KNeighborClassifier and GaussianProcessClassifier. Our
obtained classification results of ∼0.6–0.7 F1-score are in line
with recent literature, e.g., our previous comparison of MGMC

FIGURE A1 | Results panel produced by base-ml for TADPOLE.

with regular machine learning classifiers [cf. results in (13), not
yet computed with base-ml], or RF-based AD classification by
Gray et al. (70).

Appendix B. Supplementary Experiments
on Generated Dataset
Data Description
To further illustrate the utility of base-ml, we created a synthetic
dataset for a binary classification task. We generated 5,000
samples with 20 features of which 10 features are informative and
the remaining 10 are uninformative using Scikit-learn (48) (using
the built-in function <make_classification>). It is important to
note that by design, this classification task has a non-linear
separation boundary between the two classes and can therefore
not be solved with high accuracy by linear classifier models.

Results and Discussion
As can be seen in Figure A2, most non-linear models based
on neural networks and properly tuned tree-based models
such as Random Forest could yield comparable performance.
When looking at the classification accuracy of both MGMC and
Random Forest, both perform nearly identically, and with the
highest accuracies among all models. As expected, the linear
models such as Logistic Regression and Linear Discriminant
Analysis obtained the lowest classification accuracy. Overall, we
observe that base-ml properly reflects the statistical properties
and the difficulty of this artificial classification problem. The
source data distributions are not simply separable by topology
mapping (see UMAP embedding), and the separation is only
resolvable by selected and properly tuned non-linear models
– this characteristic would not have been detected by an
analysis that was limited to linear models, or less suited non-
linear models (e.g., for this dataset: Decision Tree Classifier or
AdaBoost Classifier).
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FIGURE A2 | Results panel produced by base-ml for Synthetic data.

Appendix C. Implementation Details:
Hyperparameter Search Ranges
To have a more comparable analysis, we selected the best
hyperparameters using the validation set, before reporting
performance metrics on a with-held test-set (nested
cross-validation). We do this by randomly searching the
hyperparameter space for 100 iterations for every model and
select the best hyperparameters which yields the best validation
set classification performance.

For Logistic Regression we used the
following hyperparameters (C: randint(1, 11);
penalty: {“elasticnet”}, solver: {“saga”}, l1-ratio:
uniform(0, 1));

Random Forest (max_depth: {3, None}; max_features:
randint(1, 11); min_sample_split: randint(2, 11); bootstrap:
{True, False}; criterion: {“gini”, “entropy”}, n_estimators:
randint(5, 50));

K-Neighbors Classifier (n_neighbors: randint(3, 100);
weights: {“uniform”, “distance”});

SVC (C: log_uniform(1e−6, 1e+6); gamma
log_uniform(1e−6, 1e+6); degree: randint(1, 8), kernel:
{“linear”, “poly”, “rbf”});

Decision trees (max_depth: {3, None}; max_features:
randint(1, 11); min_samples_split: randin(2, 11); criterion:
{“gini”, “entropy”};

Gaussian Process Classifier (kernel: {1∗RBF(),
1∗DotProduct(), 1∗Matern(), 1∗RationalQuadratic(),
1∗WhiteKernel()};

AdaBoostClassifier: (n_estimators: {50, 60, 70, 80, 90, 100},
learning-rate: {0.5, 0.8, 1.0, 1.3});

GaussianNB (var_smoothing: logspace(0, 9, num=100));
Linear Discriminant Analysis (solver: {“svd”, “lsqr”, “eigen”};

shrinkage: numpy.arange(0, 1, 0.01));
MLP Classifier (learning-rate: {1e−1, 1e−2, 1e−3, 1e−4};

hidden-units: {32, 64, 128}, dropout probability: {0.0, 0.1, 0.2, 0.3,
0.4, 0.5});

MGMC ([cross-entropy, Frobenius-norm, Dirichlet-norm
weighting]: uniform(0.001, 1000)).
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6.1 Summary of Findings

