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Abstract

Failures of autonomous vehicles are inevitable. One possible solution to cope with foreseeable failures

is teleoperation. In teleoperated driving, a human operator controls the vehicle from a distance. The

remote operator perceives the traffic situation via video streams from one or more cameras deployed in

the vehicle. The control commands of the operator are transmitted to the vehicle. To resolve complex

traffic situations and ensure safety, the operator requires a reliable low delay video transmission.

This is particularly relevant for mobile networks with time-variant and limited transmission rates. To

provide the remote operator with the best possible situation awareness, while matching the available

transmission resources of the network, an adaptation scheme for the individual video streams is

required.

In this thesis, we investigate adaptive video streaming for teleoperated driving. We consider the

entire pipeline of a general teleoperated driving system and we propose four main additions: an

in-lab teledriving system and streaming pipeline, a driver situation awareness assessment system, a

traffic-aware multi-view adaptation scheme, and a preprocessor rate control approach designed for

the resource-constrained encoding hardware of autonomous vehicles.

To evaluate all proposed methods in a controllable network and driving environment, we design

a teleoperation framework that extends existing driving simulators by vehicle remote control. This

framework includes a customizable user interface as well as a low delay video streaming pipeline.

The streaming pipeline provides an adaptation interface for controlling the frame rate, frame size,

bitrate, and quality of the video stream.

While a framework with low delay video streaming can provide the driver with the necessary

visual information to understand the current situation, there is no guarantee that the driver actually

recognizes all relevant elements correctly. As the second main contribution, we therefore propose

a method for assessing the driver situation awareness in realtime. The driver’s current situation

awareness is measured using eye tracking and compared to the optimal situation awareness. The

optimal situation awareness is estimated by a state-of-the-art region of interest prediction network,

which we extended for multiple camera views. The proposed driver awareness model enables us to

accurately measure the driver situation awareness, which has been validated in a user study for eight

driving scenarios.

Next, we propose a traffic-aware multi-view adaptation scheme to provide the operator with

the best possible situation awareness for the current traffic situation. The adaptation scheme first

estimates the importance of each camera view based on the vehicle’s realtime movement in traffic.

Then, the optimal combination of frame rate, frame size, and target rate/quality is estimated using

a quality-of-experience-driven multi-dimensional adaptation scheme to control the encoder of each

individual video stream. Evaluated for three representative driving scenarios with a six camera setup,

the proposed adaptation scheme increases the average video quality per camera by 5 % VMAF score

compared to a uniform adaptation.

Finally, the hardware of autonomous vehicles is limited by size and cost. The vehicle is therefore

often restricted to a single hardware encoder. Encoding all camera views at the same time with a

single encoder requires the combination of the individual frames into a single superframe. While

this is a possible solution for streaming multiple camera views, it prevents the adaptation of the

individual camera views. In this thesis, we propose a preprocessing concept that allows for individual

rate/quality adaptation while using a single encoder. The preprocessing filters control the frame rate,

frame size, and target rate/quality of the individual frames before combining them into a single

superframe. For three representative driving scenarios, the proposed approach achieves the same

video quality for the most important views as when using multiple encoders, while it causes only
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1.8 % quality reduction on the remaining views. In comparison, an approach using a single encoder

without preprocessing causes quality degradations of 4.5 % for the remaining views and even 5.6 %

on the most important views.
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Chapter 1

Introduction

Autonomous vehicles have become an increasingly popular research topic over the last years. The

continuing development of self-driving vehicles aims to increase driving safety and reduce the number

of accidents and injuries [1]. The Society of Automotive Engineers (SAE) has classified the stages of

autonomous driving into six levels, ranging from Level 0 (manual driving) to Level 5 (fully automated

driving) [2]. With increasing levels of autonomy, the vehicle’s advanced driver-assistance system

(ADAS) is required to make increasingly complex and safety-critical decisions. Despite continuous

advances of ADAS, failures of such systems are still inevitable [3].

In case a failure occurs, the car has several options to cope with the situation [1]. The vehicle can

attempt to reach a safe state on its own, for example by parking at the side of the road. Another option

is to request a takeover by a human driver. For a system operating on SAE Level 3, the human driver

inside the vehicle can take over the control of the vehicle. However, studies have shown that it can

take up to 40 s for human drivers to regain control of vehicles previously driving autonomously [4].

At SAE Level 4 and higher, no human driver has to be in the vehicle at all. To still be able to bring

a human driver back into the loop, the self-driving vehicle can return the control to a human driver

located in a remote control center [5]. In the state of California, law even requires vehicles without

drivers inside them to be able to be remotely controlled [6]. The task of controlling a vehicle from a

remote location is commonly referred to as teleoperation or teleoperated driving. Figure 1.1 shows

the general workflow of how teleoperation can be used to resolve failures of autonomous vehicles.

Figure 1.1 Schematic overview of a teleoperation workflow to resolve failures of autonomous vehicles. A vehicle

driving autonomously encounters an erroneous situation it cannot handle on its own. The vehicle requests

support by a human operator in a remote location. The human operator connects to the vehicle, resolves the

erroneous situation from remote, and returns the control back to the vehicle. The vehicle continues to drive in

autonomous mode.
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When a failure occurs, the remote operator will take over the control of the vehicle, resolve the

problematic situation, and then return the control back to the autonomous system. To control

the system safely even in complex traffic situations, the operator has to be fully aware of the current

situation. In teleoperated driving, the remote operator perceives the traffic situation via video streams

from multiple cameras and transmits the control commands from their remote workspace back to the

vehicle [7]. Operating from a remote location introduces new challenges, such as the additional delay

caused by the communication link or the limited transmission resources of the mobile network [1].

To address these challenges, several research groups have implemented test setups for teleoperated

driving. A typical teledriving setup consists of a vehicle equipped with multiple cameras to capture

the traffic environment [7]. The video data of all camera views are compressed and transmitted over

a mobile network to a remote operator workspace. The remote operator perceives the traffic situation

via multiple displays or a head-mounted display (HMD) [8]. Similar to a racing simulation, the

operator enters the control commands via a steering wheel and pedals to control the vehicle. The

control commands entered are then transmitted to the vehicle. In [7], the authors implemented such

a typical system setup for controlling a vehicle from remote. This vehicle is then used for further

investigations such as comparing regular displays and HMDs [8], or visually compensating the delay

by augmenting the scene representation [9].

Without any augmentation to support the operator, a delay of 300 ms already affects the operator

performance [10]. A variable delay further increases the workload of the operator. In the literature,

many approaches focus on improving the operator performance by augmenting the visual repre-

sentation [12, 11] or providing haptic feedback [13]. The actual transmission of sensor information

has received less attention. Feasibility studies have shown that today’s 4G networks already provide

sufficient latency and transmission capacities to allow for teledriving on public roads in selected

areas [14, 15]. In these areas, all video streams can be transmitted in a sufficient quality and no special

adaptation strategy for the video streams is required. However, even in such selected areas, the avail-

able transmission rate cannot be guaranteed by the network provider. These edge case situations,

in which the available transmission rate does not allow for transmitting all camera video streams in

sufficient quality, are the main motivation for this thesis.

All contributions made in this thesis intend to distribute the limited available transmission rate in

a way that the most important camera views for the current driving situation are still transmitted

in a sufficient quality to control the vehicle safely. Based on these conditions, we design a special

adaptation strategy that considers the current traffic situation to control the individual video streams.

Finally, the hardware limitations of commercial vehicles are considered. We design a preprocessing

concept that allows for using the adaptation strategy developed before with the limited encoding

hardware available in vehicles. The resulting major contributions made in this work are summarized

next.

1.1 Major Contributions

This thesis contains four main contributions that constitute a framework for teleoperated driving as

summarized in Figure 1.2. All modules can be integrated into autonomous vehicles, which enables

safe remote control of the vehicle by considering the current network and traffic situation.

As first contribution, we design a general teleoperation framework for driving in simulated en-

vironments. The framework is represented in Figure 1.2 by the background in gray outlined with

dashed lines. A video streaming pipeline with an interface for live video stream adaptation is the

central component of this framework and is shown in blue. The second contribution of this thesis

focuses on the online assessment of the operator situation awareness (SA), shown in green. In the

third contribution, we propose a traffic-aware multi-view adaptation (TAMVA) scheme that controls

the individual video streams to increase the operator SA. The TAMVA scheme is shown in orange

in Figure 1.2. As last contribution, we propose a preprocessing concept to enable individual video
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Figure 1.2 Overview of a general teleoperated driving system setup and the proposed contributions. The

general adaptive streaming framework proposed in Chapter 3 is shown in blue. The situation awareness (SA)

assessment introduced in Chapter 4 is shown in green. Chapter 5 presents the traffic-aware multi-view

adaptation (TAMVA) scheme shown in orange. The preprocessor-based rate control proposed in Chapter 6 is

shown yellow.

stream adaptation if there is only limited encoding hardware available. This is shown in yellow in

Figure 1.2. Next, each contribution is summarized in more detail.

1. Teleoperated Driving in Simulated Environments: The design and evaluation of adaptive

streaming solutions for teleoperated driving require controllable network and traffic condi-

tions. For this purpose, we design a general teleoperation framework for driving in simulated

environments in Chapter 3. The framework can be used to extend existing driving simulators via

a standard interface for teleoperated driving. This comprises a hardware setup and a customiz-

able graphical user interface (GUI) for the operator workspace, a low delay streaming pipeline

with an interface for live stream adaption, and a communication interface for exchanging control

commands and status information between the vehicle and the operator control station. We

use the proposed teleoperation framework extending the Car Learning to Act (CARLA) driving

simulator [16] to implement and evaluate the remaining contributions made in this thesis.

2. Driver Situation Awareness Assessment: An important aspect for both in-car driving and

teledriving is the observation and measurement of the driver situation awareness (SA). Es-

pecially during the transition to human control, the vehicle has to ensure that the driver is

sufficiently aware of the current situation. To the best of our knowledge, no direct method to

explicitly estimate driver awareness exists in the literature. To this end, we introduce a metric

to measure the SA of a human driver in realtime for both in-car drivers and remote operators

in Chapter 4. The proposed approach is inspired by methods used in aviation. An eye-tracking

device measures the actual SA of the human driver. Region of interest (ROI) prediction allows

for estimating the optimal SA that defines all elements the driver should have perceived. By

comparing the actual SA with the optimal SA, the driver awareness can be modeled based on

the current traffic situation. The proposed approach has been evaluated in a user study on eight

driving scenarios and is able to accurately measure the participants’ SA while driving.

3. Traffic-Aware Multi-View Video Stream Adaptation: Next, the actual adaptation of the video

streams is addressed. While matching the available network resources, the video streams need

to be automatically adapted to provide the operator with the best possible scene understanding.

To automatically adapt the video streams, we develop a traffic-aware multi-view adaptation

(TAMVA) scheme in Chapter 5. The importance of each camera view is estimated by the

vehicle’s real-time movement in traffic. The resulting prioritization together with the total

available transmission rate determines a specific bit budget for each camera view. The video

quality of each individual video stream is then optimized for the given bit budget using a quality-

of-experience-driven multi-dimensional adaptation (MDA) scheme. To remove less important
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areas from the image and further reduce the bitrate required for streaming the video content,

the rear-facing camera views are filtered by applying ROI masks. All modules introduced in this

chapter are implemented in the proposed teleoperation framework. The ROI masking achieves

Bjøntegaard Delta Rate (BDR) savings of at least 19.8 % compared to streaming the full camera

view. The overall system improves the Video Multi-Method Assessment Fusion (VMAF) score

by 5 % on average for each camera when the importance of the individual camera views as

rated by the users is considered. The quality gains achieved by using such a prioritization of

important camera views can still provide the operator with a sufficient quality [18, 17] for the

most important camera views to control the vehicle safely in traffic.

4. Adaptive Multi-View Live Video Streaming Using a Single Encoder: The proposed TAMVA

scheme controls the individual camera video streams to provide the operator with the best

possible scene understanding. Limited by cost and size, autonomous vehicles are often restricted

to a single video encoder. To still encode all camera views at the same time using a single encoder,

the individual frames have to be combined into a single superframe video (SFV). While this

allows for streaming multiple camera views, it prevents the adaptation of the individual camera

views based on the current traffic situation. To enable the individual adaptation while using

a single encoder, we propose a preprocessing concept in Chapter 6. The preprocessing filters

control the individual camera views before the combination into the SFV, which is then encoded

and transmitted.

a) First, the general idea of the preprocessing concept is introduced. In this thesis, we present

four preprocessing filters to control the frame rate, frame size, rate/quality, and color

channels of the video sources. A proof of concept is implemented to evaluate the influence

of the different preprocessing filters. The results demonstrate that the frames preprocessed

by the filters do not cause any side effects on neighboring segments when encoding the

SFV. We evaluate the usability of the proposed concept in an exemplary driving scenario

with a six-camera setup. While achieving a similar bitrate for the most important views,

the proposed approach requires a total bitrate that is 40 % smaller compared to a single

encoder without preprocessing.

b) The preprocessing filters used to control the rate/quality of the individual camera views

can be summarized as spatial low-pass filters. This category of filters applied on the video

sources before encoding has a direct influence on the resulting rate-distortion (RD) perfor-

mance of the encoder. To identify the most suitable preprocessing algorithm, we conduct

an extensive RD-performance analysis. In a regular video encoding scenario, the RD

curve of a certain encoder is only determined by a set of quantization parameters (QPs).

The preprocessing filters introduce a new dimension of input values in the form of the

additional preprocessing parameters. To effectively compare the RD performance of the

encoder including the preprocessing dimension, we introduce two evaluation methods.

First, we propose the novel mean saving-cost ratio (MSCR) as the logarithmic mean ratio of

maximum bitrate savings over maximum quality cost for all parameters of a preprocessing

filter. The MSCR acts as a single-score metric to compare different preprocessing algo-

rithms. Second, the Bjøntegaard Delta (BD) curve compares two preprocessing filters over

a range of QPs. According to both proposed evaluation methods, the Gaussian low-pass

filter achieved the best performance in a comparison of different preprocessing algorithms.

c) Then, we use the insights gained from the proof of concept and the filter performance

evaluation to design a preprocessor rate control. The TAMVA scheme estimates the frame

rate, frame size, and target rate/quality to control multiple encoders. The preprocessing

filter concept enables the individual adaptation of multiple camera views using a single

encoder. The preprocessor rate control connects these two components by estimating the

parameters required to control the preprocessing filters from the parameters estimated by

the TAMVA scheme to control multiple encoders. As the core part of the rate control,
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we extend an existing analytical bitrate model and propose a novel bitrate model based

on machine learning. Both models specifically consider the influence of the Gaussian

low-pass filter as well as the influence of the QP, the frame size, the frame rate, and the

group of pictures (GoP) length on the video bitrate. Because both models show similar

performance, either one can be used as the core part of proposed rate control. Both rate

models outperform state-of-the-art bitrate models by at least 22 % regarding the overall

root mean square error (RMSE).

d) Lastly, we evaluate the proposed preprocessing approach for three representative driving

scenarios. We compare the bitrate savings and quality gains of the preprocessing approach

to a reference solution that uses multiple encoders and a regular superframe composition

approach without preprocessing. The proposed approach achieves a comparable rate and

quality for the most important views compared to using multiple encoders, but reduces the

quality on the remaining views by only 1.8 % VMAF score. In comparison, an approach

using a single encoder without preprocessing causes quality degradations of 4.5 % VMAF

score for the remaining views and even 5.6 % VMAF score on the most important views.

1.2 Thesis Organization

This thesis is organized as follows. Chapter 2 introduces the background information necessary

for understanding the contributions made in this thesis. We summarize related work with respect

to teleoperated driving, situation awareness assessment, and video processing and transmission.

Shortcomings of the state of the art are discussed to motivate the methods proposed in this work.

Chapter 3 presents the design of a general teleoperation framework that allows for driving in simulated

environments. The framework builds the basis for the remaining contributions made in this thesis.

Most notably, the framework includes a video streaming pipeline that provides an adaptation interface

for controlling the respective video encoder. In Chapter 4, we propose a method for assessing the

situation awareness of a driver or remote operator in realtime. This includes the extension of a state-of-

the-art region of interest prediction method from single-view to multi-view. In Chapter 5, we propose

a traffic-aware multi-view adaptation scheme to increase the driver situation awareness. Relying on

the teleoperation framework, the proposed adaptation scheme controls the individual video streams

of every camera view to provide the operator with the best possible scene understanding. Chapter 6

addresses the hardware limitations of commercial vehicles that prevent individual traffic-aware video

stream adaptation. To this end, we propose a novel preprocessing concept that enables the individual

adaptation of multiple camera views under the given hardware limitations. Further, we design a

preprocessor rate control to configure the preprocessing filters based on the adaptation parameters

used for controlling multiple encoders. Chapter 7 concludes this thesis. The main contributions are

summarized and their limitations are discussed. Finally, we outline possible directions for future

research.

Parts of this work have been published in international, peer-reviewed scientific journals and

conferences [19, 20, 22, 21, 24, 23, 25].
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Chapter 2

Background and Related Work

In this chapter, we summarize the background of this thesis. First, we give an overview of state-

of-the-art teleoperated driving (ToD) systems. Then, we discuss existing approaches for measuring

the driver’s awareness of the current traffic situation. Finally, we summarize methods for video

processing and transmission.

2.1 Teleoperated Driving Systems

Teleoperation is defined as the interaction of an operator with the physical world without being

physically present [26, 27]. The increasing transmission capacity and distribution of mobile networks

increase the potential of ToD as a feasible mobility concept for on-off-road applications.

Despite high-rate wireless connections not being available then, Ross et al. [28] set up an advanced

teleoperation testbed in 2007. They used an 1 km single mode Coarse Wavelength Division Multi-

plexing (CWDM) optical fiber for connecting their off-road vehicle with the operator workstation.

Providing the operator with five camera views streamed at 25 Hz, they mainly suffered from high de-

lays up to 960 ms. Their study demonstrated that a broad field of view (FoV) with an average quality

should be used in most cases, while complex situations require high resolution at specific areas. In

2011, Khan et al. [29] proposed a wireless teleoperation vehicle. The authors addressed the varying

time delay and quality of service (QoS) of the network by using a Support Vector Machine (SVM) to

predict the delay and packet loss. The resulting predictions are then used to adapt the video content.

In 2013, Gnatzig et al. [7] presented a system design for teleoperated road vehicles that uses multiple

static cameras, sensor fusion display and a network-based video transmission and communication

architecture. Shen et al. [30] presented a teleoperation vehicle in 2016 that was exclusively created

from off-the-shelf components. The system included a head-mounted display (HMD) view, wheel

and pedal control, and a Real-Time Transport Protocol (RTP)-based video communication with 30 fps

update rate and 42
◦

FoV.

The main issue of most teleoperation systems is the delay introduced by the transmission link. This

delay affects the operator performance and immersive feeling of being physically there [12]. Next, we

discuss the main components of typical ToD systems as well as current solutions for improving the

operator performance and for addressing the issue of delay.

2.1.1 General System And Use Cases

The Society of Automotive Engineers (SAE) divides the task of driving into three main types of

activities [31]:

• Strategic level operation includes travel planning, consideration of available options, and cost-

risk analysis.

• Tactical level operation includes maneuver planning, lane selection, speed selection, and reac-

tions to objects and events.
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• Operational level operation includes longitudinal and lateral control as well as object detection,

event detection, and classification.

Based on these definitions for a driving tasks, the 5GAA Automotive Association categorizes the

role of the operator into four types [32]:

• Non-ToD (No Role): The operator is not engaged in the driving task.

• Dispatch ToD (Dispatcher): The operator performs strategic decisions such as the selection of

the route while the systems plans and executes all operations.

• Indirect Control ToD (Indirect Control or Remote Assistant): The operator additionally takes

over the tactical tasks such as the planning of a route, while the system still executes the tasks

planned by the operator.

• Direct Control ToD (Direct Controller or Remote Driver): The operator is in full control of the

vehicle and executes all operations in realtime.

In this thesis, we focus on the direct control of a remote vehicle. A typical ToD setup for direct

control such as proposed in [7] consists of three main components: the vehicle that is controlled

remotely, the operator workspace with a human operator, and the network link in between. Figure 2.1

visualizes such a general system setup.

Vehicle/Server Side Operator/Client Side

Figure 2.1 Overview of a general teleoperated driving (ToD) system setup consisting of a vehicle, the operator

workspace, and the network link in between.

The vehicle is equipped with multiple cameras that capture the environment. Then, the video data

are encoded and transmitted over a mobile network to the remote operator workspace. The operator

perceives the traffic situation via one or multiple displays and enters the control commands. The

commands are transmitted back to the vehicle and executed accordingly. In this thesis, we focus

on the transmission of sensor information, in particular video data, from the vehicle to the operator

workspace.

2.1.2 Driving Simulations

Most teleoperation systems are initially developed in simulation, since real vehicles are costly and

time consuming in their setup. ToD simulation systems are usually based on vehicle simulators with
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custom extensions for the streaming functionality. Hosseini et al. [9, 11] used SILAB [33], a closed

source vehicle simulation software. SILAB can be purchased together with the related hardware

components to perform realistic vehicle and driving simulations. The extension of SILAB from local

driving to teledriving is done by connecting the simulator to an operator workstation via the User

Datagram Protocol (UDP). A major drawback of this closed source system is the missing possibility

for custom modifications. Camera data, for instance, have to be acquired using a screen grabbing

software.

With increasing popularity of autonomous driving while no suitable simulations were available,

video games have been used to implement and test existing solutions. Modern video games such

as Grand Theft Auto V (GTAV) already provide photorealistic graphics and physics simulation. A

publicly available extension called DeepGTAV [34] supports autonomous driving scenarios. Similar

to closed source vehicle simulators such as SILAB, video games have the drawback of extensibility.

Open source solutions such as DeepDrive [35] provide simulations for autonomous driving that

allow for extension. However, DeepDrive provides only a small set of features. Microsoft developed

the simulator AirSim [36] for autonomous driving and drone simulations. Its main focus is on

dataset generation for machine learning (ML). AirSim’s detailed physics simulation is well suited

for aviation simulations [37]. The Advanced Platform Lab at the LG Electronics America R&D

Center, formerly the LG Silicon Valley Lab, developed the LGSVL simulator [38]. LGSVL is fully

integrated into the popular open source driving platforms Apollo [39] and Autoware [40]. Finally, Car

Learning to Act (CARLA) [16] is an open source driving simulator with special focus on autonomous

driving. CARLA provides a wide range of sensors and pretrained autonomous driving models,

while supporting common map standards such as OpenDrive. Similarly to AirSim, CARLA uses the

Unreal Engine [41] for physics simulation and rendering. CARLA’s flexible application programming

interface (API) and the ongoing development make it one of the most popular driving simulators [42].

With the CARLA Leaderboard [43], CARLA provides its own benchmark system for autonomous

driving models. While these open source simulators allow for extension, none of the above can be

directly used for ToD.

Bodell et al. [44] proposed a 360
◦
-view ToD vehicle based on the Robot Operating System (ROS) [45]

and the Gazebo simulation [46]. While ROS is widely used in autonomous driving [47], the main

focus of Gazebo is on robotics with configuration options down to joint level. In [48], the authors de-

veloped the OpenROUTS3D simulator for ToD based on the Unity [49] game engine. OpenROUTS3D

provides a user study mode and configuration options for different network QoS aspects. However,

OpenROUTS3D does not include the actual compression and transmission of video data. Instead,

it simulates this aspect by applying pixelation, delay, and packet loss based on configurable prob-

abilistic distributions. The lack of actual network communication prevents OpenROUTS3D to be

used for approaches that focus on the transmission of sensor information. Hence, we introduce a

teleoperation framework that includes a video streaming pipeline as contribution in Chapter 3. The

proposed framework extends the CARLA simulator for a ToD component and will be used for the

evaluation of the remaining contributions made in this thesis.

2.1.3 Operator Perception

The operator perceives the current driving scene based on the sensor data transmitted from the

remote vehicle or driving simulator. Labonente et al. [50] evaluated different visualization methods

focusing on novice users. Two view concepts achieved the best performance for a task completion

evaluation: an ego-perspective 3D representation of the current scene, augmented with an ego-

perspective camera view at the central FoV and a 3D third-person view, combined with the same

central ego-perspective camera view used before. Fong et al. [51] showed that using multiple sensor

information within a sensor fusion display could improve the operator’s depth recognition. While

both sensor representations were mainly designed for teleoperation in robotics, they highlight that

the presentation of the sensor data plays an important role for how well the operator understands the

remote situation.



Chapter 2 Background and Related Work

10

In [7], the authors visualized the video streams of multiple cameras attached to a vehicle with

three regular displays. While they were able to successfully control a vehicle from remote, they faced

several significant problems. First, the limited immersive telepresence caused a nonrealistic driving

feeling and second, the data processing and transmission introduced a time delay. Tang et al. [52]

proposed a zoom-blur model to improve the operator’s speed perception and hence the operator’s

immersion of being physically inside the vehicle. Without this physical presence and experiencing

the vehicle’s movement, the actual speed is often underestimated. The zoom-blur model blurs the

outer regions of the front camera and the side facing cameras for higher speeds. This supports the

operator in estimating the actual speed and controlling the vehicle.

The effects of time delay are addressed in [53] by using a predictive display. Due to the data

transmission, the operator perceives only a delayed representation of the current driving scene. The

predictive display augments this representation with the actual position of the vehicle. The actual

position of the vehicle is estimated based on the vehicle’s movement and the transmission delay.

In [54], the authors evaluated different presentation modes for the predictive display. The Frame
Prediction display method achieved the best performance in a driving user study. It visualizes the

path and actual front position of the vehicle. Hosseini et al. [9] extended the idea of the predictive

display by showing the actual position of the ego vehicle as well as the positions of other traffic

participants. The actual positions are predicted on the client side using optical flow and semi-global

matching techniques. Figure 2.2 shows the predictive display for the ego vehicle and other traffic

participants in two traffic situations.

Figure 2.2 Predictive display visualizing the path of the ego vehicle as well as the actual front position of the

ego vehicle and other traffic participants (source: [9] © 2016 IEEE).

Equipped with the predictive display, Hosseini et al. [11] further extended their visualization

safety concept by using HMDs to prevent distractions of the operator. Within the HMD view,

there exist uncovered areas due to the fixed camera views. These uncovered areas are in particular

harmful in narrow driving situations. To enhance the operator’s telepresence, they extended the

360
◦

view including the uncovered areas with the vehicle’s shape and bounding boxes of other traffic

participants. The bounding boxes are calculated with a fixed height on the client side, based on single-

layer light detection and ranging (LiDAR) data transmitted from the remote vehicle. A comparison

of this safety concept on regular displays and HMDs demonstrated a better depth perception using

HMDs when driving in simulation.

Georg et al. [8] further evaluated the safety concept of [11] by comparing regular displays and HMDs

on an actual test vehicle. The authors conducted a user study, where the participants had to complete

six driving maneuvers. Both setups evaluated in the user study produced similar results in driving

quality, workload, and the feeling of immersive telepresence. Based on their results, the authors

proposed an immersive interface for ToD in [55]. The interface is based on an omnidirectional sensor

representation that allows for a fast switching between different visualization types. This enables the

operator to select a suitable representation based on the current driving scenario. Figure 2.3 shows

three visualization types that can be selected by the human operator.
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Figure 2.3 Three visualization types supported by the ToD interface. A LiDAR point cloud augmented with

camera data is shown on the left. In the middle, all fisheye cameras, a front camera, and LiDAR data are

combined in to a single representation. The right view shows a birds-eye view based on the fisheye cameras

(source: [55] © 2019 IEEE).

The left view visualizes the LiDAR points and all cameras as rectangular views. All fisheye cameras,

a front camera, and the LiDAR data are combined in a single view in the middle. The right image

shows a birds-eye view created from two fisheye cameras.

In [56], Georg et al. use this interface in a long-time user study to measure the impact of different

displays and video quality levels on the operator situation awareness (SA). The study showed that

the video quality has a significant influence on several factors that contribute to the SA. These factors

include the detection of traffic signs or the perception of road users in situations with changing light

conditions. The goal of this thesis is to adapt the individual video streams in a way that the operator

perceives the views most related to the current traffic situation with the best possible video quality.

We present the proposed adaptation scheme in Chapter 5.

2.1.4 Vehicle Remote Control

Besides the perception of the environment, the actual control of the vehicle is another important

aspect of ToD. Kebira et al. [57, 58] augment force models to manage variable time delay and

uncertainties of internet-based teleoperation for robotics. While a delayed transmission of the control

commands is critical in teleoperation for robotics, the vehicle’s inertia makes it less sensitive to delayed

control commands. On the other hand, a complete drop of the connection is a severe security issue.

Tang et al. [59] proposed a concept called Free Corridor to address such connection losses. The Free
Corridor shows the free space that is required for safely stopping the vehicle. It is calculated based

on the vehicle’s movement and augments the operator’s display. The operator has to ensure that

the augmented area is always free from any other traffic participants. In case of connection loss, the

vehicle can stop itself within this area without the risk of a collision.

In a follow-up work, Hosseini et al. [13] used their concept of predictive displays [9] and combined

it with the free corridor concept [59]. This results in two display augmentations such as shown in

Figure 2.4a. The first blue frame visualizes the actual position of the vehicle as introduced with

the predictive display. The green line together with the yellow lines represents the free corridor. To

support the operator in keeping the corridor free, the authors provided haptic feedback to the operator.

Whenever another road user enters the safeguard zone shown in Figure 2.4b, the steering wheel

provides the operator with haptic feedback by steering away from the user entering the safeguard

zone. Especially in narrow driving situations, this concept improved the lateral control of the vehicle.

While these safety concepts try to compensate the transmission delay or connection loss for a single

vehicle-to-operator connection, Gohar et al. [60] suggested to rely on multiple remote drivers. The

respective remote driver with the lowest latency to the vehicle is selected for controlling the vehicle.

A critical problem of this approach is that overly frequent handovers between different operators can

negatively affect their SA.
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(a) Predictive display and free corridor (source: [13]) (b) Safeguard zone (source: [13])

Figure 2.4 Safe lateral control for ToD using free corridor, predictive display, and haptic feedback (source:

[13] © 2016 IEEE).

2.1.5 Network Communication and Sensor Data Transmission

The major challenge in ToD is a reliable low delay data transmission that enables the operator to safely

interact with the remote environment [9]. So far, different visualization and control strategies have

been discussed. In this section, we summarize concepts for the actual transmission of sensor data

and the challenges caused by mobile networks.

In [61], the authors implemented the predictive display, free corridor, and haptic feedback such as

proposed by [13] and analyzed the communication challenges when driving via commercial Long

Term Evolution (LTE) networks. Test drives showed an average delay of 138 ms for transmitting the

camera data with a maximum delay of 445 ms. To avoid jitter, the authors buffered the video stream for

a constant time delay of 500 ms. This strategy follows the investigations of [12], which showed stronger

decreases in driver accuracy for variable time delays compared to constant time delays. Similarly,

Neumeier et al. [14] evaluated the feasibility of ToD in LTE networks. Based on a user study [48], they

defined 250 ms as the maximum tolerable network delay, plus 50 ms delay introduced by the sensors.

Further, they suggested to use at least 1 Mbit/s per camera video stream. Test drives on public roads

over 5200 km showed that ToD may be feasible in special areas which have shown a sufficient network

quality. The authors refer to these areas as whitelisted areas. In [18], a user study was conducted to

investigate the required quality for ToD. Depending on the driving situation, 300 kbit/s to 800 kbit/s

per camera video stream could be sufficient for ToD. While the authors evaluated which quality level

is required, they did not focus on how to reach that rate/quality or how to distribute it within each

frame.

Dror et al. [62] proposed a content adaptive video compression scheme to increase the video quality

of important regions within the frame compared to the remaining video content. The authors encoded

object regions, detected by a state-of-the-art object detection network, with a higher video quality by

spending more bit budget on these regions than on the background. This content adaptive video

compression improved the peak signal-to-noise ratio (PSNR) for object regions within a single camera

view based on a given target bitrate. Similar to Neumeier et al., Dror et al. consider the same bit

budget for each camera view. We contribute to this field by proposing novel methods for how to

distribute the total available bit budget over multiple individual camera views, since not all camera

views are equally important for a respective driving situation. We introduce our methods for how to

distribute the bitrate in Chapter 5.

2.2 Situation Awareness

The solutions discussed in the previous section provide the operator with an immersive feeling of

being physically inside the vehicle. The requirements for the operator to successfully control the

vehicle then become similar to the ones of an in-car driver. Same as an in-car driver, the operator

has to be fully aware of the current traffic situation. Several studies have shown that higher levels

of automation lead to a reduced driver attention [63, 64, 65]. A human driver who is not in control
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of the vehicle may need up to 40 seconds to obtain full control of the vehicle [4]. In particular, the

transition of vehicle control from the system to the human driver requires the driver to be ready for

taking over [64]. Before transferring the control to the driver, the system has to guarantee the driver’s

ability to control the vehicle safely [4]. An operator connecting to a remote vehicle performs a similar

takeover process, having to assess an initially unknown situation.

Van de Beukel et al. [66] demonstrated that the SA of the driver is an important factor for how long

it takes to take over control. Measuring and potentially increasing the SA is therefore an important

aspect of telepresence and ToD [67]. After defining the term SA, we therefore discuss methods for

assessing the SA and monitoring the driver next.

2.2.1 Definition

In 1988, Endsley [68] defined situation awareness (SA) as "perception of elements in the environment

within a volume of time and space, the comprehension of their meaning and the projection of their

status in the near future" (p. 97). In 1995, Endsley [69] further proposed a theoretical model of SA

based on three levels:

• Level 1: Perception of all elements in the current environment, e.g., perception of other traffic

participants or the current movement of the ego vehicle.

• Level 2: Comprehension of the current situation, e.g., children at the side of the road requiring

the car to drive slower.

• Level 3: Projection of future status, e.g., children running towards the road will also enter the

road.

This model tries to describe the cognitive state of humans in dynamic environments and their

effectiveness in decision making when operating these systems. Next, we discuss methods for

assessing the SA based on this definition.

2.2.2 Assessment Methods

SA assessment can be categorized into objective and subjective methods. Riley et al. [67] used meth-

ods of both categories for measuring SA as an alternative measure of telepresence. Salmon et al. [70]

performed a general review of SA assessment methods in command, control, communication, com-

puters, and intelligence (C4i) environments. Nguyen et al. [71] reviewed recent approaches of SA

assessment in aviation environments. Salmon et al. [70] as well as Nguyen et al. [71] classified SA

assessment approaches into six categories:

• Freeze probe techniques: While the operator is performing a certain task in simulation, the

scene is randomly frozen and all display content is removed. Then, the subject has to answer

questions about the current situation based on their knowledge from the point of freezing

the scene. The responses are recorded and compared to the status of the actual environ-

ment. Popular freeze probe techniques are the situation awareness global assessment tech-

nique (SAGAT) [68], situation awareness control room inventory (SACRI) [72] and SA of en-route

air traffic controllers in the context of automation (SALSA) [73]. While freeze probe techniques

directly assess the current understanding of the situation, they can only be implemented in

simulation since the real world cannot be frozen.

• Real-time probe techniques: Similar to freeze probe techniques, the operator performs a certain

task while being observed by an expert. The expert prepares queries and administers them

online without freezing the task. The response time or the content of the answer are taken

as a measure of the subject’s SA. Typical real-time probe techniques are the situation present

assessment method (SPAM) [74], Solutions for Human-Automation Partnerships in European
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Air Traffic Management (SA for SHAPE) [75], and SA for SHAPE on-Line (SASHA_L) [75].

While these techniques can be applied in realtime, they are still intrusive to the task and require

an expert observing the task.

• Post-trial self-rating techniques: Here, subjects rate themselves on a rating scale after executing

the task. Established methods include the situation awareness rating technique (SART) [76],

the situation awareness rating scales technique (SARS) [77], the Cranfield situation awareness

scale (C-SAS) [78], the crew awareness rating scale (CARS) [79], the mission awareness rating

scale (MARS) [80], and the quantitative analysis of situation awareness (QUASA) [81]. While

post-trial self-rating techniques are easy to implement and non-intrusive to the task, they have

several problems. Users might rate themselves too highly, since they might not even recognize

having a poor SA. Further, post-trial techniques measure the subject’s SA at the end of the task,

at which time the participants might not recall all events.

• Observer rating techniques: The same experts participating in the real-time probes observe the

user during task execution and provide a rating for them. The situation awareness behavioral

rating scale (SABRAS) [79, 80] is a commonly used technique in this field. While these techniques

are not intrusive, the rating is subjective to the expert and cannot directly assess the SA of the

subject.

• Performance measures: Some aspects of the performance can be measured directly, such as

the time to complete the task or the number of errors during task execution. Georg et al.

used performance measures in their user studies on the driver SA for different displays and

sensor representations [8, 55, 56]. While performance measures do not interrupt the natural

task workflow, they can only provide an indirect measure of the subject’s SA. A good task

performance may not always correlate with the SA.

• Process indices: Process indices comprise the recording, analysis, and rating of the processes

that the subject follows to establish the SA during the task performance. A typical process index

is to record the subject’s gaze using an eye-tracking system and to analyze the user behavior

during task execution [82]. While eye-tracking devices directly measure the subject’s fixation,

their implementation outside of a laboratory environment is often difficult.

