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SUMMARY

Classically, hematopoietic stem cell (HSC) differentiation is assumed to occur via
progenitor compartments of decreasing plasticity and increasing maturity in a spe-
cific, hierarchical manner. The classical hierarchy has been challenged in the past by
alternative differentiation pathways.We abstracted experimental evidence into 10
differentiation hierarchies, each comprising 7 cell type compartments. By fitting or-
dinary differential equationmodelswith realistic waiting timedistributions to time-
resolved data of differentiating HSCs from 10 healthy human donors, we identified
plausible lineage hierarchies and rejected others. We found that, for most donors,
the classical model of hematopoiesis is preferred. Surprisingly, multipotent
lymphoid progenitor differentiation into granulocyte-monocyte progenitors is
plausible in 90% of samples. An in silico analysis confirmed that, even for strong
noise, the classical model can be identified robustly. Our computational approach
infers differentiation hierarchies in a personalized fashion and can be used to
gain insights into kinetic alterations of diseased hematopoiesis.

INTRODUCTION

Identification of the hematopoietic lineage hierarchy is crucial to understand how blood production is

controlled and how it is altered in hematopoietic diseases. Current knowledge of human hematopoiesis

suggests that the formation of all blood cell types is maintained by a lineage hierarchy, with hematopoietic

stem cells (HSCs) at the apex, followed by a set of progenitors that terminate in distinct mature blood cell

types. In the classical models of hematopoiesis (Akashi et al., 2000; Doulatov et al., 2012; Manz et al., 2002),

HSCs give rise to multipotent progenitors (MPPs), which can differentiate into common myeloid progeni-

tors (CMPs) and multipotent lymphoid progenitors (MLPs). CMPs can further differentiate to megakaryo-

cyte erythrocyte progenitors (MEPs) or granulocyte-monocyte progenitors (GMPs, Figure 1A). Finally,

MEPs give rise to erythrocytes and megakaryocytes, which then form platelets, while GMPs differentiate

to granulocytes and monocytes. In recent years, this classical model has often been debated as additional

or alternative differentiation paths between these cell types have been suggested in humans and mice by a

wide range of experimental techniques. Several review studies (Doulatov et al., 2012; Haas et al., 2018; Lau-

renti and Göttgens, 2018) have summarized these findings and pinpointed the differences in hematopoi-

esis between mice and humans, but so far, no comprehensive analysis quantitatively assessed the plausi-

bility of competing differentiation hierarchies.

To understand how differentiation paths shape human hematopoiesis, we here assembled and derived 10

competing lineage hierarchies and computationally tested their plausibility. To take advantage of the

abundant mouse data and to carefully check all possible transitions rather than to miss any, we decided

to include evidence from the murine system. For each lineage hierarchy, we mechanistically modeled

cell state kinetics with ordinary differential equations (ODEs) that describe proliferation, differentiation,

and cell death for each compartment. In contrast to previous computational approaches, we explicitly ac-

counted for the cell division history and introduced realistic, non-exponential waiting times via intermedi-

ate states. To investigate the cell intrinsic differentiation and proliferation potential of human HSCs exper-

imentally, HSCs, 5 different progenitor cell types, and mature cells were defined by cell surface marker

expression (Doulatov et al., 2010; Majeti et al., 2007; Manz et al., 2002) and measured by flow cytometry

at several time points. The 10 lineage hierarchy models were fitted to the resulting in vitro fluorescence
iScience 24, 102120, February 19, 2021 ª 2021 The Authors.
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Figure 1. Lineage hierarchies describing healthy hematopoiesis

We constructed 10 different models from hematopoietic hierarchies and differentiation pathways described in the

literature (see Methods for a detailed description). Each model consists of a stem cell compartment (HSC), five progenitor

compartments (MPPs, MLPs, CMPs, MEPs, GMPs), a compartment comprising late progenitors and mature cells (M).

Transitions between states are visualized with arrows, where black arrows indicate transitions that deviate from the

classical model (A).

(A) The classical model based on (Akashi et al., 2000) (Akashi et al., 2000; Manz et al., 2002), Laurenti and Göttgens (2018),

Haas et al., (2018), and (Doulatov et al., 2012) is the least complex lineage hierarchy with 21 rates.

(B) Same hierarchy as in A but with additional direct differentiation from MLPs to GMPs (22 rates).

(C) Same hierarchy as in B but with additional direct differentiation from HSCs to M compartment (23 rates).

(D) Same hierarchy as in A but with additional direct differentiation from HSCs to Ms (22 rates).

(E) Same hierarchy as in B but with additional direct differentiation from HSCs and MPPs to MEPs (24 rates).

(F) Same hierarchy as in A but with additional direct differentiation from HSCs to CMPs and fromMPPs to GMPs (23 rates).

(G) Same hierarchy as in A but replacing the direct differentiation from CMPs to MEPs with the direct differentiation from

HSCs to MEPs (21 rates).

(H) Same hierarchy as in A but with additional direct differentiation from HSCs to CMPs, and MPPs to MEPs and GMPs (22

rates).

(I) Same hierarchy as in G but with additional direct differentiation from MLPs to GMPs (22 rates).

(J) Most complex lineage hierarchy incorporating all direct differentiation paths present in any other model (27 rates).
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activated cell sorting (FACS) data of differentiating HSCs from 10 healthy donors. Subsequently, we ranked

the models’ performances according to their Bayesian information criterion (BIC) values to investigate

which models can be rejected and which model performs best. An in-depth in silico analysis moreover al-

lowed us to identify how accurate our computational approach proves to be, under the assumption of real-

istic test parameters and for varying noise levels in the data.
RESULTS

Derivation of a set of 10 comparable lineage hierarchies

Our goal was to identify plausible hematopoietic hierarchies by computational modeling. To that end, we

compiled hierarchies from previously published experimental studies and review articles of mouse and hu-

man hematopoiesis. However, to allow for a systematic evaluation of different proposed hematopoietic hi-

erarchies, we first had to abstract the evidence in these studies to a limited number of cell types and

transitions.

The findings from Akashi et al. (2000), Manz et al. (2002), and several review articles (Doulatov et al., 2012;

Haas et al., 2018; Laurenti and Göttgens, 2018) provide the basis for the classical hierarchy of human hema-

topoiesis. Here, HSCs give rise to MPPs, which give rise to CMPs and MLPs. CMPs can further differentiate

to MEPs and GMPs, which contribute to mature cells (from now on referred to as the M compartment). This

classical hierarchy (Figure 1A) was modified by taking into account reported alternative differentiation
2 iScience 24, 102120, February 19, 2021
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paths. As it has been observed in several studies (Doulatov et al, 2010, 2012; Giebel et al., 2006; Goardon

et al., 2011; Reynaud et al., 2003) that MLPs can also differentiate to GMPs, we incorporated the respective

transition into 4 hierarchy models (Figures 1B, 1C, 1E, and 1I). Moreover, the existence of a megakaryocyte-

primed HSC subset was proposed (Månsson et al., 2007; Sanjuan-Pla et al., 2013), guiding us to include a

direct transition from HSCs to the M compartment (Figures 1C and 1D). We furthermore included a direct

differentiation transition from MPPs to MEPs, which was observed by Pronk et al. (2007) and Notta et al.

(2016) (Figures 1E and 1H). Conflicting observations however have been made regarding the direct transi-

tion from HSCs to MEPs (see Adolfsson et al., 2005; Takano et al., 2004 vs. Forsberg et al., 2006), a differ-

entiation transition which we incorporated in three more hierarchies (Figures 1E, 1G, and 1I). Suggested

were also the direct differentiation transitions from HSCs to CMPs and from MPPs to GMPs (Adolfsson

et al., 2005), which we incorporated in two hierarchies (Figures 1F and 1H). Finally, we considered a hierar-

chy that comprises all suggested differentiation transitions (Figure 1J). For a detailed description of exper-

imental evidence for differentiation transitions and the derivation of hierarchies, see Transparent methods.

As cells were cultured in media containing specific growth factors at high concentrations (see Transparent

methods), we could assume that cells were at any point saturated and not subject to niche effects. We thus

did not include any feedback terms in our mathematical models.
Multi-compartment models describe possible cell-intrinsic kinetics

To computationally test the plausibility of the 10 lineage hierarchies (Figure 1) with experimental data, we

developed a framework to derive, solve, fit, and rank competing lineage hierarchy models.

The experimental data we used for this analysis were generated by in vitro experiments in which HSCs from

10 healthy human bone marrow (BM) samples were stringently sorted as Lineage- CD45dim CD34+ CD38-

CD45RA- CD90+ cells, additionally stained with CellTrace division marker, cultured for 7 days in a defined

medium optimized for differentiation, and analyzed by multiparameter immunophenotyping on subse-

quent days (see Transparent methods, Figure S1A and Table S1). This approach allowed us to measure

the abundances of 7 cell types for in total 10 samples in a time-resolved manner and track the number

of cell divisions between experiment start and the respective observed time point (see Figures S1B and

S1C and Transparent methods).

We next derived an ODE compartmental model which considers the 7 cell types as system states and pro-

liferation, differentiation, and cell death events as transitions between these states (Figure 2A shows tran-

sitions for the most complex model J) for every candidate hierarchy (Figures 1A–1J). Transitions are

defined as reactions that occur with cell-type-specific rates: a for differentiation, b for proliferation, and

g for cell death (Figures 2A and Table 1). While the same proliferation and cell death reactions are consid-

ered for each lineage hierarchy model, the set of differentiation reactions is specific for each hierarchy,

leading to models with varying complexity (see Transparent methods, Figures 2A and Table 2).

