
TUM School of Computation, Information and Technology
Technische Universität München

Failure Prediction for Autonomous
Systems

Christopher B. Kuhn, M.Sc.

Vollständiger Abdruck der von der TUM School of Computation, Information and Technology der
Technischen Universität München zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften (Dr.-Ing.)

genehmigten Dissertation.

Vorsitz:
Prof. Dr. Reinhard Heckel

Prüfer der Dissertation:
1. Prof. Dr.-Ing. Eckehard Steinbach
2. Prof. Abhishek Dubey

Die Dissertation wurde am 31.03.2022 bei der Technischen Universität München eingereicht und
durch die TUM School of Computation, Information and Technology am 18.11.2022 angenommen.

iii

Abstract

Failures in autonomous systems are inevitable. While the performance of automated and assisted

driving systems has improved over the last years, such systems will not be able to handle every

situation on their own in the foreseeable future. Failures can be caused by ambiguous or compromised

input, by an insufficiently trained or ill-designedmodel, or by out-of-distribution data that the system

has not been trained for. In safety-critical tasks such as driving, the resulting failures can have

severe consequences. The concept of failure prediction can be used to avoid dangerous mistakes.

While a system is not always capable of making the right decision, it can still be possible to detect

incorrect decisions. Then, the system can either try to resolve the failure itself, switch to a safer

backup strategy, or return control to a human operator. In this thesis, we investigate how failures

of autonomous systems can be predicted. We consider the entire pipeline of a general autonomous

driving system and propose three main additions: system-level failure prediction, component-level

failure prediction, and applications of failure prediction to correct or avoid failures.

System-level failures describe a state where the system cannot safely execute the desired au-

tonomous behavior, regardless ofwhich component is at fault. Such failures result in a disengagement

of the system and require a human operator to resolve the situation. We propose a failure prediction

framework that allows to predict disengagements up to seven seconds in advance. We apply the idea

of introspection and use previously recorded system failures as training data to learn how to predict

new failures. Training a classifier with sequences of state data achieves an average failure predic-

tion accuracy of 78.8 %, using sequences of planned trajectories achieves 79.6 %, and using image

sequences results in an accuracy of 85.1 %. Finally, we propose a late fusion approach of combining

all three input types, achieving an overall accuracy of 89.1 %. Even seven seconds in advance, our

fusion approach predicts over 86 % of failures, at a false positive rate of less than 15 %.

A system-level failure is typically caused by one or more component-level failures. As our second

main contribution, we propose a failure prediction method for the individual perception component

of semantic segmentation. We again apply the concept of introspection andusepixel-wise errorsmade

by a given semantic segmentation model as training labels. We then train a separate model to classify

each pixel of an input image as failure or success. We outperform the state of the art by more than 7 %

in a precision-recall analysis. Additionally, we propose to use sequences of previous predicted errors

to extrapolate into the future, allowing to accurately predict future semantic segmentation errors up

to 0.5 s ahead.

Finally, we use failure prediction concepts to correct or avoid failures. Inspired by human percep-

tion, we design a two-stage approach for detecting and reclassifying regions which a state-of-the-art

semantic segmentation model misclassified. Applied to a driving data set, our system correctly clas-

sifies 63 % of the road participants in the failure regions. To correct failure pixels directly, we propose

the idea of reverse error modeling. We train an autoencoder to reconstruct the correct semantic map

from the erroneous predictions of a given model, improving the performance by 0.7 % for uncom-

pressed images and by over 8 % for compressed input. Lastly, instead of correcting mistakes, we

propose a sensor monitoring approach that avoids mistakes by preemptively reducing the influence

of problematic sensor input. We train an introspective monitoring model for each sensor and then

weight the fusion of all sensor inputs with the predicted success probability. By focusing on sensors

with a low failure probability, we improve the performance of a state-of-the-art multimodal object

detection network by 4.6 %.

v

Acknowledgment

The work presented in this dissertation was carried out as a member of both the academic staff at the

Chair of Media Technology (LMT) at the Technical University of Munich (TUM) and the Automated

and Autonomous Driving division at the BMW Group. Many people supported me during the last

three years, both professionally and personally.

First of all, I would like to sincerely thank Prof. Dr.-Ing. Eckehard Steinbach for the supervision

of this project at TUM. I am deeply grateful for the guidance, support, and invaluable insights he

provided at every step of this work. He always had time for fruitful discussions, where he never

failed to offer new ideas and inspiration.

Furthermore, I would like to thank Prof. Abhishek Dubey for agreeing to become the second

examiner. I would like to especially thank Prof. Dubey for the opportunity to work with his team

at Vanderbilt University for the last four months of this project, which was a deeply enjoyable and

enriching experience.

Sincere thanks also go to my supervisor and mentor at BMW, Dr. Goran Petrovic. He initiated

my research project in the first place and always provided me with support and insights to ensure

a successful collaboration between BMW and TUM. His enthusiastic and optimistic attitude made

working on this project a pleasure, both on a professional and a personal level.

While I highly value all of my former colleagues, I feel obliged to highlight several people. Most

of all, I am grateful to my colleague, office mate, and friend Markus Hofbauer for our exceptional

collaboration and fruitful discussions on a daily basis. Working together has made every day of this

project more enjoyable and I am looking forward to our future collaboration. I would also like to

extend thanks to Dr. Christoph Bachhuber for great discussions and collaborations even after he had

left LMT. Special thanks also go to Dr. Tamay Aykut for interesting and joyful talks during our time

at LMT as well as during our collaboration afterwards. I look forward to the opportunity to continue

working together in the future.

Next, I would like to thank Dr. Rahul Chaudhari for many engaging discussions both inside and

outside of LMT. I would like to thank Basak Gülecyüz and Andreas Noll for being a pleasure to

work with on the Digital Signal Processing lecture, especially when preparing our first online-only

semester. Further thanks go to Ermin Sakic for many valuable conversations while in home office,

Martin Piccolrovazzi and Yuankai Wu for always making the time at LMT more enjoyable, and to

Furkan Kaynar for the interesting discussions beyond our projects. I am also grateful to all my former

students who contributed to this project, especially Ziqin Xu, Ma Bowen, and Lukas Habermayr.

My appreciation also goes to the administrative support provided byMarta Giunta, EtienneMeyer,

Dr. Martin Maier, and Simon Krapf. From my time at Vanderbilt University, special thanks go to

Shreyas Ramakrishna for being both a great colleague and friend, making my stay there a highly

rewarding experience. From my BMW colleagues, I would like to thank Sebastian Wirkert and

Sebastian Schmidt for always making my time there more interesting and enjoyable. Special thanks

go to Greta Kölln, for being the best source of motivation anyone could ask for.

Last but not least, I would like to express my deepest gratitude to my family, in particular my

beloved parents as well as my brothers Alexander and Sebastian, who always encouraged me and

believed in my abilities.

Christopher Kuhn, Nashville, TN, March 22, 2022

vii

Contents

Abstract iii

Acknowledgment v

Contents vii

Abbreviations ix

Symbols xi

1 Introduction 1
1.1 Major Contributions . 3

1.2 Thesis Organization . 5

2 Background and Related Work 7
2.1 Autonomous Driving Systems . 7

2.1.1 General Pipeline . 7

2.1.2 Perception Modules . 8

2.1.3 Sources of Failure . 15

2.1.4 Disengagements . 16

2.2 Uncertainty Estimation . 17

2.2.1 Input Analysis . 18

2.2.2 Output Analysis . 20

2.2.3 Out-Of-Distribution Detection . 25

2.3 Future Prediction . 28

2.3.1 Future Driving Prediction . 28

2.3.2 Accident Prediction . 28

2.3.3 Future Failure Prediction . 29

2.4 Chapter Summary . 30

3 System-Level Failure Prediction 31
3.1 Introspective Black Box Disengagement Prediction . 31

3.1.1 Disengagements as System-Level Failures . 31

3.1.2 Introspective Failure Prediction . 32

3.2 State-Based Black Box Failure Prediction . 33

3.2.1 Data Set Generation . 34

3.2.2 LSTM-Based Classification Approach . 36

3.2.3 Results . 37

3.3 Image-Based Introspective Failure Prediction . 42

3.3.1 Data Set Generation . 42

3.3.2 CNN-Based Classification Approach . 44

3.3.3 Results . 45

3.4 Trajectory-Based Introspective Failure Prediction . 51

3.4.1 Concept . 51

3.4.2 Data Set Generation . 52

3.4.3 Model Design . 53

Contents

viii

3.4.4 Results . 54

3.5 Introspective Failure Prediction Using Late Fusion . 60

3.5.1 Early Fusion vs. Late Fusion . 60

3.5.2 Late Multimodal Fusion Approach . 61

3.5.3 Results . 62

3.6 Chapter Summary . 66

4 Component-Level Failure Prediction 67
4.1 Introspective Failure Prediction for Semantic Image Segmentation 67

4.1.1 Concept . 67

4.1.2 Model Design . 68

4.1.3 Results . 71

4.2 Introspective Failure Prediction for Semantic Video Segmentation 76

4.2.1 Spatio-Temporal Model Design . 76

4.2.2 Densely Annotated Video Driving Data Set . 77

4.2.3 Results . 80

4.3 Predicting Future Segmentation Errors . 83

4.3.1 Error Map Extrapolation . 83

4.3.2 Results . 84

4.4 Chapter Summary . 86

5 Failure Prediction Applications 87
5.1 Improving Visual Scene Perception Using a Two-Stage Approach 87

5.1.1 Zoom Lens Model . 87

5.1.2 Failure Region Detection and Correction . 88

5.1.3 Results . 93

5.2 Reverse Error Modeling for Improved Semantic Segmentation 98

5.2.1 Concept . 98

5.2.2 Error Reversal Model Design . 99

5.2.3 Results . 101

5.2.4 Baseline Comparison . 101

5.2.5 Error Reversal for Compressed Images . 103

5.3 Improving Multimodal Object Detection with Individual Sensor Monitoring 106

5.3.1 Concept . 106

5.3.2 Single Sensor Performance Prediction . 107

5.3.3 Dynamically Adjustable Fusion . 109

5.3.4 Results . 110

5.4 Chapter Summary . 115

6 Conclusion 117
6.1 Summary . 117

6.2 Limitations . 119

6.3 Future Work . 120

List of Figures 123

List of Tables 127

List of Publications 129

ix

Abbreviations

ADAS Advanced Driver-Assistance System . 1

ASPP Atrous Spatial Pooling Pyramid . 12

AUC Area Under Curve. .127

AVOD Aggregate View Object Detection . 128

BEV Bird’s Eye View . 128

CAM Class Activation Map. 124

CARLA Car Learning to Act . 77

CE Cross Entropy . 9

CNN Convolutional Neural Network . 123

DAE Denoising Autoencoder . 12

DAVID Densely Annotated Video Driving . 127

ERA Error-Reversing Autoencoder . 128

FC Fully Connected . 123

FPR False Positive Rate . 40

GAN Generative Adversarial Network . 13

grad-CAM gradient-weighted Class Activation Map. 46

HD High Definition . 73

IoU Intersection over Union. 128

JPEG Joint Photographic Experts Group . 126

LIDAR Light Detection and Ranging . 123

LSTM Long Short-Term Memory . 127

MAE Mean Average Error . 46

mAP mean Average Precision . 127

MC Monte Carlo . 127

OOD Out-of-Distribution. .123

ReLU Rectified Linear Unit . 99

RNN Recurrent Neural Network. .36

ROC Receiver Operating Characteristic .124

ROI Region of Interest . 125

SAE Society of Automotive Engineers . 123

SVM Support Vector Machine . 56

TOD Teleoperated Driving . 1

TPR True Positive Rate . 40

VAE Variational Autoencoder . 26

YOLO You Only Look Once . 10

xi

Symbols

General Symbols

P f ail Failure probability of component or system ∈ �

Pthresh Threshold probability for triggering takeover ∈ �

N Number of classes ∈ �

c Semantic class ∈ �

Pc Softmax score of class c ∈ �

zc Output logit of class c ∈ �

l Semantic class label ∈ �

L One-hot encoded class vector ∈ �N×1

T Temperature scaling factor ∈ �

Pcal Calibrated softmax score ∈ �

System-Level Symbols

F Car state feature vector ∈ �5×1

v Speed ∈ �

θ Steering angle ∈ �

ax Frontal acceleration ∈ �

ay Lateral acceleration ∈ �

ω Angular speed ∈ �

S 10 s driving sequence

L Length of input sample s ∈ �

s Input sample consisting of L vectors F ∈ �5×
L

snF Input sample from failure sequence ∈ �5×
L

nF Failure sequence index ∈ �

nS Success sequence index ∈ �

snS Input sample from success sequence ∈ �5×
L

NF Number of disengagements ∈ �

NS Number of successful sequences ∈ �

Abbreviations

xii

Dstate Data set consisting of all input samples snS and snF

Cstate Classification model for state-based input samples

Pstate Failure probability of sample s ∈ �

H Output filter horizon ∈ �

t Time point within driving sequence ∈ �

It RGB image at time t ∈ �224×224×3

Id ,t Difference image created from images It and It−1 s ∈ �224×224×1

Idd ,t Dynamic difference image at time t ∈ �224×224×3

Idd ,nF Dynamic difference image from failure sequence ∈ �224×224×3

Idd ,nS Dynamic difference image from success sequence ∈ �224×224×3

Dim g Data set consisting of all dynamic difference images Idd ,nF and Idd ,nS

Cim g Classification model for image-based input samples

Pim g Failure probability of dynamic difference image Idd ∈ �

pi i-th point in planned trajectory Tn
t ∈ �2

Tn
t t-th planned trajectory in sequence Sn ∈ �2×30

Sn Sequence consisting of 100 consecutive planned trajectories Tn
t ∈ �2×30×100

straj Input sample consisting of L consecutive planned trajectories Tn
t ∈ �2×30×L

strajnF Input sample from failure trajectory sequence ∈ �2×30×L

strajnS Input sample from success trajectory sequence ∈ �2×30×L

Dtra j Data set consisting of all planned trajectory samples strajnF and strajnS

Ctra j Classification model for trajectory-based input samples

θi ,tra j Angle between the lines pi , pi+1 and pi+1 , pi+2 ∈ �

Component-Level Symbols

Ssemse g Baseline semantic image segmentation model

I Input image

LGT Ground-truth pixel-wise labels of I

Lpred Labels predicted by Ssemse g for I

EGT Ground-truth errors made by Ssemse g on I

Dsemse g Data set for training the baseline model Ssemse g

Lsemse g ,GT Ground-truth pixel-wise labels of Isemse g

Lsemse g ,pred Labels predicted by Ssemse g for Isemse g

xiii

N Number of semantic classes ∈ �

Sintro Single-image introspective failure prediction model

Dintro Data set for training the introspective model Sintro

Lintro ,GT Ground-truth pixel-wise labels of Iintro

Lintro ,pred Labels of Iintro predicted by Ssemse g

Eintro ,GT Ground-truth errors made by by Ssemse g on Iintro

Itest Image set for testing the introspective model Sintro

Ltest ,GT Ground-truth pixel-wise labels of Itest

Ltest ,pred Labels of Itest predicted by Ssemse g

Etest ,GT Ground-truth errors made by by Ssemse g on Itest

Etest ,pred Errors predicted by Sintro on Itest

Svideo Baseline semantic video segmentation model

Sintro ,video Spatio-temporal introspection model

It RGB input image at time t in video sequence

Lt ,GT Ground-truth pixel-wise labels of image It

Lt ,pred Labels predicted by Svideo for image It

Et ,GT Ground truth pixel-wise error map at time t

Et , pred Predicted pixel-wise segmentation error map at time t

Et+n ,GT Ground-truth pixel-wise error map n frames in the future

S f uture Future pixel-wise failure prediction model

Application Symbols

M Mask used for erosion and dilation

k Number of k-means clusters ∈ �

MLIDAR Monitoring model for LIDAR input

Ii i-th image of given data set

Li Pixel-wise semantic labels of image Ii

S Semantic segmentation model trained with all images Ii

Ppred Softmax output of the semantic segmentation model S

Li ,pred Predicted pixel-wise labels of image Ii

ES Error function generated by model S

E−1

S Inverse error function of model S

MRGB Monitoring model for RGB input

Abbreviations

xiv

Si i-th sensor of multimodal system

Mi i-th monitoring model for sensor Si

n Number of sensors in multimodal system ∈ �

Ri Raw sensor data recorded by sensor Si

Di Object detection model trained on data Ri

DFusion Fusion-based object detection model trained with all n sensors

Mi ,intro Sensor monitoring model for sensor Si using introspection

Mi ,con f Sensor monitoring model for sensor Si based on confidence score

MRGB,intro Camera monitoring model using introspection

MLIDAR,con f LIDAR monitoring model based on confidence score

Pi Detection performance of model Di ∈ �

Fi Features extracted from sensor data Ri

Pi ,pred Predicted detection performance of model Di ∈ �

F f used Fusion of all features Fi

Fintro Fusion of all features Fi weighted with performance Pi

1

1 Introduction

Autonomous systems are increasingly taking over tasks previously performed by humans, ranging

from autonomous factory robots [1] to assisted and automated driving [2]. In the context of driving,

entirely autonomous systemsarenot a reality yet. Available automateddriving functions are restricted

to assistance functions such as lane keeping, cruise control, and automatic emergency braking [3].

Both assisted driving systems and potential future autonomous functions are referred to as a vehicle’s

Advanced Driver-Assistance System (ADAS). While the progression from assisted to autonomous

driving is incremental and fluent, the Society of Automotive Engineers (SAE) has classified the stages

from purely manual driving to fully automated driving into six broad levels. A summary of these six

levels is shown in Figure 1.1. Current commercial systems are considered to reach Level 2. On Level

3, the car performs all driving and the human is not expected to pay attention to the road, but still

needs to be able to take control again if requested. On Level 4, no human driving is needed anymore,

but the system is restricted to specific operational design domains. Level 5 describes systems that are

capable of driving completely autonomously under any circumstance, removing any need of human

interaction.

0 1 2 3 4 5

Manual Assisted Partial Automation Conditional Automation High Automation Full Automation

Figure 1.1Visualization of the six autonomous driving levels as defined by the Society of Automotive Engineers

(SAE) [3].

With increasing levels of autonomy, the vehicle is required to make increasingly complex and

safety-critical decisions. Despite continuous advances in relevant fields such asmachine learning and

computer vision, failures in autonomous driving are inevitable. Several studies have discussed public

accidents caused by current ADAS functions [4] and the subsequent question of whether automated

driving functions are sufficiently safe [2]. Incidents such as the fatal crash of an Uber test vehicle in

2018 driving in autonomous mode serve as constant reminders of how severe failures in autonomous

driving can be [5].

A potential solution to resolve situations where the car would make a mistake is to bring a human

driver back into the loop. An autonomous vehicle designed to rely on human intervention when

needed would be considered Level 3. Its autonomy is conditional on the presence of a human driver.

The human can take back control either from inside the car or remotely in the form of Teleoperated

Driving (TOD). TOD is especially useful for applications such as autonomous taxi services [6], where

human operators inside the car can thus be entirely removed. Regardless of the location of the human

driver, this solution requires a mechanism that decides when to switch control from the car to the

human. Studies have shown that it can take up to 40 s for human drivers to regain control of vehicles

that were previously driving autonomously [7]. Merely reacting to an already challenging driving

scenariomight not be enough for avoiding a dangerous situation. This leads to a challenging question:

How can a failure of an autonomous system be predicted ahead of time?

1 Introduction

2

The focus of this thesis lies on answering that question. While some specific complex situations

such as police officers regulating traffic can be anticipated, it is not feasible to enumerate all potentially

risky situations. A more general approach is required. In a dynamic task such as driving, detecting

a failure after it has occurred can already be too late for ensuring safety. A failure prediction system

that can detect failures predictively as well as automatically is therefore desirable. Developing such

a system can improve safety by requesting human support early in advance. It can also be used

to increase the performance of the system by running countermeasures against a predicted failure,

keeping the failure from happening in the first place.

The concept of failure prediction has been approached in variousways before. To better understand

the ideas of failure prediction, it is useful to consider why failures occur in the first place. There are

three main sources of failures in autonomous driving: epistemic uncertainty, aleatoric uncertainty,

and Out-of-Distribution (OOD) data. Epistemic uncertainty, also called model uncertainty [8], refers

to uncertainty caused by model imperfections. Insufficient models are a critical failure source in

autonomous driving, since the complexity of driving makes designing a perfectly functioning model

extremely challenging. Aleatoric uncertainty, also called input uncertainty [8], is a source of failures

inherent to the model input. It refers to uncertainties caused by ambiguous or corrupted sensor

readings. A perfectly designed model will still not be able to make the correct decisions if its

perception of the scene is compromised. Lastly, OOD data describes input that is significantly

different to the operational design domain of the system [9]. If the car has not been trained and

prepared for the current scene, even a well-designed model with clean sensor input will fail. In this

thesis, we mostly consider the first two sources of failures. While it is important to be able to detect

OOD input, we aim for predicting the failures inherent to a given model. OOD input can make any

model fail and the detection thereof is largely independent of the model itself. Due to its importance,

the field of OOD detection is still discussed in this thesis, but not used in the proposed contributions.

In the literature, the implementation of failure prediction is commonly approached using uncer-

tainty estimation. The field of uncertainty estimation offers a wide range of methods to assess how

confident a model is in the current situation [10, 12, 11]. The idea of combining Bayesian theory

with deep learning led to the development of Bayesian neural networks [13]. Instead of relying

on deterministic parameters, the weights of a Bayesian neural network are defined by probability

distributions. This allows to obtain an output distribution and thus a variance associated with the

prediction [14]. Since a high uncertainty is likely to lead to incorrect decisions and thus an overall

failure of the system, an accurate quantification of model uncertainty can be useful. However, there

are several issues with using uncertainty estimation to obtain a failure prediction in autonomous

systems. Firstly, a low model uncertainty is not guaranteed to avoid failures. A system can be confi-

dent and certain, but still wrong in case a challenging or ambiguous traffic scenario is encountered.

Secondly, existing uncertainty estimation methods only apply to individual models. While existing

methods can detect some failures of individual components, a failure of the entire system consisting

of multiple interacting components is not straightforward to predict this way. Only few works exist

that explicitly predict the failure of an entire autonomous system. Most notably, Fridman et al. [15]

proposed an approach for predicting disengagements of the Tesla autopilot system five seconds in

advance at an accuracy of 90 %. However, the Tesla autopilot is a highway-only Level 2 driving

function. In contrast, we consider general failures of systems at Level 3 in both highway and urban

environments.

Both the task of failure prediction for individual components and for the entire systemare addressed

in this thesis. In the literature, most related approaches are focused on improving a model to keep

it from making mistakes. In this thesis, all contributions are based on the assumption that a given

system or model will inevitably make mistakes in practice, regardless of how well designed it is.

Following this assumption, we design explicit failure prediction methods that are tailored to the

system or model at hand. Then, we use the insights gained from the developed failure prediction

methods to correct the system automatically, or adjust it to avoid failures in the first place. We

summarize the resulting major contributions made in this work next.

1.1 Major Contributions

3

1.1 Major Contributions

This thesis contains three main contributions. They can be combined into a comprehensive fail-

ure prediction framework that can be added to a typical autonomous system pipeline as shown in

Figure 1.2. The individual failure probabilities P f ail obtained from each proposed method can be

aggregated and a takeover request by a human driver can be triggered if the aggregated probability

crosses a threshold Pthresh . If every failure probability stayed below such a threshold, then no human

intervention would need to be requested and the autonomous system could continue its functions as

before.

Vehicle
State

Sensors

• Camera

• LiDAR

Perception Module

• Semantic segmentation

• Object detection

Processing

• Segmentation error correction

• Failure region detection

Trajectory
Planning

and Control

Black Box
Disengagement

Prediction

Sensor
Input

Monitoring

Segmentation
Error

Prediction

Failure Region
Reclassification

Trajectory
Disengagement

Prediction

> Pthresh? ∪ > Pthresh? ∪ > Pthresh? ∪ > Pthresh? ∪ > Pthresh? X

TAKEOVER REQUEST

AUTONOMOUS VEHICLE

P f ail P f ail

Yes Yes Yes
Yes Yes

P f ail

No

P f ail

No No

P f ail

No No

Figure 1.2 Overview of a general autonomous vehicle pipeline and the contributions of this thesis, marked in

yellow. Black box and trajectory disengagement prediction is introduced in Chapter 3 and segmentation error

prediction is presented in Chapter 4. Failure region detection and reclassification as well as segmentation error

correction is discussed in Chapter 5.

The first contribution is focused on predicting system-level failures early in advance. We introduce

the concepts proposed for system-level failures in Chapter 3. In the second contribution, we design a

failure prediction approach for component-level failures. The proposed methods are summarized in

Chapter 4. The third contribution consists of several applications of the failure prediction concepts

developed in the first two contributions. They demonstrate that failure prediction can also be used

to improve the performance of the system. The components of this third contribution are presented

in Chapter 5. Next, we summarize each main contribution in more detail.

1. System-level failure prediction System-level failures in autonomous driving lead to disen-

gagements of the automated driving functions, meaning the human driver has to take over

again. To predict these critical points in advance, we develop an introspective failure prediction

framework. A model is trained with recorded disengagements from six months of test drives

in autonomous mode, provided by the BMW group. By training with both the disengagements

and successful driving scenes, the model becomes capable of classifying a new scene as either

success or failure. To allow early prediction, we use the ten seconds of recordings before each

disengagement, as well as ten second sequences of successful driving. Three different sources

of information about the scene are investigated as input for the failure prediction model.

1 Introduction

4

• State-based: The first implementation of the proposed concept uses sequences of state data

as input. Those sequences are labeled as Failure or Success, depending onwhether they end

in a disengagement or not. The temporal state vector sequences are then used as training

data for a Long Short-TermMemory (LSTM) classifier. During testing, the classifier assigns

the current state sequence a failure probability in real time. This black box approach does

not pose any requirements on the inspected system and outperforms the state of the art [15,

16] by over 25 %.

• Image-based: Next, we consider image sequences as a richer scene representation. Differ-

ence images are created acrossmultiple time points to capture spatio-temporal information

and then used to train a Convolutional Neural Network (CNN) classifier. While more com-

putationally expensive than the state-based approach, the failure prediction accuracy is

significantly higher.

• Trajectory-based: Thirdly, we analyze the planned trajectories generated by the inspected

system to predict the failures of the system. Since the planned trajectories capture the

intended future behavior of the car, they are a useful source of information about future

failures as well. Since changes in the planned trajectories can take seconds to result in

changes in the car state, this approach outperforms the state-based approach in early

failure prediction.

• Late fusion: Finally, all three sources of information are combined using a late fusion

approach of averaging the three individual failure probabilities. The fusion model outper-

forms the state-based model by another 13 % and achieves the overall best performance of

predicting failures seven seconds in advance, at an accuracy of over 89 %.

2. Component-level failurepredictionNext,weaddress failures of individual components, specif-

ically failures of semantic segmentation. The concept of introspection is applied to learn from

recorded pixel-wise errors of the inspected model. Based on this concept, we develop failure

prediction methods both for the current frame and for future frames.

• First, pixel-wise failures made for the current input image are predicted. For each training

image, the pixel-wise errors made by the inspected model are recorded and used as target

labels for an introspective failure predictionmodel. The failure predictionmodel therefore

performs semantic segmentation of the input image, but assigns each pixel a failure proba-

bility instead of a semantic class probability. By learning from the explicit failures made by

one specific model, this approach outperforms generic uncertainty estimation approaches

such as Monte Carlo (MC) dropout [10] by more than 7 %.

• With a failure prediction for each frame available, it is possible to extrapolate into the future

to predict pixel-wise failures for future frames as well. An autoencoder structure using

convolutional LSTMs to capture spatio-temporal features is employed. We use sequences

of predicted error maps as training input and the actual error map of a future frame as

the target. This approach allows us to accurately predict future pixel-wise failures up to

five frames into the future. To evaluate this method on a large-scale data set, we introduce

the Densely Annotated Video Driving (DAVID) data set generated in Car Learning to

Act (CARLA) [17]. It is around 9 times larger than comparable public video data sets [18,

19] with pixel-wise annotations for every frame.

3. Failure prediction applications Finally, we propose three methods to improve system perfor-

mance based on concepts from the developed failure prediction methods.

• First, a two-stage approach inspired byhumanperception is developed. Humanperception

consists of an initial low-resolution assessment of the entire scene, followed by a second,

focused look at each of the most relevant areas [20]. This concept can be applied to

computer vision aswell. Semantic segmentation corresponds to the first global assessment.

1.2 Thesis Organization

5

Then, we use the proposed pixel-wise failure prediction to detect failure regions within a

semantic prediction. The failure regions are locally reclassified and the failure pixels are

updated accordingly. This corresponds to the focused second look of human perception.

By reclassifying failure regions, previously overlooked objects such as pedestrians can be

recovered.

• Instead of first extracting failure regions and then reclassifying them, the second approach

directly learns to reverse the errors introduced by a given model. This is achieved by

training an autoencoder with the erroneous semantic prediction from the inspected model

as input and using the ground-truth pixel-wise labels as the target. The autoencoder thus

learns to correct the mistakes made by the inspected model. When applied to compressed

images, the mean Intersection over Union (IoU) can be improved by over 8 % this way.

• The third concept uses failure prediction to monitor each individual sensor in a fusion-

based object detection network. By training a single-sensor object detector for each sensor

modality, introspection is used topredict thedetectionperformance each sensor canachieve

on its own. Then, sensors with a low predicted performance are assigned lower weights

in the fusion network to allow the network to focus on the most useful sensor inputs. By

predicting which sensors would lead to failures and adjusting the system accordingly, the

mean IoU of a state-of-the-art multimodal object detector [21] is improved by 4.6 %.

1.2 Thesis Organization

This thesis is structured as follows. Chapter 3 introduces the theoretical background necessary for

understanding the contributionsmade in this thesis and how theywere developed. Themost relevant

related work in the field of failure prediction is summarized. Strengths and limitations of existing

methods are outlined to motivate the introduction of the methods proposed in this work. Chapter 3
introduces the system-level black box failure prediction approach that allows to predict disengage-

ments of an autonomous system up to seven seconds in advance. Three different input modalities

for the proposed failure prediction model are discussed and ultimately combined in a fusion-based

approach. Next, Chapter 4 presents an approach for predicting component-level failures, specifically

the failures of semantic segmentation as one of the key perception models in autonomous systems.

Both an approach for predicting the failures of the current scene and an extension for predicting

segmentation failures of future frames are proposed. In Chapter 5, the insights from the previous

chapters are used to design several applications of failure prediction. Two methods for correcting

failures of semantic segmentation are shown. A third method preemptively avoids failures made by

a multimodal object detection module by adjusting the system based on the predicted failure prob-

ability of each individual sensor. Finally, we conclude this thesis in Chapter 6. The key results are

summarized and the limitations of the proposed contributions are discussed. Based on these results,

we make several suggestions for possible future research directions.

Parts of theworkpresented in this thesis have beenpublished in international, peer-reviewed scientific

journals and conferences [22, 23, 24, 25, 26, 27, 28, 29].

7

2 Background and Related Work

In this chapter, we summarize the theoretical background of this thesis. First, we discuss the key

components of an autonomous system andwhy failures occur. Then, we give an overview of state-of-

the-art uncertainty estimation methods, a field that is closely connected to failure prediction. Finally,

we summarize methods for predicting future failures before they happen.

2.1 Autonomous Driving Systems

Autonomous driving systems have been actively researched for decades. In 2005, an autonomous

vehicle managed to successfully drive the entire 212 km track of the DARPA Grand Challenge for

the first time [30]. The advance of deep learning has further sped up development of self-driving

systems. Assisted driving functions based on neural networks, such as the Tesla autopilot introduced

in 2014 [31], have received significant public attention. In 2017, Waymo launched an autonomous

vehicle ride-hailing service [6]. Despite this progress, failures and accidents remain a common

issue [4]. The question of how safe autonomous driving can be is an ongoing discussion, with a

wide range of factors potentially causing unsafe driving scenarios [2]. Next, we discuss the core

components of autonomous systems, the main sources of their failures and how such failures are

currently handled in the form of disengagements of the system.

2.1.1 General Pipeline

Liu et al. [32] divide an autonomous vehicle system into three major parts: The software algorithms

responsible for localization, perception, planning, and control of the vehicle, the hardware platform

where the algorithms are integrated into the physical system, and a backendwhere data is stored and

new algorithms are developed. In this thesis, we focus on the algorithmic part of such a system.

With terabytes of driving data being recorded every day by car manufacturers [33], learning-based

algorithms are a promising direction. The tasks of perception, planning, and control can be addressed

using end-to-end learning [34]. By training a deep neural network with sensor data as input and the

correct steering angle and acceleration as the target output, the task of driving can be approached

with a single model. The resulting system is challenging to analyze due to its black box nature. A

modular pipeline consisting of different, learning-enabled systems allows to trace failuresmore easily

to their source. Kim et al. [35] were among the first to propose to integrate failure evasion on a system

level to ensure graceful degradation of a vehicle, for example switching to other sensors or modules

in case one sensor or module fails. McAllister et al. [36] proposed to quantify the uncertainty of each

individual component in a system and propagate them to eventually detect a larger problem before

it causes a critical failure. While both works highlight the importance of integrating uncertainty

awareness into an autonomous system, implementing such failure-aware systems remains an open

challenge.

The most critical components where failures can occur are the perception modules of an au-

tonomous system. While planning and control is not a trivial task, fail-safe trajectories that are

guaranteed to be safe can be generated in real-time [37]. This only holds for perfect perception of

the environment, however. Next, we summarize the core approaches for learning-enabled perception

algorithms.

2 Background and Related Work

8

2.1.2 Perception Modules

Deep-learning based perception methods have shown state-of-the-art performance in multiple areas

over the last years. Here, we summarize the main concepts of the three fundamental perception tasks

of image classification, object detection and semantic segmentation.

2.1.2.1 Image Classification

Image classification describes the task of assigning an image to one specific class, typically with

manually assigned labels as the ground truth. The human visual nervous system has been an

inspiration for achieving this taskwith computers as early as 1980 [38]. LeCun et al. [39] demonstrated

the potential of convolutional layers, successfully using a Convolutional Neural Network (CNN)

for single digit recognition. In 2012, Krizhevsky et al. proposed AlexNet [40], a deeper CNN

which achieved state-of-the-art results on ImageNet [41], a data set with 1000 classes and over 14

million natural images. In the following years, architectures such as VGG [42] and ResNet [43] have

further improved the performance. Since very deep networks such as ResNet are computationally

complex, more lightweight architectures such asMobileNet [44] have been designed to allow real-time

classification on mobile devices.

All those architectures work by using multiple sequential convolutional layers to extract features,

followed by one ormore fully connected layers for classification. A convolutional layer consists of two-

dimensional kernels that are convolved with the spatial input. The numerical values of those filters

are learned during training using backpropagation, allowing the network to extract the most useful

features for classifying the image. Intermittent pooling layers reduce the spatial size of the resulting

feature maps, while increasing rotational and positional invariance. An exemplary visualization of

this structure is shown in Figure 2.1. A 4 × 4 kernel with three channels is applied to a simple input

image of size 9× 7, resulting in a 6× 4× 3 feature map. After applying 2× 2 pooling with stride 2, the

feature map is flattened and fed into a fully connected layer. The first convolutional layers typically

extract low-dimensional features like edges and corners. Those low-level features are the foundation

for all subsequent semantic interpretation of the input. For classification, this is done by the final

fully connected layer of the network consisting of N neurons, where N is the number of classes. The

output of the fully connected layer is commonly referred to as the logit vector z. For N � 2 classes of

"1" and "0", for example, the resulting 2 × 1 output vector is used to classify the input image as a "1"

in this case.

.

.

.

9x7 input

.

.

.

6x4x3 channels

3x3x3

27x1

Nx1 output

Figure 2.1 Visualization of the main components of a CNN. A kernel (red) slides over the input image to

create a convolved feature map. A pooling layer (green) increases spatial invariance. The flattened features are

classified by a fully connected layer as one of N classes.

Once such a convolutional architecture is designed, it can be trained with input images and the

associated class labels. Training is typically done using the backpropagation algorithm [45]. To

compare the output of a neural network to the ground truth during training, a loss function is

needed. For classification, a common choice is the cross entropy loss. For this, a softmax operation is

applied to the output logit vector z from Figure 2.1 to obtain an output score Pc for every potential

class c ∈ {1,N}:

2.1 Autonomous Driving Systems

9

Pc �
ezc∑N

k�1
ezk

(2.1)

To calculate a loss between these class-wise scores P and the label l of the current image, the scalar

class label l is turned into a one-hot encoded vector L ∈ �Nx1
with Ll � 1 and Li � 0 for i , l. Then,

the Cross Entropy (CE) is calculated as

CE � −
N∑

k�1

Lk log(Pk) � − log(Pl)). (2.2)

The model’s CE for the current training image is used to calculate the gradients using backpropa-

gation, which are then used to adjust the model parameters. After a sufficient amount of iterations,

the network ideally converges and is capable of correctly classifying its input images. Its performance

can be measured using various evaluation metrics, such as the straightforward accuracy or more

complex methods such as precision-recall curves. A summary of common metrics can be found in

[46]. Selecting the proper metric for the task at hand is an important part of the development of a

perceptionmodel. In safety-critical tasks such as pedestrian classification, false negatives can bemore

important to avoid than false positives, for example.

2.1.2.2 Object Detection

Object detection is an essential part of the perception module of autonomous systems. It goes

beyond image classification by classifying multiple regions for one image, while also predicting their

locations. In order to localize any number of objects at varying sizes in an image, the CNN framework

used for simply classifying an image needs to be extended. Girshick et al. [47] proposed R-CNN in

2014, a two-stage object detection framework that extends CNN classification with an initial region

proposal step. In the first stage, 2000 region proposals are generated for a given input image using

selective search. In the second stage, a CNN extracts features from those proposals which are then

classified. Additionally, the second stage predicts the bounding box of each region that was classified

as an object. Fast R-CNN [48] improved this concept by applying convolutional layers first and

creating the region proposals from the extracted feature map, significantly reducing the amount of

required convolutions. Finally, Faster R-CNN [49] replaced the selective search algorithm with a

region proposal network that is trained together with the rest of the model. Its structure is shown in

Figure 2.2a. More recent architectures have further improved performance [50], but still use the two

stage concept to achieve state-of-the-art object detection.

(a) Faster R-CNN (source: [49]). (b) Workflow of YOLO (source: [51]).

Figure 2.2 Overview of a two-stage (a) and a single-stage (b) object detection network.

2 Background and Related Work

10

The precision of two-stage detectors is high, but the cost of running two steps is significant.

Redmon et al. [51] proposed a single-stage object detector to address this issue, which they named

You Only Look Once (YOLO). YOLO performs object detection with a single model by splitting

an image into a grid and then generating bounding boxes of variable sizes for each grid cell. By

additionally assigning each grid cell a class probability, objects are detected as the bounding boxes

with a high underlying class probability. This approach is significantly faster than splitting the

detection up into a region proposal and a classification step. An overview of both the two-stage Faster

R-CNN detector and the single-stage YOLO model is shown in Figure 2.2.

In the first version of YOLO, only one object could be detected per grid cell, which is problematic

if multiple small objects are present. While subsequent improvements like YOLOv3 have addressed

this issue [52], the performance of single-stage detectors is still generally lower than two-stagemodels.

For autonomous systems, this trade-off between the desired high speed for a mobile system and the

desired high precision for the safety-critical task of driving remains a challenge.

Regarding the evaluation of object detection models, classification metrics such as accuracy are not

sufficient anymore. A common metric to evaluate the quality of the predicted bounding boxes is the

mean Intersection over Union (IoU). For each predicted bounding box, the area of the intersection

with the corresponding ground truth bounding box is computed and divided by the area of the union

of the two bounding boxes, as visualized in Figure 2.3. Another popular metric is the mean Average

Precision (mAP). It sets an IoU threshold to classify each detection as correct or incorrect and then

computes the average precision of all detections. By taking the mean over all IoU thresholds, the

mAP is obtained.

Intersection

Union

Figure 2.3 Visualization of the Intersection over Union (IoU) metric to evaluate the performance of object

detection. The intersection between the predicted bounding box (red) and the ground truth bounding box

(green) is divided by their union.

2.1.2.3 Robust Object Detection

When deploying object detectors to real roads, the conditions can be much harsher than in curated

benchmark data sets. To ensure high performance, there are several approaches for making object

detection more robust. One direction is to improve object detection in the presence of occlusions.

While standard two-stage detectors such as R-CNN struggle with partially occluded objects, compo-

sitional nets [53] decompose object representations into individual parts and context of each object.

An object where one part is occluded can thus still be detected bywhich parts is visible given the right

context, such as a grey area around a car. Wang et al. [54] further improved this approach be explicitly

segmenting the objects and their context in each region proposal, avoiding the context to be falsely

detected as an object itself. Under heavy occlusions, they outperform the precision of Faster R-CNN

by a factor of over 2. Wang et al. [55] addressed a different issue by considering the uncertainty of

the ground truth labels of Light Detection and Ranging (LIDAR) data sets. They argued that human

annotators draw deterministic bounding boxes even when the available LIDAR scans do not offer

2.1 Autonomous Driving Systems

11

Figure 2.4 Overview of the AVOD architecture that is later used in this work. Features extracted from camera

and LIDAR input are fused by either addition or concatenation (source: [21]).

precise information about the location of objects. They proposed a generative model that predicts

bounding box uncertainty based on the shape and structure of the corresponding LIDARpoint clouds.

Training with the resulting probabilistic bounding boxes results in object detectors that are more ro-

bust to noisy LIDAR input. Besides occlusions or noisy labels, object detectors can also be susceptible

to adversarial attacks. Adversarial attacks generate perturbations to the input image which make

the attacked model misclassify the input. Cars equipped with state-of-the-art object detectors can

misclassify road signs where inconspicuous adversarial patterns have been added, demonstrating

the danger of such attacks [56]. Zhang et al. [57] addressed this by proposing adversarially robust

detection, performing adversarial training based on both localization and classification loss for all

detected objects.

2.1.2.4 Fusion-Based Object Detection

Another way of improving the performance and robustness of object detectors is to use more than

one sensor modality. While cameras are comparatively cheapwith rich sensor readings, they struggle

in low light conditions or in adverse weather like rain or snow. Adding further sensor modalities to

an object detection framework can mitigate those weaknesses. LIDAR (Light Detection and Ranging)

sensors are more robust against adverse light or weather conditions. They scan the environment with

laser beams that measure the distance to objects around the sensor, creating 3D point clouds that offer

depth information, which regular cameras do not provide. Object detection can be performed using

only LIDAR input, for example, by adjusting originally camera-based architectures such as YOLO [58].

However, fusing LIDAR with other sensors such as cameras generally improves performance and

increases redundancy [59].

The most promising fusion approach for object detection is deep fusion [60], since state-of-the-art

detectors typically rely ondeep neural networks. Fusion can be performed by adding or concatenating

features extracted from the various sensors used. Early fusion combines the sensors after the first

convolutional layers, while late fusion only combines high-level features shortly before a prediction

is made. Different studies have shown both early fusion [61] or late fusion [62] to perform better. For

fusing 2D data from cameras and 3D point clouds from a LIDAR, a common approach is to use Bird’s

Eye View (BEV) representations of the LIDAR scans [21]. The 2D image features can be projected into

BEV [63], or the 3D point clouds can be projected onto a plane [64]. Some state-of-the-art architectures

such as Aggregate View Object Detection (AVOD) have more than one fusion step, first fusing low-

level features to create region proposals and then fusing the region proposals from both low-level

feature maps to classify the objects. As a representative of multimodal fusion that we also use in our

work, we show the structure of AVOD in Figure 2.4.

While using multiple sensor modalities is inherently more robust than using a single sensor, the

fusion strategy employed can be further optimized for robustness against corrupted sensor input.

2 Background and Related Work

12

Pfeuffer et al. [65] investigated the impact of adverse weather conditions on multimodal object detec-

tion and concluded that late fusion strategies perform the best. In early fusion networks, compromised

features extracted from noisy or occluded sensor readings propagate throughout almost the entire

architecture. A single corrupted sensor input is less likely to be harmful if the feature streams are

kept separate for longer. Instead of finding the best fixed architecture, Mees et al. [66] proposed an

adaptive multimodal fusion model for changing environments. They trained a separate model for

each type of environment and combined them using late fusion. While this strategy improves perfor-

mance in challenging lighting conditions, the model complexity increases significantly and training

data from each expected adverse condition is required. Finally, Kim et al. [67] increased robustness

against noise in single sensors by using a convolutional layer for fusion. By adding noisy data to the

training set, the fusion layer learns to select the best subset of channels from the mix of unchanged

and corrupted input.

2.1.2.5 Semantic Segmentation

While object detection only classifies some regions per image, semantic image segmentation classifies

every pixel in an image. For autonomous vehicles, this allows for a much denser scene understanding

compared to object detection, for example enabling free space computing to plan the car’s trajectory.

Themain difference to classification or detection is that the output remains entirely spatial. To achieve

a spatial semantic prediction for an image input, Long et al. [68] proposed fully convolutional net-

works. A sequence of convolutional layers with intermittent pooling layers results in spatial feature

maps. Upsampling the final feature map to the original resolution results in a semantic prediction.

Instead of simply upsampling the last convolutional layer, Badrinarayanan [69] proposed a dedicated

decoder to gradually increase the resolution of the encoded feature map with multiple transposed

convolutional layers. To avoid reducing resolution during the convolutional layers, atrous convolu-

tions can be used [70]. Atrous convolutions increase the receptive field without reducing resolution,

allowing to aggregate multi-scale contextual information. The DeepLab architecture proposed by

Chen et al. [71] further introduced an Atrous Spatial Pooling Pyramid (ASPP) to semantic segmen-

tation models, where feature maps are filtered at different sampling rates to capture information

at multiple scales. Finally, the concepts of atrous convolutions, ASPPs and a decoder to refine the

feature map output by the encoder were combined in the DeepLabV3+ architecture [72]. We use

DeepLabV3+ as a state-of-the-art semantic segmentation architecture in this thesis. Its structure is

shown in Figure 2.5. For evaluation, the same metrics as for object detection can be used, most

commonly the mean IoU and mAP. The insights from semantic image segmentation can be applied

to other sensor types as well. For LIDAR data, architectures such as RangeNet++ [73] achieve state-

of-the-art segmentation performance by projecting the LIDAR point clouds into 2D and then using a

fully convolutional network, similar to the networks used for image segmentation.

2.1.2.6 Postprocessing for Semantic Segmentation

Noisy input or model inaccuracies can lead to erroneous semantic predictions. While one solution

for noisy input is to use denoising models on the input directly [74], another recent approach is to

postprocess the semantic prediction to correct some of the mistakes. Larrazabal et al. [75] proposed

to use a Denoising Autoencoder (DAE) to integrate anatomical priors in the task of medical lung

segmentation. They add manual degradations like erosions, dilations, and occlusions to the ground

truth semantic map and then train a DAE to reconstruct the original ground truth labels from the

noisy input. The resulting model thus learns to create an anatomically reasonable semantic map

even from a highly irregular initial prediction. The approach can also be extended to multi-class

segmentation [76]. The concept of denoising a semantic prediction is a potential way of increasing

the performance of an arbitrary segmentation model. Only the output of the model is required and

the segmentation model itself does not need to be changed.

2.1 Autonomous Driving Systems

13

Figure 2.5 Overview of the DeepLabV3+ architecture for semantic image segmentation (source: [72]).

2.1.2.7 Future Semantic Segmentation

In dynamic tasks such as driving, being able to anticipate events before they occur is a valuable

capability. Since semantic segmentation can be the foundation of tasks such as free space computing,

knowing how the semantic segmentation of a scene will look in the future can improve safe trajectory

planning. To extrapolate into the future, video data is required. Pfeuffer et al. [77] performed semantic

video segmentation using convolutional Long Short-TermMemory (LSTM) cells [78] to extract spatio-

temporal features, thus improving the frame-wise segmentation. Topredict the segmentationof future

frames, one approach is to generate the future image input using a Generative Adversarial Network

(GAN) [79]. The generated future image can be segmented using a regular video segmentationmodel

to obtain a predicted future segmentation. Instead of predicting future images and segmenting them,

Luc et al. [80] showed that directly predicting future segmentation maps performs better. They use

an autoregressive CNN to predict the next segmentation using the previous four segmentations. By

using the future prediction as a new input to their model, they predict up to three frames into the

future in an autoregressive fashion. This approach was further improved by Rochan et al. [81], who

employed convolutional LSTMs in an encoder-decoder architecture to predict future segmentations.

Their architecture is shown in Figure 2.6. They encode four sequential frames at four encoding depths

and feed the encoded sequences into four convolutional LSTMs. The resulting spatio-temporal feature

maps are then decoded into the predicted next semantic map. This demonstrates the potential of

convolutional LSTMs, which can be used both for improving the segmentation of the current frame

by using image sequences as input as well as predicting future segmentations by using sequences of

semantic predictions as input.

2.1.2.8 Data Sets

All deep learning models discussed so far require large scale training sets to achieve useful perfor-

mance. For image classification, the ImageNet data set [41] remains one of the most important data

sets available. It consists of over 14 million images from 1000 different classes. While image clas-

sification alone is not sufficient for complex tasks such as driving, models trained on ImageNet are

commonly used as backbone networks for both object detection and semantic segmentation. Low-

2 Background and Related Work

14

Figure 2.6Overviewof an encoder-decoder architecturewith convolutional LSTMs that predicts future semantic

maps based on a sequence of the previous four semantic predictions (source: [81]).

level features like edges and simple shapes are similar across many domains, making the first layers

of classification architectures trained on ImageNet useful inmost specific applications such as driving

as well. For object detection, the KITTI data set [82] is one of the most popular benchmark data sets.

It consists of over 15 000 images plus corresponding LIDAR scans, with bounding box annotations

from seven object classes. It was collected on urban roads in Germany, making it useful for training

object detectors intended for autonomous driving. For the LIDAR scans, the semanticKITTI data set

also provides point-wise semantic labels [83].

For image segmentation, Cityscapes [84] is one of the most popular data sets. It contains 5000

images with pixel-wise semantic labels from 19 classes. Around ten sequential frames before and

after each labeled image are available as well. All images were collected in multiple German cities,

making it a realistic and challenging benchmark for autonomous driving. While Cityscapes remains

popular, larger data sets have since been released. The BDD100k data set [85] contains 10 000 images

with semantic labels collected on both highways and urban roads in the United States. More recently,

the A2D2 data set [86] with over 41 000 images with semantic labels from 38 classes was released,

including both highways and urban roads from Germany. For tasks that require sequential images

with labels, there are only few data sets available. The CamVid data set [18] contains video sequences

with frame-wise semantic labels at a frequency of 1 Hz, but is limited to around 700 frames in total.

The Highway Driving data set [19] offers pixel-wise labels at 30 Hz, but is still limited in size at a total

of 1200 frames. In contrast, driving simulators are an almost limitless source of labeled sequential

data. The Car Learning to Act (CARLA) simulator [17] offers pixel-wise semantic labels for every

frame. While the gap between simulation and real world data remains a challenge, multiple works

have successfully deployed models trained on simulation data to the real world [88, 89, 87]. In this

thesis, we introduce a new large-scale video data set with pixel-wise labels for every frame recorded

in CARLA in Chapter 4, being around 10 times larger than the largest comparable publicly available

data set.

