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Prüfende der Dissertation:
1. Prof. Dr.-Ing./Univ. Tokio Martin Buss
2. Prof. Dr. Majid Zamani
3. Prof. Dr. Dimos V. Dimarogonas

Die Dissertation wurde am 12.04.2022 bei der Technischen Universität München eingereicht
und durch die Fakultät für Elektrotechnik und Informationstechnik am 21.06.2022
angenommen.





This dissertation is dedicated to my parents and my better half, for their
unconditional love and endless support.

iii





Acknowledgments

This dissertation summarizes the result over the last years during my doctoral research
studies in the Department of Electrical and Computer Engineering at the Technical
University of Munich (TUM), Germany. Here, I would like to take the opportunity
to acknowledge those people who supported me to make the completion of this thesis
possible.
First and foremost, I would like to express my deepest gratitude to my advisor Prof.

Majid Zamani who guided me through my Ph.D. journey with his wisdom, enthusiasm,
and patience. I sincerely appreciate his encouragement to pursue an academic career.
His continuous guidance, insightful vision and generous support have made this thesis
possible and will inspire me to be a better researcher in my future life.
I wish to sincerely extend my gratitude to Prof. Martin Buss for welcoming me in

his research group in the Chair of Automatic Control Engineering at the Technical
University of Munich, Germany, since July 2019. I would greatly appreciate all his
generous help, support, and consideration during this time.
Besides, my deep thanks go to Prof. Dimos V. Dimarogonas for providing me with a

great opportunity to visit his group at the KTH Royal Institute of Technology, Stock-
holm, Sweden, and for the many fruitful discussions we had that broadened my view
on research. I am sincerely honored to have him as part of my thesis committee. My
thanks also go to his Ph.D. students and the friends I met at the Division of Decision
and Control Systems for the welcoming atmosphere and worthwhile discussions.
I want to express my thanks to Prof. Xiang Yin at Shanghai Jiao Tong University

for his helpful and inspiring instructions during the many collaborations we had in the
past years and for being a role model for me towards becoming a mature researcher.
I would like to thank all my colleagues at HyConSys Lab for creating a warm and

friendly working atmosphere, and for the inspiring discussions and enjoyable times we
shared during the last five years. I am fortunate to be a member of HyConSys Lab and
privileged to meet them all in person in Munich and virtually in Boulder.
No words can express my gratitude to my family. I would not have been able to even

start my Ph.D. journey without the encouragement of my family and the love of my
better half. I am genuinely grateful to my parents for always believing in me. I am
deeply indebted to my mother for her endless support and unconditional love. Last
but not least, I wish to express my special thanks to my husband Dalong, who has
always been there for me along this journey, for his tender love, invaluable patience,
and endless support.

Siyuan Liu
Munich, April 2022

v





Abstract

Cyber-physical systems (CPS) are the technological backbone of the increasingly inter-
connected and smart world where design faults or security vulnerability can be catas-
trophic. Implantable medical devices, smart buildings, and critical infrastructure are
high-profile examples that underscore security and safety concerns of modern CPS. In
the last decade, safety concerns received considerable attention in the design of CPS,
while security analysis is left as an afterthought for later stages. This paradigm re-
sults in costly and lengthy development processes due to high validation costs. This
thesis advocates a paradigm shift in the development of CPS by proposing a secure-
by-construction synthesis scheme that generalizes existing correct-by-construction syn-
thesis methods by considering security properties in addition to safety ones during the
design phase. Our focus is to develop theoretical foundations to bridge the gap between
control theory and theoretical computer science on the analysis of security properties.
The first step to bridging the gap is to provide a common framework that general-

izes the security notions from different research fields of discrete-event systems (DES),
control theory, and formal methods. We develop a generalized security notion by inte-
grating the ideas from distinct research areas. A new notion of approximate opacity is
proposed that is more applicable to CPS by quantitatively evaluating the security level
concerning the measurement precision of malicious intruders.
Two main approaches are presented in this thesis to analyze opacity for complex

CPS. The first approach provides abstraction-based frameworks to verify approximate
opacity for both stochastic and non-stochastic systems. By introducing new notions
of opacity-preserving simulation relations, we construct opacity-preserving finite ab-
stractions mimicking the behaviors of complex CPS, which enable us to verify opacity
of concrete (stochastic) CPS by using their finite abstractions. The second approach
provides an alternative discretization-free strategy for verifying opacity via a notion of
barrier certificates. This approach is a deductive method that provides sufficient con-
ditions for approximate opacity of complex CPS. Two notions of barrier certificates are
proposed which are used in reverse directions in the sense that one guarantees opacity
and the other ensures the lack of opacity of the system.
To overcome the challenges encountered with large-scale CPS, we further develop

modular approaches to reduce the computational complexity of the proposed opacity
verification schemes. By breaking the large-scale system into semi-independent parts,
we show that the verification problem can be addressed in a cost-efficient way by assum-
ing some small-gain type conditions. Compositional construction of opacity-preserving
abstractions is developed for both interconnected control systems and switched sys-
tems. A compositionality result is further derived to compute barrier certificates for
verifying opacity of interconnected control systems.
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Zusammenfassung

Cyber-physische Systeme (CPS) sind das technologische Rückgrat der zunehmend ver-
netzten und intelligenten Welt, in der Konstruktionsfehler oder Sicherheitslücken katas-
trophale Folgen haben können. Implantierbare medizinische Geräte, intelligente Gebäude
und kritische Infrastrukturen sind prominente Beispiele, die die Sicherheitsbedenken
moderner CPS unterstreichen. In den letzten zehn Jahren wurde den Sicherheitsaspek-
ten bei der Entwicklung von CPS große Aufmerksamkeit geschenkt, während die Sicher-
heitsanalyse erst in späteren Phasen berücksichtigt wurde. Dieses Paradigma führt zu
kostspieligen und langwierigen Entwicklungsprozessen, da die Validierungskosten hoch
sind. Diese Arbeit befürwortet einen Paradigmenwechsel in der Entwicklung von CPS,
indem sie ein Secure-by-Construction-Syntheseschema vorschlägt, das die bestehenden
Correct-by-Construction-Synthesemethoden verallgemeinert Synthesemethoden verall-
gemeinert, indem zusätzlich zu den Sicherheitseigenschaften auch die Sicherheitseigen-
schaften während der Entwurfsphase berücksichtigt werden. Unser Ziel ist es, theoretis-
che Grundlagen zu entwickeln, um die Lücke zwischen Kontrolltheorie und theoretischer
Informatik bei der Analyse von Sicherheitseigenschaften zu schließen.

Der erste Schritt zur Überbrückung der Kluft besteht darin, einen gemeinsamen Rah-
men zu schaffen, der die Sicherheitsbegriffe aus den verschiedenen Forschungsbereichen
der ereignisdiskreten Systeme (DES), der Kontrolltheorie und der formalen Methoden
verallgemeinert. Wir entwickeln ein verallgemeinertes Sicherheitskonzept, indem wir
die Ideen aus verschiedenen Forschungsbereichen integrieren. Es wird ein neuer Begriff
der ungefähren Undurchsichtigkeit vorgeschlagen, der besser auf CPS anwendbar ist,
indem das Sicherheitsniveau in Bezug auf die Messgenauigkeit von böswilligen Eindrin-
glingen quantitativ bewertet wird.

In dieser Arbeit werden zwei Hauptansätze zur Analyse der Opazität für komplexe
CPS vorgestellt. Der erste Ansatz bietet einen auf Abstraktion basierenden Rahmen,
um die ungefähre Opazität sowohl für stochastische als auch für nicht-stochastische
Systeme zu überprüfen. Durch die Einführung neuer Begriffe für opazitätserhaltende
Simulationsrelationen konstruieren wir opazitätserhaltende endliche Abstraktionen, die
das Verhalten komplexer CPS nachahmen und uns in die Lage versetzen, die Opazität
konkreter (stochastischer) CPS mit Hilfe ihrer endlichen Abstraktionen zu verifizieren.
Der zweite Ansatz bietet eine alternative diskretisierungsfreie Strategie zur Verifizierung
der Opazität über den Begriff der Barrierezertifikate. Dieser Ansatz ist eine deduktive
Methode, die hinreichende Bedingungen für die ungefähre Opazität komplexer CPS
liefert. Es werden zwei Begriffe für Barrierezertifikate vorgeschlagen, die in umgekehrter
Richtung verwendet werden können, in dem Sinne, dass einer die Opazität garantiert
und der andere das Fehlen der Opazität des Systems sicherstellt.
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Zusammenfassung

Um die Herausforderungen zu bewältigen, die bei großen CPS auftreten, entwickeln
wir modulare Ansätze, um die Rechenkomplexität der vorgeschlagenen Verifizierungsver-
fahren zu reduzieren. Indem wir das große System in halb unabhängige Teile zerlegen,
zeigen wir, dass das Verifizierungsproblem auf kosteneffiziente Weise angegangen wer-
den kann, indem wir Bedingungen vom Typ small-gain annehmen. Es wird eine kom-
positionelle Konstruktion von opazitätserhaltenden Abstraktionen sowohl für vernetzte
Kontrollsysteme als auch für geschaltete Systeme entwickelt. Darüber hinaus wird ein
Kompositionalitätsergebnis abgeleitet, um Barrierezertifikate zu berechnen, die auf ver-
netzte Kontrollsysteme zugeschnitten sind.
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1 Introduction

1.1 Motivation

The revolution in miniaturized communication devices in the beginning of this millen-
nium contributed towards a revolution in the internet-of-things (IoT) and the networked
systems woven around them: the cyber-physical systems (CPS). CPS are marked by
a close-knit interaction of discrete computation and continuous control over a network
and are playing critical roles in virtually every aspect of our modern experience ranging
from consumer electronics to implantable medical devices, from smart cars to smart
hospitals, and from controlling our power systems to safeguarding our nuclear rectors.
These systems are clearly safety-critical as a bug in their design could be life threat-
ening, but given their societal implications, they are also security-critical where a bug
in their design may have the potential to jeopardize the privacy, trust, and economic
interests of society built around them. In the last decade, safety concerns have re-
ceived considerable attention in the design of CPS, while security analysis is left as an
afterthought for the later stages. This existing paradigm results in costly and lengthy
development of CPS due to very high security verification and validation costs. We
believe that the security considerations should be elevated as primary design drivers
along with safety ones to tackle the design challenge of modern CPS and call for a need
to expand the correct-by-construction paradigm of designing safety-critical systems to
encompass security: we call this paradigm secure-by-construction.
Security considerations in the traditional computer science literature are often classi-

fied along the CIA mnemonic: confidentiality, integrity, and availability. The confiden-
tiality properties concern the protection of sensitive information leakage either directly
or, more importantly, via side-channels (seemingly harmless observations of the system
by malintent eavesdroppers). The umbrella-term integrity targets the establishment of
the trust in the authenticity of the source of the information. Finally, availability prop-
erties concern with the protection of the system operations from cyberattacks aimed at
disrupting or interrupting the core functionality of the system. While ensuring integrity
deals with similar issues as for classical computer systems and can benefit from current
best practices on encryption, the confidentiality and availability concerns in CPS get
amplified due to a plethora of attack surfaces available in the form of physical system
observations and constraints ranging from the usual time and memory to temperature,
acoustics, pressure, and electro-magnetic radiation.
On the positive side, since principled approaches to CPS modeling and analysis

already embrace the integration of the encoding of physical variables and discrete con-
trol, the confidentiality and availability properties can be explicated during the design
time to ensure a system that is not only functional, but also guarantees freedom from
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known vulnerabilities. This is primary tenet of our stance on CPS-security: the design
of security-critical CPS must tackle both functionality and security challenges simulta-
neously by leveraging correct-by-construction synthesis to include confidentiality and
availability.

Security-related attacks are increasingly becoming pervasive in safety-critical CPS.
While most of the well-known attacks—such as drone hacking [196], Jeep hacking [54],
pacemaker and Implantable Cardioverter Defibrillator (ICD) attacks [62, 152]—exploit
unencrypted wireless communication, such attacks can be readily guarded against by
following recommended cryptographic measures without requiring any significant mod-
ification to the control logic. On the other hand, security vulnerabilities related to
information leaks via side-channels may be impossible to mitigate without requiring a
non-trivial modification to control software, as the side-channels are products of the
interaction of the embedded control software with its physical environment.

To provide a simple scenario of unintended information leak via timing side-channels,
let us consider an example in the setting of smart hospitals shown in Figure 1.1. An
increasing prevalence of smart-devices and sensors in modern hospitals makes such an
attack scenario on smart hospitals viable. While at a first glance, this example may
seem contrived, it emphasizes how seemingly innocuous observations can provide a
strong side-channel to leak private information. Furthermore, the presence of wide
variety of observations (time delays between various responses [104], temperature [73],
electro-magnetic emissions [124], optical [124] and acoustic [49], physiological [133]) in
CPS expose corresponding attack surfaces to the intruder and render CPS even more
vulnerable than traditional software.

Formal-methods based approach to system design [186, 17] recommends rigorous re-
quirement specification in every stage of the system development. Formal verification
[13] and controller synthesis [186, 17] are two leading approaches to provide correct-
ness guarantees with respect to such requirements. While formal verification aims at
providing a proof of correctness with respect to the given specifications, the goal of the
controller synthesis approach is more ambitious: it takes a control system together with
the specification, and produces a controller such that the resulting closed-loop satisfies
the specification. The automated controller synthesis approach from formal require-
ments is referred to as correct-by-construction controller synthesis scheme [186, 17, 101].
While the controller synthesis approach has been well understood for safety, the security
requirements in CPS are often verified after the design of controllers. Hence, if the sys-
tem leaks information, the controller needs to be redesigned incurring high verification
and validation costs.

We envisage a paradigm shift in the development of simultaneously safe and secure
CPS that advocates a secure-by-construction synthesis scheme which generalizes
existing correct-by-construction synthesis methods by considering privacy properties
simultaneously to safety ones during the design phase.

Overview We give a brief overview of the secure-by-construction approach using a
concrete synthesis problem for our experimental setup. Consider a physical platform
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Services provided by average consultation, examination, and wait times

Service

Avg.
Total
Time
(min)

Avg.
Total
Wait
(min)

Avg. Time
with
Nurse
(min)

Avg. Time
with

Physician
(min)

No.
Cases
(n)

Incom-
plete
Cases
(n)

Minor
assessment

(std.)
50 (30) 33 (22) 1 (3) 16 (13) 67 11

Intermediate
assessment

(std.)
55 (24) 37 (21) 2 (3) 16 (12) 400 29

General
assessment

(std.)
77 (27) 31 (17) 10 (5) 36 (19) 43 1

Psycho-
therapy
(std.)

71 (22) 35 (16) 2 (3) 34 (14) 11 0

Annual exam
(after 16th

birthday) (std.)
51 (30) 26 (12) 7 (4) 18 (8) 5 2

Other service 13 N/A
No service
code given

74 N/A

Figure 1.1: Consider the dataset studied by Bestvater et al. [20], where the authors focused
on the impact of waiting times on patient’s perception of service satisfaction. This
survey collected the average time patients spend with the nurse and the physician
for various services ranging from major and minor assessments to psychotherapy.
We emphasize that the dataset was carefully curated to minimize leaking any
differentially private information about the patients taking part in the survey.
On the other hand, using a simple decision-tree classifier over this data, we found
out that the timing data collected is leaking private information about patients
in timing side-channels. For instance, if a patient spends less than 6 minutes with
the nurse and spends close to 32 minutes with the physician with a low waiting
time, the patient is visiting the hospital for a psychotherapy session!
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(a) (b)

(c) (d)

Figure 1.2: The AWS DeepRacer car and its dynamics (a); The plausible deniability of the
car for secret initial region (b); The grid-world observations (c) where the red
regions depict sensitive starting locations (e.g., hospital or bank) and the green
regions represent the target; Our actual platform in the lab (d) corresponding to
this grid-world.

developed as shown in Figure 1.2(d). Here we are interested in synthesizing a controller
for the movement of a robotic vehicle (AWS DeepRacer Car in Figure 1.2(a)) with safety
and security requirements. The intuition behind the security property of interest is as
follows. Suppose the initial locations of the vehicle contain critical information which
is needed to be kept secret, e.g., the vehicle might be a cash transit van that aims at
transferring money initially from a bank to an ATM machine, or a patient who initially
visited a hospital but unwilling to reveal this information to others. It is implicitly
assumed that there is a malicious intruder who is observing the behavior of the vehicle
remotely intending to carry out an attack. Therefore, it is in the interest of the system
to verify whether it maintains plausible deniability for secret initial location where
some confidential assignment is executed. In the physical platform, we assume that the
vehicle can start from any of the four corner cell (Cells 0, 5, 12, and 17). We also assume
that Cell 5 and Cell 12 marked in red are sensitive starting locations. We also assume
that the time it takes for the robot to travel to any neighboring cell on east (E), west
(W), north (N), and south (S) is the same and it is known to the intruder. Now assume
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that the intruder can only observe when the robotic vehicle is in the regions marked
by P (parking area) and Q (checkout queue) and gets the common observation G for
the rest of the cells. A secure-by-construction controller synthesis task is to design a
feedback controller satisfying the following requirements: 1) a mission requirement: the
robotic vehicle visits regions P and Q infinitely often and 2) a privacy requirement: the
intruder is unable to infer whether the vehicle got initiated from a sensitive location.
Suppose we design a controller providing control strategies from all initial cells such

that the robot first follows a shortest path to reach Cell 8 or Cell 15, and then cy-
cles between them forever. It is easy to verify that these control strategies satisfy the
mission requirement of visiting regions P and Q infinitely often. However, unfortu-
nately such controller does not satisfy the privacy requirement as it is clear from the
following system executions adhering to the aforementioned control strategies: here on
the left side we show the system executions, while on the right hand side we show the
observations made by the intruder. The notation ω over parentheses shows the infinite
repetition of the finite execution inside them.

� 0
E−→1

E−→2
S−→8(

S−→14
E−→15

N−→9
W−→8)ω 7→ G−→G−→G−→P (−→G−→Q−→G−→P )ω

� 12
E−→13

E−→14
N−→8(

S−→14
E−→15

N−→9
W−→8)ω 7→ G−→G−→G−→P (−→G−→Q−→G−→P )ω

� 5
W−→4

W−→3
W−→2

S−→8(
S−→14

E−→15
N−→9

W−→8)ω 7→ G−→G−→G−→G−→P (−→G−→Q−→G−→P )ω

� 17
W−→16

W−→15(
N−→9

W−→8
S−→14

E−→15)ω 7→ G−→G−→Q(−→G−→P−→G−→Q)ω

For this controller, if the system starts in the secret state 12, the corresponding
observation is also matched by the non-secret state 0. On the other hand, when the
system starts in secret state 5, there is no other non-secret initial state giving the same
observation. Hence, whenever the system starts from the secret state 5, the observation
uniquely identifies the initial state to be a secret one. For this controller, we say that
the system is not opaque. On the other hand, by modifying the controller to change
the strategy from Cell 17 to the one below makes the system opaque since it matches
the observation sequence starting from Cell 5.

� 17
N−→11

W−→10
W−→9

W−→8(
S−→14

E−→15
N−→9

W−→8)ω 7→ G−→G−→G−→G−→P (−→G−→Q−→G−→P )ω

A secure-by-construction synthesis framework aims to automatically design such
controllers for large-scale CPS satisfying both the complex logic missions as well as the
security requirements.

1.2 Contributions and Outline of the Thesis

This dissertation provides theoretical foundations to enable fast and reliable design of
security-critical large-scale CPS by introducing a secure-by-construction, cost-efficient
methodology. In Chapter 2, we present some mathematical notations and prelim-
inaries from control theory which will be used throughout the thesis. Then, we in-
troduce new notions of approximate opacity in Chapter 3 for both stochastic and
non-stochastic CPS. Our new definitions will enlarge the application domain of a se-
curity notion, called opacity, and serve as the foundations for the analysis or synthesis
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of opacity for (stochastic) CPS. Based on the new notions of approximate opacity,
we develop two different approaches for the analysis of security for complex CPS. One
main approach for analyzing opacity of CPS is through abstraction-based techniques as
discussed in Chapter 4. By introducing several new notions of approximate opacity-
preserving simulation relations (or opacity-preserving stochastic simulation functions),
we construct opacity-preserving finite abstractions which are finite systems that mimic
the behaviors of concrete (stochastic) CPS in terms of opacity. This allows us to ver-
ify opacity of complex CPS using their finite abstractions. As an alternative to the
abstraction-based framework, a deductive approach via a notion of barrier certificates
is developed in Chapter 5 for the analysis of approximate opacity for CPS. In order to
reduce the computational complexity required in the proposed verification schemes, we
also propose modular approaches as in Chapter 6 to scale our secure-by-construction
synthesis scheme for CPS by combining compositional synthesis techniques from com-
puter science with those from control theory. Chapter 7 concludes the results of the
thesis and outlines potential future directions on related topics.
The main contribution of this dissertation is to provide mathematical foundations

and efficient algorithms for the security analysis of large-scale CPS. To be specific, the
contributions are as follows:

1) Security notions for CPS (Chapter 3)

In order to provide a common framework for the analysis of complex CPS, we
introduce various definitions from the discrete-event systems (DES), CPS, and
formal methods communities. New notions of so-called approximate opacity are
proposed for both stochastic and non-stochastic CPS. Approximate opacity cap-
tures the fact that CPS are usually metric systems in the sense that their outputs
are physical signals rather than being discrete symbols. This new concept can be
seen as a “robust” version of opacity by quantitatively characterizing the security
guarantee level with respect to the measurement precision of the intruder. To
provide a general setting for the secure-by-construction synthesis framework, we
further unified the different requirements and security notions as a generalized
language-based opacity notion.

The covered materials in this chapter are based on the publications [114, 212, 115].

2) Abstraction-based opacity verification of CPS (Chapter 4)

This chapter presents an abstraction-based opacity verification scheme for com-
plex CPS. We provide for the first time a scheme for constructing opacity-preserving
finite abstractions together with corresponding opacity-preserving simulation re-
lations (or opacity-preserving stochastic simulation functions) for (stochastic)
control systems. Moreover, we show that one can always construct opacity-
preserving finite abstractions by leveraging the incremental input-to-state sta-
bility of (stochastic) control systems. Then, one can verify opacity of complex
CPS by using their finite abstractions with a much cheaper computational cost.
The results proposed here make the first step towards abstraction-based verifica-
tion and synthesis of opacity. Furthermore, for the case of finite systems, we also
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develop effective algorithms for the verification of new notions of approximate
opacity, particularly, using belief construction techniques.

The materials presented in this chapter were published in [212, 115].

3) A deductive approach for opacity verification via barrier certificates
(Chapter 5)

As an alternative to the abstraction-based approach developed in Chapter. 4, we
present in this chapter a discretization-free deductive approach for the verification
of opacity for CPS. We first define a notion of augmented systems that are con-
structed as the product of a control system and itself. Inspired by the duality of
safety and reachability properties, we define a pair of so-called augmented control
barrier certificates in conjunction with specified regions of interest capturing the
initial and secret information of systems. The existence of the proposed barrier
certificates for the augmented systems are shown to guarantee the (or the lack
of) opacity for the original control systems. Although both barrier certificates
only serve as sufficient conditions, they can be utilized in reverse directions in the
sense that one ensures approximate opacity, and the other one shows the lack of
approximate opacity of the control system. We also present a way to compute
polynomial barrier certificates by means of sum-of-squares (SOS) programming
under certain assumptions on the systems.

The results of this chapter appeared in the publications [117, 82].

4) Modular verification of opacity for large-scale interconnected systems
(Chapter 6)

This chapter is devoted to mitigate the computational complexity issue tai-
lored to the previously proposed verification approaches. Note that although the
abstraction-based approach provided in Chapter 4 and the deductive approach
presented in Chapter 5 are shown to be promising, a challenge lies in scaling the
approaches for large-scale systems. In order to reduce the computational complex-
ity, we propose a divide-and-conquer strategy to scale the proposed approaches by
combining compositional synthesis techniques from computer science with those
from control theory. Here, a large-scale system is tackled as an interconnection of
smaller subsystems with manageable sizes. For the abstraction-based approach,
instead of treating the interconnection monotonically, our compositionality result
enables us to construct opacity-preserving finite abstractions for the subsystems
individually. A top-down construction framework was presented equipped with
a detailed algorithm as a guideline for the design of quantization parameters.
Here, we propose compositionality results for both general interconnected control
systems and interconnected switched systems which require different treatments
on the state space discretization processes. For the barrier certificate approach,
a compositional scheme for the construction of barrier certificates is also derived
based on a small-gain type condition.

The covered materials in this chapter were published in [118, 113, 112, 81].
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2 Preliminaries

In this chapter, we introduce some mathematical notations and preliminaries that will
be used throughout this thesis. The presented preliminaries are based on the classical
results from the fields of control theory, mathematics, and theoretical computer science.

2.1 Notation

We denote by R, Z, and N the set of real numbers, integer and non-negative integers,
respectively. Additionally, these symbols are annotated with subscripts to restrict them
in the usual way, e.g., the symbols R≥0, R>0 and N>0 denote the set of non-negative
real numbers, positive real numbers, and positive integers, respectively. We denote the
closed, open, and half-open intervals in R by [a b], ]a b[, [a b[, and ]a b], respectively.
For a, b ∈ N and a ≤ b, we use [a; b], ]a; b[, [a; b[, and ]a; b] to denote the corresponding
intervals in N. Given N ∈ N≥1 vectors νi ∈ Rni , ni ∈ N≥1, and i ∈ [1;N ], we write
ν = (ν1, . . . , νN ) to denote the corresponding concatenated vector in Rn with n =

∑
i ni.

Given a vector x ∈ Rn, we denote the infinity norm of x by ∥x∥ and the Euclidean
norm of x by ∥x∥2. Given any a ∈ R, |a| denotes the absolute value of a. We denote
by id the identity function over R, i.e., id(r) = r for all r ∈ R.
Given two sets X,Y ⊆ Rn, the complement of set X with respect to Y is defined as

Y \X = {x : x ∈ Y, x /∈ X}. For any set Z ⊆ Rn, ∂Z and Z, respectively, denotes the
boundary and topological closure of Z. The Minkowski sum of two sets X,Y ⊆ Rn is
defined by X ⊕ Y = {z ∈ Rn : ∃x∈X,y∈Y , z = x + y}. Given a function f : N≥0 → Rn,
the (essential) supremum of f is denoted by ∥f∥∞ := (ess)sup{∥f(k)∥, k ≥ 0}. We
identify a relation R ⊆ A×B with the map R : A→ 2B defined by b ∈ R(a) iff
(a, b) ∈ R. Given a relation R ⊆ A×B, R−1 denotes the inverse relation defined by
R−1 = {(b, a) ∈ B ×A : (a, b) ∈ R}. The closed ball centered at u ∈ Rm with radius
λ is defined by Bλ(u) = {v ∈ Rm : ∥u − v∥ ≤ λ}. We denote the closed ball cen-
tered at the origin in Rn and with radius λ by Bλ. A set B ⊆ Rm is called a box if
B =

∏m
i=1[ci, di], where ci, di ∈ R with ci < di for each i ∈ {1, . . . ,m}. Geometrically,

for any µ ∈ R+ with µ ≤ span(B) and λ ≥ µ, the collection of sets {Bλ(p)}p∈[B]µ is a
finite covering of B, i.e., B ⊆

⋃
p∈[B]µ

Bλ(p). For any set S ⊆ Rn of the form of finite

union of boxes, e.g., S =
⋃M
j=1 Sj for some M ∈ N, where Sj =

∏n
i=1[c

j
i , d

j
i ] ⊆ Rn with

cji < dji , we define span(S) = minj=1,...,M ηSj and ηSj = min{|dj1 − cj1|, . . . , |d
j
n − cjn|}.

Moreover, for a set in the form of X =
∏N
i=1Xi, where Xi ⊆ Rni are of the form of

finite union of boxes, and any positive (component-wise) vector η = (η1, . . . , ηN ) with
ηi ≤ span(Xi), ∀i ∈ [1;N ], we define [X]η =

∏N
i=1[Xi]ηi , where [Xi]ηi = [Rni ]ηi ∩ Xi

and [Rni ]ηi = {a ∈ Rni : aj = kjηi, kj ∈ Z, j = 1, . . . , ni}. Remark that [X]η ̸= ∅ for
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any η ≤ span(X). Given a set S ⊆ Rn and a constant θ ∈ R≥0, we define a new set
Sθ = S⊕ Bθ as the inflated version of set S.

We use notations K, K∞, and KL to denote the different classes of comparison func-
tions, as follows: K = {γ : R≥0 → R≥0 : γ is continuous, strictly increasing and γ(0) =
0}; K∞ = {γ ∈ K : limr→∞ γ(r) = ∞}; KL = {β : R≥0 ×R≥0 → R≥0 : for each fixed s,
the map β(r, s) belongs to class K with respect to r and, for each fixed nonzero r, the
map β(r, s) is decreasing with respect to s and β(r, s) → 0 as s→ ∞}.

For a set A, we write A∗ for the set of finite sequences with elements in A and Aω

for the set of (infinite) ω-sequences. We write A∞ = A∗ ∪Aω.

2.2 System Model

Transition systems are natural, expressive, unified, and widely accepted [186, 17, 13]
semantics for cyber-physical systems describing both continuous-space and finite control
systems.

Definition 2.2.1. (Transition Systems) A transition system Σ is described
by a quadruple

Σ = (X,X0, U, - ), (2.2.1)

where X is a (possibly infinite) set of states, X0 ⊆ X is a (possibly infinite) set
of initial states, U is a (possibly infinite) set of inputs, and - ⊆ X ×U ×X
is a transition relation. We call a system finite (or symbolic), if X and U are
finite sets.

A transition (x, u, x′) ∈ - is also denoted by x
u- x′. For a transition x

u- x′,
state x′ is called a u-successor, or simply a successor, of state x; state x is called a
u-predecessor, or simply a predecessor, of state x′. We denote by Postu(x) the set of
all u-successors of state x and by Preu(x) the set of all u-predecessors of state x. For
a set of states q ∈ 2X , we write

Postu(q) = ∪x∈qPostu(x) and Preu(q) = ∪x∈qPreu(x).

We call a system deterministic, if for any state x ∈ X and any input u ∈ U , Postu(x)
is a singleton or an empty set; otherwise we call it non-deterministic.
A system Σ starting from an initial state x0 ∈ X0 and under input sequence u1u2 · · ·un ∈

U∗, induces a finite state run

x0
u1- x1

u2- · · · un−1- xn−1
un- xn, (2.2.2)

such that xi
ui+1- xi+1 for all 0 ≤ i < n. Note that the run induced by an input

sequence may not be unique because the system may be non-deterministic.
We call a finite sequence of states x0x1 · · ·xn ∈ X∗ a finite path of the system Σ

and denote by Path(Σ, x0) the set of all finite paths generated by Σ starting from x0
and with Path(Σ) = ∪x0∈X0Path(Σ, x0). Similarly, an infinite path x0x1 · · · ∈ Xω is
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an ω-sequence defined analogously and we denote by Pathω(Σ, x0) the set of all infinite
paths of Σ from x0 and with Pathω(Σ) = ∪x0∈X0Path

ω(Σ, x0).

Behaviors A primary concern is whether the behaviors of system Σ satisfy some de-
sired specification. Formally, let AP be a finite set of features, or (atomic) propositions,
of the state space. We view the states with the lenses of atomic propositions, and to
do so, we define a labeling function L : X → 2AP that assigns to each state x ∈ X in
Σ a set of propositions L(x) true at the state x. The labeling function can naturally
be extended from states to path: we call such labeling of a path a trace. For any finite
or infinite path x = x0x1 · · · ∈ X∞, its trace is L(x) = L(x0)L(x1) · · · ∈ (2AP)∞. The
set of all finite traces and the set of all infinite traces are denoted by Trace(Σ) and
Traceω(Σ), respectively.

Observations The system releases information to the external world during its exe-
cution. The external world often may not observe the internal states X or their atomic
propositions directly but rather their properties over some observation symbols. Let Y
be such set of observations. Let the output function h : X → Y determine the external
observation of each internal state x ∈ X. It can naturally be extended to finite or
infinite paths, i.e., for a path x = x0x1 · · · ∈ X∞, its output corresponds to a sequence
h(x) = h(x0)h(x1) · · · ∈ Y∞.

The system Σ is said to be metric if the observation set Y is equipped with a metric
d : Y ×Y → R≥0. For any two paths x = x0x1 · · · and x′ = x′0x

′
1 · · · , we say the outputs

of x and x′ are (exactly) output equivalent, denoted by h(x) = h(x′), if h(xi) = h(x′i)
for all i ≥ 0; on the other hand, we say that they are δ-approximately output equivalent,
and write h(x)≈δh(x

′), if supi≥0 d(h(xi), h(x
′
i)) ≤ δ.

To emphasize the labeling L : X → 2AP and output functions h : X → Y of a system
Σ, we rewrite the tuple describing the system as

Σ = (X,X0, U, - ,AP, L, Y, h).

When it is clear from the context, we may drop some of the elements in the tuple for
the sake of simple presentation.

Remark 2.2.2. In the DES literature, it is customary to model a system as a finite
state machine G = (X,E, δ,X0, Eo), where X is a set of states, E is a set of events,
δ : X × E → 2X is a transition function and X0 ⊆ X is a set of initial states [26]. In
such treatments, both inputs and properties are captured by events E. Furthermore, it
is also assumed that the observation mapping is also event-based captured by a natural
projection P : E → Eo.

Our modeling framework is general enough to capture treatment in DES literature
and capable of expressing more general scenarios posed in the reactive control systems
settings.
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2.3 Discrete-Time Control Systems

In this thesis, we consider control systems in discrete time, which is a metric system
as discussed in Section 2.2. In the remainder of this thesis, we assume that the output
set Y is equipped with the infinity norm: d(y1, y2) = ∥y1 − y2∥, ∀y1, y2 ∈ Y . We
have a similar assumption for the state set X. Note that in the remainder of this
dissertation, we will mainly consider control systems with secret states (cf. Section 3.2)
and incorporate the secrete state set XS ⊆ X in the system definitions. The formal
definition of discrete-time control systems is given as follows.

Definition 2.3.1. (Discrete-Time Control Systems) A discrete-time control
system (dt-CS) Σ is defined by the tuple

Σ = (X,X0, XS , U, f, Y, h), (2.3.1)

where X ⊆ Rn, U ⊆ Rm, and Y ⊆ Rq are the state, input, and output sets,
respectively. Sets X0, XS ⊆ X are the sets of initial states and secret states,
respectively. The map f : X × U → X is called the transition function, and
h : X → Y is the output map and assumed to satisfy the following Lipschitz
condition: ∥h(x)− h(y)∥ ≤ α(∥x− y∥) for some α ∈ K∞ and all x, y ∈ X. The
dynamics of Σ is described by difference inclusions of the form

Σ :

{
x(k + 1) ∈ f(x(k), ν(k)),

y(k) = h(x(k)),
(2.3.2)

where k ∈ N, x : N → X, y : N → Y , and ν : N → U are the state, output,
and input signals, respectively.

We write xx0,ν(k) to denote the point reached at time k under the input signal ν
from initial condition x0. Similarly, we denote by yx0,ν(k) the output corresponding
to state xx0,ν(k), i.e., yx0,ν(k) = h(xx0,ν(k)). In the above definition, we implicitly
assumed that set X is positively invariant1.

2.3.1 Discrete-Time Stochastic Control Systems

In some part of this thesis, we consider discrete-time stochastic control systems formally
defined as follows.

Definition 2.3.2. (Discrete-Time Stochastic Control Systems) A discrete-time
stochastic control systems (dt-SCS) is defined by the tuple

Σ = (X,X0, XS , U, ς, f, Y, h) , (2.3.3)

where X ⊆ Rn, U ⊆ Rm, and Y ⊆ Rq are Borel sets denoting the state, input and
output sets of the system, respectively. Sets X0, XS ⊆ X are the sets of initial and

1Set X is called positively invariant under (2.3.2) if xx0,ν(k) ∈ X for any k ∈ N, any x0 ∈ X and any
ν : N0 → U .
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secret states, respectively. We use B(X) to denote the Borel sigma-algebra on the state
set X, thus (X,B(X)) denotes the corresponding measurable space. In the probability
space (Ω,FΩ,P), we use ς = (ς(1), ς(2), . . . ) to denote a sequence of independent and
identically distributed (i.i.d.) random variables from Ω to the measurable set Vς , where
ς(k) : Ω → Vς , k ∈ N. The maps f : X × U × Vς → X and h : X → Y are measurable
functions serving as the state transition relation and output map, respectively. Given
an initial state ξ(0) ∈ X and ∀k ∈ N, the dt-SCS Σ satisfies

Σ :

{
ξ(k + 1) = f(ξ(k), ν(k), ς(k)),
ζ(k) = h(ξ(k)),

(2.3.4)

where ξ(·) : N → X, ζ(·) : N → Y , and ν(·) : N → U are the state, output, and input
signals, respectively. We use U to denote a collection of sequences ν : Ω → U , where
ν(k) is independent of ς(t) for any k, t ∈ N and t ≥ k.

A dt-SCS defined in (2.3.3) with (possibly) continuous state set can be equivalently
represented as a general Markov decision process (gMDP). We refer the interested
readers to [59] for formal definitions of gMDPs. Note that by capturing stochastic
systems as gMDP, this modeling framework is general enough to include as special cases
labelled Markov processes [42], discrete-time stochastic hybrid games [43], stochastic
switched systems [102], and so on.
Given system Σ = (X,X0, XS , U, ς, f, Y, h), x

u−−→ x′ is called a transition in the
system if and only if x′ = f(x, u, ς). The random sequence ξx0ν : Ω × N → X, which
is in the form of ξx0ν = (x0, x1, . . . , xn), is said to be a solution process of Σ under
input sequence ν = (u1, u2, . . . , un) satisfying (2.3.4), with initial state ξx0ν(0) = x0.
The random sequence ζx0ν : Ω × N → Y is called the output run and defined as
ζx0ν = (y0, y1, . . . , yn) such that there exists a solution process ξx0ν = (x0, x1, . . . , xn)
with yi = h(xi), for i ∈ {0, . . . , n}. A solution process and a finite output run can be
extended to an infinite state run and an infinite output run as well.

2.3.2 Discrete-Time Switched Systems

In some part of the thesis, we consider discrete-time switched systems of the following
form.

Definition 2.3.3. (Discrete-Time Switched Systems) A discrete-time switched
system (dt-SS) Σ is defined by the tuple Σ = (X,X0,XS , P, F, Y, h), where X ⊆ Rn, Y ⊆
Rq are the state and output sets, respectively. Sets X0,XS ⊆ X are the sets of initial
states and secret states, respectively. Set P = {1, . . . ,m} is a finite set of modes,
F = {f1, . . . , fm} is a collection of set-valued maps fp : X ⇒ X for all p ∈ P , and
h : X → Y is the output map. The dt-SS Σ is described by difference inclusions of the
form

Σ :

{
x(k + 1) ∈ fp(k)(x(k)),

y(k) = h(x(k)),
(2.3.5)

where k ∈ N, x : N → X, y : N → Y , and p : N → P are the state, output, and
switching signal, respectively.
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Let φk, k ∈ N≥1, denote the time when the k-th switching instant occurs. We
assume that signal p satisfies a dwell-time condition [106] (i.e. there exists kd ∈ N≥1,
called the dwell-time, such that for all consecutive switching time instants φk, φk+1,
φk+1 − φk ≥ kd). We assume that for every initial condition and any sequence of
switching signals, the corresponding state signal is defined for all k ≥ 0.

Moreover, we employ the notion of transition systems as discussed in Definition 2.2.1,
to provide an alternative description of switched systems that can be later directly
related to their finite abstractions in a common framework.

