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Abstract

Failures in autonomous systems are inevitable. While the performance of automated and assisted

driving systems has improved over the last years, such systems will not be able to handle every

situation on their own in the foreseeable future. Failures can be caused by ambiguous or compromised

input, by an insufficiently trained or ill-designedmodel, or by out-of-distribution data that the system

has not been trained for. In safety-critical tasks such as driving, the resulting failures can have

severe consequences. The concept of failure prediction can be used to avoid dangerous mistakes.

While a system is not always capable of making the right decision, it can still be possible to detect

incorrect decisions. Then, the system can either try to resolve the failure itself, switch to a safer

backup strategy, or return control to a human operator. In this thesis, we investigate how failures

of autonomous systems can be predicted. We consider the entire pipeline of a general autonomous

driving system and propose three main additions: system-level failure prediction, component-level

failure prediction, and applications of failure prediction to correct or avoid failures.

System-level failures describe a state where the system cannot safely execute the desired au-

tonomous behavior, regardless ofwhich component is at fault. Such failures result in a disengagement

of the system and require a human operator to resolve the situation. We propose a failure prediction

framework that allows to predict disengagements up to seven seconds in advance. We apply the idea

of introspection and use previously recorded system failures as training data to learn how to predict

new failures. Training a classifier with sequences of state data achieves an average failure predic-

tion accuracy of 78:8 %, using sequences of planned trajectories achieves 79:6 %, and using image

sequences results in an accuracy of 85:1 %. Finally, we propose a late fusion approach of combining

all three input types, achieving an overall accuracy of 89:1 %. Even seven seconds in advance, our

fusion approach predicts over 86 % of failures, at a false positive rate of less than 15 %.

A system-level failure is typically caused by one or more component-level failures. As our second

main contribution, we propose a failure prediction method for the individual perception component

of semantic segmentation. We again apply the concept of introspection andusepixel-wise errorsmade

by a given semantic segmentation model as training labels. We then train a separate model to classify

each pixel of an input image as failure or success. We outperform the state of the art by more than 7 %

in a precision-recall analysis. Additionally, we propose to use sequences of previous predicted errors

to extrapolate into the future, allowing to accurately predict future semantic segmentation errors up

to 0:5 s ahead.

Finally, we use failure prediction concepts to correct or avoid failures. Inspired by human percep-

tion, we design a two-stage approach for detecting and reclassifying regions which a state-of-the-art

semantic segmentation model misclassified. Applied to a driving data set, our system correctly clas-

sifies 63 % of the road participants in the failure regions. To correct failure pixels directly, we propose

the idea of reverse error modeling. We train an autoencoder to reconstruct the correct semantic map

from the erroneous predictions of a given model, improving the performance by 0:7 % for uncom-

pressed images and by over 8 % for compressed input. Lastly, instead of correcting mistakes, we

propose a sensor monitoring approach that avoids mistakes by preemptively reducing the influence

of problematic sensor input. We train an introspective monitoring model for each sensor and then

weight the fusion of all sensor inputs with the predicted success probability. By focusing on sensors

with a low failure probability, we improve the performance of a state-of-the-art multimodal object

detection network by 4:6 %.
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D tra j Data set consisting of all planned trajectory samples straj
nF

and straj
nS

Ctra j Classi�cation model for trajectory-based input samples

� i ;t ra j Angle between the lines pi ; pi � 1 and pi � 1; pi � 2 2 ’

Component-Level Symbols

Ssemse g Baseline semantic image segmentation model

I Input image

LGT Ground-truth pixel-wise labels of I

Lpred Labels predicted by Ssemse gfor I

EGT Ground-truth errors made by Ssemse gon I

Dsemse g Data set for training the baseline model Ssemse g

Lsemse g;GT Ground-truth pixel-wise labels of Isemse g

Lsemse g;pred Labels predicted by Ssemse gfor Isemse g
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N Number of semantic classes 2 Ž