Finally, for evaluating models designed for autonomous driving, data collected by self-driving

vehicles is a valuable source of information. The Waymo Open data set [90] is currently the only

public data set recorded with self-driving cars and contains 1150 sequences of 20 s of annotated

camera images and LIDAR scans. However, it only contains data from successful driving without

interventions,making it less suitable for this thesis’ focus ondetecting failures of autonomousvehicles.

2.1 Autonomous Driving Systems

15

2.1.3 Sources of Failure

Having introduced themainmodules of an autonomous vehicle, we next summarizewhat the sources

of failures in such a system are. In this thesis, we focus on failures that occur due to the internal

logic or software of a vehicle. There are other straightforward sources of failure that we do not

further discuss here, such as malfunctioning hardware. Such issues can be detected using watchdog

systems [91], which are already commonly used tomonitor the hardware side of autonomous systems.

Concepts frompredictivemaintenance [92] also contribute to ensuring the physical functionality of all

components. While such hardware-related failures need to be detected as well, we focus on failures

that occur in a physically intact system. Such failures are generally more challenging to predict and

resolve than a broken sensor or actuator.

Themost critical type of software-related failure is when the system’s behavior does not ensure safe

driving anymore. This is caused by one or more individual components failing. Those components

include the models for perception, planning, and control. We distinguish between system-level

failures and component-level failures. If one or more individual components fail, for example by

misclassifying an object or planning an unsafe trajectory, a system-level failure can occur in which a

human operator has to take control of the vehicle again. Since component-level failures are a main

reason for system-level failures, we focus on failures of individual models first.

There are three main reasons for individual components to fail: epistemic uncertainty, aleatoric

uncertainty, and Out-of-Distribution (OOD) data as visualized in Figure 2.7. We briefly summarize

all of them in the following.

Epistemic Uncertainty Aleatoric Uncertainty Out-Of-Distribution Data

?

Figure 2.7 There are three main sources of failures in autonomous driving. Epistemic uncertainty stems from

an insufficient model. Aleatoric uncertainty is inherent to the input. Finally, Out-of-Distribution (OOD) data

differs significantly from the training set distribution.

2.1.3.1 Epistemic Uncertainty

Epistemic uncertainty is also referred to as model uncertainty [8]. It describes the uncertainty of

a model’s output that stems from an imperfect model. With more training data or a model with

more capacity, such uncertainties could in theory be resolved. Figure 2.7 shows an example from

the context of driving. Even with clear sensor input, a bicycle transported on top of a car can be a

challenge for models that were trained with separate instances of cars and bicycles. Adding images of

such combinations of cars and bicycles to the training set would reduce those uncertainties. Failures

of a model that can be traced back to epistemic uncertainty could therefore be prevented by more

carefully designing the model or by increasing the training set.

2.1.3.2 Aleatoric Uncertainty

In contrast, aleatoric uncertainty is inherent to the input amodel receives. It is therefore also called in-

put uncertainty [8]. Such uncertainties are caused by noisy, occluded, or ambiguous input. Figure 2.7

shows a typical example from driving. Rain drops on a camera lens can lead to compromised input

that is impossible for any model to understand correctly. While training models with data from such

adverse weather conditions has been shown to improve robustness [65], such augmentations of the

2 Background and Related Work

16

training set only reduce the epistemic uncertainties of the scenario. Aleatoric uncertainty refers to the

uncertainties than cannot be removed regardless of how the model is refined. While the argument

can be made that with the right training data or a sufficiently large model, any uncertainty could be

resolved [8], accepting that some uncertainties remain irreducible is more useful for practice. While

epistemic uncertainties should be reduced as much as possible during model development, aleatoric

uncertainties cannot be completely removed by improving the model. To anticipate this, separate

mechanisms need to be employed for detecting them.

2.1.3.3 Out-Of-Distribution Data

Finally, the reason a model fails can be that it is deployed to an environment it was not designed

to operate in. The input data from a novel environment that differs significantly from the training

environment is referred to as Out-of-Distribution (OOD) data. If a model encounters data it was

not trained for, its output will be inherently uncertain. An example is shown in Figure 2.7. If an

autonomous car is intended to operate on highways and its training set does not include animals on

the road, then encountering such objects will lead to OOD data. For high-dimensional image data, it

is challenging to define the distribution that underlies a training set [93]. In the literature, test data

from a data set that the model has not been trained with is sometimes referred to as OOD data [94].

This can be misleading, however, since two different data sets might still share common objects or

structures. More recent works such as Yang et al. [9] offer more precise definitions of anomalies,

outliers, novelties, and OOD data. In the context of driving, encountering object classes not present

in the training set remains one of the most critical examples of OOD data.

2.1.4 Disengagements

If one or more component-level failures happen, the overall system eventually can fail as well. Com-

pared to tasks such as object detection where a ground truth to compare to is available, it is harder

to quantify when a system-level failure occurs. While the car crashing or violating traffic rules is

definite proof that a system-level failure has occurred, the system was likely already not operating

in a safe manner in the time before a collision. Therefore, the moment the car is not driving in a

safe or controlled way anymore can be seen as the point of failure. To prevent a system-level failure

from causing harm, autonomous systems are designed to return control to the human operator early

enough to avoid dangerous situations. This is referred to as a disengagement of the autonomous

system. Besides the system triggering disengagements automatically, the second source of disen-

gagements is a manual take-over by a human driver who decides the situation is not safe anymore. A

general overview of accidents and disengagements of autonomous test vehicles by commercial com-

panies can be found in [4]. The consistent presence of accidents demonstrates that existing systems

cannot avoid mistakes even with human safety drivers present. Next, we further discuss the role of

humans in the disengagement process and why accidents can still occur.

2.1.4.1 Human Takeover

In case the autonomous system disengages, humans remain the main way of resolving the situation.

There are two ways for a human to take over control again. First, the car can be controlled via

Teleoperated Driving. Kang et al. [95] discuss the requirements and challenges of using human

operators that are not physically present in the car. They mostly discuss the latency issues that

arise from remotely sending control input, arguing that dedicated network and real-time streaming

methods are required. Beyond low-latency video transmission, another open research question is

how to achieve a sufficient situation awareness to safely steer the vehicle from afar. Georg et al. [96]

designed an immersive interface to optimally represent all sensor data to the human, going beyond

only showing camera streams on displays. Another option is to enhance displays by adding predictive

information about the future motion of the vehicle, or by adding haptic feedback [97].

2.2 Uncertainty Estimation

17

A second option is to still rely on a safety driver inside the vehicle. A takeover from within the car

results in regular driving, removing the need for novel interfaces or low-latency transmissions. How-

ever, asking a human driver to take control of a vehicle that was previously driving autonomously is

still a challenge. Merat et al. [7] investigated transitions from automatic tomanual driving in a driving

simulator. They found that it can take up to 40 seconds for a humandriver to completely regain control

of the car if the human had not been paying attention to the road beforehand. If the driver expected

the disengagement, control was regained more quickly. The capability to predict disengagements

early in advance therefore is a desirable property to increase overall safety of autonomous vehicles.

In case a disengagement is predicted early, the system can then alert and prepare the driver.

2.1.4.2 Takeoverability

The concept of takeoverability describes how well prepared the driver is for an impending takeover

maneuver. While an early prediction of a disengagement is useful, a disengagement will not increase

safety if the driver is not ready for taking control yet. Studies show that the vigilance of human drivers

in automated vehicles steadily decreases during longer drives [98]. To address this, Xia et al. [99]

predict the driver’s attention by learning from recorded gaze and object detection data. By comparing

the predicted attention with the current gaze data, the situation awareness can be estimated [100].

Besides evaluating the current awareness of the driver, there are also approaches to increase the

takeoverability in the seconds before a takeover request. Disengagements are typically caused by

the car not being able to handle some part of the driving situation. Thus, the focus of the car can

be an indicator of where the human driver should also focus on in order to resolve the challenging

scenario. Bojarski et al. [101] used backpropagation to calculate which parts of an input image a

CNN was most influenced by. This allows to visualize the most relevant areas of the input from the

perspective of the car’s perception module. Highlighting those regions can give the human operator

a first understanding of why the system disengages and allows them to prepare for that specific

situation. Similarly, class activation maps [102, 103] can be used to visualize which parts of an image

led to the prediction of a classification model.

Finally, the driver can be monitored by the car to assess their takeoverability. The driver’s phys-

ical state such as their heart rate or stress level can be monitored [104]. Additionally, the reac-

tion of the driver to a takeover request gives insight into their ability to perform the takeover.

Herzberger et al. [105] found that the lack of a noticeable orientation reaction such as scanning

the traffic situation indicates a lack of takeoverability. Prompting such a reaction using visual or

acoustic alerts can increase the readiness to take control of the vehicle again. This again highlights

the need for an early prediction of impending disengagements.

2.2 Uncertainty Estimation

One of themost relevant research areas that enable failure prediction is uncertainty estimation. Quan-

tifying the uncertainty that a system is exhibiting is the foundation both for component-level failure

prediction and, by aggregating component-level uncertainties, for system-level failure prediction.

If the uncertainty of a system is available, a straightforward thresholding approach is sufficient to

predict a failure or success of the system.

Autonomousvehicles are an important applicationofuncertainty estimationmethods. Arnez et al. [106]

gave an overview of state-of-the-art uncertainty estimation for this area. Many machine learning

models offer an inherent confidence score, such as the class-wise scores P introduced in Section 2.1.2.

However, such scores do not reflect actual probability estimates [10]. Additionally, minimizing the

cross entropy loss as outlined in Section 2.1.2 inherently encourages the model to assign the highest

possible score P to its prediction, since a score of 1 minimizes the loss in case the prediction is correct.

The field of uncertainty estimation is focused on generating uncertainty values that are more closely

correlated to the actual success rate of the system. This is an important concept for failure prediction.

2 Background and Related Work

18

A high uncertainty estimate suggests that the system should not be trusted, even if the system’s

decision turns out to be correct. Accurately quantifying uncertainty allows a model to know when it

does not know what to do. This knowledge can be used to safely trigger a takeover request before a

dangerous situation can develop.

As already visualized in Figure 2.7, the literature distinguishes between epistemic and aleatoric

uncertainties [8]. Epistemic uncertainty refers to model uncertainty caused by the imperfections of

the givenmodel. Any epistemic uncertainty could, in theory, be resolvedwithmore training data or a

more sophisticated model. In contrast, aleatoric uncertainties cannot be reduced with more data or a

largermodel. This includes any issues inherent to themodel’s input, suchas sensornoise or occlusions.

There are several studies discussing how to address the uncertainty of machine learning models.

Ghahramani [107] introduced a general probabilistic machine learning framework to incorporate

uncertainties. Wang et al. [13] further proposed a similar framework for Bayesian deep learning,

incorporating Bayesian probability modeling into deep learning architectures. Kendall et al. [108]

discussed the relevancy of different types of uncertainties in the context of Bayesian deep learning,

arguing that Bayesian methods are an important step towards modeling epistemic uncertainties.

While the distinction between epistemic and aleatoric is useful for describing which uncertainties

can be resolved, failure prediction requires accurately quantified uncertainty regardless of which

type the uncertainty is. A more relevant distinction is where the uncertainties can be detected in

a model workflow. Specifically, we distinguish between methods that analyze the model input and

methods that investigate the model output. Assigning an uncertainty to the model’s output is the

more common approach in the literature. However, a model can be confident in its output and still

be incorrect. Analyzing the input allows estimating whether the model should be allowed to make a

prediction in the first place. We therefore begin by discussing methods based on input analysis.

2.2.1 Input Analysis

Sensor inputs such as camera images or LIDAR point clouds are a key component of how an au-

tonomous vehicle perceives its environment and on what it bases its decisions. By analyzing the

input immediately after the sensor has recorded it, it is already possible to predict that a subsequent

model or system will likely not make a correct prediction. By estimating the uncertainty of a model

before even evaluating it, the required time for a potentially expensive model inference can be saved.

It should be noted that OOD input that is new to a model by definition. For such input, a model

is always uncertain. In this section, we focus on input that is part of the operative design domain,

but nevertheless leads to failures. Unless a model performs at 100 % accuracy, such inputs inevitably

exist. There are two main approaches for detecting that a given input will be problematic for a

system to handle. First, a hardness predictor can be trained jointly with the model, learning which

input caused incorrect outputs during the training process. Second, an input analysis model can be

designed separately from the inspected system. For this approach, information about model failures

is obtained from recordingmodel predictions on a training set and then learningwhich inputs caused

incorrect outputs. This concept of learning from recorded failures is referred to as introspection and

will be a core foundation of several contributions of this thesis.

2.2.1.1 Hardness Prediction

First, we summarize two approaches that incorporate a hardness predictor into the training process

of the inspected system. A hardness predictor is a model that predicts how difficult the current input

is to classify correctly. Wang and Vasconcelos [109] proposed to train a hardness prediction model

jointly with the model itself. The additional model assigns a hardness score to each training sample

based on the accuracy of the current prediction of the inspected model. Throughout the training

process, input samples with higher hardness scores are assigned higher weights when computing the

training loss. Due to the higher loss, the model is adjusted more strongly to improve its predictions

on those hard samples. Conversely, those samples will be assigned a lower hardness score during

2.2 Uncertainty Estimation

19

the next update of the hardness predictor. Once training is complete, only the most challenging

inputs still receive high hardness scores, which correspond to high estimated model uncertainty. By

evaluating the hardness predictor first, highly uncertain inputs can be rejected preemptively before

running the inspected system.

Yoo et al. [110] proposed a similar concept. They trained a second model to predict the training

loss a new input would generate for the inspected model. While this captures similar information to

using the current training accuracy as done by Wang and Vasconcelos [109], it can assign different

scores to two predictions that are both wrong. A higher training loss means that the prediction is

not just wrong, but also further away from being correct than an incorrect prediction with a lower

training loss. Additionally, their approach can be applied to multi-task networks as long as they

are trained using a single loss. Training the loss predictor alongside the inspected model allows for

efficient joint training. However, both approaches are only applicable to individual neural networks

where the training process can be modified. In complex systems such as autonomous vehicles, not all

components are necessarily neural networks. To keep all components as modular as possible, failure

prediction models should ideally not require any changes to the training process of the system itself.

A failure prediction approach that operates only on the system input while treating the system as a

black box is introspection. We summarize this powerful concept as well as several recent works based

on it next.

2.2.1.2 Introspection

Instead of using the training accuracy to predict the hardness of an input, a more general and flexible

approach is to take a set of inputs and record the performance of the given system for each input.

Those inputs can be either the training set or a separate set reserved for this purpose. By recording

the input-performance pairs of the system as it will be deployed in practice, a failure predictionmodel

can be trained to predict when the systemwill make mistakes. The concept of learning from previous

failures to be able to predict future ones is referred to as introspection [111].

The task of an introspective failure prediction model is to map each input to the corresponding

performance of the inspected system. One of the first works that applied this approach to vision-

based systems was Zhang et al. [112]. They argued that when a model fails to generate the correct

output, it can still be possible to correctly predict that the model will fail for the given input. Being

able to predict which outputs are likely incorrect can helpmitigate the overconfidence often exhibited

by discriminative classifiers. They propose a framework based on an arbitrary vision-based model

and an image data set. First, they generate training data by extracting handcrafted features from each

image. By evaluating the inspected vision-based model for each training image, they assign binary

training labels of Success or Failure to each image. Then, they train a Support Vector Machine (SVM)

to predict the label based on the current image features. In their experiments, this approach allowed

them to reliably predict failures of a variety of computer vision tasks based solely on the input,

for example by learning that images with large brightness contrasts are more likely to be classified

incorrectly.

Daftry et al. [111] continued this line of research, but advocated the use of deep learning instead

of using hand-crafted features. They were the first to refer to the concept of learning from previous

failures as Introspection. They generalize the concept from predicting failures of a classifier to predict-

ing failures of an entire system, in their case an autonomously flying drone. They record flights of

the drone through a forest and record the video data leading to crashes as well as successful flying

sequences. Then, they use both a spatial and a temporal CNN to extract features from the recorded

image sequences. Those features are used to train a SVM to again predict a binary label of Success
or Failure for each sequence. They applied their resulting introspective failure prediction model to

their drone and used it to reject inputs with a high predicted failure probability, instead of simply

stopping the drone before resuming flight. This significantly increased the time the drone could

fly autonomously. Since they showed that introspection allows to successfully predict failures of an

autonomous system, we use ideas of their work in multiple of our contributions.

2 Background and Related Work

20

The approach from Daftry et al. [111] was later extended by Saxena et al. [113] by additionally

training a model to select a suitable recovery maneuver once a failure is detected. This modification

further increased the amount of time flown in autonomous mode. They also noted that the failure

prediction scores could be used to automatically detect challenging scenarios in test flights, allowing

to efficiently obtain relevant new training data.

Another applicationof introspection is to improveobstacledetection, proposedbyRabiee et al. [114].

They extend image-wise introspection to region-wise introspection. They predict which regions of an

image are incorrectly classified regardingwhether they contain an obstacle for amobile rover. Finally,

Yang et al. [115] applied introspection to object detection. They train an introspective model to

predict where in an image the inspected object detector missed objects. Their model learned to detect

false negatives on the KITTI data set at both a precision and a recall of over 81 %. Considering that

incorrect obstacle detection and false negatives are both critical dangers to autonomous driving, these

recent works further demonstrate the potential of introspection for failure prediction in autonomous

systems.

2.2.2 Output Analysis

Analyzing the input of a system to estimate its uncertainty does not require running the entire system

before making a failure prediction. The output of the system is only needed during the training of

the input analysis models. While this approach can save time, it does not make use of all of the

information available about the current situation. Taking the time to obtain the model output yields

the actual behavior of the system for the current input. Since this behavior is what would eventually

cause the failure, analyzing the system output is the secondmain way of achieving failure prediction.

In the literature, estimating the uncertainty of amodel’s output is themost commonway output-based

failure prediction is approached. While it depends on the system’s design and robustness what levels

of uncertainty actually result in a failure, having an accurate estimate of the uncertainty is a useful first

step. One way the uncertainty estimation can be performed is by modeling it as a probability. Thus, a

large focus in the literature is on using Bayesian probability principles for estimating the probability

that a model is correct. Since Bayesian approaches do come with some practical downsides, a second

research area focused on non-Bayesian approaches for quantifying the uncertainty of a model has

also been developed. In the following subsections, we summarize the most relevant works from both

research directions.

2.2.2.1 Bayesian Methods

Many machine learning models already generate a probability-like confidence measure alongside

their prediction. Commonly, the softmax score from Equation 2.1 is used as the model’s confidence.

However, the softmax score is not an actual probability and does not describe model uncertainty as

discussed in works such as [116] or [10]. The softmax score can still be useful by modifying it to

match the model uncertainty more closely. The goal is for the softmax probability of a prediction

to correspond to the frequency that the prediction actually occurs. The similarity of the predicted

probability and the observed frequency is referred to as the calibration of a model. Guo et al. [117]

evaluated a range of calibration techniques and found that Platt temperature scaling is an efficientway

of obtaining a calibrated output score Pcal of a model. Equation 2.1 only needs a minor modification

of inserting a temperature scaling factor T > 1 into the exponential:

Pcal �
ez/T∑N

k�1
ezk/T

(2.3)

2.2 Uncertainty Estimation

21

They showed that this scaling effectively addresses the overconfidence inherent to softmax scores.

A large factor T reduces overly large softmax scores without affecting the accuracy, since the relative

order of class scores stays the same. Kuleshov et al. [118] further proposed to train a dedicated

regression model to calibrate the softmax score of a model, improving calibration at the cost of

increased model complexity. While calibrating the model output is a fast way of obtaining a simple

uncertainty estimate, the field of Bayesian deep learning offers a much wider range of approaches.

There are several papers outlining the theoretical advantages of Bayesian deep learning compared

to traditional networks [13, 108]. Traditional neural networks generate a point estimate output,

whereas Bayesian neural networks are designed to generate an output distribution. In general, this

can be approached by modeling both the output and the weights of the architecture as probability

distributions. A straightforward way to implement this idea is Bayes by Backprop, proposed by

Blundell et al. [14]. They assign each weight a Gaussian distribution and then learn the mean and

standard deviation for each weight during training. By adding one additional parameter per weight,

the resulting model then consists of many consecutive distributions instead of scalar point estimates.

For inference, the authors proposed to sample multiple times from each distribution to obtain a set

of different scalar models. By generating the output from the resulting set of models, an output

distribution is generated. The variance of this output distribution can then be used as an estimate of

the model’s uncertainty.

A major downside of actually learning distributions instead of scalar weights is the significantly

increased model complexity. The number of parameters is doubled and the optimization becomes

more challengingdue to themore complex loss function. In practice, deepneural networks are already

highly complex and require significant resources just to perform their main task, such as classification

or object detection. Dedicating the same amount of resources to the secondary task of assigning an

accurate uncertainty estimation to the model output may not be feasible. Gal and Ghahramani [10]

proposed a much less complex alternative to Bayes by Backprop that achieved comparable results.

They termed their approachMonte Carlo (MC) dropout. Dropout is a generalization techniquewhere

some neurons are set to zero during training. This prevents the network from relying too much on

specific neurons [119]. Gal and Ghahramani proposed to keep dropout active during testing. They

showed that performingmultiple forward passes through a neural networkwith active dropout layers

is an approximate Bayesian inference of a Gaussian process. Effectively, each different dropout mask

corresponds to sampling a new model from a distribution of models. The set of samples obtained

from inferences with different dropout masks then corresponds to an output distribution similar to

Bayes by Backprop. Then, the variance or entropy among the output samples can be used to obtain

an uncertainty estimate. A visualization from [10] of how the output distribution of MC dropout

samples corresponds to model uncertainty is shown in Figure 2.8. A model trained to classify an

input image as a digit from "0" to "9" is presented with increasingly rotated versions of a "1". For the

non-rotated version, most of the 100 forward passes result in the prediction of a "1". For the partially

rotated inputs in the middle, the model equally predicts either "1", "5", or "7", demonstrating its

uncertainty about the input. Any single scalar prediction would not have captured this uncertainty,

with many samples even having a high softmax confidence score of 0.8 or higher.

MC dropout is applicable to any neural network containing dropout layers, while requiring no

changes to the training procedure or the model architecture. The main limitation is the required

sampling by running forward passes. Running 100 inferences for a single input can be prohibitively

expensive for large networks. Nevertheless, MC dropout has been applied to a range of applications

since its introduction. Kendall et al. [120] used MC dropout to estimate pixel-wise uncertainties in

semantic image segmentation. This allows to visualize the predicted uncertainties and thus failures

of a segmentation model. In the context of autonomous driving, this is a valuable property. The

predicted uncertaintymaps can be displayed to the human operator to alert them ofwhich regions the

model is strugglingwith. Fortunato et al. [121] proposed Bayesian Recurrent Neural Network (RNN)s

by applying both Bayes by Backprop and MC dropout, demonstrating the flexibility of those concepts.

2 Background and Related Work

22

Figure 2.8 Visualization of the softmax output from 100 forward passes with active dropout from a model

trained to classify digits. The bottom row shows the input of an increasingly rotated "1". The output samples

are most scattered around a rotation of 45 degrees. This corresponds to the increased model uncertainty for an

input that does not resemble any of the three classes (source: [10]).

An alternative to MC dropout is to use different stochastic mini batches in batch normalization

layers to obtain different outputs from one model [122]. Similar to MC dropout, this approach can

be applied to any trained neural network as long as batch normalization layers are present. Since the

performance is comparable to MC dropout, this approach is a useful option in case a model without

dropout, but with batch normalization layers is used.

Besides detecting incorrect predictions, uncertainty estimation can also be used to improve network

performance. Kendall et al. [123] improved multi-task neural networks by modeling the output of

each task as a Gaussian distribution and weighing the training losses based on the output variances.

A single uncertainty-aware model trained to perform three tasks outperformed three individually

optimized models in their experiments. In Chapter 5, several ways of using uncertainty estimation

results to improve a system beyond only detecting its failures are developed.

Korattikara et al. [124] addressed the main issue of increased computational complexity caused

by using MC dropout. Inspired by the concept of knowledge distillation as proposed by Hin-

ton et al. [125], they proposed a trainer-student scheme where a student model learns to predict only

the uncertainty of the teacher model. First, they applied MC dropout to a teacher network to obtain

an output distribution from multiple samples. Then, they train an identical student model without

dropout to predict that distribution from only the input. Obtaining the uncertainty estimation for the

teacher model then requires only one additional forward pass of the student model during testing.

Learning from the recorded uncertainties of a teacher model like this is similar to the concept of intro-

spection introduced in Section 2.2.1. Their experimental results outperformed both MC dropout [10]

and Bayes by Backprop [14]. While the testing complexity is reduced, the training complexity is

significantly increased. A distribution of MC samples needs to be generated for each training sample,

and a complete additional model needs to be trained.

Gurau et al. [126] used distillation of MC dropout samples to improve overall model performance.

They trained a student network to perform the same task as the teacher model, but added the

difference to 100 averaged MC dropout samples obtained from the teacher to the training loss of the

student. The training loss for highly uncertain samples is thus increased. In both classification and

object detection tasks, the student model with uncertainty-aware training outperformed the teacher

model without additional testing complexity. The concept of training a model to predict the output

of a second network with the same architecture is similar to the idea of Born-Again Networks as

proposed by Furlanello et al. [127]. They also observed that student models identical to the teacher

can outperform their teacher significantly.

2.2 Uncertainty Estimation

23

The uncertainty obtained fromMC dropout can also be used to guarantee a certain success rate by

rejecting predictions with a high estimated uncertainty. Geifman et al. [11] specified a threshold and

rejected all outputs of a classifier with an estimated uncertainty above this value. On the ImageNet

data set [41], this approach allowed them to guarantee a 2 % top-5 error with a probability of 99.9 %,

while still covering 60 % of the test set. While performance guarantees are important for autonomous

driving, rejecting inputs is not always feasible in practice.

Output-based uncertainty estimation has been used in a range of tasks specifically related to

autonomous driving as well. In [128], MC dropout is used to estimate the uncertainty of 3D vehicle

detection based on LIDAR point clouds. The uncertainty for novel test data was higher than for

data from the training distribution and the confidence score of the output was better calibrated.

Meyer et al. [129] proposed probabilistic object detection by using an architecture that generates a

probability distribution for each detection. Their approach offers a probabilistic uncertainty estimate

for each detection at a competitive detection performance, but requires a dedicated architecture and

cannot be applied to existing trained models. Finally, Michelmore et al. [16] applied MC dropout

to an end-to-end autonomous driving model. They trained a neural network to predict the steering

angle of a car in a simulator based on the camera images from the simulator. While MC dropout

is computationally demanding, their system was capable of running in real time, generating 128

dropout samples per image at six frames per second. In their experiments, when the variance among

the samples crossed an empirically determined threshold, a crash followed 73 % of the time within

the next five seconds. This demonstrates the potential usefulness of uncertainty estimation for failure

prediction in autonomous driving.

2.2.2.2 Non-Bayesian Methods

While Bayesian methods have shown great success in the field of uncertainty estimation, they come

with several limitations. First, sample-based approaches such as MC dropout are expensive during

testing, which is problematic for mobile systems such as cars. Postels et al. [130] give a general

overview of deterministic instead of probabilistic uncertainty estimation methods, emphasizing the

common advantage of reduced inference time. Second, many Bayesianmethods are designed only for

neural networks, often requiring to modify their architecture. Autonomous vehicles are complex sys-

tems that can consist of both conventional and learning-enabled components, which can be expensive

to modify if they are already trained. In the following, several non-Bayesian uncertainty estimation

and failure prediction methods that address one or more of those limitations are summarized.

Mohseni et al. [131] use a teacher-student scheme to predict the failures of a given model. They

train the student model with the saliency maps from the teacher model as input and the errors of

the teacher as the target output. While learning to predict failures from recorded failure instances

is the same concept as used in introspection, their approach requires to obtain the saliency map of

the output of the inspected model first. While requiring the model output is slower than predicting

failures on the input directly, this method is still faster than requiring multiple samples such as MC

dropout. The authors evaluated their approach on an end-to-end steering angle prediction network,

correctly detecting 68 % of safety-critical deviations.

For neural networks, fail cases can be determined before deployment using the concept of neuron

coverage proposed by Pei et al. [132]. They argue that the idea of code coverage when testing software

can also be applied to neural networks. For neural networks, neuron coverage means generating

inputs that make every neuron fire. Instead of determining if a random input leads to an uncertain

model, they propose to generate inputs intended to lead to an uncertainty model to then retrain

the model with those inputs. They proposed a gradient-based optimization algorithm that efficiently

finds inputs that both trigger asmany neurons as possible and lead to incorrect behavior of the system.

The additional constraint of maximizing neuron coverage is the main difference to the established

concept of generating adversarial inputs. The resulting inputs outperform adversarial training by 3 %

when used to retrain the model.

2 Background and Related Work

24

While the work by Pei et al. can make a model more robust against uncertain inputs, it cannot be

used at test time to assess the current model output. Corbière et al. [133] proposed a non-Bayesian

way of estimating the output uncertainty by adding a confidence prediction network to the end of

the inspected network itself. Their confidence network uses the high-level features extracted by the

inspected model as input and receives the softmax score of the correct class as a target label. This

way, the confidence network learns to predict the true class confidence even when the model assigns

a higher score to a different class and makes a mistake. Their work outperformed Bayesian methods

such as MC dropout in both classification and semantic segmentation. Yoo et al. [110] use a similar

approach of adding another network at the end of the inspected architecture. Instead of predicting

the confidence, they predict the training loss of the current sample. This loss predictor can be used

both for active learning to predict the hardest samples and during testing to predict which inputs will

likely be misclassified.

Another approach for evaluating the uncertainty of model output is the trust score proposed by

Jiang et al. [134]. The trust score is a distance-based metric calculated in the high-level feature space

of a model. It is derived from the ratio of the distance of the input to the predicted class and the

distance to the nearest not-predicted class in feature space. For low-dimensional input, this nearest-

neighbor-based approach outperforms other uncertainty estimation measures. For high-dimensional

inputs such as images, the trust score does not even outperform the softmax score. This makes the

trust score less suitable for computer vision tasks commonly performed in autonomous driving.

Most Bayesian uncertainty estimation methods discussed in the previous section relied on the

variance or disagreement between samples generated from one model. The concept of disagreement

betweenmultiple outputs can be used for non-Bayesianmethods aswell. Fridman et al. [15] proposed

to use two different models trained for the same task and monitor when their outputs differed. They

apply this idea to autonomous driving by running both a Tesla autopilot system and an end-to-end

steering angle prediction network in parallel. Using an empirically selected disagreement threshold

between the two steering angle systems, they predicted when the Tesla autopilot would disengage

five seconds in advance at an accuracy of 90 %. While those results are promising, their approach

requires designing and training two structurally different models that both perform well, with no

theoretical guarantees that there will be noticeable differences between the two models at test time.

The concept of deriving uncertainty fromdisagreementwas again used byRamanagopal et al. [135].

They analyzed the output of a detection model by looking for inconsistencies between the object

detector and a separate object tracking module. They also proposed using the disagreement between

the detections from the two cameras of a stereo vision system. Their approach effectively detected

false detections at little extra cost, assuming that systems such as a stereo camera and object tracking

are already present for increased redundancy.

A straightforward implementation of using model disagreement specifically designed as an al-

ternative to Bayesian methods is the idea of Deep Ensembles proposed by Lakshminarayanan [12].

They train five instances of the same neural network architecture with different initializations. The

resulting ensemble of models generates a distribution of outputs for one input. The variance of those

outputs can be used as an uncertainty measure, similar to MC dropout. Their approach significantly

outperforms MC dropout in their experiments. While MC dropout requires the inspected model

to contain one or more dropout layers, the Deep Ensemble approach has no requirements on the

underlying model. It also requires much less time during testing than sampling-based methods such

as MC dropout, since only five models need to be evaluated instead of running up to 100 forward

passes. The additional cost is mostly shifted to the training phase, where the commonly expensive

training of a deep neural network needs to be performed five times as often.

Instead of training the same architecture multiple times, Geifman et al. [136] proposed storing

snapshots of the model at evenly spaced time points during training to effectively create an ensemble.

While the snapshots stored during the early phases of training are not capable of classifying all

samples yet, they assign simple inputs a more realistic confidence score. Later snapshots tend to be

overconfident on such samples. By averaging the confidence score of model snapshots both from

2.2 Uncertainty Estimation

25

early and late phases of training, an improved uncertainty of the output of the trained final model is

obtained. While this approach outperformsDeep Ensembles andMCdropout in several experiments,

it cannot be applied to a model retrospectively since access to the entire training phase is required.

2.2.3 Out-Of-Distribution Detection

The third main source of failures in autonomous driving is novel data that is too different from the

training distribution, typically referred to as Out-of-Distribution (OOD) data. If a model has never

seen a class before, it will fail regardless of how well it has been trained or calibrated. Next, the most

relevant works focused on OOD detection in general are outlined. Then, an overview of recent work

using OOD detection specifically for autonomous driving is given.

2.2.3.1 General OOD Detection

Yang et al. [9] gave a comprehensive overview of the field of OOD detection. They distinguish

between several terms often used synonymously in the literature, most notably anomaly, novelty,

and outlier detection. A visualization of these general types of OOD detection tasks is shown in

Figure 2.9. Sensory anomalies refer to an unexpected sensor style such as a drawing instead of a

picture, while semantic anomalies are unexpected semantic inputs such as a picture of a cat after

training with pictures of dogs. Open set recognition is the ability to classify multiple classes such as

different animals, while being able to detect if an input does not belong to any of the known classes.

Outlier data refers to data that is available to the model, but that strongly differs from the rest of

the observations. All of those OOD concepts theoretically pose risks to autonomous driving and can

therefore be considered when discussing failure prediction.

Figure 2.9 Overview of the key concepts of the field of OOD detection. Anomaly, novelty, outlier and OOD

detection are often used synonymously in the literature (source: [9]).

Chalapathy et al. [137] gave an overview of anomaly detection specifically for the field of deep

learning. A similar work was conducted by Shafaei et al. [138], who evaluated a range of state-of-

the-art OOD detection methods. They found that for image-based models evaluated on common

benchmark data sets, none of the methods they investigated were capable of accurately detecting

anomalies. Nalisnick et al. [139] made similar observations about density-based OOD methods,

concluding that they are not reliable for high-dimensional data such as images. They observed

that such methods could even assign a higher likelihood to OOD data than to in-distribution data.

Choi et al. [93] addressed this by using a deep ensemble [12] to estimate the uncertainty of the density-

based OOD detector. Estimating the uncertainty of the OOD detector itself allowed for more accurate

detection of OOD inputs.

2 Background and Related Work

26

Another promising direction for OOD detection is to use autoencoders, which can learn an em-

bedding for a given data set in an unsupervised manner. Marchi et al. [140] used an autoencoder

combinedwith an RNN structure to detect novel inputs in acoustic data. For new input data, they use

the difference between the original input and the input reconstructed by the autoencoder. They find

that the reconstruction error is generally higher for novel data, outperforming traditional statistical

methods for novelty detection. An extension of this idea is to use a Variational Autoencoder (VAE) for

OOD detection [141]. VAEs learn a continuous latent distribution from which the reconstruction is

generated. Since the embedding of each new input is a distribution, density-based OOD detection in

the latent space is possible. However, those approaches still struggle to achieve useful performances

on large and complex natural image data sets.

Finally, instead of attempting OOD detection based solely on the input data, the output of the

model that the data is given to can also be used. Hendrycks et al. [94] proposed a straightforward

baseline for detecting OOD input by simply using the softmax score of a classification network as an

OOD score. While the softmax score is not a proper probability and does not correspond to model

uncertainty as discussed before [10], Hendrycks et al. empirically showed that the softmax score

nevertheless allows to accurately detect if a classification network has been fed data from a different

data set. They evaluated and verified this approach on speech, text, and image classification data

sets. Liang et al. [142] soon improved the work of Hendrycks et al. [94]. They achieved state-of-the-art

results for OOD detection by both applying calibration via temperature scaling [117] and by adding

small perturbations to the input in the direction of the loss gradient. The argued that a classification

model is more sensitive to data it has been trained on, and therefore such a perturbation will have

a greater effect when added to in-distribution data. The resulting calibrated softmax score of the

perturbed input image is significantly larger for in-distribution data than for OOD data. While recent

survey papers such as [138] find that the approach by Liang et al. is still the state of the art for

this task, it is only applicable to image classification networks. Additionally, the OOD data used in

the works discussed in this section is typically drastically different to the training distribution, for

examplewhen training amodel on images of numbers and then showing it natural images of animals.

In autonomous driving, the changes in the distribution can be more subtle and the systems are more

complex than classification networks. The next subsubsection discusses OOD detection approaches

specifically designed for the domain of autonomous vehicles next.

2.2.3.2 OOD Detection for Autonomous Driving

Filos et al. [143] analyzed how distribution shifts affect trajectory planning for autonomous vehicles.

They proposed using model ensembles to make the trajectory planner more robust by averaging

multiple trajectories as well as for estimating the current model uncertainty in the same vein as Deep

Ensembles [12]. They evaluate their approach both in the CARLA simulator and on a real driving

data set, where their approach detects 97.5 % of trajectories that would have led to a crash. Their

findings suggest that uncertainty estimation methods are a powerful tool for failure prediction both

for in-distribution and OOD scenarios.

A successful application of unsupervised OOD detection using an autoencoder was proposed by

Richter andRoy [144]. They trained a fully connected autoencoderwith image data from the buildings

in which an autonomous RC car was trained to drive. Then, they use the reconstruction error of their

autoencoder to detect if the car is driving in the hallways it was trained in or if it is driving in a new

building. They correctly detected every novel hallway this way and avoided collisions by switching

to a slower and safer driving strategy. By recording the novel environments and retraining with the

recorded data, they iteratively adapted both the autoencoder and the driving system. The car then

learned to classify previously novel environments as known and could increase its speed without

additional collisions. While their results are promising, the evaluation is limited to a restricted set of

indoor scenes. The insides of the new buildings often looked drastically different to the building the

car was trained in, for example by having a differently colored floor. Real-world road environments

tend to look more similar to each other, with novelties often being temporal and local, such as when

2.2 Uncertainty Estimation

27

an unknown object enters the road. Bolte et al. [145] focused specifically on the detection of such local

corner cases in driving environments. They leverage specific knowledge about dangerous anomalies

in traffic, namely that an anomaly needs to move in an unpredictable way, needs to be a relevant

class such as a pedestrian, and needs to be in a relevant location such as the side of the road. To

localize an object, they divide the image into square patches and use semantic segmentation to detect

relevant objects such as people. Then, they use an autoencoder to predict the current image from

the sequence of previous images. If the reconstruction differs significantly from the actual current

image, they assess the patch to be unpredictable and classify it as a corner case. In a qualitative

evaluation, they showed that this approach is capable of detecting critical video sequences such as

pedestrians moving erratically at the side of the road in an unsupervised way. While such scenarios

do not necessarily pose a problem to a well-designed perception module, their approach is useful at

automatically detecting relevant scenarios among unlabeled training data sets.

Another OOD detection approach capable of detecting changes in specific environmental factors

is to use a β-VAE [146]. The training data is first partitioned into subsets. Each subset contains

variations of only one critical factor, such as weather condition or traffic density. Then, a β-VAE is

trained for each of those factors and the latent variable that is most sensitive to the respective factor

is determined. During testing, the divergence of that variable’s distribution to a normal distribution

is used as an OOD score. This approach allows both the detection of a distribution shift as well as

determining which factor was responsible for the shift. The ReSonAte (Runtime Safety Evaluation

in Autonomous Systems) framework [147] extended such a detection of environment shifts into a

general risk score calculation for a given scene.

Amini et al. [148] combine the task of OOD detection, uncertainty estimation and end-to-end

steering angle prediction into a single network. They trained a convolutional VAE on driving images

and used one of the latent variables as the steering angle output, which they supervised with the

ground-truth steering angles available for each training image. The rest of the latent variables are

used to reconstruct the input image. The reconstruction error serves as a novelty score. The variance

of the latent variables, which take the shape of Gaussian distributions in a VAE, is used as an

uncertainty estimate of the model. Their model detects 97 % of test images taken at day times not

present in the training set and detects all test images taken with a malfunctioning camera. While the

resulting model is highly efficient since a single forward pass yields the control output, uncertainty

score and novelty score, it is limited to systems that rely on such end-to-end control. Commercial

autonomous systems are typically significantly more complex and rely on multiple modules instead

of a single control network. The idea of using one encoding for multiple purposes is still promising,

however. Bevandic et al. [149] followed a similar idea and combined OOD detection with semantic

segmentation. After a shared encoder, one decoder generates a semantic prediction while a second

decoder performs a pixel-wise outlier prediction. The outlier predictor is trained with in-distribution

images where outlier objects not present in the original training set have been manually added.

Those outlier objects are labeled as an outlier class. While this is an effective approach for segmenting

outlier objects, it requires a supervised data set of outliers. Since one of the key ideas of OOD

detection is to detect objects that were not available during training, such a supervised approach is

hard to generalize. The contributions of Chapter 4 use a similar approach to generate both a semantic

segmentation prediction and the prediction’s failure probability from a single encoding. However,

they are focused on failures made only on in-distribution images.

Instead of using the encoding of a semantic segmentation model to create a pixel-wise outlier

prediction, Xia et al. [150, 151] analyze the output of a semantic segmentation model to find semantic

anomalies. The idea is that semantic anomalies in the input will often lead to spurious and ill-shaped

semantic predictions in the output. They synthesized the input image from the semantic prediction

using a GAN. Then, they trained a comparison module to detect the differences between the original

input and the synthesized input that relate to anomalies. Their approach achieved state-of-the-art

results for anomaly segmentation on the StreetHazards data set [94], a driving data set with 250 types

of anomaly objects present only in the test set.

2 Background and Related Work

28

Finally, besides semantic anomalies, sensor anomalies can also pose a danger to autonomous

systems. Jatzkowski et al. [152] address the issue of unexpected sensor input by proposing to use

deep learning to detect overexposure of camera images. They train a classification CNN with a

manually curated data set of both overexposed and normal driving images, achieving a test accuracy

of 97 %. While training a dedicated network for each type of expected anomaly would get excessively

complex, their approach is a viable option for the most critical types of anomalies that need to be

detected to ensure safety.

2.3 Future Prediction

In dynamic tasks such as driving, detecting an ongoing failure might not be sufficient for avoiding

dangerous situations. Predicting future problems before they actually occur would be an important

improvement. While predicting future events is always challenging, it is especially complex indriving,

where critical events are inherently rare [153]. We summarize several ideas for anticipating future

events that are related to the future failure prediction methods proposed in Chapter 3 and Chapter 4.

First, the prediction of future driving behavior is considered. Knowing how the current driving

situation will unfold can be used for anticipating problematic driving situations. Another relevant

field is accident prediction. While failures of the ego vehicles are the focus of this thesis and not

accidents caused by other traffic participants, the tasks are similar regarding the prediction of future

events. Finally, the few works available in the literature that directly predict future failures in

autonomous driving are discussed. The task of predicting failures of autonomous vehicles seconds

in advance is also where we make several contributions in Chapter 3.

2.3.1 Future Driving Prediction

To predict future driving behavior from a sequence of previous observations, several deep learning

concepts are available. 3Dconvolutions [154] andLSTMs [78] both allow to extract spatio-temporal fea-

tures from input sequences which can be used for classification or regression, while GANs [155] allow

to synthesize future data directly. While bothmotionmodels [156] and conventional methods such as

Hidden Markov Models [157] have been used to predict future driving behavior, Kuefler et al. [158]

showed that GANs are more robust for this task and generate realistic behavior even for long time

horizons. They used both the state of the ego vehicle as well as information about neighboring

vehicles as inputs, generating the predicted future state of the ego vehicle as their output.

For extrapolating the trajectory of the vehicle into the future, LSTMs [159] have shown state-of-the-

art performance. Jain et al. [160] additionally proposed to use a video stream of the driver’s face to

better predict futuremaneuvers. They used a fusion-based LSTM to accurately predict themaneuvers

of the driver 3.5 s in advance, using the outward camera images, vehicle state, and driver face images

as input. While knowingwhat action the car will perform in the next seconds is valuable information,

for failure prediction it is also important to know if that action will lead to a dangerous situation.

Approaches dedicated to predicting accidents in a given traffic scenario are therefore discussed next.

2.3.2 Accident Prediction

A straightforward approach to accident prediction is to learn from video sequences where accidents

have been manually labeled. With such videos, a neural network can be trained to predict the crash

probability of each vehicle in an image. Tian et al. [161] used this approach and trained a variant of

YOLO [51] where each detected car bounding box is assigned an accident probability. They created

a data set from news reports, documentaries, and similar websites to obtain video recordings of car

accidents to use as training data. While they assess the crash probability only based on the current

visual context, Chan et al. [162] extend an object detector with an RNN to extract motion features,

which allows to extrapolate into the future where the objects are headed. Training with dashcam

videos from the internet, their approach is capable of predicting accidents two seconds before they

2.3 Future Prediction

29

happen at an mAP of 74 %. Suzuki et al. [163] further improved early accident prediction by using

an adaptive loss that penalizes the model differently after each epoch depending on how well it

can predict accidents early on. Weights that enable early accident anticipation are encouraged this

way. Secondly, they manually added annotations of near-accidents to their crash video data set,

obtaining more training data of how dangerous situations can develop. Their modifications achieved

accident prediction over two seconds earlier than previous work, at an mAP improvement of over

6 %. Huang et al. [164] continued this approach of near-accident detection using a compact spatio-

temporal network that predicts accidents at a speed of up to 30 frames per second. While all of those

papers predict accidents that occur outside of the ego vehicle, they demonstrate that spatio-temporal

neural networks are capable of extracting patterns in real time that allow predicting critical traffic

situations seconds in advance. The contributions of this thesis to the field of early disengagement

prediction in Chapter 3 are partly motivated by these results.

2.3.3 Future Failure Prediction

Finally, there are several works about future failure prediction that are explicitly applicable to predict-

ing failures of autonomous vehicles. Hallac et al. [165] proposed an autoencoder model that learns to

embed all sensor and state information of a car measured over one second into a compact vector rep-

resentation. They train their autoencoder on a large driving data set and show that risky situations,

such as hard braking or fast turning maneuvers, have distinct embeddings in latent feature space.

By monitoring the distance of the embedding of the current scene to the clusters associated with

such dangerous situations, they were capable of predicting strong braking three seconds in advance.

While this approach can give a human driver time to react to an autonomous car about to suddenly

brake, it is not capable of detecting dangerous situations that the car misses and would not brake for

in the first place. Michelmore et al. [16] proposed to use MC dropout [10] as a way of predicting such

dangerous situations in autonomous driving. They trained an end-to-end steering angle prediction

network, applied MC dropout and used the variance among the resulting MC samples to assess the

uncertainty of the system. When applied to a driving simulator, their approach allowed to predict

crashes in the simulator three seconds in advance at a true positive rate of 73 %.

There are also several works that use the non-Bayesian uncertainty estimation concept of model

disagreement outlined in Section 2.2.2.2. They assess when an autonomous car is making a mistake

based on the disagreement of the car with reference data. Huang et al. [166] proposed a method for

predicting when a trajectory planner is deviating from the trajectory a human driver drove on test

data. They trained a deep neural network to predict a car’s trajectory and additionally implemented

a physics-based trajectory predictor. Then, they trained an error predictor to predict the deviation of

both models from human reference data. Their approach is capable of predicting situations in which

both trajectory models make large errors two seconds in advance 66 % of the time. Hecker et al. [167]

follow a similar approach of predicting the disagreement between two models. They first trained

an end-to-end neural network to predict speed and steering angle given image sequences. Then,

they recorded disagreements between human driving data and the trained model and used this

disagreement data as training data for a second neural network. The second network is designed

to predict disagreements between the end-to-end model and the human reference data based solely

on sensor inputs. While learning from recorded failures is similar to introspection as introduced in

Section 2.2.1, Hecker et al. extended the concept by predicting future failures instead of classifying

the current scenario. By training with sequences of sensor data leading up to the disagreement, they

accurately predicted large steering angle disagreements two seconds in advance.

Finally, the work that is most similar to the novel disengagement prediction proposed in Chapter 3

is thework by Fridman et al. [15]. They predicted the disengagements of a Tesla autopilot based on the

disagreement of the Tesla with an end-to-end steering angle prediction network designed and trained

by them. By tuning a threshold on the validation set, they were able to predict disengagements five

seconds in advance at an accuracy of 90 %. Their work is an important reference approach for the

system-level failure prediction methods that are proposed in Chapter 3 of this thesis.

2 Background and Related Work

30

2.4 Chapter Summary

In this chapter, we introduced the theoretical background andmost relevant relatedwork onwhich the

approaches proposed in this thesis are built. First, we outlined the general pipeline of an autonomous

system and discussed perception systems as one of the main components where failures can be

detected. After establishing what is considered to be a "failure" in this work and what the theoretical

sources of failures are, we summarized the most relevant state-of-the-art failure prediction methods

from the literature. The two main research fields are uncertainty estimation and Out-of-Distribution

(OOD) detection. Finally, approaches for predicting future critical events were discussed, since the

goal of this thesis is to develop a failure prediction framework capable of predicting problematic

situations as early in advance as possible. For the proposed early failure prediction methods, we

mostly rely on concepts from the field of uncertainty estimation and the prediction of future events.

Especially the concept of introspection is used prominently in both the system- and component-

level failure prediction methods. In the next chapter, we introduce a system-level failure prediction

approach as the first major contribution of this thesis.

31

3 System-Level Failure Prediction

In this chapter,wepresent theproposed framework for system-level failureprediction. The framework

treats the car as a black box and applies the concept of introspection to predict disengagements of

the autonomous system. Four implementations of this general idea are developed: a state-based,

an image-based, a trajectory-based, and a fusion-based approach. Before discussing these specific

implementations, we introduce the general idea of introspective disengagement prediction in more

detail first.

Some of the concepts and contributions of this chapter have been published in [23, 25, 26].

3.1 Introspective Black Box Disengagement Prediction

This section defines system-level failures more precisely in the context of autonomous driving. Then,

we introduce the concept of introspection and the introspective failure prediction framework on

which the subsequent failure prediction methods are built is presented.

3.1.1 Disengagements as System-Level Failures

A system-level failure means that a system is not performing its task correctly. In autonomous

driving, the result of a system-level failure is a state in which the autonomous vehicle cannot drive

safely anymore. The most extreme version of a system-level failure is therefore a crash caused by

the vehicle. However, crashes caused by autonomous vehicles as they are currently being tested on

public roads are still very rare events [4]. This can be largely explained by the fact that human safety

drivers are typically present in the car during test drives. During such supervised test drives of

autonomous systems, it can therefore be assumed that unsafe situations are detected before they have

significant consequences. This process of returning control to the human driver to avoid a dangerous

situation is referred to as a disengagement of the autonomous system. Not every situation in which

a disengagement happens would have necessarily led to a crash if no intervention had occurred. In

the absence of actual crashes, situations in which the car disengages are as close to safety-critical

failures of autonomous system as possible. In this dissertation, disengagements are therefore treated

as system-level failures. There are two main ways the autonomous functions of a car can disengage.

Automatic disengagements are triggered by safety systems implemented in the car, while manual

disengagements are triggered by the human driver.

3.1.1.1 Automatic Disengagements

Assisted or automated driving functions typically already have an automatic way of switching off

in case any safety requirement is violated. Such requirements can include a minimum distance to

other vehicles, a minimum confidence in detected objects or a minimum quality of sensory input.