Definition 2.3.4. (Discrete-Time Switched Systems as Transition Systems) Given a
dt-SS Σ = (X,X0,XS , P, F, Y, h), we define the associated transition system T (Σ) =
(X,X0, XS , U,F , Y,H), where:

� X = X× P × {0, . . . , kd − 1} is the state set;

� X0 = X0 × P × {0} is the initial state set;

� XS = XS × P × {0, . . . , kd − 1} is the secret state set;

� U = P is the input set;

� F is the transition function given by (x+, p+, l+) ∈ F((x, p, l), u) if and only if
x+ ∈ fp(x), u = p and one of the following scenarios hold:

· l < kd − 1, p+ = p and l+ = l+1: switching is not allowed because the time
elapsed since the latest switch is strictly smaller than the dwell time;

· l = kd − 1, p+ = p and l+ = kd − 1: switching is allowed but no switch
occurs;

· l = kd − 1, p+ ̸= p and l+ = 0: switching is allowed and a switch occurs;

� Y = Y is the output set;

� H : X → Y is the output map defined as H(x, p, l) = h(x).

Note that in the above definition, two additional variables p and l are added to the
state tuple of the system Σ. The variable l serves as a counter to record the sojourn time
of the switching signal, which allows or prevents the system from switching depending
on whether the dwell-time condition is satisfied; the variable p acts as a memory to
record the current mode of the system.

The following proposition is borrowed from [184] showing that the output runs of a
dt-SS Σ and its associated transition system T (Σ) are equivalent so that one can use
Σ and T (Σ) interchangeably.

Proposition 2.3.5. Consider a transition system T (Σ) in Definition 2.3.4 associated
to Σ as in Definition 2.3.3. Any output trajectory of Σ can be uniquely equated matched
with an output trajectory of T (Σ) and vice versa.
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2.4 Incremental Input-to-State Stability

In this section, we introduce preliminary results on the notion of incremental input-to-
state stability (δ-ISS) which will be leveraged later to show some of the main results of
this thesis.

Definition 2.4.1. [193] A discrete-time control system Σ = (X,X0, XS , U, f, Y, h) is
called incrementally input-to-state stable (δ-ISS) if there exist a KL function β and K∞
function γ such that ∀x, x′ ∈ X and ∀ν, ν ′ : N0 → U , the following inequality holds for
any k ∈ N:

∥xx,ν(k)− xx′,ν′(k)∥ ≤ β(∥x− x′∥, k) + γ(∥ν − ν ′∥∞). (2.4.1)

Example 2.4.2. As an example, a linear control system:

x(k + 1) = Ax(k) +Bν(k), y(k) = Cx(k), (2.4.2)

is δ-ISS if all eigenvalues of A are inside the unit circle. In this case, functions β and
γ can be chosen as:

β(r, k) = ∥Ak∥r; γ(r) = ∥B∥

( ∞∑
m=0

∥Am∥

)
r. (2.4.3)

In general, it is difficult to check inequality (2.4.1) directly for nonlinear systems.
Fortunately, δ-ISS can be characterized using Lyapunov functions.

Definition 2.4.3. [193] Consider a discrete-time control system Σ and a continuous
function V : X ×X → R≥0. Function V is called a δ-ISS Lyapunov function for Σ if
there exist K∞ functions α, α, ρ and K function σ such that:

(i) for any x, x′ ∈ X
α(∥x− x′∥) ≤ V (x, x′) ≤ α(∥x− x′∥);

(ii) for any x, x′ ∈ X and u, u′ ∈ U
V (f(x, u), f(x′, u′))− V (x, x′) ≤ −ρ(V (x, x′)) + σ(∥u− u′∥);

The following result characterizes δ-ISS in terms of existence of δ-ISS Lyapunov
functions.

Theorem 2.4.4. [193] Consider a control system Σ. System Σ is δ-ISS if it admits a
δ-ISS Lyapunov function.

The next technical lemma will be used later to show some of the main results of next
chapters.

Lemma 2.4.5. Consider a control system Σ. Suppose V is a δ-ISS Lyapunov function
for Σ. Then there exist κ, λ ∈ K∞, where κ(s) < s for any s ∈ R+, such that

V (f(x, u), f(x′, u′)) ≤ max{κ(V (x, x′)), λ(∥u− u′∥)}, (2.4.4)

for any x, x′ ∈ X and any u, u′ ∈ U .

The proof is similar to that of Theorem 1 in [182] and is omitted here.
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3 Security Notions for Cyber-physical
Systems

3.1 Introduction

Security requirements, in the DES [107, 202, 209, 95] and control theory communities,
are often expressed using the notion of opacity, while in the realm of computer science
security requirements are expressed using closely related, but subtly different, concepts
of non-interference [128, 134, 201], K-safety [178, 139], language-based secrecy [3], and
their generalizations using HyperLTL properties [33, 32].

In this chapter, we review the above-mentioned notions and provide a generalized
security notion for CPS. In particular, we revisit various definitions and synthesize
ideas from three research communities: discrete event systems, control systems, and
formal methods to pose and study central problems supporting secure-by-construction
synthesis. In our selection, the focus of the DES community is on the finite state
models, the control systems community primarily on the continuous space models,
while the results from formal methods community will primarily focus on logical and
automata-theoretic results. Then, in Section 3.3, new notions of opacity are developed
to suitably capture the metric nature of output sets of real-world (stochastic) CPS. We
then provide a unifying view of various models and problems studied in this context,
which integrate works in the three research fields under a common general framework.

3.2 Security Notions for Finite Systems: Opacity

Attack Model. In the setting discussed here, we assume that there exists a
secret predicate on runs that models the confidential behavior of the system. The
system does not want the intruder to infer the status of the secret predicate, i.e.,
whether it has executed a secret run. We consider that the intruder knows the
dynamics of the system; and can observe the output sequences of the system. The
intruder wants to use the output sequences observed online and the knowledge
of the system model to infer certain information about the secret predicates of
the corresponding run. For simplicity, we assume that the input sequences are
internal information and unknown to the intruder. This setting can be easily
relaxed to handle the case where both input and output information are available
to the intruder.
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Opacity is a well-studied confidentiality property that captures whether or not the
“secret” of the system can be revealed to an intruder that can infer the system’s actual
behavior based on the information flow. A system is said to be opaque if it always has
the plausible deniability for any of its secret behavior.

Definition 3.2.1 (Language-Based Opacity). For a system Σ =
(X,X0, U, - , Y, h), let PS ⊆ Path(Σ) be the set of secret (finite) paths and
PP ⊆ Path(Σ) be a set of non-secret (finite) paths. We say system Σ is opaque
w.r.t. PS and PP if for any secret path x ∈ PS , there exists a non-secret path
x′ ∈ PP such that h(x) = h(x′).

The above definition of opacity is referred to as language-based opacity in the DES
literature [107] as it uses languages PS and PP to represent secret and non-secret
behaviors, respectively. The condition in the definition can also be equivalently written
in terms of language inclusion as follows:

h(PS) ⊆ h(PP ). (3.2.1)

In specific applications, secret paths PS usually have concrete meanings, e.g., cur-
rently at a secret location or initiated from a secret location. Therefore, a commonly
used approach is to consider a set of secret states XS ⊆ X. Depending on what infor-
mation the system wants to hide, the following state-based notions of opacity have been
introduced in the literature. In the remainder part of this dissertation, when discussing
state-based opacity, we incorporate the secrete state set XS in the system definition.

Definition 3.2.2 (State-Based Opacity). Let Σ = (X,X0, XS , U, - , Y, h)
be a system, and K ∈ N be a non-negative integer. We say system Σ is

� Initial-State Opaque [162] if for any path x = x0x1 · · ·xn ∈ Path(Σ), where
x0 ∈ XS , there exists a path x′ = x′0x

′
1 · · ·x′n ∈ Path(Σ), where x′0 /∈ XS , such

that h(x) = h(x′);

� Current-State Opaque [160] if for any path x = x0x1 · · ·xn ∈ Path(Σ), where
xn ∈ XS , there exists a path x′ = x′0x

′
1 · · ·x′n ∈ Path(Σ), where x′n /∈ XS , such

that h(x) = h(x′);

� Infinite-Step Opaque [165] if for any path x = x0x1 · · ·xn . . . xn+k ∈ Path(Σ),
where xn∈XS , there is a path x′ = x′0x

′
1 · · ·x′n . . . x′n+k ∈ Path(Σ), where

x′n /∈ XS , such that h(x)=h(x′);

� K-Step Opaque [161] if for any path x = x0x1 · · ·xn . . . xn+k ∈ Path(Σ), where
xn ∈ XS and k ≤ K, there exists a path x′ = x′0x

′
1 · · ·x′n · · ·x′n+k ∈ Path(Σ),

where x′n /∈ XS , such that h(x) = h(x′);

� Pre-Opaque [207] if for any path x = x0x1 · · ·xn and any k ∈ N, there exists
a path x′ = x′0x

′
1 · · ·x′n · · ·x′n+k ∈ Path(Σ), where x′n+k /∈ XS , such that

h(x0x1 . . . xn) = h(x′0x
′
1 · · ·x′n).
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Figure 3.1: Graphical illustration of initial-state opacity.

The above state-based notions of opacity are closely related to the three fundamental
state estimation problems in the systems theory: filtering, smoothing and prediction
[57]. Specifically, current-state opacity is related to the filtering problem because it
requires that the intruder can never determine for sure that the system is currently
at a secret state. Initial-state opacity and infinite/K-step opacity are related to the
smoothing problem because they both consider the scenario where the intruder can
use latter observations to infer whether or not a system was at a secret state for some
previous or the initial instant. In particular, initial-state opacity says that the intruder
can never know that the system was initiated from a secret state, and K-step opacity
says that the intruder can never know that the system was at a secret state within the
past K-steps. Clearly, when K takes values 0 and ∞, K-step opacity becomes current-
state opacity and infinite-step opacity, respectively. Finally, the notion of pre-opacity
is related to the predication problem by requiring that the intruder can never know for
sure that the system will reach a secret state for some specific future instant. This type
of opacity essentially captures the intention security of the system. As an example, an
illustration of the concept of initial-state opacity is depicted in Figure 3.1.

Note that our definition of infinite-step opacity requires that the intruder should
never know for sure that the system is/was at a secret state for any specific instant. In
some cases, the intruder may know that the system must have visited a secret state,
although it cannot tell the precise instant. This requirement can be captured by the
notion of strong (or trajectory-based) infinite-step opacity; see, e.g., Remark 5 in [165].
This notion is stronger than ours and which one to use is dependent on the applications.
However, strong infinite-step opacity can be transformed to current-state opacity by
augmenting the state-space to encode whether or not a secret state has been visited.

More recently, the definitions and verification algorithms for different notions of
opacity have been extended to other classes of (discrete) systems, including Petri nets
[191, 192, 35, 16], stochastic systems [163, 84, 200], recursive tile systems [29] and
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pushdown systems [91]. The interested readers are referred to recent surveys [75, 95]
for more references and recent developments on this active research area.

3.3 Security Notions for CPS: Approximate Opacity

Since opacity is an information-flow property, its definition strictly depends on the
information model of the system. The formulation of opacity in the last subsection
requires that for any secret behavior, there exists a non-secret behavior such that they
generate exactly the same output. Therefore, we will also refer to these definitions
as exact opacity. Exact opacity essentially assumes that the intruder or the observer
can always measure each output or distinguish between two different outputs precisely.
This setting is reasonable for non-metric systems where outputs are symbols or events.
However, for metric systems, e.g., when the outputs are physical signals, this setting
is too restrictive. In particular, due to the imperfect measurement precision, which is
almost the case for all physical systems, it is very difficult to distinguish two observa-
tions if their difference is very small. A typical example of this scenario is linear or
nonlinear discrete-time control systems with continuous state-spaces and continuous
output mappings. Therefore, exact opacity may be too strong for metric systems and
it is meaningful to define a weak and “robust” version of opacity.

In this section, we develop novel concepts of opacity called approximate opacity that
are suitable for (stochastic) CPS possibly with continuous sets of states, inputs, and
outputs. These concepts are proposed to quantitatively evaluate the security guarantee
level with respect to the measurement precision of the intruder. The new concepts can
be seen as a “robust” version of opacity by characterizing under what measurement
precision the system is opaque.

Related Works The problem studied in this section is closely related to several works
in the literature. First, several different approaches have been proposed in the litera-
ture to evaluate opacity more quantitatively rather than requiring that the system is
opaque exactly [163, 19, 30, 211]. For example, in [30], the authors adopt the Jensen-
Shannon divergence as the measurement to quantify secrecy loss. For finite systems,
one popular approach is to consider systems modeled by probabilistic finite-state au-
tomata, Markov chains or Markov decision processes. Then one can quantify opacity in
terms of probability [163, 18, 19, 84, 30, 211, 103]. These approaches essentially aim to
analyze how opaque a single system is, e.g., the probability of being opaque. However,
they neither consider how close two systems are in terms of being opaque nor consider
under what observation precision level, we can guarantee opacity.

There are also attempts in the literature that extend opacity from discrete systems
to continuous systems. For example, in the recent results in [154, 153, 155], the authors
extended the notion of opacity to (switched) linear systems. However, their definition of
opacity is more related to an output reachability property rather than an information-
flow property. Moreover, their formulation is mostly based on the setting of exact
opacity, i.e., we can always distinguish two different outputs precisely no matter how
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close they are. In [154], the authors mentioned the direction of using output metric to
quantify opacity and a property called strong ϵ-K-initial-state opacity was proposed,
which is closely related to our notions. However, no systematic study, e.g., verifica-
tion and abstraction as we consider in this thesis, was provided for this property. A
related notion called differential privacy was introduced in [44] for database systems
and has attracted significant attention in the past few years [99, 79, 208]. In particular,
[79] extends the original notion of differential privacy to symbolic systems. Differential
privacy requires that any two adjacent data should produce indistinguishable outputs
in the probability sense. However, the essence of opacity is a confidentiality property
that captures the plausible deniability of the system’s secret behavior, while differential
privacy captures whether or not any sensitive data can be learned under some side-
information. These two properties are incomparable in general. Finally, approximate
notions of two related properties called diagnosability and predictability are investi-
gated recently in [142, 47]. Their setting is very similar to us as we both consider
a measurement uncertainty threshold. However, diagnosability and predictability can
be preserved by standard approximate simulation relation, wwhereas it was proved in
[222] that standard approximate simulation relation does not preserve opacity. These
notions are again different in essence.

3.3.1 Approximate Opacity for Non-Stochastic Control Systems

In this subsection, we define a concept called approximate opacity for non-stachastic
control systems. In particular, we treat two outputs as “indistinguishable” outputs
if their distance is smaller than a given threshold δ ≥ 0, i.e., condition h(x) = h(x′)
is replaced by h(x) ≈δ h(x

′). All exact notions of opacity defined in Definition 3.2.2
can be generalized to the approximate versions by replacing the output equivalence
condition as δ-closeness. Note that we will mainly focus on the three basic types of
opacity, i.e., initial-state opacity, current-state opacity, and infinite-step opacity.

Definition 3.3.1 (Approximate Opacity for dt-CS). Let Σ =
(X,X0, XS , U, - , Y, h) be a metric system, with the metric d defined over
the output set, and a constant δ ≥ 0. System Σ is said to be

� δ-approximate initial-state opaque if for any path x = x0x1 · · ·xn ∈ Path(Σ),
where x0 ∈ XS , there exists path x′ = x′0x

′
1 · · ·x′n ∈ Path(Σ), where x′0 /∈ XS ,

such that h(x) ≈δ h(x
′);

� δ-approximate current-state opaque if for any path x = x0x1 · · ·xn ∈ Path(Σ),
where xn ∈ XS , there exists a path x′ = x′0x

′
1 · · ·x′n ∈ Path(Σ), where x′n /∈

XS , such that h(x) ≈δ h(x
′);

� δ-approximate infinite-step opaque if for any path x = x0x1 · · ·xn . . . xn+k ∈
Path(Σ), where xn∈XS , there is a path x′ = x′0x

′
1 · · ·x′n . . . x′n+k ∈ Path(Σ),

where x′n /∈ XS , such that h(x) ≈δ h(x
′).
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Figure 3.2: An example for approximate opacity, where states marked by red denote secret
states, states marked by input arrows denote initial states and the output map is
specified by the value associated to each state.

Clearly, when δ = 0, δ-approximate initial-state opacity reduces to its exact version
in Definition 3.2.2. The main difference is how we treat two outputs as indistinguishable
outputs. Specifically, same as in the exact case, we still assume that the intruder know
the system model and the output trajectory generated. However, we further assume
that the intruder may not be able to distinguish an output trajectory from other δ-
closed ones. Intuitively, the approximate version of opacity can be interpreted as “the
secret of the system cannot be revealed to an intruder that does not have an enough
measurement precision related to parameter δ”. In other words, instead of providing an
exact security guarantee, approximate opacity provides a relaxed and quantitative se-
curity guarantee with respect to the measurement precision of the intruder. Therefore,
the value δ can be interpreted as either the measurement imprecision of the intruder
or the security level the system can guarantee, i.e., under how powerful intruder the
system is still secure.
Hereafter, we assume without loss of generality that

∀x0 ∈ X0 : {x ∈ X0 : d(h(x0), h(x)) ≤ δ} ̸⊆ XS , (3.3.1)

for any system Σ = (X,X0, XS , U, - , Y, h). This assumption essentially requires
that the secret of the system cannot be revealed initially; otherwise, the system is not
opaque trivially. This assumption can be easily checked and its non-satisfaction means
that δ-approximate initial-state opacity, δ-approximate current-state opacity and δ-
approximate infinite-step opacity are all violated trivially.

Example 3.3.2. Consider system Σ = (X,X0, XS , U, - , Y, h) depicted in Fig-
ure 3.2, where X = {A,B,C,D}, X0 = {A,B}, XΣ = {B}, U = {u}, h = {0.1, 0.15, 0.2,
0.35} ⊆ R and the output map is specified by the value associated to each state. Clearly,
none of exact initial-state opacity, exact current-state opacity and exact infinite-step
opacity is satisfied since we know immediately that the system is at secret state B when
value 0.1 is observed.
Now, let us assume that the output set Y is equipped with metric d defined by

d(y1, y2) = |y1 − y2|. We claim that S is not 0.05-approximate current-state opaque.

For example, let us consider finite run B
u- D

u- B that generates output run
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(0.1, 0.35, 0.1). However, there does not exists a finite run leading to a non-secret state
whose output run is 0.05-close to the above output run. To see this, in order to match
the above output run, we must consider a run starting from state B, since for the initial
state A, we have d(h(A), h(B)) = 0.1 ≥ 0.05, and the next state reached can only be
D. From state D, we can reach states A and B, but d(h(A), 0.1) = 0.1 ≥ 0.05 =: δ.
Therefore, the only finite run that approximately matches the above output will end up
with secret state B, i.e., we know unambiguously that the system is currently at a secret
state even when we cannot measure the output precisely. On the other hand, one can
check that the system is 0.1-approximate current-state opaque. Similarly, system S is
not 0.1-approximate initial-state opaque, since for output run (0.1, 0.35) starting from
the secret state B, there is no run starting from a non-secret initial state that can ap-
proximately match it. One can also check that the system is δ-approximate initial-state
opaque only when δ ≥ 0.15. We will provide formal procedures for verifying approximate
opacity later.

Remark 3.3.3. Let Σ = (X,X0, XS , U, - , Y, h) be a metric system. If the output
map h is identity, i.e. h(x) = x, ∀x ∈ X, then Σ is trivially not exactly opaque as
in Definition 3.2.2 since we know the exact state of the system directly. However, this
is not the case for the approximate notions of opacity as in Definition 3.3.1 since the
distance between a secret state and a non-secret state can be very small even if their
values are not exactly the same.

In the sequel, we make some remarks regarding relationships between these notions of
state-based opacity. Specifically, we show approximate infinite-step opacity implies ap-
proximate initial-state, current-state, and K-step opacity. We should note that similar
results does not hold for the lack of opacity.

Lemma 3.3.4. If a system Σ = (X,X0, XS , U, - , Y, h) is δ-approximate infinite-
step opaque, it is also δ-approximate initial-state opaque (resp. current-state opaque
and K-step opaque).

Proof. Let us note that the other notions of approximate opacity as in Definition 3.3.1
can be regarded as special cases of approximate infinite-step opacity. Specifically, as
can be seen from Definition 3.3.1, δ-approximate infinite-step opacity requires that
the intruder should never know for sure that the system is/was at a secret state for
any specific time instant k ∈ {0, . . . n}. When k = 0, the notion of approximate
infinite-step opacity reduces to approximate initial-state opacity; when k = n, infinite-
step boils down to current-state opacity. Moreover, note that the notion of K-step
opacity requires that the secret should not be revealed within K steps prior to the
current instant, while infinite-step opacity captures the entire observation trajectory
from initial point up to the current time, which is again stronger then K-step opacity.
Therefore, if one can verify that a system Σ is δ-approximate infinite-step opaque, it
suffices to claim that Σ is also δ-approximate initial-state opaque (resp. current-state
opaque and K-step opaque).

Remark 3.3.5. We remark that our notion of initial-state opacity is different from
that of observability. An observability notion states that every initial state can be
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determined by observing a finite output sequence under a given input run [66]. However,
in our context, initial-state opacity is defined as the plausible deniability of a system
for every secret initial information under any input sequence. In DESs literature, it
was shown that observability can be reformulated as language-based opacity by properly
specifying the languages and the observation mapping [107]. However, the relationship
between opacity and observability is more challenging in the domain of CPS and is left
to future investigation.

3.3.2 Approximate Opacity for Stochastic Control Systems

The notion of approximate opacity proposed in the previous section serves as a founda-
tion for opacity analysis of non-stochastic systems. In particular, the system considered
above does not incorporate any stochasticity, and the state runs of the concrete systems
are generated non-stochastically under certain input sequences. Whereas in real life
applications, many systems are endowed with probabilistic dynamics subject to proba-
bilistic noise and events. Systems with stochastic uncertainties are naturally modelled
as general Markov decision processes (gMDPs) as mentioned in Section. 2.3.1.

In this section, we introduce a new notion of initial-state opacity for the class of
discrete-time stochastic control systems, called (δ, ε)-approximate initial-state opacity.
Our notion can be regarded as the stochastic counterpart of the notion of approximate
opacity introduced in Subsection. 3.3.1. In particular, the δ-approximate initial-state
opacity proposed in Subsection. 3.3.1 requires that given a threshold parameter δ ≥ 0
(based on the measurement precision of the intruder), for any state run starting from
a secret state, there always exists another state run starting from a non-secret state,
such that the largest distance between their output runs is smaller than δ. In this
section, the aim is still to ensure that discerning which of the states was the originating
one is difficult for an intruder based on its observation. Particularly, starting from two
initial states, the output trajectories are considered indistinguishable if the probability
measures of them remaining in any set of interest are close to each other. The parameter
ε is used to bound the probability distance and δ captures the measurement precision
of the intruder. In the special case when δ = 0, the notion boils down to ε-approximate
initial-state opacity, and the parameter ε can be captured exactly by the well-known
total variation distance [36].

In order to show our new notion of opacity, we define for any stochastic control
system Σ = (X,X0, XS , U, ς, f, Y, h), set BY = {y = (y0, y1, . . . , yn) ∈ Y n|n ∈ N≥1}
which is the set of all finite output sequences. For any measurable set E ⊆ BY , for
some δ > 0, we denote the δ neighborhood of set E by Eδ and Ēδ, where Eδ is the
largest measurable set contained in E satisfying:

Eδ = {y ∈ E | ∀ȳ ∈ BY \ E, ∥ȳ(i)− y(i)∥ ≥ δ, ∀i ∈ {0, . . . , n}}, (3.3.2)

and Ēδ is the smallest measurable set containing E satisfying:

Ēδ = {y ∈ BY | ∃ȳ ∈ E, ∥ȳ(i)− y(i)∥ ≤ δ, ∀i ∈ {0, . . . , n}}. (3.3.3)
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Note that we can regard Eδ and Ē
δ, respectively, as the δ-deflated and δ-inflated version

of set E.

Now, we introduce a notion of opacity for the class of stochastic systems defined
above.

Definition 3.3.6 (Approximate Opacity for dt-SCS). Let Σ =
(X,X0, XS , U, ς, f, Y, h) be a dt-SCS and consider constants δ ≥ 0, 0 ≤ ε < 1.
System Σ is (δ, ε)-approximate initial-state opaque if for any x0 ∈ X0∩XS , there
exists x′0 ∈ X0 \XS , so that for any input sequence ν, there exisits an input se-
quence ν ′, such that for every measurable set E ⊆ BY and the δ neighboring
sets Eδ and Ē

δ as defined in (3.3.2) and (3.3.3), the following inequalities hold:

P(ζx′0ν′ ∈ Eδ)− ε ≤ P(ζx0ν ∈ E) ≤ P(ζx′0ν′ ∈ Ēδ) + ε, (3.3.4)

where ζx0ν and ζx′0ν′ are the output runs of the same length, starting from x0
under ν and starting from x′0 under ν ′, respectively.

Remark 3.3.7. In this definition, we use parameter ε to denote the largest allowable
probability violation for the output trajectories starting from the secret and non-secret
initial states x0 and x′0 to be δ close. Note that the value of parameter δ is chosen
depending on the measurement precision of a malicious intruder. In the case that the
precision of the intruder is lower than δ, the δ neighborhood of set E, i.e. Eδ and Ēδ,
is indistinguishable from set E from the intruder’s point of view. When δ = 0, the
probability inequalities in (3.3.4) boils down to |P(ζx0ν ∈ E) − P(ζx′0ν′ ∈ E)| ≤ ε, and
we use the term ε-approximate initial-state opacity. It is worth mentioning that, in
this case the parameter ε can be captured exactly by total variation distance [36, 122]
for the case of finite MDPs. Thus existing techniques for computing total variation
distance can be leveraged as tools to check the probability distance in (3.3.4), which
would be applicable for the verification of ε-approximate initial-state opacity for finite
MDPs. Although computing this distance is shown to be NP-hard [36, 122], there have
been some results to approximate the distance, which are #P-hard and in PSPACE, see
e.g. [31, 86]. Moreover, in the case that δ = 0, ε = 0, and no stochasticity exists in
the transition functions of the systems, this notion boils down to exact opacity as in
Definition 3.2.2 defined for finite transition systems.

3.4 Safety and Security in Formal Methods: Temporal Logic

In the DES literature, opacity is defined over (possibly arbitrarily long) finite paths.
In the context of formal verification and synthesis in the computer science literature,
formal properties are usually defined over infinite traces. Specifically, a property P ⊆
(2AP)ω is a subset of infinite traces. Since languages over infinite sequences are more
expressive than languages over finite ones, it is more general to consider ω-languages
than finite-languages. Formal logics such as linear temporal logic (LTL) [13] and their
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generalizations (hyperLTL [32, 33]) are convenient ways to express subsets of ω-regular
languages.

Safety and Mission Requirements Linear Temporal Logic (LTL) [13] is a convenient
and expressive formalism to express properties of infinite runs (or traces) of the system.
A restricted form of LTL [40] has been proposed to express properties of finite runs or
traces. The set of LTL properties over the atomic proposition AP can be defined by
the following grammar:

ϕ ::= a ∈ AP | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕUϕ.

Here, ¬ and ∨ stand for logical negation and disjunction, while X and U are temporal
modalities expressing next (in the next discrete step) and until (left property continues
to hold until the property on the right holds) modalities, respectively. For convenience,

additional operators can be derived from these basic ones: true
def
= a ∨ ¬a; false def

=
¬true;φ ∧ ψ def

= ¬(¬φ ∨ ¬ψ);φ → ψ
def
= ¬φ ∨ ψ;Fφ def

= falseUφ; and Gφ
def
= ¬F¬φ.

Here ∧ and → stand for conjunction and implication, while F and G stand for tem-
poral operators finally (some time in the future) and globally (at each step). The
semantics of the LTL can be defined inductively in a straightforward fashion (see, [13]).
This logic allows the designers to unambiguously characterize system properties. For
instance, a safety property can be expressed as “G¬ϕ” which states that some bad
property ϕ never holds. Similarly, a reachability property “Fϕ” can be used to express
that some good property ϕ eventually holds.

For an infinite trace r ∈ Traceω(Σ) of a system Σ, we say that r satisfies the LTL
property φ and denoted by r |= φ, if it satisfies the LTL formula φ. It is known that
the set of all infinite traces satisfying an LTL formula can be accepted by either a
non-deterministic Büchi automaton or a deterministic Rabin automaton [13]. Given a
system Σ and an LTL requirement φ, we denote by Σ |= φ if for every infinite trace
r ∈ Traceω(Σ) we have that r |= φ.

LTL formulae capture the safety and functional correctness requirements of the sys-
tem. Essentially, it evaluates whether or not each single infinite trace satisfies the
property. However, formal reasoning about security properties requires reasoning with
multiple traces of the system. For example, Alur et al. [3] show that modal µ-calculus
is insufficient to express all opacity policies.

Clarkson and Schneider [33] introduced the concept of hyperproperties to express
security policies using second-order logic. Hyperproperties generalize the concept of
linear-time properties [13] from being sets of runs to sets of sets of runs. HyperLTL,
unlike LTL which implicitly considers only a single trace at a time, can relate different
trace executions simultaneously through the use of existential and universal quantifiers.
The HyperLTL formulae can be given using the following grammar:

ψ ::= ∃π.ψ | ∀π.ψ | ϕ
ϕ ::= aπ | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕUϕ.
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The key distinction over LTL formulae is the introduction of trace quantifiers ∃ and ∀.
The quantifier ∃π stands for “for some trace π” while the quantifier ∀π stands for “for
all traces π”, respectively. The variable ϕ generates standard LTL formulae (complete
with Boolean connectives and temporal operators X and U) with the exception that
atomic propositions can refer to distinct trace variables. Hence, for every proposition
a ∈ AP and trace variable π, we use aπ to express that proposition a is referring to the
trace π. We say that a trace variable occurs free in a HyperLTL formula, if it is not
bounded by any trace quantifier. A HyperLTL formula with no free variable is called
a closed formula.

HyperLTL can express certain opacity properties. For instance, the following Hyper-
LTL formula expresses language-based opacity introduced in Definition 3.2.1 when PS
and PP are given as LTL properties ς and φ

∀π∃π′ · L(π) |= ς → (h(π) = h(π′) ∧ L(π′) |= φ)

where π is defined over Pathω(Σ).

Unfortunately, since HyperLTL requires quantification over paths in the beginning
of the formula, it is not expressive enough to define infinite-step, current-state, and
K-step opacity requirements.

3.5 Generalized Language-Based Opacity

We propose the following generalized language-based opacity notion which extends
language-based opacity in Definition 3.2.1 from finite paths to infinite paths.

Definition 3.5.1 (Generalized Language-Based Opacity). Let Σ =
(X,X0, U, - ,AP, L, Y, h) be a metric system, with the metric d defined
over the output set, and a constant δ ≥ 0, PS ⊆ Traceω(Σ) be a secret property
and PP ⊆ Traceω(Σ) be a public property. For computational representation,
the secret and public properties can be expressed either logically (e.g., via LTL)
or using automatic structures (e.g., ω-automata or finite state machines).
We say system Σ is opaque with respect to PS and PP if for any secret path
x ∈ Pathω(Σ), where L(x) ∈ PS , there exists a non-secret path x′ ∈ Pathω(Σ),
where L(x′) ∈ PP , such that

h(x) ≈δ h(x
′).

The above definition of language-based opacity generalizes Definition 3.2.1 in three-
fold. First, secret behaviors are defined in terms of traces rather than the internal
paths. This setting clearly subsumes Definition 3.2.1 because we can set the labeling
function as an identity mapping L : X → X. Second, secret behaviors are evaluated in
terms of infinite sequences rather than finite sequences. Note that, state-based notions
of opacity in Definition 3.2.2 are instances of Definition 3.2.1. Therefore, the notions
of state-based opacity, such as initial-state opacity or infinite-step opacity, can all be
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formulated in terms of Definition 3.5.1 with a syntactic modification to the system (by
adding a dummy sink state to the system) to enable the treatment of finite sequences as
infinite sequences. Finally, Definition 3.5.1 considers approximate output equivalence
rather than the exact one. Language-based opacity in Definition 3.5.1 also generalizes
the notions of noninterference [128, 134, 201] and 2-safety [178, 139].

3.6 Discussion

This chapter provides the basic foundations on which related verification and synthesis
questions can be posed and answered. We developed a unifying common framework
which integrates ideas and formalism from three distinct fields of formal methods,
discrete-event systems, and control theory. We reviewed the typical security notions
in both discrete-event systems and formal methods communities, and then, proposed
novel concepts of security notions, called approximate opacity, which are more suitable
for (stochastic) CPS. The security notions and mission requirements from different
fields were then unified as a generalized language-based opacity notion.
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4 Abstraction-based Opacity Verification
of Cyber-physical Systems

4.1 Introduction

Cyber-physical systems (CPS) are complex systems resulting from tight interactions of
dynamical systems and computational devices. Models of CPS are inherently heteroge-
neous: from discrete systems modeling computational parts to differential or difference
equations modeling continuous physical processes. Such heterogeneity makes the veri-
fication and design of such systems significantly challenging. In addition, components
in CPS are usually connected via communication networks in order to acquire and ex-
change information so that some global functionality of the system can be achieved.
However, this also brings new challenges for the verification and design of CPS since
the communication between system components may release information that might
compromise the security of the system. Therefore, how to analyze and enforce secu-
rity for CPS is becoming an increasingly important issue and has drawn considerable
attention in the literature in the past few years [90, 167].

In order to address the heterogeneity of CPS models, formal verification and syn-
thesis are often addressed by methods of abstraction in which continuous-space models
are approximated by discrete ones. When a suitable finite abstraction is constructed,
by leveraging computational tools developed for DES and games on automata, one can
verify or synthesize controllers in an automated fashion against complex logic require-
ments. The pipeline of traditional abstraction-based verification technique is depicted
in Figure 4.1, which consists of three key phases. The first phase is on the construction
of a finite abstraction of the CPS with the property that the set of behaviours of the
CPS is included in that of the constructed finite abstraction. The second phase in
the architecture requires symbolic analysis to efficiently reason about formal specifica-
tions. The final phase is to bring the reasoning back to the original concrete systems
with formal guarantee. The key to the construction of such finite/symbolic systems
is the establishment of formal relations between the concrete and abstract systems.
A system relation formalizes the ability to extrapolate properties from an abstraction
to the concrete system. Different system relations enable extrapolation of different
kinds of properties. Such relations include (alternating) (bi)simulation relations, their
approximate versions, and strongest or asynchronous ℓ-complete approximations.
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Figure 4.1: Pipeline of standard discretization-based or abstraction-based verification tech-
nique.

4.1.1 Related Literature

Finite abstraction together with the notions of so-called simulation relations have been
widely and successfully used in the past decade for formal verification, synthesis, and
approximation of hybrid systems [4, 51, 50, 53, 218, 214, 145, 186, 17, 216, 157]. Nev-
ertheless, none of the constructed finite abstractions in the aforementioned literature
is guaranteed to preserve opacity. As reported in [222], existing notions of standard
(bi)simulation relations and their approximate versions which are often used in finite
abstraction synthesis schemes fail to preserve opacity.

In the recent literature, there have been several attempts on leveraging abstraction-
based techniques for the verification and synthesis of opacity; see, e.g., [222, 135, 136,
199, 131, 69]. In particular, in a recent work [222], the authors propose several notions
of opacity-preserving (bi)simulation relations. However, these relations only preserve
exact opacity for non-metric systems. Motivated by this, we will provide new relations
to extend the relations in [222] to metric systems by taking into account how close
two systems are. We need to consider both the dynamic and the secret of the system
while constructing the symbolic model and guarantee the preservation of approximate
opacity across related systems.

On the other hand, in many real-world applications, a small probability of violation
of the opacity could be tolerable. Hence, instead of simply asking if a system is opaque
or non-opaque, it is more applicable to evaluate the possibility of being not secure
for stochastic systems. This direction has been recently explored in the context of
stochastic DES [163, 18, 30, 2, 199, 211]. For example, in [163] three different notions
of probabilistic opacity were introduced for current-state opacity; this approach has also
been extended to infinite-step opacity by [211]. In [30], Jensen-Shannon divergence was
adopted to quantify secrecy loss in stochastic systems. Opacity of (partially-observed)
Markov decision processes has also been studied in [18, 2, 199]. Note that most of
the existing works on opacity analysis of stochastic DES are based on finite systems.
In discrete-time stochastic control systems, however, the state sets are usually infinite,
which makes the verification problem very challenging and even undecidable. Therefore,
efficient abstraction techniques, together with suitably defined notions of stochastic
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opacity, are needed in order to quantitatively evaluate the security level of continuous-
space stochastic control systems.

4.1.2 Contributions

In the previous chapter, we introduced new concepts of approximate opacity suit-
able for (stochastic) control systems. In this chapter, we focus on verifying approxi-
mate opacity for both non-stochastic and stochastic control systems. In the context of
(non-stochastic) discrete-time control systems, we propose a new simulation-type re-
lation, called approximate opacity-preserving simulation relation, which characterizes
how close two systems are in terms of the satisfaction of approximate opacity. This
allows us to verify approximate opacity for large-scale, or even infinite systems, using
their abstractions. Effective algorithms are provided to verify different notions of ap-
proximate opacity. Then, for a class of incrementally input-to-state stable discrete-time
control systems with possibly continuous state sets, we propose an effective approach
to construct symbolic models (a.k.a. finite abstractions) that approximately simulate
the original systems in the sense of opacity preserving and vice versa. Therefore, the
proposed abstraction technique together with the verification algorithm for the finite
case provide a sound way for verifying opacity of discrete-time control systems with
continuous state sets. In the context of discrete-time stochastic control systems, we in-
troduce a new notion of so-called initial-state opacity-preserving stochastic simulation
functions to quantify the distance between two systems in a probabilistic setting, while
preserving approximate initial-state opacity across them. This allows us to efficiently
verify opacity of a complex stochastic system with possibly an uncountable state set by
analyzing it over its simpler (potentially finite) abstraction. In addition, we show that
for a class of stochastic control systems satisfying incremental input-to-state stability
property, one can construct their finite abstractions (a.k.a finite Markov decision pro-
cesses (MDP)) together with a corresponding opacity-preserving stochastic simulation
function between them.

4.2 Verification of Approximate Opacity for Finite Systems

In this section, we first show how to verify the three basic types of approximate opac-
ity (i.e., approximate initial-state opacity, approximate current-state opacity, and ap-
proximate infinite-step opacity) for finite systems. This will provide the basis for the
verification of approximate opacity for infinite systems.

4.2.1 Verification of Approximate Initial-State Opacity

In order to verify δ-approximate initial-state opacity as in Definition 3.3.1, we construct
a new system called the δ-approximate initial-state estimator defined as follows.
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Definition 4.2.1. Let Σ = (X,X0, XS , U, - , Y, h) be a metric system,
with the metric d defined over the output set, and a constant δ ≥ 0. The
δ-approximate initial-state estimator is a system (without outputs)

ΣI = (XI , XI0, U,
I
- ),

where

� XI ⊆ X × 2X is the set of states;

� XI0 = {(x, q) ∈ X × 2X : x′ ∈ q ⇔ d(h(x), h(x′)) ≤ δ} is the set of initial
states;

� U is the set of inputs, which is the same as the one in Σ;

�

I
- ⊆ XI × U × XI is the transition function defined by: for any

(x, q), (x′, q′) ∈ X × 2X and u ∈ U , (x, q)
u

I
- (x′, q′) if

1. (x′, u, x) ∈ - ; and

2. q′ = ∪û∈UPreû(q) ∩ {x′′ ∈ X : d(h(x′), h(x′′)) ≤ δ}.

For the sake of simplicity, we only consider the part of ΣI that is reachable from
initial states.

Intuitively, the δ-approximate initial-state estimator works as follows. Each initial
state of ΣI is a pair consisting of a system state and its δ-closed states; we consider
all each pairs as the set of initial states. Then from each state, we track backwards
states that are consistent with the output information recursively. Our construction
is motivated by the reversed-automaton-based initial-state-estimator proposed in [202]
but with the following differences. First, the way we defined information-consistency
is different. Here we treat states whose output are δ-close to each other as consistent
states. Moreover, the structure in [202] only requires a state space of 2X , while our state
space is X × 2X . The additional first component can be understood as the “reference
trajectory” that is used to determine what is “δ-close” at each instant. We use the
following result to show the main property of ΣI .