Sintro Single-image introspective failure prediction model

D intro Data set for training the introspective model Sintro

L intro ;GT Ground-truth pixel-wise labels of I intro

L intro ;pred Labels of I intro predicted by Ssemse g

Eintro ;GT Ground-truth errors made by by Ssemse gon I intro

I test Image set for testing the introspective model Sintro

Ltest;GT Ground-truth pixel-wise labels of I test

Ltest;pred Labels of I test predicted by Ssemse g

Etest;GT Ground-truth errors made by by Ssemse gon I test

Etest;pred Errors predicted by Sintro on I test

Svideo Baseline semantic video segmentation model

Sintro ;video Spatio-temporal introspection model

I t RGB input image at time t in video sequence

Lt ;GT Ground-truth pixel-wise labels of image I t

Lt ;pred Labels predicted by Svideo for image I t

Et ;GT Ground truth pixel-wise error map at time t

Et ; pred Predicted pixel-wise segmentation error map at time t

Et � n;GT Ground-truth pixel-wise error map n frames in the future

Sf uture Future pixel-wise failure prediction model

Application Symbols

M Mask used for erosion and dilation

k Number of k-means clusters 2 Ž

M LIDAR Monitoring model for LIDAR input

I i i -th image of given data set

L i Pixel-wise semantic labels of image I i

S Semantic segmentation model trained with all images I i

Ppred Softmax output of the semantic segmentation model S

L i ;pred Predicted pixel-wise labels of image I i

ES Error function generated by model S

E� 1
S Inverse error function of model S

M RGB Monitoring model for RGB input
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Si i -th sensor of multimodal system

M i i -th monitoring model for sensor Si

n Number of sensors in multimodal system 2 Ž

Ri Raw sensor data recorded by sensorSi

D i Object detection model trained on data Ri

DFusion Fusion-based object detection model trained with all n sensors

M i ;intro Sensor monitoring model for sensor Si using introspection

M i ;con f Sensor monitoring model for sensor Si based on con�dence score

M RGB;intro Camera monitoring model using introspection

M LIDAR ;con f LIDAR monitoring model based on con�dence score

Pi Detection performance of model D i 2 ’

Fi Features extracted from sensor dataRi

Pi ;pred Predicted detection performance of model D i 2 ’

F f used Fusion of all features Fi

Fintro Fusion of all features Fi weighted with performance Pi
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1 Introduction

Autonomous systems are increasingly taking over tasks previously performed by humans, ranging
from autonomous factory robots [1] to assisted and automated driving [2]. In the context of driving,
entirely autonomous systems are not a reality yet. Available automated driving functions are restricted
to assistance functions such as lane keeping, cruise control, and automatic emergency braking [3].
Both assisted driving systems and potential future autonomous functions are referred to as a vehicle's
Advanced Driver-Assistance System (ADAS). While the progression from assisted to autonomous
driving is incremental and �uent, the Society of Automotive Engineers (SAE) has classi�ed the stages
from purely manual driving to fully automated driving into six broad levels. A summary of these six
levels is shown in Figure 1.1. Current commercial systems are considered to reach Level 2. On Level
3, the car performs all driving and the human is not expected to pay attention to the road, but still
needs to be able to take control again if requested. On Level 4, no human driving is needed anymore,
but the system is restricted to speci�c operational design domains. Level 5 describes systems that are
capable of driving completely autonomously under any circumstance, removing any need of human
interaction.

Figure 1.1 Visualization of the six autonomous driving levels as de�ned by the Society of Automotive Engineers
(SAE) [3].

With increasing levels of autonomy, the vehicle is required to make increasingly complex and
safety-critical decisions. Despite continuous advances in relevant �elds such as machine learning and
computer vision, failures in autonomous driving are inevitable. Several studies have discussed public
accidents caused by current ADAS functions [4] and the subsequent question of whether automated
driving functions are su�ciently safe [2]. Incidents such as the fatal crash of an Uber test vehicle in
2018 driving in autonomous mode serve as constant reminders of how severe failures in autonomous
driving can be [5].

A potential solution to resolve situations where the car would make a mistake is to bring a human
driver back into the loop. An autonomous vehicle designed to rely on human intervention when
needed would be considered Level 3. Its autonomy is conditional on the presence of a human driver.
The human can take back control either from inside the car or remotely in the form of Teleoperated
Driving (TOD). TOD is especially useful for applications such as autonomous taxi services [6], where
human operators inside the car can thus be entirely removed. Regardless of the location of the human
driver, this solution requires a mechanism that decides when to switch control from the car to the
human. Studies have shown that it can take up to 40 sfor human drivers to regain control of vehicles
that were previously driving autonomously [7]. Merely reacting to an already challenging driving
scenario might not be enough for avoiding a dangerous situation. This leads to a challenging question:
How can a failure of an autonomous system be predicted ahead of time?
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The focus of this thesis lies on answering that question. While some speci�c complex situations
such as police o�cers regulating tra�c can be anticipated, it is not feasible to enumerate all potentially
risky situations. A more general approach is required. In a dynamic task such as driving, detecting
a failure after it has occurred can already be too late for ensuring safety. A failure prediction system
that can detect failures predictively as well as automatically is therefore desirable. Developing such
a system can improve safety by requesting human support early in advance. It can also be used
to increase the performance of the system by running countermeasures against a predicted failure,
keeping the failure from happening in the �rst place.