For example, model A contains 8 differentiation reactions, 7 proliferation reactions, and 6 cell death re-

actions (which totals 21 rates), whereas model J contains 14 differentiation reactions and thus a total of

27 rates.

To incorporate the measured cell-type-specific number of divisions since the start of the experiment, we

extended this ODE model to include 7 division compartments per cell type. This leads to an increase in state

space (from 7 to 49 states), while the parameter space (i.e. the number of unknown rates a, b, g) stays constant.

Every time a cell division occurs, the next division compartment of the same cell type is reached (Figure 2A).

When cells change cell type along a differentiation reaction, they stay in the respective division compartment

(see Figure 2A inset). Upon arrival at the seventh division compartment (the last one we could reliably measure,

see Transparent methods), cells accumulate and can only escape via a differentiation or cell death reaction.

To ensure that differentiation, proliferation, and cell death processes are realistically described by our

model, we finally introduced intermediate states for every reaction. Thus, our waiting times are Erlang

distributed (Matis and Wehrly, 1990), instead of the conventionally used, unrealistic, exponentially distrib-

uted waiting times (Figure 2B). This model extension leads to complex ODE systems with at least 343 and

up to 994 equations (see Transparent methods) while again keeping the number of rates constant. The

number of intermediate states nIS is a hyperparameter of our model.
iScience 24, 102120, February 19, 2021 3
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Figure 2. Multi-compartment models with 3 intermediate states show optimal trade-off between parameter

inference precision and computational cost

(A) Multi-compartment model accounting for the number of cell divisions and realistic rate distributions via intermediate

states (nIS), exemplarily shown for the classical model A. Parameters describe cell-type-specific proliferation,

differentiation, and death rates.

(B) Waiting time distributions for 1-5 intermediate states assuming a mean reaction (proliferation, differentiation, or

death) rate of 1/20 [h�1].

(C) The mean log likelihood for fitting models A-J (10 lines) to 4 individual samples increases with any additionally

introduced intermediate state nIS, especially for introducing a second and third intermediate state.

(D) The mean percentage of practically identifiable parameters sorted by models A-J (10 lines) based on 4 individual

samples increases considerably for small nIS but remains roughly constant for nIS R 3.

(E) Themean computation time for fittingmodels A-J (10 lines) to the 4 individual samples increases exponentially with the

number of intermediate states irrespective of the model hierarchy. For every sample and lineage hierarchy, optimization

of 1000 multistarts was run in parallel on 24 workers.
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Table 1. All possible state transitions as model reactions in hierarchies A–J

Proliferation reactions Differentiation reactions Cell death reactions

R1 : HSC/
bHSC

2HSC R8 : HSC /
aHSC/MPP

MPP R15 : MPP /
aMPP/GMP

GMP R22 : HSC/
gHSC

B

R2 : MPP/
bMPP

2MPP R9 : HSC /
aHSC/CMP

CMP R16 : CMP /
aCMP/MEP

MEP R23 : MPP/
gMPP

B

R3 : CMP/
bCMP

2CMP R10 : HSC /
aHSC/MEP

MEP R17 : CMP /
aCMP/GMP

GMP R24 : CMP/
gCMP

B

R4 : MLP/
bMLP

2MLP R11 : HSC /
aHSC/M

M R18 : MLP /
aMLP/.

B R25 : MEP/
gMEP

B

R5 : MEP/
bMEP

2MEP R12 : MPP /
aMPP/CMP

CMP R19 : MLP /
aMLP/GMP

GMP R26 : GMP/
gGMP

B

R6 : GMP/
bGMP

2GMP R13 : MPP /
aMPP/MLP

MLP R20 : MEP /
aMEP/M

M R27 : M/
gM

B

R7 : M/
bM

2M R14 : MPP /
aMPP/MEP

MEP R21 : GMP /
aGMP/M

M

HSC,MPP, CMP,MLP,MEP, GMP, andM indicate cell types (see Figure 1), Ø denotes the empty set, and r˛ fað:Þ; bð:Þ;gð:Þg the
reaction rates (see Figure 2).
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Before fitting to experimental data, we analyzed structural identifiability of the 10 competing models with

the MATLAB toolbox STRIKE-GOLDD (Villaverde et al., 2019; Villaverde and Banga, 2017). Under the

assumption of ideal, noise-free experimental data, all proliferation, differentiation, and cell death rates

can be inferred from the measurements. This holds independently of the chosen model hierarchy and

independently of considering proliferation count compartments if three intermediate states are assumed.

Interestingly, formodels C, D, E, and J, some rates are not structurally identifiable if proliferation count com-

partments but no intermediate states are considered and most parameters especially proliferation and

death rates are unidentifiable if no proliferation counts and no intermediate states are considered (Table 3).

Parameter inference identifies optimal number of intermediate states

We implemented all 10 models for an arbitrary number of intermediate states nIS in MATLAB and used the

AMICI toolbox (Fröhlich et al., 2017) to determine the solution of the ODE system. Solving the ODE system

is required to simulate observations from the models for certain parameter combinations while maximizing

the likelihood function. As we observed and modeled cell counts, we assumed log normally distributed

noise in the likelihood function. We applied a hierarchical optimization approach (Loos et al., 2018) with

which the division compartment and cell type compartment-specific noise parameters are analytically

calculated during optimization. Using the profile likelihood method (Kreutz et al., 2013), we calculated

the 95% confidence interval for each parameter, each model, and each donor sample. Next, we optimized

the number of intermediate states nIS that are required to accurately and efficiently estimate and practically

identify model parameters. Specifically, we fitted all 10 models with 1–5 intermediate states (in total 50

models) to 4 randomly chosen samples. We observed that for all models A-J, the log likelihood increases

with the number of intermediate states nIS (Figure 2C). However, themean percentage increase in log likeli-

hood per additional intermediate state is below 3% for nIS > 3. As the percentage of practically identifiable

parameters plateaus at nIS = 3 (see Transparent methods), we fixed this hyperparameter and performed the

remaining analysis with nIS = 3 intermediate states.

We fitted every model A-J with 3 intermediate states to all 10 samples (see Figure 3A for the fit of model A

to one exemplary donor sample) using maximum likelihood estimation (see Transparent methods) and

multistart optimization with the MATLAB toolbox PESTO (Stapor et al., 2018). As indicated by narrow con-

fidence intervals for almost all samples (Figure 3B), we observed that most rates could be inferred from the

data with high certainty (Table S3 lists all log10 transformed parameter values with their confidence intervals

for model A). We thus concluded that overall, practical identifiability of parameters is given. However, iden-

tifiability deteriorates for the downstream progenitor compartments (GMP and MEP), especially for differ-

entiation and cell death rates, for which we observe larger confidence intervals compared to upstream

compartments (Figure 3B) and practical identifiability is not always guaranteed. Practical non-identifiability

of a parameter is indicated by confidence intervals that include the upper or lower border or both borders

of the parameter’s search space (e.g. gMEP for sample 1 in Figure 3B).

Model comparison reveals plausible lineage hierarchies

Todeterminewhich lineagehierarchies best explained our experimental data, weperformedquantitativemodel

selection. This was done by assigning a score to each of the 10 models and every individual sample. We calcu-

lated theBIC (Schwartz, 1965), which takes goodness of fit, number of parameters, and the number of datapoints
iScience 24, 102120, February 19, 2021 5



Table 2. Model complexity indicated by the number of reaction rates for lineage hierarchies A–J

Model # Reaction rates Reactions

A 21 R1 � R8;R12 � R13;R16 � R18;R20 � R27

B 22 R1 � R8;R12 � R13;R16 � R27

C 23 R1 � R8;R11 � R13;R16 � R27

D 22 R1 � R8;R11 � R13;R16 � R18;R20 � R27

E 24 R1 � R8;R10;R12 � R14;R16 � R27

F 23 R1 � R9;R13;R16 � R18;R20 � R27

G 21 R1 � R8;R10;R12 � R13;R17;R18;R20 � R27

H 22 R1 � R9;R13 � R14;R16 � R18;R20 � R27

I 22 R1 � R8;R10;R12 � R13;R17 � R27

J 27 R1 � R27

The corresponding reactions are listed in Table 1.
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into account (see Transparentmethods). After calculatingmodel- and sample-specific BIC scores, we ranked the

models accordingly and assessed how often a respective model was the best performing one (lowest score

among the considered models), among the plausible models (BIC difference in score to best model <10), or

how often it was rejected (BIC difference to best model R10, see Figures 3C and 3D).

Based on our analysis, there is no evidence in our data for models E, H, and J, which were rejected for all

donor samples according to BIC. Models C, F, and I also performed poorly, as they were rejected for more

than 80% of samples. The only model which was not rejected by a single sample is the classical lineage hi-

erarchy A. It was selected as the best performing model in 90% of the samples based on BIC. Model B was

considered as plausible for almost 90% of the samples according to BIC (Figure 3D). There is also some

evidence for models D and G, which are plausible for 30% of the samples.

