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Abstract

Medical ultrasound is crucial for modern clinical intervention. Owing to the advantages of
being real-time, affordable, and ionizing radiation-free, ultrasound imaging has been widely
used for biometric measurement and diagnosis, in particular of internal organs. However,
traditional ultrasound examinations are highly operator-dependent, as it is challenging to
accurately maintain or replicate acquisition parameters (the contact force and relative orien-
tation between a probe and a tested object), even for experienced sonographers. The inter
and intra-operator variations hamper the diagnosis accuracy; thereby, further limiting the full
clinical acceptance of ultrasound imaging.

With the aim to improve the clinical diagnosis accuracy and consistency, an intelligent robotic
sonographer system is designed to automatically, accurately, and reliably accomplish image
acquisition. Besides the enabling technologies (force control, scanning path planning, and
probe orientation optimization) of robotic ultrasound acquisition, this thesis further presents
two characterized advanced technologies (motion-aware and deformation-aware) to address
the practical challenges of tissue motion and deformation in real scenarios. The motion-aware
feature enables the combination of the advantages of free-hand manner (flexibility) and
robotic manner (accuracy and stability), which allows the robotic sonography to properly react
to the expected/unexpected patient movement during scans. Besides, the deformation-aware
characteristic aims to correct the tissue deformation caused by the inevitable pressure applied
by the US probe, which facilitates the reproducible and accurate image acquisition of the
anatomy of interest. In addition, a novel end-to-end framework is designed for autonomous
robotic screening of tubular structures based on real-time ultrasound image feedback. The
probe position is controlled to display the object at the image centerline, while the orientation
is optimized to be normal to the target vessel during scans. The vascular radius is accurately
computed in real-time by solving a constrained non-linear optimization problem, even when
the probe is tilted from the normal direction.

Finally, to intuitively transfer high-level physiological knowledge to robotic sonography, an
advanced learning framework is designed to enable learning from experts’ demonstration.
The clinician’s intention is inferred by a reward function computed using a novel probabilistic
spatial ranking approach, without the requirement of burdensome human annotation. The
novel learning-based framework enables autonomous “exploration" of target anatomies based
on a few expert demonstrations, without complex modeling and programming. The perfor-
mance has been validated both on a vascular phantom and more challenging ex-vivo animal
organs (chicken heart and lamb kidney).
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Zusammenfassung

Medizinischer Ultraschall ist essentiell für moderne medizinische Eintriffe. Dank ihrer Vorteile,
nämlich dass sie in Echtzeit verfügbar, erschwinglich und frei von ionisierender Strahlung ist,
wird die Ultraschallbildgebung für biometrische Messungen und Diagnostik, im speziellen der
inneren Organe, weitgehend eingesetzt. Jedoch sind traditionell durchgeführte Ultraschallun-
tersuchungen sehr abhängig vom Operateur, da es schwierig ist die Aufnahmeparameter (die
Kontaktkraft und relative Orientierung zwischen der Sonde und dem Testobjekt) präzise kon-
stant zu halten oder gewisse Aufnahmeparameter zu replizieren. Dies gilt selbst für erfahrene
Sonographen. Diese Schwankungen zwischen und innerhalb der Bediener hindern die diagno-
stische Genauigkeit; wodurch sie eine weitere klinische Akzeptanz der Ultraschallbildgebung
behindern.

Um die Genauigkeit und Konsistenz klinischer Diagnosen zu verbessern wurde ein intelligentes
robotisches Sonographiesystem entworfen, welches automatisch, genau und zuverlässig die
Bildaufnahme durchführt. Neben den Technologien (force control, Scanpfadplanung und
Sondenorientierungoptimierung), welche die Aufnahme von robotischem Ultraschall ermögli-
chen, präsentiert diese Arbeit auch zwei fortgeschrittene Technologien (motion-aware und
deformation-aware) um die praktischen Herausforderungen von Gewebebewegungen und
Deformierungen in echten Szenarios zu adressieren. Das motion-aware Feature ermöglicht es
die Vorteile der Freihand-Technik (namentlich die Flexibilität) und der robotischen Technik
(namentlich die Genauigkeit und Stabilität) zu kombinieren. Dies erlaubt es dem robotischen
Sonographer in angemessener Weise auf erwartete oder unerwartete Bewegungen des Pati-
enten während der Aufnahme zu reagieren. Des Weiteren ermöglicht die deformation-aware
Methodik Gewebedeformierungen, welche durch den unvermeidbaren Druck der Sonde auf
dem Gewebe entstehen, zu korrigieren. Dies erleichtert reproduzierbare und genaue Bildauf-
nahme der betrachteten Anatomie. Außerdem wurde ein neuartiges Ende-zu-Ende Framework
für autonomes robotisches Scannen von tubulären Strukturen basierend auf dem Feedback
von Ultraschallbildern in Echtzeit entwickelt. Die Sondenposition wird mittels Regelungstech-
nik derart geregelt, dass sie das Objekt an der Mittellinie des Bildes anzeigt, während die
Orientierung derart optimiert wird, dass sie senkrecht zu der gewünschten Blutbahn während
der Aufnahme steht. Der Radius der Blutbahn wird genau in Echtzeit berechnet indem ein
beschränktes nicht-lineares Optimisierungsproblem gelöst wird, selbst wenn die Sonde nicht
senkrecht zur Anatomie steht.

Zum Schluss wird, um intuitiv hochwertiges physiologisches Wissen auf robotische Sonogra-
pher zu übertragen, ein fortgeschrittenes Lernsystem entworfen um das Lernen anhand von
Demonstrationen durch Experten zu ermöglichen. Die Intentionen des Arztes werden durch
eine Rewardfunktion inferiert indem ein neuartiger probabilistischer spatial ranking Ansatz
benutzt wird. Dies geschieht ohne auf aufwändige menschliche Annotationen zurückzugrei-
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fen. Das neuartige auf lernen basierende Framework ermöglicht autonome Ërkundung"der
Zielanatomie basierend auf nur wenigen Demonstrantionen von Experten ohne eine komplexe
Modellierung und Programmierung. Die Leistung wurde sowohl durch ein vaskuläres Phantom,
als auch durch anspruchsvollere ex-vivo Tierorgane (Hühnerherzen und Niere eines Lammes)
validiert.
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Introduction





1Introduction

„路漫漫其修远兮，吾将上下而求索

Long, long had been my road and far, far was the
journey; I would go up and down to seek my heart’s
desire.

— Yuan Qu (c. 340 BC — 278 BC)
(Translated by David Hawkes)

1.1 Motivation

Ultrasound (US) imaging was initially inspired by the models of sonar and radar used in
World War II [18]. In 1940, supersonic reflectoscope invented by F. Firestone was applied
to locate the defects in metals; and then, the commercialized versions of reflectoscope were
further used to visualize internal human tissues [18]. Today, US imaging has been one of the
most important imaging modalities in clinical practices. In the year from July 2016 to July
2017, over 9.2 million US scans were performed on patients in England, which is almost twice
the number of computed tomography (CT) images and three times the number of magnetic
resonance imaging (MRI) images in the same period [19]. Compared with CT and MRI, US
imaging is radiation-free and real-time, which makes it to be the preferred imaging modality
for some clinical applications, e.g., obstetric and pediatric investigations. In addition, the cost
of US scans is much less than MRI and CT scans. This characteristic makes it attractive as the
first line of investigation in many cases [19].

In traditional free-hand US examination, a US probe is holed by a sonographer and moved
manually towards the target US plane for biometric measurement or lesion diagnosis. To
properly visualize the target anatomy, sonographers need to actively and continually adjust
the probe orientation and applied pressure. This un-ergonomic manner often results in work-
related musculoskeletal disorders [20, 21]. In addition, due to the inherited characteristics, US
imaging is always suffered from noise and low contrast. It usually requires years to properly
train a novice to identify and interpret real-time two-dimensional (2D) images [21]. As a
result, the resulting US imaging quality is highly reliant on the sonographer’s experience and
it could vary a lot between different sonographers or even different examinations carried by
the same sonographer at different times [22]. Such a feature severely impairs the consistency
and accuracy of the diagnosis results from US images.

To address these challenges of free-hand US examinations, robotic systems have been seen as
a promising solution to further achieve high-quality and reproducible US images. Compared
with free-hand US examinations, robotic systems can accurately control the probe pose (both
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position and orientation) and contact force during the scanning. This characteristic enables
the feasibility to apply US modality for clinical tasks requiring regular examinations, e.g.,
monitoring the tumor size [23]. Besides, the use of robotic manipulators can help address
some tricky socialized issues, like the unbalanced distribution of health care resources between
developed and developing areas. Furthermore, robotic US system (RUSS) can help reduce the
waiting time for patients. This feature is very important for identifying the disease in the mild
(early) phase [24, 25].

The RUSS can be categorized into teleoperation and autonomous groups. The teleoperation
approach has been seen as one of the most mature and successful techniques applied to medical
robotic systems. The most successful representative is the da Vinci surgery system (Intuitive
Surgical Inc.), which has been approved to be used for clinical treatment of cardiac, colorectal,
general, gynecology, urology, etc [26]. The slave robotic manipulator at the patient’s site is
fully controlled by the clinician at the remote control console and the responsibility of the
surgery is fully held by the operators [27]. This manner is the key to resulting in regulatory
approval. Specific to teleoperation RUSS, a few examples have been successfully deployed at
various hospitals or rural areas for remote US examinations [28, 29]. Nevertheless, some key
acquisition parameters (e.g., probe orientation and scanning trajectory) are still manipulated
by human operators. This factor hinders the achievement of repeatable US images.

In order to further enable robust and reproducible US scans, autonomous RUSS has attracted
increased attention in the past two decades. The deployment of such autonomous systems can
alleviate the requirement of experienced sonographers, who are usually rare in undeveloped
and rural areas. The development of intelligent RUSS requires a high level of interdisciplinary
knowledge related to the fields of robotic control, computer vision, US imaging processing,
and artificial intelligence. Although autonomous RUSS has great potential, there are no
commercial products in the market yet. To bridge the gap between engineering developments
and clinical needs, more practical factors need to be taken into consideration. This dissertation
explores the way to automatically optimize the probe orientation, address the potential object
movement and unavoidable force-induced imaging deformation, and enable the ability to
learn how to perform US examinations.

1.2 Outline

This dissertation consists of three parts. In Part I, chapter 1 the basic concepts of US imaging
and an overview of robotic US imaging with a focus on the development of autonomous
systems, are introduced.

In Part II, the contributions of this dissertation are presented in details:

• Chapter 2 describes the methods aiming at optimizing the probe orientation, i.e.,
aligning the US probe centerline to the object’s surface normal at the point of contact
in order to improve sound propagation within the underlying tissues. The ability to
automatically identify the normal direction of contact surface without requirements of
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prior knowledge is important for reproducible US scans and parameterizing the clinical
knowledge of experienced sonographers.

• Chapter 3 proposes a motion-aware RUSS aiming at achieving complete and accu-
rate three-dimensional (3D) US volumes of non-stationary imaged objects during US
sweeps. This characteristic is very important in clinical practices. The potential object
movements during the scanning will decrease the quality of 3D compounding results,
particularly for the anatomies with long structures. Furthermore, to properly visualize
the whole anatomy, e.g., displaying the entire limb artery tree, attempted adjustments of
the object are necessary during the scanning. To be aware to the object movement and
further compensate for this motion to continue the scanning process, a depth camera is
employed to track the position of the firmly attached passive markers in real-time.

• Chapter 4 describes a deformation-aware RUSS aiming at recovering zero-compression
3D geometry of the anatomies from the deformed images. This study facilitates the
accurate biometric measurement and diagnosis using US modality. To achieve this
objective, image pixel displacements, nonlinear tissue stiffness, and contact forces are
used to build an empirically polynomial regression. The pixel-wise displacement is
obtained using an optical flow algorithm. The patient-specific stiffness is estimated by
performing robotic palpation. Due to the use of tissue stiffness, the optimized regression
model can be applied at unseen points or even unseen objects by substituting the
estimated local stiffness. The corrections are carried on individual 2D images; and then
finally reconstructed the zero-compression 3D geometry using the corrected 2D images.

• Chapter 5 demonstrates an end-to-end workflow for autonomous robotic screening
of tubular structures based only on real-time US images. The manner of autonomous
acquisitions benefits for eliminating the inter-operator variability; thus, resulting in
accurate diagnosis and staging of vascular diseases. The US probe is required to be
roughly placed on the target tissue. Then, the proposed RUSS can automatically screen
along the targeted blood vessel with an optimized pose and estimate the radius of the
vessel in real-time. To achieve this objective, a U-Net structure is employed to segment
the blood vessel from cross-sectional US images. Then, the 3D boundary of a local
section of the target tubular tissue is depicted using the segmented binary masks of the
most recent several B-mode images. The centerline of the target structure and its local
radius can be computed by solving a constrained non-linear optimization problem based
on the extracted local 3D point clouds.

• Chapter 6 describes a leaning-based RUSS with the ability to autonomously “explore”
the standard scan planes defined by clinicians through demonstrations. The demon-
strations starting from random positions and ending at the target objects are manually
given by experts. In this manner, the high-level physiological knowledge from human
sonographers can be intuitively transferred to the robotic sonographer. To understand
the underlying intention of human sonographeres, a reward function for assessing in-
dividual US images is learned from demonstrations. To avoid inconsistent objectives,
all demons are ranked and cleaned using Gaussian distribution. The inferred rewards
of individual B-mode images are then used to locate target anatomies by successively
performing coarse and fine localization. To validate the performance of the proposed
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method, experiments have been carried out in a simulated grid world and on challenging
physical phantoms using ex-vivo animal organ phantoms (lamb kidney and chicken
heart).

In each of these chapters, the performance of the presented methodology is not only validate
using gel phantoms/simulation environments but also evaluated on ex-vivo animal organs
(Chapter 6) and in-vivo human volunteers (Chapter 2, 4, 5). Substantial parts of this disserta-
tion have already been published. The related publications and my personnel contributions are
clearly summarized at the beginning of each chapter. Although the main ideas and the detailed
implementations of this work were done on my own if not explicitly declared otherwise, all
this work will be not possible without the great contributions and insightful discussions with
fellow colleagues and coauthors.

Finally, Part III, Chapter 7, summarizes the findings of this dissertation, and a discussion
about the open challenges and the future perspectives of autonomous RUSS are discussed in
Chapter 8.

1.3 Ultrasound Imaging Physics

1.3.1 Transducers

The transducer (US probe) is the device that generates US signals from electrical transmission
pulses and converts the received US signals into electrical echo signals [19]. The linear and
curvilinear transducers are the two most common types used for general applications in clinical
practices. Besides these two types of probes, the phased-array probe, 3D probe, endo-cavity
probe are developed for different applications. Although only the linear and curvilinear probes
were used in this dissertation, we summarized various types of probes in this Section.

Linear and Curvilinear Transducers

The demonstration of linear and curvilinear scan formats is depicted in Fig. 1.1 (a)-(b). On the
one hand, a linear probe has a rectangular imaging view and a linear transducer face, which
make it particularly suitable for the anatomy close to the surface, e.g., neck and limbs. On the
other hand, the electrodes are deployed along the front face in a shape of an arc, instead of a
straight line. This characteristic leads to the advantage that the field of view becomes wider
with depth. Thereby, the curvilinear is often used for abdominal applications requiring deep
view.

Phased Transducers

Besides the linear/curvilinear probes, phased-array probes [see Fig. 1.1 (c)] with a small
footprint is developed to visualize a larger underlying area. The phased probes are most
commonly used in cardiac imaging owing to the advantage that displaying a large area without
moving probe pose. Compared with linear and curvilinear probes, the individual elements are
much narrower, which allows all elements in the probe tip face are activated for every scan line.
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Fig. 1.1. Illustration of a linear, curvilinear and phased scan mode. The red block represents the current active
elements.

Thereby, a fast beam shifting performance benefits for the tracking of the respiratory-induced
tissue motions e.g., liver and kidney [30].

Endo-Cavity Transducers

The aforementioned probes are used outside the human body. To further improve the imaging
quality of some internal anatomies, e.g., prostate and cardiac tissues, endo-cavity probes
with round shapes are designed. These probes can be inserted into a natural body cavity
or a surgical opening to position the probe close to the anatomies of interest. Due to the
characteristics of US modality, high-quality imaging can be achieved because the attenuation
effects caused by intervening tissues can be reduced. The four representative endo-cavity
probes have been depicted in Fig. 1.2 [19].

Fig. 1.2. Examples of four representative endo-cavity transducers [19]. (a) Curvilinear transducer for transvaginal
scanning; (b) curvilinear transducer (small face area) for trans-rectal or trans-vaginal scanning; (c)
“Bi-plane" trans-rectal transducer allowing both transverse and longitudinal scans of the prostate; (d)
Trans-oesophageal transducer with two phased arrays giving two orthogonal cross-sections of the heart.
Reprinted from [19] with kind permission from Taylor & Francis Group books.
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3D Transducers
In order to display the object in 3D for intuitive visualization, various 3D probes are developed.
There are two common ways: 1) motorized 3D probe and 2) matrix array 3D probe. The
illustration of these two types probes is shown in Fig. 1.3. Regarding the motorized version,
elements are deployed in a linear array, thereby, 2D images can be acquired in real-time like
the linear/curvilinear probe. To build 3D volume, a motor is often employed to rotate the 2D
array fully imaging a pyramidal volume of tissues. However, due to the mechanical nature
of the motorized movement and line-by-line scanning of each slice, the acquisition rate of
motorized 3D probes is limited. Regarding matrix 3D probes [see Fig. 1.3 (b)], thousands
of elements are distributed in a 2D matrix. Then, the 2D sector can be swept to visualize
a pyramidal volume and similar resolutions can be achieved in both lateral (field of the US
view) and elevation direction [31].

Fig. 1.3. (a) motorized 3D probe, and (b) 2D matrix array 3D probe.

1.3.2 Ultrasound Waves Propagation

In this Section, the basic principles of US imaging are briefly described.

B-mode Image
B-mode (brightness mode) is one of the most common US imaging modalities, which provides
a cross-sectional view of underlying tissues and organ boundaries (see Fig. 1.4). The brightness
value at each pixel is related to the strength of the reflected echo. After the US elements
“fire" the US signal, the transducer will receive a range of echoes, generated by reflection
and scatteration of US wave at object boundary. Each echo is displayed at the position
corresponding to the interface or tissues that produced it. These relative position in images d

is estimated using the pulse-echo principle as Eq. (1.1).

d = ct

2 (1.1)

where c is the speed of sound, and t is the total time that echo arrives back at the transducer.
c is often set to 1540 m/s for human tissues.

Regarding non-homogeneous human tissues, there are numerous interfaces or irregularities.
Thus, multiple echoes will be generated by these interfaces and scatter when the emitted
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Fig. 1.4. (a) a B-mode image of a volunteer’s carotid acquired using a Siemens Acuson Juniper US machine, and
(b) a B-mode image of a volunteer’s forearm acquired using a Cephasonics US machine.

pulse travels through of human body. The sequence of echoes arrives transducer orderly in
terms of the distance d, which forms a line in the B-mode images. The brightness of the line at
individual depths is determined by the strength of the echo. To further formalize a 2D image,
a large number of B-mode lines are required to guarantee the lateral resolution. An intuitive
formation of 2D B-mode image is depicted in Fig. 1.5. The beam is moved step-by-step from
one side to the other side of the US imaging view. The number of the elements deployed on
the probe face can be determined by balancing the lateral resolution and the time efficiency
for a complete sweep of all US elements.

Fig. 1.5. Illustration of B-mode imaging formation based on the line-by-line manner.

Acoustic Impedance

The sound waves with great frequency (> 20 kHz) are referred to as US waves, which usually
cannot be heard by human. The US frequencies used most commonly in diagnosis are between
2− 15 MHz [19]. Thereby, the wavelength λ can be calculated using the sound speed c and
frequency f as Eq. (1.2).

λ = c

f
(1.2)
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Based on Eq. (1.2), the wavelengths in human tissue varied in [0.1, 1 mm] when the frequency
set in the range of 2 − 15 MHz. A short λ is helpful to improve the lateral resolution of
resulting B-mode images.

Due to the natural characteristics of waves, the incident waves will be partially reflected at
tissues interface where is a change in acoustic properties of tissues as Fig. 1.5. Only part of the
US signal can pass though the interface into deep tissue, while other energy is reflected back to
the source of wave. To investigate the ratio between reflected energy and transmitted energy,
the important concept acoustic impedance z is introduced. Acoustic impedance is similar to
electrical impedance, which represents the ratio of the voltage and the resulting electrical
current. For different materials, the acoustic impedance z can be expressed as Eq. (1.3).

z = ρc (1.3)

where ρ represents the material density. The typical z of human tissues or organs are: liver
1.66×106; kidney 1.64×106; fat 1.33×106, water 1.48×106, bone 6.47×106 and air 430 [19].
The unit is kgm−2s−1.

Ultrasound Reflection and Transmission

The amplitudes of the transmitted and reflected waves are determined based on the z of the
two tissues around the interface. If the change of z between two materials is very large, the
waves will be strongly reflected back. Conversely, most of the wave will be transmitted into the
second medium if the change of z between two materials is very small. Then the relationship
between reflected pressure pr and incident pressure pi can be expressed as Eq. (1.4).

pr
pi

= z2 − z1

z2 + z1
(1.4)

where z1 and z2 are the acoustic impedance of the two tissues located at the upper and
downsides of the interface. The ratio of pr to pi is also called amplitude reflection coefficient
RA. The liver-kidney is 0.006, liver-bone is 0.59 and liver-air is 0.9995 [19].

The large RA for liver-air interface explains the reason of US gel in clinical practices. The use
of gel can avoid the air between the probe and contact skin surface, thereby, the US signal can
be successfully transmitted into human tissues rather than be reflected away. Similarly, due
to the large RA between soft tissue and bone, US imaging is not able to effectively visualize
the anatomies rightly below the bone. Besides the amplitude of reflection coefficient RA,
reflection coefficient can also be described in terms of intensity reflection coefficient RI , which
can be calculated as Eq. (1.5).

RI = R2
A =

(
z2 − z1

z2 + z1

)2
(1.5)
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1.4 Robotic Ultrasound Imaging Systems

Robotic US imaging is attracting increasing attention recently. The requirement for RUSS has
received a boost by the current COVID-19 pandemic [32, 33]. The use of robotic techniques
in hospitals allows separating the patients and sonographers. This is extremely beneficial
for reducing risks of virus transmission for patients and medical staff. To emphasize the
contributions of this dissertation, the development history of existing researches has been
described in this Section.

1.4.1 Teleoperation RUSS

Teleoperation techniques enable operators to remotely perform certain tasks. Due to the
development of networks, multimedia, and communication technologies, teleoperation be-
comes one of the most mature techniques in the field of medical robotics [33]. Regarding a
tele-echosonography system, a robotic manipulator is often employed to hold a US probe on
the slave side, while a sonographer at the master side can remotly control the probe for US
examinations.

In 2001, Masuda et al. proposed a 3D mechanism to hold a US probe while the three
orthogonal rotations and translations were remotely controlled by two joysticks [34]. To
ensure patient’s safety, four sensors were symmetrically deployed to monitor the real-time
contact force. However, the missing of force feedback to operators make the operation feeling
is different from the sonographer’s habit. To address this challenging, Mitsuishi et al. proposed
a custom-designed six degree of freedom (DOF) mechanism as the master manipulator, which
can reflect the remote contact force between probe and the contact surface to operators [35],
and this system has been validated remotely at a distance of 700 km.

To improve the stability and accuracy of remote RUSS, an image servoing approach was
developed to control the three DOF in the field of US view, while the remaining DOFs were still
controlled by human operators [36]. The imaging servoing method can provide a pixel-wise
control accuracy, thereby, it can restrain the negative influence of human tremor. Considering
the patients’ safety, Vilchis et al. designed a cable-driven nonrigid robot [37]. This system
has been used on 100 patients with abdominal aortic aneurysms (AAA) at a distance of
1125 km. Alternatively, Tsumura et al. proposed a passive mechanism based on springs for
fetal examinations, which results in a hard limitations of applied force [38]. Furthermore,
regarding the potential time delay caused by limited communication speed between the master
and slave sites, a continuous-path controller was developed to realize smooth motion of the
slave robotic arm [39].

Besides aforementioned tele-echography systems, Ito et al. proposed a portable and attachable
robotic system, which has the advantage to be easily handled by paramedics [40]. This
feature is very important for emergency medical treatment. To provide intuitive operation
feeling, a virtual reality (VR) based simulator was designed as a new type of interface for
tele-echography system [41]. The initial evaluation of such a system has been performed by
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12 experienced sonographers and the results suggest that the novel interface is suitable for
tele-echography system.

1.4.2 Autonomous RUSS

Tele-echography systems have achieved great success; however, some key acquisition param-
eters (e.g., contact force, probe orientation and scan path) are still manipulated by human
operators. To further achieve repeatable and operator-independent US images, various RUSS
towards autonomous scanning have been proposed. Due to the inherited characteristic of
US modality, a certain force is required to be applied between the US probe and the tested
objects. This force vary between 1− 20 N depending on the examined tissues [32]. In order
to guarantee the patient’s safety and to avoid inconsistent deformation, the applied force is
desired to be constant during scanning. To achieve this, Gilbertson et al. implemented a hybrid
position/force controller for a 1-DOF hand-held RUSS [42]. A similar hybrid position/force
method using an external force/torque (F/T) sensor was proposed for 6-DOF RUSS [43, 44].

Besides, a decoupled external hybrid force/position controller was employed for a 7-DOF
RUSS [45]. Since this approach doesn’t require mode changing, the risk of jerking and
instability has been maximally limited. Furthermore, implementation of such an external force
controller is deemed simpler and can be easily adapted to any kind of robot [45]. Similar
as [45], Ma et al. used a PID controller to compute the variation of Cartesian position based on
the force feedback; and then the desired movement was performed using a position controller
provided by the manufacture [46]. To further improve the safety of patients, compliant control
methods are employed for the development of RUSS [5, 7, 9, 47, 48, 49, 50, 51, 52, 53], which
enables “soft" interactions between patients and RUSS. In addition, Tsumura et al. proposed a
spring-based mechanism to maintain the contact force and passively adjust the probe pose
with respect to the contact surface specifically for fetal examinations [38]. Similarly, Wang et
al. proposed a customized clutch joint mechanism to physically limit the maximum contact
force applied on subjects [54]. However, such passive systems cannot precisely control the
contact force.

Besides the contact force, the relative probe orientation with respect to the contact surface
is also a key factor dominating the resulting imaging quality. In general cases, a US probe
is positioned perpendicularly to the contact surface [55]. This can be explained by the fact
that more echoes are reflected back to the US transducer rather than scattered away. To
compute the probe pose for scans, depth camera-based approaches are most often used in
the existing researches [6, 46, 56, 57, 58]. Based on the object surface point cloud extracted
by an R-GBD camera, the probe centerline was aligned to the computed normal direction of
the contact surface. The advantage of these approaches is high computation efficiency, while
the main limitation is the low accuracy of the estimation results, particularly considering the
probe hasn’t been positioned on the examined object. Besides the camera-based approaches,
Chatelain et al. employed visual servo technique to optimize the probe orientation using
confidence map [59, 60]. The confidence map provides a pixel-wise measure of signal loss
based on a simplified model of sound propagation in examined tissues [61]. Then, Chatelain et
al. further extended their approach from 2D probe to a 3D wobbler probe [62]. In addition,
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Huang et al. optimized the in-plane orientation based by balancing the contact forces applied
at two endpoints on the probe tip using two pressure sensors [56].

To automatically accomplish robotic scans, the scan trajectory for robotic arm is important,
particularly when there are obstacles between probe and target anatomies, i.e., ribs. To
properly locate and evaluate a artery, Merouche et al. maually give the scanning path in
the robotic base frame [63]. Besides, Akbari et al. proposed a fully US-based approach for
breast US acquisition [64]. To achieve this, a pre-scan was carried first manually; and then
the post-scan was done to refine the initial trajectory recorded during pre-scan. However,
this approach requires a experienced sonographer to carefully determine a proper scan path
in real scenarios. To address this issue, different preoperative images (e.g., MRI, CT, and
camera images) were used to compute suitable scan paths. Hennersperger et al. planned the
scan path for abdominal applications by manually selecting the start- and endpoint from MRI
data [48]. Based on the registration between the MRI data and the 3D RGB-D surface image
acquired using a Kinect camera (Microsoft Corporation, USA), RUSS can automatically obtain
the execution path for robotic controller. Similarly, Langsch et al. extracted the tracking
trajectory of an aorta from a pre-operative MRI to automatically visualize a catheter [65].

There are some survey articles on the state-of-the-art RUSS that have been accomplished to
summarize the related literature over the years. The interested reader can refer to[66, 67, 68,
69, 70]. Recently, Von Haxthausen et al. further summarized the most recent publications
(2016 − 2020) in the field of RUSS [71], while Li et al. purely focus on the development of
autonomous system [72].

1.4 Robotic Ultrasound Imaging Systems 13





Part II

Methodology and Contributions





2Robotized US Probe Orientation
Optimization

2.1 Overview and Publications

This chapter presents my contributions towards autonomous normal positioning of robotic US
probe. The probe orientation is one of the dominating parameters governing the quality of
US images. To develop automatic RUSS, it is important to propose the approaches that allow
automatically positioning of the probe orientation with respect to the contact objects. The
ability to identify the relative orientation between the probe and the tested object can further
result in repeatable and automatic acquisitions. The presented methods aim at aligning the
central axis of the US probe to the tissue’s surface normal at the point of contact in order to
improve sound propagation within the tissue. Thereby, a US image with better contrast is
achieved.

After outlining the potential clinical needs of orthopedic applications (Sec. 2.2), this chap-
ter presents the developed methodologies for autonomous normal orienting of US probe
in Secs. 2.4 and 2.5. To identify the normal direction of the contact surface without any prior
knowledge, the optimization processes are accomplished by carrying out two fan rotations
around two orthogonal axes, namely in-plane orientation and out-of-plane orientation. Due
to the accessibility of an accurate external force sensor, two distinct approaches have been
developed for compute the normal direction of the tested surface:

1. The image and force based method as explained in Sec. 2.4 computes the optimal
in-plane orientation using the US confidence map [61], and the out-of-plane orientation
using the external forces estimated from joint torques. Due to the estimated force is
not accurate during the fan rotation, a new feature – smooth derivative of contact force
(SDCF) – is defined and used to robustly identify the normal direction of the tested
objects at the contact point.

2. The mechanical model based method as explained in Sec. 2.5 optimizes the in-plane
and out-of-plane orientation purely based on the measured force from an external
accurate F/T sensors. To this end, the mechanical model is first built to describe the
reaction force during two rotations around a given contact point. Then, the parameters
of the derived model are optimized using particle swarm optimization (PSO) [73] based
on the measured forces. Due to the derivation of the accurate mechanical model of
reaction force, the identification of object’s normal direction can be improved.

Substantial parts of this chapter have already been published and quoted verbatim. The
methodology, implementation details, and results of the image and force based approach for
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the case that there is no external force sensor involved have been published in the following
article.

[11] Zhongliang Jiang, Matthias Grimm, Mingchuan Zhou, Javier Esteban, Walter
Simson, Guillaume Zahnd, Nassir Navab. "Automatic Normal Positioning of
Robotic Ultrasound Probe based only on Confidence Map Optimization and Force
Measurement," IEEE Robotics and Automation Letters (presented at ICRA2020),
vol. 5, no. 2, pp. 1342–1349, 2020.

Copyright Statement. ©2020 IEEE. With kind permission of IEEE.

The related contents of the mechanical model based method have been published in the
following article.

[9] Zhongliang Jiang, Matthias Grimm, Mingchuan Zhou, Ying Hu, Javier Esteban,
Nassir Navab. "Automatic Force-based Probe Positioning for Precise Robotic
Ultrasound Acquisition," IEEE Transactions on Industrial Electronics, vol. 68, no.
11, pp. 11200–11211, 2020.

Copyright Statement. ©2020 IEEE. With kind permission of IEEE.

2.2 Introduction

2.2.1 Clinical Motivation

The importance of orthopedic surgery amplifies with an increase in life expectancy, as elderly
people are more prone to bone-related injuries [74]. For example, 18% of elderly people and
25% of children in the USA suffer from distal radius fracture [74, 75]. To optimize the outcome
of an orthopedic surgery, surgical navigation has been widely implemented in current clinical
practice. To enable accurate navigation, it is necessary to carry out a registration providing
the consistency between the intra-operative US scans and the high resolution pre-operative
scans, such as MRI or CT [76, 77]. Regarding orthopedic surgery, the bone surface is often
used to perform such a registration, as it has strong resistance to deformation [77]. Therefore,
it is crucial to obtain high-quality US bone imaging. However, US examinations are highly
operator-dependent, as it is challenging to exactly maintain or replicate acquisition parameters
(the contact force and relative orientation between a probe and a tested object), even for
experienced sonographers [42].

The relative tilt angle θt form the local normal direction is crucial to properly visualize the
bone surface in US imaging view. After investigating the influence of θt, Hnatsenka et al. found
that better quality (contrast) could be obtained when θt is close to zero (the probe centerline
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is orientated closely to the normal direction of the contact surface) [55]. This phenomenon is
further aggravated in orthopedic applications, as the intensity reflection coefficient for most
interfaces from soft tissues to bones are approximately 25% while that for most interfaces
from soft tissues to soft tissues are less than 0.01% [19]. Thereby, it is reasonable to place the
probe along the normal direction of unknown constraints for general US applications.

To intuitively demonstrate the impact of the US probe orientation on the resulting B-mode
images, the images of a volunteer’s radius bone in various tilt angles has been illustrated
in Fig. 2.1. It can be seen from Fig. 2.1, the radius bone boundary gradually disappears in
the US images when the US probe is rotated away from the normal direction of the contact
surface. The bone boundary becomes very weak in the case that the tilted angle is over 15◦ as
shown in Figs. 2.1 (d), (e), and (f). Therefore, the probe orientation is deemed important to
obtain high-quality US bone imaging for the potential registration between intra-operative US
imaging and pre-operative scans (CT or MRI).

Fig. 2.1. The impact of the US probe orientation on the US scans of the radius bone. The upper row depicts
the probe orientation. The lower row shows the corresponding US images of a volunteer’s radius
bone. (a), (b), (c), (d), (e), and (f) are the images acquired when the linear probe is titled around
0, 5, 10, 15, 20, 25◦, respectively. Reprint from [9] with permission of IEEE.

2.2.2 Adjustment of Robotic US Probe Orientation

In the field of industry, the task like robotic polishing also requires to orient a tool attached
to the flange along the normal direction of the constraint surface or a given direction θt.
However, the constrained surface is usually known in industrial applications, such as mold
manufacturing. Therefore, the desired posture of attached tools can be directly generated
from CAD/CAM software for polishing a freeform surface [78, 79, 80]. Regarding an unknown
constraint surface, Merlet et al. and Kazanzides et al. employed reaction force to identify
the surface normal [81, 82]. However the estimation accuracy cannot be guaranteed when
the surface is non-rigid. Besides, Yoshikawa et al. suggested moving the tool on the surface
using a hybrid position/force control, and then, the normal direction was approximated
according to the direction that is perpendicular to the line connecting two nearby positions on
a considered trajectory [83]. However, this method requires a change of the contact point on
the constraint surface. Furthermore, the human objects are soft, a certain deformation will be
generated during the scans. This makes the aforementioned approaches originally developed
for industrial application cannot be directly transferred for the robotic US application.

Regarding the robotic US applications, Chatelain et al. used a visual servoing technique
to position a 3D US probe in the normal direction of an unknown constraint surface [62].
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However, for 2D probes which are much more common in clinical practice, the method is
only able to optimize the in-plane orientation while the out-of-plane part still required to
be adjusted via tele-manipulation [59]. Huang et al. approximated the normal direction
of the constraint surface considering the normal direction of a triangle composed by three
neighbor points around the planned path on an image obtained by a depth camera prior to US
scanning [56]. But the surface obtained before the probe makes contact with the tissue can
not adapt to deformations induced by the contact. Furthermore, the accuracy of the method is
limited by the employed hand-eye calibration and potential occlusions between the camera
and the scanned tissue.

Without the ability to properly position the probe orientation, RUSS cannot automatically
obtain high-quality scans from non-flat surfaces such as human limbs. In order to develop an
automatic RUSS providing good image quality, the capability to ascertain the normal direction
between probe and surface without requiring external help from human operators is crucial.
Since it is independence to calibration accuracy and it is sensitivity to changes in contact
condition [14], the contact force Fc is considered as a promising signal for identifying the
normal direction N of contact surface.

2.2.3 Contributions

Considering the two cases that whether an accurate external F/T sensor is involved, two
distinct approaches (the image and force based approach and the mechanical model based
approach) are developed. Due to the use of an external F/T sensor, the mechanical model
based approach achieved more accurate estimation of the normal direction of contact surface.
However, for the applications without requirement of super high accurate identification
results (< 5◦), it will be more economically efficient using the image and force based
approach. Accurately positioning the US probe with respect to the contact surface is a
key characteristic towards automatic RUSS for high-quality US imaging, which can provide
accurate and repeatable probe orientation making scans easily comparable. Thereby, US
modality can be extended to monitor the changes of the anatomies and lesions of interest. The
implementation procedures for two distinct approaches have been summarized as follows:

1. The image and force based method: In order to identify the normal direction N of the
contact surface for any given point of contact, the estimated forces and the US images
are used. The use of only force measurements and US images is inspired by the way US
sonographers conduct US examinations. They do not look at the patient but only at the
US images. To this end, the in-plane component Ni based on the confidence map of the
real-time US image is first computed. Then the out-of-plane component No is computed
by performing a fan motion around the out-of-plane direction. The estimated external
force from joint torques is measured in real-time and analyzed offline.

2. The mechanical model based method: In order to further improve the identification
accuracy and provide a generic approaches working for both linear and convex probe,
a model based orientation optimization method to position the probe perpendicular
to the object surface is proposed. To this end, a mechanical model is proposed to
describe the reaction force during two rotations around a given contact point. Then,
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the unknown parameters of the derived model are optimized using particle swarm
optimization (PSO) on the force data measured from an external F/T sensor. The desired
normal is decomposed into two parts: an in-plane component Ni (co-planar with the US
image plane) and an out-of-plane component No (orthogonal to the US image plane).
These two components are estimated separately by executing two rotations around the
corresponding axes, as shown in Fig. 2.2 (b).

Fig. 2.2. Two rotations executed to optimize the probe orientation when (a) there is no F/T sensor, and (b) there
is one. Reprint from [11] and [9] with permission of IEEE.

For both novel autonomous normal positioning approaches, results of quantitative validations
on gel-wax phantoms and volunteer’s tissues, i.e., forearm, upper arm, and lower back,
demonstrated that the proposed approaches can accurately estimate the normal direction of
the contact surface without any requirement of prior knowledge.

2.3 Effect of Probe Orientation on Bone Detection

2.3.1 Ultrasound Bone Detection

To quantitatively assess the effect of the probe orientation on the quality of US imaging
of orthopedic object, the bone surface detection method proposed by Salehi et al. [77] is
employed in this work. The method is developed based on a convolutional neural network
(CNN) to segment the bone surface from cross-sectional US scans. Afterwards, the segmented
results are post-processed to refine the bone surface. The CNN model was trained using US
images required from multiple subjects under different acquisition settings. The method has
been demonstrated that it can outperform existing feature-based methods both in terms of
precision and recall [77]. The method with trained model was thankfully accessible from the
authors implemented in ImFusionSuite (ImFusion GmbH, Munich, Germany).

