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Abstract

Constructing polynomial chaos expansions in the context of uncertainty quantification
requires the computation of inner products that are typically high dimensional integrals
involving an expensive to evaluate model and a set of orthogonal polynomials. This
thesis explores the approach of first interpolating the model and then either performing
pseudospectral projection (PSP) on this surrogate or, by exploiting the simpler structure
of the interpolant, deriving analytical formulas for the inner products. To keep the num-
ber of model evaluations low, several variants of the sparse grid combination technique
are proposed for interpolation, in particular the single dimension spatially adaptive
refinement strategy. Comparisons for several test functions and the hydrological model
HBV, with the number of model evaluations as reference, show that this approach often
produces better results than direct PSP.
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1 Introduction

In uncertainty quantification (UQ), one considers a model that has, besides
deterministic input parameters, uncertain input parameters with known independent
distributions. The model propagates these uncertainties to the output domain. Sta-
tistical properties of this output distribution, like expectation or variance are often of
interest. Additionally, one wants to quantify the impact that single or combinations
of input parameters have on the output. Such sensitivity coefficients can be specified
with so-called Sobol’ indices. These properties of the output distribution can be ob-
tained by constructing a general polynomial chaos expansion (gPCE), which is a linear
combination of polynomials orthogonal in regard to the joint density functions of the
uncertain input distributions. Expectation, variance, and Sobol’ indices can be easily
obtained having the gPCE coefficients. Constructing such a polynomial approximation
of the model function involves computing inner products which are, depending on
the number of input distributions, high dimensional integrals over the model function
and the orthogonal polynomials, weighted with the density function. Computing
high dimensional integrals is computationally challenging. Additionally, the model is
often expensive to evaluate and might show local phenomena such as discontinuities,
requiring adaptive methods. The idea examined in this thesis is to first interpolate the
model and then compute the inner products on the interpolant. To keep the number
of model evaluations low, different variants of the sparse grid combination technique
can be applied for interpolation, in particular the single dimension spatially adaptive
refinement method. One way to compute the gPCE coefficients of the surrogate is pseu-
dospectral projection (PSP), applying numerical quadrature to obtain the inner products.
The quadrature rule is chosen in accordance with the gPCE truncation and, to avoid
internal aliasing errors, by integrating all combinations of polynomials existing in the
truncation scheme exactly. Besides performing PSP on the interpolant, a second way to
compute the gPCE coefficients is to derive analytical formulas for the inner products
by exploiting the simpler structure of the surrogate.

The thesis first summarizes several interpolation and numerical quadrature methods
in chapter 2 and describes how these methods can be applied in higher dimensions in
an efficient way using sparse grids. To cope with local phenomena, a spatially adap-
tive combination technique with dimension-wise refinement is presented. Chapter 3
summarizes relevant aspects of uncertainty quantification and the general polynomial
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1 Introduction

chaos expansion. The approach of first interpolating the model function using the
combination technique, and in particular the single-dimension spatially adaptive sparse
grid refinement strategy, and then obtaining the gPCE coefficients either with PSP or
analytical formulas, is explored. In order to test out theses different variants, chapter 4
presents aspects of the libraries SparseSpACE, which implements many combination
technique algorithms, and chaospy, a toolbox supporting uncertainty quantification us-
ing polynomial chaos expansions. Finally, numerical results for different test functions
and the hydrological model HBV are compared in chapter 5.
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2 Numerical Quadrature and Interpolation

This chapter covers, considering a function f : X → R on the domain X ⊂ Rd, d ∈
N, the problems of approximating f via interpolation and of approximating the
integral

∫
X f (x)dx. Numerical quadrature is necessary if the integral cannot be solved

analytically. For several quadrature rules, f is approximated with an interpolant f̃ for
which the integral

∫
X f̃ (x)dx can be computed analytically, i.e.∫

X
f̃ (x) ≈

∫
X

f (x)dx,

connecting the problems of numerical quadrature and interpolation.
The first section of this chapter describes several interpolation and quadrature rules

in a one-dimensional setting. These rules are generalized for higher dimensions in
the second section. To mitigate the curse of dimensionality arising from full grids in
higher dimensions, sparse grids are introduced. Furthermore, adaptive sparse grids
and in particular the single dimension spatially adaptive refinement strategy [15] are
presented.

2.1 Single dimension

In the one-dimensional case d = 1, we consider a function f : [a, b]→ R, a, b ∈ R. Most
numerical quadrature and interpolation methods require f to be sufficiently smooth.
Otherwise, if f has non-smooth regions or even discontinuities, adaptive grids can be
a remedy. For the following quadrature methods, the approximate integral is of the
form ∑n

i=1 wi f (xi) where wi are the quadrature weights and (xi)i≤n are the grid points.
The weights are the integral of basis functions (Φi)i≤n. The linear combination of these
basis functions with coefficients ( f (xi))i≤n is the corresponding interpolant, i.e.∫ b

a
f (x)dx ≈

∫ b

a
f̃ (x)dx =

∫ b

a

n

∑
i=1

f (xi)Φi(x)dx =
n

∑
i=1

f (xi)
∫ b

a
Φi(x)dx =

n

∑
i=1

wi f (xi)

3



2 Numerical Quadrature and Interpolation

2.1.1 Piecewise linear interpolation and quadrature

A simple quadrature rule is the trapezoidal rule. The approximate integral is computed
as ∫ b

a
f (x)dx ≈ (b− a)

f (a) + f (b
2

which is the result of linearly interpolating f on the boundary points a and b and then
computing the exact integral of the interpolant.

Instead of computing only one trapezoid, we can split up the domain over n intervals
of length h := b−a

n and then sum up all these approximate integrals:

∫ b

a
f (x)dx = h ·

n

∑
k=0

f (a + k · h) + f (a + (k + 1) · h).

This so-called trapezoidal sum is the result of first piecewise linearly interpolating f on
the grid points {a, a + b−a

n , a + 2 · b−a
n , ..., b} and then integrating this piecewise linear

function.
In order to introduce spatial adaptivity and later sparse grids in section 2.2.3, we

have a closer look at piecewise linear interpolation [1]. We first assume that f lives on
the domain [0, 1] and evaluates to zero on the boundaries. The basis functions

φl,i(x) := φ(2lx− i), i ∈ Il ,

where
φ(x) := max(1− |x|, 0)

is the standard hat function and l the discretization level, are placed equidistantly on the
domain, formalised by the index set Il := {i ∈ N : 1 ≤ i ≤ 2l − 1}. Scaling all basis
functions with ( f (xi))i∈Il gives the piecewise linear interpolant

f̃ = ∑
i∈Il

f (xi) · φl,i.

The function space that is spanned by the basis functions of level l, called nodal basis, is
denoted as

Vl = span{φl,i : i ∈ Il}.

In order to perform adaptivity and to introduce sparse grids, it is necessary to
hierarchize the nodal basis. Instead of only having hat functions of the same support
corresponding to the discretization level, the hierarchical set of basis functions keeps
the basis functions of previous levels and adds new hat functions only at new grid
points. Assuming some smoothness condition, the surpluses are getting smaller for
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2 Numerical Quadrature and Interpolation

higher levels and are therefore useful as error estimates. Formalizing this hierarchical
approach, hat functions added at level l form the hierarchical subspace

Wl = span{φl,i : i ∈ Il}

with hierarchical index set

Il := {i ∈N : 1 ≤ i ≤ 2l − 1, i odd}.

Summing up all these subspaces up a to discretization level L, gives again the function
space

VL =
⊕
l≤L

Wl .