To investigate if the outstanding performance of model A mainly stems from its low complexity, we addi-

tionally calculated the Akaike information criterion (AIC, Akaike, 1992). As this selection criterion penalizes

the number of parameters in the model differently than BIC, it can potentially select and reject other

models. Indeed, the AIC is less conservative than the BIC for the model complexities of interest and the

range of the number of data points we used for the fit (Figure S2A). For AIC, we again found support for

models A and B, whereas models E, F, H, I, and J performed as poorly as in the BIC ranking (Figures 3D

and S2B). According to AIC, there is more evidence for model C (rejected in only 60% of samples as
Table 3. Structurally unidentifiable parameters for models A–J with and without 3 intermediate states and 7

proliferation count compartments

Model

Unidentifiable parameters

nIS = 1;ndiv = 7 nIS = 3;ndiv = 7 nIS = 1;ndiv = 1 nIS = 3;ndiv = 1

A x0ðqÞ x0ðqÞ x0ðqÞ;b:;aMLP/.;g: x0ðqÞ
B x0ðqÞ x0ðqÞ x0ðqÞ;b:;aMLP/.;g: x0ðqÞ
C x0ðqÞ;aGMP/M;gGMP x0ðqÞ x0ðqÞ;b:;aMLP/.;aGMP/M;g: x0ðqÞ
D x0ðqÞ;aGMP/M;gGMP x0ðqÞ x0ðqÞ;b:aMLP/.;aGMP/M;g: x0ðqÞ
E x0ðqÞ;aCMP/MEP ;gCMP x0ðqÞ x0ðqÞ;b:;aMLP/.;aCMP/MEP ;g: x0ðqÞ
F x0ðqÞ x0ðqÞ x0ðqÞ;b:;aMLP/.;g: x0ðqÞ
G x0ðqÞ x0ðqÞ x0ðqÞ;b:;aMLP/.;g: x0ðqÞ
H x0ðqÞ x0ðqÞ x0ðqÞ;b:;aMLP/.;g: x0ðqÞ
I x0ðqÞ x0ðqÞ x0ðqÞ;b:;aMLP/.;g: x0ðqÞ
J aMLP/GMP ;aMLP ;x0ðqÞ x0ðqÞ x0ðqÞ;b:;aMLP/.;aMLP/MEP ;aGMP/M;g: x0ðqÞ
x0(q) is the set of parameters describing the initial conditions of the respective ordinary differential equation (ODE) system

(see Transparent methods).
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Figure 3. Quantitative model comparison reveals model A as the most plausible lineage hierarchy (see also Figure S2)

(A) Model A (solid line) was fitted to cell abundances in 49 compartments observed for sample 1 (dots). Model uncertainty is shown asG 2s error bands. Sum

over all divisions for each cell type compartment (last column) was not used for the fit but shows agreement of model fit and data.

(B) Optimal parameter values (dots) with 95% confidence intervals (boxes) result from fitting model A to all 10 samples.

(C) Bayesian information criterion (BIC) values per model A-J (rows) for every individual sample (columns) result from fitting all considered lineage hierarchies

(Figures 1A–1J) to samples of 10 healthy individuals. Color code corresponds to three categories, which were defined based on BIC scoring. Models were

categorized into best (for the lowest score), plausible (a difference to the lowest BIC score %10), and implausible (a difference to the lowest score >10)

models for each donor sample.

(D) Relative frequency of a model to belong to one of the three categories best, plausible, and implausible according to the BIC scores obtained from the 10

samples.
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compared to 80%with BIC) andmodel D (rejected with BIC in only 40% of samples as compared to 70%) but

not for model G (rejected in 70% of the samples for both criteria). With a rejection percentage of at least

70% of samples according to both criteria (AIC and BIC), models E-J can be overall rejected.
iScience 24, 102120, February 19, 2021 7
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Figure 4. Lineage hierarchy identification is robust for varying noise levels (see also Figure S3)

(A) Weak noise simulation and fit of model A, exemplarily shown for HSCs that have divided once. Simulated data (dashed

line) were perturbed with weak noise (s = 0.4, dots). The true kinetics (dashed line) deviates only slightly from the fitted

model (solid line) and is contained in the G 2s error band depicting model uncertainty.

(B) For weak noise, the best fitting model always coincides with the simulated ground truth. Data was simulated with a

realistic test parameter set for each model A-J and perturbed with weak noise (s = 0.4, as shown in A). BIC values result

from fitting simulated data with models A-J. The lowest BIC value (dark gray boxes) appears always for the truemodel and

only up to two other models are plausible (light gray boxes).

(C) Strong noise simulation and fit of model A, exemplarily shown for HSCs that have divided once. Simulated data

(dashed line) was perturbed with strong noise (s = 1.2, dots). The true kinetics (dashed line) deviates at later time points

from the fitted model (solid line) but is contained in the G 2s error band depicting model uncertainty.

(D) For strong noise (s = 1.2, as shown in C), only models A and D are correctly identified as the best performing model

(dark gray boxes on diagonal). For data simulated from models B, C, F, G, and H the true lineage hierarchy is not the best

performing model but considered as plausible (light gray boxes on diagonal). For data simulated from models E and J,

the true model was assessed as implausible (white boxes on diagonal) based on the BIC value.
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Robust identification of lineage hierarchies

To investigate if it is in principle possible to select the true underlying model and not necessarily the least

complex one, we performed an in silico model selection analysis. For this purpose, we chose a realistic

model-specific parameter set, which was equal to the mean rate estimates from the experimental data

(shown formodel A in Figure 3B).We subsequently simulated artificial data fromeverymodel A-J, perturbed

the generated data with noise of varying strengths (see Figure S3A for an exemplary simulation), and fitted

the perturbed artificial samples with every model A-J (see Figure S3B for corresponding true and inferred

parameter values). For weak noise, the measurement points deviated only lightly from the simulated values

(noise parameter s = 0.4, Figure 4A), whereas for strong noise, the perturbed measurements scattered

strongly (noise parameter s = 1.2, Figure 4C). Interestingly, for every in silico sample generated with

weak noise, the true model (that is, the model from which the data were generated) performed best and

almost all (8 or 9 out of 9 other models) were rejected (Figure 4B). For strong noise, we found that the

true model was only accurately identified for lineage hierarchies A and D (Figure 4D). Model D is however

also at least plausible if the data were simulated from any other model (Figure 4D). For model I and the

twomost complex models E and J, other models were favored and the truemodel was rejected (Figure 4D).

This analysis shows how crucial underlying noise is for the robust identification of the true model. However
8 iScience 24, 102120, February 19, 2021
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even for strong noise, model A was never the best performing model when the in silico data was generated

from another lineage hierarchy and not even considered as plausible, suggesting its low complexity is not

the predominant feature of its outstanding performance (Figures 4B and 4D). Formodels E and J on the con-

trary, themodel complexity might have been a barrier in correctly identifying them in the presence of strong

noise: Model E was identified only once as a plausible model, model J never (Figure 4D). While simulating

frommodel I, model C was selected as the best model, despite its higher complexity (23 vs. 22 parameters),

while model I itself was rejected. Interestingly, the noise parameters per cell type and division compartment

that were estimated from the experimental data (Figure 3) all lie in the interval [0.6,1.1] and are thus stronger

than the weak noise (s = 0.4) but also weaker than the strong noise (s = 1.2) which were assumed in the

in silico analysis.

Based on this analysis, we can conclude that our parameter inference approach allows for the robust iden-

tification of lineage hierarchies in the presence of noise, if it is not overprominent. Most importantly, it is

unlikely that model A was only selected due to its low complexity.
DISCUSSION

Although many aspects of the hematopoietic system are well characterized after decades of research, sub-

stantial gaps in our understanding of how the different blood cell types are produced remain, in particular

when it comes to human hematopoiesis, where evidence and access is substantially scarcer than in mice.

We approached this gap by quantitatively comparing 10 lineage hierarchies, integrating the evidence from

a broad range of experimental studies. We found that our data supported the classical model of hemato-

poiesis, that an additional differentiation transition from MLPs to GMPs is plausible, but no evidence to

support the validity of the remaining 8 lineage hierarchies.

Our approach is based on 7 distinctly defined human hematopoietic cell types. This is complementary to a

recently reported combined index-FACS and single-cell transcriptomic analysis (Velten et al., 2017). By pro-

jecting transcriptomic similarity of single hematopoietic cells on a unit circle, Velten et al. (2017) could

observe a ‘‘Continuum of LOw primed UnDifferentiated hematopoietic stem- and progenitor cells

(CLOUD-HSPCs)’’. Interestingly, our finding that the additional transition from MLPs to GMPs (Figure 1B)

is plausible in 90% of the samples (Figure 3D) is in line with their finding that a small subpopulation of

MLPs in the two samples they analyzed differentiate toward neutrophils (Fig. 5b and Supplemental

Fig. 5b in Velten et al. (2017)). It also fits with the recently reported joint progenitor population of B cells

and plasmacytoid dendritic cells in mice (Herman et al., 2018). While our approach cannot resolve contin-

uous transitions by design, it facilitates the direct inference of differentiation, proliferation, and cell death

rates. Thereby, we circumvent that inferred differentiation rates are often biased by cell cycle effects, which

is currently a challenge in differentiation trajectory inference from scRNAseq data (Watcham et al., 2019;

Weinreb et al., 2018).