The results of applying the CNN based segmentation method on in-vivo radius bone images
(B-mode) are depicted in Fig. 2.3. As it can be seen in Fig. 2.3, the US image acquired with
θt = 0◦ is more contrast compared with the image obtained with a tilted (θt = 15◦) probe
orientation (brighter than the surrounded soft tissues as denoted by red arrows). Thereby,
the corresponding detection result for θt = 0◦ is considered better. Due to the acoustically
in-homogeneous properties of bone structures, the US waves are scattered away rather than
reflected back to the probe if θt is not zero [84]. When increasing θt, the ability of a US probe
to properly contact the tested surface deteriorates due to the high stiffness of bone structures,
which further degrades image quality in the end.
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To quantitatively assess the quality of bone detection, the detected bone feature coefficient
(DBFC) λc is defined. Intuitively, λc describes the true positive rate adapted to the case where
the detection is confined to a curve, whereas the annotation is volumetric. It is computed by
dividing the number of the true positive detected pixels over the difference in the column
indeces between the leftmost and rightmost annotated pixels. A larger λc means to a larger
true positive rate, which benefits a potential registration. The DBFC is computed using
Eq. (2.1).

λc = |Ω|
Gr −Gl

where Ω = {p|p ∈ DET ∩ GT} (2.1)

where Gl and Gr represent the column index of the leftmost and rightmost pixels of the
ground truth; DET and GT represent the sets containing all pixels belonging to the detected
bone surface (line) and the labelled ground truth (area) and Ω is the intersection of DET and
GT.

Fig. 2.3. Bone detection results for an US sweep of the radius bone for various probe orientations. (a) and (b)
are the B-mode US slices from two sweeps of a volunteer’s radius bone when the probe is placed in a
tilted (θt = 15◦) and normal orientation (θt = 0◦). (c) and (d) show the corresponding bone detection
results. (e) shows the compounded volume with the detected bone surface on each slice of the sweep for
θt = 0◦. Reprint from [9] with permission of IEEE.

2.3.2 Detection Quality with Different Probe Orientations

To investigate the impact of θt on the US imaging quality and bone detection results, five US
sweeps (each includes 195 2D B-mode images) were recorded from a volunteer’s forearm with
different θt (0◦, 5◦, 10◦, 15◦, and 20◦) using a linear US probe. The forearm surface is seen as
flat during short sweeps (50 mm). To guarantee the constant contact force Fc, all sweeps were
obtained using the compliant control method described in [85]. Furthermore, to ensure that
the imaged area is the same despite the varying tilt angles, only the middle part of each sweep
is considered. The bone surface detection results for the all sweeps are depicted in Fig. 2.4.

From Fig. 2.4, the sweep recorded under the normal direction (θt = 0◦) contains more
B-mode scans (70%) with λc ≥ 0.75 compared with the sweeps corresponding to the other
four orientations. It can be seen that the second highest peak in that bin corresponds to the
θt of 10◦. However, when we considering the neighbor bin (λc ∈ [0.5, 0.75)), the sweep with
θc = 5◦ contains 73% of scans with λc ≥ 0.5, whereas the sweep with θc = 10◦ contains only
66%. For sweeps with λc < 0.25, the sweeps with θt of 0◦ and 5◦ comprised only 6% and 3%,
respectively. With an increase in θt to 20◦, the amount of sweeps with λc < 0.25 increased
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to 18%, 34%, and 29% for θt of 10◦, 15◦, and 20◦, respectively. Thereby, it can be seen that
the bone surface extraction results improves, as the US probe is oriented closer to the normal
direction.

Fig. 2.4. Bone detection results for US sweeps obtained from a volunteer’s forearm using a linear US probe. The
probe was tilted in various angles. The contact force is 5 N . Reprint from [9] with permission of IEEE.

2.4 Normal Positioning Based on Image and Force

2.4.1 Pipeline and Theoretical Justification

The overview of the proposed approach for normal positioning of a US probe is described in
this section. The normal direction of the contact surface N is determined based on US images
and the estimated Cartesian force from joint torques. The proposed approach does not require
any prior knowledge of the object. Then, an analysis of the estimated force is give to depict its
dynamic behavior.

Pipeline for Computing the Normal Direction
In this work, a convex US probe (C5-2/60, Ultrasonix, Richmond, Canada) providing large
penetration depth is attached to the end-effecor of a robotic manipulator (KUKA LBR iiwa 7
R800, KUKA Roboter GmbH, Augsburg, Germany).

In order to automatically align the probe axis A with the normal N from an arbitrary contact
point (see Fig. 2.5 b)), the in-plane and out-of-plane alignments are carried out separately.
Fig. 2.5 c) and d) describe the two adjustments from the starting orientation (black dashed
line) to the desired orientation (red dashed line), respectively. Since the obtained US images
are coplanar with the field of the view, the resulting image quality is highly related to the
angular difference between Ni and Ai. Approaches working directly with pixel intensities
are sensitive to artifacts, such as shadows produced by anatomies (see red ellipse in Fig. 2.6
a)). Building upon the confidence map strategy [61], a method is originally used to compute
the weighted barycenter of the regions containing objects, as opposed to those obscured by
shadows (i.e. out of contact). This allows computing the correction factor for the orientation
in-plane component Ai.
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Fig. 2.5. Impact of the probe orientation on US images. 1: US probe; 2: Surface; 3: Contact force Fc; 4: probes
centerline A; 5: Normal direction N. TCP represents the tool center point. a) and b) describe ideal
and non-ideal probe orientation in 3D, respectively; c) and d) are the in-plane and out-of-plane view,
respectively. Reprint from [11] with permission of IEEE.

Fig. 2.6. In-plane orientation adjustment strategy. a) B-mode scan of forearm; b) corresponding confidence map.
The red line is ideal Ni. Reprint from [11] with permission of IEEE.

Since US images correspond by definition to the in-plane view, making the use of image-based
metrics to feature the out-of-plane characteristic is challenging. To further compute the
normal component No, contact force is employed. Such a force is invariant to registration
or calibration errors and it can be estimated by the torque sensors present in the joints. The
contact force Fc between probe and patient is usually set to 3 − 15 N in clinical practice.
Reducing Fc yields a worse contact, whereas a larger Fc deteriorates the image quality because
of deformation.

Then, a fan motion (θAOI = [−15, 15◦]) around the probe long axis (orange arrow in Fig. 2.5
a)) is performed in both forward and backward directions (see Fig. 2.7 a) and b)). The
estimated contact force in the direction TCPY (green arrow in Fig. 2.5 a)) TCP F̂y is measured.
The measured forces has been shown in Fig. 2.7 d) and e) for the forward and backward
procedures, respectively. Besides, the theoretical TCPFy (see Fig. 2.7 c)) can be calculated as
Eq. (2.2).

TCPFy = −Fc tan(θAOI) (2.2)

24 Chapter 2 Robotized US Probe Orientation Optimization



Since Fc is constant during the fan motion, TCPFy only depends on θAOI . Ideally, θAOI is
zero, which corresponds to Ao coinciding with No. This leads to a resulting force TCPFy of
zero. This enables the estimation of the normal direction of unknown object based on US
images and force cues.

Fig. 2.7. Cartesian force recorded during fan motion. a) and b) are fan motions of the probe in the out-of-plane
direction. Forward from A to B and backward from B to A; c) is the physical force model; d) and e)
are the recorded T CP F̂y (blue line) and contact force (Fc, orange line) corresponding to the cases a)
and b) on the gel-wax phantom. The desired force was set Fc = 10 N and the stiffness was 500 N/m.
f) demonstrates the ideal normalized SDCF and normalized first detail coefficient of the noisy SDCF.
PA and PB marked in d) and e) are the forces recorded at location A and B in a) and b), respectively.
Reprint from [11] with permission of IEEE.

Cartesian Force Analysis

The external force TCPFy at the tool center point (TCP) can be estimated from the joint
torques using the dynamic model of robotic manipulator. Since the estimated Cartesian
force depends on the joint configuration, singularities should be avoided in order to obtain
accurate measurements. The recorded TCP F̂y during a forward and backward fan motion is
shown in Fig. 2.7 d) and e). As it can be seen, the same real world point (e.g. A) can yield
different recorded forces. The largest difference observed was 5 N without external loads.
This difference is mainly caused by the torque sensors inaccuracy and varying static friction in
joints. Besides, although the forward and backward fan motions are symmetric in Cartesian
frame, the joint configurations may be different because the robotic arm is redundant.

It can been seen from Fig. 2.7 d) and e), the recorded Fc is initially less than the desired
Fc (10 N) because it has been partly compensated by the virtual force caused by the probe
displacement in TCPZ direction. For each contact, the contact conditions are different and
hence the initial recorded F̂c is varying. However, after the fan motion starts, the absolute value
of the recorded F̂c gradually increases towards the desired force until the tissue deformation
creates a proper reaction force to balance F̂c applied by the robot. The corresponding time
stamp is marked as tc in Fig. 2.7. Since the initial F̂c varies, tc is also varying. Therefore the
value of TCPFy at tc (marked as Vc) is non-deterministic. Hence, it is not possible to use a
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fixed threshold to determine the normal No. For example, the TCP F̂y was zero at about 4 s,
whereas the normal direction is close to 12 s (middle of time period) in Fig. 2.7 d).

Smooth Derivative of Contact Force (SDCF)

In order to overcome the non-deterministic behaviour of the estimated force, a new feature —
smooth derivative of contact force (SDCF) — is defined as in Eq. (2.3):

SDCF (n) = 1
N

n∑
i=n−N+1

|TCP F̂y(i + 1)− TCP F̂y(i)| (2.3)

where n ≥ N , N is the span of the averaging filter and is empirically set to 100.

Since Fc is fixed during the fan motion, the SDCF only depends on the angle θAOI . The
normalized SDCF (n = 1) obtained under ideal conditions is shown in Fig. 2.7 f). Further
considering that Fc slightly varies during the fan motion, uniform noise between [−1, 1] N
was added to the desired force. Then, the noisy SDCF is computed using the noisy Fc with
n = 100. The normalized first detail coefficient of the Discrete Wavelet Transform (DWT)
(wavelet: sym4, level: 5) result of noisy SDCF is also depicted in Fig. 2.7 f).

It can be seen from the figure, both ideal and detail coefficient of noisy SDCF are minimal
(marked with a red point), when the probe’s axis A coincides with the surface normal N. This
means that the SDCF is a promising feature to identify the normal direction of unknown object
surface, even when F̂c slightly differs from the desired Fc. Besides, since the SDCF represents
the change rate of TCP F̂y rather than the absolute force value, the negative influence caused
by the non-deterministic behavior in the beginning is reduced. Furthermore, an approach
based on finding the proper minimum of the SDCF is likely to yield better results than a
threshold-based approach, especially when non-stationary objects are involved.

2.4.2 Optimization of In-Plane Orientation

Ultrasound Confidence Map

Since US images are coplanar with the field of view, an image-based method can be used to
identify the in-plane normal Ni. The US confidence map [61] provides an objective, stable and
repeatable pixel-wise assessment of imaging quality based on the estimation of the signal loss.
The US images are represented by probabilistic maps C ∈ R2 −→ [0, 1], where the maximum
value (1, white) means perfect signal quality and the minimum value (0, black) means no
signal. For each pixel, the confidence value of C is interpreted as the chance of the signal
reaching the probe face, which makes C locally more continuous than the intensity values
of B-mode images (see red ellipse in Fig 2.6). Thereby, the regions where the probe is not
in contact with the patient are easily recognized due to their low confidence values (see the
shadow in Fig. 2.6). Thus, the US confidence map is employed here to optimize the in-plane
orientation, especially in the presence of shadows at the periphery of the US scan.

26 Chapter 2 Robotized US Probe Orientation Optimization



Orientation Computation for In-Plane Component
The present framework is based on the use of convex US probes. For a convex probe, US
images can be defined in polar coordinates as Ω = [rmin, rmax] × [θmin, θmax], where Ω
represents the US scan; rmin and rmax denote the radius of the probe and the scan depth,
respectively; θmin and θmax are the angular offsets from the two sides of the central line
(θmax = −θmin), respectively. The line from the US focal point and the confidence-weighted
barycenter ζc is a good approximation of Ni[62]. Hence the robot is moved such that Ai

intersects ζc, which can be calculated as follows:

ζc = 1
ℵc

∫ θmax

θmin

∫ r′

rmin

θ

θmax − θmin
C(θ, r)drdθ (2.4)

where ℵc =
∫ ∫

(θ,r)∈Ω C(θ, r)drdθ is the accumulated confidence value over the entire image
(Ω), r′ ∈ (rmin, rmax] defines the region of interest, θ is the angular deviation from central
scan-line in the image and θmin and θmax were set to −0.5 and 0.5 respectively.

To reach the desired position, a rotational offset Rc is applied to the current position. Rc is
calculated as follows:

Rc = −1
2kcζcΨp (2.5)

where kc is the control gain, Ψp is the angular field of view of the convex probe. This is done
iterative until no further improvement is reached.

2.4.3 Optimization of Out-of-Plane Orientation

This section proposes a method to compute No using force values measured during a fan
motion of the robotic arm. Due to the non-ignorable noise of the recorded forces, a series of
de-noising steps are applied. The overview of the de-noising procedures is Fig. 2.8.

Fig. 2.8. Overview over the out-of-plane optimization algorithm. The FFT was only executed for determine the
parameters of low pass filter once.

Kalman Filter Implementation
Most general-purpose robotic manipulators have the ability to estimate TCPFy based on joint
torques. However, the forces involved in RUSS are smaller than 10 N due to safety concerns.
Hence, digital noise has non-ignorable impact on the estimated Cartesian force for robotic
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US imaging. Besides, changes of the contact point between probe and patient due to patient
movement further reduce the accuracy of the recorded force (blue line in Fig. 2.9). The
Kalman filter is a standard technique to reduce noise by correcting new measurements based
on previous ones. Thereby, a Kalman filter is implemented to denoise the recorded force as in
[86].

The fan motion is performed with a low velocity (0.025 rad/s) compared to the sampling
frequency of the force (100 Hz). Thus the computed force values differ only slightly for
consecutive sampling points. Besides, the Kalman filter operates only on the recorded force;
thereby, the transition matrices for the estimated state (A) and measured state (H) are
set to identity. In addition, the estimation and measurement noise covariance matrices are
empirically set to 10−8 and 4× 10−6, respectively. The performance of the Kalman filter when
applied to the recorded force values during two forward and backward fan-motions with the
same motion parameters are described in Fig. 2.9, one on a phantom and the other one on a
volunteer’s lower back. The volunteer is breathing, which causes significant fluctuations of the
recorded force as shown in Fig. 2.9 b).

Fig. 2.9. Result of the Kalman filter. a) and b) show the experiments preformed on the phantom and volunteer’s
back with breathing. The involved forward and backward fan motion are performed under Fc = 8 N
for the phantom and 6 N for the volunteer back, stiffness= 250 N/m and ΘAOI was (−15◦, 6◦) and
(6◦, −15◦), respectively. Reprint from [11] with permission of IEEE.

Extraction of Frequency-Band Components from SDCF
Due to the low rotational velocity, the important force components are concentrated in the
low frequency domain. Hence a low pass filter is employed after the Kalman filter to further
reduce noise. In order to determine a suitable stop-band frequency Fs, the Fast Fourier
Transform (FFT) is used to investigate the frequency decomposition of the recorded TCP F̂y.
An example of the FFT result and the corresponding power spectral density (PSD) of the force
recorded on the phantom is shown in Fig. 2.10 a). The high frequency part can be removed
because it mainly corresponds to digital noise of the sensors. Based on Fig. 2.10 a), the PSD is
rapidly attenuated after 5 Hz and the energy (cumulative PSD) of the signal components at
15 Hz occupies 85% of the total signal energy. Thereby, Fs is set to 15 Hz. The result of the
low-pass filter is presented in Fig. 2.10 b).
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Fig. 2.10. Frequency decomposition of SDCF. a) result of FFT applied to T CP F̂y; b) result of low-pass filter and the
normalized SDCF. The raw force is shown with a purple line, the result of the Kalman filter and the result
of the low-pass filter are depicted by red and green lines, and the blue line depicts the SDCF calculated
from the result of the low-pass filter. c) Normalized detail coefficients of SDCF’s DWT result. The level
was set to 5, and the sym4 wavelet was used as basis. Reprint from [11] with permission of IEEE.

The SDCF is calculated using Eq. (2.3) based on the result of the low-pass filter. Its normalized
result is shown in Fig. 2.10 b). Due to the non-periodic nature of the force caused by the
fan motion, there is no identifiable main frequency in the FFT result. In order to obtain
accurate estimation results, DWT is used to divide the SDCF into its different frequency band
components.

The DWT provides high frequency and temporal resolution, which makes it suitable for
processing unstable signals. The DWT requires a decomposition level and wavelet function as
input. The sym4 wavelet function was empirically chosen as basis function in this paper. To
investigate the effect of the different frequency parts, the decomposition level was set to 5.
This results in five detail coefficients di, i = 1 . . . 5 covering the intervals [Fs2 –Fs], [Fs4 –Fs2 ],
[Fs8 –Fs4 ], [Fs16 –Fs8 ] and [Fs32 –Fs16 ], respectively. The di have different frequency interval size,
hence their amplitude range also differs. In order to balance the impact of different frequency
bands on identification of the normal direction, the details signals are normalized to [0, 1]
(see Fig. 2.10 c)). Since the normalization is linear, it does not affect the locations of local
minima.

It can be seen from Fig. 2.10 c), the amplitude graphs for d4 and d5 are unlike the other three.
This is due to them having a low frequency value and small frequency range. Low frequencies
are influenced by contact point changes, e.g. due to breathing. Hence, only d1, d2 and d3 are
used to detect No.

Extracting Local Minima from SDCF
In theory, the SDCF is minimal when A is aligned with N as shown in Fig. 2.7 f). Due
to the noise, this minimum is not necessarily the global minimum for real scenarios. The
experimental detail signals (di, i = 1, 2, 3) from Fig. 2.10 c) have multiple local minima (LM).
The LM can be detected by comparing nearby points using Eq. (2.6). The detected LM are
depicted as red stars in Fig. 2.11.
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Ii = {t| di(t−∆t) > di(t) ∧ di(t + ∆t) > di(t)} (2.6)

where I is the set used to save the corresponding time stamps of LM, i = 1, 2, 3 is the detail
coefficient index, t is the time stamp and ∆t = 10 ms is the sampling interval. The equation is
written in set-builder notation.

Fig. 2.11. Suitable local minimum selection. a), b) and c) correspond to d1, d2 and d3, respectively. The parameters
are set as follows: W1 = 0.8, L1 = 0.04, H1 = 0.08. Reprint from [11] with permission of IEEE.

Then, a method is proposed to detect the right LM for each di. During this process, two
variables (LM∗ and LM∗∗) are defined. LM∗ are the LM remaining after removing neighboring
LM (LM located in close proximity to each other, see the enlarged plot in Fig. 2.11 b). LM∗∗

are the subset of LM∗ after further removing the so-called NP-LMs (noise-perturbed) which
are caused by noise perturbing the estimated force (see the pink rectangle in Fig. 2.11).

To extract the LM∗, a sliding window filter with width W1 and length L1 is applied to remove
all but the first element for each neighboring LM group. The LM∗ are marked with a black
circle in Fig. 2.11 and the corresponding timestamps form the set I∗

i . To further remove
NP-LM, the input signal di is partitioned into segments along the LM∗. If a LM∗ amplitude is
close to the maximum amplitude of one of its neighbouring segments, it is discarded. The
remaining LM (LM∗∗) are marked with a green square in Fig. 2.11. A set I∗∗

i containing their
corresponding timestamps is created. This is explained in Eq. (2.7).

I∗∗
i = {t| LMk

i − di(t) > H1 ∧R Mk
i − di(t) > H1} (2.7)

where i = 1, 2, 3 is the detail coefficient index, t are the recorded time stamps, k =
1, 2,..., length(I∗

i ) − 2, H1 is the amplitude threshold, LMk
i and RMk

i are the maximum
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amplitude values of the left and right segments adjacent to the kth LM. The equation is written
in set-builder notation.

In order to identify the desired LM candidate for each di, a feature A∗ is defined as in
Eq. (2.8).

A∗(LM, i) = (LMLM
i − di(t)) · (RMLM

i − di(t)) (2.8)

where i = 1, 2, 3 is the detail coefficient index, LM is the LM, t = I∗∗
i (k) is the timestamp of

the LM, LM j
i and RM j

i are the maximum amplitude values of the segment left and right of
LM .

For each di the LM∗∗ with the largest A∗ is selected as the final candidate (depicted with red
circle in Fig. 2.11).

Computation of Normal Direction

The potential normal direction is computed from the final LM (P 1
b , P 2

b and P 3
b ) of the detail

coefficients di, respectively. To further improve the robustness of the identified result, a fusion
algorithm using the three candidate LM is proposed. As it can be seen from Fig. 2.12, there
are three possible cases and five potential results:

Case 1: The maximum A∗ of P 1
b , P 2

b and P 3
b is larger than the threshold HA. The timestamp

of the LM with maximum A∗ is returned.

Case 2: The three selected LM have a similar timestamp. Then the mean timestamp is
returned.

Case 3: Two of the selected LM have similar timestamps. The mean of their timestamps is
denoted as tmean, while the third timestamp td differs. The two selected LM with similar
timestamps are denoted as a and b, the last one is called c. T1 and T2 are computed as
described in Case 3.1 and Case 3.2, respectively. If T2 is greater than T1, td is returned,
otherwise tmean.

Case 3.1: A LM corresponding to tmean is searched in the set LM∗∗
c . If there is an element in

I∗∗
c with a timestamp not more than H3 seconds away from tmean, the search is considered

a success. T1 is computed as the sum of the A∗ of the searched LM (if available), P a
b and

P b
b .

Case 3.2: As in case 3.1, the two corresponding LM for td are searched among the LM∗∗
a and

LM∗∗
b . T2 is computed as the sum of the A∗ of the searched LM (if available) and P c

b .

Failure: If all three selected LM have different timestamps, then the algorithm returns a
failure.

Finally, the returned No is the Ao corresponding to the returned timestamp.
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Fig. 2.12. Fusion algorithm to extract No from the recorded probe orientations based on timestamps. The
parameters are set as follows: HA = 0.3, H2 = 0.8 and H3 = 1.5. Reprint from [11] with permission of
IEEE.

2.4.4 Results

Experimental Setup
The overall experimental setup has been depicted in Fig. 2.13. A convex US probe is attached
to the robot flange using a 3D-printed fixture. The B-mode US images are acquired using an
Ultrasonix RP machine (BK Ultrasound, Peabody, MA, USA). The images are sent to a computer
using an Ethernet cable and the OpenIGTLink protocol. The computer communicates with
the robot using Robot Operating System (ROS). Control commands and the robot status
are exchanged at 100 Hz. The algorithm was evaluated on a gel-wax phantom with a flat
surface and on a human volunteer (lower arm, upper arm, lower back). The soft model is
fixed in the foam plastic, imitating the function of skin, to avoid greatly deformation during
the scanning. The phantom is placed on a flat surface. Hence the ground truth is represented
as ⃗BVg = [0, 0, 1] in the robotic base frame. For the human volunteer, the ground truth is
computed based on scanning the surface around the desired path. The angular difference
between estimated normal N̂ and ground truth normal N is computed using the equation:
θ = cos−1(N̂ ·N/(|N̂| · |N|)).

Validation of Estimating Ni using the Gel-Wax Phantom
The computation of Ni is the first step of the proposed algorithm. It was validated using a
series of experiments carried out on the gel-wax phantom using three different initial θAOI
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Fig. 2.13. Experimental setup. Reprint from [11] with permission of IEEE.

and four different initial offset angles θIN in the in-plane view, where θIN is the angular
difference between Ai and Ni. The US confidence map is calculated from US images, which
are highly sensible to deformations. In order to assess the influence of the deformation on
in-plane adjustment, the robot is controlled in position mode. Each of the twelve experiments
is performed four times with different depths (z = z0 + 0.5, z0 + 1, z0 + 1.5, z0 + 2 mm), where
z0 is the depth at which the probe starts touching the phantom.

Ni is estimated using Eq. (2.4) with r′ = rmin+0.2(rmax− rmin). The error (ein, mean±STD)
for different θIN and θAOI is shown in TABLE 2.1. The experiments show that the method is
able to achieve good estimates for Ni.

Tab. 2.1. Mean Absolute Error (±STD) of In-Plane Identified Results

θIN

ein θAOI
0 5 10

0 1.11± 0.55 0.18± 0.09 1.20± 0.79

3 0.94± 0.66 0.84± 0.29 0.56± 0.36

6 1.38± 0.41 1.61± 0.53 1.55± 0.39

9 2.71± 0.57 2.92± 0.20 2.69± 0.81

*Units are in degree.

Validation of Estimating No using the Gel-Wax Phantom

Five experiments were performed on the gel-wax phantom with flat surface and Fc = 8 N . To
make the tests more realistic and challenging, an asymmetric fan motion (θAOI = [−6, 15◦]) is
carried out. The calculated angular differences θc between A and N of the five paired fan
motions are shown in Fig. 2.14. It is calculated by

√
θ2
IN + θ2

AOI .
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Ai is not necessarily aligned with Ni, therefore even if Ao is aligned with No, an error of
zero is not necessarily achieved. Therefore the minimum error for each fan motion is equal to
θIN . For multiple repeated fan motions, it can be seen that θIN increases with the number
of fan motions. This is caused by the probe sliding on the contact surface, due to the US
gel and deformations of the soft tissue. The Ao corresponding to the timestamps of the
computed results (red and green dots in Fig. 2.14) are taken as estimated No. Except for one
result (the third fan motion, green dot), all results are close to the desired direction (< 5◦),
despite θIN being non-zero. Furthermore, five of the ten results are very close to the minimum
(< 0.5◦). This demonstrates that the method can detect No purely based on the estimated
force provided by a robot without external force sensor.

Fig. 2.14. Computed results for five paired fan motions. The red and green dots depict the results for the forward
and backward fan motion, respectively. Reprint from [11] with permission of IEEE.

To further analyse the proposed method, the normalized amplitude for the di for the fifth
paired fan motion (largest initial angle difference with 3.3◦ and 3.6◦) are shown in Fig. 2.15.

The final differences between the ideal N and detected N̂ are 3.5◦ and 3.8◦ for the forward
and backward fan motion. However, when the in-plane component is ignored, the errors
are 1.0◦ (

√
3.472 − 3.322) and 1.3◦ (

√
3.842 − 3.602), respectively. This means that No can be

estimated reliably, even if the estimation for Ni is poor.

Comparison with Human Operators
To compare the proposed algorithm with US operators, six volunteers experienced in US
scanning were asked to manually position the US probe along the normal direction of the
same phantom ten times (60 times total). The average errors for the human operators are
3.2± 1.7◦ while the error of the proposed method on the same phantom is 3.1± 1.0◦. It can
been seen from Fig. 2.16, the operators perform better than the proposed method in the
best case (error: 0.2◦ vs 1.7◦) while the error of proposed method is more stable and in the
worst case (3.6◦) performs better than human operators (5.9◦). Based on a t-test (probability
p = 0.52 > 0.05), there is no significant difference between the proposed method and human
operators. Hence the proposed method can compute N with a comparable accuracy to the
participating human operators on a phantom.

In-Vivo Validation
The recorded force is highly related to the properties of the scanned tissue. In order to evaluate
the applicability of the proposed method on humans, experiments were performed on the
forearm, upper arm and lower back with normal breathing of a volunteer. Eight scans were
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Fig. 2.15. Feature curve for one paired fan motion. The two red dashed lines represent the selected timestamps
based on the detail signals of SDCF (di) for the forward and backward fan motion, respectively. Reprint
from [11] with permission of IEEE.

performed per anatomy. The computed errors is depicted in Fig. 2.16. Since there is variation
in the involved tissue stiffness, the robot stiffness was set to 250 N/m, 350 N/m and 450 N/m

during the tests to investigate the impact of the robot stiffness and Fc = 6 N .

It can be seen from Fig. 2.16 that the proposed algorithm performed best on the phantom.
This is due to the phantom being stationary whereas humans exhibit motion. For the forearm,
the lowest error for each set of experiments is smaller than 2◦, and the 25th percentile of
all three sets of experiments is close to 2◦. The algorithm performed best when the stiffness
was 450 N/m, having a maximum error of 5.8◦. For the upper arm, the average errors
corresponding to the various stiffness are distributed around 5.5◦. For stiffness 350 N/m, both
the variance and the upper error bound (7.6◦) were the lowest among the varying stiffness
values. The error for the lower back is larger than for the other anatomies due to respiratory
motion. However, the algorithm still achieves good best case results (1.7◦, 2.9◦ and 1.7◦)
for the different stiffness, respectively. The results suggest that the robot stiffness should be
adapted to the tissues stiffness, in order to accurately estimate the normal direction of local
surface.
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Fig. 2.16. The errors of the estimated normal direction with phantom/volunteer. The first two plots are the
experiments performed on the phantom by humans and the proposed method. The other plots show the
results of the method on in-vivo tissues. Reprint from [11] with permission of IEEE.

2.5 Normal Positioning Based on Mechanical
Model

2.5.1 Normal Direction Detection

Strategy for Searching the Normal Direction

To ensure the imaging quality and patient safety, the compliant control scheme described in
Section 2.5.2 is employed to maintain a constant force Fc along the probe centerline C during
US scans (see Fig. 2.17). The target tissues in orthopedic applications (i.e. limbs) are rigid due
to the presence of bones, whose elastic modulus is more than 8.91 Gpa [87]. Thus, when a
constant Fc is exerted along the probe, reaction force Fr is generated along N of the constraint
surface to balance Fc. The other reaction force component normal to Fc varies according to
the change in the relative posture between probe C and unknown N as shown in Fig. 2.17 (d).
According to the concept of reaction force defined in theoretical mechanics, it can be inferred
that when an external force Fc is applied along the normal direction of a contact surface N,
the resulting reaction force components in the other two orthogonal directions should be
zero.

To estimate N of an unknown contact surface, two rotations with a given point of contact
around two orthogonal axes (xsa and ysa) are executed. During the process of rotation, the
reaction force component saFy and sa′

Fx (see Fig. 2.17 (c) and (d)) are measured by a F/T
sensor attached onto the flange, respectively. Then, the components of N lying in the plane
defined by the rotation axis (Nx or Ny) is estimated. After each rotation, the robot is moved
to align the probe center line C with the estimated direction.

Desired Nx is located inside the virtual plane A that comprises desired N and the randomly
selected axis xsa. Desired Nx is approximated by C when the probe is rotated on the plane A.
Theoretically, this is also the posture resulting in saFy to be zero. Then, the second rotation
around the axis ysa orthogonal to xsa is conducted. It is used to estimate Ny where sa′

Fx
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Fig. 2.17. Theoretical mechanical model of the two successive rotations; (a) a 3D view of a random contact
between the convex probe and the unknown constraint surface; (b) the 3D model of two orthogonal
searching rotations around random xsa and corresponding ysa at a fixed point, respectively; (c) 2D view
of the rotation around randomly selected axis xsa; (d) 2D view of the rotation around the computed
axis ysa, that is normal to xsa. Desired Nx is estimated based on the X-rotation. Then the Y-rotation is
performed from the estimated Nx. Computed Ny is used to approximate N of the unknown constraint
surface. Ps and Ptcp denote the F/T sensor frame {s} and TCP frame {tcp}, respectively. Reprint from [9]
with permission of IEEE.

is reduced to zero. The two rotations around xsa and ysa are denoted as X-rotation and
Y-rotation, as shown in Fig. 2.17 (c) and (d).

However, human tissue, such as the human limbs, are not completely rigid. There are some
soft tissues (i.e. muscles) between the skin and an underlying bone. In real scenarios, small
and unexpected deformations of soft tissues are generated to balance the external force. Thus,
the recorded force is affected, particularly, in the applications requiring the applied force to be
small. Accordingly, to identify the normal direction of human tissues, the measured forces saFy

and sa′
Fx (see Fig. 2.17 (c) and (d)) will not be exactly zero when the US probe is accurately

placed along desired direction Nx or Ny. To address the limitation of the simple threshold-
based method, here a model-based optimization method is employed to extract N. Since
the model-based method estimates the desired direction based on the whole experimental
force data rather than on a single value, it is more robust in terms of adapting to the small
differences between the ideal and real cases.

Mechanical Model

In this subsection, we explain the theoretical mechanical model describing two successive
rotations (X-rotation and Y-rotation) with a given contact point. The goal of the mechanical
model is to establish a framework that allows understanding the exact relationship between
the measurements of the F/T sensor and the tilt angle of a probe. The problem can be
decomposed into two independent subproblems. First, Nx is estimated using the rotation
around xsa. Then, Ny is computed based on the rotation around ysa, after the X-rotation
alignment has been executed.

First, the F/T sensor origin Ps is projected onto the selected rotation axis xsa yielding point P
′

s.
The equivalent radius of X-rotation Rp is equal to the distance between Ps and P

′

s.

Rp =
√
|C|2 − L2

x (2.9)
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where C is the probe length vector (including the length of fixture) from Ps to the TCP Ptcp,
and Lx is the distance between P

′

s and Ptcp.

After placing the US probe on a given contact point with a random posture, Lx is computed
using Eq. (2.10):

Lx = C · xsa (2.10)

where xsa is a unit vector.

Then, a unit vector zsa that is orthogonal to xsa is defined in the direction of the equivalent
radius Rp as shown in Fig. 2.17 (c). The unit vector zsa is calculated using Eq. (2.11):

zsa = C + Lx · xsa
|C + Lx · xsa|

(2.11)

Accordingly, the Cartesian coordinate frame {sa} corresponding to the randomly selected xsa
is well-defined by xsa, zsa, and ysa = zsa × xsa. The reaction force component in ysa (saFy) is
able to be represented by a function with respect to the rotation angle around xsa (θx) from
plane A to real-time equivalent radius Rp.

saFy = sgn(θx)Rp

|C|
Fc · tan θx (2.12)

where sgn(θout) is the sign function.

The measured saF̂y is computed based on the recorded force using Eq. (2.13):

saF̂r = sa
tcpR

tcp
s R sFr

saF̂y =sa Fr(y)
(2.13)

where A
BR is the rotation matrix used to describe the frame {B} relatively to frame {A};

sa
tcpR = [tcpxsa, tcpysa, tcpzsa]−1, tcps R is fixed after attaching the F/T sensor on the flange.

Upon the successful completion of the X-rotation computation, the probe is placed along the
computed N̂x, which is located at the plane A in the ideal case. Then, the corresponding
Y-rotation around ysa is executed. To intuitively describe the reaction force with respect
to the rotation angle around ysa (θy) ranging from desired Nx to real-time probe C, the
other Cartesian coordinate frame {sa’} can be defined, where ysa′ = ysa, zsa′ = C and
xsa′ = ysa′ × zsa′ (Fig. 2.17 (d)). The reaction force component in xsa′ (sa

′
Fx) is computed

using Eq. (2.14):
sa′

Fx = −sgn(θy) Fc · tan θy (2.14)

In addition, the measured sa′
F̂x during the Y-rotation is calculated based on the sensor output

using Eq. (2.15):

sa′
F̂r = sa′

tcpR
tcp
s R sFr

sa′
F̂x =sa′

Fr(x)
(2.15)

where sa′

tcpR = [tcpxsa′ , tcpysa′ , tcpzsa′ ]−1.
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The reaction force model of searching rotations around a random axis (xsa) is formulated in
Eq. (2.12), and Eq. (2.14). Since the real-time Cartesian frame {tcp} can be computed based
on the robotic kinematic model, it is deemed a suitable candidate to be used as a rotation
axis without the need for additional computations. Moreover, since the US probe structure
(both linear and convex) is symmetrical around the long axis (xtcp) and short axis (ytcp) (see
Fig. 2.20), xtcp and ytcp are the center lines of the contact area in two orthogonal directions
when the probe is close to the normal direction of the constraint surface. This means that the
center contact lines remain unchanged during the process of searching rotations, respectively.
The unchanged centerline of the contact area indicates that no additional deformation is
generated along the rotation axis. Therefore, the two searching rotations can be executed
around xtcp and ytcp. Then, the theoretical reaction force model defined in Eq. (2.12) and
Eq. (2.14) can be rewritten as Eq. (2.16), and Eq. (2.17) for the orthogonal out-of-plane
rotation (xtcp) and in-plane rotation (co-planar with the US image plane, ytcp), respectively.

tcpFy = sgn(θout) Fc · tan θout (2.16)

where θout is the out-of-plane offset angle between N and C. Here, θout is identical to θx when
xsa = xtcp.

tcpFx = −sgn(θin) Fc · tan θin (2.17)

where θin is the in-plane offset angle between N and C. Here, θin is identical to θy when
ysa = ytcp.

As a result of comparing Eq. (2.16) and Eq. (2.17), it can be seen that both forces corresponding
to the out-of-plane and in-plane searching rotations are able to be computed using the general
equation described in Eq. (2.18):

tcpFi = Fa · tan θj + Fb (2.18)

where (i, j) = (y, out) or (x, in); Fa and Fb are constant variables for each rotation. Here,
Fb is introduced to reduce the negative effect caused by the force bias related to the initial
contact condition for the real experimental data.

Extracting the Normal Direction

Based on the recorded reaction force tcpF̂r and the previously derived mechanical model tcpFi,
i = x or y (see Eq. (2.18)), a model-based orientation optimization method is proposed to
obtain first No, and then Ni as a result of the out-of-plane and in-plane rotation.

However, since the derivative of a tangent monotonically increases until infinity, a small
variation in tcpF̂r may lead to non-negligible errors in a tangent-based fitting result. However,
the required maximum angular error in this task is less than 20◦ (|θi| < 20◦). Therefore, the
tangent-based equation (Eq. (2.18)) derived from the theoretical mechanical model can be
approximated by a sine-based function applying small-angle approximation (20◦ = 0.35 rad).
Compared with the tangent-based equation, the derivative of the sine-based function is limited
to the range [−1, 1]. Thus, it is more robust to fit the sine-based function to the noise-perturbed
tcpF̂r using Eq. (2.19):
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tcpFi = pi1 + pi2 sin (2πpi3t + pi4) (2.19)

where θj = 2πpi3t + pi4, (i, j) = (x, out) or (y, in), and t is the time stamp of the recorded force
data.

The unknown parameters in Eq. (2.19) are estimated based on the experimental fluctuation-
compensated reaction force (FCRF) tcpF̂r using the constrained non-linear optimization
problem described in Eq. (2.20).

min
1

2N

N∑
j=1

[tcpFi(j) − tcpF̂i(j)]2

s.t.

{
2πpi3t(k) + pi4 ≤ ηmax

2πpi3t(k) + pi4 ≥ ηmin
∀ k ∈ [1, N ]

(2.20)

where i = x or y; N is the length of tcpF̂r; ηmax and ηmin are the boundaries limiting the
search space, respectively.