The concept of failure prediction has been approached in various ways before. To better understand
the ideas of failure prediction, it is useful to consider why failures occur in the �rst place. There are
three main sources of failures in autonomous driving: epistemic uncertainty, aleatoric uncertainty,
and Out-of-Distribution (OOD) data. Epistemic uncertainty, also called model uncertainty [8], refers
to uncertainty caused by model imperfections. Insu�cient models are a critical failure source in
autonomous driving, since the complexity of driving makes designing a perfectly functioning model
extremely challenging. Aleatoric uncertainty, also called input uncertainty [8], is a source of failures
inherent to the model input. It refers to uncertainties caused by ambiguous or corrupted sensor
readings. A perfectly designed model will still not be able to make the correct decisions if its
perception of the scene is compromised. Lastly, OOD data describes input that is signi�cantly
di�erent to the operational design domain of the system [9]. If the car has not been trained and
prepared for the current scene, even a well-designed model with clean sensor input will fail. In this
thesis, we mostly consider the �rst two sources of failures. While it is important to be able to detect
OOD input, we aim for predicting the failures inherent to a given model. OOD input can make any
model fail and the detection thereof is largely independent of the model itself. Due to its importance,
the �eld of OOD detection is still discussed in this thesis, but not used in the proposed contributions.

In the literature, the implementation of failure prediction is commonly approached using uncer-
tainty estimation. The �eld of uncertainty estimation o�ers a wide range of methods to assess how
con�dent a model is in the current situation [10, 12, 11]. The idea of combining Bayesian theory
with deep learning led to the development of Bayesian neural networks [13]. Instead of relying
on deterministic parameters, the weights of a Bayesian neural network are de�ned by probability
distributions. This allows to obtain an output distribution and thus a variance associated with the
prediction [14]. Since a high uncertainty is likely to lead to incorrect decisions and thus an overall
failure of the system, an accurate quanti�cation of model uncertainty can be useful. However, there
are several issues with using uncertainty estimation to obtain a failure prediction in autonomous
systems. Firstly, a low model uncertainty is not guaranteed to avoid failures. A system can be con�-
dent and certain, but still wrong in case a challenging or ambiguous tra�c scenario is encountered.
Secondly, existing uncertainty estimation methods only apply to individual models. While existing
methods can detect some failures of individual components, a failure of the entire system consisting
of multiple interacting components is not straightforward to predict this way. Only few works exist
that explicitly predict the failure of an entire autonomous system. Most notably, Fridman et al. [15]
proposed an approach for predicting disengagements of the Tesla autopilot system �ve seconds in
advance at an accuracy of 90 %. However, the Tesla autopilot is a highway-only Level 2 driving
function. In contrast, we consider general failures of systems at Level 3 in both highway and urban
environments.

Both the task of failure prediction for individual components and for the entire system are addressed
in this thesis. In the literature, most related approaches are focused on improving a model to keep
it from making mistakes. In this thesis, all contributions are based on the assumption that a given
system or model will inevitably make mistakes in practice, regardless of how well designed it is.
Following this assumption, we design explicit failure prediction methods that are tailored to the
system or model at hand. Then, we use the insights gained from the developed failure prediction
methods to correct the system automatically, or adjust it to avoid failures in the �rst place. We
summarize the resulting major contributions made in this work next.
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1.1 Major Contributions

This thesis contains three main contributions. They can be combined into a comprehensive fail-
ure prediction framework that can be added to a typical autonomous system pipeline as shown in
Figure 1.2. The individual failure probabilities P f ail obtained from each proposed method can be
aggregated and a takeover request by a human driver can be triggered if the aggregated probability
crosses a thresholdPthresh. If every failure probability stayed below such a threshold, then no human
intervention would need to be requested and the autonomous system could continue its functions as
before.