Commercially available Level 2 functions such as lane-keeping assistants or cruise control will alert

the human driver in case their functionality cannot be ensured anymore. Since the human driver is

always expected to be ready to drive again, disengagements are usually not critical events. In Level 3

and beyond, the human is not expected to be fully aware of the road at all times. It can take up to half

aminute to regain control [7]. Predicting disengagements asmany seconds in advance as possible can

therefore increase safety by allowing the human driver some time to become aware of the situation

before having to take control.

3 System-Level Failure Prediction

32

3.1.1.2 Manual Disengagements

Amore safety-critical system-level failure is a scenariowhere the car does not react automatically to an

unsafe situation and the human safety driver has to intervene. For the purpose of designing a failure

prediction framework, such failures are highly relevant situations to predict. Manual disengagements

describe scenes in which the car would have continued its functions despite a human expert judging

the behavior to not be safe anymore. Such scenes are therefore failures that the system itself would

have missed. During deployment of automated driving functions where no test driver is present

anymore, such situations have to be detected to ensure safety.

During the test drives of an automated driving function, the availability of the safety driver is a

valuable source for obtaining failure data. A human intervention can be considered to be a manual

labeling of the current scene as a failure. Human labeling of data is usually expensive and time-

consuming. Since human safety drivers need to be present during test drives anyway, the effective

labeling of such scenes as failures comes at no additional cost.

In summary, system-level failures as considered in this dissertation refer to either automatic or

manual disengagements. Recordings of such failures can be obtained as a side product of inherently

necessary test drives. After months of test drives, considerable amounts of recorded system-level

failures can become available thisway. Next, the question of how topredict those failures is addressed.

The concept of introspection allows creating such a failure prediction framework by learning from

recorded failures. It is discussed in the context of autonomous driving next.

3.1.2 Introspective Failure Prediction

Introspection describes the concept of learning from previous failures of a given system. Instead of

trying to correctly react to every scenario, the idea is to accept that a system will encounter situations

it is incapable of handling. An introspective system should "know when it does not know" [111]. By

recording as many failures of a system as possible before deployment, it is possible to learn typical

failure patterns of a system. While the system will still not necessarily know what to do if such a

pattern is encountered, it can at least be aware that it has entered a problematic scenario and enter a

safe fallback mode to minimize danger.

For this purpose, an introspective failure prediction model is required that is trained to assess if

the current situation is a failure. Training a separate model for this task has the benefit of being less

susceptible to overconfidence. By learning from recorded failures, the introspectivemodel knows that

the inspected systemmade an incorrect choice regardless of how confident the inspected systemwas.

For introspection, it is only necessary to know if the inspected system has failed. This makes intro-

spection complementary to model-based uncertainty estimation method. Any critical uncertainties

that model-basedmethods did notmanage to detect will result in recorded failures. Introspection can

then be used to learn to detect those situations that model-based uncertainty estimators overlooked.

No knowledge about the interior workings of the system is required. Introspection allows to treat

the inspected system as a black box and can operate using only observations of the system. From

the recorded failures of the inspected system, any observed data can be used as input data for the

introspective model. By recording both successful behavior and failures of the inspected system, the

introspective model can learn a mapping of the observed data to the one of the two system states of

Success and Failure. For this mapping, deep neural networks can be used. Since only the two states of

Success and Failure are needed, the most straightforward approach to implementing an introspective

failure prediction model is as a binary classification network.

A summary of the resulting framework that can be applied to autonomous driving is shown in

Figure 3.1. During training, driving data is recorded. This can include the state of the car, sensory

input such as camera images, or the output such as the planned trajectory. Since only input and

output of the car are used, the car itself is treated as a black box. No assumptions are made about how

the autonomous driving functions are implemented. During test drives, both successful driving and

driving ending in a disengagement are recorded. After a sufficient amount of system-level failures are

3.2 State-Based Black Box Failure Prediction

33

recorded, a neural network classifier can be trained to classify the current driving data as either Failure
or Success. The softmax score corresponding to the class Failure can be used as the current failure

probability. This way, the introspective model learns to detect patterns in the recorded driving data

that indicate a failure. During inference, the classifier is fed the current driving data and classifies the

current scenario. By detecting patterns that have led to failures in the past, the introspective model

can ideally detect new failures as well. For the model to be able to generalize from recorded failures

to new failures, a sufficiently large amount of failures is needed. Since car manufacturers are already

completing millions of miles during autonomous test drives [4], such data can be available at little

extra cost.

Record driving data
• State data
• Images
• Trajectories
• …

Sequences
ending in failure

Undisrupted
sequences

Autonomous
system Train neural

network classifier

Current driving
data sequence

Current failure
probabilityAutonomous

system

1. Training

2. Inference

Figure 3.1 An overview of the general concept of black box introspective disengagement prediction. During

training, a classifier is trained with sequences of recorded driving data labeled as either Success or Failure.
During testing, the failure probability is constantly updated with the latest driving data as input.

The proposed introspective failure prediction for autonomous vehicles is based on data that is

effectively labeled for free during test drives, makes no assumptions on the underlying system and

can be used in addition to existing safety measures while not being susceptible to overconfidence.

If the introspective model is trained only with input data of the inspected model, a failure can

be predicted even before the potentially complex and time-consuming system processes the input.

Motivated by those appealing theoretical properties of introspection, several specific implementations

with a focus on early temporal failure prediction are presented next.

3.2 State-Based Black Box Failure Prediction

In this section, we present an introspective black box failure prediction approach for autonomous

driving based on the state data of the car. The state of the car, i.e., its speed, angle, acceleration,

and angular velocity, is a readily available source of information about the system. Regardless of the

employed sensors or software, the physical state captures the actual behavior of the system. The low

dimensionality of state data is another useful property. While new complex traffic scenes can look

significantly different to each other in camera images, for instance, the state of the car is more limited

in its variations. Overly complex situations are likely to lead to more abrupt steering or braking

maneuvers, regardless of the specific problem in the environment. Such variations of the car state can

capture complex changes in the environment in a very compact form. Based on this argument, we

design a model that takes sequences of state data as input and outputs a failure probability. First, the

generation of a suitable data set as the basis of subsequent machine learning methods is discussed.

3 System-Level Failure Prediction

34

3.2.1 Data Set Generation

For introspection, the availability of failure data is essential. Since disengagements correspond to an

autonomous driving system not being able to fulfill its intended function, car or software developers

working on autonomous driving usually do not make such data public. This dissertation is part of a

project of Technical University ofMunich together with the BMWGroup. Recordings from test drives

by the BMWGroup were therefore made available for the purpose of this research. They contain the

collected data from six months of test drives on urban and highway roads nearby Munich, Germany.

Those roads include intersections, construction sites, and varying environments such as buildings and

vegetation. The drives include all daytime settings as well as diverse weather conditions including

snow, rain, fog and sun. The recorded drives are therefore a realistic and challenging representation

of urban driving.

All test drives were performed by BMW development vehicles driving in their current prototype

autonomous mode. A human safety driver was at the wheel at all times to ensure continuous safety.

If the human driver considered a situation to be too dangerous or complex, a manual disengagement

was triggered. In parallel, the car’s safety system triggered an automatic disengagement if any safety

requirement was violated, returning control to the human driver. Every disengagement was recorded

as well as all state and sensor data of the car. System-level failures are inherently rare events. Driving

is typically uneventful, with complex or overly challenging traffic scenarios being the exception. Even

in such extensive driving records, the number of disengagements is therefore limited. From terabytes

of recordings, a total of over 2500 unique disengagements were extracted. This number demonstrates

the need for a fleet of development vehicles performing months of test drives to obtain a sufficient

number of failure cases. Effectively, the resulting failure data set is created from month-long human

supervision and partially manual labeling of critical situations. Considering that any autonomous

driving system requires intensive test drives before deployment, such system-specific failure data can

be obtained without significant additional effort.

Having obtained a large number of drives ending in a disengagement, the next step is to create

an actual data set out of the raw recordings. Since the goal is to predict disengagements as early in

advance as possible to give the human driver time to prepare for the takeover, temporal sequences of

data are needed. We therefore use the 10 seconds of driving before each disengagement as the failure

data to learn from. To obtain a balanced data set, we also randomly sample an equal number of 10

second sequences from successful driving recordings. For early failure prediction, it is also possible to

consider the time frame earlier than 10 seconds before a disengagement. However, a vehicle driving at

50 km/h already moves almost 140 m in 10 seconds, for example. In such a distance, the environment

can change drastically and the obstacles that caused the failure could still be far away. We therefore

limit the timewindow to the 10 seconds before each failure during training, which is still early enough

to give the human operator a warning multiple seconds in advance.

2549 disengagement sequences of state data are extracted from the raw BMW driving records and

the same number of undisrupted driving sequences is sampled. The resulting data set is summarized

in Table 4.2.

Number of disengagements 2549

Number of randomly sampled success sequences 2549

Sequence length 10 seconds

Sensor frequency 10 Hz

Selected state variables

Speed v
Frontal acceleration ax
Lateral acceleration ay

Steering angle θ
Angular speed ω

Table 3.1 Summary of the failure data set extracted from the raw driving recordings provided by the research

vehicles of the BMW Group.

3.2 State-Based Black Box Failure Prediction

35

The entire data set consists of over 14 hours of driving data. From each 10 second sequence, we

record a series of state data at a frequency of 10 Hz. This frequency is also commonly chosen in related

work [167] and allows the failure predictionmodel a reasonable 100 ms to generate its prediction. The

recorded state data consists of the speed v, the steering angle θ, the frontal acceleration ax , the lateral

acceleration ay and the angular speed ω. At a frequency of 10 Hz, each 10 second sequence consists

of a total of 100 recorded car states. Each sequence therefore consists of 100 state feature vectors Fi ,

given as

Fi � [vi θi ax ,i ay ,i ωi]> , i ∈ {1, 100}. (3.1)

While sequential data is necessary to allow the introspective failure prediction model to learn

temporal patterns, the 10 s sequences need to be further processed before being used as training data.

Using the entire sequences as training input would make the model learn patterns that span across

10 seconds. In practice, changes in the environment that lead to a system-level failure often take

place much faster than this. Since the model should be able to detect fast changes that indicate an

impending failure as well, the sequences are split up into shorter samples.

Each sequence consisting of 100 feature vectors is split into shorter samples of length L < 100 that

overlap by all vectors except the last one in each sample. Figure 3.2 visualizes the process of obtaining

100 − L + 1 samples of length L out of one sequence consisting of 100 feature vectors Fi .

F1 F2
. . . FL FL+1

. . . F100−L−1
. . . F100

Sample s1

Sample s2 Sample s100−L+1

Figure 3.2 Visualization of how shorter samples s are generated from a sequence of 100 feature vectors Fi that

have been extracted from a driving sequence with a duration of 10 seconds.

While the resulting samples si , i ∈ {1, 100− L + 1}, are largely correlated to each other, the overlap

ensures that every pattern that leads up to the disengagement at the end of a failure sequence is

captured among the samples. The sample length L is a parameter that can be tuned based on the

temporal patterns that are expected to be relevant. Values ranging from L � 10 to L � 50 will be

evaluated in our experiments, corresponding to a temporal sample length of 1 s and 5 s, respectively.

Once a length is selected, the corresponding samples are created from the sequences. Each sample is

labeled as either Failure or Success, depending on which type of sequence it was created from. The set

of all samples together with the binary labels constitute the overall data set that can then be used to

train a machine learning classification model. Given a total of NF recorded disengagements, the NF
failure sequences are divided into 100− L + 1 failure samples snF ,i each. After randomly sampling NF
success sequences from the recordings without disengagements, 100− L + 1 success samples snS , j are

generated from each of the NF success sequences. The overall state-based data set Dstate can then be

described as

Dstate � {snF ,i , snS , j}, i , j ∈ {1, 100 − L + 1}, nF,S ∈ {1,NF}. (3.2)

Next, the state-based data set Dstate can be used to train and test an introspective failure prediction

model. For this, the data set is split into 80 % for training, 10 % for validation and 10 % for testing.

With the data fully processed, a classifier to predict the label of each sample can be designed.

3 System-Level Failure Prediction

36

3.2.2 LSTM-Based Classification Approach

The introspective failure prediction model needs to be able to classify a sample consisting of L
sequential feature vectors as one of two states, Failure or Success. To enable early temporal prediction,

the model should learn to detect temporal patterns in the samples. Since feature vectors are sampled

at 10 Hz, the resulting 10 predictions per second can be prone to occasional outliers and need to be

post-processed accordingly. Both the design of the classification model and the post-processing are

explained in detail next.

3.2.2.1 Model Design

Introspective failure prediction can be framed as a binary classification task, where a sequence of

state vectors is mapped to either Failure or Success. To perform this task, a classifier Cstate is required.

The score of the Failure class can be considered as the predicted failure probability. Given an input

sample st , the model Cstate therefore assigns a failure probability Pstate,t to that sample as follows:

Pstate,t � Cstate(st), Pstate,t ∈ [0, 1], st ∈ �5×L
(3.3)

To achieve early failure prediction, Cstate needs to detect temporal pattern in the input samples.

Recurrent Neural Networks (RNNs) are neural networks designed to extract temporal patterns from

sequential data. RNNs with Long Short-Term Memory (LSTM) units are a state-of-the-art approach

for learning longer temporal patterns from such data and are one of the most popular choices in

comparable works [167, 15]. For the task of classifying temporal sequences as Failure or Success, we

therefore also base the classification architecture of Cstate on LSTMs. The architecture that performed

best in preliminary experiments on the validation set is shown in Figure 3.3.

st � [Ft−L+1 Ft−L+2 ... Ft−1 Ft]

L
S
T
M

l
a
y
e
r
1

L
S
T
M

l
a
y
e
r
2

F
C

l
a
y
e
r
1

F
C

l
a
y
e
r
2

F
C
l
a
y
e
r
3

S
o
f
t
m
a
x

Pstate,t ∈ {0, 1}

Figure 3.3 Visualization of the architecture of the state-based classifier Cstate that assigns an input sample st
consisting of L sequential feature vectors Fi a failure probability Pstate,t . Two bi-directional LSTM layers are

followed by three FC layers. The final softmax layer generates the score for the class Failure, which is used as

the failure probability Pstate,t (Adopted from [25] © 2020 IEEE).

The core of the architecture are the first two bi-directional LSTM layers. Both have 40 nodes. After

the LSTM layers have extracted temporal features from the input sequence, several FC layers perform

the classification of those features. The three FC layers have 40, 20, and 2 neurons each. The last layer

is responsible for the actual classification as one of the two classes. The number of nodes per layer as

well as the number of layers were determined empirically. Adding more layers or increasing the size

of the individual layers did not improve performance. Reducing the number of nodes in the second

FC layer by the factor of two reduces computational complexity without affecting accuracy. After

the FC layers, a softmax layer turns the output of the third FC layer into a score between 0 and 1 for

both classes. The score of the Failure class is used as the failure probability Pstate,t of the current input

sample st , which consists of the current feature vector Ft as well as the L − 1 previous feature vectors.

Before training, the value of the speed v is normalized to the range [0, 1] since no reverse driving

is recorded. The frontal and lateral acceleration ax and ay , the angle θ, and the angular velocity ω
are normalized to take values in the range of [−1, 1]. At an input rate of 10 Hz, the predicted failure

probability is updated 10 times per second.

3.2 State-Based Black Box Failure Prediction

37

The hyperparameters of the training process were selected empirically. The Adam optimizer [168]

is used to minimize the cross entropy loss with a learning rate of 0.001. The network is trained for

10 epochs, after which the model had converged and the validation loss did not further decrease.

The architecture and the training procedure are purposefully chosen to be straightforward and low

in complexity. This allows to evaluate the proposed framework as independently of the specific

architecture as possible. More elaborate and complex models could still be designed to potentially

optimize performance. Here, the focus is on implementing a successful proof of concept for using

deep learning to predict failures early in advance.

3.2.2.2 Output Filtering

The input of the classifierCstate consists of physical statemeasurementswhich inevitably contain noise,

for example from uneven roads briefly affecting the steering angle. Since the model generates 10 new

failure predictions per second, it is susceptible to react to short-lived changes in the input caused by

such noise. The raw failure predictions generated by Cstate can therefore also be noisy and contain

outliers. To remove those outliers, a post-processing step is applied. The output sequence is filtered

with a low pass. A moving average filter is selected due to its low computational complexity and its

property of smoothing noisy sequences [169]. This way, the output of the classifier only changes if

the predictions consistently change over multiple inputs in a row. The final failure probability Pstate,t
filtered over a horizon H of previous predictions is then obtained as

Pstate,t �
1

min(t ,H)

min(t ,H)∑
k�1

P
state,t+1−k . (3.4)

The horizon H is set equal to the sample length L. The model first uses the previous L state vectors

to make the current prediction and then computes the average over the previous L predictions to

obtain the final failure probability. At the very beginning of a sequence, the time t of the sequence

is still lower than the horizon H, in which case the average is computed with fewer than H previous

predictions until t � H is reached. For the prediction to change from Success to Failure, the failure

probability needs to be larger than 0.5 on average for L inputs. The lower L is selected, the quicker

the system is capable of changing its prediction, at the cost of being more susceptible to outliers.

3.2.3 Results

In this section, results of the evaluation of the state-based failure prediction approach are presented.

To the best of our knowledge, no black box failure prediction approach based on low-dimensional data

exists in the literature. Since no comparable reference approaches are available, the proposed model

is analyzed on its own in multiple ways. First, the state data is visualized to obtain a more intuitive

understanding of what the proposed model can realistically learn. Then, the failure prediction

performance is evaluated and the impact of the sample length L is analyzed. An ablation study is

performed to show the importance of each state variable selected for the input. Finally, the failure

cases of the proposed model are discussed to gain more insights into the limitations of this concept.

3.2.3.1 Data Visualization

The normalized state data used to train the introspective failure prediction model is visualized in

Figure 3.4. For each time step t of both success and failure sequences, the average value of each

state variable is calculated and plotted. Regarding the speed v, it can be seen that the car drives

significantly faster on average during successful sequences. Averaged over all recordings, there are

few variations in its speed. In contrast, the speed in failure sequences decreases noticeably during

the last three seconds before a disengagement. Similar observations can be made when plotting the

frontal acceleration ax . During successful driving, braking and accelerating are almost even. Roughly

3 System-Level Failure Prediction

38

six seconds before a disengagement, the car starts to increasingly decelerate, reaching the strongest

braking at the time of the disengagement itself. The lateral acceleration ay shows that, on average, the

car moves more to the left during failure sequences and more to the right during success sequences.

This is in line with the fact that left turns at intersections on German roads are significantly more

complex than right turns. The angle θ offers similar insights, with failure sequences containing the

strongest left turns. Finally, the angular speed ω shows much noisier values during disengagement

sequences, supporting the intuition that the car starts driving more erratically when encountering a

challenging situation.

0 1 2 3 4 5 6 7 8 9 10

Sequence Time [s]

0

0.2

0.4

0.6

0.8

1

N
or

m
ed

 A
ve

ra
ge

Speed

Success
Failure

0 1 2 3 4 5 6 7 8 9 10

Sequence Time [s]

-1

-0.5

0

0.5

1

N
or

m
ed

 A
ve

ra
ge

Frontal Acceleration
Success
Failure

0 1 2 3 4 5 6 7 8 9 10

Sequence Time [s]

-1

-0.5

0

0.5

1

N
or

m
ed

 A
ve

ra
ge

Lateral Acceleration
Success
Failure

0 1 2 3 4 5 6 7 8 9 10

Sequence Time [s]

-1

-0.5

0

0.5

1

N
or

m
ed

 A
ve

ra
ge

Angle

Success
Failure

0 1 2 3 4 5 6 7 8 9 10

Sequence Time [s]

-1

-0.5

0

0.5

1

N
or

m
ed

 A
ve

ra
ge

Angular Speed
Success
Failure

Figure 3.4 Visualization of each state variable over time. The average value of each state when approaching a

disengagement develops significantly differently than during undisrupted driving.

The visualization of the state data shows that there are clear differences between disengagement

and success sequences. This indicates that the application of a discriminative classifier is a promising

direction. Next, the failure prediction performance of the classifier trained with the state data

visualized in Figure 3.4 is presented.

3.2.3.2 Failure Prediction Performance

The failure prediction performance of the proposed state-based classifier is evaluated on 255 test

sequences ending in a disengagement and 255 test sequences of successful driving. First, the impact

of the sample length L and of the output filtering is investigated. Five different sample lengths of 1 s

to 5 s are tested, corresponding to 10 to 50 feature vectors per sample. After training the classifier

Cstate once for each sample length, the average error over time both for the unfiltered predictions

and the predictions after the moving average filter is computed. In Figure 3.5, the error plus the

standard deviation over time for each of the five sample lengths L is shown for both failure and

success sequences.

9 8 7 6 5 4 3 2 1 0
Time to Disengagement [s]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
ve

ra
ge

 E
rr

or

Failure Sequences

LSTM (1s samples)
LSTM (filtered)

9 8 7 6 5 4 3 2 1 0
Time to Disengagement [s]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
ve

ra
ge

 E
rr

or

Failure Sequences

LSTM (2s samples)
LSTM (filtered)

9 8 7 6 5 4 3 2 1 0
Time to Disengagement [s]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
ve

ra
ge

 E
rr

or

Failure Sequences

LSTM (3s samples)
LSTM (filtered)

9 8 7 6 5 4 3 2 1 0
Time to Disengagement [s]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
ve

ra
ge

 E
rr

or

Failure Sequences

LSTM (4s samples)
LSTM (filtered)

9 8 7 6 5 4 3 2 1 0
Time to Disengagement [s]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
ve

ra
ge

 E
rr

or

Failure Sequences

LSTM (5s samples)
LSTM (filtered)

1 2 3 4 5 6 7 8 9 10
Sequence Time [s]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
ve

ra
ge

 E
rr

or

Success Sequences

LSTM (1s samples)
LSTM (filtered)

1 2 3 4 5 6 7 8 9 10
Sequence Time [s]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
ve

ra
ge

 E
rr

or

Success Sequences

LSTM (2s samples)
LSTM (filtered)

1 2 3 4 5 6 7 8 9 10
Sequence Time [s]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
ve

ra
ge

 E
rr

or

Success Sequences

LSTM (3s samples)
LSTM (filtered)

1 2 3 4 5 6 7 8 9 10
Sequence Time [s]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
ve

ra
ge

 E
rr

or

Success Sequences

LSTM (4s samples)
LSTM (filtered)

1 2 3 4 5 6 7 8 9 10
Sequence Time [s]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
ve

ra
ge

 E
rr

or

Success Sequences

LSTM (5s samples)
LSTM (filtered)

Figure 3.5 Comparison of the failure prediction performance of the state-based LSTM classifier over time for

both failure and success sequences when trained with samples of length 1 s to 5 s. Adding the moving average

output filtering improves the accuracy and reduces the variance.

3.2 State-Based Black Box Failure Prediction

39

The error from using the unfiltered output of the state-based model is shown in blue, the filtered

version is shown in orange. The moving average filter noticeably smoothes the error. For each

sequence length L, the error decreases when a disengagement is approached.

Next, the performance is quantified by calculating the overall accuracy averaged over all time steps

and over both failure and success sequences. As a second metric, a Receiver Operating Characteristic

(ROC) curve analysis is performed, using the predicted failure probability Pstate,t as the score for each

sample. For a scalar comparison, the Area Under Curve (AUC) is computed, once for the unfiltered

and once for the filtered predictions. A comparison of the five sample lengths L and the effect of the

output filtering is shown in Table 3.2.

Sample Length Accuracy Accuracy (filtered) AUC AUC (filtered)
1 s 68.9 % (±0.28) 69.5 % (±0.12) 74.5 % 75.7 %

2 s 70.0 % (±0.23) 70.1 % (±0.10) 75.7 % 76.6 %

3 s 75.9 % (±0.23) 78.2 % (±0.08) 82.6 % 84.6 %

4 s 73.4 % (±0.21) 73.3 % (±0.09) 78.0 % 79.2 %

5 s 73.9 % (±0.19) 74.2 % (±0.06) 79.7 % 80.1 %

Table 3.2 Comparison of the accuracy and Area Under Curve (AUC) for samples of length 1 s to 5 s, with and

without output filtering. The best performance is achieved by using 3 s samples together with output filtering.

Output filtering increases the accuracy and AUC for all sample lengths and significantly lowers

the standard deviation. The average accuracy as well as the AUC is highest when samples of length

L � 30, meaning a duration of 3 s, are used. An accuracy of 78.2 % at anAUC of 82.6 % can be achieved

this way. In Figure 3.6, the entire ROC curves for all five sample lengths are shown. The sample

length of 3 s performs the best across the entire curve. For all further experiments, this sample length

is used.

0 0.2 0.4 0.6 0.8 1

False Positive Rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ru

e
P

os
iti

ve
 R

at
e

ROC Curve (filtered)

Random
Sample Length 1s
Sample Length 2s
Sample Length 3s
Sample Length 4s
Sample Length 5s

Figure 3.6 Receiver Operating Characteristic (ROC) curves of the state-based classifier trained with samples of

length 1 s to 5 s.

3 System-Level Failure Prediction

40

The ROC curve in Figure 3.6 allows to adjust the trade-off between True Positive Rate (TPR) and

False Positive Rate (FPR) by selecting different classification thresholds. In a safety-critical task such

as driving, false negatives are more dangerous than false positives. A higher TPR is desirable. For

using the state-based LSTM to make a discrete prediction, a threshold is required to decide at what

predicted failure probability Pstate,t the predicted class is set to Failure. To make the model more

sensitive to failures, a slightly reduced threshold of 0.45 is selected. At the overall accuracy of 78.2 %,

this leads to a TPR of 80.0 %.

Finally, the failure prediction performance over time is evaluated. The average accuracy for each

time step of both failure and success test sequences is plotted in Figure 3.7. Since a sample length

of 3 s is used, the first prediction is made after the first three seconds of the sequence have been

observed. The earliest failure prediction is thus made seven seconds in advance of a disengagement.

Figure 3.7 shows that the performance increases during the last three seconds of a failure sequence.

This indicates that the car state starts changing more significantly in that time, making it easier for

the model to discriminate between successful driving and disengagement sequences.

7 6 5 4 3 2 1 0
Time to Disengagement [s]

0

0.25

0.5

0.75

1

A
ve

ra
ge

 A
cc

ur
ac

y

Failure Sequences

Random
State LSTM

3 4 5 6 7 8 9 10
Sequence Time [s]

0

0.25

0.5

0.75

1

A
ve

ra
ge

 A
cc

ur
ac

y
Success Sequences

Random
State LSTM

Figure 3.7 Average failure prediction performance by the state-based classifier over time for both failure

sequences and success sequences. The average accuracy noticeably increases during the last three seconds

before a disengagement.

3.2.3.3 Ablation Study

Using sequences of the selected state vectors allows predicting failures seven seconds in advance

at an accuracy of over 75 %. To verify that each state variable used in the training is necessary, an

ablation study is performed next. The five state variables of speed v, angle θ, frontal acceleration
ax , lateral acceleration ay and angular speed ω are removed from the feature vectors one at a time.

Then, the LSTM-based classifier is retrained using the same approach as before, but with each 3 s

sample consisting of sequences of only four state variables. For each state, the average accuracy loss

compared to using all five states is given in Table 3.3.

The accuracy of the model decreases by at least 2.7 % when removing one state, demonstrating that

all five states are needed to achieve the best results. Removing the angular speed ω leads to the largest

accuracy drop of 4.3 %. While the visualization of ω in Figure 3.4 appeared noisier than the other

state variables, this results suggests that the fast variations in the angular velocity are an important

part of the patterns that the LSTM-based classifier learns to detect.

3.2 State-Based Black Box Failure Prediction

41

Removed State Accuracy Loss
Speed v 4.1 %

Frontal acceleration ax 2.7 %

Lateral acceleration ay 3.7 %

Angle θ 4.1 %

Angular speed ω 4.3 %

Table 3.3 Ablation study for the five state variables used as input for the state-based classifier. One state is

removed at a time, the model is retrained and the accuracy loss caused by removing each state is calculated.

All five selected state variables lead to a significant drop in performance when removed.

3.2.3.4 Failure Cases

Finally, the limitations of the proposed model are investigated by analyzing the failure cases of the

system. While a TPR of 80 % is a promising first result, the LSTM-based classifier still misses 20 % of

all disengagements. To obtain some intuition about these failure cases, the speed of the car for both

correct and incorrect predictions as well as the steering angle is plotted for both success and failure

sequences in Figure 3.8.

3 4 5 6 7 8 9 10
Sequence Time [s]

0.1

0.15

0.2

0.25

0.3

0.35

0.4

A
ve

ra
ge

 S
pe

ed

Success Sequences

Correct Prediction
Incorrect Prediction

7 6 5 4 3 2 1 0
Time to Disengagement [s]

0.1

0.15

0.2

0.25

0.3

0.35

0.4

A
ve

ra
ge

 S
pe

ed

Failure Sequences

Correct Prediction
Incorrect Prediction

3 4 5 6 7 8 9 10
Sequence Time [s]

-0.1

-0.05

0

0.05

0.1

A
ve

ra
ge

 A
ng

le

Success Sequences

Correct Prediction
Incorrect Prediction

7 6 5 4 3 2 1 0
Time to Disengagement [s]

-0.1

-0.05

0

0.05

0.1

A
ve

ra
ge

 A
ng

le

Failure Sequences

Correct Prediction
Incorrect Prediction

Figure 3.8 Visualization of the failure cases of the state-based LSTM classifier. The average angle and speed of

incorrect predictions is compared to the respective angle and speed of correct predictions for both success and

failure sequences.

In success sequences, the average speed for correct predictions is almost twice as large as for

incorrect predictions. Conversely, the speed of incorrect predictions in failure sequences is over 50 %

larger than for correct predictions. Considering that the average speed during failure sequences is

lower than during success sequences as shown in Figure 3.4, these observations suggest that themodel

learned to rely on the fact that lower speeds indicate failures. Failure samples with an unusually high

speed as well as success samples with an unusually low speed are therefore the most common error

sources of the state-based LSTM classifier. While the speed of the car is an important input variable

as shown in Table 3.3, these findings indicate that additional information about the scene is required.

When plotting the average steering angle of both correct and incorrect predictions on the right of

Figure 3.8, it can be seen that the average angle of correct predictions is almost zero. This holds both

for success and for failure sequences. Interestingly, the car mostly performs left turns during any

kind of incorrect prediction. This indicates that left turns are among the most challenging events to

classify correctly by the failure prediction model. During left turns, the state of the car might not be

informative enough anymore to detect a failure. Similar to sequences with unusual speeds, a different

source of information is required to correctly assess those situations. In the next section, images are

therefore explored as another, much denser input modality to capture the environment.

3 System-Level Failure Prediction

42

3.3 Image-Based Introspective Failure Prediction

Images are a rich source of information about the environment of the vehicle. Modern self-driving

systems are equippedwith amultitude of cameras to monitor the surroundings. Images are therefore

readily available as another potential input for a failure predictionmodel. Considering the limitations

of the state-based approach outlined in the previous section, an image-based introspective failure

prediction concept is designed next. Same as with the state-based approach, the first step is to

generate a suitable data set and the second step is to design the classification model.

3.3.1 Data Set Generation

Since the same introspective concept as before is used, the same approach of extracting disengagement

sequences from months of recordings by the BMW Group can be employed. Now, the RGB images

recorded by the central front camera of the vehicles are used as data. In contrast to state data, video

sequences of RGB images take up considerable storage and aremuch slower to process. Since a failure

prediction rate of 10 Hz is the objective, a method to efficiently store the temporal information of the

video sequences is required.

In the literature, a range of approaches for learning from video sequences in the context of au-

tonomous driving is available [167, 111, 16, 15]. Fridman et al. [15] trained an end-to-end steering

angle prediction network with video sequences. Instead of training directly on the raw images, the

authors efficiently captured temporal patterns in images by creating difference images of gray-scale

versions of the input images. To obtain the temporal development of the differences between two

subsequent images, they create three difference images at three different time points and merge these

three difference images into one three-channel dynamic difference image. This way, the information

about the changes between up to six images is stored in one three-channel image. In this work, a

similar approach is used.

Same as before, sequences of 10 seconds are extracted from the raw driving records. Half the

sequences end in disengagements, the other half is sampled from successful driving to obtain a

balanced data set. The 10 second sequences are again split up into shorter samples. With the state-

based approach, a sample length of 3 s led to the best results. The same sample length is used for

the image-based approach. At a sensor frequency of 10 Hz, 30 images would be available per failure

prediction. Instead of using the images directly, they are processed as follows.

For each new image It recorded by the camera, three past images from 1 s, 2 s, and 3 s before are

considered as well. Thus, only the images It , It−1 s, It−2 s, and It−3 s are used from each sample. While

they are recorded in color, they are converted to grayscale to further reduce dimensionality of the

input data. Then, the temporal difference image Id ,t of each consecutive pair of images is calculated

as

Id ,t � It − It−1 s. (3.5)

By calculating three difference images Id ,t at time intervals of 1 s, the spatio-temporal changes across

the three seconds of each sample are obtained. Combining the grayscale difference images results in

the three-channel dynamic difference image Idd,t at time t, defined as

Idd,t � {It − It−1 s , It−1 s − It−2 s , It−2 s − It−3 s}. (3.6)

Besides creating a compact representation of three seconds of images, this processing step also

effectively normalizes the images. In driving, quickly moving objects such as pedestrians or cars on

the road are especially relevant. Difference images can therefore be more useful than regular RGB

images since such objects are highlighted. Less relevant areas such as the unchanging road or horizon

are mostly set to zero. The intensity changes between the three difference images capture changing

speeds of the objects. A visualization of how a dynamic difference image is obtained from a sequence

of four images, captured across three seconds of driving, is shown in Figure 3.9.

3.3 Image-Based Introspective Failure Prediction

43

It−3 s It−2 s It−1 s It

It−2 s − It−3 s It−1 s − It−2 s It − It−1 s
Idd,t

Figure 3.9 Visualization of the creation of a dynamic difference image Idd,t from a sequence of four images It ,

It−1 s, It−2 s, and It−3 s. The image It is taken at the moment of a disengagement. The relevant features such as

the car cutting in from the right and the approaching intersection, indicated by the traffic light, are highlighted

in the difference images.

The current image It in Figure 3.9was taken at themoment of thedisengagement from this particular

failure sequence. At the intersection, a car cuts into the path of the ego vehicle from the right at the

last second. When looking at the difference images leading up to this critical maneuver of the car

coming from the right, it can be seen that the most relevant features are captured and highlighted.

The quickly approaching intersection can be detected in the first difference image via the mostly

white traffic lights over the road at the horizon. In the second difference image, the car cutting in

from the right becomes visible as a light gray area on the road. In the third and last difference image,

the car blocking the road is clearly visible. The fact that the intersection has been entered is captured

by the traffic light still being part of the difference image, this time caused by its disappearance from

the last frame. Combining the three images into the dynamic difference image Idd,t yields a compact

representation where the different time steps are coded by the respective color channel in which they

are stored.

The processing into dynamic difference images is applied to every 3 s sample. The same NF � 2549

disengagement sequences as before are obtained. An equal number NS � NF of success sequences

is randomly sampled. To allow a direct comparison, the same success sequences are used that were

sampled to train the state-based classifier. Using the sample generation process shown in Figure 3.2,

each failure sequence is split into 70 dynamic difference images Idd,nF ,i labeled as Failure and each

success sequence is split into 70dynamic difference images Idd,ns , j labeled as Success. The image-based

failure data set Dimg can then be described as

Dimg � {Idd,nF ,i , Idd,nS , j}, i , j ∈ {1, 70}, nF,S ∈ {1,NF}. (3.7)

As a final processing step, each image is cropped into a square and then scaled to a resolution of

224 × 224. This is done since image classification networks pretrained on ImageNet [41] typically

are trained on this input size. The data set Dimg is split into the same 80 % for training, 10 % for

validation and 10 % for testing as the state-based data set Dstate. Next, the model for classifying each

image-based sample as Failure or Success is designed.

3 System-Level Failure Prediction

44

3.3.2 CNN-Based Classification Approach

Given the image-based failure data set Dimg, a classifier Cimg is required that can extract features

from the processed images and classify them as either Failure or Success. This is again a binary

classification task, with the score of the Failure class being used as the failure probability Pimg,t . The

failure probability Pimg,t is assigned to a given dynamic difference image Idd,t by the classifier Cimg:

Pimg,t � Cimg(Idd,t), Pimg,t ∈ [0, 1], Idd,t ∈ �224×224×3
(3.8)

Due to the preprocessing of the video data, the information from each 3 s sample is stored as a single

three-channel image. Since the dynamic difference images already contain temporal features, the

classifier Cimg only needs to extract spatial features to then perform the classification. For classifying

images, Convolutional Neural Networks (CNNs) are a powerful feature extraction method. CNN-

based architectures for image classification have received significant attention over the last decade,

with awide selection of state-of-the-art image classificationmodels being available [40, 43]. By posing

image-based introspective failure prediction as a binary image classification task, these state-of-the-

art architectures can be exploited to perform the failure prediction task. The driving scenes from

the image-based data set Dimg contain natural objects in natural environments. This allows to make

direct use of architectures pretrained on ImageNet [41], which contains over a million natural images

from 1000 classes. Since low-level features such as edges, corners, and simple shapes are present

in most natural images, the early layers of CNNs trained on ImageNet are useful general feature

extractors. For using suchmodels on new data sets, it can be sufficient to finetune only the later layers

to the desired domain. Since disengagements are rare events and it is time-consuming to record large

amounts of them, failure data sets are inherently limited in size. Being able to use pretrained models

is therefore especially relevant for the task of system-level failure prediction.

There are several options regardingwhich specific classificationarchitecture touse. Daftry et al. [111],

who first proposed the concept of introspection to predict crashes of autonomous drones, used the

AlexNet architecture [40] to classify input images as failures. The classification performance ofAlexNet
has since been improved by a range of newer architectures, such as residual networks [43]. In this

thesis, AlexNet as well as ResNet18 and ResNet50 are used and compared. As a final architecture op-

tion,MobileNetV2 [44] is selected due to its focus on computational efficiency. In the case of restricted

hardware capabilities of a mobile system such as an autonomous vehicle, a compact architecture can

be a crucial property.

All four architectures are pretrained on the ImageNet data set. Then, they are finetuned with

the dynamic difference images from the training set of the image-based failure data set Dim g . The

last layer is changed from predicting one of 1000 classes to a binary classification layer. Due to the

relatively small size of Dim g and the high dimensionality of image data, overfitting is a potential issue.

For all models, only the last layers are trained to avoid overfitting to the training set. The number of

trainable layers is selected empirically using the validation set. If more failure data becomes available,

those numbers could be further increased. The architectures along with the numbers of trainable

layers that are used in this dissertation are summarized in Table 3.4.

Architecture Layers Trainable Layers
MobileNetV2 53 20

AlexNet 8 5

ResNet18 18 10

ResNet50 50 10

Table 3.4 Summary of the classification architectures used for the image-based classifier Cimg. For each

architecture, only the final layers are trained to avoid overfitting.

3.3 Image-Based Introspective Failure Prediction

45

The optimal number of trainable layers varies significantly among the models due to their different

structures, ranging from more than half the layers for AlexNet to just 20 % of the layers for ResNet50.
This can be explained by AlexNet containing three FC layers at the end, whereas ResNet50 contains

only a single FC layer. For finetuning a relevant amount of convolutional layers, more than half the

layers of AlexNet need to be made trainable. This means that significantly more parameters, both in

absolute and relative terms, need to be retrained when using AlexNet to implement the classifier Cimg

compared to using ResNet50.
For training the architectures, the Adam optimizer [168] is used. The binary cross entropy loss is

chosen as a loss function and the learning rate is empirically set to 0.0005. For all models, the decrease

of the validation loss is monitored and used as a stopping criterion in case it starts increasing again.

The resulting training durations range from 10 epochs forMobileNetV2 to 20 epochs for ResNet50. As

a standard technique to further avoid overfitting, data augmentation is applied to all training images.

Random rotations of up to 10 degrees, random translations of up to 10 pixels and random cropping

by up to 30 % of the image width followed by rescaling to the original resolution are used during

training to make the models more robust.

Finally, the predicted failure probabilities Pimg,t are filtered with a moving average filter. The

output filtering is applied for the same reasons presented in the previous section when designing

the state-based failure prediction approach. Cimg predicts new failure probabilities at 10 Hz and uses

information from the previous three seconds, same as the state-based classifier Cstate. Therefore, the

same output filter with a horizon H � 30 is applied. The filtered failure prediction Pimg,t from Cimg

given a dynamic difference image Idd,t is therefore calculated as

Pimg,t �
1

min(t ,H)

min(t ,H)∑
k�1

P
img,t+1−k . (3.9)

Same as before, the number of available observations in the 10 s sequences is below H while t < H.

During the first three seconds of each sequence, the average is therefore computed using only the last

t predictions.

3.3.3 Results

In this section, the results of the experiments designed to evaluate the proposed image-based failure

prediction approach are presented. First, two state-of-the-art reference approaches are introduced to

compare to the proposed introspectivemethod. Then, the attention of the investigated architectures is

visualizedusing theirClassActivationMaps (CAMs). The failure predictionperformance is evaluated

using an ROC analysis and by analyzing the prediction accuracy over time. Finally, failure cases of

the image-based classifier are discussed.

3.3.3.1 Reference Approaches

For the state-based approach, no comparable referencemethodswere available in the literature. While

image sequences have been used for failure prediction in the literature before [15, 16, 167, 111], to the

best of our knowledge, there is no existing work that explicitly predicts the disengagements of a fully

autonomous car outside of simulation. Therefore, the proposed image-based method is compared to

two works that use substitutes of real self-driving vehicles. Fridman et al. [15] used video sequences

to predict disengagements of a Level 2 car and Michelmore et al. [16] used video data to predict

crashes of an autonomous car in a simulation. Both reference approaches are explained inmore detail

next to allow a better understanding of the comparison to the proposed approach.

The method proposed by Fridman et al. [15] will be referred to as Arguing Machines. They recorded

disengagements of a Tesla driving in autopilot on highways. Additionally, they recorded successful

driving data of the Tesla to train a state-of-the-art end-to-end steering angle prediction network [34].

The normalized absolute difference between the steering angle generated by the Tesla and the steering

3 System-Level Failure Prediction

46

angle predicted by their end-to-end network is used as a failure probability. To implement their

approach, both the data set Dim g and Dstate are needed. The success sequences from Dim g are used

as training data for the same end-to-end steering angle prediction network. As target labels, the

corresponding steering angles θ from Dstate are used. Fridman et al. undersampled driving data

where the angle is close to zero to avoid the steering angle predictor from overfitting to that value.

The same approach is applied to the driving data used in this work. The end-to-end network trained

using the corresponding data from Dim g and Dstate predicts the steering angle of the validation set

at a Mean Average Error (MAE) of 1.2. The model trained by Fridman et al. achieved a comparable

MAE of 1.1, having been trained on a significantly larger training set.

The second reference approach follows the work of Michelmore et al. [16], who trained an end-to-

end steering angle predictor in a driving simulator using the same architecture as Fridman et al. [15].

Then, they estimated the uncertainty of their end-to-end network and use that estimate as a failure

probability, allowing them to predict crashes five seconds in advance. They estimated the uncertainty

by computing the variance ofmultipleMonte Carlo (MC) dropout samples [10], thus their approach is

referred to as Predictive Variance in the following. In this work, Deep Ensembles [12] are used instead

of MC dropout since they have shown superior performance for uncertainty estimation. They also

allow estimating uncertainty in real-time, since only five forward passes are required as opposed to

10 or more for MC dropout. Using the training and validation sets of Dim g and Dstate , the end-to-end

network is trained five times with different initializations to obtain the Deep Ensemble. All five

models achieve an MAE of around 1.2. For each new input image, five steering angles are predicted

and the variance among them is used as the failure probability.

3.3.3.2 Feature Visualization

First, the spatial focus of the trained image classification networks is visualized to allow some insights

intowhat they learned. ClassActivationMaps (CAMs) [102] are a straightforwardmethod to visualize

which regions of an input image had the largest influence on the prediction of each model. They are

calculated by multiplying the last spatial feature map in each network architecture with the weights

of the connection between the last convolutional layer and the neuron of the predicted class in the

last FC layer. This way, each high-level spatial feature is assigned a weight that describes how much

that feature activated the neuron of the predicted class. The resulting spatial weight map can then

be visualized over the input image as a heatmap to show which regions led to the model making its

current decision.

In case there is more than one FC layer after the last convolutional layer, gradient-weighted Class

Activation Maps (grad-CAMs) [103] can be used. They are obtained by calculating the gradient

through the last FC layers and weighting the last spatial feature map with the gradients from the

neuron of the predicted class. Since AlexNet contains three FC layers at the end, grad-CAMs are used

for this architecture.

The CAMs allow to visualize which regions of an image led the introspective failure prediction

models to predict a failure or a success. Since machine learningmodels are largely black boxes, such a

visualization is a useful step for obtaining some intuitive understanding of how the models work. In

Figure 3.10, two example images from success sequences and two examples from failure sequences are

shown. All four architectures predicted the corresponding classes correctly. The dynamic difference

image that the models received as input is shown as well. Finally, the CAM of each architecture is

shown as a heatmap on top of the input image.

The focus of AlexNet is much more scattered than the other architectures, most notably for the

images from success sequences. For the failure images, areas like the crane, traffic light and cars

in front of the vehicle are highlighted, but seemingly spurious areas also have an impact on the

classification. This can be explained by grad-CAMs being affected by the gradient passing through

several layers before the weights of the spatial feature map are computed. While the predictions of

this architecture are correct for these examples, this lack of intuitive interpretability is a downside. It

is challenging to evaluate if sensible regions have been used for the failure predictions or not.

3.3 Image-Based Introspective Failure Prediction

47

It Idd,t MobileNetV2 AlexNet ResNet18 ResNet50

S
u
c
c
e
s
s

F
a
i
l
u
r
e

Figure 3.10 Visualization of the focus of each investigated architecture by plotting the Class Activation Maps

(CAMs) as heatmaps over sample test images from both failure and success sequences. TheResNet50model has

learned to detect themost distinct and focused regions tomake its predictions (adopted from [25] © 2020 IEEE).

While the CAMs of MobileNetV2 are also not precisely focused on distinct regions, they do show

that critical objects have been correctly detected. In the top row, both the traffic light and the car

that is still far away from the ego vehicle are used to classify this scene as Success. The empty road

as well as the sky devoid of any traffic lights also explains the correct prediction of the second row.

Regarding the correctly predicted failures in the third and fourth row, most of the cars in front of the

vehicle are used for this classification as well as the crane indicating a construction site.

The observations for the two ResNet variants are largely similar to the ones made forMobileNetV2.
The main difference is that the focus of ResNet18 is more spatially restricted. The CAMs of ResNet50
are even more locally constrained, with one distinct region being used to classify each image. In the

success images, the car in front and the empty road are used by both ResNet models to assess the

scene. For the bottom row, both models focus on the complex traffic scenario with a car cutting in

from the right. For the third row, the ResNet18 model puts more emphasis on the crane. Only the

ResNet50 model focuses entirely on the traffic light and car in front of the vehicle.

Having gained first insights into how the models operate, the performance of the four models is

evaluated quantitatively next.

3.3.3.3 Failure Prediction Performance

The failure prediction performance is evaluated on the test set consisting of 510 sequences. First,

the four implementations of the proposed image-based approach are compared to the two reference

approaches Arguing Machines [15] and Predictive Variance [16] in an ROC curve analysis. The state-

based model Cstate from the previous section, referred to as State LSTM for short, is also included in

the analysis. This allows to evaluate the improvements achieved by using images instead of state data

sequences. Figure 3.11 shows the ROC curves and the corresponding AUC of all compared models.

3 System-Level Failure Prediction

48

0 0.2 0.4 0.6 0.8 1
False Positive Rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
T

ru
e

P
os

iti
ve

 R
at

e
ROC Curve

Random
Arguing Machines (AUC: 0.578)
Predictive Variance (0.635)
State LSTM (AUC: 0.846)
MobileNetV2 (AUC: 0.887)
AlexNet (AUC: 0.905)
ResNet18 (AUC: 0.906)
ResNet50 (AUC: 0.917)

Figure 3.11 Comparison of the ROC curves of the two reference approaches of Arguing Machines [15], Predictive
Variance [16], the state-based approach State LSTM from Section 3.2, and the four architectures used to imple-

ment the proposed image-based approach. Both the state-based and the image-based introspective models

significantly outperform the state of the art by at least 33 %.

The proposed image-based failure prediction concept significantly outperforms both of the two

state-of-the-art reference approaches. The lowest performing architectures, MobileNetV2, still has an
AUC that is 53 % larger than the AUC of Arguing Machines and 39 % larger than the AUC of Predictive
Variance. The large differences can be explained by the significant conceptual differences between

the proposed introspective approach and the state of the art. Arguing Machines relies on differences

between two models without any guarantee or indication that the differences will be informative

about failures. Predictive Variance assumes a correlation between model uncertainty and failures,

which performs better than Arguing Machines but still lacks the explicit failure information that the

introspective models were trained with. It should be noted that the two reference approaches do not

require failure data and are therefore more straightforward to apply to any given system. The large

performance differences to the system-specific failure prediction approach demonstrate the benefit of

the additional work of obtaining recorded failures of the given driving system.

The state-based approach from the previous section also outperforms the image-based reference

approaches by at least 33 %. This result also indicates that exploiting explicit failure data instead of

using generic uncertainty estimation techniques is a useful approach for failure prediction.

Among the proposed concepts, the image-based models outperform the state-based approach by

4 % to 8 %. The significantly higher-dimensional input of images therefore allows the model to better

distinguish between failures and successes thanwhen given only the low-dimensional state data. The

performance of the four image-based classification architectures is similar, with the most complex

ResNet50model outperforming the more compactMobileNetV2 architecture by 3 %. At AUCs of 0.905

and 0.906, AlexNet and ResNet18 exhibit almost the same performances.

3.3 Image-Based Introspective Failure Prediction

49

In addition to the AUC values, Table 3.5 also summarizes the average accuracy and standard

deviation, the number of parameters, and the average inference time per prediction for all compared

methods.

Model Accuracy AUC Parameters Inference Time
Arguing Machines 56.6 % (±0.15) 57.8 % 0.37 × 10

6
18.2 ms

Predictive Variance 63.1 % (±0.09) 63.5 % 1.84 × 10
6

81.4 ms

State LSTM 78.2 % (±0.08) 84.6 % 0.02 × 10
6

3.8 ms

MobileNetV2 81.0 % (±0.07) 88.7 % 3.5 × 10
6

59.9 ms

AlexNet 83.5 % (±0.06) 90.5 % 61.0 × 10
6

56.2 ms

ResNet18 82.3 % (±0.06) 90.6 % 11.7 × 10
6

53.9 ms

ResNet50 83.6 % (±0.05) 91.7 % 25.6 × 10
6

59.5 ms

Table 3.5 Comparison of the average accuracy and standard deviation, the AUC, the number of parameters,

and the average inference time per prediction of all investigated failure prediction methods.

Regarding the average accuracy, the state-based approach outperforms the state of the art by at

least 23 %, while the image-based models outperform the reference approaches by up to 32 %. The

standard deviation averaged over all time points of the test sequences is highest for Arguing Machines
at 0.15, while the best-performing ResNet50 has the lowest spread at 0.05. For all models, a higher

accuracy also means a lower standard deviation and a higher AUC.