Proposition 4.2.2. Let Σ = (X,X0, XS , U,
I
- , Y, h) be a metric system, with the

metric d defined over the output set, and a constant δ ≥ 0. Let ΣI = (XI , XI0, U,
I
- )

be its δ-approximate initial-state estimator. Then for any (x0, q0) ∈ XI0 and any finite
run

(x0, q0)
u1

I
- (x1, q1)

u2

I
- · · · un

I
- (xn, qn),

we have

(i) xn
un- xn−1

un−1- · · · u1- x0; and
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(ii) qn =

{
x′0 ∈ X : ∃x′0

u′n- x′1
u′n−1- · · ·

u′1- x′n s.t.
maxi∈{0,1,...,n} d(h(xi), h(x

′
n−i)) ≤ δ

}
.

Proof. It is straightforward to show (i). Hereafter, we prove (ii) by induction on the
length of input sequence.

When n = 0, i.e., there is no input sequence, we have that (x0, q0) ∈ XI0. By the
definition of XI0, we know that

q0 = {x′0 ∈ X : d(h(x0), h(x
′
0)) ≤ δ},

which implies (ii) immediately.

To proceed the induction, we assume that (ii) holds when n = k. Now, we need to
show that (ii) also holds when n = k + 1. Consider arbitrary pair (x0, q0) ∈ XI0 and
finite run

(x0, q0)
u1

I
- (x1, q1)

u2

I
- · · · un

I
- (xn, qn)

un+1

I
- (xn+1, qn+1).

Then, we have

qn+1 = ∪û∈U Preû(qn) ∩ {x ∈ X : d(h(xn+1), h(x)) ≤ δ}
={x ∈ X : ∃x′ ∈ qn, u

′
n+1 ∈ U s.t. (x, u′n+1, x

′) ∈ - }
∩ {x ∈ X : d(h(xn+1), h(x)) ≤ δ}

=

{
x ∈ X :

[∃x′ ∈ qn, u
′
n+1 ∈ U s.t. (x, u′n+1, x

′) ∈ - ]
∧[d(h(xn+1), h(x)) ≤ δ]

}
.

By the induction hypothesis, we know that

qn =

{
x′0 ∈ X : ∃x′0

u′n- x′1
u′n−1- · · ·

u′1- x′n s.t.
maxi∈{0,1,...,n} d(h(xi), h(x

′
n−i)) ≤ δ

}
.

Therefore, by combing the above two equations, one gets

qn+1 =

x ∈ X :
∃x

u′n+1- x′0
u′n- x′1

un−1- · · ·
u′1- x′n

s.t. maxi∈{0,1,...,n} d(h(xi), h(x
′
n−i)) ≤ δ

∧d(h(xn+1), h(x)) ≤ δ


=

{
x ∈ X : ∃x′′0

u′n+1- x′′1
u′n- · · ·

u′1- x′′n+1 s.t.
maxi∈{0,1,...,n+1} d(h(xi), h(x

′′
n+1−i)) ≤ δ

}
.

Therefore, one obtains that the induction step holds.

The next theorem provides one of the main results of this section on the verification
of δ-approximate initial-state opacity of finite metric systems.
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Theorem 4.2.3. Let Σ = (X,X0, XS , U, - , Y, h) be a finite metric system,
with the metric d defined over the output set, and a constant δ ≥ 0. Let
ΣI = (XI , XI0, U,

I
- ) be its δ-approximate initial-state estimator. Then, Σ

is δ-approximate initial-state opaque if and only if

∀(x, q) ∈ XI : x ∈ X0 ∩XS ⇒ q ∩X0 ̸⊆ XS . (4.2.1)

Proof. (⇒) By contraposition: suppose that there exists a state (x, q) ∈ XI such that
x ∈ X0 ∩XS and q ∩X0 ⊆ XS . Let

(x0, q0)
u1

I
- (x1, q1)

u1

I
- · · · un

I
- (xn, qn),

be a run reaching (x, q) =: (xn, qn). By Proposition 4.2.2, we have xn
un- xn−1

un−1- · · ·
u1- x1, which is well-defined in Σ as xn ∈ X0. Moreover, by Proposition 4.2.2, we

have

qn =

{
x′0 ∈ X : ∃x′0

u′n- x′1
u′n−1- · · ·

u′1- x′n s.t.
maxi∈{0,1,...,n} d(h(xi), h(x

′
n−i)) ≤ δ

}
.

However, since qn ∩ X0 ⊆ XS , we know that there does not exist x′0 ∈ X0 \ XS and

x′0
u′n- x′1

u′n−1- · · ·
u′1- x′n such that maxi∈{0,1,...,n} d(h(xi), h(x

′
n−i)) ≤ δ. Therefore,

by considering xn ∈ X0∩XS and xn
un- xn−1

un−1- · · · u1- x1, we know the system
is not δ-approximate initial-state opaque.

(⇐) By contradiction: suppose that Equation (4.2.1) holds and assume that Σ is
not δ-approximate initial-state opaque. Then, there exists a secret initial state x0 ∈
X0 ∩ XS and a sequence of transitions x0

u1- x1
u2- · · · un- xn such that there

does not exist a non-secret initial state x′0 ∈ X0 \ XS and a sequence of transitions

x′0
u′1- x′1

u′2- · · · u′n- x′n such that maxi∈{0,1,...,n} d(h(xi), h(x
′
i)) ≤ δ. Let us

consider the following sequence of transitions in ΣI

(xn, q0)
un

I
- (xn−1, q1)

un−1

I
- · · · u1

I
- (x0, qn).

By Proposition 4.2.2, we know that

qn =

{
x′0 ∈ X : ∃x′0

u′n- x′1
u′n−1- · · ·

u′1- x′n s.t.
maxi∈{0,1,...,n} d(h(xi), h(x

′
i)) ≤ δ

}
.

By Equation (4.2.1), we have qn ∩ X0 ̸⊆ XS . Therefore, there exist a non-secret

initial state x′0 ∈ X0 \ XS and a sequence x′0
u′1- x′1

u′2- · · · u′n- x′n such
that maxi∈{0,1,...,n} d(h(xi), h(x

′
i)) ≤ δ. This is a contradiction, i.e., Σ has to be δ-

approximate initial-state opaque.
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Figure 4.2: Examples of δ-approximate initial-state estimators.

We illustrate how to verify δ-approximate initial-state opacity by the following ex-
ample.

Example 4.2.4. Let us still consider system Σ shown in Figure 3.2. The δ-approximate
initial-state estimator ΣI when δ = 0.1 is shown in Figure 4.2(a). For example,

for initial state (D, {D}), we have (D, {D}) u

I
- (B, {B,C}) since B

u- D and

{B,C} = Preu({D}) ∩ {x ∈ X : d(0.1, h(x)) ≤ 0.1} = {B,C} ∩ {A,B,C}. However,
for state (B, {B,C}) ∈ XI , we have B ∈ X0 ∩ XS and {B,C} ∩ X0 = {B} ⊆ XS.
Therefore, by Theorem 4.2.3, we know that the system is not 0.1-approximate initial-
state opaque. Similarly, we can also construct ΣI for the case of δ = 0.15, which is
shown in Figure 4.2(b). Since for state (B, {A,B,C}) ∈ XI , which is the only state
whose first component is in X0 ∩ XS, we have {A,B,C} ∩ X0 = {A,B} ̸⊆ XS. By
Theorem 4.2.3, we know that the system is 0.15-approximate initial-state opaque.

4.2.2 Verification of Approximate Current-State Opacity

In order to verify δ-approximate current-state opacity, we also need to construct a new
system called the δ-approximate current-state estimator defined as follows.

Definition 4.2.5. Let Σ = (X,X0, XS , U, - , Y, h) be a metric system, with the
metric d defined over the output set, and a constant δ ≥ 0. The δ-approximate current-
state estimator is a system (without outputs)

ΣC = (XC , XC0, U,
C
- ),

where

� XC ⊆ X × 2X is the set of states;

� XC0 = {(x, q) ∈ X0 × 2X0 : x′ ∈ q ⇔ d(h(x), h(x′)) ≤ δ} is the set of initial
states;

� U is the set of inputs, which is the same as the one in Σ;
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�

C
- ⊆ XC×U×XC is the transition function defined by: for any (x, q), (x′, q′) ∈

X × 2X and u ∈ U , (x, q)
u

C
- (x′, q′) if

1. (x, u, x′) ∈ - ; and

2. q′ = ∪û∈UPostû(x) ∩ {x′′ ∈ X : d(h(x′), h(x′′)) ≤ δ}.

For the sake of simplicity, we only consider the part of ΣC that is reachable from initial
states.

The construction of ΣC is similar to ΣI . However, we need to track all forward runs
from each pair of initial-state and its information-consistent states. Still, we need the
first component as the “reference state” to determine what are “δ-close” states. We
use the following result to state the main properties of ΣC .

Proposition 4.2.6. Let Σ = (X,X0, XS , U, - , Y, h) be a metric system, with the
metric d defined over the output set, and a constant δ ≥ 0. Let ΣC = (XC , XC0, U,

C
- )

be its δ-approximate current-state estimator. Then for any (x0, q0) ∈ XC0 and any fi-
nite run

(x0, q0)
u1

C
- (x1, q1)

u2

C
- · · · un

C
- (xn, qn),

we have

(i) x0
u1- x1

u2- · · · un- xn; and

(ii) qn = {x′n ∈ X : ∃x′0 ∈ X0,∃x′0
u′1- x′1

u′2- · · ·
u′n- x′n s.t. maxi∈{0,1,...,n} d(h(xi), h(x

′
i)) ≤ δ}.

Proof. The proof is similar to that of Proposition 4.2.2, which can be done by induction
on the length of the sequence.

Now, we show the second main result of this section by providing a verification
scheme for δ-approximate current-state opacity of finite metric systems.

Theorem 4.2.7. Let Σ = (X,X0, XS , U, - , Y, h) be a metric system, with
the metric d defined over the output set, and a constant δ ≥ 0. Let ΣC =
(XC , XC0, U,

C
- ) be its δ-approximate current-state estimator. Then, Σ is

δ-approximate current-state opaque if and only if

∀(x, q) ∈ XC : q ̸⊆ XS . (4.2.2)

Proof. By Proposition 4.2.6, for each state (x, q) encountered, the second component
is exactly the set of all possible current states consistent with the observation. Then
the proof is similar to that of Theorem 4.2.3.
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4.2.3 Verification of Approximate Infinite-Step Opacity

Finally, we combine the δ-approximate initial-state estimator ΣI and the δ-approximate
current-state estimator ΣC to verify δ-approximate infinite-step opacity of finite metric
systems. The verification scheme is provided by the following theorem.

Theorem 4.2.8. Let Σ = (X,X0, XS , U, - , Y, h) be a finite metric system,
with the metric d defined over the output set, and a constant δ ≥ 0. Let
ΣI = (XI , XI0, U,

I
- ) and ΣC = (XC , XC0, U,

C
- ) be its δ-approximate

initial-state estimator and δ-approximate current-state estimator, respectively.
Then, Σ is δ-approximate infinite-step opaque if and only if

∀(x, q) ∈ XI , (x
′, q′) ∈ XC : x = x′ ∈ XS ⇒ q ∩ q′ ̸⊆ XS . (4.2.3)

Proof. By contraposition: suppose that there exist two states (xn, q
′
n) ∈ XI , (xn, qn) ∈

XC such that xn ∈ XS and qn ∩ q′n ⊆ XS . Let

(x0, q0)
u1

C
- (x1, q1)

u2

C
- · · · un

C
- (xn, qn),

(xn+m, qn+m)
un+m

I
- (xn+m−1, qn+m−1) · · ·

un+1

I
- (xn, q

′
n),

be two runs reaching (x, q) and (x, q′), respectively. By Propositions 4.2.2 and 4.2.6,
we have x0 ∈ X0 and

x0
u1- · · · un−1- xn−1

un- xn
un+1- xn+1

un+2- · · · un+m- xn+m.

Moreover, one has

qn ∩ q′n ={
x′n ∈ X : ∃x′0 ∈ X0, ∃x′0

u′1- · · ·
u′n+m- x′n+m

s.t. maxi∈{0,1,...,n+m} d(h(xi), h(x
′
i)) ≤ δ

}
.

Since qn∩q′n ⊆ XS , we know that there does not exist x′0 ∈ X0 and x
′
0

u′1-· · ·
u′n+m- x′n+m

such that x′n ∈ X \XS and maxi∈{0,1,...,n+m} d(h(xi), h(x
′
i)) ≤ δ. Therefore, the system

is not δ-approximate infinite-step opaque.
(⇐) By contradiction: suppose that equation (4.2.3) holds and assume, for the sake

of contradiction, that Σ is not δ-approximate infinite-step opaque. Then, we know that

there exists an initial state x0 ∈ X0, a sequence of transitions x0
u1- x1

u2- · · · un- xn
and an index k ∈ {0, . . . , n} such that xk ∈ XS and there does not exist an initial

state x′0 ∈ X0 and a sequence of transitions x′0
u′1- x′1

u′2- · · · u′n- x′n such that
x′k ∈ X \ XS and maxi∈{0,1,...,n} d(h(xi), h(x

′
i)) ≤ δ. Let us consider the following

sequence of transitions in ΣC

(x0, q0)
u1

C
- (x1, q1)

u2

C
- · · · uk

C
- (xk, qk),
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and the following sequence of transitions in ΣI

(xn, q
′
n)

un

I
- (xn−1, q

′
n−1)

un−1

I
- · · · uk+1

I
- (xk, q

′
k).

By Propositions 4.2.2 and 4.2.6, we know that

qn ∩ q′n =

{
x′k ∈ X : ∃x′0 ∈ X0, ∃x′0

u′1- · · · u′n- x′n s.t.
maxi∈{0,1,...,n} d(h(xi), h(x

′
i)) ≤ δ

}
.

Since equation (4.2.3) holds, we know that qn ∩ q′n ̸⊆ XS . Therefore, there exists

x′0 ∈ X0 and a sequence of transitions x′0
u′1- · · · u′n- x′n such that xk ∈ X \ XS

and maxi∈{0,1,...,n} d(h(xi), h(x
′
i)) ≤ δ , which is a contradiction, i.e., Σ has to be δ-

approximate infinite-step opaque.

Remark 4.2.9. We conclude this section by discussing the complexity of verifying
approximate opacity. Let Σ = (X,X0, XS , U, - , Y, h) be a finite metric system. The
complexity of the verification algorithms for both approximate initial-state and current-
state opacity is O(|U | × |X| × 2|X|), which is the size of ΣI or ΣC . For approximate
infinite-step opacity, we need to construct both ΣI and ΣC , and compare each pair
of states in ΣI and ΣC . Therefore, the complexity for verifying approximate infinite-
step opacity using Theorem 4.2.8 is O(|U | × |X|2 × 4|X|). It is worth noting that
the complexity of verifying exact opacity as in Definition 3.2.2 is already known to be
PSPACE-complete [27]. Using a similar reduction, we can conclude that the complexity
of verifying approximate opacity as in Definition 3.3.1 is also PSPACE-complete for δ >
0. Finally, we note that the exponential complexity essentially comes from the subset
construction to handle information uncertainty. In practice, the subset construction
usually results in a quite small structure; see, e.g., [34] for detailed empirical studies
on this issue.

4.3 Approximate Simulation Relations for Opacity

In the previous sections, we introduced the verification procedures of various notions of
approximate opacity. However, when the system is very large or even infinite, verifying
opacity based on the original system is not efficient or not even possible. Therefore, it
will be beneficial if we can verify opacity based on an “equivalent” smaller or symbolic
system. To this end, in this section, we study under what conditions two systems are
equivalent and in what sense. Specifically, we introduce new notions of approximate
opacity-preserving simulation relations, inspired by the one in [51]. The newly pro-
posed simulation relations will provide the basis for abstraction-based verification of
approximate opacity.

4.3.1 Approximate Initial-State opacity-preserving Simulation Relation

First, we introduce a new notion of approximate initial-state opacity-preserving simu-
lation relation.
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Definition 4.3.1. (Approximate Initial-State opacity-preserving Simulation Relation)
Consider two metric systems Σ = (X,X0, XS , U, f, Y, h) and Σ̂ = (X̂, X̂0, X̂S , Û , f̂ , Ŷ , ĥ)
with the same output sets Y = Ŷ and metric d. For ε ∈ R≥0, a relation R ⊆ X × X̂ is
called an ε-approximate initial-state opacity-preserving simulation relation (ε-InitSOP
simulation relation) from Σ to Σ̂ if

1. a) ∀x0 ∈ X0 ∩XS ,∃x̂0 ∈ X̂0 ∩ X̂S : (x0, x̂0) ∈ R;

b) ∀x̂0 ∈ X̂0 \ X̂S ,∃x0 ∈ X0 \XS : (x0, x̂0) ∈ R;

2. ∀(x, x̂) ∈ R : d(h(x), ĥ(x̂)) ≤ ε;

3. For any (x, x̂) ∈ R, we have

a) ∀x u- x′, ∃x̂ û- x̂′ : (x′, x̂′) ∈ R;

b) ∀x̂ û- x̂′, ∃x u- x′ : (x′, x̂′) ∈ R.

We say that Σ is ε-InitSOP simulated by Σ̂, denoted by Σ ⪯ε
I Σ̂, if there exists an

ε-InitSOP simulation relation R from Σ to Σ̂.

Note that a system Σ̂ that simulates Σ through the InitSOP simulation relation is
often called an opacity-preserving abstraction of Σ. We should mention that, although
the above relation appears to be similar to the approximate bisimulation relation pro-
posed in [51], it is still a one-sided relation here because Condition 1 is not symmetric.
We refer the interested readers to [222] to see why one needs the strong condition 3
in Definition 4.3.1 to show preservation of initial-state opacity in one direction when
ε = 0.
The following main theorem provides a sufficient condition for δ-approximate initial-

state opacity based on related systems as in Definition 4.3.1.

Theorem 4.3.2. Consider two metric systems Σ = (X,X0, XS , U, f, Y, h) and
Σ̂ = (X̂, X̂0, X̂S , Û , f̂ , Ŷ , ĥ) with the same output sets Y = Ŷ and metric d and
let ε, δ ∈ R≥0. If Σ ⪯ε

I Σ̂ and ε ≤ δ
2 , then we have:

Σ̂ is (δ − 2ε)-approximate initial-state opaque

⇒Σ is δ-approximate initial-state opaque.

Proof. Consider an arbitrary secret initial state x0 ∈ X0∩XS and a run x = x0x1 · · ·xn
in Σ. Since Σ ⪯ε

I Σ̂, by conditions 1a), 2 and 3a) in Definition 4.3.1, there exist a secret

initial state x̂0 ∈ X̂0 ∩ X̂S and a run x̂ = x̂0x̂1 · · · x̂n in Σ̂ such that

∀i ∈ {0, 1, . . . , n} : d(h(xi), ĥ(x̂i)) ≤ ε. (4.3.1)

Since Σ̂ is (δ − 2ε)-approximate initial-state opaque, there exist a non-secret initial
state x̂′0 ∈ X̂0 \ X̂S and a run x̂′ = x̂′0x̂

′
1 · · · x̂′n such that

max
i∈{0,1,...,n}

d(ĥ(x̂i), ĥ(x̂
′
i)) ≤ δ − 2ε. (4.3.2)
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Again, since Σ ⪯ε
I Σ̂, by conditions 1b), 2 and 3b) in Definition 4.3.1, there exist an

initial state x′0 ∈ X0 \XS and a run x′ = x′0x
′
1 · · ·x′n such that

∀i ∈ {0, 1, . . . , n} : d(h(x′i), ĥ(x̂
′
i)) ≤ ε. (4.3.3)

Combining equations (4.3.1), (4.3.2), (4.3.3), and using the triangle inequality, we have

max
i∈{0,1,...,n}

: d(h(xi), h(x
′
i)) ≤ δ. (4.3.4)

Since x0 ∈ X0 ∩XS and the run x = x0x1 · · ·xn are arbitrary, we conclude that Σ is
δ-approximate initial-state opaque.

The following corollary is a simple consequence of the result in Theorem 4.3.2 but
for the lack of δ-approximate initial-state opacity.

Corollary 4.3.3. Consider two metric systems Σ = (X,X0, XS , U, f, Y, h) and Σ̂ =
(X̂, X̂0, X̂S , Û , f̂ , Ŷ , ĥ) with the same output sets Y = Ŷ and metric d and let ε, δ ∈
R≥0. If Σ̂ ⪯ε

I Σ, then the following implication hold:

Σ̂ is not (δ + 2ε)-approximate initial-state opaque

⇒Σ is not δ-approximate initial-state opaque.

Proof. Since Σ̂ ⪯ε
I Σ, by Theorem 4.3.2, we know that Σ being δ-approximate initial-

state opaque implies that Σ̂ is (δ+2ε)-approximate initial-state opaque. Hence, Σ̂ not
being (δ + 2ε)-approximate initial-state opaque implies that Σ is not δ-approximate
initial-state opaque.

Remark 4.3.4. It is worth remarking that δ and ε are parameters specifying two
different types of precision. Parameter δ is used to specify the measurement precision
under which we can guarantee opacity for a single system, while parameter ε is used to
characterize the “distance” between two systems in terms of being approximate opaque.
The reader should not be confused by the different roles of these two parameters.

We illustrate ε-approximate initial-state opacity-preserving simulation relation by
the following example.

Example 4.3.5. Consider two systems Σ and Σ̂ as shown in Figure 4.3, where the
outputs are specified by the values inside the brackets associated to each state, and
secret states are marked in red. First note that one can easily verify that the smaller
system Σ̂ is δ-approximate initial-state opaque with δ = 0.1. Next, we show that Σ
is ε-approximate InitSOP simulated by Σ̂, as in Definition 4.3.1, through the relation
R = {(A, J), (B,K), (C,K), (D,K), (E,N), (F,M), (G, M), (I,M)}, where ε = 0.1.
Condition 1 in Definition 4.3.1 can be easily checked since : a) for E ∈ X0 ∩XS, there
exists N ∈ X̂0∩ X̂S such that (E,N) ∈ R; b) for J ∈ X̂0 \ X̂S, there exists A ∈ X0 \XS

such that (A, J) ∈ R. Condition 2 is satisfied readily by seeing d(h(x), ĥ(x̂)) ≤ 0.1
holds for any (x, x̂) ∈ R. One can also verify that condition 3 holds as well by checking

40



4.3 Approximate Simulation Relations for Opacity
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• System 𝑇1 is 0.1-approximately IntSOP simulated by system 𝑇2

• It is easy to check that system 𝑇2 is 0.1-ISO because the intruder has to 

have enough precision to distinguish between states 𝐽 and 𝑁

 Theorem: Suppose that 𝑇1 ≼𝐼
𝜀 𝑇2. Then we have

𝑇2 is 𝛿-approximate ISO ⇒ 𝑇1 is (𝛿 + 2𝜀)-approximate ISO

Figure 4.3: Example of ε-approximate initial-state opacity-preserving simulation relation.

conditions 3a) and 3b) for each pair of states in the relation R. For instance, consider
the state pair (C,K) ∈ R, we have for C - D, there exists K - K, such
that (D,K) ∈ R, and vice versa. Hence, R is an ε-InitSOP simulation relation from
Σ to Σ̂ as in Definition 4.3.1. Now, without applying any verification algorithm to
Σ, by leveraging the results in Theorem 4.3.2, we can readily conclude that Σ is 0.3-
approximate initial-state opaque, where 0.3 = δ + 2ε.

4.3.2 Approximate Current-State opacity-preserving Simulation Relation

Now, we provide a notion of approximate simulation relation for preserving current-
state opacity.

Definition 4.3.6. (Approximate Current-State opacity-preserving Simulation Rela-
tion) Consider two metric systems Σ = (X,X0, XS , U, f, Y, h) and Σ̂ = (X̂, X̂0, X̂S , Û , f̂ ,
Ŷ , ĥ) with the same output sets Y = Ŷ and metric d. For ε ∈ R≥0, a relation
R ⊆ X × X̂ iscalled an ε-approximate current-state opacity-preserving simulation re-
lation (ε-CurSOP simulation relation) from Σ to Σ̂ if

1. ∀x0 ∈ X0, ∃x̂0 ∈ X̂0 : (x0, x̂0) ∈ R;

2. ∀(x, x̂) ∈ R : d(h(x), ĥ(x̂)) ≤ ε;

3. For any (x, x̂) ∈ R, we have

a) ∀x u- x′, ∃x̂ û- x̂′ : (x′, x̂′) ∈ R;

b) ∀x u- x′ ∈ XS , ∃x̂
û- x̂′ ∈ X̂S : (x′, x̂′) ∈ R;

c) ∀x̂ û- x̂′, ∃x u- x′ : (x′, x̂′) ∈ R;

d) ∀x̂ û- x̂′ ∈ X̂ \ X̂S , ∃x
u- x′ ∈ X \XS : (x′, x̂′) ∈ R.

We say that Σ is ε-CurSOP simulated by Σ̂, denoted by Σ ⪯ε
C Σ̂, if there exists an

ε-CurSOP simulation relation R from Σ to Σ̂.
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The following theorem provides a sufficient condition for δ-approximate current-state
opacity based on related systems as in Definition 4.3.6.

Theorem 4.3.7. Consider two metric systems Σ = (X,X0, XS , U, f, Y, h) and
Σ̂ = (X̂, X̂0, X̂S , Û , f̂ , Ŷ , ĥ) with the same output sets Y = Ŷ and metric d and
let ε, δ ∈ R≥0. If Σ ⪯ε

C Σ̂ and ε ≤ δ
2 , then we have:

Σ̂ is (δ − 2ε)-approximate current-state opaque

⇒Σ is δ-approximate current-state opaque.

Proof. Let us consider an arbitrary initial state x0 ∈ X0 and finite run x = x0x1 · · ·xn
in Σ such that xn ∈ Σ. We consider the following two cases: n = 0 and n ̸= 0. If
n = 0, we know that x0 ∈ Σ. Since we assume that {x ∈ X0 : (h(x0), h(x)) ≤ δ} ̸⊆ Σ,
we observe immediately that there exists x′0 ∈ X0 \XS such that d(h(x0), h(x

′
0)) ≤ δ.

Then, we consider the case of n ≥ 1. Since Σ ⪯ε
C Σ̂, by conditions 1, 2, 3a) and 3b) in

Definition 4.3.6, there exist an initial state x̂0 ∈ X̂0 and a finite run x̂ = x̂0x̂1 · · · x̂n in
Σ̂ such that x̂n ∈ X̂S and

∀i ∈ {0, 1, . . . , n} : d(h(xi), ĥ(xi)) ≤ ε. (4.3.5)

Since Σ̂ is (δ−2ε)-approximate current-state opaque, there exist an initial state x̂′0 ∈ X̂0

and a finite run x̂′ = x̂′0x̂
′
1 · · · x̂′n such that x̂′n ∈ X̂ \ X̂S and

max
i∈{0,1,...,n}

d(ĥ(x̂i), ĥ(x̂
′
i)) ≤ δ − 2ε. (4.3.6)

Again, since Σ ⪯ε
C Σ̂, by conditions 1, 2, 3c) and 3d) in Definition 4.3.6, there exist an

initial state x′0 ∈ X0 and a finite run x′ = x′0x
′
1 · · ·x′n in Σ such that x′n ∈ X \XS and

∀i ∈ {0, 1, . . . , n} : d(h(x′i), ĥ(x̂
′
i)) ≤ ε. (4.3.7)

Combining equations (4.3.5), (4.3.6), (4.3.7), and using the triangle inequality, we have

max
i∈{0,1,...,n}

d(h(xi), h(x
′
i)) ≤ δ. (4.3.8)

Since x0 ∈ X0 and the finite run x = x0x1 · · ·xn are arbitrary, we conclude that Σ is
δ-approximate current-state opaque.

4.3.3 Approximate Infinite-Step opacity-preserving Simulation Relation

Finally, by combing ε-CurSOP simulation relation and ε-InitSOP simulation relation,
we provide a notion of approximate simulation relation for preserving infinite-step opac-
ity.
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Definition 4.3.8. (Approximate Infinite-Step opacity-preserving Simulation Relation)
Consider two metric systems Σ = (X,X0, XS , U, f, Y, h) and Σ̂ = (X̂, X̂0, X̂S , Û , f̂ , Ŷ , ĥ)
with the same output sets Y = Ŷ and metric d. For ε ∈ R≥0, a relation R ⊆ X × X̂ is
called an ε-approximate infinite-step opacity-preserving simulation relation (ε-InfSOP
simulation relation) from Σ to Σ̂ if it is both an ε-CurSOP simulation relation from Σ
to Σ̂ and an ε-InitSOP simulation relation from Σ to Σ̂, i.e.,

1. a) ∀x0 ∈ X0, ∃x̂0 ∈ X̂0 : (x0, x̂0) ∈ R;

b) ∀x0 ∈ X0 ∩XS ,∃x̂0 ∈ X̂0 ∩ X̂S : (x0, x̂0) ∈ R;

c) ∀x̂0 ∈ X̂0 \ X̂S ,∃x0 ∈ X0 \XS : (x0, x̂0) ∈ R;

2. ∀(x, x̂) ∈ R : d(h(x), ĥ(x̂)) ≤ ε;

3. For any (x, x̂) ∈ R, we have

a) ∀x u- x′, ∃x̂ û- x̂′ : (x′, x̂′) ∈ R;

b) ∀x u- x′ ∈ XS , ∃x̂
û- x̂′ ∈ X̂S : (x′, x̂′) ∈ R;

c) ∀x̂ û- x̂′, ∃x u- x′ : (x′, x̂′) ∈ R;

d) ∀x̂ û- x̂′ ∈ X̂ \ X̂S , ∃x
u- x′ ∈ X \XS : (x′, x̂′) ∈ R.

We say that Σ is ε-InfSOP simulated by Σ̂, denoted by Σ ⪯ε
IF Σ̂, if there exists an

ε-InfSOP simulation relation R from Σ to Σ̂.

Similar to the cases of initial-state opacity and current-state opacity, we have the
following theorem as a sufficient condition for δ-approximate infinite-step opacity based
on related systems as in Definition 4.3.8.

Theorem 4.3.9. Consider two metric systems Σ = (X,X0, XS , U, f, Y, h) and
Σ̂ = (X̂, X̂0, X̂S , Û , f̂ , Ŷ , ĥ) with the same output sets Y = Ŷ and metric d and
let ε, δ ∈ R≥0. If Σ ⪯ε

IF Σ̂ and ε ≤ δ
2 , then the following implication hold:

Σ̂ is (δ − 2ε)-approximate infinite-step opaque

⇒Σ is δ-approximate infinite-step opaque.

Proof. Let us consider an arbitrary initial state x0 ∈ X0 and finite run x = x0x1 · · ·xn
in Σ such that xk ∈ Σ for some k = 0, . . . , n. We consider the following two cases:
If k = 0, then we have x0 ∈ Σ. Since Σ ⪯ε

IF Σ̂ implies Σ ⪯ε
I Σ̂, by the proof

of Theorem 4.3.2, we know that there exist an initial state x′0 ∈ X0 \ XS and a run
x′ = x′0x

′
1 · · ·x′n in Σ such that maxi∈{0,1,...,n} d(h(xi), h(x

′
i)) ≤ δ.

If k ≥ 1, then similar to the proof of Theorem 4.3.7, by conditions 1a), 2, 3a), 3b),
3c) and 3d) in Definition 4.3.8 and the fact the Σ̂ is (δ − 2ε)-approximate infinite-step
opaque, there exist an initial state x′0 ∈ X0 and a finite run x′ = x′0x

′
1 · · ·x′n such that

x′k ∈ X \XS and maxi∈{0,1,...,n} d(h(xi), h(x
′
i)) ≤ δ.
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Since x0 ∈ X0, x = x0x1 · · ·xn and index k are arbitrary, we conclude that Σ is
δ-approximate infinite-step opaque.

4.4 Opacity of Discrete-Time Control Systems

In the previous section, we introduced notions of approximate opacity-preserving sim-
ulation relation and discussed their properties. This allows us to verify approximate
opacity of infinite systems, e.g., continuous dynamical systems, based on their finite
abstractions. In general, how to construct symbolic abstractions are system-dependent
and not all systems admit symbolic models. In this section, we show that a class of
discrete-time control systems do admit symbolic models for the purpose of verifying
approximate opacity under certain stability assumptions.

4.4.1 Construction of Opacity-Preserving Finite Abstractions for
Discrete-Time Control Systems

Now, we introduce a finite abstraction (a.k.a. symbolic system) for a discrete-time
control system Σ = (X,X0, XS , U, f, Y, h) as in Definition 2.3.1. To do so, from now on
we assume that sets X,XS and U are of the form of finite union of boxes. Assume that
the output map h satisfies the following general Lipschitz assumption: ∥h(x)−h(x′)∥ ≤
α(∥x − x′∥), for all x, x′ ∈ X, where α ∈ K∞. Consider a tuple q = (η, µ, θ) of
parameters, where 0 < η ≤ min {span(XS), span(X \XS)} is the state set quantization,
0 < µ ≤ span(U) is the input set quantization parameter, and θ is a design parameter.
A finite abstraction of Σ is defined as

Σ̂ = (X̂, X̂0, X̂S , Û , f̂ , Ŷ , ĥ), (4.4.1)

where X̂ = X̂0 = [X]η, X̂S =
[
Xθ
S

]
η
, Û = [U ]µ, Ŷ = {h(x̂) | x̂ ∈ X̂}, where ĥ(x̂) =

h(x̂), ∀x̂ ∈ X̂, and

� x̂′ ∈ f̂(x̂, û) if and only if ∥x̂′ − f(x̂, û)∥ ≤ η.

The following result shows that, for the class of δ-ISS control system as in Defini-
tion 2.4.1, under some condition over the quantization parameters η and µ, Σ̂ and Σ
are related under the approximate InitSOP simulation relation as in Definition 4.3.1.

Theorem 4.4.1 (Initial-State Opacity-Preserving Finite Abstractions).
Consider a δ-ISS control system Σ = (X,X0, XS , U, f, Y, h). For any desired
precision ε > 0, let Σ̂ be a finite abstraction of Σ as in (4.4.1) with a tuple
q = (η, µ, 0) of parameters satisfying

β
(
α−1(ε), 1

)
+ γ(µ) + η ≤ α−1(ε), (4.4.2)

then, we have Σ ⪯ε
I Σ̂ ⪯ε

I Σ.
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Proof. We start by proving Σ ⪯ε
I Σ̂. Consider the relation R ⊆ X × X̂ defined by

(x, x̂) ∈ R if and only if ∥x− x̂∥ ≤ α−1(ε). Since η ≤ span(XS), XS ⊆
⋃
p∈[XS ]η

Bη(p),
and by (4.4.2), ∀x ∈ XS , ∃x̂ ∈ X̂S such that:

∥x− x̂∥ ≤ η ≤ α−1(ε). (4.4.3)

Hence, (x, x̂) ∈ R and condition 1a) in Definition 4.3.1 is satisfied. For every x̂ ∈
X̂ \ X̂S , by choosing x = x̂ which is also inside set X \ XS , one gets (x, x̂) ∈ R and,
hence, condition 1b) in Definition 4.3.1 holds as well. Now consider any (x, x̂) ∈ R.
Condition 2 in Definition 4.3.1 is satisfied by the definition of R and the Lipschitz
assumption:

∥h(x)− ĥ(x̂)∥ = ∥h(x)− h(x̂)∥ ≤ α(∥x− x̂∥) ≤ ε.

Let us now show that condition 3 in Definition 4.3.1 holds.

Consider any u ∈ U . Choose an input û ∈ Û satisfying:

∥u− û∥ ≤ µ. (4.4.4)

Note that the existence of such û is guaranteed by the inequality µ ≤ span(U) which
guarantees that U ⊆

⋃
p∈[U ]µ

Bµ(p). Consider the transition x′ = f(x, u) in Σ. It follows

from the δ-ISS assumption on Σ and (4.4.4) that the distance between x′ and f(x̂, û)
is bounded as:

∥x′ − f(x̂, û)∥ ≤β (∥x− x̂∥, 1) + γ (∥u− û∥) (4.4.5)

≤β
(
α−1(ε), 1

)
+ γ (µ) .

Since X ⊆
⋃
p∈[X]η

Bη(p), there exists x̂′ ∈ X̂ such that:

∥f(x̂, û)− x̂′∥ ≤ η, (4.4.6)

which, by the definition of Σ̂, implies the existence of x̂′ ∈ f̂(x̂, û) in Σ̂. Using the
inequalities (4.4.2), (4.4.5), (4.4.6), and triangle inequality, we obtain:

∥x′ − x̂′∥ ≤ ∥x′ − f(x̂, û) + f(x̂, û)− x̂′∥
≤ ∥x′ − f(x̂, û)∥+ ∥f(x̂, û)− x̂′∥
≤ β

(
α−1(ε), 1

)
+ γ (µ) + η ≤ α−1(ε).

Therefore, we conclude (x′, x̂′) ∈ R and condition 3a) in Definition 4.3.1 holds. Let us
now show that condition 3b) in Definition 4.3.1 also holds.

Now consider any (x, x̂) ∈ R and any û ∈ Û . Choose the input u = û and consider
the unique x′ = f(x, u) in Σ. Using δ-ISS assumption for Σ, we bound the distance
between x′ and f(x̂, û) as:

∥x′ − f(x̂, û)∥ ≤ β (∥x− x̂∥, 1) ≤ β
(
α−1(ε), 1

)
. (4.4.7)
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Figure 4.4: Symbolic model Σ̂ associated with control systems Σ in (4.4.8) with η = 0.1, µ =
0.001, and ε = 0.9.

Using the definition of Σ̂, the inequalities (4.4.2), (4.4.7), and the triangle inequality,
we obtain:

∥x′ − x̂′∥ ≤∥x′ − f(x̂, û) + f(x̂, û)− x̂′∥
≤∥x′ − f(x̂, û)∥+ ∥f(x̂, û)− x̂′∥
≤β
(
α−1(ε), 1

)
+ η ≤ α−1(ε).

Therefore, we conclude that (x′, x̂′) ∈ R and condition 3b) in Definition 4.3.1 holds.
In a similar way, one can prove that Σ̂ ⪯ε

I Σ.

Remark 4.4.2. Note that there always exist quantization parameters q such that in-
equality (4.4.2) holds as long as β

(
α−1(ε), 1

)
< α−1(ε). By assuming that the discrete-

time control system Σ is a sampled-data version of an original continuous-time one
with the sampling time τ , one can ensure the latter inequality by choosing the sampling
time large enough given that β(r, 1) = β̂(r, τ) < r for some KL function β̂ establishing
the incremental stability of the original continuous-time system. For example, for the

function in (2.4.3), one has β(r, 1) = ∥A∥r = ∥eÂτ∥r, where Â is the state matrix of
the original continuous-time linear control system.

The following example illustrates how to use Theorem 4.4.1 to verify approximate
opacity for an infinite system based on its finite abstraction.

Example 4.4.3. Let us consider the following simple system

Σ :

{
ξ(k + 1 = 0.1ξ(k) + υ(k),

ζ(k) = sin(2.5πξ(k)) + 1,
(4.4.8)

where X = [0, 1.6[, XS = [0, 0.1[ and U = {0.001}. This system is clearly δ-ISS and
according to Equation (2.4.3), we have β(r, k) = 0.1kr and γ(r) =

∑∞
m=0 0.1

mr. Also,
function h satisfies the Lipschitz condition with α(r) = 2.5πr. By Equation (4.4.2), the
parameters q = (η, µ, 0) and the abstract precision ε should satisfy 0.04

π ε + 10
9 µ + η ≤

46



4.4 Opacity of Discrete-Time Control Systems

0.4
π ε. Let us consider desired abstract precision ε = 0.9 and quantization parameters
q = (η, µ, 0) = (0.1, 0.001, 0) satisfying the inequality. Then we obtain symbolic system
Σ̂ shown in Figure 4.4, and by Theorem 4.4.1, we have Σ ⪯0.9

I Σ̂ ⪯0.9
I Σ. Essentially,

we discretize the state space of [0, 1.6[ into 16 discrete states based on parameter η.
One can easily check that Σ̂ is 0-approximate initial-state opaque since for any run
from secret initial state 0, there exists a run from non-secret state 8 such that their
outputs are exactly the same. Therefore, by Theorem 4.3.2, we can conclude that Σ is
1.8-approximate initial-state opaque.