Eq. (2.20) can be solved using the Sequential Quadratic Programming (SQP) method. The
desired direction for each of rotations is at θj = 0. Therefore, the normal (No or Ni) is
approximated by the recorded orientation R corresponding to the time stamp tf making θj = 0
using Eq. (2.21).

Nd = R(tf ) when θj = 0 (2.21)

The fitted result and the corresponding feature curve used to identify No for an example of the
out-of-plane rotation are shown in Fig. 2.18. Here, a representative experiment determining
the out-of-plane normal is performed. Then based on the optimized time stamp tf computed
by Eq. (2.21), the ideal No is approximated by the orientation encoded by the recorded
probe orientation R(tf ). The angular error between the ground truth No and R(tf ) is 0.7◦

(error=arccos No · R(tf )
|No| |R(tf )| ).

2.5.2 Control Architecture and Data Processing

In this section, we first describe the control architecture. Then, several de-noising procedures
are introduced to mitigate the presence of the large noise in the raw force data recorded during
the out-of-plane or in-plane rotations. An overview of the algorithm is shown in Fig. 2.19.

Compliant Control Architecture
The experimental setup for a gel-wax phantom with a planar surface is illustrated in Fig. 2.20.
To measure the interaction force during the estimation of the normal direction N, an F/T
sensor was attached to the robotic flange. To validate the proposed method in different cases,
a phantom with a flat surface is placed onto the tilted surfaces with varied tilt angles. In
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Fig. 2.18. (a) Fitting result. (b) feature point identification. The experimental force is the denoised force data
recorded by F/T sensor. Parameters for the out-of-plane part: rotation range θout ∈ [10◦, −15◦],
phantom tilt angle αt = 5◦ and initial in-plane position θin = −10◦. Reprint from [9] with permission of
IEEE.

Fig. 2.19. Workflow of estimating the normal direction based on force measurement. Reprint from [9] with
permission of IEEE.

addition, since the rotations are performed around xtcp and ytcp (frame {tcp}) fixed on the
probe, the symbols Nx and Ny used in the rotation around an arbitrary frame {sa} are replaced
by No and Ni, respectively.

The robot motion is controlled via a 1-DOF compliant controller combined with a 5-DOF
position controller as in [85]. The acting 5-DOF position controller is used to execute the
desired scan trajectory or to limit the movement of the contact point around the given position.
The compliant controller is applied to exert the constant desired contact force (Fd) between
the US probe and tissue aiming to guarantee the US imaging quality and patient safety during
screening. The position controller is used to execute the desired scan trajectory. The spring-like
compliant controller is represented in Eq. (2.22).

tcpF = Fd − K(Pi − P0) (2.22)

where tcpF ∈ Rm is the real force acting onto the contact point in the frame {tcp} (tool center
point); K ∈ Rm×1 is the stiffness vector; P0 is the position where the robot enters force mode;
Pi is the current position.
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Fig. 2.20. Experimental setup on the gel-wax phantom. The rotation is performed around xtcp (out-of-plane view)
and ytcp (in-plane view) rather than the frame {sa} corresponding to an arbitrary axis. The symbols
Nx, Ny, θx and θy in Fig. 2.17 are replaced with No, Ni, θout and θin, respectively. Pb, Pf , Ps and Ptcp

denote the origin coordinates in the robotic base frame {b}, the robotic flange frame {f}, the F/T sensor
frame {s}, and TCP frame {tcp}, respectively. Different slope bases are used to tilt the phantom with
different angles (αt = 0◦, 5◦, 10◦ and 15◦). Reprint from [9] with permission of IEEE.

Force Calibration using Particle Swarm Optimization

To obtain the correct reaction force component (tcpFi in Eq. (2.18)) during the searching
rotation, the weight of the US probe, the custom-designed holder and the preloading force
(to mount the sensor on the robot) were identified and then compensated. The ouput from
the F/T sensor (sFm) constituted the combined result of the real contact force (sFr), the
probe weight (bW), and the initial force offsets (sFoff ), including of the sensor bias and the
preloading force.

sFm =s Fr +s
b R bW +s Foff (2.23)

where s
bR =tcp

s R−1 b
tcpR

−1; tcps R = [0 1 0; −1 0 0; 0 0 1] is the rotation matrix from {s} to
{tcp}; btcpR is the varied transformation mapping data from {tcp} to {b}, which is obtained
from the forward kinematics; {b} is the robot base frame; {s} is the F/T sensor frame.

The PSO algorithm is employed to identify the unknown parameters bW and sFoff based
on the experimentally recorded force data. PSO is an iterative population-based stochas-
tic optimization technique inspired by the foraging behavior of bird flocks [88]. Its main
advantages are acceptable performance in terms of finding global optima and its simple
implementation [14].
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The PSO utilizes a set of particles to find an optimal solution by moving the particles around
in a search space. The procedure is guided by minimizing the value of the fitness function Fn.
In this work, Fn is defined by Eq. (2.24):

Fn = 1
3N

N∑
i=1
∥sFm(i)− (sbR(i)bW(i)−s Foff )∥ (2.24)

where N is the number of measurements.

De-noising and Compensation of Recorded Force

The measured force data contains noise due to the undesired contact conditions and digital
noise of the F/T sensor. Therefore, a set of denoising steps are applied to the measured force
data. First, a Kalman Filter (KF) is employed to remove the Gaussian digital noise introduced
by the F/T sensor and the robotic servoing system. Following the steps listed in [11], the
transition matrices for the estimated state (A) and the measured value (H) of KF are set
to be the identity matrix because the last measurement could be set as the predicted value
due to the high sampling frequency (Fs = 83Hz) of the F/T sensor and the slow rotational
velocity (0.025 rad/s). The process and measurement noise model are empirically chosen to
be N (0, 10−4) and N (0, 10−6), respectively. The results of KF is depicted in Fig. 2.21.

Fig. 2.21. Effect of the processing steps on the data recorded during the out-of-plane rotation; (a) and (b) display
tcpFy and tcpFz, respectively; (c) shows the FFT result on tcpFy. Experimental parameters: rotation
range [10, −15]◦, the phantom tilt angle αt = 5◦, initial orientation θin = −10◦ and θout = −15◦.
Reprint from [9] with permission of IEEE.

Since the rotations are non-periodic and executed with a relatively slow velocity (0.025 rad/s),
the resulting force recorded during the rotation is mainly distributed in the low-frequency
part. Therefore, a low-pass filter is applied to restrain the high-frequency noise. Its stop-band
frequency is determined using the FFT and the processed results of the measured force Fm

and the corresponding power spectral density (PSD) are shown in Fig. 2.21 (c). The PSD is
rapidly attenuated after 5 Hz, and the energy (cumulative PSD) at 5 Hz occupies over 86% of
the total signal energy. Hence, the stop-band frequency is set to 5 Hz in this work.

Nevertheless, the force signal will experience a constant phase shift (group delay) after
applying the low-pass filter. This corresponds to time delay (tde), defined as the derivative
of the phase with respect to frequency. More details can be found in [89]. The output of
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the low-pass filter are further corrected by shifting the denoised signal by tde. Regarding the
general S-tap low-pass filter, tde is calculated using Eq. (2.25):

tde = (S − 1)/(2 ∗ Fs) (2.25)

To further extract the force corresponding to the searching rotation from low-pass filter
result, the weight of the probe (including fixture) should be compensated. In all experiments,
the bias of the force sensor measurement is compensated when the probe is aligned along
the bz direction. Then, based on the probe weight (sFw and sFoff ) estimated by PSO, the
weight-compensated reaction force (WCRF) in frame {tcp} (tcpFr) is calculated by rewriting
Eq. (2.23) as Eq. (2.26).

tcpFr =tcp
s R(sFm −sb R bW−s Foff ) (2.26)

It can be seen from Fig. 2.21 (b) that the actual contact force along C (tcpFz) is not exactly
equal to the desired Fc, due to inhomogeneous deformations and small slides happened
between the probe and the contact surface. To limit the influence of small fluctuations
of recorded tcpFz ∈ (Fc − ∆F, Fc + ∆F ), the average value of tcpFz recorded during the
rotation is computed as tcpF z. Thus, the fluctuation-compensated reaction force (FCRF)
tcpF̂r = [tcpF̂x,tcp F̂y,

tcp F̂z] is calculated by mapping the fluctuated tcpFz to tcpF z using
Eq. (2.27).

tcpF̂r(i) =
tcpF z

tcpFz(i)
tcpF(i), if

tcpF z

tcpFz(i)
< T1 (2.27)

where tcpF z = 1
N

∑N
i=1

tcpFz(i), N is the number of measurements.

2.5.3 Results

Experimental Setup
The proposed method was evaluated using a KUKA LBR iiwa 7 R800 robot (KUKA Roboter
GmbH, Augsburg, Germany), an Ultrasonic Sonix RP machine (BK Ultrasound, Peabody, USA)
and a Gamma F/T sensor (ATI Industrial Automation, USA) attached to the end-effector via a
custom-designed 3D printed holder. The B-mode images were acquired using both a C5-2/60
GPS convex probe and a L14-5/38 GPS linear probe (BK Ultrasound, Peabody, USA).

The robot is controlled via a software module1 based on the ROS framework. The B-mode
scans are transferred to a workstation (Intel Core i7-8750H CPU, 16 GB RAM, GeForce GTX
1060) using the OpenIGTLink protocol. The robot’s status and force measurements are
exchanged at 100 Hz and 83 Hz, respectively. The gel-wax phantom with a flat surface is
placed on a flat table. Hence the ground truth is represented by [0, 0, 1] when αt = 0◦. As for
the phantom with a non-zero αt (5, 10 and 15◦) and in-vivo volunteer tissues, the ground truth
is represented by the normal direction of a local surface composed by three neighbor points

1https://github.com/IFL-CAMP/iiwa_stack
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Tab. 2.2. Performance of Model-based Identification method on Tilted Phantom (Mean±SD)

distributed around the given position as in [11]. The neighbouring points were manually
selected. We have experimentally evaluated that this method measures the normal with an
accuracy of less than 0.1◦ for a gel wax phantom.

Fig. 2.22. Experimental setup. Reprint from [9] with permission of IEEE.

External Load Calibration Result

The probe weight bW and the initial force offset sFoff are optimized by minimizing the fitness
function Fn (Eq. (2.24)) using PSO. The parameters of PSO are listed as follows: acceleration
constants c1 = c2 = 2; inertia weight ξmin = 0.4 and ξmax = 0.9; particle size Jp = 24;
the maximum number of iterations: 2000. The measured force (sFm) is recorded while the
end-effector is rotated around xtcp and ytcp without any external load. Then the weight of
the convex probe (bW = [0 0 − 4.33]N) and initial force offset (sFoff = [−0.01 0.04 − 4.31]N)
are obtained using PSO. The algorithm terminated after 1400 iterations, returning the final Fn

of 0.0022. Repeating the procedures, the probe weight and initial force offset for the linear
probe are calculated as follows: bW = [0 0 − 3.05]N) and sFoff = [−0.03 − 0.05 − 3.06]N.

Robustness of the Model-Based Identification Algorithm

To evaluate the robustness of the proposed method aiming to ensure its usability in real
applications without any requirements for the prior knowledge of the constraint surface,
a set of out-of-plane rotations with varying initial in-plane angle offsets θin and different
rotation parameters (direction, start angle, and end angle) are executed. All experiments are
conducted on the same gel-wax phantom with a flat surface. The phantom is placed on a
tilted surface (αt = 5◦) (see Fig. 2.20) to mimic the non-planar human tissues. The resulting
angular difference between the estimated normal N̂o and actual No are listed in TABLE 2.2.
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It can be seen from TABLE 2.2 that the average angular difference ēout (mean±SD) summed
over all trials is 2.1± 1.5◦. This is smaller than the error of human operators reported in [11],
which is 3.2± 1.7◦. Furthermore, in two cases, eout of zero was achieved, and in 51 out of 60
cases (85%), eout was less than three degrees. The two cases with the zero error contain one
sample with the largest rotation range ([−15, 10]) and one sample with the smallest rotation
range ([−5, 5]). The average errors for each row and column are denoted by ēra and ēoff

in the table. It can be seen that there is no significant difference between the experiments
conducted using different θin and θout values. When grouped by a rotation direction, the
average errors ēout for the forward and backward scanning are 1.9 ± 1.5◦ and 2.3 ± 1.5◦,
respectively. However, the t-test (wiht the probability p = 0.27 > 0.05) yielded that the
search direction has no significant impact on the identification result. Therefore, the proposed
method demonstrated the capability of providing the sufficiently accurate estimate of No for
various θin and rotation parameters (direction, starting angle, and ending angle).

However, there are three suboptimal cases (eout ≥ 5◦, marked in red in TABLE 2.2). Two
of them occurred when the start or the end of the rotation is close to the desired direction
(≤ 5◦). This is because the US probe is not a mass point as modeled in Fig. 2.20. This indicates
that an asymmetric searching rotation introduces a bias of the measured force data, which is
not in line with the theoretical model. Nevertheless, the largest ēra is only 3.4± 1.1◦ when
the absolute end angle is 10◦ greater than the absolute start angle ([5,−15]). In addition,
while starting or stopping the movement of the robotic arm, the motion is not stable during
the beginning and ending phases, which will further corrupt the force measurement. This
suggests that both start and end points of a rotation had to be sufficiently far from Nd (≥ 5◦)
to guarantee accurate identification results.

In addition, the impact of the rotation velocity on identification performance is also inves-
tigated. Besides 0.025 rad/s, three other velocities (0.015, 0.05 and 0.075 rad/s) are tested
in the experiments using the same frequency for force data acquisition. For each velocity, at
least four experiments are repeated under the same condition. The angular error between the
detected direction and ground truth slowly grows (0.38± 0.23, 0.41± 0.28, 0.94± 0.40, and
1.40 ± 0.11◦) as velocity increases from 0.015 to 0.075 rad/s. Based on the result, the error
behaves close to linear with respect to the velocity. This is because a larger velocity results in
larger motion during the same time period. Thus, it is possible to maintain the identification
accuracy by increasing the recording frequency of the robot pose and force data when a larger
velocity is used. But a slow motion means that the contact condition is closer to the static
case while a fast rotation will introduce an unmodeled dynamic contact situation between
the probe and human tissue. This means that too high velocity may result in a failure to find
a good estimation. Therefore, the rotation velocity should be carefully selected to make a
trade-off between accuracy and efficiency. If the accuracy is the main concern for a specific
application, the probe is suggested to be rotated slowly.

Validation on Gel-Wax Phantom

In this section, we systemically describe the performance of the proposed method concerning
both convex and linear probes on a gel-wax phantom. To fully validate the proposed method,
the phantom is placed on various titled surfaces (αt = 0, 5, 10, 15◦). The absolute angular
difference for the out-of-plane and in-plane rotations are shown in Fig. 2.23.
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Regarding the out-of-plane experiments, six rotations were executed for each pair of θin

(−10,−5, 0, 5 and 10◦) and the probe type (convex and linear). Then, the rotation ranging
[−15, 10◦] offset from the desired location is performed. Concerning in-plane evaluation,
the rotation ranges from [−13, 8◦]. For each pair of a probe type (linear, convex) and θout

(−5, 0, 5), the rotation is repeated five times. The range of θout in this case is smaller, as the
out of plane alignment is conducted before the in-plane rotation.

Fig. 2.23. Absolute angular difference between ground truth No and Ni and the estimated values N̂o and N̂i for
out-of-plane and in-plane rotation, respectively. The circles represent the absolute angular difference
for each experiment, the bar represents the mean value. The bottom and top short bars represent the
25th and 75th percentile, respectively. There are 30 experiments for out-of-plane and 15 for in-plane for
each probe type and each αt. Several initial angular offsets were used ([−10, −5, 0 − 5, 10]). Here, αt

denotes the tilt angle of the phantom. Reprint from [9] with permission of IEEE.

It can be seen from Fig. 2.23 (a) that the average angular difference (± SD) for the 120
out-of-plane rotations (eout) is 2.7± 1.9◦ for the convex and 2.5± 1.3◦ for the linear probe.
More than 75% of eout for all 240 rotations (both convex and linear probes) are below 3.6◦. As
can be seen in Fig. 2.23 (b), the average in-plane error (ein) is 1.7± 0.9◦ and 1.0± 0.7◦ for the
convex and linear probes, respectively, based on 60 rotations. The model-based optimization
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Tab. 2.3. Performance of Model-based Identification method on Tilted Phantom (Mean±SD)

also demonstrates robustness to the various tilt angles αt used. Due to its flat tip, the proposed
method achieves better performance for the linear probe rather than for the convex probe,
which contains an arched tip. When considering all 360 rotations (the convex and linear
probes, in- and out-of-plane), over 75% of the samples exhibites an error less than 4◦. In
totally, over 75% detected results among all 360 experiments (both probe types and searching
rotations) are less than 4◦.

It is also noteworthy that although the average error of the in-plane and out-of-plane opti-
mizations are rather close to each other (less than 1◦), the maximum error of the in-plane
optimization is much less compared with that of the out-of-plane optimization(convex: 8.5◦

vs 3.3◦; linear: 5.7◦ vs 2.9◦). The differences between the performances of the in-plane and
out-of-plane optimizations are caused by the probe structure for which the length in xtcp is
much larger than the width in ytcp direction. For example, the length and the width of the
linear probe are 50 mm and 13 mm, respectively. The larger length results in greater force
changes when the probe is rotated around the same angle. Thus, the in-plane optimization
results are better than those of the out-of-plane optimization as shown in Fig. 2.23. In addition,
the performance differences between the probes (see Fig. 2.23 (b)) are caused by a similar
reason. This is because the linear tip of the linear probe makes it more sensitive to the in-plane
rotation compared with the round tip of the convex probe.

In addition, to demonstrate the superiority of the proposed method, we compared it with
existing approaches and also human operators as shown in TABLE 2.3. A red cross indicates
that a method cannot be applied for the corresponding scenario (e.g. probe type). The
performance of the camera based method [57] is computed based on the angular difference
between the ground truth and the estimated normal direction of a flat calibration board at
different positions and timestamps (90 data in total). In addition, a simple method based
on the reaction force (N = [ Fx

|F | ,
Fy

|F | ,
Fz

|F | ]) used in [81, 82] also does not work well in this
case, particularly for the linear probe. This is mainly caused by the probe’s geometry and the
properties of human tissues, which are not as stiff as a workpiece. Since the probe width is
much smaller than its length (linear probe: 13 mm vs 50 mm), the out-of-plane performance
is better than the in-plane performance for both linear and convex probes (see TABLE 2.3).

Then we further compared our proposed method with the state of art probe orientation
optimization method [11], which is the first work aimed to fully optimize a US probe orien-
tation (both in-plane and out-of-plane). However, the in-plane optimization method is only
applicable to a convex probe and required sufficient amounts of shadows in US images. The
force based out-of-plane adjustment was developed based on the searching for an optimized
minimum force deviation. In the present study, all available experimental data has been taken
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into consideration rather than focusing on local minima [11], which makes it more robust to
adapt the unmodeled error in real cases (e.g. friction and amount of US gel). The performance
of the model-based method is better than that of the local minima based method [11] on a
gel-wax phantom (2.5± 1.3◦ vs 3.1± 1.0◦). Furthermore, the lowest error reported in [11] is
1.7◦ while the best of the out-of-plane orientation achieved by the present work has an error
of zero (see Fig. 2.23 (a)). Based on experiments performed on a phantom, the proposed
method outperforms other existing methods, and is comparable to the participating human
operators in terms of identification accuracy.

In-vivo validation

To further investigate the performance of the proposed probe orientation adjustment method
concerning the real clinical applications, validations were carried out on volunteer’s tissues
(forearm, upper arm, leg, and back) using the linear probe. To limit the negative effect caused
by breathing, the volunteers are asked to hold their breathing for the experiments on their
low back. Ten rotations are executed for each tissue, starting from a random location. The
absolute angular error for the in-plane and out-of-plane parts are shown in Fig. 2.24.

Fig. 2.24. Absolute errors for the estimation of the desired orientation Nd on in-vivo tissues. Reprint from [9] with
permission of IEEE.

The error corresponding to the various in-vivo tissues ranges from 0.1◦ to 6.0◦. Regarding the
out-of-plane rotation, the mean errors (±SD) are 3.7±1.7◦, 3.1±1.5◦, 2.5±1.3◦, and 2.0±1.8◦

for the forearm, upper arm, leg, and lower back, respectively. This result outperforms that
of the previous state-of-the-art approach that was evaluated on a volunteer’s forearm, upper
arm and back achieved mean (±SD) of 3.7± 1.7◦, 5.3± 1.3◦, 6.9± 3.5◦ [11]. Regarding the
in-plane part, the mean errors (±SD) for the same tissues are 2.3± 1.6◦, 3.2± 0.6◦, 2.5± 1.4◦

and 2.3± 1.4◦, respectively. The average errors for the in-vivo tissues are close to the results
on the gel-wax phantom. Therefore, we confirmed that the proposed method is partly robust
against the distortions caused by unexpected human movement and tissue deformation.

In addition, it is also noteworthy that the best in-plane result on the upper arm (2.2◦) is
worse than the best results on other tissues (0.2, 0.0, and 0.2◦ for forearm, leg, and back,
respectively). This is due to the different fat distribution, which makes the upper arm softer
than the other tissues. In addition, the round structure of upper arm is more prone to yield
sliding between the probe and the tissue, which led to further deterioration of the algorithm
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accuracy. However, despite these challenges, the worst case in-plane results on the upper arm
are still less than 4.0◦.

2.6 Conclusion

In this chapter, two distinct approaches are developed for automatically orienting a US probe
in the normal direction of a constraint surface without any prior knowledge. These methods
enable RUSS to automatically obtain US scans with higher quality. The approach developed
based on the confidence map and contact force (Sec. 2.4) is only able to be used for convex
probes, while the mechanical model based approach (Sec. 2.5) works both for both linear and
convex probes. Both of these approaches achieve accurate estimation of the normal direction
of the contact surface for on gel phantom and in-vivio tissues (forearm, upper arm, and back).
Due to the accurate force sensor, the estimation accuracy of the mechanical model based
approach is slightly better than the image and force based approach (in-plane: 2.7 ± 1.9◦

vs 3.1 ± 1.0◦; out-of-plane: 1.7 ± 0.9◦ vs 2.9 ± 0.2◦). In the experimental environment, the
camera-based approach [56] is only 7.3± 3.1◦. In both methods, the friction is not taken into
consideration due to the use of US gel.

Nevertheless, the limitations of the proposed method are also outlined. First, the proposed
method was developed for orthopedic applications (e.g. limb) rather than the very soft tissue
(e.g. breast) as the contact could severely change the original curvature of soft anatomies, and
even the optimal orientation is not necessarily to be normal anymore. Second, if the normal
direction of the underlying bone surface differs considerably from the tissue surface, the
orientation optimization procedure had to be performed multiple times at different positions
on the scan path.

To conclude, we consider that the proposed approach will contribute significantly to devel-
oping novel RUSS for automatic day-to-day clinical examination by enabling the automated
adjustment of the probe orientation, thereby achieving better image quality. Future research
work will also focus on camera imaging to automatically generate a dynamic scan path and
investigate the optimal contact force for different tissues.
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3Motion-Aware Robotic Ultrasound
Imaging

3.1 Overview and Publications

This chapter presents the contributions towards motion-aware robotic US imaging. Robotic 3D
US imaging has been seen as a promising way to overcome the limitations of traditional
US examination, i.e., high inter-operator variability and lack of repeatability. In practice,
human sonographers react to patient movements by repositioning the probe or even restarting
the acquisition. Furthermore, several attempts for adjustment of objects are often necessary
to clearly and completely image the anatomy of interest, e.g., adjusting limbs to acquire
images of their entire artery tree. However, attempted adjustment of objects is not allowed for
conventional robotic US systems.

To address this challenge, we propose a vision-based robotic US system that can monitor the
object’s motion and automatically update the sweep trajectory to provide 3D compounded
images of the target anatomy seamlessly. To preliminary validate the feasibility of the ideal
bring a motion-aware framework towards robust and accurate 3D object geometry, the passive
marker based approach is first proposed. In this method, a depth camera is employed to
extract the manually planned sweep trajectory after which the normal direction of the object
is estimated using the extracted 3D trajectory. Subsequently, to monitor the movement and
further compensate for this motion to accurately follow the trajectory, the positions of firmly
attached passive markers are tracked in real-time. Finally, a step-wise compounding was
performed. The experiments on a gel phantom demonstrate that the system can resume a
sweep when the object is not stationary during scanning.

To further explore the effective pipeline in real scenarios, the surface registration (marker-
less) based approach is developed. The US scan trajectory is extracted from a general CT
atlas, in which the target object has been segmented. The motion monitoring system is based
on the real-time segmented object masks obtained from RGB images. Once the subject moves,
the robotic US will stop and automatically update its trajectory by registering the surface point
clouds extracted from a depth camera before and after the movement using iterative closest
point algorithm. Afterward, to ensure contact condition after repositioning of US probe, a
confidence-based orientation optimization is employed to fill in the potential gap between
probe and contact surface. Finally, the whole system is fully validated on a human-like arm
phantom with uneven surface. The results demonstrate that the system can automatically
resume a sweep when the subject moves during scanning.

This chapter is organized as follows: In Sec. 3.2, the clinical and methodological background
has been summarized. Afterwards, Sec. 3.3 and Sec. 3.4 present the passive marker based

51



approach validated on a gel phantom and the marker-less based approach evaluated on a
human-like arm phantom, respectively. Finally, the summary is presented in Sec. 3.5.

Substantial parts of this chapter have already been published and quoted verbatim. The
methodology, implementation details, and results of the the passive marker based approach
have been published in the following article.

[6] Zhongliang Jiang*, Hanyu Wang*, Zhenyu Li, Matthias Grimm, Mingchuan
Zhou, Ulrich Eck, Sandra V Brecht, Tim C Lueth, Thomas Wendler, Nassir Navab.
"Motion-Aware Robotic 3D Ultrasound," In 2021 IEEE International Conference on
Robotics and Automation (ICRA), pp. 12494-12500, 2021 (*equal contribution).

Copyright Statement. ©2021 IEEE. With kind permission of IEEE.

The related contents of the marker-less based approach have been published in the following
article.

[3] Zhongliang Jiang*, Nehil Danis*, Yuan Bi, Mingchuan Zhou, Markus Kroenke,
Thomas Wendler, Nassir Navab. "Precise Repositioning of Robotic Ultrasound:
Improving Registration-Based Motion Compensation Using Ultrasound Confi-
dence Optimization," IEEE Transactions on Instrumentation and Measurement,
Early access, 2022.

Copyright Statement. ©2022 IEEE. With kind permission of IEEE.

3.2 Introduction

3.2.1 Clinical Motivation

The Peripheral Artery Disease (PAD) is one of the most common diseases, particularly among
the elderly, which causes the blocking or narrowing of peripheral blood vessels, thereby
limiting blood supply to certain body parts. PAD usually means a narrowing of peripheral
arteries, which will further result in reduced blood flow supply to limbs [90]. The most
common type of PAD is atherosclerosis, which is caused by the buildup of fats and cholesterol
in and on artery walls (plaque). The illustration of atherosclerosis has been given in Fig. 3.1.
Since the leg is often under a certain pressure, PAD often affects the limb arteries, particularly
for the low limb arteries. The clinical complications include an infection or tissue death. In
the worst case, PAD causes organ and limb failure, potentially resulting in long-term damage
or death. It has been reported that PAD affects 20% of people older than 55 years, which is
estimated to be about 27 million people in Europe and North America [91]. Besides, Fowkes et
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al. also reported that PAD affected over 200 million in 2010 globally and had become a major
cause of morbidity and mortality [92].

In order to maximally restraint the worst impact of the PAD, it is very crucial to identify the PAD
in early stage. In the current clinical practice, the most common solution to diagnose PAD is
either by measuring the Ankle-Brachial Index (ABI) or by inspecting a Computed Tomography
Angiography (CTA). The drawback of CTA is that the scans expose both the patient and medical
staff to ionizing radiation. Conversely, ABI despite being radiation-free, is unable to provide
the location of the PVD and is highly user-dependent [93]. Considering the aforementioned
limitations of ABI and CTA, US imaging is employed as the primary non-invasive modality in
clinical practice [94], because it is non-invasive, cheap, and radiation-free. Besides, Collins et
al. reported that the femoral artery US has 80%−−98% sensitivity in detecting vessel stenoses,
even for PAD in its early stages [95]. Therefore, regular US examination is important for
patients.

Fig. 3.1. Illustration of PAD on lower limb arteries. The Comparison between normal and abnormal arteries is
depicted in the left part, and the leg arteries tree is shown in the right part.

3.2.2 Robotic 3D US Imaging

Nevertheless, due to the inherited limitations of the US imaging, conventional 2D B-mode
images suffer from high intra- and inter-operator variability. These variations result in
inconsistent diagnosis results of examinations carried by different sonographers, or even by
the same operator at different times. To address this challenge, 3D US was employed to
characterize and quantify stenoses non-invasively for carotid [96] and lower limb arteries [63].
Compared with 2D images, 3D volume is more repeatable for human operators because it
does not require exactly repeating the probe orientation.

To augment 2D images into 3D volumes, Hossack et al. designed a probe with a 2D arrange-
ment of transducer elements instead of traditional 1D arrays [97]. This system allows to
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directly visualize objects of interest in 3D, while the cost of such systems is high and the imag-
ing quality is decreased because of the rectangular arrangement of US elements. Furthermore,
such devices cannot depict structures significantly larger than their size. Besides, an optical
or electromagnetic tracking system is often used to reconstruct a volume from tracked 2D
images [98]. However, potential magnetic interference and occlusion between the optical
camera and the markers limit the usability of such systems in real scenarios. To avoid these
problems, Prevost et al. recorded tracking information using an inertial measurement unit
and further computed the 3D artery geometry for the whole leg artery tree [99]. Nevertheless,
due to the inconsistent contact force between probe and object during the long sweep, the
non-homogeneous deformation in 2D images impairs the accuracy of the reconstructed 3D
anatomy geometry [5].

To further address these challenges, robotic techniques are employed to develop RUSS for ac-
curate and repeatable US acquisitions. To alleviate the influence caused by non-homogeneous
deformation, two thin force sensors were attached on the tip of a US probe to maintain a
constant force during the sweep [56, 57]. Gilbertson et al. developed an impedance controller
for an one DOF device to stabilize US imaging during scans [42]. Besides contact force,
Jiang et al. quantitatively optimize the orientation using both US imaging and estimated force
at the end-effector to improve the imaging quality [11]. Additionally, being benefited from the
integrated force sensors, Sun et al. [100] and Jiang et al. [5] proposed approaches to further
recover the force-induced deformation in 2D and 3D images, respectively.

Since the probe poses can be computed using the known kinematic model, RUSS was also
employed to compound 3D US volumes. Huang et al. produced 3D US volumes using a linear
stage [57], and subsequently extended the system to a 6-DOF (degrees of freedom) robotic
arm [56]. Virga et al. computed a scan trajectory from a preoperative MR image and further
transferred it into the robotic frame by registering the MR to the object surface captured
using an RGB-D camera [53]. Nevertheless, potential movements of patients during the scan
were not taken into consideration, which may lead to failure of visualizing target anatomies.
Considering tasks to display long structures, e.g., a limb artery tree, sonographers even need
to actively adjust the limb pose to overcome the limitation of robotic working space and to
better visualize the target artery. If the potential motion is not taken into consideration during
scans, the imaging quality is significantly decayed in presence of motion as Fig. 3.2 on a gel
phantom with a flat surface and a human-like arm phantom with an uneven surface.

3.2.3 Contributions

In this chapter, we first consider the potential object motion during RUSS scans. To achieve
accurate and complete 3D US volume in presence of object motions during scanning, it is
important to develop the approaches allow repositioning of the probe. To enable the motion-
aware ability, an RGB-D camera is employed to monitor and compensate for potential object
movements. This technique is particularly important for the development of robotic screening
of PAD on limb arteries, where sonographers usually need to actively adjust the limb position
to avoid exceeding working space limits and to visualize the whole artery tree. In this manner,
RUSS can combine the advantages of free-hand US (flexibility) and RUSS (accuracy and
stability).
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Fig. 3.2. Illustration of the influence of object motion on 3D US compounding with a gel phantom and a human-
like arm phantom. (a) and (d) are US sweep on a gel phantom containing a straight tube and a uneven
arm phantom with a curve artery inside. (b) and (e) 3D reconstruction result of an underlying vessel
when the imaged object is stationary during the sweep, and (c) and (f) 3D result of the same vessels
obtained when the object is moved randomly relative to the initial trajectory during the sweep.

To validate the feasibility of the idea of motion-aware RUSS, the passive marker based
approach is first proposed. In this work, we present a vision-based, semi-automatic RUSS to
generate complete and accurate 3D US volumes of non-stationary imaged objects during US
sweeps. The main contributions can be summarized as follows:

• An adaptive method is proposed to robustly extract planned sweep trajectories drawn
on the object’s surface and automatically compute key points of trajectories to optimize
probe poses for automatic US sweep.

• A vision-based movement-monitoring system is proposed to monitor the potential move-
ment of the imaged object and automatically resume the sweep at breakpoints to provide
a complete and accurate 3D US volume using a stepwise compounding.

The performance of the proposed motion-aware RUSS is validated on a custom-designed
vascular phantom.

In addition, To further explore the effective pipeline in real scenarios, the markerless ap-
proach is developed. In this work, we proposed an marker-less motion-aware RUSS with
the ability to reposition the probe for precise and complete 3D images of target anatomies
in presence of rigid motions during scanning. Compared with the marker-based approach, a
markerless approach is more convenient for operators without the requirement for carefully
configuring the markers for individual patients. The main contributions are summarized as
follows:
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• A confidence-based approach is used to adjust the probe in-plane orientation to overcome
the suboptimal contact condition between probe and object after repositioning the probe
to the breaking points. Besides the aim of guaranteeing the image quality, this also
benefits the visibility of the target object in the imaging view.

• A markerless vision system is developed to monitor the object’s movement and automati-
cally update the initial trajectory using the Iterative Closest Point (ICP) algorithm. The
two point clouds of object surface (before and after the motion) acquired from a depth
camera are registered to estimate the rigid transformation.

Finally, the segmentation approach are validated on both human arms and an arm phantom. In
addition, the proposed motion-aware RUSS is fully validated on the human-like arm phantom
with an uneven surface.

3.3 Marker-based Motion-Aware System

3.3.1 Overview of the Vision-Based 3D US System

The limb arterial tree is much longer than other organs, such as liver and kidney. Due to the
limitation of the robotic workspace, conventional RUSS cannot handle the case when the
desired trajectory is partly out of the robotic workspace. To address this challenge, we propose
a RUSS allowing active adjustment of the object during the sweep to completely display the
anatomy with long geometry. The overall workflow is depicted in Fig. 3.3.

Hardware
The RUSS comprises a robotic manipulator (LBR iiwa 14 R820, KUKA GmbH, Germany) and a
Cicada LX US machine (Cephasonics, USA). A CPLA12875 linear probe (Cephasonics, USA) is
attached to the end-effector of the robotic manipulator and B-mode US images (50 fps) are
obtained via a USB interface. The robot is controlled via the iiwa stack developed based on
ROS [48]. The control commands and the robot status are exchanged at 100 Hz. In addition,
an RGB-D camera (Azure Kinect, Microsoft Corporation, USA) is used to provide real-time
RGB-D images.

Proposed Workflow
The software system consists of three parts: 1) a vision-based sweep trajectory extraction, 2)
an automatic robotic US sweep and 3D US compounding, and 3) a movement-monitoring
system, which updates the trajectory and corrects the compounding result. To this end, an
RGB-D camera and passive markers (NDI, Ontario, Canada) are used to obtain three inputs
(an RGB image, a depth image, and the positions of the markers). Before performing the
sweep, the desired trajectory providing good visibility of the target anatomy is manually
given on the patient’s skin by medical experts. The trajectory is drawn using a red color due
to the strong contrast to the skin color. Afterward, the sweep extraction module is used to
extract the drawn trajectory and transform it into the robotic base frame using the hand-eye
calibration results. To avoid non-homogeneous deformation and guarantee the patient’s
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Fig. 3.3. System workflow. (a) Three types of inputs from the depth camera, (b) sweep trajectory extraction
module, (c) robotic movement module following a planned trajectory, and (d) object movement monitor
module. Reprint from [6] with permission of IEEE.

safety, a compliant controller maintains a constant contact force in the probe centerline [9].
During scanning, a marker-based motion monitor system is activated so that the system can
automatically compute the transformation and update the trajectory using the ICP method if a
motion happens. This correction enables a stepwise compounding.

3.3.2 Hand-Eye Calibration

To enable the ability to follow the manually drawn trajectory on the object, the transformation
matrix between the RGB-D camera and the robot was calculated. It can be seen from Fig. 3.4,
the involved coordinate frames are: 1) the image frame {i}; 2) the RGB-D camera frame {c};
3) the robotic base frame {b}; 4) the robotic flange frame {f}; 5) the tool center point {tcp};
6) an ArUco marker [101] {ar}. The transformation from the flange to the base frame b

fT
can be directly obtained using the robotic kinematic model. Thus, the transformation f

tcpT is
obtained using the 3D model of the custom-designed probe holder (connecting the US probe
to the robot). Besides, the transformation c

iT, used to generate a 3D point cloud from the 2D
image can be computed based on the camera intrinsics obtained via a program1.

The transformation between frame {b} and {c} b
cT can be optimized based on the paired

descriptions of the points in different frames using ICP [16]. To accurately estimate b
cT, at

least four non-coplanar points should be employed. Thus, eight arbitrary intersections on two
chessboards at different heights are selected. For each point, the position in the camera frame
cP is computed using OpenCV and the coordinate expression in frame {b} bP is obtained
by manually moving the robotic arm to the target intersection. To accurately locate the
intersections, a tip-pointed tool, was attached to the flange. Based on the paired position
descriptions (cP and bP ), the transformation b

cT is obtained by optimizing the following
equation:

min
b
cT

1
N

N∑
i=1
||bcT cPi −b Pi||2 (3.1)

1https://github.com/microsoft/Azure_Kinect_ROS_Driver
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Fig. 3.4. Diagram of the involved coordinate frames. Reprint from [6] with permission of IEEE.

To make the calibration system robust to the camera movement, an ArUco marker is fixed
relatively to the robotic base as shown in Fig. 3.4. Once b

cT is calculated using Eq. (3.1), the
fixed b

arT can be calculated using b
arT =b

c T ·car T. Then, based on real-time c
arT, obtained using

aruco_ros2, bcT can be dynamically updated when the camera is moved.

3.3.3 Extraction of Scan Trajectory

In this section, we describe the adaptive color-based method for extracting the manually
planned trajectory on object’s surface. To provide reliable information on the object’s position,
two passive markers are fixed on the skin (using tape) in both ends of the trajectory as Fig. 3.3.
The marker spheres are covered by a retro-reflective layer, making the markers brighter than
the background in the infrared images. Also, the markers aid in robust extraction of the region
of interest (ROI) and trajectory (whole trajectory or at least partial trajectory if it is partly
occluded by surrounding stuffs).