Hematopoiesis as a paradigmatic stem cell system has been described in the past with a few data-driven

models. In Busch et al. (2015), mouse in vivo lineage tracing data were used to parametrize a computational

ODE-based compartment model of HSCs, MPPs, CLPs, and CMPs. Parameter inference revealed cell

type-specific differentiation and net proliferation rates based on the upper part of the classical hierarchy

since only late progenitors (GMPs and MEPs) but not mature cells were measured in the experiment. A

model by Klose et al. (2019) included internal feedback within a heterogeneous HSC population and is

suited to consistently describe both hematopoietic homeostasis and regeneration upon injury. It was vali-

dated using the experimental mouse data from Busch et al. (2015) but only considered one progenitor

compartment without distinguishing between the various progenitor cell types. They model heterogeneity

in the HSC compartment by considering two HSC subtypes: repopulating HSCs which are rarely activated

during homeostasis, and maintaining HSCs which ensure the continuous supply of progenitor cells.

Assuming steady-state hematopoiesis their analysis showed that repopulating HSCs differentiate and pro-

liferate at a much lower rate than maintaining HSCs and progenitors, which differentiate almost as fast as

they proliferate. In contrast to these approaches, wemodeled cellular rates with realistic, Erlang distributed

waiting time, leading to an improved fitting of the model to the data. Similar to our in vitro experiments,

time-resolved cell counts from mouse in vitro lineage negative, Sca1 positive, c-kit negative (LSK) cell cul-

tures (comprising long-term (LT) HSCs, short-term (ST) HSCs, and MPPs) were used previously (Adimy and

Crauste, 2009; Busch et al., 2015; Klose et al., 2019; Mahadik et al., 2019) for model fitting. In particular the

influence of different culture conditions on the balance between HSC self-renewal vs. differentiation and
iScience 24, 102120, February 19, 2021 9
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proliferation was studied by considering 3 (LSK, CMP, terminal) and 5 (LT HSC, ST HSC, MPP, CMP, termi-

nal) compartment ODE models. Interestingly, feedback and some recently suggested differentiation tran-

sitions (LSK to terminal, and ST HSC and MPP to terminal, respectively) were included in the model. The

authors conclude that downstream differentiation is driven by rapid differentiation of ST repopulating

HSC progenitor populations and not CMPs and thereby favor the additionally included differentiation tran-

sitions. In contrast to our approach, the plausibility of the suggested 3- or 5-compartment models was

neither assessed nor quantitatively compared and cell divisions were neither tracked nor modeled.

We modeled hematopoiesis deterministically with ODEs since hundreds to thousands of cells were

observed in our in vitro culture and stochastic effects average out. Per design of our cell culture experiment,

extrinsic niche effects were not considered and cells were not competing for space or growth factors.

Consequently, we modeled unlimited cell population growth without any feedback. To apply our approach

to in vivo data or to cell cultures with only few cells and limited space or growth factors, the model would

need to be adapted to e.g. include feedback terms and a carrying capacity (Klose et al., 2019; MacLean

et al., 2014), use a stochastic formalism (Marr et al., 2012; Newton et al., 1995; Strasser et al., 2018; Xu

et al., 2018), or incorporate space or cell age via partial differential equations (Craig et al., 2016; Østby

et al., 2003; Roeder et al., 2009).

Detailed insights into differentiation pathways and rates are critical for understanding how hematopoiesis

yields sufficient blood cells throughout the lifetime of an individual. Improving our understanding of cell-

type-specific differentiation, proliferation, and cell death may help to predict how hematologic diseases

develop and how they respond to therapy. Our computational approach provides access to these param-

eters and may facilitate comparisons of benign and leukemic kinetics to healthy hematopoiesis to identify

cell types and rates affected in leukemogenesis. It might thus also help to uncover targetable cell intrinsic

disease mechanisms in the future.
Limitations of the study

In theory, differentiation transitions may exist which we have not tested, or transitions may exist that our

present approach could not identify. The latter could be due to relatively high noise in the count data in

combination with a very low differentiation rate of the respective transition. Also, it is worth mentioning

that we focussed only on cell intrinsic kinetics—constraints of the BM environment that affect the differen-

tiation hierarchy are not considered in our in vitro setting. Similarly, our model would need to be changed if

one aims to describe cell cultures in which cells are competing for space or growth factors.

The experimental setup and used technology limits the number of cell types which could be determined by

flow cytometry. By using additional markers and expanding the model, additional hypotheses regarding

the differentiation paths, i.e., involving specific mature cell types could be tested.
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Figure S1. Measuring number of cells over time, Related to Figure 1 and Figure 3.  

(A) Bone marrow cells from 10 donors were isolated. Each sample was purified by multiparameter 

immunophenotyping (FACS) for a HSC starting population which was then divided and cultured in 

several wells in parallel. Cell cultures were measured with FACS to observe cell abundances and 

division distribution of cultured bulk cells at subsequent measurement timepoints. 

(B) Measured cell abundances for all seven cell type compartments (HSC, MPP, MLP, CMP, GMP, 

MEP, M) over time (connected dots) for one exemplary sample (ID 7).  

 



 
 

Figure S2. AIC identifies similar plausible models as BIC, Related to Figure 3.  

(A) Critical values for BIC and AIC for rejecting a model over another less complex model for a difference 

in number of parameters of 1 to 6 are shown for the upper and lower boundary of observations. BIC 

shows larger critical values and is thus always a more conservative criterion compared to AIC. 

(B) AIC values per model A-J (rows) for every individual sample (columns). Models were categorized 

into best (for the lowest AIC score), plausible (a difference to the lowest score ≤ 10) and implausible (a 

difference to the lowest score ≥ 10) for each sample. 

(C) Relative frequency of a model to belong to one of the three categories (best, plausible, implausible) 

according to the AIC obtained from the 10 samples. 

 



 
 

Figure S3. Exemplary model simulation and fitting, Related to Figure 4.  

(A) Cell abundances of 49 compartments (first 7 columns) and sum over all divisions (last column) for 

each cell type. Model A was used to generate in silico data for a realistic test parameter (dots) and 

perturbed by cell compartment specific log-normal noise (shown for realistic noise level, 𝜎 ∈ [0.6,1.1]). 

Underlying (noise free) model observables (dashed line) and the model observables for the optimal 

parameter (solid line) deviate only slightly for the assumed noise level (±2𝜎 error band). 

(B) True parameter values (red dots) for which perturbed samples were simulated by using model A 

are for most rates contained in 95% confidence interval (grey boxes) of inferred parameter values (black 

dots) and deviate only slightly from the true value even for higher noise levels. The noise level for 

perturbation of simulated values was varied and set to 𝜎= 0.4 for weak, 𝜎= 0.8 for middle, 𝜎=1.2 for 

strong, and 𝜎 ∈ [0.6,1.1] for realistic noise.  



Cell type(s) Marker Published in 

HSC * Lin- CD34+ CD38- CD90+ CD45RA- (Doulatov et al., 2010; 
Majeti et al., 2007) 

HSC Lin- CD34+ CD38− CD45RA− CD90+; CD49f+ (Notta et al., 2011) 

HSCs/ MPPs CD133+ CD34+ CD45RA- (Görgens et al., 2013) 

MPP * Lin- CD34+ CD38- CD90- CD45RA- (Doulatov et al., 2010; 
Majeti et al., 2007) 

MPP CD34+ CD10- CD38- CD90- CD45RA- (Ostendorf et al., 2018) 

CMP * Lin- CD34+ CD38+ CD45RA- CD123+ (Manz et al., 2002) 

CMP Lin- CD34+ CD38+ CD45RA− Flt3+ CD7− CD10− (Doulatov et al., 2010) 

GMP * Lin- CD34+ CD38+ CD45RA+ CD123+ (Manz et al., 2002) 

GMP Lin- CD34+ CD38+ CD45RA+ Flt3+ CD7− CD10− (Doulatov et al., 2010) 

MEP * Lin- CD34+ CD38+ CD45RA- CD123- (Manz et al., 2002) 

MEP Lin- CD34+ CD38+ CD45RA− Flt3− CD7− CD10− (Doulatov et al., 2010) 

Lymphoid/DC-restricted 
progenitors 

CD34+ Lin- CD10+ (Galy et al., 1995) 

MLP * Lin- CD34+ CD38− CD90neg–lo CD45RA+ (Doulatov et al., 2010) 

CLP Lin−, CD34+, CD127+ (Pang et al., 2011) 

lympho-myeloid  CD133+ CD34+ CD45RA+ (Görgens et al., 2013) 

erythro-myeloid CD133low CD34+ CD45RA- (Görgens et al., 2013) 

Table S1: Commonly used gating strategies for identifying human hematopoietic stem and 

progenitor cells, Related to Figure 1. Strategies marked with * served as the basis for this study.   