The main goal of this thesis was to develop and apply machine-learning-based diagnostic
decision support algorithms for healthcare providers, to deliver quality healthcare at the
right time. We outlined why this thesis is necessary in the first place, i.e. because of its
potential to improve and reduce diagnostic errors, to enable access to quality care for resource-
limited areas, and to enable holistic decision support based on multi-modal clinical data.
We have addressed important challenges one would typically face when handling real-world
healthcare data for machine learning-based CADx such as data missingness. We also proposed
a novel CADx paradigm, namely to provide diagnostic decision support throughout the whole
diagnostic workflow which we call peri-diagnostic decision support. Finally, we took several
efforts towards translation of shallow and deep learning based models into clinical research.

6.1.1 Addressing incomplete clinical data for CADx

To enable CADx for clinical datasets with incomplete information, we proposed to simultane-
ously impute the missing information and classify the target disease label. We approached this
by using RGCN and showed that non-autoregressive RGCN with multi-graph approach are
more robust than their autoregressive counterparts in terms of classification and imputation
performance. The proposed model improved in accuracy and significantly outperformed
all other approaches in terms of imputation performance. Eventually, this means that we
have a streamlined approach which enables CADx even in settings where we have datasets
with considerable amounts of missing information. Providing more informative information
to the learning algorithm typically would be much more advantageous as the model could
generalize more to unseen datasets. One limitation of this proposed approach is that all data
points must be available during training, meaning it is transductive. Additionally, models
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are often highly dependent on the graph which could make or break the learning algorithm.
Defining the graph connectivity is challenging, especially if there is no domain knowledge
about the problem. As a result, as a future research direction, one could look at automating
the graph construction by learning it automatically in an end-to-end manner. Other works
could also target at introducing an inductive learning-based GMC which can allow training in
a mini-batch manner, without requiring fully feature-complete samples in the dataset during
training.

6.1.2 Cost-e�cient peri-diagnostic support

ML models often assume that all the dataset features are available, and that their acquisition
was for free. This means the learning algorithm does not take into account that certain
observations could be expensive for the patient or the healthcare provider. Such a system
could be very inefficient. We argue that most ML models assume feature-completeness at
training time, and research towards cost-efficient models has not been a priority so far.
However, in the context of CADx it is desirable to have a system which is cost-efficient. This
means we only acquire an examination if it is needed, i.e. if its acquisition is expected to result
in a better classification performance. Most CADx models only provide decision support to the
clinician once all examinations are already available. Again, this makes the clinical diagnostic
workflow inefficient to both the patient and healthcare provider. Our goal in this part of the
thesis was to have a system which is trained with feature-incompleteness and cost-efficiency
in mind, and which can provide diagnostic decision support to the clinician at test time. In
order to do this, we propose Accumulated Integrated Gradients (AIG), which is a derivation of
the Integrated Gradients (IG) feature attribution method. AIG improved in performance when
compared to previous methods. We also showed that AIG is both cost- and feature-efficient.
This implies a potential to reduce financial burden to the clinic and healthcare system, as well
as to reduce unwanted examinations for the patient. As a result, hospital resources could
also be optimized. One limitation of the current approach is that it is mainly targeted to
feature-level acquisition of examination. Future works could address datasets which contain
features that are in a block or grouped together as a set (e.g. grouped by modality).

6.1.3 Translation of CADx to clinical research

The penultimate goal of modern CADx methods is their translation into clinical routine.
Translation of recent advancements in CADx using deep learning is a step closer to this goal.
With the utilization of shallow and deep-learning-based models, we can answer diagnostic
decision support for CADx. We showed that this could be successfully applied to CADx for
neurological disorders in clinical research of neurological movement and balance disorders.
We explored shallow- and deep-learning-based models for disease diagnosis using a simple
python package called base-ml, which we open-sourced to enable easy experimentation
of disease classification problems using non-DNN based models and DNN-based models,
including more advanced models such as recently proposed GNN methods (MGMC). We
enable this through the utilization of multiple open-sourced python packages used in ML/DL.
We showed that it is possible to answer CADx questions which are important to the diagnosing
clinician, such as providing diagnostic decision support or providing model explanations or
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interpretations. One limitation of the current proposed approaches is that it mainly focuses on
neurological disorders, and future work should continue translating current state-of-the-art
CADx approaches to datasets from various clinical domains. As demonstrated in our works,
the evaluation should be made in close collaboration with domain-specific clinical experts.