A multi-color space threshold method was used to exact the ROI [102]. The ROI is extracted
based on the color feature in the area surrounding the two markers at the end of the trajectory
in the Cb and Cr channel images. The upper and lower limits of the ROI are automatically
determined based on the value of pixels distributed on the line connecting the two markers.
Compared with RGB images, YCrCb images separate brightness and chromaticity into different
channels. Thus, the negative effect caused by the environment (e.g. light) could be limited
using the YCrCb color space. To further extract the red trajectory from the ROI, an adaptive
threshold method on both the Cr channel image and the grayscale image is proposed. To
robustly extract the trajectory line, even when partly blocked by the probe, Ns seeds lines are
initialized to equally divide the space between the two markers at the end of the trajectory.
Then, the intersection points Ps between the seed line and the trajectory can be detected by
locating the maximum Cr value of the pixels on the seed line (Fig. 3.5).

2https://github.com/pal-robotics/aruco_ros
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However, since the US probe may partly block the trajectory in RGB images, the detected
points Ps may not be on the trajectory. To further remove these points from Ps, the “up” (Yp)
and “down” (-Yp) boundaries of the trajectory for each Ps in the Cr channel images can be
calculated using:

fupb = max ([|I(xi, yi + j + 1)− I(xi, yi + j)|])

fdownb = max ([|I(xi, yi − j − 1)− I(xi, yi − j)|])
(3.2)

where (xi, yi) represents the i-th Ps, j is 1, 2, 3, ..., 8.

If the boundary features fupb and fdownb are close to zero (< 10), the boundary features on
the grayscale images are computed again using Eq. (3.2). If the features for Ps(i) computed
based on the grayscale images are still close to zero, it will be removed from Ps because the
intensity of the real Ps are supposed to be significantly different from the skin background.

Based on the computed seed points Ps located at different positions of the trajectory, a
bidirectional searching method starting from each Ps is developed. Considering the potential
color differences between different trajectory parts, an adaptive threshold is used to effectively
extract the trajectory. First, a moving box (Bw ×Bh) is initialized at Ps(i). Then, the number
of points, whose intensity is between [I(Ps))-Irt, I(Ps) + Irt], is counted as N . If N is larger
than the empirical threshold Nep, at least a short part of the trajectory is located inside the
current box. To further extract the trajectory, the moving box and the corresponding local
threshold range are updated using the last detected trajectory point. These procedures have
been described in lines 5 − 18 in Algorithm 1. Similarly, another moving box is initialized
at Ps(i) to search in the inverse direction. The seeds-based bidirectional searching modality
enables the proposed method to provide the most possible result. The involved parameters
are empirically set to: Bw = 20 pixels, Bh = 100 pixels, Irt = 25, and Nep = 10.

3.3.4 Probe Orientation Determination and Trajectory
Optimization

Based on the 2D trajectory P 2d
t extracted in the last section, the 3D trajectory point cloud

P 3d
t is computed using the camera internal parameters and used to control the position of

the probe. However, P 3d
t only tells the desired positions of probe during the scan. To receive

more signal back to the US elements built in US probe tip, Jiang et al. and Ihnatsenka et al.
suggested that the probe should be aligned in the normal direction of the contact surface
n⃗i [11, 55]. Here, a vision-based normal direction estimation method was proposed to quickly
compute the desired poses for the whole sweep rather than a force-based method, which
only works for the current contact position used in [11]. Compared with [57], more local
points distributed around the point on the trajectory P 3d

t are considered to accurately and
stably estimate n⃗i. The selected point will be located on a plane when the local points are
distributed close enough. In that case, n⃗i at P 3d

t (i) is approximated by the normal direction of
the plane. The plane expression (z = f(x, y)) is optimized using the Least-Squares method as
Eq. (3.3).
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Algorithm 1: Adaptive Trajectory Extraction

1 Input: seed points set Ps = (xs, ys), moving box width Bw, moving box height Bh,
relative threshold of Cr channel Irt and the number of the pixels extracted in the
moving box Nep

Output: 2D trajectory P 2d
t

2 for i = 2; i < len(Ps); i + + do
3 Searching from Ps(i) to Ps(i + 1);
4 for x = xs(i); x < xs(i + 1) do
5 N ←− 0 ;
6 for m = x; m < x + Bw; m + + do
7 for n = ys(i)− 1

2 Bh; n < ys(i) + 1
2 Bh; n + + do

8 if I(m, n) ∈ [I(x, ys(i))− Irt, I(x, ys(i)) + Irt] then
9 P 2d

t ←− [P 2d
t , (m, n)] ;

10 N ←− N + 1 ;
11 end
12 end
13 end
14 if N > Nep then
15 (x, ys(i)) ←− (P 2d

t (end));
16 end
17 else
18 Break;
19 end
20 end
21 Similar to 3-19, searching from Ps(i) to Ps(i− 1);
22 end

min
f(xi,yi)

1
2N

N∑
i=1

(f(xi, yi)− zi)2 (3.3)

Then the normal direction of tissue surface n⃗i at Pi is approximated by the normal diction
of the optimized plane. Also, the radius of the sphere is also crucial for the estimation
performance. On the one hand, a large radius will cause large bias in estimation of normal
direction of a point. On the other hand, a small radius means that the estimation result is
not stable and it is easy to be affected by the noise measurements. In this work, the radius is
empirically selected as 1 cm.

After aligning the probe to the estimated n⃗i, the probe tip is expected to be perpendicular
to the scan trajectory. Since the width of the manually drawn trajectory varies, the moving
direction computed by connecting two close points in P 3d

t may differ significantly from the
real value, causing instability in the rotation around the probe centerline (aligned with n⃗i)
during scanning. To address this problem, we propose a difference-based optimization method
to automatically select key points from P 3d

t , generating a smooth robotic movement trajectory.
To this end, the 3D points P 3d

t are transformed into 2D vectors (xp(i), yp(i)) as follows:

(xp(i), yp(i)) = (
−−−−−−→
PsP

3d
t (i) · Xp, |

−−−−−−→
PsP

3d
t (i)× Xp|) (3.4)
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where Ps is the start point of the path and Xp is a unit vector connecting start and end points
Pe as Xp = Pe−Ps

|Pe−Ps| .

Based on the transformed 2D position vector Pp(xp, yp), the local maxima and minima are
extracted as follows:

Pk(i) i ∈ {k|D(k − 1)D(k) ≤ 0&|D(k − 1)|+ |D(k)| > Tk} (3.5)

where D(i) = yp(i + 1) − yp(i) is the first-order difference and Tk is the threshold used to
remove the local extrema with a small amplitude. Fig. 3.5 shows an illustration of the key
points in both 2D and 3D, where all turning points have been correctly detected as key points
(marked as red circles).

Fig. 3.5. Trajectory optimization of the robotic movement. (a) Planned trajectory on the object’s surface. (b) and
(c) are automatically detected key points in 3D space and 2D space, respectively. Reprint from [6] with
permission of IEEE.

To restrain the effect caused by the local identification error of estimated probe orientation,
the orientation is further optimized for each interval separated by the key points and the
start and stop points. To improve movement stability, points located close to their neighbors
are not used to define an interval as lines 5 − 7. For each interval, the desired direction of
the probe centerline (tcpZ) is represented by the mean n⃗i computed at all sampled positions.
Afterward, the probe’s long side direction (tcpY) is placed in the normal direction of the plane
consisted by tcpZ and the line connecting the two Pk defines the interval. Finally, the moving
direction (tcpX) is perpendicular to tcpZ and tcpY. The implementation details are described in
Algorithm 2.

3.3.5 Movement Monitor System

To monitor potential object motions, the markers attached to the ends of the trajectory are
used as inputs to the monitor system. The robot immediately stops when the system detects a
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Algorithm 2: Key points Based Orientation Optimization

Input: Planned path P3d
t , start point Ps, end point Pe, Key points on path Pk, normal

direction of tissue n⃗i at each P3d
t (i), and threshold T1

Output: Segmented intervals Segs, optimized probe orientation of all intervals
[tcpX,tcp Y,tcp Z]

1 Add Ps and Pe to Pk: Pk ←− [Ps, Pk, Pe] ;
2 Compute iteration set of Pk in P3d

t : I = find(Pk);
3 int m = 1;
4 for j = 1; j < len(Pk) do
5 if |I(j + m)− I(j)| ∗ |Pk(j + m)− Pk(j)| ≤ T1 then
6 m←− m + 1;
7 end
8 else
9 Segs←− [Segs, [I(j), I(j + m)]];

10 tcpZ←− [tcpZ, 1
I(j+m)−I(j)

∑I(j+m−1)
i=I(j) n⃗i];

11 tcpY←− [tcpY, 1
I(j+m)−I(j)

∑I(j+m−1)
i=I(j) n⃗i ×

−−−−−−−−−−−−−−−−−→
P3d
t (I(j))P3d

t (I(j + m))];
12 Pose = [Pose, [tcpY×tcp Z,tcp Y,tcp Z]];
13 j ←− j + m;
14 m←− 1;
15 end
16 end
17 [tcpX,tcp Y,tcp Z]←− Pose;

change in the position of marker over a given threshold (5 mm). To accurately update the
trajectory to resume the sweep from the break point, three additional markers are randomly
stitched on the object. Next, the transformation between the previous and current object poses
is calculated using ICP based on four paired markers positions as shown in Fig. 3.3 (d). The
last marker is used to compute the error of the ICP results as follows:

emc =
∥∥∥P

′

m − (Rmc ·Pm + Tmc)
∥∥∥ (3.6)

where Pm and P′

m are the positions of the passive markers before and after the movement,
respectively, while Rmc and Tmc are the computed rotation matrix and translation vector.

The RUSS automatically resumes the sweep from the breakpoint only when emc is small
enough (< 1 cm). Otherwise, the RUSS automatically stops the sweep.

3.3.6 Results

Vision-based Trajectory Extraction Results

To validate the performance of the adaptive trajectory extraction method described in
Sec. 3.3.3, a gel phantom with a manually drawn trajectory on its upper surface was employed.
The phantom was randomly placed in different places inside the camera view. To demonstrate
the result, an RGB image with the detected trajectory is presented in Fig. 3.6 (a) and (c),
respectively. Besides, considering that the trajectory will be partly occluded by the robotic arm
and the US probe during the sweep, the probe on the top of the trajectory was positioned as
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in Fig. 3.6 (b). The proposed adaptive method completely displayed the unblocked part of the
trajectory as Fig. 3.6 (d). The detected results are close to the trajectory in Fig. 3.5 (a). More
examples of the detected results can be found in this video3.

Fig. 3.6. Results of the trajectory extraction method. RGB images obtained from the depth camera when the
trajectory can be (a) completely or (b) partially seen, depending on the probe position. (c) and (d) are
the detected results of (a) and (b), respectively. The line represents the detected trajectory, while the
white circles represent the passive markers. Reprint from [6] with permission of IEEE.

Since the direction of the probe centerline (tcpZ) is controlled in the force mode [9], the probe
tip along the trajectory in the tcpX–tcpY plane should be accurately moved. To quantitatively
analyze the whole system accuracy (trajectory detection and hand-eye calibration), the
computed trajectory was transformed into the robotic frame using the result of hand-eye
calibration. To demonstrate the real position error between the desired trajectory and the
performed path, the position of the probe tip was recorded. Besides, the computed error is
calculated based on the computed trajectory and ground truth. The ground truth is obtained
by manually guiding the robot along the manually drawn trajectory. The ground truth, the
computed trajectory, and real trajectory are depicted in Fig. 3.7.

Fig. 3.7. Trajectory following results. The solid lines represent the trajectories. The dotted lines are the computed
and real position error. Reprint from [6] with permission of IEEE.

As shown in Fig. 3.7, both the computed and real error mainly distribute below 5 mm. Also,
the error is not cumulative. The error still can be close to zero after a large error, for example
when Y = 150 mm (Fig. 3.7). Generally, the average computed and average real errors
(±SD) were 2.5± 1.8 mm and 2.0± 1.9 mm, respectively. The computed error was mainly
caused by the depth estimation. Since our application must accurately control the probe in
the tcpX–tcpY plane, the accuracy of the system can be further improved by fixing the camera

3https://https://www.youtube.com/watch?v=8IaorIl3zzk
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on the top of the target objects to reduce the negative influence caused by inaccurate depth
estimations. In addition, the real error is smaller than the computed error. This is because the
real movement of the RUSS system lags behind the control command determined based on
the computed trajectory.

Movement Compensation Results

To validate the performance of the movement compensation algorithm, experiments were
carried out on a gel phantom. To further investigate the method’s sensitivity to the movement
types (translation and rotation), the experiments were categorized into two sets of translation
and rotation, respectively. For the translation set, the phantom was moved along a straight
line at different distances (50, 100, 150, and 200 mm). For the rotation set, the phantom was
rotated around a fixed axis at different angles (10, 20, 30, and 40◦). The illustration of the
setup is given in Fig. 3.8. Each set consisted of 10 independent experiments. The translated
and the rotated axes are randomly set in the camera view.

Fig. 3.8. Illustration of the experimental setup used for validate the compensation performance.

To assess the performance of the marker-based compensation method, the errors emc (Eq. (3.6))
of the two groups of experiments are presented in Fig. 3.9. The absolute translation and
absolute rotation errors (±SD) were 3.1± 1.0 mm and 2.9± 0.7 mm, respectively. Also, based
on a t-test (probability p = 0.67 > 0.05), it was concluded that no significant difference exists
between the two experimental sets. Furthermore, the results also show that most errors
(> 75%) are less than 4.0 mm even when the phantom was moved 200 mm and rotated 40◦.
Such emc is promising in clearly displaying the partitioned sweeps, which generate complete
geometry of the anatomy after a larger motion because emc = 4 mm is much smaller than the
probe width 37.5 mm.

Fig. 3.9. Absolute error of the movement compensation algorithm. Two motion types (translation and rotation)
over 10 trials are displayed. Reprint from [6] with permission of IEEE.
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To intuitively show the performance of the compensation method on 3D compounded results,
experiments were carried out on a gel phantom with a straight hole, mimicking the blood
vessel, which was automatically segmented from the cross-sectional US images using a
well-trained U-Net from [7]. Then, the 3D compounding process was performed using
ImFusion Suite (ImFusion GmbH, Munich, Germany). The 3D vessels with and without
motion compensation are shown in Fig. 3.10. The result reveals that the proposed approach
can deliver a complete 3D image of the target blood vessel even in the presence of object
motion. Limited by the accuracy of depth estimation, the stitching is still visible using the
current setup. But the stitching error could be reduced using a camera with an accurate depth
estimation.

Fig. 3.10. Performance of compensation method. 3D images of a straight vessel (a) without and (b) with motion
compensation. (c) and (d) are the corresponding 2D images (axial plane) of (a) and (b), respectively.
Reprint from [6] with permission of IEEE.

3.3.7 Discussion

The preliminary validation on a gel phantom demonstrates that the proposed approach can
provide a promising 3D geometry even when the scanned object is moved. In this work,
the trajectory was drawn using a marker pen, which can be replaced by a laser system
to automatically project a sweep trajectory on the surface. Since the relative threshold
was determined based on local seed points, a promising result can be computed if the
trajectory color significantly differs from the skin color. However, since the skin color was
approximated using the passive markers, the visibility of the markers must be guaranteed
during the initialization procedure before executing scan. This affordable system is developed
to completely visualize the anatomy with long structures by automatically stitching the US
sweeps acquired when the object is moved. Although the vascular application was used to
demonstrate the proposed methos, the method can also be used for other applications such
as US bone visualization. Regarding the motion compensation, the proposed method so
far considered the large object motions during US scans. The small physiological motions
(< 5 mm), such as tremor, vessel motion [103] and breathing [10, 17] have not been
considered. Since a compliant controller was used, the probe is flexible in its centerline
direction. Thus, compared with free-hand US acquisition, the effect of such small motions is

3.3 Marker-based Motion-Aware System 65



not aggravated in our setup. If we further consider the articulated limbs, more markers could
be used to compute the transformation of each rigid parts.

3.4 Surface Registration based Motion-Aware
System

In this section, we first describe the pipeline of the proposed surface registration based
motion-aware RUSS towards an accurate and complete 3D volume of object anatomies against
potential (expected or unexpected) object movements during the scanning. The overview is
shown in Fig. 3.11

Fig. 3.11. Framework of the motion-aware RUSS. (a) the sweep trajectory extraction and optimization module, (b)
the robotic scanning execution module, and (c) the camera-based movement monitoring module. The
dice threshold is 0.95 in this work.

3.4.1 Overview of the Markerless 3D US system

To enable the motion-aware ability, a surface registration based approach is developed in this
work to detect the (expected or unexpected) movements and update the sweep trajectory
based on the surface registration approach. The general pipeline is described in Fig. 3.11.
Compared with the marker-based approach [6], the passive markers are not needed anymore
and a human-like arm phantom is used to mimic real scenarios.

Hardware Setup
The proposed motion-aware RUSS mainly consists of three components: a redundant robotic
arm (LBR iiwa 14 R820, KUKA GmbH, Germany), a US machine (Cephasonics, USA), and an
RGB-D camera (Azure Kinect, Microsoft Corporation, USA). The robot is controlled using a self-
developed Robot Operating System (ROS) interface [48]. The control commands are updated
at 100 Hz to guarantee real-time performance. In addition, a linear probe (CPLA12875,
Cephasonics) is attached to the robotic flange using a custom-designed holder. The B-mode
images are accessed via a USB interface (50 fps) and visualized in a software platform
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(ImFusion Suite, ImFusion GmbH, Germany). The detailed configurations of US acquisition
are listed as follows: imaging depth: 55 mm, brightness: 67 dB, frequency: 7.6 MHz. To
validate the proposed system, a commercial human-like arm phantom (PICC US Training
Model, Skills Med Deutschland GmbH, Germany) is employed.

Implementation Details

The motion-aware RUSS is realized by three main components: the sweep trajectory extraction
and optimization module, the robotic scanning execution module, and the camera-based
movement monitoring module. Regarding the extraction of sweep trajectory, the artery of
interest is manually segmented from preoperative CT data using an open-source software 3D
slicer4. Then, the meshes of the arm surface and the target limb artery surface are generated
and further used to create point clouds using Meshlab5 [see Fig. 3.11 (a)]. To transfer the
target artery position from CT data to the robotic base frame, a self-occlusion point cloud
of the arm surface is generated based on the RGB-D camera placed in front of the target
object. By registering the CT point cloud to the camera point cloud, the artery trajectory can
be transferred into the camera frame. Further utilizing the hand-eye calibration result, the
artery trajectory can be transferred into the robotic base frame to guide the probe during the
scanning.

Afterward, the RUSS starts executing US examination along the target artery. To provide good
imaging quality and guarantee patient safety during the scanning, a compliant controller is
employed to maintain a constant force between the probe and the contact surface [7, 48]. In
addition, to monitor the movement of the objects, a neural network (UNet-VGG16 [104]) was
trained to segment the arm from RGB images. The segmented results of images acquired at t1

and t2 are further used to compute the dice coefficient. Once the dice coefficient is smaller
than a preset threshold, the system considers the object has moved and a corresponding signal
is emitted to ROS master. After detecting such a signal, the robot stops and perform the
registration between the camera point clouds acquired at t1 and t2 is carried out. Based on
the registration result, the remaining trajectory can be updated and RUSS can continue the
scan by automatically move the probe to the breaking point, namely, the point the US probe
was when the movement happened. Benefiting from this correction, a 3D compounding is
achieved by properly stacking the B-mode images in 3D space.

3.4.2 Coordinate System Transformation

There are two different types of calibration procedures involved in this study: 1) US calibration
and 2) hand-eye calibration. The former one is used to transfer the pixel position in B-mode
images to the robotic base frame while the latter one is used to transfer the position from
the camera view to the robotic base frame to guide robotic movement. The implementation
details are similar to the ones described in Sec. 3.3.2. The involved coordinate systems are
depicted in Fig. 3.12: 1) the robotic base frame {b}, 2) the robotic flange frame {f}, 3) the
probe frame {p}, 4) US imaging frame {us}, 5) the camera frame {c}, and 6) the CT atlas
frame {ct}.

4https://www.slicer.org/
5https://www.meshlab.net/
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Fig. 3.12. Illustration of involved coordinate frames. Red arrows, green arrows and blue arrows represent X, Y and
Z directions of corresponding coordinate systems, respectively.

To perform trajectory correction based on US imaging feedback, the transformation matrix
b
usT between frame {b} and frame {us} can be calculated as follows:

b
usT =b

f T f
pT p

usT (3.7)

where j
iT is the transformation matrix used to transfer the position from frame {i} to frame

{j}. bfT represents the kinematic model of the robotic arm. This can be directly accessed by
the API function provided by the manufacturer. Besides, fpT depends on custom configuration.
In this work, the rotation part of fpT is set to an identity matrix I3×3 and the translational part
is obtained from the custom-designed 3D holder model. Due to the characteristic of linear
probe that US elements are physically distributed on the probe tip within a specific length
Lp, the horizontal mapping ( Lp

Wus
) between pixel-wise positions and physical positions can

be computed, where Wus is the pixel-wise width of B-mode imaging. Similarly, the vertical
mapping is computed by D

Hus
, where D and Hus are the depth setting and the pixel-wise

height of US images. The origin of frame {us} was set at the upper left of the B-mode image,
while the origin of frame {p} was set in the middle of the probe tip (Fig. 3.12). Thus, pusT is
calculated as follows:

p
usT =



0 0 −1 0

− Lp

Wus
0 0 Lp

2

0 D
Hus

0 ε0

0 0 0 1


(3.8)

where Lp = 37.5 mm, D = 55 mm, and hyper parameter ε0 is used to neutralize the
indeterminacy of US elements configuration.
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In addition, regarding the hand-eye calibration, similar implementation procedures are carried
out as [6]. To compute the transformation matrix b

cT between the base frame {b} and the
camera frame {c}, paired coordinate descriptions of the points (intersection points on two
chessboards) in frame {c} and frame {b} are recorded. The coordinate representations in
{c} are computed using OpenCV while the representations in {b} are obtained by manually
moving a custom-designed pointer tool to the same intersection points. More implementation
details can be found in [6].

3.4.3 Surface Registration and Trajectory Transfer

Since the object position varies in different examinations, a depth camera is employed to
gain information about the current environmental setup. To properly execute US scan for the
target artery, the annotated artery is required to be transferred into camera frame {c}. To
obtain such transformation c

ctT, the ICP algorithm is used to register the surface point cloud
Pct obtained from a pre-operative CT image to the live point cloud Pc computed from the
RGB-D camera. ICP proved to be sufficient for the targeted task in preliminary experiments.
To achieved uniformly distributed Pct, the Poisson disc sampling algorithm [105] is employed
instead of the random sampling approach. In this work, the sizes of the arm point cloud and
artery point cloud are 3000 and 1000, respectively. Since ICP is sensitive to the initial result,
the multiscale feature resistance approach is used to extract unique features from both point
clouds for computing the initial transformation [106]. Afterward, the iterative algorithm is
used to accurately align Pct to Pc.

Since the artery is located inside the arm, the artery trajectory is required to be projected to
the surface for generating an executable scanning trajectory. To alleviate potential negative
influences of registration error between Pct and Pc on creating scanning trajectory, the point
cloud of the artery surface in CT Partct is directly transferred into the camera frame. Then,
Partct can be exactly projected onto the object surface captured by the camera. Based on the
hand-eye calibration result described in Sec. 3.4.2, the scanning trajectory is computed.

Artery Centerline Extraction

The artery surface point clouds have a tubular structure. Besides, regarding the geometry
of limb arteries, the length along the vascular centerline is significantly longer than in
other directions (namely, artery diameter). To extract the vascular centerline for generating
scanning trajectory, the principal component analysis (PCA) is employed to define a new
orthogonal coordinate system for optimally describing variance of the data. The first principal
component is the direction making the projections achieve the largest variance, namely the
eigenvector corresponding to the largest eigenvalue of the artery point cloud’s covariance
matrix. To estimate the vascular centerline, the average value of all points inside a small artery
segmentation is computed to an approximate local center point. A small distance interval
din is used to generate multiple center points between the minimal and maximal value of
the projections in the first principal component. The vascular centerline is approximated by
connecting the center points successively.
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Scanning Trajectory on Object Surface

After deriving the vascular centerline, an executable scanning trajectory on the object surface
should be further generated. To avoid potential safety issues caused by improper scanning
trajectories, e.g., inside of the arm, the scanning trajectory is generated as following steps.
Since the robot and the experimental table are parallel to the ground, a continuous trajectory
can be created by projecting the estimated vascular centerline onto the surface in the direction
of Zb. To achieve this, the center points of the artery (x, y, z) computed in last section is
replaced with (x, y, zarmmax), where zarmmax is the maximum value of the arm surface point cloud
Pct in Zb direction. Then K-nearest neighbors (KNN) approach is used to search for the
Kst = 5 nearest points around (x, y, zarmmax), individually, in terms of Euclidean distance. Then,
the average of these Kst neighbors is used as key points of the scanning trajectory for RUSS.

To fully control the probe during the scanning, the probe orientation needs to be further
determined. To improve the contrast of the resulting B-mode imaging, Ihnatsenka et al. and
Jiang et al. suggested that the probe should be aligned in the normal direction of the contact
surface n⃗i [11, 55]. Here, the normal direction is quickly estimated using computer vision
techniques based on the neighboured points around the key points. Compared with the
force-based method [11], the vision-based method is able to quickly compute all the normal
directions along the whole trajectory rather than only the current contact point. This process
is implemented using Point Cloud Library (PCL)6. The estimated normal directions at various
positions are shown in Fig. 3.13. To properly visualize the target vessel, the probe centerline
is aligned to the computed normal direction and the long axis of the probe (Yp) is aligned to
be orthogonal to the scanning path.

Fig. 3.13. Computed scanning trajectory on the arm surface. The red line represents the estimated normal direction
at individual points on the trajectory.

3.4.4 Confidence-based Probe Orientation Correction

US confidence map was originally introduced by Karamalis et al. [61]. They provide a pixel-
wise metric to assess the image quality by computing the loss of emitted US signals by the
transducer. Regarding the computed confidence maps of B-mode images, a probabilistic map
C ∈ R2 −→ [0, 1] is created (see Fig. 3.14). The top white pixels (1) represent the strongest
signal and the bottom black pixels (0) represent no US signal arrived. US confidence map
has been employed for different aims, e.g., optimizing contact force [53] and tracking target
anatomy [62].

6https://pointclouds.org/
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Fig. 3.14. Confidence-based orientation correction. The left, middle and right images are B-mode image, computed
confidence image, and binary confidence map. In this case, computed correction angle is θc = 10.4◦.

In this study, the computed scanning trajectory may not be perfect for scanning due to the
error of both hand-eye calibration and surface registration (ICP). The use of a human-like
arm phantom with an uneven surface aggravates the negative influence of such errors. More
specifically, the US probe may not be able to fully contact the arm surface, which will result in
shadow in the imaging (see Fig. 3.14). To properly display the anatomy under the shadow, a
confidence-based orientation correction approach is proposed. To this end, the confidence
map is further transferred into a binary image by applying a probabilistic threshold (Tcom).
This emphasizes the difference between the well-contacted part and the non-contact part in
the resulting images. Then, the weighted barycenter point ζc can be calculated as follows:

ζc = 1
ℵc

Hus∑
0

Wus∑
0

C(h, w) [h, w]T (3.9)

where ℵc =
∑

(h,w)∈Ω C(h, w) is the accumulated confidence value over the entire image
(Ω).

Then, the in-plane rotational adjustment angle θc can be calculated by connecting the barycen-
ter and the top center point of image view (see Fig. 3.14). To ensure that the probe is fully in
contact with the object surface, multiple in-plane orientation corrections may be required at
one position. To reduce the time consumed at each position, the pose (Rp) of the remaining
Nup points in the trajectory are updated as follows:

R
′

p(ic + i) = Rp(ic + i)Rx(−ηiθc) (3.10)

where ic represents the iteration of current position in the trajectory, i = 1, 2, .., Nup, Rx is the

rotation matrix around X direction of probe coordinate system, ηi =
d2

Nup−i+1∑Nup

j=1
d2

j

is the weight

coefficient used to update the next Nup positions.

3.4.5 Movement Identification and Compensation
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Movement Monitor System

To effectively detect the potential movement (expected or unexpected) during the scanning, the
UNet-VGG16 architecture [104, 107] is employed to segment the arm from RGB images. The
U-Net was proposed by Ronneberger [108] for segmentation tasks based on Fully convolutional
networks (FCNs). U-Net consists of two parts: the feature extraction part and the up-sampling
part with skip connections. Besides, VGG-Net confirmed that a smaller kernel size and a deep
CNN can improve model performance [109]. To address the issue of limited data, the VGG-16
architecture was employed as the encoder layer of U-Net structure [107]. With a well-trained
VGG-16 model on imageNet data set [110], the training time of the used UNet-VGG16 can be
significantly reduced.

To train an UNet-VGG16 model to efficiently segment the arm in this setup, 270 images
were collected by changing both the camera position and the environments, e.g., different
backgrounds, occlusion caused by the robotic arm and US probe, and with/without humans
in the field of view. Then, the arm was manually annotated on all images using LabelMe
software [111]. To augment the data for better generalization, the images are randomly
flipped and the color are also randomly modified by changing the related parameters, i.e.,
brightness and contrast. Finally, 3240 images are generated. The ratio between the training
and validation data sets is 8 : 2. The size of the input images is 512× 512. The batch size and
the training epochs are 4 and 10, respectively. In addition, the pixel-wise mean squared error
Lmse is employed as the loss function to train the network.

Lmse = 1
N

C∑
c=1

Hc∑
i=1

Wc∑
j=1

[yc(i, j)− ŷc(i, j)]2 (3.11)

where N = C ·Hc ·Wc. y and ŷ are the annotated image and output of the network.

To validate whether the proposed pipeline is compatible for real scenarios, the second UNet-
VGG16 model was trained separately for human volunteers. To avoid articulated movements,
only the forearm was selected as target object. The dataset of human arm was generated using
the same manner as arm phantom data. Finally, 3560 labeled images from two healthy volun-
teers (BMI: 25.0± 2.8, age: 28.5± 1.5) were separated as 8 : 2 for training and validation.

After obtaining the binary masks using the trained model, the dice coefficient Cd between the
segmented results from the current frame (i-th) and the previous frame (i− j-th) is calculated
as follows:

Cd = 2 |Si−j ∩ Si|
|Si−j |+ |Si|

(3.12)

where Si is the segmented binary results of i-th camera image.

Movement Compensation

If a movement happened during the scanning, the real-time dice coefficient decreases corre-
spondingly. Thus, Cd is used as the metric to identify the object movement. Once Cd becomes
smaller than a preset threshold Tdice, a signal is emitted to inform the controller to stop
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scanning via ROS. Based on the experimental results, Tdice was empirically set as 0.95 to
guarantee both the sensitivity and the robustness of motion detection results in our setup. To
properly resume the sweep from the breaking point, the transformation between previous
(before the movement) and current objects is calculated using ICP (see Fig. 3.11). Here, the
point clouds of the arm surface are created based on the mask of RGB images. After properly
assigning the depth information to the pixels located inside the bounding box of the mask, a
raw point cloud can be generated. To extract the arm, the plane segmentation algorithm is
applied to remove the points under the table surface and an additional depth filter is employed
to remove the points higher than a certain value in Zb direction of frame {b}. To validate
whether the registration results are good enough for continuing the scanning from the break
point, an ArUco marker is rigidly placed on the table. To quantitatively access the registration
results, the motion compensation error emc is computed as follows:

emc =
∥∥∥P

′

ar − (Rmc ·Par + Vmc)
∥∥∥ (3.13)

where Par and P′

ar are the positions of the ArUco marker before and after the movement,
respectively, while Rmc and Vmc are the computed rotation matrix and translation vector.

The RUSS automatically resumes the scanning from the break point if emc is small enough
(< 1 cm). Otherwise, the RUSS automatically ends the sweep. Compared with the state-of-the-
art marker-based approach [6], the use of only camera images makes it more suitable for real
clinical routine without the need of carefully configuring the markers on various patients.

Fine Adjustment Algorithm
To well stitch the two or multiple sweeps when movement happens during the scanning, a fine
adjustment procedure is further developed to displaying a complete and accurate 3D anatomy.
To achieve this, the probe pose of the last frame in the first sweep (before movement) (T labe )
and the probe pose of the first frame in the second sweep (after movement) (T fiaf ) are used.
To overlap these two frames, the tracked probe pose (Tbe) of the first sweep can be updated as
follows:

R
′

be(i) P
′

be(i)

0 1

 =
[
(Tfiaf )−1TmcTlabe

]−1
TmcTbe(i) (3.14)

where Tmc is the homogeneous expression of Rmc and Vmc in Eq. (3.13).

In addition, a further translational adjustment in the image plane is performed to overlap the
two centroids (Pcbe and Pcaf ) of the target vessel from the last frame in the first sweep and the
first frame in the second sweep, respectively. The centroid is computed based on the binary
mask computed using a well-trained U-Net model as [7]. To train the network, 3369 B-mode
images were used. The training details are exactly the same as [7]. Finally, the tracked probe
pose is thus further updated:

P
′′

be(i) = P
′

be(i) +b
us R(Pcaf − Pcbe) (3.15)
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3.4.6 Results

Segmentation Results on Phantoms and Human Arm

The network parameters were optimized using Adam [112] on a single GPU (Nvidia GeForce
GTX 1080). The learning rate was set to 10−3 at the beginning and reduced by a factor of ten
when the loss changes were less than 0.0001 for ten subsequent steps. The performance of the
well-trained models on unseen images of arm phantom and human forearms are summarized
in TABLE 3.1. The average dice coefficient achieved 0.94 and 0.95 on arm phantom and
human forearms, respectively. Besides, the segmentation time for each image only take around
5 ms.

Tab. 3.1. Performance of Segmentation Algorithm

Dataset Dice Coefficient Time (ms) Samples

Arm phantom 0.94± 0.04 5.3± 0.6 633

Volunteers forearm 0.95± 0.03 5.4± 0.6 704

To demonstrate the performance of the segmentation result, four representative results on arm
phantom and two different human arm are shown in Fig. 3.15. Regarding the arm phantom,
Fig. 3.15 (a) and (b) display segmentation results form RGB images when the arm surface
is without/with occlusion caused by US probe, respectively. Regarding the experiments on
volunteers, a normal blue tape was warped around human elbow. The tape servers as boundary
of forearm and its position is easily changed and determined based on target anatomies by
human operators. The segmentation results on two different volunteers are shown in Fig. 3.15
(c) and (d). Even when the occlusion happens, the forearm boundary is still completely
extracted. These results demonstrate that well-trained models has the potential to accurately
extract the target objects. The dice coefficient of these four representative results are 0.96,
0.95, 0.97 and 0.96, respectively.

ICP-Based Surface Registration Performance

To demonstrate the performance of the ICP-Based surface registration approach in our setup,
a representative experimental result has been shown in Fig. 3.16. The mean squared error
(MSE) of distance between corresponding points in the two point clouds (Pct and Pc) quickly
decreased at beginning and converged (0.2 mm) after 25 iterations. The initial alignment is
shown in Fig. 3.16 (b), which is computed using multiscale feature resistance approach [106].
Then the result after 10 and 40 iterations are depicted in Fig. 3.16 (c) and (d). It can be seen
that the point cloud obtain using an RGB-D camera can be well registered to a preoperative
template (MSE is 0.16 mm).

Considering the potential occlusion in a real scenario, the extracted point cloud from an
RGB-D camera Pc could be incomplete. To further validate the robustness of the ICP-based
Registration, Pc is cropped by a plane being orthogonal to the first principal direction computed
using PCA. To investigate the influences caused by various levels of occlusion, Pc is cropped
by the plane at 10%, 20% and 40% on the first principal direction [Fig. 3.17 (a), (b) and (c),
respectively] and two planes at 10% and 90% [Fig. 3.17 (d)]. In all these four setups, good
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Fig. 3.15. Segmentation performance on unseen images. (a) and (b) are the results on unseen images without
and with occlusion, (c) and (d) are the results on unseen images from two different volunteers. The
computed dice coefficients for (a), (b), (c) and (d) are 0.96, 0.95, 0.97 and 0.96, respectively.

Fig. 3.16. Surface registration results. (a) is the mean squared error (MSE) of distance between corresponding
points in the two point clouds, (b), (c) and (d) are the results when the iteration is 0, 10 and 40,
respectively. The sizes of preoperative Pct and camera-based Pc are 1379 and 925, respectively.

results (Fig. 3.17) are achieved after a certain iterations (64, 68, 83, and 168, respectively).
The final MSE are 0.3, 1.6, 4.4 and 2.7 mm, respectively.

Performance of Confidence-based Trajectory Correction

Due to the error of hand-eye calibration and CT-to-object registration, the computed trajectory
may result in non-optimal contact during the scan. This reduces the quality of US imaging, like
introducing a shadow in the image view as shown in Fig. 3.18 (b). Thus, a confidence-based
orientation correction is developed to guarantee good contact condition between the probe
and the arm surface during the scan. To demonstrate the performance of the confidence-based
correction, two sweeps with an exactly same initial trajectory are performed. The representing
results are depicted in Fig. 3.18.

3.4 Surface Registration based Motion-Aware System 75



Fig. 3.17. Surface registration results between preoperative point cloud and incomplete camera point cloud. In (a),
(b), and (c), the camera point cloud Pc is cropped from 10%, 20% and 40%, respectively, on the first
principal direction. In (d), Pc is cropped by two planes at 10% and 90% on the first principal direction.

It can be seen from Fig. 3.18, part of the target artery is out of the imaging view for the case
without correction. This is represented by the red part in 3D and white circle (incomplete)
in 2D [Fig. 3.18 (a) and (b)], respectively. In the case involving correction, once a shadow
is detected using the confidence map, an in-plane adjustment angle θc is computed and the
correction is automatically carried out by the robot. After such correction, the entire artery
geometry has been successfully visualized in the imaging view [see Fig. 3.18 (d)]. In addition,
since the poses of the remaining positions in the trajectory are also updated using Eq. (3.10),
the target vessel is completely visualized inside the imaging view [see Fig. 3.18 (d)]. This
result demonstrates that the proposed confidence-based orientation can help to improve the
visibility of the target object during the sweep.

Fig. 3.18. Performance of the confidence-based orientation correction algorithm. (a) and (c) are the 3D results
obtained without and with confidence-based correction. (b) is the B-mode images where the target
artery geometry is partly out of the view, while (d) is the corrected result where the artery is completely
displayed in the imaging view.

Movement Compensation Results

The compensation is done by two successive procedures, 1) surface registration-based com-
pensation and 2) the fine adjustment process using both robotic tracking information and
corresponding B-mode images. To qualitatively and quantitatively validate the compensation
algorithm, a complete artery of an arm phantom is used as the target object (total length is
around 440 mm).
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1) Performance of Surface Registration-based Compensation: To quantitatively assess
the surface registration performance, the phantom arm together with the used table was
randomly moved inside of a rectangle (110mm) and the maximum rotation angle variation
was 80◦. To assess the performance of the surface registration-based compensation, an ArUco
marker is physically placed on the flat table (see Fig. 3.12). The real-time pose (position and
orientation) of the ArUco marker can be computed using a ROS package7. Thus, the motion
compensation error emc is computed by Eq. (3.13).