Vehicle
State

Sensors

ˆ Camera

ˆ LiDAR

Perception Module

ˆ Semantic segmentation

ˆ Object detection

Processing

ˆ Segmentation error correction

ˆ Failure region detection

Trajectory
Planning

and Control

Black Box
Disengagement

Prediction

Sensor
Input

Monitoring

Segmentation
Error

Prediction

Failure Region
Reclassi�cation

Trajectory
Disengagement

Prediction

> Pthresh? [ > Pthresh? [ > Pthresh? [ > Pthresh? [ > Pthresh? X

TAKEOVER REQUEST

AUTONOMOUS VEHICLE

P f ail P f ail

Yes Yes YesYes Yes

P f ail

No

P f ail

No No

P f ail

No No

Figure 1.2 Overview of a general autonomous vehicle pipeline and the contributions of this thesis, marked in
yellow. Black box and trajectory disengagement prediction is introduced in Chapter 3 and segmentation error
prediction is presented in Chapter 4. Failure region detection and reclassi�cation as well as segmentation error
correction is discussed in Chapter 5.

The �rst contribution is focused on predicting system-level failures early in advance. We introduce
the concepts proposed for system-level failures in Chapter 3. In the second contribution, we design a
failure prediction approach for component-level failures. The proposed methods are summarized in
Chapter 4. The third contribution consists of several applications of the failure prediction concepts
developed in the �rst two contributions. They demonstrate that failure prediction can also be used
to improve the performance of the system. The components of this third contribution are presented
in Chapter 5. Next, we summarize each main contribution in more detail.

1. System-level failure prediction System-level failures in autonomous driving lead to disen-
gagements of the automated driving functions, meaning the human driver has to take over
again. To predict these critical points in advance, we develop an introspective failure prediction
framework. A model is trained with recorded disengagements from six months of test drives
in autonomous mode, provided by the BMW group. By training with both the disengagements
and successful driving scenes, the model becomes capable of classifying a new scene as either
success or failure. To allow early prediction, we use the ten seconds of recordings before each
disengagement, as well as ten second sequences of successful driving. Three di�erent sources
of information about the scene are investigated as input for the failure prediction model.
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ˆ State-based: The �rst implementation of the proposed concept uses sequences of state data
as input. Those sequences are labeled asFailureor Success, depending on whether they end
in a disengagement or not. The temporal state vector sequences are then used as training
data for a Long Short-Term Memory (LSTM) classi�er. During testing, the classi�er assigns
the current state sequence a failure probability in real time. This black box approach does
not pose any requirements on the inspected system and outperforms the state of the art [15,
16] by over 25 %.

ˆ Image-based: Next, we consider image sequences as a richer scene representation. Di�er-
ence images are created across multiple time points to capture spatio-temporal information
and then used to train a Convolutional Neural Network (CNN) classi�er. While more com-
putationally expensive than the state-based approach, the failure prediction accuracy is
signi�cantly higher.

ˆ Trajectory-based : Thirdly, we analyze the planned trajectories generated by the inspected
system to predict the failures of the system. Since the planned trajectories capture the
intended future behavior of the car, they are a useful source of information about future
failures as well. Since changes in the planned trajectories can take seconds to result in
changes in the car state, this approach outperforms the state-based approach in early
failure prediction.

ˆ Late fusion : Finally, all three sources of information are combined using a late fusion
approach of averaging the three individual failure probabilities. The fusion model outper-
forms the state-based model by another 13 %and achieves the overall best performance of
predicting failures seven seconds in advance, at an accuracy of over89 %.

2. Component-level failure prediction Next, we address failures of individual components, specif-
ically failures of semantic segmentation. The concept of introspection is applied to learn from
recorded pixel-wise errors of the inspected model. Based on this concept, we develop failure
prediction methods both for the current frame and for future frames.

ˆ First, pixel-wise failures made for the current input image are predicted. For each training
image, the pixel-wise errors made by the inspected model are recorded and used as target
labels for an introspective failure prediction model. The failure prediction model therefore
performs semantic segmentation of the input image, but assigns each pixel a failure proba-
bility instead of a semantic class probability. By learning from the explicit failures made by
one speci�c model, this approach outperforms generic uncertainty estimation approaches
such as Monte Carlo (MC) dropout [10] by more than 7 %.

ˆ With a failure prediction for each frame available, it is possible to extrapolate into the future
to predict pixel-wise failures for future frames as well. An autoencoder structure using
convolutional LSTMs to capture spatio-temporal features is employed. We use sequences
of predicted error maps as training input and the actual error map of a future frame as
the target. This approach allows us to accurately predict future pixel-wise failures up to
�ve frames into the future. To evaluate this method on a large-scale data set, we introduce
the Densely Annotated Video Driving (DAVID) data set generated in Car Learning to
Act (CARLA) [17]. It is around 9 times larger than comparable public video data sets [18,
19] with pixel-wise annotations for every frame.