6.2 Outlook

Although the solutions and findings presented here are promising, there are certainly a number
of open questions one could address, including potential research directions which continue
the research questions or objectives in this thesis.

6.2.1 Data missingness in CADx

The problem of data missingness in clinical data should certainly be given attention when
coming up with a CADx system. Data-driven diagnostic decision support could provide more
accurate diagnostic support to clinicians. One approach to utilize such data for CADx is
using ML or DL. However, many recent advancements in ML or DL for CADx do not explore
settings where data contains missing information. Pre-prepared (e.g. challenge) datasets
are often prepared in a way that suggests to data scientists that clinical data is usually
feature-complete.

In this work, we address data missingness in the area of feature level missingness. A more
realistic setting in multi-modal CADx using DL is having feature-level missingness where
missingness could come from a single feature of observation of a patient or from a set of
features that belongs to a modality of observation. This means missingness at the modality-
level where blocks of features could be not available for analysis. We recommend to explore
scenarios where a combination of feature- and modality-level missingness is present in the
data, which would be much more representative of real-world clinical datasets. A solution
towards this is certainly of great importance.

6.2.2 Peri-diagnostic decision support

CADx approaches using ML/DL often provide support when all data is available at the end
of the acquisition phase. In other words, it is assumed that the phase where diagnostic data
is acquired on the patient has already been concluded. However, often clinicians would also
need support even during the acquisition phase. The AIG approach proposed in this work
addresses active feature acquisition in a feature-level setting. An important extension of this
is to enable feature acquisition at the modality-level. Here, a set of features coming from a
modality could be acquired at a single step instead of breaking these into multiple levels of the
acquisition step. Enabling peri-diagnostic decision support at the feature- and modality-level
could address even more real-world clinical data.

Another aspect that could also be given attention is the notion of online learning. This goes
in the direction of the field of reinforcement learning (RL). Here, the system is allowed
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to explore and exploit the environment during model training. This means potential fea-
tures/observations other than the current finite set of features could also be exploited by the
system. This area could also allow one to propose other forms of dynamic cost functions
into the system other than just scaling the feature attributions with the given cost. Such an
approach could be possible by assigning appropriate rewards to the features of interest.

Additionally, the proposed AIG method could be improved and explored even further. One
aspect of this is to extensively explore other forms of attribution methods, instead of calculating
feature attributions only. In a sense, the fact that our currently proposed AIG method requires
model differentiability to calculate gradients could be considered a limitation. Instead,
future research could include works on model-agnostic explainability methods [48]. This
could further enable peri-diagnostic decision support, even when the models are no longer
differentiable or not even neural-network based.

6.2.3 Translation of ML or DL methods for CADx in clinical
research

The clinical translation of CADx approaches is certainly very important, to make sure that the
innovation and new techniques reach the everyday diagnostic routine of doctors. In this work,
we analyzed the efficacy of ML/DL approaches for CADx in clinical research, in particular
related to neurological diseases such as vestibular disorders. Although the applications
evaluated in this thesis are specific to neurological disorders, these approaches could also be
applied to other disease diagnosis problems.

Another aspect that also needs more attention from the CADx community is the creation of
benchmark datasets for disease diagnosis. Several different solutions have been proposed in
the literature and reproducing such results is not always straightforward. Although we use
publicly available datasets in this work to enable reproducibility, it could still be challenging
for other researchers to have access to these different datasets as there is no single point of
access. Having a single point of access where different benchmark datasets for CADx are
accessible could unify efforts in CADx algorithm development. This could also avoid CADx
researchers from building the same solutions just applied to other disease classification or
domain. Such a solution could potentially improve reproducibility in CADx research as well as
result to more accurate CADx solutions.
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