The interpolant is
f̃ = ∑

l≤L
∑
i∈Il

αl,i · φl,i(x)

with surpluses {αl,i, l ≤ L, i ∈ Il}. Since both the nodal set and the hierarchical basis
set span the same function space for a given discretization level, the surpluses can be
translated in both directions via (de)hierarchization. If f is not zero on the boundaries,
one may either add hat functions on the two boundary points or modify the basis
functions such that those hat functions adjacent to the boundary extrapolate. Figure 2.1
shows the one-dimensional piecewise linear hierarchical basis functions, both with
standard as well as modified hat functions.

2.1.2 B-Splines

Instead of using hat functions leading to a piecewise linear interpolant, other basis
functions may result in a smoother interpolant. One such family of different basis
functions are B-Splines [19], using piecewise polynomials of arbitrary degree as basis
functions.

2.1.3 Leja sequence

Another idea is to interpolate the function with one global polynomial. For any set of
n + 1 interpolation points, there always exists a unique polynomial of minimal degree,
but maximal n, that interpolates the function in those points. However, using an
equidistant grid leads to an ill-conditioned interpolant for higher polynomial degrees.
A set of points that has better approximation properties is the Leja-sequence (θi)j∈N

[13], which is recursively defined as

θi = argmax
θ∈X

i−1

∏
j=0
|θ − θj|.

5



2 Numerical Quadrature and Interpolation

Figure 2.1: The standard hierarchical hat functions and the modified version, up to
discretization level 3, taken from [3]
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2 Numerical Quadrature and Interpolation

As the Leja-points form a sequence, the grid points are nested, i.e. the set of Leja
points of level l contains all Leja points of levels l′ ≤ l, a property which is useful
for adaptivity and sparse grids, introduced in section 2.2.3. Generalizing to weighted
integration, i.e. if the integrand is multiplied with a weight function w, which is w = 1
in the unweighted case, the definition includes this weight function:

θi = argmax
θ∈X

i−1

∏
j=0

w(θ)|θ − θi|

2.1.4 Clenshaw-Curtis quadrature

In a similar fashion to Leja, Clenshaw-Curtis quadrature [2] is also the exact integration
of an interpolated polynomial. Here, the interpolation points are roots of Chebyshev
polynomials. Again, using n + 1 points integrates polynomials of maximal degree n
exactly. Additionally, Clenshaw-Curtis grids are nested.

2.1.5 Gaussian quadrature

The quadrature rule which integrates the highest degree of polynomials exactly is
the Gaussian quadrature. Using n quadrature points, this method allows to integrate
polynomials of degree 2n− 1 exactly. For the derivation, we consider a polynomial p
of degree 2n− 1, n ∈ N on the interval [−1, 1], which can be generalized by scaling.
The integrand p can be decomposed into

p(x) = q(x)Ln(x) + r(x),

where q(x) and r(x) are polynomials of degree n − 1 and Ln is the n-th Legendre
polynomial. The Legendre polynomials are a set of orthonormal polynomials over the
interval [−1, 1], i.e. ⟨Li, Lj⟩ = δij. With this decomposition the integral becomes∫ 1

−1
p(x)dx =

∫ 1

−1
q(x)Ln(x)dx +

∫ 1

−1
r(x)dx.

As the n-th Legendre polynomial Ln is orthogonal to any linear combination of lower
degree Legendre polynomials, in particular to q(x), the integral simplifies to∫ 1

−1
p(x)dx =

∫ 1

−1
r(x)dx.

To obtain a quadrature rule ∑n−1
i=0 wi f (xi) which correctly computes

∫ 1
−1 q(x)Ln(x)dx = 0,

the quadrature nodes are chosen to be the roots of Ln. The weights on the other hand
are chosen such that r is integrated exactly, which is possible as r is of degree n− 1 and
the n weights can be chosen freely. Differently to Leja and Clenshaw-Curtis grids, the
Gaussian quadrature points are not nested.

7



2 Numerical Quadrature and Interpolation

2.2 Higher dimensions

This section explores where the grid points for numerical quadrature or interpolation
should be placed in higher dimensions. Although one can approximately integrate a
function in arbitrary dimension via tensor products of one-dimensional interpolation/
quadrature rules, the number of points in such a full tensor grid grows exponentially
with the dimension. Therefore, methods that reduce the number of points without
much loss of accuracy are needed. After a description of full tensor grids, this chapter
introduces sparse grids and the related combination technique, a combination of full
grids resulting in a sparse grid, which mitigate the curse of dimensionality. A spatially
adaptive version of the combination technique is presented.

2.2.1 Generalization of one-dimensional interpolation/ quadrature rules to
an arbitrary dimension

We can generalize the seen one-dimensional quadrature and interpolation rules to an
arbitrary dimension d by taking their tensor products. Let Li describe the continuous
linear operator of dimension i, then the tensor product operator

Ld⃗ := L1 ⊕ ...⊕Ld

is the corresponding d−dimensional operator. For numerical quadrature and interpo-
lation problems, these exact operators are not available, so we use one-dimensional
approximate operators Li

l that converge to the true operator Li, i.e. lim
l→∞
||Li −Li

l || = 0

which holds true for all of the presented interpolation/ quadrature rules. The resulting
tensor product approximation converges to Ld⃗ for l⃗ → ∞.

To get a more concrete result, let the exact set of an approximate operator Ll be
defined as

E(Ll) := { f : L( f ) = Ll( f )},

i.e. the set of functions that are integrated exactly by Ll . It can be shown that the tensor
approximation Ld⃗

l⃗
= L1

l1
⊕ ...⊕Ld

ld
integrates all functions in the tensor product of the

one-dimensional exact sets:

E(L1
l1)⊕ ...⊕ E(Ld

ld) ⊆ E
d⃗
l⃗
(Ld⃗

l⃗
).

Therefore, one-dimensional quadrature rules can be easily generalized to higher dimen-
sions. [12]

8



2 Numerical Quadrature and Interpolation

2.2.2 Full grids

Although d-dimensional quadrature rules can be obtained by taking the full tensor
grid of one-dimensional quadrature rules, these full grids are problematic in higher
dimensions as the number of points grows exponentially with the dimension.

We consider the example of a function f : Ω = [0, 1]d → R that lives on the d-
dimensional unit cube and evaluates to zero on the boundary on which piecewise
linear interpolation is performed. For this purpose, we extend the nodal basis to an
arbitrary dimension. The basis functions are constructed via tensor products of the
one-dimensional nodal basis

φ⃗l ,⃗i(x⃗) :=
d

∏
j=1

φlj,ij(xj)

for a levelvector l⃗ = (l1, ..., ld) ∈ Nd and multi-index i⃗ = (i1, ..., id) ∈ Nd. The set
of indices in the nodal basis is I⃗l := {⃗i : 1 ≤ ij ≤ 2lj , 1 ≤ j ≤ d}. Applying the
same discretization level L in every dimension, i.e. l1 = l2 = ... = L, the grid has
N := 2ld grid points. This exponential growth with dimensionality, the so-called curse of
dimensionality, makes full grid interpolation/quadrature infeasible in high dimensions.
The accuracy for full grid piecewise linear interpolation can be shown to be in O(N−2),
assuming mixed bounded derivatives up to order two. [1]

2.2.3 Sparse grids

In order to mitigate the curse of dimensionality, the idea introduced by Smolyak [17]
is to hierarchize the d−dimensional tensor product and then leave out subspaces that
represent high coupling between dimensions.

We again consider the tensor product of one-dimensional operators Ld⃗
l⃗
= L1

l1
⊕ ...⊕

Ld
ld

. Writing the operator of dimension i as the series Li = ∑∞
l=0(Li

l − Li
l−1) where

Li
−1 := 0 and defining △i

0 := Li
0,△i

l := Li
l −Li

l−1 gives

Li =
∞

∑
l=0
△i

l .