Since the arm surface could be partly occluded by the used robotic manipulator [Fig. 3.15 (b)
and (d)] during the scanning, the experiments are separately performed when (case 1) the
robotic arm is out of the view and (case 2) is in contact with the phantom arm surface. The
experiments were repeated 20 times for each case. The final results are shown in Fig 3.19.
The emc (±SD) of case 1 and case 2 are 6.1 ± 1.6 mm and 6.9 ± 1.6 mm, respectively. The
results obtained when there is an occlusion in the camera view (case 2) is slightly larger than
the results of the ideal case (case 1). Besides, based on a t-test (probability p = 0.14 > 0.05),
it was concluded that no significant difference exists between the two experimental sets.
Considering our application, since 6 mm is much smaller than the probe width 37.5 mm, the
surface registration-based compensation algorithm is promising to be used for compensating
a large movement that happens during the scanning. Thereby, a complete geometry of the
anatomy can be computed as in Fig. 3.20 (b).

Fig. 3.19. Performance of the surface registration-based compensation algorithm. Case 1 and case 2 represent the
situations where the phantom arm surface is not and is occluded by the robotic manipulator, respectively.

2) Performance of Fine Tuning Procedure: After surface registration-based compensation,
two partitions have been stitched together. However, due to the error emc, there is a significant
gap and dislocation at the connected part as in Fig. 3.20 (b). To further address this issue,
two-step fine adjustment procedures are carried using Eq. (3.14) and (3.15) based on the
both robotic tracking information and B-mode images. The tracking information is used to
fully overlap the last frame of the first partition and the first frame of the second partition.
Then an image-based in-plane adjustment is performed to overlap the two centroids of the
target artery in the overlapped two frames. The 3D result after fine adjustment is shown in
Fig. 3.20 (c), where the stitching has been successfully compensated. This will further enable
autonomous diagnosis.

7https://github.com/pal-robotics/aruco_ros
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Fig. 3.20. Performance of compensation method. 3D images of a vessel (a) without any compensation, (b) with
surface registration-based compensation, and (c) further with a step-wise fine adjustment procedure.

3.4.7 Discussion

Precise repositioning of US probe is one of the crucial techniques for guaranteeing accurate
and complete geometry of target anatomies when the object’s pose is changed during scanning.
This study first proposed a systematic pipeline for RUSS to monitor and further compensate
for the potential object motion only on a depth camera. The proposed motion-aware RUSS
performs boldly in our setup of experiments (on a human-like arm phantom). However,
there are still some limitations that need to be discussed. First, in this work, we have so
far considered the rigid motion of object. The articulated motion and deformation of object
are existing as well for US scanning. However, the articulated motion could be consider
as multiple rigid motion around joints. Regarding the force-induced deformation, one can
apply stiffness-based approach to achieve zero-compress volume [5]. In addition, the ICP-
based compensation method was designed for visible object motions during US scans. The
tremor or vessel motion [103] have not been considered. However, due to the use of the
compliant controller, the small and fast physiological motion can be partially adapted by the
controller. Thus, compared with free-hand US acquisition, the effect of such small motions is
not aggravated in our setup. At this moment, the presented RUSS can be used for the potential
applications on rigid body parts, i.e., forearm, upper arm, thigh, shank or whole chest. By
further considering articulated motion and integrating deformation correction approach [5]
and non-rigid registration [113, 114] in the future, the system will be more robust to be used
in regular US examinations.

3.5 Conclusion

In this chapter, we describe the vision-based motion-aware system aiming to achieve accurate
and consistent 3D images of target anatomies when an object motion is in presence during
US scanning. In this way, the proposed approaches enable sonographers to adjust objects’
position and rotation better visualize the underlying objects. This is particularly useful for the
anatomies with long structures due the to limited working space of the robotic manipulator.
Thus, the proposed framework possesses the advantages of free-hand US (flexibility) and
robot US (accuracy and stability) at the same time.

To validate the novel idea of motion-aware RUSS, the passive marker based approach is
validate for a simplified phantom environment in Sec. 3.3. The results show that the proposed
method can accurately compensate a translation movement (3.1 ± 1.0 mm) and rotation
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movement (2.9 ± 0.7 mm) for movements of up to 200 mm and rotations of up to 40◦. In
addition, to further explore the effective pipeline in real scenarios, the markerless approach
is developed with a human-like arm phantom with uneven surface, as Sec. 3.4. To achieve
the autonomous manner, the scanning trajectory is extracted from a CT atlas. Compared with
the marker-based approach described in Sec. 3.3, a markerless approach is more convenient
for operators without the requirement for carefully configuring the markers for individual
patients. In addition, to display 3D objects without significant stitching gap as [6], a step-wise
fine adjustment procedure is carried out based on both tracking data and B-mode images
[see Fig. 3.20 (c)]. Such improvement we believe can make RUSS more robust and thus,
bring them closer to clinical use. Furthermore, we consider that it enables the research topic
of automatic examination and diagnosis, which is significantly meaningful in pandemic and
undeveloped countries and areas.
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4Deformation-Aware Robotic
Ultrasound Imaging

4.1 Overview and Publications

This chapter presents the contributions of this thesis regarding deformation-aware robotic US
imaging. Due to the inherited characteristic of US imaging, a certain force is required to be
applied to achieve optimal acoustic coupling for good visibility of the target anatomies. Due
to the exerted pressure, the shape distortion of visualized tissue structures is inevitable, in
particular for soft tissues such as superficial blood vessels. The pressure-induced deforma-
tion will lead to geometrical errors hindering accurate and operator-independent bio-metric
measurements. Such deformation has an even larger effect on 3D US volumes as the correct
compounding is limited by the inconsistent location and geometry.

To address this challenge, this chapter presents a patient-specified stiffness-based method to
correct the tissue deformations in robotic 3D US acquisitions. To obtain the patient-specified
model, robotic palpation is performed at various sampling positions on the tissue. The contact
force, US images and the probe poses of the palpation procedure are recorded. The contact
force and the probe poses are used to estimate the nonlinear tissue stiffness. The images are
fed to an optical flow algorithm to compute the pixel displacement. Then the pixel-wise tissue
deformation under different forces is characterized by a coupled quadratic regression. To
correct the deformation at unseen positions on the trajectory for building 3D volumes, an
interpolation is performed based on the stiffness values computed at the sampling positions.
With the stiffness and recorded force, the tissue displacement could be corrected. The method
was validated on two blood vessel phantoms with different stiffness. The results demonstrate
that the method can effectively correct the force-induced deformation and finally generate 3D
tissue geometries.

This chapter is organized as follows: In Sec. 4.2, the clinical and methodological background
has been summarized. Sec. 4.3 describes the overview of the involved hardware and the
control method. Then, the proposed stiffness-based deformation correction is described in
Sec. 4.4. The experimental results on a stiff custom-designed phantom and a commercial soft
phantom are presented in Sec. 4.5. Finally, the detailed discussion and the conclusion are
displaced in Secs. 4.6 and 4.7, respectively.

Substantial parts of this chapter have already been published in the following article and are
quoted verbatim.
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4.2 Introduction

4.2.1 Clinical Motivation

Ultrasound (US) is a widely utilized diagnostic imaging modality for examinations of internal
organs. It is also commonly used to obtain the location and geometric information of disease
intraoperatively as US imaging is highly available, non-invasive and radiation-free. However,
to obtain optimal acoustic coupling of a US transducer and thus achieve good visibility of
target anatomies, a certain pressure is required to be applied to the imaged anatomy. Due
to the exerted pressure, the shape distortion of visualized tissue structures is inevitable,
particularly for soft tissues such as superficial blood vessels (Fig. 4.1). The shape of the
cephalic vein continues to compress when the contact force increases. The vein loses its
complete lumen when the force increases to 8 N . As a result, the distortion can severely
obfuscate the geometrical measurements of subsurface targets, e.g., measuring blood vessel
diameter for identifying vascular stenosis.

Fig. 4.1. Cephalic vein imaged under three different forces. (a) robotic arm with a force/torque (F/T) sensor, (b),
(c) and (d) are the resulting B-mode images acquired when the contact forces are 0 N , 4 N and 8 N ,
respectively. The echo of the radius bone is visible below. λz represents probe tip displacement in the
applied force direction between (b) and (d), here about 6 mm. Reprint from [5] with permission of IEEE.

4.2.2 Tissue Deformation Correction

For conventional free-hand US examination, it is challenging to maintain a constant force,
even for an experienced sonographer. The varied pressure results in different deformations
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across the individual 2D US slices, which will further hinder the achievement of accurate 3D
geometry. Although 3D US imaging can directly display 3D anatomical structures reducing the
requirements for sonographers and improving the accuracy of diagnosis [115], the deformation
impairs the higher acceptance of such approaches in clinical practice [116].

To address the pressure-induced deformation, Treece et al. employed non-rigid image-based
registration and position sensing for free-hand 3D musculoskeletal US examinations [117].
This approach mainly focused on axial deformation. Burcher et al. built a finite element
method (FEM) model to predict the deformation in both axial and lateral directions [118].
The performance of this method relies on the prior knowledge of the tissue properties, which
makes it unsuitable for real-world applications. Additionally, Flach et al. employed a generic
homogeneous representation of tissues to estimate the deformation using FEM [119]. However,
tissues are inhomogeneous in reality and their properties vary from one patient to another.
To address this drawback, Dahmani et al. applied a linear elastic biomechanical model
to estimate the personalized mechanical parameters of the tissues along the deformation
field [120]. In addition, Sun et al. proposed a method to compute a zero-pressure image using
an empirical regressive model of US image deformation with respect to the applied force [100].
Nevertheless, the method was developed to correct the deformation in 2D slices. A good
regressive model is computed based on a set of forces and corresponding pixel displacements.
This method cannot be directly extended to obtain compression-free 3D volumes because it is
impractical to acquire paired forces and image deformations in a dense sampling.

Recently, since robotic manipulators are much more accurate and stable than human oper-
ators, robotic US systems (RUSS) have become a promising solution toward automatic US
scans [7, 11, 42, 56]. To accurately control the probe orientation, Jiang et al. developed
a method to align the probe centerline with the normal direction of a tested object using
force data [9]. Besides, Jiang et al. proposed a motion-aware 3D RUSS to combine the
flexibility of the free-hand US and the accuracy and stability of robot [6]. In addition, unlike
the free-hand manner, the probe pressure-induced indentation to the tissues is accurately
controlled to be homogeneous along the entire US volume for RUSS. This is achieved by using
hybrid force/position controllers to maintain a certain contact force during the scanning [42].
However, homogeneous deformations still exist in all slices. To further obtain zero-pressure 3D
volumes, Virga et al. applied a 4th-order polynomial function to regress the force-dependent
deformations and further propagate the deformation field at sparse sampling points to the
whole scanning direction [116]. Nevertheless, five pixels are required to be manually selected
on the first frame. In addition, the method takes around 186 s to compute the deformation
field at one location and 15 points need to be selected along a sweep path of 70 mm. These
drawbacks hinder the acceptance of this method in clinical practice.

4.2.3 Contributions

In this work, a stiffness-based deformation correction method, incorporating image pixel
displacements, contact forces and nonlinear tissue stiffness, is proposed to recover a zero-
compression 3D tissue geometry from the deformed data recorded during robotic scans.
To obtain patient-specific regression models, robotic palpation was performed at sampling
positions. Since the tissue compression leads to the increase of tissue stiffness, the nonlinear
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tissue stiffness was modeled as a 2nd-order polynomial function to the probe displacement
in the applied force direction. An optical flow algorithm was employed to compute the two-
dimensional pixel displacement in US images acquired under different contact forces. With
such displacement, a coupled quadratic regression model with respect to the pixel position, the
contact force and the tissue stiffness was computed as an optimization issue for the sampling
position. Since the tissue stiffness is the key factor affecting the deformation, the optimized
regression model for the initial sampling position can be quickly propagated to other positions
on the trajectory by substituting the estimated local stiffness. This speeds up the process to
obtain compression-free 3D volumes. The method was validated on two vascular phantoms
with significantly different stiffness.

4.3 System Overview

4.3.1 Hardware Overview

The system is comprised of three main components: a robotic manipulator (KUKA LBR iiwa 7
R800, KUKA Roboter GmbH, Germany), a linear US probe (CPLA12875, Cephasonics, USA)
and a Gamma force/torque (F/T) sensor (ATI Industrial Automation, USA). The F/T sensor is
attached to the robotic flange. The US probe is mounted on the other side of the F/T sensor
using a custom-designed holder. The robotic system is controlled using a Robot Operating
System (ROS) interface [48]. The control commands are exchanged at 100 Hz. The whole
system is depicted in Fig. 4.2.

The contact force between the probe and the object is recorded using a data acquisition device
(FTD-DAQ-USB6361, National Instruments, USA) and further published to ROS with accurate
timestamps. Besides, the US images (50 fps) are accessed via a USB interface and visualized
using a software platform (ImFusion GmbH, Munich, Germany). The detailed acquisition
parameters are set as follows: image depth: 40 mm, frequency: 7.6MHz, brightness: 66 dB.
To synchronize the US images, forces, and probe poses, the US images are also published to
ROS with timestamps.

To validate the performance of the proposed method to recover zero-compression images
from deformed images on different tissues, two blood vessel phantoms with different stiffness
are employed (Fig. 4.2). The one with higher stiffness is custom-made by gelatin powder
(175 g/L) and paper pulp (3-5 g/L). The paper pulp is used to mimic the unstructured artifacts
of human tissues in US images. In addition, to increase the durability of the gel phantom
(over one month), a liquid disinfectant is mixed with water (1 : 9). The second phantom
(blue phantom, CAE, FL, USA) is softer than the custom-designed one. The phantoms with
significantly different stiffness are used to validate whether the proposed method is able
to quickly extrapolate its optimized correction model to different tissues without any prior
knowledge.
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Fig. 4.2. System overview. Reprint from [5] with permission of IEEE.

4.3.2 System Calibration

To generate a 3D US volume from the tracked 2D B-scans, the spatial calibration should
be employed to project the pixels to voxels in 3D space. There are three coordinate frames
involved: robotic base frame {b}, US probe tip frame {p}, and B-mode imaging frame {I}
(see Fig. 4.2). Since Z direction of frame {I} is set in the perpendicular direction of the 2D
image plane, a homogeneous representation of pixel position in frame {I} can be written
as IP = [x, y, 0, 1]T . Accordingly, 2D pixel positions IP are projected into 3D space using
Eq. (4.1).

bP =b
p T p

IT
IP (4.1)

where j
iT is the transformation matrix used to transfer the position from frame {i} to frame

{j}.

The transformation matrix b
pT is computed based on the kinematic model and the 3D geometry

parameters of the 3D printed probe holder. In addition, considering that the origin of frame
{p} is set to the central point of the probe flat tip surface, and that the origin of frame {I} is
on the top left side, the matrix p

IT is represented as follows:
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p
IT =



Lp

LI
0 0 −Lp

2

0 0 −1 0

0 DI

WI
0 ε

0 0 0 1


(4.2)

where LI and WI are the length and width (in pixels) of the 2D images (see Fig. 4.2). DI is
the physical depth of the US scan, namely 40 mm. Lp is the physical length of the deployed
US elements, here Lp = 37.5 mm. ε is used to represent the small distance from probe frame
origin to image frame origin determined by the US elements configuration.

4.3.3 Control Architecture

To ensure the image quality and human safety, a compliant controller is essential for robotic
US acquisition [48]. The used Cartesian compliant control law is defined in Eq. (4.3)

τ = JT [Km(xd − xc) + Fd] + D(dm) + fdyn(q, q̇, q̈)] (4.3)

where τ is the target torque applied to the joint drivers, JT is the transposed Jacobian matrix,
xd and Fd are the desired position and the target force, xc is current position, Km represents
the Cartesian stiffness, D(dm) is the damping term, and fdyn(q, q̇, q̈) is the dynamic model of
the robotic arm.

To make the force stable in the direction of the probe centerline, the robot is controlled via
a 1-DOF compliant controller and a 5-DOF position controller. This behavior is achieved
by assigning high stiffness values to the DOF that will be controlled under position mode.
Regarding the compliant direction, the stiffness is set to a value in [125, 500] N/m for different
human tissues [48]

4.4 Pressure-Induced Deformation Correction

The overall pipeline proposed to compute compression-free 3D volumes based on multiple
sensor information and a robotic platform has been shown in Fig. 4.3. To overcome the limita-
tion of the state-of-the-art method [116], the proposed approach is developed based on the
tissue stiffness. The use of stiffness allows to quickly propagate an estimated 2D deformation
regression from one position to another position, or even extrapolate the optimized regression
model to other tissues with totally different stiffness profiles.

Being beneficial from using a robotic platform, palpation can be automatically performed, and
paired forces, probe poses and US images are recorded. Afterward, the local stiffness with
respect to the contact force and tissue position is estimated. The unknown parameters of the
regression model are optimized based on the pixel movements, extracted using optical flow
technique, in the axial and lateral direction, respectively. Considering the tissue properties are
not homogeneous, robotic palpation is performed multiple times at different positions. Instead
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Fig. 4.3. Pipeline to correct the force-induced deformation and reconstruct 3D US volumes. At least two palpation
procedures should be performed at different positions to obtain the zero-compression volume. Reprint
from [5] with permission of IEEE.

of running multiple optimization procedures, the proposed method can update the deformation
regression by substituting the local stiffness profiles in the optimized model. Finally, to obtain
3D volumes, a robotic sweep is performed along the planned path. The deformations of the
US images acquired at unsampled positions are corrected by the approximated local stiffness
computed based on the sampled positions with linear interpolation. Based on the corrected 2D
images and probe poses, the 3D volume can be compounded. The detailed steps are described
in the following subsections.

4.4.1 2D Deformation Estimation

To accurately visualize the tissue geometry and enable better diagnosis, a 2D deformation
field is computed using two regression functions with respect to tissue stiffness and coupling
pixel displacements. The tissues with high stiffness can resist deformations, while the tissues
with low stiffness will suffer larger deformations during scans. However, most model-based
deformation correction methods directly compute the pixel displacements with respect to
the contact force (Fc) rather than to the stiffness (k) [100, 116, 117]. Since Fc is applied
externally, it cannot reflect tissue’s deformation-resistant capacity. Therefore, the computed
deformation field cannot be propagated on other positions or other tissues, which limits the
force-based approach for building zero-compression 3D volumes. To propagate deformation
fields for 3D volume, an additional 3D inpainting technique is required as in [116]. Yet, this
technique takes too much time to compute the 2D deformation field. It reported that 15 points
are needed to build a good 3D volume of the sweep lengthen 70 mm, and the computation
for each point takes 186 s on average. Thus, here a stiffness-based displacement model is
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built. Since stiffness reflects tissue properties, the proposed approach allows to quickly adapt
optimized regressions from sampled positions to unseen positions and even to other tissues.

Dynamic Tissue Stiffness Estimation

Considering a real scenario, tissue stiffness also varies depending on the compression situation.
The stiffness becomes large when large deformations occurred. As an example, the recorded
force and probe tip displacement λz (Fig. 4.1) on the custom-designed stiff and the commercial
soft phantom are shown in Fig. 4.4. During the robotic palpation procedure, the contact
force is slowly increased (0, 30 N) for the stiff phantom and (0, 16 N) for the soft one. It
can be seen from Fig. 4.4 that the samples acquired on the stiff phantom are distributed
around a linear function while the samples acquired on the soft one are distributed around
a nonlinear function. To qualitatively analyze the performance of the stiffness regression
models, R-Squared (R2) is measured. A quadratic function is already able to well explain
the samples obtained on both stiff and soft tissues (R2 = 0.998) while R2 is only improved
by 0.001 using a cubic function. Therefore, a quadratic function is employed to capture the
flexibility of elastic tissues as follows:

Fc = c1λ2
z + c2λz + c3 (4.4)

where c1, c2 and c3 are the constant coefficients of the quadratic stiffness regression model.

The dynamic stiffness kd according to current deformation is computed as the derivative of
Eq. (4.4).

kd = 2c1λz + c2 (4.5)

Pixel-wise Displacement Regression

To characterize tissue deformation, pixel tracking is performed between US images acquired
under different pressures using optical flow. Considering the accuracy and the cost of time,
Lucas-Kanade approach [121] is employed to estimate the pixel displacements in both lateral
and axial directions Dopp =

[
Dx
p , Dy

p

]T
. Considering the pixel displacement dp is a coupled

result over different factors, a high coupled polynomial regression over pixel position (x, y),
contact force Fc and the estimated tissue stiffness kd are built. Since the deformation can be
calculated using Fc and kd, h = Fc

kd
is defined to estimate dp as follows:

dp(x, y,
Fc
kd

) =

Kx

Ky

 Mv(x, y,
Fc
kd

) (4.6)

where Kx ∈ R1×10 and Ky ∈ R1×10 are unknown parameters of the pixel regressions in lateral
and axial direction, respectively. Mv(x, y, h) = [x2, y2, h2, xy, xh, yh, x, y, h, 1]T includes
all variable combinations (2nd and 1st order) representing the coupling effect as [100].

88 Chapter 4 Deformation-Aware Robotic Ultrasound Imaging



Fig. 4.4. Regression model for tissue stiffness. Poly1, Poly2 and Poly3 represent first, second and third order
polynomial. The computed stiffness (Mean±SD) for the two phantoms are 3237 ± 56 N/m and
1489 ± 617 N/m, respectively. Reprint from [5] with permission of IEEE.

However, the stiffness of soft tissues varies a lot with respect to the applied force as Fig. 4.4 (b).
Eq. (4.6) is only able to depict the deformation of stiff tissues. To make the proposed method
also work on soft tissues, the idea of calculus is employed to formalize the final regression
model for each pixel as follows:

Dp(Fc) =
∫ Fc

0
dp(x, y,

F

kd
)dF (4.7)

where Dp(Fc) is the cumulative result of dp computed for small force intervals, kd is seen as a
constant in each interval.

Besides the dynamic stiffness, this work also employs the probe displacement λz (see Fig. 4.1)
as boundary constraints to better recover the geometry of the scanned tissue. With a larger λz,
US imaging will visualize deeper tissues. This means the bottom pixels of the images acquired
using small force will be moved toward the top when Fc is increased. Due to the contact
between the probe and object, the movement of the superficial layer is mainly in the axial
direction. In addition, based on the optical flow results, the displacement of the pixels located
in the low part also mainly happens in the axial direction, especially when a large force is
applied. Thus, the physical constraints can be written as follows:
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Dbp(x, 0, Fc) = [0, 0]T

Dbp(x, LI , Fc) = [0,
λz
LT

LI ]T
1 ≤ x ≤WI (4.8)

where LI and WI represent the pixel size (length and width) of the US images, and LT is the
thickness of the flexible layer.

Then, the unknown parameters Kx ∈ R1×10 and Ky ∈ R1×10 can be optimized using
Eq. (4.9)

min
Kx, Ky

1
MN

M∑
i=1

N∑
j=1
||Dp(xj , yj ,

F i
c

kid
)− Dmp (xj , yj , F i

c)||2 (4.9)

where Dmp (x, y, Fc) is the measured pixel displacement. It consists of Dbp and Dopp . M is
the number of paired force values and US images recorded during robotic palpation, N is
the number of the characterized pixel positions involved in optical flow and the boundary
constraints. To make the regression can be extrapolated to other positions with different
stiffness, Fc and the pixel displacement dxp and dyp have been normalized to [0, 1]. Besides,
Eq. (4.9) is optimized using ADAM optimizer [112] with a updating step of 0.01.

4.4.2 3D Compression-Free Reconstruction

The pixel displacement regression model at an initial sampling position on the scanned tissue
can be computed as described in Section 4.4.1. The US deformations at this position are
computed by substituting the measured Fc and λz in the regression. With the computed
pixel-wise displacements under different forces, the deformation can be compensated. To
obtain the zero-compression volume, the correction procedures are carried out for the whole
trajectory. To characterize the local feature, Nk equidistant sampling positions are selected
on the trajectory. Subsequently, the robotic palpation is performed at all sampling points and
the corresponding stiffness can be estimated. Then, the deformation regression for a different
position can be updated by substituting new stiffness.

Dp(Fc) =
∫ Fc

0
dp(x, y,

F

kid
)dF (4.10)

where kid is the nonlinear tissue stiffness with respect to the probe displacement λz at i-th
sampling position.

Since dense sampling is impractical for real scenarios, a robotic sweep over the anatomy
is performed. Based on the probe poses, the local stiffness for unsampled positions on the
trajectory is computed as follows:

k
′

d =
Nk∑
i=0

ωikkid (4.11)
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where ωik is weight for the stiffness at Nk sampled positions,
∑Nk

i=0 ωik = 1. ωik is determined
using the distance Ldi from an unsampled position to all sampled positions as Eq. (4.12).

ωk =



[∑Nk

i=1 Ldi

Ld1

, . . . ,

∑Nk

i=1 Ldi

LdNk

]
Normal

∀Ldj
̸= 0

[0, . . . , 1︸︷︷︸
j−th

, . . . , 0] ∃Ldj
= 0

(4.12)

Based on the measured force and the estimated stiffness in Eq. (4.11), the deformations at
unsampled positions can also be compensated using the optimized pixel regression for the
initial position. The estimated compression-free volume for the target tissues is compounded
using the paired corrected US images and the corresponding probe poses as [6].

4.5 Results

4.5.1 2D Compensation Results

Validation of the Deformation Correction Method on the Sampling Position

To validate the performance of the proposed method for generating zero-compression US
images from deformed ones, robotic palpation was performed three times at the same position
on the stiff phantom. The two sets of data are used to optimize the unknown regression
parameters Kx and Ky in Eq. (4.6). The results are shown in TABLE 4.1 (taking one arbitrary
sampling point as an example).

Tab. 4.1. Optimized Regression Parameters

Parameters Value Loss

Kx
[−0.27,−0.01, 0.15,−0.25,−0.24,

−0.27, 0.29, 0.03, 0.16,−2.01]e−1 2.5e−5

Ky
[−1.43,−1.89,−4.62,−0.87,−0.81,

3.69, 0.80,−1.91, 2.29,−2.23]e−1

The paired images, contact forces and probe displacements recorded from the third palpation
at the same position are then used for validation. To demonstrate the correction performance,
the results achieved when Fc = 25 N is shown in Fig. 4.5. The mimic artery geometry has
been significantly compressed in the left view (Fig. 4.5). This affects measurement accuracy
of the object’s geometry. Nonetheless, based on the results shown in Fig. 4.5, the deformed
geometry (red line) can be effectively recovered to ground truth (green line). To further
quantitatively analyze the result, the dice coefficient is computed and it has been improved
from 0.69 to 0.92.

4.5 Results 91



Fig. 4.5. Performance of the proposed deformation correction method for the 2D image obtained under 25 N
on the stiff vascular phantom. The deformed image, corrected image and the ground truth acquired
when the contact force is zero are overlapped in the left plot. The right image shows the extracted blood
vessel boundaries. Reprint from [5] with permission of IEEE.

Fig. 4.6. The deformation correction performance on the same tissue at another position using the updated regres-
sion model based on local estimated stiffness. The computed dice coefficients for the deformed images
and the corrected images are [0.89, 0.87, 0.81, 0.78, 0.74] and [0.97, 0.97, 0.97, 0.98, 0.94], respectively.
Reprint from [5] with permission of IEEE.

Validation of Propagated Regression Model Computed based on Local Stiffness
Considering the tissue properties are not the same at different positions, multiple palpation
procedures are performed at two different positions (larger than 20 mm from the initial
position) on the same gel phantom. Some results are shown in Fig. 4.6, which shows that
the deformed tissue can be corrected using the updated regression model. The average dice
coefficient for the corrected images is 0.96. Besides, more results can be found in this video1.

Validation of Propagated Regression Model on Other Tissues
To further validate the adaptive ability of the proposed method, a commercial vessel phantom
is employed. The average stiffness of the soft phantom (1489 ± 617 N/m) is only about
half of the stiff one (3237± 56 N/m). Besides, the stiffness of the soft phantom also varies
much more than the stiff phantom when different contact forces are applied. This makes it
challenging to adapt the optimized regression model based on the data acquired on the stiff
phantom to an“unseen" soft phantom with such significantly different properties. The results
are shown in Fig. 4.7. The deformed vessel geometry (red ellipse) can be compensated as
well using the proposed approach, and the corrected result (blue ellipse) is very close to the
zero-compression data (green ellipse). The dice coefficients improved from 0.66 to 0.89 (i.e.
by 35%). In addition, to demonstrate the advantages of the proposed stiffness-based approach
over the existing force-based approach [100], the corrected result (yellow ellipse) obtained

1https://www.youtube.com/watch?v=MlZtugQ2cvQ
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using the force-based approach is also shown in Fig. 4.7. This result is obtained by substituting
the force on “unseen" tissues to an optimized quadratic polynomial regression model obtained
for a sampled position on the stiff phantom. The corrected result of the propagated force-
based model (dice: 0.74) is significantly worse than the result of the proposed approach (dice:
0.89).

Fig. 4.7. Extrapolation performance on an “unseen" soft phantom. Left: The overlapped result of the deformed
image, ground truth and corrected images using the force-based approach [100] and the proposed
stiffness-based approach. Right: Vessel boundary detected on the four images. Fc = 8 N .

Finally, to systematically demonstrate the performance of the proposed method on different
sampling positions both on stiff and soft tissues, the average dice coefficients for the deformed
and corrected results have been summarized in TABLE 4.2. For the stiff phantom, four different
sampling positions are employed to validate the performance of the adapted regression models
at other positions. At each position, Fc was gradually increased from zero to 25 N . To
demonstrate the correction performance under various force, the results obtained when
Fc = 5, 10, 15, 20, 25 N are summarized in TABLE 4.2. Then, we further validate the method
on the soft phantom. Since the phantom itself is softer, severe deformation happens when
Fc = 8 N (Fig. 4.7). Thus, the typical results acquired when Fc = 2, 4, 6, 8 N over three
sampling positions are summarized in TABLE 4.2. TABLE 4.2 shows that all dice coefficients of
the corrected results are over 0.91 while the worst deformed result yields only 0.69.

In addition, the adapted results of force-based approach [100] on the same points were
computed as well (TABLE 4.2). Regarding the stiffness phantom, although the results of the
proposed approach outperformed the results of the force-based approach in general, both of
them achieved good performance. This is mainly because the stiff phantom is homogeneous,
which resulting in similar stiffness for different positions on the same phantom. Since the
stiffness of the soft phantom is really different from the stiff phantom, the adapted performance
of the force-based approach becomes significantly worse than the results obtained using the
proposed approach. The ability to quickly and robustly propagate an optimized regression to
“unseen" position or even tissues is important to generate a patient-specified correction model
in real clinical practice.

4.5.2 3D Reconstruction Results

To obtain 3D volumes of objects, a sweep covering the area of interest is carried out. Con-
sidering the variation of tissue properties, Nk sampling positions are selected. The dynamic
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Tab. 4.2. Dice Coefficient on Different Tissues and Positions

stiffness at the sampling position is estimated based on the recorded λz. Here Nk = 4 is
selected on the scan trajectory lengthened 40 mm for the stiff phantom while Nk = 3 is used
for the soft one, where the path is 60 mm. To demonstrate the performance of the proposed
stiffness-based regression model on the whole sweep, including many unsampled positions,
the 3D volumes of the gel phantom (ground truth, deformed and corrected images) are shown
in Fig. 4.8. The ground truth is obtained when the contact force is zero. To achieve this, the
phantom is submerged in warm water to avoid air between the probe tip and object surface.

To better visualize and compare the resulting volumes, the views on the axial plane (dash
red line) and coronal plane (dash blue line) are displayed in Fig. 4.8. The diameters of the
three volumes measured in axial view are similar. However, in coronal view, the length of the
orthogonal artery axis (yellow line) measured in the deformed results is less than 20% of the
length measured in the ground truth. After applying the proposed deformation correction
method, the corrected results have successfully recovered the deformed coronal axis length
from being almost identical to the length in the ground truth.

Fig. 4.8. 3D compounding results. The ground truth is recorded when the contact force is zero (phantom is
submerged in water). The deformed result is obtained when the force is 15 N on the stiff phantom.
Reprint from [5] with permission of IEEE.

To validate the accuracy and repeatability of the proposed robotic 3D US system, multiple
robotic sweeps are carried out on the same trajectory. To generate the sweep with different
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levels of deformation, the US sweep is performed with various contact forces. Considering
the phantoms’ stiffness, five Fc (5, 10, 15, 20 and 25 N) are used for the stiff gel phantom and
four Fc (2, 4, 6, 8 N) are used for the soft phantom. To statistically compare the correction
performance in terms of force and stiffness, the vessel centroid variance and the cross-section
area are introduced as the assessment metrics (see Fig. 4.9). The cross-section area is
important because it is the main factor affecting the blood flow velocity and the flow volume
pass in unit time. Besides, the centroid is computed for each B-mode image using OpenCV.
Then, the centroid variance is computed as the Euclidean distances between the ground truth
centroid and the centroids of the deformed and the corrected images. The variance only
becomes small when both the long axis and short axis length of the vessel are close to the
corresponding values in the ground truth.

Ten images are randomly selected from sweeps acquired under different Fc. The average
results of the vessel centroid variance and the cross-section area are shown in Fig. 4.9.
It is noteworthy that the centroid variance is significantly reduced after correction in all
investigated cases (different forces and phantoms), particularly for soft tissues. The variances
for the corrected results are much smaller and more stable than the deformed cases. The
maximum variances are 0.78 mm and 2.70 mm for the corrected and the deformed results on
the soft phantom when Fc = 8 N . Regarding the stiff phantom, the maximum variances are
1.44 mm and 3.6 mm when Fc = 25 N . These values are larger than those peers obtained on
the soft phantom. This is because the absolute geometry size of the artery in the stiff phantom
is much larger than that in the soft phantom (224 mm2 versus 57 mm2).

Regarding the vessel area, the corrected results are also closer to the ground truth than
the deformed results. In the best-case scenario, Fc is small for both phantoms (2 N for
soft phantom and 5 N for stiff phantom) because the pressure-induced deformation is
also small when a small force is employed. However, in terms of the difference between
the area of the ground truth and the corrected/deformed results, it is significantly re-
duced from [17, 34, 47, 59, 66] mm2 to [1, 15, 16, 27, 28] mm2 for the stiff phantom and from
[10, 15, 18, 22] mm2 to [−3, 3, 11, 13] mm2 for the soft phantom. The improvement is over 55%
for all cases. Moreover, it can be seen from Fig. 4.9 that, the areas of the corrected results of
the images acquired under different forces are very stable. The standard deviation between
the areas of corrected images is only 8.8 mm2 and 5.7 mm2 for the stiff and the soft phantoms,
respectively. This demonstrates that the proposed system could generate zero-compression 3D
US using the proposed deformation correction.

4.6 Discussion

The pressure-induced deformation is a common issue for US imaging of soft tissues. With
the proposed approach, accurate and reproducible 3D images, independent of the experience
of sonographers, can be achieved by correcting the US deformation. To qualitatively and
quantitatively validate the proposed approach, blood vessel is investigated as the target
anatomy. However, this study can benefit other applications requiring accurate geometrical
measurements as well, such as examining and monitoring breast tumors [122] and soft tissue
sarcomas [116]. Besides accurate 3D volumes, this study will also benefit the multimodal
image fusion. The two typical clinical applications are image-guided intervention for soft
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Fig. 4.9. (a) and (c) are the vessel centered variance between the ground truth and corrected and deformed
results for the soft and the stiff phantoms, respectively. (b) and (d) are the vessel cross-section area for
soft and stiff phantoms, respectively. Reprint from [5] with permission of IEEE.

tissues like breasts [123, 124], and imaging-guided orthopedic surgery [9]. For the former
one, CT or MR is often used to provide high-resolution anatomies, while US images provide a
live view during the intervention. Regarding the latter one, since patients may be moved after
acquiring CT or MR images, it is necessary to do the registration between pre-operative images
and patients by registering the live US images to the preoperative images. The corrected
images could result in better results because it is easier to align the biological landmarks
between the zero-compression B-mode images and preoperative images.

The proposed deformation correction approach performs boldly in our setup of experiments.
However, there are still some limitations that need to be discussed. First, the proposed method
is only able to correct the deformations caused by the force applied on the object surface. This
approach is not suitable for correcting deformations of deep organs, such as the liver. These
deformations are caused by the coupling of applied external force and patient physiological
movement like breathing. In addition, to further improve the accuracy, the probe orientation
should also be taken into consideration. This is not implemented here. Alternatively, one
can apply methods that enable the probe to be positioned perpendicular to the surface [11].
Finally, in this work, we have so far considered the main in-plane deformation caused by the
probe pressure on the surface. Such forces also result in residual out-of-plane deformations.
However, since the main component of such deformation remains in-plane and the robotic
ultrasound moves orthogonal to the B-mode acquiring all subsequent image planes, we
consider this to be a valid approximation of the real tissue deformation.

4.7 Conclusion

In this work, we proposed a stiffness-based deformation correction method in order to achieve
zero-compression 3D US images using robotic techniques. This method takes the nonlinear
property of tissue stiffness as a key factor in correcting deformation. We obtained this
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patient-specified property by performing robotic palpation. Our approach enables the rapid
adaptation of the optimized regression model to unseen positions by updating the local
stiffness. Promising correction results have been achieved on both stiff and soft phantoms
at arbitrary sampling positions. Additionally, the experimental results for 3D US acquired
under different contact forces demonstrate that the proposed method is also able to recover
zero-compression volumes from deformed images. This approach could even enable further
techniques such as multi-modal image fusion. The potential clinical applications include
examination of soft tissue sarcomas [116], the thyroid gland [125] and blood vessels on
limbs.
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5
Autonomous Robotic Ultrasound
Screening of Tubular Structures

5.1 Overview and Publications

This chapter presents the contributions of this thesis concerning automatic robotic US screening
of tubular structures. Due to the high inter and intra-operator variation and a lack of
repeatability of US image acquisition, the clinical acceptance of US imaging is limited. This
further hinders the implementation of extensive screening programs.

To address this challenge, we propose an end-to-end framework for automatic robotic US
screening of tubular structures using only real-time US imaging feedback. First, a U-Net is
trained for real-time segmentation of vascular structure from cross-sectional US images. Then,
we represent the detected vascular structure as a 3D point cloud, which is further used to
estimate the centerline of the target structure and its local radius by solving a constrained non-
linear optimization problem. Iterating the previous processes, the US probe is automatically
aligned to the normal direction of the target structure while the object is constantly maintained
in the center of the US view. The real-time segmentation result was evaluated both on a
phantom and in-vivo on brachial arteries of volunteers. In addition, the whole process was
validated using both simulation and physical phantoms. The mean absolute orientation,
centering and radius error (± SD) on a gel phantom were 3.7 ± 1.6◦, 0.2 ± 0.2 mm and
0.8 ± 0.4 mm, respectively. The results indicate that the method can automatically screen
tubular structures with an optimal probe orientation (i.e., normal to the vessel) and accurately
estimate the radius of the target structure.

This chapter is organized as follows: In Sec. 5.2, the clinical and methodological background
has been summarized. Sec. 5.3 describe the neural network architecture and the implementa-
tion details. Then, the details of the proposed close-loop controller is presented in Sec. 5.4.
The experimental results on both phantom and in-vivo volunteers are reported in Sec. 5.5.
Finally, a detailed discussion and conclusion are presented in Secs. 5.6 and 5.7, individually.