The next theorem provides similar results as in Theorem 4.4.1 but by leveraging δ-ISS
Lyapunov functions. To show the next result, we will make the following supplementary
assumption on the δ-ISS Lyapunov functions as in Definition 2.4.3. We assume that
there exists a function γ̂ ∈ K∞ such that

∀x, x′, x′′ ∈ X, V (x, x′)− V (x′, x′′) ≤ γ̂(∥x− x′′∥). (4.4.9)

Inequality (4.4.9) is not restrictive at all provided we are interested in the dynamics of
the control system on a compact subset of the state set X; see the discussion in [53].

Theorem 4.4.4. Let Σ = (X,X0, XS , U, f, Y, h) admit a δ-ISS Lyapunov function V
satisfying (4.4.9). For any desired precision ε > 0, let Σ̂ be a finite abstraction of Σ as
in (4.4.1) with a tuple q = (η, µ, 0) of quantization parameters satisfying

α(η) ≤α(α−1(ε)), (4.4.10)

max{κ(α(α−1(ε))), λ(µ)}+ γ̂(η) ≤α(α−1(ε)), (4.4.11)

then we have Σ ⪯ε
I Σ̂ ⪯ε

I Σ.

Proof. We start by proving Σ ⪯ε
I Σ̂. Consider the relation R ⊆ X × X̂ defined by

(x, x̂) ∈ R if and only if V (x, x̂) ≤ α(α−1(ε)). Since η ≤ span(XS) and XS ⊆⋃
p∈[XS ]η

Bη(p), for every x ∈ XS there always exists x̂ ∈ X̂S such that ∥x − x̂∥ ≤ η.
Then

V (x, x̂) ≤ α(∥x− x̂∥) ≤ α(η) ≤ α(α−1(ε))

because of (4.4.10) and α being a K∞ function. Hence, (x, x̂) ∈ R and condition 1a)
in Definition 4.3.1 is satisfied. For every x̂ ∈ X̂ \ X̂S , by choosing x = x̂ which is also
inside set X \XS , one gets trivially (x, x̂) ∈ R and, hence, condition 1b) in Definition
4.3.1 holds as well. Now consider any (x, x̂) ∈ R. Condition 2 in Definition 4.3.1 is
satisfied by the definition of R and the Lipschitz assumption on map h:

∥h(x)− ĥ(x̂)∥ = ∥h(x)− h(x̂)∥ ≤ α(∥x− x̂∥)
≤ α(α−1(V (x, x̂)) ≤ ε.

Let us now show that condition 3 in Definition 4.3.1 holds.
Consider any u ∈ U . Choose an input û ∈ Û satisfying:

∥u− û∥ ≤ µ. (4.4.12)
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Note that the existence of such û is guaranteed by the inequality µ ≤ span(U) which

guarantees that U ⊆
⋃
p∈[U ]µ

Bµ(p). Consider the unique transition x
u- x′ = f(x, u)

in Σ. Given δ-ISS Lyapunov function V for Σ, inequality (2.4.4), and (4.4.12), one
obtains:

V (x′, f(x̂, û)) ≤max{κ (V (x, x̂)) , λ (∥u− û∥)} (4.4.13)

≤max{κ
(
α(α−1(ε))

)
, λ (µ)}.

Since X ⊆
⋃
p∈[X]η

Bη(p), there exists x̂′ ∈ X̂ such that:

∥f(x̂, û)− x̂′∥ ≤ η, (4.4.14)

which, by the definition of Σ̂, implies the existence of x̂′ ∈ f̂(x̂, û) in Σ̂. Using the
inequalities (4.4.9), (4.4.11), (4.4.13), and (4.4.14), we obtain:

V (x′, x̂′) ≤ V (x′, f(x̂, û)) + γ̂(∥f(x̂, û)− x̂′∥)
≤ max{κ

(
α(α−1(ε))

)
, λ (µ)}+ γ̂ (η)

≤ α(α−1(ε)).

Therefore, we conclude (x′, x̂′) ∈ R and condition 3a) in Definition 4.3.1 holds. Let us
now show that condition 3b) in Definition 4.3.1 also holds.

Now consider any (x, x̂) ∈ R. Consider any û ∈ Û . Choose the input u = û and
consider the unique x′ = f(x, u) in Σ. Given δ-ISS Lyapunov function V for Σ and
inequality (2.4.4), one gets:

V (x′, f(x̂, û)) ≤ κ (V (x, x̂)) ≤ κ
(
α(α−1(ε))

)
. (4.4.15)

Using the definition of Σ̂, the inequalities (4.4.9), (4.4.11), and (4.4.15), we obtain:

V (x′, x̂′) ≤V (x′, f(x̂, û)) + γ̂(∥f(x̂, û)− x̂′∥)
≤κ
(
α(α−1(ε))

)
+ γ̂(η) ≤ α(α−1(ε)).

Therefore, we conclude that (x′, x̂′) ∈ R and condition 3b) in Definition 4.3.1 holds.

In a similar way, one can prove that Σ̂ ⪯ε
I Σ.

Remark 4.4.5. One can readily verify that there always exists a choice of quantization
parameter q = (η, µ, 0) such that inequalities (4.4.10) and (4.4.11) hold simultaneously.
Although the result in Theorem 4.4.4 seems more general than that of Theorem 4.4.1
in terms of the existence of quantization parameter q, the symbolic model Σ̂, computed
by using the quantization parameters q provided in Theorem 4.4.1 whenever existing, is
likely to have fewer states than the one computed by using the quantization parameters
provided in Theorem 4.4.4 due to the conservative nature of δ-ISS Lyapunov functions.
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Remark 4.4.6. The notions of approximate opacity are, in general, hard to check for
a concrete system since there is no systematic way in the literature to check opacity
for systems with infinite state set so far. On the other hand, existing tool DESUMA1

and algorithms [209], [162],[222, Sec. IV] in DESs literature can be leveraged to check
exact opacity for systems with finite state sets. For the verification of approximate
opacity of the constructed finite abstractions, one can readily resort to Section 4.2 for
an effective verification approach that was developed for the notion of approximate
opacity for finite systems.

The next theorems illustrate another main results of this section showing that, under
similar conditions over the quantization parameters η and µ, Σ̂ and Σ are related under
an approximate current-state opacity-preserving simulation relation.

Theorem 4.4.7 (Current-State Opacity-Preserving Finite Abstrac-
tions). Let Σ = (X,X0, XS , U, f, Y, h) be a δ-ISS control system. For any
desired precision ε > 0, let Σ̂ be a finite abstraction of Σ as in (4.4.1) with
a tuple q = (η, µ, θ) of parameters satisfying

β
(
α−1(ε), 1

)
+ γ(µ) + η ≤ α−1(ε),

α−1(ε) ≤ θ,

then we have Σ ⪯ε
C Σ̂.

Proof. Consider the relation R ⊆ X × X̂ defined by (x, x̂) ∈ R if and only if ∥x− x̂∥ ≤
α−1(ε). Note that conditions 1, 2, 3a) and 3c) of ε-CurSOP simulation relation in
Definition 4.3.6 are similar to that of ε-InitSOP simulation relation, therefore the proof
of them are similar to that in Theorem 4.4.1 and is omitted here. Here, we show that
conditions 3b) and 3d) in Definition 4.3.6 hold.

Let us consider an arbitrary transition x′ = f(x, u) with x′ ∈ XS in Σ. Similar to the
proof of condition 3a), we can show the existence of a transition x̂′ ∈ f̂(x̂, û) in Σ̂ where
(x′, x̂′) ∈ R holds, where the input û ∈ Û satisfies: ∥u − û∥ ≤ µ. By the construction
of the secret set in the symbolic system, one has X̂S = [Xθ

S ]η with θ ≥ α−1(ε) and
0 < η ≤ min{span(XS), span(X \ XS)}. Therefore, since (x′, x̂′) ∈ R which implies
∥x′ − x̂′∥ ≤ α−1(ε), we obtain that x̂′ ∈ X̂S . Thus, we conclude that condition 3b) in
Definition 4.3.6 holds. In a similar way, we can show that condition 3d) in Definition
4.3.6 holds as well which completes the proof.

Theorem 4.4.8. Let Σ = (X,X0, XS , U, f, Y, h) admits a δ-ISS Lyapunov function V
satisfying (4.4.9). For any desired precision ε > 0, let Σ̂ be a finite abstraction of Σ as
in (4.4.1) with a tuple q = (η, µ, θ) of parameters satisfying

α(η) ≤α(α−1(ε)),

1Available at URL http://www.eecs.umich.edu/umdes/toolboxes.html.
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max{κ(α(α−1(ε))), λ(µ)}+ γ̂(η) ≤α(α−1(ε)),

α−1(ε) ≤θ,

then we have Σ ⪯ε
C Σ̂.

Proof. The proof is similar to that of Theorem 4.4.4 and Theorem 4.4.7 and is omitted
here.

Since we show Σ ⪯ε
I Σ̂ and Σ ⪯ε

C Σ̂ under the same relation in Theorems 4.4.1 and
4.4.7 (resp. Theorems 4.4.4 and 4.4.8), by the definition of approximate infinite-state
opacity-preserving simulation relation, we consequently get the following results where
the proofs are omitted.

Theorem 4.4.9. Let Σ = (X,X0, XS , U, f, Y, h) be a δ-ISS control system. For any
desired precision ε > 0, let Σ̂ be a finite abstraction of Σ as in (4.4.1) with a tuple
q = (η, µ, θ) of parameters satisfying

β
(
α−1(ε), 1

)
+ γ(µ) + η ≤ α−1(ε),

α−1(ε) ≤ θ,

then we have Σ ⪯ε
IF Σ̂.

Theorem 4.4.10. Let Σ = (X,X0, XS , U, f, Y, h) admits a δ-ISS Lyapunov function
V satisfying (4.4.9). For any desired precision ε > 0, let Σ̂ be a finite abstraction of Σ
as in (4.4.1) with a tuple q = (η, µ, θ) of parameters satisfying

α(η) ≤α(α−1(ε)),

max{κ(α(α−1(ε))), λ(µ)}+ γ̂(η) ≤α(α−1(ε)),

α−1(ε) ≤θ,

then we have Σ ⪯ε
IF Σ̂.

4.5 Opacity of Discrete-Time Stochastic Control Systems

In the previous section, we provided approximate simulation relations that preserve
approximate opacity for the class of (non-stochastic) discrete-time control systems. We
also discussed how to construct finite abstractions that approximately simulate a class
of discrete-time control systems in terms of opacity preservation. The results bridge
the gap between the opacity analysis of finite discrete systems and continuous control
systems. However, in real-world applications, a small probability of violation of the
opacity could be tolerable. Hence, instead of simply asking if a system is opaque or
non-opaque, it is more applicable to evaluate the possibility of being not opaque for
stochastic settings. We address the problem of abstraction-based opacity verification
of discrete-time stochastic control systems (dt-SCS) in this section.
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4.5.1 Opacity-Preserving Stochastic Simulation Functions

In this subsection, we introduce a notion of initial-state opacity-preserving stochastic
simulation functions for dt-SCS. The stochastic simulation function will play an impor-
tant role in analyzing opacity for dt-SCS. First, we provide the definition of initial-state
opacity-preserving stochastic simulation functions.

Definition 4.5.1. (Initial-state opacity-preserving stochastic simulation func-
tion) Let Σ = (X,X0, XS , U, ς, f, Y, h) and Σ̂ = (X̂, X̂0, X̂S , Û , ς, f̂ , Ŷ , ĥ) be two
dt-SCS with the same output sets Y = Ŷ . A function V : X×X̂ → R≥0 is called
an initial-state opacity-preserving stochastic simulation function (InitSOP-SSF)
from Σ̂ to Σ, if there exist constants ψ ≥ 0, ω ≥ 0, a function α ∈ K∞, and a
function κ ∈ K which satisfies κ(s) ≥ κ̂s, ∀s ∈ R≥0, where 0 < κ̂ < 1, such that

1 a) ∀x0 ∈ X0 ∩XS , ∃x̂0 ∈ X̂0 ∩ X̂S : V (x0, x̂0) ≤ ω;
b) ∀x̂0 ∈ X̂0 \ X̂S , ∃x0 ∈ X0 \XS : V (x0, x̂0) ≤ ω;

2 ∀x ∈ X,∀x̂ ∈ X̂, α(∥h(x)− ĥ(x̂)∥) ≤ V (x, x̂);

3 ∀x ∈ X,∀x̂ ∈ X̂, the following conditions hold:

a) ∀u, ∃û, s.t. E
[
V (f(x, u, ς), f̂(x̂, û, ς))

∣∣x, x̂, u, û] − V (x, x̂) ≤
−κ(V (x, x̂)) + ψ;

b) ∀û, ∃u, s.t. E
[
V (f(x, u, ς), f̂(x̂, û, ς))

∣∣x, x̂, u, û] − V (x, x̂) ≤
−κ(V (x, x̂)) + ψ.

Now, before stating the main theorem of this section, we provide the following tech-
nical proposition which is inspired by Theorem 3.3 in [97]. This proposition shows
us the usefulness of the InitSOP-SSF in the sense that it can be employed to show
indistinguishability of output trajectories of two dt-SCS in a probabilistic setting.

Proposition 4.5.2. Let Σ = (X,X0, XS , U, ς, f, Y, h) and Σ̂ = (X̂, X̂0, X̂S , Û , ς, f̂ , Ŷ , ĥ)
be two dt-SCS with the same output sets Y = Ŷ . Suppose V is an InitSOP-SSF from
Σ̂ to Σ. Then, for any a ∈ X0 ∩XS in Σ, there exists â ∈ X̂0 ∩ X̂S in Σ̂ (respectively,
for any â ∈ X̂0 \ X̂S in Σ̂, there exists a ∈ X0 \XS in Σ) so that for any ν̂ ∈ Û in Σ̂,
there exists ν ∈ U in Σ and vice versa such that the following inequality holds

P

{
sup

0≤k≤n
∥ζaν(k)− ζ̂âν̂(k)∥ ≤ λ | [a; â]

}
≥ 1− ε̄λ,

ε̄λ :=

{
1− (1− ω

α(λ))(1−
ψ

α(λ))
n if α(λ) ≥ ψ

κ̂ ,

( ω
α(λ))(1− κ̂)n + ( ψ

κ̂α(λ))(1− (1− κ̂)n) if α(λ) < ψ
κ̂ ,

(4.5.1)

for any λ > 0.

Proof. It can be readily seen that by conditions 2 and 3 in Definition 4.5.1, the InitSOP-
SSF is a stochastic simulation function (SSF) (as defined in [97, Definition 3.2]) both
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from Σ̂ to Σ and from Σ to Σ̂. Since by condition 1 in Definition 4.5.1, V (a, â) ≤ ω,
the rest of the proof is concluded by applying Theorem 3.3 in [97].

This proposition will be used for the proof of the following main theorem, where
we show preservation of approximate initial-state opacity across related systems as in
Definition 4.5.1. The next lemmas will be used to prove the main result.

Lemma 4.5.3. Suppose for two dt-SCS Σ and Σ̂, the output trajectories ζaν and ζ̂âν̂
satisfy the inequality

sup
0≤k≤n

∥ζaν(k)− ζ̂âν̂(k)∥ ≤ λ,

for some time bound n and λ > 0. Then we have:

ζ̂âν̂ ∈ Eλ =⇒ ζaν ∈ E; ζaν ∈ E =⇒ ζ̂âν̂ ∈ Ēλ,

over time interval [0, n], for any measurable set E ⊆ BY and the modified sets Eλ and
Ēλ as defined in (3.3.2) and (3.3.3).

Proof. As can be seen from the definition of Eλ and Ēλ in (3.3.2) and (3.3.3), given any
set of output sequences E ⊆ BY , Eλ and Ēλ are the λ-deflated version and λ-inflated
version of set E, respectively. Since we have

sup
0≤k≤n

∥ζaν(k)− ζ̂âν̂(k)∥ ≤ λ,

then it can be readily seen that according to the structure of Eλ and Ēλ, ζ̂âν̂ ∈ Eλ
guarantees ζaν ∈ E. Similarly, ζaν ∈ E inplies ζ̂âν̂ ∈ Ēλ as well.

This lemma essentially provides us the relation between the property satisfactions of
two dt-SCS, given that the output trajectories of these two dt-SCS are close to each
other. Based on this lemma, the following lemma presents another technical result of
this section.

Lemma 4.5.4. Suppose Σ and Σ̂ are two dt-SCS for which inequality (4.5.1) holds
with initial states a and â, input sequences ν and ν̂, a constant pair (λ, ε̄λ) and any
time bound n. The following inequality holds for any set E ⊆ BY and the modified sets
Eλ and Ēλ as defined in (3.3.2) and (3.3.3):

P(ζ̂âν̂ ∈ Eλ)− ε̄λ ≤ P(ζaν ∈ E) ≤ P(ζ̂âν̂ ∈ Ēλ) + ε̄λ, (4.5.2)

where the satisfaction is over time interval {0, . . . , n}.

Proof. Let us consider the events:

E1 := {ζ̂âν̂ ∈ Eλ}, E2 := {ζaν ∈ E}, E3 := { sup
0≤k≤n

∥ζaν(k)− ζ̂âν̂(k)∥ ≤ λ}.
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Since we have from Lemma 4.5.3, E1 ∩ E3 =⇒ E2, thus, P(Ē2) ≤ P(Ē1 ∪ Ē3) ≤ P(Ē1) +
P(Ē3), where Ē1, Ē2 and Ē3 are the complements of E1, E2 and E3, respectively. As we
have by (4.5.1), P(Ē3) ≤ ε̄λ, now we readily get:

P(Ē2) ≤ P(Ē1) + ε̄λ =⇒ 1− P(E2) ≤ 1− P(E1) + ε̄λ

=⇒ P(E1) ≤ P(E2) + ε̄λ,

which gives us P(ζ̂âν̂ ∈ Eλ) − ε̄λ ≤ P(ζaν ∈ E). The proof of P(ζaν ∈ E) ≤ P(ζ̂âν̂ ∈
Ēλ) + ε̄λ is similar and is omitted here due to lack of space.

Now, we present the main result of this section on the preservation of opacity across
related dt-SCS systems.

Theorem 4.5.5. Let Σ = (X,X0, XS , U, ς, f, Y, h) and Σ̂ = (X̂, X̂0, X̂S , Û , ς,
f̂ , Ŷ , ĥ) be two dt-SCS with the same output sets Y = Ŷ . Consider constants
ε ∈ R≥0 and λ ∈ R>0. Assume V is an InitSOP-SSF from Σ̂ to Σ as in Definition
4.5.1 with the corresponding constants ψ, ω, κ̂ and K∞ function α. Then the
following implication holds:

Σ̂ is ε-approximate initial-state opaque

⇒Σ is (2λ, ε+ 2ε̄λ)-approximate initial-state opaque, (4.5.3)

where ε̄λ ∈ R≥0 is computed as in (4.5.1).

Proof. Consider an arbitrary secret initial state x0 ∈ X0 ∩ XS , input sequence ν =
{u1, u2, . . . , un} and the corresponding state run ξx0ν = (x0, x1, . . . , xn) in Σ. Since V
is an InitSOP-SSF from Σ̂ to Σ, by conditions 1a), 2 and 3a) in Definition 4.5.1, there
exist a secret initial state x̂0 ∈ X̂0 ∩ X̂S , input sequence ν̂ = {û1, û2, . . . , ûn} and state
run ξ̂x̂0ν̂ = (x̂0, x̂1, . . . , x̂n) in Σ̂ such that V (x0, x̂0) ≤ ω, and ∀i ∈ {0, 1, . . . , n}:

α(∥h(xi)− ĥ(x̂i)∥) ≤ V (xi, x̂i),

E
[
V (f(xi, ui, ςi)), f̂(x̂i, ûi, ςi))

∣∣xi, x̂i, ui, ûi]− V (xi, x̂i) ≤ −κ(V (xi, x̂i)) + ψ.

By applying Proposition 4.5.2, for the given λ, we have:

P
{
max
0≤i≤n

∥ζx0ν(i)− ζx̂0ν̂(i)∥ ≤ λ | [x0; x̂0]
}

≥ 1− ε̄λ,

where ε̄λ is computed using inequality (4.5.1). By applying (4.5.2) in Lemma 4.5.4, we
get for any set E ⊆ BY and the modified sets Eλ and Ēλ:

P(ζ̂x̂0ν̂ ∈ Eλ)− P(ζx0ν ∈ E) ≤ ε̄λ, (4.5.4)

P(ζx0ν ∈ E)− P(ζ̂x̂0ν̂ ∈ Ēλ) ≤ ε̄λ. (4.5.5)
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Since Σ̂ is ε-approximate initial-state opaque, by Definition 3.3.1, there exist a non-
secret initial state x̂′0 ∈ X̂0 \ X̂S , input sequence ν̂ ′ = {û′1, û′2, . . . , û′n} and state run
ξx̂′0ν̂′ = (x̂′0, x̂

′
1, . . . , x̂

′
n) in Σ̂, such that ∥P(ζ̂x̂′0ν̂′ ∈ E)− P(ζ̂x̂0ν̂ ∈ E)∥ ≤ ε holds for any

set E, so we have:

P(ζ̂x̂′0ν̂′ ∈ Eλ)− P(ζ̂x̂0ν̂ ∈ Eλ) ≤ ε, (4.5.6)

P(ζ̂x̂0ν̂ ∈ Ēλ)− P(ζ̂x̂′0ν̂′ ∈ Ēλ) ≤ ε. (4.5.7)

Again, since V is an InitSOP-SSF from Σ̂ to Σ, by conditions 1b), 2 and 3b) in Definition
4.5.1, Proposition 4.5.2 and (4.5.2) in Lemma 4.5.4, there exist an initial state x′0 ∈
X0 \XS , input sequence ν

′ = {u′1, u′2, . . . , u′n} and the corresponding state run ξx′0ν′ =
(x′0, x

′
1, . . . , x

′
n) in Σ such that

P(ζx′0ν′ ∈ E2λ)− P(ζ̂x̂′0ν̂′ ∈ Eλ) ≤ ε̄λ, (4.5.8)

P(ζ̂x̂′0ν̂′ ∈ Ēλ)− P(ζx′0ν′ ∈ Ē2λ) ≤ ε̄λ. (4.5.9)

Hence, by combining inequalities (4.5.4), (4.5.6), (4.5.8), we have the following result

P(ζx′0ν′ ∈ E2λ)− P(ζx0ν ∈ E) ≤ ε+ 2ε̄λ. (4.5.10)

Additionally, combining inequalities (4.5.5), (4.5.7), (4.5.9), we get

P(ζx0ν ∈ E)− P(ζx′0ν′ ∈ Ē2λ) ≤ ε+ 2ε̄λ. (4.5.11)

Since x0 ∈ X0 ∩ XS and input sequence ν in Σ are arbitrary, we conclude that Σ is
(2λ, ε+ 2ε̄λ)-approximate initial-state opaque.

Remark 4.5.6. This theorem provides a sufficient condition for approximate initial-
state opacity based on the relation between two stochastic systems. It bridges the gap
between the verification of opacity and abstraction-based techniques for stochastic sys-
tems. By constructing an abstraction of system Σ, which appears as system Σ̂ in the
theorem, and leveraging the simulation relation between them, one can efficiently ver-
ify opacity of the complex system Σ. The abstraction is contructed as a finite Markov
decision process (MDP) in the following Subsection 4.5.2.1. In addition, as mentioned
in Remark 3.3.7, ε-approximate initial-state opacity for the MDP can be verified easily
using existing computation algorithms for total variation distance.

4.5.2 Construction of Opacity-Preserving Finite Abstractions for
Discrete-Time Stochastic Control Systems

In this section, we show how to analyze approximate opacity for the class of dt-SCS
based on their finite abstractions (finite MDPs). First, we provide the construction of
finite abstractions of the concrete systems.
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4.5.2.1 Finite Abstractions of Discrete-Time Stochastic Control Systems

Given a dt-SCS Σ = (X,X0, XS , U, ς, f, Y, h), we construct a finite MDP as its finite ab-
straction, represented by the tuple Σ̂ = (X̂, X̂0, X̂S , Û , ς, f̂ , Ŷ , ĥ). The construction of
finite MDPs follows a similar procedure as in [97, Algorithm 1] with some modifications
to incorporate the role of secret sets. First, for the given state set X and input set U , we
select finite partitions of them as X = ∪iXi, U = ∪iUi, and single representative points
x̄i ∈ Xi, ūi ∈ Ui as abstract states and inputs. Then, we define the state and input
sets of Σ̂ as X̂ = {x̄i, i = 1, . . . , nx}, and Û = {ūi, i = 1, . . . , nu}, which simply consist
of the selected representative points. The transition function f̂ : X̂ × Û × Vς → X̂ is
defined as

f̂(x̂, û, ς) = Πx(f(x̂, û, ς)), (4.5.12)

where Πx : X → X̂ represents the map that assigns to any x ∈ X, the representative
point x̂ ∈ X̂ of the corresponding partition set containing x. The output set Ŷ is the
image of X̂ under h, with ĥ : X̂ → Ŷ being the same as h except for having a restricted
domain X̂. Similarly, we use Πu : U → Û to denote the map that assigns to any u ∈ U ,
the representative input point û ∈ Û of the corresponding partition set containing u.

Remark 4.5.7. Note that we have not defined the map Πx : X → X̂ yet. For example,
one can choose center points (if applicable) of the partitions as representative points or
apply other specialized mapping rule to it. In this work, we enforce two conditions as
the rule of choosing representative points for initial states and secret states as follows:

1 If X0 ∩ Xi ̸= ∅, we constrain the representative point of Xi to be chosen as x̄i ∈
X0 ∩ Xi;

2 If XS ∩ Xi ̸= ∅, we constrain the representative point of Xi to be chosen as
x̄i ∈ XS ∩ Xi.

By the above conditions, one can observe that the initial state set X̂0 and secret state
set X̂S satisfy X̂0 ⊆ X0 and X̂S ⊆ XS.

Remark 4.5.8. In this section, it is assumed that the abstraction maps Πx and Πu
satisfy the inequalities

∥Πx(x)− x∥ ≤ µx, ∀x ∈ X, ∥Πu(u)− u∥ ≤ µu,∀u ∈ U, (4.5.13)

where µx and µu are the state and input discretization parameter defined as

µx := sup{∥x− x′∥, x, x′ ∈ Xi, i = 1, 2, . . . , nx}, (4.5.14)

µu := sup{∥u− u′∥, u, u′ ∈ Ui, i = 1, 2, . . . , nu}. (4.5.15)

Next, we construct the InitSOP-SSF for a class of nonlinear stochastic systems.
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4.5.2.2 Establishing InitSOP-SSF for a Class of Nonlinear Stochastic Systems

In this subsection, we focus on a general class of nonlinear stochastic systems Σ. We
provide an InitSOP-SSF candidate for the concrete systems Σ and their finite MDPs as
constructed in the previous subsection. The existence of such an InitSOP-SSF enables
us to verify opacity of a continuous-space stochastic system by leveraging its finite
abstraction. The establishment of InitSOP-SSF is under the following two assump-
tions. First, we assume that the output map h satisfies the following general Lipschitz
assumption: there exists an α̃ ∈ K∞ such that ∥h(x) − h(x′)∥ ≤ α̃(∥x − x′∥) for all
x, x′ ∈ X. Second, we assume that the concrete system is δ-ISS as in the following
definition. Note that this definition is a variant of Definition 2.4.3 tailored to dt-SCS.

Definition 4.5.9. A dt-SCS Σ is incrementally input-to-state stable (δ-ISS) if there
exists function V : X × X → R≥0 such that ∀x, x′ ∈ X, ∀u, u′ ∈ U the following two
inequalities hold:

α(∥x− x′∥) ≤ V (x, x′) ≤ α(∥x− x′∥), (4.5.16)

E
[
V (f(x, u, ς), f(x′, u′, ς))

∣∣x, x′, u, u′]− V (x, x′) ≤ −κ̄(V (x, x′)) + ρ̄(∥u− u′∥),
(4.5.17)

for some α, α ∈ K∞, κ̄ ∈ K, and ρ̄ ∈ K∞ ∪ {0}.

Now, we provide the main theorem in this subsection. We show that by adding a
mild condition, the function V described in Definition 4.5.9 is indeed an InitSOP-SSF
from the finite abstraction Σ̂ (as constructed in Subsection 4.5.2.1) to the concrete
system Σ.

Theorem 4.5.10. Consider a δ-ISS dt-SCS Σ that admits a function V as in
Definition 4.5.9. Let Σ̂ be its finite MDP constructed as in Subsection 4.5.2.1.
Suppose there exists a constant 0 < κ̂ < 1 such that the function κ̄ ∈ K satisfies
κ̄(s) ≥ κ̂s, ∀s ∈ R≥0. Assume that there exists a function γ ∈ K∞ such that V
satisfies

V (x, x′)− V (x, x′′) ≤ γ(∥x′ − x′′∥),∀x, x′, x′′ ∈ X. (4.5.18)

Then V is an InitSOP-SSF from Σ̂ to Σ.

Proof. We start by proving condition 1 in Definition 4.5.1. For every initial state
x0 ∈ X0 ∩XS in Σ, there always exists a representative point x̂0 = Πx(x0) in Σ̂ which
is inside the set X̂0 ∩ X̂S by the construction of X̂0 and X̂S , and ∥x̂0 − x0∥ ≤ µx holds
by (4.5.13). Hence, we have V (x0, x̂0) ≤ α(∥x0 − x̂0∥) by (4.5.16), and condition 1a)
in Definition 4.5.1 is satisfied with ω = α(µx). For every x̂0 ∈ X̂0 \ X̂S , by choosing
x0 = x̂0 which is also inside X0 \XS , we get V (x0, x̂0) = 0 ≤ ω. Hence, condition 1b)
in Definition 4.5.1 holds as well.
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Let us show condition 2 in Definition 4.5.1 holds. Since Σ is incrementally input-to-
state stable and using (4.5.16), and given the Lipschitz assumption on h, ∀x ∈ X and
∀x̂ ∈ X̂, one gets

∥h(x)− ĥ(x̂)∥ ≤ α̃(∥x− x̂∥) ≤ α̃ ◦ α−1(V (x, x̂)),

which results in

α(∥h(x)− ĥ(x̂)∥) ≤ V (x, x̂),

∀x ∈ X and ∀x̂ ∈ X̂, where α(s) := (α̃ ◦ α−1)−1(s), ∀s ∈ R≥0. Hence, condition 2
in Definition 4.5.1 is satisfied. Let us now show that condition 3 in Definition 4.5.1
holds as well. Now, ∀x ∈ X,∀x̂ ∈ X̂, ∀u ∈ U and ∀û ∈ Û , by taking the conditional
expectation from (4.5.18), we have

E
[
V (f(x, u, ς), f̂(x̂, û, ς))

∣∣x, x̂, u, û]− E
[
V (f(x, u, ς), f(x̂, û, ς))

∣∣x, x̂, u, û]
≤ E

[
γ(∥f̂(x̂, û, ς)− f(x̂, û, ς)∥)

∣∣x, x̂, u, û].
Employing (4.5.17), one gets

E
[
V (f(x, u, ς), f(x̂, û, ς))

∣∣x, x̂, u, û] ≤ V (x, x̂)− κ̄(V (x, x̂)) + ρ̄(∥u− û∥).

Since f̂(x̂, û, ς) = Πx(f(x̂, û, ς)), by using (4.5.13), we get

E
[
γ(∥f̂(x̂, û, ς)− f(x̂, û, ς)∥)

∣∣x, x̂, u, û] ≤ γ(µx).

Now, consider any u ∈ U . By choosing the representative input û = Πu(u), which
satisfies ∥u− û∥ ≤ µu, we obtain

E
[
V (f(x, u, ς), f̂(x̂, û, ς))

∣∣x, x̂, u, û]− V (x, x̂) ≤ −κ̄(V (x, x̂)) + ρ̄(µu) + γ(µx).

Hence, condition 3a) in Definition 4.5.1 holds with ψ = ρ̄(µu) + γ(µx). Similarly,
∀x ∈ X,∀x̂ ∈ X̂, and ∀û ∈ Û , by choosing u = û, we have

E
[
V (f(x, u, ς), f̂(x̂, û, ς))

∣∣x, x̂, u, û]− V (x, x̂)

≤ −κ̄(V (x, x̂)) + γ(µx) ≤ −κ̄(V (x, x̂)) + ψ.

Therefore, condition 3b) in Definition 4.5.1 holds as well, and we conclude that V is
an InitSOP-SSF from Σ̂ to Σ.
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4.6 Discussion and Future Work

In this chapter, we discussed an abstraction-based framework for the verification of ap-
proximate opacity for both non-stochastic and stochastic control systems. Verification
algorithms and approximate simulation relations that preserve approximate opacity
were provided tailored to our new concept of approximate opacity. We also discussed
how to construct finite abstractions that approximately simulate classes of discrete-
time (stochastic) control systems in terms of opacity preservation. Our results bridge
the gap between the opacity analysis of finite discrete systems and continuous control
systems.

In the following, we further discuss some ongoing research topics and open problems.

Verification of General Notion of Opacity for CPS Existing works for opacity veri-
fication of general CPS mainly focus on particular types of opacity such as initial-state
opacity or infinite-step one. For finite systems, the general notion of α-opacity as de-
fined in Definition 3.5.1 can be verified using the observer-like structures when the
security properties can be realized by ω-automata. However, for general CPS with in-
finite states, how to verify the general notion of α-opacity still needs developments. In
particular, for the abstraction-based approach, one needs to identify suitable relation
that preserves α-opacity. For the barrier-based approach, appropriate conditions for
barrier certificates of α-opacity also need to be identified.

Opacity Verification for Larger Classes of CPS In the context of analyzing stochastic
systems, the results provided in Section 4.5 made some initial steps towards abstraction-
based opacity verification. It is meaningful to further extend our framework to cover
more notions of opacity, e.g., K-step opacity, current-state opacity and infinite-step
opacity. Efficient verification algorithms need to be developed to facilitate abstraction-
based verification frameworks for stochastic control systems. Moreover, the aforemen-
tioned abstraction-based approaches for opacity verification of general CPS crucially
depends on incremental ISS assumption. However, this assumption is rather restric-
tive for many practical systems. How to relax the stability assumption so that the
verification techniques can be applied to more general classes of CPS is an interesting
and important future direction. Also, it will be useful to develop opacity verification
techniques, either using abstraction-based techniques, for more complex classes of CPS
with time-delays or uncertainties. Also, in the problem formulation of opacity, the
attacker is assumed to be able to access partial information-flow of the plant. However,
for networked control systems, the information transmission between controllers and
plants in the feedback loops may also be released to the intruder. There are some
very recent works on the verification of opacity for networked control systems using
finite-state models; see, e.g., [210, 206, 223, 108, 205]. However, existing works on
formal verification of networked control system mainly focus on the mission require-
ments [217, 65, 144, 21] and to the best of our knowledge, there is no result on formal
verification of opacity for general networked CPS.
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4.6 Discussion and Future Work

Abstraction-Based Synthesis of Opacity for CPS The notions of opacity-preserving
alternating simulation relations (ASR) proposed in [70] made the first step towards
abstraction-based opacity synthesis for CPS. However, it has many limitations that
need to be addressed in the future. First, the results in [70] are developed for par-
ticular types of state-based opacity. Similar to the verification problem, we also need
to extend the results, particularly the underlying simulation relations, to the general
case of α-opacity. Second, the opacity-preserving ASR belongs to the category of exact
simulation. This condition, in general, is too strong for general CPS with continuous
state-space. It is likely that there does not exist a finite symbolic model simulating
the concrete system exactly. One possible direction to address this issue is to enforce
approximate opacity rather than the exact version. To this end, one needs to consider
the approximate ASR [147, 218] rather than the exact ASR. Third, existing results
only support state-feedback controllers, i.e., the controller knows the current-state of
the system precisely. As we discussed, an opacity-enforcing controller is observation-
based in general. To address this issue, a possible solution is to use the output-feedback
refinement relation (OFRR) [157, 85] instead of the ASR. How to suitably generalize
the OFRR to preserve opacity is still an open problem. Finally, although opacity-
preserving relations have been identified, there is no abstraction algorithm available so
far for building finite abstractions based on the concrete systems with continuous-space
dynamics that satisfy those relations. When the concrete system is δ-ISS, the abstrac-
tion can be done analogous to the case of verification. The major open problem is how
to build opacity-preserving finite abstractions for the purpose of control without the
stability assumption.
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5 A Deductive Approach for Opacity
Verification via Barrier Certificates

5.1 Introduction

The results discussed in Chapter 4 provides a systematic framework via abstraction-
based techniques to deal with opacity verification for complex CPS. However, this
methodology may suffer from scalability issues since it requires discretization of the
state and input sets of the original system. In fact, current techniques on the con-
struction of finite abstractions can scale up to a few variables but run out of time or
memory when confronted with larger models. Motivated by this limitation, this chap-
ter provides an alternative discretization-free approach for the formal verification of
approximate opacity for CPS via a notion of barrier certificates.

5.1.1 Related Literature

Barrier certificates have shown to be a promising tool for the analysis of safety prob-
lems [149, 6, 7, 197, 76] and recently extended to deal with more general temporal
logic specifications [76, 109, 9]. In particular, the seminal work in [148] introduced
for the first time a notion of barrier certificates as a tool for safety verification of a
class of hybrid systems. Later, the authors extended this work in [150] where safety
and reachability are studied as a dual pair, and verification approaches for safety and
reachability were proposed by searching for such barrier certificates using optimization
techniques. However, there are very few works on verification of security properties
using barrier certificates.

A recent attempt to analyze privacy of CPS using barrier certificates is made in [2].
A new notion of current-state opacity was considered there based on the belief space of
the intruder. The privacy verification problem is cast into checking a safety property
of the intruder’s belief dynamics using barrier certificates. However, this framework
is again limited to systems modeled by partially-observable Markov decision processes
(POMDPs) with finite state sets.

5.1.2 Contributions

In this chapter, we develop, for the first time, a discretization-free approach for the
formal verification of approximate opacity based on notions of barrier certificates. First,
we introduce the so-called augmented system constructed by taking the product of
a system with itself. Then, two new notions of so-called augmented control barrier
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certificates (ACBC) are defined for the augmented systems. The first type of ACBC
guarantees a safety property of the augmented system in the sense that there is no
trajectory originating from a given initial region reaching a given unsafe set. Along
with this, the initial and unsafe regions are designed in a specific form capturing the
secret and initial sets of the original system. In this way, the existence of an ACBC
provides us a sufficient condition ensuring that the original system is approximate
initial-state (or infinite-step) opaque. Note that the failure in finding such an ACBC
does not mean the system is not opaque. Therefore, we further present another type
of ACBC which proves a reachability property of the augmented system. This type
of ACBC can be utilized for showing that the original system starting from the initial
set will eventually reach the unsafe region. This type of ACBC, on the other hand,
provides a sufficient condition showing that the original system is lacking approximate
initial-state (or infinite-step) opacity. Apart from the analysis of approximate initial-
state and infinite-step opacity, we further investigate relationships between different
notions of state-based opacity, i.e., initial-state, current-state, and K-step opacity, and
study conditions under which one property may imply another one. Finally, we present
a way to compute polynomial ACBC by means of sum-of-squares (SOS) programming,
where the conditions required for the ACBC are reformulated as SOS constraints.