 

 

 

 
Table S2: Parameter boundaries used for fitting models A-J to experimental data, Related to 

Figure 2.  
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Parameter Individual ID (age, sex) 

 1     
(63, m) 

2  
(57,m) 

3 
(70,m) 

4    
(63, m) 

5    
(51, m) 

6    
(26, m) 

7     
(29, m) 

8     
(44, m) 

9     
(24, m) 

10  
(76, w) 
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 -1.37    
[-1.44, 
-1.22] 

-1.2  
[-1.5,  
-0.89] 

-1.37  
[-1.45, 
-1.31] 

-1.02  
[-1.13, 
-0.92] 

-1.26  
[-2.7,  
-0.4] 

-1.05  
[-1.16, 
-0.91] 

-1.1  
[-1.34,  
-0.85] 

-0.99  
[-1.24,  
-0.75] 

-1.11  
[-1.72, 
-0.57] 

-1.44  
[-1.5, 
-1.38] 

 -2.70  
[-2.70, 
-1.93] 

-1.02 
[-1.58, 
-0.46] 

-1.81  
[-2.7,  
-1.53] 

-2.7  
[-2.7,  
-1.21] 

-0.82  
[-1.18, 
-0.11] 

-2.7  
[-2.7,  
-1.11] 

-0.88  
[-1.16,  
-0.6] 

-0.96 
[-1.26,  
-0.67] 

-2.7  
[-2.7,  
0] 

-2.7  
[-2.7, 
0] 

 -0.68    
[-1.28,  
-0.36] 

0  
[-0.25, 
0] 

-2.7  
[-2.7,  
-2.19] 

-2.7  
[-2.7,  
-2.15] 

-2.7 
[-2.7,  
-0.64] 

-0.8  
[-1.36, 
-0.41] 

-2.7  
[-2.7,  
-1.07] 

-0.6  
[-0.87,  
-0.34] 

-2.7  
[-2.7,  
-0.02] 

-1.58  
[-2.4,  
-0.75] 

 -1.11    
[-1.59, 
-0.77] 

-0.41 
[-0.86, 
0] 

-1.4  
[-1.44, 
-1.35] 

-1.24  
[-1.32, 
-1.17] 

-1.22  
[-1.65, 
-0.54] 

-0.98  
[-1.49, 
-0.67] 

-1.04  
[-1.23, 
-0.84] 

-0.74  
[-0.92,  
-0.55] 

-2.13  
[-2.7,  
-1.31] 

-1.27  
[-1.41, 
-1.14] 

 -1.11 
[-2.70, 
0] 

-0.08 
[-0.65, 
0] 

-2.7  
[-2.7, 
-2.14] 

-2.7  
[-2.7,  
-2.05] 

-0.95  
[-1.29, 
-0.35] 

-1.3  
[-2.7,  
-0.44] 

-0.85  
[-1.12,  
-0.58] 

-1.34  
[-2.27,  
-0.41] 

-2.7  
[-2.7,  
-0.49] 

-2.17  
[-2.7, 
0] 

 -1.48    
[-1.52, 
-1.44] 

-1.1  
[-1.23, 
-0.98] 

-1.19  
[-1.23, 
-1.15] 

-1.22  
[-1.26, 
-1.16] 

-1.2  
[-1.25, 
-1.13] 

-1.16  
[-1.23, 
-1.09] 

-1.32  
[-1.36,  
-1.28] 

-1.2  
[-1.26,  
-1.13] 

-1.04  
[-1.13, 
-0.96] 

-1.34  
[-1.39, 
-1.29] 

 -2.70 
[-2.70, 
-2.31] 

-2.7  
[-2.7, 
0] 

-2.7  
[-2.7,  
-2.18] 

-2.7  
[-2.7,  
-2.49] 

-2.58  
[-2.7,  
-1.72] 

-2.7  
[-2.7,  
-2.16] 

-2.7  
[-2.7,  
-2.17] 

-2.7  
[-2.7, 
-1.67] 

-2.7  
[-2.7, 
 -1.79] 

-2.7  
[-2.7,  
-0.91] 

 

Table S3: Log10 transformed parameter values with their 95% profile likelihood-based 

confidence intervals in [cells/h] resulting from fitting model A to each of the 10 individuals,  

Related to Figure 3.  

 

 

Transparent Methods 

Derivation of the set of lineage hierarchy models tested 

Based on the classical model of hematopoiesis (model A, Figure 1A) and recently reported experimental 
evidence, we derived nine alternative models, likewise containing compartments HSC, MPP, CMPs, 
MLP, MEP, GMP, and M, but with different direct differentiation transitions between them (Figure 1B-
J). The restriction on 7 cell types is determined by the number of discernable populations in flow 
cytometry. Furthermore, our setup does not allow to depict myeloid and lymphoid differentiation past 
the HSPC compartment: Whereas conditions allowing in vitro differentiation of HSCs into mature 
myeloid cells are well established, it is much more difficult to culture mature lymphoid cells past the 
committed progenitor stage which requires a specific culture medium using a cloned stromal feeder 
layer (i.e. Whitlock-Witte culture). 

Several studies in humans (Doulatov et al., 2010; Doulatov et al., 2012; Giebel et al., 2006; Reynaud 

et al., 2003; Goardon et al., 2011; Rossi et al., 2008; Hao et al., 2001) show that progenitor cells in the 
CD34+CD38− compartment, which are CD90+ (Thy1) and CD45RA+, correspond to multipotent 
lymphoid progenitor cells (MLP), and have lymphoid, macrophage, and dendritic potential. As these 
results suggest that MLPs can also differentiate to GMPs, we have incorporated this transition in models 
B, C, E and I (Figure 1B,C,E,I). 
In a study investigating adult blood lineage commitment in mice (Adolfsson et al., 2005), the authors 
proposed a revised model of hematopoiesis. They identified a new cell type, the lymphoid-primed 
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multipotent progenitors (LMPPs), which are FLT3+ Lin− Sca-1+ c-Kit+  cells (LSK Flt3+ cells), that 
possess B-cell, T-cell and granulocyte-monocyte (GM) potential but lack megakaryocyte-erythrocyte 
(MegE) potential. Mouse LSK cells include long-term HSCs, short-term HSCs, and MPPs. The 
existence of a distinct LSK subtype that does not have MegE potential may indicate that MEPs can 
directly arise from HSCs. Furthermore, loss of MegE potential in the newly defined LMPP compartment 
indicates a direct LMPP to GMP transition, without differentiation into CMPs first. In this model, HSCs 
can generate LMPPs with lymphocyte and GM potential, and CMPs with MegE and GM potential. These 
findings led on the one hand to the possible direct transition from the HSC to CMP compartment and 
from MPPs to GMPs in models F and H (Figure 1F,H), and on the other hand to a transition between 
the HSC and MEP compartment in models E, G and I (Figure 1E,G,I). The direct differentiation path 
from HSCs to MEPs (Figure 1E,G,I) was also supported by in vitro studies of Takano et al. (2004), who 
investigated colony forming units of LSK daughter and granddaughter cells. However, a separate study 
from (Forsberg et al., 2006) also investigated the lineage potential of FLT3+ LMPPs but found conflicting 
results, which instead support the classical model of hematopoiesis (model A, Figure 1A). 
In another mouse study, a fraction of phenotypically defined HSCs was shown to express von 
Willebrand factor (vWF), a protein mainly expressed by platelets and endothelium (Månsson et al., 
2007). The existence of a megakaryocyte-primed HSC subset was also experimentally investigated by 
Sanjuan-Pla et al. (2013) generating vWF-eGFP transgenic mice, isolating LSK CD150+ CD48− CD34−  

HSCs with a high eGFP expression and transplanting them into irradiated mice. They found that vWF-
eGFP+ HSCs were platelet biased, additionally contributing to other myeloid lineages whereas their 
lymphoid contribution was very marginal.  
Models E and H furthermore include the direct differentiation path from MPPs to MEPs, which was 
suggested by Pronk et al. (2007) (Figure 1E,H). By studying the phenotypic, functional and molecular 
characteristics of myeloerythroid precursors, they identified MPPs which give rise to erythroid and 
megakaryocytic progeny through various intermediate stages.This finding is supported by human 
studies, in which BAH1 and CD71 were identified as erythroid and megakaryocytic differentiation 
markers within the CD34+ CD38- MPP compartment (Notta et al., 2016).  

Sample collection and storage 

Healthy BM samples were obtained from allogeneic donor BM filters or from femoral heads of patients 
undergoing hip replacement surgery. Written informed consent in accordance with the Declaration of 
Helsinki was obtained from all patients according to protocols approved by the ethics committee of the 
Technische Universität München (approval number 538/16). 
Mononuclear cells were isolated by ficoll gradient density centrifugation. Cells were frozen in 10 % 
DMSO (Serva, Cat: 20385) and 90 % heat inactivated FCS (Merck, Cat: S0115), 5x107 cells/ml) at -
80°C using a freezing chamber maintaining a controlled freezing rate of approximately 1°C per minute. 
Samples were stored in a N2 biobank until further use. 