The tensor product of the operators is then written as

Ld⃗ = L1 ⊕ ...⊕Ld =
∞

∑
|⃗l|=1

△1
l1 ⊕ ...⊕△d

ld

As the exact quadrature/ interpolation operators are not available, the series needs
to be truncated. One way to truncate the series is the L∞-norm, i.e. only including

9



2 Numerical Quadrature and Interpolation

multi-indices {⃗l ∈ Nd : |⃗l|∞ ≤ L} which leads to a full grid with truncation at L.
The idea of leaving out subspaces representing high coupling between dimensions is
realized if instead the L1-norm is used, resulting in the indices

K := {⃗l ∈Nd : |⃗l|1 ≤ L + d− 1}
where L is the maximum level in any dimension. The truncated d-dimensional operator
becomes

Ld⃗
K = ∑

l⃗∈K
△1

l1 ⊕ ...⊕△d
ld (2.1)

An important property, when implementing the the formula eq. (2.1), is nestedness,
fulfilled for the trapezoidal sum, Leja or Clenshaw-Curtis grids. Let Gi

n be the set of
grid points belonging to Li

n. If the grid points are nested, i.e. Gi
n−1 ⊂ Gi

n , evaluating
△i

n only requires the points Gi
n\Gi

n−1.
Benefits of sparse grids can be seen for piecewise linear interpolation. Unlike for the

nodal basis, for sparse grids hierarchization is necessary. The basis functions are again
constructed via tensor products of the one-dimensional hierarchical basis functions

φ⃗l ,⃗i(x⃗) :=
d

∏
j=1

φlj,ij(xj)

with multi-indices l⃗ = (l1, ..., ld) ∈ Nd and i⃗ = (i1, ..., id) ∈ Nd. The set of hierarchical
indices at a given level l⃗ is defined as

I⃗l := {⃗i : 1 ≤ ij ≤ 2lj , ij odd, 1 ≤ j ≤ d}.
Again, we obtain subspaces W⃗l spanned by all basis functions at a set level

W⃗l = span{φ⃗l ,⃗i : i⃗ ∈ I⃗l}.

Applying the Smolyak method, summing over all subspaces where |⃗l|1 ≤ L + d− 1
results in the sparse grid function space

V1
L =

⊕
|⃗l|1≤L+d−1

W⃗l

with discretization level L. The interpolant f̃ is written as

f̃ (x⃗) = ∑
|⃗l|1≤L+d−1

∑
i⃗∈ I⃗l

α⃗l ,⃗i φ⃗l ,⃗i(x⃗).

Denoting the number of grid points in one dimension as N := 2L, the number of
points reduces to O(N · log2(N)d−1), and the accuracy considering the L∞-norm and
L2-norm only declines slightly to O(N−2 · (log N)d−1), if again bounded mixed second
derivatives are assumed. Figure 2.2 shows the two- and three-dimensional sparse grids
of discretization level 5 with equidistant subgrids. [1]
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2 Numerical Quadrature and Interpolation

Figure 2.2: the two- and three-dimensional sparse grids of discretization level 5 with
equidistant subgrids

2.2.4 Combination Technique

Direct implementations of sparse grids often require complicated datastructures and
existing solvers may only exist for full grids in many applications. Full grid implemen-
tations can still be used for sparse grids, as it is possible to decompose sparse grids
into a combination of full grids [7]. For this purpose, one can show that eq. (2.1) can be
written as

Ld⃗
L = ∑

l⃗∈K
c⃗lL

1
l1 ⊕ ...⊕Ld

ld (2.2)

with grid coefficients c⃗l determined as

c⃗l =
(1,...,1)

∑
z⃗=0

(−1)|⃗z|1 · χK (⃗l + z⃗)

with

χK (⃗l + z⃗) =

{
1 if l⃗ + z⃗ ∈ K
0 otherwise

.

That means that the Smolyak grid can be achieved by a linear combination of full
grids. Although many grid points appear on different grids making the approach more
computationally expensive than direct sparse grids, caching avoids reevaluating the
same points. The combination technique (CT) allows parallelization as the result for
different subgrids can be computed independently. So far, the index set K has been
either defined including all multi-indices with L∞-norm smaller than some level L

11



2 Numerical Quadrature and Interpolation

Figure 2.3: interpolation of the Genz corner peak function with the dimension wise refine-
ment strategy, showing the points sets P1 and P2, the resulting combination
scheme and the corresponding sparse grid

12



2 Numerical Quadrature and Interpolation

resulting in a full tensor grid, or instead by using the L1-norm resulting in the Smolyak
approach. However, the index set may be chosen arbitrarily as long as the following
admissibility condition holds:

l⃗ − e⃗i ∈ K, for 1 ≤ i ≤ d, li > 1, ∀⃗l ∈ K (2.3)

with e⃗i being the unit vector in direction i.

2.2.5 Adaptivity

Typical problem functions may be complicated only in some dimension or interaction
between dimensions. The flexibility of eq. (2.3) allows to adjust the index set K
accordingly. Since these properties are usually not known beforehand, adjusting the set
of levelvectors K to the problem function may be done in an adaptive fashion, so called
dimension adaptivity, using an appropriate error estimator.

For functions exhibiting local phenomena, grids that place more points in these re-
gions, so called spatially adaptive grids [16], are more beneficial. While spatial adaptivity
can be performed in a straightforward way for direct sparse grid implementations
with a hierarchical set of basis functions such as the introduced hierarchical set of
hat functions by adding children points of nodes that have high surpluses, it is more
difficult for the combination technique. This is because spatially refined sparse grids
may usually not be decomposed into an admissible set of full grids with equidistant
nodes. The following section presents one way spatial adaptivity can be achieved with
the combination technique.

2.2.6 Dimension-wise spatial refinement with the sparse grid combination
technique

In [15], an algorithm to perform spatial adaptivity with the combination technique
using a set of basis functions that can be hierarchized was introduced. It creates a
valid combination scheme with full grids that are, unlike for the standard combination
technique, not equidistant. The algorithms keeps a set of points for every dimension,
out of which a valid combination scheme can be constructed, and refines these one-
dimensional point sets by means of a reasonable error estimator.

The strategy to construct a valid combination scheme out of the one-dimensional sets
of points {Pi, i = 1, ..., d} has to determine for some level vector l⃗ which of the points
are included in the full tensor subgrid l⃗. Any point Pi

j in a set Pi can be attributed
to some grid of level Li

j and their hierarchical parent also has to be included in Pi.
Therefore, the point sets can be represented by a binary tree. Since only points in Pi can

13



2 Numerical Quadrature and Interpolation

be included that have a level Li
j ≤ li, the strategy that includes the maximum amount

of points is the following choice of points for dimension i:

Pi,⃗l = {Pi
j ∈ Pi|Li

j ≤ li}

As this strategy includes points as early as possible with zero delay, the resulting sparse
grid may show full-grid like structures. A second strategy, going in the other direction
of delaying the inclusion points to higher levels, is the following strategy:

Pi,⃗l = {Pi
j ∈ Pi|Li

j ≤ li − ci
j}

where ci
j = lmax

i − Di
j and Di

j is the the maximum of the levels of the hierarchical
descendants of Pi

j in the hierarchical tree corresponding to Pj. This strategy delays the
inclusion of points in coarse regions of the one-dimensional strips, i.e. points which
do not have high-level descendants, by using a delay of ci

j for point Pi
j . Although this

strategy avoids full grid structures in coarse regions, the high delay may get rid of
too many points missing relevant interactions between dimensions. The final strategy
actually used in the algorithm is more complicated but is a trade-off between the two
discussed strategies, i.e. between a delay of zero and of ci

j.
To perform refinement, an error estimator has to be selected to choose the points

in the point sets {Pi, i = 1, ..., d} added to the combination scheme. To maintain a
valid combination scheme, refinement candidates have to be children of points already
existing in the set, so-called leaf points. Error estimates are calculated for every grid
l⃗ in the combination scheme. The error estimation loops through the corresponding
strips Pi,⃗l and calculates error estimation via hierarchization of the one-dimensional
strip while fixating the coordinates of all other dimension and adding these errors up
for every combination of coordinates of the other dimensions present in the subgrid. If
the global error is bigger then a chosen threshold, the grid adds children of leaf points
whose error is above a threshold depending on the maximum error max-error of all leaf
nodes, i.e. all leaf nodes whose error is larger than γ· max-error are refined. The choice
of γ ∈ (0, 1) determines how many nodes are refined in every iteration, the closer to
zero the broader the refinement.