The main limitation of the proposed image-based approach is the computational complexity. All

architectures are more than three times as slow as Arguing Machines and around 15 times slower

than the State LSTM. The Deep-Ensemble-based approach Predictive Variance is the most expensive

approach, since it requires five forward passes to obtain an output distribution to calculate a variance

with. All compared methods require less than 100 ms and are therefore able to generate failure

predictions in real time at 10 Hz.

Finally, the number of parameters is another relevant metric, describing how many parameters

need to be updated during training and how much disk space is required for storing and loading

the model. The State LSTM has the fewest parameters, demonstrating the efficiency of operating on

low-dimensional state data only. At around 3.5 million parameters,MobileNetV2 is the most compact

image-based introspectivemodel. At around 61 million parameters,AlexNet is the largest model since

it contains three FC layers at the end, which can require significantly more parameters to store than

convolutional layers. ResNet50 outperforms AlexNet both in accuracy and in AUC, despite having

only around 25 million parameters. In summary, the ResNet50-based implementation of the image-

based approach shows the most useful trade-off between complexity and accuracy. For all further

experiments, we will therefore only use the ResNet50 model as the implementation of Cimg.

Besides the overall performance, the prediction capabilities over time are of interest as well. In

Figure 3.12, we therefore show the average accuracy of each time point in both failure and success

sequences for the best-performing reference approach of Predictive Variance, the state-based model

State LSTM, and the best-performing image-based model ResNet50. The reference approach has an

accuracy of 50 % seven seconds before a disengagement, indicating that this early in advance, its

predictions are effectively random. While the performance of Predictive Variance increases when

the disengagement approaches, both the State LSTM and the ResNet50 significantly outperform it

across the entire sequence duration. Among the introspective models, the image-based approach

consistently outperforms the state-based approach, most notably when the disengagement is still

more than three seconds away. Seven seconds in advance, the ResNet50 still correctly predicts over

82 % of all disengagements.

3 System-Level Failure Prediction

50

7 6 5 4 3 2 1 0
Time to Disengagement [s]

0

0.25

0.5

0.75

1

A
ve

ra
ge

 A
cc

ur
ac

y

Failure Sequences

Random
Predictive Variance
State LSTM
ResNet50

3 4 5 6 7 8 9 10
Sequence Time [s]

0

0.25

0.5

0.75

1

A
ve

ra
ge

 A
cc

ur
ac

y

Success Sequences

Random
Predictive Variance
State LSTM
ResNet50

Figure 3.12Average accuracy over time of the best-performing reference approach Predictive Variance compared

to the proposed state-based and image-based classifiers.

3.3.3.4 Failure Cases

While using image sequences as input achieved a better failure prediction performance than the state-

based approach, the ResNet50 model still has an average error rate of 16.4 %. To obtain an intuitive

understanding of what those failure cases have in common, the average speed and angle of all failure

cases from both success and failure sequences are shown in Figure 3.13.

3 4 5 6 7 8 9 10
Sequence Time [s]

0.1

0.15

0.2

0.25

0.3

0.35

0.4

A
ve

ra
ge

 S
pe

ed

Success Sequences

Correct Prediction
Incorrect Prediction

7 6 5 4 3 2 1 0
Time to Disengagement [s]

0.1

0.15

0.2

0.25

0.3

0.35

0.4

A
ve

ra
ge

 S
pe

ed

Failure Sequences

Correct Prediction
Incorrect Prediction

3 4 5 6 7 8 9 10
Sequence Time [s]

-0.1

-0.05

0

0.05

0.1

A
ve

ra
ge

 A
ng

le

Success Sequences

Correct Prediction
Incorrect Prediction

7 6 5 4 3 2 1 0
Time to Disengagement [s]

-0.1

-0.05

0

0.05

0.1

A
ve

ra
ge

 A
ng

le

Failure Sequences

Correct Prediction
Incorrect Prediction

Figure 3.13 Visualization of the average speed and the average angle of failure cases of the ResNet50.

The average speed during correct predictions is almost constant in both success and failure se-

quences, with the speed during correctly predicted failures being much lower than during correctly

predicted successes. A possible explanation is that the ResNet50 has learned the most common de-

gree of differences between subsequent images for both success and failure sequences. If a difference

image shows smaller or larger differences due to a lower or higher speed, the model is more likely to

make an incorrect prediction.

Regarding the angle, correctly predicted failures exhibit an average angle of almost zero. The aver-

age angle of incorrectly classified successes also shows an average angle of close to zero. Meanwhile,

larger angle variations that lead to horizontal changes in the difference image tend to be classified

as Success. This observation is in contrast to the failure cases of the state-based approach, where the

model predicted the class Successmostly for sequences with a small angle. Such differences between

the state-based and the image-based approach suggest that combining different input modalities

could be a promising direction for mitigating the failure cases of the individual approaches.

3.4 Trajectory-Based Introspective Failure Prediction

51

3.4 Trajectory-Based Introspective Failure Prediction

In this section, we propose a third introspective failure prediction method for system-level failures.

So far, the sensory input and the state of the car have been used as training data. In this section,

the planned trajectories generated by the system itself are used to infer impending failures. This

approach still treats the car as a black box and only requires its output.

Next, we discuss how the trajectories as planned by the car can be used for failure prediction and

how to generate a suitable data set for failure prediction. Then, an LSTM-based model similar to the

state-based approach is developed, which is then trained with the generated data set. Finally, the

failure prediction performance of the trajectory-based approach is evaluated thoroughly.

3.4.1 Concept

As discussed in Section 3.1, any recorded driving data from disengagements can be used as input to

train an introspective model. The state-based approach from Section 3.2 used state sequences, which

correspond to the driven trajectory of the car. Now, we use the planned trajectory calculated by the

vehicle at each time step instead. While the state data of the car reflects its current behavior, the

planned trajectories give insights into the planned future behavior of the car. For the task of early

failure prediction, the planned future behavior by the vehicle can therefore be a valuable additional

source of information. Changes in the planned trajectory can take seconds until they manifest

themselves in a changed physical state of the system. An obstacle or challenging situation that is still

seconds away can already lead to changes in the planned trajectories, however. A simple toy example

of such a scenario is shown in Figure 3.14.

t t+1 t+2 t+3

Figure 3.14 Exemplary visualization of the potential of using planned trajectories to predict failures early on.

Between the time t and t + 3, the car drives a straight line, but the planned trajectories already contain large

disagreements regarding the future behavior.

Figure 3.14 shows a car driving towards an obstacle that the car is not sure how to handle. When

faced with such a challenging scenario, a system can exhibit its uncertainty in the planned trajectory

while the actual trajectory is not yet affected. In Figure 3.14, the car plans four different evasion

maneuvers at the time steps t to t + 3. During the same time period, its actual trajectory is still a

straight line. The disagreement in the sequence of planned trajectories can therefore be a useful early

indicator of impending challenges. Previous works have used the disagreement between different

models [135, 15] or between multiple predictions sampled from the same model [10] for uncertainty

estimation before. Here, we propose to use the disagreement of themodel with itself over time. While

an impending challenging situation is not guaranteed to lead to a system-level failure, our hypothesis

is that the disagreement over time in a trajectory sequence is correlated to such failures. Next, the

generation of a suitable data set consisting of such trajectory sequences is presented.

3 System-Level Failure Prediction

52

3.4.2 Data Set Generation

In the driving data provided for this work, each planned trajectory consists of the next 30 points to

be driven in the next three seconds. The points are time-fixed, meaning each point is planned to

be reached 100 ms after the previous one. Trajectories are planned at 10 Hz, which is equal to the

sampling frequency used in the previous sections for state and image data. Same as before, sequences

of a duration of 10 s are used. From the provided driving records, all disengagement sequences are

extracted, resulting in NF failure sequences. The same number NS � NF of successful sequences is

sampled to obtain a balanced data set. At a frequency of 10 Hz, each trajectory sequence Sn therefore

contains 100 planned trajectories. Each planned trajectory Tn
t of the sequence Sn consists of 30 points

pi . The trajectories Tn
t and the trajectory sequences Sn can be described as

Tn
t � [p1 , p2 , ..., p30], pi ∈ �2 , t ∈ [1, 100], (3.10)

Sn � {Tn
1
, Tn

2
, ..., Tn

100
}. (3.11)

Same as in the previous sections, the 10 second sequences Sn are split up into shorter overlapping

samples straj consisting of L consecutive planned trajectories. We again use a sample length L � 30,

creating 71 samples from each sequence. All NF trajectory sequences ending in disengagements

and all NS trajectory sequences from undisrupted automated driving are then combined into the

trajectory-based data set Dtraj. Each trajectory from a sequence ending in a disengagement is labeled

as Failure and each trajectory from a successful sequence is labeled as Success. The resulting data set

Dtraj is thus given as

Dtraj � {strajnF ,i
, strajnS , j

}, i , j ∈ {1, 100 − L + 1}, nF,S ∈ {1,NF}. (3.12)

The driving data used to generate Dtraj is not completely identical to the driving data used for the

state-based and the image-based approach due to the planned trajectories not being available in all

initial recordings. To obtain a data set of comparable size to Dstate and Dimg, an additional month of

driving records is therefore used for the trajectory-based approach. This way, a similar amount of

2624 unique disengagements can be extracted from the raw data. In total, the data set Dtraj contains

over 370 000 labeled samples of a duration of three seconds. The contents of the data set Dtraj are

summarized in Table 3.6.

NF 2624

Sampled NS 2624

Sequence length 10 s

Planning frequency 10 Hz

Trajectory content Next 30 points

Table 3.6 Contents of the trajectory-based data set Dtraj.

Since the trajectories are recorded in world coordinates, they need to be normalized before being

used to train machine learning models. We normalize the orientation of the 30 trajectories contained

in each sample by using the driving direction of the car in the last trajectory as a reference line.

The angle between the reference line and the x axis in Cartesian coordinates is calculated and each

trajectory is rotated by that angle. This way, the direction of the last trajectory in each sample is always

the same and the differences of the rest of the trajectory sequence are always in reference to the same

line. This normalization step prevents a model from overfitting to whether the car was driving in a

specific global direction such as North or West. As before, the data set Dtraj is split into three subsets.

80 % are used for training, 10 % are used or validation and 10 % are reserved for testing.

3.4 Trajectory-Based Introspective Failure Prediction

53

3.4.3 Model Design

Next, a classification model Ctraj is designed to predict failures based on the sequences of planned

trajectories. Given an input sample strajt consisting of L consecutive trajectories containing 30 planned

points pi ∈ �2 , i ∈ {1, 30}, the model Ctraj needs to assigns a failure probability Ptraj,t to that sample

as follows:

Ptraj,t � Ctraj(strajt), Ptraj,t ∈ [0, 1], strajt ∈ �
2×30×L

(3.13)

Each trajectory consists of 60 values and is therefore more complex than the state vectors consisting

of five values each. Compared to images, both state and trajectory data can be considered to be

low-dimensional input. The task of learning to extract temporal patterns from sequences of low-

dimensional data is similar. For the classifier Ctraj, we therefore design an architecture that is similar

to the LSTM-based classifier Cstate. Preliminary results on the validation set showed that a deeper

architecture with more neurons compared to Cstate achieves the best classification performance. The

architecture of Ctraj therefore consists of two LSTM layers with 100 neurons each, followed by four

FC layers. The first two FC layers also have 100 neurons each, followed by one layer with 50 and a

final layer with 2 nodes. This triangle structure of reducing the size of subsequent FC layers allows

to reduce computational complexity without affecting the accuracy of the model. At the end, a

softmax layer assigns the two classes Failure and Success their respective class probabilities. We use

the probability of the class Failure as the final output Ptraj.

strajt � [Tt−L+1 , Tt−L+2 , ..., Tt]

L
S
T
M

l
a
y
e
r
1

L
S
T
M

l
a
y
e
r
2

F
C

l
a
y
e
r
1

F
C

l
a
y
e
r
2

F
C

l
a
y
e
r
3

F
C
l
a
y
e
r
4

S
o
f
t
m
a
x

Ptraj,t ∈ {0, 1}

Figure 3.15 Overview of the architecture of the trajectory-based classifier Ctraj that assigns a failure probability

Ptraj,t to an input sample strajt consisting of a sequence of planned trajectories Tt . Two LSTM layers are followed

by four FC layers and a final softmax layer to obtain the output score between 0 and 1.

The architecture in Figure 3.15 is trained with the training and validation set obtained from Dtraj.

Similar training parameters as used for the state-based approach are selected for the training process.

Adam [168] is used as the optimizer to minimize the binary cross-entropy loss function. A learning

rate of 0.0001 is used and training is stopped either after 20 epochs or if the validation loss has not

decreased for more than five epochs.

At a prediction frequency of 10 Hz, the failure predictions can contain spurious outliers that need

to be removed in a post-processing step. Same as with the state-based and image-based approaches,

we apply a moving average filter with horizon H � L to ensure that a failure is only predicted if the

predicted failure probability Ptraj is above 0.5 for multiple consecutive predictions. As before, the

moving average is computed over less than H predictions at the beginning of each sequence when

t < H holds. The final, filtered predicted failure probability Ptraj generated by the classifier Ctraj is

then given as

Ptraj,t �
1

min(t ,H)

min(t ,H)∑
k�1

P
traj,t+1−k . (3.14)

3 System-Level Failure Prediction

54

3.4.4 Results

Next, the trajectory-based introspective failureprediction approach is evaluated. Toobtain an intuitive

understanding of what themodel has learned, we first visualize the training data. Then, we introduce

two baseline approaches trainedwith hand-crafted features to evaluate if the proposeddeep-learning-

based model is the most suitable choice for this problem. We also compare the trajectory-based

approach to the state-based approach from Section 3.2 to evaluate if the use of planned trajectory

data offers improvements over using the less complex state data sequences as input. All models are

compared using an ROC analysis and by evaluating the average accuracy over time. Finally, failure

cases of the trajectory-based model are discussed.

3.4.4.1 Data Visualization

We visualize two exemplary trajectory sequences from both the Success and the Failure class in

Figure 3.16. For improved visibility, only every tenth of the 100 trajectories from each sequence

is plotted. All plotted trajectories are therefore planned one second apart. The starting point of

each trajectory is marked as an "X". The color indicates the time within the sequence. Dark blue

corresponds to the earliest sequence time, with the disengagement still being nine seconds away in

case of the two failure examples. The moment of the disengagement is shown in red. The trajectories

are shown in world coordinates to make the shape of the road they were planned for visible. The only

modification is that the start of each sequence was shifted to the origin. For training the trajectory-

based classifier, the trajectories are normalized by rotating the trajectories as discussed in the previous

section.

0 5 10
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t-9

t-8

t-7

t-6

t-5

t-4

t-3

t-2

t-1

t

-30 -20 -10 0
x [m]

0

50

100

150

y
[m

]

Success Sequence Example 1

0 20 40 60 80
x [m]

0

10

20

30

40

y
[m

]

Success Sequence Example 2

0 20 40 0 20 40
x [m]

-10

-8

-6

-4

-2

0

y
[m

]

Failure Sequence Example 1

0 20 40 60 0 20 40
x [m]

-35

-30

-25

-20

-15

-10

-5

0

y
[m

]

Failure Sequence Example 2

Figure 3.16Visualization of two trajectory sequences from successful driving (left) and two trajectory sequences

ending in disengagements (right). The start of each trajectory is marked by an "X" and the color corresponds to

the time point within each sequence. The planned trajectories in the two success examples largely overlap. In

the failure sequences, significant disagreements over time are visible.

3.4 Trajectory-Based Introspective Failure Prediction

55

In the success sequences, the planned trajectories largely overlap. In the left example, there are

some minor variations during the left turn in the corner, but no significant disagreements are visible.

The changes that lead to the car driving through the corner are gradual and the car tends to drive

exactly its planned route, evident by the starting point of the next trajectory beingmostly on top of the

previous planned trajectory. In the example on the right in Figure 3.16, the car is decelerating during

the sequence, but does so without noticeably changing its planned route. The vehicle’s reaction to

the traffic is again consistent over time.

In the first failure sequence example on the left of Figure 3.16, the first three trajectories still largely

overlap. Then, noticeable disagreements over time become visible. At t − 7, the car had intended to

drive on the left side, but subsequent planned trajectories indicate that the car remains on the right

side until themoment of the disengagement. The planned trajectories until that point keep proposing

sharper turns to still perform the lane switch, increasing the disagreement between the trajectories

over time. At the end, the planned trajectory is to halt the car, at which point the human safety driver

resumed control. In the second failure example in Figure 3.16, a similar behavior can be seen with an

attempted lane switch to the left. After repeatedly planning such a maneuver, the system ultimately

stops attempting the switch and the human again needs to take over.

These examples were chosen to highlight the potential differences between success and failure

sequences of planned trajectories. In undisrupted driving, objects can also suddenly appear or

challenging driving situations can arise that require constant adjustments of the planned trajectories.

While the resulting trajectory sequences can also disagree over time, our hypothesis remains that

the disagreement before a disengagement is more pronounced and corresponding failure patterns

can be learned using machine learning. Those disagreements are expressed as variations in the

curvature and length of the trajectories. To further investigate this hypothesis, we next compare those

characteristics of failure and success sequences explicitly.

To calculate the degree of curvature of a planned trajectory consisting of 30 points pi , i ∈ {1, 30},
we use the following approach. For each point pi , the line between pi and pi+1 and the line spanned

by pi+1 and pi+2 is obtained. Then, the angle θtra j,i is calculated as the angle between those two

lines. For 30 points, this yields 28 angles. The process of calculating the angles of a given trajectory

sequence is shown in Figure 3.17.

p1

p2

p3

θtra j,1

θtra j,2

Figure 3.17 The degree of curvature is calculated as the sum of angles θtra j,1 , θtra j,2 , ..., θtra j,28 between 30

points p1 , p2 , ..., p30 of a planned trajectory T (adopted from [26] © 2021 IEEE).

For brevity, we refer to the resulting degree of curvature only as "curvature" in the following. For

each angle, the absolute value is used since only the degree of variation is of interest, not its direction.

For a trajectory Tn
t � [p1 , p2 , ..., p30] from a sequence Sn , the curvature is then given as

Curvaturen
t �

1

28

28∑
i�1

|θtra j,i |, θtra j,i �](pi pi+1 , pi+1pi+2). (3.15)

Additionally, the length of each trajectory is calculated as a second characteristic to compare failure

and success sequences. The length of a trajectory Tn
t is computed as the sum of distances between

each tuple of points pi and pi+1:

Len gthn
t �

29∑
i�1

|pi − pi+1 | (3.16)

3 System-Level Failure Prediction

56

We calculate the average curvature and length for each time step t over all failure sequences and

over all success sequences. The resulting values over time are plotted in Figure 3.18. The curvature is

given in degree, while the trajectory lengths are normalized with the largest trajectory length in the

training set.

0 1 2 3 4 5 6 7 8 9 10
Sequence Time [s]

0

45

90

A
ve

ra
ge

 D
eg

re
e

of
 C

ur
va

tu
re

Curvature of Planned Trajectories

Success
Failure

0 1 2 3 4 5 6 7 8 9 10
Sequence Time [s]

0.5

0.6

0.7

0.8

0.9

1

A
ve

ra
ge

 N
or

m
al

iz
ed

 L
en

gt
h

Length of Planned Trajectories

Success
Failure

Figure 3.18 Average curvature and length of the planned trajectories in both failure and success sequences

(adopted from [26] © 2021 IEEE).

In success sequences, the average curvature is almost constant at around 25°. The curvature of the
trajectories in failure sequence is significantly larger than the curvature in success sequences. The

curvature also noticeably increases when approaching a disengagement. In the four seconds before a

failure, the average curvature is above 45°. This indicates that disengagements are typically preceeded

by more drastic intended maneuvers, regardless of whether the car was capable of actually driving

those planned maneuvers or not.

When visualizing the average normalized trajectory length, the success sequences again exhibit

mostly constant values. The average length inmeters of success trajectories is 34.2 m, while trajectories

from failure sequences have an average length of 30.9 m. The average length of failure trajectories

decreases visibly when approaching a disengagement. Both the decrease in average length and the

increase in average curvature of failure trajectories begin already ten seconds before a disengagement.

This suggests that planned trajectories are a promising source of information about impending failures

even many seconds in advance.

3.4.4.2 Baseline Approaches

Next, three baseline approaches to compare the trajectory-based method are summarized. To the

best of our knowledge, no comparable failure prediction methods using low-dimensional data such

as planned trajectories exist in the literature. As a baseline, we therefore design two simpler versions

of the proposed model.

The investigation of the trajectory curvature and length in the previous paragraph showed a signif-

icant difference between failure and success sequences when comparing these two characteristics. It

is therefore a reasonable assumption that those two characteristics alone are sufficient to distinguish

if a given trajectory belongs to a failure or a success sequence. As a first baseline, we therefore train a

Support Vector Machine (SVM) with the curvature and length of each trajectory as input and the cor-

responding Failure or Success label as the target. No temporal information is considered for the SVM

baseline and no deep learning architecture is employed. This approach is referred to as Curve+Length
SVM in the following.

3.4 Trajectory-Based Introspective Failure Prediction

57

As a second baseline, we still use the manually crafted input features of curvature and length, but

now use an LSTM-based architecture to evaluate the benefit of introducing temporal information to

the model. The same architecture as for the proposed approach is used, shown in Figure 3.15. We

refer to the second baseline as Curve+Length LSTM.

The proposed approach does not use manual features, but learns to extract the features from

the trajectory sequences itself. We refer to it as Trajectory LSTM. As a third baseline, we compare

to the State LSTM from Section 3.2. This comparison allows to evaluate the difference between

using the actual state data and the planned trajectory of the vehicle. Since the state-based approach

significantly outperformed state-of-the-art failure prediction methods of Arguing Machines [15] and
Predictive Variance [16] in Section 3.3, the comparison to the state-based approach can be considered

a comparison to the state of the art in disengagement prediction based on low-dimensional data.

3.4.4.3 Failure Prediction Performance

Next, we evaluate the failure prediction performance of the proposed trajectory-based approach and

the three baseline methods. First, an ROC analysis is performed. The ROC curve of the proposed

approach and the three baseline methods as well as their respective AUC values are shown in

Figure 3.19.

0 0.2 0.4 0.6 0.8 1
False Positive Rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ru

e
P

os
iti

ve
 R

at
e

ROC Curve

Random
Curve + Length SVM (AUC: 0.719)
Curve + Length LSTM (AUC: 0.779)
State LSTM (AUC: 0.852)
Trajectory LSTM (AUC: 0.872)

Figure 3.19 Comparison of the ROC curves of the three baseline approaches and the proposed Trajectory LSTM
model.

The Curve+Length SVM approach performs the worst, achieving an AUC of 0.72. Using temporal

sequences of manual features improves the failure prediction performance significantly, allowing the

Curve+Length LSTM model to obtain an AUC of 0.78. Using deep learning to learn patterns from the

trajectories directly instead of first extracting manual features such as length or curvature again leads

to another significant improvement. The proposed Trajectory LSTM approach results in an AUC of

0.87, outperforming the baseline methods that use manual features by at least 11 %. These results

indicate that the manual features of curvature and length do allow predicting failures, but are not as

informative for distinguishing them as well as an entirely learning-based approach.

3 System-Level Failure Prediction

58

Finally, the state-based approach State LSTM obtains an AUC of 0.85, outperforming the other

baseline approaches but being outperformed by the proposed trajectory-based approach by 2 %. We

further compare the proposed trajectory-based model to the state-of-the-art state-based approach in

Table 3.7. The accuracy of the Trajectory LSTM is higher by around 1 %, while having a lower standard

deviation. While the Trajectory LSTM has ten times as many parameters and is over 50 % slower than

the State LSTM, its inference time of below 6 ms is still very fast. The required prediction frequency

of 10 Hz can be easily achieved by both models.

Model Accuracy AUC Parameters Inference Time
State LSTM 78.8 % (±0.09) 85.2 % 0.02 × 10

6
3.8 ms

Trajectory LSTM 79.6 % (±0.08) 87.2 % 0.2 × 10
6

5.9 ms

Table 3.7 Comparison of the accuracy, AUC, number of parameters and average inference time per prediction

for both the state-based and the proposed trajectory-based approach.

Next, the failure prediction performance over time is analyzed. The average accuracy of the

trajectory-based approach and the state-based approach for each time step within both failure and

success test sequences are shown in Figure 3.20. For reference, we also include the best-performing

baseline approach based on manual features, Curve+Length LSTM.

7 6 5 4 3 2 1 0
Time to Disengagement [s]

0

0.2

0.4

0.6

0.8

1

A
ve

ra
ge

 A
cc

ur
ac

y

Failure Sequences

Random
Curve+Length LSTM
State LSTM
Trajectory LSTM

7 6 5 4 3 2 1 0
Sequence Time [s]

0

0.2

0.4

0.6

0.8

1

A
ve

ra
ge

 A
cc

ur
ac

y

Success Sequences

Random
Curve+Length LSTM
State LSTM
Trajectory LSTM

Figure 3.20Average accuracy over time for both failure and success sequences of the proposed Trajectory LSTM
approach compared to the best-performing baseline approaches.

For the success sequences, the trajectory-based approach consistently outperforms the state-based

approach as well as the model based on manual features. The accuracy of all compared approaches

is mostly constant. If no disrupting events that cause disengagements occur, the planned trajectories

and the actually driven trajectories are largely identical. The state-based and the trajectory-based

approach are therefore expected to perform similarly. The fact that the trajectory-based approach

performs better could be explained by the fact that the planned trajectories are less prone to noise. A

planned trajectory describes the best-case scenario as generated by the vehicle. In contrast, the actual

car state can exhibit minor variations due to physical perturbations such as uneven roads which can

cause false positives.

3.4 Trajectory-Based Introspective Failure Prediction

59

For the failure sequences, the accuracy of all approaches increaseswhen approaching the time of the

disengagement. The Trajectory LSTM outperforms the State LSTM during the early stages of the failure

sequences, when the disengagement is still at least three seconds away. During the final three seconds

before the failure, the state-based approach slightly outperforms the trajectory-basedmethod. At this

time point, the disagreements detectable in the planned trajectories four to seven seconds in advance

are materializing in the physical state of the car. This result demonstrates the different strengths of

using state or trajectory data. Planned trajectories are the most useful when attempting very early

failure prediction, since they contain information about the planned future behavior of the vehicle.

In the seconds right before the disengagement, the state of the car becomes more informative, since it

shows the actual response of the system to the challenging situation regardless of the planned ideal

maneuver.

3.4.4.4 Failure Cases

Finally, we discuss the failure cases of the trajectory-based failure prediction approach. To allow some

intuitive explanations of where the proposed method fails, the average speed and average angle of

the failure cases in both success and failure sequences are shown in Figure 3.21.

3 4 5 6 7 8 9 10
Sequence Time [s]

0.2

0.25

0.3

0.35

0.4

0.45

A
ve

ra
ge

 S
pe

ed

Success Sequences

Correct Prediction
Incorrect Prediction

7 6 5 4 3 2 1 0
Time to Disengagement [s]

0.2

0.25

0.3

0.35

0.4

0.45

A
ve

ra
ge

 S
pe

ed

Failure Sequences
Correct Prediction
Incorrect Prediction

3 4 5 6 7 8 9 10
Sequence Time [s]

-0.1

-0.05

0

0.05

0.1

A
ve

ra
ge

 A
ng

le

Success Sequences

Correct Prediction
Incorrect Prediction

7 6 5 4 3 2 1 0
Time to Disengagement [s]

-0.1

-0.05

0

0.05

0.1

A
ve

ra
ge

 A
ng

le

Failure Sequences

Correct Prediction
Incorrect Prediction

Figure 3.21 Visualization of the average speed and average angle of failure cases as well as correct predictions

of the proposed trajectory-based failure prediction approach.

Themean of the average speed of incorrect predictions is almost identical to themean of the average

speed of correct predictions. This applies both to success and failure sequences. The same can be

observed when plotting the average angle. This is in contrast to the state-based and image-based

approaches, where the average speed or angle of the respective fail urecases differed significantly

from correct predictions.

The most noticeable difference between correct and incorrect predictions is that the average speed

and angle of incorrect predictions vary visibly around the mean, while they are more constant

for correct predictions. It is challenging to infer how the corresponding planned trajectories were

interpreted falsely by the proposed model. The noisy speed and angle plots of incorrect predictions

suggest that failure cases of the proposed approach are not visibly correlated to the physical state of

the car. Considering that the failure cases of the state-based and image-based approach were more

closely connected to the speed and angle, this observation indicates that the third approach of using

trajectories as input again has different weaknesses. All three failure prediction approaches have

shown different failure case behavior, which motivates a combination of the different methods to

alleviate the individual weaknesses and combine their strengths. Therefore, we introduce a fusion-

based introspective failure prediction approach next.

3 System-Level Failure Prediction

60

3.5 Introspective Failure Prediction Using Late Fusion

As our final contribution to the topic of system-level failure prediction, we propose an introspective

failure prediction approach based on fusing the separate approaches introduced in the previous three

sections. Since the evaluations of the state-based, image-based, and trajectory-based approaches have

all shown different strengths and weaknesses, the goal is to combine the benefits of all three sources

of information into one model. Next, we generally discuss whether early or late fusion is more

appropriate for this use case. Then, we present our late multimodal fusion approach for failure

prediction. Finally, we evaluate the fusion-based approach and compare its performance to the

individual methods from the previous sections.

3.5.1 Early Fusion vs. Late Fusion

Fusion of different data types and inputs can be performed either early or late in a neural network

architecture. While some works suggest that the level at which fusion occurs does not have a

significant impact on performance [62], there are several factors to consider when choosing the fusion

level. Here, the data input types are state vectors, RGB images and trajectory vectors. For fusing these

data types, both early and late fusion can be considered. We discuss both options in the context of

system-level failure prediction next.

Regardless of performance, a key advantage of early fusion is that the overall computational

complexity is lower. As soon as sensory inputs or low-level features extracted from them have

been fused, only one joint architecture needs to be evaluated when making an inference. In driving,

inference speed is an important aspect. However, the previous sections have shown that the state-

based and the trajectory-based approach require only milliseconds for an inference. Running those

models sequentially is still fast enough to achieve real-time performance.

Another potential advantage of early fusion is that the failure prediction model can learn patterns

across multiple input modalities. The more layers have access to all input types, the more complex

such cross-modal patterns can be. In late fusion, each input type is used separately to make a

prediction. A late fusion model therefore cannot make use of patterns that are extracted from more

than one modality.

While early fusion is a possibility, late fusion has several properties that are highly beneficial for

the proposed disengagement prediction framework. First, the property of early fusion models to

be able to learn cross-modal patterns can also be detrimental. If one modality is more informative

than the others, the model can learn to focus only on the best input type. In the previous sections,

the image-based classifier achieved the best accuracy by a wide margin. Early fusion of the image

input with the low-dimensional data can lead to the network ignoring the low-dimensional data since

during training, an almost perfect accuracy can be achieved using the image data alone. Additionally,

even when cross-modal patterns are learned, some works suggest that learning co-dependencies

between weights in early layers can reduce the performance of a model [119]. If the input types are

kept separate for as long as possible, each part of the model needs to learn patterns that are unique

to its data type. The fact that the failure cases of each model investigated so far showed noticeably

different behaviors suggests that each model has learned distinct patterns for its respective failure

prediction. To be able to detect as many different failures as possible, the capacity to detect a wide

range of different patterns is desirable.

Regarding the implementation of the fusion network, the modalities of high-dimensional RGB

images and low-dimensional state and trajectory data require significantly different architectures to

extract patterns. For images, convolutional architectures are required, whereas LSTM-based models

are well suited for the low-dimensional inputs. Since the best-performing image-based architecture,

ResNet50, consists of convolutional layers until the last layer, early fusion with a non-spatial input

such as state vectors is inherently challenging.

Another benefit of late fusion is that the resulting failure prediction framework remains modular

and easily extendable. In this work, three information sources are used to predict failures. Other

3.5 Introspective Failure Prediction Using Late Fusion

61

sources could be used as well, such as Light Detection and Ranging (LIDAR) input or internal

representations of the system such as the output of individual perceptionmodels. Early fusionwould

require redesigning and retraining the entire framework whenever a modality is changed, whereas

late fusion allows for fast testing of new input types without requiring to change previously trained

models.

A related useful property of keeping the frameworkmodular is that it allowsmore intuitive insights

into what caused the predicted system-level failure. If all input types are fused early, it is challenging

to infer what made the introspective model generate its prediction. If individual failure probabilities

are derived from each modality and then fused, it is straightforward to see which input type had

the largest impact on the current prediction. Knowing whether the planned future behavior or the

current visual environment caused a disengagement could be valuable information both for the safety

driver at the wheel and for a remote operator who needs to quickly assess what caused the failure.

For these reasons, we use a late fusion approach to combine the different input types investigated

in the previous sections. Next, the resulting late multimodal fusion approach is presented in detail.

3.5.2 Late Multimodal Fusion Approach

In the previous sections, we have introduced three separate failure prediction models: a state-based

classifier Cstate, an image-based classifier Cimg, and a trajectory-based classifier Ctraj. The experimental

results in Section 3.2, Section 3.3, and Section 3.4 have shown that all threemodels outperform the state

of the art of system-level failure prediction [15, 16] significantly. In this section, the three models are

combined in a late fusion approach to further improve failure prediction performance. An overview

of the proposed late multimodal fusion framework is shown in Figure 3.22.

Autonomous vehicle test drives

Disengagements Successful driving

Images I1 , ..., IL Car state vectors F1 , ..., FL

[v1 θ1 ax ,1 ay ,1 ω1]>
[v2 θ2 ax ,2 ay ,2 ω2]>

...
[vL θL ax ,L ay ,L ωL]>

Trajectories T1 , ..., TL

Train CNN

classifier Cimg

Train LSTM

classifier Cstate

Train LSTM

classifier Ctraj

Pfusion �
1

L
∑L

k�1

1

3
(Pim g ,k + P

state,k + P
traj,k)

Figure 3.22 Overview of the proposed late multimodal fusion framework. The state-based classifier Cstate, the

image-based classifier Cimg, and the trajectory-based classifier Cstate are used to obtain the individual failure

probabilites Pim g , Pstate, and Ptraj, which are then averaged to obtain the fused failure probability Pfusion.

3 System-Level Failure Prediction

62

The three classifiers are trained as before with all available disengagements and an equal amount

of sampled successful driving sequences. The input to the fusion-based model then consists of the

current dynamic difference image Idd,t consisting of three difference images created from four of the

last L images, the last L state vectors F, and the last L planned trajectories. We again use L � 30.

Since late fusion is already costly due to requiring the inference of three separate models, the fusion

step itself to combine the three classifiers is kept simple. From each classifier, the respective failure

probability for the current input is obtained. Then, the resulting three failure probabilities Pim g ,

Pstate, and Ptraj are averaged with equal weights. Preliminary experiments with using an SVM for

determining the weights of the individual probabilities did not significantly increase the accuracy.

The fused failure probability Pfusion is then calculated as

Pfusion �

L∑
k�1

1

3

(Pim g ,k + Pstate ,k + Ptra j,k). (3.17)

Simply averaging the individual failure probabilities does not introduce any further parameters

that need to be tuned. If additionalmodalities are used to train additional classifiers, they can be easily

added to the framework by adding their predicted failure probability to the average in Equation 3.17.

The individual failure probabilities could be weighted according to the performance of the individual

models, but preliminary results on the validation set showed that this does not improve accuracy.

Giving each model the same influence on the final prediction combines the strengths of all models.

It allows the models with overall lower performance such as the state-based classifier to mitigate the

errors of the better performing models such as the image-based classifier. Weaker models improving

the performance of a stronger model by averaging their predictions is an effect also observed in

ensemble-based models [12].

Finally, the fused failure probabilities are smoothed using a moving average filter with horizon

H � L as before. A failure is then only predicted if more than one model consistently predicts a high

failure probability over multiple time steps. The final filtered fused prediction Pfusion is therefore

calculated as

Pfusion,t �
1

min(t ,H)

min(t ,H)∑
k�1

P
fusion,t+1−k . (3.18)

3.5.3 Results

Next, the proposed multimodal fusion approach is evaluated. All classifiers were trained using the

disengagement and success data from Table 3.6. The failure prediction performance is analyzed

using both an ROC curve analysis and by plotting the average accuracy over time. The computational

complexity is also discussed, since the increased inference time is one of the main theoretical down-

sides of late fusion. To analyze if all three classifiers are needed for the best fusion performance, all

combinations of the three individual models are evaluated this way. Finally, the failure cases of the

fusion-based model are discussed.

3.5.3.1 Failure Prediction Performance

First, all models are compared using their ROC curves. Besides the individual models State LSTM,

Trajectory LSTM, and ResNet50, all possible fusion combinations are considered. The combination

of all three classifiers is referred to as State+Trajectory+Image. Additionally, the three combinations

of using only two classifiers at a time for the late fusion are also evaluated. They are referred to

as State+Trajectory, State+Image, and Trajectory+Image. For those three approaches, Equation 3.17 is

modified to be the average of only the two corresponding failure probabilities. The ROC curves of the

three individual models, the three reference fusion approaches consisting of two individual models,

and the fusion of all three individual models are shown in Figure 3.23.

3.5 Introspective Failure Prediction Using Late Fusion

63

0 0.2 0.4 0.6 0.8 1
False Positive Rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
T

ru
e

P
os

iti
ve

 R
at

e
ROC Curve

Random
State LSTM (AUC: 0.852)
Trajectory LSTM (AUC: 0.872)
ResNet50 (AUC: 0.915)
State+Trajectory (AUC: 0.883)
State+Image (AUC: 0.953)
Image+Trajectory (AUC: 0.956)
State+Trajectory+Image (AUC: 0.956)

Figure 3.23 Comparison of the ROC curves of all individual introspective failure prediction models as well as

all possible late fusion combinations.

Every individual model is improved by adding one or more other modalities via late fusion. The

AUC of the State+Trajectory fusion outperforms the AUC of the State LSTM by 3.6 % and the AUC

of the Trajectory LSTM by 1.3 %. Adding either the state-based or the trajectory-based classifier to

the image-based classifier results in the most significant improvement, increasing the AUC of the

ResNet50 by at least 4.1 %.

For a comprehensive comparison, we also summarize the accuracy plus standard deviation, the

AUC, the number of parameters, and the average inference time per prediction of all approaches in

Table 3.8.

Model Accuracy AUC Parameters Time
State-based 78.8 % (±0.09) 85.2 % 0.02 × 10

6
3.8 ms

Trajectory-based 79.6 % (±0.08) 87.2 % 0.2 × 10
6

5.9 ms

Image-based 85.1 % (±0.05) 91.5 % 25.6 × 10
6

59.5 ms

State+Trajectory Fusion 81.1 % (±0.07) 88.3 % 0.2 × 10
6

9.7 ms

State+Image Fusion 88.2 % (±0.04) 95.3 % 25.6 × 10
6

63.3 ms

Image+Trajectory Fusion 88.8 % (±0.03) 95.6 % 25.8 × 10
6

65.4 ms

State+Trajectory+Image Fusion 89.1 % (±0.03) 95.6 % 25.8 × 10
6

69.2 ms

Table 3.8 Comparison of the average accuracy, AUC, number of parameters, and average inference time of the

proposed individual and fusion-based introspective failure prediction methods.

3 System-Level Failure Prediction

64

The average accuracy of all models increases in a similar way as the AUC. The fusion of all three

individual classifiers, State+Trajectory+Image, achieves the highest average accuracy at 89.1 %. While

the accuracy is higher, the AUC of fusing all three models is identical to the fusion of the image-based

and the trajectory-based model. The standard deviation of the ResNet50 decreases by another 40 %

by adding the trajectory-based classifier. While the accuracies of the State LSTM and the Trajectory
LSTM are at least 6.9 % smaller than the accuracy of the ResNet50, the fusion of all three improves the

ResNet50 by 4.7 %. These results demonstrate that the late fusion approach is capable of combining

the strengths of the individual models.

While the proposed late fusion improves the failure prediction performance, it also increases

the computational complexity and average inference time. The inference time of the best-performing

State+Trajectory+Image fusionapproach is16 % larger than the slowest individual approachofResNet50.
Due to the very compact nature of the proposed LSTM-based models, the number of parameters in-

creases only by around 1 %. While the fusion-based approach is significantly slower, the maximum

average inference time of 69.2 ms is still far below 100 ms, the maximum time allowed to achieve the

desired prediction frequency of 10 Hz. It is also still faster than the best-performing state-of-the-art

method Predictive Variance [16] evaluated in Section 3.3, which has an inference time of 81.4 ms.

Finally, the average accuracy over time is evaluated. Since the fusion of all three individual models

performed best, we do not further consider the fusion of two individual models in the following. In

Figure 3.24, the average accuracy of the individual models and the fusion-based approach is shown

for both failure and success sequences.

7 6 5 4 3 2 1 0
Time to Disengagement [s]

0

0.25

0.5

0.75

1

A
ve

ra
ge

 A
cc

ur
ac

y

Failure Sequences

Random
State LSTM
Trajectory LSTM
ResNet50
Fusion

3 4 5 6 7 8 9 10
Sequence Time [s]

0

0.25

0.5

0.75

1

A
ve

ra
ge

 A
cc

ur
ac

y

Success Sequences

Random
State LSTM
Trajectory LSTM
ResNet50
Fusion

Figure 3.24 Average accuracy over time of the individual failure prediction models compared to late fusion.

The fusion-based approach outperforms all individual models for all time points in both failure

and success sequences. In success sequences, the difference to the individual models is mostly

constant. The largest difference can be observed in the failure sequences. While the models show

more similar accuracies in the time right before a disengagement, the accuracy of the fusion-based

approach remains high throughout the entire sequence. This indicates that the combination of the

current visual features, the planned next three seconds of trajectories and the current physical state of

the car is sufficient to consistently predict failures at an accuracy of almost 90 %, even seven seconds

in advance of a failure.

3.5 Introspective Failure Prediction Using Late Fusion

65

3.5.3.2 Failure Cases

While the fusion-based approach correctly predicts almost 90 % of all failures, it still misses around

10 % of all disengagements. Same as for the individual approaches, we visualize the average speed

and angle of the car both during correct and incorrect predictions in Figure 3.25. Since the fusion-

based approach combines three significantly different input types, it is challenging to infer what

causes those failure cases. No clear patterns are discernible among the incorrect predictions, neither

for false positives nor for false negatives.

3 4 5 6 7 8 9 10
Sequence Time [s]

0

0.1

0.2

0.3

0.4

0.5

0.6

A
ve

ra
ge

 S
pe

ed

Success Sequences

Correct Prediction
Incorrect Prediction

7 6 5 4 3 2 1 0
Time to Disengagement [s]

0

0.1

0.2

0.3

0.4

0.5

0.6

A
ve

ra
ge

 S
pe

ed

Failure Sequences

Correct Prediction
Incorrect Prediction

3 4 5 6 7 8 9 10
Sequence Time [s]

-0.1

-0.05

0

0.05

0.1

A
ve

ra
ge

 A
ng

le

Success Sequences

Correct Prediction
Incorrect Prediction

7 6 5 4 3 2 1 0
Time to Disengagement [s]

-0.1

-0.05

0

0.05

0.1

A
ve

ra
ge

 A
ng

le

Failure Sequences

Correct Prediction
Incorrect Prediction

Figure 3.25 Visualization of the average speed and average angle of the vehicle over time for both correct and

incorrect failure predictions made by the fusion-based approach.

While the lack of interpretability of the failure cases of the fusion-based approach makes it chal-

lenging to improve the model, it should be noted that it is unlikely for system-level failure prediction

methods to be able to predict all failures in advance. While accuracies beyond 90 % could be possible,

some spontaneous situations will likely remain unpredictable for the proposed introspective failure

prediction approach. Some failures are caused by effectively random events, such as pedestrians sud-

denly appearing at the side of the road or crossing the road. In such cases, the environment can only

give some general indication about the likelihood of such an event, for example if it is an intersection

where pedestrians are to be expected. The specific moment in the scene that causes the system to

disengage or that causes the human safety driver to take over control can be entirely unpredictable.

The randomness introduced by other dynamic traffic participants is therefore a challenge inherent to

the task of system-level failure prediction.

3 System-Level Failure Prediction

66

3.6 Chapter Summary

In this chapter, we introduced an introspective failure prediction framework for predicting system-

level failures of autonomous systems. In the context of driving, we defined system-level failures as

disengagements of the system, triggered either automatically by the system itself or manually by the

human safety driver taking over control. The proposed concept is based on recording failures of the

inspected system as well as successful behavior, to then train a classifier to learn how to distinguish

between failure and success.

As a first implementation, a state-based approach was presented in Section 3.2. By training an

LSTM-based classifier with sequences of state data from both success and failure sequences, failures

could be predicted at an accuracy of over 78 %. Seven seconds in advance of a failure, the model was

still capable of detecting over 75 % of all failures.

In Section 3.3, we improved this concept by considering images as a source of information about

failures. To extract spatio-temporal patterns from sequences of images, the image sequences were

processed into compact dynamic difference representations that were then used to train a CNN-based

classifier. Representing image sequences as a single three-channel image allowed reusing the state-of-

the-art ResNet50 architecture pretrained on ImageNet. This approach improved the failure prediction

accuracy to over 83 %, outperforming state-of-the-art image-based failure predictionmethods by 32 %.

As a third approach, the trajectories planned by the car were used in Section 3.4. The disagreement

of the car over time with itself is a source of information about failures that already contains a

prediction about the future, making it a suitable choice for early failure prediction. Using planned

trajectories instead of the actual state of the car improved early failure prediction by 2 % in an ROC

analysis.

Finally, all three individual failure prediction models were combined in a late fusion model in

Section 3.5. By averaging the individual failure probabilities, the overall prediction accuracy was

improved significantly to 89.1 %. At less than 70 ms per prediction, the fusion model is capable

of running in real time and is more than 17 % faster than previous state-of-the-art approaches.

By combining the advantages of the individual approaches, the fusion-based introspective failure

prediction model is capable of predicting failures at over 86 % accuracy seven seconds in advance.

67

4 Component-Level Failure Prediction

In this chapter, we present several approaches for detecting and predicting the failures of individual

components of the perception module of an autonomous system. Specifically, we focus on semantic

segmentation as one of the most critical components of the perception stack [170]. While failures of

individual components do not necessarily lead to system-level failures that require human interven-

tion, detecting them is an important component of a comprehensive failure prediction framework.

Predicted failures from individual components can be aggregated and ultimately also used to predict

system-level failures. Additionally, the proposed component-level failure prediction will be the basis

for some of the failure correction strategies introduced in Chapter 5.

In the following, we first propose an introspective approach for predicting failures for semantic

image segmentation. Then, we extend this idea to failure prediction for semantic video segmentation.

Finally, we propose a method for predicting pixel-wise segmentation failures of future frames.

Some of the concepts and contributions of this chapter have been published in [22, 27].

4.1 Introspective Failure Prediction for Semantic Image Segmentation

In Chapter 3, we have used the concept of introspection to predict disengagements of an entire

autonomous system. While the task of semantic image segmentation is significantly different, the

same fundamental concept of learning from previous failures can be applied. For this, we propose

to record pixel-wise failures of a given semantic segmentation model and then train an introspective

model to predict for each pixel whether it will be correctly classified or not. Next, we introduce the

concept of introspective failure prediction for semantic image segmentation in more detail. We first

present the baseline semantic segmentation model for which we then learn to predict failures. Then,

we summarize the data generation and training process of the introspective model.

4.1.1 Concept

The task of semantic image segmentation consists of training a model Ssemse g with images I to predict

the correspondingpixel-wise class labels L. The class labels canbe anyof N semantic classes. Semantic

segmentation therefore corresponds to classifying each pixel in an image at once. While the state of

the art in semantic image segmentation can achieve accuracies of beyond 90 % [171] on challenging

data sets such as A2D2 [86] or Cityscapes [84], such models still inevitably make mistakes.

Those mistakes can be described as binary error maps EGT obtained as the pixel-wise difference

between the semantic prediction Lpred generated by the model Ssemse g and the ground-truth labels

LGT . If the prediction and the ground-truth label are identical, the corresponding error map value is

a 0, otherwise it is a 1. Now, the concept of introspection can be applied. The recorded error maps

are used as pixel-wise ground-truth error labels EGT alongside the corresponding image I to train

an introspective failure prediction model Sintro . For each pixel, the goal is to predict whether the

pixel was correctly classified or not. This is a binary classification task. Since the failure prediction

model needs to assign each pixel of an image I a class label, the introspective failure prediction model

Sintro also has to perform the task of semantic image segmentation. Thus, any semantic segmentation

architecture can beused to implement Sintro . Regardless of the specific choice of the implementation of

the baseline semantic segmentation model Ssemse g , the semantic segmentation architecture of Ssemse g
is already available and can be reused for introspection. This allows for minimizing the amount of

implementation effort.

4 Component-Level Failure Prediction

68

The concept of introspective failure prediction can be summarized as follows. Given images Isemse g
with pixel-wise annotations Lsemse g ,GT , a model Ssemse g is trained to generate predicted pixel-wise

class labels Lsemse g ,pred . After Ssemse g is trained, its predictions Lintro ,pred are obtained for an image

data set Iintro . By comparing the predictions Lintro ,pred to the actual labels Lintro ,GT , the ground-truth

error maps Eintro ,GT are obtained. Then, the introspective model Sintro is trained with the images

Iintro as input and the errormaps Eintro ,GT as targets. After training, the introspectivemodel Sintro can

be directly applied to a new test image Itest to obtain the predicted errors Etest ,pred . The performance

of Sintro can then be evaluated by comparing the predicted error map Etest ,pred to the actual error

maps Etest ,GT , which are obtained by comparing the labels Ltest ,GT to the semantic prediction Ltest ,pred
obtained from feeding Itest into Ssemse g . The process is visualized in Figure 4.1.

Semantic

segmentation

model Ssemse g

Annotated image I Error map EGT

Prediction Lpred

Train

introspective

model Sintro
Predicted error

Etest ,pred

Test image Itest

Figure 4.1 Overview of the proposed workflow to train an introspective failure prediction model Sintro
that predicts pixel-wise errors made by a baseline semantic segmentation model Ssemse g (adapted from [22]

© 2020 IEEE).

For simplicity, the same data set is used for the training of both Ssemse g and of Sintro in Figure 4.1.

In that case, the data sets Dsemse g and Dintro are identical, but they do not have to be. In the following

section, the design of themodels Ssemse g and of Sintro as well as the generation of the data sets Dsemse g
to train the segmentation and Dintro to train the introspective model are discussed in more detail.

4.1.2 Model Design

Next, we discuss the implementation of the individual models for the workflow outlined in Figure 4.1

in more detail. We first select a state-of-the-art semantic segmentation architecture as a baseline

model. Then, we use the baseline model to generate failure data and then discuss the design of the

introspective model. Both a black box approach that does not require any information about the

baseline model and a method where the introspective model shares information with the baseline

model are proposed.

4.1.2.1 Baseline Model

The proposed concept of introspective failure prediction can be applied to any semantic segmentation

model. The semantic segmentation model can be treated as a black box, with only its pixel-wise

predictions and the corresponding input images being needed to train the introspective model.

However, having access to the inner layers of the model allows sharing intermediate representations

of the input between the baseline model Ssemse g and the introspective model Sintro . This allows Sintro
to be better informed about how Ssemse g reached its partially incorrect prediction.