Antibody staining and FACS-sorting 

For the sorting procedure of HSCs, MNC cells were thawed and immediately placed into IMDM (1x) + 
GlutaMAX (Gibco, Cat: 31980-022). Dead cells were removed by density gradient centrifugation. MNC 
were washed with 2 ml PBS and centrifuged. For the ability to track cell divisions in later FACS analysis, 
pellets were mixed with 2 ml of 1 µM CellTraceTM Violet stain (ThermoFisher Scientific, Cat: C34557) in 
PBS (37°C) and incubated for 20 min at 37°C. The reaction was stopped by adding 10 ml ice-cold HF2 
medium containing 1xHBSS (Gibco, Cat:14185-045), 2 % heat-inactivated FCS (Biochrom, Cat:S0115), 
0.01 M HEPES (Gibco, Cat: 15630-056), and 100 U/ml Pen/Strep (Gibco, Cat: 15140-122). After 
incubating 5 min on ice, cells were centrifuged and antibody staining was performed. Cells were first 
incubated with biotin-coupled antibodies, including 1 µl of each anti-CD4 (BioLegend, Clone: RPA-T4, 
Cat: 300504), anti-CD8a (BioLegend, Clone: RPA-T8, Cat: 301004), anti-CD15 (BioLegend, Clone: 
H198, Cat: 323016), anti-CD19 (BioLegend, Clone: H1BT9, Cat: 302204), and anti-CD235a 
(eBioscience, Clone: HIR2, Cat: 13-9987-82). for 20 min, on ice in the dark and then centrifuged (1500 
rpm, 5 min). Pellets were resuspended with 100 µl of fluorescence-coupled antibody mix, including 5 µl 
anti-CD34-FITC (BD, Clone: 581, Cat: 555821), 5µl anti-CD90-PE (eBioscience, Clone: 5E10, Cat: 12-
0909-42), 5 µl anti-CD123-BV510 (BioLegend, Clone: 6H6, Cat: 306021), 2.5 µl anti-CD38-APC (BD, 
Clone: HB7, Cat: 345807), 2.5 µl anti-CD45RA-PE-Cy7 (BD, Clone: HI100, Cat: 560675), 1 µl CD45-
PeCy5.5 (BioLegend, Clone: HI30, Cat: 304028), and 1 µl APC/Cy7-Streptavidin (BioLegend, Cat: 
405208) and incubated for  40 min on ice and in the dark. Pellets were resuspended in 500 µl HF2 with 
0.2 µg propidium iodide and filtered using a 40 µm cell strainer. The sorting procedure was performed 
on a BD FACSAriaTM III  equipped with 4 lasers (488 nm, 405 nm, 561 nm, 635 nm). 
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Analysis of cell compartments on days 1 to 7, cultured cells were harvested, centrifuged and antibody 
staining was performed as described for the sorting procedure. Additionally, 50 µl of Flow-Count 
Fluorospheres (Beckman Coulter, Cat: 7547053) were added. FACS analysis was performed on a 
BeckmanCoulter CyAn, equipped with 405nm, 488nm, and 633 nm lasers. Compensation and gating 
was performed using the FlowJo V10 software (FlowJo LLC, Ashland, OR). Cell divisions were 
estimated by the decreasing intensity of the CellTraceTM Violet fluorophore.  

Cell culture 

Sorted HSCs (Lin-CD34+CD38-CD90+CD45RA-) were cultured at a concentration of 2.5x103 cells/ml 
in serum-free medium (80% IMDM(1x)+GlutaMAX (Gibco, Cat: 31980-022) and 20 % BIT9500 
(StemCell Technologies, Cat: 09500)) freshly supplemented with 10µM 2-Mercaptoethanol (Gibco, Cat: 
31350-010), 8 µg/ml Ciprofloxacin (CiproHEXAL 200mg/100ml), 4 µg/ml LDL (StemCell Technologies, 
Cat: 02698), 100 ng/ml SCF (R&D Systems, Cat: 255-SC), 100ng/ml FLT3-Ligand (R&D Systems, Cat 
308-FK), 25 ng/ml TPO (R&D Systems, Cat: 288-TP), 10 ng/ml IL3 (R&D Systems, Cat: 203-IL), 
10ng/ml IL6 (R&D Systems, Cat: 206-IL) , 50 ng/ml GM-CSF (R&D Systems, Cat: 215-GM), 50 ng/ml 
G-CSF (Filgrastim, Hexal), and 2U/ml erythropoietin (Janssen, PZN: 00878122). Cells were cultured at 
37°C with 5 % CO2. 

Computational approach 

To assess the plausibility of a set of previously suggested lineage hierarchies for healthy human 
hematopoiesis, we derived a computational modeling approach. Based on a selection of previously 
suggested lineage hierarchies, we mechanistically modeled the cell differentiation dynamics. In the 
following, we consider the cell types hematopoietic stem cells (HSCs), multipotent progenitor cells 
(MPPs), common myeloid progenitors (CMPs), multipotent lymphocyte progenitors (MLPs), 
megakaryocyte erythrocyte progenitors (MEPs), granulocyte monocyte progenitors (GMPs) and mature 

and late progenitors (M) as species , for which 

division distributions and counts were experimentally observed at time points  (Figure S1B-
C). We consider a set of 10 biologically motivated lineage hierarchies (Figure 1A-J) and derive a 
mathematical model for each of them (Figure 2A). The 10 models are then used to analyse which 
lineage hierarchies are plausible and which ones can be rejected based on our experimental data. 
 

Mechanistic models of cell differentiation dynamics 

To mechanistically model human blood cell production, we compiled  lineage hierarchies suggested in 
the literature. Each hierarchy is a biochemical reaction network in which the species  are given by the 
cell types observed in the experiment. Cell differentiation, proliferation, and death are defined as cell 
type specific reactions. For MLPs the outflux reaction is defined as net differentiation and describes 
differentiation combined with cell death to ensure structural parameter identifiability. Note that each 
model considers the same proliferation and cell death reactions but a different set of differentiation 
reactions (Table 2). These can be derived from the respective model scheme of the set of plausible 
lineage hierarchies (Figure 1A-J) and are given by the cell types observed in the experiment. Cell 
differentiation, proliferation, and death are defined as cell type specific reactions (Table 1), where 
reactions  and  which describe proliferation and cell death are present in all models. 
The model complexity, which corresponds to the number of reaction rates varies between models A-J 
(Table 2). The respective ODE systems derived from the reactions above describe the evolution of the 
cell concentrations over time for each compartment of a particular model. Differentiation and cell death 
reduces and proliferation increases the number of cells within the compartment proportionally to the cell 
concentration of this compartment at time t. The ODE system for model A without considering division 
compartments or intermediate states is given by 
 



 
 

with initial condition  
In general, the ODE system is given by 

 

 where  is the set of influx compartments and  the set of outflux compartments of the 

respective species  and the initial condition is given by . 
Incorporating the information of the number of cell divisions , the ODE system is expanded by 
introducing additional states which indicate not only the cell type but also the number of divisions 
occurring within the time interval of interest  

 (Figure 2A). Hence, each ODE describes the evolution of cell abundances of species  

that divided  times over time, which is denoted by  This leads to an ODE system 
of  equations, where  is the number of cell type compartments. It is given by 

 
 and . The waiting time for a differentiation, proliferation, or death event 

is anti-proportional to the corresponding reaction rate and follows an exponential distribution 

, where This is in contrast with the observation that the considered 
processes (differentiation, proliferation, and cell death) require a minimum time to be completed. To 
more accurately describe transition times between cell states, we introduced intermediate states and 
further expanded the model (Figure 2A). By introducing intermediate states, the waiting time to stay in 
a particular state corresponds to the sum of exponentially distributed waiting times of its  
intermediate states and is thereby per definition Erlang( ,r) distributed (Matis and Wehrly, 1990).  

The model allows to describe up to  division compartments per cell type compartment and if cells 

divide more often (more than  times), they accumulate in the -compartment of the respective 

species . In total it consists of  
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equations, where  is the number of outfluxes of compartment  and  is the number of 

intermediate states within each compartment   

Each ODE describes the time evolution of the number of cells of species  that divided 

 times and are in the -th proliferation intermediate state, the -th differentiation 

and the -th cell death intermediate state, which is denoted by where 

 and .  
The ODE system is given by 

 
 

and initial condition   
Note that for both model extensions, the number of states increases, but the number of parameters 
stays constant. 
 

Parameter inference  

Our models contain between 29 and 35 unknown parameters , which are the reaction 

rates , where  and the initial conditions are given by 

, where 

 

for , and . These parameters are estimated by minimizing the weighted 
difference between observed and modeled cell counts by applying maximum likelihood estimation. 

Let  be a particular model consisting of dynamics  and model observations 

: 



 

where , , ,  and  and 
let 

 

be the data (Figure S1B-C). Here  denotes the vector of observed cell counts of species 

 that divided  times at time  of a particular individual. For parameter 

estimation, we assumed the observations  are subject to multiplicative log-normally 
distributed measurement noise 

 
due to counting errors (i.e. technical error of the FACS machine, see Methods) or false cell type 
assignment while processing raw FACS data by gating. 
In order to assess how well  fits the experimental data for a certain set of parameters , the log-

likelihood  is calculated according to the assumed multiplicative log-normally distributed 
measurement noise 

 
In order to estimate the unknown parameter vector, the optimization problem 
 

 
is solved using multi-start local hierarchical optimization (Loos et al., 2018) with trust-region-reflective 
algorithm and  multi starts. With the hierarchical optimization approach 

 is analytically calculated each time the log-Likelihood 
function is evaluated. The noise parameter is therefore not part of the parameter vector. The starting 

values  (initial parameter vectors) are determined according to latin hypercube 
sampling (Eliáš and Vořechovský, 2016; Loos et al., 2018). The resulting optimal parameter is observed 
at the highest  value. To ensure that the optimization procedure converged, we checked if this best 
log-likelihood value is observed several times for different starting values. The boundaries for parameter 
values can be found in Table S2. We used the MATLAB toolboxes AMICI (Fröhlich et al., 2017) for 
model definition and  PESTO (Stapor et al., 2018) for parameter inference. 
 