The algorithm rebalances the hierarchical trees belonging to the point sets in every
iteration. Without rebalancing, the hierarchical trees could become very unbalanced if
during the refinement points gather densely around some region. As it is necessary
for valid combination schemes that all parent nodes exist in the combination scheme,
unbalanced hierarchical trees would enforce points to be included that may otherwise
not be necessary.

For more details on the algorithm, refer to [15]. Figure 2.3 shows the example of
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2 Numerical Quadrature and Interpolation

interpolating the Genz corner peak [6] function with the single dimension refinement
strategy.
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3 Forward Uncertainty Quantification with
the Adaptive Combination Technique

In forward uncertainty quantification, one considers a model f : Ω⃗→ R, where Ω⃗ is
a d-dimensional probability space with density function w. For the purpose of this
thesis, we assume the ideal case of the one-dimensional distributions being known and
independent. To keep the notation simple, this chapter omits possible deterministic
inputs. By propagating the model, statistical properties of the output distribution
are gained, such as expectation, variance, and Sobol’ indices which measure the
impact that single or combinations of input parameters have on the output distribution.
These properties of the output distribution can be obtained by constructing a general
polynomial chaos expansion (gPCE), which is a linear combination of polynomials,
orthogonal in regard to the joint density functions of the uncertain input distributions.

This chapter first explains general polynomials chaos expansions and how expecta-
tion, variance and Sobol’ indices are determined from the gPCE coefficients. Then, the
approach of interpolating the model and constructing the gPCE on the interpolant is
introduced, discussing the application of several variants of adaptive and non-adaptive
sparse grids.

3.1 Polynomial chaos expansion (gPCE)

The goal of constructing a gPCE is to obtain a surrogate that may be cheaper to
evaluate than the model and out of whose coefficients statistical properties can be
easily extracted [20]. First we consider the one-dimensional case where the model
f : Ω → R has only one random variable as input. Under the assumption that the
model is square-integrable, f lies in the separable Hilbert space H := L2(X, w) with
inner products as the weighted integral ⟨ f , g⟩ =

∫
X f gwdx where X is the support of

Ω. It is possible to construct an orthonormal set {ϕj(x) : j ∈N0} of polynomials that is
dense in H where ϕj is of degree j. For example, the Legendre polynomials represent
such a set for the uniform distribution on the domain [−1, 1]. Due to the density of this
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3 Forward Uncertainty Quantification with the Adaptive Combination Technique

set of functions in H, the model can be written as the series

f =
∞

∑
j=0

f jϕj. (3.1)

with inner products f j := ⟨ f , ϕj⟩ Since only finitely many coefficients can be computed,
we truncate the series introducing a projection operator

Pn( f ) =
n

∑
j=0
⟨ f (x), ϕj⟩ϕj(x) =

n

∑
i=0

f jϕj(x), (3.2)

i.e. Pn projects f orthogonaly onto the subspace containing all polynomials of degree n
or less. The error regarding the L2-norm of the actual function and the projection at
degree n is || f − P(i)

n ||22 = ∑∞
n+1 f 2

j < ∞, since f ∈ H.
Extending the gPCE method to higher dimensions, we consider a model that has

several uncertain input parameters, i.e. f : Ω⃗→ R where Ω⃗ = (Ω1, ..., Ωd)
T is a random

vector consisting of independent random variables, and H1, ..., Hd are the single Hilbert
spaces with dense sets of functions {{ϕ(1)

j , j ∈N}, ..., {ϕ(d)
j , j ∈N}}. The Hilbert space

Hd⃗ := H(1) ⊕ ...⊕Hd corresponds to the d-dimensional stochastic input space. For
simplicity, we assume having the same polynomial truncation n for all dimensions.
The according d-dimensional orthogonal polynomials are then ϕ⃗j(x⃗) := ∏d

i=1 ϕji(xi).
Following the Smolyak approach in the d-dimensional truncation scheme, we may
want to disregard contributions of highly coupled inner products. For that purpose,
instead of taking the full tensor product that arises by using the L∞-norm, we apply
the L1-norm leading to the d-dimensional projection operator

Pd⃗
n ( f ) = ∑

j⃗∈K
⟨ f , ϕ⃗j⟩ϕ⃗j

with multi-indices
K = {⃗j : |j|1 ≤ n + d− 1} (3.3)

3.2 Mean and variance

Besides having a surrogate that is cheaper to evaluate than the original model, con-
structing the gPCE function also has the advantage that statistical properties of the
output distribution, like mean and variance, can simply be calculated having the gPCE
coefficients. For simplicity, we again consider a model f with only one stochastic pa-
rameter and the expansion Pn for a maximal polynomial degree n. The orthonormality
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3 Forward Uncertainty Quantification with the Adaptive Combination Technique

of the basis functions and ϕ0 being a constant implies ϕ0 = 1:

1 = ⟨ϕ0, ϕ0⟩ =
∫

X
ϕ2

0wdx = ϕ2
0.

This allows to approximate the expectation

E[ f ] ≈ E

[
n

∑
j=0

f jϕj

]
=

n

∑
j=0

f jE[ϕj] =
n

∑
j=0

f jE[ϕ0ϕj] =
n

∑
j=0

f j

∫
X

ϕ0ϕjwdx =
n

∑
j=0

f j⟨ϕ0, ϕj⟩ = f0

and variance

Var[ f ] = E
[
( f −E[ f ])2

]
≈ E

(( n

∑
j=0

f jϕj

)
− f0

)2
 = E

( n

∑
j=1

f jϕj

)2
 =

n

∑
j1=1

n

∑
j2=1

f j1 f j2E[ϕj1 ϕj2 ] =
n

∑
j1=1

n

∑
j2=1

f j1 f j2⟨ϕj1 ϕj2⟩ =
n

∑
j=1

f 2
j

3.3 Global sensitivity analysis

It is often of interest to quantify the impact that single or combinations of input
parameters have on the output distribution, called global sensitivity analysis. To simplify
the notation, we assume in the following that the independent input random variables
Ω1, ..., Ωd are identically distributed. It is possible to decompose the model in the
so-called Sobol’ decomposition [18]:

f (x1, ..., xn) = f0 +
n

∑
i=1

fi(xi) + ∑
1≤i<j≤n

fij(xi, xj) + ... f1,...,d(x1, ..., xd) (3.4)

where the summands are defined recursively:

fi(xi) =
∫

Xd−1
f (x⃗)dx⃗∼i − f0,

fij(xi, xj) =
∫

Xd−2
f (x⃗)dx⃗∼ij − fi(xi)− f j(xj)− f0

...

with
∫

Xd−|I|(·)dx∼I denoting the integration over all variables except those in the index
set I. This construction results in the following property:∫

Xk

fi1,...,is(x1, ..., xs)dxk = 0, 1 ≤ k ≤ s. (3.5)
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3 Forward Uncertainty Quantification with the Adaptive Combination Technique

By eq. (3.5), it is possible to write the variance as the sum

Var[ f ] =
∫

Xd
f 2(x⃗)w(x⃗)dx⃗− f 2

0 =
n

∑
i=1

Di + ∑
1≤i≤j≤n

Dij + ... + D1,...,n (3.6)

with partial variances

Di1,...,is =
∫

Xs
f 2
i1...is

(xi1 , ..., xis)w1 · ... · wsdx1, ..., dxs, 1 ≤ i1 < ..., is ≤ n.