Objective sources about the SA are diverse and oftentimes difficult to model or assess. Subjective

methods are therefore still dominating in the field of SA assessment. Salmon et al. [70] reported that

most of the methods from the literature are offline measurements and questionnaires, while there is

a lack of suitable online measurement systems. To overcome the need for post-drive questionnaires

or freeze probes, Martelaro et al. [83] proposed the DAZE app. DAZE uses real-time in-event alerts to

enable online SA measurements [84]. In case of a critical situation, the driver has to first acknowledge

noticing the event and then locate the event by clicking on the map displayed by the DAZE app.

Possible events cover questions such as Did you see the police car?. Although DAZE can be used

while driving the car, it only allows for a reactive event measurement and is not suited for constantly

monitoring the driver’s awareness. However, dynamic tasks such as driving and teleoperation require

constantly monitoring the operator to ensure safety.

Desvergez et al. [85] and De Winter et al. [86] showed that visual attention measurements have a

higher correlation to the task performance than freeze probes. Hasanzadeh et al. [87] analyzed the

awareness of construction workers and showed that eye tracking can be directly used for awareness

measurement. Van de Merwe et al. [88] demonstrated the benefits of using eye movements to assess

SA by observing the pilot’s gaze in different aviation scenarios. Based on the methods discussed, eye

tracking is the most suitable technique to be used for constantly monitoring the driver and assessing

their SA [89]. The first step in any assessment of SA should be a requirements analysis to determine

which elements determine the operator’s SA [70]. In the next section, we discuss which elements

affect the driver attention and how the attention can be estimated.
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Figure 2.5 Raw image and gaze heatmap accumulated from multiple drivers (source: [95]).

2.2.3 Driver Attention

Driver attention can be summarized as a collection of areas or regions the driver should focus on. A

driver usually focuses on respective regions by looking at them for an extended period of time. These

regions are commonly known as region of interests (ROIs). Predicting which parts of an image are

most relevant is also known as ROI prediction. In the literature, there are several approaches that

predict these ROIs.

In autonomous driving, object detection or classification models play an important role. De-

termining the regions a given model focuses on is therefore one option to predict ROIs. Visual

backpropagation [90] is one possible method to visualize which parts of an image a model is cur-

rently using to determine its output. However, this approach is not trained to exclusively focus on

ROIs. Xu et al. [91] introduced the concept of attention that allows actively learning attention maps.

An attention module that adaptively directs the model’s visual attention on the most important re-

gions during learning [92] can be used to predict the ROI for a given image. While this allows for

predicting salient regions of a specific model, the predicted regions might not match with what a

human would consider interesting. To predict human gaze fixation, Cornia et al. [93] proposed a long

short-term memory (LSTM)-based saliency model that learns to predict the distribution of human

gaze fixation points. While their results indicate that human attention in general can be predicted,

the task of driving raises additional constraints. Not all salient regions can be considered interesting.

Free-space regions without salient characteristics might be relevant for the driving task as well, such

as monitoring whether the sidewalk is devoid of pedestrians. On the other hand, areas of an image

such as advertisements are likely to be predicted as salient regions, but fixations on the advertisement

can be harmful for the driver’s SA.

The Dr(eye)ve project [94] was one of the first projects that specifically addressed the issue of ROI

prediction for driving. The authors created a dataset with six hours of driving, recorded with a

single front camera. An eye-tracking device captured the driver’s gaze. The gaze data was then

used to generate the ROI labels. However, this way of recording and labeling data has several

drawbacks. First, an eye-tracking-based labeling process only allows for a single ROI at a time.

Second, distractions such as caused by advertisements could introduce false ROIs not relevant for the

current driving situation. Lastly, critical driving situations are rare in regular driving. The single ROI

at a time together with a large amount of regular driving scenes leads to the model predicting mainly

the vanishing point as the ROI.

Xia et al. [95] addressed these issues. The authors proposed the Berkeley Deep Drive Attention

(BDD-A) dataset, which was labeled by collecting the gaze data of multiple independent participants

watching recorded driving scenes. Accumulating their gaze patterns results in attention maps that

consist of multiple ROIs, as visualized in Figure 2.5. The driving scenes were selected to contain mainly

videos of braking, which increases the amount of critical situations. Then, the authors designed an

ROI prediction framework based on an object detector. During training, they used human weight

sampling to assign a higher weight to critical situations. While this approach allows for multiple ROIs

at the same time, the labels are still based on human gaze data. Pal et al. [96] proposed to combine

the gaze information with driving specific context information learned from a saliency model. This

approach increased in particular the ROIs predicted on the periphery. Their approach as well as the



Chapter 2 Background and Related Work

16

BDD-A model is limited by the focus on a single front camera. Rear-facing camera views, for instance,

have different ROIs such as the free space that is usually covered by the shoulder check, while traffic

lights are no longer relevant. In Chapter 4 of this thesis, we propose a concept for extending available

ROI prediction methods from single view to multi view.

2.2.4 Driver Monitoring and Online Assessment

ROI prediction allows estimating which areas the driver should be aware of to perform the driving

task. A continuous monitoring of the driver additionally measures if the driver is aware of those

regions. Yang et al. [63] proposed to continuously keep the driver’s attention on a high level using a

colored light-emitting diode (LED) status bar below the front window. When driving in autonomous

mode, the visual effects inform the driver through their peripheral view about the vehicle’s state,

even when the driver is not looking at the road. This reduces the time to take over control from the

vehicle. However, this approach conflicts with the idea of removing the human from the driving task

and is not feasible for a remote driver that only connects to the vehicle in case the autonomous system

has to return the control.

Actively monitoring the driver is still an open challenge [97]. Murphy-Chutorian et al. [98] consid-

ered the head pose as a useful indicator for the driver’s attention. Estimating the driver’s attention

based on their head position was proposed by Tawari et al. [99]. The duration that the driver is not

looking ahead is used as a measure for distraction. However, looking ahead onto the road is only a

rough estimation of the driver’s attention. Further, such an approach cannot distinguish between the

perception of relevant and irrelevant objects or events inside the driver’s FoV.

Fletcher et al. [100] proposed to focus on relevant objects by detecting speed signs and comparing

them to the driver’s gaze. This provides an immediate feedback if a speed sign has been missed

by the driver. Mori et al. [101] proposed the calculation of an awareness score for the driver based

on the potential risk caused by surrounding vehicles and the gaze behavior of the driver. They

classified the environment into rough segments and assumed that more gazes on potentially critical

areas imply a higher level of SA. However, the gaze behavior of the test participants was manually

labeled from video recordings, which prevents this system from being used for online assessment.

Langner et al. [102] proposed a system to measure the driver’s awareness or unawareness in critical

situations using eye tracking and object detection. If the driver does not look at an object detected

by the system, they receive an acoustic warning. Similarly, Amadori et al. [97] used gaze data and

the driver’s head pose as input for their decision anticipation model. The model then predicts the

likelihood of the driver making correct or wrong decisions. While such systems continuously monitor

the driver and indicate that something has been missed or a decision was wrong, they only offer a

binary output. To the best of our knowledge, there is currently no dedicated metric for real-time

estimation of an SA score in driving.

Hooey et al. [103] modeled a pilot’s SA as the ratio of perceived/actual situation elements (SEs) and

required/optimal SEs. Shuang et al. [104] further evaluated this approach by comparing the results of

the SA model with the two subjective techniques SAGAT and SART. In the aviation context, optimal

SEs can be considered to include all cockpit instruments. Actual SEs can be estimated by analyzing

the pilot’s gaze. If the gaze stays on the same region/instrument for a certain time, it can be counted

as a perceived SE. As part of this thesis, we transfer the concept of Hooey et al. [103] from the static

cockpit environment to the highly dynamic environment of driving in Chapter 4.

2.3 Video Streaming

In the previous sections, we discussed solutions that provide the operator with an immersive feeling

and allow for assessing the operator’s SA. As demonstrated by Georg et al. [56], a good video quality

supports the operator in gaining a better SA of the remote situation. In this section, we summarize
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approaches for adaptive video streaming designed to provide the operator with the best possible

video quality.

The main goal of adaptive streaming is to effectively use the available transmission resources to

achieve the best possible quality and a continuous video stream without stalling. In applications such

as video streaming for home entertainment, stalling only affects the user’s quality-of-experience (QoE).

In ToD, stalling becomes a severe security issue. The concepts discussed in this section aim to avoid

stalling while delivering the best possible quality. We first introduce a general pipeline for video

communication as well as the fundamentals of video coding for one or multiple camera views. Then,

we review high level methods for adaptive and low delay video streaming before focusing on methods

that consider the special requirements of ToD and the hardware limitations of vehicles. Finally, we

discuss how to control the video encoder to match these requirements and how to measure the

resulting quality.

2.3.1 General Video Communication Pipeline

Streaming is the simultaneous transmission and usage of video and potentially audio data. This

means that novel content is continuously transmitted from the server to the client. Simultaneously,

content that is already available on the client is relayed to the user. Figure 2.6 shows the schematic

overview of a general streaming pipeline.
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Encoder Settings
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Figure 2.6 Overview of a general streaming pipeline consisting of a video source, video encoder, and streaming

server. The client side consists of the streaming client, a video decoder, and a video sink such as a display.

A video source such as a camera or video file provides the raw video content. This raw content

is compressed by a video encoder based on the encoder settings. A streaming server transmits the

encoded bitstream over a network connection to a client. The decoder on the client side decodes

the bitstream received from the server. The reconstructed video content decoded from the bitstream

ends in a video sink such as a display, where it is shown to the user. The methods discussed in the

remainder of this section all refer to components of the general pipeline shown in Figure 2.6.

2.3.2 Fundamentals of Video Compression

Before we discuss existing video streaming solutions, we first introduce the fundamentals of video

compression that are required for understanding the related work and contributions presented in

this thesis. The goal of video compression is to minimize the data rate (bitrate) of the video content

while affecting the visual quality as little as possible. The video community is continuously improving

video compression and has agreed on video coding standards such as H.264/Advanced Video Coding

(AVC) [105], H.265/High Efficiency Video Coding (HEVC) [106], and H.266/Versatile Video Coding

(VVC) [107]. All video coding standards established today rely on the same fundamental techniques

for encoding (compressing) and decoding (decompressing) a video. Next, we discuss the most

important concepts typically included when compressing a video.

• Color Conversion: Humans usually consume video content as color images based on red, green,

and blue (RGB) color components. Since the human vision system (HVS) is less sensitive to

changes in color than to changes in brightness, the RGB content is first converted into the YCbCr

color space [105]. The 𝑌 component represents the brightness, also known as luminance, while

the color or chrominance components 𝐶𝑏 and 𝐶𝑟 represent the blue-difference and red-difference
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relative to gray. The chrominance channels are often used in lower resolution compared to the

luminance channel, taking advantage of the HVS’s sensitivity to brightness. This technique is

also known as Chroma Subsampling [105].

• Block Partitioning: Video codecs divide the image into smaller blocks before further processing.

For the H.264 standard, for instance, these blocks are called macro blocks (MBs) with a size of

16×16, 8×8, or 4×4 pixels [105]. The encoder as well as the decoder process these blocks, usually

from top left to bottom right. The successors of H.264 [105], H.265 [106] and H.266 [107] allow

for larger and more flexible block sizes and shapes.

• Frame Types and Group-of-Pictures Structure: A group of pictures (GoP) describes a sequence

of frames. A single frame can be categorized into one of the following three types:

– I-Frame: An I-frame, also known as intra-, reference-, or key-frame, is a self-contained

frame that can be decoded exclusively by the information it contains, similar to a single

picture. The first frame of every video sequence is usually an I-frame.

– P-Frame: A P-frame or predicted frame is a frame that can be predicted using only the

difference to the previous I-frame or P-frame. Since it only contains the difference to the

previous frame, the data consumption is much lower than for an I-frame.

– B-Frame: A B-frame or bi-predictive frame is a frame that relies on past and future I- or

P-frames. Since the encoder has to wait until the next I- or P-frame frame arrives to encode

the respective B-frame, this type of frame inherently introduces a delay which makes them

unsuitable for live streaming applications [108, 109].

The length of a GoP is defined as the interval length between two I-frames.

• Predictions: In video coding, there are usually two types of predictions that make use of the

spatial and temporal redundancies of the video.

– Intra Prediction utilizes the spatial redundancies within a single frame. The values for

the current block can be approximated based on neighboring blocks already processed

by the encoder. This approximation exploits the fact that in natural images, the colors of

neighboring pixels and blocks are changing slowly. Then, the difference (residual image)

between the predicted blocks and the true blocks is further processed, since the residual

contains values close to zero which require fewer bits for representation in the further

processing steps.

– Inter Prediction utilizes the temporal redundancies between two frames. Similar to the

spatial redundancies, the encoder tries to represent a block that changed as a translation

relative to neighboring blocks of a temporal adjacent frame using so-called motion vectors

(MVs). The residual of predicted and true blocks is used again for further processing.

• Transform: The prediction residuals are transformed into the frequency domain using trans-

forms such as the discrete cosine transformation (DCT) [105]. Most of the signal’s energy is

concentrated in the lower frequencies, which allows for removing higher frequencies without

affecting the perceptual image quality.

• Quantization: The removal of higher frequencies is implemented as a quantization. The

coefficients of the transformed image are quantized based on a configurable quantization pa-

rameter (QP). The QP can be either directly specified for the encoder when using the constant

quantization parameter (CQP) mode or it is calculated by the encoder’s rate control.

• Entropy Coding: Finally, entropy coding compresses information of the transformed image

such as the quantized coefficients or MVs losslessly.
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• Rate-Distortion Optimization: To achieve the best possible trade-off between bitrate and qual-

ity or distortion, the encoder employs rate-distortion optimization (RDO). The RDO process

identifies the optimal point, depending on a given Lagrangian weight, at which the video shows

acceptable distortion at a sufficiently low bit rate.

• Rate Control: Rate control is a mechanism that controls the quantization of the encoder, for

instance, to achieve a constant bitrate. Since the video content and hence the spatial and

temporal complexity vary over time, the rate control estimates the quantization level required

to achieve a certain bitrate. In particular for low delay video streaming such as required for

teleoperation, a precise rate control enables small buffers and hence keeps the delay small [110].

The resulting bitstream is then transmitted over the network. In ToD, there is usually more than a

single camera view that has to be encoded. Therefore, we discuss existing solutions and extensions

to the available video coding standards for multi-view video coding and streaming next.

2.3.3 Multi-View Video Streaming

Most video coding standards available such as H.264/AVC [105] or H.265/HEVC [106] provide multi-

view extensions that directly allow for encoding stereo/multi-view representations of the same scene.

The multi-view extension for H.264/AVC is Multiview Video Coding (MVC) [111] while Multiview

High Efficiency Video Coding (MV-HEVC) [113, 112] extends H.265/HEVC. These extensions transfer

the temporal concept of inter-frame prediction for a single view to the inter-view prediction of multiple

views in the spatial domain. One view is selected as the base view, while the other views are encoded

relative to this base view. A requirement for these multi-view extensions are overlapping regions

where the inter-view prediction can benefit from similarities between neighboring views [114]. In

ToD, the cameras mounted on the vehicle are arranged to capture different parts of the surrounding

environment, resulting in few overlapping regions. Since there are only few similarities between

neighboring views, using multi-view video coding is less beneficial.

A better solution for processing multi-view video streams showing different scenes such as in

ToD is to use multiple encoders. Multiple encoders processing the individual camera views with

different content will result in different visual quality levels for the individual views. An additional

joint rate control algorithm can be used to equalize the resulting perceptual quality of the individual

streams [116, 115]. A common joint rate controller allocates the bitrate for every individual view

while also controlling a separate encoder for that view. In ToD, the importance of individual camera

views highly depends on the traffic situation. Rather than trying to maintain a similar quality for

all camera views, the goal of this thesis is to favor specific camera views with a higher quality based

on the current traffic situation. This is important for ensuring that a human driver is aware of the

most important views in the current situation. Our proposed solution is introduced in Chapter 5.

Since using individual encoders for each camera view is the most suitable solution in ToD, we next

discuss existing approaches for transmitting video streams adaptively based on the currently available

transmission rate of the network.

2.3.4 HTTP Adaptive Video Streaming

The broadest distribution of video streaming applications is in the entertainment sector with its

various video-on-demand providers and social media applications. The state-of-the-art technology

in this field is HTTP adaptive streaming (HAS) with its standardization of dynamic adaptive streaming

over HTTP (DASH) in 2011 [117]. In HAS, the original video is partitioned into multiple segments, or

chunks, of equal playback length [118]. Every chunk is encoded in multiple representations of bitrate,

resolution, and quality, which are then stored on the server. Additionally, a manifest file stores the

information about the available representations as well as hypertext transfer protocol (HTTP) uniform

resource locators (URLs) to the individual segments. HAS utilizes HTTP with the Transmission
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Control Protocol (TCP) as the transport-layer protocol to transmit the chunks requested by the client.

Figure 2.7 shows a typical HAS streaming pipeline.

HTTP Server

Adaptive Streaming Client

Media Buffer

HTTP GET

Request

Response

Figure 2.7 Overview of a typical HTTP adaptive streaming (HAS) streaming pipeline with chunks of the video

content encoded in multiple resolutions and bitrates. Based on the available transmission rate of the network,

the client selects the next chunk most suitable for ensuring a high video quality without stalling.

At the beginning of a streaming session, the client downloads the available manifest file from

the server. With the knowledge about the available video representations, the client continuously

requests the next chunk in the appropriate rate that matches the current network conditions, while

simultaneously playing the already downloaded content. With this concept, the client tries to show

the highest possible quality with a minimum number of stalling events [118]. Since the client requests

the content, this kind of streaming can be classified as pull-based streaming [118]. The client side

adaptation is an important advantage of HAS and leads to an excellent scalability, since the server’s

workload is almost independent of the number of clients. While there also exist adaptation schemes on

the server side or hybrid solutions, most adaptation schemes available reside on the client side [118].

These client-side adaptation schemes select the appropriate video bitrate for the next chunk to

be downloaded based on one or more metrics such as the current playback buffer size or the

available transmission rate. Buffer-based systems such as Buffer Occupancy based Lyapunov Al-

gorithm (BOLA) [119], which is also used in the standard DASH client, observe the client buffer and

aim to keep the buffer at a constant fullness. Rate-based adaptation algorithms such as fEedback

Linearization Adaptive STreamIng Controller (ELASTIC) [120] try to estimate the currently available

transmission rate and select the best possible chunk that can be downloaded in time. Spectrumbased

QUality ADaptation (SQUAD) [121] jointly uses the available transmission rate and buffer informa-

tion while trying to minimize the number of quality switches. Instead of using fixed control rules for

selecting the best segment, PENSIVE [122] is based on a neural network. Its goal is to show the best

possible QoE, outperforming the other approaches mentioned above.

The operational design domain of most solutions presented is entertainment and video on de-

mand [118]. In video-on-demand applications, the video content is already known in advance and

the additional delay caused by chunk-sizes of a few seconds is irrelevant. In contrast, the requirements

for teleoperation are critical to delay [12]. Lottermann et al. [123] proposed a DASH-based solution

for providing live video content streamed from a vehicle. To reduce the delay introduced by the

video-content segmentation, the segment size was reduced to about 0.5 s. Since DASH-based adapta-

tion schemes require different encoded versions of the same video content, the time for encoding the

video also contributes to the delay. The authors addressed this by reducing the set of available levels

based on the current network conditions in order to reduce the time required for encoding. With a

chunk size of 0.5 s, the delay introduced by this streaming solution is still too large for ToD [12, 14].

Further approaches for low latency streaming in the automotive context use HEVC encoding, a

medium access control (MAC) layer adaptation and communication over vehicular ad-hoc networks

(VANETs) [124, 125]. However, VANETs provide only a limited range since they were designed for

vehicle to vehicle (V2V) communication. Other applications providing live content uplink streaming

usually use RTP-based methods [118]. Yu et al. [126] compared the three popular video conferencing

services Microsoft Skype, Google Hangout, and Apple Facetime. All of them mainly use RTP/UDP
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as the underlying streaming protocol, while Google Hangouts switches to TCP in case of blocked

UDP connections. Favario et al. [127] compared mobile live streaming approaches using the Real-

Time Messaging Protocol (RTMP) and HAS. They demonstrated that real-time streaming can be

implemented in the best way when using TCP with RTMP-based solutions for a small number of

clients and HAS-based approaches for a large number of users. Especially for live content, there is

the drawback of TCP’s acknowledgement concept [128]. Delay critical applications such as video

conferencing systems or teleoperation systems prefer UDP or RTP-based communication [129]. The

ToD setup of [7] as well as the one proposed in Chapter 3 use RTP/UDP-based video communication.

Next, we discuss the specific requirements for a low delay streaming pipeline as well as existing

approaches.

2.3.5 Low Delay Video Streaming

The delay required for safe ToD should be less than 300 ms based on the results of Neumeier et al. [48].

Here, the video transmission is the main contributor to the delay due to the large amount of data.

The authors distinguished between 50 ms introduced by the sensors and 250 ms as network latency.

However, this is only a coarse distinction of the delay contributors and there exist further aspects that

need to be considered.

Bachhuber et al. [130] performed a general end-to-end analysis on the delay contributors in video

streaming. The authors defined this end-to-end delay as Glass-to-Glass (G2G) delay, which starts at

the camera lens and ends at the screen glass. Additionally, they proposed a low complexity system

for G2G delay measurement [131]. The results of their delay analysis demonstrated that cameras and

displays with a low update rate cause significant delay that has to be addressed. Figure 2.8 shows a

general video communication pipeline and the main delay contributors such as analyzed in [130].
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Figure 2.8 General video communication pipeline and delay contributors.

In addition to the delay of camera and display, the encoding and decoding delay as well as the

transmission delay have to be considered. Bachhuber et al. [130] further distinguish between camera,

encoder, decoder, and display as sources of delay. In this thesis, we consider the hardware used in the

vehicle as well as the operator workstation as given and only focus on the encoder and configuration

options to keep the encoder delay small.

Loschky et al. [132] investigated the impact of different levels of delay and pointed out that delays

below 60 ms are typically not perceivable by humans. Schreier et al. [108] proposed the usage

of forward predictive frames only (I/P-frames) and to avoid bi-directive frames (B-frames), since

they introduce an additional encoding delay due to their dependency on future frames. Further, the

encoder should be configured for low latency encoding [130]. While this increases the encoding speed,

it prevents the encoder from doing extensive searches and hence results in a higher bitrate compared

to slower, but more efficient coding modes. Based on these restrictions for live video streaming, the

H.264 codec [105] is still widely used, although its successors H.265 [106] and H.266 [107] are already

available [133].

Besides encoding the video as fast as possible, small buffers are another way to keep the delay low.

Exceeding the available transmission rate results in additional delay and likely congestion. This is

particularly critical for small buffers that intend to compensate network issues. Using small buffers

while still matching the available transmission resources requires precise bitrate control. Constant

bitrate control that aims to match the video bitrate constantly over time should be preferred to
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variable bitrate control, which is mainly used for on-demand video content to achieve a constant

quality level [123].

The default x264 [134] constant bitrate control achieves a bitrate that is on average constant over a

certain time. For low delay video streaming, a constant output bitrate at any time is mandatory. Rate

control approaches such as the 𝜌-domain rate control [135] and its extensions [110] estimate the bitrate

more precisely and hence allow for matching the bitrate precisely at any time. Gao et al. [136] further

model the 𝜌-domain output as an exponential function to avoid the evaluation of all quantization

levels, which reduces complexity. The precision of the rate control in general depends on the accuracy

of the bitrate model used. The encoding hardware such as used in vehicles usually provides only

limited accessibility to features of the underlying codec, which prevents using approaches such as

𝜌-domain rate control. In the next section, we discuss existing bitrate models that allow for a precise

estimation of the video bitrate with respect to the limitations and requirements of vehicles and ToD.

2.3.6 Bitrate Models

The core part of every rate control is the bitrate model estimating the resulting bitrate for a set of

encoding parameters without the need to actually encode the video. The bitrate model proposed

by Yao et al. [137] considered both the influence of quantization and frame rate and uses content-

dependent model parameters. Ma et al. [138] extended this work by estimating the two video-specific

parameters based on three content-dependent features. In [139], the authors further updated their

model to additionally consider the impact of the frame size. Downsides of their bitrate models

are the content-dependent features, which are computationally complex and based on the motion

estimation and frame difference information of the underlying codec [140]. Such an approach is

therefore difficult to implement for embedded systems, where the encoder can be considered as a

black box and accessing the encoder apart from a given interface is not possible.

Lottermann et al. [141, 142] addressed this problem by estimating the bitrate independently of

codec-dependent features. This approach allowed them to decouple the rate control from the actual

video encoder. In [141], the authors proposed a bitrate model that considers the impact of frame rate

and the QP. Then, they modeled the impact of the frame rate and the QP based on spatial and temporal

activity measures. Other than for the content-dependent approach used by Ma et al. [138], it is possible

to extract both activity measures from the uncompressed video sources. Lotterman et al. [142]

extended their previous work [141] to include GoP characteristics, since they significantly influence

the overall video bitrate. While these models do not consider all influence factors such as the frame

size, they inspired the analytical bitrate model proposed in Chapter 6.

The bitrate models discussed estimate the bitrate analytically and consider the influence of the

QP. This simplifies the modeling process, since no additional rate control by the encoder affects the

bitrate. However, it requires the encoder to be used in CQP mode. Covell et al. [143] followed the

idea of Ma et al. [138] and modeled the bitrate for the constant rate factor (CRF) encoding mode.

They proposed a neural network to estimate the content-related model parameters and the CRF.

Sun et al. [144] improved the linear model of Covell et al. [143] to increase the bitrate accuracy.

Similar to the original model, the content-related parameters are estimated using a neural network.

Both networks use MV information, which is available since the models were mainly designed for

transcoding applications. In a ToD context where the encoder is a black box, such information is

likely unavailable.

2.3.7 Video Quality Assessment

Besides estimating the bitrate to control the video encoder, assessing the resulting quality is another

approach for controlling the video encoding pipeline [145]. Additionally, any kind of video processing

requires quality assessment to rate and compare different processing techniques. Most objective video

quality metrics (VQMs) are based on subjective user studies where the VQM tries to match the results
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of the user study as closely as possible [146]. In general, objective VQMs can be classified into three

categories [145]:

• Full-reference quality metrics estimate the quality relative to the undistorted reference signal.

Hence they require access to the original video source, which limits their applicability to the

receiver side.

• Reduced-reference quality metrics do not require access to the full original image content, but

to a set of features extracted from both videos. These features are used when the original video

is not available or when the transmission of the full video is not possible.

• No-reference quality metrics can be calculated from the distorted image or video signal without

having information about the original content.

The PSNR is one of the most commonly used full-reference metrics for video quality assessment.

However, it does not represent the HVS closely [145]. In 2004, Wang et al. [147] proposed the

Structural Similarity Index (SSIM) as a quality metric superior to the PSNR. SSIM exploits the

structured information of natural images under the assumption that structural distortion decreases

the visual quality. Both PSNR and SSIM are image quality metrics that do not consider the temporal

information of a video. Wang et al. [148] extended their SSIM to consider the temporal domain as

well. This improved the correlation of SSIM on the video quality, but comes at the cost of increased

computational complexity.

Peng et al. [149] proposed the spatio-temporal video quality metric (STVQM) to predict the video

quality by considering both spatial and temporal impairments. STVQM is based on the PSNR to

measure the spatial quality per frame and a correction factor to model the temporal quality perception.

This temporal correction factor is estimated by the frame rate as well as the spatial and temporal

activity measures obtained from the undistorted video. Ou et al. [140] proposed a similar approach

to model video quality as an independent product of spatial and temporal quality factors. The spatial

factor is based on the PSNR, while the temporal factor considers the frame rate of the video. Both

factors depend on a respective single content-dependent parameter. In [150], the authors extended

their spatio-temporal quality model to further consider the influence of different frame resolutions.

This frame resolution factor depends on another single content-dependent parameter. However, the

content-dependent parameters are calculated from motion information and frame difference, which

are computationally complex and only available with access to the underlying codec. This makes

them less suitable for ToD and live streaming applications compared to the STVQM.

Wichtlhuber et al. [151] proposed the real-time video quality metric (RT-VQM), which is specifically

designed for live streaming applications. RT-VQM is a Graphics Processing Unit (GPU) supported

version of the precise and standardized VQM proposed by Pinson et al. [152]. Slicing the video

content before loading it into the GPU’s memory allows for a fast processing and estimation of the

video quality. The underlying VQM itself is a reduced-reference metric based on three low-bandwidth

features. This enables the RT-VQM to be used for live streaming applications as well as on streaming

servers for transcoding evaluation, where no access to the raw video is available.

Zhang et al. [153] proposed the multi-dimensional video quality metric (MDVQM), a no-reference

VQM closely representing the HVS. The authors modeled the MDVQM as a product of a signal-to-

noise ratio (SNR) model and two correction factors that include the influence of spatial and temporal

resolution. The features used in the VQM are based on the spatial and temporal activity measures

estimated from the encoded video sequences.

Besides designing a metric that closely matches the HVS in all scenarios, an alternative approach is

to combine the strengths of multiple individual VQMs. Different VQMs have special strengths and

weaknesses depending on the video content. Lin et al. [154] proposed the Fusion-based Video Quality

Assessment index (FVQA) to estimate the video quality by fusing the quality scores of multiple

individual VQMs. FVQA achieves a meaningful performance for a wide range of video contents

and codecs compared to state-of-the-art VQMs. With the Ensemble-learning-based Video Quality
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Assessment index (EVQA) [155], the authors proposed another fusion-based VQM. In contrast to

the FVQA learning static fusion rules for multiple video content groups, the EVQA adopts a more

dynamic learning-based approach. In cooperation with Netflix, Lin et al. [154, 155] proposed Video

Multi-Method Assessment Fusion (VMAF) [156] to estimate the subjective video quality. VMAF

combines the strengths of multiple elementary quality metrics such as PSNR and SSIM. An SVM

regressor fuses the individual metric scores to a single final quality score. VMAF outperforms

traditional VQMs and has been established the state of the art for video quality assessment [157].

In this thesis, we use PSNR, SSIM, STVQM, MDVQM, and most importantly VMAF to evaluate the

methods proposed in Chapter 5 and Chapter 6.

2.3.8 Multi-Dimensional Stream Adaptation

Most stream adaptation approaches focus on controlling the bitrate or quality of the video. Similar to

spatio-temporal VQMs that measure the influence of the frame rate and the frame size on the video

quality, these parameters can also be used to control the video stream. Reed et al. [158] proposed a

multi-dimensional bitrate control scheme that considers the frame rate and the frame size besides the

QP to control the buffer level. Afonso et al. [159] proposed a spatio-temporal resolution adaptation

scheme that dynamically resamples the input video during encoding. The authors apply multiple

perceptual VQMs to select the optimal combination of frame rate, frame size, and QP. In [145], a QoE-

driven multi-dimensional adaptation (MDA) scheme was proposed that uses the spatio-temporal

MDVQM [153] to select the optimal combination of spatio-temporal resolution and quantization for

adapting the video stream. In this thesis, we use the QoE-driven MDA approach of [145] as part of

our contribution in Chapter 5.

2.3.9 Image Preprocessing

Lastly, we discuss spatial image filtering as a preprocessing technique to manipulate the image

content [160]. This is relevant for the contributions of Chapter 6 that address the hardware limitations

of vehicles to still allow for individual rate/quality adaptation of multiple video streams when only

a single encoder is available.

Popkin et al. [160] proposed a computationally efficient algorithm for space-variant Gaussian

blurring of images. Encoding the residuals preprocessed this way reduces artifacts, improves the

quality, or reduces the bitrate for the encoded image or video. Sun et al. [161] as well as Astle et al. [162]

proposed to filter the entire image in a preprocessing step to reduce the perceptibility of coding

artifacts for higher quantization during encoding. Karlsson et al. [163] proposed ROI video coding

using Gaussian preprocessing filters. Applying the filter on the background reduces the bitrate

required for the encoder to encode the image, while the foreground stays at a constant quality.

Alternatively, the quality of the foreground can be increased by keeping the bitrate of the entire image

constant. To reduce the bitrate required for video streaming in mobile environments, Huang et al. [164]

used a similar preprocessing approach by applying a low-pass filter on the image background. As

an extension of [163], Karlsson et al. [165] proposed halving the temporal resolution (frame rate)

of the background. This results in reusing blocks of the odd-indexed frames for the even-indexed

frames during the encoding process. Budagavi et al. [166] used a Gaussian low-pass filter on the outer

regions of 360
◦

videos to reduce the bitrate required for encoding less important parts of the image.

Grois et al. [167] proposed a complexity-aware adaptive ROI prefiltering scheme for scalable video

coding. The authors applied the prefilters dynamically using a transition region between foreground

and background to increase the visual presentation quality of the ROI. In a comparison of different

preprocessing filters such as Gaussian, Wiener, and Wavelet filters, the Gaussian low-pass filter

performed best due to its low computational complexity [168, 169]. Additionally, Grois et al. [167]

have applied predefined filter configurations of specific regions in the frame to achieve the best

possible quality for the ROI. However, such an extension depends highly on information of the

underlying codec such as the motion estimation result, which requires direct access to the encoder.



2.4 Summary

25

Embedded devices are usually equipped with a hardware encoder with only limited configuration

possibilities provided by the encoder interface. In this case, the input data has to be preprocessed

before the actual encoding step. In Chapter 6, we propose a preprocessing scheme that enables

rate/quality adaptation of multiple camera views when only a single encoder is available.

2.4 Summary

In this chapter, we summarized the background as well as the related work most relevant to the con-

tributions made in this thesis. Firstly, we gave a general overview of state-of-the-art ToD systems and

how they addressed the task of providing the operator with an immersive feeling of being physically

in the vehicle. Several approaches were discussed that propose to compensate the transmission delay

by augmenting the display, providing control feedback, or improving the transmission by itself. Our

first contribution in Chapter 3 is based on these considerations and offers the first ToD setup for the

CARLA simulator. Next, after defining the term SA, we discussed methods for assessing and mon-

itoring the driver’s SA, which are related to our contributions in Chapter 4. Finally, we introduced

a general pipeline for video communication as well as the fundamentals of video coding for one or

multiple camera views. We reviewed methods for adaptive and low delay video streaming, video

quality assessment, and methods that consider the special requirements and hardware limitations

for ToD. These methods build the basis for the contributions of Chapter 5 and Chapter 6. In the next

chapter, we introduce a teleoperation framework to extend existing driving simulators for vehicle

remote control as the first major contribution of this thesis.
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Chapter 3

Teleoperated Driving in Simulated Environments

In this chapter, we present the teleoperation framework TELECARLA for driving in simulated envi-

ronments. The proposed framework consists of an online-configurable low delay streaming pipeline,

a customizable graphical user interface (GUI), and a scenario evaluation module. TELECARLA builds

the basic framework for the implementation and evaluation of the subsequent contributions made by

this thesis.

Most teleoperated driving (ToD) simulation systems currently available extend vehicle simulators

with a video streaming component. The commercial driving simulator SILAB [33], for instance,

provides hardware components as well as the software to perform realistic vehicle driving simulations.

However, using this simulator for ToD requires a screen grabbing software to access the frames due

to limited accessibility of the simulator [9, 11].

In contrast to such closed source systems, open source driving simulators are usually open for

extension and allow for accessing sensor information. We hence propose TELECARLA, an open

source extension of the Car Learning to Act (CARLA) simulator [16] for ToD research using low-cost

off-the-shelf components. Before introducing the design of the teledriving framework, we present

the hardware setup that enables control of the ego vehicle in the simulated environment based on a

wheel and pedals.

The teledriving framework presented in this chapter has been published in [19] with the source

code available on GitHub
1
. Additionally, TELECARLA has been integrated as an official plugin to the

CARLA simulator ecosystem [170] and is actively being maintained. Further implementation details

of TELECARLA are given in Appendix A.

3.1 Hardware Setup

The basic hardware setup for controlling the vehicle in the simulation consists of a gaming seat as

well as the Logitech G29 gaming wheel and pedals. These components have a price of less than 500€,

which enables an easy, cheap, and reproducible setup. Three 24
′′

displays arranged in a setup similar

as in [7] visualize the simulated environment. The number, type, and arrangement of the displays

can be customized according to the user’s needs. A regular desktop PC extended with an NVIDIA

GTX 1050 Ti graphics card runs the CARLA simulator. Figure 3.1 visualizes the complete hardware

setup.

Controlling the vehicle in the CARLA simulator via a wheel and pedals requires small modifications

to the client, as well as parameter tuning to customize the sensitivity of the wheel and the pedals

for an optimal driving experience. The default driving setup uses a single RGB camera front view

with 90
◦

horizontal field of view (FoV) for controlling the vehicle in the simulation. Further sensor

information such as ground-truth semantic segmentation, optical flow, and depth views are available

as well. Next, we present the proposed teleoperation framework TELECARLA that extends the

CARLA simulator setup with a teledriving mode.

1https://github.com/hofbi/telecarla

https://github.com/hofbi/telecarla
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Figure 3.1 Teleoperation workstation running the CARLA simulator with wheel and pedals control, gaming

seat and three displays.

3.2 TELECARLA

In this section, we present TELECARLA, a framework that allows for extending existing open source

driving simulators such as CARLA with a teleoperation mode. TELECARLA comprises the hardware

setup presented in Section 3.1, a customizable GUI for the operator workspace, a communication

interface for exchanging control commands as well as status information between the server and client,

and a low delay streaming pipeline with an interface for live video stream adaptation. The entire

system uses the Robot Operating System (ROS) [45] as middleware providing common interfaces to

design a modular and scalable micro-service-based architecture. Any driving simulator that uses

ROS can be extended for teledriving using the system proposed in this chapter. Here, we use the

CARLA ROS bridge [171] to connect the CARLA simulator using the proposed framework. Since the

CARLA simulator is the first simulator that has been extended for teledriving, we name our system

TELECARLA.