4.1 Introspective Failure Prediction for Semantic Image Segmentation

69

For this work, we use an established state-of-the-art deep learning architecture as the implemen-

tation of Ssemse g . The DeepLabV3+ model [72] has shown competitive performance on real-world

driving data sets such as Cityscapes [84]. We select this architecture as the baseline for all further

experiments. The encoder-decoder structure of DeepLabV3+ is shown in more detail in Figure 2.5 in

Chapter 2. In practical applications, whichever model is already implemented and available in the

autonomous system could be used as the baseline model in the proposed workflow.

4.1.2.2 Failure Data Generation

To generate error maps with a baseline model Ssemse g trained on an image data set Dsemse g , a corpus

of images Dintro is required for which the error maps EGT,intro are then obtained. If a sufficiently large

amount of labeled images is available, the images used to train Ssemse g and the images used to train

Sintro can be mutually exclusive. For example, the original training set from a given data set could

be split up into two equally sized subsets, one to train Ssemse g and one to train Sintro . The testing

data set Dtest can be used to test both models. The predictions Ltest ,pred made by Ssemse g on Dtest can

be compared to the ground-truth labels Ltest ,GT to evaluate the performance of Ssemse g , while also

being used as ground-truth error labels Etest ,GT to compare to the error maps Etest ,pred predicted by

Sintro . The approach to split up the original training set into two equally sized subsets is visualized

in Figure 4.2.

Training data set

50% 50%

• Train baseline semantic

segmentation model

• Predict labels with baseline model

• Use pixel-wise errors as new labels

Testing data set

• Get errors made by baseline model

• Test introspective error prediction

Figure 4.2 Visualization of the generation of training and test data for a baseline semantic segmentation model

Ssemse g and an introspective failure prediction model Sintro from one large-scale image data set with pixel-wise

labels (adopted from [22] © 2020 IEEE).

The data sets Dsemse g and Dintro do not have to be equally distributed. Other ratios can be used

depending onwhether the baseline segmentationmodel or the failure predictionmodel is expected to

be more challenging to train. If Dintro is different from Dsemse g , the errors Eintro are made on images

previously not seen by the baseline model Ssemse g . Then, the introspective model Sintro effectively

learns from test errors. While this can lead to a better failure prediction performance, it comes at the

cost of harming the performance of Ssemse g , since it has to learn from fewer training images.

Another important option is therefore to not keep the two sets exclusive. If the original data set

is too small to be split into two subsets of sufficient sizes, the data sets Dsemse g and Dintro can also

be chosen to be identical. Then, they both comprise the entire available set of training images. In

that case, the error Eintro ,GT made by Ssemse g on the images is used to train Ssemse g . Then, Eintro ,GT
is the training error, which is typically lower than the testing error if the model has overfitted to the

training set. The introspective model Sintro then learns what visual patterns have led to errors on the

training set. If the testing error is larger than the training error, Sintro is trained with a different error

distribution than it will encounter during testing. However, it can be argued that the errors made on

the training set are errors that are most likely to also be made on the testing set. If repeatedly seeing

an image during training was not sufficient for the baseline model Ssemse g to correctly segment it, it

will likely make those mistakes again on a test image with similar visual patterns. For this reason,

reusing Dsemse g to train Sintro still allows for predicting a significant amount of failures and is done

in Section 4.2.

4 Component-Level Failure Prediction

70

4.1.2.3 Introspective Failure Prediction Model

Once a data set Dintro and corresponding pixel-wise errors Eintro ,GT are obtained, the introspective

failure prediction model can be trained. The task of assigning each pixel of an input image one of

two classes, success or failure, can again be approached using semantic image segmentation. Since

the accuracy of the baseline model Ssemse g is typically beyond 90 %, those two classes are inherently

imbalanced. While failures are rarer than successes, strategies such as frequency weighting of the

loss function can be used to address the imbalance.

Any semantic segmentation architecture can be used to implement the introspective failure pre-

diction model Sintro . We use the same architecture used for Ssemse g . Besides avoiding additional

implementation effort, reusing the same architecture allows for sharing the weights of the first layers

can be shared among the baseline and the introspective model. This reduces the training time since

the low level features learned by the first convolutional layers do not have to be learned from scratch.

During testing, it increases the inference speed since the first layers need to be evaluated only once.

Additionally, weight sharing gives the introspective model access to the features used by the baseline

model for its prediction. If it is supplied the low level features extracted by the baseline model, the

failure prediction model can directly operate in feature space and learn to detect which low level

features lead to failures. Without weight sharing, the introspective model needs to learn extracting

visual features that lead to classification errors from the raw input image itself. In a preliminary

Receiver Operating Characteristic (ROC) curve analysis, weight sharing improved the Area Under

Curve (AUC) by 4.8 % and is therefore used during all subsequent experiments.

We use the DeepLabV3+ architecture in all our experiments, which consists of an encoder and

a decoder [171]. For the introspective model, we reuse the weights of the encoder and only train

the decoder with the error maps EGT as target labels. The introspective model Sintro can then be

seen as adding a second decoder to the network. The encoder of DeepLabV3+ consists of a backbone

network and an atrous spatial pyramidpoolingmodule. The output of the backbone and of the feature

pyramid is then fed into the baseline decoder to obtain Ssemse g and fed into the introspective decoder

to obtain Sintro . The softmax score associated to the failure class is used as a failure probability for

each pixel. The resulting architecture is shown in Figure 4.3.

Backbone
Network

Feature Pyramid

1x1 Convolution

Baseline
Decoder

Encoder

Introspective
Decoder

Image I

Semantic Labels L Error Labels EGT

Figure 4.3 Overview of the proposed approach of implementing the introspective failure prediction model as

a second decoder, sharing the trained encoder with the baseline DeepLabV3+ semantic segmentation model.

4.1 Introspective Failure Prediction for Semantic Image Segmentation

71

If the encoder of the baseline model is not available, the introspective model can also be trained

entirely separately from Ssemse g by also training the encoder from scratch. This allows for treating

the baseline model as a black box. In practice, this can be desirable, for example if the semantic

segmentation is supplied by a third party contractor and no direct access to the internal layers is avail-

able. In preliminary experiments, training Sintro from scratch consistently led to worse performance.

Whenever possible, we therefore only use the approach where the encoder is shared between Ssemse g
and Sintro in the following.

4.1.3 Results

In this section, we present the results of the experiments conducted to evaluate the proposed intro-

spective failure prediction approach for semantic image segmentation. We implement two reference

state-of-the-art uncertainty estimation approaches for comparison. Then, we evaluate the perfor-

mance of all models using a precision-recall analysis. Finally, we visualize the results.

4.1.3.1 Baseline Semantic Segmentation

First, we train a baseline semantic segmentation model Ssemse g on a large-scale public data set of

driving images with pixel-wise annotations. We select the A2D2 data set [86] for this purpose.

The A2D2 data set includes over 40 000 driving images collected in German cities. Each image is

manually annotated with pixel-wise labels from a total of 38 semantic classes. This makes it one of

the largest public driving data sets available. The large number of annotated images allows splitting

the training set from A2D2 into two equally sized subsets. A total of around 16 000 images is used

to train the baseline model Ssemse g , with another 16 000 images being reserved as training data for

the introspective model Sintro . For validation of both the baseline and the introspective model, 4000

images are used. The final 4000 images constitute the testing set.

Using the first 16 000 training images, we trained aDeepLabV3+model for a total of 135 epochs until

the validation loss did not further decrease. For all hyperparameters, the official suggested training

procedure from the authors of DeepLabV3+ [171] was followed. We used a public state-of-the-art

implementation [172], reaching a test accuracy of 94.0 %.

4.1.3.2 Reference Approaches

We implement two reference approaches to compare the proposed approach to the state of the

art. To the best of our knowledge, no explicit pixel-wise failure prediction approach for semantic

segmentation is available. However, uncertainty estimationmethods canbeused for the samepurpose

if the predicted uncertainty is interpreted as a failure probability. We therefore use the state-of-the-art

Monte Carlo (MC) dropout approach [10] and the Deep Ensemble approach [12] as two reference

methods. MC dropout has been used to predict uncertain pixels for semantic image segmentation

before [120], achieving state-of-the-art performance for that task. Since Deep Ensembles have been

shown to outperform MC dropout in other tasks [12], we use them as the second state-of-the-art

comparison.

For both reference approaches, the implementation suggestions from the original papers are fol-

lowed. MC dropout is implemented by keeping the dropout layers already present in DeepLabV3+

active during testing and obtaining ten forward passes with different random dropout masks for each

input image. For Deep Ensemble, four additional baseline models are trained with different random

initial weights, yielding a total of five predictions per pixel. For MC dropout, the variance of the ten

predictions obtained from the ten forward passes is used as a failure probability. For Deep Ensemble,

the variance of the five predictions from the ensemble of five models is used.

4 Component-Level Failure Prediction

72

4.1.3.3 Failure Prediction Performance

The trained baselinemodel Ssemse g is used to predict the semanticmap for each of the remaining 16 000

training images. The error maps obtained from those predictions are used to train the introspective

model Sintro . The training loss for each pixel is inversely weighted with the frequency of the class of

each pixel. Since less than 10 % of all pixels are failures, the loss for failure pixels is weighted with

a factor of 10, while the loss for success pixels is not changed. Due to the reduced complexity of the

binary classification task of failure prediction and the frozen encoder layers, the introspective model

converged after 67 epochs.

In all subsequent experiments, the softmax score associated to the failure class is used as the failure

probability for the introspective approach, while the variance is used as the failure probability for

MC dropout and Deep Ensemble. Due to the class imbalance of failures and successes, we analyze

the precision-recall curve of each method for the test set. First, we evaluate the average image-

wise precision-recall curve. Then, we perform a precision-recall analysis for each individual class to

investigate how well the proposed approach performs for the most safety-critical classes.

Image-Wise Evaluation For each of the 4000 test images, we calculate the precision-recall curve for

eachmethod. The curve for each image is calculated from the predicted failure probability of all pixels

of the current image. The average precision-recall curve for each method is shown in Figure 4.4. With

a baseline random classifier, the precision simply equals the percentage of positive test samples for

all recall values. We also evaluate combinations of introspection with the two reference approaches

of MC dropout and Deep Ensemble. This is done by averaging the predicted failure probability of

the two combined approaches and using the resulting average as the score for the precision-recall

analysis.

0 0.2 0.4 0.6 0.8 1
Recall

0

0.2

0.4

0.6

0.8

1

P
re

ci
si

on

Precision-Recall Curve

Random
MC Dropout
Deep Ensemble
Introspection
Introspection + MC Dropout
Introspection + Deep Ensemble

Figure 4.4 Precision-recall curves for the proposed introspective approach, the two reference approaches, and

combinations of introspection and the reference approaches (adapted from [22] © 2020 IEEE).

4.1 Introspective Failure Prediction for Semantic Image Segmentation

73

MCdropout performs theworst along the entire curve, with an overall AUCof 0.37. Deep Ensemble

achieves an AUC of 0.41. This confirms the findings from the literature [12] where Deep Ensemble

outperformed MC dropout. Introspection significantly outperforms both reference approaches at an

AUC of 0.44, most notably for recall values above 0.4. While Deep Ensemble performs better for low

recall and high precision values, it drops off significantly for increasing recall values above 0.4. For
failure prediction, a high recall value is generally more desirable than a high precision, since false

alarms have less safety-critical consequences.

The combination of introspection with either of the two reference approaches further improves

performance, reaching an AUC of 0.47 when combined with MC dropout and an AUC of 0.48 when

combined with Deep Ensemble. This suggests that introspection detects different types of failures

than the reference approaches. MC dropout and Deep Ensemble are both approaches that use the

model output to predict its uncertainty. Introspection is based on patterns extracted directly from

the input. By using such different information sources, different failures can be detected. While

introspection alone outperforms the best-performing state-of-the-art approach by 3 %, combining it

with the state of the art leads to an overall improvement of 6 %. This suggests that the concept of

introspection is complementary to the output-based methods that are predominant in the field of

uncertainty estimation.

Class-Wise Evaluation While introspection outperforms the state of the art when averaged over all

classes in each image, the different semantic classes are not equally relevant from a safety standpoint.

Dynamic classes such asCarorBicycle aremuchmore critical to be correctly classified thanbackground

classes such as Building. We therefore perform a class-wise evaluation next. Calculating the precision-

recall curve for all pixels of each class at once is not feasible. At 4000 test images atHighDefinition (HD)

resolution, the score vectors of common classes would be exceedingly large. Thus, we calculate the

precision-recall curve of each class for batches of 100 images at a time and then average the resulting

40 curves. For a straightforward scalar comparison, we directly report the average AUC for each class.

28 of the remaining 38 classes each comprised less than 1 % of the pixels of the test images. Seven

of those classes were omitted from the precision-recall analysis since together, theymade up less than

0.1 % of the pixels of the test images. Those classes are Speed bumper, Tractor, Animals, Electronic traffic,
Slow drive area, Blurred area and Rain dirt. Having such infrequent classes is a byproduct of having a

large number of classes, with A2D2 having twice as many semantic classes as Cityscapes.

The results for the 31 analyzed classes are summarized in Table 4.1. For brevity, MC dropout is

referred to as "MCD", Deep Ensemble is referred to as "DE", and Introspection is abbreviated to "I".

The weighted average of the AUC of the individual classes corresponds to the overall AUC from the

image-wise evaluation.

For the most common safety-critical class of Car, introspection outperforms the state of the art

by over 9 %. While Deep Ensemble performs best for Pedestrian, introspection and combinations

thereof again perform best for Bicycle and Small vehicle, the class of motorcycles and other smaller

motorized vehicles. Regarding the other, mostly static classes, introspection or a combination of

introspection with one of the two reference approaches mostly achieves the highest AUC. In total,

using introspection leads to the best performance for 22 out of the 31 considered classes.

4 Component-Level Failure Prediction

74

Class MCD DE Introspection (I) I+MCD I+DE

Car 0.350 0.360 0.452 0.464 0.497
Pedestrian 0.576 0.637 0.553 0.597 0.608

Bicycle 0.513 0.515 0.516 0.548 0.545

Small vehicle 0.446 0.423 0.581 0.555 0.565

Truck 0.724 0.784 0.762 0.732 0.770

Traffic signal 0.471 0.530 0.593 0.566 0.603
Traffic sign 0.457 0.341 0.414 0.465 0.394

Utility vehicle 0.611 0.586 0.598 0.611 0.590

Sidebars 0.212 0.189 0.244 0.236 0.233

Curbstone 0.464 0.455 0.476 0.510 0.507

Solid line 0.487 0.480 0.511 0.512 0.520
Irrelevant

signs

0.653 0.653 0.673 0.672 0.669

Road blocks 0.309 0.275 0.356 0.366 0.358

Non-driveable

street

0.606 0.745 0.783 0.704 0.796

Zebra crossing 0.161 0.151 0.184 0.181 0.179

Obstacles/trash 0.806 0.821 0.765 0.783 0.776

Poles 0.539 0.521 0.498 0.531 0.510

RD restricted

area

0.594 0.638 0.709 0.663 0.707

Grid structure 0.564 0.632 0.671 0.649 0.684
Signal corpus 0.602 0.607 0.577 0.588 0.585

Driveable

cobblestone

0.501 0.507 0.526 0.540 0.531

Nature object 0.332 0.391 0.381 0.419 0.437
Parking area 0.678 0.804 0.663 0.665 0.718

Sidewalk 0.407 0.470 0.488 0.494 0.555
Ego car 0.273 0.289 0.333 0.328 0.348

Painted drive

instruction

0.538 0.431 0.393 0.464 0.390

Traffic guide

object

0.471 0.442 0.438 0.525 0.476

Dashed line 0.535 0.615 0.530 0.560 0.579

RD normal street 0.338 0.259 0.263 0.357 0.294

Sky 0.303 0.244 0.286 0.339 0.313

Building 0.346 0.346 0.332 0.386 0.386
All classes 0.373 0.408 0.440 0.467 0.479

Table 4.1Area Under Curve (AUC) of the precision-recall curves for each individual class. Using introspection

outperforms both MC dropout (MCD) and Deep Ensemble (DE) in 21 of the 31 semantic classes.

4.1 Introspective Failure Prediction for Semantic Image Segmentation

75

4.1.3.4 Visualization

Next, we visualize the predicted error maps from each investigated method compared to the ground-

truth error maps made by the baseline semantic segmentation model in Figure 4.5. In Figure 4.5a),

three sample images from the A2D2 data set are shown. The actual error of the prediction generated

by Ssemse g is pictured in Figure 4.5b). Correct predictions are highlighted in green, while failures are

shown in red. The pixel-wise predicted failure probabilities from MC dropout in Figure 4.5c) show

that MC dropout mostly detects class borders, while generally missing larger patches of misclassified

pixels. The output of Deep Ensemble, visualized in Figure 4.5d), is smoother and also includes entire

areas of predicted errors, such as the roof of the building on the right in the second row. However,

multiple spurious failure predictions are present as well, such as seen on the middle of the road in

the third row. Finally, introspection is shown in Figure 4.5e).

(a) Original Image (b) Actual Error (c)MC Dropout (d) Deep Ensemble (e) Introspection

Figure 4.5 Visualization of the compared failure prediction methods for three sample images (adopted from

[22] © 2020 IEEE).

Introspection produces the smoothest predicted error maps and correctly detects multiple patches

ofmisclassified pixels, such as the head of the pedestrian in the second rowor the right sidewalk in the

third row. The significant differences in the appearance of the predicted error maps can be explained

by the fact that introspection is trained to classify visual features as failures, whereas the reference

approaches rely on disagreements betweenmultiple predictions. While the class borders tend to lead

to disagreeing predictions, larger areas tend to be classified the sameway by all forward passes in case

of MC dropout and by all five models in case of Deep Ensemble. If the baseline model is consistently

overconfident, both MC dropout and Deep Ensemble fail. Introspection operates on the features

extracted from the input directly, making it more robust against overconfidence. Additionally, the

failure predictions being mostly in patches instead of thin lines like for the reference approaches is

beneficial for an intuitive understanding. If the edge of a pedestrian is predicted to be misclassified,

it is difficult to judge for a human operator if the model has overlooked the pedestrian or not. With

introspection, some areas are clearly predicted to be correct while others are consistently assigned a

higher failure probability.

While introspection being based on visual features produces the most intuitive predicted error

maps, it also means that only failures caused by visual patterns already encountered during training

can be predicted. While this is a relevant limitation, novel objects are inherently challenging for

autonomous vehicles. Dedicated systems such as Out-of-Distribution (OOD) detectors are generally

more suitable for detecting such outliers. Introspection is designed to predict failures made on in-

distribution data, which is the majority of data an autonomous system will face if deployed in its

operative design domain.

4 Component-Level Failure Prediction

76

4.1.3.5 Computational Complexity

Finally, the aspect of computational complexity is discussed. Inmobile systems such as cars, real-time

capabilities on restricted hardware are important for all deployed models. Since introspection, MC

dropout, and Deep Ensemble all rely on running one or more forward passes of the baseline semantic

segmentationmodel, their average inference time is inherently determinedby the selected architecture

and its implementation. However, in relative terms, introspection is always significantly faster than

the two reference methods. MC dropout requires ten entire forward passes and the calculation of

the variance of ten predicted semantic maps, increasing the inference time of the baseline model by

at least a factor of ten. Deep Ensemble is faster, requiring only five forward passes to obtain the

output of the ensemble. In contrast, introspection introduces only a single additional forward pass

from running the introspective model. If the encoder is shared with the baseline model as done in

this section, the additional inference time is further reduced to evaluating only a single additional

decoder. Introspectiion for semantic image segmentation is therefore five to ten times faster than the

state of the art during inference. Compared to the four additional models needed for Deep Ensemble

in our experiments, only one additional model needs to be trained. While MC dropout does not

require any training, the time saved by requiring one less model training procedure comes at the cost

of an inference that is ten times more computationally complex than introspection in our example.

In summary, introspective failure prediction for semantic image segmentation is at least five times

faster than the state of the art in our experimental setup and outperforms it by at least 3 %. Motivated

by these promising results, we further explore this concept by introducing temporal information in

the form of video input in the next section.

4.2 Introspective Failure Prediction for Semantic Video Segmentation

So far, introspective failure prediction for semantic segmentation is based only on spatial features.

Learning which spatial features of an input image lead to misclassifications achieved state-of-the-art

failure prediction performance in Section 4.1. However, driving is a dynamic task where temporal

information is also highly relevant. In the context of driving, moving objects such as cars and

pedestrians are the most safety critical and need to be classified correctly. Temporal information

allows for inferring which objects are static and which are moving. This can improve both the initial

semantic segmentation and the prediction of its failures, since small moving objects are typically

misclassified more frequently than larger static structures.

In this section, we therefore extend introspective failure prediction for semantic segmentation to

take sequential images in the form of videos as input. For this, we design a spatio-temporalmodel and

introduce a new large-scale video data set to train themodel. The integration of temporal information

into the introspective failure prediction model is presented next.

4.2.1 Spatio-Temporal Model Design

There is a range of neural network architectures available for extracting spatio-temporal features from

a sequence of images, as discussed in Section 2.1.2. Here, we use convolutional Long Short-Term

Memorys (LSTMs) [78], which have shown state-of-the-art performance in semantic video segmen-

tation [77]. Since introspective failure prediction for semantic segmentation can be approached as a

semantic segmentation task itself, concepts from semantic video segmentation can be directly applied.

Following [77], we include convolutional LSTM modules between the encoder and the decoder of

the baseline model Ssemse g . In a video sequence, the segmentation for the current image It is then

obtained by also using the previous three images It−1, It−2, and It−3. The sequence length of four

follows the established number in the literature [77, 80]. All four images are fed into the encoder.

Then, the four sequential encodings, consisting of the features from the backbone and from the feature

pyramid, are fed into the convolutional LSTMs. Afterwards, a baseline decoder is trained to predict

the semantic target labels Lt ,GT .

4.2 Introspective Failure Prediction for Semantic Video Segmentation

77

Once the resulting baseline semantic segmentation model Svideo is completely trained, it is used to

generate error maps as training data for the introspective decoder. The predicted labels Lt ,pred are

compared to the ground-truth labels Lt ,GT to obtain the error map Et ,GT of the current image. The

introspective decoder receives the encoding of the image sequence It ,...,t−3 from the baseline model

Svideo as input and is trained to predict the error labels Et ,GT . This way, the video-based introspective

failure prediction model Sintro ,video is obtained. The resulting architecture for both the baseline and

the introspective model is shown in Figure 4.6.

ConvLSTM

Backbone
Network

Feature Pyramid

1x1 Convolution

Baseline
Decoder

Encoder

Introspective
Decoder

Images It-3 , It-2 , It-1 , It

Semantic Labels Lt Error Labels Et

ConvLSTM

Figure 4.6 Overview of the spatio-temporal failure prediction architecture based on extending DeepLabV3+

with convolutional LSTMs and an introspective decoder.

As a second option, we also train an introspective model from scratch, without reusing the encoder

from Svideo . Being able to treat the baseline model as a black box is a relevant quality criterion since

it allows to use spatio-temporal features for introspection even if the baseline model does not have a

spatio-temporal encoder.

4.2.2 Densely Annotated Video Driving Data Set

For training the proposed video-basedmodels, sequential images with pixel-wise labels are required.

While some data sets such as Cityscapes [84] offer sequences of images leading up to each pixel-wise

labeled frame, data sets where each frame is annotated are scarce. The CamVid data set [18] contains

900 sequential frames with pixel-wise annotations. The Highway Driving data set [19] contains 1200

such images, but only from highway environments. To the best of our knowledge, no large-scale

data set of urban driving with semantic labels for each frame is available. We therefore generated

a new data set to address this lack of large-scale data sets for semantic video segmentation. We

use the Car Learning to Act (CARLA) simulator to create and record video sequences in an urban

environment. For each frame of each sequence, the pixel-wise semantic labels are automatically

provided by CARLA and stored alongside the images. We call the resulting data set the Densely

Annotated Video Driving (DAVID) data set. A sample image as well as the corresponding semantic

labels are shown in Figure 4.7.

4 Component-Level Failure Prediction

78

Figure 4.7 An example image from the DAVID data set alongside the automatically generated ground-truth

semantic labels.

4.2.2.1 Data Set Contents

TheDAVIDdata set contains 28 video sequences, which in total consist of 10 767 images. It is therefore

at least nine times larger than both the Highway Driving and Camvid data sets. For each image, the

pixel-wise semantic labels are available. On average, each video is 38.4 s long, allowing one or more

complete traffic scenes such as crossing an intersection to be captured in each sequence. The frames

were recorded at 10 Hz. Numerous weather conditions and driving scenarios were created for the

28 sequences. Half of the sequences contain sunny weather. Nine sequences were recorded with

rain. The last five sequences have cloudy weather. The specific driving scenarios driven by the car in

the default autonomous mode of CARLA are regular traffic, traffic jams, and traffic light sequences,

which include both red and green lights as well as the transition between them.

In Table 4.2, the contents of each video sequence are summarized in detail. The specific duration

of each sequence was selected to cover the given driving scenario as completely as possible, while

avoiding extended stretches of uneventful driving on straight roads. The 28 sequences can be divided

into training, validation, and testing sets as desired. In this work, we use 22 sequences for training,

three for the validation set, and three for the testing set of all subsequent models.

4.2.2.2 Semantic Class Distribution

The weather and driving scenes of the video sequences were selected to capture a diverse and

challenging driving environment. The default map of CARLA was used for all recordings since it

contains an even distribution of structures such as buildings, vegetation, and intersections. To ensure

a large amount of dynamic objects in all scenes, the number of spawned traffic participants was set to

the maximum value of CARLA. This allows for driving scenes with as many encounters of cars and

pedestrians as possible. In total, CARLA distinguishes between twelve semantic classes. For the few

objects not belonging to those classes as well as for the sky, one additional unlabeled void class is also

present in the semantic maps.

In Figure 4.8, all semantic classes present in DAVID are shown alongside the average relative fre-

quency of the pixels from each class. The class Road is the most common, followed byUnlabeledwhich

mostly describes the sky in each image. The other classes are distributed similarly to popular real-

world data sets such as Cityscapes. For example, 0.99 % of all pixels in the images fromCityscapes are

pedestrians [84]. InDAVID, 1.02 % of all pixels are pedestrians, making it a comparable representation

of urban driving.

4.2 Introspective Failure Prediction for Semantic Video Segmentation

79

Index Duration Weather Driving Scenario Number of Images
0 30.4 s Sunny Driving 305

1 34.1 s Sunny Driving + Traffic Jam 342

2 36.2 s Sunny Driving 363

3 35.0 s Sunny Driving + Traffic Jam 350

4 33.4 s Sunny Driving 335

5 38.9 s Sunny Driving + Traffic Jam 390

6 39.6 s Sunny Traffic Light 397

7 44.2 s Sunny Traffic Light 443

8 39.3 s Sunny Driving 393

9 36.3 s Sunny Driving 364

10 43.7 s Sunny Driving 438

11 34.5 s Sunny Driving 346

12 37.9 s Sunny Driving + Traffic Light 380

13 32.5 s Sunny Driving 325

14 35.7 s Rainy Driving + Traffic Light 357

15 38.3 s Cloudy Driving 384

16 34.9 s Rainy Driving + Traffic Light 350

17 35.9 s Rainy Driving 360

18 37.4 s Rainy Traffic Light 374

19 43.0 s Cloudy Driving 431

20 36.5 s Rainy Driving 366

21 44.7 s Rainy Traffic Light 448

22 35.1 s Rainy Traffic Light 351

23 45.0 s Rainy Driving 451

24 44.3 s Cloudy Driving + Traffic Light 443

25 43.7 s Cloudy Driving 438

26 38.5 s Rainy Driving + Traffic Light 386

27 45.6 s Cloudy Driving 457

Table 4.2 Summary of the video sequences of the DAVID data set. The 28 sequences contain a total of 10 767

images with pixel-wise labels available for every frame, making DAVID around nine times larger than the

largest existing data set for semantic video segmentation.

Traffic Sign Building Fence Other Pedestrian Pole Road Line Road Sidewalk Vegetation Car Wall Unlabeled
Semantic Class

0

5

10

15

20

25

30

35

40

R
el

at
iv

e
F

re
qu

en
cy

 [%
]

DAVID Class Distribution

0.05%

14.08%

0.28% 0.29% 1.02% 0.74% 1.86%

33.8%

5.85% 4.78% 3.63%
0.82%

32.81%

Figure 4.8 Overview of the semantic classes and their relative frequency in the DAVID data set. The frequency

of critical classes such as Pedestrian is almost identical to real-world data sets such as Cityscapes.

4 Component-Level Failure Prediction

80

4.2.3 Results

Next, we present the results of the experiments conducted to evaluate the proposed spatio-temporal

failure prediction approach. First, we discuss the baseline semantic video segmentation model which

consists of DeepLabV3+ extended with convolutional LSTMs. Then, we present the results of the

spatio-temporal introspection approach and compare it to the state-of-the-art reference approach of

Deep Ensemble as well as the single-image introspection approach from Section 4.1.

4.2.3.1 Semantic Video Segmentation

To allow the spatio-temporal introspective model to share the encoder with the baseline semantic

segmentation model, both models need to be trained with video sequences instead of still images. As

a baseline semantic video segmentation model Svideo , we use the architecture shown in Figure 4.6.

We train and evaluate on both Cityscapes as a benchmark real-world data set and on the DAVID data

set as a larger data set where each frame has pixel-wise labels. Cityscapes provides a sequence of

images leading up to each labeled frame. We follow the standard procedure of splitting up the images

with publicly available labels into 2975 training images, 100 validation images and 400 test images.

Due to the smaller size of Cityscapes compared to A2D2, we reuse the training set for training the

introspective model. Since DAVID is around three times larger, we split the 22 training sequences into

two subsets, using 11 sequences for training the baseline model and reserving another 11 sequences

for training the introspective model. From the remaining six sequences, three sequences each are

used for validation and testing.

The training of Svideo is done using the same training procedure as before. We evaluate the

performance of the baseline semantic video segmentation model by computing the mean Average

Precision (mAP) on the test set. For reference, we also train the original DeepLabV3+ without convo-

lutional LSTMs. The resultingmAP of the regular DeepLabV3+ and for spatio-temporal DeepLabV3+

for both data sets is summarized in Table 4.3. Similar to the literature on semantic video segmenta-

tion [77], incorporating temporal information consistently improves performance by up to 1 %. The

relatively small increase can be explained by the models already being highly optimized for this

task. In the case of the simulation-based DAVID data set, the baseline model performs significantly

better than on Cityscapes, which can be explained by the less complex nature of simulation images

compared to real-world data.

Model DAVID Cityscapes
DeepLabV3+ 91.1% 84.6%

Spatio-temporal DeepLabV3+ 91.2% 85.6%

Table 4.3 mAP of DeepLabV3+ compared to DeepLabV3+ extended with convolutional LSTMs, evaluated on

the test set from Cityscapes and DAVID.

4.2.3.2 Spatio-Temporal Failure Prediction

Next, we present the results for the spatio-temporal introspective failure prediction approach. To

generate the ground-truth error labels required for training the introspective model, the spatio-

temporal DeepLabV3+ is used. On Cityscapes, the pixel-wise errors for the 2975 training images are

obtained and used as targets for training Sintro ,video . On DAVID, the ground-truth error maps for the

11 sequences reserved for introspection are generated and the introspective decoder is trained on the

corresponding images. The ground-truth error maps generated by the spatio-temporal DeepLabV3+

on the validation set of both Cityscapes and DAVID are used for validation during training. The same

training procedure as before is used to train the models until convergence.

4.2 Introspective Failure Prediction for Semantic Video Segmentation

81

As a reference approach from the literature, we again use Deep Ensemble, which outperformed

MC dropout significantly in Section 4.1. As before, four additional models of the spatio-temporal

DeepLabV3+withdifferent random initializations are trainedand thepixel-wisevarianceof the result-

ing five predictions is used as a failure probability. We also compare to the single-image introspection

approach from Section 4.1. Since the single-image approach does not include convolutional LSTMs

in the encoder, it cannot share weights with the spatio-temporal baseline model. The single-image

introspection model therefore needs to be trained from scratch without sharing any weights. For a

fair comparison, we also train the spatio-temporal introspection once without reusing the weights

from the spatio-temporal DeepLabV3+.

The failure prediction performance on DAVID and Cityscapes of the reference approaches, the

spatio-temporal introspection approach trained from scratch, and the spatio-temporal introspection

model with the shared encoder is summarized in Table 4.4. As a metric for the binary classification

task, the AUC of the precision-recall curve is used as before.

Method DAVID Cityscapes
Deep Ensemble [12] 44.2% 53.8%

Single-Image Introspection [22] 55.3% 67.3%

Spatio-Temporal Introspection from scratch 57.0% 71.5%

Spatio-Temporal Introspection with shared encoder 60.6% 76.1%

Table 4.4 Average AUC values of the spatio-temporal failure prediction approach compared to single-image

introspection and Deep Ensemble. Using temporal information consistently improves performance.

Similar to the evaluation on theA2D2data set in Section 4.1, single-image introspection outperforms

Deep Ensemble significantly by at least 11.1 %. The spatio-temporal introspection approach trained

from scratch improves still-image introspection by 1.7 % to 4.2 %, demonstrating the benefits of

considering temporal information. By sharing the encoder with the baseline semantic segmentation

model, the spatio-temporal introspection approach further improves by 3.6 % to 4.6 %, outperforming

single-image introspection by at least 5.3 %. Interestingly, the failure prediction performance on the

real-world Cityscapes data set is significantly better at 76.1 % compared to the 60.6 % achieved on the

simulation-based DAVID data set. This is explained by the better baseline performance on DAVID

shown inTable 4.3. Thebetter the baselinemodel performs, the fewer errors are available to learn from.

Conversely, the more challenging and complex a segmentation task is, the better introspective failure

prediction performs. This is a useful quality for deployment on real roads, where the environments

are often highly complex as well.

Finally, a class-wise evaluation is performed. Since all versions of introspection significantly out-

performed Deep Ensemble in the image-wise evaluation, we only report the results for single-image

introspection compared to spatio-temporal introspection in the following. We compute the average

AUC from the precision-recall curve for each individual class. The results for the DAVID data set are

shown in Table 4.5. Interestingly, the spatio-temporal approach is slightly worse for dynamic classes

such as Car or Pedestrian. However, the performance for Pedestrian is already very high at 87.2 %, mak-

ing it more challenging to further improve for that class. The improvements of the spatio-temporal

approach are most evident in street-related classes such as Road and Sidewalk. Segmentation errors in

such areas are commonly caused by temporary shadows or occlusions. The sequential input offers

information about the appearance of such detrimental factors, allowing the failure prediction model

to detect them more precisely.

For Cityscapes, the spatio-temporal approach does improve the performance for the dynamic

classes of Pedestrian and Car by 1.5 % and 10.0 %, while also improving Road and Sidewalk by at least

6.8 %. This suggests that on more complex real-world images, the addition of temporal information

is beneficial both on average and for the most safety-critical classes.

4 Component-Level Failure Prediction

82

Semantic Class Single-Image
Introspection

Spatio-Temporal
Introspection

Traffic Sign 50.2 % 44.0 %

Building 56.7 % 61.6 %

Fence 22.3 % 25.9 %

Other 73.0 % 79.2 %

Pedestrian 88.9 % 87.2 %

Pole 74.1 % 75.0 %

Road Line 57.4 % 64.0 %

Road 52.3 % 58.8 %

Sidewalk 53.9 % 60.9 %

Vegetation 58.1 % 59.2 %

Car 61.0 % 56.2 %

Wall 42.9 % 55.2 %

Average 55.3% 60.6%

Table 4.5 Class-wise AUC values of the spatio-temporal introspection approach compared to single-image

introspection, evaluated on the DAVID data set.

Semantic Class Single-Image
Introspection

Spatio-Temporal
Introspection

Road 73.5 % 88.5 %

Sidewalk 81.6 % 88.4 %

Building 70.0 % 79.2 %

Wall 83.2 % 76.2 %

Fence 86.3 % 75.5 %

Pole 90.1 % 86.2 %

Traffic Light 38.1 % 29.5 %

Traffic Sign 57.8 % 52.8 %

Vegetation 75.0 % 76.1 %

Terrain 72.5 % 71.9 %

Sky 10.8 % 2.5 %

Person 67.0 % 68.5 %

Rider 89.0 % 83.1 %

Car 47.5 % 57.5 %

Truck 63.5 % 66.2 %

Bus 79.0 % 91.3 %

Train 73.3 % 66.7 %

Motorcycle 85.9 % 68.7 %

Bicycle 93.1 % 85.3 %

Average 71.5% 76.1%

Table 4.6 Class-wise AUC values of the spatio-temporal introspection approach compared to single-image

introspection, evaluated on the Cityscapes data set.

4.3 Predicting Future Segmentation Errors

83

4.3 Predicting Future Segmentation Errors

Temporal information allowed to improve the performance of introspective failure prediction for the

current image. In addition to this, the temporal information present in video sequences can also be

used to extrapolate into the future. In the literature, video sequences have been used successfully

to predict the semantic maps of future frames [80, 81]. In this section, we apply this concept to

introspective failureprediction anduse it topredict the failures of future frames. Accuratelypredicting

failures of semantic segmentation before they happen can give the system time to adjust its perception

module or to alert the human driver of the impending failure. Next, we present our proposed

approach for future failure prediction.

4.3.1 Error Map Extrapolation

The state of the art in future semantic map prediction uses sequences of previous predicted semantic

maps to extrapolate into the future. We follow the architecture proposed by Rochan et al. [81] for

extrapolating from a given sequence of previous predicted error maps to predict a future error map.

The architecture takes a sequence of the last four predicted error maps Et−3, ,..., t as input. The error

map sequence is fed through four convolutional layers. After each convolutional layer, the resulting

feature map sequence is fed into a convolutional LSTM as well as into the next convolutional layer.

The output of the last convolutional LSTM is then fed into a 1 × 1 convolutional layer followed by an

upsampling deconvolution layer. The result is concatenatedwith the output of the next convolutional

LSTM. This process is repeated twice until all four convolutional LSTMs have been concatenated and

the original resolution is restored. The target labels for the input error map sequence are the future

ground-truth pixel-wise errors Et+n , that are n frames in the future. The resulting architecture is

visualized in Figure 4.9.

co
n

v5
-3

co
n

v3
-3

convLSTM

co
n

v1

p
o

o
l1

d
ec

o
n

v

d
ec

o
n

v

d
ec

o
n

v

d
ec

o
n

v

+ + +

Predicted Errors
Et-3, Et-2, Et-1, Et

Ground Truth Error
Et+n as Target

convLSTM

convLSTM

convLSTM

Figure 4.9 Overview of the architecture that uses a sequence of previous predicted error maps Et−3, ,..., t to

predict a future error map Et+n that is n steps in the future (adapted from [27] © 2021 IEEE).

The choice of the target ground-truth error map Et+n determines the behavior of the resulting

model. Any integer value can be selected for n. In related work of future semantic map prediction,

semantic maps up to 0.2 s in the future are predicted [81]. To evaluate how far the extrapolation can

still achieve useful results, we use frames of up to 0.5 s in the future. Public data sets with sequential

semantic maps commonly have a frequency of 10 Hz, same as the proposed DAVID data set. To

predict up to 0.5 s into the future, we therefore train one model each with the ground-truth future

error maps Et+n ,GT , n ∈ [1, 5].
While the main goal of the proposed architecture is to predict future errors, the target can also be

chosen to be the ground-truth error map Et of the current frame, with n � 0. The model is then

trained to generate the ground-truth error map from the predicted error map of the current frame

plus the previous three predictions. When the architecture from Figure 4.9 is trained like this, the

resulting model works similar to a denoising autoencoder. The model receives a partially incorrect

error map and tries to reconstruct the ground-truth error map from it. It can therefore be seen as

refining the initial error map prediction. While not the focus of this section, we include the special

case of n � 0 in the subsequent experiments.

4 Component-Level Failure Prediction

84

4.3.2 Results

We evaluate the proposed future failure prediction approach for semantic video segmentation on two

data sets. First, we use the DAVID data set as before, which has been created for this purpose. For

an evaluation on a real-world data set, we cannot use Cityscapes anymore. Ground-truth error maps

are required for every single frame of each sequence, which requires ground-truth semantic labels

for every frame. Cityscapes only offers semantic labels for one frame per sequence. Therefore, we

use the largest publicly available video data set with pixel-wise labels for each frame, the Highway

Driving data set [19]. It contains 1200 images among 20 video sequences collected on highways. We

use 15 sequences for training both the semantic video segmentation model and the spatio-temporal

failure prediciton model. Of the remaining sequences, two are used for validation and three are used

for testing.

For both data sets, a baseline segmentation model Svideo and an introspective failure prediction

model Sintro ,video is trained as described in Section 4.2. For the DAVID data set, the same models

as in Section 4.2 are used. For the Highway Driving data set, the spatio-temporal DeepLabV3+

achieves an mAP of 91.84 %. The high performance is due to the simpler, repetitive structure of high-

ways compared to urban driving. In a precision-recall analysis, the corresponding spatio-temporal

introspection model achieves an AUC of 77.7 %.

With all necessary models trained, the predicted and ground-truth error maps are obtained for all

frames. Then, a future failure prediction model S f uture is trained with target labels from n frames in

the future. Its input is the predicted error sequence E t−3,..., t and its target is the ground-truth error

map Et+n ,GT . We train one model with n � 0 as a potential refinement of the current prediction. For

future failures, we train one model each with n � 1, 2, .., 5.

To the best of our knowledge, no approach for predicting future failures of semantic segmentation

is available in the literature. As a simple baseline predictor, we therefore copy the predicted errormap

Et for future time steps t + 1, t + 2, ..., t + 5. This allows determining if the future failure prediction

offers any benefits over simply using the current failure prediction to make decisions about the next

five frames.

We evaluate the proposed future failure prediction models S f uture as well as the baseline predictor

Copy Et using a precision-recall analysis. The AUC of all models for n � 0, 1, ..., 5 evaluated on the

DAVID data set is shown in Table 4.7.

t t+1 t+2 t+3 t+4 t+5

Copy Et 60.6 % 57.5 % 55.4 % 54.2 % 53.4 % 53.0 %

S f uture 75.8% 72.9% 71.4% 69.6% 67.3% 64.4%

Table 4.7 AUC of the proposed approach to predict failures of images n � 0, 1, ..., 5 frames in the future,

evaluated on the DAVID data set.

The refinement model trained with the current ground-truth labels at n � 0 significantly improves

the failure prediction performance from 60.6 % to 75.8 %. This is potentially due to the low initial

failure prediction performance, where large gains are comparatively easy to achieve. For future

frames up to n � 5 time steps in the future, the corresponding S f uture model consistently improves

the performance by at least 11.4 %. Notably, the performance for failures five frames in the future

is still higher than the performance of the original spatio-temporal introspective failure prediction

model for the current frame. While DAVID is simulation-based and thus less challenging than real-

world data sets, these results demonstrate the potential of using sequences of previous predicted

error maps to extrapolate into the future.

4.3 Predicting Future Segmentation Errors

85

The performance on the Highway Driving data set is shown in Table 4.8. For real-world images,

the refinement approach of training S f uture with the ground-truth error maps of the current frame

does not improve performance. A possible explanation is the labeling strategy used for the Highway

Driving data set, where all class boundary areas are labeled as "void" and not used during evaluation.

Since the class boundaries are typicallywheremanymisclassifications occur, not counting those pixels

reduces the effect that a refinement of the class borders could have had.

For the main purpose of predicting failures from future frames, S f uture improves the baseline

predictor Copy Et significantly by at least 4.5 %. Five frames in the future, the corresponding S f uture
model outperforms Copy Et by 8.2 %, indicating that the model is capable of accurately extrapolating

into the future.

t t+1 t+2 t+3 t+4 t+5

Copy Et 77.7% 69.4 % 66.3 % 64.3 % 63.2 % 62.3 %

S f uture 74.3 % 73.9% 73.4% 72.4% 71.6% 71.5%

Table 4.8 AUC of the proposed approach to predict failures of images n � 0, 1, ..., 5 frames in the future,

evaluated on the Highway Driving data set.

4 Component-Level Failure Prediction

86

4.4 Chapter Summary

In this chapter, we introduced an introspective failure prediction approach for component-level

failures. The task of semantic segmentation was used as one of the most relevant components of the

perception module of an autonomous system.

First, we developed a framework for predicting pixel-wise failures of semantic image segmentation

in Section 4.1. The framework is based on the concept of introspection. Pixel-wise failures of a given

baseline semantic segmentationmodel are recorded and used as target labels for an introspective fail-

ure prediction model. The introspective model can also be implemented as a semantic segmentation

model. By reusing the encoder of the baseline segmentation model, the introspective model is faster

to train, faster in inference, and shows improved performance. Evaluated on the A2D2 data set, the

proposed introspection approach outperforms the state of the art by over 3 %, while being five times

faster during inference.

In Section 4.2, we extended this approach by using video data as input. For this, we extended

the baseline semantic segmentation model with convolutional LSTMs to learn from spatio-temporal

features. The introspective model is extended in the same way. To allow training the semantic

video models on a large data set, the large-scale Densely Annotated Video Driving (DAVID) data

set was generated in the CARLA simulator. The proposed spatio-temporal failure prediction model

outperforms the state of the art by at least 16.4 % and outperforms single-image introspection from

Section 4.1 by at least 5.3 % when evaluated on Cityscapes and DAVID.

Finally, in Section 4.3, the spatio-temporal information available in video input was exploited to

extrapolate into the future and predict pixel-wise failures for future frames. An encoder-decoder

architecture with convolutional LSTMs was trained with sequences of the previous predicted error

maps as input and the ground-truth future error map as target labels. Both on DAVID and the

Highway Driving data set, the proposed approach outperforms a baseline predictor by at least 8.2 %

when predicting failures for images five frames into the future.

87

5 Failure Prediction Applications

In Chapter 3 and Chapter 4, failure prediction approaches for both system-level and for component-

level failures were designed, resulting in a comprehensive framework that monitors an autonomous

system on multiple levels. The most straightforward application of such a failure prediction frame-

work is to warn a human operator in advance to give them enough time to prepare for taking over

control. In addition to preparing a takeover maneuver, information obtained from failure prediction

can also be used to correct or adjust the system, ideally avoiding a takeover from being necessary in

the first place.

In this chapter, we present three approaches that build on the insights from the proposed failure

prediction methods to either correct detected failures or to preemptively avoid predicted failures.

We propose an approach for correcting failure regions in semantic segmentation and a reverse error

modeling approach for correcting pixel-wise errors made by a semantic segmentation model. Then,

we introduce an introspective sensor monitoring system where failures of individual sensors are

predicted to adjust a fusion-based object detection system accordingly.

Some of the concepts and contributions of this chapter have been published in [24, 28, 29].

5.1 Improving Visual Scene Perception Using a Two-Stage Approach

When visualizing the pixel-wise introspective failure prediction for semantic segmentation in Sec-

tion 3.3, it can be seen that introspection is capable of detecting entire areas of failures in addition to

the typically erroneous class boundaries. In this section, we propose to localize such failure regions

and then reclassify them to improve the overall visual scene perception. For this, we follow the

strategy humans use to improve the perception of complex scenes. Human vision follows a two-stage

approach termed theZoomLensModel in the literature [20]. We introduce thismodel and the proposed

application to computer vision next.

5.1.1 Zoom Lens Model

Since human perception is the source of most ground-truth annotations used in computer vision

tasks, the strategy employed in human vision to understand complex scenes is a useful source of

inspiration. Early investigations of human perception showed that not everything in a scene is

processed simultaneously. A first analysis of the scene is used to then focus attention on individual

locations [173]. Specifically, the first assessment of a scene is performed at an overall low resolution

power, with the attention allocated across the entire visual field [174]. Then, local visual cues are

followed to inspect individual areas with increased mental processing power. This two-step process

of performing an initial global assessment followed by a zoomed-in local refinement was termed

the Zoom Lens Model [20]. Dividing the scene perception into two stages allows humans to quickly

understand the general contents of a scene in a first look. The second, focused look at initially unclear

or confusing areas allows to then obtain a detailed understanding of the entire scene without needing

to physically move.

We propose to apply this two-stage process to computer vision and implement a two-stage visual

scene perception framework directly inspired by the Zoom Lens Model. To the best of our knowledge,

our work is the first to use this concept for semantic segmentation. In the literature, some related

concepts such as analyzing different parts of an image at different resolutions have been used before.

For example, Tesla performs object detection once on the entire image, and then a second time

on high-resolution crops of the center of the image [175]. Their approach lacks any information

5 Failure Prediction Applications

88

about which regions have not been properly assessed in the first step. The concept of next-best

view prediction [176] does rely on assessing the short-comings of the current view to then add new

perspectives for an improved perception. For this, physical movement of the sensor is required. In

contrast, the proposed approach operates on the same image. This is similar to humans not needing

to move to better understand a scene.

The first stage of the proposed approach that mimics the human Zoom Lens Model is semantic

segmentation of the entire image. This corresponds to the first global assessment at an evenly

distributed, but overall low resolution. Then, pixel-wise failure prediction is used to extract local

failure regions. For the second, focused look, we use a local classifier trained with the most relevant

objects to be expected in the scene. The local classification of each failure region is then used to update

the initial semantic prediction from the first stage. Since the first step consists of already available

state-of-the-art semantic segmentation, we focus on the second step in the following.

5.1.2 Failure Region Detection and Correction

The second stage in the human Zoom Lens Model is based on local visual cues to decide where to

look twice. For semantic segmentation, we use pixel-wise failure prediction such as proposed in

Chapter 4 to provide such cues. We obtain local failure regions from a pixel-wise predicted error

map, classify each failure region and then perform an update. Next, we discuss the proposed pipeline

for predicting distinct failure regions for a given image and its predicted semantic map.

5.1.2.1 Failure Region Prediction

In Chapter 4, we proposed several approaches for predicting pixel-wise failures of semantic segmen-

tation. Now, we are interested in obtaining entire regions with a high failure density. We propose

a multi-step pipeline for predicting failure regions. An overview of the proposed workflow is given

in Figure 5.1. The Region of Interests (ROIs) of a pixel-wise failure prediction are filtered, clustered,

and processed to obtain a set of distinct failure regions. We explain each step in more detail in the

following.

Input image

Failure

prediction

ROI

filtering Erosion +

dilation with

masks M1,2,3

M1 M2 M3

k-means

clustering

Postprocessing

Failure regions

Figure 5.1 Summary of the pipeline to obtain distinct failure regions for the predicted semantic segmentation

of a given input image. Predicted pixel-wise failures are filtered with a predicted ROI mask. Then, erosion and

dilation masks are applied to remove spurious predictions. After clustering and a final postprocessing step, a

set of bounding boxes of local failure regions is obtained (adopted from [24] © 2020 IEEE).

Failure Prediction To extract failure regions from the predicted semantic segmentation, we first

predict its pixel-wise failures. For this step, we use the state-of-the-art introspection approach intro-

duced in Section 3.3. The encoder from the semantic segmentationmodel used to obtain the predicted

semantic map from the first stage of the scene perception is frozen and reused for the introspective

model. Then, pixel-wise error maps generated with the baseline semantic segmentation model are

used as target labels for training the introspective decoder. The introspective decoder assigns each

pixel a failure probability. A visualization of the resulting pixel-wise failure prediction for a sample

image from the A2D2 data set is shown in Figure 5.2. To better highlight the impact of each step

in the proposed failure region detection pipeline, a failure probability of 0 is shown as black and a

predicted probability of 1 is shown as white in this section.