Structural identifiability of candidate models 
A model is structurally identifiable if it is possible to determine parameter values from measurements of 
the model output. A structural identifiability analysis was performed using a method introduced by 
(Villaverde and Banga, 2017) and the MATLAB toolbox STRIKE-GOLDD (Villaverde et al., 2019; 
Villaverde and Banga, 2017). This method evaluates the change of the observables along the model 
dynamics by calculating Lie derivatives. If the change in the Lie derivatives with parameters 

 leads to linear dependent vectors, at least one parameter is structurally non-
identifiable. This analysis can thereby reveal which parameters are identifiable and which ones are non-
identifiable for the different hierarchies if one assumes ideal noise-free data with a large sample size 
(Table 3). 
 
Practical identifiability of inferred parameters 
To determine the 95% confidence intervals for each parameter and assess the practical identifiability, 
we calculated the profile likelihood and used it to calculate confidence intervals for the parameters 
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(Kreutz et al., 2013). We defined a parameter as practically identifiable from a specific sample if its 95% 
profile-likelihood-based confidence interval is non-overlapping with its lower and upper parameter 
boundaries (Supplemental Table 2). 
 
Computation time calculation 
For every lineage hierarchy and sample, optimization of 1000 multi starts was run in parallel on a 
machine with two Intel® Xeon® Silver 4214 12-Core (2,2 GHz, 3,2 GHz Turbo, 16,5M L3 Cache) 
processors (in total 24 workers) and the time for performing parameter inference was tracked. 
 

Model selection 

The parameter estimation was performed individually for all individuals and models A-J. We compared 
and ranked the different models based on their Bayesian Information Criterion (BIC) value. The BIC of 

model  
is defined as 

 

where  describes the number of parameters of model  and  the number of observations 
used for model fitting (Neath and Cavanaugh, 2012). The Akaike Information Criterion (AIC, (Akaike, 

1992)) of  is given by 

 
Calculation of the AIC or BIC scores provides a ranking of all considered models in which the best 
performing model is the one with the lowest score 

 
To derive the set of plausible and implausible models the differences 

 
With  being the  or  score and  the index of the respective model, are calculated. Model 

 can be rejected if  (Guthery et al., 2003). Consequently, for the comparison of two 

models  and , where  is of higher or equal complexity than  the null hypothesis  

"Model  is true." can be rejected if  As  are given by 

 

for AIC and BIC, model   can be rejected if the respective test statistic  exceeds critical 
values of 

 
 

In silico analysis  

To test the implementation, robustness and accuracy of our model selection approach, and if it is able 
to identify plausible models, we performed an in silico analysis. For each considered lineage hierarchy 
we implemented the extended model as described in (1) and simulated with a realistic test parameter 
3 samples which correspond to the measured differentiation dynamics of 3 individuals which underlie 
different noise levels. Based on the inference result from fitting experimental data, we defined realistic 

model-specific test parameters  and simulated data from each model 

 with . We then performed MLE with all models on all in silico data 
sets and observed which models perform best, are plausible, or can be rejected. Subsequently we fitted 
each of the 10*3 samples with every considered model and observed if each test parameter lies within 
the 95% confidence interval of the corresponding optimized parameter, as well as the distance between 
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test and optimal parameter (Figure S3B), the model fit (Figure S3A, 4A,C) and the BIC scores of each 
model for each simulated data set for varying noise levels (Figure 4B,D). 

Supplemental References 

Adolfsson, J., Månsson, R., Buza-Vidas, N., Hultquist, A., Liuba, K., Jensen, C.T., Bryder, D., Yang, 
L., Borge, O.-J., Thoren, L.A.M., Anderson, K., Sitnicka, E., Sasaki, Y., Sigvardsson, M., 
Jacobsen, S.E.W., 2005. Identification of Flt3+ lympho-myeloid stem cells lacking erythro-
megakaryocytic potential a revised road map for adult blood lineage commitment. Cell 121, 295–
306. 

Akaike, H., 1992. Information Theory and an Extension of the Maximum Likelihood Principle. Springer 
Series in Statistics. https://doi.org/10.1007/978-1-4612-0919-5_38 

Doulatov, S., Notta, F., Eppert, K., Nguyen, L.T., Ohashi, P.S., Dick, J.E., 2010. Revised map of the 
human progenitor hierarchy shows the origin of macrophages and dendritic cells in early 
lymphoid development. Nat. Immunol. 11, 585–593. 

Doulatov, S., Notta, F., Laurenti, E., Dick, J.E., 2012. Hematopoiesis: a human perspective. Cell Stem 
Cell 10, 120–136. 

Eliáš, J., Vořechovský, M., 2016. Modification of the Audze–Eglājs criterion to achieve a uniform 
distribution of sampling points. Advances in Engineering Software. 
https://doi.org/10.1016/j.advengsoft.2016.07.004 

Forsberg, E.C., Serwold, T., Kogan, S., Weissman, I.L., Passegué, E., 2006. New evidence 
supporting megakaryocyte-erythrocyte potential of flk2/flt3+ multipotent hematopoietic 
progenitors. Cell 126, 415–426. 

Fröhlich, F., Kaltenbacher, B., Theis, F.J., Hasenauer, J., 2017. Scalable Parameter Estimation for 
Genome-Scale Biochemical Reaction Networks. PLoS Comput. Biol. 13, e1005331. 

Galy, A., Travis, M., Cen, D., Chen, B., 1995. Human T, B, natural killer, and dendritic cells arise from 
a common bone marrow progenitor cell subset. Immunity 3, 459–473. 

Giebel, B., Zhang, T., Beckmann, J., Spanholtz, J., Wernet, P., Ho, A.D., Punzel, M., 2006. Primitive 
human hematopoietic cells give rise to differentially specified daughter cells upon their initial cell 
division. Blood 107, 2146–2152. 

Goardon, N., Marchi, E., Atzberger, A., Quek, L., Schuh, A., Soneji, S., Woll, P., Mead, A., Alford, 
K.A., Rout, R., Chaudhury, S., Gilkes, A., Knapper, S., Beldjord, K., Begum, S., Rose, S., 
Geddes, N., Griffiths, M., Standen, G., Sternberg, A., Cavenagh, J., Hunter, H., Bowen, D., 
Killick, S., Robinson, L., Price, A., Macintyre, E., Virgo, P., Burnett, A., Craddock, C., Enver, T., 
Jacobsen, S.E.W., Porcher, C., Vyas, P., 2011. Coexistence of LMPP-like and GMP-like 
leukemia stem cells in acute myeloid leukemia. Cancer Cell 19, 138–152. 

Görgens, A., Radtke, S., Möllmann, M., Cross, M., Dürig, J., Horn, P.A., Giebel, B., 2013. Revision of 
the human hematopoietic tree: granulocyte subtypes derive from distinct hematopoietic lineages. 
Cell Rep. 3, 1539–1552. 

Guthery, F.S., Burnham, K.P., Anderson, D.R., 2003. Model Selection and Multimodel Inference: A 
Practical Information-Theoretic Approach. The Journal of Wildlife Management. 
https://doi.org/10.2307/3802723 

Hao, Q.L., Zhu, J., Price, M.A., Payne, K.J., Barsky, L.W., Crooks, G.M., 2001. Identification of a 
novel, human multilymphoid progenitor in cord blood. Blood 97, 3683–3690. 

Kreutz, C., Raue, A., Kaschek, D., Timmer, J., 2013. Profile likelihood in systems biology. FEBS J. 
280, 2564–2571. 

Loos, C., Krause, S., Hasenauer, J., 2018. Hierarchical optimization for the efficient parametrization of 
ODE models. Bioinformatics 34, 4266–4273. 

Majeti, R., Park, C.Y., Weissman, I.L., 2007. Identification of a hierarchy of multipotent hematopoietic 
progenitors in human cord blood. Cell Stem Cell 1, 635–645. 

Månsson, R., Hultquist, A., Luc, S., Yang, L., Anderson, K., Kharazi, S., Al-Hashmi, S., Liuba, K., 
Thorén, L., Adolfsson, J., Buza-Vidas, N., Qian, H., Soneji, S., Enver, T., Sigvardsson, M., 
Jacobsen, S.E.W., 2007. Molecular evidence for hierarchical transcriptional lineage priming in 
fetal and adult stem cells and multipotent progenitors. Immunity 26, 407–419. 

Manz, M.G., Miyamoto, T., Akashi, K., Weissman, I.L., 2002. Prospective isolation of human 
clonogenic common myeloid progenitors. Proc. Natl. Acad. Sci. U. S. A. 99, 11872–11877. 

Matis, J.H., Wehrly, T.E., 1990. Generalized stochastic compartmental models with Erlang transit 
times. J. Pharmacokinet. Biopharm. 18, 589–607. 