Substantial parts of this chapter have already been published in the following article and are
quoted verbatim.
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5.2 Introduction

5.2.1 Clinical Motivation

Peripheral vascular diseases (PVD) are some of the most common diseases, particularly for
older people. PVD affects about 20% of adults older than 55 years and an estimated 27 million
people in North America and Europe [91]. In the worst case, PVD can lead to critical organ
failure, limb amputation, strokes, or heart attacks. The two most common types of vascular
diseases are Atherosclerosis and arterial aneurysm, both of which are depicted in Fig. 5.1.
Atherosclerosis is a disease in which plaque builds up inside arteries, whereas an aneurysm
refers to a weakening of an artery wall resulting in a bulge or distention of the artery. The most
common way to diagnose atherosclerosis or arterial aneurysms today is either by measuring
the ABI or by inspecting a CTA scan. The drawback of CTA is that the scans expose both the
patient and medical staff to ionizing radiation. Conversely, ABI despite being radiation-free, is
unable to provide the location of the PVD and is highly user-dependent [93].

B-mode US imaging is a promising alternative to CTA for the diagnosis of vascular diseases
due to its lack of radiation [126]. Furthermore, US is widely accessible and cheap, making it
popular for real-time diagnosis of internal tissues in clinical practice. Davis et al. found that
conducting US scans for elderly men can reduce premature death from ruptured abdominal
aortic aneurysms by up to 50% [127]. Therefore, regular US examination is important for pa-
tients. However, the imaging quality of US is highly dependent on acquisition parameters (i.e.,
the contact force and probe orientation), which are hard to accurately control in traditional
free-hand US, even for experienced sonographers [128]. This leads to a lack of repeatability
regarding US acquisition, which negatively impacts the implementation of extensive screening
programs.

5.2.2 Robot-Assisted Automatic US Screening

In contrast to conventional free-hand US, automatic screening systems, with stable acquisition
quality, can enable regular checks for PVD. Automating the screening procedure by employing a
robotic arm can reduce personnel costs and allow sonographers to focus more on analyzing US
scans. Furthermore, sonographers can benefit from such a system, as it reduces work-related
musculoskeletal disorders.
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Fig. 5.1. Schematic illustration of the two most common types of vascular diseases: (a) atherosclerosis and (b)
arterial aneurysm. Reprint from [7] with permission of IEEE.

To develop fully or semi-autonomous RUSS and further obtain enhanced precision in US
acquisition, stable and reproducible robotic systems have been widely used in recent studies.
Pierrot et al. developed a RUSS able to apply a constant force between the probe and contact
surface [45]. Gilbertson et al. designed a 1-DOF RUSS that reduces image variations by
providing a constant contact force [42]. Conti et al. proposed a collaborative RUSS that
provides an interface for 3D volumetric representation obtained with constant force [129].
In addition to contact force, Huang et al. adjusted the probe orientation based on a depth
camera [56]. To accurately position the probe in the normal direction of an unknown object,
Jiang et al. utilized real-time US images and force data for a convex probe [11]. Then, they
further developed a mechanical force model based method to accurately position different
types of probes for repeatable US acquisition [9]. However, to estimate the normal direction,
the probe has to be rotated at a given contact position, which limits the use of these approaches
when the probe is moved along a certain trajectory, namely a US sweep. In addition, to track an
object, Chatelain et al. employed a visual servoing method to maintain the target horizontally
centered in the US image using a US confidence map [60]. But the method is not time-efficient,
which took around 10 s to reduce the centering error to less than 3 mm.

RUSS has also been developed to introduce autonomous and accurate health care solutions
for vascular diseases. Balter et al. developed a 7-DOF robot for venipuncture using 3D
near-infrared and US imaging of peripheral blood vessels [103, 130]. Langsch et al. proposed
a US-based method for catheter tracking and visualization during endovascular aneurysm
repair, while the search path is limited to a vessel path computed from a pre-operative MRI
image [65]. Virga et al. developed an autonomous framework to acquire abdominal 3D US
images for abdominal aortic aneurysms [53]. To automatically obtain a suitable trajectory
for different patients, the patient surface obtained from an RGB-D camera was registered to
a generic MRI-based atlas. This means the system cannot handle unexpected cases, such as
when the target vessel is not visible in the US view. In addition, the vessel radius still needs to
be manually measured using the 3D US volume.
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5.2.3 US Image Segmentation

US is one of the most challenging modalities for automatic segmentation due to acoustic
shadow, poor contrast, the presence of speckle noise, and deformation [131]. To automatically
segment vessels from cross-sectional US images, Guerrero et al. applied an extended Kalman
filter and an elliptical vessel model to determine the vessel boundary using an iterative radial
gradient algorithm [132]. However, this method requires careful selection of a seed point
inside the boundary. Furthermore, tracking between subsequent frames often fails when the
transducer is moved rapidly or if the vessel is deformed. To eliminate the need for manual
initialization, Smistad et al. proposed an automatic artery detection method and used it
to initialize vessel tracking [133]. In addition, to robustly track vessels in a more realistic
case, Crimi et al. employed the Lucas-Kanade method to follow vessels during sudden lateral
transducer movements, even when the vessel is deformed [134]. Nevertheless, the employed
ellipse template matching process is time-consuming, and therefore, unsuitable for real-time
applications.

Besides elliptical models, adaptive active contours were developed to achieve good segmenta-
tion results for clips when variations between US images are taken into consideration [135].
However, this technique requires manual segmentation of the first frame. In addition, Hessian
matrix based methods, such as the Frangi filter [136], have been developed to extract tubular
structures. But this method cannot accurately extract vessel outlines for further planning US
screening.

Recently, machine learning techniques are considered promising alternatives to the classical US
image segmentation algorithms. CNN achieved phenomenal success in various computer vision
tasks and have been successfully applied to CT and MRI segmentation tasks [137]. However,
their use in US image segmentation is limited due to acoustic shadow, poor contrast, and the
presence of speckle [131]. Ronneberger et al. proposed U-net architecture for biomedical
image segmentation [108]. The network is extended from a fully CNN and is considered an
effective method for medical image segmentation. Mishra et al. developed a fully CNN with
attentions for automatic and accurate segmentation of US images [131]. Chen et al. employed
a recurrent fully CNN architecture to capture salient image features and motion signatures at
multiple resolution scales [138]. They reported comparable performance to a human operator
for vessel segmentation.

5.2.4 Proposed Approach

In order to online optimize the probe orientation and position and estimate the vessel geom-
etry in real-time, a neural network was employed to provide robust and accurate vascular
segmentation results as feedback for a closed-loop controller. The most recent segmentation
results were used to characterize the local vessel outline in 3D. Based on the 3D data, the
vessel centerline and the radius can be estimated by solving an optimization problem. Based
on the estimated vessel centerline, a RUSS can automatically screen blood vessels with no
need for pre-operative images. To validate the performance of the segmentation network
on in-vivo human tissues, the brachial artery of the forearm was used as the target object in
in-vivo tests. Besides, to ensure the safety of involved objects, a simulator with known vessel
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boundaries was built to theoretically validate the proposed control framework. After fully
testing the controller with varied initial settings by simulation, the end-to-end workflow for
automatic US scanning (Fig. 5.2) was entirely validated on a physical gel phantom1.

Fig. 5.2. Autonomous image-guided robotic US vessel screening. (a) automatically moving along the target
vessel based on real-time segmented results. (b) extracting vessels from cross-sectional US scans using
U-Net.The letter“c" represents the number of image channels and “H" and “W” represent the height and
width of images, respectively. Reprint from [7] with permission of IEEE.

5.2.5 Contributions

In this work, we proposed an end-to-end workflow for autonomous robotic screening of
tubular structures based only on real-time US images. This manner was inspired by the way
sonographers conduct US scans. First, the US probe is roughly placed on the target tissue.
Then, the system can automatically screen along the targeted segment of blood vessels with
an optimized pose and estimate the radius of the vessel in real-time. To achieve this, a neural
network was trained to segment and track the tubular structures from cross-sectional US
images during the screening process. To the best of our knowledge, this work is the first
method able to automatically perform a US scan of a vascular structure with optimized probe
position and orientation in real-time. The main contributions of this work can be summarized
as follows:

• An end-to-end workflow to automatically perform US scans of tubular structures using
real-time US images.

• Automatic tuning of the probe orientation and position such that the probe aligns with
the normal direction of the structure of interest (3.7 ± 1.6◦ in 2.6 ± 1.5 s) and the
structure is centered in the US view (0.2± 0.2 mm in 2.0± 1.0 s) during sweeps.

• Starting from a random initial probe orientation within 45◦ from the optimal orientation,
the radius of the tubular tissue was accurately (0.77± 0.4 mm) estimated in a short time
(1.7± 0.5 s).

1The video: https://www.youtube.com/watch?v=VAaNZL0I5ik
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Finally, the vascular segmentation method was validated on phantoms and volunteers’ arms
(brachial artery). The entire screening process was validated both by simulation and on a
physical gel phantom.

5.3 Segmentation and Tracking Algorithm

To robustly and accurately segment tubular tissue in real-time from cross-sectional US images,
U-Net architecture was employed, consisting of an encoder and decoder. The encoder has a
pyramid structure, which is commonly used for segmentation tasks. The decoder contains
up-sampling layers that enable the generation of a pixel-wise segmentation mask. Skip
connections between encoder and decoder provide the decoder with more image features
from the shallow layers, which is beneficial for segmenting detailed structures. The structure
of the U-Net is described in Fig. 5.2 (b).

The batch size was set to ten due to GPU memory constraints. This small batch size also
improves the generalizability. However, such a small batch size interferes with the batch
normalization layers used in the original U-Net architecture. Thus, group normalization [139]
was employed in this work.

The U-Net has been proven as a promising method to segment the vessels from US images [99].
However, to train a generic model with good performance for both phantom and human
data, a large dataset has to be prepared as the textures of phantom and human images differ.
Thus, two models with the same network architecture were trained separately for phantom
and human images, respectively. The model developed for an in-vivo human blood vessel
(brachial artery) was trained using 1, 219 US images (256 × 256 pixel) acquired from three
volunteers (BMI: 23.2 ± 0.5, age: 28 ± 2), and the model developed for vascular phantoms
was trained based on 3, 262 US images (256× 256 pixel). In-vivo images of brachial arteries
were recorded of the anterior view of the forearm starting below the elbow and towards the
wrist with a total distance of 60 mm. At least two sweeps were recorded for each subject.
To ensure class balance, 1, 219 images were averagely taken from different subjects (around
400 images for each subject). The phantom images were recorded from two custom-designed
vascular phantoms with different vessel radii. The larger radius (7.5 mm) was used to mimic
big vessels, like the carotid and aorta, while the smaller one (4 mm) was used to mimic small
vessels, like the brachial artery. To create random textures in the phantom US images, paper
pulp was mixed into the melted gelatin liquid. Then, multiple US sweeps were performed
along the vessels with random and varying probe orientation and contact force. Finally, 3, 262
US images were recorded from the two vascular phantoms.

Since US images are sensitive to acquisition parameters and the optimal parameters vary by
patient and phantom, it is necessary to provide a robust segmentation for images obtained
using different acquisition parameters. To address this issue, the training images were recorded
using a variety of parameters (depth, focus, and brightness). Based on the preset file for
arterial scans from the manufacturer, the dynamic range and frequency were set to 88 dB and
7.6 MHz, respectively. To enable generalizability of the trained models, these parameters were
randomly changed in [70, 95] dB and [6.0, 8.5] MHz, respectively, to enhance the diversity of
the data sets. Both data sets were carefully annotated with the assistance of a clinician. The
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dice coefficient is a popular metric used to measure the similarity between the segmentation
result and labeled images. Based on this metric, the loss function of the U-Net was designed
as follows:

Ld = 1− Cd (5.1)

where Cd = 2 |G∩S|
|G|+|S| is the dice coefficient. In Cd, G are the labeled images, in which the object

is carefully annotated, and S are the output images of the network predicting the target object
position in US images.

5.4 Force-Compliant Robotic US Screening

This Section describes the method used to optimize the vessel centerline and robotic pose.
The optimization was purely based on the most recent US images, without the requirement of
additional devices or pre-operative images.

5.4.1 System Calibration

In order to use the US image to control the position of the robotic manipulator, the matrix
b
IT transforming pixel position from a US image {I} into the robotic base frame {b} should
be calculated. The involved frames are depicted in Fig. 5.3. Thus, bIT can be calculated as
follows:

b
IT =b

f T f
pT p

IT (5.2)

where j
iT is the transformation matrix used to transfer the position from frame {i} to frame

{j}. Frames {p} and {f} are the probe tip and robot flange frames, respectively.

Since the kinematic model of the robot was given, the transformation b
fT from robotic flange

to robotic base frame can be obtained using the software API provided by the manufacturer.
As for fpT, it will be fixed once the probe is attached to the flange. To simplify the calculation
and avoid error caused by data truncation, the probe was installed parallel to the frame {f}
(bfR = (1, 0, 0; 0, 1, 0; 0, 0, 1)T or (−1, 0, 0; 0,−1, 0; 0, 0, 1)T ). In addition, the frame origin was
set to the central point of the probe tip (Fig. 5.3). The translational part of fpT was obtained
from the 3D model.

As for the linear probe, the US elements are physically distributed on the tip within a specific
length Lp, which can be obtained from the specification provided by the manufacturer. Based
on the given imaging depth DI and Lp, the pixel position (u, v) can be mapped in physical
length (Ix,I y) = (Lp

H u, DI

W v), where H and W are the height and width (in terms of pixel)
of the B-mode images, respectively. The origin of frame {I} was set at the upper left of the
B-mode image, while the origin of frame {p} was set in the middle of the probe tip (Fig. 5.3).
Thus, pIT is calculated as follows:
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p
IT =



Lp

H 0 0 −Lp

2

0 0 −1 0

0 DI

W 0 ε0

0 0 0 1


(5.3)

where Lp = 37.5 mm, DI = 40 mm, and ε0 is used to represent a small distance from probe
frame origin to image frame origin determined by the US element configuration.

Fig. 5.3. Diagram of involved coordinate systems. Reprint from [7] with permission of IEEE.

5.4.2 Impedance Control Architecture

Safety is the most important issue for the development of automatic robotic systems, especially
for medical robots. In order to avoid any damage to patients, an impedance controller using
built-in joint torque sensors was employed [48]. The involved Cartesian compliant control
law has been defined as

τ = JT [Fd + Kme + Dė + Më] (5.4)

where τ ∈ R7×1 is the computed target torque for all joints, JT ∈ R7×6 is the transposed
Jacobian matrix, e ∈ R6×1 = (xd−xc) is the pose error (position and orientation) between the
current pose xc and the target pose xd in Cartesian space, Fd ∈ R6×1 is the supposed exerted
force/torque at endeffector, Km ∈ R6×6, D ∈ R6×6 and M ∈ R6×6 are diagonal matrices of
stiffness, damping and inertia terms in 6 DOF, respectively.

The impedance controller works like a spring with a given stiffness Km. If an unexpected
obstacle is present between the current position and the target position, such as a certain body
part of the patient, the robot will stop at the contact position with a certain force. However, if
the resistance force is not sufficiently large, the manipulator will overcome the resistance force
and continue moving towards the target position. According to [48], stiffness in the direction
of the probe centerline is usually set in the range [125, 500] N/m for human tissues. Thus,
Km was set to diag(1000 N/m, 1000 N/m, 300 N/m, 2 Nm/rad, 20 Nm/rad, 20 Nm/rad)
representing the translational and rotational stiffness in X, Y, and Z and Z, Y. and X direction,
respectively. The stiffness in the X and Y directions were empirically set to 1000 N/m to
balance the positioning accuracy and compliant propriety in these directions and avoid hard
collision. In addition, the damping ratio in all 6 DOFs was set to 0.8. To determine a safe force
for patients, the target force Fd of the controller was gradually increased on a volunteer’s arm.
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Finally, 25 N was set as a software restriction to limit the force exerted by the robot. If contact
force Fc > 25 N , the robot will automatically stop to avoid an excessive force.

5.4.3 Estimation of the Vascular Structure Centerline

To build a closed loop system, the robotic movements were optimized based on the received
US images as shown in Fig. 5.2. To make the movements smooth and robust, a ring buffer
was used to save the newest NR point clouds generated by transforming the segmentation
results from the neural network into the coordinate frame of the robot. Since the cross-section
of human blood vessels can be modeled as ellipses [132, 133, 134], the extracted point clouds
depicting the vessel boundary can be seen as an elliptic cylindrical surface. Then the vector
of vessel centerline (n⃗v = (n1, n2, 1)) and the vessel radius (rv) are estimated by solving the
following optimization problem:

min
n⃗v,rv,ε

1
2N

N∑
i=1

(
(∥
−−→
CPi × n⃗v∥
∥n⃗v∥

− rv)2 + ε2

)
︸ ︷︷ ︸

optimization term

+ λ1

2

(
arctan n2

n1
− arctan n

′

2
n

′
1

)2

︸ ︷︷ ︸
orientation stabilization term

+ λ2

2 (rv − r
′

v)2︸ ︷︷ ︸
radius stabilization term

s.t.


ε > 0

rv > rl

rv ≤ ε + rh

(5.5)

where N is the number of points in the point cloud set, Pi = (xi, yi, zi) is the point located
on the detected vessel boundary, C = 1

N

∑N
i=1 Pi is the centroid of the point cloud set. The

cross product item represents the distance from Pi to the estimated centerline n⃗v. rl and rh

are the lower and higher bound of the vessel radius, rv ∈ (rl, rh), ε is used to soften the
hard constraint of the higher bound, to adapt to a serious arterial aneurysm case, wherein the
vessel radius becomes much larger than normal. n

′

1, n
′

2 and r
′

v represent the last optimized
results. The latter two terms are used to stabilize the motion of the manipulator. In order to
minimize the loss function (Eq. (5.5)), a large pose or radius deviation from the current pose
or radius has to be avoided during the optimization process. λ1 and λ2 are hyper parameters
for tuning the performance of the stabilization terms. Both were set to one in this work.

Considering that the vessel geometry in 2D images is affected by the probe orientation, if the
probe is titled form the normal direction, the radius in the 2D image rtv (Fig. 5.4 (c)) will be
larger than the real rv (Fig. 5.4 (d)). To accurately estimate rv in all cases, the newest NR 3D
point clouds are saved in a ring buffer and used to characterize vessel geometry. Then rv can

be approximated by 1
N

∑N
i=1

∥
−−→
CPi×n⃗v∥

∥n⃗v∥ .

The constrained non-linear optimization problem Eq. (5.5) was solved by implementing a
sequential quadratic programming (SQP) optimizer using the NLopt library. Due to the cross
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product operation, the gradients of the objective function with respect to n1 and n2 were
computed using the Symbolic Math Toolbox in MATLAB R2020 (MathWorks, USA). However,
such an optimizer can get stuck in a local minimum. In our case, the optimizer sometimes
yielded a resulting direction vector pointing in the radial direction of the cylinder. In order
to circumvent this issue, the original optimization problem was implemented in an iterative
“Tick-Tock" manner. The radius rv was first fixed to a given value, and only the direction vector
n⃗v was optimized. Then, rv was optimized separately with a fixed direction vector. These two
steps are executed once in each iteration so that the result will converge to an acceptable local
minimum, or even to the global minimum.

Fig. 5.4. (a) Front and (b) cross-sectional views of blood vessel acquired when the probe is placed normal to the
blood vessel. (c) and (d) are the detected point clouds for the sweep when the probe was placed in
normal direction and titled direction of vessel centerline, respectively. Reprint from [7] with permission
of IEEE.

Since the frame rate of the US images is high (50 fps), the detected point clouds in the ring
buffer may heavily overlap. This will hinder the optimization process, particularly for real
cases wherein the vascular segmentation results are not as perfect as those in a simulation.
Considering an extreme case when the probe is paused at a certain position, the detected
vessel boundary point clouds in the ring buffer will be distributed on a plane. In such a case,
the optimization process could be stuck at a local optimal solution of n⃗v at

−−→
CPi (Fig. 5.4).

Reducing the overlap will help the optimizer converge to the correct solution (centerline line
n⃗v and estimated mean radius rv of the vessel). To avoid sub-optimal results, the distance
between the point clouds Ωj and Ω1 in the ring buffer were scaled as follows:

P
′

i = Pi + µ(Cj − C1) ∀ Pi ∈ Ωj (5.6)

where Pi is a point in j-th point cloud Ωj , Cj and C1 are the centroids of the j-th and the first
point cloud, respectively, µ is a constant coefficient to move the two point clouds away from
each other along the line connecting two centroids. µ = 5 in this work.
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5.4.4 Determination of Robotic Pose

In order to obtain a high-quality US image, the US probe is usually aligned in the normal
direction of the examined object to reduce the number of scattered echoes [11, 55, 56].
However, previous work [11, 56] only considered the normal direction of the skin surface
above target tissues. In order to find the normal direction of a vessel tissue, which is located
below the skin surface, both camera-based [56] and force-based methods [9, 11] are not
applicable.

However, as detailed in the previous Section, the present method can estimate the centerline
vector n⃗v of a blood vessel from a set of US images; allowing normal alignment of the US
probe to the target vessel by aligning the probe’s Yp axis with n⃗v. Once the alignment has
been done, the US image will remain normal to the vessel when the probe is rotated around
n⃗v. However, this rotation will result in non-homogeneous deformation in both sides of the
US image or even cause a gap between the US probe and skin. Thus to fully obtain the proper
probe orientation, and to achieve the best US image quality, the probe Zp axis is aligned
with the normal of the contact surface n⃗s. Since this is evaluated on a gel phantom with
a flat surface, n⃗s is approximated using the normal direction of a plane composed of three
neighboring points manually selected using the robot. After this procedure is completed, the
target probe orientation is determined (Xp = Yp × Zp).

In addition, to maintain the target vessel horizontally centered in the US image for a better
view, the position of the probe also needs to be adjusted based on US images. Since the
relative movement ∆P is continuously updated using real-time US images, the target vessel is
able to be maintained around the horizontal center of the US view, even when the displayed
tissue is deformed due to the contact of the probe.

∆P = b
IT
[

H

2 − xIc , 0, 0, 1
]T

(5.7)

where xIc = 1
N

∑N
i=1 xip is the horizontal center of the detected vessel in the current image,

and xip is the horizontal value of the point P in the ring buffer.

5.5 Results

5.5.1 Experimental Setup

The overall experimental setup is shown in Fig. 5.5 (a). A linear probe (CPLA12875, Cepha-
sonics, California, USA) was attached to the end-effector of a robotic manipulator (KUKA
LBR iiwa 14 R820, KUKA Roboter GmbH, Augsburg, Germany) using a 3D-printed mount.
The used robot has accurate built-in torque sensors in all joints. The B-mode US images (50
fps) were obtained using a Cephasonics machine (Cephasonics, California, USA) via USB
interface and the images were visualized using ImFusion software (ImFusion GmbH, Munich,
Germany). To access real-time images from different computers, the US image stream was
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published to ROS. In addition, the robot was controlled via iiwa stack developed based on the
ROS [48]. The control commands and the robot status were exchanged at 100 Hz.

Fig. 5.5. (a) Physical setup of experiments on a gel phantom. (b) Real-time visualization in RVIZ. The real-time
US image and segmentation results were also visualized in RVIZ. Reprint from [7] with permission of
IEEE.

To build a ballistic gel phantom with non-homogeneous acoustic impedance mimicking human
tissues, paper pulp (3− 5 g/L) and gelatin powder (175 g/L) were mixed into water. After
solidification, two round tubes were used to create holes inside the phantom mimicking
vascular structures. Since the radii of the tubes are constant along the centerline, the inner
radius of the created holes can also be seen as a constant value, which was approximated
using the average radius directly measured from the removed cylinder portion of the phantom.
To completely validate the proposed end-to-end automatic US scan approach, one of the
phantoms, with a radius of 7.5 mm, was used for physical experiments. The marching
velocities for both simulation and phantom experiments in the direction n⃗v were set to 1 cm/s.
To monitor the screening process, the RUSS and the point cloud of the detected vessel were
visualized in ros-visualization (RVIZ) as shown in Fig. 5.5.

5.5.2 Segmentation Results on Phantom and Human Arm

The model was optimized using the ADAM optimizer [112] on a single GPU (Nvidia GeForce
GTX 1080). The learning rate was set to 0.001 in the beginning and decreased by a factor
of ten when the loss changes were less than 0.0001 for ten subsequent steps. The decrease
of the learning rate in the latest step of training can help further reduce loss. Besides, the
U-Net models were trained on 90% of the images of each data set while the remaining 10% of
the images were used for validation. It can be seen from Fig. 5.6 that both training loss and
validation loss were quickly reduced at the beginning and gradually converged after 1, 000
iterations. The performance of the trained model on unseen images of brachial arteries and
phantoms are summarized in TABLE 5.1.

The trained model can segment the vascular structure in 5.1 ms and the average dice coeffi-
cients (±SD) were 0.93±0.05 and 0.98±0.02 for human tissue (26 images) and phantom (100
images). To validate whether the trained model is able to robustly and accurately segment
the target from cross-sectional US images, the phantom was rotated to different orientations
relative to the probe as shown in Fig. 5.7 (a) and (b). In addition, deformation is unavoidable
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Fig. 5.6. Training loss and validation loss of the segmentation network. Reprint from [7] with permission of IEEE.

Tab. 5.1. Performance of Segmentation Algorithm

Dataset Dice Coefficient Time (ms)

Phantom 0.98± 0.02 5.1

Brachial artery 0.93± 0.05 5.1

for US images due to a non-zero contact force. To validate the performance of the proposed
segmentation method on deformed US images, the pressure between the probe and phantom
was manually increased until the vessel was severely deformed as shown in Fig. 5.7 (d). As
can be seen in Fig. 5.7, the trained model is able to accurately and robustly segment the
target tissue (mean dice coefficient is over 0.98) from the US images with different extents
of deformation. In order to further consider the potential for real clinical use, we tested the
performance on arms of volunteers (brachial artery). The network also successfully extracts
the target vessel from a continuous sweep in the testing data set as shown in Fig. 5.8. The
mean dice coefficient for in-vivo test was 0.93 ± 0.05. This means that the segmentation
method can be used on in-vivo brachial artery.

Fig. 5.7. Sample segmentation results on a phantom. Reprint from [7] with permission of IEEE.
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Fig. 5.8. Sample segmentation results on a human. Reprint from [7] with permission of IEEE.

5.5.3 Automatic Screening in Simulation

To avoid damage of objects under evaluation, the proposed end-to-end control framework
for automatic vessel screening was first validated in a simulator. Here, the elliptical vessel
boundary point clouds were generated in MATLAB R2020 using a 2D plane to cut a cylindrical
surface mesh. The resulting 2D point clouds were fed into the ring buffer to optimize the
vessel radius and the vessel centerline by solving Eq. (5.5). Then, the probe could be gradually
aligned with the normal direction of the vessel and moved along the vessel centerline. To
demonstrate the performance of the proposed approach by simulation, the absolute radius
error era between the estimated radius and the preset value, and the absolute orientation
error eor between computed and desired poses are shown in Fig. 5.9. Since the radius of some
healthy arteries like the aorta can be 16.8 mm for males [140], the radius was set to 10 mm

in the simulation.

Fig. 5.9. Performance of the optimization method by simulation. Reprint from [7] with permission of IEEE.

It can be seen from Fig. 5.9 that the proposed optimization method effectively decreases eor

to 5◦ from a random initial position in a short amount of time (2.07 s). The largest angular
error (22.5◦) only occurs at the beginning of the process. This is because heavy overlap of the
first few US images results in failure of the optimization method to find a good estimation of
the vessel centerline. Once a good estimation of the vessel centerline is found, eor kept within
a small value. The absolute mean (± SD) eor over all 330 scans is 2.7 ± 3.3◦. This error is
very close to the previous state-of-the-art approach for accurate positioning of US probes on
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a gel phantom 2.9 ± 1.6◦ [9]. More importantly, the proposed method can online optimize
the probe pose during sweeps while previous methods with similar accuracy only work at the
given position [9, 11].

In addition, the estimated radius quickly converges to a stable value that is close to the given
radius of 10 mm very fast showing that the proposed method can effectively estimate the
real radius without the strict requirement to align the probe normal to the blood vessel. The
absolute mean (± SD) era is 1.16± 0.1 mm. Compared with the real radius (10 mm) preset in
the simulation, the deviation of era 0.1 mm is quite small (1%). Therefore, we can conclude
that the proposed method demonstrates the ability to stably predict the radius with an error
of less than 11.6%.

Fig. 5.10. Performance of the proposed automatic and manual screening methods on a gel phantom. The ecom
or ,

erea
or , ece and era are intuitively described in the right of the figure and these errors are indicated by the

peach, aqua, blue and green plots, respectively. The shadowed area represents (mean−SD, mean+SD)
over the repeated experiments, while the curves inside the shadowed areas are the average results. The
results for robotic autonomous scans when the probe was placed in different initial orientations are
shown in (a)-(i). (m) and (n) depict the erea

or and ece by blue and red lines, respectively. Based on US
sweeps performed by a human operator, the ecom

or and era computed using the proposed optimization
method are described in pink and black lines in (m) and (o). (p), (q) and (r) are the statistical results
of erea

or , ece and era obtained from the steady periods of all experiments. The p-value is the probability
from t-test used to compare the performance of human operators and robotic screening in terms of erea

or ,
ece and era, respectively. The scan path was about 8 cm. Reprint from [7] with permission of IEEE.

5.5.4 Automatic Screening on a Phantom

To further validate the performance of the proposed automatic screening system, experiments
were carried out on a physical phantom with different initial orientation errors (eor ≈
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Tab. 5.2. Absolute Accuracies and Converge Times of Different Methods on phantom (Mean±SD)

0◦, 15◦, 30◦, 45◦). The screening procedure was repeated ten times for each initial eor setting.
The corresponding results (mean± SD) of the robotic scans and ten manual sweeps results
on the same phantom are shown in Fig. 5.10. Unlike the simulation, for the real case, we
calculated both the real orientation error ereaor between the ground truth of the centerline ng
and the current robotic pose (Y axis of frame {p}) as well as the computed orientation error
ecomor between the computed centerline nv and ng (Fig. 5.10). To determine ng, the probe was
manually placed at the start and end points of the tubular tissue. Then, the pixel position
of the vessel centroid was transferred to frame {b} using the spatial calibration described in
Section IV-A. Thus, the vessel centerline in frame {b} can be represented by the line connecting
these two centroids. In addition, the horizontal centering error ece was represented by the
horizontal distance from the computed vessel’s centroid of the current image and the vertical
centerline of the US view.

Performance of Robotic Screening

It can be seen in Fig. 5.10 that ecomor , ereaor , era and ece for all experiments with different initial
eor can converge to zero using the proposed method. As the initial error increases from zero to
45◦, the time tor required to align the probe in the desired direction also increases from zero
to 2.9 s. In most cases, tor is longer than the time needed to stably estimate the vessel radius
tra. This is because the radius estimator can predict the current radius even when the probe is
not placed in an optimal orientation (i.e. normal to the vessel). Since the robot starts moving
only when the ring buffer is full, the beginning images are highly overlapped. The overlapped
images will result in suboptimal results of n⃗v and era as described in Section IV-C, which leads
to large era and eor at the beginning of the optimization. Then, era decreases quickly to a
low value near zero (< 1.8 s) for all robotic scans. Regarding the centering error ece, this
value approaches zero (< 0.5 mm) after tce, which is the consumed time for horizontally
centering the target vessel in the US view. Such small error is because the relative movement
∆P (Eq. (5.7)) can be accurately calculated with respect to pixels.

To compare the performance of the proposed method with existing approaches, the absolute
eor, ece and era and the times tor, tce and tra are shown in TABLE 5.2. The mean eor, ece

and era over all 40 experiments with different initial orientations in [0, 45◦] were 3.7± 1.6◦,
0.24± 0.19 mm and 0.77± 0.4 mm. Regarding probe orientation adjustment, the proposed
method is not the most accurate; however, our approach would be the best if the time needed
to adjust the orientation is considered (2.6 ± 1.5 s) as well. The time needed to accurately
center the object and predict the radius are 2± 1 s and 1.7± 0.5 s, respectively.
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Performance of Manual Screening

To compare the performance of the proposed method and of human operators, three experi-
enced volunteers were asked to manually perform ten scans (30 times in total) on the same
phantom. The volunteers were required to adjust the probe orientation from a random pose in
the normal direction of the vessel centerline and to maintain the optimal pose during the entire
sweep. During manual scans, the built-in “hand-guiding" mode was activated, which allows
operators to freely move the probe attached to the robotic flange. The probe pose was tracked
in real-time based on the robotic kinematic model. One of the results was randomly selected
as an example shown in Fig. 5.10 (m) and (n). Additionally, the point clouds generated from
human scans were fed to the proposed optimization algorithm to predict the vessel centerline
and radius. The estimated ecomor and era are depicted by pink and black lines, respectively, in
Fig. 5.10 (m) and (o).

It can be seen from Fig. 5.10 (m) that ereaor and ece cannot converge like robotic US scans.
The average ereaor continuously increases from 3◦ at the beginning to around 14◦ at the end
for manual scans. In addition, the deviation of ereaor is constantly around 11◦, which cannot
be reduced as the scanning progress. Regarding ece, both the average and the deviation
values cannot converge to zero. They constantly varies in the range of [0, 8 mm] during
the manual scan. This is because the human perception’s ability is not good at accurately
identifying small differences in orientation and position. Since such tasks require good hand-
eye coordination, performing as well as RUSS is challenging for human operators, particularly
when multiple objects (optimal orientation, position, and movement along vessel) are required
simultaneously.

Statistical Comparison between Robotic and Manual Screening

To quantitatively demonstrate the advantages of the proposed approach, statistical results
of ereaor , ece and era of manual scans and robotic scans with different initial orientation are
shown in Fig. 5.10 (p), (q) and (r), respectively. For the robotic scans, the proposed method
can properly adjust the probe orientation and position for centering the object in the US view,
even when the initial orientation is up to 45◦ from the surface normal.The t-test has been
employed to compare the performance of human operators and robotic screenings in terms
of ereaor , ece and era. The probability values p-value are zero, which means that there is a
significant difference (> 95%) between the performance of manual scans and robotic scans.
This phenomenon is consistent with the intuitive results witnessed from Fig. 5.10 (p), (q)
and (r) that the stable errors for robotic screenings are much smaller than the ones achieved
in manual scans. The median ereaor and ece are 8.7◦ versus 3.7◦ and 3.1 mm versus 0.02 mm

for manual scans and robotic scans, respectively. Since the centering movement for robotic
scans was controlled in terms of pixels, ece can be very close to zero. Regarding era, human
operators were not able to measure the vessel radius in real-time during US sweeps. Since
the proposed method can estimate the radius based on the most recent frames, the method
was used to predict the radius for the manual scans in Fig. 5.10 (r). The results demonstrate
that the radius prediction method can also effectively predict the radius. The median era for
manual scans was −0.7 mm, which is very close to the robotic scans −0.8 mm. But it can also
be observed that the maximum values of absolute ereaor , ece and era for manual scans are much
larger than the errors for robotic scans (22.6◦ versus 7.8◦, 13 mm versus 1.4 mm and 8.5 mm
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versus 2 mm). This is due to the manual scans’ relative instability compared to the robotic
scans (i.e., scan velocity and probe pose).

Fig. 5.11. Performance of the optimization method on a phantom with an suboptimal initialization. Reprint from [7]
with permission of IEEE.

Representative Robotic Screening Procedures
To further show the detailed process of the proposed end-to-end screening system, a full
US sweep (16 cm) starting from a large initial eor ≈ 45◦ is shown in Fig. 5.11. The probe
reached the desired orientation at 8 s and then, the optimal orientation is maintained until
the end of the sweep at 16 s. This shows that the proposed method can perform automatic US
screening based on real-time US imaging. In addition, it is noteworthy that false-positive cases
of real-time segmentation may occur during scanning (e.g., Fig. 5.11 (b)). To correctly select a
good candidate in such a case, the distances between the selected vessel in the previous frame
and the detected results in the new frame were calculated. Since the vessel is a continuous
object, the detected result with the smallest distance is finally selected to reduce the chance
of tracking the wrong object. To analyze whether the proposed method is able to run in
real-time, the image processing and optimization overhead were measured. The entire process
took 32 ms on average while the U-Net only took 5 ms for image processing (TABLE 5.1).
Therefore, the system can be run in real-time.

5.6 Discussion

This work enables RUSS to automatically perform US sweeps for tubular structures without
any requirement for pre-operative images. The proposed approach is able to optimize the
probe pose (position and orientation) and calculate vessel radius in real-time during US
sweeps. Since autonomous RUSS overcomes the limitation of human hand-eye coordination,
a stable and accurate prediction of the radius can be achieved. Significantly, due to the use of
multiple frames, the proposed optimization approach is able to accurately calculate the vessel
radius when the US probe is titled from normal direction. Compared with existing methods,
the approach also demonstrated the advantage of optimizing multiple objects meanwhile.
The errors of the probe orientation, target centering and estimated radius are mainly caused
by the error of the image segmentation results. In addition, the difference between the real
orientation error and estimated orientation error is because of the compliant behaviour of the
controller. To guarantee patients’ safety and good contact condition between probe and object
surface, the impedance control was employed, however, this controller allows positional error
to achieve compliant performance.
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In addition, the main limitation of this work is that the segmentation network was only
tested on the brachial artery in the forearm. A more generic model for segmenting different
arteries has to be developed to further test the proposed approach in different clinical trials.
Considering variations between patients, to make a network accurately segment target tissues
for most people, Prevost et al. suggested that several tens of US sweeps with different
acquisition parameters on several tens of volunteers are required to be used for training [99].
Alternatively, to overcome the difficulties in collecting a larger number of in-vivo data sets,
large-scale simulated US data and small in-vivo data sets can be used together to train an
generic segmentation network, as in [141]. Beside, the technique for correcting the pressure-
induced deformation in US images [6] can be further integrated to generate accurate 3D
anatomy.

5.7 Conclusion

In this work, we introduced an end-to-end workflow for autonomous robotic screening of
tubular structures based only on real-time US images. The proposed method can automatically
adjust the probe position to horizontally center a tracked object and tune the probe orientation
to the normal direction of the target vessel during US sweeps. Additionally, the radius of
the target object is calculated in real-time, even when the probe is titled from the normal
direction. The results demonstrated that the proposed method is able to automatically perform
US sweeps and accurately estimate the geometry of the target vessels both in simulation (era:
1.16± 0.1 mm, eor: 2.7± 3.3◦) and for a real phantom (era: 0.77± 0.4 mm, ereaor : 3.7± 1.6◦,
ece: 0.24± 0.19 mm). The development of autonomous RUSS is a promising way to overcome
inter-operator variability providing repeatable US images. In addition, with such a RUSS,
sonographers can focus on diagnosis to fully utilize their experience and knowledge. This
approach could be integrated with autonomous diagnosis techniques to further pave the way
for a fully automatic US-guided intervention system [142].
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6Learning US Examination from
Expert Demonstrations

6.1 Overview

This chapter presents the contributions of this thesis concerning learning-based autonomous
US scans. Due to the missing of the key ability to learn US scans from expert demonstrations,
most robotic US imaging systems can only assist sonographers by maintaining contact force;
or semi-/fully automatically performing a predefined scanning task.