5.1 Improving Visual Scene Perception Using a Two-Stage Approach

89

Input Image Pixel-Wise Failure Prediction

Figure 5.2 Visualization of the pixel-wise failure prediction (right) for a given input image (left), which is the

basis for the proposed failure region detection system.

ROI filtering Not every predicted pixel-wise failure is relevant for driving. Segmentation errors

made in the background or at the edges of the image are likely to be less safety critical, for example.

To automatically select the most relevant regions based on the visual features of the image, we use

a state-of-the-art ROI prediction model for the next step of the pipeline. Xia et al. [99] proposed an

ROI model trained with recorded human gaze data on a large-scale driving data set. Their model

allows predicting which areas are the most interesting from a human’s perspective. We use the

predicted ROIs as a filter to only keep the predicted failures within interesting regions. Relying on

ROI prediction does not necessarily increase the complexity of the system. Such a model is likely to

be implemented in some form already in the vehicle, since ROI prediction has been shown to improve

the performance of driving models [177].

We visualize the effect of filtering the failure prediction with the predicted ROIs in Figure 5.3. Four

distinct ROIs are visible, all of which correspond to critical objects on the road, such as the closest

cars on both sides of the road as well as the pedestrians on the street. After the ROI filtering, the

more irrelevant predicted failures corresponding to the sidewalk or the buildings in the background

are removed.

ROI Prediction ROI-Filtered Failure Prediction

Figure 5.3 Visualization of filtering the pixel-wise failure prediction with the predicted ROIs (left). For the

sample image, the filtered failure prediction (right) contains only failures corresponding to areas that contain

cars or people.

Smoothing While the ROI-filtered failure prediction is focused on relevant areas, these areas still

contain irrelevant, spurious failure pixels. A common source of unwanted predicted failure pixels are

object boundaries. Boundaries are oftenmisclassified, but do not correspond to entire failure regions.

Predicted failure patches with an insignificant spatial structure, e.g., thin lines or individual pixels,

should therefore be removed to avoid being detected as a region.

5 Failure Prediction Applications

90

First, the failure prediction is binarized. The failure probabilities at this point still range from 0 to

1. Pixels with a low failure probability can be removed to further focus on relevant failures. Since

false positives are generally less critical in safety-critical failure prediction tasks, we empirically select

a low threshold of 0.3 for the binariziation. Any failure probability above this threshold is set to 1

and the rest is set to 0.

The binary failure map is then smoothed to remove disconnected, spatially insignificant failure

regions. We use two morphological operations, erosion and dilation. First, erosion removes smaller

structures, then dilation restores the original shape of larger structures that were not filtered out

by the erosion. For both operations, we apply one horizontal mask M1, one vertical mask M2, and

one square mask M3, as shown in Figure 5.1. For images in HD resolution, we chose the pixel-wise

dimensions of the masks as M1 � 5 × 15, M2 � 15 × 5 and M3 � 10 × 10. The effect of binarizing and

smoothing the ROI-filtered failure prediction is shown in Figure 5.4. Thin lines are largely removed,

with mostly connected failure regions remaining.

ROI-Filtered Failure Prediction Smoothed Failure Prediction

Figure 5.4Visualization of binarizing and smoothing the ROI-filtered failure prediction (left) with three erosion

and dilation masks. The smoothed failure prediction (right) mostly consists of connected failure regions.

Clustering Finally, the filtered, binarymap can be clustered into distinct failure regions. We use the

well-established k-means algorithm [178]. For the number of clusters to be generated for each image,

we select k � 6. This value is highly scenario-dependent and was tuned for the driving context. It

should be noted that it is rare that more than six objects are both critical and misclassified at the same

time, considering the accuracies of beyond 90 % exhibited by state-of-the-art semantic segmentation

models on challenging driving data sets [84]. In preliminary experiments, a higher value for k did

not result in more useful detected failure regions, but led to excessively small clusters that did not

contain distinct objects anymore. In Figure 5.5, the clusters generated with k-means on the sample

image are visualized with a red bounding box around the pixels belonging to each cluster. Figure 5.5

shows only five clusters, since the sixth one was removed in the final postprocessing step explained

next.

Smoothed Failure Prediction Clustered Failure Regions

Figure 5.5 Visualization of the clusters obtained from the smoothed failure prediction using the k-means

algorithm. Each cluster is shown via a red bounding box around the pixels belonging to the respective cluster.

5.1 Improving Visual Scene Perception Using a Two-Stage Approach

91

Postprocessing A last postprocessing step ensures that only useful and valid clusters are used in

the final failure region list. Several requirements that the clusters have to fulfill are verified. First, we

define a minimum cluster size to avoid clusters that do not contain distinguishable visual features.

Thus, any cluster smaller than 5 % of the image width is removed. The sixth cluster from Figure 5.5

was removed due to this requirement, since it comprised only the small white area on the far left

of the image. Second, excessively large clusters that are bigger than 25 % of the width and thus

typically contain multiple objects are removed as well. Third, even clusters with a reasonable size

can contain visual contents that do not correspond to any objects. A simple entropy-based filter is

applied to address this. The Shannon entropy [179] of each grayscale image patch is calculated as

a straightforward measure of how distinct the visual features in each region are. Any cluster with

an entropy of less than 6 bits per pixel is removed. Regions with an entropy below this empirically

selected value typically have uniform and blurred contents. The remaining clusters are used as a list

of detected failure regions. Next, a local classifier is designed to allow for reclassifying each detected

failure region.

5.1.2.2 Failure Region Classifier

For correcting the detected failure regions, we use a classifier as an equivalent to the second look

humans perform in the Zoom Lens Model. Compared to the global segmentation, a local classification

is a less complex task. Only one object needs to be classified in each patch. The design of the failure

region classifier depends on the data set used to train the semantic segmentationmodel. In the context

of failure prediction for autonomous driving, the most relevant classes are road participants. They

include cars, bicycles, pedestrians, motor bikes and larger vehicles such as trucks. To obtain images

that contain only those classes, bounding box annotations are required. Since most autonomous

vehicles are equipped with object detectors, such labels are likely available in the training set anyway.

Then, the bounding box image patches from each road participant class are cropped out of the training

images and used to train a road participant classification network. Despite the postprocessing in the

failure regiondetection, not all clusters contain roadparticipants. To address this, we add aBackground
class that consists of randomly sampled crops from the background of the training images. For the

resulting task of image classification, any state-of-the-art architecture such as ResNet50 [40] can be

used. An example is shown in Figure 5.6, where each of the five remaining clusters obtained from

the failure prediction is classified as either a road participant or as background.

Car Bicycle Bicycle

Pedestrian Background

Predicted Failure Regions

Figure 5.6 Example for the classification of the predicted failure regions.

5 Failure Prediction Applications

92

5.1.2.3 Semantic Segmentation Update

The information from the classification can now be used to update the predicted semantic map on a

pixel-wise level. This requires localizing the object that caused the classifier to make its prediction.

In Chapter 3, Class Activation Maps (CAMs) were used to visualize which features the introspective

models used to make their prediction. Here, we use CAMs to localize which pixels resulted in the

current classification. The effectiveness of CAMs to localize objects in images has been shown before

in works such as [102]. We filter the smoothed failure predictionwith the CAM from the classification

of the corresponding input image, removing all failure pixels where the CAM value is below 0.5.
The resulting CAM-filtered failure prediction contains only those failure pixels that are part of the

classified objects. Irrelevant pixel-wise failures in the background of the patch are thus removed. This

process is visualized in Figure 5.7 for an exemplary failure region containing a pedestrian. The CAM

demonstrates that the lower part of the pedestrian was used by the classifier to reach its prediction.

Thus, all predicted failures among the lower part of the person remain, while the pixel-wise failures

of the cars in the background are filtered out.

Predicted Failure Pixels Class Activation Map CAM-Filtered Failure Pixels

×

Figure 5.7 Visualization of the CAM filtering of the smoothed failure prediction.

Finally, the predicted semantic segmentation from the first step of the visual scene perception can

be updated with the results of the second stage. All pixels of the CAM-filtered failure prediction

are changed to the class predicted by the classifier. Even if the classifier did not classify the patch

correctly, only predicted failure pixels are changed, reducing the likelihood of introducing new errors

to the predicted semantic map. The update of the semantic map is visualized in Figure 5.8. The input

image and the ground-truth labels are shown as well as the output of the first and second stage of

the proposed approach. Most notably, the pedestrian (yellow) is initially misclassified as a bicycle

(orange). In the updated semantic map, the person is now largely changed to the class Pedestrian as

seen by the yellow pixels introduced to the area.

Input Image Predicted Semantic Map Updated Semantic Map Ground Truth Labels

Figure 5.8 Visualization of the update of the predicted semantic map. The pedestrian (yellow) is initially

misclassified as a bicycle (orange), which is partially corrected in the update step.

5.1 Improving Visual Scene Perception Using a Two-Stage Approach

93

5.1.3 Results

Next, we present results from the experiments we performed to evaluate the proposed two-stage

approach for improving visual scene perception. Since this approach is based on the introspective

failure prediction method introduced in Section 3.3, we again evaluate on the A2D2 data set [86]. For

the first stage of the proposed approach, a DeepLabV3+ model is trained on the same 16 000 training

images as in Section 3.3. The training set also provides bound box annotations. These are required

to obtain the training images for the road participant classifier. The other 16 000 images from the

original training set of A2D2 are used to train the introspective decoder. We use the same models

trained in Section 3.3. The proposed second stage for improving the semantic segmentation is then

applied and evaluated on the 4000 test images. The baseline DeepLabV3+ model has a test accuracy

of 94.0 %. While this is an overall high performance, the 6 % of incorrect predictions can contain

safety-critical objects such as pedestrians, motivating the application of the proposed approach. The

following experiments are thus focused on detecting and correcting the failure regions among these

most challenging 6 % of pixels that were misclassified by the DeepLabV3+ model.

5.1.3.1 Failure Region Prediction and Reclassification

The failure region prediction pipeline shown in Figure 5.1 is applied to each test image to obtain a

list of failure regions for each image. Pixel-wise failures are predicted using the introspection model

from Section 3.3. Then, the pre-trained ROI prediction model from [99] was applied to the input

image and the resulting failure prediction was filtered with the predicted ROIs. The filtered failure

map was binarized and smoothed using the three morphological masks M1, M2 and M3, which we

applied first as an erosion and then as a dilation. Then, six clusters are extracted from the resulting

failure map using the k-means algorithm. Clusters that were too small, too big, or where the pixels

had a low Shannon entropy [180] were removed.

To reclassify the obtained predicted failure regions, a road participant classifier is trained using

the cropped bounding box patches of the classes Car, Pedestrian, Bicycle, Small vehicle, and Truck from
the training set. We focus on dynamic classes, since they constitute the most safety-critical objects

in the context of driving. As a none-of-the-above class, we also add Background as a final class to

the training set for the classifier. The training images of this class are generated by cropping squares

of sizes between 5 % and 25 % of the image width from the parts of the training images that do not

contain any dynamic road participant class. Since Car is far more common than the other classes,

we randomly downsample the cropped bounding box images from the class Car by removing every

second bounding box. This way, the most common class Car is less than ten times as frequent as

the least common class of Truck. The resulting data set used for training and validating the road

participant classifier contains almost 18 000 images. Its contents are summarized in Table 5.1.

Class Number of Images
Car 4589

Pedestrian 2570

Bicycle 1897

Small vehicle 498

Truck 1518

Background 6773

Table 5.1 Summary of the data used to train the failure region classifier. The bounding boxes from the most

common class Car were undersampled by a factor of 2 to avoid an excessive class imbalance.

5 Failure Prediction Applications

94

Using the data shown in Table 5.1, we then train a ResNet50 classifier pre-trained on ImageNet [41].

We use 90 % of the data set for training and 10 % for validation. For testing, the predicted failure

regions from the testing set will be used. To address the class imbalance, the loss was weighted

inversely with the relative frequency of each class during training. We train the ResNet50 until the

validation loss has plateaued for five epochs. The resulting validation accuracy is 96.0 %. If a dynamic

class is present in the predicted failure region, this result suggests that the road participant classifier

will be able to accurately classify it.

Next, each predicted failure region from the 4000 test images is classified with the finetuned

ResNet50. Each region predicted to be Background is discarded since no safety-critical object can

be recovered from such areas. A total of 4686 failure regions are classified as one of the dynamic

road participant classes. This corresponds to just slightly more than one partially misclassified road

participant per test image, which is in linewith the overall high accuracy of 94.0 % of the DeepLabV3+

model. From these 4686 failure regions, over 78 % actually contained a road participant, meaning

that around every fifth predicted participant is a false positive. In Table 5.2, we summarize the

classification accuracy for each individual class from the 3664 predicted failure regions that did

contain a road participant.

Class Number of Failure Regions Accuracy
Car 1255 99.1 %

Pedestrian 663 63.4 %

Bicycle 743 34.3 %

Small vehicle 100 45.0 %

Truck 903 41.1 %

Σ 3664 63.8 %

Table 5.2 Classification accuracy for each road participant class present in the predicted failure regions.

The average accuracy is 63.8 %. The most common class of Car is correctly classified almost every

time at 99.1 %. While Truck achieves the lowest accuracy at 41.1 %, this is partially explained by trucks

often being misclassified as Car. Such an incorrect prediction would still be useful from a safety point

of view.

An overall accuracy of 63.8 % is significantly lower than the validation accuracy of 96.0 %. This

is due to the inherently challenging nature of failure regions. During training, the bounding boxes

contained all instances of the dynamic classes. During testing, the patches classified by the model

are predicted failure regions. They only contain areas where the first stage of semantic segmentation

alreadymade significantmistakes. We therefore focus on themost challenging visual features present

in each image, such as blurry, ambiguous, or occluded areas. Of such areas, the classifier is capable

of still classifying almost two thirds correctly.

5.1.3.2 Semantic Segmentation Update

The output of the failure region classifier is effectively an object detection list and can already be used

by combining it with the object detection system of the vehicle, for example. Here, we additionally

use the failure region classifications to perform the proposed pixel-wise update of the predicted

semantic map. For each failure region classified as containing a road participant, we use the filtered,

smoothed pixel-wise failure prediction used to cluster the corresponding region. Then, the CAM of

the ResNet50 is obtained and used to filter the failure prediction. Only the failure pixels belonging to

the predicted class remain. These failure pixels are then changed to the predicted semantic class in

the initial semantic prediction generated by the DeepLabV3+ model.

5.1 Improving Visual Scene Perception Using a Two-Stage Approach

95

Class Initial Prediction Updated Prediction
Car 89.0 % 88.8 %

Pedestrian 67.2 % 67.7 %

Bicycle 63.7 % 64.2 %

Small vehicle 76.1 % 77.0 %

Truck 86.3 % 86.3 %

All classes 78.8 % 78.7 %

Table 5.3 Class-wise and overall accuracy of the initial predicted semantic segmentation generated with the

DeepLabV3+ model and the updated semantic prediction.

The class-wise accuracy of the dynamic classes and the average accuracy over all classes of the initial

semantic prediction and the updated semantic prediction is summarized in Table 5.3. Except for Car,
the average accuracy is improved for all dynamic classes. Interestingly, the average accuracy over all

classes is slightly reduced by 0.1 %. The drop in overall accuracy is largely caused by background

classes such as Sky, Road, and Building having lower accuracy values after the update. This is due to

the class boundaries of dynamic objects often being changed to the dynamic class, and thus affecting

some of the background pixels behind the object.

While the class-wise accuracy does indicate that the update step mostly improved performance,

averaging the accuracy over all 4000 test images is not themost insightfulmetric. On average, less than

one failure region per image was updated. The average accuracy thus cannot increase significantly.

Considering we focus on the 6 % of misclassified pixels, this is also not the intention of the proposed

approach. Instead, individual failure regions where a safety-critical object was overlooked by the

initial segmentation should be recovered. To evaluate the performance of the proposed approach in

this regard, we next analyze how many road participants were improved on an instance level. For

each road participant present in the failure regions, we measure the absolute accuracy change among

the pixels belonging to each participant. The absolute number of road participants at changes in

accuracy from 5 % to 50 % is shown in Figure 5.9.

-50 -45 -40 -35 -30 -25 -20 -15 -10 -5 5 10 15 20 25 30 35 40 45 50
Absolute Accuracy Change [%]

0

50

100

150

200

250

300

350

N
um

be
r

of
 C

ha
ng

ed
 P

ar
tic

ip
an

ts

Accuracy Change After Update

Car
Pedestrian
Bicycle
Truck
Small Vehicles

Figure 5.9 Number of road participants where the update step changed the accuracy by 5 % to 50 % in either

direction. For instance, a total of 325 road participants are improved by 5 % or more, while the accuracy of 141

road participants decreases by 5 % or more (adopted from [24] © 2020 IEEE).

5 Failure Prediction Applications

96

Figure 5.9 shows that in absolute terms, the improvement from the update step is significant. For

instance, the absolute classification error from 232 road participants is reduced by 10 % or more. This

means that at least one tenth of the area in the image associated to these objects now contains the

correct semantic predictions, ensuring that the object is not overlooked during subsequent trajectory

calculations. Considering that a total of 4000 test images was evaluated, this result indicates that in

more than one out of twenty images, a misclassified dynamic object can be recovered this way. At an

initial accuracy of 94.0 %, this is a useful improvement, since most images do not contain significant

errors that need updating. However, in the comparatively rare case that a road participant is missed,

it is safety-critical to be able to correct these errors, as done by the proposed approach.

The improvements are most prominent in the smaller and less frequent classes of Pedestrian and

Bicycle. Only few instances of the most common class Car are improved, which is due to the first

semantic segmentation stage making the fewest errors for this class and thus missing almost no

cars that the proposed approach could then recover. While the accuracy improvements significantly

outnumber the decreases in accuracy as shown in Figure 5.9, the absolute error of 68 participants also

increases by 10 % or more. It is important to note that this decrease in accuracy only means that one

road participant class was changed into a different one. No information about the general presence

of a safety-critical dynamic object is lost from the semantic prediction this way.

Finally, we visualize the results of the proposed approach. Visualizing the updatedmaps allows for

a better understanding of what causes the introduced false positives andwhy they are not necessarily

an issue from a safety point of view. In Figure 5.10, we show five examples from the testing set. In

Figure 5.10 a), the original input image is shown. Five scenes that cover a range of driving scenarios

such as construction work, pedestrians crossing the street, and open driving are selected. Figure 5.10

b) shows the ground-truth semantic labels as reference. Most importantly, Pedestrian is shown in

yellow, Bicycle is shown in orange and Car is shown in blue. In Figure 5.10 c), the initial semantic

map predicted by DeepLabV3+ is visualized. The high testing accuracy is evident, with the overall

semantic structure of each sample image being correctly predicted. Finally, Figure 5.10 d) shows the

result of the proposed second stage of visual scene perception.

In the first row, the construction workers in the middle of the road are largely missed by the initial

semantic prediction, potentially due to their orangeoutfits resembling thevisual patterns of the orange

safety markings on the truck next to them. The introspective failure prediction correctly detects those

visual features as problematic and outputs a high failure probability for this area. The failure region

detection then clusters this area as a distinct failure region, which is classified as Pedestrian by the

ResNet50. After changing the predicted failure pixels, a distinct yellow area is introduced into the

updated semantic map, indicating the presence of pedestrians on the road. Notably, the introduced

yellow pixels also overwrite some of the correct background pixels of the building and the truck,

while not all pixels of the pedestrians are correctly changed to yellow. The resulting average accuracy

is therefore not necessarily increased, but the improvement regarding safety are dramatic. Without

the update, the system would have made the dangerous assumption that no people are on the road.

The second row shows a similar effect, with two pedestrians standing between cars at the side of the

road. They are again missed in the initial step, but the ambiguous features of this area are assigned

a high failure probability and thus a failure region is detected. After the update, a significant yellow

area is present. The system again introduces a large amount of false positives, but ensures that the

car is aware of the people that could potentially enter the road at any moment.

The third row demonstrates the effect of the update step for the class Bicycle. In the third row,

the cyclist on the right is difficult to spot among the shadows even for a human. Again, the failure

prediction assigns this complex area a high failure probability. The local classifier then only needs

to decide if that area contains a dynamic object or is just blurry background. The classifier correctly

detects the bicycle. The CAM-filtered failure pixels changed in the updatedmap are again not entirely

pixel-wise accurate, incorrectly changing several Road pixels to the Bicycle class. This comes at the

benefit of now having the knowledge that a bicycle is present in this area, even if the blurry visual

features do not allow a pixel-accurate localization.

5.1 Improving Visual Scene Perception Using a Two-Stage Approach

97

a) Original image b) Ground truth labels c) Predicted semantic map d) Updated semantic map

Figure 5.10 Visualization of the proposed update of the semantic prediction for five exemplary images. The

input image (a) and its ground-truth labels (b) are shown next to the initial semantic prediction byDeepLabV3+

(c). The updated semantic prediction is shown in (d). Car is shown as blue in the semantic maps, Pedestrian is

yellow, Bicycle is orange and Truck is dark blue (adopted from [24] © 2020 IEEE).

In the fourth row, the bicycle on the right ismisclassified as a pedestrian. This can be a safety-critical

mistake since unlike a pedestrian, a bicycle could join traffic on the road at any time. Interestingly,

only the bike is detected as a failure region and updated. This demonstrates that only the pixels most

relevant to the predicted class are changed, in this case the pixels belonging to the bike. While the

final semantic map contains both a Pedestrian and a Bicycle area in this region, the knowledge that

a bicycle is present at all can avoid making incorrect assumptions about the behavior of this road

participant.

Finally, the fifth row shows an improvement for the class Truck. The truck is behind the red car

and again difficult to spot. In the updated semantic map, the overlooked truck is mostly corrected

as seen by the dark blue color associated to Truck. Before the update, the truck was classified as the

same Fence class that surrounds it. Construction sites are an especially challenging environment for

autonomous vehicles. Being aware of every potentially dynamic traffic participant is critical for safe

driving. While this highlights the benefits of the proposed approach, the updated map also shows a

major limitation. Next to the truck, an orange Bicycle area is added due to misclassifying the round

lights from the traffic signs as wheels. While assuming a bicycle to be present would likely only make

the system drive more slowly, such false positives need to be addressed in future work to avoid overly

cautious behavior.

5 Failure Prediction Applications

98

5.2 Reverse Error Modeling for Improved Semantic Segmentation

In this section, we present another approach for correcting pixel-wise failures of semantic image

segmentation. We again follow a two-stage process of first generating an initial semantic prediction

and then applying a correction step. Instead of predicting failure regions and reclassifying them, we

now propose to train a model to directly correct the semantic prediction on a pixel-wise level. For

this, we first introduce the novel concept of reverse error modeling for semantic segmentation.

5.2.1 Concept

State-of-the-art semantic image segmentationmodels inevitablymakemistakes. Suchmistakes can be

caused bymodel imperfections or by problematic input, such as complex or compromised images. We

propose an approach that learns to reverse the pixel-wise errors made by an arbitrary given semantic

segmentationmodel. To achieve this, we reframe a semantic segmentationmodel as an error function

that is applied to the ground-truth semantic labels, thus generating the slightly incorrect semantic

prediction. Then, a model can be trained to approximate the inverse of this error function. Then, we

train a model to approximate the reverse error function. The concept of introspection introduced in

Section 3.3 is also based on learning from the recorded mistakes of a given model. Instead of then

predicting a pixel-wise failure probability, we now aim for predicting the correct class instead. For

this, we propose the following concept.

The task of semantic image segmentation typically consists of training a model S to assign each

image I in a data set a predicted semantic label map Lpred . The ground-truth labels L are used as

targets during training. This standard workflow of obtaining a semantic prediction Lpred can be

written as

Li ,pred � S(Ii). (5.1)

In practice, the prediction Lpred will not be identical to the ground-truth labels L. The differences

between L and Lpred are typically measured using metrics such as the accuracy or mean Intersection

over Union (IoU). During training, this difference is minimized by minimizing a loss function such

as the cross entropy. After training, the model error is not further changed, meaning that given an

image I, the model S will always make the same errors. These errors made by S can also be written

as an explicit error function applied to the ground-truth labels L. Based on this logic, we reframe the

workflow of semantic segmentation as an error function ES that is applied by S to the ground-truth

labels L to generate the predicted labels Lpred :

Lpred � ES(L). (5.2)

During testing, the ground-truth labels L are not available. Only the predicted labels Lpred are

known. However, Equation 5.2 establishes a formal connection between the ground truth and the

predicted labels. If the inverse of ES existed and was known, the ground-truth labels Li could be

reconstructed from the predicted labels Li ,pred by applying the inverse error function E−1

S to the

predicted labels:

Li � E−1

S (Li ,pred). (5.3)

The error function ES is a complex function that is defined by the semantic segmentation model

S. If S is implemented as a deep neural network, the error function ES is intractable and cannot be

derived analytically. It is also usually not invertible. However, Equation 5.3 can be approximated.

We propose to use a deep neural network for the task of learning the inverse error function E−1

S as

accurately as possible. To learn E−1

S , the approximating network needs to receive the predicted labels

Lpred as input and be given the ground-truth labels L as its target. The error reversal model can then

learn the error patterns in the predicted labels Lpred and what the corresponding ground-truth labels

are.

5.2 Reverse Error Modeling for Improved Semantic Segmentation

99

Since the input consists of semantic images and the output is almost identical to the input, convolu-

tional autoencoders are a natural choice for this task. The concept of error reversal modeling is then

similar to the idea of denoising autoencoders [74]. Denoising autoencoders are given images with

an added noise function such as Gaussian white noise and learn to reconstruct the noise-free image

from the noisy version. A common application are camera images, where the denoising autoencoder

removes the noise caused by the sensor of the camera. For the proposed approach, the semantic

segmentation model is considered to be a source of noise introduced to the ground truth, same as

how a camera sensor introduces noise to the depiction of a real-world scene.

Themodel error of the segmentationmodel S is a source of noise in the predicted labels Lpred that is

always present. As a second source of segmentation errors, we also consider the case of compromised

input. Specifically, we investigate image compression a common reason for a degradation of image

quality. In mobile systems such as autonomous vehicles, compressing the raw image input is often

necessary due to the restricted resources available, either to efficiently store the data locally or to send

them to the backend for further processing. We therefore also propose error reversal modeling as

a method to improve the semantic segmentation of compressed images. In the literature, there are

several approaches that optimize the image compression scheme itself to preserve the performance

of feature detectors or machine learning models on compressed images [181, 182]. The proposed

approach is independent of the compression scheme. It can be applied as a final post-processing

step to any segmentation model that is fed with images compressed with an arbitrary compression

algorithm. The only requirement is a data set of recorded erroneous predictions of a given model.

Then, an error reversal model can be designed as discussed in the next section.

5.2.2 Error Reversal Model Design

We implement the error reversal model as an autoencoder, which we refer to as Error-Reversing

Autoencoder (ERA) in the following. The goal of the ERA is to extract features and learn error patterns

from the semantic predictions in order to reconstruct the ground-truth semantic labels. Since the

input of predicted semantic labels is already a high-level abstraction of the original RGB image, the

model does not need to have the same depth and complexity as the baseline semantic segmentation

model S. In the literature, there is one comparable work where a post-processing autoencoder is

trained with manually degraded semantic maps to reconstruct the ground-truth semantic maps [76].

While their model is a denoising autoencoder and does not perform model-specific error reversal,

we follow their basic architecture approach of a convolutional encoder-decoder scheme. Since error

reversal is more complex than learning a statistical noise function, we introduce several additions.

Most importantly, [76] used fully connected layers as the latent layers of their autoencoder. They used

this model for medical imaging with three semantic classes. Since driving data sets contain more

classes recorded in a significantly more varied environment, we propose to use a fully convolutional

architecture. This way, no spatial information is lost.

The number of downsampling layers in the encoderwas determined empirically. Since the semantic

input is already highly abstract, increasing the depth too much deteriorates the performance of the

ERA. The number of channels needs to be selected according to the number of semantic classes. Data

sets such as Cityscapes have 19 semantic classes, meaning at least this amount of channels should

be available to not compress the information too early. We propose to use a convolutional layer with

32 channels followed by another convolutional layer with 64 channels as the encoder. The impact of

adding further encoder layers or increasing their size will be investigated during the experiments.

The decoder consists of the same number of transposed convolutional layers to upsample the latent

feature map to the original resolution and to reconstruct the target ground-truth labels. For all layers,

a kernel size of 3 was used. As an activation function, Rectified Linear Unit (ReLU) is used after each

layer except for the last. The semantic prediction needs to be one-hot encoded to ensure that all classes

have the same spatial distance to each other. The input layer thus takes an image with n channels

as input, where n is the number of semantic classes. The resulting architecture is summarized in

Table 5.4.

5 Failure Prediction Applications

100

Layer Channels Kernel Stride
Conv2D n : 32 3 × 3 2

Conv2D 32 : 64 3 × 3 2

ConvTranspose2D 64 : 32 3 × 3 2

Conv2D 32 : 32 3 × 3 1

ConvTranspose2D 32 : 32 3 × 3 2

Conv2D 32 : n 3 × 3 1

Table 5.4 Summary of the proposed fully convolutional encoder-decoder architecture for the implementation

of the proposed Error-Reversing Autoencoder (ERA).

To obtain the input for the proposed architecture, the predicted labels Lpred are one-hot encoded,

meaning every pixel in the semantic image is replaced by an n × 1 vector. This vector consists of zeros

except for the i-th element being a 1, where i ∈ [0, n − 1] is the index of the semantic class of the

corresponding pixel.

While the one-hot encoded semantic predictions could be directly used as input for the ERA, we

propose to additionally use the predicted softmax probabilities Ppred generated by S given the input

image I. The softmax probabilities Ppred encode the confidence of the model in its predictions. While

the softmax score does not correspond to a true probability and is prone to overconfidence [10], it

does increase the amount of information provided to the ERA. If an area of the predicted labels Lpred
is incorrect despite having high softmax scores, the ERA can learn about this overconfidence since it

has the ground-truth labels L available during training. This is conceptually similar to introspection

as introduced in Section 4.1, although now, we aim to predict the correct class instead of the failure

probability for each pixel.

To combine the one-hot encoded predicted labels Lpred with the predicted softmax scores Ppred ,

we multiply each one-hot vector with the score of the corresponding class. This results in softmax-

weighted one-hot encoded predicted semantic maps, which are finally used as input to the ERA. The

ERA is then trained to reconstruct the ground-truth labels L from the input. We summarize the entire

proposed workflow for training the ERA in Figure 5.11.

Semantic
Segmentation

Model S

One-Hot
Encoding

Ground-Truth Labels L

Input Image I

Predicted Segmentation Lpred Softmax Probabilities Ppred

Error-Reversing Autoencoder

Softmax
Weighting

Figure 5.11 Overview of the workflow for training the proposed Error-Reversing Autoencoder (ERA).

5.2 Reverse Error Modeling for Improved Semantic Segmentation

101

At a total of six layers, the proposed architecture is very compact and fast to train. We exploit the

fact that semantic maps are already abstract features extracted from the original RGB image. The

ERA mainly has to learn the shapes of the individual classes and their spatial context. For example,

pedestrians have the same morphological structure, even if shadows or noise in the input obscures

part of the person in the image. A partially predicted pedestrian in the predicted semantic labels can

then be completed into the most likely full human shape by the ERA.

The low complexity of the proposed architecture allows it to be added to an existing semantic

segmentation pipeline without adding a significant overhead. Since training is fast as well, it is

feasible to train multiple ERAs for different purposes and use the most fitting one depending on

the scenario. For example, one ERA can be trained with the semantic predictions for uncompressed

images, while additional ERAs can be trained for predictions made on increasingly compressed

input. During deployment, the correct ERA can then be selected based on the meta information

about the compression of the input image. This is significantly cheaper than training an entire

baseline semantic segmentation model for each level of compression, which could be practically

infeasible considering the effort required to train state-of-the-art segmentation architectures. Next,

we evaluate the performance of the proposed approach.

5.2.3 Results

In this section, we present the results of the experiments conducted to evaluate the proposed re-

verse error modeling. First, we compare the proposed approach to a state-of-the art post-processing

approach for semantic image segmentation and evaluate the design choices of the proposed archi-

tecture. Then, we investigate the application of using error reversal on the semantic segmentation of

compressed images.

5.2.4 Baseline Comparison

For all subsequent experiments, we use a publicly available implementation of DeepLabV3+ [172]

with a MobileNetV2 backbone [183], same as in Chapter 4. DeepLabV3+ is trained on the 2975

training images from Cityscapes. On the test set, it achieves a mean IoU of 72.1 %. We follow similar

works on the Cityscapes data sets and downsample all images to a resolution of 256 × 512 [84, 184,

185]. While the mean IoU is not affected by the downsampling, the training and testing speed is

increased significantly.

The training hyperparameters are selected empirically. All autoencoders are trained for 50 epochs

at a learning rate of 0.001. If the validation loss did not decrease for 10 epochs, the learning rate is

reduced by a factor of 10.

The autoencoders are trained with the semantic maps predicted by the trained DeepLabV3+ on the

training set as input and the corresponding ground-truth labels as targets. Similar to introspection, a

dedicated set for obtaining the predicted labels Lpred would be desirable, but is not feasible for most

public data sets due to their limited size. While using the predictions on the training images trains

the autoencoders with a slightly different error distribution than they will encounter during testing,

being able to reverse the training error is still a useful ability. Any type of error made on the training

set is likely to be made on the testing set as well, thus allowing the ERA to correct the predictions on

the testing set too.

As a baseline comparison, we use the state-of-the-art approach for semantic segmentation post-

processing proposed by Larrazabal et al. [76]. Theirwork outperformed existingwork on postprocess-

ing of predicted semanticmaps in the field ofmedical imaging [186, 187, 75]. They trained a denoising

autoencoder, referred to as postDAE, to denoise the semantic predictions for chest X-ray images. As

a source of noise for the training images for the postDAE, they added manual degradations to the

ground-truth semantic labels. This includes switching random pixels to other classes, adding and

removing random shapes, or dilating and eroding the class borders. While their approach improved

the semantic segmentation of medical images, the proposed error reversal approach is intended for

5 Failure Prediction Applications

102

the more complex task of segmenting natural images in the driving context. We implement postDAE
as described in [76]. The architecture of postDAE consists of a fully connected latent space. Since

manual degradations of the ground-truth labels are used as input, no softmax score is available.

We therefore can analyze three main differences of the proposed approach to postDAE: the use of

the actual erroneous semantic predictions as opposed to manual degradations, the use of a fully

convolutional architecture, and the pixel-wise weighting with the softmax score.

Firstly, we investigate the impact of using a fully convolutional architecture instead of fully con-

nected latent layers, while still using manual degradations. We refer to the resulting model as

postDAEfulconv. Secondly, we apply the proposed concept of reverse error modeling and use the ac-

tual erroneous predictions of the semantic segmentationmodel as input. We train onemodel without

softmax weighting, referred to as ERAhard, and one model where the softmax score is integrated into

the input by weighting the one-hot encoded semantic predictions, referred to as ERAsoft.

Finally,we investigate the choicesmade regarding the size of theproposedarchitecture for theERAs.

Firstly, we add an additional downsampling layer to the encoder and a corresponding upsampling

layer to the encoder. The resulting deeper model is referred to as ERAdeep. Secondly, we keep the

original number of layers, but increase the channel size by a factor of two. We refer to the resulting

larger model as ERAlarge. After training all autoencoders as outlined above, we apply them to the

semantic predictions on the test set obtained from the DeepLabV3+ model. In Table 5.5, we compare

the resulting mean IoU of all methods.

Method Mean IoU
postDAE [76] 65.8

postDAEfulconv 70.7

ERAhard 72.1

ERAdeep 71.7

ERAlarge 72.3

ERAsoft 72.6

Table 5.5 Mean IoU [%] of all evaluated post-processing autoencoder approaches. The proposed compact,

fully convolutional model ERAsoft trained with both the predicted semantic maps as well as the softmax scores

outperforms the state-of-the-art postDAE by 6.8%.

The state-of-the-art postDAE performs the worst at a mean IoU of 65.8 %. While it allowed for

improvements in the context of medical imaging in [76], the domain of driving is significantly more

complex and requires a more elaborate approach. Each of the proposed concepts further improves

performance when used for postprocessing the semantic predictions. Using a fully convolutional

architecture for postDAEfulconv increases the performance by 4.9 %. The introduction of reverse error

modeling as opposed to using manual degradations again improves the performance, with ERAhard

outperforming postDAE by 6.3 %. Finally, additionally using softmaxweighting for the input achieves

the best performance, reaching a mean IoU of 72.6 %. While each proposed change to the state-of-

the-art postDAE improves performance, only the combination of all proposed concepts manages to

outperform the performance of the baseline DeepLabV3+, which achieved amean IoU of 72.1 %. This

is due to DeepLabV3+ already being a highly optimized architecture, requiring a careful ERA design

to improve its performance.

Finally, the deeper model ERAdeep and the larger model ERAlarge both perform worse than the

architecture proposed in Table 5.4. This indicates that increasing model complexity is not the right

approach for improving performance, while making suitable design choices such as introducing the

softmax scores or using a fully convolutional architecture does yield improvements.

5.2 Reverse Error Modeling for Improved Semantic Segmentation

103

5.2.5 Error Reversal for Compressed Images

Onuncompressed images, the proposed error reversalmodeling improves the semantic segmentation

performance of DeepLabV3+ to 72.6 %, compared to 65.8 when using postDAE [76]. While this is

already a useful result, we next apply ERAs to the predicted segmentations of compressed images,

where more segmentation errors are expected. Any compression scheme used in practice can be

used. We select the popular Joint Photographic Experts Group (JPEG) compression method to

generate compressed versions of the training and testing set. To investigate the effect of reverse error

modeling on different levels of compression, we compress once at 90 %, once at 50 %, and once at 10 %

JPEG quality. For each compression level, we obtain the semantic predictions from DeepLabV3+ and

use them to train a dedicated ERA, referred to as ERA90, ERA50 and ERA10. The ERA trained with

semantic predictions for the uncompressed, original images is referred to as ERAorig in the following.

As a final comparison, we train one more ERA with the semantic predictions from both the original

images and all three compressed data sets. The resulting ERAall allows to investigatewhether training

multiple ERAs for different compression levels is beneficial or if a single model trained with all levels

suffices.

In Table 5.6, we summarize the performance of all models when applied to all compressed versions

of the test set. As baseline comparisons, the performance of the state-of-the-art postDAE as well as of

the unprocessed DeepLabV3+ model on the original and the compressed images are shown as well.

Method Original JPEG90 JPEG50 JPEG10 Average
DeepLabV3+ 72.1 69.3 47.9 11.3 50.2

postDAE 65.8 62.4 43.3 10.3 45.6

ERAall 70.1 68.0 52.3 19.9 52.6

ERAorig 72.6 70.0 48.1 11.1 50.5

ERA90 72.2 70.3 49.3 11.9 50.9

ERA50 70.0 68.8 55.2 17.2 52.8
ERA10 49.5 48.6 41.7 19.9 39.9

Table 5.6 Mean IoU [%] of the proposed post-processing with Error-Reversing Autoencoders (ERAs) trained

for varying compression levels, applied to both the original test set and all compressed versions. As a baseline,

we compare to the unprocessed DeepLabV3+ and the state-of-the-art postDAE [76].

Same as for the uncompressed images, postDAE is not capable of improving the performance of the

unprocessed DeepLabV3+ for any compression level. For the original, uncompressed testing set as

well as for the JPEG90, JPEG50, and JPEG10 versions, the ERA trained for that specific compression

level achieves the best performance. For uncompressed images, ERAorig improves DeepLabV3+ by

0.5 % and outperforms postDAE by 6.8 %. For JPEG90, ERA90 outperforms the baseline approaches by

at least 1.0 %. The mean IoU achieved by ERA50 on JPEG50 is at least 7.3 % larger than the baselines,

while ERA10 achieves an improvement of 8.6 % or more on JPEG10.
On each individual data set, ERAall performs worse than the compression-specific ERAs. When

averaging the performance over all compression levels, ERAall performs better than most of the

other approaches, but is still outperformed by ERA50. This indicates that even if only a single ERA

is available, training a model with a moderate amount of compression is a potential alternative to

generating a large data set that contains a range of different compression levels. It should be noted

that due to the compact size of the proposed ERA architecture, it is practically feasible to train and

store a dedicated ERA for each compression level even on a mobile system such as an autonomous

vehicle. Averaging the performance of the best ERA over all compression levels achieves an average

mean IoU of 54.5 %, outperforming the original DeepLabV3+ model by 4.3 %.

5 Failure Prediction Applications

104

For a more detailed analysis of the improvements the proposed ERAs offer, we show the change

of the mean IoU for each individual class present in the Cityscapes data set in Table 5.7. For each

column, the best-performing ERA trained with the data set compressed at the corresponding JPEG

quality level is used.

Semantic Class Original JPEG 90% JPEG 50% JPEG 10%
Road 0.1 0.1 14.9 42.3
Sidewalk 0.4 0.4 8.2 5.2
Building 0.2 0.5 23.1 23.5
Wall 1.9 3.9 3.7 −0.3

Fence 1.0 1.5 9.1 0.4
Pole 1.2 1.3 1.3 −0.5

Traffic Light 0.1 −0.7 2.8 0.3
Traffic Sign −0.1 0.2 5.6 4.1
Vegetation 0.2 0.7 3.2 26.7
Terrain 0.7 0.9 5.9 1.8
Sky −0.4 −0.3 5.1 19.7
Person −0.4 −0.1 1.7 7.0
Rider −0.3 −0.9 1.9 −0.6

Car 0 −0.1 9.0 29.0
Truck 1.8 2.4 10.5 −2.8

Bus 1.5 3.3 14.7 −0.5

Train 2.1 3.5 10.1 3.3
Motorcycle 0.8 2.2 6.0 −0.8

Bicycle −0.6 −0.2 1.7 5.5
Average 0.5 1.0 7.3 8.6

Table 5.7 Class-wise absolute mean IoU change on the original and the compressed test sets after applying the

corresponding best-performing autoencoder. Improved values are shown in bold. A larger compression of the

input leads to a larger improvement from the error reversal.

For each compression level, the error reversal improves the performance for at least 13 of the 19

classes. The most significant improvements occur for highly structured classes such as Road, Sidewalk,
or Building. The visual patterns of those classes are comparatively simple and easier to reconstruct

than more dynamic classes. Interestingly, for dynamic classes such as Pedestrian and Bicycle, the
postprocessing only starts improving the mean IoU for higher compression levels. This suggests that

the error reversal is not capable of correcting the subtler errors made on the original images, but can

restore the overall shape even of smaller and varied classes when the image input was compressed

significantly.

Finally, the effect of the proposed error reversal is visualized for a sample test image fromCityscapes

in Figure 5.12. The four columns correspond to the original version of the image, the compression

at JPEG90, the compression at JPEG50, and the compression at JPEG10. The first row shows the

input image, the second row is the semantic prediction by DeepLabV3+ and the third row depicts

the output of the corresponding ERA trained for that compression level. The fourth row shows the

ground-truth semantic labels.

5.2 Reverse Error Modeling for Improved Semantic Segmentation

105

The increasing compression level significantly impacts the semantic prediction by DeepLabV3+,

resulting in a highly spurious output for JPEG10where details such as the pedestrian (red) are almost

entirely missed. The error reversal consistently improves the semantic prediction, most notably

managing to establish the overall structure of the road and buildings even for the highest level of

compression. While details such as the pedestrian cannot be completely restored, the few pixels

correctly labeled as Pedestrian in the prediction by DeepLabV3+ are enough for the ERA to restore the

general shape of that class.

For less extreme levels of compression, the visual impact of the error reversal is less significant, but

still visible. For the uncompressed image, the semantic prediction by DeepLabV3+ is already highly

similar to the ground truth, but minor details such as the spurious errors for the fence on the right of

the image are still partially corrected by the ERA.

(a) Original (b) JPEG 90 % (c) JPEG 50 % (d) JPEG 10 %

Figure 5.12 Visualization of the error reversal applied to a sample test image. The columns correspond to the

original images (a), images compressed at JPEG 90 % quality (b), JPEG 50 % quality (c), and JPEG 10 % quality

(d). The top row shows the input image, the second row depicts the semantic predictions by DeepLabV3+, the

third row shows the result of the corresponding ERA, and the fourth row shows the ground truth labels for

reference (adapted from [29] © 2022 IEEE).

5 Failure Prediction Applications

106

5.3 Improving Multimodal Object Detection with Individual Sensor
Monitoring

As the final contribution of this thesis, we use the concept of introspective failure prediction to

improve multimodal object detection. For this, we monitor each individual sensor in a fusion system

and predict if it would lead to detection failures. Theweighting of the individual sensors in the fusion

step is then adjusted based on the predicted performance. Next, we introduce the general concept of

the proposed individual sensor monitoring.

5.3.1 Concept

In addition to semantic segmentation, object detection is a core component of perception systems

in autonomous driving. An accurate assessment of which objects are present in the environment is

important to ensure safe driving. Since the environment of the car is often dynamic and complex,

relying only on a single sensor such as a camera is not always sufficient for robust object detection.

To address this, different sensors can be combined using multimodal fusion. The goal of multimodal

fusion is to combine the strengths of the different sensors, most commonly cameras and Light De-

tection and Ranging (LIDAR) sensors. Combining multiple sensor modalities in a fusion-based deep

neural network is a popular approach for increasing robustness that achieves state-of-the-art detection

results [59].

In object detection models based on deep learning, the sensor inputs can be fused at various

stages of the network architecture. Regardless of whether late or early fusion is used, the fusion is

usually done by concatenating or adding the feature vectors extracted from each type of input [21,

64]. While the fusion is performed to combine the strengths of multiple sensors, it is not always

beneficial to use all available sensors. If the input from an individual sensor is occluded, ambiguous,

or compromised in some way, the features extracted from that input should not be used to the same

extent as the other available sensors. The typical fusion by concatenation or addition in the state of

the art does not offer any way of reducing the influence of problematic sensor input. Instead, the

fusion network is implicitly expected to use the best features from the different inputs. We propose

to improve multimodal object detection by explicitly predicting if an individual sensor is generating

problematic input and to then reduce its weight in the fusion step accordingly. In addition to the

fusion combining the different strengths of all sensors, the proposed system also becomes aware of

the different weaknesses of each sensor.

To achieve this, we implement an introspective monitoring model M for each sensor. For each

sensor, this requires removing all other sensors from the fusion-based architecture and to then

train the architecture as a single-sensor object detection model. This allows to record the object

detection performance of the given architecture when only the current individual sensor is used.

Each monitoring model M is then trained with the recorded object detection performance of using

only that single sensor. Thus, the introspective model learns to predict the performance of each

individual sensor based only on the raw sensor input. If a sensor input is predicted to result in a low

object detection performance, the features extracted from that input will be reduced accordingly in

the fusion step.

The concept of monitoring each sensor is comparable to a watchdog system [91]. While a watchdog

system monitors if a sensor is still physically functioning, the proposed system monitors if a sensor

is still useful. In this work, we focus on fusion of an RGB camera and a LIDAR sensor. Thus, we

implement two sensor monitoring models, MRGB and MLIDAR. The camera and the LIDAR features

are weighted with the performance predicted by MRGB and MLIDAR. The region proposals and

classification taking place in the subsequent object detection network is then based on the weighted

fused feature vector. In Figure 5.13, we visualize the general approach.

5.3 Improving Multimodal Object Detection with Individual Sensor Monitoring

107

RGB Image

LIDAR Scan

Backbone

Network

Backbone

Network

MRGB MLIDAR

× ×

Concatenation

or Addition

Region

Proposals +

Classification

Detected Objects

Predicted

Performance

Predicted

Performance

Figure 5.13 Overview of the proposed individual sensor monitoring (blue) that can be added to any standard

multimodal object detection architecture (gray). For each sensor, an introspective model M is trained to

predict the performance of that sensor. In the fusion by concatenation or addition, the features extracted from

each sensor input are weighted accordingly to improve the subsequent object detection (adopted from [28]

© 2022 IEEE).

5.3.2 Single Sensor Performance Prediction

Next, the design of the sensor monitoring models Mi that predict the performance of the individual

sensors Si is discussed inmoredetail. Given a systemwith n sensors, each sensor Si , i ∈ [1, n], requires
its own monitoring model Mi . The goal is to be able to predict the object detection performance Pi of

each sensor Si individually. A single-sensor object detection network Di trained only with the sensor

readings Ri obtained with the sensor Si is required for each sensor. For this, the available multimodal

model D f usion can be used. We propose to remove all sensors S j , j , i, from the multimodal

network D f usion to obtain the single-sensor detector Di . This has the advantage of not requiring

additional implementation effort to create Di . It also ensures that the detection performance for the

individual sensor Si is as similar to its performance in the fusion network D f usion as possible, since

the architecture of the backbone, region proposal, and classification parts of the network are identical

in Di and D f usion . Only the amount of input streams is changed from n to 1.

The single-sensor detection models Di allow recording the detection performance Pi associated to

each individual sensor Si . Next, we discuss two approaches for implementing the sensor monitoring

models Mi that generate the predicted detection performance Pi ,pred . First, an approach based on the

confidence score of Di is discussed. Then, an introspective approach that operates directly on the raw

sensor readings Ri is introduced.

5 Failure Prediction Applications

108

5.3.2.1 Confidence Score

The confidence score associated with the prediction made by an object detection architecture Di is a

readily available, straightforward estimate of the performance Pi of the model Di . While the specific

computation of the confidence score can vary depending on the selected architecture, a confidence

score is typically availablewithout any additional implementation. In object detection, each predicted

object is assigned its own score. To obtain an overall performance prediction Ppred ,con f , we average

the confidence scores from all detected objects. The performance prediction model Mi ,con f is then

simply the average confidence score of the output of Di . While this is straightforward to implement,

the entire single-sensor network Di needs to be evaluated to obtain a predicted performance for the

sensor Si . Since the proposed sensor monitoring is intended for systems with multiple sensors, this

would require running multiple additional object detection frameworks only to obtain the weights

for the fusion of the actual object detector D f usion . In mobile systems such as autonomous vehicles, a

less resource-demanding approach is desirable. Ideally, the performance should be predicted based

on the sensor reading Ri directly. For this, we next use the concept of introspection as a significantly

faster alternative.

5.3.2.2 Introspection

In Chapter 3, we used introspection to predict system-level failures. In Chapter 4, we used it to predict

pixel-wisemisclassifications. Now,weapply the concept to object detection topredict theperformance

of individual sensors. First, a training set of recorded performances is required to obtain the target

labels for the introspectivemodel. For this, we run each single-sensormodel Di on the training set and

obtain the detection performance Pi for each sensor reading Ri . Any metric can be used to quantify

the performance. Here, we use the mean IoU as a metric for the performance Pi . Then, each sensor

input Ri can be assigned a new, introspective label to obtain a training set for an introspective model

Mi ,intro . The scalar values of Pi could be used as labels directly, resulting in a regression task for

the introspective model. Preliminary results showed that implementing introspection as a regression

performs significantly worse than implementing it as a classification task, however. Regressing the

performance Pi from the raw sensor reading Ri tended to result in mean reversal. Inputs that led to

a very high or low performance were not sufficiently detected by a regression approach. Thus, we

implement Mi ,intro as a binary classification model. Same as in Chapter 4, we define a Failure and a

Success class. Each sensor reading Ri is assigned to one of those two classes depending on how high

its mean IoU is. As a threshold, we use the average of all mean IoUs on the training set. This results

in a data set consisting of sensor inputs Ri and binary class labels. Since Ri is either an RGB image or

a LIDAR point cloud that can be projected into 2D, any state-of-the-art image classification network

can be used to implement the introspectivemodel Mi ,intro . Same as in Chapter 3, we use the ResNet50

architecture [43] to implement the required binary image classifier. For each sensor Si , a ResNet50

architecture is trained to classify each reading Ri as either Success or Failure. To obtain a continuous

value, we use the softmax score associated to the class Success as the predicted performance Pi ,pred .