5.2 Augmented Control Sytems

Consider a dt-CS Σ = (X,X0, XS , U, f, Y, h) as in Definition 2.3.1. We define the
associated augmented system by

Σ× Σ = (X ×X,X0 ×X0, XS ×XS , U × U, f × f, Y × Y, h× h), (5.2.1)

which can be seen as the product of a dt-CS Σ and itself. For later use, we denote by
(x, x̂) ∈ X × X a pair of states in Σ × Σ and by (xx0,ν ,xx̂0,ν̂) the state trajectory of
Σ×Σ starting from (x0, x̂0) under input run (ν, ν̂). We use R = X ×X to denote the
augmented state space.

5.3 Augmented Control Barrier Certificates

In the sequel, we propose a technique that is sound in verifying approximate opacity
for discrete-time control systems. Our approach is based on finding two types of barrier
certificates as defined next.

Here, we first define a notion of barrier certificates that is constructed over the
augmented system Σ× Σ and ensures a safety property for Σ× Σ.

Proposition 5.3.1. Consider a dt-CS Σ as in Definition 2.3.1, the associated aug-
mented system Σ × Σ, and sets R0,Ru ⊆ R. Suppose there exists a function B :
X ×X → R and constants ϵ, ϵ ∈ R with ϵ > ϵ such that

∀(x, x̂) ∈ R0, B(x, x̂) ≤ ϵ, (5.3.1)
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Figure 5.1: Barrier certificate ensuring safety of the augmented system, which implies opacity
of the original system.

∀(x, x̂) ∈ Ru, B(x, x̂) ≥ ϵ, (5.3.2)

∀(x, x̂) ∈ R, ∀u ∈ U,∃û ∈ U,

B(f(x, u), f(x̂, û))−B(x, x̂) ≤ 0. (5.3.3)

Then, for any initial condition (x0, x̂0) ∈ R0 and for any input run ν, there exists an
input run ν̂ such that (xx0,ν(t),xx̂0,ν̂(t)) ∩Ru = ∅, ∀t ∈ N.

Proof. This proposition is proved by contradiction. Let us consider any state trajectory
(xx0,ν ,xx̂0,ν̂) of Σ× Σ that starts from an initial condition (x0, x̂0) ∈ R0, under input
sequences ν and ν̂. Suppose ν̂ is computed such that the inequality in (5.3.3) holds.
Assume the state run reaches a state in Ru, i.e., (xx0,ν(t),xx̂0,ν̂(t)) ∈ Ru for some
t ∈ N. From (5.3.1) and (5.3.2), we have B(x0, x̂0) ≤ ϵ and B(xx0,ν(t),xx̂0,ν̂(t)) ≥ ϵ.
By using (5.3.3), one has ϵ ≤ B(xx0,ν(t),xx̂0,ν̂(t)) ≤ B(x0, x̂0) ≤ ϵ, which contradicts
ϵ > ϵ. Therefore, for any state trajectory of Σ×Σ starting from any initial condition in
R0 under any input run ν, (xx0,ν(t),xx̂0,ν̂(t))∩Ru = ∅ always holds under the extracted
control policy ν̂, which completes the proof.

If B(x, x̂) satisfies the conditions in Proposition 5.3.1, then it is called an augmented
control barrier certificate (ACBC) for Σ×Σ. The interpretation of a barrier certificate
ensuring safety property of the augmented system is depicted in Figure 5.1.
Next, we further introduce another type of barrier certificates which ensures, on the

other hand, the reachability property of the augmented system. Note that these two
types of barrier certificates will be later used in reversed directions for the verification
of opacity or lack of opacity of control systems.

Proposition 5.3.2. Consider a dt-CS Σ as in Definition 2.3.1, the associated aug-
mented system Σ × Σ, and sets R0,Ru ⊆ R. Suppose X ⊂ Rn is a bounded set and
there exists a continuous function V : X ×X → R such that

∀(x, x̂) ∈ R0, V (x, x̂) ≤ 0, (5.3.4)
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Figure 5.2: Barrier certificate ensuring reachability of the augmented system, which implies
lack of opacity of the original system.

∀(x, x̂) ∈ ∂R \ ∂Ru, V (x, x̂) > 0, (5.3.5)

∀(x, x̂) ∈ (R \Ru),∃u ∈ U,∀û ∈ U,

V (f(x, u), f(x̂, û))− V (x, x̂) < 0. (5.3.6)

Then, for any initial condition (x0, x̂0) ∈ R0, there exists an input run ν such that
(xx0,ν(T ),xx̂0,ν̂(T )) ∈ Ru for any ν̂, for some T ≥ 0, and (xx0,ν(t),xx̂0,ν̂(t)) ∈ R,
∀t ∈ [0;T ].

Proof. Consider an initial state (x0, x̂0) ∈ R0. One has V (x0, x̂0) ≤ 0 by (5.3.4). Con-
sider an input run ν such that (5.3.6) is satisfied for the state runs xx0,ν(t),xx̂0,ν̂(t)
of Σ, where ν̂ is an arbitrary input run. First note that the continuous function
V (x, x̂) is bounded below on the compact set (R \Ru). From (5.3.6), V (x, x̂) is
strictly decreasing along the trajectory (xx0,ν ,xx̂0,ν̂) in region (R \Ru). It follows

that (xx0,ν ,xx̂0,ν̂) must leave (R \Ru) in finite time. Now, assume (xx0,ν ,xx̂0,ν̂) leaves

(R \Ru) without entering region Ru first. Consider the first time instant t = T
when (xx0,ν(t),xx̂0,ν̂(t)) is leaving (R \Ru), i.e., (xx0,ν(t), xx̂0,ν̂(t)) ∈ (R \Ru) for
all t ∈ [0, T ], and (xx0,ν(T + ϵ),xx̂0,ν̂(T + ϵ)) /∈ R for any ϵ > 0. By (5.3.6) and
V (x0, x̂0) ≤ 0, we have V (xx0,ν(T ),xx̂0,ν̂(T )) ≤ 0 which contradicts (5.3.5). Therefore,
we conclude that for any run starting from R0 under ν, there must exist T ≥ 0 such
that (xx0,ν(T ),xx̂0,ν̂(T )) ∈ Ru for any ν̂, and (xx0,ν(t),xx̂0,ν̂(t)) ∈ R, ∀t ∈ [0, T ], which
completes the proof.

A function V (x, x̂) satisfying the conditions in Proposition 5.3.2 is also called an
ACBC for Σ × Σ. The idea of using barrier functions to prove reachability was first
described in [150]. The interpretation of a barrier certificate ensuring reachability
property of an augmented system is illustrated in Figure 5.2.
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In the following section, we will describe how to use the above defined barrier certifi-
cates for the verification of different notions of approximate opacity for control systems.

5.4 Formal Verification of Opacity using Barrier Certificates

5.4.1 Verifying Approximate Initial-State Opacity

Here, we show how one can leverage the ACBC defined in the previous subsection to
verify approximate initial-state opacity for a dt-CS Σ. To this purpose, we define the
sets of initial conditions R0 and unsafe states Ru as:

R0 ={(x, x̂) ∈ (X0 ∩XS)× (X0 \XS) | ∥h(x)− h(x̂)∥ ≤ δ}, (5.4.1)

Ru ={(x, x̂) ∈ X ×X | ∥h(x)− h(x̂)∥ > δ}, (5.4.2)

where δ ∈ R≥0 captures the measurement precision of the intruder as introduced in
Definition 3.3.1. The following theorem provides us a sufficient condition in verifying
approximate initial-state opacity of discrete-time control systems.

Theorem 5.4.1. Consider a dt-CS Σ as in Definition 2.3.1. Suppose there exists
a function B : X×X → R satisfying (5.3.1)-(5.3.3) in Proposition 5.3.1 with sets
R0,Ru given in (5.4.1)-(5.4.2). Then, system Σ is δ-approximate initial-state
opaque.

Proof. Consider an arbitrary secret initial state x0 ∈ X0 ∩ XS , any input run ν, and
the corresponding state run xx0,ν in Σ. First note that by (3.3.1), {x ∈ X0 | ∥h(x) −
h(x0)∥ ≤ δ} ⊈ XS . It follows that there exists an initial state x̂0 ∈ X0 \ XS such
that ∥h(x̂0)− h(x0)∥ ≤ δ. Consider the pair of initial states (x0, x̂0). It can be readily
seen that (x0, x̂0) ∈ R0 as in (5.4.1). Now, given the existence of an ACBC as in
Proposition 5.3.1, there exists a control policy ν̂ such that (5.3.3) is satisfied. By using
Proposition 5.3.1, under ν̂, we have the guarantee that any state run of Σ×Σ starting
from R0 never reaches the unsafe region Ru, i.e., (xx0,ν(t),xx̂0,ν̂(t)) ∩Ru = ∅, ∀t ∈ N.
This simply implies the satisfaction of ∥h(xx0,ν(t)) − h(xx̂0,ν̂(t))∥ ≤ δ, ∀t ∈ N. Since
x0 ∈ X0 ∩ XS and xx0,ν are arbitrarily chosen, we conclude that Σ is δ-approximate
initial-state opaque.

5.4.2 Verifying Lack of Approximate Initial-State Opacity

We presented in the previous subsection a sufficient condition for verifying approximate
initial-state opacity based on a notion of barrier certificates. In particular, if one can
find an ACBC satisfying conditions (5.3.1)-(5.3.3) with sets R0 and Ru defined as in
(5.4.1)-(5.4.2), which ensures a safety property for the augmented system Σ× Σ, then
system Σ is shown to be approximate initial-state opaque. However, failing to find
such an ACBC does not necessarily imply that the system is not opaque. Motivated by
this, in this subsection, we aim at presenting a sufficient condition to verify the lack of
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approximate initial-state opacity of a dt-CS Σ. Inspired by the duality between safety
and reachability, our method is based on constructing another type of ACBC ensuring
a reachability property for Σ× Σ as in Proposition 5.3.2.

The following theorem shows that the ACBC as in Proposition 5.3.2 can be used for
verifying the lack of approximate initial-state opacity of dt-CSs.

Theorem 5.4.2. Consider a dt-CS Σ as in Definition 2.3.1. Suppose there
exists a continuous function V : X ×X → R satisfying (5.3.4)-(5.3.6) in Propo-
sition 5.3.2 with sets R0,Ru given in (5.4.1)-(5.4.2). Then, system Σ is not
δ-approximate initial-state opaque.

Proof. First note that from Definition 3.3.1, system Σ is not δ-approximate initial-state
opaque if there exists a state run xx0,ν with x0 ∈ X0∩XS , such that for any other state
runs xx̂0,ν̂ starting from a non-secret initial condition x̂0 ∈ X0 \XS , maxi∈[0;n] ∥h(xi)−
h(x̂i)∥ > δ holds. Now consider a function V : X × X → R and an input run ν
satisfying (5.3.6). Then, by Proposition 5.3.2 and from (5.4.1)-(5.4.2), it follows that
there must exist a secret state x0 ∈ X0 ∩ XS and a state run xx0,ν under input run
ν, such that for any trajectory xx̂0,ν̂ originated from any non-secret initial condition
x̂0 ∈ X0 \ XS , the trajectories (xx0,ν(t),xx̂0,ν̂(t)) will eventually reach Ru in finite
time, where ∥h(xx0,ν(t))− h(xx̂0,ν̂(t))∥ > δ. Therefore, for the state run xx0,ν(t), there
does not exist a state run starting from a non-secret initial state that generates similar
output trajectories. Thus, δ-approximate initial-state opacity is violated.

Remark 5.4.3. We remark that the universal quantifier in (5.3.4) is not necessary
to show the lack of approximate initial-state opacity. In fact, according to the duality
of safety and reachability, the existence of one trajectory that starts from the initial
region R0 and eventually enters into the unsafe region Ru is enough to show the lack
of opacity. Therefore, one can relax the universal quantifier to an existential one by
modifying the definition of barrier certificates, together with the corresponding initial
and unsafe regions, at the cost of having a much more complex structure. However,
it is difficult to formulate such a function and the corresponding set constraints to
sum-of-squares programs (c.f. Section 5.5), and thus, is out of the scope of this thesis.

5.4.3 Verifying Approximate Infinite-Step Opacity

In the last section, we showed how to use certain types of barrier certificates for the
verification of (the lack of) initial-state opacity for discrete-time control systems. In
order to verify infinite-step opacity using the above-defined barrier certificates as in
Propositions 5.3.1 and 5.3.2, the sets of interest R0,Ru need to be redefined in a
specific way to capture the initial and secret information of system Σ. In particular,
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we define sets of initial states R0 and unsafe states Ru as:

R0 = {(x, x̂) ∈ X0 ×X0 : x /∈ XS , ||h(x)− h(x̂)|| ≤ δ}∪
{(x, x̂) ∈ X0 ×X0 : x ∈ XS , x̂ /∈ XS , ||h(x)− h(x̂)|| ≤ δ},

Ru = {(x, x̂) ∈ X ×X : x ∈ XS , x̂ ∈ XS}∪
{(x, x̂) ∈ X ×X : x ∈ XS , x̂ /∈ XS , ||h(x)− h(x̂)|| > δ}∪
{(x, x̂) ∈ X ×X : x /∈ XS , x̂ ∈ X, ||h(x)− h(x̂)|| > δ},

(5.4.3)

where δ ∈ R≥0 denotes the measurement precision of the outside intruder as introduced
in Definition 3.3.1.

Remark 5.4.4. The intuitions of the above definition for sets R0 and Ru are explained
as follows. The unsafe set Ru as in (5.4.3) is defined as the union of three sets, where
each set captures a certain scenario which violates approximate infinite-step opacity.
The first case happens when both x and x̂ belong to the set XS. When the system’s
state x belongs to the secret set, opacity requires that x̂ is not in this set, so that the
desired alternative trajectory exists. Second case happens if x belongs to XS, and x̂
belongs to X \XS, but they are not δ close. This makes the two system’s trajectories
distinguishable from the intruder point of view. Third case happens if x belongs to
X \XS, and x̂ belongs to X, and they are not δ-close. In this case, since x does not
belong to the secret set, we do not require x̂ to belong to a certain subset of X. However,
if the distance between the two trajectories exceeds δ, they would be distinguished by the
intruder. Similarly, to define the initial set, we also consider possible initial conditions
which the system can start from. First case is when x0 belongs to X0\XS, x̂0 belongs to
X0, and they are δ close. This conveys if the system’s initial condition is not secret, all
we need for ensuring opacity of the system is to keep the trajectories δ-close. However,
if the initial condition is secret, we require the alternative trajectory x̂ to remain δ-close.
This means x belongs to XS, x̂ belongs to X0 \XS, and they are δ-close. Finally, we
note that the sets defined to form R0 and Ru do not intersect.

Now, we are ready to introduce the next theorem, which states the usefulness of
the barrier certificates for verifying approximate infinite-step opacity of discrete-time
control systems.

Theorem 5.4.5. Consider a control system Σ as in Definition 2.3.1 and its
associated augmented system Σ × Σ. Suppose that there exists a function B :
X×X → R≥0 satisfying conditions (5.3.1)-(5.3.3) in Proposition 5.3.1 with sets
R0 and Ru defined as in (5.4.3). Then, system Σ is δ-approximate infinite-step
opaque.

Proof. Let us first mention that, by applying the result from Proposition 5.3.1, the
existence of a barrier certificate B ensures a safety property for the augmented system
Σ × Σ. That is, for any initial condition (x0, x̂0) ∈ R0, and any input run ν, there
exists an input run ν̂ such that (xx0,ν ,xx0,ν) ∩Ru = ∅.
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Now, let the set of initial conditions R0 and unsafe states Ru be as defined in (5.4.3).
Consider an arbitrary initial state x0, an input sequence ν and the corresponding state
run xx0,ν = {x0, . . . , xn} in Σ such that xk ∈ XS for some k ∈ {0, . . . , n}. We consider
the following two cases:
If k = 0, then we have x0 ∈ XS . By the assumption that {x ∈ X0 : ∥h(x) −

h(x0)∥ ≤ δ} ̸⊆ XS for any x0 ∈ X0, we know that there exists x̂0 ∈ X \ XS such
that ∥h(x0) − h(x̂0)∥ ≤ δ. Consider the augmented initial state (x0, x̂0), it can be
readily verified that (x0, x̂0) ∈ R0, where set R0 is as defined in (5.4.3). Then, as a
consequence of the safety property of Σ × Σ (which is guaranteed from the existence
of a barrier certificate B), we get that there exists an input run ν̂ such that the state
run (xx0,ν ,xx̂0,ν̂) of the augmented system Σ × Σ never reaches the unsafe set Ru,
i.e., (xx0,ν ,xx̂0,ν̂) ∩ Ru = ∅. By the structure of Ru, this implies the satisfaction of
∥h(xx0,ν(t)) − h(xx̂0,ν̂(t))∥ ≤ δ, for all t ∈ N (cf. Remark 5.4.4 for more intuitions on
the structure of set Ru).
If k ≥ 1, then we have x0 ∈ X0 \XS . Again, we get by assumption that there exists

x̂0 ∈ X \XS such that ∥h(x0)− h(x̂0)∥ ≤ δ. One can verify that the augmented initial
state (x0, x̂0) also belongs to the set R0 as defined in (5.4.3). Again, by utilizing the
safety property of Σ×Σ, there exists an input run ν̂ such that the state run (xx0,ν ,xx̂0,ν̂)
of the augmented system Σ× Σ never reaches the unsafe set Ru. Given that xk ∈ XS

and by further leveraging the structure of Ru, it follows that xx̂0,ν̂(t) ∈ X \ XS and
∥h(xx0,ν(t)) − h(xx̂0,ν̂(t))∥ ≤ δ, for all t ∈ N (cf. Remark 5.4.4 for more intuitions on
the structure of set Ru).
Since the state run xx0,ν = {x0, . . . , xn} in Σ and index k are arbitrary, we can

conclude that system Σ is δ-approximate infinite-step opaque.

5.4.4 Verifying Lack of Approximate Infinite-Step Opacity

In the last subsection, we developed a sufficient condition for verifying approximate
infinite-step opacity based on a notion of barrier certificates. Again, failure in finding
such a barrier certificate does not imply the lack of opacity. Next, we introduce by the
following proposition a sufficient condition for the the lack of approximate infinite-step
opacity of Σ by searching for a barrier certificate which ensures a reachability property
for the augmented system Σ× Σ.

Proposition 5.4.6. Consider a control system Σ as in Definition 2.3.1 and its associ-
ated augmented system Σ× Σ. Suppose that there exists a function V : X ×X → R≥0

satisfying conditions (5.3.4)-(5.3.6) in Proposition 5.3.2 with sets R0 and Ru defined
as in (5.4.3). Then, system Σ is not δ-approximate infinite-step opaque.

Proof. The proof of this proposition follows by combining the result of Proposition
5.3.2 and Theorem 5.4.2. However, we should note that the definitions of the sets R0

and Ru are different in order to capture different notions of opacity.

In the next section, we discuss how to leverage existing computational methods
and software tools to compute B(x, x̂) and V (x, x̂) in Propositions 5.3.1 and 5.3.2,
respectively.
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5.5 Computation of Barrier Certificates using Sum-of-Squares
Technique

In the previous sections, we presented sufficient conditions for verifying (resp. the lack
of) approximate opacity of discrete-time control systems by searching for barrier cer-
tificates satisfying inequalities (resp. (5.3.4)-(5.3.6)) (5.3.1)-(5.3.3). For systems with
polynomial transition functions and semi-algebraic sets (i.e., described by polynomial
equalities and inequalities) X0, XS , and X, an efficient computational method based
on sum-of-squares (SOS) programming can be utilized to search for polynomial barrier
certificates.

Assumption 5.5.1. A discrete-time control system Σ as in Definition 2.3.1 has con-
tinuous state set X ⊆ Rn and continuous input set U ⊆ Rm. Its transition function
f : X ×U → X is polynomial in variables x and u, and output map h is polynomial in
variable x.

In the next lemma, we translate the conditions in Proposition 5.3.1 to SOS con-
straints.

Lemma 5.5.2. Suppose Assumption 5.5.1 holds and sets R0, Ru, R, and U can be
defined as R0 = {(x, x̂) ∈ Rn×Rn | g0(x, x̂) ≥ 0}, Ru = {(x, x̂) ∈ Rn×Rn | gu(x, x̂) ≥
0}, R = {(x, x̂) ∈ Rn × Rn | g(x, x̂) ≥ 0}, U = {u ∈ Rm | gc(u) ≥ 0}, where the
inequalities are defined element-wise, and g0, gu, g, gc are vectors of some polynomial
functions. Suppose there exists a polynomial function B(x, x̂), polynomials pûi(x, x̂, u)
corresponding to the ith component of û = [û1; û2; . . . ; ûm] ∈ U ⊆ Rm, and vectors of
SOS polynomials λ0, λu, λ, λc of appropriate size such that the following expressions are
SOS polynomials:

−B(x, x̂)− λ⊤0 (x, x̂)g0(x, x̂) + ϵ, (5.5.1)

B(x, x̂)− λ⊤u (x, x̂)gu(x, x̂)− ϵ, (5.5.2)

−B(f(x, u), f(x̂, û)) +B(x, x̂)− λ⊤(x, x̂)g(x, x̂)

−
m∑
i=1

(ûi − pûi(x, x̂, u))− λ⊤c (u)gc(u), (5.5.3)

where ϵ, ϵ ∈ R≥0 are some constants with ϵ > ϵ. Then, B(x, x̂) satisfies conditions
(5.3.1)-(5.3.3) and û = [û1; û2; . . . ; ûm], where ûi = pûi(x, x̂, u), ∀i ∈ [1;m], is a control
policy satisfying (5.3.3).

We omit the proof of Lemma 5.5.2, since it follows the general methods for converting
set constraints conditions to SOS programs with Positivstellensatz conditions, see [138]
for details. Similarly, we convert the conditions of Proposition 5.3.2 to SOS constraints
as well.

Lemma 5.5.3. Suppose Assumption 5.5.1 holds and X ⊂ Rn is a bounded set. Suppose
the regions of interest in Proposition 5.3.2 can be defined as R0 = {(x, x̂) ∈ Rn × Rn |
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g0(x, x̂) ≥ 0}, ∂R \ ∂Ru = {(x, x̂) ∈ Rn × Rn | gu(x, x̂) ≥ 0}, (R \Ru) = {(x, x̂) ∈
Rn × Rn | g(x, x̂) ≥ 0}, U = {û ∈ Rm | gc(û) ≥ 0}, where the inequalities are
defined element-wise, and g0, gu, g, gc are vectors of some polynomial functions. Suppose
there exists a polynomial function V (x, x̂), polynomials pui(x, x̂, û) corresponding to
the ith component of u = [u1;u2; . . . ;um] ∈ U ⊆ Rm, and vectors of SOS polynomials
λ0, λu, λ, λc of appropriate size such that the following expressions are SOS polynomials:

−V (x, x̂)− λ⊤0 (x, x̂)g0(x, x̂), (5.5.4)

V (x, x̂)− λ⊤u (x, x̂)gu(x, x̂)− ε, (5.5.5)

−V (f(x, u), f(x̂, û)) + V (x, x̂)− λ⊤(x, x̂)g(x, x̂)

−
m∑
i=1

(ui − pui(x, x̂, û))− λ⊤c (û)gc(û)− ε, (5.5.6)

where ε is a small positive number. Then, V (x, x̂) satisfies conditions (5.3.4)-(5.3.6)
and u = [u1;u2; . . . ;um], where ui = pui(x, x̂, û), ∀i ∈ [1;m], is a control policy satisfy-
ing (5.3.6).

Note that a small tolerance ε in (5.5.5) and (5.5.6) is needed to ensure positivity of
polynomials as required in (5.3.5) and (5.3.6).

Remark 5.5.4. As seen in Lemmas 5.5.2 and 5.5.3, in order to search for polynomial
barrier certificates by means of SOS programming, it is required that regions R0, Ru,
∂R \ ∂Ru, (R \Ru) are semi-algebraic sets. We highlight that having a system Σ
with semi-algebraic sets X0, XS, and X is enough to ensure that all these regions are
semi-algebraic. In particular, as a consequence of Tarski-Seidenberg principle [187],
the class of all semi-algebraic sets is closed under finite unions, intersections, taking
complement, and Cartesian product. The boundary, the interior, and the closure of a
semi-algebraic set are also semi-algebraic. Additionally, given the polynomial output
map h, the set of states satisfying ∥h(x)− h(x̂)∥ ≤ δ is equivalent to the one satisfying
(h(x) − h(x̂))⊤(h(x) − h(x̂)) ≤ δ2, which is again a semi-algebraic set. See [37] for
details.

One can leverage existing computational toolboxes such as SOSTOOLS [138] together
with semidefinite programming solvers such as SeDuMi [179] to compute polynomial
barrier certificates satisfying (5.5.1)-(5.5.3) or (5.5.4)-(5.5.6).

Remark 5.5.5. By formulating conditions (5.3.1)-(5.3.3) (resp. (5.3.4)-(5.3.6)) as a
satisfiability problem, one can alternatively search for parametric control barrier certifi-
cates using an iterative program synthesis framework, called Counter-Example-Guided
Inductive Synthesis (CEGIS), with the help of Satisfiability Modulo Theories (SMT)
solvers such as Z3 [41] and dReal [48]; see, e.g., [76] for more details. We also refer
interested readers to the recent work [140], where machine learning techniques were
exploited for the construction of barrier certificates.
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Figure 5.3: Plausible deniability of a vehicle in terms of its initial conditions. The blue lines
roughly indicate the intruder’s insufficient observation precision.

5.6 Case Studies

Here, we provide two examples to illustrate how one can utilize the theoretical results
obtained in the previous sections for the verification of (the lack of) approximate initial-
state opacity.

5.6.1 Verifying Approximate Initial-State Opacity on a Vehicle Model

In this example, we consider an autonomous vehicle moving on a single lane road, whose
state variable is defined as x = [x1;x2], with x1 being its absolute position (in the road
frame) and x2 being its absolute velocity. The discrete-time dynamics of the vehicle is
modeled as: [

x1(t+ 1)
x2(t+ 1)

]
=

[
1 ∆τ
0 1

] [
x1(t)
x2(t)

]
+

[
∆τ2/2
∆τ

]
u(t),

y(t) =
[
1 0

] [x1(t)
x2(t)

]
, (5.6.1)

where u is the control input (acceleration) and ∆τ is the sampling time. The output
is assumed to be the position of the vehicle on the road. Let us first briefly explain
the motivation behind this example; see Figure 5.3. Suppose the initial locations of
the vehicle contain critical information which is needed to be kept secret, e.g., the
vehicle might be a cash transit van that aims at transferring money initially from a
bank to an ATM machine, or a patient who initially visited a hospital but unwilling to
reveal personal information to others. It is implicitly assumed that there is a malicious
intruder who is observing the behavior of the vehicle remotely intending to carry out
an attack. Therefore, it is in the interest of the system to verify whether it maintains
plausible deniability for secret initial conditions where some confidential assignment
is executed. This problem can be formulated as a δ-approximate initial-state opacity
problem, where δ ≥ 0 captures the security-guarantee level in terms of the measurement
precision of the intruder. Now consider system (5.6.1) with state space X = [0, 10] ×
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Figure 5.4: Trajectories of Σ× Σ projected on the position plane starting from initial region
R0 (represented by the black triangle). The regions in red are the unsafe set Ru.

[0, 0.1], initial set X0 = [0, 10] × {0}, secret set XS = [0, 1] × [0, 0.1], input set U =
[−0.05, 0.05] and sampling time ∆τ = 1. Consider the augmented system Σ × Σ.
Accordingly, the regions of interest in (5.4.1) and (5.4.2) are R0 = {[x1;x2] ∈ [0, 1] ×
{0}, [x̂1; x̂2] ∈ [1, 10]×{0} | (x1− x̂1)

2 ≤ δ2}, and Ru = {(x, x̂) ∈ X ×X | (x1− x̂1)
2 ≥

δ2 + ϵ}. Note that a small positive number ϵ is needed to certify positivity of the
obtained polynomials using SOS programming. Now, we set the threshold parameter
to be δ = 1 and search for barrier certificates by solving sum-of-squares programs with
the help of SOSTOOLS and SeDuMi tools as described in Section 5.5. Using Lemma
5.5.2, we obtained a polynomial ACBC of degree 2 satisfying (5.5.1)-(5.5.3) with ϵ = 1,
ϵ = 1.001 and a tolerance ϵ = 0.01 as follows

B(x, x̂) = 0.9227x21 + 0.2348x22 + 0.9227x̂21 + 0.2348x̂22

+ 0.006x1x2 − 0.006x̂1x2 − 0.006x1x̂2 − 0.006x̂1x̂2

− 0.4696x2x̂2 − 1.845x1x̂1 − 0.0002x̂1 + 0.0728,

and the corresponding control policy is û(x, x̂, u) = 0.8x1 − 0.8x2 + 1.5x̂1 − 1.5x̂2 + u.
Therefore, we conclude that Σ is 1-approximate initial-state opaque. Particularly, for
every trajectory starting from a secret state, there always exists at least one alternative
trajectory originated from a non-secret state which are indistinguishable for an intruder
with measurement precision δ. Figure 5.4 shows the projection of a few state trajectories
on the position plane of the augmented system Σ×Σ, starting from randomly generated
initial conditions in R0 under control policy û with u taking values in U . It is seen that
any trajectory starting from R0 does not reach the unsafe region Ru as time increases.
We further notice that δ = 1 is the smallest threshold for which we are able to find a
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Figure 5.5: Trajectories of Σ×Σ projected on the first-room plane starting from initial region
R0 (represented by the black rectangle). The regions in red are the unsafe set Ru.

barrier certificate ensuring approximate initial-state opacity. For a smaller value of δ,
approximate initial-state opacity is immediately violated at the initial condition.

5.6.2 Verifying Lack of Approximate Initial-State Opacity on a Room
Temperature Model

In this example, we showcase the use of an ACBC in verifying the lack of opacity in a
two-room temperature model by Proposition 5.3.2. The model is borrowed from [127].
The evolution of the temperature T(·) of 2 rooms is described by the discrete-time
model:

Σ :

{
T(k + 1) = AT(k) + αhThν(k) + αeTe,

y(k) = h(T(k)),
(5.6.2)

where A ∈ R2×2 is a matrix with elements {A}ii = (1−2α−αe−αhνi), {A}12 = {A}21 =
α, T(k) = [T1(k); T2(k)], Te = [Te1;Te2], ν(k) = [ν1(k); ν2(k)], where νi(k) ∈ [0, 1],
∀i ∈ [1; 2], represents the ratio of the heater valve being open in room i. The output of
the network is assumed to be the temperature of the second room: h(T(k)) = T2(k).
Parameters α = 0.05, αe = 0.008, and αh = 0.0036 are heat exchange coefficients, Te1 =
Te2 = −1 ◦C is the external temperature, and Th = 50 ◦C is the heater temperature.
The regions of interest in this example are X = [0, 50]2, X0 = [21, 22]2, and XS =
[21.5, 50]× [0, 50]. Specifically, the secret of the network is whether the first room has
a temperature initially higher than 21.5 ◦C (which may indicate activities with people
gathering in that room). The intruder wants to infer the initial temperature of the
first room by monitoring the temperature variation of the last room and using the
knowledge of the system model. Now the objective is to verify if the system is able
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to keep this secret in the presence of a malicious intruder with measurement precision
δ = 1. In this example, a degree bound of 8 is imposed on B and V . First, by means
of SOSTOOLS, we failed to find a function B(x, x̂) satisfying (5.5.1)-(5.5.3) in Lemma
5.5.2. Then, we compute a function V (x, x̂) as in Lemma 5.5.3 to see if the system
is lacking the approximate initial-state opacity. In this case, the regions considered in
Lemma 5.5.3 are

R0 = {T ∈ [21.5, 22]× [21, 22], T̂ ∈ [21, 21.5]× [21, 22]},
∂R \ ∂Ru = {(T, T̂) ∈ R | (T1, T̂1) ∈ R1 ∪R2 ∪R3 ∪R4},
(R \Ru) = {(T, T̂) ∈ R | (T1 − T̂1)

2 ≤ δ2},

where R = X × X, R1 = [0, δ] × {0}, R2 = {0} × [0, δ], R3 = {50} × [50 − δ, 50],
R4 = [50 − δ, 50] × {50}. With the aid of SOSTOOLS and SeDuMi, we obtained a
polynomial barrier certificate of degree 6 satisfying (5.5.4)-(5.5.6) with a tolerance
ε = 0.01 and control policy ν(k) = [0; 0],∀k ∈ N≥0. The system is thus lacking 1-
approximate initial-state opacity. This means that for each state run starting from a
secret initial state in Σ under ν, all trajectories from non-secret states will eventually
deviate from the former ones in the sense of generating different outputs (captured by
δ). Once the intruder sees these trajectories, it is certain that the system was initiated
from a secret state. Figure 5.5 shows trajectories of Σ × Σ from R0 under control
sequence ν with ν̂ taking values in U . The trajectories eventually reach Ru in finite
time.

5.7 Discussion and Future Work

In this chapter, we proposed a discretization-free framework for opacity verification of
discrete-time control systems. A pair of augmented control barrier certificates were de-
fined for the analysis of different types of approximate opacity, which were constructed
over an augmented system that is the product of a control system and itself. While
both barrier certificates only serve as sufficient conditions, they can be utilized in re-
verse directions in the sense that one ensures approximate opacity, and the other one
shows the lack of approximate opacity of the control system. We showed that the
computation of the barrier certificates can be carried out by some SOS programming.
Numerical case studies were conducted to illustrate the effectiveness of the proposed
results.

Future Work As we have already mentioned, there are very few results for abstraction-
free opacity synthesis. One important direction is to extend the barrier-certificates
techniques from opacity verification to opacity synthesis. To this end, one may borrow
the idea of control barrier functions [7, 168] that generalizes the idea of barrier certifi-
cates to control systems by explicitly taking the effect of control choices into account.
Moreover, one can further develop a secure-by-construction scheme for synthesizing
controllers to enforce safety (or more general mission requirements) and security prop-
erties simultaneously over control systems. This can be achieved by establishing a
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bridge between the desired safety property and security property by leveraging notions
of (augmented) control barrier functions.
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6 Modular Verification of Opacity for
Large-scale Interconnected Systems

6.1 Introduction

In the previous sections, we presented various abstraction-based and discretization-
free approaches in verifying opacity for CPS. Though promising, when confronted with
large-scale interconnected systems, the aforementioned results will become computa-
tionally intractable. This prevents current techniques from providing automated veri-
fication or synthesis for large-scale interconnected CPS. This is not just a theoretical
concern, many safety-critical applications, such as traffic network, automated highway
driving, building management systems, power networks, air traffic management, unin-
habited aerial vehicles, and so on, consist of many subsystems interacting with each
other. One way to address the inherent difficulty in analyzing or controlling complex,
large-scale, interconnected systems, is to apply a “divide and conquer” strategy, namely,
compositional (modular) approaches.

6.1.1 Related Literature

As we have discussed in Chapter 4, opacity-preserving finite abstractions and simula-
tion relations serve as a bridge between continuous-space CPS and existing verification
or synthesis algorithms for opacity developed in DES community. Although they are
shown to be a useful tool, a challenge lies in scaling the approach for large-scale systems.
Typically, the proposed techniques reported in Chapter 4 take a monolithic view of sys-
tems where abstraction, verification, and synthesis are performed for the entire system.
This monolithic view interacts poorly with the construction of finite abstractions and
in general suffers from the so-called the curse of dimensionality : the complexity of con-
structing the abstraction grows exponentially with the state dimension of the model.
Different compositional approaches have been proposed in the literature to overcome
this challenge in dealing with large-scale CPS. The two most commonly used schemes
are based on: 1) assume-guarantee contracts [88, 169, 176, 111] which are originally
introduced in the computer science literature and 2) the input-output properties of the
system, including those expressed as small-gain [159, 88, 146] or dissipativity properties
[215, 182] which are originally introduced in the control theory literature. Here, the
overall large-scale systems are usually seen as interconnections of smaller (reasonably
sized) components, i.e., subsystems. Subsequently, the analysis and the design of the
overall system is reduced to those of the subsystems.
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In the past decades, many potential compositionality results have been proposed
to tackle the acute computational bottlenecks in the analysis of safety properties for
large-scale continuous-space systems [188, 146, 87, 89, 22, 159, 182, 184, 110, 98, 116].
Among the many existing compositionality results, recent works [146, 127, 89, 184,
185, 183, 110] proposed compositional techniques for constructing finite abstractions
for networks of systems. The results in [146] first explored small-gain conditions for the
compositional construction of complete finite abstractions for a network of discrete-time
control systems. The results in [184] proposed a max-type small-gain type composi-
tional condition which results in a finite abstraction with smaller approximation error.
There are also other results in the literature [127, 89] which provide compositional con-
struction of sound abstractions without imposing strong compositionality conditions.
However, the aforementioned compositional schemes above are proposed for the sake
of controller synthesis for temporal logic properties, and none of them are applicable
to deal with security properties including opacity. Recently, a compositional frame-
work is presented in [143] motivated by the computational complexity encountered in
the analysis of a related property, called critical observability, for large-scale networks
of finite state machines. A bisimulation equivalence is defined taking into account
criticalities. In the context of analyzing security properties, compositional approaches
have been explored only recently for modular verification and synthesis of DES in
[164, 135, 132, 190, 204, 224].

6.1.2 Contributions

Motivated by the computational complexity issues appeared in the verification tech-
niques in the previous chapters, here, we aim at providing a compositional framework
to conquer this complexity challenge using a “divide and conquer” strategy.

In the first part of this chapter, we propose a modular opacity verification approach
for interconnected control system using abstraction techniques. In particular, the result
here is based on the compositional construction of opacity-preserving finite abstractions
for networks of discrete-time nonlinear control systems. To this purpose, we first intro-
duce new notions of opacity-preserving simulation functions for both subsystems and
the entire networks tailored to the three basic notions of approximate opacity. Based
on these notions, we propose a compositional scheme on the construction of abstrac-
tions for concrete networks. Rather than dealing with the original large-scale system,
our compositional framework allows one to construct opacity-preserving abstractions
locally using local opacity-preserving simulation functions, while providing the guaran-
tee that the interconnection of local abstractions simulates the concrete network while
preserving opacity across them. By exploiting the interconnection topology of the net-
work, an algorithm is presented to orderly design local quantization parameters with
the guarantee of obtaining an overall finite abstraction with any given desired precision.

In the second part of this chapter, we enlarge the class of systems to hybrid ones
with switching signals. That is, we provide a compositional approach to verify approx-
imate opacity of a network of switched systems using their finite abstractions. Note
that if switched subsystems accept common incremental Lyapunov functions, our pro-
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Figure 6.1: Compositional framework for opacity verification of networks of systems.

posed results here recover the ones presented in the first part of this chapter. Here, we
consider two types of approximate opacity, i.e., approximate initial-state opacity and
approximate current-state opacity. A new notion of approximate initial-state (resp.
current-state) opacity-preserving simulation function (InitSOPSF, resp. CurSOPSF)
is introduced as a system relation to characterize the closeness between two networks
in terms of preservation of approximate initial-state (resp. current-state) opacity. We
show that such an InitSOPSF (resp. CurSOPSF) can be established by composing
certain local InitSOPSFs (resp. CurSOPSFs) which relates each switched subsystem
to its local finite abstraction. Moreover, under some assumptions ensuring incremental
input-to-state stability of discrete-time switched systems, an approach is provided to
construct local finite abstractions along with the corresponding local InitSOPSFs (resp.
CurSOPSFs) for subsystems. Then, we derive some small-gain type conditions, under
which one can construct a finite abstraction of the concrete network of switched sys-
tems by interconnecting local finite abstractions of subsystems. Finally, one can verify
opacity based on the constructed finite abstraction, and then refine the results back to
the concrete network based on their opacity-preserving system relation. The proposed
compositional abstraction-based opacity verification pipeline is depicted in Figure 6.1.