To this end, we present an intelligent robotic sonographer, which can autonomously “explore"
target anatomies and navigate a US probe to a relevant 2D plane by learning from expert’s
demonstrations. To intuitively transfer high-level physiological knowledge, a number of
demons starting from random positions and ending at the target objects are performed by
experts. The clinician’s intention is extracted by a reward function computed using ranked
pair-wise image comparisons generated from all demos. To avoid inconsistent objectives,
all demons are ranked and cleaned using Gaussian distribution. The inferred rewards of
individual B-mode images are then used to locate target anatomies by successively performing
coarse and fine localization. To validate the performance of the proposed approach, two
representative experiments were performed on a vascular phantom and two ex-vivo animal
organ phantoms (chicken heart and lamb kidney). The results show that the method is able to
automatically navigate a US probe to standard scan planes.

This chapter is organized as follows: In Sec. 6.2, the clinical and methodological background
has been summarized. Then, Sec. 6.3 presents the proposed advanced approach enables learn
the latent reward from suboptimal demonstrations from clinical experts. Afterwards, the
autonomous navigation approach guiding probe to a target standard plane is presented in
Sec. 6.4. Finally, the experimental details and a through conclusion are presented in Secs. 6.4.2
and 6.6, individually.

6.2 Introduction

6.2.1 Clinical Motivation

Ultrasound is one of the most widely used non-invasive imaging techniques to visualize
internal anatomies. Unlike CT and MRI, US imaging is real-time, low cost and radiation
free [19]. Conventional US acquisition requires sonographers to manually orient a US probe in
specified poses called standard scan planes. Such planes are often used to perform quantitative

119



biometric measurements [143, 144], image-guided interventions [138, 145] and to identify
abnormalities, as shown in longitudinal view of organs (i.e., blood vessel, kidney) in Fig. 6.1.
However, substantial experience and visuo-tactile skills are required to identify and accurately
align a probe with standard planes. The potential for variation between different operators
hinders consistent and repeatable diagnosis, particularly for inexperienced sonographers.
Therefore, a robotic US system (RUSS) with the ability to discover standard planes could
bring advantages by reducing the workload of sonographers and obtaining standardized and
operator-independent US images.

Fig. 6.1. Illustrations of standard planes for different organs. (a) the longitudinal view of a mimicked vesicular
phantom, (b) longitudinal view of a chicken heart, and (c) longitudinal view of a lamb kidney. From the
2nd column to the 4th column are B-mode images of different objects recorded by a human operator
manually aligning the probe pose towards standard planes. US imaging depth is 5 cm.

6.2.2 Robotic US Imaging System

Due to the advantages of accuracy, stability, and repeatability, robotic technology has been
employed to develop both a fully or a semi-autonomous RUSS. Pierrot et al. developed a
RUSS with the ability to maintain a constant force between the probe and subject’s skin for
cardiovascular disease prevention [45]. To further quantify US acquisition for stable and
repeatable US images, Jiang et al. proposed a method to automatically position a linear probe
to the normal direction of the object skin using a confidence map and the estimated Cartesian
force at TCP [11]. Then, a mechanical force model-based method was proposed to optimize
the orientation of both convex and linear probes [9].
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Regarding automatic robotic US scanning, Virga et al. proposed an approach to acquire 3D US
images for abdominal aortic aneurysms screening [53]. The scan path was determined based
on the registration between the patient’s surface and a generic MRI-based atlas. To eliminate
the requirement for the pre-operative images, Huang et al. proposed a method to automatically
determine the scan path based on the extracted skin surface using a depth camera [56]. To
fully utilize human experience, Abolmaesumi et al. develop a shared controller to visualize
carotid arteries in 3D [44]. The aforementioned RUSSs are mainly developed to automatically
and accurately visualize the anatomies of interest. However, these systems are not designed
for automatically discovering and navigating a probe to standard scan planes, which are
important for quantitative measurement [143, 144] or image-guided interventions [138] in
clinical practice.

6.2.3 Detection and Navigation of Standard Planes

Due to the potential deformation of soft tissue and the often hard-to-interpret US imaging,
guiding a probe to correct planes is a highly sophisticated task, which requires years of
training [146]. Furthermore, limited by hand-eye cooperation, these tasks suffer from low
reproducibility and large variation between operators [22]. These drawbacks severely affect
the clinical acceptance of the US modality towards repeatable, quantitative, and accurate US
imaging. To address this challenge, Chen et al. proposed a learning-based approach to locate
the fetal abdominal standard plane in US videos using a deep convolutional neural network
(CNN) [147]. Each input video frame was processed by a classifier to detect the standard
plane using a sliding window. However, this approach requires carefully annotated images for
training and cannot be run in real-time. To bridge the gap to real examination, Baumgartner et
al. proposed the SonoNet to detect standard views from US images in real-time [144]. This
approach achieved good performance for data acquired in freehand fashion, but it cannot
navigate an probe towards target imaging planes.

To effectively navigate a probe to standard planes, Droste et al. trained a policy network to
predict the final goal pose and the next movement action based on the recorded US images
and corresponding probe poses from expert demonstrations [148]. The network uses a gated
recurrent unit (GRU) and was trained based on paired US images and corresponding probe
orientations recorded from experts’ demonstrations. Due to the limitation of the inertial
measurement unit (IMU), only rotation movement was considered. In addition, to successfully
predict the next movement, the relative movement from the previous frame to the current
frame has to be properly estimated, which hinders the possibility to apply such a method in
RUSS due to the prediction error accumulation.

To guide a probe in a real scenario, Hase et al. employed a deep Q-network (DQN) to navigate
the probe towards sacrum in a 2D grid word; and the navigation process is terminated
by feeding the real-time US images into a binary classifier [149]. Since rotation was not
considered, a good initialization of orientation has to be given. In addition, the binary classifier
limits the accuracy of the result because the search process will stop once the classifier is
triggered (reach the preset threshold rather than the optimal value). To robustly search and
align the probe to the paramedian sagittal oblique plane (a standard plane used in spine
US examination), Li et al. considered both rotational and translational movements based
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on real-time images obtained from a simulator using a deep Reinforcement Learning (RL)
framework [150]. The results achieved in unseen data was only 46% successful, which is much
smaller than the reported result for training data, of 92%. Besides, this approach was only
evaluated in simulation with a virtual probe. How to bridge the gap between the simulation
and real world scenarios is still an open challenge, particularly for clinical applications where
safety is critical.

6.2.4 Learning from Demonstration

Since RL algorithms typically require a lot of interaction with the environment to successfully
learn policies to solve a specific task [151], most of the aforementioned studies were trained
in simulation or using recorded US examination videos. Besides RL methods, some works
tried to directly teach RUSS to perform US scans based on expert demonstrations, which
can effectively alleviate the complexity of robotic programming. In addition, such a system
can take full advantage of senior operators’ experience and help train young operators.
Learning from demonstration (LfD) can be broadly categorized into two approaches: imitation
learning (IL) [152] and inverse reinforcement learning (IRL) [153]. Imitation learning directly
learns a predictive model to estimate the next action based on the current state, which requires
optimal demonstrations because the fundamental logic of such an approach is to imitate the
behavior rather than understand the latent objective. On the other hand, IRL aims to represent
a given task by a reward function with respect to state features. Common approaches assume
that the reward is expressed as a linear combination with the feature counts [153] or that
the likelihood of observing a demonstration is exponentially higher for higher rewards than
lower rewards [154]. Due to acoustic shadows, poor contrast, speckle noise, and potential
deformation in resulting imaging, guiding a probe to correct planes is a highly sophisticated
task in clinical applications [131]. This means that expert demonstrations are frequently and
inherently sub-optimal and even contradictory. Therefore, the popular maximum-entropy IRL
method [155] is not suitable for our task.

In the field of robotic US, Mylonas et al. employed Gaussian Mixture Modeling (GMM) to
model the demonstration in a probabilistic manner [156], but only took the trajectory into
consideration. Since the resulting US images were not considered, all the demonstrations
had to be started from the same point, which hinders the potential to apply the trained
model to different setups. To achieve good performance, this approach has strict requirements
on the initialized position and phantom position. Burke et al. introduced a probabilistic
temporal ranking model which assumes that the images shown in the later stage are more
important than the earlier images [157], allowing for reward inference from sub-optimal
scanning demonstrations. They use this model to coarsely navigate a US probe to a mimicked
tumor inside of a gel phantom, using an exploratory Bayesian optimisation policy to search for
scanning positions that capture images with high rewards. However, in real scenarios, patient
safety is critical, and it is not realistic to richly interact with patients to gain experience to find
an optimal viewpoint.
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6.2.5 Proposed Approach

To assist the sonographer in achieving consistent and repeatable diagnosis during US exami-
nations, we developed an intelligent RUSS to navigate the probe to standard scan planes by
learning from few demonstrations. To the best of our knowledge, this is the first work that
aims to learn the underlying skill and anatomical knowledge directly from human operators to
align a probe to standard scan planes automatically. The ability to learn from demonstrations
allows sonographers to intuitively transfer their knowledge to a RUSS without the requirement
of any robotic programming. This is still a challenging task in the area of robotics skill
learning, particularly when the demonstrations are not optimal [158]. Inspired by [157], a
global probabilistic spatial ranking (GPSR) method was developed to learn the latent skills
and overcome the potentially biased results caused by inconsistent demonstrations. The
GPSR mainly consists of a convolutional variational autoencoder (VAE) [159] used to extract
the features of US images and a fully connected network (FCN) used to predict the reward
associated with individual frames. Considering the time efficiency and potential movement
of the patient during the procedure to obtain optimal policy navigating the probe to the
target plane, it is impractical to train an agent using RL [149, 150] or apply Gaussian process
path planning [157] in a real world scenario. Therefore, we divided the navigation process
into coarse and fine tuning procedures. Regarding the first step, a US sweep over the target
anatomies was performed, and then a virtual probe was generated on the upper surface of
the computed 3D volume. By assigning various probe poses, a larger number of simulated
2D images were created. Based on the predicted reward for individual synthetic images, a
greedy algorithm was employed to detect the desired plane. Finally, to further bridge the gap
between simulated images and real images, the probe was finely adjusted around the coarse
location to achieve a more precise result, like human operators. An overview of the proposed
approach is shown in Fig. 6.2.

Fig. 6.2. Schematic overview of the framework.

In addition, to demonstrate the potential of the proposed approach, besides grid world analysis,
the proposed method was validated on a gel vascular phantom and more challenging ex-vivo
animal organs phantoms (chicken heart and lamb kidney). In contrast to simulation, such
tasks are more realistic and more challenging in a physical environment because the resulting
images are sensitive to practical factors, i.e., probe pose and contact force.
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6.2.6 Contributions

In this work, we propose an advanced machine learning framework to explore standard
scan planes defined by clinicians by demonstrations using robotic techniques. To understand
the underlying intention and transfer the high-level physiological knowledge to the robotic
system, a reward function is learned from image demonstrations to assess individual US
images without any requirement of manual annotation. Such a system could enable consistent
and repeatable diagnosis between different sonographers, particularly for inexperienced
operators. To achieve this, a few demonstrations, guiding the probe from random poses
(position and orientation) to the desired scanning plane, were recorded. To avoid biased
results, a probabilistic metric was developed to assess the demonstrations and filter out
abnormal ones using a joint Gaussian distribution. Since sonographers need to actively
adjust probe pose to standard planes, these demonstrations are frequently and inherently
sub-optimal. Inspired by [157], a self-supervised method based on the spatial cues of US
frames in the demonstrations was developed, in which comparisons between two images are
globally generated from all consistent demonstrations. Then the rewards for individual images
can be inferred by a neural network trained using the pairwise image comparisons. In contrast
to [157], and considering the time efficiency and variation of patient-specific situations, this
work proposes a navigation process comprising coarse and fine adjustment steps instead of
using RL or informative path planning approaches based on the computed reward function.
To validate the performance of the proposed approach, experiments have been carried out
in a simulated grid world and two typical cases on a gel vascular phantom, alongside more
challenging ex-vivo animal organ phantoms (lamb kidney and chicken heart).

6.3 Learning from Few Demonstrations

This section describes the probabilistic temporal ranking approach (PTR) and the proposed
GPSR method to learn the latent reward function for individual B-mode images from expert’s
demonstrations. In addition, a confidence-based approach was introduced to assess the quality
of the given demonstrations to avoid biased end results.

6.3.1 Probabilistic Temporal Ranking (PTR)

PTR is a reward model that learns from pairwise comparisons sampled temporally from
demonstrations [157]. This method models the rewards with a Gaussian process using a
Matern32 kernel function. To train the model, a differentiable neural approximation was
employed in [157]. More precisely, the Gaussian process was replaced with a single layer
FCN with similar performance. The generative process for a pairwise comparison outcome
(g ∈ {0, 1}), between the latent rewards for the observations (images) rt1 and rt2 at time step
t1 and t2, is modeled as a Bernoulli trial as in Eq. (6.1).

g ∼ Ber(Sig(rt2 − rt1)) (6.1)

where Ber represent Bernoulli distribution and Sig() represents the sigmoid function.
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Regarding US scanning, PTR assumed that the images obtained at the later stage of a demon-
stration are more important than those obtained earlier. This assumption is reasonable for the
applications searching for standard planes because sonographers usually stop and maintain
the probe when the target planes have been achieved. According to this assumption, ground
truth training labels g = 0 are generated if t1 > t2, and g = 1 if t1 < t2. The Bernoulli trial
introduces slack that enables PTR to predict the reward from a sub-optimal demonstration,
where the assumption above may not hold. This means the reward for the demonstration can
be non-monotonic because there is a greater chance to get a comparison result accidentally
g = 0 or 1 when two rewards are similar.

To robustly predict the rewards for unseen observations, a VAE [159] was used to extract the
representative image features in latent space Zt ∼ (µ(Xt), δ2(Xt)). Xt is the observation at
timestamp t, µ and δ are the mean and diagonal covariance of the observations. The extracted
latent feature Zt was fed to an FCN to estimate the corresponding reward. To train PTR in an
end-to-end fashion, the loss for VAE and reward FCN are combined as Eq. (6.2).

L = −Ezt1 ∼q(zt1 |x) [log p(x|zt1)] + KL(q(zt1 |x)||p(zt1))

− Ezt2 ∼q(zt2 |x) [log p(x|zt2)] + KL(q(zt2 |x)||p(zt2))

− 1
N

N∑
i=1

[gilog(h(gi)) + (1− gi)log(1− h(gi))] (6.2)

where h(gi) is the computed result using Eq. (6.1) for a pair of observations and gi is the
ground truth label for i-th observation combination, which is automatically determined based
on time sequence t1 and t2 of the two observations. By minimising the loss, the parameters
for the encoder q(z|x), decoder p(x|z) and the reward net rψ(z) can be obtained.

6.3.2 Global Probabilistic Spatial Ranking (GPSR)

PTR only considered the relationship between the frames in an individual demonstration,
while the global relationship between demonstrations has not been investigated. Considering
the potential inconsistency between demonstrations, it is important to rate the demonstrations,
to automatically identify and filter undesirable data from the training set to avoid contradictory
objectives hindering the learning of the demonstrator’s latent intention.

Data cleaning

Regarding the task of visualizing the desired US scan planes, a demonstration ending at a good
viewpoint, where the standard planes could be displayed, is considered a good demonstration.
Since the resulting B-mode imaging depends on the end-effector pose, the end-effector poses
of the last frames in all demonstrations were employed as the surrogate of the corresponding
US images. Then, the last end-effector poses Pp ∈ R6 were modeled using a joint Gaussian
distribution with Ndof (the number of DOFs) variables, and the parameters of the distribution
were determined using a maximum likelihood method.
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Pp ∼ N (µµµg,ΣΣΣg) (6.3)

where µµµg = E(Pp) and ΣΣΣg are the mean vector and covariance matrix of Pp from all demon-
strations, respectively. Σi,j = E[(P i

p−µig)(P j
p −µjg)], 1 ≤ i, j ≤ Ndof . To balance the numerical

difference in different DOFs, Pp has been normalized into [0, 1] in each DoF.

Regarding the multivariate normal distribution, the confidence interval for a certain signifi-
cance level pci results in a region, in which Pp satisfies the following condition.

(Pp −µµµg)TΣΣΣ−1
g (Pp −µµµg) ≤ χ2

Ndof
(pci) (6.4)

where χ2
Ndof

is the percent-point function for probability pci of the chi-squared distribution
with Ndof degrees of freedom. If the last pose of a sampled demonstration is not inside the
confidence region with a given significance level (i.e., 5%), this demonstration is considered
different from others and should be removed from the data set.

Probabilistic Spatial Ranking
After removing the unsuitable demonstrations, the latent objectives for different demon-
strations are generally consistent. For PTR, the demonstrations are considered individually.
However, if the paired images could be generated from different demonstrations, much more
training data (pairwise comparisons) can be generated from few demonstrations. Considering
US demonstrations are usually inherently sub-optimal and the demonstrations initialized at
different positions, it is difficult to determine which image (from different demonstrations)
deserves a higher reward based on temporal information alone. Without global pairwise
comparisons, the difference between the last observations of all demonstrations will limit
the achievement of a more consistent and precise result. In the worst case, the incorrect
comparison outputs will further decrease the reward inference ability of the PTR approach.
To overcome this drawback and enable the ability to generate images pairs with correct
comparison output from different demonstrations, this work introduces GPSR, which uses the
probe’s spatial cue for image comparison instead of the temporal information used by PTR.

To visualize the tissues of interest in 2D standard planes, a US probe is required to be controlled
in four DOFs for most applications, e.g., the task of visualizing and horizontally centering
the lamb kidney and chicken heart (Fig. 6.1). Two translational movements in the plane
orthogonal to the probe centerline and two rotational movements along the probe long axis
and the probe centerline, respectively. The remaining two DOFs: the translation along probe
centerline and the rotation around the probe short axis only change the visualized part of
the same plane. In addition, to obtain high-quality US images, the probe is required to make
firm contact with objects’ surface. To consider the object’s safety, a compliant controller is
often used in RUSS to avoid too large force in the probe centerline direction. Besides, for
some anatomies, i.e., tubular tissues, the translational position along the centerline of tubular
tissues is allowed to be flexible to display a longitudinal vascular view.

For the proposed GPSR approach, the spatial cue of each frame is used as the supervisory signal
instead of the time sequence to generate image comparisons between different demonstrations.
Unlike PTR, we assume that the images obtained at the position close to the ending pose
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should be assigned a higher reward than the images obtained at the poses far away from the
last pose in the demonstration. Considering that the optimal poses for the standard planes
may vary a lot for some applications, like scanning the longitude view of tubular tissues,
the absolute pose difference dki between the pose of a frame and the pose of the last frame
from the same demonstration, instead of absolute probe poses themselves, are employed by
GPSR.

dki =
[
|Pki (1)− Pke(1)|, ..., |Pki (6)− Pke(6)|

]
(6.5)

where Pki ∈ R6 and Pke ∈ R6 are the poses of i-th and ending frame of k-th demonstration.

To generate global comparisons between frames from different demonstrations, the computed
dki of all demonstrations were used to obtain the global maximum pose difference vector in all
six DOFs dgmax =

[
max (dki (1)), ..., max (dki (6))

]
. To balance the numerical difference between

translational movements and rational movement, dki was further normalized to [0, 1] in each
DOF, respectively, as follows:

Dk
i =

[
dki (1)

dgmax(1)
, ...,

dki (6)
dgmax(6)

]
(6.6)

The global generalized distance Dk
i was calculated as Eq. (6.7).

Dk
i =

√√√√ 6∑
j=1

[
kj
(
Dk
i (j)

)2
]

where kj =



(
dgmax(j)

)2∑3
m=1

(
dgmax(m)

)2 kt j = 1, 2, 3

(
dgmax(j)

)2∑6
m=4

(
dgmax(m)

)2 kr j = 4, 5, 6

(6.7)

where kt and kr are the weights for translational and rotational movements, respectively, kt +
kr = 1. kj is the weight for the movement j-th DOF, which is automatically determined based
on the demonstrations. The DOF with larger movement variation among the demonstrations
will result a larger weight.

Then global comparison outcomes are determined by the global generalized distance Dk
i . For

pairwise images randomly selected from demonstrations, the comparison outcome label g = 1
is assigned if Dk

i (p1) ≥ Dk
i (p2), and g = 0 if Dk

i (p1) < Dk
i (p2). Similar to PTR, the latent

features from the VAE encoder were used as the input for an FCN reward prediction network
rψ(Z). The detailed architecture has been shown in Fig. 6.3. To determine the weights of FCN,
a binary cross entropy loss over the comparison outcome was used as reward loss function
Lre.
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Lre = − 1
N

N∑
i=1

[gilog(h(gi)) + (1− gi)log(1− h(gi))] (6.8)

where h(gi) = Sig(kre(rp2 − rp1)), rp1 = rψ(Zp1) and rp2 = rψ(Zp2) are the predicted reward
for the images obtained at p1 and p2, respectively, and kre is the coefficient used to restrain
false high reward. kre was empirically set as 5 in this work.

Fig. 6.3. The architecture of the GPSR reward net. The paired images are encoded by a pre-trained VAE. Then,
the image features (Zp) in latent space are fed to an FCN to predict the reward for the current images.
Based on the difference between the predicted rewards, a comparison outcome can be generated using
h(g).

6.4 Autonomous Navigation to Standard Planes

6.4.1 Generation of Simulated US Images

Automatic Scanning and US Volume Reconstruction

Given the trained reward FCN rψ(Z), it becomes possible to evolve a policy to navigate the US
probe to target standard planes using RL methods or Gaussian processes [157]. However, to
find an optimal policy, many interactions with subjects are required to balance both exploration
and exploitation. Due to patient safety concerns, these approaches are not suited for US
applications. In addition, time efficiency is another practical issue because it is not practical to
ask patients to stay stationary for a long time during an examination.

To address such practical limitations in US examination, a new framework is proposed to
quickly and safely navigate the US probe to the target scan planes. Instead of real-time
interaction with subjects, a single sweep over the tissue of interest was carried out. To achieve
this, three points (Pmi ) are manually selected on the object surface in a clockwise or anti-
clockwise direction. The anatomy of interest should be covered by the parallelogram defined
using Pmi . To obtain the 3D reconstruction of the area of interest, a scan path planning method
similar to [57] was employed here. Since the probe width wp is limited, a multi-line trajectory
is used to completely cover the area of interest as Fig. 6.4. To minimize the total length of the
trajectory, the probe is mainly moved in the direction with a larger length, i.e.,

−−−→
pm2 pm1 when

128 Chapter 6 Learning US Examination from Expert Demonstrations



|pm2 pm1 | ≥ |pm2 pm3 |. The key points Pk required to define the multi-line trajectory are calculated
as follows:

Pk =


Pm2 + 1

2
−−−→
pm2 pmi wp ≥ min{|pm2 pm1 |, |pm2 pm3 |}

Pm2 +
[(

1
2 + j

)
wp − jϵ0

] −−−→
pm2 pmi

|−−−→pm2 pmi |
Others

(6.9)

where
−−−→
pm2 pmi is the axis with a shorter length, i = {1, 3}, j = 1, 2, ..., ⌈min{|pm

2 p
m
1 |,|pm

2 p
m
3 |}

wp
⌉, ϵ0 is

a small coefficient used to guarantee the overlap between the sweep along two neighbouring
lines.

Fig. 6.4. The transformation between coordinate systems.

After accomplishing the sweep along the planned trajectory, the tracked B-mode images can
be stacked in spatial space based on the known robotic kinematic model. In order to obtain
the 3D volume, a linear interpolation was employed, using PLUS [160].

Simulated US Images from Real Volume
In order to obtain 2D images from the compounding result, a rectangle (wp×dp) was employed,
where dp is the depth of the US setting. Then the volume was projected into X − Y plane of
the robotic base coordinate system {b} (Fig. 6.5), in which the probe pose could be directly
used for the controller. Then the probe pose in the 2D view could be defined as (bx, by, and
bRz ). In case the desired plane is only able to be seen when the probe is tilted, additional
rotation around probe long axis (pX) pRx was defined. Since the effect of the rotation around
the probe short axis (pY ) could be partly replaced with the movement in pY direction, this
was kept constant.

Then, a large number of simulated images could be obtained by giving different (bx, by, bRz,
pRx). The policy employed to generate simulated images here is: 1) bx = [xmin, xs, xmax], 2)
by = [ymin, ys, ymax], 3) bRz = [0, Rs

z, 180◦], and 4) bRx = [−30◦, Rs
x, 30◦]. The left, middle and

right values represent lower boundary, the increment of each step, and the upper boundary,
respectively. In this work, xs = ys = 3 mm and Rs

z = Rs
x = 5◦.
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To filter out the simulated images without correct context, the volume mask Mv (2D) was
generated based on the 3D compounding result, which is the projected result of 3D volume in
X − Y plane of frame {b} (Fig. 6.5). Regarding Mv, the white area (I = 1) represents the
projected volume with context inside, while the black area (I = 0) is the area padded during
3D compounding. Then, another mask for probe Mp could be featured as a line defined by
(bx, by, and bRz ). Considering the width of the probe is wp, Mp can be generated as a line
with high intensity (I = 1) while the intensity of other area are zero. The line is represented
by (x, y) = {(x, y)| y−by

x−bx
= tan(bRz ) && x ∈ [bx − wp

2 cos bRz , bx + wp

2 cos{bRz }}]}. Then, an
element-wise multiplication was applied between two masks (Mv ⊙Mp). If the probe is
not fully located inside of the volume mask, the corresponding simulated images will be
discarded.

Fig. 6.5. The transformation between coordinate systems.

6.4.2 Alignment of US Probe

Coarse Positioning of US Probe

After applying the well-trained reward network rψ(Z) for the simulated US images, the
reward volume with respect to the variables can be generated. To intuitively visualize the
reward distribution, two representative reward volumes with respect to the probe positions
in X and Y direction and the rotation around Z direction (bx, by, and bRz) for tubular
phantom and ex-vivo kidney phantom, respectively, are shown in Fig. 6.6. The dark blue
area represents low reward values, while the yellow area represents high reward. It can
be seen from the figure that the high reward (> 0.85) is mainly distributed around the
area (mean ± STD) [410 ± 0.8 mm,−219 ± 1.8 mm, 106.5 ± 3.1◦] for kidney phantom and
[579± 17.1 mm,−38± 3.3 mm, 170± 6.4◦] for the tubular phantom. For most applications,
i.e., the lamb kidney and chicken heart, the highest rewards are concentrated to a point, while
for tubular tissue these are mainly distributed along a line. This is because of the different
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geometric features of the anatomies involved; the longitudinal view of the blood vessel allows
flexibility in the direction of the vessel centerline.

Considering the efficiency of the approach, the generated simulated images were fed into the
reward FCN. Then, a 3D moving window was used to smooth the 3D volume of the rewards.
Based on the resulting rewards, the mimicked image with maximum reward was extracted
and we directly move the probe to the corresponding pose.

Fig. 6.6. The transformation between coordinate systems.

Fine Adjustment of US Probe
Like human operators performing US probe examinations, a fine-tuning process was performed
after coarse positioning of US probe. Considering the size of objects, a searching area
(bx : ±10 mm, by : ±10 mm, bRz : ±10◦, and pRx : ±10◦) was determined around the target
pose using the simulated images. The step size for the involved translational movement was
2 mm and the one for the rotational movement was 5◦. Then, the searching procedure was
automatically performed in the specified area. During the fine-tuning procedure, the reward
for each image was computed in real-time. The US image with the maximum reward was
finally considered the best estimation of the target standard plane. In addition, all searching
parameters used in the fine-tuning procedure can be changed according to the requirements
of different tasks.

6.5 Results

6.5.1 Hardware Setup

The proposed RUSS consists of a robotic arm (KUKA LBR iiwa 7 R800, KUKA Roboter GmbH,
Augsburg, Germany) and a US machine (Cephasonics, California, USA). A linear probe
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(CPLA12875, Cephasonics, California, USA) was rigidly attached to the robotic flange using a
custom-designed holder. The B-mode images were accessed using a USB interface provided by
the manufacturer in 50 fps. The robotic arm was controlled using a Robot Operating System
interface [48]. The real-time US imaging and robotic pose were synchronized and further
used for 3D compounding in a software platform (ImFusion GmbH, Munich, Germany). The
US setting was mainly determined by the default setting file for vascular tissues provided by
the manufacturer: brightness: 66 dB, dynamic range: 88 dB. The depth, focus and frequency
were 5.0 cm, 3.1 cm and 7.6 MHz for vascular phantom, while these parameters were changed
to 5.5 cm, 5.0 cm and 5.7 MHz for the ex-vivo phantoms.

To validate the performance of the proposed approach for various organs, a blood vessel
phantom and two ex-vivo organs phantoms (lamb kidney and chicken heart) were used in this
work. The blood vessel phantom was primarily made using gelatin powder, while the ex-vivo
organs phantoms were made using candle wax. Candle wax has a good sealing ability, which
allows for longer preservation of fresh animal organs. To construct the vascular phantom:
gelatin power (175 g/L) was dissolved into water, and the mixed solution was heated to 80
degree. To mimic human tissue artifacts, paper pulp (3− 5 g/L) was randomly mixed into the
solution. After solidification, a round tube was used to create two holes at different depths of
the phantom for mimicking vascular structures. For the ex-vivo organs phantom, hot candle
wax liquid was used to cover the organs in a small box. After the liquid was fully solidified, it
was taken out and placed in another box. Then, candle wax liquid was poured into the box
to submerge the upper surface of the phantom. Like paper pulp used for vascular phantom,
ginger power (10 g/L) was mixed with the candle wax for ex-vivo organ phantoms.

6.5.2 Performance of GPSR on 2D Grid World

To theoretically validate whether the proposed GPSR method can properly learn the reward
model interpreting the underlying human intention, a grid world environment (20× 20) was
built for qualitative and quantitative analysis. In the grid world, the aim is to move an agent
initialized from a random position towards the target position. To simulate the two most
typical tasks in clinical routine, a point and a line object were employed, respectively, to mimic
the tasks require strict and non-strict probe pose to repeatedly show object standard planes.

In order to generate sub-optimal trajectory demonstrations, two q-learning policies were
trained separately for the point and line objects in the grid world, in which the reward of the
target position was set to one while the rewards of other positions were zero. The maximum
episodes and steps for each episode were set to 50 and 100, respectively. Based on the sub-
optimal trained model, an agent will move towards the target position from a random position.
For point object, five demonstrations ending at the target position were generated to mimic
standard planes in US applications. In addition, for the line object (1× 5), ten demonstrations
ending at the target line were generated. Since the model was only trained with limited
epochs, the generated demonstration was sub-optimal; namely, the trajectory cannot directly
move towards the target position in the minimum number of steps.

Based on the given sub-optimal demonstrations, three reward models were trained using
maximum entropy IRL (ME-IRL) [155], PTR [157] and the proposed GPSR, separately. The
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Fig. 6.7. Reward maps obtained from sub-optimal demonstrations. Red lines represent the demonstrations, and
the color in each grid shows the reward of the corresponding position.

ground truth and the reward maps inferred by the three models are shown in Fig. 6.7. It
can be seen from the figure that the reward map inferred by the proposed GPSR is closest to
the ground truth, in which the highest reward clearly shows in the right position in the grid
world. The result achieved using the maximum entropy [155] approach failed to correct the
recover the correct reward value from the sub-optimal demonstrations, particularly for the line
object. This is mainly because of the inherited limitation of the maximum entropy approach,
which tends to assign larger reward values to states observed more often in the demonstration.
However, demonstrations of US examination are sub-optimal. The positions observed more
often in the demonstrations may not be the desired positions. Regarding PTR approach [157],
the inferred reward map is much better than the one obtained from maximum entropy while
still worse than the one achieved from the proposed GPSR approach. It can be seen from
Fig. 6.7 (c) that the position with the maximal reward is close to the desired position. However,
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since the pairwise training data was generated from individual demonstrations, a biased result
occurs, especially when the lengths of demonstration are significantly different from each
other. For the line object, PTR fails to realize that the object is a line. Only one grid point of
the line is successfully assigned with a large reward (see Fig. 6.7 (g)).

Considering the intrinsic properties of US examination, the target standard planes correspond
to a unique or a set of probe poses with a unified character. Thus, the proposed GPSR approach
directly generates the paired training data from all demonstrations based on the probe spatial
cues rather than temporal cues. Due to the global consideration of all demonstrations, more
training data could be generated from the same demonstration using the GPSR approach. The
performance of inferred reward in grid world using different approaches also demonstrates
the superiority of GPSR over the PTR and maximum entropy approaches, particularly for
unstructured objects like a line object (Fig. 6.7).

To further quantitatively compare the performance of different approaches, four q-learning
models were trained, separately, according to the three inferred reward maps and the ground
truth. The number of training episodes was set to 500, and the maximum number of steps
for each episode was 100. Then, 20 points were randomly initialized in the grid world, and
the four trained models were used to guide the agents to move towards the target position
separately. Considering time efficiency, the trials were only considered successful when the
agent can stop at the desired position within 100 steps. The whole process was repeated 20
times with random target positions. The final success rate over 400 trials (20×20) for different
approaches is summarized in TABLE 6.1.

It can be seen from TABLE 6.1 that the ME-IRL results in the worst case in our setup, where
the success rate is only 9.3% and 3.2% for the point and line objects, respectively. In contrast,
the result obtained using the ground truth is best (99.3% and 100%). In addition, the
success rate achieved using the PTR and the proposed GPSR are 47.0% and 72.0% for the
point object, respectively. Although GPSR results are still worse than the ground truth, the
performance already significantly improved from the state-of-the-art approaches (62.7% and
25%, respectively). In addition, regarding the line object, the success rate for PTR further
decreases to 33.2% while the GPSR increase the number to 84.5%. This is mainly because
PTR only considers the time sequence of individual demonstrations, while the proposed GPSR
globally generates pair-wise comparisons between all available demonstrations.

Tab. 6.1. Performance of Learning from Demonstrations Methods

Methods
Success rate

Point object Line object

Ground truth 99.3% 100%

ME-IRL 9.3% 3.2%

PTR 47.0% 33.2%

GPSR 72.0% 84.5%
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6.5.3 Performance of Rewards Inference Model

Training Details
For each phantom, ten demonstrations were given by experts individually. The lengths of
demonstrations vary from 871 to 1797 frames depending on the initial positions and expert
behavior. Differing from the end-to-end mode used in [157], here the VAE was trained
individually to guarantee the consistent performance for the simulated images, which are
slightly different from acquired images due to the interpolation during 3D compounding. To
train the VAE, the data set of each phantom consisted of 6000 US images randomly extracted
from the demonstrations and 2000 simulated images from 3D volumes. The ratio between the
training and validation data sets was 9 : 1. The size of the input images is 256× 256 and the
size of the latent feature was set to 64. The batch was set as 64 and the total training epoch
was set to 100. The network parameters were optimized using Adam with a constant learning
rate 1× 10−3 [112].

Regarding the training process of the proposed GPSR approach, only five demonstrations were
randomly selected. Four of them were used as training data set, while the remaining one was
used for validation. To balance the weights of different demonstrations, all the demonstrations
were down-sampled to 500 frames. Therefore, the size of the pair-wise training data set is
C(2000, 2) = 1, 999, 000, while the size of the validation data set was C(500, 2) = 124, 750.
Then, the reward network was trained by minimizing the cross entropy loss described in
Eq. (6.8). The training details are as follows: batch size: 128, epoch: 5, leaning rate: 1× 10−5.
In addition, all the training process was run on a single GPU (Nvidia GeForce GTX 1080).

The training loss and validation loss of the reward interference network for vascular phantom
are used as representative results in Fig. 6.8. Both training loss and validation loss can
effectively converge to stable results after 8, 000 iterations.

Fig. 6.8. Training and validation loss of the reward model for vascular phantom.

Inferred Reward
To intuitively validate whether the learned reward model can learn the underlying skills from
the expert demonstrations, the learned reward model was used to estimate the reward of
each frame among three unseen demonstrations for the vascular phantom, chicken heart, and
lamb kidney phantoms, respectively. According to the description of GPSR, the desired reward
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is negatively correlated to the global generalized distance Dk
i . For better visualization, the

inverse global generalized distance (1−Dk
i ) was drawn together with the estimated reward

purely based on the US images in Fig. 6.9.

In general, the inferred rewards for different anatomies have a consistent relationship with
the corresponding inverse global distance. Compared with beginning frames, a much higher
reward is achieved by the frames at the end of the demonstrations, which is consistent with
the underlying phenomena for the discovery task that the demonstration will be ended when
the target plane has arrived. Regarding the data from the experiments on the chicken heart
and kidney phantom, it is notable that there are few frames, noted as B2 and C2 in Fig. 6.9,
with high rewards in the middle of the demonstration. Compared with the images acquired in
the last frame of the demonstration, the corresponding images obtained at B2 and C2 are very
similar to the images acquired at B3 and C3. This can be explained by the underlying manner
that how human operators do a discovery task: they usually can quickly guide the probe
to a coarse pose around the desired one. Then, a time-consuming fine-tuning procedure is
performed to identify the best one, although the globally optimal one may already be obtained
in an earlier phase. The time for fine-tuning procedure increases when the image is more
challenging; for example, the time consumed by the fine-tuning procedure over the whole
process is around 20% for the mimic vascular phantom, while the time increases to around
50% for the more challenging ex-vivo animal tissues.

Fig. 6.9. Reward maps obtained from sub-optimal demonstrations. Red lines represent the demonstrations and
the color in each grid shows the reward of the corresponding position.
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6.5.4 Performance of Standard Scan Planes Alignment

In order to validate the proposed pipeline in realistic cases, the longitudinal view of blood
vessels and ex-vivo animal phantoms was used as the target plane. To further validate whether
the proposed method can deal with an unseen case, two blood vessels located at different
depths (vessel 1: 26 mm versus vessel 2: 37 mm) of the custom-designed gel phantom were
used. In addition, to compare the performance between the proposed approach and a human
operator, the variations on final position and orientation for different experiments were
recorded. Finally, considering that objects could be moved after training, the phantoms were
rotated into different angles (30, 60, and 90◦) to validate whether the method was still able
to place the probe in the target planes correctly.

Comparison with Human Operators

To quantitatively compare the performance between human operators and the proposed
GPSR approach, ten experiments were performed by a well-trained human operator and the
proposed GPSR approach, respectively, to position the probe along the longitudinal plane
of the vascular phantom, namely, vessel 1. The mimicked blood vessels are straight holes
inside the phantom, allowing positional slack in the direction of the vessel centerline. Thus,
the distance (ed) between the vessel centerline and the centroid of the cross-sectional vessel
images in 3D space was defined instead of absolute position. The centroid of the vessel in US
images was calculated using the same steps as [7]: (1) using a U-net to segment the vessel
from US images, (2) computing the centroid based on the binary map using OpenCV, and (3)
applying the spatial calibration result to calculate the 3D position of pixel-wise centroid in 2D
images. The ground truth of the vessel centerline was computed using the same method by
moving the probe along the vessel centerline. Besides metric ed, the absolute rotation error
(er) between the probe long axis (pX) and the vessel centerline was further defined to assess
the probe orientation.