The introspective approach operates directly on the raw sensor data and does not require to run

any object detectionmodel before generating a prediction. This alsomakes introspection less prone to

overconfidence,which is an inherent issue of using themodel-based confidence score as aperformance

predictor. Instead of using the output of a potentially overconfident model, introspection only uses

the visual features in the input Ri to predict the performance of the corresponding sensor Si . If no

challenging or problematic features are present, the introspective model ideally assigns the input a

success probability of 1, in which case the monitoring does not affect the fusion at all. However, if

any features are present that resemble features that have led to low mean IoU values during training,

the introspective model will generate a lower success probability and the problematic visual features

will be given a reduced weight during the subsequent fusion, with D f usion then relying more on the

other available sensors. The implementation of how a given fusion network is dynamically adjusted

using the proposed sensor monitoring models is presented next.

5.3 Improving Multimodal Object Detection with Individual Sensor Monitoring

109

5.3.3 Dynamically Adjustable Fusion

Thegoal of the proposed sensormonitoring is to improve a given fusion-basedobject detection system.

This is achieved by making the fusion dynamically adjustable, so that the influence of problematic

sensor input is reduced. In this section, we discuss how the monitoring models Mi can be integrated

into the architecture of a multimodal object detector. First, we discuss the proposed approach in

general and then show an implementation based on a state-of-the-art architecture.

Given a fusion-based object detector D f usion with n sensors Si , i ∈ [1, n], we first generate n
single-sensor detection models Di by removing all sensors except for Si from the input layer. The

performance Pi for each sensor reading Ri is recorded and used to generate binary introspective labels

for Ri , which are then used to train the introspective model Mi ,intro . As a more expensive alternative,

the confidence score of Di can be used to obtain Mi ,con f .

For training the fusion-based model D f usion , the sensor monitoring models are not yet used. They

are only required during testing, when the actual single-sensor performance Pi is not available.

During training, the ground-truth performance values Pi are used as weights. It depends on the

architecture of D f usion where to incorporate the weighting. In general terms, D f usion extracts features

Fi from each sensor reading Ri . The features Fi from all sensors Si are then combined. Fi can be either

low-level features in case of an early fusion architecture, or high-level features in case late fusion is

employed. The proposed system can be applied regardless of which fusion strategy is used.

The individual features Fi are eventually combined into fused features F f used . While many fu-

sion operations are possible, the two most common choices in the literature are either addition or

concatenation. F f used can thus be calculated as

F f used �

n∑
i�1

Fi or (5.4)

F f used � (F1 , ..., Fn). (5.5)

At this step, we introduce the single-sensor detection performances Pi as weights for the corre-

sponding features Fi . During testing, the performances Pi are not available and need to be predicted

using the introspective model Mi ,intro to calculate the fused features. We therefore refer to the

weighted combination of all features Fi as Fintro , calculated as

Fintro �
1∑n

i�1
Pi

n∑
i�1

PiFi or (5.6)

Fintro �
1∑n

i�1
Pi
(PiF1 , ..., PnFn). (5.7)

This way, D f usion learns to use the optimal weighted combination of the features Fi during training.

During testing, the actual performance Pi is substitutedwith the predicted performance Pi ,pred . Either

Mi ,intro or Mi ,con f can be used for obtaining the predicted weights. The specific architecture of Di
and the shape of the features Fi depend directly on the chosen fusion-based architecture. While the

proposed concept is generally applicable, we next visualize it integrated into a specific state-of-the-art

architecture. We use Aggregate View Object Detection (AVOD) [21], a fusion-based object detection

networkwith competitive results. It is based on camera and LIDAR input, thuswe have n � 2 sensors.

The fusion is performed following Equation 5.6. In Figure 5.14, we show an overview of the AVOD

architecture together with the proposed individual sensor monitoring. In state-of-the-art models

such as AVOD, the different sensor inputs are only implicitly weighted based on the values of the

neurons learned during training. The neuron weights are fixed once training is complete, meaning

the fusion cannot be adjusted to the input anymore. The proposed individual sensor monitoring

changes the fusion for every new input, allowing to predict and use the best weighted combination

of the different sensor inputs based directly on the current input data.

5 Failure Prediction Applications

110

EN
V

IR
O

N
M

EN
T

Sensor S1
Sensor
Reading R1

Backbone

x

Low-Level
Features F1

P1

D1

1

 𝑖=1
𝑛 𝑃𝑖

𝑖=1

𝑛

𝑃𝑖𝐹𝑖

Sensor S2

Sensor
Reading R2

M2

Backbone

x

Low-Level
Features F2

P2

D2

Fully
Connected
Layers

Region
Proposals

Fully
Connected
Layers

Detected
Objects

AVOD

Sensor
Monitoring

M1

Figure 5.14 Overview of the proposed dynamically adjustable fusion with n � 2 sensors, applied to the AVOD

architecture [21]. The features Fi extracted from the sensor readings Ri are weighted with the performances

Pi obtained from the single-sensor models Di . During testing, the performances are predicted using sensor

monitoring models Mi (adopted from [28] © 2022 IEEE).

5.3.4 Results

In this section,wepresent the results of the experiments conducted to evaluate theproposed approach.

First, we introduce the setup of our experiments. Then, we discuss the performance of the proposed

single-sensor performance prediction models. Next, we use the performance prediction models for

the multimodal object detection with individual sensor monitoring and compare the performance

to the baseline of AVOD without sensor monitoring. Finally, we investigate the capability of the

proposed approach to detect and handle the most challenging inputs.

5.3.4.1 Experimental Setup

The proposed approach is designed to improve a given fusion-based object detection model. We

apply it to the AVOD architecture, which has shown state-of-the-art performance at feasible inference

times [21]. Any other object detector based on two or more sensors could be used as well. We use

a public implementation of AVOD [188] trained on the KITTI data set [82] as the baseline for all

experiments. KITTI contains over 15 000 RGB images as well as LIDAR scans recorded on urban

German roads. From that data, 7481 images and LIDAR scans comewith publicly available bounding

box annotations for object detection. Annotations of the classes Car, Pedestrian, and Cyclist are

available. While some relatedwork trained a dedicatedmodel for each class [21], we train AVODwith

all three classes at once to obtain a real-time capable system. We use 80 % of the labeled 7481 samples

for training and the remaining 20 % for testing, following other works on KITTI [64, 58]. The official

recommendations are used for all training parameters. Both the mean IoU and the mean Average

Precision (mAP) as suggested by the authors of AVOD will be used as metrics for the evaluation

of the object detection task. The performance prediction is evaluated using a Receiver Operating

Characteristic (ROC) curve analysis, same as in Chapter 3. A Tesla T4 GPU fromGoogle Colab is used

to train and evaluate all models.

5.3 Improving Multimodal Object Detection with Individual Sensor Monitoring

111

5.3.4.2 Sensor Performance Prediction

The two sensors used by AVOD are a camera and a LIDAR scanner. Thus, we require a camera-based

and a LIDAR-based performance prediction model to monitor the two sensors. We implement both

introspection and the approach based on the confidence score. First, the single-sensor AVODmodels

are trained. This is done by removing the LIDAR input for AVODRGB and by removing the RGB

image input to obtain AVODLIDAR. After reducing the architecture to a single-sensor model, both

models are then trained in the same way as the fusion-based model. AVODRGB achieves a mean IoU

of 67.6 % on the test camera images, while AVODLIDAR achieves a mean IoU of 73.3 % based on the

LIDAR scans. MRGB,con f is then the confidence score averaged over all objects detected by AVODRGB,

while MLIDAR,con f uses the average confidence score from AVODLIDAR.

To obtain training data for the introspective models MRGB,intro and MLIDAR,intro , the mean IoU

values obtained on the training samples are used. For both the camera-based and the LIDAR-based

monitoring model, the average performance on the training set is used to classify each sample as

Failure or Success. For the camera images, 21.5 % are below that threshold and thus labeled as Failure.
For the LIDAR scans, 27.1 % are labeled as Failure. For both sensors, a ResNet50 architecture is

trained to classify each training sample. For the LIDAR data, the scans are first projected to Bird’s

Eye View (BEV). Both introspective classifiers are trained for 100 epochs at a learning rate of 0.0001.

We use the Adam optimizer to minimize the binary cross entropy loss.

Both the confidence-based and the introspective approach for performance prediction are evaluated

on the test set using an ROC curve analysis. For the introspectivemodels, the softmax score associated

to the class Success is used as a continuous value for the performance prediction. The resulting Area

Under Curve (AUC) values for both camera and LIDAR data are summarized in Table 5.8.

Camera LIDAR
Introspection 0.88 0.66

Confidence Score 0.96 0.83

Table 5.8 The AUC values of the two proposed performance prediction approaches for both sensors.

The confidence score achieves a better performance prediction than the introspective models. This

indicates that the output of themodel itself is more informative than only the raw input data, which is

the only input for introspection. While the AUC values of introspection are lower, the absolute results

of 0.88 and 0.66 for camera and LIDAR are still sufficiently high to be useful in practice. In contrast,

the confidence score is very expensive to obtain since an entire object detection network needs to be

run. For introspection, only a single classification is needed.

For both approaches, the performance prediction of the camera-based detection model performs

better than for the LIDAR-based object detector. This can be explained by the better detection

performance of AVODLIDAR, which outperforms the camera-based detector by 5.7 % in mean IoU.

Thus, there are fewer significant failure patterns to learn from. This corresponds to the observation

made in Chapter 4 that the worse the baseline model performs, the larger the improvements achieved

by introspection become.

5.3.4.3 Multimodal Object Detection with Sensor Monitoring

Now, the sensor monitoring models are integrated into the fusion-based AVOD architecture. During

training, the actual performances for each individual sensor are used to weight the fusion as specified

in Equation 5.6. As shown in Figure 5.14, the weights are applied in the early fusion of the features,

before generating region proposals. During testing, the weights required for the fusion are obtained

using the sensor monitoring models. We refer to the fusion model using the confidence score as

5 Failure Prediction Applications

112

AP3D [%] APBEV [%]
Method Runtime Class Easy Moderate Hard Easy Moderate Hard

AVOD 0.37 s Car 80.56 70.59 61.87 89.45 72.24 71.27

Pedestrian 61.71 54.40 47.90 65.05 57.14 55.35

Cyclist 67.24 48.86 48.58 67.24 49.26 48.90

mAP 69.84 57.95 52.78 73.91 59.55 58.51
introAVOD 0.43 s Car 88.09 79.14 77.66 90.40 88.47 80.66

Pedestrian 62.43 54.58 47.75 65.75 57.17 55.37

Cyclist 65.06 47.56 46.03 65.27 47.70 46.34

mAP 71.86 60.43 57.15 73.80 64.45 60.79
confAVOD 1.07 s Car 88.63 85.35 77.98 90.44 89.36 88.15

Pedestrian 62.76 54.91 52.93 70.19 61.87 55.22

Cyclist 66.80 49.34 48.97 66.59 55.35 50.16

mAP 72.73 63.20 59.96 75.74 68.86 64.51

Table 5.9 Summary of the object detection performance on KITTI for the baseline AVOD, the introAVOD,

and the confAVOD. The average precision for both 3D and BEV detection is shown for all three difficulty

categories. Averagedover all categories, bothproposed sensormonitoring approaches improve the 3Ddetection

performance by at least 5.0 % and the BEV detection performance by at least 3.7 %.

confAVOD. When the weighting is done using the introspective prediction, we refer to the fusion

model as introAVOD. As a baseline, we also train a regular AVOD without any weighting.

We summarize the results for all models on the 20 % of KITTI samples reserved for testing in

Table 5.9. The evaluation on KITTI is typically done for three difficulty categories, which are "easy",

"moderate" and "hard". The categories correspond to differentminimum sizes andmaximum levels of

occlusion for the objects considered during the evaluation. AVOD offers both 3D and BEV detection.

Table 5.9 contains the mAP of both types of detection for the three classes Car, Pedestrian, and Cyclist.
The mAP over all classes is also shown. Finally, we report the average runtime per inference of the

baseline AVOD, the introAVOD and the confAVOD.

The two proposed dynamically adjustable fusion models confAVOD and introAVOD both signif-

icantly outperform the baseline AVOD model. For 3D object detection, introAVOD improves the

performance averaged over all three difficult categories by 5.0 %. For the BEV detection, the per-

formance gains are 3.7 %. When using the confidence scores as the sensor monitoring models, the

resulting confAVOD improves 3D detection by 8.5 % and BEV detection by 8.9 %, again averaged over

all difficulty categories. The larger performance gains are in line with the better performance of the

confidence-based performance prediction models shown in Table 5.8.

For the individual classes, the proposed models achieve improvements for most of them. The

proposed introAVOD shows the largest improvements for the class Car. The Pedestrian class is also

improved slightly, whereas the detection performance of the class Cyclist is slightly decreased. This

can be explained by the typically small size of cyclists in the sensor readings. Such objects are

challenging to detect in the sparse LIDAR point clouds. However, the overall higher performance

of the LIDAR-based object detector results in the LIDAR features receiving a larger weight during

fusion. This results indicates that training performance prediction models for each individual class

instead of the average of all classes could be a useful extension of the evaluated approach.

While introAVOD mostly improves the classes Car and Pedestrian, the second proposed approach

of confAVOD also improves the baseline for the Cyclist class for most difficulty categories. While

5.3 Improving Multimodal Object Detection with Individual Sensor Monitoring

113

the performance of confAVOD is better than introAVOD in almost every regard, it comes at the

critical cost of a much higher computational complexity. The average inference time of confAVOD
is 1.07 s per input, which is almost three times as slow as the baseline AVOD at 0.37 s. In contrast,

the introAVOD approach only requires 0.43 s per inference, an almost negligible increase of 0.06 s

compared to the baseline. This is explained by confAVOD requiring to run three entire object detection

frameworks, whereas introAVOD only introduces two additional classifications. The two proposed

sensor monitoring approaches therefore offer a trade-off between inference speed and detection

performance. The confAVOD approach achieves the largest improvement of up to 8.9 % at the cost of

an almost tripled inference time, while introAVOD still achieves a gain of up to 5.0 % at an inference

time increase of just 16 %.

5.3.4.4 Challenging Input Analysis

The proposed approach was designed with the goal of enabling a fusion system to be dynamically

adjusted when faced with problematic input. To investigate whether the proposed sensor monitoring

accurately detects the most challenging sensor readings and whether it is capable of successfully

adapting the fusion, we next focus on the performance for the inputs predicted to be the most

challenging. Due to the excessive inference time of confAVOD, we focus only on the practically more

feasible introAVOD in this section.

For each sensor, we obtain the samples where the corresponding introspective model predicted a

performance of less than 0.5. Among the camera images, MRGB,intro predicts such a low performance

for a total of 284 images. For the LIDAR scans, MLIDAR,intro generates a predicted performance

Pintro ,LIDAR of less than 0.5 for 171 input samples. Considering the overall better performance of the

LIDAR-only model compared to the camera-only model, the predicted number of challenging LIDAR

inputs to be lower was expected. For a straightforward scalar comparison, we use the mean IoU

to evaluate all models on the 284 challenging camera images and the 171 challenging LIDAR scans,

respectively. The results for the single-sensor models, the baseline AVOD and introAVOD are shown

in Table 5.10.

Model Test Set Pintro,RGB < 0.5 Pintro,LIDAR < 0.5
AVODRGB 67.6 16.4 42.5

AVODLIDAR 73.3 57.8 43.3

AVOD 78.7 63.4 57.1

introAVOD 82.3 67.2 66.8

Table 5.10 Mean IoU [%] of the single-sensor models, the baseline AVOD and the proposed introAVOD ap-

proach, evaluated on the samples with the lowest predicted performance as well as on the entire test set for

comparison.

As expected, both fusion-based models significantly outperform the single-sensor models regard-

less of the input. More interestingly, the performance of both single-sensor models significantly

drops when evaluated on the samples with a predicted low performance. Specifically, the mean

IoU of AVODLIDAR on the LIDAR scans with a low predicted performance drops by 40.9 %. For

AVODcamera , the performance on the images with a low predicted score drops even further, by

75.7 %. The introspective models were thus capable of accurately predicting which input samples

would lead to a low single-sensor performance.

Another interesting observation is that the samples leading to a reduced performance for one sensor

also result in a lower performance for the other sensor. AVODRGB evaluated on images where the

corresponding LIDAR scan received a low prediction dropped by 37.1 % in performance compared to

the test set. AVODLIDAR evaluated on LIDAR scans where the corresponding images are predicted

to be problematic dropped by 21.1 %. This demonstrates a correlation between the performance of

5 Failure Prediction Applications

114

the two separate sensors. If one sensor reading is challenging, the other on is likely challenging as

well, for example due to the presence of occluded objects that neither sensor is capable of detecting.

Despite the observed correlation, the performance drop is much smaller for single-sensor models

evaluated on samples where the other sensor is predicted to be problematic. This indicates that

the sensor readings are still complementary to each other. This fact is exploited by the proposed

dynamically adjustable fusion, where the fusion network places a higher weight on the sensor with

a higher individual performance. While the proposed introAVOD already outperforms the baseline

AVOD by 4.6 % on the entire test set, the improvements of the sensor monitoring on challenging

inputs increase even further. For inputs where the camera image was predicted to be challenging, the

gain increases to 6.0 %. When the LIDAR scan is predicted to be problematic, introAVOD outperforms

the baseline by a significant 17.0 %. These findings indicate that the overall improvements introduced

by the sensor monitoring largely occur for problematic sensor input. This is in line with the fact that

for inputs with a high predicted performance, the sensor monitoring does not change the fusion. For

pristine input, AVOD and introAVOD are effectively identical when the predicted weights are close to

one. Only when the input is problematic does the sensor monitoring change the fusion, resulting in

the observed gains of up to 17.0 %.

5.4 Chapter Summary

115

5.4 Chapter Summary

In this chapter, we proposed several applications based on the insights from the failure prediction

approaches developed in Chapter 3 and Chapter 4. We developed three approaches for improving

either the semantic segmentation or the object detection module of an autonomous vehicle.

First, we designed a two-stage visual perception system inspired by the way humans perceive

complex scenes. The first stage corresponds to state-of-the-art semantic image segmentation. Then,

pixel-wise introspective failure prediction is used as the basis for a failure region detection system.

We reclassify the regions detected this way with a local road participant classifier and propose a

method for updating the failure pixels corresponding to the predicted dynamic object. Despite an

overall segmentation accuracy of 94 % in the first stage, the proposed second stage still allows to

recover initially misclassified road participants in over one out of twenty test images.

Next, we used recorded erroneous predictions as input to train a model to directly correct pixel-

wise errors instead of only predicting the pixel-wise failure probabilities. For this, we proposed

the concept of Error-Reversing Autoencoder (ERA). A fully convolutional autoencoder is trained

to reconstruct the ground-truth labels from the semantic prediction generated by a given semantic

segmentation model. This approach improves the mean IoU of the state-of-the-art DeepLabV3+

model on Cityscapes by 0.5 %. As a second application, we trained ERAs with semantic predictions

made on compressed images. For high levels of compression, the proposed approach improves the

mean IoU by 8.6 %, allowing to restore the general semantic structure of the scene even for highly

compromised initial semantic predictions.

Finally, we applied the concept of introspection tomultimodal object detection. For each individual

sensor, we trained a sensor monitoring model to predict the detection performance of just that

sensor. Then, we trained a fusion-based network, where the fusion of the camera and LIDAR input is

weighted with the corresponding single-sensor performance. During testing, the two sensor inputs

are weighted with the predicted single-sensor performance, allowing to place a lower weight on

problematic sensor input with a low predicted performance. This approach improves the state-

of-the-art AVOD model by at least 3.7 % on the KITTI data set. For inputs predicted to be the

most challenging, the improvement increases to up to 17 %, demonstrating that the proposed sensor

monitoring approach is capable of detecting problematic input and can adjust the fusion accordingly.

117

6 Conclusion

Failures in autonomous systems are inevitable. In autonomous driving, such failures can have

safety-critical consequences. The concept of failure prediction is an important potential answer

to this challenge. Despite the benefits accurate failure prediction can offer, the topic has received

comparatively little attention over the last decade. Most notably, the challenge of predicting failures

seconds in advance is largely unaddressed in the literature. In this thesis, we thoroughly analyzed

the concept of failures in autonomous systems and reviewed the state of the art in failure prediction.

Based on this analysis, the failure prediction framework shown in Figure 1.2 was designed and a

range of failure prediction approaches was proposed. The overall objective is to detect as many

failures as possible, both automatically and predictively. To conclude this thesis, we summarize the

key findings, outline the major limitations, and suggest directions for future work.

6.1 Summary

The entire pipeline of a typical autonomous systemwas considered for the design and implementation

of automatic and predictive failure detection for autonomous driving. Depending on the stage of

such a pipeline, different types of failures can be predicted. We distinguished two main ways of

approaching failure prediction, a system-level and a component-level approach.

To predict failures on a system level, we propose a black box failure prediction approach. We

use the concept of introspection, which is based on learning from previously recorded failures. We

define disengagements as system-level failures, since human safety driverswill usually prevent actual

crashes. Disengagements refer to both the system giving up control automatically and to the human

safety driver intervening. We use over 2500 disengagements recorded by BMWdevelopment vehicles

on public urban roads. We use the ten seconds leading up to each disengagement as the failure data

for all approaches. To obtain a complete data set, we also sample the same number of successful

sequences containing ten seconds of undisrupted driving. We use this basic framework to implement

four concrete failure predictionmodels. Firstly, we use sequences of the state data of the car to predict

failures. The car state includes the speed, acceleration, steering angle, and angular velocity. We split

up the ten seconds of each sequence into shorter three second samples. Each sample is labeled as

either Failure or Success depending onwhether the corresponding sequence ended in a disengagement

or not. Then, an LSTM-based classifier is proposedwhich learns to classify a new three second sample.

Secondly, we apply the same concept to image data. Three second samples of video data are reduced

to a single dynamic difference image consisting of three consecutive difference images. Then, a

CNN-based classifier is trained to classify the current video sample as Failure or Success. As a third

source of information about impending failures, the trajectories planned by the vehicle are used.

We again split the ten second sequences into multiple three second samples, each one containing

thirty consecutive planned trajectories. We propose an LSTM-based classifier to learn to assign a

failure probability to a new sequence of planned trajectories. Finally, we combine the state-based,

image-based, and trajectory-based approaches in a fusion-based model. We use late fusion and

average the individual failure probabilities. We compare to two state-of-the-art disengagement and

crash prediction approaches from the literature [16, 15]. While each individual method outperforms

the state of the art already, the proposed fusion model outperforms the best-performing reference

approach by over 25 %. Additionally, it detects failures two seconds earlier than the earliest existing

approach. Seven seconds in advance, the introspective fusion model detects over 86 % of all failures.

6 Conclusion

118

While predicting system-level failures is beneficial for ensuring the safety of an autonomous sys-

tem, it does not give any insights into what caused the failure. As the second main approach to

failure prediction in autonomous driving, we propose component-level failure prediction methods.

We introduce a pixel-wise failure prediction approach for semantic segmentation, again using the

concept of introspection. Given an arbitrary segmentation model, we record pixel-wise failures and

use the resulting pixel-wise errors as new targets to train an introspective model. We implement

the introspective model as a semantic segmentation model, allowing for reusing the trained encoder

from the baseline segmentation model. By explicitly learning from recorded failures, the proposed

approach significantly outperforms the output-based state of the art, which relies on general uncer-

tainty estimation [10, 12]. Combining introspection with the state of the art further improved the

overall performance, indicating that the proposed method predicts complementary types of failures.

Next, we extended this approach with convolutional LSTMs to take video sequences as input. This

allows the introspective model to learn from spatio-temporal features, outperforming single-image

introspection by over 4 % in a precision-recall analysis. Finally, we exploit the temporal information

available in videos to predict future pixel-wise failures. We apply concepts from the field of future

semantic map prediction, using a spatio-temporal architecture to predict a future error map given

a sequence of the previous four predicted error maps. Since public video data sets with pixel-wise

annotations are limited in size, we introduce the Densely Annotated Video Driving (DAVID) data set.

At around 11 000 images, DAVID is nine times the size of the largest public real-world data set [19].

The proposed approach allows for accurately predicting failures up to five frames into the future,

establishing the first existing approach for predicting future failures of semantic segmentation.

Finally, we used concepts from failure prediction to correct the system instead of just predicting its

failures. We propose two methods to improve semantic segmentation and one method to improve

object detection. Firstly, weuse theZoomLensModel employed inhumanvision as inspiration todesign

a two-stage approach to visual scene perception. The first stage is global semantic segmentation. In

the proposed second stage, we use pixel-wise failure prediction as the basis for a failure region

detection pipeline. We combine Region of Interest (ROI) filtering, smoothing, and clustering to obtain

distinct failure regions. Then, a failure region classifier is trained to reclassify each failure region. Each

failure pixel from the Class Activation Map (CAM) of the corresponding classification is updated to

the predicted class. Applied to a semantic segmentationmodel that achieved a test accuracy of 94.0 %

on 4000 test images, this approach recovers at least 10 % of the pixels of over 200 misclassified road

participants. Secondly, we propose to directly correct the failures of semantic segmentation on a pixel-

wise level by using reverse error modeling. We reframe a semantic segmentation model as an error

function applied to the ground-truth labels. Then, we propose Error-Reversing Autoencoders (ERAs)

in order to approximate the corresponding reverse error function, which allows to reconstruct the

ground truth from the semantic predictions of the given segmentation model. We propose reverse

errormodeling both as away of refining an arbitrary segmentationmodel and as away of significantly

improving the performance when given compressed images. By training a dedicated ERA for each

expected compression level, the mean IoU of the segmentation of highly compressed images can be

increased by over 8 %. For both the original and the compressed images, we compare to the state of the

art in post-processing semantic predictions [75, 76]. We outperform the best-performing reference

method by at least 6 %. Thirdly, we use introspective failure prediction to improve fusion-based

object detection. For each individual sensor, we train a single-sensor detection model, record the

corresponding performance, and then train an introspective monitoring model. During fusion, we

predict the performance of each individual sensor using themonitoringmodels andweight the fusion

of the different sensors with the predicted performance. This allows the fusion-based detector to rely

more on inputs predicted to achieve a high performance. Applied to the state-of-the-art Aggregate

View Object Detection (AVOD) architecture [21], the proposed sensor monitoring improves the mean

IoU by almost 4 %. For inputs where the individual sensor performance is predicted to be lowest, the

monitoring improves the performance by up to 17 %. This demonstrates its capabilities of detecting

problematic input and adjusting the fusion accordingly.

6.2 Limitations

119

6.2 Limitations

We compared all proposed concepts to existing state-of-the-art methods to validate their contribution

towards the goal of accurate failure prediction. While all methods proposed in this thesis significantly

outperformed existing approaches or were the first to address the respective problem, they still have

some limitations both in performance and applicability.

The introspective disengagement prediction framework proposed in Chapter 3 requires extensive

test drives where disengagements are encountered before a model can be trained. While we argue

that such test drives are necessary for the development of an autonomous vehicle anyway, requiring

months of driving in advance means that introspection cannot be used right away for this purpose.

In this thesis, we were able to train with thousands of disengagements due to having access to the

data from the BMW research fleet. For projects that have less hardware available, it can be difficult to

collect data on a similar scale to then obtain models with a similar performance.

Regarding the pixel-wise introspective failure prediction approach for semantic segmentation in-

troduced in Chapter 4, an important limitation is that only failures based on visual patterns seen in

the training set can be detected. This is problematic for rare or novel classes that are not sufficiently

present in the training set. The output-based state-of-the-art methods we compared to our model

showed better performance for rare classes where few samples were available during training. In

most classes and on average, introspection outperformed these output-based methods. Nevertheless,

this limitation is inherent to the concept of introspection and needs to be addressed, for example by

combining introspection with an output-based approach. Furthermore, the approach for predicting

future pixel-wise failures introduced in Section 4.3 requires intense labeling efforts since every frame

in the training videos needs semantic labels. While we introduced a large-scale data set generated in

a simulator to validate the potential of this approach, deployment in real-world applications comes

with the requirement of costly frame-wise labeling.

The two-stage approach for detecting and correcting failure regions inspired by the human Zoom
Lens Model is based on pixel-wise introspective failure prediction and therefore shares its limitations.

Additionally, the failure detection pipeline proposed in Section 5.1 consists of multiple consecutive

processing steps, many of which require manual tuning. Several thresholds need to be selected, such

as for the binarization, the ROI masks, and the CAM filtering. While the values used in this thesis

follow intuitive reasoning, they make it challenging to apply this concept out of the box. The overall

complexity is also an issue. While the proposed second stage requires mostly two classifications and

an ROI prediction, the increased complexity can be problematic on restricted embedded systems.

Regarding the concept of ERAs proposed in Section 5.2, themain limitations are again related to the

underlying concept of introspection. An ERA can only learn to reverse the error function observed on

the training set. The unknown error function the semantic segmentation model will apply on unseen

data cannot be learned directly. Thus, the ERA can only reconstruct a subset of the errors on the test

set.

Finally, the individual sensor monitoring introduced in Section 5.3 is mostly limited by the current

use of a single performance weight per sensor. While the overall performance of the LIDAR tended

to be better than the camera, the LIDAR-based detection was occasionally worse for objects with

small bounding boxes such as bicycles. Nevertheless, the overall performance was often correctly

predicted to be higher and the LIDAR input was assigned a higher weight. This sometimes resulted

in a decreased performance for small objects. While the improvements averaged over all bounding

boxes were significant, a more elaborate weighting that considers individual classes or the properties

of individual bounding boxes is required to avoid occasional performance drops.

6 Conclusion

120

6.3 Future Work

The goal of this thesis was to investigate the topic of failure prediction for autonomous systems and

to develop a framework capable of preemptively detecting as many failures as possible. While each

of the proposed methods achieved state-of-the-art performance and can already be used to predict a

range of potential failures during driving, there is still room for further research. Next, we outline

ideas for improving the proposed system-level and component-level failure prediction approaches.

Additionally, we suggest Out-of-Distribution (OOD) detection and a combination of system-level and

component-level approaches as further directions of future work.

System-level failure prediction The disengagement prediction system developed in Chapter 3

achieved an accuracy of over 86 % seven seconds in advance. Due to the inherent randomness of some

failures such as suddenmoves by pedestrians, further improving the system’s accuracy is challenging.

However, one option would be to relax the black box assumption and use more information about the

environment from the internal scene perception of the vehicle. When treating the car as a black box,

the introspective system needs to extract all required semantic information from the camera images

itself. Supplying the disengagement prediction system with object lists or predicted movements of

traffic participants could lead to an introspective system that is both more aware of the environment

and also more aware of the current beliefs of the inspected system. Both factors could be beneficial

for predicting a system-level failure of the inspected system.

Besides improving the accuracy, there are several other directions in which this research can be

continued. It is possible to distinguish between failures caused by the system automatically returning

control to human and failures where the human safety driver took over control. The latter are

more safety-critical, since the vehicle would not have stopped driving without human intervention.

Being able to predict such failures is highly relevant for Level 3 and above. Additionally, while

the applications proposed in Chapter 5 mostly rely on component-level failure prediction, system-

level failure prediction could also be applied for more than just generating takeover requests. An

interesting future workwould be to run the proposed disengagement prediction system in the vehicle

and switch to a more cautious secondary driving function when the predicted failure probability

crosses a threshold. The seven seconds of time to prepare once a failure is detected would allow for

enough time to adjust the system to avoid the failure in the first place. The introspective model can

monitor the system adjustments, allowing for a feedback loop to ensure that the adjustments reduce

the failure probability.

Component-level failure prediction For the component-level failure prediction, the proposed in-

trospective approach outperformed the state of the art while also being the first approach for pre-

dicting future misclassifications of semantic segmentation. Nevertheless, the main limitation of only

being able to predict previously seen mistakes as outlined in Section 6.2 should be addressed in

future work. For rare or novel visual patterns, an additional approach besides introspective failure

prediction is required. Combining introspectionwith pixel-wise novelty detectors such as [150] could

lead to a more comprehensive pixel-wise failure prediction.

The applications of the component-level failure prediction proposed in Chapter 5 are another

direction for future work. The proposed individual sensor monitoring from Section 5.3 could also

be applied to semantic segmentation. LIDAR-based semantic segmentation has shown state-of-the-

art performance [73]. The point-wise introspective failure prediction could then be used to decide

which sensor modality to use for segmentation. Applying the proposed introspective approach to a

LIDAR-based system would also serve to validate the approach for other sensor modalities, since the

experiments conducted for this thesis were performed mostly on camera data.

Instead of monitoring and weighting the current sensor input, another potential direction is to

use the failure prediction to decide if new sensor input is required. The Zoom Lens Model used as

inspiration for the two-stage approach in Section 5.1 could be implemented in a more literal way, by

6.3 Future Work

121

using a dedicated zoom lens to obtain new sensor input specifically for the regions with the highest

failure probability. Such a physical zoom lens model could also be combined with the future failure

prediction for semantic segmentation introduced in Section 4.3. The 0.5 seconds that pixel-wise

failures can be predicted in advance can be enough to physically adjust a sensor and ensure that more

detailed information is obtained for problematic areas.

OOD detection In this thesis, we mostly implemented failure predictions for failures caused by

epistemic or aleatoric uncertainty. The system-level failure prediction approach from Chapter 3

can detect some novel failures by detecting irregularities in the physical state of the car, which

happen regardless of whether the failure is due to model uncertainty, input uncertainty, or OOD

data. However, if the system is not aware that it is entering a new environment, the state might not

reflect this until it is too late. A promising addition to the proposed disengagement prediction system

could be a dedicated OOD detection system. Existing options such as the ReSonAte framework [147]

could be combined with introspective models. Similarly, the component-level failure prediction

approaches all rely on having recorded failures to learn from. Pixel-wise failures caused by novel

objects are challenging to detect this way. OODdetection for individual components such as semantic

segmentation could be a solution for this limitation of introspection.

A different direction for future work would be to use OOD detection methods, but use them

explicitly for failure prediction. Samples that lead to failures could be classified as OOD and samples

that achieve a good performance could be considered in-distribution. Then, any OOD detection

approach that relies on learning a representation of a given distribution could be applied. If a

new environment is predicted to be in-distribution, this would imply a good system performance.

A detected OOD sample would directly indicate a system failure. Existing OOD detection systems

typically only determine if an input resembles the in-distributiondata usedduring training, regardless

of the performance the system exhibits for the input. A more task-specific interpretation of OOD

detection is therefore another interesting direction for improving failure prediction.

Combined failure prediction framework Finally, all failure prediction approaches proposed in

this thesis could be combined and implemented in an actual vehicle to evaluate the overall failure

prediction capabilities. As outlined in Figure 1.2, the failure probabilities predicted by each of the

proposed modules can be propagated throughout the system and aggregated to ultimately decide if

a takeover request is necessary. In this thesis, we evaluated system-level and component-level failure

prediction approaches separately. For future work, implementing a combined failure prediction

framework that aggregates every individual probability would be a promising step towards further

improving failure prediction for autonomous systems.

123

List of Figures

1.1 Visualization of the six autonomous driving levels as defined by the Society of Auto-

motive Engineers (SAE) [3]. 1

1.2 Overview of a general autonomous vehicle pipeline and the contributions of this thesis,

marked in yellow. Black box and trajectory disengagement prediction is introduced in

Chapter 3 and segmentation error prediction is presented in Chapter 4. Failure region

detection and reclassification as well as segmentation error correction is discussed in

Chapter 5. 3

2.1 Visualization of the main components of a Convolutional Neural Network (CNN). A

kernel (red) slides over the input image to create a convolved feature map. A pooling

layer (green) increases spatial invariance. The flattened features are classified by a fully

connected layer as one of N classes. 8

2.2 Overview of a two-stage (a) and a single-stage (b) object detection network. 9

2.3 Visualization of the Intersection over Union (IoU) metric to evaluate the performance

of object detection. The intersection between the predicted bounding box (red) and the

ground truth bounding box (green) is divided by their union. 10

2.4 Overviewof theAggregateViewObjectDetection (AVOD)architecture that is later used

in thiswork. Features extracted fromcamera andLightDetection andRanging (LIDAR)

input are fused by either addition or concatenation (source: [21]). 11

2.5 Overviewof theDeepLabV3+architecture for semantic image segmentation (source: [72]). 13

2.6 Overview of an encoder-decoder architecture with convolutional Long Short-Term

Memorys (LSTMs) that predicts future semantic maps based on a sequence of the

previous four semantic predictions (source: [81]). 14

2.7 There are three main sources of failures in autonomous driving. Epistemic uncertainty

stems from an insufficientmodel. Aleatoric uncertainty is inherent to the input. Finally,

Out-of-Distribution (OOD) data differs significantly from the training set distribution. 15

2.8 Visualization of the softmax output from 100 forward passes with active dropout from

a model trained to classify digits. The bottom row shows the input of an increasingly

rotated "1". The output samples aremost scattered around a rotation of 45 degrees. This

corresponds to the increased model uncertainty for an input that does not resemble

any of the three classes (source: [10]). 22

2.9 Overview of the key concepts of the field of OOD detection. Anomaly, novelty, outlier

and OOD detection are often used synonymously in the literature (source: [9]). 25

3.1 An overview of the general concept of black box introspective disengagement predic-

tion. During training, a classifier is trained with sequences of recorded driving data

labeled as either Success or Failure. During testing, the failure probability is constantly

updated with the latest driving data as input. 33

3.2 Visualization of how shorter samples s are generated from a sequence of 100 feature

vectors Fi that have been extracted from a driving sequencewith a duration of 10 seconds. 35

3.3 Visualization of the architecture of the state-based classifier Cstate that assigns an input

sample st consisting of L sequential feature vectors Fi a failure probability Pstate,t . Two

bi-directional LSTM layers are followed by three Fully Connected (FC) layers. The

final softmax layer generates the score for the class Failure, which is used as the failure

probability Pstate,t (Adopted from [25] © 2020 IEEE). 36

List of Figures

124

3.4 Visualization of each state variable over time. The average value of each state when ap-

proaching a disengagement develops significantly differently than during undisrupted

driving. 38

3.5 Comparison of the failure prediction performance of the state-based LSTM classifier

over time for both failure and success sequences when trained with samples of length

1 s to 5 s. Adding the moving average output filtering improves the accuracy and

reduces the variance. 38

3.6 Receiver Operating Characteristic (ROC) curves of the state-based classifier trained

with samples of length 1 s to 5 s. 39

3.7 Average failure prediction performance by the state-based classifier over time for both

failure sequences and success sequences. The average accuracy noticeably increases

during the last three seconds before a disengagement. 40

3.8 Visualization of the failure cases of the state-based LSTM classifier. The average angle

and speed of incorrect predictions is compared to the respective angle and speed of

correct predictions for both success and failure sequences. 41

3.9 Visualization of the creation of a dynamic difference image Idd,t from a sequence

of four images It , It−1 s, It−2 s, and It−3 s. The image It is taken at the moment of a

disengagement. The relevant features such as the car cutting in from the right and the

approaching intersection, indicated by the traffic light, are highlighted in the difference

images. 43

3.10 Visualization of the focus of each investigated architecture by plotting the Class Activa-

tion Maps (CAMs) as heat maps over sample test images from both failure and success

sequences. The ResNet50 model has learned to detect the most distinct and focused

regions to make its predictions (adopted from [25] © 2020 IEEE). 47

3.11 Comparison of the ROC curves of the two reference approaches of Arguing Ma-
chines [15], Predictive Variance [16], the state-based approach State LSTM from Sec-

tion 3.2, and the four architectures used to implement the proposed image-based

approach. Both the state-based and the image-based introspectivemodels significantly

outperform the state of the art by at least 33 %. 48

3.12 Average accuracy over time of the best-performing reference approach Predictive Vari-
ance compared to the proposed state-based and image-based classifiers. 50

3.13 Visualization of the average speed and the average angle of failure cases of the ResNet50. 50

3.14 Exemplary visualization of the potential of using planned trajectories to predict failures

early on. Between the time t and t + 3, the car drives a straight line, but the planned

trajectories already contain large disagreements regarding the future behavior. 51

3.15 Overview of the architecture of the trajectory-based classifier Ctraj that assigns a failure

probability Ptraj,t to an input sample strajt consisting of a sequence of planned trajectories

Tt . Two LSTM layers are followed by four FC layers and a final softmax layer to obtain

the output score between 0 and 1. 53

3.16 Visualization of two trajectory sequences from successful driving (left) and two tra-

jectory sequences ending in disengagements (right). The start of each trajectory is

marked by an "X" and the color corresponds to the time point within each sequence.

The planned trajectories in the two success examples largely overlap. In the failure

sequences, significant disagreements over time are visible. 54

3.17 The degree of curvature is calculated as the sum of angles θtra j,1 , θtra j,2 , ..., θtra j,28

between 30 points p1 , p2 , ..., p30 of a planned trajectoryT (adopted from [26] © 2021 IEEE). 55

3.18 Average curvature and length of the planned trajectories in both failure and success

sequences (adopted from [26] © 2021 IEEE). 56

3.19 Comparison of the ROC curves of the three baseline approaches and the proposed

Trajectory LSTM model. 57

List of Figures

125

3.20 Average accuracy over time for both failure and success sequences of the proposed

Trajectory LSTM approach compared to the best-performing baseline approaches. . . . 58

3.21 Visualization of the average speed and average angle of failure cases as well as correct

predictions of the proposed trajectory-based failure prediction approach. 59

3.22 Overviewof the proposed latemultimodal fusion framework. The state-based classifier

Cstate, the image-based classifier Cimg, and the trajectory-based classifier Cstate are

used to obtain the individual failure probabilites Pim g , Pstate, and Ptraj, which are then

averaged to obtain the fused failure probability Pfusion. 61

3.23 Comparison of the ROC curves of all individual introspective failure predictionmodels

as well as all possible late fusion combinations. 63

3.24 Average accuracy over time of the individual failure prediction models compared to

late fusion. 64

3.25 Visualization of the average speed and average angle of the vehicle over time for both

correct and incorrect failure predictions made by the fusion-based approach. 65

4.1 Overview of the proposed workflow to train an introspective failure prediction model

Sintro that predicts pixel-wise errors made by a baseline semantic segmentation model

Ssemse g (adapted from [22] © 2020 IEEE). 68

4.2 Visualization of the generation of training and test data for a baseline semantic seg-

mentation model Ssemse g and an introspective failure prediction model Sintro from one

large-scale image data set with pixel-wise labels (adopted from [22] © 2020 IEEE). . . 69

4.3 Overview of the proposed approach of implementing the introspective failure pre-

diction model as a second decoder, sharing the trained encoder with the baseline

DeepLabV3+ semantic segmentation model. 70

4.4 Precision-recall curves for the proposed introspective approach, the two reference

approaches, and combinations of introspection and the reference approaches (adapted

from [22] © 2020 IEEE). 72

4.5 Visualization of the compared failure prediction methods for three sample images

(adopted from [22] © 2020 IEEE). 75

4.6 Overview of the spatio-temporal failure prediction architecture based on extending

DeepLabV3+ with convolutional LSTMs and an introspective decoder. 77

4.7 An example image from the Densely Annotated VideoDriving (DAVID) data set along-

side the automatically generated ground-truth semantic labels. 78

4.8 Overview of the semantic classes and their relative frequency in the DAVID data set.

The frequency of critical classes such as Pedestrian is almost identical to real-world data

sets such as Cityscapes. 79

4.9 Overview of the architecture that uses a sequence of previous predicted error maps

Et−3, ,..., t to predict a future error map Et+n that is n steps in the future (adapted

from [27] © 2021 IEEE). 83

5.1 Summary of the pipeline to obtain distinct failure regions for the predicted semantic

segmentation of a given input image. Predicted pixel-wise failures are filtered with a

predicted Region of Interest (ROI) mask. Then, erosion and dilation masks are applied

to remove spurious predictions. After clustering and a final postprocessing step, a set

of bounding boxes of local failure regions is obtained (adopted from [24] © 2020 IEEE). 88

5.2 Visualization of the pixel-wise failure prediction (right) for a given input image (left),

which is the basis for the proposed failure region detection system. 89

5.3 Visualization of filtering the pixel-wise failure prediction with the predicted ROIs

(left). For the sample image, the filtered failure prediction (right) contains only failures

corresponding to areas that contain cars or people. 89

List of Figures

126

5.4 Visualization of binarizing and smoothing the ROI-filtered failure prediction (left)

with three erosion and dilation masks. The smoothed failure prediction (right) mostly

consists of connected failure regions. 90

5.5 Visualization of the clusters obtained from the smoothed failure prediction using the

k-means algorithm. Each cluster is shown via a red bounding box around the pixels

belonging to the respective cluster. 90

5.6 Example for the classification of the predicted failure regions. 91

5.7 Visualization of the CAM filtering of the smoothed failure prediction. 92

5.8 Visualization of the update of the predicted semantic map. The pedestrian (yellow) is

initially misclassified as a bicycle (orange), which is partially corrected in the update

step. 92

5.9 Number of road participants where the update step changed the accuracy by 5 % to

50 % in either direction. For instance, a total of 325 road participants are improved

by 5 % or more, while the accuracy of 141 road participants decreases by 5 % or more

(adopted from [24] © 2020 IEEE). 95

5.10 Visualization of the proposed update of the semantic prediction for five exemplary

images. The input image (a) and its ground-truth labels (b) are shown next to the

initial semantic prediction by DeepLabV3+ (c). The updated semantic prediction is

shown in (d). Car is shown as blue in the semantic maps, Pedestrian is yellow, Bicycle is
orange and Truck is dark blue (adopted from [24] © 2020 IEEE). 97

5.11 Overview of theworkflow for training the proposed Error-ReversingAutoencoder (ERA).100

5.12 Visualization of the error reversal applied to a sample test image. The columns cor-

respond to the original images (a), images compressed at Joint Photographic Experts

Group (JPEG) 90 % quality (b), JPEG 50 % quality (c), and JPEG 10 % quality (d). The

top row shows the input image, the second row depicts the semantic predictions by

DeepLabV3+, the third row shows the result of the corresponding ERA, and the fourth

row shows the ground truth labels for reference (adapted from [29] © 2022 IEEE). . . 105

5.13 Overview of the proposed individual sensor monitoring (blue) that can be added to

any standard multimodal object detection architecture (gray). For each sensor, an

introspective model M is trained to predict the performance of that sensor. In the

fusion by concatenation or addition, the features extracted from each sensor input are

weighted accordingly to improve the subsequent object detection (adopted from [28]

© 2022 IEEE). 107

5.14 Overview of the proposed dynamically adjustable fusion with n � 2 sensors, applied

to the AVOD architecture [21]. The features Fi extracted from the sensor readings Ri
are weighted with the performances Pi obtained from the single-sensor models Di .

During testing, the performances are predicted using sensor monitoring models Mi
(adopted from [28] © 2022 IEEE). 110

127

List of Tables

3.1 Summary of the failure data set extracted from the raw driving recordings provided

by the research vehicles of the BMW Group. 34

3.2 Comparison of the accuracy and Area Under Curve (AUC) for samples of length 1 s to

5 s, with and without output filtering. The best performance is achieved by using 3 s

samples together with output filtering. 39

3.3 Ablation study for the five state variables used as input for the state-based classifier.

One state is removed at a time, the model is retrained and the accuracy loss caused by

removing each state is calculated. All five selected state variables lead to a significant

drop in performance when removed. 41

3.4 Summary of the classification architectures used for the image-based classifier Cimg.

For each architecture, only the final layers are trained to avoid overfitting. 44

3.5 Comparison of the average accuracy and standard deviation, the AUC, the number of

parameters, and the average inference time per prediction of all investigated failure

prediction methods. 49

3.6 Contents of the trajectory-based data set Dtraj. 52

3.7 Comparison of the accuracy, AUC, number of parameters and average inference time

per prediction for both the state-based and the proposed trajectory-based approach. . 58

3.8 Comparison of the average accuracy, AUC, number of parameters, and average infer-

ence time of the proposed individual and fusion-based introspective failure prediction

methods. 63

4.1 Area Under Curve (AUC) of the precision-recall curves for each individual class. Using

introspection outperforms bothMonte Carlo (MC) dropout (MCD) andDeep Ensemble

(DE) in 21 of the 31 semantic classes. 74

4.2 Summary of the video sequences of the DAVID data set. The 28 sequences contain a

total of 10 767 images with pixel-wise labels available for every frame, making Densely

Annotated Video Driving (DAVID) around nine times larger than the largest existing

data set for semantic video segmentation. 79

4.3 mean Average Precision (mAP) of DeepLabV3+ compared to DeepLabV3+ extended

with convolutional Long Short-TermMemorys (LSTMs), evaluated on the test set from

Cityscapes and DAVID. 80

4.4 Average AUC values of the spatio-temporal failure prediction approach compared to

single-image introspection and Deep Ensemble. Using temporal information consis-

tently improves performance. 81

4.5 Class-wise AUC values of the spatio-temporal introspection approach compared to

single-image introspection, evaluated on the DAVID data set. 82

4.6 Class-wise AUC values of the spatio-temporal introspection approach compared to

single-image introspection, evaluated on the Cityscapes data set. 82

4.7 AUC of the proposed approach to predict failures of images n � 0, 1, ..., 5 frames in the

future, evaluated on the DAVID data set. 84

4.8 AUC of the proposed approach to predict failures of images n � 0, 1, ..., 5 frames in the

future, evaluated on the Highway Driving data set. 85

List of Tables

128

5.1 Summary of the data used to train the failure region classifier. The bounding boxes

from the most common class Car were undersampled by a factor of 2 to avoid an

excessive class imbalance. 93

5.2 Classification accuracy for each road participant class present in the predicted failure

regions. 94

5.3 Class-wise and overall accuracy of the initial predicted semantic segmentation gener-

ated with the DeepLabV3+ model and the updated semantic prediction. 95

5.4 Summary of the proposed fully convolutional encoder-decoder architecture for the

implementation of the proposed Error-Reversing Autoencoder (ERA). 100

5.5 Mean Intersection over Union (IoU) [%] of all evaluated post-processing autoencoder

approaches. The proposed compact, fully convolutional model ERAsoft trained with

both the predicted semantic maps as well as the softmax scores outperforms the state-

of-the-art postDAE by 6.8 %. 102

5.6 Mean IoU [%] of the proposed post-processing with Error-Reversing Autoencoders

(ERAs) trained for varying compression levels, applied to both the original test set and

all compressed versions. As a baseline, we compare to the unprocessed DeepLabV3+

and the state-of-the-art postDAE [76]. 103

5.7 Class-wise absolute mean IoU change on the original and the compressed test sets

after applying the corresponding best-performing autoencoder. Improved values are

shown in bold. A larger compression of the input leads to a larger improvement from

the error reversal. 104

5.8 The AUC values of the two proposed performance prediction approaches for both

sensors. 111

5.9 Summary of the object detectionperformance onKITTI for the baselineAggregateView

Object Detection (AVOD), the introAVOD, and the confAVOD. The average precision for

both 3D and Bird’s Eye View (BEV) detection is shown for all three difficulty categories.