3.2.1 CARLA Network Architecture Analysis

We first analyze CARLA’s network architecture to motivate the need for designing a new teleoperation

framework. Internally, CARLA already uses a client-server architecture. In CARLA as well as other

comparable simulators, the scenes are rendered on the server and then streamed to the client. This

design choice allows for the simultaneous connection of multiple clients to a single CARLA server.

For its clients, CARLA provides a Python application programming interface (API) for fast and simple

usage and the implementation of various tasks.

By default, the client-server connection is via localhost on the local machine, but the client can also

be connected to a remote server. Connecting the client to a remote server already allows for ToD in

the simulation. However, the data transmission of CARLA is by design uncompressed, resulting in

large data transmission rates. Figure 3.2 shows an exemplary network trace of CARLA’s raw data

transmission.
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Figure 3.2 Network trace of CARLA’s raw data transmission.

This huge amount of data, transmitted without any compression, results in a very low frame rate

of 3 fps to 4 fps, which makes ToD nearly impossible. CARLA transmits the sensor data without

compression, since it has been designed for autonomous driving research where most algorithms

require raw data input. Since CARLA is open source, this issue could be addressed by integrating

video compression into their streaming pipeline. However, this approach would require rebuilding

the entire simulator library for changes in the video streaming system or adaptation algorithms

running on the server side. Furthermore, such modifications on the core part of CARLA would be

less flexible compared to an external solution. Hence, we design such an external solution that can

be used with CARLA as well as other simulators.

3.2.2 Proposed Concept

The proposed framework TELECARLA uses the Robot Operating System (ROS) [45] as the underlying

middleware, which is widely used in the area of autonomous driving [47]. ROS provides common

interfaces that allow for creating a modular and scalable system. The ROS-based connection of

TELECARLA with the CARLA simulator is established via a ROS bridge available for the CARLA

simulator [171]. Then, TELECARLA encodes and transmits the video data using GStreamer [172]

from the TELECARLA server running on the same machine as CARLA to a TELECARLA client

running on a separate machine. Vehicle status information and the control commands entered by

the operator are transmitted between these two machines using the Remote Procedure Call (RPC)

protocol. Figure 3.3 shows the proposed architecture with the available CARLA components in blue

and the proposed TELECARLA modules in green.

Every green block represents a separate ROS module, or node, which can be used multiple times in

the same system. This allows for streaming multiple camera views by creating pairs of TELECARLA

servers and clients for each camera available in the vehicle. Every TELECARLA streaming server

provides an adaptation interface for controlling the video encoder. On the client side, the video

stream is decoded and shown to the user. Details for the user interface (UI) and streaming module

are presented in the following sections.

TELECARLA connects to the CARLA server via localhost and its ROS bridge similar to any other

client available. This allows for using all existing functionality of CARLA such as traffic management,

weather conditions management, as well as scenario evaluation. Further, custom CARLA clients can

be implemented depending on the use case.

For a fully controllable network, we suggest using existing network emulation software to control the

network conditions. Available network emulation software such as tc-netem allows for controlling

the network parameters such as the available transmission rate, the transmission delay, or the packet-

loss rate to evaluate different adaptation algorithms.
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Figure 3.3 TELECARLA architecture extending the CARLA simulator for ToD. CARLA components are

visualized in blue, TELECARLA modules are shown in green.

3.2.3 Teleoperation User Interface

We design a GUI as an interface between the human operator and the TELECARLA client receiving

the sensor data. The GUI displays the sensor information such as the video streams and reads the

vehicle control commands entered by the human operator via wheel, pedals, and keyboard. The

GUI is specifically designed to render the video streams without any buffering to avoid additional

delays introduced when displaying the content [130]. Additionally, the GUI renders force feedback

on the steering wheel when the vehicle is controlled by an autonomous agent to synchronize the

steering-wheel angle with the actual steering angle of the vehicle. The synchronized angles are in

particular important for takeover situations where the human operator takes over manual control of

the vehicle.

The layout and type of sensor information rendered on the screen is defined by a simple configura-

tion file to customize the GUI according to the available sensor data. Figure 3.4 shows an exemplary

setup with six camera views.

Figure 3.4 TELECARLA GUI with a six camera setup and vehicle status information.

Three front-facing camera views in the bottom row and three rear-facing camera views in the top

row cover the surrounding traffic environment. Each camera view is augmented with its own video

status information located in the top left corner of the respective video segment. The video status

information covers the camera name and a timestamp as well as the spatial and temporal resolution

of the input video stream. The GUI re-scales the input camera streams to fit into the desired GUI
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segment defined by the user. To keep the delay introduced by the visualization as small as possible,

each segment is independently updated as soon as new data arrives. This update concept for the

individual segments allows for an easy implementation of additional display augmentations such as

a predictive display [9] or free corridor [59] to further improve the performance of the operator. The

dark segment on the left of the GUI gives an overview of the control signals available for the steering

wheel and the keyboard. The block on the top right displays the vehicle status information such as

the current speed or the gear position.

The flexible and modular design of the GUI allows to easily change the layout of the GUI as well as

to implement new visualization modules. This allows to visualize a map or a top-level view with the

vehicle surroundings, for example. Further implementation details of the TELECARLA GUI can be

found in Appendix A.1.

3.2.4 Video Streaming System

The video streaming system is the core part of the proposed TELECARLA system. We designed

the streaming pipeline focusing on a low delay video communication such as required for ToD. The

streaming pipeline provides an interface that allows for a live adaptation of the video stream. Using

the adaptation interface, the video frame rate and frame size as well as the target rate/quality can be

updated dynamically to control the video stream. The adaptation can be controlled either manually

by the human operator or automatically by an adaptation algorithm such as proposed in Chapter 5.

Figure 3.5 shows the two proposed streaming pipelines, Figure 3.5a for the server side and Figure 3.5b

for the client side.

Source Interface Video Rate Video Encoder Packaging Streaming Server

Resolution FPS Rate/Quality

(a) TELECARLA server pipeline.

Streaming Client Unpacking Video Decoder Sink Interface

(b) TELECARLA client pipeline.

Figure 3.5 TELECARLA streaming pipelines. The server pipeline exposes the available parameters that can be

controlled by the adaptation interface.

A source interface on the server side buffers the arriving frame, parses its resolution as well as the

color format, and optionally downscales the frame if specified by the adaptation interface. As soon

as a complete frame is in the buffer, the frame is processed by the pipeline to avoid artificial delays

introduced when buffering multiple frames. Based on the target frame rate specified, the temporal

resolution of the video stream is downsampled if required. The resulting video stream is then

encoded using a video encoder configured for low delay video coding. For a given target bitrate, the

encoder processes the video using its internal rate control algorithm to achieve a constant bitrate for

the encoded video stream. Alternatively, the encoders use the constant quantization parameter (CQP)

mode when a certain quality in form of a quantization parameter (QP) is specified. By default, we

use the x264 [134] software video encoder due to its speed advantages for low delay transmission

compared to more advanced video coding standards such as H.265 [106] or H.266 [107]. This speed

advantage is of higher priority in ToD than achieving the best possible compression rate [133]. The

encoded bitstream is then streamed to the client using the Real-Time Streaming Protocol (RTSP)

protocol. On the receiver side, the encoded bitstream is decoded and then published via the ROS

interface for displaying and further processing.
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The proposed streaming system uses GStreamer [172], an open source, multi-platform, plugin-

based multimedia framework. The individual modules of the streaming pipeline presented in Fig-

ure 3.5 are based on available GStreamer plugins. Both streaming pipelines are integrated into a

ROS node to rely on the flexible ROS interface and enable scalability with respect to the multi-view

streaming system. Further implementation details of the TELECARLA streaming pipelines can be

found in Appendix A.2.

3.3 User Study Design

To evaluate the basic functionality of the proposed TELECARLA framework, we compare the TELE-

CARLA streaming pipeline with the original CARLA client-server connection for local and remote

driving in a user study. We use the CARLA scenario runner module [174] to conduct the user study

and to record the performance of all participants. The scenario runner module contains predefined

traffic scenarios that can be executed in the CARLA simulator.

For the user study, we selected a set of six scenario classes. Each scenario covers different turning

and collision-avoidance tasks in urban environments with other traffic participants present. Each

scenario class contains multiple scenarios of the same type to avoid repeating the same scenario,

which could be memorized by the participants. All participants have a regular driving license and

began the experiment with 3 min of local (no delay, no compression) driving in the simulator to

become familiar with the general setup and the vehicle control. After the introduction phase, we

evaluated the three different driving modes listed in Table 3.1.

Local Local driving (no delay and no compression)

Carla Remote driving with CARLA’s remote connection (delay and no compression)

TeleCarla Remote driving with TELECARLA streaming pipeline (delay and compression with a

target bitrate of 2 Mbit/s)

Table 3.1 Driving modes used for the evaluation.

Every participant had to complete a set of six scenarios for each driving mode: Local, Carla, and

TeleCarla. In the Local mode, the participants drive without video compression or transmission delay,

as if driving the car as an in-car driver. In comparison, the remaining two modes evaluate the

remote driving case. The Carla mode uses the regular uncompressed client-server communication

available for CARLA between two separate machines. In the TeleCarla mode, we use the TELECARLA

streaming system to compress and transmit the video data between two physical machines. Each

set of scenarios evaluated for one of the three modes covers the same scenario classes, but different

scenarios. In total, the participants completed 18 test drives, six for each mode.

For the evaluation, we used two Dell Optiplex 9020 with an Intel Core i7-4790 8x3.6 GHz processor,

an NVIDIA 1050Ti Graphics Processing Unit (GPU), and 16 GB DDR3 RAM for the server as well as

24 GB DDR3 RAM for the client. Both systems were running with a 64-bit Ubuntu 18.04.3 LTS, ROS

melodic, and the GStreamer version 1.16.1. The scenarios were evaluated with CARLA version 0.9.6,

using a single front camera with a resolution of 1270×720 pixel at 20 Hz. 20 Hz is the maximum frame

rate that can be achieved by the CARLA ROS bridge.

3.4 Results

In this section, we present the results of our experiments. Table 3.2 summarizes the results for the

average scenario duration, collision rate, transmission rate, and frame rate of the three driving modes

evaluated in the user study.
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Mode Scenario Duration Collision Rate Bitrate Frame Rate

Local 41 s 6 % - 20 Hz

Carla 54 s 36 % 69 Mbit/s 3.6 Hz

TeleCarla 47 s 17 % 2 Mbit/s 20 Hz

Table 3.2 Results for the driving mode evaluation.

The Local driving mode runs at the maximum frame rate of 20 frames per second defined by the

CARLA ROS bridge. With 41 s average scenario duration and a collision rate of 6 %, the Local mode

acts as the baseline for the evaluation. The raw data transmission of CARLA results in an average

bitrate of 69 Mbit/s and an average frame rate of 3.6 frames per second for the Carla mode. Such a

low frame rate leads to a stop-and-go driving behavior of the participants and hence increased the

average scenario duration by 13 s or 32 %. Although driving at reduced speed, the remote driving

is challenging at such low frame rates, which is highlighted by a collision rate increased by a factor

of 6. The TeleCarla mode reaches the target bitrate of 2 Mbit/s such as specified for the encoder.

While the compression of the video stream introduces an additional processing step, the TeleCarla
mode still reaches the available update rate of 20 frames per second. The delay introduced by the

transmission as well as the visual impairments introduced by the compression increased the average

scenario duration by 6 s (15 %). The collision rate for the TeleCarla mode is 17 %, which is only half

the collision rate of the Carla mode. Figure 3.6 shows the average scenario duration and collision rate

individually for every scenario class and driving mode.
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Figure 3.6 Average scenario duration in blue and the average collision rate in orange for each driving scenario

of the evaluated driving modes: Local, Carla, and TeleCarla. The scenario classes used for the evaluation are:

DynamicObjectCrossing (1), FollowLeadingVehicleWithObstacle (2), HeroActorTurningRightAtSignalizedJunction (3),

ManeuverOppositeDirection (4), Stationaryobjectcrossing (5), and TurnLeftAtSignalizedJunction (6). Adopted from

[19] © 2020 IEEE.

Each bar represents the average duration required to complete the respective scenario. The orange

segment within a blue bar represents the average collision rate of all participants for this scenario.

Figure 3.6a shows the Local mode, Figure 3.6b the Carla mode, and Figure 3.6c the TeleCarla mode

using the proposed streaming system.

Notably, most of the collisions for the TeleCarla mode occurred for scenario (4) ManeuverOpposite-
Direction. In this scenario, the ego vehicle lane is occupied by an obstacle that has to be passed on

the opposite lane with continuous oncoming traffic. This requires fast and accurate steering actions,

which was difficult for the mainly untrained participants experiencing transmission delay for the

first time. However, existing works such as [8, 56] mention that safe ToD requires operators who are

specifically trained for such situations.
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3.5 Summary

In this chapter, we presented the teleoperation framework TELECARLA for driving in simulated

environments. The framework proposed in this chapter extends the open source CARLA simulator

with a teleoperation mode. TELECARLA consists of a low delay streaming pipeline providing an

interface for live video stream adaptation as well as a customizable GUI and a low-cost hardware

setup using off-the-shelf components. All modules of TELECARLA are implemented as separate

ROS nodes to maximize modularity and scalability. The modular system design allows to extend any

driving simulator that provides a ROS bridge.

An initial analysis of CARLA’s streaming architecture suggested that the default client-server

connection of the CARLA simulator is not directly applicable for ToD research. This is mainly caused

by the raw data transmission between the CARLA server and its clients, which exists since CARLA

was designed mainly for autonomous driving research where algorithms typically require raw input

data.

We evaluated the proposed system in a user study, comparing it to local driving as well as the

available CARLA client-server connection between two machines. The results demonstrate that the

proposed framework enables the operator to control the vehicle remotely at the same video frame

rate as the frame rate generated by the simulator when driving locally. Further, it significantly

outperforms the available CARLA remote connection. TELECARLA builds the basic framework for

the implementation and evaluation of the following contributions proposed in this thesis.
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Chapter 4

Driver Situation Awareness Assessment

In this chapter, we introduce a method to measure the situation awareness (SA) of a human driver

in realtime. Constantly observing the driver and measuring their SA is an important aspect for both

in-car driving as well as teledriving. In particular during the transition to human control, the vehicle

has to ensure that the driver is sufficiently aware of the current situation [63, 64, 65]. To the best of

our knowledge, no method for explicitly estimating the driver SA exists in the literature. We use the

driver’s gaze as a source of information for assessing their SA such as introduced in Section 2.2.2.

The proposed approach is inspired by methods used in aviation and can be applied for both in-car

drivers as well as remote operators. Additionally, we use a machine learning (ML)-based approach to

predict all relevant elements the driver should perceive in a given scene. Comparing the elements the

driver actually focuses on with the elements the driver should have perceived allows for quantifying

the driver’s SA in realtime.

In the following sections, we first propose a multi-view region of interest (MV-ROI) prediction

concept to predict regions most relevant for driving for multiple camera views such as used in

teleoperated driving (ToD). Then, we present a method to assess the driver SA in realtime, which was

inspired by methods used in aviation. By comparing the driver’s gaze with the region of interest (ROI)

predictions, the driver awareness can be modeled for the current traffic situation.

Some of the concepts and contributions of this chapter have been published in [20, 22]. An

implementation of the system to measure the driver SA presented in this chapter is available as open

source on GitHub
1
. The module extends the basic teledriving framework TELECARLA presented in

Chapter 3. Implementation details are given in Appendix A.

4.1 Multi-View Region-of-Interest Prediction for Autonomous Driving

The ability to predict the attention of human drivers is the basis for a range of autonomous driving

functions. The predicted attention is also an indicator for what a human operator controlling the

vehicle should focus on. State-of-the-art approaches for predicting the driver’s attention use only a

single front-facing camera and rely on automatically generated training data [94, 95, 96]. However,

vehicles used in autonomous driving as well as ToD are typically equipped with multiple cameras

to cover the complete surroundings of the vehicle. Different camera views, such as the rear-facing

views, result in different ROIs compared to the front view. Using a model which is trained on front

view data only is unlikely to achieve the same prediction accuracy for the rear views.

The Berkeley Deep Drive Attention (BDD-A) dataset proposed by Xia et al. [95] is based on a

single front camera. The authors created the labels for the BDD-A dataset by collecting the gaze

data of multiple independent participants watching driving scenes recorded on public roads. The

data collected from all participants is accumulated to obtain the ROI annotations. Then, the authors

designed an ROI prediction network based on an object detector and trained the network on the

BDD-A dataset. In the context of driving, empty space devoid of any objects can also be an ROI.

For instance, the adjacent lane during lane changes or the free space that is usually covered by the

1https://github.com/hofbi/driver-sa

https://github.com/hofbi/driver-sa
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shoulder check can be highly interesting regions regardless of their contents. Those regions will not

be recognized by a typical object-detector-based model. Further, objects such as traffic lights that

are highly relevant for the front-facing camera views should no longer be considered as ROIs in the

rear-facing camera views. We hence argue that ROIs labeled by humans for a dataset that contains

multiple camera views are more complete than the ROIs in a single-view data set. Having dedicated

ROIs for each view allows for more accurate ground-truth data for training ROI prediction models.

Such a dataset addresses both the issues of multi-view camera setups and the detection of free space.

While a manually annotated dataset results in a better ground truth, the labeling process is signif-

icantly more time consuming and expensive compared to automatically generated labels using eye

tracking. To still benefit from high-quality ROI labels, we created a comparably small human-labeled

dataset which contains six camera views. We refer to this dataset as the MV-ROI dataset. Then,

we use the state-of-the-art BDD-A model trained on data for a single front camera as a baseline and

finetune the baseline model using our manually labeled MV-ROI dataset. To further distinguish the

requirements for the different camera views, we train two separate models with special focus on either

front- or rear-view data. Figure 4.1 presents a general overview of the proposed MV-ROI prediction

approach.

(A) (B) (C)

FL

F

FR

RL

R

RR

FL

F

FR

RL

R

RR

FRONT ROI

REAR ROI

Figure 4.1 Overview of the proposed multi-view region of interest (MV-ROI) prediction. A vehicle equipped

with six cameras (A) records the data which are manually labeled (B). Using these data, we train two separate

ROI prediction models (C).

We first record driving video sequences in the CARLA [16] simulator using a vehicle equipped

with six cameras (A). Next, we manually annotate these video sequences with ROI labels for all

camera views (B). To support further manual labeling, we designed a semi-supervised annotation

framework to increase the labeling speed while keeping the high-quality labels created by human

data annotation. Finally, we train two separate ROI prediction models using our annotated video

sequences (C). The MV-ROI dataset as well as the annotation framework are publicly available as

open source on GitHub
2
.

2https://github.com/hofbi/mv-roi

https://github.com/hofbi/mv-roi
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4.1.1 Multi-View Region-of-Interest Dataset

To generate the multi-view region of interest (MV-ROI) dataset, we recorded all data using the CARLA

driving simulator [16] under sunny weather conditions. Initially, we recorded ten driving sequences

covering different traffic situations such as turning at an intersection. Every sequence was recorded

with the six camera setup outlined in Figure 4.1 at a frequency of 10 Hz and a duration of around 10 s.

All images were labeled by hand without any model suggestions to obtain high-quality ground-truth

data. We decided to use circular ROI labels. Each ROI is thus defined by the center and radius of a

circle, which avoids unnecessary complexity of more elaborate shapes.

The ROIs can vary depending on the intended driving maneuver. Since the ROI prediction model

does know in advance which maneuver will be executed, we decided to label all ROIs that could

be relevant in each driving scenario. In driving, it is safer to predict more regions than required

compared to missing one. For instance, at an intersection, we label all areas that would be ROIs for

turning left, going straight, and turning right. Figure 4.2 shows one sample of the MV-ROI dataset

with circular annotations for every camera view.

Figure 4.2 Exemplary sample of the MV-ROI dataset with manually labeled images for six camera views. The

top row consists of the three front views: front left (FL), front (F), and front right (FR). The bottom row shows

the rear facing camera views: rear left (RL), rear (R), and rear right (RR). Adopted from [20] © 2020 IEEE.

To further increase the amount of data and include various weather conditions in the dataset, we

used a special feature of the CARLA simulator which enables us to replay the same state log recorded

in the simulator for different weather conditions. These additional recordings have been labeled with

the proposed semi-supervised annotation framework which will be introduced in Section 4.1.3. The

contents of the MV-ROI dataset are summarized in Table 4.1.

The entire dataset consists of 20 driving sequences recorded at 10 Hz with a duration of around

10 s. Every driving sequence consists of video sequences from six camera views, resulting in a dataset

of more than 17 000 images. Compared to the BDD-A dataset which contains more than 1200 videos

with a total of 3.5 hours of driving, the size of the MV-ROI dataset is rather small, but sufficient for

the finetuning approach discussed next.



Chapter 4 Driver Situation Awareness Assessment

38

Table 4.1 Summary of the multi-view region of interest (MV-ROI) dataset.

Views 6

Sequences 20

Sequence Length ∼10 s

Frame Rate 10 Hz

Images ∼17 000

ROI Annotations ∼32 000

4.1.2 Multi-View Region-of-Interest Prediction

To extend state-of-the-art ROI prediction networks from single view to multi-view scenarios, we

propose to finetune them with our manually labeled MV-ROI dataset introduced in the previous

section. For this, we use the state-of-the-art BDD-A model and finetune it twice for front-facing

and for rear-facing camera views to create two expert models. The BDD-A model predicts ROIs

by generating a pixel-wise heatmap with probability scores, while we are only interested in low-

complexity circular ROIs. We therefore design a postprocessing step to create such low-complexity

labels from the heatmaps predicted by the finetuned BDD-A models.

4.1.2.1 Model Design

We use the BDD-A model [95], referred to as BDD-A from here on, as the baseline ROI prediction

model. The authors generated the ROI ground-truth labels for training BDD-A automatically, using

a combination of object detection and human gaze detection, which they averaged over multiple

human viewers. Then, they trained a long short-term memory (LSTM) model to predict new ROIs.

The training sequences are weighted towards more important scenarios such as turning to include

a special focus on situations that are more complex and thus more relevant for driving. While the

resulting BDD-A model allows for robust ROI predictions, it was only trained for a single front-facing

camera. Here, we extend BDD-A to multi-view ROI prediction.

The basic prediction task for a single view and multiple views is similar, with only a few ROIs being

specific to individual views. The rear views, for instance, do not contain ROIs for traffic lights since

they are not relevant anymore. We therefore finetune the BDD-A model using our manually labeled

MV-ROI dataset introduced in Section 4.1.1. For this, we continue training the pretrained BDD-A
model until convergence as suggested in [95].

From the ten manually labeled sequences that were initially labeled for the MV-ROI dataset, nine

are used for finetuning and one is used for testing. We refer to the model obtained from finetuning

BDD-A with all training images from all perspectives as ROI-single. While ROI-single is finetuned

with accurate ground-truth data, it does not specifically consider the different structures of ROIs in

front- and rear-facing camera views. We therefore finetune ROI-single a second time, once using only

front-facing images and once using only rear-facing images. The resulting two models are referred

to as ROI-multi-2 since they were finetuned twice. As an alternative approach to include a special

focus on the different camera views while avoiding two training steps, we finetune only once with all

data, but with different weightings. The front-facing model is shown each front-facing image twice

as often as the rear-facing images during training. The rear-facing model is trained accordingly for

the rear-facing images. We refer to the resulting two models as ROI-multi-1, since they were fintuned

only once. Preliminary results showed that training more models such as an expert model for each

of the six camera views does not further improve the performance. This can be explained by the high

similarity of the three camera views facing in the same direction.



4.1 Multi-View Region-of-Interest Prediction for Autonomous Driving

39

4.1.2.2 Postprocessing Label Generation

The BDD-A model as well as our finetuned models generate pixel-wise heatmaps with values ranging

from 0 to 1, where 1 indicates the highest probability of an ROI. In our context, we are only interested

in low-complexity circular ROIs which were used as labels in the MV-ROI dataset. Hence, we design a

postprocessing step to convert the resulting heatmaps into low-complexity circular labels. Figure 4.3

shows the four processing steps to generate the circular labels.

(a) RGB View (b) ROI Heatmap

(c) Connected Components (d) Filtered ROI Circles

Figure 4.3 Pseudo label generation workflow. Adopted from [20] © 2020 IEEE.

Figure 4.3a shows a single RGB image, captured from the front-left camera. The image is fed into

one of the finetuned models to predict an ROI heatmap such as shown in Figure 4.3b. Then, the

resulting predictions are binarized to either 1 or 0 based on an empirically determined threshold. The

binarized heatmap is used to calculate binary connected components, visualized in Figure 4.3c. Next,

the connected components are filtered to remove small areas. Finally, the remaining components are

encircled to create the final low-complexity labels shown in Figure 4.3d.

4.1.3 Semi-Supervised Data Annotation

To finetune the BDD-A model as discussed in the previous section, we used ten driving video

sequences of the MV-ROI dataset that have been manually labeled. However, large-scale labeling by

hand is undesirable, since it is slow and expensive. Instead, semi-supervised labeling can be used,

a strategy also employed in other large-scale data sets such as BDD100k [175]. The idea is to use
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automatic recommendations from a model and finetune the model proposals by hand. To increase

the size of the MV-ROI dataset and benefit from the already finetuned models, we propose a semi-

supervised label generation pipeline designed for ROIs in multiple camera views. Figure 4.4 shows

the entire end-to-end workflow of the labeling pipeline and data generation process.

RGB

Images

ROI Prediction

& Pseudo Label

Image Stacking

Human Op-

timization Image Splitting Database

Finetuning

Figure 4.4 Semi-supervised data generation pipeline. Adopted from [20] © 2020 IEEE.

Unlabeled RGB images are fed into the pipeline and processed by the desired ROI prediction model

for either front or rear view. The heatmap predicted by the model is converted into the circular

labels as explained in Section 4.1.2.2. These circular labels are used as recommendations for the

human inspector. The labels can be inspected and modified using the open source labeling tool

labelme [176]. Since every sample of the dataset consists of six camera images, multiple views of the

same scene have to be inspected. The sequential inspection of multiple views is slow and it might

be difficult for humans to understand the context of the current driving situation from a single view.

Hence, we suggest to combine all camera views of the same scene into a single frame as shown in the

Image Stacking block to help the human inspector better understand the driving scene. After human

inspection and correction, the image and the corresponding labels are split back into the separate

camera views and stored. The new labeled data can be directly reused for further finetuning and

improving the suggestions of the ROI prediction model.

Using this workflow, we extended the MV-ROI dataset for the initial ten driving sequences to the

values listed in Table 4.1. The workflow can also be transferred to real world data, allowing to easily

create data and finetune a custom ROI prediction model.

4.1.4 Results

In this section, we evaluate the different finetuning strategies and present the results. We compare

the three ROI prediction models finetuned with nine driving sequences of the MV-ROI as explained

in Section 4.1.2.1 with the BDD-A model as a baseline. For the baseline, we used the pretrained model

of [95] without further modifications. Table 4.2 shows a summary of the models evaluated and the

training procedures.

Table 4.2 Naming and training overview for the models evaluated.

Model Training Process

BDD-A Unchanged BDD-A model from [95]

ROI-single BDD-A finetuned with manually labeled data

ROI-multi-2 ROI-single finetuned again with manually labeled data front or rear view

ROI-multi-1 BDD-A finetuned with manually labeled data and doubled weight on front or rear view

ROI-single is the baseline model finetuned once with all training images. To allow the ROI prediction

to specialize on different view perspectives, we also implemented two approaches which use a model

trained separately for either front or rear view. First, we finetuned the ROI-single a second time with
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either front- or rear-view data, named ROI-multi-2. Finetuning the baseline model in a single step

with doubled weight on either front or rear view is referred to as ROI-multi-1.

From the ten sequences of the initial dataset, we selected one sequence at random and reserved it

for testing. This test sequence is used to create ROI predictions of all four models listed in Table 4.2.

The mean absolute error (MAE) calculated from the models’ predictions and the ground-truth labels

for every camera view and model are shown in Figure 4.5.
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(b) Rear view evaluation

Figure 4.5 MAE evaluation results of the baseline BDD-A model and the proposed finetuned ROI prediction

models. Adopted from [20] © 2020 IEEE.

The baseline model, which was only trained for front view data, already performs well for the front

view testing data. The results highlight that the BDD-A model can barely be improved with finetuning

using the relatively small finetuning data set. However, the remaining camera perspectives show an

MAE reduced by 4.9 % after finetuning. Using two separate models for front and rear view further

reduces the error compared to using a single model for all views. This is especially significant for

the rear views, which show improvements by 1.2 % compared to the ROI-single model. These results

suggests that there is a remarkable difference between front and rear view data. Traffic lights, for

instance, are interesting regions for the front view, but not in the rear view. For the front views, the

model of ROI-multi-2 shows no further improvements compared to ROI-single. This can be explained

by the overfitting introduced by further finetuning since the front-left and front-right view are closely

related to the straight front view. Finetuning the baseline model in a single step such as for ROI-multi-1
shows improvements of 11 % compared to ROI-single. However, for the rear-view data, ROI-multi-1
performs worse than the two step finetuning approach ROI-multi-2. A possible explanation could be

that a single finetuning step is not enough to let the model learn to distinguish between front and rear

ROIs, which results in a overall error rate slightly higher than ROI-multi-2.

Besides the MAE, we evaluate the intersection over union (IoU) as an alternative metric to validate

the results. Figure 4.6 shows the IoU calculated for every camera and model.

The results confirm the observations made for Figure 4.5, with only slight differences compared to

the MAE. The ROI-multi-1 shows the highest IoU for the front views, while the ROI-multi-2 again

reaches the best results for the review views. For the rear right view, the IoU is zero for all models,

since the ROIs of the scenario used for testing are small and only appear for a short time. Hence,

there is no intersection between the ROIs predicted and the ground truth. Nevertheless, the MAE

calculated in Figure 4.5 still allows for comparing the performance of the individual models for the

rear right view.
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Figure 4.6 IoU evaluation results of the baseline BDD-A model and the proposed finetuned ROI prediction

models.

Table 4.3 Mean absolute error (MAE) and intersection over union (IoU) averaged over all six camera views for

each evaluated model.

BDD-A ROI-single ROI-multi-2 ROI-multi-1

MAE 16.3496 12.7229 11.5520 11.4614

IoU 0.0783 0.1383 0.1533 0.1483

Finally, the average MAE and IoU of all six camera views for every model are summarized in

Table 4.3. The results suggest that in general, two separate models for front and rear view outperform

a single one-fits-all model. The IoU values show the same general effect as the MAE. A single

finetuning step improves the model, but using two separate models performs best. In conclusion,

we thus recommend to include multi-view data into the training process and train two separate ROI

prediction models for the front and rear view.

4.2 Real-Time Driver Monitoring And Situation Awareness Assessment

After having presented a method to predict the interesting regions the driver should focus on, we next

propose a method that uses these predictions together with the actual gaze information of the driver

to estimate the driver’s SA. First, we introduce a concept for assessing the driver’s SA in realtime,

which is inspired by methods used in aviation. Then, we discuss the challenges when transferring

an SA model designed for aviation into the driving context and propose an SA method for driving.

Finally, we present a framework that uses the proposed system to assess the driver SA in realtime,

which is used for evaluating the proposed approach in a user study.

4.2.1 Concept

To motivate the proposed concept, we first summarize how the topic of SA has been approached in

the literature. Several studies have shown that higher levels of automation lead to a reduced driver

attention [63, 64, 65]. A human driver who was previously not in control of the vehicle may need

up to 40 seconds to obtain full control of the vehicle when asked to take over control [4]. Constantly
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monitoring the driver is required for determining the driver’s ability for a successful takeover and

can be an additional safety feature by proactively guiding the humans’ attention to important, yet

overlooked areas [102].

Existing approaches assess head pose estimation as well as the driver’s gaze as good indicators

of driver attention [98, 99, 102]. However, head-pose-based systems are just a rough estimation of

the driver attention and cannot distinguish between the perception of relevant and irrelevant objects

or events inside the driver’s field of view (FoV). The eye tracking-based system proposed in [102]

only offers an acoustic warning in case the driver misses an object. Active driver observation and the

assessment of their SA is still an open challenge due to the high variability of the input data [97].

Hooey et al. [103] proposed a concrete method to measure the SA of a pilot. The authors model

the pilot’s SA score as a ratio of the actual situation elements (SEs) the pilot has perceived and the

optimal SEs the pilot should have perceived. This approach has been validated by Shuang et al. [104].

The authors compared the estimations of the pilot SA model with the two subjective measurement

techniques SAGAT [68] and SART [76]. We transfer this idea of modeling the SA as the ratio of actual

and optimal SEs from an aviation environment into the driving context to measure the SA of a human

driver in realtime. Figure 4.7 visualizes the general concept of the proposed driver SA model.

Actual SA

Optimal SA

Awareness

Model

Gaze

ROI

SA

Figure 4.7 Concept of the proposed driver SA model. Region of interest (ROI) prediction defines the optimal

awareness which is compared to the actual SA of the driver captured by an eye-tracking device.

We use the MV-ROI prediction introduced in Section 4.1 to estimate all SEs the driver should have

perceived. Then, we use eye tracking to measure the actual SA of the human driver. Comparing the

actual SA with the optimal SA allows to estimate the awareness of the driver based on the current

traffic situation. The proposed metric can be used, for instance, to measure the takeover ability of a

driver in a system-to-human transition or to constantly monitor the driver, both in-car and remote.

Next, we introduce the pilot SA model presented in [103] in detail. Finally, we discuss the challenges

of transferring this approach to the driving context and propose solutions.

4.2.2 Driver-Awareness Model Design

While the SA model proposed in this thesis is inspired by the model of [103], there are several chal-

lenges to solve when transferring the model from aviation to driving. To elaborate these challenges,

we first discuss the SA modeling approach introduced in [103]. Then, we transfer the SA model to

the driving context and propose our solutions for the challenges introduced by the new domain.
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4.2.2.1 Situation Awareness in Aviation

SA assessment has long been a relevant topic in the field of aviation. While the task of aviation is

inherently different to driving, results from this field can be used as inspiration for SA measurement

in driving. Hooey et al. [103] define the SA score of a pilot at a time 𝑡𝑖 as the ratio of actual SA and

optimal SA:

𝑆𝐴𝑟𝑎𝑡𝑖𝑜(𝑡𝑖) =
𝑆𝐴𝑎𝑐𝑡𝑢𝑎𝑙(𝑡𝑖)
𝑆𝐴𝑜𝑝𝑡𝑖𝑚𝑎𝑙(𝑡𝑖)

. (4.1)

The optimal SA defines the awareness as the situation where the operator perceives and compre-

hends all SEs. The authors define the optimal SA at a time 𝑡𝑖 as the weighted sum of required and

desired SEs:

𝑆𝐴𝑜𝑝𝑡𝑖𝑚𝑎𝑙(𝑡𝑖) =
𝑚∑
𝑟=1

2 · 𝑆𝐸𝑜𝑝𝑡,𝑟 +
𝑛∑

𝑑=1

𝑆𝐸𝑜𝑝𝑡,𝑑 . (4.2)

In the context of aviation, such SEs are mainly cockpit instruments visualizing state information

of the airplane. Usually, there are no SEs outside of the cockpit that can appear or disappear. This

means all optimal SEs required for this approach have static positions and are known in advance.

The actual SA describes all SEs in the current situation that are actually perceived and compre-

hended by the pilot. This current awareness status of the operator is defined as the weighted sum of

required and desired SEs, multiplied by their perception level:

𝑆𝐴𝑎𝑐𝑡𝑢𝑎𝑙(𝑡𝑖) =
𝑚∑
𝑟=1

2 · 𝑆𝐸𝑎𝑐𝑡,𝑟 +
𝑛∑

𝑑=1

𝑆𝐸𝑎𝑐𝑡,𝑑 =

𝑚∑
𝑟=1

2 · 𝑝𝑖𝑟𝑡 +
𝑛∑

𝑑=1

𝑝𝑖𝑑𝑡 . (4.3)

The probability scores 𝑝𝑖𝑑𝑡 and 𝑝𝑖𝑟𝑡 describe the perception level of a desired SE or required SE,

respectively. Both scores can be either 0 for an undetected SE, 0.5 for a detected SE, or 1 for a comprehended
SE. The scores are assigned based on the pilot’s gaze, which is measured with an eye-tracking device.

Transferring this approach from the aviation context into the driving context introduces several

problems. In the aviation context, the SEs are inside the aircraft, static, and known in advance. The

SEs in driving are outside of the vehicle and can be moving elements. They can appear and disappear

and are not known in advance. Actual SEs can be detected with an eye-tracking device as suggested

in [103]. Different to the static SE regions looked at by the pilot, the detected and comprehended

regions outside of the vehicle need to be tracked to compensate their movement and ensure a correct

mapping of their perception level. Furthermore, driving is a highly dynamic tasks with higher update

rates compared to the aviation model. In [103], the authors also report a duration of 300 s until an SE

drops into a fully undetected state. Since the environment in driving changes much more frequently,

these durations need to be lower. Hence, driver distraction is another critical part which should be

considered. We discuss how to address these challenges next.