3. Failure prediction applications Finally, we propose three methods to improve system perfor-
mance based on concepts from the developed failure prediction methods.

ˆ First, a two-stage approach inspired by human perception is developed. Human perception
consists of an initial low-resolution assessment of the entire scene, followed by a second,
focused look at each of the most relevant areas [20]. This concept can be applied to
computer vision as well. Semantic segmentation corresponds to the �rst global assessment.
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Then, we use the proposed pixel-wise failure prediction to detect failure regions within a
semantic prediction. The failure regions are locally reclassi�ed and the failure pixels are
updated accordingly. This corresponds to the focused second look of human perception.
By reclassifying failure regions, previously overlooked objects such as pedestrians can be
recovered.

ˆ Instead of �rst extracting failure regions and then reclassifying them, the second approach
directly learns to reverse the errors introduced by a given model. This is achieved by
training an autoencoder with the erroneous semantic prediction from the inspected model
as input and using the ground-truth pixel-wise labels as the target. The autoencoder thus
learns to correct the mistakes made by the inspected model. When applied to compressed
images, the mean Intersection over Union (IoU) can be improved by over 8 % this way.

ˆ The third concept uses failure prediction to monitor each individual sensor in a fusion-
based object detection network. By training a single-sensor object detector for each sensor
modality, introspection is used to predict the detection performance each sensor can achieve
on its own. Then, sensors with a low predicted performance are assigned lower weights
in the fusion network to allow the network to focus on the most useful sensor inputs. By
predicting which sensors would lead to failures and adjusting the system accordingly, the
mean IoU of a state-of-the-art multimodal object detector [21] is improved by 4:6 %.

1.2 Thesis Organization

This thesis is structured as follows. Chapter 3 introduces the theoretical background necessary for
understanding the contributions made in this thesis and how they were developed. The most relevant
related work in the �eld of failure prediction is summarized. Strengths and limitations of existing
methods are outlined to motivate the introduction of the methods proposed in this work. Chapter 3
introduces the system-level black box failure prediction approach that allows to predict disengage-
ments of an autonomous system up to seven seconds in advance. Three di�erent input modalities
for the proposed failure prediction model are discussed and ultimately combined in a fusion-based
approach. Next, Chapter 4 presents an approach for predicting component-level failures, speci�cally
the failures of semantic segmentation as one of the key perception models in autonomous systems.
Both an approach for predicting the failures of the current scene and an extension for predicting
segmentation failures of future frames are proposed. In Chapter 5, the insights from the previous
chapters are used to design several applications of failure prediction. Two methods for correcting
failures of semantic segmentation are shown. A third method preemptively avoids failures made by
a multimodal object detection module by adjusting the system based on the predicted failure prob-
ability of each individual sensor. Finally, we conclude this thesis in Chapter 6. The key results are
summarized and the limitations of the proposed contributions are discussed. Based on these results,
we make several suggestions for possible future research directions.

Parts of the work presented in this thesis have been published in international, peer-reviewed scienti�c
journals and conferences [22, 23, 24, 25, 26, 27, 28, 29].
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2 Background and Related Work

In this chapter, we summarize the theoretical background of this thesis. First, we discuss the key
components of an autonomous system and why failures occur. Then, we give an overview of state-of-
the-art uncertainty estimation methods, a �eld that is closely connected to failure prediction. Finally,
we summarize methods for predicting future failures before they happen.

2.1 Autonomous Driving Systems

Autonomous driving systems have been actively researched for decades. In 2005, an autonomous
vehicle managed to successfully drive the entire 212 km track of the DARPA Grand Challenge for
the �rst time [30]. The advance of deep learning has further sped up development of self-driving
systems. Assisted driving functions based on neural networks, such as the Tesla autopilot introduced
in 2014 [31], have received signi�cant public attention. In 2017, Waymo launched an autonomous
vehicle ride-hailing service [6]. Despite this progress, failures and accidents remain a common
issue [4]. The question of how safe autonomous driving can be is an ongoing discussion, with a
wide range of factors potentially causing unsafe driving scenarios [2]. Next, we discuss the core
components of autonomous systems, the main sources of their failures and how such failures are
currently handled in the form of disengagements of the system.