In the third part of this chapter, we develop a modular opacity verification approach
by compositional construction of barrier certificates for large-scale interconnected sys-
tems. Notice that as presented in Section 5.4, barrier certificates can be leveraged as
a useful alternative approach for the verification of opacity for CPS. Though promis-
ing, the computation of such types of barrier certificates is still an expensive problem,
which may become intractable while dealing with large-scale interconnected systems.
To this end, we define an augmented system by taking the product of an interconnected
system with itself. Then, we construct barrier certificates for this augmented system
compositionally by leveraging so-called local barrier certificates of augmented versions
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of subsystems. The barrier certificate for the interconnected system is then constructed
by composing those easier-to-compute local barrier certificates under some small-gain
type conditions. We show that the existence of such barrier certificates is sufficient to
ensure approximate opacity of the interconnected system.

6.2 An Abstraction-based Approach for Interconnected
Control Systems

As mentioned earlier, while leveraging compositional approaches, the overall large-scale
systems are usually seen as interconnections of smaller (reasonably sized) components,
i.e., subsystems. Subsequently, the analysis and the design of the overall system is
reduced to those of the subsystems. In this section, we first introduce the formal
definitions of interconnected control systems, and then present our new notions of
opacity-preserving simulation functions. The main compositionality result will be then
provided based on a small-gain type condition.

6.2.1 Interconnected Control Systems

In the following, we denote a discrete-time control subsystem by a tuple Σi = (Xi, X0i ,
XSi , Ui,Wi, fi, Yi, hi). The formal definition of a control subsystem is similar to the
one in Definition 2.3.1 but with two sets of inputs. In particular, wi ∈ Wi are termed
as “internal” inputs which are used to describe the interaction between subsystems,
and ui ∈ Ui are called “external” inputs served as interfaces for controllers. An inter-
connected control system composed of N ∈ N≥1 subsystems is iteself a discrete-time
control system as in Definition 2.3.1, denoted by I(Σ1, . . . ,ΣN ), subject to certain
interconnection constraints.

6.2.1.1 Discrete-time Control Subsystems

In this section we study the class of discrete-time control subsystems of the following
form.

Definition 6.2.1. A discrete-time control subsystem Σ is defined by the tuple Σi =
(Xi, X0i , XSi , Ui,Wi, fi, Yi, hi) where Xi, Ui, Wi and Yi are the state, external input,
internal input, and output set, respectively. We denote by X0i , XSi ⊆ Xi the set of
initial states and secret states, respectively. The set-valued map fi : Xi×Ui×Wi ⇒ Xi

is the state transition function, and hi : Xi → Yi is the output function. The discrete-
time control subsystem Σi is described by difference inclusions of the form

Σi :

{
xi(t+ 1) ∈ fi(xi(t), νi(t), wi(t)),

yi(t) = h(xi(t)),
(6.2.1)

where xi : N → Xi, yi : N → Yi, νi : N → U , and wi : N →Wi are the state, output, ex-
ternal input, and internal input signals, respectively. System Σi = (Xi, X0i , XSi , Ui,Wi,
fi, Yi, hi) is called deterministic if card(fi(xi, ui, wi)) ≤ 1 ∀xi ∈ Xi,∀ui ∈ Ui,∀wi ∈Wi,
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and non-deterministic otherwise. System Σi is called finite if Xi, Ui, Wi are finite sets
and infinite otherwise.

6.2.1.2 Discrete-time Interconnected Control Systems

Consider N ∈ N≥1 systems Σi as in Definition 6.2.1, i ∈ [1;N ]. Assume internal inputs
and output maps are partitioned as

wi = [wi1; . . . ;wi(i−1);wi(i+1); . . . ;wiN ], (6.2.2)

hi(xi) = [hi1(xi); . . . ;hiN (xi)], (6.2.3)

with Wi =
∏N
j=1,j ̸=iWij and Yi =

∏N
j=1 Yij , wij ∈ Wij , yij = hij(xi) ∈ Yij . The

outputs yii are considered as external ones, whereas yij with i ̸= j are interpreted as
internal ones to construct interconnections between subsystems. In the case that no
connection exists between subsystems Σi and Σj , we simply have hij ≡ 0. Now, we
are ready to provide a formal definition of interconnected dt-CS as follows. Note that
an interconnected control system without internal inputs and outputs reduces to an
discrete-time control system as in Definition 2.3.1.

Definition 6.2.2. Consider N ∈ N≥1 discrete-time control subsystems Σi = (Xi, X0i ,
XSi , Ui,Wi, fi, Yi, hi), i ∈ [1;N ], with the input-output structure given in (6.2.2)-(6.2.3).
The concrete interconnected control system denoted by I(Σ1, . . . ,ΣN ) is a tuple Σ =
(X,X0, XS , U, f, Y, h), where X =

∏N
i=1Xi, X0 =

∏N
i=1X0i , XS =

∏N
i=1XSi , U =∏N

i=1 Ui, Y =
∏N
i=1 Yii, f(x, u) = {[x′1; . . . ;x′N ]| x′i ∈ fi(xi, ui, wi),∀i ∈ [1;N ]}, h(x) =

[h11(x1); . . . ;hNN (xN )], subject to:

yji = wij , Yji ⊆Wij ,∀i ∈ [1;N ], j ̸= i. (6.2.4)

A finite interconnected control system Σ̂ = (X̂, X̂0, X̂S , Û , f̂ , Ŷ , ĥ), denoted by Σ̂ =
Î(Σ̂1, . . . , Σ̂N ), is composed of N ∈ N≥1 finite discrete-time control subsystems Σ̂i,
subject to:

∥ŷji − ŵij∥ ≤ ϕij , [Ŷji]ϕij ⊆ Ŵij , ∀i ∈ [1;N ], j ̸= i, (6.2.5)

where ϕij is an internal input quantization parameter designed for constructing local
finite abstractions (cf. Subsection 6.2.3.1).

An example of an interconnected system composed of two subsystems is depicted in
Figure 6.2.

Remark 6.2.3. Note that in the above definition, the interconnection constraint in
(6.2.4) for the concrete network is different from that for the abstract network in (6.2.5).
For networks of finite abstractions, due to possibly different granularities of finite in-
ternal input sets Ŵij and output sets Ŷij, we introduce parameters ϕij in (6.2.5) for
having a well-posed interconnection.
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Figure 6.2: Feedback composition of two subsystems.

6.2.2 Opacity-Preserving Simulation Functions

In this section, we introduce new notions of approximate opacity-preserving simulation
functions for both subsystems and interconnected systems, which will provide us the
basis for using abstraction-based technique in verifying approximate opacity for large-
scale interconnected systems.

6.2.2.1 Opacity-Preserving Simulation Functions

First, we introduce a new notion of initial-state opacity-preserving simulation functions.

Definition 6.2.4. Consider interconnected dt-CS Σ = (X,X0, XS , U, f, Y, h) and Σ̂ =
(X̂, X̂0, X̂S , Û , f̂ , Ŷ , ĥ) where Ŷ ⊆ Y . For ϖ ∈ R≥0, function Ṽ : X × X̂ → R≥0 is
an ϖ-approximate initial-state opacity-preserving simulation function (ϖ-InitSOPSF)
from Σ to Σ̂, if there exists a function α ∈ K∞ s.t.

1. a) ∀x0 ∈ X0 ∩XS, ∃x̂0 ∈ X̂0 ∩ X̂S, s.t. Ṽ (x0, x̂0) ≤ ϖ;

b) ∀x̂0 ∈ X̂0 \ X̂S, ∃x0 ∈ X0 \XS, s.t. Ṽ (x0, x̂0) ≤ ϖ;

2. ∀x ∈ X,∀x̂ ∈ X̂, α(∥h(x)− ĥ(x̂)∥) ≤ Ṽ (x, x̂);

3. ∀x ∈ X,∀x̂ ∈ X̂ s.t. Ṽ (x, x̂) ≤ ϖ, the following hold:

a) ∀u ∈ U , ∀xd ∈ f(x, u), ∃û ∈ Û , ∃x̂d ∈ f̂(x̂, û), s.t. Ṽ (xd, x̂d) ≤ ϖ;

b) ∀û ∈ Û , ∀x̂d ∈ f̂(x̂, û), ∃u ∈ U , ∃xd ∈ f(x, u), s.t. Ṽ (xd, x̂d) ≤ ϖ.

It is worth noting that the ϖ-InitSOPSF characterizes the distance between two
systems in terms of the satisfaction of approximate opacity. This relation considers not
only the dynamic, but also the secrets of the system. The usefulness of Definition 6.2.4
in terms of preservation of approximate opacity across related systems will be shown
later in Proposition 6.2.8.

Next, we introduce a new notion of current-state opacity-preserving simulation func-
tions.
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Definition 6.2.5. Consider interconnected dt-CS Σ = (X,X0, XS , U, f, Y, h) and Σ̂ =
(X̂, X̂0, X̂S , Û , f̂ , Ŷ , ĥ) where Ŷ ⊆ Y . For ϖ ∈ R≥0, function Ṽ : X × X̂ → R≥0 is
an ϖ-approximate current-state opacity-preserving simulation function (ϖ-CurSOPSF)
from Σ to Σ̂, if there exists a function α ∈ K∞ such that

1. ∀x0 ∈ X0, ∃x̂0 ∈ X̂0, s.t. Ṽ (x0, x̂0) ≤ ϖ;

2. ∀x ∈ X,∀x̂ ∈ X̂, α(∥h(x)− ĥ(x̂)∥) ≤ Ṽ (x, x̂);

3. ∀x ∈ X, ∀x̂ ∈ X̂ s.t. Ṽ (x, x̂) ≤ ϖ, the following hold:

a) ∀u ∈ U , ∀xd ∈ f(x, u), ∃û ∈ Û , ∃x̂d ∈ f̂(x̂, û), s.t. Ṽ (xd, x̂d) ≤ ϖ;

b) ∀u ∈ U , ∀xd ∈ f(x, u) s.t. xd ∈ XS, ∃û ∈ Û , ∃x̂d ∈ f̂(x̂, û) with x̂d ∈ X̂S,
s.t. Ṽ (xd, x̂d) ≤ ϖ;

c) ∀û ∈ Û , ∀x̂d ∈ f̂(x̂, û), ∃u ∈ U , ∃xd ∈ f(x, u), s.t. Ṽ (xd, x̂d) ≤ ϖ;

d) ∀û ∈ Û , ∀x̂d ∈ f̂(x̂, û) s.t. x̂d ∈ X̂ \ X̂S, ∃u ∈ U , ∃xd ∈ f(x, u) with
xd ∈ X \XS, s.t. Ṽ (xd, x̂d) ≤ ϖ.

Similarly, we introduce a new notion of infinite-step opacity-preserving simulation
functions by combining the conditions of ϖ-InitSOPSF and ϖ-CurSOPSF.

Definition 6.2.6. Consider interconnected dt-CS Σ = (X,X0, XS , U, f, Y, h) and Σ̂ =
(X̂, X̂0, X̂S , Û , f̂ , Ŷ , ĥ) where Ŷ ⊆ Y . For ϖ ∈ R≥0, function Ṽ : X × X̂ → R≥0 is
an ϖ-approximate infinite-step opacity-preserving simulation function (ϖ-InfSOPSF)
from Σ to Σ̂, if it is both an ϖ-InitSOPSF and an ϖ-CurSOPSF from Σ to Σ̂.

Note that if there exists an opacity-preserving simulation function from Σ to Σ̂, and
Σ̂ is finite, Σ̂ is called a finite abstraction of the concrete network Σ.
The next result shows that the existence of an ϖ-InitSOPSF (resp. CurSOPSF,

InfSOPSF) for interconnected systems implies the existence of an ε-InitSOP (resp.
CurSOP, InfSOP) simulation relation between them.

Proposition 6.2.7. Consider interconnected dt-CS Σ = (X,X0, XS , U, f, Y, h) and
Σ̂ = (X̂, X̂0, X̂S , Û , f̂ , Ŷ , ĥ) where Ŷ ⊆ Y . Assume Ṽ is a ϖ-InitSOPSF (resp. Cur-
SOPSF, InfSOPSF) from Σ to Σ̂ with the corresponding function α ∈ K∞ as in Defi-
nitions 6.2.4, 6.2.5, and 6.2.6. Then, relation R ⊆ X × X̂ defined by

R =
{
(x, x̂) ∈ X × X̂|Ṽ (x, x̂) ≤ ϖ

}
,

is an ε-InitSOP (resp. CurSOP, InfSOP) simulation relation, defined as in Definition
4.3.1 (resp. Definition 4.3.6, Definition 4.3.8), from Σ to Σ̂ with

ε = α−1(ϖ). (6.2.6)

Proof. Here, we prove the case for initial-state opacity-preserving simulation relation.
The first condition in Definition 4.3.1 follows immediately from condition 1 in Definition
6.2.4, i.e. Ṽ (x0, x̂0) ≤ ϖ. Now, we show that ∀(x, x̂) ∈ R: ∥h(x) − ĥ(x̂)∥ ≤ ε. From
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condition 2 in Definition 6.2.4, one has α(∥h(x)− ĥ(x̂)∥) ≤ Ṽ (x, x̂) ≤ ϖ, which readily
results in ∥h(x) − ĥ(x̂)∥ ≤ α−1(ϖ) = ε. Finally, we show the third condition of R.
Consider any pair (x, x̂) ∈ R, i.e., Ṽ (x, x̂) ≤ ϖ. From 3-a) in Definition 6.2.4, one has
∀u, ∀xd ∈ f(x, u), ∃û, ∃x̂d ∈ f̂(x̂, û) such that Ṽ (xd, x̂d) ≤ ϖ. It immediately follows
that (xd, x̂d) ∈ R which satisfies condition 3-a) in Definition 4.3.1. Condition 3-b) can
be proved in a similar way, which concludes the proof. The proofs for the other two
relations follow the same reasoning and are omitted here.

Now we provide the main result of this section which shows the usefulness of above-
defined opacity-preserving simulation functions in terms of preserving approximate
opacity across related interconnected systems.

Proposition 6.2.8. Consider two interconnected dt-CS Σ = (X,X0, XS , U, f, Y, h) and
Σ̂ = (X̂, X̂0, X̂S , Û , f̂ , Ŷ , ĥ), where Ŷ ⊆ Y , and let ε, δ ∈ R≥0 where ε ≤ δ

2 . If Σ and Σ̂
admit an opacity-preserving simulation function as in Definition 6.2.4 (resp. Definition
6.2.5 or Definition 6.2.6) associated with function α ∈ K∞ and constant ϖ, then the
following implication holds

Σ̂ is (δ − 2ε)-approximate opaque ⇒ Σ is δ-approximate opaque,

where ε = α−1(ϖ).

This proposition can be proved easily by combining the results of Proposition 6.2.7
and those of Theorem 4.3.2, (resp. Theorems 4.3.7 and 4.3.9). Note that the above
implication across two related systems holds for all of the three types of approximate
opacity in Definition 3.3.1. This result provides us a sufficient condition for verifying
approximate opacity using abstraction-based techniques.

6.2.2.2 Compositional Construction of Opacity-Preserving Simulation Functions

In the previous section, we proposed new notions of opacity-preserving simulation func-
tions for interconnected systems using which one can check opacity using their finite
abstractions. However, it is known that the construction of finite abstractions and the
corresponding simulation functions for large-scale systems generally suffers from the
curse of dimensionality. Motivated by this, we present here a compositional approach
to establish local simulation functions for interconnected systems by composing those
of the subsystems, defined below.

Definition 6.2.9. Consider subsystems Σi = (Xi, X0i , XSi , Ui,Wi, fi, Yi, hi) and Σ̂i =
(X̂i, X̂0i , X̂Si , Ûi, Ŵi, f̂i, Ŷi, ĥi) where Ŵi ⊆ Wi and Ŷi ⊆ Yi. For ϖi ∈ R≥0, function
Vi : Xi × X̂i → R≥0 is called a local ϖi-InitSOPSF from Σi to Σ̂i, if there exist a
constant ϑi ∈ R≥0, and a function αi ∈ K∞ such that

1. a) ∀x0 ∈ X0i ∩XSi, ∃x̂0i ∈ X̂0i ∩ X̂Si, s.t. Vi(x0i , x̂0i) ≤ ϖi;

b) ∀x̂0 ∈ X̂0i \ X̂Si, ∃x0i ∈ X0i \XSi, s.t. Vi(x0i , x̂0i) ≤ ϖi;

2. ∀xi ∈ Xi, ∀x̂i ∈ X̂i, αi(∥hi(xi)− ĥi(x̂i)∥) ≤ Vi(xi, x̂i);
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3. ∀xi ∈ Xi,∀x̂i ∈ X̂i s.t. Vi(xi, x̂i) ≤ ϖi, ∀wi ∈ Wi, ∀ŵi ∈ Ŵi s.t. ∥wi − ŵi∥ ≤ ϑi,
the following hold:

a) ∀ui ∈ Ui, ∀xdi ∈ fi(xi, ui, wi), ∃ûi ∈ Ûi, ∃x̂di ∈ f̂i(x̂i, ûi, ŵi), s.t. Vi(xdi , x̂di) ≤
ϖi;

b) ∀ûi ∈ Ûi, ∀x̂di ∈ f̂i(x̂i, ûi, ŵi), ∃ui ∈ Ui, ∃xdi ∈ fi(xi, ui, wi), s.t. Vi(xdi , x̂di) ≤
ϖi.

Similarly, we introduce new notions of local ϖi-CurSOPSFs and local ϖi-InfSOPSFs
for subsystems.

Definition 6.2.10. Consider subsystems Σi = (Xi, X0i , XSi , Ui,Wi, fi, Yi, hi) and Σ̂i =
(X̂i, X̂0i , X̂Si , Ûi, Ŵi, f̂i, Ŷi, ĥi) where Ŵi ⊆ Wi and Ŷi ⊆ Yi. For ϖi ∈ R≥0, function
Vi : Xi × X̂i → R≥0 is called a local ϖi-CurSOPSF from Σi to Σ̂i, if there exist a
constant ϑi ∈ R≥0, and a function αi ∈ K∞ such that

1. ∀x0i ∈ X0i, ∃x̂0i ∈ X̂0i, s.t. Vi(x0i , x̂0i) ≤ ϖi;

2. ∀xi ∈ Xi,∀x̂i ∈ X̂i, αi(∥hi(xi)− ĥi(x̂i)∥) ≤ Vi(xi, x̂i);

3. ∀xi ∈ Xi,∀x̂i ∈ X̂i s.t. Vi(xi, x̂i) ≤ ϖi, ∀wi ∈ Wi, ∀ŵi ∈ Ŵi s.t. ∥wi − ŵi∥ ≤ ϑi,
the following hold:

a) ∀ui ∈ Ui, ∀xdi ∈ fi(xi, ui, wi), ∃ûi ∈ Ûi, ∃x̂di ∈ f̂i(x̂i, ûi, ŵi), s.t. Vi(xdi , x̂di) ≤
ϖi;

b) ∀ui ∈ Ui, ∀xdi ∈ fi(xi, ui, wi) s.t. xdi ∈ XSi, ∃ûi ∈ Ûi, ∃x̂di ∈ f̂i(x̂i, ûi, ŵi)
with x̂di ∈ X̂Si, s.t. Vi(xdi , x̂di) ≤ ϖi;

c) ∀ûi ∈ Ûi, ∀x̂di ∈ f̂i(x̂i, ûi, ŵi), ∃ui ∈ Ui, ∃xdi ∈ fi(xi, ui, wi), s.t. Vi(xdi , x̂di) ≤
ϖi;

d) ∀ûi ∈ Ûi, ∀x̂di ∈ f̂i(x̂i, ûi, ŵi) s.t. x̂di ∈ X̂i \ X̂Si, ∃ui ∈ Ui, ∃xdi ∈
fi(xi, ui, wi) with xdi ∈ Xi \XSi, s.t. Vi(xdi , x̂di) ≤ ϖi.

Definition 6.2.11. Consider subsystems Σi = (Xi, X0i , XSi , Ui,Wi, fi, Yi, hi) and Σ̂i =
(X̂i, X̂0i , X̂Si , Ûi, Ŵi, f̂i, Ŷi, ĥi) where Ŵi ⊆ Wi and Ŷi ⊆ Yi. For ϖi ∈ R≥0, a function
Vi : Xi × X̂i → R≥0 is called a local ϖi-InfSOPSF from Σi to Σ̂i, if it is both a local
ϖi-InitSOPSF and a local ϖi-CurSOPSF from Σi to Σ̂i.

If there exists a local opacity-preserving simulation function from Σi to Σ̂i, and Σ̂i
is finite, Σ̂i is called a local finite abstraction of the concrete subsystem Σi. Note that
the local simulation functions are mainly proposed for constructing overall simulation
functions for networks and are not directly used for deducing the preservation of approx-
imate opacity between subsystems. Next, we show how to compose the above-defined
local opacity-preserving simulation functions so that they can be used to quantify the
distance between two networks.
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Theorem 6.2.12. Consider an interconnected dt-CS Σ = I(Σ1, . . . ,ΣN ) in-
duced by N ∈ N≥1 subsystems Σi. Assume that each Σi and its abstraction
Σ̂i admit a local ϖi-InitSOPSF (resp. ϖi-CurSOPSF or ϖi-InfSOPSF) Vi. Let
ϖ = maxiϖi. If

α−1
j (ϖj) + ϕij ≤ ϑi, ∀i ∈ [1;N ],∀j ̸= i, (6.2.7)

where ϕij is an internal input quantization parameter for constructing the finite
abstractions Σ̂i, then, function

Ṽ (x, x̂) := max
i

{ ϖ
ϖi
Vi(xi, x̂i)}, (6.2.8)

is an ϖ-InitSOPSF (resp. ϖ-CurSOPSF or ϖ-InfSOPSF) from Σ to Σ̂ =
Î(Σ̂1, . . . , Σ̂N ).

Proof. First, we show that condition 1a) in Definition 6.2.4 holds. Consider any x0 =
[x01 ; . . . ;x0N ] ∈ X0 ∩XS . For any subsystem Σi and the corresponding abstraction Σ̂i,
from the definition of localϖi-InitSOPSF Vi, we have ∀x0i ∈ X0i∩XSi , ∃x̂0i ∈ X̂0i∩X̂Si :
Vi(x0i , x̂0i) ≤ ϖi. Then, from the definition of Ṽ as in (6.2.8) we get Ṽ (x0, x̂0) ≤ ϖ,
where x̂0 = [x̂01 ; . . . ; x̂0N ] ∈ X̂0 ∩ X̂S . Thus, condition 1a) in Definition 6.2.4 holds.
Condition 1b) can be proved in the same way thus is omitted here. Now, we show
that condition 2 in Definition 6.2.4 holds for some K∞ function α. Consider any
x = [x1; . . . ;xN ] ∈ X and x̂ = [x̂1; . . . ; x̂N ] ∈ X̂. Then, using condition 2 in Definition
6.2.9, one gets

∥h(x)− ĥ(x̂)∥ = max
i

{∥hii(xi)− ĥii(x̂i)∥} ≤ max
i

{∥hi(xi)− ĥi(x̂i)∥}

≤ max
i

{α−1
i (Vi(xi, x̂i))} ≤ α̂(max

i
{ ϖ
ϖi
Vi(xi, x̂i)}),

where α̂(s) = maxi{α−1
i (s)}, ∀s ∈ R≥0. By defining α = α̂−1, one obtains

α(∥h(x)− ĥ(x̂)∥) ≤ Ṽ (x, x̂),

which satisfies condition 2. Next, we show that condition 3 holds. Let us consider any
x = [x1; . . . ;xN ] ∈ X and x̂ = [x̂1; . . . ; x̂N ] ∈ X̂ such that Ṽ (x, x̂) ≤ ϖ. It can be seen
that from the construction of Ṽ in (6.2.8), we get Vi(xi, x̂i) ≤ ϖi holds, ∀i ∈ [1;N ]. For
each pair of subsystems Σi and Σ̂i, the internal inputs satisfy the chain of inequality:

∥wi − ŵi∥ =max
j ̸=i

{∥wij − ŵij∥} = max
j ̸=i

{∥yji − ŷji + ŷji − ŵij∥}

≤max
j ̸=i

{∥yji − ŷji∥+ ϕij} ≤ max
j ̸=i

{∥hj(xj)− ĥj(x̂j)∥+ ϕij}

≤max
j ̸=i

{α−1
j (Vj(xj , x̂j)) + ϕij} ≤ max

j ̸=i
{α−1

j (ϖj) + ϕij}.
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Using (6.2.7), one has ∥wi − ŵi∥ ≤ ϑi. Therefore, by Definition 6.2.9 for each pair of
subsystems Σi and Σ̂i, one has ∀ui ∈ Ui ∀xdi ∈ fi(xi, ui, wi), there exists ûi ∈ Ûi and
x̂di ∈ f̂i(x̂i, ûi, ŵi) such that Vi(xdi , x̂di) ≤ ϖi. As a result, we get ∀u = [u1; . . . ;uN ] ∈
U , ∀xd ∈ f(x, u), there exists û = [û1; . . . ; ûN ] ∈ Û and x̂d ∈ f̂(x̂, û) such that
Ṽ (xd, x̂d) := maxi{ ϖϖi

Vi(xdi , x̂di)} ≤ ϖ. Therefore, condition 3a) in Definition 6.2.4
is satisfied with ϖ = maxiϖi. The proof of condition 3b) uses the same reasoning as
that of 3a) and is omitted here. Therefore, we conclude that Ṽ is an ϖ-InitSOPSF
from Σ to Σ̂. In a similar way, one can prove that Ṽ is also an ϖ-CurSOPSF (resp.
ϖ-InfSOPSF) from Σ to Σ̂.

In the sequel, we will impose conditions on the dynamics of the subsystems such
that one can establish proper finite abstractions together with their corresponding
local opacity-preserving simulation functions for all of the subsystems.

6.2.3 Compositionality Results

In this section, we present a method to construct local finite abstractions, together
with the corresponding local opacity-preserving simulation functions for the concrete
subsystems satisfying certain stability property. We consider each subsystem Σi =
(Xi, X0i , XSi , Ui,Wi, fi, Yi, hi) as an infinite, deterministic discrete-time control sub-
system with X0i = Xi. We assume the output map hi of Σi satisfies the following
general Lipschitz assumption ∥hi(xi)− h(x′i)∥ ≤ ℓ(∥xi − x′i∥), for all xi, x′i ∈ Xi, where
ℓ ∈ K∞.

6.2.3.1 Construction of Local Finite Abstractions

Note that throughout this subsection, we will work on subsystems rather than the
overall network. However, we omit index i of subsystems throughout the text for
the sake of better readability, e.g., we write Σ instead of Σi. The opacity-preserving
simulation functions between Σ and its local finite abstraction is established under
the assumption that Σ is incrementally input-to-state stable (δ-ISS) [10] as defined
next. Note that the definition of incremental input-to-state stability for a subsystem is
slightly different from that in Definition 2.4.3 by incorporating the influence of internal
inputs.

Definition 6.2.13. A discrete-time control subsystem Σ = (X,X0, XS , U,W, f, Y, h) is
δ-ISS if there exist functions G : X × X → R≥0, α, α, κ, ρint, ρext ∈ K∞, such that
∀x, x′ ∈ X, ∀u, u′ ∈ U , ∀w,w′ ∈W ,

α(∥x− x′∥) ≤ G(x, x′) ≤ α(∥x− x′∥), (6.2.9)

G(f(x, u, w), f(x′, u′, w′))− G(x, x′)
≤ −κ(G(x, x′)) + ρint(∥w − w′∥) + ρext(∥u− u′∥). (6.2.10)

We additionally assume that there exists a function γ̂ ∈ K∞ such that ∀x, x′, x′′ ∈ X,

G(x, x′) ≤ G(x, x′′) + γ̂(∥x′ − x′′∥), (6.2.11)
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for G defined in Definition 6.2.13. Note that in most real applications, the state set X
is a compact subset of Rn and, hence, condition (6.2.11) is not restrictive.

Now, we construct a local finite abstraction of a δ-ISS discrete-time control subsystem
Σ = (X,X0, XS , U,W, f, Y, h). For the remainder of the chapter, we assume that sets
X, X0, XS , W , and U are of the form of finite unions of boxes. Consider a tuple
q = (η, θ, µ, ϕ) of parameters, where 0 ≤ η ≤ min{span(XS), span(X \ XS)} is the
state set quantization, 0 ≤ µ < span(U) is the external input set quantization, ϕ is the
internal input set quantization parameter, where 0 ≤ ∥ϕ∥ ≤ span(W ), and θ ∈ R≥0

is a design parameter. A local finite abstraction can be represented as the tuple Σ̂ =
(X̂, X̂0, X̂S , Û , Ŵ , f̂ , Ŷ , ĥ), where X̂ = X̂0 = [X]η, X̂S = [Xθ

S ]η, Û = [U ]µ, Ŵ = [W ]ϕ,

Ŷ = {h(x̂)|x̂ ∈ X̂}, ĥ(x̂) = h(x̂), ∀x̂ ∈ X̂, and x̂d ∈ f̂(x̂, û, ŵ) if and only if ∥x̂d −
f(x̂, û, ŵ)∥ ≤ η, where Xθ

S = {x ∈ X | ∃x̄ ∈ XS , ∥x− x̄∥ ≤ θ} denotes the θ-expansion
of XS .

Next, we show that if the abstraction Σ̂ of a δ-ISS Σ is constructed with the tuple
of parameters satisfying some conditions, then function G in Definition 6.2.13 is a local
InitSOPSF (resp. CurSOPSF or InfSOPSF) from Σ to Σ̂.

Theorem 6.2.14. Consider a δ-ISS discrete-time control subsystem Σ =
(X,X0, XS , U, W, f, Y, h) as in Definition 6.2.1 with function G satisfying (6.2.9)-
(6.2.11) with K∞ functions α, α, κ, ρint, ρext, γ̂. For any design parameters
ϖ,ϑ ∈ R≥0, let Σ̂ be a finite abstraction of Σ with a tuple q = (η, 0, µ, ϕ) of
parameters satisfying

η ≤ min{γ̂−1[κ(ϖ)− ρint(ϑ)− ρext(µ)], α
−1(ϖ)}. (6.2.12)

Then, G is a local ϖ-InitSOPSF from Σ to Σ̂ and from Σ̂ to Σ.

Proof. We start by proving condition 1 in Definition 6.2.9. Consider any initial and
secret state x0 ∈ X0 ∩ XS in Σ. Since η ≤ span(XS), XS ⊆

⋃
p∈[XS ]η

Bη(p), then for

every x ∈ XS there always exists x̂ ∈ X̂S such that ∥x − x̂∥ ≤ η. Hence, there exists
x̂0 ∈ X̂0 ∩ X̂S with G(x0, x̂0) ≤ α(∥x0 − x̂0∥) ≤ α(η) by (6.2.9), and condition 1(a)
in Definition 6.2.9 is satisfied with ϖ ≥ α(η) by (6.2.12). For every x̂0 ∈ X̂0 \ X̂S ,
by choosing x0 = x̂0 which is also inside X0 \XS , we get G(x0, x̂0) = 0 ≤ ϖ. Hence,
condition 1(b) in Definition 6.2.9 holds as well. Next, we show that condition 2 in
Definition 6.2.9 holds. Since Σ is incrementally input-to-state stable as in (6.2.9), and
given the Lipschitz assumption on h, ∀x ∈ X and ∀x̂ ∈ X̂, we have

∥h(x)− ĥ(x̂)∥ ≤ ℓ(∥x− x̂∥) ≤ ℓ ◦ α−1(G(x, x̂)).

Let us define α = (ℓ ◦ α−1)−1. Then one obtains that condition 2 in Definition 6.2.9 is
satisfied with

α(∥h(x)− ĥ(x̂)∥) ≤ G(x, x̂).
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Now we show condition 3 in Definition 6.2.9. From (6.2.11), ∀x ∈ X,∀x̂ ∈ X̂, ∀u ∈
U,∀û ∈ Û ,∀w ∈W, ∀ŵ ∈ Ŵ , we have for any x̂d ∈ f̂(x̂, û, ŵ)

G(xd, x̂d)) ≤ G(xd, f(x̂, û, ŵ)) + γ̂(∥x̂d − f(x̂, û, ŵ)∥),

where1 xd = f(x, u, w). From the structure of abstraction, the above inequality reduces
to

G(xd, x̂d) ≤ G(xd, f(x̂, û, ŵ)) + γ̂(η).

Note that by (6.2.10), we get

G(xd, f(x̂, û, ŵ))− G(x, x̂) ≤ −κ(G(x, x̂)) + ρext(∥u− û∥) + ρint(∥w − ŵ∥).

Hence, ∀x ∈ X,∀x̂ ∈ X̂, ∀u ∈ U,∀û ∈ Û , ∀w ∈W, ∀ŵ ∈ Ŵ , one obtains

G(xd, x̂d)− G(x, x̂) ≤ −κ(G(x, x̂)) + ρext(∥u− û∥) + ρint(∥w − ŵ∥) + γ̂(η), (6.2.13)

for any x̂d ∈ f̂(x̂, û, ŵ). Now, we show condition 3(a) in Definition 6.2.9. Let us
consider any x ∈ X and any x̂ ∈ X̂ satisfying G(x, x̂) ≤ ϖ, and any w ∈W and ŵ such
that ∥ŵ − w∥ ≤ ϑ. By the structure of Û = [U ]µ, for any u ∈ U , there always exists
û satisfying ∥û− u∥ ≤ µ. By combining (6.2.13) with (6.2.12), for any xd = f(x, u, w)
and any x̂d ∈ f̂(x̂, û, ŵ), the following inequality holds:

G(xd, x̂d) ≤ (id− κ)(ϖ) + ρext(µ) + ρint(ϑ) + γ̂(η) ≤ ϖ. (6.2.14)

Hence, condition 3(a) is satisfied. Similarly, for any û, by choosing u = û, for any
x̂d ∈ f̂(x̂, û, ŵ), condition 3(b) in Definition 6.2.10 is also satisfied with G(xd, x̂d) ≤
(id− κ)(ϖ) + ρint(ϑ) + γ̂(η) ≤ ϖ, where xd = f(x, u, w). Therefore, we conclude that
G is a ϖ-InitSOPSF from Σ to Σ̂.

Next, we provide a similar result as in Theorem 6.2.14, but tailored to current-state
and infinite-step opacity.

Theorem 6.2.15. Consider a δ-ISS discrete-time control subsystem Σ =
(X,X0, XS , U, W, f, Y, h) as in Definition 6.2.1 with function G satisfying (6.2.9)-
(6.2.11) with K∞ functions α, α, κ, ρint, ρext, γ̂. For any design parameters
ϖ,ϑ ∈ R≥0, let Σ̂ be a finite abstraction of Σ with a tuple q = (η, θ, µ, ϕ) of
parameters satisfying

η ≤ min{γ̂−1[κ(ϖ)− ρint(ϑ)− ρext(µ)], α
−1(ϖ)}; (6.2.15)

α−1(ϖ) ≤ θ. (6.2.16)

Then, G is a local ϖ-CurSOPSF (resp. InfSOPSF) from Σ to Σ̂.

1In this section, we assume that Σ is deterministic.
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Proof. We start by proving condition 1 in Definition 6.2.10. Since X̂ = X̂0 = [X]η =
[X0]η, X0 ⊆

⋃
p∈X̂0

Bη(p), then for every initial state x0 ∈ X0 in Σ there always exists

x̂0 ∈ X̂0 in Σ̂ such that ∥x̂0 − x0∥ ≤ η. Hence, one gets G(x0, x̂0) ≤ α(∥x0 − x̂0∥) ≤
α(η) by (6.2.9), and by using (6.2.15) condition 1 in Definition 6.2.10 is satisfied with
ϖ ≥ α(η). The proof for conditions 2, 3(a), and 3(c) in Definition 6.2.10 is similar to
that of Theorem 6.2.14, and is omitted here. For condition 3(b), let us consider any
u ∈ U s.t. xd = f(x, u, w) ∈ XS . Again, by choosing any û satisfying ∥û− u∥ ≤ µ, we
obtain G(xd, x̂d) ≤ ϖ. Additionally, by (6.2.9) one gets

∥xd − x̂d∥ ≤ α−1(G(xd, x̂d)) ≤ α−1(ϖ). (6.2.17)

As one can see from the structure of the abstraction, where X̂S = [Xθ
S ]η and using

θ ≥ α−1(ϖ) in (6.2.16), from xd ∈ XS one concludes that x̂d ∈ X̂S , which shows that
condition 3(b) holds as well. Condition 3(d) can be proved similarly, which shows that
G is a ϖ-approximate current-state opacity-preserving simulation function from Σ to
Σ̂. The proof for ϖ-approximate InfSOPSF follows the same reasoning as those in
Theorems 6.2.14 and 6.2.15.

Remark 6.2.16. Note that the proposed local simulation functions provide one-sided
relations since condition 1 in Definition 6.2.9 (or 6.2.10) is not symmetric. On the
other hand, the two-sided (symmetric) decay condition 3 in Definition 6.2.9 (or 6.2.10)
is similar to the approximate bisimulation relation proposed in [52]. We refer interested
readers to [222, Examples 3.5 and 3.6], where the two-sided conditions are shown to be
necessary to ensure the preservation of opacity. Therefore, in order to find suitable local
opacity-preserving simulation functions, the δ-ISS assumption is still required for the
subsystems. Notice that under the δ-ISS assumption, we showed that concrete system
and its abstraction simulates each other in terms of preserving initial-state opacity (cf.
Theorem 6.2.14). However, in the case of CurSOPSF and InfSOPSF, having δ-ISS
property only ensures that the abstract system simulates the concrete one and not the
other direction (cf. Theorem 6.2.15).

One can observe that in order to satisfy conditions (6.2.7) and (6.2.12) (resp. (6.2.15))
simultaneously, the interconnected system must hold some property. In the next sub-
section, we will discuss about the inherent property that the interconnected system
should hold such that one can design suitable quantization parameters to satisfy these
competing conditions at the same time.

6.2.3.2 Compositional Construction of Opacity-Preserving Finite Abstractions

In this subsection, we exploit the interconnection topology of the overall network and
employ the knowledge from graph theory as an essential tool in our main result. Here,
we first introduce some terminologies that will be used later based on the notion of
strongly connected components (SCCs) [13], which are used to represent sub-networks
of an interconnected system.
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Consider an interconnected dt-CS Σ = I(Σ1, . . . ,ΣN ) induced by N ∈ N≥1 δ-ISS
subsystems Σi. We denote by G = (I, E) the directed graph associated with Σ, where
I = [1;N ] is the set of vertices with each vertex i ∈ I labelled with subsystem Σi, and
E ⊆ I × I is the set of ordered pairs (i, j), ∀i, j ∈ I, with yji ̸= 0. The SCCs of G are
denoted by Ḡk = (Ik, Ek), k ∈ [1; N̄ ], where N̄ is the number of SCCs in G. For any Ḡk,
we set Ik = {k1, . . . , kN̄k

} and N̄k = card(Ik). We denote byNI(i) = {j ∈ I|∃(i, j) ∈ E}
and MI(i) = {j ∈ I|∃(j, i) ∈ E} the set of vertices in I which are direct predecessors
of i and direct successors of i, respectively. We denote by BSCC(G) the collection of
bottom SCCs of G from which no vertex in G outside Ḡk is reachable.
Now, we raise the following small-gain type assumption which is essential for the

main compositionality result.

Assumption 6.2.17. Consider an interconnected dt-CS Σ = I(Σ1, . . . ,ΣN ) induced
by N ∈ N≥1 δ-ISS subsystems Σi which is associated with a directed graph G. Assume
that each Σi and its abstraction Σ̂i admit a local ϖi-InitSOPSF (resp. CurSOPSF or
InfSOPSF) Gi, together with functions κi, αi, and ρinti as appeared in Definition 6.2.9
(resp. Definition 6.2.10 or Definition 6.2.11) and Definition 6.2.13. For every SCC
Ḡk in G, we define

γij =

{
κ−1
i ◦ ρinti ◦ α−1

j if j ∈ NIk(i),

0 otherwise,
(6.2.18)

where NIk(i) = {j ∈ Ik|∃(i, j) ∈ E}, ∀i, j ∈ Ik. We assume that for every Ḡk,
k ∈ [1; N̄ ], the following holds

γi1i2 ◦ γi2i3 ◦ · · · ◦ γir−1ir ◦ γiri1 < id, (6.2.19)

∀(i1, . . . , ir) ∈ {k1, . . . , kN̄k
}r, where r ∈ {1, . . . , N̄k}.