4.2.2.2 Awareness in Driving

To cope with the issues caused by changing to a new domain, we propose the following solution. We

use an ML-based approach to predict the frequently changing, optimal SEs. This can be achieved by

using an ROI prediction network such as in [95] or [96]. Since teledriving usually requires multiple

camera view, we use the MV-ROI prediction approach introduced in Section 4.1.

Measuring the SEs perceived by the driver can be done by evaluating the driver’s gaze, similar

to the aviation scenario. Additionally, the ROIs inspected by the driver need to be tracked over

time to assign and update the correct perception level. Similar to [103], we assign every SE one of the

following three perception levels using the same probability scores such as introduced in the previous

section: 0 for undetected, 0.5 for detected, or 1 for comprehended. Figure 4.8 shows the general process

and update policy for all different states of a single SE.
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Figure 4.8 Workflow of the proposed driver SA model from the appearance to the comprehension of an SE.

Adopted from [22] © 2020 IEEE.

An SE can either appear or enter the FoV. Then, the SE is recognized by the ROI prediction network

and classified as undetected. As soon as the first gaze point falls into the ROI, this SE is classified as

detected. The detected SE is classified as comprehended if there are more than 𝑛𝑔 gaze samples within a

certain comprehension time 𝑡𝑐 within the ROI. A comprehended SE keeps its status comprehended for a

comprehension alive time 𝑡𝑎𝑐 , which is refreshed every time a new gaze point hits the respective SE.

If the SE is unseen until the alive time 𝑡𝑎𝑐 expires, the status of the SE changes from comprehended to

detected. A detected SE has a detection alive time 𝑡𝑎𝑑, which is refreshed as well if new gazes hit the

SE region. Similarly, if the alive time 𝑡𝑎𝑑 expires, the SE falls back into the status undetected. If the SE

leaves the FoV, the SE is removed from the measurement regardless of its state.

Since driving is a highly dynamic task within a frequently changing environment, both the com-

prehension alive time 𝑡𝑎𝑐 as well as the detection alive time 𝑡𝑎𝑑 have to be much lower than in the

aviation context. In driving, even a short distraction can be a severe safety issue. This is a novel

problem compared to the aviation context, where all SEs are inside the cockpit and have a maximum

update time of 300 s [103]. To this end, we address distraction of the driver by introducing a penalty

system. We define distraction as the accumulation of gaze points in an area not predicted as an ROI.

We detect these accumulations by clustering all non-ROI gaze points using the density-based spatial

clustering of applications with noise (DBSCAN) algorithm [177] with a maximum point distance 𝑑𝑚𝑎𝑥

and a minimum number of gaze samples 𝑛𝑚𝑖𝑛 . A minimum number of gaze samples required for

clustering avoids punishments from single or few non-ROI gaze points. These points usually occur

when the driver’s gaze moves from one ROI to another caused by the sampling frequency of the

eye-tracking device. To represent distraction in the SA model, we extend the calculation of the actual

SA in Equation 4.3 with a punishment factor 𝛾:

𝑆𝐴𝑎𝑐𝑡𝑢𝑎𝑙(𝑡𝑖) =
𝑚∑
𝑟=1

2 · 𝑝𝑖𝑟𝑡 +
𝑛∑

𝑑=1

𝑝𝑖𝑑𝑡 − 𝑜 · 𝛾, (4.4)
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with 𝑜 as the number of non-ROI gaze clusters. Considering all these modifications, the SA score

of the driver can be calculated from Equation 4.1, 4.2, and 4.4.

4.2.3 System Design

In this section, we propose a system design implementing the driver SA model introduced in the

previous section. We implement the system proposed for driver awareness measurement using the

Robot Operating System (ROS). This allows for a versatile usage in both vehicles and simulations

as well as a seamless integration in the TELECARLA framework proposed in Chapter 3. Figure 4.9

highlights the architecture of the proposed system.

ROS

Eye Tracker Gaze Detection

ROI Predictor

Awareness

Model

Signal

Image

Gaze

ROI

SA

Figure 4.9 Architecture of the proposed driver SA approach. ROI prediction defines the optimal awareness

which is compared to the driver’s actual awareness captured by the eye tracking device.

An eye-tracking device captures the gaze information of the operator. The gaze information is

processed and forwarded to the driver SA module. From the vehicle or simulation, the RGB images

are used as input for the ROI prediction module. The ROI data define the optimal SA using the MV-ROI

model introduced in Section 4.1. The frame rate of the RGB images defines the sampling frequency

of the SA model. Since existing eye-tracking devices usually work at much higher frequencies, the

gaze data are buffered until a new frame arrives.

On every new ROI sample, the SEs are tracked by comparing their Euclidean distance to the SE

positions of the previous frame. With a distance value below a certain threshold, an SE is considered

as known from the previous frame and the perception level of the SE in the previous frame is used.

If the distance closest to an SE in the previous frame exceeds the threshold, the SE is considered as

unknown and a new SE with the status undetected is created. After tracking and updating the optimal

SEs, the buffered gaze data are evaluated using the currently existing SEs according to the process in

Figure 4.8. All gaze points within an SE contribute to its perception level. Gaze points that do not

fall into an SE are considered as distraction gaze samples. All distraction gaze points are clustered

using the DBSCAN algorithm with a maximum point distance 𝑑𝑚𝑎𝑥 and a minimum number of gaze

samples 𝑛𝑚𝑖𝑛 . The resulting number of clusters 𝑜 multiplied with the punishment factor 𝛾 contributes

to the distraction punishment as introduced in Equation 4.4. Figure 4.10 shows an exemplary driving

scene recorded in the CARLA simulator with all types of SEs as well as a distraction gaze cluster.

The green circle shows a vehicle in front of the ego vehicle which is already comprehended by the

operator. A certain number of gaze points within a short time fell onto this SE. The cyclist on the

right marked with the yellow circle is detected, meaning only a few gaze points fell into this region.

The traffic light highlighted with the red circle is so far undetected, indicating that the operator never

looked at this traffic light. Finally, the blue dots on the advertisement representing the driver’s gaze

points cause a distraction punishment, since the advertisement is not relevant for driving.

When all three elements are required SEs, the final SA score in this situation would be less than

0.5. The current states for the SEs result in exactly 0.5, which are then reduced by the distraction
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Figure 4.10 Visualization of the circular ROIs representing the optimal SEs and their perception level. The

undetected SE is visualized in red, the detected SE in yellow, and the comprehended SE in green. The accumu-

lation of gaze points in blue on a non-ROI area will be considered by the distraction penalty. Adopted from

[22] © 2020 IEEE.

punishment depending on the punishment factor 𝛾. Further implementation details of the system

can be found in Appendix A.4. Next, we evaluate the proposed approach using this system in a user

study.

4.2.4 Results

In this section, we design a user study to evaluate the proposed driver SA model and present

the results. We first present the experimental setup and modalities of the user study. Then, we

systematically analyze one exemplary scenario selected from the user study. Finally, we present the

overall results for all scenarios evaluated.

4.2.4.1 Experimental Setup

We use the hardware setup of the proposed TELECARLA framework extended with the system

designed in Section 4.2.3. Implementation details of the driver SA system integrated in the TELE-

CARLA architecture can be found in Appendix A.4. We measure the driver’s gaze using the Pupil
Core wearable eye-tracking device [178].

In total, eight users participated in the user study. First, the eye-tracking device is calibrated for the

respective participant. Then, we explain the general setup and tasks. Since all participants should see

exactly the same driving scenarios to get reproducible results and to avoid biasing influences due to

difficulties in controlling a vehicle in the simulation environment, we used scenario recordings rather
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than active driving in the simulation. Monitoring the driving scene without active driving is also a

typical scenario for in-car drivers as well as remote operators.

We showed all participants recordings of eight unique driving scenarios selected from the MV-ROI

dataset introduced in Section 4.1.1. The ROI labels available in the dataset define the optimal SA.

This guarantees exactly the same optimal SEs for all participants. Then, every participant monitored

each scenario from the perspective of a single front view camera. On average, the driving scenarios

have a duration of about ten seconds and cover a range of relevant driving situations.

In aviation, the optimal SEs such as the altitude meter or other cockpit instruments are static and well

known in advance. This allows for a precise definition of questionnaires and comparison of the given

answers. Driving as a highly dynamic task is more difficult to be evaluated with precise questions

suitable for a questionnaire. Since the concept to measure a pilot’s SA was already evaluated in [104],

we do not compare the SA measurements of the user study with additional questionnaire-based SA

assessment methods. Next, we first visualize and discuss the SA measured for all participants and a

single scenario selected from the user study. Then, we compare the overall SA scores for all scenarios

to validate the ROIs as a proper definition of the optimal SEs.

4.2.4.2 Single Scenario Analysis

First, we analyze the SA measured for the single scenario turn right with three vehicles. In this scenario,

the ego vehicle approaches an intersection with three vehicles in front. After the traffic light switches

to green, one leading vehicle as well as the ego vehicle turn right into another street. Since the

scenario was selected from the MV-ROI dataset, the optimal SA is already defined by the ROI labels.

The actual SA as well as the final SA score are measured and estimated using the eye-tracking based

system presented in Section 4.2.3. Figure 4.11 visualizes the actual SA and optimal SA in Figure 4.11a

as well as the overall SA score in Figure 4.11b averaged for all participants.
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(a) Actual SA and optimal SA. Adopted from

[22] © 2020 IEEE.
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Figure 4.11 Average SA for the selected driving scenario turn right with three vehicles. The actual SA follows the

optimal SA shifted by a small delay of about 1 s. The overall SA score is the ratio of actual SA and optimal SA.

Within the first four seconds, two leading vehicles are visible. The optimal SA frequently changes

in the first second as well as the fourth second, since there are occlusions between the vehicles in

front when approaching the intersection. Most users comprehend both required SEs after at most

two seconds. As soon as the ego vehicle reaches the intersection, the third vehicle becomes visible,

resulting in the maximum optimal SA. With a small delay, the participants start perceiving the

additional SE, which is visible until the vehicle turns right into the new street. Caused by the turn,
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both optimal SA and actual SA suddenly drop, since there is only one SE in the new street after

the turning maneuver. The actual SA drops even further as the driver first has to adapt to the new

traffic situation. After the turning maneuver, the participants require about one second to detect and

comprehend the single leading vehicle. As a result, the actual SA reaches the optimal SA score.

The shaded yellow area represents the standard deviation 𝜎 of the actual SA and the SA score.

Since the optimal SA is based on ground-truth labels available in the MV-ROI dataset, 𝜎 is zero

for all scenarios. In more complex or fast changing situations such as the turning maneuver at the

intersection, the variance is higher due to the maximum number of vehicles visible in the scene and

the individual drivers adapting differently to the new situation. At the end of the scenario, the

variance is consistently small due to the lower complexity of a single leading vehicle. Figure 4.12

presents the SA score of the individual participants.
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Figure 4.12 Actual SA and optimal SA of the individual participants for the selected driving scenario turn right
with three vehicles.

When approaching the intersection, only two of the eight participants (1 and 4) detect both, but

comprehend only one of the two vehicles visible in the scene. After the turning maneuver, only one

participant (8) detects, but does not comprehend the single leading vehicle. Close to the intersection,

three participants (2, 5, and 8) miss the third vehicle completely. The results of the user study demon-

strate that users typically require around a second until a new SE is detected and comprehended. The

SA measured by the proposed system is consistent with the changes in the environment and allows

to assess the reaction speed and awareness of each individual user, demonstrating its potential for

driver monitoring. Next, we present the results for all scenarios evaluated in the user study.

4.2.4.3 Overall Scenario Analysis

Eight scenarios including the turn right with three vehicles discussed in the previous section have been

evaluated in the user study. The SA scores measured for all participants and driving scenarios are

summarized in Table 4.4, ordered by their optimal SA.

Independently from the number of optimal SEs, the average SA score of all scenarios is almost

identical. This suggests that the drivers were able to eventually fully comprehend all traffic situations,

but need some time to react to sudden changes. As the definition of the optimal SA is not trivial in

the context of driving, we analyzed the variance of the SA measurements. A small variance score

suggests that all participants follow a similar behavior and try to focus on similar areas. We conclude

that this supports our assumption that ROI prediction is a proper definition of the optimal SA.
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Table 4.4 Average SA measurements and standard deviation for all evaluated scenarios.

Scenario 𝑆𝐴𝑜𝑝𝑡 𝑆𝐴𝑎𝑐𝑡 𝑆𝐴𝑟𝑎𝑡𝑖𝑜 (±𝜎)

Turn right, uphill 2.77 1.78 0.60 ±(0.30)

Turn right, three vehicles in front 3.63 2.21 0.66 ±(0.16)

Turn left, downhills 3.79 2.00 0.59 ±(0.26)

Straight, stop at intersection 4.16 2.07 0.52 ±(0.31)

Turn left, three vehicles in front 5.08 2.42 0.48 ±(0.23)

Straight, one vehicle in front 6.28 3.54 0.63 ±(0.14)

Straight, pedestrians passing by 9.81 4.50 0.51 ±(0.11)

Stopped, vehicles passing by 10.02 4.82 0.55 ±(0.17)

4.3 Summary

In this chapter, we introduced a novel metric to measure the SA of the driver both online and in

realtime. For this, we used the driver’s gaze as a source of information for assessing their SA as well

as regions relevant for driving that are visible in the scene.

We first presented an approach to extend existing ROI prediction networks from single view to

multiple views. A state-of-the-art ROI prediction network trained with a single front view camera

is finetuned multiple times to create two expert networks specialized on either front views or rear

views. For finetuning the model, we created the multi-view dataset MV-ROI, which is manually

labeled with low-complexity ROI annotations. The ROIs can be used to define all relevant elements

the driver should have perceived in the scene.

Next, we developed a system to measure the SA for both in-car drivers as well as remote operators.

We defined the SA score as a ratio of actual SA and optimal SA inspired by related work in the field

of aviation. The actual SA and optimal SA are defined as a weighted sum of SEs. We use eye tracking

to measure the driver’s actual SA. Then, the SA score is estimated in realtime by comparing the

elements the driver actually focuses on with the elements the driver should have perceived. Unlike

the aviation case with a static and pre-defined optimal SA, we determined all frequently changing

optimal SEs using ROI prediction. Further, the driver SA model considers distraction caused by gazes

on elements that are irrelevant for driving by using a distraction penalty system.

Evaluating the proposed concept in a user study for different traffic scenarios demonstrated an

intuitive human behavior. The actual SA follows the optimal SA with a small delay and drops after

maneuvers that change the scene. After a short time, the driver adapts to the new traffic situation

and again reaches a higher level of SA. The results of all scenarios suggest that this behavior is

independent of the number of SEs and that the definition of the optimal SEs based on ROIs was an

appropriate decision.
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Chapter 5

Traffic-Aware Multi-View Video Stream Adaptation

The TELECARLA framework presented in Chapter 3 enables teleoperated driving (ToD) in simulation,

with the possibility to dynamically adapt multiple video streams. The driver situation awareness (SA)

model introduced in Chapter 4 allows for measuring the awareness of the driver in realtime for the

current traffic situation. Given the multiple camera views available in commercial vehicles and the

limited transmission capacity of mobile networks, these multiple camera views have to be transmitted

over the single network channel. While all video streams together have to match the currently available

transmission rate, individual streams can be encoded differently based on their importance for the

current traffic situation. The goal of an individual stream adaptation is to optimize the visual quality

of the video streams as well as the SA of the operator.

In this chapter, we propose a traffic-aware multi-view adaptation (TAMVA) scheme that controls the

individual video streams based on the current traffic situation. We first introduce the general concept

of the TAMVA scheme and present an approach to estimate the importance of each camera view

using the vehicle’s state information. Then, we use a multi-dimensional adaptation (MDA) streaming

module to select the optimal combination of temporal resolution (frame rate), spatial resolution (frame

size), and target rate/quality for each camera view to control the encoder for the respective video

stream. Additionally, we propose a dynamic region of interest (ROI) masking approach to improve

the video quality of individual camera views by filtering less important regions in the respective

camera view. Due to this filtering, the encoder is able to spend more bits for the important regions

which results in a higher video quality of the important regions.

The TAMVA scheme presented in this chapter has been published in [23]. The code is available

as open source on GitHub
1

and integrated in the basic teledriving framework TELECARLA, which

has been presented in Chapter 3. Implementation details of the respective TELECARLA module are

given in Appendix A.

5.1 Concept

The current traffic situation determines which parts of the driving scene and hence which camera

views are most relevant for the operator. To use the available transmission rate in the best way and

to support the operator in understanding the remote environment, the camera views most relevant

for the current driving situation should be transmitted with a higher quality than less important

camera views. In particular in situations where the available network transmission rate is low, a

prioritization of important camera views can still provide the operator with a sufficient quality for

the most important camera views to control the vehicle safely in traffic [18, 17].

Existing approaches in the field of ToD mainly focus on the adaptation of a single camera view [62]

or try to achieve an equally distributed quality for all camera views [116]. To adapt the video streams

of multiple camera views individually based on their importance for the current traffic situation, we

propose a traffic-aware multi-view adaptation (TAMVA) scheme. Figure 5.1 shows a general overview

of the proposed TAMVA scheme.

1https://github.com/hofbi/tamva

https://github.com/hofbi/tamva
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Figure 5.1 Overview of the proposed traffic-aware multi-view adaptation (TAMVA) scheme. First, the view

priority 𝑉𝑃1 , . . . , 𝑉𝑃𝑁 and the resulting bit budget 𝑅1 , . . . , 𝑅𝑁 for each camera view 𝐶1 , . . . , 𝐶𝑁 are estimated

based on the total available transmission rate 𝑅𝑡𝑜𝑡𝑎𝑙 and the vehicle’s status information 𝑆. Then, the optimal

parameters 𝑅𝑖 , 𝑇𝑅𝑖 , 𝑆𝑅𝑖 , with 𝑖 ∈ {1, . . . , 𝑁} are estimated to control the rate/quality and the spatio-temporal

resolution of the video stream.

We estimate the view priority 𝑉𝑃𝑖 of each camera view 𝐶𝑖 using the orientation of the respective

camera 𝛾𝑖 as well as the vehicle’s state information 𝑆. The state information 𝑆 includes the steering

angle 𝛼, the velocity 𝑣, and the gear position of the vehicle. Considering the total available transmis-

sion rate 𝑅𝑡𝑜𝑡𝑎𝑙 and the priority of the individual camera view 𝑉𝑃𝑖 , we assign each camera view 𝐶𝑖 a

certain bit budget 𝑅𝑖 . Then, an MDA streaming module selects the optimal combination of temporal

resolution𝑇𝑅𝑖 (frame rate), spatial resolution 𝑆𝑅𝑖 (frame size), and target rate 𝑅𝑖 for each camera view

𝐶𝑖 to control the encoder of the respective video stream. Lastly, we use the adaptation interface of the

TELECARLA framework introduced in Chapter 3 for the dynamic rate control and stream adaptation

of the individual video streams. Next, we present traffic-aware view prioritization in detail.

5.2 Traffic-Aware View Prioritization

The importance of individual camera views for the operator depends directly on the current driving

situation. Given is a vehicle equipped with 𝑁 cameras. The traffic-aware view prioritization system

proposed in this thesis estimates the relative view priority 𝑉𝑃𝑖 in percent for each camera view 𝐶𝑖 ,

with 𝑖 ∈ 1, . . . , 𝑁 . Then, the bit budget 𝑅𝑖 available for each camera view 𝐶𝑖 is defined based on the

total available transmission rate 𝑅𝑡𝑜𝑡𝑎𝑙 :

𝑅𝑖 = 𝑉𝑃𝑖 · 𝑅𝑡𝑜𝑡𝑎𝑙 . (5.1)

The total available transmission rate 𝑅𝑡𝑜𝑡𝑎𝑙 can be estimated by approaches such as [179]. The bit

budget 𝑅𝑖 estimated for each camera view 𝐶𝑖 specifies the target bitrate for the adaptive streaming

module, as outlined in Figure 5.1.

The view priority 𝑉𝑃𝑖 is estimated based on the relative orientation 𝛾𝑖 of the respective camera

𝐶𝑖 and the vehicle’s state information 𝑆. The state information 𝑆 of the vehicle includes the steering
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angle 𝛼, the velocity 𝑣, and the gear position of the vehicle. Figure 5.2 shows a vehicle setup with

𝑁 = 6 camera views and camera yaw angles 𝛾𝑖 .
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Figure 5.2 Definition of the camera yaw angles 𝛾𝑖 for a camera setup with 𝑁 = 6 cameras. Adopted from

[23] © 2022 IEEE.

We define 𝛾𝑖 as the yaw angle of a camera view 𝐶𝑖 relative to the vehicle’s steering angle 𝛼. Then,

we assign every camera view 𝐶𝑖 a specific view priority score 𝑉𝑃𝑖 based on 𝛾𝑖 , for 𝛾 ∈ (−𝜋,𝜋]:

𝑉𝑃𝑖 =


4 + max(0, 𝑐 · 𝑣) for |𝛾𝑖 | < 𝜋

4

2 for |𝛾𝑖 | < 𝜋
2

1 else,

(5.2)

with the speed constant 𝑐 = 0.1 s/m and the velocity 𝑣. Finally, we normalize all view priorities

𝑉𝑃𝑖 by the sum of all view priority scores

∑𝑁
𝑖=1

𝑉𝑃𝑖 .

The definition in Equation 5.2 results in a higher visual quality for camera views pointing towards

the current trajectory of the vehicle. Since the driver focuses more towards the vanishing point for

higher speeds, we additionally weight camera views pointing towards the current driving direction

with a velocity-dependent offset 𝑐 ·𝑣 compared to the other camera views [52]. To restrict the velocity-

dependent offset to forward driving only, we set this offset to zero for negative velocities. For reverse

driving, the average driving speeds are usually slower compared to forward driving and a video

quality distributed for a broader field of view (FoV) is preferable. To favor the rear-facing camera

views for reverse driving, we consider the gear position that inverts the prioritization for reverse

driving with the velocity-dependent offset set to zero.

The specific priority scores of Equation 5.2 have been empirically selected for the ToD use case and

the evaluation in this thesis. For other use cases, these scores can be tuned to match the requirements

of the respective application.

5.3 Multi-Dimensional Stream Adaptation

The bit budget 𝑅𝑖 estimated for each camera view 𝐶𝑖 based on the view priority 𝑉𝑃𝑖 defines how an

individual encoder processes the video stream of the respective camera view 𝐶𝑖 . 𝑅𝑖 either specifies

the target bitrate for the respective video encoder directly or is used to determine the target quality.
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The target quality can be controlled with a quantization parameter (QP) when using a user-defined

rate control algorithm that estimates the QP based on the available bit budget 𝑅𝑖 . In this chapter, we

directly specify the target bitrate 𝑅𝑖 for the video encoder.

In video coding, the spatial and temporal resolution can be used in addition to a target bitrate or

target quality to control the video stream. MDA schemes such as proposed in [145] consider the spatial

and temporal resolution of the video stream to further optimize the perceptual video quality of the

video. For this, the MDA scheme selects the best possible combination of spatio-temporal resolution

(frame size and frame rate) for the encoder to maximize the resulting video quality. In [153], the

authors proposed the multi-dimensional video quality metric (MDVQM) to estimate the perceptual

video quality. MDVQM was specifically designed to consider the influence of the spatio-temporal

resolution on the video quality. In [145], the authors use their MDVQM in a data-driven approach as

part of their MDA scheme to optimize the video quality. We integrate this data-driven MDA scheme

in the proposed TAMVA scheme as outlined in Figure 5.1. The parameter set estimated by the MDA

scheme that consists of the target bitrate 𝑅𝑖 , the spatial resolution 𝑆𝑅𝑖 , and the temporal resolution

𝑇𝑅𝑖 , controls the encoder for each camera view 𝐶𝑖 individually.

5.4 Adaptive Region-of-Interest Masking

In ToD, the transmission rate available in mobile networks can vary drastically depending on the

location and time [14]. In case of a low transmission rate, the rate and quality of the respective video

streams has to be adapted to the available transmission resources to ensure a reliable low delay video

transmission and avoid stalling of the video stream. However, a low target bitrate specified for the

encoder results in a low visual quality of the resulting video stream. Such a low visual quality can be

a critical issue for the operator responsible for controlling the vehicle safely in traffic. While the visual

quality of the image is reduced for all regions of the image in situations with a low transmission rate,

not all parts in the image are of similar importance for the operator.

Furman et al. [180] suggested to apply a static ROI mask to the camera frame to cut off less important

areas of the frame. This ROI masking approach reduces the image content that needs to be encoded.

Following this idea, we apply such a masking approach in a preprocessing step by setting all pixels

outside of the mask to zero. The pixels inside the mask are not affected by the preprocessing.

Encoding the frames preprocessed this way increases the image quality of the unaffected image

parts when the target bitrate remains unchanged. The reason for this behavior can be expained by the

fact that the encoder treats all zero-regions created in the preprocessing step with skip-mode, since

they do not change compared to the previous frame. Three exemplary ROI masks applied to three

front-facing camera views are visualized in Figure 5.3.

Figure 5.3 Three camera views with ROI masks. Left: A left-facing camera view. Center: A front-facing camera

view. Right: A right-facing camera view.

While irrelevant regions such as the sky are removed by the ROI mask, the relevant parts of the

frame such as the road as well as other traffic participants are clearly visible. Similar to the view

priority, the regions of the frame that are important for the driver change depending on the driving

situation. When driving straight with a higher speed, the driver focuses towards the vanishing

point [52]. For turning maneuvers or when driving at lower speeds such as in urban environments,
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the FoV required for the human driver increases. To this end, we extend the idea of [180] from a static

mask that is identical in all situations to a dynamic mask that changes its shape based on the vehicle’s

steering angle.

The static mask such as proposed in [180] as well as the proposed dynamic ROI mask both have an

elliptical shape. A video encoder processing the frame first splits the respective frame into blocks. If

preprocessed with the ROI mask, this will result in blocks that are partially masked along the curve

of the ellipse. To improve the masking process optimized for the block-based processing of the video

encoder, we design a block-based masking mode. Figure 5.4 visualizes the proposed block-based

mask for an exemplary front view.

Figure 5.4 ROI filtered front view using the block-based masking mode.

In the block-based masking mode, the elliptical curve of the ROI mask is approximated with

blocks. The size of these blocks matches the internal block size of the video encoder. Applying such

a block-based mask ensures that if the encoder processes the frame block-wise, a single block is either

completely set to zero or completely unaffected by the ROI filter. This enhancement further reduces

the bitrate required for encoding the video stream if filtered with the block-based ROI mask.

5.5 User Study Design

The TAMVA scheme proposed in this chapter allows to control the individual video streams based on

their importance for the current traffic situation. To evaluate the concepts proposed with the TAMVA

scheme, we integrate all modules implementing these concepts into the TELECARLA framework

introduced in Chapter 3. Implementation details for the individual modules of the TAMVA scheme

are available in Appendix A.3. Using this implementation integrated in the TELECARLA framework,

we present the design of our user study conducted to evaluate the proposed TAMVA system next.

We evaluate all driving scenarios using the TELECARLA module for automatic scenario evaluation.

For this, we create 14 driving scenarios using the OpenDrive standard
2
, which is supported by CARLA

and TELECARLA. All driving scenarios designed for this user study represent typical situations of

2https://www.opendrive.com/

https://www.opendrive.com/
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ToD with a focus on urban driving [56, 9]. These scenarios include collision avoidance tasks as well

as turning maneuvers with pedestrians or cyclists crossing the streets. Additionally, the scenarios

include different weather conditions varying from sunny conditions in daylight to rainy conditions

at night.

For the evaluation, we define two camera view prioritization modes. Both modes rely on the same

six camera setup as outlined in Figure 5.2. In the Uniform mode, the available transmission rate is

distributed uniformly over all six camera views. Each camera view hence gets the same bit budget

for encoding the video stream. This bit budget specified for each view directly defines the target

bitrate for the respective encoder. The Prioritization mode uses the proposed modules and strategies

as outlined in Figure 5.1. The traffic-aware view prioritization module defines the bit budget 𝑅𝑖 for

each camera view 𝐶𝑖 based on the total available transmission rate 𝑅𝑡𝑜𝑡𝑎𝑙 . Then, the MDA scheme

controls the encoder for each camera view 𝐶𝑖 by specifying the frame size 𝑆𝑅𝑖 , the frame rate 𝑇𝑅𝑖 ,

and the target bitrate 𝑅𝑖 . Additionally, the ROI filter is applied on the three rear-facing camera views

(RL), (R), and (RR).

For a second experiment, we record three representative driving scenarios in the CARLA simulator.

The users watch these recordings and rate the importance of each camera view for the current driving

scenario. The driving scenarios have been recorded using the same six camera setup 𝐶1 , . . . , 𝐶6 with

a resolution of 1920×1080 for all cameras. The three scenarios recorded for the user study consist of

left-turn, right-turn, and straight-driving.

In total, ten users participated in the user study. To become familiar with the simulation environ-

ment as well as the general setup, all participants started with three minutes of free driving. Then,

the 14 driving scenarios were evaluated in random order. For each of the scenarios, we randomly

selected either the Uniform mode or the Prioritization mode for the evaluation. The overall transmis-

sion rate used for all driving scenarios was specified as 3000 kbit/s. Since a low transmission rate

is the main use-case of the system proposed in this chapter, we selected the transmission rate in a

way that it causes perceivable degradations in the video quality. During driving in the simulator,

the scenario evaluation framework automatically tracks the user’s performance. The performance

indicators recorded by the framework include the scenario duration and the number of failures.

After completing the active driving tasks, we conducted the seconded experiment. The three driv-

ing scenarios recorded in the simulator were shown to each of the ten participants. The participants

were asked to rate the importance of each camera view for the current driving situation on a scale

of 1 to 10. A rating of 10 represents the highest priority for the current driving situation. Every

participant rated each of the three scenarios that had been recorded with six camera views. In total,

every participant therefore rates 18 camera views.

5.6 Results

In this section, we present results of the experiments conducted to validate the individual modules

as well as the overall TAMVA system proposed. We first discuss the results of the user study. Then,

we analyze the correlation of the proposed view prioritization approach with the user ratings. Lastly,

we investigate the rate-quality gains for the ROI filter and the overall system.

5.6.1 Driving Performance

To analyze the driving performance, the scenario evaluation framework measured the scenario du-

ration, the failure rate, and the number of missed red lights for each participant who participated in

the user study. The performance indicators measured for both modes, Uniform and Prioritization, are

summarized in Table 5.1.

The failure rate describes the average number of failures per scenario. The failures determining

the failure rate are automatically registered by the scenario evaluation framework if a violation of the

traffic rules is detected. The red light rate is the average number of missed red lights per scenario.
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Table 5.1 Average performance of the participants completing the driving scenarios.

Mode Duration (±𝜎) Failure Rate (±𝜎) Red Light Rate (±𝜎)

Uniform 88 s (±36 s) 0.27 (±0.10) 0.62 (±0.62)

Prioritization 97 s (±33 s) 0.30 (±0.10) 0.55 (±0.65)

The results suggest that neither mode consistently outperforms the other. While the Prioritization
mode achieves a lower rate of missed red lights, the Uniform mode reaches a slightly lower scenario

duration and failure rate. However, the results for all three performance indicators differ only by 10 %

to 11.5 %. These small differences are likely caused by the variations in human performance, and not

by the influence of the adaption. Furthermore, the time of the red light also influences the scenario

duration.

A possible explanation for the comparable results of both modes is that the human drivers are still

able to recognize the relevant features, even with a very poor image quality. This ability of the human

drivers to cope with bad visual conditions was also observed in the longtime study conducted by

Georg et al. [56]. Similar as in [56], we observe a slightly better perception of objects such as traffic

lights for the Prioritization mode compared to the Uniform mode.

5.6.2 Traffic-Aware View Prioritization

After the participants had actively driven in the simulator for the first experiment, we conducted the

second experiment as a monitoring and rating task. The participants had to observe video recordings

of the three driving scenarios left-turn, right-turn, and straight-driving. The three scenarios have been

recorded before the user study. Then, each participant had to rate the priority of the individual

camera views for the traffic situation of the respective driving scenario. Table 5.2 shows the average

priority scores and their standard deviation on a scale of 1 to 10, with 10 being the highest priority.

Table 5.2 Average priority scores of the individual cameras for the three representative driving scenarios rated

by the participants of the user study.

Scenario F (±𝜎) FL (±𝜎) FR (±𝜎) R (±𝜎) RL (±𝜎) RR (±𝜎)

left-turn 9.25 ± (0.89) 9.38 ± (0.74) 6.13 ± (1.64) 4.75 ± (2.49) 5.38 ± (1.92) 4.88 ± (2.64)

right-turn 9.25 ± (0.89) 5.75 ± (1.49) 9.5 ± (0.76) 4.75 ± (2.49) 4.63 ± (2.45) 5.38 ± (2.13)

straight-driving 10.0 ± (0.00) 6.88 ± (1.36) 7.50 ± (1.51) 5.00 ± (2.45) 4.88 ± (1.81) 4.38 ± (1.92)

The front view (F) receives the highest scores of at least 9.25 for all scenarios. The participants rate

the front-lateral views (FL) and (FR) only with a high priority score for the left-turn and right-turn,

respectively. The front-lateral views that do not face in the direction of the turn receive a score of 5.9

on average. For the rear views, the behavior is similar as for the front views. However, the absolute

priority scores are lower and the difference in the priority ratings is smaller.

To evaluate the proposed traffic-aware view prioritization model, we use the Spearman’s rank

correlation (𝜌) and the Pearson correlation (PC). We calculate both correlations between the priority

score estimated by the proposed model and the user rating listed in Table 5.2. Table 5.3 presents the

resulting correlation scores.

We observe a high correlation for all scenarios. This high correlation indicates that the prioritization

model successfully mimics the importance ratings given by the human drivers. For straight driving,

the correlation is lower than for the turning maneuvers. A possible explanation is that the straight

driving video was recorded at constant speed only. Considering multiple straight driving scenarios
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Table 5.3 Correlation of the user ratings and the priority scores estimated by the proposed traffic-aware view

prioritization module.

Scenario left-turn right-turn straight-driving

𝜌 0.93 0.93 0.83

PC 0.99 0.99 0.83

at different speed levels could increase the correlation or provide further information for finetuning

the speed factor of the prioritization model.

5.6.3 Video Rate-Quality Assessment

After analyzing the driving performance of the participants and the correlation of the view priority

ratings, we evaluate the resulting video quality and bitrate savings of the proposed methods. First, we

evaluate the ROI masking approach for individual camera views. Then, we analyze the rate-quality

savings of the overall TAMVA system.

All video sequences of the three representative driving scenarios are encoded using the x264 [134]

software video encoder. Encoding the video sequences of three driving scenarios with the six camera

views 𝐶1 , . . . , 𝐶6 results in 18 encoded video sequences. The video quality of the compressed video

sequences compared to the uncompressed reference sequences is measured using the peak signal-

to-noise ratio (PSNR) and the state-of-the-art video quality metric Video Multi-Method Assessment

Fusion (VMAF) [157].

5.6.3.1 Region-of-Interest Masking

To evaluate the ROI masking approach, we apply the continuous and the block-based ROI filter on

each of the 18 video sequences created for testing. In the following, we refer to the two different ROI

filtering modes as Continuous and Block-based. Baseline indicates the reference mode without any ROI

filter applied.

The 18 video sequences are encoded with four different quality levels and two group of pictures

(GoP) lengths for the three modes. Following the Joint Video Experts Team (JVET) common testing

conditions (CTC) [181], we select the four QPs to 𝑞𝑝 ∈ {22, 27, 32, 37} to define the quality levels of

the encoded video sequences. For the GoP lengths, we select 1 as an I-frame only mode and 20 for an

IPPP GoP structure. The IPPP GoP structure with a GoP length of 20 is a typical configuration which

we also used in Chapter 3.

We measure the bitrate of the encoded video sequences as well as the video quality using the PSNR

and VMAF. The bitrate and quality scores measured for the four QPs describe the characteristic rate-

distortion (RD) curves of the two ROI filter modes and the Baseline. Figure 5.5 shows the resulting

RD curves for all three modes and both GoP lengths using the PSNR as a quality metric to measure

the distortion.

For both GoP lengths, the ROI filter modes outperform the Baseline for all QPs. The Block-based
mode achieves additional quality gains compared to the Continuous mode. Figure 5.6 shows RD

curves similar to Figure 5.5, but uses the VMAF score as quality metric to measure the distortion.

We further compare the RD curves of both ROI filter modes with Baseline using the Bjøntegaard

Delta Rate (BDR) [182]. Table 5.4 shows the resulting BDR of the Continuous and the Block-based mode

for the two GoP lengths and quality metrics.

The BDR in Table 5.4 shows the bitrate savings of the Continuous and the Block-based mode compared

to the Baseline mode in percent. The proposed ROI filter achieves noticeable bitrate savings of at least

19.71 % for VMAF and a GoP length of 1. For a GoP length of 20, the bitrate savings increase to

23.81 %, since the encoder’s inter-frame prediction benefits from the image regions filtered by the ROI
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Figure 5.5 RD curves for Baseline and the two ROI filter modes with the distortion measured using the PSNR.
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Figure 5.6 RD curves for Baseline and the two ROI filter modes with the distortion measured using VMAF.

Table 5.4 Bjøntegaard Delta Rate (BDR) [%] using the corresponding quality metric VMAF or PSNR and GoP-

length of 1 or 20. The proposed ROI filter was used either in the Continuous or the Block-based mode.