2.1.1 General Pipeline

Liu et al. [32] divide an autonomous vehicle system into three major parts: The software algorithms
responsible for localization, perception, planning, and control of the vehicle, the hardware platform
where the algorithms are integrated into the physical system, and a backend where data is stored and
new algorithms are developed. In this thesis, we focus on the algorithmic part of such a system.

With terabytes of driving data being recorded every day by car manufacturers [33], learning-based
algorithms are a promising direction. The tasks of perception, planning, and control can be addressed
using end-to-end learning [34]. By training a deep neural network with sensor data as input and the
correct steering angle and acceleration as the target output, the task of driving can be approached
with a single model. The resulting system is challenging to analyze due to its black box nature. A
modular pipeline consisting of di�erent, learning-enabled systems allows to trace failures more easily
to their source. Kim et al. [35] were among the �rst to propose to integrate failure evasion on a system
level to ensure graceful degradation of a vehicle, for example switching to other sensors or modules
in case one sensor or module fails. McAllister et al. [36] proposed to quantify the uncertainty of each
individual component in a system and propagate them to eventually detect a larger problem before
it causes a critical failure. While both works highlight the importance of integrating uncertainty
awareness into an autonomous system, implementing such failure-aware systems remains an open
challenge.

The most critical components where failures can occur are the perception modules of an au-
tonomous system. While planning and control is not a trivial task, fail-safe trajectories that are
guaranteed to be safe can be generated in real-time [37]. This only holds for perfect perception of
the environment, however. Next, we summarize the core approaches for learning-enabled perception
algorithms.
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2.1.2 Perception Modules

Deep-learning based perception methods have shown state-of-the-art performance in multiple areas
over the last years. Here, we summarize the main concepts of the three fundamental perception tasks
of image classi�cation, object detection and semantic segmentation.

2.1.2.1 Image Classi�cation

Image classi�cation describes the task of assigning an image to one speci�c class, typically with
manually assigned labels as the ground truth. The human visual nervous system has been an
inspiration for achieving this task with computers as early as 1980 [38]. LeCun et al. [39] demonstrated
the potential of convolutional layers, successfully using a Convolutional Neural Network (CNN)
for single digit recognition. In 2012, Krizhevsky et al. proposed AlexNet [40], a deeper CNN
which achieved state-of-the-art results on ImageNet [41], a data set with 1000classes and over14
million natural images. In the following years, architectures such as VGG [42] and ResNet [43] have
further improved the performance. Since very deep networks such as ResNet are computationally
complex, more lightweight architectures such as MobileNet [44] have been designed to allow real-time
classi�cation on mobile devices.

All those architectures work by using multiple sequential convolutional layers to extract features,
followed by one or more fully connected layers for classi�cation. A convolutional layer consists of two-
dimensional kernels that are convolved with the spatial input. The numerical values of those �lters
are learned during training using backpropagation, allowing the network to extract the most useful
features for classifying the image. Intermittent pooling layers reduce the spatial size of the resulting
feature maps, while increasing rotational and positional invariance. An exemplary visualization of
this structure is shown in Figure 2.1. A 4 � 4 kernel with three channels is applied to a simple input
image of size 9 � 7, resulting in a 6 � 4 � 3 feature map. After applying 2 � 2 pooling with stride 2, the
feature map is �attened and fed into a fully connected layer. The �rst convolutional layers typically
extract low-dimensional features like edges and corners. Those low-level features are the foundation
for all subsequent semantic interpretation of the input. For classi�cation, this is done by the �nal
fully connected layer of the network consisting of N neurons, where N is the number of classes. The
output of the fully connected layer is commonly referred to as the logit vector z. For N � 2 classes of
"1" and "0", for example, the resulting 2 � 1 output vector is used to classify the input image as a "1"
in this case.

Figure 2.1 Visualization of the main components of a CNN. A kernel (red) slides over the input image to
create a convolved feature map. A pooling layer (green) increases spatial invariance. The �attened features are
classi�ed by a fully connected layer as one of N classes.

Once such a convolutional architecture is designed, it can be trained with input images and the
associated class labels. Training is typically done using the backpropagation algorithm [45]. To
compare the output of a neural network to the ground truth during training, a loss function is
needed. For classi�cation, a common choice is the cross entropy loss. For this, a softmax operation is
applied to the output logit vector z from Figure 2.1 to obtain an output score Pc for every potential
classc 2 f 1; N g:
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