The first order Sobol indices, measuring the contribution of an input alone, are the
normalized partial variances

Si :=
Di

Var[ f ]
.

To measure the total effect that a single input variable has on the uncertainty of the
random variable f (Ω⃗), considering both its individual contribution and interaction
with other variables, the total Sobol’ indices are defined as:

ST
i (t) := ∑

i∈{i1,...,is}
Si1,...,is(t)

3.4 Pseudospectral projection

The method of performing numerical quadrature to obtain the inner products ⟨ f , ϕ⃗i⟩,
which are usually not possible to calculate analytically, is called pseudospectral projection.

In [12], for a given projection level n of an expansion Pn, an appropriate quadrature
level q(n) has been derived:

To simplify notation, let d = 1 in the following. The error of PSP compared to an
exact projection is

||Pn( f )−
n

∑
j=0

f̃ jϕj(x)||22 =
n

∑
j=0

( f j − f̃ j)
2 (3.7)

where f̃ j is the approximate inner product

f j = ⟨ f , ϕj⟩ ≈ f̃ j := Qq(n)( f ϕj) =
n

∑
k=0

fkQq(n)(ϕjϕk) +
∞

∑
k=n+1

fkQq(n)(ϕjϕk) (3.8)

with Qn as the operator for weighted quadrature on level m. Inserting 3.8 into 3.7 gives
the error estimation

n

∑
j=0

( f j − f̃ j)
2 =

n

∑
k=0

(
f j −

n

∑
k=0

fkQq(n)(ϕjϕk)−
∞

∑
k=n+1

fkQq(m)(ϕjϕk)

)2

(3.9)

19



3 Forward Uncertainty Quantification with the Adaptive Combination Technique

The first two terms on in the parentheses on the right of 3.9 are responsible for internal
aliasing error and the third term for the external aliasing error. The external aliasing error
goes to zero as the polynomial truncation level increases, the internal aliasing error
however can be constant regarding the function f . Therefore, internal aliasing should
be avoided, requiring the quadrature level q(n) to be chosen, if possible, such that
the inner product of polynomials existing in the truncation scheme can be computed
exactly. This result connects the two necessary choices of a suitable Smolyak grid for
quadrature and for the orthogonal projection.

3.5 Computing the gPCE coefficients with the adaptive
combination technique

This section now explores how the (adaptive) combination technique can be applied
when computing the gPCE coefficients. We can differentiate between three approaches.
The first one is to apply the single dimension refinement strategy with the trapezoidal
sum for every inner product, i.e. to perform PSP directly on the model. A second
approach is to first use an adaptive or non-adaptive sparse grid to interpolate the model
and then use a separate quadrature rule to compute the inner products now with the
cheaper to evaluate sparse grid surrogate instead of the original model, i.e. to perform
PSP not on the model but on the interpolant. A third related approach is to again
interpolate the model and then, by exploiting the simpler structure of the interpolant,
derive analytical formulas for the inner products. The following subsections explore
these three variants:

3.5.1 Spatial refinement for every inner product

The spatially refinement strategy may be used to calculate the inner products ⟨ f , ϕi⟩.
In [9], such an approach has been examined. The method computes all integrals with
one sparse grid that adapts to all integrands f · ϕi. It uses the trapezoidal sum with
the single dimension refinement and incorporates the density function by applying
weighted integration. In this method, the choice of the polynomial truncation and the
number of grid points are independent, because internal aliasing errors are inevitable as
exact integration of the orthogonal gPCE polynomials is not possible using trapezoidal
quadrature.

3.5.2 PSP on an interpolated surrogate

An approach that avoids internal aliasing errors but still supports adaptive sparse
grids is to use a sparse grid variant for interpolation and then perform pseudospectral
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3 Forward Uncertainty Quantification with the Adaptive Combination Technique

projection on this interpolant instead of the model. The quadrature rule that is used for
the calculation of the inner products may be chosen such that inner products of the
polynomials existing in the truncation are integrated exactly to avoid internal aliasing
errors, for example via Gaussian quadrature. As the surrogate is typically cheaper to
evaluate than the model, the quadrature rule may be more generous with the number
of evaluations compared to computing the inner products directly on the model. Unlike
the adaptive grid of section 3.5.1 which adapts to all integrands f · ϕi, here the grid
only adapts to the model f , which may be beneficial as the first gPCE coefficient ⟨ f , ϕ0⟩
is in general the most important one.

As there exist different sparse grid variants in regard to the underlying interpolation
rules and other implementation details and also different quadrature rules to compute
the inner products, this method has many variants. For once, one may chose hat
functions as basis functions and then use either the non-adaptive standard combination
technique or the spatially adaptive combination technique for interpolation. In higher
dimensions, points on the boundary may get too expensive and instead, modified basis
functions that extrapolate to the boundaries should be used. One may also exchange
the hat functions with smoother B-Splines. If Lagrange polynomials are used as basis
functions, the surrogate is a polynomial for which all maximal combined and single
degrees are known. Therefore, all inner products where one argument is a polynomial
of a degree that is not in the Smolyak grid of the interpolation, the inner product is zero.
This allows to choose the quadrature rule with the according gPCE truncation such that
only non-zero inner products are included. We can use Leja points for the Lagrange
polynomials, which have good interpolation properties and are nested. However, Leja
interpolation does not allow for spatial adaptivity.

3.5.3 Analytical formulas for interpolants

Interpolating the model also allows, for certain interpolation rules, to derive analytical
formulas for computing the inner products by exploiting the simpler structure of the
surrogate. In the work of [3] such a formula has been derived for sparse grids: The
n-th gPCE coefficient cn may be computed as

cn = ∑
l⃗∈K,⃗i∈I⃗l

α⃗l ,⃗i

d

∏
j=1

∫ 1

0
ϕn(F−1(xj))φlj,ij dxj (3.10)

where F−1(xj) is the inverse cumulative distribution function (cdf) of the i-th parameter
and the α⃗l ,⃗i are the hierarchical surpluses, however not of the original model, but
the model transformed into the d-dimensional unit cube via the inverse cdfs, i.e.
the function f nonlin to be interpolated is f nonlin(x⃗) = f (F−1(x1), ..., F−1(xd)). Such a
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3 Forward Uncertainty Quantification with the Adaptive Combination Technique

nonlinear transformation may be beneficial for interpolation, as the grid points are
selected in accordance with the weight function. For a more detailed derivation, refer
to [3]. For the function tested in this thesis, however, only uniform distribution are
considered, therefore the transformation is only a linear scaling of the model into the
unit cube. For uniform distributions, using piecewise linear hat functions, the integrand
appearing in the one-dimensional integrals in 3.10 are piecewise polynomials, because
the inverse cdfs are linear. Therefore, these integrals can be analytically integrated.
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4 Implementation

This chapter presents the libraries chaospy and sparseSpACE and their application
in implementing the proposed gPCE methods of section 3.5, i.e. to first interpolate
the model and then either perform PSP on that interpolant or compute the gPCE
coefficients analytically. For the comparisons in this thesis, sparseSpACE serves for
interpolation and then, in the case of PSP, chaospy is used for computing the gPCE
coefficients.