Mode VMAF-1 PSNR-1 VMAF-20 PSNR-20

Continuous −19.71 −33.55 −23.81 −37.95

Block-based −28.48 −37.24 −28.84 −39.91

mask. Using the Block-based mode further improves the rate savings by at least 3.69 percentage points.

These improvements are due to the filter mask optimized for the encoder’s block size, which avoids

blocks that are only partially filtered.
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5.6.3.2 Overall System Performance

Finally, we evaluate the quality gains of the overall system when using the Prioritization mode com-

pared to using the Uniform mode. We first specify a total available transmission rate of 6000 kbit/s for

both modes. We again selected the transmission rate in a way that it causes perceivable degradations

in the video quality, since a low transmission rate is the main use-case of the TAMVA scheme. For

the Uniform mode, this distributes the available transmission rate uniformly for all camera views

𝐶1 , . . . , 𝐶6, resulting in a target bitrate of 1000 kbit/s for each camera view. The Prioritization mode

creates a weighted distribution of the total available transmission rate using the proposed TAMVA

scheme.

Then, we encode the three driving video sequences using either the encoding parameters estimated

by the Prioritization mode or the target bitrate of the Uniform mode. For both modes, we measure the

quality of each camera view using the PSNR and VMAF. The resulting quality scores are weighted

with the normalized user importance ratings as outlined in Table 5.2. This weighting of the quality

scores further highlights whether the respective mode achieves quality gains for camera views most

important for the current driving situation. Lastly, the overall quality for both modes is calculated as

the average of the weighted quality scores. Table 5.5 shows the resulting weighted average quality

with PSNR and VMAF scores for both modes, Uniform and Prioritization.

Table 5.5 Average video quality scores of the three driving scenarios weighted by user ratings for the individual

camera views.

Mode VMAF PSNR

Uniform 37.42 21.87 dB

Prioritization 39.28 22.28 dB

The Prioritization mode achieves a higher overall quality score of 0.41 dB for PSNR and 1.86 for

VMAF. This corresponds to relative improvements of roughly 1.8 % for PSNR and 5 % for VMAF.

Since we selected a target bitrate of 6000 kbit/s, which is rather low for streaming six videos with a

resolution of 1920×1080, the absolute quality scores can be considered as poor quality [183]. At such

low visual conditions, a quality improvement of 5 % supports the operator in perceiving relevant

details of the driving scene. For higher target bitrates, the relative quality gains achieved by the

Prioritization mode will further increase, while the prioritization is in particular relevant in situations

with a low transmission rate. These quality gains demonstrate the usability of the proposed TAMVA.

The adaptation scheme assigns more bit budget to camera views with a higher priority for the users,

resulting in a higher visual quality for these views.

5.7 Summary

In this chapter, we proposed a framework for increasing the video quality and scene understanding

of the remote operator in ToD. We proposed considering vehicle parameters such as the steering

angle or the velocity to prioritize certain camera views. Based on this prioritization and the total

available transmission rate, we estimate a specific bit budget for each camera view. Then, an MDA

scheme selects the optimal combination of streaming parameters for each camera view to optimize the

resulting video quality. The MDA scheme controls the frame size, the frame rate, and the target bitrate

for each video stream of the respective camera view. To further improve the system, we propose a

dynamic ROI mask to remove unnecessary parts of the frame before the encoding step.

We implemented all methods as separate modules using the TELECARLA framework introduced

in Chapter 3. The usability of the proposed system was evaluated in a user study consisting of

two separate experiments. In the first experiment, the participants drove actively in a simulated
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environment. In the second experiment, the participants observed driving situations recorded in

advance and rated the importance of the individual camera views for the current traffic situation.

We could not observe a clear improvement in the driver’s performance for the first experiment.

However, the proposed view prioritization module achieves a high correlation between the subjective

view priority ratings obtained in the second experiment of the user study. With at least 19.8 % BDR

savings, the ROI filter approach significantly reduces the required bitrate compared to streaming the

full camera frame. Finally, the proposed TAMVA scheme increases the video quality by roughly 5 %,

with an increased VMAF score of 1.86.
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Chapter 6

Adaptive Multi-View Live Video Streaming Using a
Single Encoder

The traffic-aware multi-view adaptation (TAMVA) scheme presented in Chapter 5 enables the indi-

vidual adaptation of video streams from multiple camera views in teleoperated driving (ToD). The

video streams are controlled based on the current traffic situation to provide the remote operator with

the best possible understanding for the remote situation. However, commercial vehicles such as used

for ToD are often limited in cost and size, and hence equipped with only a single hardware encoder.

A possible solution for transmitting multiple video streams using a single encoder is to combine the

individual camera views into a single video, compress this single video, and then decompose this

single video on the receiver side [184]. While this composition approach allows to transmit multiple

camera views with only a single encoder, it prevents the rate/quality adaptation of the individual

camera views such as provided by the proposed TAMVA scheme.

In this chapter, we present a preprocessing concept that allows for the individual rate/quality

adaptation of multiple camera views while using only a single encoder. We first introduce the

general concept of the proposed preprocessing approach and experimentally validate a proof-of-

concept implementation. Based on the insights of these first experiments, we discuss the fundamental

aspects required for then developing a comprehensive approach for single-view adaptation. We

systematically evaluate the influence of different preprocessing algorithms on the rate-distortion (RD)

performance in video encoding to select the most suitable candidate. Based on the results of this

evaluation, we identify the spatial Gaussian low-pass filter as the preprocessing algorithm that

achieves the best RD performance after encoding. Then, we design both one analytical and one

machine learning (ML)-based bitrate model that specifically consider the influence of the Gaussian

low-pass filter as well as the influence of the quantization parameter (QP), the frame size, the frame

rate, and the group of pictures (GoP) length on the video bitrate. Using the two bitrate models

proposed, we present a preprocessor rate control approach that allows for estimating the parameters

required to control the respective preprocessing filters, based on the adaptation parameters estimated

by the TAMVA scheme to control multiple encoders. This way, the preprocessing filters can be used

as a rate control scheme to enable the individual rate/quality adaption of multiple camera views

while using only a single encoder. Finally, we evaluate the usability of the proposed preprocessing

approach in three representative multi-view driving scenarios compared to using multiple encoders

and a single encoder approach without any preprocessing.

Some of the concepts and contributions of this chapter have been published in [21, 24, 25]. A

reference implementation of all methods proposed in this chapter is publicly available as open source

on GitHub
1
.

1https://github.com/hofbi/amvs-se

https://github.com/hofbi/amvs-se
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6.1 Preprocessing Concept

In this section, we present a concept that uses image filters in a preprocessing step to enable individual

rate/quality adaptation while using a single encoder. The limited encoding hardware available in

commercial vehicles requires the combination of multiple camera views into a single frame. We refer

to this composition of individual frames as a superframe and to the respective video stream as a

superframe video (SFV). A workflow that uses this frame composition of multiple camera views into

a single SFV is shown in Figure 6.1.

Camera 1

Camera N

Superframe

Generation

Network

Estimation

Encoder

...

SFV

𝑅𝑡𝑜𝑡𝑎𝑙

Limited

Network

E
Decoder

Superframe

Decomposition

Camera 1Camera N
. . .

Operator Side

Figure 6.1 Conceptual overview of a multi-view streaming pipeline with limited encoding hardware. 𝑁 camera

view are combined into a superframe video (SFV) that is encoded by a single encoder.

Multiple camera views are combined into a single SFV based on a predefined layout for the

superframe. The SFV is then encoded by a single encoder to match the available transmission rate

of the mobile network. The resulting bitstream is transmitted over a communication network with

resource constraints. On the receiver side, the bitstream is decoded and decomposed back into the

individual camera views. These camera views are then consumed by the human operator.

While this approach enables the compression and transmission of multiple camera views simul-

taneously with only a single encoder, it prevents the rate/quality adaptation of individual camera

views. An encoder such as available in embedded systems or industrial applications, ranging from

smartphones to vehicles, is usually a closed system with only a limited interface for the parameter

settings to control the encoding process. Apart from this interface, the encoder is a black box and

does not allow for in-depth rate control that would be required for individual rate/quality adaptation.

The only way to adapt the rate/quality of the SFV is to use the rate control application programming

interface (API) of the encoder, which results in a uniform adaptation of all camera frames combined

in the superframe.

To address this issue, we propose to use preprocessing image filters as an alternative rate/quality

adaptation strategy if only a single encoder is available. Next, we present the proposed concept and

the individual preprocessing image filters in detail.

6.1.1 Concept

We investigate how to transmit multiple camera views with individual rate/quality adaptation while

using a single encoder. To still allow for individual rate/quality adaptation, we propose preprocessing

image filters to manipulate the individual camera views before combining them into a single SFV.

Due to this preprocessing, the content of the individual video is slightly modified. These changes

in the individual camera views affect the bitrate required by the encoder to encode the SFV and the

resulting video quality of the individual camera views after decoding and decomposing the SFV.

Hence, the rate and quality is controllable for every individual segment in the superframe. Figure 6.2

summarizes the concept of the proposed preprocessing approach and how it allows for streaming

multiple camera views using a single encoder.

The video streams of multiple camera views are preprocessed with the proposed image filters. The

preprocessed video sequences of the individual views are then composed into a larger SFV. From this

point forward, the workflow is identical to the workflow introduced in Figure 6.1. The SFV is encoded

by the single encoder and transmitted to the client. On the client side, the bitstream is decoded and
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Figure 6.2 Conceptual overview of the proposed preprocessing filter approach for individual rate/quality

adaptation within a superframe video (SFV) while using a single encoder. A multi-dimensional adaptation

(MDA) model such as used in the proposed traffic-aware multi-view adaptation (TAMVA) scheme estimates

the optimal encoding parameters of every camera view based on the total available transmission rate 𝑅𝑡𝑜𝑡𝑎𝑙 .

These encoding parameters are the bitrate 𝑅, the temporal resolution 𝑇𝑅, the spatial resolution 𝑆𝑅, and the

used color channels 𝐶𝐻. The preprocessing filters manipulate the individual video streams to achieve a similar

rate/quality after encoding as if they would have been encoded by multiple encoders.

the resulting SFV is decomposed back into the individual video streams, which are finally shown to

the operator.

In this scenario, the bitrate required by the encoder and the video quality after decoding is con-

trollable for each individual segment in the superframe due to the proposed preprocessing. Next,

we introduce the preprocessing filters used in this approach and discuss how they affect the actual

encoding process.

6.1.2 Preprocessing Filters

In the literature, preprocessing image filters are mainly used to improve the image quality of a single

frame. Such preprocessing approaches try, for instance, to spend more bit budget on the foreground

of the frame compared to its background [167, 165]. However, these approaches are often proposed

as extensions of specific video encoders, where detailed information about the bitrate distribution

within the frame is available during the encoding step. In embedded systems such as vehicles, the

encoder is a closed system where this information is not available. We therefore first discuss how

preprocessing filters can be used when treating the encoder as a black box, especially when it comes

to the simultaneous transmission of multiple views using a single encoder.

To address the limited access to detailed information during the encoding process, we propose a

preprocessing step before the individual views are combined into a single superframe and encoded

by a single encoder. In total, we propose four preprocessing filters in this thesis: a temporal filter

controlling the frame rate, a spatial filter controlling the frame size, a low-pass filter controlling

the quality, and a channel filter controlling individual color channels. Figure 6.3 shows the four

preprocessing filters applied on the individual camera views before the superframe composition.

The raw video sequence of the respective camera view is either not filtered at all or preprocessed by

one or more of the preprocessing filters. The preprocessor module controlling the individual filters

accepts the adaptation parameters provided by an MDA model such as introduced in Chapter 5. The

bitrate 𝑅𝑖 controls the rate/quality, the temporal resolution 𝑇𝑅𝑖 controls the frame rate, the spatial

resolution 𝑆𝑅𝑖 controls the frame size, and the parameter 𝐶𝐻𝑖 specifies which color channels should

be used for the respective camera view. This design allows to integrate the proposed preprocessing

approach to existing systems such as proposed in Chapter 5. Next, we discuss how the individual

preprocessing filters operate in detail and how they affect the encoding process.
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Figure 6.3 The four preprocessing filters applied on the individual camera views before the composition into

the superframe.

6.1.2.1 Temporal Filter

The temporal filter is designed to control the temporal resolution𝑇𝑅 (frame rate) of individual videos.

The single encoder operates at a predefined common frame rate𝑇𝑅𝑆𝐹𝑉 when encoding the SFV. If the

temporal resolution𝑇𝑅𝑖 of a single video should be reduced due to the current situation not requiring

a high frame rate for the respective camera view, the temporal filter drops frames of the individual

video. To still maintain the common frame rate 𝑇𝑅𝑆𝐹𝑉 required by the encoder, the previous frame

buffered by the temporal filter will be reused instead of the current one. This way, the individual

frame and hence the respective segment in the superframe after the composition is identical to the

previous frame. All image blocks such as macro blocks (MBs) or coding tree units (CTUs) related to

the individual frame will be treated by the encoder with skip mode. This significantly reduces the

bitrate required for encoding the respective segment of the SFV, down to almost zero. As a side effect

of the reduced frame rate, the inter-frame difference between two neighboring frames will be slightly

increased, which increases the bitrate. However, the additional bitrate required for encoding the

larger inter-frame difference is significantly smaller than the bitrate of the frame and can be neglected.

As a result, the frame rate 𝑇𝑅𝑖 of the individual segment containing novel information is reduced

with almost no additional bitrate required, while the common frame rate 𝑇𝑅𝑆𝐹𝑉 required by the

single encoder is still maintained.

6.1.2.2 Spatial Filter

The spatial filter controls the spatial resolution 𝑆𝑅 of an individual frame. The filter resizes the output

image to the requested frame size 𝑆𝑅. After the combination of the individual videos into the SFV,

different frame sizes result in different amounts of bits required to encode the individual sub-videos.

6.1.2.3 Quality Filter

The quality filter is an adjustable spatial low-pass filter applied to the input image. This filter is used

to control the bitrate or the video quality required for encoding each individual segment in the SFV.

Depending on the cut-off frequency of this filter configured for the respective input image, a different

bitrate will be required for encoding each part of the SFV and hence will affect the resulting video

quality.
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6.1.2.4 Channel Filter

Lastly, we design a channel filter to control which color channels 𝐶𝐻 should be used for encoding the

respective camera view segment. Based on the current situation and the human vision system (HVS),

not all color channels available in the input image are of similar importance for the human operator.

For instance, since the HVS is more sensitive to brightness than to color, the luminance channel

representing the brightness should be transmitted, whereas the chrominance channels representing

the color components can be set to zero in case of severe communication constraints. This reduces

the bitrate of the image segment filtered by the channel filter since the encoder has to encode only a

gray-scale image for this segment of the SFV.

In particular during the night, the chrominance channels provide little additional information

for the operator. Such conditions are a possible application of the channel filter. While existing

adaptation models typically do not consider individual color channels for controlling a video stream,

the proposed channel filter can be beneficial for highly specific applications such as driving.

6.1.3 Evaluation Setup

In this section, we present the setup used in the following experiments to evaluate the proposed

preprocessing approach. We use a representative driving scenario recorded with multiple camera

views as the uncompressed video sequences required for the evaluation. The driving scene was

recorded in the CARLA driving simulator [16] using a vehicle equipped with six RGB cameras as

shown in Figure 6.4.

R

RRFR

F

FL RL

Figure 6.4 Camera setup of a vehicle with six RGB cameras used for recording the evaluation scenario. The

camera views are referred to as front (F), front left (FL), front right (FR), rear (R), rear left (RL), and rear right

(RR). Adopted from [21] © 2020 IEEE.

The driving scenario was selected from the MV-ROI dataset introduced in Section 4.1.1. The selected

driving scenario turn-left includes a left turn at an intersection with oncoming traffic.

We use the open source x264 software video encoder [134] to process the uncompressed video

sequences captured from the turn-left scenario. To evaluate the effects of the individual preprocessing

filters and to avoid the influence of any rate control algorithm, we use the encoder in constant quan-
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tization parameter (CQP) mode throughout the experiments. Figure 6.5 presents the two workflows

used for the evaluation of the proposed approach.
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View N
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View 1 Single

View N Single
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𝐼1

𝐼𝑁

𝐼𝑆𝐹𝑉 𝐵𝑆𝐹𝑉...

(b) Superframe video (SFV) encoding.

Figure 6.5 Workflow of the evaluation setup and reference software implemented to validate the proposed

preprocessing concept.

The uncompressed video sequence 𝐼𝑖 recorded from every camera view is either preprocessed by

one of the filters introduced in Section 6.1.2 or directly fed into the pipeline without applying any

preprocessing. Then, every camera view is encoded and decoded by a separate encoder 𝐸𝑖 as outlined

in Figure 6.5a. We refer to this video sequence encoded individually as Single. In parallel, a copy of

every video sequence 𝐼𝑖 preprocessed in the same way as for the respective Single mode is combined

into a single SFV 𝐼𝑆𝐹𝑉 . Figure 6.5b visualizes this second workflow for the SFV. The resulting SFV is

also encoded and decoded by a separate encoder 𝐸𝑆𝐹𝑉 , and finally divided back into the individual

frame segments. These segments decomposed from the SFV are denoted as SFV.

This processing pipeline enables us to analyze the bitrate distribution of the encoded SFV bitstream

and to compare the frames encoded individually with the SFV segments after the decomposition. For

this analysis, we measure the size of the encoded bitstream 𝐵 from the individual camera views as well

as from the individual segments decomposed from the SFV. Additionally, we evaluate the perceptual

video quality using three video quality metrics (VQMs). These VQMs are the multi-dimensional

video quality metric (MDVQM) [153], the spatio-temporal video quality metric (STVQM) [149], and

Video Multi-Method Assessment Fusion (VMAF) [156]. Next, we design two experiments using this

setup to evaluate the proposed approach and present the results.

6.1.4 Results

In this section, we present two experiments to evaluate the proposed concept for multi-view live video

stream adaptation with a single encoder. The first experiment validates the proposed concept using

preprocessing image filters to enable individual rate/quality adaptation of image segments within

the superframe while using a single encoder for encoding the SFV. In the second experiment, we

evaluate the general usability of the proposed concept in an exemplary multi-view driving scenario.
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We compare the proposed method to an approach that encodes the SFV without preprocessing and

to a reference approach that encodes the individual video streams using multiple encoders.

6.1.4.1 Proof of Concept

The first experiment evaluates the influence of the four preprocessing filters introduced in Section 6.1.2

on the individual video sequence as well as on the respective segment after the combination into the

SFV. For this evaluation, we use the setup and test video sequences introduced in Section 6.1.3.

Two individual video streams of the same camera view are fed into the evaluation pipeline of

Figure 6.5. We use the identical video stream of the front view camera (F) twice to exclusively

highlight the effects of the individual preprocessing filters compared to the unfiltered segment,

without considering the scene content. The first video stream 𝐼1 is not modified by any preprocessing

filter. The second video stream 𝐼2 is preprocessed with one of the four preprocessing filters introduced

in Section 6.1.2.

The temporal filter reduces the temporal resolution 𝑇𝑅 by a factor of two. This is achieved by

dropping every second frame. The remaining frames are then duplicated to keep the effective frame

rate constant. The constant frame rate is required for composing the individual frames into the SFV.

The spatial filter scales both the width and the height of the original image down by a factor of two. The

resulting height difference existing during the superframe composition between 𝐼1 and 𝐼2, downscaled

by the spatial filter, is compensated by filling the remaining area with black pixels. Similar to the

region of interest (ROI) masking approach introduced in Chapter 5, these areas do not contribute to

the encoded frame size due to the encoder’s skip mode. For the quality filter, we select a median

filter configured with a kernel size of five to reduce the bitrate required for encoding the respective

segment. The channel filter creates a single channel image by dropping both chrominance channels

while only keeping the luminance channel. Figure 6.6 shows the size of the encoded bitstream for the

two individual streams 𝐵1 (without filter) and 𝐵2 (with filter), the bitstream of the SFV 𝐵𝑆𝐹𝑉 , and the

sum of the individual streams 𝐵Σ = 𝐵1 + 𝐵2.

The orange line representing the trend of 𝐵2 visualizes the influence of the corresponding filter on

the encoded bitstream. Figure 6.6a presents an encoded frame size of close to zero for every second

frame of 𝐵2 such as configured for the temporal filter. Both 𝐵𝑆𝐹𝑉 and 𝐵Σ follow this behavior. This

suggests that the image segments repeated by the temporal filter do not contribute to the SFV bitstream

𝐵𝑆𝐹𝑉 and are properly processed by the encoder’s skip mode. The spatial filter in Figure 6.6b, the

quality filter in Figure 6.6c, and the channel filter in Figure 6.6d show a constantly reduced bitstream

size for 𝐵2 compared to the size of the unfiltered bitstream 𝐵1. This reduced size demonstrates the

influence of the respective preprocessing filter. The size of the encoded bitstream for 𝐵𝑆𝐹𝑉 and 𝐵Σ is

almost identical for every preprocessing filter. This behavior suggests that the preprocessing filters

do not influence any of the other segments and exclusively affect the camera view where the filter is

applied to. This can be explained by the block-based image processing of the video encoder.

In addition to the bitrate, we evaluate the perceptual video quality to measure the influence of

preprocessing filters on the quality of individual segments combined in the SFV. We measure the

video quality for the video streams 𝐵1 and 𝐵2 encoded individually (Single) and the individual

segments decomposed from the SFV (SFV) using three VQMs. Then, we calculate the mean absolute

difference (MAD) of the VQM scores for SFV compared to Single as follows:

𝑀𝐴𝐷 =
1

𝑁

𝑁∑
𝑖=1

|𝑉𝑄𝑀(𝑆𝑖𝑛𝑔𝑙𝑒𝑖) −𝑉𝑄𝑀(𝑆𝐹𝑉𝑖)|. (6.1)

Table 6.1 summarizes the MAD calculated for the three different VQMs MDVQM, STVQM, and

VMAF.

According to the value range from 0 to 100 for all VQMs, the MAD is on average about 0.2 %. The

negligible difference in video quality confirms the results of the bitrate evaluation and demonstrates

that the preprocessing filters do not affect the video quality of any other segment. This is an important
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0 50 100 150

0

100

200

300

400

Frame Number

F
r
a
m

e
S
i
z
e

[
k
B

i
t
]

𝐵1: Avg: 77.68 kBit

𝐵2: Avg: 27.41 kBit

𝐵𝑆𝐹𝑉 : Avg: 105.60 kBit

𝐵Σ: Avg: 105.09 kBit

(b) Spatial Filter

0 50 100 150

0

100

200

300

400

Frame Number

F
r
a
m

e
S
i
z
e

[
k
B

i
t
]

𝐵1: Avg: 77.68 kBit

𝐵2: Avg: 50.24 kBit

𝐵𝑆𝐹𝑉 : Avg: 127.71 kBit

𝐵Σ: Avg: 127.93 kBit

(c) Quality Filter

0 50 100 150

0

100

200

300

400

Frame Number

F
r
a
m

e
S
i
z
e

[
k
B

i
t
]

𝐵1: Avg: 77.68 kBit

𝐵2: Avg: 26.77 kBit

𝐵𝑆𝐹𝑉 : Avg: 104.98 kBit

𝐵Σ: Avg: 104.45 kBit

(d) Channel Filter

Figure 6.6 Size of the encoded bitstream for the two video bitstreams 𝐵1 and 𝐵2 encoded individually using the

identical front camera view (F), 𝐵1 without preprocessing filter applied and 𝐵2 with preprocessing, the SFV

bitstream 𝐵𝑆𝐹𝑉 , and the sum of the individual streams 𝐵Σ = 𝐵1 + 𝐵2. All video sequences are encoded in CQP

mode with a QP of 𝑞𝑝 = 25. One of the four different preprocessing filters is applied on 𝐵2.

Table 6.1 Mean absolute difference (MAD) of the VQMs for the video bitstreams 𝐵1 and 𝐵2 processed individ-

ually (Single) compared to the VQMs of the segments decomposed from the SFV bitstream 𝐵𝑆𝐹𝑉 (SFV).

VQM View Temporal Spatial Quality Channel

MDVQM 𝐵1 0.121 0.116 0.105 0.071

MDVQM 𝐵2 0.018 0.270 0.387 1.093

STVQM 𝐵1 0.046 0.042 0.057 0.051

STVQM 𝐵2 0.165 0.404 0.269 0.170

VMAF 𝐵1 0.031 0.033 0.031 0.033

VMAF 𝐵2 0.209 0.275 0.165 0.000
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insight for the proposed approach, since the influence of the preprocessing filters can be considered

for every camera view independently. Based on this first proof of concept, we next evaluate the general

usability of the proposed preprocessing concept in an exemplary multi-view driving scenario.

6.1.4.2 Usability

In the previous experiment, we validated the concept of the proposed preprocessing filters. The

second experiment evaluates the usability of the proposed method for the turn-left driving scenario.

The scenario consists of video sequences recorded from six camera views as outlined in Figure 6.4.

For this experiment, we use all six camera views available from the multi-view driving scenario. We

compare the proposed preprocessing approach with an individual adaptation strategy using multiple

encoders and the simple SFV approach without preprocessing. We again use the evaluation setup

introduced in Section 6.1.3 with the encoder in CQP mode. To control the video encoders, we assume

the following adaptation parameters for the current driving scenario such as outlined in Table 6.2.

Table 6.2 Assumed multi-dimensional adaptation (MDA) model output for the six individual camera views. The

output consists of the quantization parameter 𝑞𝑝 , the temporal resolution 𝑇𝑅 relative to the original temporal

resolution 𝑇𝑅0 = 20 Hz, the spatial resolution 𝑆𝑅 relative to the original spatial resolution 𝑆𝑅0 = 640 × 480 px,

and the kernel size 𝑘 of the median filter.

MDA F FL FR R RL RR

𝑞𝑝 25 25 26 27 26 25

𝑇𝑅/𝑇𝑅0 1 1 1 0.5 0.5 0.25

𝑆𝑅/𝑆𝑅0 1 1 1 1 1 0.5

𝑘 (median) - - 3 5 3 -

We selected the CQP encoder mode to avoid modifications of the encoded bitrate due to any rate

control methods implemented in the encoder. Hence, a quantization parameter 𝑞𝑝 is provided to

control the quality level for the resulting video stream. Additionally, the MDA model provides a

temporal resolution 𝑇𝑅 and a spatial resolution 𝑆𝑅 for the individual camera views. The values for

𝑇𝑅 and 𝑆𝑅 listed in Table 6.2 are relative to the temporal resolution 𝑇𝑅0 and spatial resolution 𝑆𝑅0 of

the original video, respectively. Since there is no model that considers which color channels should

be used for the transmission, we do not consider the channel filter in this experiment. In a real driving

scenario, the parameters 𝑞𝑝 , 𝑇𝑅, and 𝑆𝑅 could have been estimated by the TAMVA scheme proposed

in Chapter 5.

The goal of the TAMVA scheme including an MDA model is to match the available transmission

resources of the mobile network while providing the operator with the best possible situation aware-

ness for the current traffic situation. This means ensuring a high spatial and temporal resolution as

well as a good video quality for the most important views. This can be achieved by assigning a larger

bit budget for camera views which are highly relevant for the current driving situation at the cost

of reduced quality for the less important camera views. Camera views which are less relevant for

the current driving task hence tolerate a reduction of the bit budget as well as spatial and temporal

resolution in favor of the more important views. Furthermore, existing operator interfaces such as

proposed in [55] show the rear view as a small picture-in-picture overlay similar to a rear-view mirror.

This means that some views could be downscaled by default, avoiding an unnecessarily high spatial

resolution which has to be transmitted over the network and downscaled on the operator side.

In case of the turn-left driving scenario, which is used for this experiment, the parameters estimated

by the MDA model favor the front (F) and front left (FL) views since they cover the driving route

of the ego vehicle. During the left turn, the front right (FR) view is required to perceive oncoming

traffic. Due to the high motion of this view caused by the turn, the 𝑞𝑝 for FR is slightly increased to
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save bit budget. The rear (R) and rear left (RL) views are less important views and only required for

regular check ups. These views are not constantly observed and thus a reduced temporal and spatial

resolution is sufficient for this task. The rear right view (RR) is the least important view for the left

turn. Hence, 𝑆𝑅 and 𝑇𝑅 are reduced the most in favor of the other views.

Based on the parameters in Table 6.2 specified for the turn-left driving scenario, we evaluate

the bitrate and perceptual video quality for four modes. An individual adaptation strategy using

multiple encoders acts as the baseline implementation. We refer to this mode using multiple encoders

as MulEnc, which uses the 𝑞𝑝 , 𝑇𝑅, and 𝑆𝑅 settings from Table 6.2.

Second, the proposed preprocessing approach using a single encoder is referred to as Ours-25.

The individual video streams are preprocessed based on the respective 𝑇𝑅, 𝑆𝑅, and 𝑘 listed in

Table 6.2. Restricted to a single encoder, a suitable QP for the superframe encoder is required. Since

the preprocessing filters only allow for a rate/quality reduction, we selected the minimum QP of the

MulEnc mode. This results in a QP of 25 for the SFV of Ours-25. To match the bitrates for the individual

views of MulEnc, we apply the proposed preprocessing filters to the individual views before the

combination into the SFV. 𝑇𝑅 and 𝑆𝑅 of Table 6.2 are directly used by the preprocessing filters. The

median filter is applied to better match the bitrate of the video streams encoded individually that

have a different QP than the superframe encoder. The kernel size 𝑘 of the median filter is shown in

the last row of Table 6.2.

Lastly, we evaluate a simple SFV approach without any preprocessing applied for two QPs, 25 and

28. We refer to these modes as SFV-25 and SFV-28. SFV-25 uses the same QP of 25 as Ours-25 for all

camera views. The QP for SFV-28 is 28, which matches the total bitrate of MulEnc. Table 6.3 shows

the resulting bitrate for every camera view as well as the total bitrate of all camera views.

Table 6.3 Resulting bitrate 𝑅 [kbit/s] using the selected encoding settings for the six camera views.

Mode Total F FL FR R RL RR

MulEnc 6618 1552 1446 1506 978 864 266

Ours-25 6684 1552 1446 1454 1036 924 266

SFV-25 10 634 1552 1446 1818 2370 1690 1752

SFV-28 6594 1002 956 1178 1290 1062 1102

The mode SFV-25 reaches similar bitrates as MulEnc for the most important front views. However,

the total bitrate required for all views is about 60 % larger. Such a large bitrate being required for

transmission might be an issue in communication networks with limited transmission resources. On

the other hand, both Ours-25 and SFV-28 closely match the total bitrate achieved by the baseline

MulEnc. The bitrate for the individual views of SFV-28 deviates from the bitrates of MulEnc, while

Ours-25 also matches the bitrates for the individual camera views. For SFV-28, this means a reduced

quality for the important front view due to the lower bitrate and an unnecessarily high quality for

the less important rear views. Table 6.4 summarizes the resulting VQM scores for the individual

camera views as well as the average VQM scores of all camera views using the MDVQM, STVQM,

and VMAF.

The quality measurements show a behavior, which is similar to the bitrates for the different modes.

For Ours-25, both the average quality and the quality of the individual views have a similar trend as

MulEnc, while SFV-25 only matches the important front view. The average quality and the quality for

the rear views is even better, at the cost of an increased bitrate required for the transmission.

For the video streams preprocessed with the median filter, the video quality of Ours-25 shows

higher VQM scores than MulEnc for almost the same bitrate. The full reference STVQM shows even

higher scores than the no-reference MDVQM. A possible explanation for this behavior of STVQM is

that the calculation is based on the peak signal-to-noise ratio (PSNR). The median filter smooths the

image content, which reduces the noise or tiny details in the image and hence increase the PSNR that
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Table 6.4 Resulting perceptual video quality using the encoder settings selected for the six camera views.

Mode VQM Avg. F FL FR R RL RR

MulEnc

STVQM 54.5 68.2 71.2 67.4 30.6 35.1 32.5

MDVQM 63.4 87.2 85.8 88.5 29.4 26.1 18.7

VMAF 79.6 96.0 95.9 95.5 70.5 73.8 46.4

Ours-25

STVQM 61.9 68.2 71.2 74.6 48.8 46.9 32.5

MDVQM 66.1 87.2 85.8 91.1 38.2 28.5 18.7

VMAF 73.7 96.0 95.9 88.2 49.2 66.7 46.4

SFV-25

STVQM 63.8 68.2 71.2 72.5 54.5 53.0 63.7

MDVQM 81.9 87.2 85.8 91.8 84.1 60.8 81.5

VMAF 95.8 96.0 96.0 97.3 95.4 94.2 95.9

SFV-28

STVQM 52.7 56.9 60.9 61.5 42.2 42.2 53.1

MDVQM 64.6 68.6 69.2 82.7 63.3 39.3 69.1

VMAF 91.3 91.8 92.0 93.4 92.0 90.1 92.3

affects the STVQM score. Since the MDVQM only models the quality on a signal-to-noise ratio (SNR)

base, but does not require access to the original frame for comparison, it is less sensitive to this kind

of filters.

VMAF shows a lower score for segments with reduced spatial or temporal resolution such as for

the rear views of MulEnc and Ours-25. The remaining views show a very high absolute score with

small deviations for the different QPs. These high scores achieved for the QPs used in this experiment

can be explained with VMAF’s viewing distance assumed by Nexflix when collecting the training

data and designing the model. The viewing distance was selected to predict the quality of videos

displayed on a 1080p HDTV in a living-room-like environment, which should be three times the

display height for 1080 pixels. With an original height of 480 pixels, the viewing distance assumed

by the model further increases, which can hide the artifacts introduced by the quantization [185].

In summary, the results highlight that the proposed preprocessing solution matches the individual

bitrates and perceptual video quality scores more closely compared to the simple SFV approach.

However, the median filter selected in this example affects the visual quality, although in a different

way compared to using multiple encoders. Next, we systematically evaluate the influence of different

preprocessing algorithms to identify the most suitable low-pass filter for this task.

6.2 Preprocessing Filter Performance Evaluation

In the previous section, we introduced the concept of preprocessing filters to enable individual

rate/quality adaptation of multiple segments in a SFV with only a single encoder available. Based

on our first experiments, we demonstrated the general usability in a multi-view driving scenario as

well as how the preprocessing filters affect the rate/quality of the SFV. None of the preprocessing

filters introduced in Section 6.1.2 has any side effects on the neighboring views during encoding if the

encoder is used in CQP mode. Additionally, the spatial and temporal filter controlling the spatial and

temporal resolution of the individual segments achieve similar results as if using multiple encoders.

However, the quality filter used to control the rate/quality of the individual video affects the video

quality differently compared to using multiple encoders. Since there are multiple preprocessing

algorithms available that can be used for this task, we are interested in determining an algorithm that

saves the most bitrate while having the smallest effect on the visual quality. Hence, we systematically

evaluate the influence of preprocessing algorithms on the RD performance in video encoding next.
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6.2.1 Rate-Distortion Analysis

In this section, we analyze the RD performance of the encoder for input video sequences preprocessed

with a quality filter based on the definition of Section 6.1.2. To motivate this evaluation, we first discuss

how such preprocessing filters are currently used in the literature.

Grois et al. [167] proposed a complexity-aware adaptive ROI prefiltering scheme for scalable video

coding. The authors applied the prefilters dynamically with a transition region between foreground

and background to improve visual presentation quality. For the evaluation, they used Gaussian,

Wiener, and Wavelet filters. Due to its low computational complexity, the Gaussian filter showed the

best performance trade-off [168, 169]. In [167], the authors encoded the background with a fixed QP of

30 and the foreground with a variable QP between 20 and 30. While each of the preprocessing methods

achieved rate-quality gains, these gains were only measured for specific QPs. Since their main goal

was to improve the visual quality of the ROI, the quality degradations for the background are less

important. In our application, we use the preprocessing filters for rate control. Thus, we require

performance measures for a larger range of parameters and must consider the quality degradations.

To effectively compare the performance of different preprocessing filters, the rate-quality gains have

to be evaluated for a larger range of QPs and for different preprocessing parameters.

For this, we systematically evaluate the rate-quality gains of different preprocessing filters by

analyzing the RD curves of a Gaussian filter, a median filter, and a Joint Photographic Experts

Group (JPEG) preprocessor. The median filter and the Gaussian filter are used as usual. The JPEG

preprocessor simply encodes and then decodes the image. We select the JPEG preprocessor as

an easily available implementation of a discrete cosine transformation (DCT). The values in the

quantization table used for the DCT coefficients are chosen to preserve low-frequency information

and discard high-frequency information, since humans are less critical to the loss of these high-

frequency information. Hence, the DCT of the JPEG preprocessor represents a filter optimized for

the HVS. The Gaussian filter has been selected since it is most commonly used in the literature due

to its low computational complexity [163, 168, 169, 167]. To enable comparability of this evaluation

with the results of Section 6.1.4.2, we use the median filter as a third filter with a low computational

complexity.