Averaged over all categories, both proposed sensor monitoring approaches improve

the 3D detection performance by at least 5.0 % and the BEV detection performance by

at least 3.7 %. 112

5.10 Mean IoU [%] of the single-sensor models, the baseline AVOD and the proposed

introAVOD approach, evaluated on the samples with the lowest predicted performance

as well as on the entire test set for comparison. 113

129

List of Publications

Journal Articles

[25] Christopher B. Kuhn, Markus Hofbauer, Goran Petrovic, and Eckehard Steinbach. “Introspec-

tive failure prediction for autonomous driving using late fusion of state and camera infor-

mation”. In: IEEE Transactions on Intelligent Transportation Systems (Dec. 2020). Early access,

pp. 1–15. doi: 10.1109/TITS.2020.3044813.

[198] Markus Hofbauer, Christopher B. Kuhn, Goran Petrovic, and Eckehard Steinbach. “Preproces-

sor Rate Control for Adaptive Multi-View Live Video Streaming Using a Single Encoder”. In:

IEEE Transactions on Circuits and Systems for Video Technology (2022), pp. 1–16. doi: 10.1109/
TCSVT.2022.3142403.

Conference Proceedings

[22] Christopher B. Kuhn, Hofbauer Markus, Sungkyu Lee, Goran Petrovic, and Eckehard Stein-

bach. “Introspective failure prediction for semantic image segmentation”. In: 2020 IEEE 23rd
International Conference on Intelligent Transportation Systems (ITSC). Rhodes, Greece, Sept. 2020,

pp. 1–6. doi: 10.1109/ITSC45102.2020.9294308.

[23] Christopher B. Kuhn, Markus Hofbauer, Goran Petrovic, and Eckehard Steinbach. “Introspec-

tive black box failure prediction for autonomous driving”. In: 2020 IEEE Intelligent Vehicles
Symposium (IV). Las Vegas, NV, USA, Oct. 2020, pp. 1907–1913. doi: 10.1109/IV47402.
2020.9304844.

[24] Christopher B. Kuhn, Markus Hofbauer, Goran Petrovic, and Eckehard Steinbach. “Better

look twice - Improving visual scene perception using a two-stage approach”. In: 2020 IEEE
International Symposium on Multimedia (ISM). Naples, Italy, Dec. 2020, pp. 33–40. doi: 10.
1109/ISM.2020.00013.

[26] Christopher B. Kuhn, Markus Hofbauer, Goran Petrovic, and Eckehard Steinbach. “Trajectory-

based failure prediction for autonomous driving”. In: 2021 IEEE Intelligent Vehicles Symposium
(IV). Nagoya, Japan, July 2021, pp. 980–986. doi: 10.1109/IV48863.2021.9575937.

[27] Christopher B. Kuhn, Markus Hofbauer, Ziqin Xu, Goran Petrovic, and Eckehard Steinbach.

“Pixel-wise failure prediction for semantic video segmentation”. In: 2021 IEEE International
Conference on Image Processing (ICIP). Anchorage, AK, USA, Sept. 2021, pp. 614–618. doi: 110.
1109/ICIP42928.2021.9506552.

[28] Christopher B Kuhn, Markus Hofbauer, Bowen Ma, Goran Petrovic, and Eckehard Steinbach.

“Improving Multimodal Object Detection with Individual Sensor Monitoring”. In: 24th IEEE
International Symposium on Multimedia (ISM). Naples, Italy, 2022.

[29] Christopher B. Kuhn, Markus Hofbauer, Goran Petrovic, and Eckehard Steinbach. “Reverse

Error Modeling for Improved Semantic Segmentation”. In: 2022 IEEE International Conference
on Image Processing (ICIP). 2022, pp. 106–110. doi: 10.1109/ICIP46576.2022.9897331.

https://doi.org/10.1109/TITS.2020.3044813
https://doi.org/10.1109/TCSVT.2022.3142403
https://doi.org/10.1109/TCSVT.2022.3142403
https://doi.org/10.1109/ITSC45102.2020.9294308
https://doi.org/10.1109/IV47402.2020.9304844
https://doi.org/10.1109/IV47402.2020.9304844
https://doi.org/10.1109/ISM.2020.00013
https://doi.org/10.1109/ISM.2020.00013
https://doi.org/10.1109/IV48863.2021.9575937
https://doi.org/110.1109/ICIP42928.2021.9506552
https://doi.org/110.1109/ICIP42928.2021.9506552
https://doi.org/10.1109/ICIP46576.2022.9897331

List of Publications

130

[100] Markus Hofbauer, Christoph Bachhuber, Christopher Kuhn, and Eckehard Steinbach. “Teach-

ing Software Engineering As Programming Over Time”. In: IEEE/ACM 4th International Work-
shop on Software Engineering Education for the Next Generation. Pittsburgh, PA, USA: Asso-

ciation for Computing Machinery, May 2022, pp. 1–8. isbn: 978-1-4503-9336-2/22/05. doi:

10.1145/3528231.3528353. url: https://doi.org/10.1145/3528231.3528353.

[189] Shreyas Ramakrishna, Baiting Luo, Christopher B. Kuhn, Gabor Karsai, and Abhishek Dubey.

“ANTI-CARLA: An adversarial testing framework for autonomous vehicles in CARLA”. In:

2022 IEEE 25th International Conference on Intelligent Transportation Systems (ITSC). Submitted

for review. Macau, China, Oct. 2022.

[190] Markus Hofbauer, Christopher Kuhn, Goran Petrovic, and Eckehard Steinbach. “Measuring

the Influence of Image Preprocessing on the Encoder Rate-Distortion Performance”. In: 24th
IEEE International Symposium on Multimedia (ISM). Naples, Italy, 2022.

[191] Markus Hofbauer, Christoph Bachhuber, Christopher Kuhn, Sebastian Schwarz, Bart Kroon,

and Eckehard Steinbach. “Large-Scale Collaborative Writing: Technical Challenges and Rec-

ommendations”. In: 2023, Submitted for review.

[192] Lukas Habermayr, Markus Hofbauer, Joao-Vitor Zacchi, and Christopher B. Kuhn. “Situation-

aware model refinement for semantic image segmentation”. In: 2021 IEEE 24th International
Conference on IntelligentTransportationSystems (ITSC). Indianapolis, IN,USA, Sept. 2021, pp. 2696–

2702. doi: 10.1109/ITSC48978.2021.9564549.

[193] Markus Hofbauer, Christopher B. Kuhn, Goran Petrovic, and Eckehard Steinbach. “TELE-

CARLA: An open source extension of the CARLA simulator for teleoperated driving research

using off-the-shelf components”. In: 2020 IEEE Intelligent Vehicles Symposium (IV). Las Vegas,
NV, USA, Oct. 2020, pp. 335–340. doi: 10.1109/IV47402.2020.9304676.

[194] Markus Hofbauer, Christopher B. Kuhn, Jiaming Meng, Goran Petrovic, and Eckehard Stein-

bach. “Multi-view region of interest prediction for autonomous driving using semi-supervised

labeling”. In: 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC).
Rhodes, Greece, Sept. 2020, pp. 1–6. doi: 10.1109/ITSC45102.2020.9294387.

[195] Markus Hofbauer, Christopher B. Kuhn, Goran Petrovic, and Eckehard Steinbach. “Adaptive

multi-view live video streaming for teledriving using a single hardware encoder”. In: 2020
IEEE International Symposium on Multimedia (ISM). Naples, Italy, Dec. 2020, pp. 9–16. doi:

10.1109/ISM.2020.00008.

[196] MarkusHofbauer,ChristophBachhuber,ChristopherB.Kuhn, andEckehardSteinbach. “Teach-

ing software engineering as programming over time”. In: 44th International Conference on Soft-
ware Engineering (ICSE 2022). Pittsburgh, PA, USA, May 2022.

[197] MarkusHofbauer, Christopher Kuhn,MariemKhlifi, Goran Petrovic, and Eckehard Steinbach.

“Traffic-Aware Multi-View Video Stream Adaptation for Teleoperated Driving”. In: 2022 IEEE
95th Vehicular Technology Conference: VTC2022-Spring. Helsinki, Finland, June 2022, pp. 1–8.

doi: 10.1109/VTC2022-Spring54318.2022.9860513.

[199] Kristian Fischer, Markus Hofbauer, Christopher Kuhn, Eckehard Steinbach, and Andre Kaup.

“Evaluation of Video Coding for Machines without Ground Truth”. In: ICASSP 2022 - 2022
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 2022, pp. 1616–
1620. doi: 10.1109/ICASSP43922.2022.9747633.

https://doi.org/10.1145/3528231.3528353
https://doi.org/10.1145/3528231.3528353
https://doi.org/10.1109/ITSC48978.2021.9564549
https://doi.org/10.1109/IV47402.2020.9304676
https://doi.org/10.1109/ITSC45102.2020.9294387
https://doi.org/10.1109/ISM.2020.00008
https://doi.org/10.1109/VTC2022-Spring54318.2022.9860513
https://doi.org/10.1109/ICASSP43922.2022.9747633

131

Bibliography

[1] Hendrik Unger, Tobias Markert, and Egon Müller. “Evaluation of use cases of autonomous

mobile robots in factory environments”. In: Procedia Manufacturing 17 (2018), pp. 254–261.
[2] Junyao Guo, Unmesh Kurup, and Mohak Shah. “Is it Safe to Drive? An Overview of Fac-

tors, Metrics, and Datasets for Driveability Assessment in Autonomous Driving”. In: IEEE
Transactions on Intelligent Transportation Systems (ITSC) 21.8 (2020), pp. 3135–3151.

[3] Marco Galvani. “History and future of driver assistance”. In: IEEE Instrumentation & Measure-
ment Magazine 22.1 (2019), pp. 11–16.

[4] Vinayak V. Dixit, Sai Chand, and Divya J. Nair. “Autonomous vehicles: disengagements,

accidents and reaction times”. In: PLoS one 11.12 (2016), e0168054.
[5] Puneet Kohli and Anjali Chadha. “Enabling pedestrian safety using computer vision tech-

niques: A case study of the 2018 uber inc. self-driving car crash”. In: Future of Information and
Communication Conference. Springer. 2019, pp. 261–279.

[6] Samuel Gibbs. “Google sibling waymo launches fully autonomous ride-hailing service”. In:

The Guardian 7 (2017).

[7] Natasha Merat, A. Hamish Jamson, Frank C. H. Lai, Michael Daly, and Oliver M. J. Carsten.

“Transition to manual: Driver behaviour when resuming control from a highly automated

vehicle”. In: Transportation Research Part F: Traffic Psychology and Behaviour. Vehicle automation

and driver behaviour 27 (Nov. 2014), pp. 274–282.

[8] Armen Der Kiureghian and Ove Ditlevsen. “Aleatory or epistemic? Does it matter?” In: Struc-
tural Safety 31.2 (2009), pp. 105–112.

[9] Jingkang Yang, Kaiyang Zhou, Yixuan Li, and Ziwei Liu. “Generalized out-of-distribution

detection: a survey”. In: arXiv preprint arXiv:2110.11334 (2021). (Visited on 03/15/2022).

[10] Yarin Gal and Zoubin Ghahramani. “Dropout as a bayesian approximation: Representing

model uncertainty in deep learning”. In: International Conference on Machine Learning. 2016,
pp. 1050–1059.

[11] Yonatan Geifman and Ran El-Yaniv. “Selective classification for deep neural networks”. In:

Advances in Neural Information Processing Systems. Vol. 30. 2017, pp. 4878–4887.
[12] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. “Simple and scalable pre-

dictive uncertainty estimation using deep ensembles”. In: Advances in Neural Information Pro-
cessing Systems 30 (2017), pp. 6402–6413.

[13] Hao Wang and Dit-Yan Yeung. “Towards Bayesian deep learning: A framework and some ex-

istingmethods”. In: IEEE Transactions on Knowledge and Data Engineering 28.12 (2016), pp. 3395–
3408.

[14] Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. “Weight uncer-

tainty in neural networks”. In: Proceedings of the 32nd International Conference on International
Conference on Machine Learning. Vol. 37. 2015, pp. 1613–1622.

[15] Lex Fridman, Li Ding, Benedikt Jenik, and Bryan Reimer. “Arguing machines: Human super-

vision of black box AI systems that make life-critical decisions”. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition Workshops. 2019.

Bibliography

132

[16] Rhiannon Michelmore, Marta Kwiatkowska, and Yarin Gal. “Evaluating uncertainty quantifi-

cation in end-to-end autonomous driving control”. In: arXiv preprint arXiv:1811.06817 (2018).

(Visited on 03/15/2022).

[17] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen Koltun.

“CARLA: An open urban driving simulator”. In: Conference on Robot Learning. 2017, pp. 1–
16.

[18] Gabriel J Brostow, Julien Fauqueur, and Roberto Cipolla. “Semantic object classes in video: A

high-definition ground truth database”. In: Pattern Recognition Letters 30.2 (2009), pp. 88–97.
[19] Byungju Kim, Junho Yim, and Junmo Kim. “Highway driving dataset for semantic video

segmentation”. In: 29th British Machine Vision Conference (BMVC 2018). 2018.
[20] Charles W. Eriksen and James D. St James. “Visual attention within and around the field of

focal attention: A zoom lens model”. In: Perception & Psychophysics 40.4 (1986), pp. 225–240.
[21] Jason Ku,MelissaMozifian, Jungwook Lee, Ali Harakeh, and StevenWaslander. “Joint 3D pro-

posal generationandobject detection fromviewaggregation”. In: arXiv preprint arXiv:1712.02294
(July 2018). (Visited on 03/15/2022).

[30] Guna Seetharaman, Arun Lakhotia, and Erik Philip Blasch. “Unmanned vehicles come of age:

The DARPA grand challenge”. In: Computer 39.12 (2006), pp. 26–29.
[31] Shantanu Ingle and Madhuri Phute. “Tesla autopilot: semi autonomous driving, an uptick

for future autonomy”. In: International Research Journal of Engineering and Technology 3.9 (2016),
pp. 369–372.

[32] Shaoshan Liu, Liyun Li, Jie Tang, Shuang Wu, and Jean-Luc Gaudiot. “Creating autonomous

vehicle systems”. In: Synthesis Lectures on Computer Science 8.2 (2020), pp. i–216.
[33] BMWGroupPressClub, ed.Die neue BMWGroupHigh PerformanceD3Plattform.Mar. 2019.url:

www.press.bmwgroup.com/deutschland/article/detail/T0293764DE (visited on

03/15/2022).

[34] Mariusz Bojarski et al. “End to end learning for self-driving cars”. In: arXiv preprint arXiv:
1604.07316 (2016). (Visited on 03/15/2022).

[35] Junsung Kim, Ragunathan Rajkumar, andMarkus Jochim. “Towards dependable autonomous

driving vehicles: a system-level approach”. In: ACM SIGBED Review 10.1 (2013), pp. 29–32.

[36] Rowan McAllister et al. “Concrete problems for autonomous vehicle safety: Advantages of

Bayesian deep learning”. In: Proceedings of the Twenty-Sixth International Joint Conference on
Artificial Intelligence. Melbourne, Australia: International Joint Conferences on Artificial Intel-

ligence Organization, Aug. 2017, pp. 4745–4753.

[37] Christian Pek and Matthias Althoff. “Computationally efficient fail-safe trajectory planning

for self-driving vehicles using convex optimization”. In: 2018 21st International Conference on
Intelligent Transportation Systems (ITSC). 2018, pp. 1447–1454.

[38] Kunihiko Fukushima. “Neocognitron: A hierarchical neural network capable of visual pattern

recognition”. In: Neural Networks 1.2 (1988), pp. 119–130.
[39] Yann LeCun et al. “Backpropagation applied to handwritten zip code recognition”. In: Neural

Computation 1.4 (1989), pp. 541–551.

[40] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. “ImageNet classification with deep

convolutional neural networks”. In: Communications of the ACM 60.6 (May 2017), pp. 84–90.

[41] Olga Russakovsky et al. “Imagenet large scale visual recognition challenge”. In: International
Journal of Computer Vision 115.3 (2015), pp. 211–252.

[42] Karen Simonyan and Andrew Zisserman. “Very deep convolutional networks for large-scale

image recognition”. In: arXiv preprint arXiv:1409.1556 (2014). (Visited on 03/15/2022).

www.press.bmwgroup.com/deutschland/article/detail/T0293764DE

Bibliography

133

[43] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep residual learning for image

recognition”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
2016, pp. 770–778.

[44] Andrew G. Howard et al. “Mobilenets: Efficient convolutional neural networks for mobile

vision applications”. In: arXiv preprint arXiv:1704.04861 (2017). (Visited on 03/15/2022).

[45] Robert Hecht-Nielsen. “Theory of the backpropagation neural network”. In: Neural networks
for perception. Elsevier, 1992, pp. 65–93.

[46] Diogo V. Carvalho, EduardoM Pereira, and Jaime S Cardoso. “Machine learning interpretabil-

ity: A survey on methods and metrics”. In: Electronics 8.8 (2019), p. 832.
[47] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. “Rich feature hierarchies for

accurate object detection and semantic segmentation”. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 2014, pp. 580–587.

[48] Ross Girshick. “Fast r-cnn”. In: Proceedings of the IEEE international conference on computer vision.
2015, pp. 1440–1448.

[49] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. “Faster r-cnn: Towards real-time

object detection with region proposal networks”. In: Advances in Neural Information Processing
Systems 28 (2015).

[50] Yongri Piao, Yongyao Jiang, Miao Zhang, Jian Wang, and Huchuan Lu. “PANet: Patch-aware

network for light field salient object detection”. In: IEEE Transactions on Cybernetics (2021).
[51] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. “You Only Look Once:

Unified, real-time object detection”. In: arXiv preprint arXiv:1506.02640 (May 2016). (Visited on

03/15/2022).

[52] Joseph Redmon and Ali Farhadi. “YOLOv3: An incremental improvement”. In: arXiv preprint
arXiv:1804.02767 (Apr. 2018). (Visited on 03/15/2022).

[53] Adam Kortylewski, Qing Liu, Angtian Wang, Yihong Sun, and Alan Yuille. “Compositional

convolutional neural networks: A robust and interpretable model for object recognition under

occlusion”. In: arXiv preprint arXiv:2006.15538 (June 2020). (Visited on 03/15/2022).

[54] Angtian Wang, Yihong Sun, Adam Kortylewski, and Alan L. Yuille. “Robust object detec-

tion under occlusion with context-aware compositionalnets”. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 2020, pp. 12645–12654.

[55] Zining Wang et al. “Inferring spatial uncertainty in object detection”. In: 2020 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems (IROS). Las Vegas, NV, USA: IEEE, Oct.

2020, pp. 5792–5799.

[56] Nir Morgulis, Alexander Kreines, Shachar Mendelowitz, and Yuval Weisglass. “Fooling a

real car with adversarial traffic signs”. In: arXiv preprint arXiv:1907.00374 (2019). (Visited on

03/15/2022).

[57] Haichao Zhang and JianyuWang. “Towards adversarially robust object detection”. In: Proceed-
ings of the IEEE/CVF International Conference on Computer Vision. 2019, pp. 421–430.

[58] Martin Simon et al. “Complexer-yolo: Real-time 3d object detection and tracking on seman-

tic point clouds”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops. 2019, pp. 0–0.

[59] Jamil Fayyad, Mohammad A. Jaradat, Dominique Gruyer, and Homayoun Najjaran. “Deep

learning sensor fusion for autonomous vehicle perception and localization: a review”. In:

Sensors 20.15 (July 2020), p. 4220.

[60] KuanLiu,YanenLi,NingXu, andPremNatarajan. “Learn to combinemodalities inmultimodal

deep learning”. In: arXiv preprint arXiv:1805.11730 (2018). (Visited on 03/15/2022).

Bibliography

134

[61] Konrad Gadzicki, Razieh Khamsehashari, and Christoph Zetzsche. “Early vs late fusion in

multimodal convolutional neural networks”. In: 2020 IEEE 23rd International Conference on
Information Fusion (FUSION). 2020, pp. 1–6.

[62] Cees GM Snoek, Marcel Worring, and Arnold WM Smeulders. “Early versus late fusion in

semantic video analysis”. In: Proceedings of the 13th annual ACM international Conference on
Multimedia. 2005, pp. 399–402.

[63] Ming Liang, Bin Yang, Shenlong Wang, and Raquel Urtasun. “Deep continuous fusion for

multi-sensor 3D object detection”. In: arXiv preprint arXiv:2012.10992 (Dec. 2020). (Visited on

03/15/2022).

[64] Xiaozhi Chen, Huimin Ma, Ji Wan, Bo Li, and Tian Xia. “Multi-view 3D object detection

network for autonomous driving”. In: arXiv preprint arXiv:1611.07759 (June 2017). (Visited on

03/15/2022).

[65] Andreas Pfeuffer and Klaus Dietmayer. “Optimal sensor data fusion architecture for object

detection in adverse weather conditions”. In: 2018 21st International Conference on Information
Fusion (FUSION). Cambridge: IEEE, July 2018, pp. 1–8.

[66] OierMees, Andreas Eitel, andWolfram Burgard. “Choosing smartly: Adaptivemultimodal fu-

sion for object detection in changing environments”. In: 2016 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). Daejeon, Korea, Oct. 2016, pp. 151–156.

[67] Taewan Kim and Joydeep Ghosh. “On single source robustness in deep fusion models”. In:

arXiv preprint arXiv:1906.04691 (Oct. 2019). (Visited on 03/15/2022).

[68] Jonathan Long, Evan Shelhamer, and Trevor Darrell. “Fully convolutional networks for se-

mantic segmentation”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2015, pp. 3431–3440.

[69] Vĳay Badrinarayanan, Alex Kendall, and Roberto Cipolla. “Segnet: A deep convolutional

encoder-decoder architecture for image segmentation”. In: IEEETransactions on PatternAnalysis
and Machine Intelligence 39.12 (2017), pp. 2481–2495.

[70] Fisher Yu and Vladlen Koltun. “Multi-scale context aggregation by dilated convolutions”. In:

arXiv preprint arXiv:1511.07122 (2015). (Visited on 03/15/2022).

[71] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L Yuille.

“Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution,

and fully connected crfs”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence 40.4
(2017), pp. 834–848.

[72] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff, and Hartwig Adam.

“Encoder-decoder with atrous separable convolution for semantic image segmentation”. In:

Proceedings of the European Conference on Computer Vision (ECCV). 2018, pp. 801–818.
[73] Andres Milioto, Ignacio Vizzo, Jens Behley, and Cyrill Stachniss. “Rangenet++: Fast and ac-

curate lidar semantic segmentation”. In: 2019 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). 2019, pp. 4213–4220.

[74] Lovedeep Gondara. “Medical image denoising using convolutional denoising autoencoders”.

In: 2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW). 2016, pp. 241–
246.

[75] Agostina J. Larrazabal, Cesar Martinez, and Enzo Ferrante. “Anatomical priors for image

segmentation via post-processing with denoising autoencoders”. In: International Conference
on Medical Image Computing and Computer-Assisted Intervention. Springer. 2019, pp. 585–593.

[76] Agostina J. Larrazabal, Cesar Martinez, Ben Glocker, and Enzo Ferrante. “Post-dae: Anatom-

ically plausible segmentation via post-processing with denoising autoencoders”. In: IEEE
Transactions on Medical Imaging 39.12 (2020), pp. 3813–3820.

Bibliography

135

[77] Andreas Pfeuffer, Karina Schulz, and Klaus Dietmayer. “Semantic segmentation of video

sequences with convolutional lstms”. In: 2019 IEEE Intelligent Vehicles Symposium (IV). 2019,
pp. 1441–1447.

[78] Xingjian Shi, ZhourongChen,HaoWang,Dit-YanYeung,Wai-KinWong, andWang-chunWoo.

“Convolutional LSTM network: A machine learning approach for precipitation nowcasting”.

In: Advances in Neural Information Processing Systems 28 (2015).
[79] Yong-Hoon Kwon and Min-Gyu Park. “Predicting future frames using retrospective cycle

gan”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019,
pp. 1811–1820.

[80] Pauline Luc, Natalia Neverova, Camille Couprie, Jakob Verbeek, and Yann LeCun. “Predicting

deeper into the future of semantic segmentation”. In: Proceedings of the IEEE International
Conference on Computer Vision. 2017, pp. 648–657.

[81] Mrigank Rochan et al. “Future semantic segmentation with convolutional lstm”. In: arXiv
preprint arXiv:1807.07946 (2018). (Visited on 03/15/2022).

[82] Andreas Geiger, Philip Lenz, and Raquel Urtasun. “Are we ready for autonomous driving?

The KITTI vision benchmark suite”. In: 2012 IEEE Conference on Computer Vision and Pattern
Recognition. Providence, RI: IEEE, June 2012, pp. 3354–3361.

[83] Jens Behley et al. “Semantickitti: A dataset for semantic scene understanding of lidar se-

quences”. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019,
pp. 9297–9307.

[84] Marius Cordts et al. “The cityscapes dataset for semantic urban scene understanding”. In:

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016, pp. 3213–
3223.

[85] Fisher Yu et al. “Bdd100k: A diverse driving dataset for heterogeneous multitask learning”.

In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020,
pp. 2636–2645.

[86] Jakob Geyer et al. A2D2: AEV autonomous driving dataset. http://www.a2d2.audi. 2019.
(Visited on 03/15/2022).

[87] Chenyi Chen, Ari Seff, Alain Kornhauser, and Jianxiong Xiao. “DeepDriving: Learning affor-

dance for direct perception in autonomous driving”. In: arXiv preprint arXiv:1505.00256 (May

2015). (Visited on 03/15/2022).

[88] XiangyuYue, BichenWu, Sanjit A Seshia, Kurt Keutzer, andAlberto L Sangiovanni-Vincentelli.

“A lidar point cloud generator: from a virtual world to autonomous driving”. In: Proceedings
of the 2018 ACM on International Conference on Multimedia Retrieval. 2018, pp. 458–464.

[89] Stephan R. Richter, Vibhav Vineet, Stefan Roth, and Vladlen Koltun. “Playing for data: Ground

truth from computer games”. In: European Conference on Computer Vision. Springer. 2016,
pp. 102–118.

[90] Pei Sun et al. “Scalability in perception for autonomous driving: Waymo open dataset”. In:

Proceedings of the IEEE/CVFConference onComputerVision andPatternRecognition. 2020, pp. 2446–
2454.

[91] Lei Huang and Lixiang Liu. “Extended watchdog mechanism for wireless sensor networks”.

In: Journal of Information and Computing Science 3.1 (2008), pp. 39–48.
[92] Andreas Theissler, Judith Pérez-Velázquez, Marcel Kettelgerdes, and Gordon Elger. “Predic-

tive maintenance enabled by machine learning: Use cases and challenges in the automotive

industry”. In: Reliability Engineering & System Safety 215 (2021), p. 107864.
[93] Hyunsun Choi, Eric Jang, and Alexander A. Alemi. “WAIC, but why? Generative ensembles

for robust anomaly detection”. In: arXiv preprint arXiv:1810.01392 (Oct. 2018).

http://www.a2d2.audi

Bibliography

136

[94] Dan Hendrycks and Kevin Gimpel. “A baseline for detecting misclassified and out-of-

distribution examples in neural networks”. In: arXiv preprint arXiv:1610.02136 (Oct. 2016).

(Visited on 01/16/2019).

[95] Lei Kang, Wei Zhao, Bozhao Qi, and Suman Banerjee. “Augmenting self-driving with remote

control: Challenges and directions”. In: Proceedings of the 19th International Workshop on Mobile
Computing Systems & Applications. 2018, pp. 19–24.

[96] Jean-Michael Georg and Frank Diermeyer. “An adaptable and immersive real time interface

for resolving system limitations of automated vehicles with teleoperation”. In: 2019 IEEE
International Conference on Systems, Man and Cybernetics (SMC). 2019, pp. 2659–2664.

[97] Amin Hosseini, Florian Richthammer, andMarkus Lienkamp. “Predictive haptic feedback for

safe lateral control of teleoperated road vehicles in urban areas”. In: 2016 IEEE 83rd Vehicular
Technology Conference (VTC Spring). Nanjing, China: IEEE, May 2016, pp. 1–7.

[98] Eric T. Greenlee, Patricia R. DeLucia, and David C. Newton. “Driver vigilance in automated

vehicles: Hazard detection failures are amatter of time”. In:Human Factors 60.4 (2018), pp. 465–
476.

[99] Ye Xia, Danqing Zhang, Jinkyu Kim, Ken Nakayama, Karl Zipser, and David Whitney. “Pre-

dicting driver attention in critical situations”. In:Asian Conference on Computer Vision. Springer.
2018, pp. 658–674.

[101] Mariusz Bojarski et al. “Visualbackprop: Efficient visualization of cnns for autonomous driv-

ing”. In: 2018 IEEE International Conference on Robotics and Automation (ICRA). 2018, pp. 1–
8.

[102] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba. “Learning

deep features for discriminative localization”. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 2016, pp. 2921–2929.

[103] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi

Parikh, and Dhruv Batra. “Grad-cam: Visual explanations from deep networks via gradient-

based localization”. In: Proceedings of the IEEE International Conference on Computer Vision. 2017,
pp. 618–626.

[104] Hamidur Rahman, Shahina Begum, and Mobyen Uddin Ahmed. “Driver Monitoring in the

context of autonomous vehicle”. In: SCAI. 2015, pp. 108–117.
[105] NicolasD.Herzberger, LutzEckstein, andMaximilianSchwalm. “Detectionofmissing takeover

capability by the orientation reaction to a takeover request”. In: Aachen Colloquium Automobile
and Engine Technology, Aachen. 2018, pp. 1231–1240.

[106] Fabio Arnez, Huascar Espinoza, Ansgar Radermacher, and François Terrier. “A comparison

of uncertainty estimation approaches in deep learning components for autonomous vehicle

applications”. In: arXiv preprint arXiv:2006.15172 (2020). (Visited on 03/15/2022).

[107] Zoubin Ghahramani. “Probabilistic machine learning and artificial intelligence”. en. In:Nature
521.7553 (May 2015), pp. 452–459. issn: 0028-0836, 1476-4687. doi: 10.1038/nature14541.
url: http://www.nature.com/articles/nature14541 (visited on 01/16/2019).

[108] Alex Kendall and Yarin Gal. “What uncertainties do we need in bayesian deep learning for

computer vision?” In: Advances in Neural Information Processing Systems. 2017, pp. 5574–5584.
[109] Pei Wang and Nuno Vasconcelos. “Towards realistic predictors”. In: Proceedings of the European

Conference on Computer Vision (ECCV). 2018, pp. 36–51.
[110] Donggeun Yoo and In So Kweon. “Learning loss for active learning”. In: Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019, pp. 93–102.

https://doi.org/10.1038/nature14541
http://www.nature.com/articles/nature14541

Bibliography

137

[111] Shreyansh Daftry, Sam Zeng, Andrew Bagnell, andMartial Hebert. “Introspective perception:

Learning to predict failures in vision systems”. In: 2016 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). 2016, pp. 1743–1750.

[112] PengZhang, JiulingWang,Ali Farhadi,MartialHebert, andDevi Parikh. “Predicting failures of

vision systems”. In:Proceedings of the IEEEConference on Computer Vision and Pattern Recognition.
2014, pp. 3566–3573.

[113] Dhruv Mauria Saxena, Vince Kurtz, and Martial Hebert. “Learning robust failure response

for autonomous vision based flight”. In: 2017 IEEE International Conference on Robotics and
Automation (ICRA). 2017, pp. 5824–5829.

[114] Sadegh Rabiee and Joydeep Biswas. “iVOA: Introspective vision for obstacle avoidance”. In:

arXiv preprint arXiv:1903.01028 (Mar. 2019). (Visited on 03/15/2022).

[115] Qinghua Yang, Hui Chen, Zhe Chen, and Junzhe Su. “Introspective false negative prediction

for black-box object detectors in autonomous driving”. In: Sensors 21.8 (2021), p. 2819.
[116] HugoGrimmett, RudolphTriebel, RohanPaul, and IngmarPosner. “Introspective classification

for robot perception”. In: The International Journal of Robotics Research 35.7 (June 2016), pp. 743–
762.

[117] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q.Weinberger. “On calibration of modern neural

networks”. In: arXiv preprint arXiv:1706.04599 (June 2017). (Visited on 03/15/2022).

[118] Volodymyr Kuleshov, Nathan Fenner, and Stefano Ermon. “Accurate uncertainties for deep

learning using calibrated regression”. In: arXiv preprint arXiv:1807.00263 (June 2018). (Visited

on 03/15/2022).

[119] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdi-

nov. “Dropout: a simple way to prevent neural networks from overfitting”. In: The Journal of
Machine Learning Research 15.1 (2014), pp. 1929–1958.

[120] AlexKendall, VĳayBadrinarayanan, andRobertoCipolla. “Bayesian segnet:Model uncertainty

in deep convolutional encoder-decoder architectures for scene understanding”. In: 28th British
Machine Vision Conference 2017 (BMVC 2017). 2017.

[121] Meire Fortunato, Charles Blundell, and Oriol Vinyals. “Bayesian recurrent neural networks”.

In: arXiv preprint arXiv:1704.02798 (Apr. 2017). (Visited on 03/15/2022).

[122] Mattias Teye, Hossein Azizpour, and Kevin Smith. “Bayesian uncertainty estimation for batch

normalized deep networks”. In: International Conference on Machine Learning. PMLR. 2018,

pp. 4907–4916.

[123] Alex Kendall, Yarin Gal, and Roberto Cipolla. “Multi-task learning using uncertainty to weigh

losses for scene geometry and semantics”. In: arXiv preprint arXiv:1705.07115 (May 2017).

(Visited on 03/15/2022).

[124] Anoop Korattikara, Vivek Rathod, Kevin Murphy, and Max Welling. “Bayesian dark knowl-

edge”. In: arXiv preprint arXiv:1506.04416 (June 2015).
[125] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. “Distilling the knowledge in a neural network”.

In: arXiv preprint arXiv:1503.02531 (2015).
[126] CorinaGurau, Alex Bewley, and Ingmar Posner. “Dropout distillation for efficiently estimating

model confidence”. In: arXiv preprint arXiv:1809.10562 (2018).
[127] Tommaso Furlanello, Zachary C Lipton, Michael Tschannen, Laurent Itti, and Anima Anand-

kumar. “Born again neural networks”. In: arXiv preprint arXiv:1805.04770 (2018).
[128] Di Feng, Lars Rosenbaum, and Klaus Dietmayer. “Towards safe autonomous driving: Capture

uncertainty in the deep neural network for LIDAR 3D vehicle detection”. In: arXiv preprint
arXiv:1804.05132 (Apr. 2018). (Visited on 03/15/2022).

Bibliography

138

[129] Gregory P Meyer, Ankit Laddha, Eric Kee, Carlos Vallespi-Gonzalez, and Carl K. Wellington.

“Lasernet: An efficient probabilistic 3d object detector for autonomous driving”. In:Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019, pp. 12677–12686.

[130] Janis Postels, Mattia Segu, Tao Sun, Luc Van Gool, Fisher Yu, and Federico Tombari. “On the

practicality of deterministic epistemic uncertainty”. In: arXiv preprint arXiv:2107.00649 (2021).

(Visited on 03/15/2022).

[131] Sina Mohseni, Akshay Jagadeesh, and Zhangyang Wang. “Predicting model failure using

saliency maps in autonomous driving systems”. In: arXiv preprint arXiv:1905.07679 (2019).

(Visited on 03/15/2022).

[132] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. “Deepxplore: Automated whitebox

testing of deep learning systems”. In: proceedings of the 26th Symposium on Operating Systems
Principles. 2017, pp. 1–18.

[133] Charles Corbière, Nicolas Thome, Avner Bar-Hen, Matthieu Cord, and Patrick Pérez. “Ad-

dressing failure prediction by learning model confidence”. In: arXiv preprint arXiv:1910.04851
(2019).

[134] Heinrich Jiang, Been Kim, Melody Y. Guan, and Maya Gupta. “To trust or not to trust a

classifier”. In: arXiv preprint arXiv:1805.11783 (May 2018).

[135] Manikandasriram Srinivasan Ramanagopal, Cyrus Anderson, Ram Vasudevan, and Matthew

Johnson-Roberson. “Failing to learn: Autonomously identifying perception failures for self-

driving cars”. In: IEEE Robotics and Automation Letters 3.4 (2018), pp. 3860–3867.
[136] YonatanGeifman, GuyUziel, and Ran El-Yaniv. “Bias-reduced uncertainty estimation for deep

neural classifiers”. In: arXiv preprint arXiv:1805.08206 (2018).
[137] Raghavendra Chalapathy, Aditya Krishna Menon, and Sanjay Chawla. “Anomaly detection

using one-class neural networks”. In: arXiv preprint arXiv:1802.06360 (Feb. 2018). (Visited on

03/15/2022).

[138] Alireza Shafaei, Mark Schmidt, and James J. Little. “A less biased evaluation of out-of-

distribution sample detectors”. In: 30th British Machine Vision Conference 2019 (BMVC 2019).
2019.

[139] EricNalisnick,AkihiroMatsukawa, YeeWhyeTeh,DilanGorur, andBalaji Lakshminarayanan.

“Do deep generative models knowwhat they don’t know?” In: arXiv preprint arXiv:1810.09136
(Oct. 2018). (Visited on 03/15/2022).

[140] Erik Marchi, Fabio Vesperini, Stefano Squartini, and Björn Schuller. “Deep recurrent neural

network-based autoencoders for acoustic novelty detection”. In: Computational Intelligence and
Neuroscience 2017 (2017), pp. 1–14.

[141] David Zimmerer, Fabian Isensee, Jens Petersen, Simon Kohl, and Klaus Maier-Hein. “Unsu-

pervised anomaly localization using variational auto-encoders”. In: International Conference on
Medical Image Computing and Computer-Assisted Intervention. Springer. 2019, pp. 289–297.

[142] Shiyu Liang, Yixuan Li, and R. Srikant. “Enhancing the reliability of out-of-distribution image

detection in neural networks”. In: arXiv preprint arXiv:1706.02690 (June 2017). (Visited on

03/15/2022).

[143] Angelos Filos, Panagiotis Tigkas, Rowan McAllister, Nicholas Rhinehart, Sergey Levine, and

Yarin Gal. “Can autonomous vehicles identify, recover from, and adapt to distribution shifts?”

In: International Conference on Machine Learning. PMLR. 2020, pp. 3145–3153.

[144] Charles Richter and Nicholas Roy. “Safe visual navigation via deep learning and novelty

detection”. In: Robotics: Science and Systems XIII. Robotics: Science and Systems Foundation,

July 2017.

Bibliography

139

[145] Jan-Aike Bolte, Andreas Bär, Daniel Lipinski, and Tim Fingscheidt. “Towards corner case

detection for autonomous driving”. In: arXiv preprint arXiv:1902.09184 (Feb. 2019).
[146] Shreyas Ramakrishna, Zahra Rahiminasab, Gabor Karsai, Arvind Easwaran, and Abhishek

Dubey. “Efficient out-of-distribution detection using latent space of β-VAE for cyber-physical

systems”. In: arXiv preprint arXiv:2108.11800 (2021). (Visited on 03/15/2022).

[147] Charles Hartsell, Shreyas Ramakrishna, Abhishek Dubey, Daniel Stojcsics, Nagabhushan Ma-

hadevan, andGaborKarsai. “ReSonAte:A runtime risk assessment framework for autonomous

systems”. In: arXiv preprint arXiv:2102.09419 (2021). (Visited on 03/15/2022).

[148] Alexander Amini, Wilko Schwarting, Guy Rosman, Brandon Araki, Sertac Karaman, and

Daniela Rus. “Variational autoencoder for end-to-end control of autonomous driving with

novelty detection and training de-biasing”. In: 2018 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS). 2018, pp. 568–575.

[149] Petra Bevandić, Ivan Krešo, Marin Oršić, and Siniša Šegvić. “Simultaneous semantic segmen-

tation and outlier detection in presence of domain shift”. In: German Conference on Pattern
Recognition. Springer. 2019, pp. 33–47.

[150] Yingda Xia, Yi Zhang, Fengze Liu,Wei Shen, andAlan L Yuille. “Synthesize then compare: De-

tecting failures and anomalies for semantic segmentation”. In: European Conference on Computer
Vision. Springer. 2020, pp. 145–161.

[151] Philipp Oberdiek, Matthias Rottmann, and Gernot A Fink. “Detection and retrieval of out-of-

distribution objects in semantic segmentation”. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops. 2020, pp. 328–329.

[152] Inga Jatzkowski, Daniel Wilke, andMarkus Maurer. “A deep-learning approach for the detec-

tion of overexposure in automotive camera images”. In: 2018 21st International Conference on
Intelligent Transportation Systems (ITSC). Maui, HI: IEEE, Nov. 2018, pp. 2030–2035.

[153] Osama Makansi, Özgün Cicek, Yassine Marrakchi, and Thomas Brox. “On exposing the chal-

lenging long tail in future prediction of traffic actors”. In: arXiv preprint arXiv:2103.12474 (2021).
(Visited on 03/15/2022).

[154] Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani, and Manohar Paluri. “Learning

spatiotemporal features with 3d convolutional networks”. In: Proceedings of the IEEE Interna-
tional Conference on Computer Vision. 2015, pp. 4489–4497.

[155] Ian Goodfellow et al. “Generative adversarial networks”. In: Communications of the ACM 63.11

(2020), pp. 139–144.

[156] Adam Houenou, Philippe Bonnifait, Véronique Cherfaoui, and Wen Yao. “Vehicle trajectory

prediction based on motion model and maneuver recognition”. In: 2013 IEEE/RSJ international
conference on intelligent Robots and Systems (IROS). 2013, pp. 4363–4369.

[157] Peng Liu, Arda Kurt, and Ümit Özgüner. “Trajectory prediction of a lane changing vehicle

based on driver behavior estimation and classification”. In: 17th international IEEE Conference
on Intelligent Transportation Systems (ITSC). 2014, pp. 942–947.

[158] Alex Kuefler, Jeremy Morton, Tim Wheeler, and Mykel Kochenderfer. “Imitating driver be-

havior with generative adversarial networks”. In: 2017 IEEE Intelligent Vehicles Symposium (IV).
2017, pp. 204–211.

[159] Florent Altché and Arnaud de La Fortelle. “An LSTM network for highway trajectory pre-

diction”. In: 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC).
2017, pp. 353–359.

[160] Ashesh Jain, Hema SKoppula, Shane Soh, Bharad Raghavan, Avi Singh, andAshutosh Saxena.

“Brain4cars: Car that knows before you do via sensory-fusion deep learning architecture”. In:

arXiv preprint arXiv:1601.00740 (2016). (Visited on 03/15/2022).

Bibliography

140

[161] Daxin Tian, Chuang Zhang, Xuting Duan, and Xixian Wang. “An automatic car accident

detection method based on cooperative vehicle infrastructure systems”. In: IEEE Access 7

(2019), pp. 127453–127463.

[162] Fu-Hsiang Chan, Yu-Ting Chen, Yu Xiang, and Min Sun. “Anticipating accidents in dashcam

videos”. In: Asian Conference on Computer Vision. Springer. 2016, pp. 136–153.
[163] Tomoyuki Suzuki, Hirokatsu Kataoka, Yoshimitsu Aoki, and Yutaka Satoh. “Anticipating

traffic accidents with adaptive loss and large-scale incident db”. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 2018, pp. 3521–3529.

[164] Xiaohui Huang, Pan He, Anand Rangarajan, and Sanjay Ranka. “Intelligent intersection: Two-

stream convolutional networks for real-time near-accident detection in traffic video”. In: ACM
Transactions on Spatial Algorithms and Systems (TSAS) 6.2 (2020), pp. 1–28.

[165] DavidHallac, Suvrat Bhooshan,Michael Chen, KacemAbida, Jure Leskovec, et al. “Drive2Vec:

Multiscale state-space embedding of vehicular sensor data”. In: 2018 21st International Confer-
ence on Intelligent Transportation Systems (ITSC). 2018, pp. 3233–3238.

[166] XinHuang, StephenMcGill, Brian C.Williams, Luke Fletcher, andGuy Rosman. “Uncertainty-

aware driver trajectory prediction at urban intersections”. In: arXiv preprint arXiv:1901.05105
(2019). (Visited on 03/15/2022).

[167] Simon Hecker, Dengxin Dai, and Luc Van Gool. “Failure prediction for autonomous driving”.

In: 2018 IEEE Intelligent Vehicles Symposium (IV). 2018, pp. 1792–1799.
[168] Diederik P. Kingma and Jimmy Ba. “Adam: A method for stochastic optimization”. In: arXiv

preprint arXiv:1412.6980 (2014). (Visited on 03/15/2022).

[169] Steven Smith.Digital signal processing: a practical guide for engineers and scientists. Elsevier, 2013.
[170] Mennatullah Siam, Mostafa Gamal, Moemen Abdel-Razek, Senthil Yogamani, Martin Jager-

sand, and Hong Zhang. “A comparative study of real-time semantic segmentation for au-

tonomous driving”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition Workshops. 2018, pp. 587–597.

[171] Liang-Chieh Chen, George Papandreou, Florian Schroff, and Hartwig Adam. “Rethinking

atrous convolution for semantic image segmentation”. In: arXiv preprint arXiv:1706.05587
(2017). (Visited on 03/15/2022).

[172] Gongfan Fang. DeepLabv3Plus-Pytorch. https://github.com/VainF/DeepLabV3Plus-Pytorch.

(Visited on 03/15/2022).

[173] John Jonides. “Further toward a model of the mind’s eye’s movement”. In: Bulletin of the
Psychonomic Society 21.4 (1983), pp. 247–250.

[174] Charles W. Eriksen and Yei-yu Yeh. “Allocation of attention in the visual field”. In: Journal of
Experimental Psychology: Human Perception and Performance 11.5 (1985), p. 583.

[175] Anting Shen, Romi Phadte, and Gayatri Joshi. Enhanced object detection for autonomous vehicles
based on field view. US Patent App. 16/703,660. June 2020.

[176] Luca Morreale, Andrea Romanoni, and Matteo Matteucci. “Predicting the next best view for

3D mesh refinement”. In: International Conference on Intelligent Autonomous Systems. Springer.
2018, pp. 760–772.

[177] YeXia, JinkyuKim, JohnCanny,KarlZipser, TeresaCanas-Bajo, andDavidWhitney. “Periphery-

fovea multi-resolution driving model guided by human attention”. In: Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer Vision. 2020, pp. 1767–1775.

[178] James MacQueen et al. “Some methods for classification and analysis of multivariate observa-

tions”. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability.
Vol. 1. 14. Oakland, CA, USA. 1967, pp. 281–297.

Bibliography

141

[179] Yue Wu, Yicong Zhou, George Saveriades, Sos Agaian, Joseph P Noonan, and Premkumar

Natarajan. “Local Shannon entropy measure with statistical tests for image randomness”. In:

Information Sciences 222 (2013), pp. 323–342.
[180] Claude Elwood Shannon. “A mathematical theory of communication”. In: The Bell System

Technical Journal 27.3 (1948), pp. 379–423.
[181] Jianshu Chao and Eckehard Steinbach. “Preserving SIFT features in JPEG-encoded images”.

In: 2011 18th IEEE IEEE International Conference on Image Processing (ICIP). 2011, pp. 301–304.
[182] Hyomin Choi and Ivan V. Bajic. “High efficiency compression for object detection”. In: Proc.

IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Apr. 2018,

pp. 1792–1796.

[183] Mark Sandler, AndrewHoward, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen.

“Mobilenetv2: Inverted residuals and linear bottlenecks”. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. 2018, pp. 4510–4520.

[184] YongxinWang andDumindaWĳesekera. “Pixel invisibility: Detecting objects invisible in color

images”. In: arXiv preprint arXiv:2006.08383 (June 2020). (Visited on 03/15/2022).

[185] Gyungin Shin, Weidi Xie, and Samuel Albanie. “All you need are a few pixels: semantic seg-

mentation with PixelPick”. In: Proceedings of the IEEE/CVF International Conference on Computer
Vision. 2021, pp. 1687–1697.

[186] Philipp Krähenbühl and Vladlen Koltun. “Efficient inference in fully connected crfs with

gaussian edge potentials”. In: Advances in Neural Information Processing Systems 24 (2011),

pp. 109–117.

[187] Adrian V. Dalca, John Guttag, and Mert R. Sabuncu. “Anatomical priors in convolutional

networks for unsupervised biomedical segmentation”. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 2018, pp. 9290–9299.

[188] Jason Ku. AVOD - aggregate view object detection. https://github.com/kujason/avod. (Visited

on 01/18/2022).

	Abstract
	Acknowledgment
	Contents
	Abbreviations
	Symbols
	1 Introduction
	1.1 Major Contributions
	1.2 Thesis Organization

	2 Background and Related Work
	2.1 Autonomous Driving Systems
	2.1.1 General Pipeline
	2.1.2 Perception Modules
	2.1.3 Sources of Failure
	2.1.4 Disengagements

	2.2 Uncertainty Estimation
	2.2.1 Input Analysis
	2.2.2 Output Analysis
	2.2.3 Out-Of-Distribution Detection

	2.3 Future Prediction
	2.3.1 Future Driving Prediction
	2.3.2 Accident Prediction
	2.3.3 Future Failure Prediction

	2.4 Chapter Summary

	3 System-Level Failure Prediction
	3.1 Introspective Black Box Disengagement Prediction
	3.1.1 Disengagements as System-Level Failures
	3.1.2 Introspective Failure Prediction

	3.2 State-Based Black Box Failure Prediction
	3.2.1 Data Set Generation
	3.2.2 LSTM-Based Classification Approach
	3.2.3 Results

	3.3 Image-Based Introspective Failure Prediction
	3.3.1 Data Set Generation
	3.3.2 CNN-Based Classification Approach
	3.3.3 Results

	3.4 Trajectory-Based Introspective Failure Prediction
	3.4.1 Concept
	3.4.2 Data Set Generation
	3.4.3 Model Design
	3.4.4 Results

	3.5 Introspective Failure Prediction Using Late Fusion
	3.5.1 Early Fusion vs. Late Fusion
	3.5.2 Late Multimodal Fusion Approach
	3.5.3 Results

	3.6 Chapter Summary

	4 Component-Level Failure Prediction
	4.1 Introspective Failure Prediction for Semantic Image Segmentation
	4.1.1 Concept
	4.1.2 Model Design
	4.1.3 Results

	4.2 Introspective Failure Prediction for Semantic Video Segmentation
	4.2.1 Spatio-Temporal Model Design
	4.2.2 Densely Annotated Video Driving Data Set
	4.2.3 Results

	4.3 Predicting Future Segmentation Errors
	4.3.1 Error Map Extrapolation
	4.3.2 Results

	4.4 Chapter Summary

	5 Failure Prediction Applications
	5.1 Improving Visual Scene Perception Using a Two-Stage Approach
	5.1.1 Zoom Lens Model
	5.1.2 Failure Region Detection and Correction
	5.1.3 Results

	5.2 Reverse Error Modeling for Improved Semantic Segmentation
	5.2.1 Concept
	5.2.2 Error Reversal Model Design
	5.2.3 Results
	5.2.4 Baseline Comparison
	5.2.5 Error Reversal for Compressed Images

	5.3 Improving Multimodal Object Detection with Individual Sensor Monitoring
	5.3.1 Concept
	5.3.2 Single Sensor Performance Prediction
	5.3.3 Dynamically Adjustable Fusion
	5.3.4 Results

	5.4 Chapter Summary

	6 Conclusion
	6.1 Summary
	6.2 Limitations
	6.3 Future Work

	List of Figures
	List of Tables
	List of Publications