4.1 sparseSpACE

The library sparseSpACE [14], which is an acronym for Sparse Grid Spatially Adaptive
Combination Environment, implements several variants of the combination technique,
in particular several adaptive versions. Besides dimension adaptivity, the library im-
plements several spatially adaptive techniques, amongst which the single dimension
adaptive scheme has shown compelling results, documented in [15]. Since the single
dimension refinement strategy requires the basis functions to be hierarchizable, the
trapezoidal sum or B-Splines are possible, however not Leja interpolation/ quadra-
ture. For the spatially adaptive technique, the user also has to specify the refinement
threshold γ, see 3.5, and a maximum_level determining the initial grid on the basis of
which refinement is performed, a tolerance and a maximum number of evaluations. If
either the error estimate is below the tolerance or the grid contains more points than
the maximum specified, the refinement stops.

Additionally, sparseSpACE provides functionality to apply the combination technique
in application areas such as density estimations and uncertainty quantification. The
UQ method that already existed in sparseSpACE is to construct a gPCE surrogate with
PSP by applying the single dimension adaptive scheme as quadrature rule.

4.2 Chaospy

Chaospy [4] is a toolbox for uncertainty quantification using polynomial chaos expan-
sions. Relevant for this thesis, it supports PSP using different quadrature methods
both with full and sparse grids. In order to construct a gPCE, the user specifies the
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4 Implementation

independent input distributions, such as uniform or normal, a quadrature method and
the polynomial truncation. Possible quadrature methods include Gaussian, Clenhsaw-
Curtis or Leja grids. Given a polynomial truncation n, chaospy includes all orthogonal
polynomials in the scheme eq. (3.3). The statistical properties of expectation, variance
and Sobol’ indices can then be extracted from the gPCE surrogate.

4.3 Implementation of proposed UQ methods

This section explains the implementation of the gPCE methods proposed in 3.5.
Interpolation is performed with sparseSpACE. Interpolation methods used are the

spatially adaptive CT with hat functions and the non-adaptive standard combination
technique with either hat functions or Leja interpolation. For this purpose, Leja
interpolation with Lagrange polynomials was added to sparseSpACE.

Considering the approach of section 3.5.2, PSP is performed on the interpolant with
full Gaussian grids.

Analytical computation the inner products on an interpolant has been implemented
for the basis set of hat functions for both the standard CT and the spatially adaptive CT
and also supports modified basis functions. For this purpose the formula to compute
the n-th gPCE coefficient on a sparse grid

cn = ∑
l⃗∈K,⃗i∈I⃗l

α⃗l ,⃗i

d

∏
j=1

∫ 1

0
ϕn(F−1(xj))φlj,ij dxj,

compare eq. (3.10), has to be implemented for the (adaptive) combination technique.
Algorithm 1 shows the pseudocode. To obtain the n-th gPCE coefficient, the algorithm
loops through all subgrids that are included in the combination scheme. For a given
subgrid with levelvector l⃗, the algorithm goes through all points i⃗ ∈ I⃗l and every dimen-

sion j ∈ {1, ..., d} to compute the one-dimensional integrals
∫ 1

0 ϕn(F−1(xj))φlj,ij(xj)dxj.
To compute these integrals analytically, the integrand which is a piecewise polynomial
for uniform distributions is split into these polynomials. The integrand evaluates to
zero outside the support of φlj,ij . For the standard CT, the support only depends on
the levelvector, whereas for the spatially adaptive CT the support can be determined
by finding the adjacent points in the one-dimensional coordinate stripe corresponding
to the subgrid and dimension. The integrand can then be split in two halves on the
point’s coordinate in the respective dimension. If a modified basis is used, it has to be
checked whether the point is adjacent to the boundary and extrapolation is required.
As the subgrids are full grids with no hierarchization, the surplus is just the model
function evaluated at the given point, i.e. α⃗l ,⃗i = f nonlinear(x⃗l ,⃗i). This way, eq. (3.10) is
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computed for every subgrid. The linear combination of the results via the component
grid coefficients gives the sparse grid solution.

Algorithm 1 Pseudocode for computing the gPCE coefficients of a piecewise linear
interpolant, adaptive or non-adaptive

1: procedure compute gPCE_coefficients(combination_technique, trunca-
tion_scheme, f nonlinear)

2: gPCE_coeffs← []
3: for poly in truncation_scheme do
4: for component_grid in combination_technique do ▷ solve for every in-

cluded subgrid
5: integral_component_grid← 0
6: for point in component_grid do
7: integral_point← 1
8: for d in 0,..., f nonlinear.dimension do ▷ compute the one-

dimensional integrals
9: integral_point← integral_point ·∫ 1

0 φcomponentgrid.levelvector[d], point[d](xd)

·poly[d](F−1
d (xd))dxd

10: end for
11: integral_component_grid← integral_component_grid

12: + integral point · f nonlinear(point)

13: end for
14: gPCE_coeffs[poly]← gPCE_coeffs[poly] + component_grid_coefficient

· integral_component_grid

15: end for
16: end for
17: end procedure

For those methods included in the comparisons in the next chapter that do not first
interpolate the model but perform PSP directly on the model, implementation already
exists in sparseSpACE or chaospy. The included PSP quadrature methods are weighted
trapezoidal sum with the spatially adaptive CT, implemented in sparseSpACE, and full
Gaussian and sparse Leja quadrature, implemented in chaospy.

Results for all of these methods will be compared in the following chapter.
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5 Results

After introducing several gPCE methods in section 3.5 and presenting the implementa-
tion of these methods in chapter 4, this chapter compares test results for the proposed
methods for several 3-dimensional test functions and the hydrological model HBV
with 6 stochastic parameters. The test functions are chosen to represent a variety
of properties: non-differentiability, discontinuities, localized problems, and smooth
functions in C∞ are included.

5.1 3-dimensional test functions

The first three methods used to compare results on the 3-dimensional test functions
perform PSP directly on the model with the following quadrature rules:

• full Gaussian, using chaospy

• sparse Leja, using chaospy

• the single dimension refinement strategy with the weighted trapezoidal rule,
using sparseSpACE

Since the Gaussian quadrature points are not nested and in practice the quadrature
may be done in an adaptive fashion, two lines are plotted: one counting only points
in the current grid and another one that includes the number of points from previous
grids. For both Gaussian and Leja quadrature, the gPCE truncation can be chosen
depending on the quadrature order, such that the truncation is maximal while still
avoiding internal aliasing errors. The maximum truncation is at degree 10. For the
weighted trapezoidal sum on the other hand, internal aliasing errors cannot be avoided
and therefore the gPCE truncation is fixed at a degree of 10.

The approach of first interpolating the model and then performing PSP on the
interpolant is compared with three different interpolation methods:

• the standard CT with Leja interpolation

• the standard CT with hat functions

• the spatially adaptive CT with hat functions
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5 Results

The chaos expansion is also truncated at degree 10. To avoid internal aliasing errors, a
Gaussian grid with 11 points per dimension is employed. Therefore, the interpolant
has to be evaluated 113 times, additional to the model evaluations during interpolation
whereas for direct only the model has to be evaluated. For all figures in this chapter,
only the number of model evaluations are considered which can be justified as for
actual hydrological models, the model is usually more expensive to evaluate as the
interpolant. Furthermore, in high dimensions the PSP quadrature method should also
use sparse grids to reduce the number of interpolant evaluations.