For the RD analysis, we use the uncompressed Bus video sequence available in common intermedi-

ate format (CIF) resolution from [186]. We create different video sequences of Bus preprocessed with

the following preprocessing filters and filter parameters: a Gaussian filter with a kernel size 𝑘 = 3 and

standard deviations 𝜎 ∈ {0.5, 0.6, 0.7, 0.8, 1.0, 1.5}, a Gaussian filter with 𝑘 = 5 and the same values

of 𝜎, a median filter with kernel sizes 𝑘 ∈ {3, 5, 7, 9}, and a JPEG preprocessor with the quality levels

𝑄 ∈ {10, 20, 40, 60}.
We encode the preprocessed video sequences using the x264 software video encoder [134] with

CQP mode. The QPs used for encoding range from 24 to 45 with a step size of one. Further, we

select a GoP length of one, meaning I-frames only. We measure the video quality for each encoded

video sequence using the state-of-the-art video quality metric VMAF [156, 157]. Figure 6.7 shows the

resulting RD curves for the four preprocessing filter configurations used in this evaluation.

Every row in Figure 6.7 represents one preprocessing filter configuration. The left column shows

the regular RD curves for all QPs with the specific filter parameters in a separate color. The blue

curve none represents the baseline without any preprocessing applied. The right column contains the

same RD points as the left column, but with the RD curves per QP. Each new color represents an RD

curve for the preprocessing parameters with a different QP. In the following, we refer to these kind

of curves as rate-distortion per quantization parameter (RD-QP) curves.

We observe smooth RD curves for the Gaussian filters and the median filter. In contrast, the JPEG

preprocessor produces a shaky RD curve. At the same time, the JPEG preprocessor still reaches high

VMAF scores of 70 to 80, even for a quality level of 10. For the Gaussian filters, a kernel size of five

achieves higher rate savings while causing higher quality costs at the same time. The median filter

has a strong influence on the VMAF score already at a kernel size of three.
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Figure 6.7 Rate-distortion (RD) analysis for the preprocessing filters Gaussian, median, and JPEG. Every row

contains the RD curves for one of the preprocessing filters. The left column shows the RD curves color-coded

by the filter parameter. The right column color-codes the RD curves per QP. Adopted from [25] © 2022 IEEE.
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Our first analysis demonstrates the high dimensionality of the problem presented. To effectively

compare the performance of different preprocessing filters, we require a new evaluation method

which we present next.

6.2.2 Evaluation Methods

In this section, we present our evaluation methods to compare the performance of different prepro-

cessing filters. We first analyze the bitrate savings that can be achieved while considering the costs of

certain visual quality degradations. Then, we introduce the Bjøntegaard Delta (BD) curves to compare

two RD-QP curves of two different preprocessing filters with the same QP. Finally, we propose a novel

evaluation method to effectively compare the RD performance of different preprocessing algorithms

and their parameters.

6.2.2.1 Quality-Cost Rate-Saving Curves

When using the preprocessing filters for the purpose of rate control, we are mainly interested in the

rate savings that can be achieved and the quality costs required for these savings. Hence, we calculate

the quality costs and rate savings for every point of the RD curves relative to the baseline without

preprocessing. We define the rate saving 𝑆(𝑞𝑝) for a certain quantization parameter 𝑞𝑝 ∈ {24, . . . , 45}
as the difference of the baseline bitrate 𝑅𝑛𝑜𝑛𝑒(𝑞𝑝) without any preprocessing applied and the video

bitrate 𝑅 𝑓 𝑖𝑙𝑡𝑒𝑟(𝑞𝑝) preprocessed with one of the preprocessing filters:

𝑆(𝑞𝑝) = 𝑅𝑛𝑜𝑛𝑒(𝑞𝑝) − 𝑅 𝑓 𝑖𝑙𝑡𝑒𝑟(𝑞𝑝) (6.2)

Similar to the rate savings, we define the quality costs 𝐶(𝑞𝑝) as the quality difference of the baseline

distortion 𝐷𝑛𝑜𝑛𝑒(𝑞𝑝) and the filter distortion 𝐷 𝑓 𝑖𝑙𝑡𝑒𝑟(𝑞𝑝) preprocessed with one of the preprocessing

filters:

𝐶(𝑞𝑝) = 𝐷𝑛𝑜𝑛𝑒(𝑞𝑝) − 𝐷 𝑓 𝑖𝑙𝑡𝑒𝑟(𝑞𝑝) (6.3)

Figure 6.8 visualizes the resulting quality costs 𝐶(𝑞𝑝) over their rate savings 𝑆(𝑞𝑝). From now on,

we refer to them as cost-saving (CS) curves.

The CS curves describe an inverse trend compared to the RD curves. The higher the rate savings,

the higher the quality difference compared to the baseline without any preprocessing applied. For

the Gaussian filter with a kernel size of 𝑘 = 3 and a low 𝜎, the quality costs are especially high for

QPs in the range of 30 to 40 compared to higher or lower QPs.

6.2.2.2 Bjøntegaard Delta Curves

We use the Bjøntegaard Delta Rate (BDR) [182] and the Bjøntegaard Delta (BD) of the VMAF score

(BD-VMAF) to compare two RD-QP curves of two different preprocessing filters with the same QP.

We use the Gaussian filter with a kernel size of 𝑘 = 3 as the reference signal. Then, we calculate

the BDR and BD-VMAF for every RD-QP curve and preprocessing filter. Figure 6.9 visualizes the

resulting BDR and BD-VMAF scores per QP. We refer to these curves presented in Figure 6.9 as

Bjøntegaard Delta (BD) curves. Every point on that curve represents either a BDR score in orange or

a BD-VMAF score in blue, calculated between two RD-QP curves that contain all filter parameters at

a certain QP.

The Gaussian filter with a kernel size of 𝑘 = 5 performs slightly worse than for a kernel size of 𝑘 = 3

in Figure 6.9a. The encoder requires 0.4 % to 1.3 % more bitrate to reach the same quality or reaches

0.7 to 0.2 lower VMAF scores for the same bitrate. Additionally, the BDR savings become smaller for

increasing QPs.

For the median filter in Figure 6.9b, the encoder requires up to 22 % more bitrate for low QPs to

reach the same visual quality. With increasing QPs, the BDR reduces right up to QP 44 and 45 where

the median filter performs better than the Gaussian filter with 𝑘 = 3 used as reference.
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Figure 6.8 Quality costs 𝐶 (ΔVMAF) over bitrate savings 𝑆 (ΔBitrate) of the individual preprocessing filters

compared to the unfiltered baseline. Adopted from [25] © 2022 IEEE.
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Figure 6.9 Bjøntegaard Delta (BD) per QP between RD-QP curves of the Gaussian filter with 𝑘 = 3 and the

preprocessing filter introduced. Adopted from [25] © 2022 IEEE.

Lastly, the JPEG filter in Figure 6.9c shows a better performance for QPs lower than 38 compared

to the Gaussian filter with 𝑘 = 3. For QPs of 40 and higher, extensive jumps in the BD curves can
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be observed. These jumps can be explained by the artifacts introduced by the JPEG preprocessor.

Encoding the artifacts introduced by the JPEG preprocessor leads to inconsistent RD curves as shown

in Figure 6.7d. Calculating the BDR and BD-VMAF from such inconsistent curves results in noticeably

variations.

Similarly to the RD-QP curve comparison, we define the cost-saving per QP (CS-QP) curve as the

CS curve for a preprocessing filter per QP. Then, we calculate the BDR and BD-VMAF scores between

two CS-QP curves for the same QP and different preprocessing filters. Figure 6.10 shows the resulting

BD curves for the Gaussian filter with 𝑘 = 5 and the median filter.
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Figure 6.10 Bjøntegaard Delta (BD) per QP between the CS-QP curves of the Gaussian filter with 𝑘 = 3 and the

preprocessing filter stated below the figure.

Both BD curves use the Gaussian filter with a kernel size of 𝑘 = 3 as a reference and show a similar

trend as calculated from the RD-QP curves. The BD calculation for the JPEG preprocessor is not

possible due to the artifacts introduced by the JPEG preprocessor. The coding artifacts introduced by

the JPEG preprocessor influence the interpolation step of the BD calculation.

6.2.2.3 Mean Saving-Cost Ratio

This varying performance further highlights the motivation for our extensive analysis. Based on this

analysis and the additional dimension introduced by the preprocessing filters, we propose a novel

evaluation method named mean saving-cost ratio (MSCR). The MSCR allows to effectively compare

the RD performance of different preprocessing algorithms and their parameters. We define the MSCR

as the logarithmic mean ratio of maximum bitrate savings 𝑆(𝑞𝑝) over maximum quality cost 𝐶(𝑞𝑝) for

all parameters of a preprocessing algorithm:

𝑀𝑆𝐶𝑅 = log
10

(
1

𝑁

𝑁∑
𝑖=1

max({𝑆𝑖(𝑞𝑝) : 𝑞𝑝 = 24, . . . , 45)}
max({𝐶𝑖(𝑞𝑝) : 𝑞𝑝 = 24, . . . , 45)}

)
, (6.4)

with 𝑖 as the preprocessing parameter for a certain filter. A high MSCR value means high bitrate

savings with low quality costs.

The MSCR together with the BD curve allows for effectively comparing the performance of different

preprocessing filters. The MSCR provides a single score describing the trade-off of bitrate savings

and quality costs. The BD curves enable us to analyze the BDR and BD-VMAF over certain QPs.

These two metrics can be seen as a similar approach to performance curves such as the receiver

operating characteristic (ROC) or Precision-Recall (PR) curve and their corresponding area under the
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curve (AuC), which are widely used in the field of ML to compare the performance of different ML

models [187, 188, 189]. Next, we use the MSCR proposed in this section for an extensive comparison

of the different preprocessing filters for multiple video sequences.

6.2.3 Evaluation

In this section, we use the evaluation methods proposed in Section 6.2.2 to analyze the RD performance

of different preprocessing filters. So far, we analyzed the Bus video sequence available at CIF resolution

and encoded it at a GoP length of one while using the x264 video encoder. For an extensive evaluation,

we use multiple video sequences showing different video content in terms of spatial and temporal

complexity [142, 141]. For CIF resolution, we evaluate with four video sequences [186] for a GoP length

of one and 20 using the x264 video encoder. Additionally, we use the NVIDIA HEVC (N-HEVC) [190]

hardware video encoder with full high definition (HD) resolution and GoP length of one and 20 on

three test video sequences from [191].

For both resolutions and video codecs, we use the mean bitrate and the mean VMAF scores of the

respective video sequences. We calculate the MSCR for the two GoP lengths, resolutions, and codecs

following the definition in Equation 6.4. Table 6.5 shows the resulting MSCR scores.

Table 6.5 Mean saving-cost ratio (MSCR) for the test video sequences at CIF and HD resolution and GoP lengths

of 1 and 20, encoded with x264 or NVIDIA HEVC, respectively.

Filter x264-CIF-1 x264-CIF-20 HEVC-HD-1 HEVC-HD-20

JPEG 2.45 - 4.00 1.36

Gauss-3 1.96 1.41 3.42 3.02

Gauss-5 1.93 1.36 3.37 2.97

Median 1.72 0.94 3.12 2.68

For a GoP length of one, the MSCR is highest for the JPEG preprocessor, followed by the Gaussian

filter. We selected the JPEG preprocessor as a readily available implementation of a DCT representing

a filter optimized for the HVS. In practice, the JPEG usually would not be considered as a preprocessor

due to its higher computational complexity compared to the Gaussian and median filter. Additionally,

the JPEG preprocessor shows unpredictable inconsistencies in the BD curve, according to Figure 6.9.

For a GoP length of 20, the JPEG preprocessor performs worst while the Gaussian filter achieves

the highest MSCR. The low MSCR values of the JPEG preprocessor with a GoP length of 20 can be

explained with the artifacts introduced by the JPEG preprocessor. These artifacts affect the motion

estimation of the inter-frame coding enabled with a GoP length larger than one. The Gaussian filter

and the median filter only blur the image content, which does not affect the inter-frame coding

process. Here, the Gaussian filter with a kernel size of 𝑘 = 3 achieves the highest MSCR and clearly

outperforms the median filter. Hence, we select the Gaussian filter as the most suitable preprocessing

algorithm for the quality filter introduced in Section 6.1.2. While the Gaussian filter has been a

popular choice in the literature before, the proposed evaluation method offers a systematic method

for quantifying the benefits of a chosen filter compared to other options.

6.3 Preprocessing Filter Bitrate Model

In the previous section, we systematically evaluated the influence of different preprocessing algo-

rithms on the RD performance. Based on the results of this evaluation, the Gaussian low-pass filter

achieved the best RD performance at a low computational complexity. Hence, we select the Gaus-

sian low-pass filter as the quality filter for the framework introduced in Section 6.1.2. To finally use
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the proposed preprocessing approach for rate control, we require a bitrate model that considers the

influence of a Gaussian low-pass filter on the video bitrate.

In this section, we present two novel bitrate models that specifically incorporate the effect of the

Gaussian low-pass filter on the video bitrate. For this, we model the bitrate as a function of the

quantization parameter 𝑞𝑝 , the video frame rate 𝑓 , the video resolution 𝑟, the GoP length 𝑛, and the

two Gaussian low-pass filter parameters: kernel size 𝑘 and standard deviation 𝜎. To the best of our

knowledge, no other bitrate model available considers the influence of the Gaussian low-pass filter

on the video bitrate.

Inspired by [141] and [142], we use the two content-dependent parameters of spatial activity (SA)

and temporal activity (TA) to consider the influence of the video content. Both parameters SA and

TA can be extracted from the uncompressed video sources, which is a suitable approach for the

video encoding hardware available in vehicles. Before we present the implementation of both the

analytical and the ML-based rate models, we summarize the two datasets created for developing the

rate models.

6.3.1 Dataset Generation

First, we created two datasets for the training and validation of both bitrate models proposed in this

thesis. The datasets represent the relationship of video bitrate and the respective parameters used for

encoding the video sequence. We used both the H.264/Advanced Video Coding (AVC) [105] and the

H.265/High Efficiency Video Coding (HEVC) [106] video codecs for the dataset generation.

The first dataset was created with the x264 [134] software video encoder on video sequences with

CIF resolution of 352×288 pixels. For the second dataset, we used the NVIDIA HEVC [190] hardware

video encoder on video sequences with HD resolution of 1920×1080 pixels. To achieve reliable

results, we use representative uncompressed video sequences with different content properties for

both datasets.

6.3.1.1 Video Content Measures

We quantify the video contents using the temporal activity (TA) and spatial activity (SA) as defined

in [192]. Both activity measures are modified versions of the spatial perceptual information (SI)

and temporal perceptual information (TI) such as defined by the International Telecommunication

Union (ITU) [193]. The SA values indicate the amount of spatial detail in the video sequence. The SA

value for a video sequence is defined as

𝑆𝐴 = 𝑚𝑒𝑎𝑛𝑡𝑖𝑚𝑒{𝑠𝑡𝑑𝑠𝑝𝑎𝑐𝑒 [𝑆𝑜𝑏𝑒𝑙(𝐹𝑛)]}. (6.5)

The luminance channel of a frame 𝐹𝑛 is processed by the Sobel filter to determine the gradient at

each pixel. Then, the standard deviation over all pixels is calculated. Finally, the mean of all standard

deviations for all frames is used to calculate a single SA value. Video sequences with a high amount

of spatial complexity lead to large SA values.

Similar to SA, the TA values indicate the amount of temporal change in the video sequence. The

TA value is calculated by

𝑇𝐴 = 𝑚𝑒𝑎𝑛𝑡𝑖𝑚𝑒{𝑠𝑡𝑑𝑠𝑝𝑎𝑐𝑒 [𝐹𝑛 − 𝐹𝑛−1]}, (6.6)

based on the difference of two consecutive frames 𝐹𝑛 and 𝐹𝑛−1. Similar to SA, we calculate the

standard deviation over all pixels of the frame difference. Then, the mean of all standard deviations

for all frames is used to calculate a single TA value. A high TA value corresponds to a video sequence

with a high amount of motion.
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6.3.1.2 x264-CIF

We created the dataset x264-CIF from 30 videos in CIF resolution with different spatial and temporal

characteristics [186, 191]. The videos of [186] are available in YUV format. The videos from [191] have

to be converted from Y4M format into YUV format.

From the 30 video sequences, we use 22 video sequences for training, four for validation, and

four for testing. Figure 6.11 visualizes the SA and TA properties of x264-CIF dataset as well as the

distribution of training, validation, and test set.
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Figure 6.11 SA and TA values of the training set (•), validation set (■), and test set (♦) for x264-CIF. Adopted

from [24] © 2022 IEEE.

For all videos, we create processed video sequences (PVSs) with QPs ranging from 24 to 45 at

a step size of one, five different frame rates 30 fps, 15 fps, 10 fps, 5 fps, and 3 fps, nine different

frame sizes ranging from the initial resolution CIF at 352×288 pixels down to quarter common

intermediate format (QCIF) at 176×144 pixels with a step size of 22×18 pixels, with different GoP

lengths 𝑛 ∈ {1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 30, 40, 60, 120}, and the parameters for the Gaussian

low-pass filter: kernel size 𝑘 ∈ {1, 3, 5, 7, 9} and standard deviation 𝜎 ∈ {0.0, 0.5, 1.0, . . . , 3.5}.
All PVSs are encoded with the H.264/AVC High profile using the x264 [134] software video encoder.

Using all permutations of encoding parameters results in 554 400 dataset entries per video sequence.

Given the 30 videos, the x264-CIF dataset consists of 16.6 × 10
6

samples.

6.3.1.3 NHEVC-HD

Similar to x264-CIF, we create the N-HEVC-HD dataset from 23 videos [191] in HD resolution. We

again convert the video sequences available at [191] from Y4M format into YUV format.

From the 23 videos available, we select 17 videos for training, three for validation, and three for

testing. Figure 6.12 presents SA and TA of the N-HEVC-HD dataset in the same way as for x264-CIF.

For all videos in HD resolution, we create different PVSs with encoding parameters similar to the

ones used for x264-CIF: 𝑞𝑝 ∈ {24, 29, 34, 40, 46}, 𝑓 ∈ {30, 15, 3}, 𝑟 ∈ {1920×1080, 1600×900, 1280×720},
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Figure 6.12 SA and TA values of the training set (•), validation set (■), and test set (♦) for N-HEVC-HD. Adopted

from [24] © 2022 IEEE.

and 𝑛 ∈ {1, 3, 6, 10, 20, 40, 120}. We select fewer parameter combinations compared to x264-CIF due

to the higher encoding time of the HEVC and the larger HD resolution, which also increases the

encoding time. For the Gaussian filter parameters, we use the same number of combinations as for

x264-CIF, since incorporating the influence of the Gaussian filter is the main purpose of the dataset and

has not been investigated before. The smaller N-HEVC-HD dataset is still sufficient for demonstrating

that the proposed models can work with different video coding standards.

We encode all video sequences with the H.265/HEVC Main profile using the NVIDIA HEVC [190].

This results in 9450 dataset entries per video sequence and 217 350 entries in total for the N-HEVC-HD
dataset.

6.3.2 Analytical Bitrate Model

Using the x264-CIF dataset created in Section 6.3.1.2, we develop an analytical model for estimating

the video bitrate. The bitrate model design is inspired by the bitrate models of [141] and [142]. We

model the video bitrate 𝑅 as a function of the quantization parameter 𝑞𝑝 , the video frame rate 𝑓 , the

video resolution 𝑟, the GoP length 𝑛, and the kernel size 𝑘 and standard deviation 𝜎 of a Gaussian

low-pass filter.

The influence of each parameter on the video bitrate is modeled as a separate correction factor.

These correction factors cover the spatial correction factor 𝑆𝐶𝐹(𝑞𝑝), the temporal correction fac-

tor 𝑇𝐶𝐹( 𝑓 ), the GoP length correction factor 𝑁𝐶𝐹(𝑛), the resolution correction factor 𝑅𝐶𝐹(𝑟), the

Gaussian correction factors 𝐺𝐶𝐹(𝑘), and Gaussian standard deviation correction factors 𝐺𝑆𝐷𝐶𝐹(𝜎).
Additionally, we define 𝑅𝑚𝑎𝑥,𝐼 as the maximum bitrate of the encoded video at the maximum frame

rate 𝑓𝑚𝑎𝑥 , the maximum resolution 𝑟𝑚𝑎𝑥 , the minimum quantization parameter 𝑞𝑝,𝑚𝑖𝑛 , an I-frame only

GoP structure with 𝑛 = 1, and without Gaussian image filtering. If no Gaussian image filtering is

used, then the kernel size can be considered as 𝑘 = 1, independently of the value for 𝜎. Thus, we
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formulate the video bitrate 𝑅 as the product of maximum bitrate 𝑅𝑚𝑎𝑥,𝐼 and the separate correction

factors:

𝑅 = 𝑅𝑚𝑎𝑥,𝐼 · 𝑆𝐶𝐹(𝑞𝑝) · 𝑇𝐶𝐹( 𝑓 ) · 𝑁𝐶𝐹(𝑛) · 𝑅𝐶𝐹(𝑟) · 𝐺𝐶𝐹(𝑘) · 𝐺𝑆𝐷𝐶𝐹(𝜎). (6.7)

We follow the idea of [141, 142] and model the individual correction factors in Equation 6.7 using

a two-step approach. In the first step, we model the correction factor based on the given PVSs.

For this, we select a subset of all PVSs based on the correction factor that should be modeled. The

subset selected from all PVSs contains all encoding parameters equal to their extrema such as defined

by 𝑅𝐼 ,𝑚𝑎𝑥 , except for the dominating parameter of the correction factor that should be modeled.

For the dominating parameter, the subset includes the full range of encoding parameters, since the

dominating parameter defines the behavior of the respective correction factor. Then, we normalize the

subset selected from all PVSs for the dominating extrema factor of the corresponding correction factor.

For instance, 𝑓 is the dominating factor of𝑇𝐶𝐹( 𝑓 ). In this case, we select all PVSs at 𝑟𝑚𝑎𝑥 = CIF or HD,

𝑞𝑝,𝑚𝑖𝑛 = 24, 𝑛 = 1, 𝑘𝑚𝑖𝑛 = 1, and 𝜎𝑚𝑖𝑛 = 0.5, while all values of 𝑓 are available in this subset. Then,

we normalize this subset for 𝑇𝐶𝐹( 𝑓 ) by 𝑓𝑚𝑎𝑥 . Finally, we determine the model parameters using least

square non-linear fitting (LSNF).

In the second step, we estimate the model parameters based on the standard video activity measures

SA and TA using an iterative generalized linear regression method. Figure 6.13 gives an overview of

all six correction factors for the exemplary video sequence Foreman.
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Figure 6.13 Measured (dots) and estimated (line) correction factors for the exemplary video Foreman of the

x264-CIF training set. Overall, the bitrate of Foreman could be modeled with a root mean square error (RMSE)

of 66.06 kbit/s, a normalized RMSE of 0.0132, and a Pearson correlation (PC) of 0.9695 according to Equation 6.7.

Adopted from [24] © 2022 IEEE.

The dots in Figure 6.13 represent the correction factors measured from PVSs and normalized for

the dominating parameter. The line represents the correlation factors estimated by the model based

on the two-step approach. We present the modeling process of the individual correction factors in

detail for the x264-CIF dataset in the following sections.
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6.3.2.1 Model Parameter Estimation

Before modeling the individual correction factors, we describe the stepwise feature selection approach

as used in [141, 142]. This approach allows for estimating the content-dependent maximum video

bitrate and the content-dependent model parameters for the individual correction factors based on

the standard video activity measures SA and TA.

Similar to [141, 142], we use the iterative generalized linear regression method (GLM) proposed

by McCullagh and Nelder [194] for predicting the content-dependent model parameters. We use the

cross-validation error (CVE) as a performance measure for the selection and combination of the most

suitable features. Here, the CVE is calculated as the RMSE of the measured and predicted value.

For the parameter estimation, we use the individual features 𝑆𝐴 and 𝑇𝐴, the interaction terms of the

features 𝑆𝐴 ·𝑇𝐴,
𝑆𝐴
𝑇𝐴 ,

𝑇𝐴
𝑆𝐴 , and the logarithm of the individual features as well as the interaction terms

log (𝑆𝐴), log (𝑇𝐴), log (𝑆𝐴 · 𝑇𝐴), log

(
𝑆𝐴
𝑇𝐴

)
.

Then, the GLM for modeling a value 𝑦 using the features 𝑓 (𝑥) with 𝑁 different properties can be

written as

𝑦 =

𝑁∑
𝑖=1

𝑁∑
𝑗=1

𝑎𝑖 · 𝑓 (𝑥𝑖) + 𝑏𝑖 , 𝑗 · 𝑓 (𝑥𝑖 , 𝑥 𝑗) + 𝑎0. (6.8)

The weights of both the single features 𝑎𝑖 and the interaction terms 𝑏𝑖 , 𝑗 are calculated with LSNF.

For every iteration, a new feature is added to the GLM and the feature that offers the lowest CVE is

selected. This process of adding features is repeated until the CVE does not further improve.

To obtain reliable results, we use the training set of the x264-CIF dataset introduced in Section 6.3.1.2

to train the models. The generalization capability of the models is then verified with the test set.

Further, we use leave-one-out cross-validation (LOOCV) for training the weights and calculating the

CVE. Using LOOCV avoids overfitting on the given training data and allows for developing more

robust and generic models.

The iterative GLM introduced previously is a generic method for estimating the content-dependent

model parameters based on the video activities SA and TA. In the following sections, we present

how we apply the iterative GLM to select the best-matching feature combinations for the PVSs of the

training set.

6.3.2.2 Maximum Bitrate Estimation

We start with the feature selection based on SA and TA to model 𝑅𝑚𝑎𝑥,𝐼 using the iterative GLM

approach introduced in Section 6.3.2.1 on the training set. For every feature, the CVE is calculated

and the best feature or combination of features offering the lowest CVE is selected. For the first

iteration, the feature 𝑆𝐴 offers the lowest CVE. We repeat this process two times while always

selecting the feature with the lowest CVE. We stop after iteration three, since the CVE cannot be

further reduced by adding more features. The resulting SA and TA dependent linear combination

𝑅𝑚𝑎𝑥,𝐼,𝑠𝑡 for the maximum bitrate 𝑅𝑚𝑎𝑥,𝐼 can be written as

𝑅𝑚𝑎𝑥,𝐼,𝑠𝑡 = 𝜌0 · 𝑆𝐴 + 𝜌1 ·
𝑆𝐴

𝑇𝐴
+ 𝜌2 · 𝑆𝐴 · 𝑇𝐴 + 𝜌3 , (6.9)

with the model parameters 𝜌0 = 38.0332 kbit/s, 𝜌1 = −61.2067 kbit/s, 𝜌2 = 0.3884 kbit/s, and

𝜌3 = 1.8015 × 10
3

kbit/s.

We evaluate the performance of the model by calculating the RMSE and the PC between the

measured and expected values for 𝑅𝑚𝑎𝑥,𝐼 for the training set. The model achieves an RMSE of

1319.3 kbit/s and a PC of 0.8641 for the training set. The values of 𝑅𝑚𝑎𝑥,𝐼 for the x264-CIF dataset

range from 0.511 kbit/s to 11.7 Mbit/s.
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6.3.2.3 Spatial Correction Factor

We model the spatial correction factor 𝑆𝐶𝐹 to describe the influence of the quantization parameter

𝑞𝑝 on the video bitrate. We use the subset of PVSs with a bitrate normalized by 𝑅𝑚𝑎𝑥,𝐼 and a varying

𝑞𝑝 such as introduced in Section 6.3.2. Figure 6.13a visualizes the 𝑆𝐶𝐹 over the 𝑞𝑝 for the exemplary

video sequence Foreman. Similar to [141, 142], we model 𝑆𝐶𝐹 as an inverse power function

𝑆𝐶𝐹(𝑞𝑝 , 𝑞𝑝,𝑚𝑖𝑛) =
(

𝑞𝑝

𝑞𝑝,𝑚𝑖𝑛

)−𝑎
, (6.10)

with the content-dependent model parameter 𝑎. The content-dependent model parameter 𝑎 spec-

ifies the decreasing rate of 𝑆𝐶𝐹 for increasing QPs. We determine 𝑎 for every video sequence in the

training set by LSNF with an RMSE of 0.0397 and a PC of 0.9941 between estimated and measured

𝑆𝐶𝐹.

The estimation of 𝑎𝑠𝑡 based on SA and TA follows the same iterative GLM procedure as for 𝑅𝑚𝑎𝑥,𝐼,𝑠𝑡 .

The model achieves the lowest CVE of 0.2704 after two iterations. Adding more features to the GLM

does not reduce the CVE any further. The resulting model can be written as

𝑎𝑠𝑡 = 𝛼0 · 𝑆𝐴 + 𝛼1 · 𝑆𝐴 · 𝑇𝐴 + 𝛼2 , (6.11)

with the weights 𝛼0 = −4.9626 × 10
−3

, 𝛼1 = −7.0579 × 10
−5

, and 𝛼2 = 3.5886.

We again calculate the RMSE and PC between estimated and measured 𝑆𝐶𝐹. This time we use the

content-dependent parameter 𝑎𝑠𝑡 to estimate the 𝑆𝐶𝐹. The results show an RMSE of 0.0482 and a PC

of 0.9887.

6.3.2.4 Temporal Correction Factor

We model the influence of the video frame rate 𝑓 on the bitrate using the temporal correction factor

𝑇𝐶𝐹. First, the PVS subset with varying 𝑓 is normalized by 𝑅𝑚𝑎𝑥,𝐼 of the individual video sequences.

Figure 6.13b shows the measured and estimated 𝑇𝐶𝐹 for the exemplary Foreman video sequence. We

model 𝑇𝐶𝐹 as a power function, similar to [141, 142]:

𝑇𝐶𝐹( 𝑓 , 𝑓𝑚𝑎𝑥) =
(

𝑓

𝑓𝑚𝑎𝑥

)𝑏
. (6.12)

The content-dependent parameter 𝑏 indicates the slope of 𝑇𝐶𝐹 for increasing frame rates. We

calculate 𝑏 between measured and estimated 𝑇𝐶𝐹 using LSNF with an RMSE of 0.0 and a PC of 1.0.

It should be noted that the RMSE and PC for 𝑇𝐶𝐹 are not perfect matches, but rounded based on the

floating point accuracy.

Similar to [142], we set 𝑏𝑠𝑡 = 1, since 𝑏 is almost one for every video. The performance 𝑏𝑠𝑡 could

not be further improved by adding more features to the GLM. The performance of 𝑇𝐶𝐹𝑠𝑡 results in

an RMSE of 1 × 10
−6

and a PC of 1.0.

6.3.2.5 GoP Length Correction Factor

The influence of the GoP length 𝑛 is modeled with the GoP correction factor 𝑁𝐶𝐹. For this, we use

the PVS subset with varying 𝑛, normalized by 𝑅𝑚𝑎𝑥,𝐼 . Figure 6.13c shows 𝑁𝐶𝐹 over 𝑛 for the Foreman
video sequence. Similar to [142], we model the factor as an inverse power function

𝑁𝐶𝐹(𝑛) = 𝑐 ·
(

1

𝑛

)𝑑
+ 𝑒 , (6.13)

with the content-dependent parameters 𝑐, 𝑑, and 𝑒. The model performance for measured and

estimated 𝑁𝐶𝐹 using LSNF is an RMSE of 0.0013 and a PC of 0.9999.
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We model the content-dependent parameters 𝑐𝑠𝑡 , 𝑑𝑠𝑡 , and 𝑒𝑠𝑡 based on SA and TA using the iterative

GLM on the training set. For 𝑐𝑠𝑡 , we stop after two iterations with the lowest CVE of 0.0660. The

resulting model can be written as

𝑐𝑠𝑡 = 𝛾0 · log(𝑇𝐴) + 𝛾1 · 𝑇𝐴 + 𝛾2 , (6.14)

with 𝛾0 = −0.1824, 𝛾1 = −0.0034, and 𝛾2 = −0.0034.

𝑑𝑠𝑡 shows the lowest CVE 0.0457 after one iteration of the GLM. The model for 𝑑𝑠𝑡 can be written as

𝑑𝑠𝑡 = 𝛿0 ·
𝑇𝐴

𝑆𝐴
+ 𝛿1 , (6.15)

with 𝛿0 = 0.1011 and 𝛿1 = 1.0240.

Finally, 𝑒𝑠𝑡 achieves the lowest CVE of 0.0457 after two iterations. The resulting content-dependent

parameter model 𝑒𝑠𝑡 is

𝑒𝑠𝑡 = 𝜖0 · log(𝑇𝐴) + 𝜖1 · 𝑇𝐴 + 𝜖2. (6.16)

with 𝜖0 = 0.1813, 𝜖1 = 0.0034, and 𝜖2 = −0.0328.

The overall performance of 𝑁𝐶𝐹𝑠𝑡 using the content-dependent parameters 𝑐𝑠𝑡 , 𝑑𝑠𝑡 , and 𝑒𝑠𝑡 leads

to an RMSE of 0.0588 and a PC of 0.9641.

Lottermann et al. [142] also model the influence of the GoP structure. This structure includes the

distribution of P-frames and B-frames within the GoP. Since the proposed approach is designed for

live streaming, we do not consider using B-frames to avoid additional delays. Hence, we do not model

the influence of the GoP structure, assuming only I-frames and P-frames in an IPPP structure.

6.3.2.6 Resolution Correction Factor

The correction factor models presented so far were inspired by [141, 142]. The following correction

factors are novel models specifically designed for the requirements of the proposed preprocessing

filter concept.

The resolution correction factor 𝑅𝐶𝐹 specifies the influence of the frame resolution 𝑟 on the video

bitrate. The frame resolution is defined by the width and the height of a frame. In the following, we

only use the word width to refer to the frame resolution, since width and height are reduced in the same

way when downscaling a frame to maintain the aspect ratio. We select the PVS subset with variable

𝑟 and normalize it by 𝑅𝑚𝑎𝑥,𝐼 . Then, we visualize the 𝑅𝐶𝐹 for the Foreman sequence in Figure 6.13d.

The 𝑅𝐶𝐹 is zero for a resolution of zero and converges to one for the maximum resolution 𝑟𝑚𝑎𝑥 . This

behavior is similar to the 𝑇𝐶𝐹. Therefore, we model the 𝑅𝐶𝐹 as a power function

𝑅𝐶𝐹(𝑟, 𝑟𝑚𝑎𝑥) =
(

𝑟

𝑟𝑚𝑎𝑥

) 𝑗
, (6.17)

with the content-dependent parameter 𝑗. Similar to the 𝑇𝐶𝐹 and the content-dependent parameter

𝑎, 𝑗 indicates how fast the 𝑅𝐶𝐹 rises for increasing frame resolutions. Using LSNF, the model achieves

an RMSE of 0.0146 and a PC of 0.9982.

Next, we model 𝑗𝑠𝑡 based on SA and TA using the iterative GLM. We stop after the first iteration

with the lowest CVE of 0.2135. The resulting linear combination for 𝑗𝑠𝑡 can be written as

𝑗𝑠𝑡 = 𝜑0 · 𝑆𝐴 · 𝑇𝐴 + 𝜑1. (6.18)

The model parameters depending on SA and TA are 𝜑0 = 3.4594 × 10
−5

and 𝜑1 = 1.5879. These

parameters lead to a performance for the model 𝑅𝐶𝐹𝑠𝑡 with an RMSE of 0.0384 and a PC of 0.9848.
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6.3.2.7 Gaussian Kernel Correction Factor

To model the influence of the Gaussian low-pass filter, we start with the kernel size 𝑘. We use the

PVS subset normalized by 𝑅𝑚𝑎𝑥,𝐼 and a variable 𝑘 for creating the Gaussian correction factor 𝐺𝐶𝐹.

Figure 6.13e presents the 𝐺𝐶𝐹 over 𝑘 for the exemplary video Foreman. Similar to the 𝑁𝐶𝐹, we model

the 𝐺𝐶𝐹 as an inverse power function

𝐺𝐶𝐹(𝑘, 𝑘𝑚𝑖𝑛) = 𝑙 ·
(
𝑘𝑚𝑖𝑛

𝑘

)𝑚
+ 𝑜, (6.19)

with the content-dependent parameter 𝑙, 𝑚, and 𝑜. The parameters describe how fast the 𝐺𝐶𝐹 is

decreasing for an increasing kernel size. We determine the content-dependent parameters by LSNF

with an RMSE of 0.0 and a PC of 1.0. The accuracy for RMSE and PC is four decimal points.

Next, we use the GLM to select the features for the content-dependent parameter 𝑙𝑠𝑡 based on SA

and TA. We stop the GLM after the first iteration with the lowest CVE of 0.0267. The model obtained

for 𝑙𝑠𝑡 can be written as

𝑙𝑠𝑡 = �0 · 𝑆𝐴 + �1. (6.20)

The weight factors of 𝑙𝑠𝑡 are �0 = −9.2718 × 10
−5

and �1 = 0.1759.

Similarly to 𝑙𝑠𝑡 , we use the GLM for the feature selection of 𝑚𝑠𝑡 and 𝑜𝑠𝑡 . However, both parameters

show the best performance for constant values of 𝑚𝑠𝑡 = 15.7108 and 𝑜𝑠𝑡 = 0.8342. Thus, we use the

constant values for 𝑚𝑠𝑡 and 𝑜𝑠𝑡 , since none of the features added could improve the performance.

We calculate the overall performance for the measured and estimated 𝐺𝐶𝐹𝑠𝑡 . The results show an

RMSE of 0.0282 and a PC of 0.9202.