Neath, A.A., Cavanaugh, J.E., 2012. The Bayesian information criterion: background, derivation, and 

http://paperpile.com/b/o700Ii/YcbgH
http://paperpile.com/b/o700Ii/YcbgH
http://paperpile.com/b/o700Ii/YcbgH
http://paperpile.com/b/o700Ii/YcbgH
http://paperpile.com/b/o700Ii/YcbgH
http://paperpile.com/b/o700Ii/yaAPD
http://paperpile.com/b/o700Ii/yaAPD
http://dx.doi.org/10.1007/978-1-4612-0919-5_38
http://paperpile.com/b/o700Ii/948m1
http://paperpile.com/b/o700Ii/948m1
http://paperpile.com/b/o700Ii/948m1
http://paperpile.com/b/o700Ii/H6uem
http://paperpile.com/b/o700Ii/H6uem
http://paperpile.com/b/o700Ii/NziHr
http://paperpile.com/b/o700Ii/NziHr
http://paperpile.com/b/o700Ii/NziHr
http://dx.doi.org/10.1016/j.advengsoft.2016.07.004
http://paperpile.com/b/o700Ii/Sz5c2
http://paperpile.com/b/o700Ii/Sz5c2
http://paperpile.com/b/o700Ii/Sz5c2
http://paperpile.com/b/o700Ii/zH1gZ
http://paperpile.com/b/o700Ii/zH1gZ
http://paperpile.com/b/o700Ii/8Sx2m
http://paperpile.com/b/o700Ii/8Sx2m
http://paperpile.com/b/o700Ii/5qEj9
http://paperpile.com/b/o700Ii/5qEj9
http://paperpile.com/b/o700Ii/5qEj9
http://paperpile.com/b/o700Ii/xzGHo
http://paperpile.com/b/o700Ii/xzGHo
http://paperpile.com/b/o700Ii/xzGHo
http://paperpile.com/b/o700Ii/xzGHo
http://paperpile.com/b/o700Ii/xzGHo
http://paperpile.com/b/o700Ii/xzGHo
http://paperpile.com/b/o700Ii/nLDrO
http://paperpile.com/b/o700Ii/nLDrO
http://paperpile.com/b/o700Ii/nLDrO
http://paperpile.com/b/o700Ii/djiYH
http://paperpile.com/b/o700Ii/djiYH
http://paperpile.com/b/o700Ii/djiYH
http://dx.doi.org/10.2307/3802723
http://paperpile.com/b/o700Ii/JaWWj
http://paperpile.com/b/o700Ii/JaWWj
http://paperpile.com/b/o700Ii/WGWEI
http://paperpile.com/b/o700Ii/WGWEI
http://paperpile.com/b/o700Ii/ZnIHp
http://paperpile.com/b/o700Ii/ZnIHp
http://paperpile.com/b/o700Ii/9ZmHx
http://paperpile.com/b/o700Ii/9ZmHx
http://paperpile.com/b/o700Ii/ewvEq
http://paperpile.com/b/o700Ii/ewvEq
http://paperpile.com/b/o700Ii/ewvEq
http://paperpile.com/b/o700Ii/ewvEq
http://paperpile.com/b/o700Ii/uhiaK
http://paperpile.com/b/o700Ii/uhiaK
http://paperpile.com/b/o700Ii/DYrXg
http://paperpile.com/b/o700Ii/DYrXg
http://paperpile.com/b/o700Ii/FhoiU


applications. Wiley Interdisciplinary Reviews: Computational Statistics. 
https://doi.org/10.1002/wics.199 

Notta, F., Doulatov, S., Laurenti, E., Poeppl, A., Jurisica, I., Dick, J.E., 2011. Isolation of single human 
hematopoietic stem cells capable of long-term multilineage engraftment. Science 333, 218–221. 

Notta, F., Zandi, S., Takayama, N., Dobson, S., Gan, O.I., Wilson, G., Kaufmann, K.B., McLeod, J., 
Laurenti, E., Dunant, C.F., McPherson, J.D., Stein, L.D., Dror, Y., Dick, J.E., 2016. Distinct routes 
of lineage development reshape the human blood hierarchy across ontogeny. Science 351, 
aab2116. 

Ostendorf, B.N., Flenner, E., Flörcken, A., Westermann, J., 2018. Phenotypic characterization of 
aberrant stem and progenitor cell populations in myelodysplastic syndromes. PLoS One 13, 
e0197823. 

Pang, W.W., Price, E.A., Sahoo, D., Beerman, I., Maloney, W.J., Rossi, D.J., Schrier, S.L., 
Weissman, I.L., 2011. Human bone marrow hematopoietic stem cells are increased in frequency 
and myeloid-biased with age. Proc. Natl. Acad. Sci. U. S. A. 108, 20012–20017. 

Pronk, C.J.H., Rossi, D.J., Månsson, R., Attema, J.L., Norddahl, G.L., Chan, C.K.F., Sigvardsson, M., 
Weissman, I.L., Bryder, D., 2007. Elucidation of the phenotypic, functional, and molecular 
topography of a myeloerythroid progenitor cell hierarchy. Cell Stem Cell 1, 428–442. 

Reynaud, D., Lefort, N., Manie, E., Coulombel, L., Levy, Y., 2003. In vitro identification of human pro-
B cells that give rise to macrophages, natural killer cells, and T cells. Blood 101, 4313–4321. 

Rossi, D.J., Jamieson, C.H.M., Weissman, I.L., 2008. Stems cells and the pathways to aging and 
cancer. Cell 132, 681–696. 

Sanjuan-Pla, A., Macaulay, I.C., Jensen, C.T., Woll, P.S., Luis, T.C., Mead, A., Moore, S., Carella, C., 
Matsuoka, S., Bouriez Jones, T., Chowdhury, O., Stenson, L., Lutteropp, M., Green, J.C.A., 
Facchini, R., Boukarabila, H., Grover, A., Gambardella, A., Thongjuea, S., Carrelha, J., Tarrant, 
P., Atkinson, D., Clark, S.-A., Nerlov, C., Jacobsen, S.E.W., 2013. Platelet-biased stem cells 
reside at the apex of the haematopoietic stem-cell hierarchy. Nature 502, 232–236. 

Stapor, P., Weindl, D., Ballnus, B., Hug, S., Loos, C., Fiedler, A., Krause, S., Hroß, S., Fröhlich, F., 
Hasenauer, J., Wren, J., 2018. PESTO: Parameter EStimation TOolbox. Bioinformatics 34, 705–
707. 

Takano, H., Ema, H., Sudo, K., Nakauchi, H., 2004. Asymmetric division and lineage commitment at 
the level of hematopoietic stem cells: inference from differentiation in daughter cell and 
granddaughter cell pairs. J. Exp. Med. 199, 295–302. 

Villaverde, A.F., Banga, J.R., 2017. Dynamical compensation and structural identifiability of biological 
models: Analysis, implications, and reconciliation. PLoS Comput. Biol. 13, e1005878. 

Villaverde, A.F., Evans, N.D., Chappell, M.J., Banga, J.R., 2019. Input-Dependent Structural 
Identifiability of Nonlinear Systems. IEEE Control Syst. Lett. 3, 272–277. 

 

http://paperpile.com/b/o700Ii/FhoiU
http://paperpile.com/b/o700Ii/FhoiU
http://dx.doi.org/10.1002/wics.199
http://paperpile.com/b/o700Ii/mp34z
http://paperpile.com/b/o700Ii/mp34z
http://paperpile.com/b/o700Ii/WHVhq
http://paperpile.com/b/o700Ii/WHVhq
http://paperpile.com/b/o700Ii/WHVhq
http://paperpile.com/b/o700Ii/WHVhq
http://paperpile.com/b/o700Ii/8SPC2
http://paperpile.com/b/o700Ii/8SPC2
http://paperpile.com/b/o700Ii/8SPC2
http://paperpile.com/b/o700Ii/FFIIk
http://paperpile.com/b/o700Ii/FFIIk
http://paperpile.com/b/o700Ii/FFIIk
http://paperpile.com/b/o700Ii/U2AT9
http://paperpile.com/b/o700Ii/U2AT9
http://paperpile.com/b/o700Ii/U2AT9
http://paperpile.com/b/o700Ii/iXwR7
http://paperpile.com/b/o700Ii/iXwR7
http://paperpile.com/b/o700Ii/GaKVc
http://paperpile.com/b/o700Ii/GaKVc
http://paperpile.com/b/o700Ii/ZEOdD
http://paperpile.com/b/o700Ii/ZEOdD
http://paperpile.com/b/o700Ii/ZEOdD
http://paperpile.com/b/o700Ii/ZEOdD
http://paperpile.com/b/o700Ii/ZEOdD
http://paperpile.com/b/o700Ii/E4nCe
http://paperpile.com/b/o700Ii/E4nCe
http://paperpile.com/b/o700Ii/E4nCe
http://paperpile.com/b/o700Ii/5atbO
http://paperpile.com/b/o700Ii/5atbO
http://paperpile.com/b/o700Ii/5atbO
http://paperpile.com/b/o700Ii/0APZs
http://paperpile.com/b/o700Ii/0APZs
http://paperpile.com/b/o700Ii/dJQwF
http://paperpile.com/b/o700Ii/dJQwF

	Computational modeling of stem and progenitor cell kinetics identifies plausible hematopoietic lineage hierarchies
	Introduction
	Results
	Derivation of a set of 10 comparable lineage hierarchies
	Multi-compartment models describe possible cell-intrinsic kinetics
	Parameter inference identifies optimal number of intermediate states
	Model comparison reveals plausible lineage hierarchies
	Robust identification of lineage hierarchies

	Discussion
	Limitations of the study
	Resource availability
	Lead contact
	Material availability
	Data and code availability


	Methods
	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	References