The results of ed and er over the 20 trials (ten for each) performed by human operators and
the proposed GPSR approach on vessel 1 are summarised in Fig. 6.10. Regarding ed, GPSR
results are more concentrated and the average ed (6.6± 0.1 mm) is less than the one obtained
from human operators (9.1±1.7 mm). Regarding er, the proposed GPSR achieves comparable
results (1.5± 1.6◦) to the human operator (1.3± 1.0◦). Based on a significant test (t-test), the
probability between er obtained from human operators and the GPSR is 0.72 > 0.05, which
means there is no significant difference between these data.

To further validate the generalization ability, an unseen blood vessel, namely vessel 2, was
employed to represent a patient-specified object. To compare the manual performance for
different vessels, ten independent trials were carried out by the same human operators.
Without further updating the parameters in the trained reward network using demonstrations
for vessel 1, the GPSR also ran ten times on vessel 2. The results have been shown in Fig. 6.10.
In terms of er, the human operators have very close results to each other (1.5 ± 1.6◦ and
1.7± 1.8◦) while ed obtained for vessel 2 is smaller and more concentrated than the one of
vessel 1 (6.2 ± 0.9 mm verse 9.1 ± 1.7 mm). This is mainly because human operators are
limited to perception accuracy, and different biases may occur for different objects. Regarding
the performance of the proposed GPSR approach on an unseen vessel 2, er (3.8 ± 0.9◦) is
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slightly larger than that obtained by humans while the smallest ep (4.1± 0.2 mm) is achieved
among all groups. This means that the GPSR has the potential to address the patient-specific
case in a real scenario. In addition, it is also noteworthy that the GPSR can generate better
results than individual demonstrations, i.e., ed. This is because the demonstrations were
filtered to remove poor quality examples, and since demonstrations are considered globally
rather than individually as in [157].

Fig. 6.10. The performance of human operators and the proposed GPSR approach on two different vessels.

Fig. 6.11. Reward maps obtained from sub-optimal demonstrations. Red lines represent the demonstrations and
the color in each grid shows the reward of the corresponding position.

Quantitatively Assessment of Standard Planes Alignment
This section demonstrates the quantitative results of the proposed GPSR approach on different
objects (tubular tissues, chicken heart, and lamb kidney phantoms). To validate whether the
GPSR has the potential to be used in a real scenario, the phantoms are placed in different
positions and orientations during the experiments. This is because patients’ positions for
different examinations are different in clinical practice. For each phantom, four groups of
experiments with different angles (0, 30, 60, and 90◦) rotated around a given point on the flat
table were carried out. Each group consisted of ten independent experiments.

The performance of the final alignment was assessed using positional (ed) and rotational (er)
errors as in the last subsection. However, differing from the ed defined for vascular phantom,
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the absolute positional error between the final position achieved using the GPSR approach and
the ground truth was used for kidney and chicken heart phantom because the standard planes
are only able to be obtained by a unique pose. The ground truth of each pose was manually
determined by the mean of ten demonstrations. The final performance is summarized in
Fig. 6.11.

In general, ed for vascular, chicken heart and lamb kidney are 6.2± 1.0mm, 4.3± 1.8 mm and
2.7±2.1 mm, respectively. Besides, er for the three different phantom are 1.8±1.0◦, 4.3±2.7◦,
and 5.2± 2.9◦, respectively. Compared with the results on ex-vivo phantoms, the average ed

of the vascular phantom is slightly larger than others, while the average er of the vascular
phantom is smaller than its peers. These results are mainly caused by the different geometries
of objects. The tubular structures allow positional slacks along the centerline while the probe
orientation is necessary to be accurately repeated to achieve target standard planes.

In addition, it can be seen from Fig. 6.11 that the trained GPSR model can be applied to the
phantoms located in different positions and orientations without further training. In the worst
case, the maximum ed and er for all phantoms are 7.3 m and 9.7◦ while the best results can
achieve 1.3 mm and 0.3◦ when the phantoms were rotated 90◦. This means that the proposed
approach can automatically identify the standard planes for challenging ex-vivo animal organs
even when the object’s position and orientation change. This ability enables the possibility of
addressing the practical factors, i.e., patients’ position variation, for different trials in a real
scenario.

Besides the spatial accuracy of the final pose, the time required for the main components of
the proposed GPSR approach for identifying the target standard planes are also summarized
as follows: the simulation process costs 244 s for generating 4, 643 images (52 ms for each
image), and the reward network costs 11± 4 ms for computing the reward for each image.
The time efficiency of the proposed approach makes it more practical to be used in clinical
practice.

6.6 Conclusion

In this work, we present an advanced machine learning framework to automatically discover
standard planes based on a limited number of expert demonstrations. To address the challenges
of inevitable sub-optimal US examination demonstrations, the self-supervised GPSR approach
was used to infer the reward for individual US images by understanding the underlying
clinicians intention. The ability to learn from demonstrations can contribute to the worldwide
deployment of RUSS because it allows sonographers to intuitively transfer their high-level
clinical knowledge to RUSS without any requirement for robotic programming skills. It is
our hope that this would lead to more consistent and repeatable diagnosis being achievable
among different sonographers, particularly for inexperienced operators.

To validate the proposed approach, experiments were performed in a grid world and physical
gel phantoms, respectively. In the grid world, the experimental results clearly demonstrate that
the proposed GPSR is superior to the state-of-the-art approaches (maximum entropy [155] and
PTR [157]) to generate a closer reward map to the ground truth. In addition, the experimental
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results on two typical clinical tasks on a tabular phantom allowing slack along the centerline
and challenging ex-vivo animal organ phantoms (chicken heart and lamb kidney) strictly
requiring location accuracy are 6.2± 1.0mm, 4.3± 1.8 mm and 2.7± 2.1 mm in terms of ed

and 1.8±1.0◦, 4.3±2.7◦, and 5.2±2.9◦ in terms of er, respectively. In the future, the proposed
intelligent robotic sonographer for discovering and locating standard scan planes can further
enable the development of a fully automatic intervention system (i.e., vessels [138]) and
extensive US examination programs for the early diagnosis and monitoring of internal lesions
or tumor.
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7Summary and Findings

In this thesis, several advanced robotic US imaging techniques were developed towards the
aim of intelligent robotic sonography. Each technique can address the challenges encountered
in clinical routine or in further improving the level of autonomy. These novel characteristics of
a robotic US imaging system were developed based on interdisciplinary knowledge of robotic
control, computer vision, and also clinical background. In this Chapter, we present the overall
summary of each work.

7.1 Robotized US Probe Orientation Optimization

In Chapter 2, we presented two distinct approaches to automatically orienting US probes in
the normal direction of unknown constraint surfaces, improving the sound propagation and
enabling RUSS to reach predefined orientations relative to the surface normal at the contact
point. Besides, the ability to robustly orient probe pose on patients is one of the dominating
factors for accurate and reproducible US examinations. Since more acoustic signals can be
reflected back to the transducer, rather than scatter away, the anatomy boundary can be
improved in B-mode images, particularly for bone structure. Thereby, such a study can further
enable accurate transferring of the planned operation trajectory from a preoperative image to
real scenarios in orthopedic surgeries.

Both methods achieved accurate estimations of the normal direction by tactile and imaging
information, compared with the camera-based approach (7.3± 3.1◦) [56]. Due to use of an
accurate F/T sensor, the performance of the mechanical model based approach is slightly
better than the image and force based approach (in-plane: 2.7±1.9◦ vs 3.1±1.0◦; out-of-plane:
1.7± 0.9◦ vs 2.9± 0.2◦). Yet, the cost of image and force based approach is higher than the
other approach as well. In addition, the mechanical model based approach is applicable both
for the most common two types of probe (convex and linear), while the image and force based
approach is more suitable for convex probe due to the use of B-mode images. The experiments
were systematically performed on both gel phantoms and in-vivo tissues (forearm, upper arm,
and back).

7.2 Motion-Aware Robotic US Imaging

In Chapter 3, we described the novel vision-based motion-aware approaches aiming to
achieve accurate and consistent 3D images of target anatomies when an object motion is in
presence during US scanning. In practice, human sonographers react to patient movements
by repositioning the probe or even restarting the acquisition. Furthermore, several attempts
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for adjustment of objects are often necessary to clearly and completely image the anatomy of
interest, e.g., adjusting limbs to acquire images of their entire artery tree. Thus, to improve the
clinical acceptance of robotic US imaging systems, the motion-aware ability is important.

To monitor the tissue motion and properly compute the corresponding compensation,the
passive marker based approach is first presented for feasibility validation. In this method,
a depth camera is used to extract the manually planned sweep trajectory. Subsequently,
to monitor the movement and further compensate for this motion to accurately follow the
trajectory, the positions of firmly attached passive markers on the surface of a gel phantom
were tracked in real-time. The compensation is computed using the ICP algorithm based on
the markers positions before and after the movement.

To further explore the effective pipeline in real scenarios, the marker-less approach is developed
based on surface registration. The US scan trajectory is extracted from a general CT atlas, in
which the target object has been segmented. The motion monitoring system is based on the
real-time segmented object masks obtained from RGB images. Once the subject moves, the
robotic US will stop and automatically update its trajectory by registering the surface point
clouds extracted from a depth camera before and after the movement using the ICP algorithm.
Afterward, to ensure contact condition after repositioning of US probe, a confidence-based
orientation optimization is employed to fill in the potential gap between probe and contact
surface. Finally, the whole system is fully validated on a human-like arm phantom with an
uneven surface.

The results demonstrate that these two approaches both work boldly in their individual
environments. Regarding the passive marker based approach, the compensation accuracies are
3.1± 1.0 mm and 2.9± 0.7 mm of translation movement and rotation movement, individually,
for the translation of up to 200 mm and rotations of up to 40◦. Besides, the markerless
approach was validated on a human-like arm phantom with an uneven surface. The results
demonstrate that the system can automatically resume a sweep when the subject moves
during scanning. Compared with the marker based approach, a markerless approach is more
convenient for operators without the requirement for carefully configuring the markers for
individual patients. Such improvement we believe can bring them closer to clinical use.

7.3 Deformation-Aware Robotic US Imaging

In Chapter 4, we present a novel stiffness-based deformation correction method, incorporating
image pixel displacements, contact forces, and nonlinear tissue stiffness, which is proposed
to recover a zero-compression 3D tissue geometry from the deformed data recorded during
robotic scans. Due to the inevitable pressure between probe and contact surface, the soft
tissue’s geometry is often distorted in B-mode images; thereby, such deformation hinders the
consistent and accurate biometric measurement and diagnosis in clinical routines.

To this end, the proposed approach considered the nonlinear property of tissue stiffness as a
key factor in correcting deformation. We obtained this patient-specified property by performing
robotic palpation. Our approach enables the rapid adaptation of the optimized regression
model to unseen positions by updating the local stiffness. Promising correction results have
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been achieved on both stiff and soft phantoms at arbitrary sampling positions. Additionally, the
experimental results for 3D US acquired under different contact forces demonstrate that the
proposed method is also able to recover zero-compression volumes from deformed images.

The pressure-induced deformation is a common issue for US imaging of soft tissues. With the
proposed approach, accurate and reproducible 3D images, independent of the experience of
sonographers, can be achieved by correcting the US deformation. To qualitatively and quanti-
tatively validate the proposed approach, blood vessel is investigated as the target anatomy.
But this study can benefit other applications requiring accurate geometrical measurements as
well, such as examining and monitoring breast tumors [122] and soft tissue sarcomas [116].
Besides accurate 3D volumes, this study will also benefit the multimodal image fusion. The
two typical clinical applications are image-guided intervention for soft tissues like breasts [123,
124], and imaging-guided orthopedic surgery [9]. For the former one, CT or MR is often
used to provide high-resolution anatomies, while US images provide a live view during the
intervention. Regarding the latter one, since patients may be moved after acquiring CT or
MR images, it is necessary to do the registration between pre-operative images and patients
by registering the live US images to the preoperative images. The corrected images could
result in better results because it is easier to align the biological landmarks between the
zero-compression B-mode images and preoperative images.

7.4 Autonomous Robotic US Screening of Tubular
Structures

In Chapter 5, we present an end-to-end framework for automatic robotic US screening of
tubular structures using only real-time US imaging feedback. The framework is inspired by the
way sonographers conduct US scans. To this end, a neural network was trained to segment
and track the tubular structures from cross-sectional US images during the screening process.
To the best of our knowledge, this work is the first method able to automatically perform a US
scan of a vascular structure with optimized probe position and orientation in real-time.

The proposed method can automatically adjust the probe position to horizontally center a
tracked object and tune the probe orientation to the normal direction of the target vessel
during US sweeps. Additionally, the radius of the target object is calculated in real-time,
even when the probe is tilted from the normal direction. The results demonstrated that the
proposed method is able to automatically perform US sweeps and accurately estimate the
geometry of the target vessels both in simulation (era: 1.16± 0.1 mm, eor: 2.7± 3.3◦) and for
a real phantom (era: 0.77± 0.4 mm, ereaor : 3.7± 1.6◦, ece: 0.24± 0.19 mm). The development
of autonomous RUSS is a promising way to overcome inter-operator variability providing
repeatable US images. In addition, with such a RUSS, sonographers can focus on diagnosis
to fully utilize their experience and knowledge. This approach could be integrated with
autonomous diagnosis techniques to further pave the way for a fully automatic US-guided
intervention system [142].
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7.5 Learning US Examination from Expert
Demonstrations

In Chapter 6, we propose an advanced machine learning framework to explore standard
scan planes defined by clinicians by demonstrations using robotic techniques. The ability to
autonomously “explore" target anatomies and navigate a US probe to a relevant 2D plane by
learning from expert demonstrations is important to further improve the level of intelligence
of RUSS; thereby, further allowing to intuitively acquire high-level physiological knowledge
from senior clinicians.

To address the challenges of inevitable sub-optimal US examination demonstrations, the
self-supervised GPSR approach was used to infer the reward for individual US images by
understanding the underlying clinicians’ intention. The ability to learn from demonstrations
can contribute to the worldwide deployment of RUSS because it allows sonographers to
intuitively transfer their high-level clinical knowledge to RUSS without any requirement
for robotic programming skills. It is our hope that this would lead to more consistent
and repeatable diagnosis being achievable among different sonographers, particularly for
inexperienced operators.

The proposed approach has been validated both in a grid world and on physical gel phantoms,
respectively. In the grid world, the experimental results clearly demonstrate that the proposed
GPSR is superior to the state-of-the-art approaches (maximum entropy [155] and PTR [157])
to generate a closer reward map to the ground truth. In addition, the experimental results
on two typical clinical tasks on a tabular phantom allowing slack along the centerline and
challenging ex-vivo animal organ phantoms (chicken heart and lamb kidney) strictly requiring
location accuracy are 6.2±1.0mm, 4.3±1.8 mm and 2.7±2.1 mm in terms of ed and 1.8±1.0◦,
4.3 ± 2.7◦, and 5.2 ± 2.9◦ in terms of er, respectively. In our hope, the proposed intelligent
robotic stenographer for discovering and locating standard scan planes can further enable the
development of a fully automatic intervention system (i.e., vessels [138]) and extensive US
examination programs for the early diagnosis and monitoring of internal lesions or tumor.
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8Open Challenges and Future
Perspectives

8.1 Open Challenges

Medical robots have gained increased attention, in particular during the COVID-19 pandemic.
The role of robotics in managing public health and infectious diseases has been widely
discussed among the community [161, 162, 163, 164, 165]. In order to extensively apply
RUSS, as well as other medical robots, in clinical routine, there are still some open challenges
need to be further addressed. Here we highlighted 1) the acceptance of RUSS, and 2) ethical
and legal issues.

8.1.1 Acceptance for Patients and Clinicians

The RUSS is designed to help both sonographers and patients in clinical routine. Besides
demonstrating comparable or even better outcomes, the acceptance for RUSS is also important.
Regarding the tele-sonography systems, Adams et al. indicated that all patients (18) were
willing (89% were strongly willing and the remaining 11% were willing) to have another
telerobotic examination [166]. A similar result was reported by [167], where 97% of 28
patients were willing to have another teleoperation scan. The numbers of involved patients
in these two work are very limited. More comprehensive survey should be carried out in the
future. In addition, to the best of the authors’ knowledge, the attitudes for autonomous RUSS
from the whole clinicians are stilling missing.

Since autonomous RUSS is partially or fully out of the control of sonographers, significant
worries about safety arise, and further stress both patients and sonographers during the
scanning. Thereby, the acceptance for autonomous RUSS may be less optimistic than it for
teleoperation systems. To successfully deploy RUSS in clinical routines, acceptance from
both patients and sonographers is important. To improve the acceptance of RUSS, robotic
researchers should more closely work with clinicians.

8.1.2 Ethical and Legal Issues

The ethical and legal issues regarding medical robotics are still not clearly defined. The
distribution of responsibility between sonographers and RUSS (or other surgical robotic
systems) is still blurry. The missing of such regulations severely limit the clinical translation
progress for such systems. Regarding the most representative surgical robotic systems, namely
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Da Vinci, the responsibility is fully held by clinicians [27]. This is considered as the key
characteristic leading to regulatory approval in the current era.

In order to properly address the ethical, regulatory, and legal issues for RUSS, Yang et al.
divided surgical robotic into six subgroups in terms of autonomy levels: no autonomy, robot
assistance, task autonomy, conditional autonomy, high autonomy, and full autonomy [168].
According to this classification method, commercial robots are still solidly resting at Level-0,
while a much larger number of high-autonomy surgical robotic systems are waiting for clinical
translation [27]. Since commercial surgical robotics is dominated by a few disproportionately
large companies; thereby they have no rush in disrupting the status quo [27]. To establish
such regulations for medical robots, O’Sullivan et al. defined three different responsibilities:
(1) accountability: the capacity of a system to give an explanation for its actions; (2) liability:
legal liability for potential damages caused by a robot; and (3) culpability: whom and how to
implement punishment [169].

In addition, Vayena et al. discussed ethical and legal issues for digital health in terms of privacy
and security, trust, and accountability [170]. As a large amount of data is often necessary for
analysis, protecting privacy is undoubtedly important for avoiding misuse. Besides, public trust
is of paramount importance. Vayena et al. considered that the creation of a culture of trust
will enable all stakeholders to benefit from the development of digital health [170]. Similarly,
Yang et al. summarised five increasingly pressing topics in terms of ethics for robotics and
AI [171]. Besides aforementioned terms like responsibility, this works further emphasized
some societal issues like potential influence on unemployment and human freedom. Due to
the quick evolution of the area of medical robotics, a proper and comprehensive regulatory
will boost a prosperous market and gradually benefit all stakeholders.

8.2 Future Perspectives

In the past two decades, the development of the medical robotic system was booming.
Benefiting from the great contributions of the three different communities (the engineers,
clinicians, and entrepreneurs), a few intelligent robotic systems (e.g., Da Vinci system)
achieved great success both in economic and clinic fields. The existence of such successful
intelligent systems really impresses both patients and clinicians in terms of the treatment
performance; and thereby, the whole society gradually accepts the novel solutions. This
positive movement will further motivate regulatory changes and societal perception of how
healthcare should be offered [27]. Once a systematic regulation is established, engineers
and entrepreneurs will polish their system to fulfill the needs of clinicians; and thus, bring a
revolution of treatment approaches by providing additional cognitive and physical supports.

Since US examination is widely used for different organs in daily clinical routine and the
imaging quality is suffered from the experience of sonographers, robot-assist US system is one
of the most active and successful field of medical robotics. To overcome the limitations of
conventional free-hand US examination (e.g., operator-dependent outcomes and well-trained
operators), autonomous RUSS has gained increasing attention by researchers. The enabling
techniques (force control, probe orientation optimization, and trajectory planning) have
been well established; and some application-orientated advanced techniques (motion-aware
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and deformation-aware US imaging) gradually gain attention to further address a certain
of practical challenges in real scenarios. However, the current developments are still not
enough to guarantee the good performance of RUSS in diverse contexts. To further achieve
this objective, three promising directions of ongoing and future researches are summarised as
follows.

8.2.1 Specialized RUSS

Regrading RUSS, we consider the specialization can be represented by two different fields: 1)
hardware systems including the robotic manipulator and US probe and 2) clinical applications.
Most of the existing RUSS was developed based on commercial robotic arms and the two
most common probes (linear or convex). These systems have already proved that the use
of robots can bring a certain of merits, such as accurate control of probe position and pose
and good reproducibility. As the enabling techniques have already been well developed,
the development of the RUSS encounters bottlenecks in terms of safety and real clinical
performance. To further address these issues, the development of specified RUSS to fulfill
various clinical needs become necessary.

In contrast to commercial robotic manipulators, customized robotic systems for various clinical
applications have the potential to improve safety, ease the complexity of the control task,
improve examination efficiency, and achieve better results. In [172], Bao et al. designed a
passive mechanism to hold a US probe using springs, which guarantees the patient’s safety by
limiting the maximum contact force. Such a specialized design of hardware effectively reduces
the complexity of the controller because we don’t need to fusion compliant force control in
the centerline of the probe and the position control in other DOFs. Similarly, Lindenroth et al.
presented a soft robotic end-effect for safe fetal imaging acquisition [173]. Besides, Housdes et
al. proposed a 17-DOFs dual-probe system to efficiently and accurately for fetal imaging [174].
For autonomous image-guided vascular access, Chen et al. designed a compact robotic system
to hold the US probe [138]. Besides these existing customized RUSS for different clinical
applications, an even bold idea is to change the probe shape to better adapt the object surface,
like a round probe for the scanning of limbs or breast.

8.2.2 Incorporating Additional Techniques to Realizing
Advanced Functions

In real scenarios, only enabling techniques are often not enough to robustly and accurately
accomplish specified US examinations. In real scenarios, only enabling techniques are usually
not enough to robustly and accurately accomplish specified US examinations. For example,
regarding the scanning of limbs arteries, the scan path is usually very long and the position of
subjects is often changed by the sonographer to completely visualize the whole arteries [6].
Thus, this task is challenging because the robotic system only has limited working space
and complex motion detection and compensation algorithm is necessary to be developed to
continue the scan after the change of subject position [6]. By incorporating some computer
vision techniques like marker identification and point cloud registration, a RUSS with an
advanced function to monitor and compensate for the change of object pose was presented
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in [6]. Besides, Jiang et al. employed the optical flow technique to estimate the force-induced
deformation field and further recovered the zero-pressure images from deformed images [5].
In addition, Patlan-Rosales et al. considered the RF signal acquired with different pressures to
build a strain map; and then combined the technique of visual servoing to maintain the object
in horizontally imaging center [175]. To provide more intuitive visualization, the augmented
reality (AR) technique was employed by Shen et al. to visualize the identified tumors from
intraoperative US imaging [176, 177].

8.2.3 Learning-Based RUSS

The development of AI techniques can benefit both imaging understanding and autonomous
US probe manipulation. Regarding the former one, abundant studies have demonstrated that
AI-based approaches achieved outperformance the traditional imaging process methods [178,
179, 180]. Benefiting from the accurate segmentation of target objects (e.g., blood vessels),
an automatic US scan over a tubular structure and carotid based on real-time US images have
been demonstrated in [7] and [181], respectively. The proper understanding of real-time US
images enables proper navigation to automatically accomplish US examinations. To further
allow RUSS to “explore" the standard US planes, RL has been employed [150, 182]. Besides,
to allow senior sonographers to intuitively transfer their clinical knowledge and experience to
RUSS, Burke et al. [157] and Mylonas et al. [156] proposed different frameworks to enable
the ability of learning from demonstrations.

Although such systems have great potential to realize the high level of automation, the current
systems still have great limitations. There are still some open challenges, such as how to
adapt to the patient-specified parameter? how to reduce the training time? How to bridge
the gap between the simulated environment and the real environment? In addition, the
standards of the medical device prescribe a development process based on risk evaluation
and minimization [27]. But the current AI-based approaches work like a black box, which
prevents a detailed risk analysis. The development of the novel topic of explainable AI could
be a solution for this issue in the future.
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Towards Autonomous Atlas-Based Ultrasound Acquisitions in
Presence of Articulated Motion [1]

Zhongliang Jiang*, Yuan Gao*, Le Xie, Nassir Navab

Robotic ultrasound (US) imaging aims at overcoming some of the limitations of free-hand US
examinations, e.g. difficulty in guaranteeing intra- and inter-operator repeatability. However, due
to anatomical and physiological variations between patients and relative movement of anatomical
substructures, it is challenging to robustly generate optimal trajectories to examine the anatomies
of interest, in particular, when they comprise articulated joints. To address this challenge, this
paper proposes a vision-based approach allowing autonomous robotic US limb scanning. To this
end, an atlas MRI template of a human arm with annotated vascular structures is used to generate
trajectories and register and project them onto patients’ skin surfaces for robotic US acquisition.
To effectively segment and accurately reconstruct the targeted 3D vessel, we make use of spatial
continuity in consecutive US frames by incorporating channel attention modules into a U-Net-type
neural network. The automatic trajectory generation method is evaluated on six volunteers with
various articulated joint angles. In all cases, the system can successfully acquire the planned
vascular structure on volunteers’ limbs. For one volunteer the MRI scan was also available, which
allows the evaluation of the average radius of the scanned artery from US images, resulting in a
radius estimation ( 1.2±0.05 mm ) comparable to the MRI ground truth ( 1.2±0.04 mm ).

IEEE Robotics and Automation Letters(2022)
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VesNet-RL: Simulation-based Reinforcement Learning for
Real-World US Probe Navigation [2]

Yuan Bi*, Zhongliang Jiang*, Yuan Gao, Thomas Wendler, Angelos Karlas, Nassir Navab

Ultrasound (US) is one of the most common medical imaging modalities since it is radiation-free,
low-cost, and real-time. In freehand US examinations, sonographers often navigate a US probe to
visualize standard examination planes with rich diagnostic information. However, reproducibil-
ity and stability of the resulting images often suffer from intra- and inter-operator variation.
Reinforcement learning (RL), as an interaction-based learning method, has demonstrated its
effectiveness in visual navigating tasks; however, RL is limited in terms of generalization. To
address this challenge, we propose a simulation-based RL framework for real-world navigation of
US probes towards the standard longitudinal views of vessels. A UNet is used to provide binary
masks from US images; thereby, the RL agent trained on simulated binary vessel images can
be applied in real scenarios without further training. To accurately characterize actual states,
a multi-modality state representation structure is introduced to facilitate the understanding of
environments. Moreover, considering the characteristics of vessels, a novel standard view recogni-
tion approach based on the minimum bounding rectangle is proposed to terminate the searching
process. To evaluate the effectiveness of the proposed method, the trained policy is validated
virtually on 3D volumes of a volunteer’s in-vivo carotid artery, and physically on custom-designed
gel phantoms using robotic US. The results demonstrate that proposed approach can effectively
and accurately navigate the probe towards the longitudinal view of vessels.

IEEE Robotics and Automation Letters(2022)
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Deep Reinforcement Learning Based Trajectory Planning
Under Uncertain Constraints [4]

Lienhung Chen, Zhongliang Jiang, Long Cheng, Alois C Knoll, Mingchuan Zhou

With the advance in algorithms, deep reinforcement learning (DRL) offers solutions to trajectory
planning under uncertain environments. Different from traditional trajectory planning which
requires lots of effort to tackle complicated high-dimensional problems, the recently proposed DRL
enables the robot manipulator to autonomously learn and discover optimal trajectory planning by
interacting with the environment. In this article, we present state-of-the-art DRL-based collision-
avoidance trajectory planning for uncertain environments such as a safe human coexistent
environment. Since the robot manipulator operates in high dimensional continuous state-action
spaces, model-free, policy gradient-based soft actor-critic (SAC), and deep deterministic policy
gradient (DDPG) framework are adapted to our scenario for comparison. In order to assess our
proposal, we simulate a 7-DOF Panda (Franka Emika) robot manipulator in the PyBullet physics
engine and then evaluate its trajectory planning with reward, loss, safe rate, and accuracy. Finally,
our final report shows the effectiveness of state-of-the-art DRL algorithms for trajectory planning
under uncertain environments with zero collision after 5,000 episodes of training.

Frontiers in Neurorobotics (2022)
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Diffeomorphic Respiratory Motion Estimation of
Thoracoabdominal Organs for Image-Guided Interventions [8]

Long Lei, Li Huang, Baoliang Zhao, Ying Hu, Zhongliang Jiang, Jianwei Zhang, Bing Li

Purpose: Percutaneous image-guided interventions are commonly used for the diagnosis and
treatment of cancer. In practice, physiological breathing-induced motion increases the difficulty of
accurately inserting needles into tumors without impairing the surrounding vital structures. In
this work, we propose a data-driven patient-specific hierarchical respiratory motion estimation
framework to accurately estimate the position of a tumor and surrounding vital tissues in real
time. Methods: The motion of optical markers attached to the chest or abdomen skin is used as a
surrogate signal to estimate tumor motion based on ϵ-support vector regression (ϵ-SVR). With the
estimated tumor motion as the input, a novel respiratory motion model is developed to estimate the
diffeomorphic deformation field of the whole organ (liver or lung) without intraoperative, iterative
optimization computations. The respiratory motion model of the whole organ is established in
Lie algebra space based on the kriging algorithm to ensure that the estimated deformation field
is diffeomorphic, optimal, and unbiased. Preoperative prior knowledge for modeling the motion
of whole organs is obtained by deformation registration between four-dimensional computed
tomography (4D CT) images using a hybrid diffeomorphic registration method. Results and
Conclusions: Experimental results on an in vivo beagle dog show that the minimum value of
the determinant of the Jacobian of the estimated deformation field is greater than zero, so the
estimated deformation field of the whole liver with our method is diffeomorphic. The mean
position error of the tumor is 1.2 mm corresponding to a mean accuracy improvement of 76.5%,
and the mean position error of the whole liver is 2.1 mm, corresponding to a mean accuracy
improvement of 37.9%. The experimental results based on public human subject data show that
the mean position error of the tumor is 1.1 mm, corresponding to a mean accuracy improvement
of 83.1%, and the mean position error of the whole lung is 2.1 mm, corresponding to a mean
accuracy improvement of 41.4%. The positioning errors for the tumor and whole organ are
hierarchical and consistent with clinical demand.

Medical Physics (2021)
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Model-Based Compensation of Moving Tissue for State
Recognition in Robotic-Assisted Pedicle Drilling [10]

Zhongliang Jiang, Long Lei, Yu Sun, Xiaozhi Qi, Ying Hu, Bing Li, Nassir Navab, Jianwei
Zhang

Drilling is one of the hardest parts of pedicle screw fixation, and it is one of the most dangerous
operations because inaccurate screw placement would injury vital tissues, particularly when the
vertebra is not stationary. Here we demonstrate the drilling state recognition method for moving
tissue by compensating the displacement based on a simplified motion predication model of a
vertebra with respect to the tidal volume. To adapt it to different patients, the prediction model
was built based on the physiological data recorded from subjects themselves. In addition, the
spindle speed of the drilling tool was investigated to find a suitable speed for the robotic-assisted
system. To ensure patient safety, a monitoring system was built based on the thrusting force and
tracked position information. Finally, experiments were carried out on a fresh porcine lamellar
bone fixed on a 3-PRS parallel robot used to simulate the vertebra displacement. The success rate
of the robotic-assisted drilling procedure reached 95% when the moving bone was compensated.

IEEE Transactions on Medical Robotics and Bionics (2020)
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State Recognition of Decompressive Laminectomy with
Multiple Information in Robot-Assisted Surgery [12]

Yu Sun, Li Wang, Zhongliang Jiang, Bing Li, Ying Hu, Wei Tian

The decompressive laminectomy is a common operation for treatment of lumbar spinal stenosis.
The tools for grinding and drilling are used for fenestration and internal fixation, respectively. The
state recognition is one of the main technologies in robot-assisted surgery, especially in tele-surgery,
because surgeons have limited perception during remote-controlled robot-assisted surgery. The
novelty of this paper is that a state recognition system is proposed for the robot-assisted tele-
surgery. By combining the learning methods and traditional methods, the robot from the slave-end
can think about the current operation state like a surgeon, and provide more information and
decision suggestions to the master-end surgeon, which aids surgeons work safer in tele-surgery.
For the fenestration, we propose an image-based state recognition method that consists a U-Net
derived network, grayscale redistribution and dynamic receptive field assisting in controlling the
grinding process to prevent the grinding-bit from crossing the inner edge of the lamina to damage
the spinal nerves. For the internal fixation, we propose an audio and force-based state recognition
method that consists signal features extraction methods, LSTM-based prediction and information
fusion assisting in monitoring the drilling process to prevent the drilling-bit from crossing the
outer edge of the vertebral pedicle to damage the spinal nerves. Several experiments are conducted
to show the reliability of the proposed system in robot-assisted surgery.

Artificial Intelligence in Medicine (2020)

158 Chapter A Abstracts of Publications not Discussed in this Dissertation



Safety Control Method of Robot-Assisted Cataract Surgery with
Virtual Fixture and Virtual Force Feedback [13]

Yongfei Yang, Zhongliang Jiang, Yuanyuan Yang, Xiaozhi Qi, Ying Hu, Jianjun Du, Bing
Han, Guiqin Liu

Surgery is an effective means of treating cataracts and restoring vision. However, cataract surgery
rate (CSR) in developing countries and regions is relatively low due to the lack of experienced
high-level surgeons. In this paper, to reduce the reliance of surgery on physician experience and
thereby increase CSR, a master-slave robotic system and safety control strategies with a virtual
fixture and virtual force feedback are proposed to assist cataract surgery. First, the surgery
is divided into four different stages with different robot control modes. Secondly, the virtual
constraint area with virtual spring model in the operating stage is established, so that the doctor
can distinguish the operation area where the end of the surgical instrument is located by feedback
force. Thirdly, safety control algorithm guarantees that the surgical instrument strictly moves
around the surgical incision point, which is regarded as a remote centre of motion, so that the
cornea outside the incision point is not injured. Finally, the experimental results show that the
proposed safety control strategy allows the robotic system to perform the procedure safely.

Journal of Intelligent & Robotic Systems (2020)
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Cutting Depth Monitoring based on Milling Force for
Robot-Assisted Laminectomy [14]

Zhongliang Jiang, Xiaozhi Qi, Yu Sun, Ying Hu, Guillaume Zahnd, Jianwei Zhang

Goal: In the context of robot-assisted laminectomy surgery, an analytical force model is introduced
to guarantee procedural safety. The aim of the method is to intraoperatively monitor the cutting
depth via modeling the milling status. Methods: The theoretical dynamic model for the surgical
milling process is based on the flute geometry of the ball-end milling tool. A particle swarm
optimization algorithm is exploited to calibrate the model using the local average force, and to
validate it using the denoised dynamic force. A wear detection method based on the fast Fourier
transform is proposed to determine the quality of the tool geometry and to avoid using worn
tools, which may lead to imprecise and unsafe operations. Results: Milling experiments were
performed on machined fresh bovine femur bones. The experimental results thus obtained from
the mechanical model are in good accordance with the numerical model. The proposed method
can monitor the current cutting depth with an accuracy of ±0.1 mm in regions located within
the depth [0.8-1.2 mm], and ±0.2 mm within [1.2-1.6 mm]. Conclusion: The proposed model
can successfully estimate the milling force and the cutting depth intraoperatively in experimental
conditions. Significance: This approach has the potential to improve the safety of laminectomy
operations in humans, and make it more accessible to younger surgeons by lowering the required
manual skills threshold.

IEEE Transactions on Automation Science and Engineering (2019)
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Model-based Spinal Deformation Compensation in
Robot-Assisted Decompressive Laminectomy [15]

Yu Sun, Zhongliang Jiang, Xiaozhi Qi, Ying Hu, Bing Li, Jianwei Zhang

Decompressive laminectomy is a common operation for the treatment of lumbar spinal stenosis.
A high-speed burr and piezosurgery are often used to remove the lamina to relieve compressed
nerves. However, surgeons need to control the cutting margin of the lamina based on experience,
and the remaining laminar thickness is difficult to quantify before image measurements. In other
surgeries, robot-assisted grinding guided by navigation can make operations accurate, but the
deformation of bone tissue caused by instrument interaction cannot be ignored, especially for
spinal surgery. Because of the elasticity of the intervertebral disk, the spine deforms under external
force, which leads to deviation from the preoperative trajectory for the robot. This paper proposes
a model-based compensation method for spinal deformation during decompression operation. A
torsion model and bending model are built based on traditional elastic mechanics, and then a
coupling model is simplified and modified for improved robot control. The source and influence of
residual error caused by the noise is analysed, and data-based estimation of the model parameters
is conducted to accommodate different patients. Robot deformation is also considered in the
control system, and the model inputs—the feedback force data—are processed using the adaptive
Kalman filter in real time. The lumbar data are segmented for finite element analysis, which
provides the input and output data with which the parameters of the model are estimated, and
the simulation shows that the signal-to-noise ratio of the force sensor has a great effect on system
performance.
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Robot-Assisted Decompressive Laminectomy Planning based
on 3D Medical Image [16]

Yu Sun, Zhongliang Jiang, Xiaozhi Qi, Ying Hu, Bing Li, Jianwei Zhang

The decompressive laminectomy is a common treatment for lumbar spinal stenosis. Generally,
surgeons use grinding tools to remove laminae under the guidance of intraoperative medical
images. To improve accuracy and reduce surgeons’ burdens, robot-assisted surgery is gaining
acceptance. This paper proposes a method to plan grinding paths and velocities based on 3-D
medical images in the context of robot-assisted decompressive laminectomies. As the lesion areas
to be grinded are irregular, an interactive method with 3-D reconstruction is designed for surgeons
to transfer discrete information about grinding paths and velocities to the robot system. The path
generation strategy is based on a ray casting algorithm after space registrations, while the velocity
generation strategy is based on the virtual force and mechanical analysis is used to optimize
temporal efficiency and stability. A complete system is developed to test and explore the feasibility
of this method. Results suggest that robot-assisted decompressive laminectomies can be performed
well.

IEEE Access (2018)
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A Model of Vertebral Motion and Key Point Recognition of
Drilling with Force in Robot-Assisted Spinal Surgery [17]

Zhongliang Jiang, Yu Sun, Shijia Zhao, Ying Hu, Jianwei Zhang

Pedicle drilling is a crucial and high-risk process in spinal surgery. Due to the respiration and
cardiac cycle, the position of spine would fluctuate during operations, which result in an increase
of the difficulty in state recognition of pedicle drilling. To guarantee the safety and validity,
a model-based compensation method is proposed in this paper. To build the empirical model
of vertebral motion, vertebral displacement and tidal volume (Tv) signals are collected from
volunteers. To rule out disturbances in original signal, FFT and wavelet transform (DWT) are
used to process the experimental signals. In order to select the apt basis for different signals, the
root mean square error decision-making method (RMSE-DMM) is introduced. When the filtered
vertebral displacement signal is obtained, the particle swarm optimization (PSO) algorithm is
used to figure out the empirical model. The robot assisted systems (RAS) can easily compensate
vertebral fluctuation based on the empirical model. Due to the goal of pedicle drilling is to
drill a hole from surface of first cortical layer to the interior of second cortical layer, a new key
point recognition algorithm, based on force, proposed in this paper. To verify the effectiveness
of compensation and the recognition algorithm, 3 sets of comparison experiments are carried
out. And the results of experiment show the compensation method and new key point recognition
algorithm perform effectively.

2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2017)
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