Now, we provide the next main result showing that under the above assumption, one
can always compositionally design local quantization parameters such that conditions
(6.2.7) and (6.2.12) (resp. (6.2.15)) are fulfilled simultaneously.

Theorem 6.2.18. Suppose that Assumption 6.2.17 holds. Then, for any desired
precision ϖ ∈ R>0 as in Definition 6.2.4 (resp. Definition 6.2.5 or 6.2.6), there
always exist quantization parameters ηi, µi, ϕi, ∀i ∈ [1;N ], such that (6.2.7) and
(6.2.12) (resp. (6.2.15)) are satisfied simultaneously, where the local parameters
ϑi ∈ R>0 and ϖi ∈ R>0, ∀i ∈ [1;N ], are obtained from Algorithm 1.

Proof. First, let us note that the small-gain type condition (6.2.19) implies that for
each Ḡk, there exists σi ∈ K∞ satisfying, ∀i ∈ Ik,

max
j∈NIk

(i)
{γij ◦ σj} < σi; (6.2.20)

see [39, Theorem 5.2]. Now, given a desired precision ϖ, we apply Algorithm 1 to
design the pair of parameters (ϖi, ϑi) for all of the subsystems. In order to show that
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Algorithm 1: Compositional design of local parameters ϖi ∈ R>0 and ϑi ∈
R>0, ∀i ∈ [1;N ]

Input: The desired precision ϖ ∈ R>0; the directed graph G composed of SCCs
Ḡk and functions σki ∀i ∈ Ik satisfying (6.2.20) for Ḡk, ∀k ∈ [1; N̄ ]; the
functions Gi equipped with functions κi, αi, and ρinti, ∀i ∈ [1;N ].

Output: ϖi ∈ R>0 and ϑi ∈ R>0, ∀i ∈ [1;N ].
1 Set ϖi := ∞, ϑi := ∞, ∀i ∈ [1;N ], ∀k ∈ [1; N̄ ], G∗ = G
2 while G∗ ̸= ∅ do
3 foreach Ḡk ∈ BSCC(G∗) do
4 if G∗ = G then

/* Graph G represents the entire network */

5 if N̄k > 1 then choose r ∈ R>0 s.t. max
i∈Ik

{σi(r)} = ϖ; set ϖi = σi(r),

choose ϕij s.t. max
j∈NIk

(i)
{ϕij} < ρ−1

inti ◦ κi(ϖi)− max
j∈NIk

(i)
{α−1

j (ϖj)},

∀i, j ∈ Ik, set ϑi = max
j∈NIk

(i)
{α−1

j (ϖj) + ϕij}, ∀i ∈ Ik, and choose

ϕij < ϑi,∀i ∈ Ik,∀j ∈ NI\Ik(i);

6 else /* The SCC contains only 1 subsystem */

7 set ϖi = ϖ, choose ϑi ∈ R>0 s.t. ϑi < ρ−1
inti ◦ κi(ϖi), i ∈ Ik; choose

ϕij < ϑi,∀i ∈ Ik,∀j ∈ NI\Ik(i);

8 else
9 if N̄k > 1 then choose r ∈ R>0 s.t. σi(r) ≤ αi( min

j∈MI\Ik (i)
{ϑj −ϕji}),

∀i ∈ Ik with MI\Ik(i) ̸= ∅; set ϖi = σi(r), choose ϕij s.t.

max
j∈NIk

(i)
{ϕij} < ρ−1

inti ◦ κi(ϖi)− max
j∈NIk

(i)
{α−1

j (ϖj)},∀i, j ∈ Ik, set

ϑi = max
j∈NIk

(i)
{α−1

j (ϖj) + ϕij}, ∀i ∈ Ik, and choose ϕij < ϑi, ∀i ∈ Ik,

∀j ∈ NI\Ik(i);

10 else /* The SCC contains only 1 subsystem */

11 set ϖi ≤ αi( min
j∈MI\Ik (i)

{ϑj − ϕji}), choose ϑi ∈ R>0 s.t.

ϑi < ρ−1
inti ◦ κi(ϖi), i ∈ Ik; choose ϕij < ϑi, ∀i ∈ Ik, ∀j ∈ NI\Ik(i);

12 end

13 end
14 G∗ = G∗ \ BSCC(G∗);

15 end

the algorithm guarantees the simultaneous satisfaction of conditions (6.2.7) and (6.2.12)
(resp. (6.2.15)), let us consider different scenarios of the SCCs. First, we consider the
SCCs which are composed of only 1 subsystem, i.e N̄k = 1. From lines 6 and 9, one
observes that the selections of ϖi and ϑi for each subsystem immediately ensure that
κi(ϖi) − ρinti(ϑi) > 0, which implies that there always exist quantization parameters
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ηi, µi to satisfy (6.2.12) (resp. (6.2.15)). Next, let us consider the SCCs with more
than 1 subsystems, i.e N̄k > 1. Suppose that for each Ḡk, we are given functions
σi ∈ K∞,∀i ∈ Ik satisfying (6.2.20). From (6.2.18) and (6.2.20), we have

max
j∈NIk

(i)
{γij ◦ σj} < σi =⇒ max

j∈NIk
(i)
{κ−1

i ◦ ρinti ◦ α−1
j ◦ σj} < σi

=⇒ ρinti ◦ max
j∈NIk

(i)
{α−1

j ◦ σj} < κi ◦ σi, (6.2.21)

which holds for each i ∈ Ik. Now, let us set ϖi = σi(r), ∀i ∈ Ik, where r is chosen under
the criteria in lines 5 and 8, and choose the internal input quantization parameters ϕij
such that ∀i, j ∈ Ik

max
j∈NIk

(i)
{ϕij} < ρ−1

inti ◦ κi(ϖi)− max
j∈NIk

(i)
{α−1

j (ϖj)}. (6.2.22)

By setting ϑi = maxj∈NIk
(i){α−1

j (ϖj) + ϕij} and combining (6.2.22) with (6.2.21), one
has,

ρinti(ϑi) = ρinti( max
j∈NIk

(i)
{α−1

j (ϖj) + ϕij})

≤ ρinti( max
j∈NIk

(i)
{α−1

j (ϖj)}+ max
j∈NIk

(i)
{ϕij}) < κi(ϖi),

which again implies that one can always find suitable local parameters ηi, µi to satisfy
(6.2.12) (resp. (6.2.15)). Additionally, the selection of ϑi = maxj∈NIk

(i){α−1
j (ϖj)+ϕij}

as in lines 5 and 8, together with the design procedure for ϖi and ϕij ensure that (6.2.7)
is satisfied as well, which concludes the proof.

Notice that the design procedure in Algorithm 1 follows the hierarchy of the acyclic
directed graph which is composed of SCCs as vertices. Since the interconnected system
considered in this section is composed of finite number of SCCs, Algorithm 1 terminates
in finite iterations.
The compositionality scheme proposed here is schematically illustrated in Figure 6.3.

Remark 6.2.19. As can be observed from the theorem, the compositional framework is
based on a small-gain type condition. Small-gain theorems have a long-known history
in control design dating back to the 1960’s [219]. They have been extensively leveraged
to establish stability properties of interconnected systems [78, 38]. In recent years,
small-gain type conditions have been leveraged in [146, 126, 188, 184] to facilitate the
compositional construction of finite abstractions. The results in [146, 126, 188] rely on
classic sum-type small-gain conditions which require almost linear growth on gains of
subsystems. In contrast, our compositionality result here are based on max-type small-
gain conditions formulated in a general nonlinear form, which can potentially lead to
much smaller approximation errors of finite abstractions; see [184, Remark 3.6] for
some discussions on this point. It should be noted that if the small-gain type condition
(6.2.19) is satisfied by every SCC in the network, then this condition holds for the
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Figure 6.3: Compositional framework for the construction of opacity-preserving finite abstrac-
tions for interconnected systems.

overall network as well. However, by involving the notion of SCCs in the parameter
design procedure, we are allowed to check the small-gain condition and design local
parameters inside each SCC only, instead of the entire network. Moreover, by exploiting
the interconnection topology, the proposed result presents a top-down compositional
design framework. That is, as long as Assumption 6.2.17 holds, given any desired
precision ϖ ∈ R>0, Algorithm 1 always provides us with suitable local quantization
parameters to achieve the overall abstraction accuracy. Note that such a systematic
compositional scheme cannot be achieved by the results in [184].

6.2.4 Case Study

6.2.4.1 Compositional Construction of Opacity-Preserving Finite Abstractions

Here, we provide an illustrative example to explain the design procedure of local quan-
tization parameters using Algorithm 1. The system model is adapted from [146].

Consider the interconnected discrete-time system Σ consisting of n = 6 subsystems:

Σ :



x1(k + 1) = k11
x1(k)

1+x2
1(k)

+ ν1(k),

x2(k + 1) = k21 tanh(x2(k)) + k22(sech(x3(k))− 1 + x1(k)),
x3(k + 1) = k31x3(k) + k32(sinx2(k) + x5(k)) + ν3(k),
x4(k + 1) = k41(cos(x4(k))− 1) + k42(tanh(x5(k))),
x5(k + 1) = k51 sin(x5(k)) + k52(sech(x4(k))− 1) + ν5(k),

x6(k + 1) = k61
x6(k)

1+|x6(k)| + k62x5(k),

y(k) = x(k),

(6.2.23)

where k ∈ N, x(k) = [x1(k); . . . ;xn(k)], y(k) = [x1(k); . . . ;xn(k)]. The outputs of
the subsystems are: yi(k) = cixi(k), where ci = [ci1; . . . ; cin] with c1 = [1; 1; 0; 0; 0; 0],
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c2 = [0; 1; 1; 0; 0; 0], c3 = [0; 1; 1; 0; 0; 0], c4 = [0; 0; 0; 1; 1; 0], c5 = [0; 0; 1; 1; 1; 1], c6 =
[0; 0; 0; 0; 0; 1], internal inputs subject to the constraints wi = [y1i; . . . ; y(i−1)i; y(i+1)i; . . . ;
yni], ∀i ∈ [1; 6], κi,1 = 0.4, ∀i ∈ [1; 6], κi,2 = 0.2, ∀i ∈ [2; 5], Xi = [−1, 1] and Ui =
[−1, 1], ∀i ∈ [1; 6]. One can readily verify that the system Σ in (6.2.23) can be seen as an
interconnection of 6 scalar subsystems Σi, i ∈ [1; 6], as in Definition 6.2.2. The directed
graph G = (I, E) is specified by I = [1; 6], E = {(2, 1), (3, 2), (2, 3), (5, 4), (3, 5), (4, 5),
(6, 5)}. Strongly connected components of G are Ḡ1 with I1 = {1}, Ḡ2 with I2 = {4, 5},
Ḡ3 with I3 = {2, 3} and Ḡ4 with I4 = {6}. Now we apply our main results in the pre-
vious sections to compositionally construct a finite abstraction of Σ with accuracy
ε = 0.01 as defined in (6.2.6), which preserves approximate initial-state opacity.

First, let us choose functions Vi = |xi − x′i|, ∀i ∈ [1; 6]. It can be readily seen that
Vi are δ-ISS Lyapunov functions for subsystems Σi satisfying (6.2.9) and (6.2.10) in
Definition 6.2.13, with κi(s) = (1 − |κi,1|)s, αi(s) = αi(s) = γ̂i(s) = s, ρint1(s) = 0,
ρint2(s) = 2|κ2,2|s, ρint3(s) = 2|κ3,2|s, ρint4(s) = |κ4,2|s, ρint5(s) = |κ5,2|s, ρint6(s) =
|κ6,2|s, ρext2(s) = ρext4(s) = ρext6(s) = 0, ρext1(s) = ρext3(s) = ρext5(s) = s. The
Lipschitz assumption holds with ℓi(s) = s. Since we have γij(s) < id as defined in
(6.2.18), ∀i, j ∈ I, the small-gain condition (6.2.19) is readily satisfied for every SCC.
Functions σi = id, ∀i ∈ I, readily satisfy (6.2.20).

Now we apply Algorithm 1 to design the local parameters. The desired precision
is ϖ = 0.01 by (6.2.6). We design for all of the subsystems, ϕi = 0, ∀i ∈ [1; 6]. We
start with G∗ = G and get the associated BSCC(G∗) = {Ḡ3, Ḡ4} for line 3. First,
let us consider the SCC Ḡ3. We choose r = 0.01 to satisfy the conditions in lines
8 − −9 with ϖ2 = ϑ2 = ϖ3 = ϑ3 = ϖ = 0.01. For Ḡ4, since it contains only 1
subsystem Σ6, we get in line 6, ϖ6 = ϖ = 0.01 and choose ϑ6 = 0.01. Now G∗ is
updated in line 12 to {Ḡ1, Ḡ2}. The bottom SCCs of the updated G∗ is {Ḡ1, Ḡ2}.
Since the current graph G∗ is not the entire network anymore, we go to lines 8 − −9.
We proceed with Ḡ1 firstly. Since Ḡ1 consists of only 1 subsystem, we go to line 9 and
set ϖ1 = ϑ2 = 0.01 and ϑ1 = 0.01 such that the inequalities hold. Now consider Ḡ2.
In line 8, we choose r = min{ϑ3, ϑ6} = 0.01, and then set ϖ4 = ϖ5 = r, ϑ4 = ϖ5 and
ϑ5 = ϖ4 in line 8. Next, the set G∗ becomes empty and the algorithm ends. Till now,
we obtain local parameters (ϖi, ϑi) for each subsystem. Now we have the freedom to
design the local quantization parameters ηi, µi using (ϖi, ϑi) while satisfying inequality
(6.2.12). We show here a choice of suitable tuples of local parameters qi = (ηi, θi, µi, ϕi)
as: q1 = (0.006, 0, 0, 0), q2 = (0.002, 0, 0, 0), q3 = (0.002, 0, 0, 0), q4 = (0.004, 0, 0, 0),
q5 = (0.004, 0, 0, 0), q6 = (0.004, 0, 0, 0). Now, one can construct local abstractions for
subsystems as in Subsection 6.2.3.1. Using the result in Theorem 6.2.14, one can verify
that Vi = |xi−x′i| is a ϖi-InitSOPSF from each Σi to its abstraction Σ̂i. By the results
in Theorem 6.2.12, one can verify that Ṽ (x, x̂) = max

i
{|xi − x̂i|} is a ϖ-InitSOPSF

from Σ to Σ̂ = I(Σ̂1, . . . , Σ̂n).
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6.2.4.2 Verification of Initial-State Opacity for An Interconnected System

Consider a concrete interconnected discrete-time linear system Σ, consisting of n ∈ N≥1

subsystems Σi, each described by:

Σi :

{
xi(k + 1) = aixi(k) + νi(k) + diwi(k),

yi(k) = cixi(k),

where ai = 0.1, di = 0.05, ci = [ci1; . . . ; cin] with ci(i+1) = 1, cij = 0, ∀i ∈ [1;n−1],∀j ̸=
i+1, cnn = 1, cnj = 0, ∀j ∈ [1;n−1], νi(k) = 0.145, w1(k) = 0, and wi(k) = y(i−1)i(k),
∀i ∈ [2;n]. For each subsystem, the state set is Xi = X0i =]0 0.6[, the input set is
Ui = {0.145}, the secret set is XS1 =]0 0.2], XS2 = [0.4 0.6[, XSi =]0 0.6[, ∀i ∈ [3;n],
the output set is Yi =

∏n
j=1 Yij where Yi(i+1) =]0 0.6[, Yij = 0, ∀i ∈ [1;n−1], ∀j ̸= i+1,

Ynn =]0 0.6[, Ynj = 0, ∀j ∈ [1;n − 1], and the internal input set is Wi =
∏n
j=1,j ̸=i Yji.

Intuitively, the output of the overall system is the external output of the last subsystem
Σn. The main goal of this example is to verify approximate initial-state opacity of the
concrete network using its finite abstraction. Now, let us construct compositionally
a finite abstraction of Σ that preserves initial-state opacity, with desired accuracy
ε = 0.25 in Proposition 6.2.8. We apply our main results of previous sections to
achieve this goal. Consider functions Vi = |xi − x′i|, ∀i ∈ [1;n]. It can be is readily
verified that Vi are δ-ISS Lyapunov functions for subsystems Σi satisfying (6.2.9) and
(6.2.10) in Definition 6.2.13, with κi(s) = (1 − ai)s = 0.9s, ρexti(s) = γ̂i(s) = αi(s) =
αi(s) = s, and ρinti(s) = 0.05s. It can be seen that the system is made up of n
identical subsystems in a cascade interconnection, thus, the resulting directed graph
G = (I, E) is specified by I = [1;n], E = {(1, 2), (2, 3), (3, 4), . . . , (n− 1, n)}. Note that
each subsystem is a strongly connected component of G and the small-gain condition
(6.2.19) is satisfied readily. Then, by applying Algorithm 1 and choosing functions
σi = id, ∀i ∈ [1;n], we obtain proper pairs of local parameters (ϖi, ϑi) = (0.25, 0.25)
for all of the subsystems. Then, a suitable tuple qi = (ηi, µi, θi, ϕi) = (0.2, 0, 0, 0) of
quantization parameters is chosen such that inequality (6.2.12) for each subsystem Σi
is satisfied. Next, we construct local abstractions Σ̂i = (X̂i, X̂0i , X̂Si , Ûi, Ŵi, f̂i, Ŷi, ĥi)
for subsystems as in Subsection 6.2.3.1, where X̂i = X̂0i = {0.2, 0.4}, X̂S1 = {0.2},
X̂S2 = {0.4}, X̂Si = {0.2, 0.4},∀i ∈ [3;n], Ŷi =

∏i
j=1{0} × {0.2, 0.4} ×

∏n
j=i+2{0},

∀i ∈ [1;n− 1], Ŷn =
∏n−1
j=1 {0}× {0.2, 0.4}, Ŵi = {0.2, 0.4}, ∀i ∈ [1;n]. Using the result

in Theorem 6.2.14, one can verify that Vi = |xi − x′i| is a local ϖi-InitSOPSF from
each Σi to its abstraction Σ̂i. Furthermore, by the compositionality result in Theorem
6.2.12, we obtain that Ṽ = maxi{Vi(xi, x̂i)} = maxi{|xi−x′i|} is an ϖ-InitSOPSF from
Σ = I(Σ1, . . . ,Σn) to Σ̂ = Î(Σ̂1, . . . , Σ̂n) satisfying the conditions in Definition 6.2.4
with ϖ = maxiϖi = 0.25.
Now, let us verify approximate initial-state opacity for Σ using the interconnected

abstraction Σ̂. An example of a network consisting of 3 subsystems is shown in Fig-
ure 6.4. The three smaller automata in the left represent the symbolic subsystems and
the one in the right represents the interconnected abstraction for the whole network.
For simplicity of demonstration, we use symbols to represent the state and output vec-
tors, where the states and outputs of local transition systems are denoted by a = [0.2],
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Σ̂1:

Σ̂2:

Σ̂3:

I(Σ̂1, Σ̂2, Σ̂3):
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Figure 6.4: Compositional abstraction of an interconnected discrete-time linear system con-
sisting of 3 subsystems. Each circle is labeled by the state (top half) and the
corresponding output (bottom half). Initial states are distinguished by being the
target of a sourceless arrow. Secret states are marked in red. The symbols on the
edges show the internal inputs coming from other subsystems.

A = [0.4], y = 0.2 and Y = 0.4, respectively. The symbols such as aaa = [0.2; 0.2; 0.2]
and 00y = [0; 0; 0.2] represent the concatenated state and output vectors for the inter-
connected abstraction, respectively. As seen in Figure 6.4, for any run starting from
any secret state, i.e., aAa and aAA, there exists a run from a non-secret state, i.e.,
Aaa and AAA, such that the output trajectories are exactly the same. Due to lack of
space, we do not plot the automata for the case of n = 4, but we verified that the net-
work is still 0-approximate initial-state opaque. We expect that the network holds this
property regardless of the number of subsystems due to the homogeneity of subsystems
and the structure of the network topology. Thus, one can conclude that Î(Σ̂1, . . . , Σ̂n)
is 0-approximate initial-state opaque. Therefore, by Proposition 6.2.8, we obtain that
the concrete network I(Σ1, . . . ,Σn) is 0.5-approximate initial-state opaque.

6.3 An Abstraction-based Approach for Interconnected
Switched Systems

The results in the previous section present a compositional framework for the construc-
tion of opacity-preserving finite abstractions for interconnected control systems without
any discrete dynamic. In this section, we enlarge the class of systems for the first time
to hybrid ones with switching signals.

First, we introduce the definitions of discrete-time interconnected switched systems
and subsystems. Then, new notions of approximate opacity-preserving simulation func-
tions are proposed. Next, we provide a compositional framework for the construction of
opacity-preserving simulation functions for a network of discrete-time switched systems.
Finally, we present how to construct local finite abstractions for a class of incremen-
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tally input-to-state stable subsystems, and then propose a small-gain type condition
required for the main compositionality result.

6.3.1 Interconnected Switched Systems

6.3.1.1 Discrete-Time Switched Subsystems

We consider discrete-time switched subsystems of the following form.

Definition 6.3.1. A discrete-time switched subsystem Σ is defined by the tuple Σ =
(X,X0,XS , P,W, F, Y, h), where

� X ⊆ Rn is the state set;

� X0 ⊆ X is the initial state set;

� XS ⊆ X is the secret state set;

� P = {1, . . . ,m} is the finite set of modes;

� W ⊆ Rm is the internal input set;

� F = {f1, . . . , fm} is a collection of set-valued maps fp : X × W ⇒ X for all
p ∈ P ;

� Y ⊆ Rq is the output set;

� h : X → Y is the output map.

The discrete-time switched subsystem Σ is described by difference inclusions of the form

Σ :

{
x(k + 1) ∈ fp(k)(x(k), ω(k)),

y(k) = h(x(k)),
(6.3.1)

where x : N → X, y : N → Y , p : N → P , and ω : N → W are the state, output,
switching, and internal input signal, respectively.

Let φk, k ∈ N≥1, denote the time when the k-th switching instant occurs. We
assume that signal p satisfies a dwell-time condition [106] (i.e. there exists kd ∈ N≥1,
called the dwell-time, such that for all consecutive switching time instants φk, φk+1,
φk+1 − φk ≥ kd). If for all x ∈ X, p ∈ P,w ∈W , card(fp(x,w)) ≤ 1, we say the system
Σ is deterministic, and non-deterministic otherwise. System Σ is called finite if X,W
are finite sets and infinite otherwise. We assume that for every initial condition and
any sequence of switching signals, the corresponding state signal is defined for all k ≥ 0.
Similar as in Definition 2.3.4, we employ the notion of transition systems to provide

an alternative description of switched systems that can be later directly related to their
finite abstractions in a common framework.

Definition 6.3.2. Given a discrete-time switched subsystem Σ = (X,X0,XS , P,W, F,
Y, h), we define the associated transition system T (Σ) = (X,X0, XS , U,W,F , Y,H),
where:
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� X = X× P × {0, . . . , kd − 1} is the state set;

� X0 = X0 × P × {0} is the initial state set;

� XS = XS × P × {0, . . . , kd − 1} is the secret state set;

� U = P is the external input set;

� W =W is the internal input set;

� F is the transition function given by (x+, p+, l+) ∈ F((x, p, l), u, w) if and only if
x+ ∈ fp(x,w), u = p and one of the following scenarios hold:

· l < kd − 1, p+ = p and l+ = l+1: switching is not allowed because the time
elapsed since the latest switch is strictly smaller than the dwell time;

· l = kd − 1, p+ = p and l+ = kd − 1: switching is allowed but no switch
occurs;

· l = kd − 1, p+ ̸= p and l+ = 0: switching is allowed and a switch occurs;

� Y = Y is the output set;

� H : X → Y is the output map defined as H(x, p, l) = h(x).

Note that in the above definition, two additional variables p and l are added to the
state tuple of the system Σ. The variable l serves as a counter to record the sojourn time
of the switching signal, which allows or prevents the system from switching depending
on whether the dwell-time condition is satisfied; the variable p acts as a memory to
record the current mode of the system.

The following proposition is borrowed from [184] showing that the output runs of
a discrete-time switched subsystem Σ and its associated transition system T (Σ) are
equivalent so that one can use Σ and T (Σ) interchangeably.

Proposition 6.3.3. Consider a transition system T (Σ) in Definition 6.3.2 associated
to Σ in Definition 6.3.1. Any output trajectory of Σ can be uniquely matched to an
output trajectory of T (Σ) and vice versa.

Next, let us introduce a formal definition of networks of dt-SS (or equivalently, net-
works of transition systems).

6.3.1.2 Discrete-Time Interconnected Switched Systems

ConsiderN ∈ N≥1 discrete-time switched subsystems Σi = (Xi,X0i ,XSi , Pi,Wi, Fi, Yi, hi),
i ∈ [1;N ], with partitioned internal inputs and outputs as

wi = [wi1; . . . ;wi(i−1);wi(i+1); . . . ;wiN ], Wi =
N∏

j=1,j ̸=i
Wij , (6.3.2)
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hi(xi) = [hi1(xi); . . . ;hiN (xi)], Yi =

N∏
j=1

Yij , (6.3.3)

with wij ∈ Wij , and yij = hij(xi) ∈ Yij . The outputs yii are considered as external
ones, whereas yij with i ̸= j are interpreted as internal ones which are used to construct
interconnections between systems. In particular, we assume that wij = yji, if there is
connection from system Σj to Σi, otherwise, we set hji ≡ 0. In the sequel, we denote
by Ni = {j ∈ [1;N ], j ̸= i|hji ̸= 0} the collection of neighboring subsystems Σj , j ∈ Ni,
that provide internal inputs to subsystem Σi.

Now, we introduce the notion of networks (in both concrete and abstract domains)
based on the notion of interconnected systems in [188]. For a concrete network con-
structed as the interconnection of N ∈ N≥1 concrete subsystems, Definition 6.3.1 re-
duces to the tuple Σ = (X,X0,XS , P, F, Y, h) without internal inputs and outputs as in
the following definition. Note that an interconnected switched system without internal
inputs and outputs reduces to a discrete-time switched system as in Definition 2.3.3.

Definition 6.3.4. Consider N ∈ N≥1 switched subsystems Σi = (Xi,X0i , XSi , Pi,Wi, Fi,
Yi, hi), i ∈ [1;N ] with the input-output structure given by (6.3.2) and (6.3.3). The
network, representing the interconnection of N ∈ N≥1 switched subsystems Σi, is
a tuple Σ = (X,X0,XS , P, F, Y, h), denoted by I(Σ1, . . . ,ΣN ), where X =

∏N
i=1Xi,

X0 =
∏N
i=1X0i, XS =

∏N
i=1XSi, P =

∏N
i=1 Pi, F =

∏N
i=1 Fi, Y =

∏N
i=1 Yii, h(x) :=

[h11(x1); . . . ;hNN (xN )] with x = [x1; . . . ;xN ], subject to the constraint:

yji = wij , Yji ⊆Wij , ∀i ∈ [1;N ], j ∈ Ni. (6.3.4)

Similarly, given transition systems T (Σi), one can also define a network of transition
systems I(T (Σ1), . . . , T (ΣN )). For the rest of the section, we mainly deal with the
transition systems as they allow us to model switched subsystems Σ and their finite
abstractions in a common framework.

For an interconnection of N ∈ N≥1 finite discrete-time switched subsystems Σ̂i, with
input-output structure configuration as in (6.3.2) and (6.3.3), we introduce the following
definition of networks of finite discrete-time switched subsystems.

Definition 6.3.5. Consider N ∈ N≥1 finite switched subsystems Σ̂i = (X̂i, X̂0i , X̂Si , P̂i,
Ŵi, F̂i, Ŷi, ĥi), i ∈ [1;N ] with the input-output structure given by (6.3.2) and (6.3.3).
The network, representing the interconnection of N ∈ N≥1 finite switched subsys-
tems Σ̂i, is a tuple Σ̂ = (X̂, X̂0, X̂S , P̂ , F̂ , Ŷ , ĥ), denoted by Î(Σ̂1, . . . , Σ̂N ), where X̂ =∏N
i=1 X̂i, X̂0 =

∏N
i=1 X̂0i, X̂S =

∏N
i=1 X̂Si, P̂ =

∏N
i=1 P̂i, F̂ =

∏N
i=1 F̂i, Ŷ =

∏N
i=1 Ŷii,

ĥ(x) :=
[
ĥ11(x̂1); . . . ; ĥNN (x̂N )

]
with x̂ = [x̂1; . . . ; x̂N ], subject to the constraint:

∥ŷji − ŵij∥ ≤ ϕij , [Ŷji]ϕij ⊆ Ŵij , ∀i ∈ [1;N ], j ∈ Ni, (6.3.5)

where ϕij is an internal input quantization parameter designed for constructing local
finite abstractions (cf. Definition 6.3.20).
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Figure 6.5: [Left]: Concrete network composed of three switched subsystems Σ1, Σ2, and Σ3

with h13 = h31 = 0, where yji = wij , ∀i, j ∈ [1; 3]; [Right]: Abstract network

composed of three finite subsystems Σ̂1, Σ̂2, and Σ̂3 with ĥ13 = ĥ31 = 0, and the
internal inputs ŵij for system Σ̂i are taken from the discretized internal outputs

of system Σ̂j under the constraint ∥ŷji − ŵij∥ ≤ ϕij , ∀i, j ∈ [1; 3], where ϕij are
internal input quantization parameters.

Similarly, given finite transition systems T (Σ̂i), one can also define a network of
transition systems as Î(T (Σ̂1), . . . , T (Σ̂N )).

An example of a concrete network and an abstract network is illustrated in Figure
6.5, where each consists of three switched subsystems.

Remark 6.3.6. Note that in the above definitions, the interconnection constraint in
(6.3.4) for the concrete network is different from that for the abstract network in (6.3.5).
For networks of finite abstractions, due to possibly different granularities of finite in-
ternal input sets Ŵij and output sets Ŷij, we introduce parameters ϕij in (6.3.5) for
having a well-posed interconnection. The values of ϕij will be designed later in Defini-
tion 6.3.20 when constructing local finite abstractions of the subsystems.

We introduce some notations that will be used to characterize opacity property.
Consider network T (Σ). We use zk to denote a state of T (Σ) reached at time k ∈ N from
initial state z0 under an input sequence ū with length k, and denote by {z0, z1, . . . , zn}
a finite state run of T (Σ) with length n ∈ N.

For the sake of clarity, let us recall the notion of approximate initial-state (resp.
current-state) opacity (cf. Definition 3.3.1) which is rewritten here to fit in the context
of discrete-time interconnected switched systems.

Definition 6.3.7. Consider network T (Σ) = (X,X0, XS , U,F , Y,H) and a constant
δ ≥ 0. Network T (Σ) is said to be

101



6 Modular Verification of Opacity for Large-scale Interconnected Systems

� δ-approximate initial-state opaque if for any z0 ∈ X0 ∩XS and any finite state
run {z0, z1, . . . , zn}, there exist z̄0 ∈ X0\XS and a finite state run {z̄0, z̄1, . . . , z̄n}
such that maxk∈[0;n] ∥H(zk)−H(z̄k)∥ ≤ δ.

� δ-approximate current-state opaque if for any z0 ∈ X0 and finite state run
{z0, z1, . . . , zn} such that zn ∈ XS, there exists z̄0 ∈ X0 and a finite state run
{z̄0, z̄1, . . . , z̄n} such that z̄n ∈ X \XS and maxk∈[0;n] ∥H(zk)−H(z̄k)∥ ≤ δ.

In the next corollary, we show that if a system equipped with secret set XS is δ-
approximate opaque, then the system is also δ-approximate opaque with a smaller
secret set contained in XS .

Corollary 6.3.8. Consider networks T (Σ1) = (X,X0, XS , U,F , Y,H) and T (Σ2) =
(X,X0, X

′
S , U,F , Y,H) with X ′

S ⊆ XS. If T (Σ1) is δ-approximate initial-state (resp.
current-state) opaque, then T (Σ2) is also δ-approximate initial-state (resp. current-
state) opaque.

Proof. We start by showing the preservation of approximate initial-state opacity across
systems T (Σ1) and T (Σ2). Consider any z0 ∈ X0 ∩ X ′

S and any finite state run
{z0, z1, . . . , zn} in T (Σ2). Given that X ′

S ⊆ XS , we get z0 ∈ X0 ∩XS . Since T (Σ1) is
δ-approximate initial-state opaque, from Definition 6.3.7, there exist z̄0 ∈ X0 \XS and
a finite state run {z̄0, z̄1, . . . , z̄n} such that maxk∈[0;n] ∥H(zk)−H(z̄k)∥ ≤ δ. Moreover,
given that {X0 \ XS} ⊆ {X0 \ X ′

S}, we get z̄0 ∈ X0 \ X ′
S . Therefore, by Defini-

tion 6.3.7, T (Σ2) is also δ-approximate initial-state opaque. Similarly, we show the
preservation of approximate current-state opacity across systems T (Σ1) and T (Σ2).
Consider any z0 ∈ X0 and any finite state run {z0, z1, . . . , zn} such that zn ∈ X ′

S

in T (Σ2). Since T (Σ1) is δ-approximate current-state opaque, from Definition 6.3.7,
there exist z̄0 ∈ X0 and a finite state run {z̄0, z̄1, . . . , z̄n} such that z̄n ∈ X \XS and
maxk∈[0;n] ∥H(zk) −H(z̄k)∥ ≤ δ. Moreover, given that {X \XS} ⊆ {X \X ′

S}, we get
z̄n ∈ X \X ′

S . Therefore, by Definition 6.3.7, T (Σ2) is also δ-approximate current-state
opaque.

Remark 6.3.9. Note that it is assumed in Definitions 6.3.4 and 6.3.5 that the secret set
of the network is the Cartesian product of the secret sets of the subsystems. However,
if the secret set of the original network is in a more general from (e.g. polytopes), one
can use minimum bounding box algorithms [15] to compute the smallest hyper-rectangle
containing the secret set of the original network. If we consider this hyper-rectangle as
the new secret set and follow the same procedure to verify opacity of the system, then by
Corollary 6.3.8, the results (if successful) can be carried over to the original network.

Remark 6.3.10. The above-mentioned algorithms helps us to verify opacity for net-
works consisting of finite abstractions and then carry back the verification result to
concrete ones, given a formal simulation relation between those networks. To this pur-
pose, an opacity-preserving simulation relation will be introduced in the next section
which formally relate a network of transition systems and its finite abstraction.
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6.3.2 Opacity-Preserving Simulation Functions

In this section, we introduce notions of approximate opacity-preserving simulation func-
tions to quantitatively relate two networks of transition systems in terms of preserving
approximate initial-state and current-state opacity. Such a function can be constructed
compositionally as shown in Section 6.3.3.

6.3.2.1 Opacity-Preserving Simulation Functions

First, we introduce a notion of approximate initial-state opacity-preserving simulation
functions in the following definition.

Definition 6.3.11. Consider networks T (Σ) = (X,X0, XS , U,F , Y,H) and T (Σ̂) =
(X̂, X̂0, X̂S , Û , F̂ , Ŷ , Ĥ) with Ŷ ⊆ Y . For ε ∈ R≥0, a function S : X × X̂ → R≥0 is
called an ε-approximate initial-state opacity-preserving simulation function (ε-InitSOPSF
from T (Σ) to T (Σ̂) if there exists a function α ∈ K∞ such that

1. a) ∀z0 ∈ X0 ∩XS, ∃ẑ0 ∈ X̂0 ∩ X̂S, s.t. S(z0, ẑ0) ≤ ε;

b) ∀ẑ0 ∈ X̂0 \ X̂S, ∃z0 ∈ X0 \XS, s.t. S(z0, ẑ0) ≤ ε;

2. ∀z ∈ X,∀ẑ ∈ X̂, α(∥H(z)− Ĥ(ẑ)∥) ≤ S(z, ẑ);

3. ∀z ∈ X,∀ẑ ∈ X̂ s.t. S(z, ẑ) ≤ ε, one has:

a) ∀u ∈ U , ∀z+ ∈ F(z, u), ∃û ∈ Û , ∃ẑ+ ∈ F̂(ẑ, û), s.t. S(z+, ẑ+) ≤ ε;

b) ∀û ∈ Û , ∀ẑ+ ∈ F̂(ẑ, û), ∃u ∈ U , ∃z+ ∈ F(z, u), s.t. S(z+, ẑ+) ≤ ε.

Similarly, we introduce a notion of approximate current-state opacity-preserving sim-
ulation functions defined as follows.

Definition 6.3.12. Consider networks T (Σ) = (X,X0, XS , U,F , Y,H) and T (Σ̂) =
(X̂, X̂0, X̂S , Û , F̂ , Ŷ , Ĥ) with Ŷ ⊆ Y . For ε ∈ R≥0, a function S : X × X̂ → R≥0 is
called an ε-approximate current-state opacity-preserving simulation function (ε-CurSOPSF)
from T (Σ) to T (Σ̂) if there exists a function α ∈ K∞ such that

1. ∀z0 ∈ X0, ∃ẑ0 ∈ X̂0, s.t. S(z0, ẑ0) ≤ ε;

2. ∀z ∈ X,∀ẑ ∈ X̂, α(∥H(z)− Ĥ(ẑ)∥) ≤ S(z, ẑ);

3. ∀z ∈ X,∀ẑ ∈ X̂ s.t. S(z, ẑ) ≤ ε, one has:

a) ∀u ∈ U , ∀z+ ∈ F(z, u), ∃û ∈ Û , ∃ẑ+ ∈ F̂(ẑ, û), s.t. S(z+, ẑ+) ≤ ε;

b) ∀u ∈ U , ∀z+ ∈ F(z, u) s.t. z+ ∈ XS, ∃û ∈ Û , ∃ẑ+ ∈ F̂(ẑ, û) with ẑ+ ∈ X̂S,
s.t. S(z+, ẑ+) ≤ ε;

c) ∀û ∈ Û , ∀ẑ+ ∈ F̂(ẑ, û) ∃u ∈ U , ∃z+ ∈ F(z, u), s.t. S(z+, ẑ+) ≤ ε;

d) ∀û ∈ Û , ∀ẑ+ ∈ F̂(ẑ, û) s.t. ẑ+ ∈ X̂ \ X̂S, ∃u ∈ U , ∃z+ ∈ F(z, u) with
z+ ∈ X \XS, s.t. S(z+, ẑ+) ≤ ε.
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We say that T (Σ̂) is an abstraction of T (Σ) if there exists an ε-InitSOPSF, or ε-
CurSOPSF, from T (Σ) to T (Σ̂). In addition, if T (Σ̂) is finite (X̂ is a finite set), system
T (Σ̂) is called a finite abstraction (symbolic model) of the network T (Σ), and is denoted
by T (Σ) ⪯ε T (Σ̂).
Although Definitions 6.3.11 and 6.3.12 are general in the sense that networks T (Σ)

and T (Σ̂) can be either infinite or finite, network T (Σ̂) practically consists of N ∈ N≥1

finite abstractions. Hence, checking approximate initial-state, or current-state, opacity
for the concrete network T (Σ) can be done by resorting to that of its finite abstraction
T (Σ̂) and then carry the results back to the concrete network.
The next proposition shows that the existence of an ε-InitSOPSF (resp. ε-CurSOPSF)

as we proposed in Definition 6.3.11 (resp. Definition 6.3.12) for networks of transi-
tion systems implies the existence of an approximate initial-state (resp. current-state)
opacity-preserving simulation relations as in Definition 4.3.1 (resp. 4.3.6).