6.3.2.8 Gaussian Standard Deviation Correction Factor

As the second influencing factor of the Gaussian low-pass filter, we use its standard deviation 𝜎. We

model the Gaussian standard deviation correction factor 𝐺𝑆𝐷𝐶𝐹 from the PVS subset normalized

by 𝑅𝑚𝑎𝑥,𝐼 with a variable 𝜎. The 𝐺𝑆𝐷𝐶𝐹 over 𝜎 for the Foreman video sequence is visualized in

Figure 6.13f. With a similar behavior as for 𝑁𝐶𝐹 and 𝐺𝐶𝐹, we model the 𝐺𝑆𝐷𝐶𝐹 as an inverse power

function:

𝐺𝑆𝐷𝐶𝐹(𝜎, 𝜎𝑚𝑖𝑛) = 𝑡 ·
(𝜎𝑚𝑖𝑛

𝜎

)𝑢
+ 𝑣, (6.21)

with the content-dependent parameters 𝑡, 𝑢, and 𝑣. The content-dependent parameters describe

the decreasing rate of the 𝐺𝑆𝐷𝐶𝐹 for an increasing 𝜎. We determine the parameters using LSNF,

achieving an RMSE of 0.0006 and a PC of 0.9999 between measured and estimated 𝐺𝑆𝐷𝐶𝐹.

We use the iterative GLM to model the content-dependent parameters based on SA and TA. We

stop the GLM after one iteration, as the performance could not be further improved by adding more

features. 𝑡𝑠𝑡 achieves the lowest CVE of 0.0370, 𝑢𝑠𝑡 of 0.5147, and 𝑜𝑠𝑡 of 0.0373. The resulting models

for the content-dependent parameters are

𝑡𝑠𝑡 = 𝜏0 · log (𝑆𝐴 · 𝑇𝐴) + 𝜏1 , (6.22)

𝑢𝑠𝑡 = 𝜐0 · 𝑆𝐴 · 𝑇𝐴 + 𝜐1 , (6.23)

𝑣𝑠𝑡 = �0 · log (𝑆𝐴 · 𝑇𝐴) + �1. (6.24)

The model performance between measured and estimated 𝐺𝑆𝐷𝐶𝐹𝑠𝑡 using the model parameters

estimated for 𝑡𝑠𝑡 , 𝑢𝑠𝑡 , and 𝑣𝑠𝑡 shows an RMSE of 0.0377 and a PC of 0.9444.

With the 𝐺𝑆𝐷𝐶𝐹 as the last parameter of Equation 6.7, we are now able to estimate the video

bitrate 𝑅 based on given encoding parameters and the video complexity measures SA and TA using

an analytical bitrate model. Next, we present an ML-based approach to estimate the video bitrate.
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6.3.3 Machine Learning-Based Bitrate Model

In addition to developing an analytical model, we also investigate a data-driven approach for es-

timating the video bitrate 𝑅. We propose an ML-based approach where we approach the bitrate

estimation as a regression task. We design a multi-layer perceptron consisting of five fully connected

layers (FCLs) in a triangular shape as shown in Figure 6.14.
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Figure 6.14 The schematic architecture of the proposed bitrate prediction model. The multi-layer perceptron

consists of five fully connected layer (FCL) in triangular shape to predict the bitrate 𝑅 from the input 𝐼 =

{𝑆𝐴, 𝑇𝐴, 𝑞𝑝 , 𝑓 , 𝑛, 𝑟, 𝑘, 𝜎} ∈ ℝ8
. Adopted from [24] © 2022 IEEE.

The FCLs consist of 180, 120, 90, 60, and 1 neurons. We use Rectified Linear Units (ReLUs) as

activation functions, except for the last layer. Adding further layers or increasing the size of the

existing layers did not improve the performance. The decreasing number of neurons in the triangular

shape reduced the complexity of the model while not affecting the accuracy. For any input 𝐼, the

model predicts the resulting video bitrate 𝑅, with the input

𝐼 = {𝑆𝐴, 𝑇𝐴, 𝑞𝑝 , 𝑓 , 𝑛, 𝑟, 𝑘, 𝜎} ∈ ℝ8. (6.25)

For the training, we use the Adam optimizer [195] with a learning rate of 0.0001. The Adam

optimizer has shown superior results in our experiments compared to the stochastic gradient descent

(SGD) optimizer. We train with a batch size of 256 for 200 epochs with a reduce-on-plateau strategy.

We multiply the learning rate with a factor of 0.5 if the training loss does not change for ten epochs.

Additionally, we store the best model after every epoch. The learning rate and batch size values used

for the training process were determined empirically using the validation set.

The trained ML-based model as well as the analytical model of Equation 6.7 are two novel solutions

for estimating the video bitrate using encoding parameters and video activity measures. Next, we

evaluate the performance of both models on the test set and compare them to three state-of-the-art

approaches.

6.3.4 Results

In this section, we present the experiments to evaluate the performance of the proposed bitrate models.

First, we analyze the performance of the analytical and ML-based model in detail on both datasets.

Then, we compare both proposed bitrate models to three state-of-the-art bitrate models. Finally,

we discuss the analytical and ML-based model considering deployment aspects such as hardware

limitations and the requirements of embedded systems.
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6.3.4.1 Bitrate Model Comparison

In Section 6.3.2, we already demonstrated the performance of the individual correction factors and

content-dependent parameters on the x264-CIF training set. Here, we further analyze the performance

of the correction factors and compare the overall performance of both proposed bitrate models,

analytical and ML-based, on the test sets of both datasets, x264-CIF and N-HEVC-HD.

6.3.4.1.1 x264-CIF We start with the performance of the individual correction factors for the analy-

tical model on the x264-CIF dataset. Table 6.6 highlights the RMSE and PC of all correction factors

for the training set and the test set.

Table 6.6 Performance of the SA- and TA-dependent correction factors 𝑆𝐶𝐹𝑠𝑡 , 𝑇𝐶𝐹𝑠𝑡 , 𝑁𝐶𝐹𝑠𝑡 , 𝑅𝐶𝐹𝑠𝑡 , 𝐺𝐶𝐹𝑠𝑡 ,
𝐺𝑆𝐷𝐶𝐹𝑠𝑡 and the maximum bitrate 𝑅𝑚𝑎𝑥,𝐼,𝑠𝑡 for x264-CIF. 𝑅𝑚𝑎𝑥,𝐼 ranges from 0.511 kbit/s to 11.7 Mbit/s.

Training Set Test Set

Factor RMSE PC RMSE PC

𝑅𝑚𝑎𝑥,𝐼,𝑠𝑡 1319.3082 kbit/s 0.8641 1106.06 kbit/s 0.8468

𝑆𝐶𝐹𝑠𝑡 0.0482 0.9887 0.0460 0.9910

𝑇𝐶𝐹𝑠𝑡 1 × 10
−6

1.0000 1 × 10
−7

1.0000

𝑁𝐶𝐹𝑠𝑡 0.0588 0.9641 0.0721 0.9799

𝑅𝐶𝐹𝑠𝑡 0.0384 0.9848 0.0367 0.9879

𝐺𝐶𝐹𝑠𝑡 0.0282 0.9202 0.0180 0.9646

𝐺𝑆𝐷𝐶𝐹𝑠𝑡 0.0377 0.9444 0.0366 0.9525

All models designed for the individual correction factors achieve a performance on the test set

comparable to the performance on the training set. It should be noted that the PC for 𝑇𝐶𝐹𝑠𝑡 is not

exactly one, but rounded to four decimal points.

Next, we calculate the overall performance for estimating the video bitrate of both the analytical

and ML-based bitrate model. Table 6.7 lists the normalized RMSE and PC between the estimated and

measured bitrates on the training set, the test set, and for all videos.

Table 6.7 Performance results of the proposed analytical and ML-based models for x264-CIF.

Training Set Test Set All Videos

Model RMSE PC RMSE PC RMSE PC

Analytical 0.0179 0.9627 0.0186 0.9564 0.0180 0.9617

ML 0.0111 0.9723 0.0078 0.9813 0.0106 0.9721

For the test set, the analytical model shows an average performance with an RMSE of 1.86 % and a

PC of 0.9564. The ML model outperforms the analytical model for the RMSE in all cases by a delta of

0.7 % on average. With an RMSE of 0.78 % on the test set, the ML model reduces the error by more

than half relative to the analytical model.

To visualize the overall performance of both bitrate models proposed in this chapter, we use both

models to estimate the bitrate for all encoding parameters on the Foreman video sequence. Figure 6.15

shows the resulting bitrates estimated by the analytical model in Figure 6.15a and the ML-based

model in Figure 6.15b.
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(b) ML-Based Model

Figure 6.15 Performance evaluation of the analytical rate model and the ML-based rate model for the video

Foreman of x264-CIF. The analytical model on the left achieves an RMSE of 66.06 kbit/s and a PC of 0.9695.

The ML-based rate model on the right achieves an RMSE of 23.03 kbit/s and a PC of 0.9933. Adopted from

[24] © 2022 IEEE.

We visualize the bitrate estimated by the proposed models over the bitrate measured from encoding

the video sequences. A close distance to the angle bisector represents a good performance. By

inspection, the ML-based model performs superior to the analytical bitrate model.

6.3.4.1.2 N-HEVC-HD Similar to the x264-CIF dataset, we present the performance results for both

of the bitrate models on the N-HEVC-HD dataset. Table 6.8 summarizes the RMSE and PC on the

training set, the test set, and for all videos of N-HEVC-HD.

Table 6.8 Performance results of the proposed analytical and ML-based models for N-HEVC-HD.

Training Set Test Set All Videos

Model RMSE PC RMSE PC RMSE PC

Analytical-CIF 0.0900 0.9527 0.0935 0.9649 0.0906 0.9545

Analytical-HD 0.0483 0.9536 0.0444 0.9673 0.0477 0.9557

ML-CIF 0.0512 0.7951 0.0613 0.8985 0.0528 0.8152

ML-HD 0.0244 0.9851 0.0929 0.8035 0.0424 0.9411

ML-HD-D 0.0415 0.9335 0.0433 0.8666 0.0418 0.9187

Unlike the evaluation on the x264-CIF dataset, we evaluated multiple versions of the analytical

and ML-based model on the N-HEVC-HD dataset. First, we directly evaluate the analytical model

Analytical-CIF, which was trained on the x264-CIF dataset. Analytical-CIF reaches an RMSE of 0.0935

and a PC of 0.9649 on the test set of the N-HEVC-HD dataset. Using the training data of the N-HEVC-
HD dataset, we retrain the analytical model Analytical-HD. The Analytical-HD model retrained for HD

resolution reduces the RMSE to 0.0444. The PC for Analytical-HD increases to 0.9673, which is the

best result on the N-HEVC-HD test set. This demonstrates that the proposed analytical bitrate model

generalizes well and allows for a fast adaptation to new training data. Further improvements are

possible by repeating the GLM process introduced in Section 6.3.2.1 to model the content-dependent

parameters specifically for the new data.
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Similar to the analytical model, we start with the ML-based model ML-CIF, which was trained on

the x264-CIF dataset. Then, we evaluate the ML-CIF model on the N-HEVC-HD dataset. Next, we use

the same architecture of ML-CIF for training the new model ML-HD for 400 epochs on the N-HEVC-
HD dataset. Since the N-HEVC-HD dataset contains significantly less data compared to the x264-CIF
dataset, we observe a strong overfitting of the model. We address the overfitting on the fewer training

data by adding a dropout layer after every FCL. We empirically determine that a large dropout rate

of 0.75 reaches the best performance. The resulting model ML-HD-D that includes the dropout layers

reaches an RMSE of 0.0433 and a PC of 0.8666 on the N-HEVC-HD test set. This demonstrates that

the ML-based approach is also able to generalize to the new data and still outperforms the analytical

model regarding the RMSE.

In general, both approaches perform worse on the N-HEVC-HD dataset compared to the x264-CIF
dataset. A possible explanation for this is the significantly smaller size of the N-HEVC-HD dataset

compared to the x264-CIF dataset. The N-HEVC-HD dataset contains 98.7 % fewer data samples

compared to the x264-CIF dataset, which is in particular critical for the ML-based approach. Since

the N-HEVC-HD dataset is only used for demonstrating that the proposed models can work with

different video coding standards and resolutions, this issue could be easily addressed by creating a

larger dataset with more samples. Next, we compare both proposed models to similar state-of-the-art

approaches.

6.3.4.2 State-of-the-Art Bitrate Model Comparison

Here, we evaluate the proposed models and three comparable bitrate models that can be considered as

state of the art. We compare the spatio-temporal rate model (STRM) [141], which we refer to as STRM,

and its extension [142], which we refer to as STRM-GOP. STRM and STRM-GOP show state-of-the-

art performance for rate estimations based solely on encoding parameters and video characteristics.

The estimation based on these parameters makes both models independent of the underlying video

codec. Additionally, we compare our models to the bitrate model of Ma et al. [138], which we

refer to as MaRM. MaRM estimates the bitrate based on encoding parameters and three content-

dependent features. The content-dependent features are based on motion vector (MV) information

of the underlying codec. This dependency on the underlying codec makes the model less suitable for

hardware encoders with only limited access to the underlying codec.

Since all models are designed for the x264 [134] software video encoder and video sequences at CIF

resolution, we only evaluate for the x264-CIF dataset. Additionally, the three state-of-the-art models

do not support all encoding parameters introduced in Section 6.3.2. Hence, we compare all models

on two subsets with fewer parameters as well as on the full x264-CIF dataset. The two subsets are

defined by the correction factors which are supported by the state-of-the-art approaches. MaRM [138]

and STRM [141] only consider the spatial correction factor 𝑆𝐶𝐹 and the temporal correction factor

𝑇𝐶𝐹. STRM-GOP [142] also considers the GoP length correction factor 𝑁𝐶𝐹 in addition to these

two correction factors. We compare all models on all different dataset configurations to ensure a fair

comparison.

MaRM [138], STRM [141], and STRM-GOP [142] were designed with smaller and less diverse

datasets of five to seven videos. Therefore, we evaluate both models twice, in two different versions.

First, we use the parameters such as provided in the original paper as a reference. For a second

version, we use the parameters from finetuning the models on the larger x264-CIF dataset introduced

in Section 6.3.1.2. The models finetuned on the x264-CIF dataset are referred to as MaRM★
, STRM★

and STRM-GOP★
. Table 6.9 summarizes the results for the proposed models and the state-of-the-art

models, first with the parameters as provided in the papers [138, 141, 142] and a second time finetuned

on the x264-CIF training set.

STRM, STRM-GOP, and MaRM show a poor performance with RMSEs of 43.1 %, 4724 %, and

35.7 %, respectively. In particular STRM-GOP exhibits an RMSE several orders of magnitudes larger

than the other methods. This can be explained by the smaller datasets of five to seven videos used

for training those models compared to our training dataset with 22 videos. Since the 𝑁𝐶𝐹 used in
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Table 6.9 Performance results of the proposed models in comparison to the state-of-the-art models on the x264-
CIF test set. The state-of-the-art models were evaluated twice, with and without finetuning on the x264-CIF
training dataset. The models finetuned on the x264-CIF training set are indicated with

★
.

Features 𝑆𝐶𝐹, 𝑇𝐶𝐹 𝑆𝐶𝐹, 𝑇𝐶𝐹, 𝑁𝐹𝐶 All

Model RMSE PC RMSE PC RMSE PC

Analytical 0.0565 0.9951 0.0333 0.9788 0.0186 0.9564

ML 0.0510 0.9787 0.0178 0.9776 0.0078 0.9813

STRM [141] 0.4311 −0.3404 0.4362 −0.2502 0.4486 −0.2031

STRM
★

[141] 0.0810 0.9951 0.2351 0.6784 0.2713 0.5870

GOP-STRM [142] 109.9401 −0.1833 47.2404 −0.0259 47.2498 −0.0034

GOP-STRM
★

[142] 0.0621 0.9955 0.0302 0.9812 0.0760 0.8628

MaRM [138] 0.3570 −0.8584 0.3199 −0.8462 0.2142 −0.7149

MaRM
★

[138] 0.1073 0.9976 0.1454 0.9855 0.2602 0.8306

STRM-GOP is an inverse power function, the error grows exponentially for inaccurate parameters.

However, after finetuning all models with the x264-CIF training set, they achieve a good performance

again with an RMSE of 8.1 % for STRM★
, an RMSE of 3.0 % for STRM-GOP★

, and an RMSE of 10.5 %

for MaRM on their operational design domains. After finetuning, MaRM reaches the best PC with

0.9976. This validates the approach of using analytical models, since they can be easily finetuned

with additional training data.

For the subsets 𝑆𝐶𝐹, 𝑇𝐶𝐹 and 𝑆𝐶𝐹, 𝑇𝐶𝐹, 𝑁𝐹𝐶, the MaRM★
reaches comparable or the best results

regarding the PC. In terms of RMSE, the proposed analytical and ML models perform best on

the subsets 𝑆𝐶𝐹, 𝑇𝐶𝐹 and 𝑆𝐶𝐹, 𝑇𝐶𝐹, 𝑁𝐹𝐶, respectively. A possible explanation for the superior

performance of the analytical model compared to the ML model for the subset 𝑆𝐶𝐹, 𝑇𝐶𝐹 is the higher

flexibility due to the individual correction factors. The ML model is trained for the entire dataset

including all variations of parameters, while the analytical model only considers the contribution of

the supported correction factors. The correction factors that do not contribute in the reduced dataset

result in a multiplication with one for the analytical model.

However, on the full x264-CIF dataset including variable frame sizes and the Gaussian low-pass

filter, the ML model performs best with the lowest RMSE of 0.78 % and the highest PC of 0.9813. This

demonstrates the potential of using neural networks for this task. While our analytical model still

reaches a good performance with an RMSE of 1.86 %, the finetuned state-of-the-art models cannot

reach a comparable performance with RMSEs of 7.6 % for STRM-GOP★
, 27.1 % for STRM★

, and 26.0 %

for MaRM★
. This can be explained by the fact that these models were not designed and trained for

the consideration of these influence factors. Especially the influence of the Gaussian low-pass filter

is novel for a bitrate model, with the idea of using the low-pass filter for video adaptation first being

proposed in this chapter. Interestingly, the RMSE of MaRM became worse after finetuning. A possible

explanation for this is that the finetuning only improves the supported correction factors 𝑆𝐶𝐹 and

𝑇𝐶𝐹, which can still reduce the overall performance on the entire dataset.

In summary, both proposed bitrate models outperform the state of the art by achieving an RMSE

that is 22 % lower for the subset 𝑆𝐶𝐹, 𝑇𝐶𝐹 and 70 % lower on the subset 𝑆𝐶𝐹, 𝑇𝐶𝐹, 𝑁𝐹𝐶. Further, no

existing state-of-the-art model was able to estimate the influence of the Gaussian low-pass filter on

the video bitrate. The proposed bitrate models are the first to address this factor.
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6.3.4.3 Analytical Model vs. Machine Learning Model

In the previous sections, the ML model clearly outperforms the analytical model in terms of accuracy.

Here, we compare both proposed bitrate models in practical streaming systems. For this comparison,

we consider the aspects of hardware limitations and the requirements of embedded systems.

While both models show a good accuracy compared to the state of the art, the ML model out-

performs the analytical model for the x264-CIF dataset by 138 % RMSE on the test set. However,

the analytical model requires only a lightweight training and the GLM repeated on the individual

content-dependent parameters when changing the dataset or the video encoder. On the other hand,

the ML model needs to be retrained from scratch for new data.

The size and the runtime of a specific model are always critical requirements on embedded systems.

With only 35 parameters and an evaluation time of 8.75 × 10
−6

s per prediction, the analytical model

is faster than the ML model and computationally less complex. On the other hand, the ML model

can benefit from hardware optimization commonly used for ML applications. Additionally, the ML

proposed in this thesis is still a lightweight model with 32 641 parameters and a prediction time

of 14.78 × 10
−6

s per evaluation. To evaluate the ML model, we used an NVIDIA 1050Ti Graphics

Processing Unit (GPU) and almost matched the execution time of the analytical model. This execution

time comparable to the analytical model shows that with suitable hardware, the runtime of the ML

model is not an issue.

Finally, the analytical model can be solved for any variable in Equation 6.7. Due to the clear

definition, the analytical model is more intuitive to understand and easier to debug. The multilayer

perceptron used for the ML model is a black box, which makes the identification of potential errors

more challenging. Additionally, a separate ML model needs to be trained for predicting different

variables.

Based on the previous discussion, both models can be recommended for estimating the video bitrate.

If the best possible performance should be achieved, the ML model is preferred. The analytical model

should be considered on embedded systems with high computational constraints. Next, we use the

two bitrate models presented in this section to estimate the parameters required for controlling the

individual preprocessing filters.

6.4 Preprocessor Rate Control

The preprocessing filter concept proposed in Section 6.1 allows for an individual adaptation of

temporal and spatial resolution as well as the rate/quality of multiple segments in a SFV with only a

single encoder available. Since this approach should be used in the same way as if there were multiple

encoders available, the parameters required for the preprocessing filters need to be estimated from

the encoding parameters used to control the individual video encoders. In Section 6.1, we already

demonstrated that the temporal and spatial filter can directly use the given encoding parameters such

as estimated by the TAMVA scheme introduced in Chapter 5. Now, the open challenge is estimating

the preprocessing filter parameters of the quality filter. With the Gaussian low-pass filter selected as

the quality filter in Section 6.2, we designed two bitrate models that specifically consider the influence

of the Gaussian low-pass filter on the video bitrate in the previous Section 6.3.

In this section, we use these bitrate models to design a preprocessor rate control approach that

allows for estimating the parameters required to control the respective preprocessing filter. The

parameters controlling the preprocessing filters are estimated from the adaptation parameters to

control multiple encoders such as provided by the TAMVA scheme. We next introduce the general

rate conditions valid for the superframe composition and the CQP mode used for the single encoder.

Then, we present the preprocessor model estimating the filter parameters.
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6.4.1 Superframe Composition

We compose the individually preprocessed camera view frames into a single superframe before

encoding the resulting superframe. One possible solution for the superframe composition is to assign

every camera view segment a fixed position and origin within the superframe. For the fixed location

in the superframe, the maximum resolution of each camera view segment is used. In case the spatial

filter rescales individual camera views, they will be placed at the same origin. The remaining parts of

the superframe not covered by downscaled segments remain black or empty. Figure 6.16 visualizes

this superframe composition process.

Superframe Generation

Figure 6.16 Superframe composition with fixed frame positions based on the maximum resolution possible.

These empty parts in the SFV do not contribute to the overall bitrate since the encoder will treat them

with skip mode, similar to the ROI masking approach introduced in Chapter 5. We experimentally

validated this behavior in Section 6.1.4.1.

The individual camera views in vehicles typically have almost no overlapping regions, which

prevents the encoder from exploiting inter-view dependencies. Thus, the superframe bitrate 𝑅𝑆𝐹𝑉

can be formulated as the sum of individual view bitrates 𝑅𝑖 for scenarios with almost no overlap

among the cameras:

𝑅𝑆𝐹𝑉 =
∑
𝑖

𝑅𝑖 . (6.26)

6.4.2 CQP Mode Conditions

The proposed preprocessing concept enables individual rate/quality adaptations in the SFV. This

means 𝑁 individual segments can be encoded at different temporal, spatial, and quality levels using

a single encoder. For this, we use the encoder in CQP mode to avoid modifications of the bitrate

due to the rate control of the single encoder. In CQP mode, the QP can be directly used to control

the quality and resulting bitrate 𝑅(𝑞𝑝), which depends on the quantization parameter 𝑞𝑝 . For 𝑁

individual segments, this results in 𝑁 QPs 𝑞𝑝,1 , . . . , 𝑞𝑝,𝑁 .

Controlling the single encoder requires a common superframe quantization parameter 𝑞𝑝,𝑆𝐹𝑉 . We

define 𝑞𝑝,𝑆𝐹𝑉 as the minimum of all individual QPs 𝑞𝑝,1 , . . . , 𝑞𝑝,𝑁 , since the preprocessing filters

introduced in Section 6.1.2 only allow for reducing the rate/quality:

𝑞𝑝,𝑆𝐹𝑉 = min(𝑞𝑝,1 , . . . , 𝑞𝑝,𝑁 ). (6.27)
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Then, the resulting bitrate 𝑅𝑖(𝑞𝑝,𝑖) of a frame encoded individually should be equal to the resulting

bitrate 𝑅𝑆𝐹𝑉,𝑖(𝑞𝑝,𝑆𝐹𝑉 ) of the same frame as part of an encoded superframe. In case no preprocessing

is applied on the respective frame, this is only possible for 𝑞𝑝,𝑖 = 𝑞𝑝,𝑆𝐹𝑉 . To fulfill this condition for all

cases 𝑞𝑝,𝑖 > 𝑞𝑝,𝑆𝐹𝑉 , we apply the quality filter to reduce the bitrate required for encoding the respective

frame. Based on the evaluation in Section 6.2, we suggest using a Gaussian low-pass filter with kernel

size 𝑘 and standard deviation 𝜎. Considering the parameters 𝑘 and 𝜎 of the Gaussian low-pass filter

allows us to formulate the bitrate equality condition for all individual segments 𝑖 ∈ 1, . . . , 𝑁 under

the condition 𝑞𝑝,𝑆𝐹𝑉 ≤ 𝑞𝑝,𝑖 and with the assumption of Equation 6.26:

𝑅𝑖(𝑞𝑝,𝑖) = 𝑅𝑆𝐹𝑉,𝑖(𝑞𝑝,𝑆𝐹𝑉 , 𝑘𝑖 , 𝜎𝑖). (6.28)

The kernel size 𝑘 of the Gaussian filter can only take discrete odd values (𝑘 ∈ 1, 3, . . .), where a

value of 𝑘 = 1 means no filtering. This prevents perfectly matching Equation 6.28 for all 𝑘 > 1. Next,

we discuss how to find the optimal combination of 𝑘 and 𝜎 to minimize the difference of both bitrates

in Equation 6.28.

6.4.3 Preprocessor Model

Minimizing the bitrate difference in Equation 6.28 requires a bitrate model for estimating the video

bitrate 𝑅 for a given 𝑞𝑝 , 𝑘, and 𝜎. For this, we use the two bitrate models designed in Section 6.3.

Second, we need a preprocessor model to estimate the bitrate damping after applying a Gaussian low-

pass filter configured with the parameters 𝑘 and 𝜎. The Gaussian filter is applied in a preprocessing

step before the individual views are combined into a single superframe and encoded by the single

encoder. Figure 6.17 shows the concept of the preprocessing filters used and where the preprocessor

model is integrated in the pipeline.

Preprocessor 1

Preprocessor N

Temporal Filter 𝑖

Spatial Filter 𝑖

Quality Filter 𝑖

Preprocessor

Model 𝑖

Preprocessor 𝑖

𝑞𝑝,𝑖
𝑓𝑖
𝑟𝑖

𝑞𝑝,𝑆𝐹𝑉

𝑓𝑖

𝑟𝑖

𝑘𝑖 , 𝜎𝑖
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2
. . .

N-1

N

Superframe Generation

Encoder
𝑞𝑝,𝑆𝐹𝑉

Figure 6.17 The preprocessing filter concept with the proposed model estimating the preprocessing filter

parameters.

As summarized in Figure 6.17, the preprocessor accepts four encoding parameters: the quantization

parameter 𝑞𝑝,𝑖 , the frame rate 𝑓𝑖 , and the frame resolution 𝑟𝑖 for an individual camera view 𝑖 as well

as the common quantization parameter 𝑞𝑝,𝑆𝐹𝑉 of the SFV. These parameters are usually provided for

an individual encoder, which makes our approach applicable to existing adaptation models.
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For encoders used in embedded systems, there is limited access to the encoding hardware. We

therefore require a bitrate model that works independently of the underlying video codec. Lotter-

mann et al. [141] proposed the analytical rate model STRM, considering the QP and video frame rate.

The STRM depends on two constant parameters and two content-dependent parameters that can be

calculated directly from the source video. The authors further extended their model in [142], studying

the influence of GoP characteristics. Both models estimate the bitrate as the product of maximum

bitrate and separate correction factors modeling the influence of each parameter. We followed this

idea and proposed a bitrate model that additionally includes the influence of the frame size and the

Gaussian low-pass filter. As a second approach besides the proposed analytical model, we proposed

an ML-based rate model using the same input as the analytical model. Both models were designed in

Section 6.3 and can be used by the preprocessor model for minimizing the difference of both bitrates

in Equation 6.28 to find the optimal combination of 𝑘 and 𝜎.

6.4.4 Results

In this section, we demonstrate the performance and usability of the proposed preprocessor rate

control. We evaluate a multi-view streaming scenario for the four videos of the x264-CIF test set

introduced in Section 6.3.1.2. Since the encoding parameters controlling the spatial and temporal

resolution of the individual video streams can be used directly with the temporal and spatial pre-

processing filter, we only focus on the influence of the quality filter in this experiment. Hence, we

evaluate the preprocessor model estimating the filter parameters for the Gaussian low-pass filter.

For the evaluation, we consider the four videos of the x264-CIF test set as the four different camera

views that should be encoded at different rate/quality levels with a single encoder. We randomly

select four QPs within the range of 24 to 45. The maximum distance between two QPs should

not exceed 15. Larger differences of two QPs would exceed the maximum reasonable damping of

the Gaussian low-pass filter with a kernel size of nine. Larger kernel sizes are possible, but not

recommended since such large kernel sizes heavily affect the video quality.

Using the four QPs selected randomly, we compare five different multi-view streaming approaches.

As a baseline, we use multiple video encoders as typically used in multi-view streaming. We refer to

this solution as Multi. We compare the baseline Multi to a solution without preprocessing that uses a

single encoder, referred to as Single, and the proposed preprocessing concept using a single encoder.

For the proposed preprocessing concept, we evaluate our preprocessor model twice, referring to the

analytical bitrate model as Analytic and to the ML-based bitrate model as ML. As a reference, we

include the best possible solution that can be achieved with the proposed preprocessing concept and

a single encoder. We refer to this optimal reference approach as Oracle, since it does not estimate the

bitrates but uses the ground truth available in the x264-CIF dataset. In practical applications, this

information is not available, hence Oracle serves as a theoretical upper performance bound. Table 6.10

summarizes the results for the five multi-view streaming approaches.

In the Settings block, the Multi mode shows the QPs selected randomly. 𝑘 and 𝜎 are empty since the

preprocessing is not required when multiple encoders are available. The Single mode also does not

use preprocessing, but only the minimum QP of all QPs for the four videos. The remaining modes

contain both the minimum QP selected according to Equation 6.27 and the preprocessing parameter

estimated by the preprocessor model. For the Oracle mode, the preprocessing parameters are selected

from the x264-CIF dataset minimizing Equation 6.28.

The Bitrate block represents the resulting bitrates, achieved with the specified settings. Finally, we

calculate the mean absolute error (MAE) of all views relative to the Multi approach and normalized by

the bitrate of Multi. With an MAE of 0.0102, the Oracle approach represents the best possible solution

that can be achieved using the proposed preprocessing filter concept. This demonstrates the usability

of the preprocessing filter compared to an MAE of 0.2969 when no preprocessing is applied. The

ML approach cannot reach the optimal performance of the Oracle mode, but is able to reach an MAE

that is 87 % lower than the Single mode. The ML approach clearly outperforms the Analytic approach.

However, the Analytic approach still reaches an MAE that is 75 % lower compared to Single.
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Table 6.10 Comparison of a multi-view streaming scenario using the four videos of the x264-CIF test set and

with a QP selected randomly for every video.

Video Multi Single Oracle Analytic ML

bus {26,-,-} {26,-,-} {26,1,0.5} {26,1,0.5} {26,1,0.5}

Settings city {38,-,-} {26,-,-} {26,7,2.5} {26,9,3.0} {26,9,3.0}

{𝑞𝑝 , 𝑘, 𝜎} deadline {29,-,-} {26,-,-} {26,3,0.5} {26,3,1.0} {26,5,0.5}

mother-daughter {32,-,-} {26,-,-} {26,5,2.0} {26,9,3.0} {26,5,2.0}

Bitrate

𝑅

[kbit/s]

bus 6145 6145 6145 6145 6145

city 1353 5225 1355 2282 1179

deadline 3696 4746 3919 3919 3919

mother-daughter 1098 2088 1097 1806 1317

Normalized MAE � - 0.2969 0.0102 0.0731 0.0377

Table 6.10 summarizes the results for a single multi-view streaming scenario. To demonstrate

reliable results, we repeat this experiment 100 times, selecting random QPs for each of the four

videos. We calculate the MAE for all four videos and the 100 iterations. The resulting MAE for

Oracle compared to multiple encoders is 0.0158. Analytic and ML reach MAEs of 0.0226 and 0.0434,

respectively. The Single approach results in an MAE of 0.4546, showing a similar trend as the single

streaming scenario of Table 6.10.

This demonstrates the usability of the proposed preprocessing filter approach and the performance

of both bitrate models used. Neither the ML nor the Analytic approach are able to estimate the optimal

preprocessing parameters and reach Oracle performance. These filter rate models are the first of their

kind with the capability of estimating such preprocessing parameters. It should be noted that Oracle
is the best theoretically possible solution that can only be found by performing the actual encoding

steps, whereas our approach estimates the rates without performing any encoding.

In this experiment, we focused on matching the bitrate of individual encoders as closely as possible

for validating the proposed preprocessor rate control. Next, we evaluate the entire preprocessing

approach presented in this chapter in several multi-view driving scenarios, similar to Section 6.1.4.2.

6.5 Preprocessing Filter Application

Throughout this chapter, we developed a preprocessing filter concept that allows for the individual

rate/quality adaptation of multiple camera views while using only a single encoder. With the

preprocessor rate control introduced in the previous section, all parameters required to control

the preprocessing filters can be estimated from encoding parameters that would also be used for

controlling multiple encoders.

In this section, we demonstrate the performance and usability of the proposed preprocessing

concept and all related components. For this, we compare the framework proposed in this chapter

with a solution using multiple encoders in three multi-view driving scenarios such as introduced

in Section 5.5. First, we analyze a single scenario in detail and discuss the trade-offs that need to

be considered when using the proposed solution. Then, we analyze three different scenarios to

demonstrate the usability of the proposed approach for the diverse requirements in ToD.

6.5.1 Single Scenario Results

We evaluate a multi-view teledriving scenario for the example of turning left at a crossing. The

scenario evaluation uses a similar six camera setup and procedure as in Section 6.1.3. As defined in

Section 5.5, we refer to this scenario as left-turn. The scenario was recorded in the CARLA simulator
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with the six camera views according to their orientation in Figure 6.4: front (F), front left (FL), front

right (FR), rear (R), rear left (RL), and rear right (RR).

The performance in terms of video bitrate and video quality reached by multiple encoders is

evaluated as a reference. We compare the proposed preprocessing approach and a regular SFV

approach without preprocessing to this reference of using multiple encoders. We select the encoding

parameters for the individual views to represent their importance for the current traffic situation,

similar to Section 6.1.3. In case of the left-turn driving scenario, the resulting encoding parameters

favor the front view (F) and the front left view (FL), since they show the driving lane of the ego vehicle

and the oncoming traffic. The least important view for the left-turn is the rear right view (RR), which

results in the largest reduction of bitrate and quality in favor of the other views.

6.5.1.1 Encoding Parameter Definition

We evaluate the bitrate and perceptual quality for x264-CIF and N-HEVC-HD in five modes, using the

parameters listed in Table 6.11. An individual adaptation strategy using multiple encoders defines

the reference approach. We refer to this reference as Multiple Encoders. The proposed preprocessing

approach using the filter parameters estimated by the analytical bitrate model is referred to as Analy-
tical. The mode ML uses the same approach, but with the parameters estimated by the ML-based

bitrate model. Lastly, two simple SFV approaches without preprocessing are evaluated. One simple

SFV mode uses the minimum QP of the Multiple Encoders solution, named SFV-27, since the minimum

QP is 27. The second mode matches the total bitrate required by all camera views. For x264-CIF,

this is referred to as SFV-33. For N-HEVC-HD, we refer to the second mode as SFV-32. Table 6.11

summarizes the encoding parameters chosen for the left-turn driving scenario.

Table 6.11 Encoding parameters used for the six individual camera views: the quantization parameter 𝑞𝑝 , the

frame rate 𝑓 relative to the maximum frame rate 𝑓𝑚𝑎𝑥 = 30 Hz, the frame resolution 𝑟, and the kernel size and

standard deviation (𝑘, 𝜎) of the Gaussian low-pass filter. 𝑘 and 𝜎 are estimated from the preprocessor model

using the analytical or the ML bitrate model for both encoder x264 and N-HEVC. The individual views are

grouped into important and remaining views based on their relevance.

Parameter F FL FR R RL RR

𝑞𝑝 27 27 29 27 31 27

𝑓 / 𝑓𝑚𝑎𝑥 1 1 1 0.5 0.5 0.5

𝑟 CIF CIF CIF 286×234 286×234 QCIF

Analytical (x264) (𝑘, 𝜎) - - (3,0.52) - (3,0.7) -

ML (x264) (𝑘, 𝜎) - - (3,0.55) - (5,1.0) -

𝑟 1080p 1080p 1080p 900p 900p 720p

Analytical (HEVC) (𝑘, 𝜎) - - (3,0.48) - (3,0.65) -

ML (HEVC) (𝑘, 𝜎) - - (3,0.87) - (5,1.65) -

Relevance High High Low Low Low Low

The given QPs, frame rates, and frame sizes are the respective encoding parameters that should

be used when multiple encoders are available. These parameters are selected to represent the view

prioritization of the left-turn driving scenario. We provide the parameters for both x264-CIF and

N-HEVC-HD. Before, x264-CIF and N-HEVC-HD referred to the dataset introduced for the training

the bitrate models in Section 6.3. In this section, x264-CIF and N-HEVC-HD refer to the codec that is

used for encoding the video sequences at the respective resolution. We use a GoP length of 20 for the

entire scenario. For the single encoder case, we list the parameters for the Gaussian low-pass filter

estimated using the proposed bitrate models, Analytical and ML, for both x264-CIF and N-HEVC-HD.
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Lastly, we group the individual views into two groups, High and Low, based on their relevance for

the current traffic situation. This grouping based on the relevance will be used for the evaluation

later. In the following, we refer to the relevance level High also as "important" views and to the level

Low also as the "remaining" views.