The idea of first interpolating the model and then computing the gPCE coefficients
analytically is compared with two variants:

• standard CT with hat functions

• the spatially adaptive CT with hat functions.

The last method included in the comparisons does not construct a chaos expansion
but computes the mean and variance by computing the integrals E(Ω) =

∫
X f wdx and

Var[Ω] =
∫

X f 2wdx −
(∫

X f wdx
)

applying the single dimension refinement strategy
with the weighted trapezoidal rule.

Table 5.1 summarizes the methods included in the comparisons.

name interpolation method quadrature method gPCE truncation

A1 / Gaussian adaptive, maximum 10
A2 / sparse Leja adaptive, maximum 10
A3 / weighted trapezoidal 10
B1 piecewise linear, standard CT Gaussian 10
B2 piecewise linear, spatially adaptive CT Gaussian 10
B3 sparse Leja-Lagrange, standard CT Gaussian 10
C1 piecewise linear, standard CT analytical 10
C2 piecewise linear, spatially adaptive CT analytical 10
D / weighted trapezoidal no gPCE

All sparseSpACE grids are chosen to include points on the boundary. Therefore, the
basis functions adjacent to the boundaries do not have to be modified. For all spatially
adaptive grids, the initial maximum level is set to 3 and the refinement threshold is set
to γ = 0.8.

The plots in this section show the relative error of expectation, variance, and, provided
that analytical solutions exist, also Sobol’ indices, depending on the number of model
evaluations.
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5 Results

5.1.1 Ishigami

The Ishigami function [10]

f (x, y, z) = sin(x) + 7 sin2(y) + 0.1 · z4 sin(x)

has three identical stochastic inputs that are uniformly distributed: X, Y, Z ∼ U(−π, π).
Analytical solutions exist for mean, variance, and Sobol’ indices. The results, see
fig. 5.1 and fig. 5.2, do not show a clear winner. For the expectation, the spatially
adaptive methods perform better Gaussian, Leja, and the standard CT. However, for
the variance and the Sobol indices’, it seems beneficial to compute the inner products
directly on the model, either with Gaussian or Leja grids. Gaussian or Leja quadrature
may perform well, because the Ishigami function is in C∞ which makes it a good
candidate for approximation with a polynomial. In general, one can expect worse
results when first interpolating the model with the adaptive or non-adaptive trapezoidal
rule and then performing PSP on the model, compared to computing the inner products
analytically for the same interpolation. PSP with the spatially adaptive trapezoidal rule
as quadrature method performs worse for the inner products, possibly because internal
aliasing errors are not avoided.

5.1.2 G-function

The second test function is the three-dimensional G-function [11]

f (x⃗) = Πd−1
i=0
|4xi − 2|+ 0.5 · i

1 + 0.5 · i , d = 3

with identical distributions Xi ∼ U(0, 1), i = 0, 1, 2. Analytical solutions are available
for expectation, variance, and Sobol’ indices. The function is continuous but is not
differentiable everywhere. Figure 5.3 plots the 2-dimensional G-function. Results, see
fig. 5.13, show that analytically computing the inner products on an interpolant con-
structed via adaptive or non-adaptive CT with hat functions performs best. The reason
is probably that the function is piecewise linear and the piecewise linear interpolant
is the exact model. Therefore the remaining error is only due to the gPCE truncation.
The inaccuracies for methods that use Gaussian or Leja grids may be attributed to the
non-differentiability.

5.1.3 UQ-function

The third test function is the UQ-function [5]

f (x, y, z) = e−x2+2sign(y) + z
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5 Results

(a) mean Ishigami function, relative error

(b) variance Ishigami function, relative error

Figure 5.1: Ishigami function, relative error of mean and variance
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5 Results

(a) first order Sobol index for parameter x, relative error

(b) first order Sobol index for parameter y, relative error

(c) first order Sobol index for parameter z, relative error

Figure 5.2: ishigami function, relative error of first order Sobol indices
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Figure 5.3: plot of the two-dimensional GFunction
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(a) mean GFunction function, relative error

(b) variance GFunction function, relative error

Figure 5.4: 3 dimensional GFunction, relative error of mean and variance
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5 Results

(a) first order Sobol index for parameter x1, relative error

(b) first order Sobol index for parameter x2, relative error

(c) first order Sobol index for parameter x3, relative error

Figure 5.5: 3 dimensional GFunction, relative error of Sobol indices
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5 Results

Figure 5.6: plot of UQFunction, with parameter z=0

with uniform distributions X ∼ U(−2.5, 2.5), Y ∼ U(−2, 2), Z ∼ U(5, 15). Analytical
solutions are available for expectation and variance. The function has a discontinuity at
y = 0. ?? plots the 2-dimensional UQ-Function where z = 0. Results, fig. 5.13, show
that analytically computing the inner products on an interpolant constructed via the
adaptive or non-adaptive combination technique using hat functions performs best.
The discontinuity explains why spatial adaptivity shows good result for the expectation.
Using Gaussian quadrature directly on the model results in high oscillations in the
error for both expectation and variance; for an even amount of points per dimensions,
the results are far better. The reason may be that whenever the number of points per
dimension is odd, a point is placed directly on the discontinuity which distorts the
global polynomial. We can also observe, that no method which constructs a gPCE
truncation, produces good results for the variance. Possibly, the polynomial truncation
at 10 is too low to produce a decent surrogate for the model.
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5 Results

(a) mean UQ-Function function, relative error

(b) variance UQ-function, relative error

Figure 5.7: UQ-Function, relative error of mean and variance
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5 Results

Figure 5.8: plot of the two-dimensional product peak function

5.1.4 Product-Peak

The next test function is the 3-dimensional product-peak function [6]

f (x⃗) =
10−d

Πd
i=1

(10i)−2 + (xi − 0.99)2)

with identical uniform distributions Xi ∼ U(0, 1), i = 0, 1, 2. Analytical solutions are
available for expectation and variance. Figure 5.8 plots the 2-dimensional case. Results,
see fig. 5.9, show that Gaussian and Leja perform well, which may be attributed to the
smoothness. This smoothness and lack of local phenomena could also explain why
spatial adaptivity is not advantageous in this case. Again, using the spatially adaptive
trapezoidal rule as quadrature method, which does not avoid internal aliasing errors,
performs worst.
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5 Results

(a) mean product peak function, relative error

(b) variance product peak function, relative error

Figure 5.9: 3 dimensional product peak function, relative error of mean and variance
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5 Results

Figure 5.10: plot of the two-dimensional Genz Corner Peak function

5.1.5 Corner Peak

The next test function is the 3-dimensional corner peak function [6]

f (x⃗) = (1 +
d

∑
i=1

xi)
−d−1

with identical uniform distributions Xi ∼ U(0, 1), i = 0, 1, 2. Analytical solutions are
available for expectation and variance. Figure 5.10 plots the 2-dimensional case. Like
the product peak function, the corner peak function is fairly smooth and results, see
fig. 5.11, are similar. Gaussian and Leja again perform well. The method of first
interpolating the model via sparse Leja interpolation and then perform PSP with
Gaussian quadrature seems to produce better results than performing PSP with sparse
Leja quadrature. Again, spatial adaptivity is not advantageous in this case, possibly
because of the smoothness.
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5 Results

(a) mean corner peak function, relative error

(b) variance corner peak function, relative error

Figure 5.11: three dimensional corner peak function, relative error of mean and variance
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5 Results

5.1.6 discontinuous Genz function

The last 3-dimensional test function is the discontinuous Genz function [6]

f (x⃗) =

{
0 x⃗ ≥ 0.5

e−∑d
i=1 xi otherwise

with identical uniform distributions Xi ∼ U(0, 1), i = 0, 1, 2. Analytical solutions are
available for expectation and variance. fig. 5.12 plots the 2-dimensional function. Due
to the discontinuity, method that apply Gaussian and Leja quadrature/ interpolation
do not perform well, see fig. 5.13. When applying Gaussian quadrature directly on
the model, for every odd number of points per dimension, a point is placed on the
discontinuity at xi = 0.5, i = 0, 1, 2 resulting in oscillations, like for the discontinuous
UQ-function. The discontinuity and the very localized problem, as the function is
constant on most of the domain, makes the discontinuous Genz function a good
candidate for spatial adaptivity. We observe that the relative error for the variance
stops converging towards zero for all methods, suggesting that a gPCE truncation at
degree 10 is not sufficient for constructing a good surrogate and that further increases
in model evaluations brings little benefit.