6.5.1.2 x264-CIF

For the first experiment, the video sequences at CIF resolution were encoded with the x264 [134] soft-

ware video encoder using the parameters listed in Table 6.11. We analyze the resulting video bitrate

and the video quality using the PSNR, the Structural Similarity Index (SSIM), and the VMAF [157] as

quality metrics. Table 6.12 presents the results for the five modes.

Table 6.12 Video bitrate [kbit/s] and quality results for x264 and CIF resolution. The bold values are the closest

match to the reference Multiple Encoders.

Mode Metric Avg. Avg. High Avg. Low F FL FR R RL RR

Bitrate 366.30 575.09 261.90 532.19 617.98 442.59 274.45 172.26 158.30

Multiple PSNR 38.75 39.97 38.14 40.33 39.60 38.89 39.01 37.12 37.52

Encoders SSIM 0.97 0.97 0.97 0.97 0.97 0.96 0.97 0.96 0.97

VMAF 97.60 98.33 97.24 98.11 98.55 97.27 98.98 94.52 98.17

Analytical

Bitrate 370.56 575.09 268.30 532.19 617.98 436.74 274.45 203.72 158.30
PSNR 38.47 39.97 37.72 40.33 39.60 36.92 39.01 37.41 37.52
SSIM 0.97 0.97 0.96 0.97 0.97 0.95 0.97 0.96 0.97
VMAF 95.35 98.33 93.87 98.11 98.55 90.77 98.98 87.54 98.17

ML

Bitrate 361.78 575.09 255.13 532.19 617.98 421.93 274.45 165.84 158.30
PSNR 37.87 39.97 36.82 40.33 39.60 36.48 39.01 34.29 37.52
SSIM 0.96 0.97 0.96 0.97 0.97 0.95 0.97 0.95 0.97
VMAF 93.40 98.33 90.94 98.11 98.55 89.46 98.98 77.14 98.17

SFV-27

Bitrate 719.63 575.09 654.29 532.19 617.98 584.65 776.94 843.09 412.48
PSNR 39.59 39.97 38.45 40.33 39.60 40.14 39.36 39.16 35.14
SSIM 0.97 0.97 0.96 0.97 0.97 0.96 0.97 0.96 0.93

VMAF 98.55 98.33 97.27 98.11 98.55 98.42 99.22 98.20 93.25

SFV-33

Bitrate 318.05 262.63 483.37 244.20 281.06 266.99 339.36 364.21 962.92

PSNR 35.89 36.32 36.62 36.68 35.95 36.51 35.59 35.44 38.94

SSIM 0.94 0.95 0.95 0.95 0.94 0.94 0.94 0.94 0.96

VMAF 92.64 91.94 94.38 91.87 92.01 92.02 95.00 91.68 98.80

The row Multiple Encoders serves as the baseline reached with multiple encoders available. The

values in bold face highlight the closest match to the baseline Multiple Encoders. All modes except

SFV-33 perfectly match the bitrate and quality for the most important views (F) and (FL). However, the

average bitrate of SFV-27 is about 96 % larger than the baseline Multiple Encoders. SFV-33, Analytical,
and ML almost match the average bitrate of the baseline Multiple Encoders. For the individual views,

SFV-33 deviates from the individual bitrates, which results in a reduced quality for the important

front views (F) and (FL) as well as a higher quality for the less important rear views. It should be

noted that for the rear view, the higher quality is not needed.

Overall, the Analytical mode reaches the best trade-off of high video quality on the most important

views while still matching the average bitrate. We further quantify this by calculating the average

quality of the important views (F) and (FL) as well as for the remaining views and compare them to the

reference quality of Multiple Encoders. At a similar average bitrate, Analytical and ML reach the same

quality as Multiple Encoders for the important views. This comes at the cost of reduced average quality

on the remaining views of 3.4 VMAF score for Analytical and 6.3 for ML. While SFV-33 reduces the

VMAF score on the remaining views by only 2.9, it also reduces the quality of the important views by
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(f) Rear Right (RR)

Figure 6.18 Video bitrate [kbit/s] trend over the scenario frame numbers.

6.4. For a similar bitrate, SFV-33 reaches an average VMAF score that is 0.51 higher than for Analytical.
The higher average score for SFV-33 highlights the additional quality costs of using the Gaussian filter

in Analytical to achieve the additional 6.4 VMAF score on the important views. Figure 6.18 shows the

size of the encoded frames and Figure 6.19 the VMAF score of every frame for the left-turn driving

scenario.

Similar to the results of Table 6.12, SFV-33 shows higher bitrates and reduced VMAF scores for the

front view (F) and front-left view (FL) compared to the other modes. At the same time, Analytical and

ML heavily affect the VMAF score for the rear left view (RL), while SFV-33 matches the reference of

Multiple Encoders much more closely. This again highlights the trade-off when shifting the bit-budget

and the resulting quality towards the most important views.

6.5.1.3 NHEVC-HD

Similar to x264-CIF, we evaluate the same scenario for the video sequences at HD resolution encoded

with the NVIDIA HEVC hardware video encoder using the parameters listed in Table 6.11. Table 6.13

presents the results for the five modes.

Here, the ML mode reaches the closest bitrate matches. Including both rate and quality, the

Analytical mode reaches the best trade-off. For a similar average bitrate, both Analytical and ML reach

the same quality as Multiple Encoders on the important views. At the same time, the average VMAF

score on the remaining views is reduced by 1.3 and 7.7, respectively. SFV-32 results in a reduced

VMAF score of 2.0 on the important views and 1.6 on the remaining views.

The lower video qualities of ML compared to Analytical can be explained by the different low-pass

filter parameters. Especially for the view (RL), the ML mode selects a kernel size of five, which causes

a reduction in the PSNR and VMAF score. For the given scenario, this view can be assumed to be

inspected less frequently by the driver. This loss of quality can be still worthwhile to ensure a high

video quality for the important views (F) and (FL).
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Figure 6.19 VMAF score over the scenario frame numbers.

Table 6.13 Video bitrate [kbit/s] and quality results for N-HEVC and HD resolution. The bold values are the

closest match to the reference Multiple Encoders.

Mode Metric Avg. Avg. High Avg. Low F FL FR R RL RR

Bitrate 3842.96 5510.37 3009.25 5553.19 5467.54 4567.29 2944.00 1962.35 2563.37

Multiple PSNR 42.47 43.25 42.11 43.15 43.35 42.06 42.99 41.26 42.11

Encoders SSIM 0.97 0.97 0.98 0.97 0.97 0.97 0.98 0.97 0.98

VMAF 99.09 99.40 98.94 99.08 99.71 98.67 99.88 97.73 99.46

Analytical

Bitrate 4006.78 5510.37 3254.99 5553.19 5467.54 4928.36 2944.00 2584.24 2563.37
PSNR 42.66 43.25 42.37 43.15 43.35 42.03 42.99 42.35 42.11
SSIM 0.98 0.97 0.98 0.97 0.97 0.97 0.98 0.98 0.98
VMAF 98.23 99.40 97.65 99.08 99.71 96.91 99.88 94.33 99.46

ML

Bitrate 3735.62 5510.37 2848.24 5553.19 5467.54 4008.99 2944.00 1876.60 2563.37
PSNR 41.65 43.25 40.85 43.15 43.35 40.25 42.99 38.06 42.11
SSIM 0.97 0.97 0.97 0.97 0.97 0.96 0.98 0.96 0.98
VMAF 93.98 99.40 91.28 99.08 99.71 90.32 99.88 75.44 99.46

SFV-27

Bitrate 7690.97 5510.37 8781.27 5553.19 5467.54 6221.11 8591.95 9676.33 10 635.70

PSNR 42.66 43.25 42.36 43.15 43.35 42.79 42.49 42.46 41.71

SSIM 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97

VMAF 99.48 99.40 99.52 99.08 99.71 99.29 99.87 99.39 99.54

SFV-32

Bitrate 3710.79 2584.57 4273.90 2510.12 2659.01 2881.88 4182.16 4869.80 5161.76

PSNR 40.59 41.38 40.19 41.37 41.38 40.95 40.21 40.10 39.51

SSIM 0.96 0.97 0.96 0.96 0.97 0.96 0.96 0.96 0.95

VMAF 97.36 97.44 97.32 96.96 97.91 96.91 98.58 96.65 97.15

In summary, the results highlight that the proposed preprocessing solution matches the different

video bitrates and perceptual quality scores more closely than the simple SFV approach for both pro-

posed bitrate models, evaluated on both x264-CIF and N-HEVC-HD. Next, we repeat this evaluation

for multiple driving scenarios.
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6.5.2 Multi Scenario Results

After the detailed analysis of a single scenario, several key properties required for the evaluation can

be determined. The solutions used must match the total bitrate of using multiple encoders, since this

can be considered as the maximum transmission rate available in the mobile network. Additionally,

the resulting video quality represented by the VMAF score for all views, the important views, and the

remaining views, will be analyzed. Hence, we only evaluate the four modes matching the total bitrate

in this section. In addition to the left-turn scenario evaluated in the previous section, we include the

right-turn and straight-driving introduced in Chapter 5.

6.5.2.1 Encoding Parameter Definition

Similar to the encoding parameter specified for the left-turn scenario in Table 6.11, we additionally

define the encoding parameters for right-turn and straight-driving in Table 6.14.

Table 6.14 Encoding parameters used for the six individual camera views of the scenarios left-turn, right-turn,

and straight-driving. The individual views are grouped into important views (High) and the remaining views

(Low) based on their relevance.

Scenario Parameter F FL FR R RL RR

left-turn

𝑞𝑝 27 27 29 27 31 27

𝑓 / 𝑓𝑚𝑎𝑥 1 1 1 0.5 0.5 0.5

𝑟 CIF CIF CIF 286×234 286×234 QCIF

Analytical (𝑘, 𝜎) - - (3,0.52) - (3,0.7) -

ML (𝑘, 𝜎) - - (3,0.55) - (5,1.0) -

Relevance High High Low Low Low Low

right-turn

𝑞𝑝 27 29 27 31 31 27

𝑓 / 𝑓𝑚𝑎𝑥 1 1 1 0.5 0.5 1

𝑟 CIF 286×234 CIF QCIF QCIF CIF

Analytical (𝑘, 𝜎) - (3,0.53) - (3,0.85) (3,0.77) -

ML (𝑘, 𝜎) - (3,0.66) - (5,1.9) (5,1.2) -

Relevance High Low High Low Low High

straight-driving

𝑞𝑝 27 27 27 30 30 30

𝑓 / 𝑓𝑚𝑎𝑥 1 1 1 0.5 0.5 0.5

𝑟 CIF 286×234 286×234 QCIF QCIF QCIF

Analytical (𝑘, 𝜎) - - - (3,0.64) (3,1.4) (3,0.5)

ML (𝑘, 𝜎) - - - (3,1.31) (5,1.0) (3,0.5)

Relevance High Low Low Low Low Low

For the right-turn scenario, the front view (F) and the front right view (FR) are of high relevance for

the turning task. Additionally, the rear right view (RR) is favored since pedestrians or cyclists might

cross the street and the operator has to verify this before turning into the new street. The remaining

views are considered as less important and encoded with a reduced rate and quality. Since front

views are generally more important than rear views, the front left view (FL) is encoded with a higher

quality than the remaining rear views.

For the straight-driving scenario, the straight front view (F) is of highest importance, followed by

the front-side views (FL) and (FR). The rear views are the least important views in this scenario. We

selected the encoding parameters such that they represent this prioritization, inspired by the user

priority ratings of Table 5.2. In this scenario, we consider only the single front view (F) as highly

relevant for the driving task.
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6.5.2.2 x264-CIF

Similar to the single scenario evaluation, we encode the video sequences at CIF resolution using the

x264 [134] software video encoder with the encoding parameters as listed in Table 6.14. We analyze

the resulting VMAF scores for the three driving scenarios introduced in this chapter and the four

modes Multiple Encoders, Analytical, ML, and SFV-Rate. The first three modes are identical to the

previous experiments. SFV-Rate uses a single encoder without preprocessing and a QP to match the

total bitrate of Multiple Encoders. Since the QP for the single encoder varies for the three scenarios,

we excluded the QP from the solution’s name. The QPs of SFV-Rate for the individual scenarios are

33 for straight-driving and 32 for both turning tasks. Table 6.15 presents the average VMAF scores for

all modes and scenarios as well as for the grouping into important views and remaining views.

Table 6.15 Average VMAF scores grouped by relevance for the current driving situation. The bold values are

the closest match to the reference Multiple Encoders.

Mode All High Low

Multiple Encoders 95.40 97.0 94.60

Analytical 94.22 97.0 92.84

ML 91.07 97.0 88.64

SFV-Rate 90.72 91.57 90.30

None of the solutions using a single encoder is able to reach the average VMAF scores of Multiple
Encoders. However, the proposed preprocessing approach reaches the same VMAF scores for the

respective camera views rated with High relevance. For the remaining views, the Analytical model

reaches the highest quality of all solutions using a single encoder. The ML preserves the quality level

of Multiple Encoders, while causing even stronger quality degradations than SFV-Rate on the remaining

views. This investment in quality can be still worthwhile in situations with a low transmission rate

available, allowing to maintain the quality required for driving using the most important views.

The higher quality degradations of ML are caused by the larger kernel sizes for the Gaussian filter.

Although the ML-based bitrate model estimates the bitrate more precisely than the analytical model,

it results in higher kernel sizes estimated by the preprocessor rate control. These higher kernel sizes

cause larger quality degradations. A possible improvement for the preprocessor rate control could

include additional conditions, such as keeping the kernel size small besides matching the bitrate as

closely as possible.

6.6 Summary

In this chapter, we presented a preprocessing concept that allows for the individual rate/quality adap-

tation of multiple camera views while using only a single encoder. We proposed four preprocessing

filters to control the spatial resolution, the temporal resolution, the rate/quality, and the number of

color channels for the individual camera views. The individual camera views are preprocessed with

the proposed filters and then combined into a single SFV. The SFV is then compressed, transmitted,

and decomposed on the receiver side.

We first introduced the general concept of the proposed preprocessing approach and experimentally

validated a proof-of-concept implementation. Based on the insights of these first experiments, we

demonstrated that the temporal and spatial filter can directly use the given encoding parameters such

as estimated by the TAMVA scheme introduced in Chapter 5.

Next, we systematically evaluated the influence of different preprocessing algorithms on the RD

performance in video encoding to select the most suitable algorithm for the quality filter. We proposed
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an evaluation method that offers a systematic approach for quantifying the benefits of a chosen filter

compared to other options. Based on the results of this evaluation, we identified the spatial Gaussian

low-pass filter as the preprocessing algorithm that achieves the best RD performance after encoding,

which has been a popular choice in the literature before.

With the Gaussian low-pass filter as the most suitable algorithm for the quality filter, we design

both one analytical and one ML-based bitrate model that specifically consider the influence of the

Gaussian low-pass filter as well as the influence of the QP, the frame size, the frame rate, and the GoP

length on the video bitrate. Both proposed bitrate models outperformed the state-of-the-art bitrate

models by at least 22 % regarding the overall RMSE. Additionally, our bitrate models are the first of

their kind to consider the influence of a Gaussian low-pass filter.

Using the two bitrate models proposed in this chapter, we designed a preprocessor rate control

approach that allows for estimating the parameters required to control the respective preprocessing

filters. This estimation is based on the adaptation parameters estimated by the TAMVA scheme to

control multiple encoders. This way, the preprocessing filters can be used as a rate control scheme

to enable the individual rate/quality adaptation of multiple camera views while using only a single

encoder.

Finally, we evaluated the usability of the proposed preprocessing approach in three representative

multi-view driving scenarios. We compared the proposed approach to a solution using multiple

encoders and a SFV approach using a single encoder without any preprocessing. For three represen-

tative driving scenarios and a similar total bitrate of all views, the proposed approach achieved the

same video quality for the most important views compared to the solution using multiple encoders,

while it caused quality reductions of only 1.8 % on the remaining view. In comparison, the SFV

approach using a single encoder without preprocessing causes quality degradations of 4.5 % for the

remaining views and of 5.6 % on the most important views when using a similar total bitrate of all

views.
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Chapter 7

Conclusion

Teleoperated driving (ToD) has the potential to become an important solution for handling failures

of autonomous vehicles. While many approaches in the literature focus on improving the operator

performance by augmenting the visual representation [12, 11] or providing haptic feedback [13], the

actual transmission of sensor information has received less attention. The transmission rate available

in mobile networks is usually sufficient for transmitting video streams of multiple camera views such

as required for ToD. However, this available transmission rate cannot be guaranteed by the network

provider at any time, which can cause severe safety issues when controlling a vehicle from remote.

In this thesis, we focus on how to distribute the limited transmission rate in a way that the camera

views most important for the current driving situation are still transmitted in a quality sufficient

for safely controlling the vehicle. This challenge led to developing the ToD framework presented in

Figure 1.2 and adaptation strategies to control multiple video streams while considering the hardware

limitations of commercial vehicles. We conclude this thesis by summarizing the key contributions,

discussing the major limitations, and outlining directions for future work.

7.1 Summary

We considered the entire pipeline of a general ToD system for designing and implementing the

ToD framework presented in this thesis. In summary, we proposed four main additions: a system

and streaming pipeline for ToD in simulation, a driver situation awareness (SA) assessment system,

a traffic-aware multi-view adaptation (TAMVA) scheme, and a video preprocessing approach to

cope with the hardware limitations of autonomous vehicles. The four key contributions have been

presented in Chapter 3, Chapter 4, Chapter 5, and Chapter 6.

The design and evaluation of adaptation strategies for ToD requires controllable network and

driving conditions. For this, we designed the teleoperation framework TELECARLA, which extends

the open source driving simulator CARLA [16] for vehicle remote control. This framework includes

a customizable user interface, a scenario evaluation module, and an online-configurable low delay

video streaming pipeline. The streaming pipeline provides an adaptation interface for controlling the

frame rate, frame size, bitrate, and quality of the video stream. The TELECARLA framework builds

the basis for the remaining contributions of this thesis.

A low delay video streaming pipeline is essential for providing the operator with the necessary

visual information to understand the current situation. Despite the necessary visual information

available for the operator, there is no guarantee that the operator actually recognizes all relevant

elements correctly. As the second main contribution, we therefore proposed a method for assessing the

driver’s SA in realtime. Inspired by an approach used in the aviation context [103], we first introduced

a concept for assessing the driver’s SA. Then, we discussed the challenges when transferring an SA

model designed for aviation to the driving context and proposed an SA method for driving. The

driver’s current SA is measured using eye tracking and compared to the optimal SA. The optimal SA

describes all elements the driver should have perceived and is estimated by region of interest (ROI)

prediction. As part of this work, we extended a state-of-the-art ROI prediction network [95] from
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a single-view design towards supporting multiple camera views. The resulting driver awareness

model allows for accurately measuring the driver SA, which has been validated in a user study for

eight driving scenarios.

With the capability to control the adaptation parameters as part of the teledriving framework and the

ability to measure the driver’s SA, we next proposed a traffic-aware multi-view adaptation (TAMVA)

scheme to provide the operator with the best possible SA for the current traffic situation. Considering

the vehicle’s realtime movement in traffic, the adaptation scheme estimates the importance of each

camera view for the current traffic situation. This priority score together with the total available

transmission rate of the mobile network determines the bit-budget available for a specific camera view.

Then, the optimal combination of frame rate, frame size, and target rate/quality is estimated using

a quality-of-experience-driven multi-dimensional adaptation (MDA) scheme to control the encoder

of each individual video stream. Additionally, we proposed a dynamic ROI masking approach

to improve the video quality of individual camera views by filtering less important regions in the

respective camera view. We evaluated the proposed adaptation scheme in a user study consisting

of two separate experiments, both with a six camera setup. In the first experiment, the participants

drove actively in a simulated environment. In the second experiment, the participants observed

driving situations recorded in advance and rated the importance of the individual camera views for

the current traffic situation. We could not observe a clear improvement in the driver’s performance for

the first experiment. However, the proposed view prioritization module achieves a high correlation

between the subjective view priority ratings obtained in the second experiment of the user study. With

at least 19.8 % Bjøntegaard Delta Rate (BDR) savings, the ROI filter approach significantly reduces

the required bitrate compared to streaming the full camera frame. Overall, the proposed TAMVA

scheme increases the average video quality per camera by 5 % VMAF score compared to a uniform

adaptation.

Finally, we considered the hardware limitations of autonomous vehicles, which prevent the direct

usage of the proposed TAMVA scheme to control the encoders for individual camera views. Limited

by cost and size, commercial vehicles are often restricted to a single hardware encoder. Encoding

all camera views at the same time with a single encoder requires the combination of the individual

frames into a single superframe video (SFV). While this is a possible solution for streaming multiple

camera views, it prevents the adaptation of the individual camera views using the proposed TAMVA

scheme. To address this issue, we proposed a video preprocessing concept that allows for individual

rate/quality adaptation while using a single encoder. The proposed preprocessing filters control

the frame rate, frame size, target rate/quality, and the number of color channels for the individual

frames before combining them into a single SFV. We developed a comprehensive solution that

enables automatic control of the individual preprocessing filters from the parameters estimated by

the TAMVA scheme. A first proof-of-concept experiment demonstrated that due to the block-wise

processing of the encoder, the temporal and spatial filters can directly use the frame rate and frame size

estimated by the TAMVA scheme for the respective camera view. To select to most suitable algorithm

for controlling the rate/quality, we systematically evaluated the influence of different preprocessing

algorithms on the rate-distortion (RD) performance in video encoding. The proposed single score

metric mean saving-cost ratio (MSCR) as well as the concept of Bjøntegaard Delta (BD) curves offer

a systematic method for quantifying the benefits of a chosen filter compared to other options. Based

on the results of this evaluation, we selected the spatial Gaussian low-pass filter as the preprocessing

algorithm that achieves the best RD performance after encoding. To use the Gaussian low-pass filter

for controlling the rate/quality, we designed two novel bitrate models that specifically consider the

influence of the Gaussian low-pass filter as well as the influence of the quantization parameter (QP),

the frame size, the frame rate, and the group of pictures (GoP) length on the video bitrate. Both

bitrate models proposed in this thesis outperformed the state of the art bitrate models by at least 22 %

regarding the overall RMSE. Using these bitrate models, we designed a preprocessor rate control

approach that estimates the parameters required to control the respective preprocessing filters based

on the encoding parameters estimated by the TAMVA scheme. With the ability to estimate the filter
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parameters from the encoding parameter used to control multiple encoders, the preprocessing filters

can be used as a rate control scheme to enable the individual rate/quality adaption of multiple

camera views while using only a single encoder. For three representative driving scenarios and a

similar total bitrate of all views, the proposed approach achieves the same video quality for the most

important views as when using multiple encoders. Simultaneously, it causes quality reductions of

only 1.8 % on the remaining views. In comparison, an approach using a single encoder without

preprocessing causes quality degradations of 4.5 % for the remaining views and even 5.6 % on the

most important views when using a similar total bitrate of all views. The relative quality degradations

on the important views are larger, since the absolute quality score of the important views for multiple

encoders is larger compared to the remaining views. The absolute quality scores on the important

views are still higher for all modes compared to the remaining views.

7.2 Limitations

All concepts proposed in this thesis were evaluated in user studies or compared to state-of-the-art

approaches. The methods proposed in this thesis outperformed existing approaches or were the first

of their kind addressing the respective problem. Despite their novelty or superior performance to the

state of the art, they still have some limitations and open questions which we discuss next.

The teleoperation framework TELECARLA presented in Chapter 3 extends the CARLA simulator

for a ToD component. While the CARLA simulator provides a rich set of features, it comes at the

cost of a high computational complexity. In particular, the rendering of multiple camera views such

as required for ToD requires high-end hardware and Graphics Processing Units (GPUs) to achieve a

sufficient frame rate for ToD.

The driver SA model presented in Chapter 4 already addressed several challenges when transferring

the SA model designed for aviation into the driving context. The challenges addressed in this thesis

include the dynamic situation elements (SEs) and distraction available in driving compared to the

static cockpit SEs in the aviation context. An existing limitation that has not been addressed in

our contributions is the occurrence of multiple redundant SEs. In driving, there can be multiple

traffic lights that all refer to the same intersection. As soon as a driver perceives one of them, they

usually have a sufficient SA regarding the traffic light. So far, the driver SA model proposed in this

thesis would only consider the single SE perceived by the driver as comprehended. The other SEs

representing the other traffic lights are considered as undetected. This negatively affects the SA score

of the driver, even though they might have full SA of the current situation. A similar problem exists for

the same road object being visible in multiple overlapping camera views. To address this limitation,

the SA model requires more semantic understanding for the current situation.

Regarding the TAMVA scheme proposed in Chapter 5, a limitation is that the prioritization module

only considers the movement of the ego vehicle independently of other road users and the spatio-

temporal complexity of the respective camera view. This could result in a visual quality that is higher

than required for the views considered as most important due to a low spatio-temporal complexity.

At the same time, a view with many road users and a high spatio-temporal complexity could result in

a visual quality that is too low even for a less important view due to the high amount of information

included in this view. To address this limitation, the TAMVA scheme could be extended to also

consider influence factors that contain information about the surrounding environment.

The preprocessing concept proposed in Chapter 6 controls the frame rate, frame size, and target

rate/quality of the individual views streams before the combination into the SFV. While frame rate

and frame size can be directly used for controlling the spatial and temporal filter, the parameters to

control the Gaussian low-pass filter need to be estimated. For this we match the bitrate when using

an individual encoder with the bitrate using the preprocessing filter and the superframe encoder

with a QP different to the individual encoder. We estimate the bitrates using the two bitrate models

introduced in Section 6.3. Although the machine learning (ML)-based bitrate model estimates the

bitrate more precisely than the analytical model, it results in larger kernel sizes when matching the
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bitrates for preprocessor rate control. This causes stronger quality degradations. To address this

limitation, the preprocessor rate control should consider additional conditions for estimating the

optimal filter parameters.

7.3 Future Work

In this thesis, we investigated the topic of adaptive video streaming for ToD. The goal was to develop

a system that automatically controls multiple video streams in a way that the operator has the best

possible SA for the current driving situation, while matching the available transmission resources of

the network. Each of the proposed methods was thoroughly evaluated and achieved state-of-the-art

performance. While the framework developed in this thesis can already be used to automatically

control multiple video streams, there is still potential for further improvements towards immersive

ToD. Next, we discuss ideas for addressing the known limitations and suggest additional ideas for

future work.

With the SA model proposed in Chapter 4, we focused on a first validation of the proposed driver

awareness approach. The user study validated the proposed approach in a monitoring task where

the participants observed driving scenarios recorded in the CARLA simulator. For future work, this

pure observation task could be compared to an observation-and-acting task. This comparison could

give further insights on the influence of additional workload on the driver’s SA. As possible results,

either the additional workload caused by the active driving tasks affects the SA in a positive way due

to a higher focus on the driving task or in a negative sense due to the higher workload caused by the

driving task.

Another direction for future work on the driver SA model is the improvement of the ROI prediction

used to determine the optimal SA. Determining the optimal SA with all SEs the driver should

have perceived requires a highly accurate ROI prediction. To further improve the ROI prediction for

multiple camera views, the redundancies in overlapping camera regions could be exploited. If an ROI

is predicted in one camera view, then this prediction could be used for other views with overlapping

regions, since the orientation and camera intrinsic parameters are known. First experiments already

demonstrated partial improvements for the prediction, but also revealed that a second verification step

is required. By only calculating the ROIs for neighboring views without verification, it is possible

that an ROI is actually occluded in a neighboring camera view. For future work, the geometric

dependencies between neighboring camera views should be exploited. As a recommendation, the

geometric dependencies should be used for the verification of the ROI predictions or to provide region

proposals used by the ROI prediction.

The TAMVA scheme proposed in Chapter 5 considers the vehicle’s realtime movement in traffic to

distinguish the most important camera views. For future work, additional input factors such as the

number of ROIs in a certain camera view or the spatio-temporal complexity of the respective frame

could be considered by the view prioritization model. Another source of information for identifying

the relevant camera views is the operator’s gaze. Considering these additional inputs would not

only rely on the vehicle’s movement for determining important views, but also include influence

factors of the environment and the actual traffic situation as well as the direct focus of the human

operator. For instance, the same turning maneuver in a crowded urban situation might require a

different view prioritization compared to a turning maneuver on an empty street. Although the

vehicle’s movement is identical in both situations, the information provided by the environment such

as the higher complexity in the urban scene can be used to further improve the prioritization model

specifically for the current traffic environment. While the results presented in Section 5.6 showed

clear improvements regarding the visual quality, we could not observe any significant improvements

regarding the driver’s performance. To this end, we first recommend to conduct a more extensive user

study evaluating the view prioritization. This evaluation could be used to identify the key influencing

factors that result in a clear improvement of the driver’s performance as well as the visual quality.
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A possible direction for future work on the preprocessing concept introduced in Chapter 6 could be

the improvement of the preprocessor rate control approach. The preprocessor rate control introduced

in Section 6.4 estimates the parameters used to control the Gaussian low-pass filter. These parameters

are determined by matching the bitrate when using the parameters such as estimated by the TAMVA

scheme with the bitrate when using the preprocessing filter with the QP of the superframe encoder.

While reaching a similar bitrate is still required for matching the available transmission rate of the

network, a different bitrate for the individual segments compared to the individual views when using

multiple encoders can improve the overall quality. A possible improvement for the preprocessor

rate control could be to include additional conditions, such as keeping the kernel size and standard

deviation small in addition to matching the bitrate as closely as possible. Larger kernel sizes and

standard deviation for the Gaussian low-pass filter cause stronger quality degradations for the re-

spective image segment. Another possible option for improving the preprocessor rate control would

be the development of a video quality model that specifically considers the influence of the Gaussian

low-pass filter on the video quality. This way, the quality estimated by the model could be considered

in addition to the bitrate to find the optimal solution for all camera segments. Similar to regular video

coding, this solution can be approached by implementing a rate-distortion optimization (RDO) for

the preprocessing filters. Alternatively, an end-to-end ML approach could be designed to directly

estimate the optimal filter parameters from the parameters estimated by the TAMVA scheme. Imple-

menting these recommendations could further improve the SA of a human operator when controlling

a vehicle from remote.
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Appendix A

TELECARLA Framework and Ecosystem

TELECARLA is an open source framework for teleoperated driving (ToD) research that extends

the Car Learning to Act (CARLA) simulator. It has been implemented alongside this dissertation

and acts as the basic framework for the evaluations and user studies conducted in this work. All

implementations of this dissertation have been realized on top of the basic TELECARLA framework

and have been integrated to build a comprehensive framework for ToD research. Figure A.1 shows an

overview of the proposed TELECARLA framework and the additional modules integrated in blue.

Server

Client

CARLA
Preprocessor

Rate Control
TELECARLA Server

Multi-View Region

of Interest Prediction

Traffic-Aware Multi-

View Adaptation

Total Available

Bitrate 𝑅𝑡𝑜𝑡𝑎𝑙

𝐼1,...,𝑁

𝐼1,...,𝑁

ROI

SFV

Gaze

Bitrate 𝑅𝑡𝑜𝑡𝑎𝑙
Settings

TELECARLA Client

Operator Situa-

tion awareness

Human Operator

Gaze

Gaze

ROI

Figure A.1 Overview of the TELECARLA framework and extension modules.

The modules include the basic framework and streaming architecture proposed in Chapter 3, a

multi-view region of interest (MV-ROI) framework as well as well as a model for assessing the driver’s

situation awareness (SA) proposed in Chapter 4, a traffic-aware multi-view adaptation (TAMVA)

scheme proposed in Chapter 5, and a preprocessor-based rate control system proposed in Chapter 6.

In the following sections, we summarize implementation details for the graphical user interface (GUI),

the video streaming pipeline, the TAMVA scheme, and the driver SA model.

A.1 TELECARLA User Interface

The GUI uses the Simple DirectMedia Layer 2 (SDL2) [196] for rendering and displaying the sensor

information. SDL2 is used to read the operator control commands entered by a keyboard, steering

wheel, and pedals. It is also used to apply haptic feedback on the steering wheel. If an autonomous

agent is in control of the vehicle, the steering wheel moves according to the vehicle’s steering angle.

This allows for the evaluation of takeover scenarios from autonomous driving mode to manual driving

mode.

A.2 Adaptive Video Streaming Pipeline

The streaming pipeline itself is based on GStreamer [172], a multi-platform, plugin-based multimedia

framework. GStreamer is a powerful and flexible multimedia framework due to is modular structure.
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However, finding the right configuration for a specific task can be time consuming [197]. The core

streaming workflow of our system is defined by two GStreamer pipelines for server and client side.

Figure A.2 shows both GStreamer pipelines for the server (Figure A.2a) and client (Figure A.2b)

conceptually.

appsrc
videorate x264 RTP pay RTSP Server

Resolution FPS Bitrate/QP

(a) Server pipeline

RTSP Client RTP depay h264 Decoder appsink

(b) Client pipeline

Figure A.2 GStreamer server and client pipelines.

The server node reads the input data from the Robot Operating System (ROS) and feeds them into

the GStreamer pipeline using the appsrc element. The appsrc element parses the frame resolution as

well as the color format from the input image and downscales the frame if specified by the adaptation

interface. This enables the streaming system to accept various input formats. We configured the

appsrc plugin for live-mode to avoid artificial delays introduced by buffering multiple arriving frames.

The videorate plugin [198] updates the temporal resolution (frame rate) of the video stream according

to the target frame rate specified by the adaptation interface. Then, the video encoder plugin [199]

uses the x264 [134] video codec, configured for low delay video streaming [130], to encode the video

stream. The modular pipeline concept provided by GStreamer allows for using other video encoders

as well. The target rate/quality for the video encoder is again specified by the adaptation interface.

The encoded bitstream is then forwarded into the Real-Time Streaming Protocol (RTSP) server el-

ement [200] using the RTSP protocol for the data transmission. RTSP uses either User Datagram

Protocol (UDP) or Transmission Control Protocol (TCP) as the underlying transport protocol. By

default, the RTSP server uses UDP.

On the receiver side, the RTSP client feeds the bitstream into the client pipeline where it is decoded

and buffered into the appsink element. The appsink element publishes the decoded image data as a

ROS image topic into the client system.

Both core pipelines are wrapped into a ROS node to provide a flexible interface and process

scalability with respect to the multi-view streaming system. Further, we use the ROS package

dynamic_reconfigure [201] to implement the adaptation interface controlling the frame size, frame rate,

and target rate/quality.

A.3 Traffic-Aware Multi-View Video Stream Adaptation

The proposed TAMVA scheme is implemented as several individual ROS nodes that extend the

proposed TELECARLA framework. In total, we designed three ROS nodes that interact in the way

presented in Figure 5.1.

A single instance of the View Prioritization node considers the available transmission rate of the

network as well as the vehicle’s status information to estimate the view priority and the respective

bit budget of every camera view. Then, for every camera view, a node running a multi-dimensional

adaptation (MDA) adaptation model controls the video stream. The MDA node uses the bit budget

available for the respective camera view as well as the current frame of this camera view to estimate

the optimal combination of frame rate and frame size for the given bit budget. With the bit budget
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determining the target bitrate and the optimal combination of frame size and frame rate estimated

by the MDA model, the MDA node uses the adaptation interface of the GStreaming node to control

the individual video stream. The GStreaming node, which is already part of the basic TELECARLA

framework, encodes and transmits the video stream of a camera view from a server to a client.

To further improve the resulting visual quality, we designed an region of interest (ROI) filter as a

separate ROS node. This node can then be used as a preprocessing step by integrating it between the

node that outputs the camera image and the GStreamer node that encodes and transmits the video

stream. Further, the ROI filter node can be configured to use the block-based mode for a given block

size to further improve the resulting image quality after encoding. For our setup consisting of six

camera views, we use the ROI filter only for the rear views.

A.4 Driver Awareness Model

The driver SA model is implemented as several individual ROS nodes that can be used as part of

the TELECARLA framework. Figure A.3 shows the architecture of the proposed driver awareness

module.
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Figure A.3 Architecture of the proposed driver situation awareness approach. ROI prediction defines the

optimal SA which is compared to the driver’s actual SA captured by the eye-tracking device. Adopted from

[22] © 2020 IEEE.

We use the Pupil Core wearable eye-tracking device for capturing the driver’s gaze [178]. The

Pupil Core ships with a standalone software and Python application programming interface (API) for

communicating with the eye-tracking device. The communication between the Pupil software and

the Python API is done via zero message queue (ZMQ). The ZMQ-based connection between Python

API and Pupil software allows for running the Pupil software on a separate machine. Running Pupil

on a second machine is particularly useful if less powerful hardware is available, allowing to maintain

the maximum gaze frequency of 120 Hz. The gaze publisher module provides an interface for the

eye-tracking device implemented using the Pupil Python API. The interface provided by the gaze

publisher allows for a straightforward integration of other eye-tracking devices as well.
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