5.2 HBV

This section compares results for the hydrological model HBV. The model has 12
stochastic inputs, but for the comparisons, 6 parameters were fixed, reducing the
problem to 6 dimensions. The model returns values for the streamflow in the Oldman
river basin over a period of several decades; we only consider the period from 01.10.2005
until 30.09.2006. Alternatively, it can also return a goodness of fit value which measures
how good the simulated streamflow fits to the measured data. This value can be used
to adjust the input distributions, by minimizing the goodness of fit. As goodness of fit,
we use the root mean squared error:

RMSE =

√
∑N−1

i=0 (mi − si)2

N

where mi is the i-th measurement, si the i-th simulated value and N the number of
measurements, in our case N = 365, one per day. Analytical solutions for expectation,
variance or Sobol indices are not available. To obtain reference solutions for expectation
and variance, Quasi Monte Carlo with the Halton sequence and 50000 evaluations was
performed. For all methods in this section, the maximum gPCE truncation is set at
degree 3 and no points on the boundary are included.
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5 Results

Figure 5.12: plot of the two-dimensional Genz-Discontinuous function

41



5 Results

(a) mean discontinuous Genz function, relative error

(b) variance discontinuous Genz function, relative error

Figure 5.13: 3 dimensional discontinuous Genz function, relative error of mean and
variance
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5 Results

First we compare the results with time series data as output. Figure 5.14 and
fig. 5.15 show the simulations for PSP with Gaussian quadrature and for the analytical
computation of the gPCE coefficients on a piecewise linear interpolant constructed
with the single dimension refinement strategy, respectively. We observe that for both
methods the measured data deviates significantly from the expectation suggesting
that the model or the input distributions may not fit too well. For around 4000 model
evaluations invested in both methods, the results are already quite similar. Concluding
from the total order Sobol’ indices, the parameter FRAC has the most impact on the
output most days.

Going on with the RMSE, fig. 5.16 shows the relative errors for mean and variance.
Included are the gPCE methods which produced the best results for the 3-dimensional
test functions: A1, A2, B3, C1, C2, see table 5.1. Even in 6 dimensions, the full Gaussian
quadrature performs well and produces the most accurate result for the mean while
the analytical computation of the gPCE via the standard CT using linear interpolation
gives better results for the variance. For the Ishigami function, the opposite was
observed, which could be investigated in future work. Perhaps the good results of
linear interpolation with standard CT could be further improved by employing the
Simpson’s rule instead of the trapezoidal rule. The spatially adaptive CT performs
worse than the Standard CT with piecewise linear interpolation. In general, the final
one-dimensional point sets for the spatially adaptive combination technique can give
insights on properties of the function, e.g. where it has local problems, and may also
give hints whether the refinement went wrong. In this case, however, the final point
sets, see fig. 5.17, at first glance do not explain why spatial adaptivity seems to perform
worse than the standard combination technique. Another observation is that Leja
interpolation/ quadrature does not give good results. One could examine if leaving
out boundary points is, in general, reasonable for the sparseSpACE implementation.

Figure 5.18 show the computed total order Sobol’ indices. All methods indicate that
the parameter FRAC has the most impact on the RMSE, followed by FC. Knowing
which parameter has the biggest impact on the chosen error is useful when adjusting
the input parameters to better fit to the measured data.
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5 Results

(a) simulated mean and standard deviation

(b) total order Sobol’ indices

Figure 5.14: simulations for the HBV model via PSP with Gaussian quadrature and
4096 model evaluations
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5 Results

(a) simulated mean and standard deviation

(b) total order Sobol’ indices

Figure 5.15: simulations for the HBV model, with analytical gPCE computation on a
piecewise linear interpolant constructed with the single dimension refine-
ment strategy
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5 Results

(a) mean HBV, relative error

(b) variance HBV, relative error

Figure 5.16: HBV-RSME, relative error of mean and variance
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5 Results

Figure 5.17: refinement for HBV-RMSE with 2263 interpolation points
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5 Results

Figure 5.18: total order Sobol’ indices of the HBV-RSME
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6 Conclusion and Outlook

This thesis has presented and compared results for several gPCE methods: performing
PSP directly on the model, performing PSP on an interpolant, and computing the
gPCE coefficients of an interpolant analytically. Computing the inner products on a
piecewise linear interpolant constructed with the single dimension refinement strategy
allowed to apply spatial adaptivity while also avoiding internal aliasing errors that
arise when applying the spatially adaptive trapezoidal sum as PSP quadrature method.
Results for models with three to six stochastic inputs show that for functions that are
not differentiable or have discontinuities, the single dimension refinement strategy
performs well while for smoother functions, higher order interpolation with the Leja
grid or direct PSP with Gaussian quadrature produces better results.

In future work, one could try out models of higher dimensionality which may
produce better results for the spatially adaptive combination technique in comparison
to the full Gaussian quadrature. For higher dimensions, the PSP quadrature rule
should also use sparse grids. A sparse PSP quadrature rule that integrates polynomials
exactly, for example sparse Clenshaw-Curtis or Leja, can be chosen such that internal
aliasing errors are avoided without including any points only necessary for higher
polynomials than those in the gPCE truncation scheme, because the set of polynomials
in the truncation scheme also follows the Smolyak approach.

Another variant one could try out is to apply Simpson’s sum instead of the trape-
zoidal sum, for which spatial adaptivity is also possible.

The gPCE truncation has not been chosen depending on the number of interpolation
points. For a piecewise linear interpolant, a link between these two choices is not obvi-
ous and depends on the properties of the model: for the compared non-differentiable
functions, i.e. the G-function, the UQ-function, and the discontinuous Genz function,
increasing the number of interpolation points soon stops increasing the accuracy for a
truncation at degree 10, while for the smoother functions, i.e. Ishigami, corner-peak,
and product-peak, the gPCE truncation at degree 10 was sufficient to allow longer
convergence of the error twoards zero. One could think of heuristics to combine the
two choices.

While eq. (3.10), i.e. the formula to compute the gPCE coefficients on a sparse grid
interpolant, has been implemented for interpolation with hat functions, it could also be
done for the Leja interpolant with Lagrange polynomials. Since the Leja interpolant is
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6 Conclusion and Outlook

a global polynomial, the gPCE truncation and the order of Leja interpolation would not
have to be chosen separately because inner products for polynomials with degree higher
than the Leja interpolant are zero. While spatial adaptivity is not available for Leja
grids, dimension adaptivity could be applied. Having a Leja interpolant constructed
with dimension adaptivity, the choice of the truncation scheme would again be obvious
as the adapted Smolyak set of levelvectors included in the interpolation translates to a
Smolyak set for the gPCE truncation scheme.

Furthermore, while in this thesis only uniform dsitributions were considered, com-
paring results for other distributions may show benefits of the nonlinear transformation
of the model into the unitcube.
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