Proposition 6.3.13. Consider networks T (Σ) = (X,X0, XS , U,F , Y,H) and T (Σ̂) =
(X̂, X̂0, X̂S , Û , F̂ , Ŷ , Ĥ) where Ŷ ⊆ Y . Assume S is an ε-InitSOPSF (resp. Cur-
SOPSF) from T (Σ) to T (Σ̂) as in Definition 6.3.11 (resp. Definition 6.3.12). Then,
relation R ⊆ X × X̂ defined by

R =
{
(z, ẑ) ∈ X × X̂|S(z, ẑ) ≤ ε

}
, (6.3.6)

is an ε̂-InitSOP (resp. ε̂-CurSOP) simulation relation from T (Σ) to T (Σ̂) with

ε̂ = α−1(ε). (6.3.7)

The proof of this proposition follows the same reasoning as that of Proposition 6.2.7.
Instead of directly working with the opacity-preserving simulation relations Defini-

tions 4.3.1 and 4.3.6, in the sequel, we will mainly focus on the proposed notions of
ε-InitSOPSFs and ε-CurSOPSFs as in Definitions 6.3.11 and 6.3.12 which allow us
to establish our compositionality result in an easier way. We provide the following
corollary which shows the usefulness of an approximate opacity-preserving simulation
function in terms of preserving approximate opacity across related networks. The proof
follows the same reasoning as that of Proposition 6.2.8 and is omitted here.

Corollary 6.3.14. Consider networks T (Σ) = (X,X0, XS , U,F , Y, H) and T (Σ̂) =
(X̂, X̂0, X̂S , Û , F̂ , Ŷ , Ĥ) where Ŷ ⊆ Y . Assume there exists an approximate opacity-
preserving simulation function from T (Σ) to T (Σ̂) as in Definitions 6.3.11 and 6.3.12
associated with ε ∈ R≥0 and α ∈ K∞. Let ε̂, δ ∈ R≥0 where ε̂ = α−1(ε) and ε̂ ≤ δ

2 .
Then the following implication holds

T (Σ̂) is (δ − 2ε̂)-approximate opaque

⇒ T (Σ) is δ-approximate opaque.

Note that the above implication across two related systems holds for both notions
of approximate initial-state and current-state opacity in Definition 6.3.7. Corollary
6.3.14 provides us a sufficient condition for verifying approximate opacity of a complex
network using abstraction-based techniques.
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6.3.2.2 Compositional Construction of Opacity-Preserving Simulation Functions

As shown in the previous section, the proposed ε-InitSOPSF (resp. ε-CurSOPSF) can
be used for checking approximate initial-state (resp. current-state) opacity of concrete
networks by leveraging their finite abstractions. However, for a network consisting
of a large number of switched subsystems, constructing the corresponding simulation
function and the abstract network monolithically is not feasible in general due to curse
of dimensionality. Hence, in this section, we introduce a compositional framework for
the construction of opacity-preserving finite abstractions for networks of switched sys-
tems. In particular, we first relate local finite abstractions of the subsystems via local
InitSOPSFs or CurSOPSFs. Then, one can obtain the abstract network by intercon-
necting the local finite abstractions of the subsystems. Additionally, the corresponding
ε-InitSOPSF (resp. ε-CurSOPSF) to capture the closeness between the concrete and
the abstract networks can be established by composing the local InitSOPSFs (resp.
CurSOPSFs) as well.

Let us first introduce new notions of local InitSOPSFs and CurSOPSFs for switched
subsystems with internal inputs in the following subsection.
Suppose that we are givenN switched subsystems Σi = (Xi, X0i , XSi , Pi,Wi, Fi, Yi, hi),

i ∈ [1;N ], or equivalently, transition systems T (Σi) = (Xi, X0i , XSi , Ui,Wi,Fi, Yi,Hi).
Moreover, we assume that each system T (Σi) and its abstraction T (Σ̂i) admit a local
approximate opacity-preserving simulation function as defined next.

Definition 6.3.15. Consider transition systems T (Σi) = (Xi, X0i , XSi , Ui,Wi,Fi, Yi,
Hi) and T (Σ̂i) = (X̂i, X̂0i , X̂Si , Ûi, Ŵi, F̂i, Ŷi, Ĥi), for all i ∈ [1;N ], where Ŵi ⊆Wi and
Ŷi ⊆ Yi. For εi ∈ R≥0, a function Si : Xi × X̂i → R≥0 is called a local εi-InitSOPSF
from T (Σi) to T (Σ̂i) if there exist a constant ϑi ∈ R≥0, and a function αi ∈ K∞ such
that

1. a) ∀z0i ∈ X0i ∩XSi, ∃ẑ0i ∈ X̂0i ∩ X̂Si, s.t. Si(z0i , ẑ0i ) ≤ εi;

b) ∀ẑ0i ∈ X̂0i \ X̂Si, ∃z0i ∈ X0i \XSi, s.t. Si(z0i , ẑ0i ) ≤ εi;

2. ∀zi ∈ Xi, ∀ẑi ∈ X̂i, αi(∥Hi(zi)− Ĥi(ẑi)∥) ≤ Si(zi, ẑi);

3. ∀zi ∈ Xi, ∀ẑi ∈ X̂i s.t. Si(zi, ẑi) ≤ εi, ∀wi ∈ Wi, ∀ŵi ∈ Ŵi s.t. ∥wi − ŵi∥ ≤ ϑi,
one has:

a) ∀ui ∈ Ui, ∀z+i ∈ Fi(zi, ui, wi), ∃ûi ∈ Ûi, ∃ẑ+i ∈ F̂i(ẑi, ûi, ŵi) s.t. Si(z+i , ẑ
+
i ) ≤

εi;

b) ∀ûi ∈ Ûi, ∀ẑ+i ∈ F̂i(ẑi, ûi, ŵi), ∃ui ∈ Ui, ∃z+i ∈ Fi(zi, ui, wi) s.t. Si(z+i , ẑ
+
i ) ≤

εi.

Note that the local εi-InitSOPSFs are mainly proposed for constructing a ε-InitSOPSF
for the networks and they are not directly used for deducing approximate initial-state
opacity-preserving simulation relation. Similarly, we introduce a notion of local εi-
CurSOPSFs for subsystems that can be used to establish ε-CurSOPSF for networks of
switched systems.
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Definition 6.3.16. Consider transition systems T (Σi) = (Xi, X0i , XSi , Ui,Wi,Fi, Yi,
Hi) and T (Σ̂i) = (X̂i, X̂0i , X̂Si , Ûi, Ŵi, F̂i, Ŷi, Ĥi), for all i ∈ [1;N ], where Ŵi ⊆Wi and
Ŷi ⊆ Yi. For εi ∈ R≥0, a function Si : Xi × X̂i → R≥0 is called a local εi-CurSOPSF
from T (Σi) to T (Σ̂i) if there exist a constant ϑi ∈ R≥0, and a function αi ∈ K∞ such
that

1. ∀z0i ∈ X0i, ∃ẑ0i ∈ X̂0i, s.t. Si(z0i , ẑ0i ) ≤ εi;

2. ∀zi ∈ Xi,∀ẑi ∈ X̂i, αi(∥Hi(zi)− Ĥi(ẑi)∥) ≤ Si(zi, ẑi);

3. ∀zi ∈ Xi,∀ẑi ∈ X̂i s.t. Si(zi, ẑi) ≤ εi, ∀wi ∈ Wi, ∀ŵi ∈ Ŵi s.t. ∥wi − ŵi∥ ≤ ϑi,
one has:

a) ∀ui ∈ Ui, ∀z+i ∈ Fi(zi, ui, wi), ∃ûi ∈ Ûi, ∃ẑ+i ∈ F̂i(ẑi, ûi, ŵi) s.t. Si(z+i , ẑ
+
i ) ≤

εi;

b) ∀ui ∈ Ui, ∀z+i ∈ Fi(zi, ui, wi) s.t. z+i ∈ XSi, ∃ûi ∈ Ûi, ∃ẑ+i ∈ F̂i(ẑi, ûi, ŵi)
with ẑ+i ∈ X̂Si s.t. Si(z+i , ẑ

+
i ) ≤ εi;

c) ∀ûi ∈ Ûi, ∀ẑ+i ∈ F̂i(ẑi, ûi, ŵi), ∃ui ∈ Ui, ∃z+i ∈ Fi(zi, ui, wi) s.t. Si(z+i , ẑ
+
i ) ≤

εi;

d) ∀ûi ∈ Ûi, ∀ẑ+i ∈ F̂i(ẑi, ûi, ŵi) s.t. ẑ+i ∈ X̂i \ X̂Si, ∃ui ∈ Ui, ∃z+i ∈
Fi(zi, ui, wi) with z+i ∈ Xi \XSi s.t. Si(z+i , ẑ

+
i ) ≤ εi.

We say that T (Σ̂i) is an abstraction of T (Σi) if there exists a local εi-InitSOPSF,
or εi-CurSOPSF, from T (Σi) to T (Σ̂i). In addition, if T (Σ̂i) is finite (X̂i and Ŵi are
finite sets), system T (Σ̂i) is called a finite abstraction (symbolic model) of T (Σi), and
is denoted by T (Σi) ⪯εi

L T (Σ̂i).
Next, we show how to compose the above defined local simulation functions so that

it can be used to quantify the distance between two networks in terms of preserving
approximate opacity.
In this subsection, we provide one of the main results of the section. The follow-

ing theorem provides a compositional approach for the construction of an opacity-
preserving simulation function from T (Σ) to T (Σ̂) via the proposed local εi-InitSOPSF
(resp. εi-CurSOPSF) from T (Σi) to T (Σ̂i).

Theorem 6.3.17. Consider network T (Σ) = I(T (Σ1), . . . , T (ΣN )). Assume that each
T (Σi) admits an abstraction T (Σ̂i) together with a local εi-InitSOPSF (resp. Cur-
SOPSF) Si, associated with function αi and constant ϑi as in Definition 6.3.15 (resp.
Definition 6.3.16). Let ε = max

i
εi. If ∀i ∈ [1;N ], ∀j ∈ Ni,

α−1
j (εj) + ϕij ≤ ϑi, (6.3.8)

where ϕij is an internal input quantization parameter for constructing the local finite
abstractions T (Σ̂i), then, function S : X × X̂ → R≥0 defined as

S(z, ẑ) := max
i

{ ε
εi
Si(zi, ẑi)}, (6.3.9)
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is an ε-InitSOPSF (resp. CurSOPSF) from T (Σ) = I(T (Σ1), . . . , T (ΣN )) to T (Σ̂) =
Î(T (Σ̂1), . . . , T (Σ̂N )).

Proof. First, we show that condition 1a) in Definition 6.3.11 holds. Consider any
z0 ∈ X0∩XS . For any system T (Σi) and the corresponding εi-InitSOPSF Si, from the
definition of Si, we have ∀z0i ∈ X0i ∩XSi , ∃ẑ0i ∈ X̂0i ∩ X̂si s.t. Si(z0i , ẑ0i ) ≤ εi. Then,
from the definition of S in (6.3.9) we get S(z0, ẑ0) ≤ ε, where ẑ0 ∈ X̂0 ∩ X̂s. Thus,
condition 1(a) in Definition 6.3.11 holds. Condition 1b) can be proved in the same way,
thus is omitted. Now, we show that condition 2 in Definition 6.3.11 holds for some K∞
function α. Consider any z = [z1; . . . ; zN ] ∈ X and ẑ = [ẑ1; . . . ; ẑN ] ∈ X̂. Then, using
condition 2 in Definition 6.3.15, one gets

∥H(z)− Ĥ(ẑ)∥ = max
i

{∥Hii(zi)− Ĥii(ẑi)∥}

≤ max
i

{∥Hi(zi)− Ĥi(ẑi)∥} ≤ max
i

{α−1
i ◦ Si(zi, ẑi)} ≤ α̂ ◦max

i
{ ε
εi
Si(zi, ẑi)},

where α̂ = max
i

{α−1
i }. By defining α = α̂−1, one obtains

α(∥H(z)− Ĥ(ẑ)∥) ≤ S(z, ẑ),

which satisfies condition 2 in Definition 6.3.11. Now, we show that condition 3 holds.
Let us consider any z ∈ X and ẑ ∈ X̂ such that S(z, ẑ) ≤ ε. It can be seen that from
the structure of S in (6.3.9), we get Si(zi, ẑi) ≤ εi, ∀i ∈ [1;N ]. For each pair of systems
T (Σi) and T (Σ̂i), the internal inputs satisfy the chain of inequality

∥wi − ŵi∥ = max
j∈Ni

{∥wij − ŵij∥} = max
j∈Ni

{∥yji − ŷji + ŷji − ŵij∥}

≤ max
j∈Ni

{∥yji − ŷji∥+ ϕij} ≤ max
j∈Ni

{∥Hj(zj)− Ĥj(ẑj)∥+ ϕij}

≤ max
j∈Ni

{α−1
j ◦ Sj(zj , ẑj) + ϕij} ≤ max

j∈Ni

{α−1
j (εj) + ϕij}.

Using (6.3.8), one has ∥wi− ŵi∥ ≤ ϑi. Therefore, by condition 3a) in Definition 6.3.15,
for each pair of systems T (Σi) and T (Σ̂i), one has ∀ui ∈ Ui, ∀z+i ∈ Fi(zi, ui, wi),
there exists ûi ∈ Ûi and ẑ+i ∈ F̂i(ẑi, ûi, ŵi) such that Si(z+i , ẑ

+
i ) ≤ εi. As a result,

we get ∀u = [u1; . . . ;uN ] ∈ U , ∀z+ ∈ F(z, u), there exists û = [û1; . . . ; ûN ] ∈ Û and
ẑ+ ∈ F̂(ẑ, û) such that S(z+, ẑ+) = max

i
{ εεiSi(z

+
i , ẑ

+
i )} ≤ ε. Therefore, condition 3a) in

Definition 6.3.11 is satisfied with ε = max
i
εi. In addition, by condition 3b) in Definition

6.3.15, for each pair of systems T (Σi) and T (Σ̂i), one has ∀ûi ∈ Ûi, ∀ẑ+i ∈ F̂i(ẑi, ûi, ŵi),
there exists ui ∈ Ui and z+i ∈ Fi(zi, ui, wi) such that Si(z+i , ẑ

+
i ) ≤ εi. As a result,

we get ∀û = [û1; . . . ; ûN ] ∈ Û , ∀ẑ+ ∈ F̂(ẑ, û), there exists u = [u1; . . . ;uN ] ∈ U and
z+ ∈ F(z, u) such that S(z+, ẑ+) = max

i
{ εεiSi(z

+
i , ẑ

+
i )} ≤ ε. It follows that condition

3b) in Definition 6.3.11 is satisfied as well. Therefore, we conclude that S is an ε-
InitSOPSF from T (Σ) = I(T (Σ1), . . . , T (ΣN )) to T (Σ̂) = Î(T (Σ̂1), . . . , T (Σ̂N )). Note
that by following similar lines of reasoning as above, one can prove that S is also an
ε-CurSOPSF from T (Σ) = I(T (Σ1), . . . , T (ΣN )) to T (Σ̂) = Î(T (Σ̂1), . . . , T (Σ̂N )).
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Till here, we have seen that one can construct an abstraction of a network of switched
systems by interconnecting local abstractions of the subsystems. The overall InitSOPSF
(resp. CurSOPSF) between two networks is established by composing local InitSOPSFs
(resp. local CurSOPSFs) as well. This abstract network allows us to check approximate
opacity property over the simpler abstract network and carry the results back to the
concrete network using the results provided in Corollary 6.3.14.

6.3.3 Compositionalisty Results

Next, we are going to impose certain conditions on the dynamics of the subsystems,
such that one can construct proper abstractions for all of the subsystems together with
the corresponding local InitSOPSFs or CurSOPSFs.

6.3.3.1 Construction of Local Finite Abstractions

In this section, we are going to explore how to construct finite abstractions together
with local InitSOPSFs or CurSOPSFs for subsystems. The switched subsystems Σ =
(X,X0,XS , P,W, F, Y, h) are assumed to be infinite and deterministic. Moreover, we
assume the output map h satisfies the following general Lipschitz assumption: there
exists an ℓ ∈ K∞ such that: ∥h(x) − h(y)∥ ≤ ℓ(∥x − y∥) for all x, y ∈ X. Here, we
also use Σp to denote a switched subsystem Σ in (6.3.1) with constant switching signal
p(k) = p, ∀k ∈ N.
Note that throughout this subsection, we are mainly talking about switched subsys-

tems rather than the overall network. However, for the sake of better readability, we
omit index i of subsystems throughout the text in this subsection, e.g., we write Σ and
T (Σ) instead of Σi and T (Σi), respectively.

Here, we establish a local ε-InitSOPSF or ε-CurSOPSF between T (Σ) and its finite
abstraction by assuming that, for all p ∈ P , Σp is incrementally input-to-state stable (δ-
ISS) (cf. Section 2.4). We restate the definition of incremental input-to-state stability
for a switched subsystem as follows.

Definition 6.3.18. A system Σp is δ-ISS if there exist a so-called δ-ISS Lyapunov
function Vp : X ×X → R≥0, αp, αp, ρp ∈ K∞, and constant 0 < κp < 1, such that for
all x, x̂ ∈ X, and for all w, ŵ ∈W

αp(∥x− x̂∥) ≤ Vp(x, x̂) ≤ αp(∥x− x̂∥), (6.3.10)

Vp(fp(x,w),fp(x̂, ŵ)) ≤ κpVp(x, x̂) + ρp(∥w − ŵ∥). (6.3.11)

Remark 6.3.19. We say that Vp, ∀p ∈ P , are multiple δ-ISS Lyapunov functions for
subsystem Σ if it satisfies (6.3.10) and (6.3.11). Moreover, if Vp = Vp+ ,∀p, p+ ∈ P ,
we omit the index p in (6.3.10), (6.3.11), and say that V is a common δ-ISS Lyapunov
function for system Σ. We refer interested readers to [106] for more details on common
and multiple Lyapunov functions for switched systems.

Next, we provide an approach, inspired by [53], to construct a local finite abstraction
T (Σ̂) of transition system T (Σ) associated to the switched subsystem Σ in which each
mode Σp is δ-ISS.
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Definition 6.3.20. Consider a transition system T (Σ) = (X,X0, XS , U,W,F , Y,H),
associated to the switched subsystem Σ = (X,X0,XS , P,W, F, Y, h), where X,W are
assumed to be finite unions of boxes. Let Σp be δ-ISS as in Definition 6.3.18. Then
one can construct a finite abstraction T (Σ̂) = (X̂, X̂0, X̂S , Û , Ŵ , F̂ , Ŷ , Ĥ) where:

� X̂ = X̂ × P × {0, . . . , kd − 1}, where X̂ = [X]η and 0 < η ≤ min{span(XS),
span(X \ XS)} is the state set quantization parameter;

� X̂0 = X̂0 × P × {0}, where X̂0 = [X0]η;

� X̂S = X̂S × P × {0, · · · , kd − 1}, where X̂S = [XθS ]η, and XθS = {x ∈ X | ∃x̄ ∈
XS , ∥x − x̄∥ ≤ θ} denotes the θ-expansion of set XS where θ > 0 is a design
parameter;

� Û = U = P ;

� (x̂+, p+, l+) ∈ F̂((x̂, p, l), û, ŵ) if and only if ∥fp(x̂, ŵ)− x̂+∥ ≤ η, û = p and one
of the following scenarios hold:

· l < kd − 1, p+ = p and l+ = l + 1;

· l = kd − 1, p+ = p and l+ = kd − 1;

· l = kd − 1, p+ ̸= p and l+ = 0;

� Ŷ = {H(x̂, p, l)|(x̂, p, l) ∈ X̂};

� Ĥ : X̂ → Ŷ , defined as Ĥ(x̂, p, l) = H(x̂, p, l) = h(x̂);

� Ŵ = [W ]ϕ, where ϕ, satisfying 0 < ∥ϕ∥ ≤ span(W ), is the internal input set
quantization parameter.

Note that in the case when the concrete switched subsystem Σ admits a common
δ-ISS Lyapunov function as in Remark 6.3.19, Definition 6.3.20 boils down to the
following.

Definition 6.3.21. Consider a transition system T (Σ) = (X,X0, XS , U,W,F , Y,H),
associated to the switched subsystem Σ = (X,X0,XS , P,W, F, Y, h), where X,W are
assumed to be finite unions of boxes. Suppose Σ admits a common δ-ISS Lyapunov
function as in Remark 6.3.19. Then one can construct a finite abstraction T (Σ̂) =
(X̂, X̂0, X̂S , Û , Ŵ , F̂ , Ŷ , Ĥ) where:

� X̂ = [X]η, where 0 < η ≤ min{span(XS), span(X \ XS)} is the state set quanti-
zation parameter;

� X̂0 = [X0]η;

� X̂S = [XθS ]η, where XθS = {x ∈ X | ∃x̄ ∈ XS , ∥x− x̄∥ ≤ θ} denotes the θ-expansion
of set XS where θ > 0 is a design parameter;

� Û = P ;
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� x̂+ ∈ F̂(x̂, û, ŵ) if and only if ∥fû(x̂, ŵ)− x̂+∥ ≤ η;

� Ŷ = {h(x̂)|x̂ ∈ X̂};

� Ĥ : X̂ → Ŷ , defined as Ĥ(x̂) = h(x̂);

� Ŵ = [W ]ϕ, where ϕ, satisfying 0 < ∥ϕ∥ ≤ span(W ), is the internal input set
quantization parameter.

In order to construct a local ε-InitSOPSF or ε-CurSOPSF from T (Σ) to T (Σ̂), we
raise the following assumptions on functions Vp appeared in Definition 6.3.18, which
are used to prove some of the main results later.

Assumption 6.3.22. There exists µ ≥ 1 such that

∀x, y ∈ X, ∀p, q ∈ P, Vp(x, y) ≤ µVq(x, y). (6.3.12)

Assumption 6.3.22 is an incremental version of a similar assumption in [195] that is
used to prove input-to-state stability of switched systems under constrained switching
signals.

Assumption 6.3.23. For all p ∈ P , there exists a K∞ function γp such that

∀x, y, z ∈ X, Vp(x, y) ≤ Vp(x, z) + γp(∥y − z∥). (6.3.13)

Assumption 6.3.23 is non-restrictive as shown in [216] provided that one is interested
to work on a compact subset of X.
Now, we establish the relation between T (Σ) and T (Σ̂), introduced above, via the

notion of local ε-InitSOPSF as in Definition 6.3.15.

Theorem 6.3.24. Consider a switched subsystems Σ = (X,X0,XS , P,W, F, Y, h)
with its equivalent transition system T (Σ) = (X,X0, XS , U,W,F , Y,H). Suppose
Σp is δ-ISS as in Definition 6.3.18, with a function Vp equipped with functions
αp, αp, ρp and constant κp, and Assumptions 6.3.22 and 6.3.23 hold. Let ϵ > 1.

For any design parameters ε, ϑ ∈ R≥0, let T (Σ̂) be a finite abstraction of T (Σ)
constructed as in Definition 6.3.20 with any quantization parameter η ∈ R>0

satisfying

η ≤ min{γ̂−1((1− κ)ε− ρ(ϑ)), α−1(ε)}, (6.3.14)

where κ = max
p∈P

{
κ

ϵ−1
ϵ

p

}
, ρ = max

p∈P

{
κ
− kd

ϵ
p ρp

}
, γ̂ = max

p∈P

{
κ
− kd

ϵ
p γp

}
, α =

max
p∈P

{
κ
− l

ϵ
p αp

}
. If, ∀p ∈ P, kd ≥ ϵ ln(µ)

ln( 1
κp

)
+ 1, then function V defined as

V((x, p, l), (x̂, p, l)) := Vp(x, x̂)κ
−l
ϵ
p , (6.3.15)

is a local ε-InitSOPSF from T (Σ) to T (Σ̂) and from T (Σ̂) to T (Σ).
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Proof. We start by proving condition 1 in Definition 6.3.15. Consider any initial and
secret state (x0, p0, 0) ∈ X0∩XS in T (Σ). From Definition 6.3.20, for every (x0, p0, 0) ∈
X0∩XS , there always exists (x̂

0, p0, 0) ∈ X̂0∩X̂S such that ∥x0−x̂0∥ ≤ η. Hence, using

(6.3.10), there exists (x̂0, p0, 0) ∈ X̂0∩X̂S with V((x0, p0, 0), (x̂0, p0, 0)) ≤ αp(∥x0−x̂0∥)

κ
l
ϵ
p

≤

αp(η)

κ
l
ϵ
p

, and condition 1(a) is satisfied with α = max
p∈P

{
κ
− l

ϵ
p αp

}
and α(η) ≤ ε by (6.3.14).

For every (x̂0, p0, 0) ∈ X̂0 \ X̂S , by choosing x0 = x̂0 with (x0, p0, 0) also being inside
X0 \XS , we get V((x0, p0, 0), (x̂0, p0, 0)) = 0 ≤ ε. Hence, condition 1(b) in Definition
6.3.15 holds as well.

Next, we show condition 2 in Definition 6.3.15 holds. Given the Lipschitz assumption
on h and since, ∀p ∈ P , Σp is δ-ISS, from (6.3.10), ∀(x, p, l) ∈ X and ∀(x̂, p, l) ∈ X̂, we
have

∥H(x, p, l)− Ĥ(x̂, p, l)∥ = ∥h(x)− ĥ(x̂)∥ ≤ ℓ(∥x− x̂∥)

≤ ℓ ◦ α−1
p (Vp(x, x̂)) = ℓ ◦ α−1

p

(
κ

l
ϵ
pV((x, p, l), (x̂, p, l))

)
≤ ℓ ◦ α−1

p (V((x, p, l), (x̂, p, l))) ≤ α̂ (V((x, p, l), (x̂, p, l))) ,

where α̂ = max
p∈P

{ℓ ◦ α−1
p }. By defining α = α̂−1, one obtains

α(∥H(x, p, l)− Ĥ(x̂, p, l)∥) ≤ V((x, p, l), (x̂, p, l)),

satisfying condition 2. Now we show condition 3 in Definition 6.3.15. From (6.3.13),
∀x ∈ X,∀x̂ ∈ X̂, ∀w ∈W, ∀ŵ ∈ Ŵ , we have

Vp(fp(x,w), x̂
+) ≤ Vp(fp(x,w), fp(x̂, ŵ)) + γp(∥x̂+ − fp(x̂, ŵ)∥),

for any x̂+ such that (x̂+, p+, l+) ∈ F̂((x̂, p, l), û, ŵ). Now, from Definition 6.3.20, the
above inequality reduces to

Vp(fp(x,w), x̂
+) ≤ Vp(fp(x,w), fp(x̂, ŵ)) + γp(η).

Note that by (6.3.11), one gets

Vp(fp(x,w), fp(x̂, ŵ)) ≤ κpVp(x, x̂) + ρp(∥w − ŵ∥).

Hence, ∀x ∈ X,∀x̂ ∈ X̂, ∀w ∈W, ∀ŵ ∈ Ŵ , one obtains

Vp(fp(x,w), x̂
+) ≤ κpVp(x, x̂) + ρp(∥w − ŵ∥) + γp(η), (6.3.16)

for any x̂+ such that (x̂+, p+, l+) ∈ F̂((x̂, p, l), û, ŵ). Now, in order to show function
V defined in (6.3.15) satisfies condition 3 in Definition 6.3.15, we consider the different
scenarios in Definition 6.3.20:
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� l < kd − 1, p+ = p and l+ = l + 1, using (6.3.16) and kd > l + 1, we have

V((x+, p+, l+), (x̂+, p+, l+)) =
Vp+(x+, x̂+)

κ
l+

ϵ
p

=
Vp(fp(x,w), x̂

+)

κ
l+1
ϵ

p

≤ κpVp(x, x̂) + ρp(∥w − ŵ∥) + γp(η)

κ
l+1
ϵ

p

=
κp

κ
1
ϵ
p

Vp(x, x̂)

κ
l
ϵ
p

+
ρp(∥w − ŵ∥) + γp(η)

κ
l+1
ϵ

p

≤ κ
ϵ−1
ϵ

p V((x, p, l), (x̂, p, l)) + ρp(∥w − ŵ∥) + γp(η)

κ
kd
ϵ

p

.

� l = kd − 1, p+ = p and l+ = kd − 1, using (6.3.16) and ϵ−1
ϵ < 1, one gets

V((x+, p+, l+), (x̂+, p+, l+)) =
Vp+(x+, x̂+)

κ
l+

ϵ
p

=
Vp(fp(x,w), x̂

+)

κ
l
ϵ
p

≤ κpVp(x, x̂) + ρp(∥w − ŵ∥) + γp(η)

κ
l
ϵ
p

= κp
Vp(x, x̂)

κ
l
ϵ
p

+
ρp(∥w − ŵ∥) + γp(η)

κ
l
ϵ
p

≤ κ
ϵ−1
ϵ

p V((x, p, l), (x̂, p, l)) + ρp(∥w − ŵ∥) + γp(η)

κ
kd
ϵ

p

.

� l = kd − 1, p+ ̸= p and l+ = 0, using (6.3.16), µκ
kd−1

ϵ
p ≤ 1, and ϵ−1

ϵ < 1, one has

V((x+, p+, l+), (x̂+, p+, l+)) =
Vp+(x+, x̂+)

κ
l+

ϵ

p+

≤ µVp(fp(x,w), x̂
+)

≤ µκ
kd−1

ϵ
p (κpVp(x, x̂) + ρp(∥w − ŵ∥) + γp(η))

κ
kd−1

ϵ
p

= κp
Vp(x, x̂)

κ
l
ϵ
p

+
ρp(∥w − ŵ∥) + γp(η)

κ
l
ϵ
p

≤ κ
ϵ−1
ϵ

p V((x, p, l), (x̂, p, l)) + ρp(∥w − ŵ∥) + γp(η)

κ
kd
ϵ

p

.

Note that ∀p ∈ P, µκ
kd−1

ϵ
p ≤ 1, since ∀p ∈ P, kd ≥ ϵ ln(µ)

ln( 1
κp

)
+ 1. Hence, ∀(x, p, l) ∈ X,

∀(x̂, p, l) ∈ X̂, ∀w ∈W , ∀ŵ ∈ Ŵ , one gets

V((x+, p+, l+), (x̂+, p+, l+)) ≤ κV((x, p, l), (x̂, p, l)) + ρ(∥w − ŵ∥) + γ̂(η). (6.3.17)

Now, we show the condition 3a) in Definition 6.3.15 holds. Let us consider any pair of
states (x, p, l) ∈ X, (x̂, p, l) ∈ X̂, satisfying V((x, p, l), (x̂, p, l)) ≤ ε, and any w ∈ W ,
ŵ ∈ Ŵ such that ∥w− ŵ∥ ≤ ϑ. Combining (6.3.17) with (6.3.14) for any (x+, p+, l+) ∈
F((x, p, l), u, w) and any (x̂+, p+, l+) ∈ F̂((x̂, p, l), û, ŵ) with û = u, one obtains:

V((x+, p+, l+), (x̂+, p+, l+)) ≤ κε+ ρ(ϑ) + γ̂(γ̂−1((1− κ)ε− ρ(ϑ))) = ε, (6.3.18)
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which shows that condition 3a) is satisfied. Similarly, for any (x̂+, p+, l+) ∈ F̂((x̂, p, l),
û, ŵ), condition 3b) is also satisfied using the same reasoning with (x+, p+, l+) ∈
F((x, p, l), û, w). Therefore, we conclude that V is a local ε-InitSOPSF from T (Σ)
to T (Σ̂). Similarly, one can show that V is a also a local ε-InitSOPSF from T (Σ̂) to
T (Σ).

Note that a similar framework for constructing symbolic models of switched systems
was first proposed in [53], where the results take a monolithic view of the concrete
switched systems without considering the distinction between internal and external
inputs and outputs. However, their distinction plays an important role in our pro-
posed compositional scheme which allows us to build symbolic models for switched
subsystems individually and then construct a symbolic model for the overall network
by interconnecting those local ones.
Next, we provide a similar result as in Theorem 6.3.24, but tailored to approximate

current-state opacity.

Theorem 6.3.25. Consider a switched subsystems Σ = (X,X0,XS , P,W, F, Y, h)
with its equivalent transition system T (Σ) = (X,X0, XS , U,W,F , Y,H). Suppose
Σp is δ-ISS as in Definition 6.3.18, with a function Vp equipped with functions
αp, αp, ρp and constant κp, and Assumptions 6.3.22 and 6.3.23 hold. Let ϵ > 1.

For any design parameters ε, ϑ ∈ R≥0, let T (Σ̂) be a finite abstraction of T (Σ)
constructed as in Definition 6.3.20 with any quantization parameters η ∈ R>0

and θ ∈ R>0 satisfying

η ≤ min{γ̂−1((1− κ)ε− ρ(ϑ)), α−1(ε)}; (6.3.19)

α−1(ε) ≤ θ, (6.3.20)

where κ = max
p∈P

{
κ

ϵ−1
ϵ

p

}
, ρ = max

p∈P

{
κ
− kd

ϵ
p ρp

}
, γ̂ = max

p∈P

{
κ
− kd

ϵ
p γp

}
, α =

max
p∈P

{
κ
− l

ϵ
p αp

}
, α = min

p∈P

{
κ
− l

ϵ
p αp

}
. If, ∀p ∈ P, kd ≥ ϵ ln(µ)

ln( 1
κp

)
+ 1, then func-

tion V defined as

V((x, p, l), (x̂, p, l)) := Vp(x, x̂)κ
−l
ϵ
p , (6.3.21)

is a local ε-CurSOPSF from T (Σ) to T (Σ̂).

Proof. We start by proving condition 1 in Definition 6.3.16. Consider any initial state
(x0, p0, 0) ∈ X0 in T (Σ). Note that from Definition 6.3.20, we have X̂0 = X̂0×P ×{0},
where X̂0 = [X0]η. Therefore, for every (x0, p0, 0) ∈ X0, there always exists (x̂

0, p0, 0) ∈
X̂0 such that ∥x0 − x̂0∥ ≤ η. Hence, one gets V((x0, p0, 0), (x̂0, p0, 0)) ≤ αp(∥x0−x̂0∥)

κ
l
ϵ
p

≤

αp(η)

κ
l
ϵ
p

by (6.3.10), and condition 1 is satisfied with α = max
p∈P

{
κ
− l

ϵ
p αp

}
and α(η) ≤ ε by
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(6.3.19). The proof for conditions 2, 3a), and 3c) in Definition 6.3.16 is similar to that
of Theorem 6.3.24, and is omitted here.

For condition 3b), let us consider any u ∈ U s.t. (x+, p+, l+) ∈ Xs. By choosing
û = u and following same reasoning as in Theorem 6.3.24, we obtain

V((x+, p+, l+), (x̂+, p+, l+)) ≤ ε.

Additionally, by combining (6.3.10) and (6.3.21), one gets

∥x+ − x̂+∥
(6.3.10)

≤ α−1
p (Vp(x

+, x̂+))
(6.3.21)
= α−1

p κ
l
ϵ
p (V((x+, p+, l+), (x̂+, p+, l+))) ≤ α−1(ε),

where α = min
p∈P

{
κ
− l

ϵ
p αp

}
. Moreover, by (6.3.20), one gets ∥x+ − x̂+∥ ≤ α−1(ε) ≤ θ.

Note that by the structure of the abstraction as in Definition 6.3.20, we have X̂S = X̂S×
P ×{0, · · · , kd−1} where X̂S = [Xθ

S ]η and X
θ
S = {x ∈ X | ∃x̄ ∈ XS , ∥x− x̄∥ ≤ θ}. This

implies that (x̂+, p+, l+) ∈ X̂s, and thus, condition 3b) is satisfied as well. Condition
3d) of Definition 6.3.16 can be proved in a similar way and is omitted here. Therefore,
we conclude that V is a local ε-CurSOPSF from T (Σ) to T (Σ̂).

Remark 6.3.26. If Σ admits a common δ-ISS Lyapunov function satisfying Assump-
tion 6.3.23, then functions V defined in Theorems 6.3.24 and 6.3.25 reduce to V((x, p, l),
(x̂, p, l)) := V (x, x̂).

Given the results of Theorems 6.3.17 and 6.3.24 (resp. 6.3.25), one can see that
conditions (6.3.8) and (6.3.14) (resp. (6.3.19)) may not hold at the same time. In
the following subsection, we will discuss about the inherent property that the net-
work should have such that one can design suitable quantization parameters to satisfy
conditions (6.3.8) and (6.3.14) (resp. (6.3.19)) simultaneously.

6.3.3.2 Compositional Construction of Opacity-Preserving Finite Abstractions

We raise the following assumption which provides a small-gain type condition, inspired
by [39, Theorem 5.2], so that one can verify whether the competing conditions (6.3.8)
and (6.3.14) (resp. (6.3.19)) can be satisfied simultaneously.

Assumption 6.3.27. Consider network I(T (Σ1), . . . , T (ΣN )) induced by N ∈ N≥1

transition systems T (Σi). Assume that each T (Σi) and its finite abstraction T (Σ̂i)
admit a local εi-InitSOPSF (resp. εi-CurSOPSF) Vi defined in (6.3.15) (resp. (6.3.21)),
associated with functions and constants κi, αi, and ρi that appeared in Theorem 6.3.24
(resp. Theorem 6.3.25). Define

γij :=

{
(1− κi)

−1ρi ◦ α−1
j if j ∈ Ni,

0 otherwise,
(6.3.22)

for all i, j ∈ [1;N ], and assume that functions γij defined in (6.3.22) satisfy

γi1i2 ◦ γi2i3 ◦ · · · ◦ γir−1ir ◦ γiri1 < id, (6.3.23)

∀(i1, . . . , ir) ∈ {1, . . . , N}r, where r ∈ {1, . . . , N}.
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Algorithm 2: Compositional design of local quantization parameters ηi ∈ R>0

and ϕij ∈ R>0, ∀i ∈ [1;N ].

Input: The desired precision ε ∈ R>0; the simulation functions Vi equipped
with functions κi, αi, ρi, γ̂i, and αi, ∀i ∈ [1;N ]; functions σi ,
∀i ∈ [1;N ], satisfying (6.3.24).

1 Choose r ∈ R>0 s.t. max
i∈[1;N ]

{σi(r)} = ε;

2 Set εi = σi(r), ∀i ∈ [1;N ];

3 Design ϕij ∈ R>0 s.t. max
j∈Ni

{ϕij} < ρ−1
i ((1− κi)εi)−max

j∈Ni

{α−1
j (εj)}, ∀i, j ∈ [1;N ];

4 Set ϑi = max
j∈Ni

{α−1
j (εj) + ϕij}, ∀i ∈ [1;N ];

5 Design ηi ∈ R>0 s.t. ηi ≤ min{γ̂−1
i ((1− κi)εi − ρi(ϑi)), α

−1
i (εi)};

Output: Quantization parameters ηi ∈ R>0 and ϕij ∈ R>0, ∀i ∈ [1;N ].

Now, we show that, under the above small-gain assumption, one can always compo-
sitionally design local quantization parameters to satisfy conditions (6.3.8) and (6.3.14)
(resp. (6.3.19)) simultaneously.

Theorem 6.3.28. Suppose that Assumption 6.3.27 holds. Then, there always
exist local quantization parameters ηi and ϕij, ∀i, j ∈ [1;N ], as designed in
Algorithm 2, such that (6.3.8) and (6.3.14) (resp. (6.3.19)) can be satisfied si-
multaneously.

Proof. First, let us note that the small-gain condition (6.3.23) implies that ∃σi ∈ K∞
satisfying ∀i ∈ [1;N ],

max
j∈Ni

{γij ◦ σj} < σi, (6.3.24)

see [39, Theorem 5.2]. Then, from (6.3.22), we have ∀i ∈ [1;N ],

max
j∈Ni

{γij ◦ σj} < σi =⇒ max
j∈Ni

{(1− κi)
−1ρi ◦ α−1

j ◦ σj} < σi

=⇒ ρi ◦max
j∈Ni

{α−1
j ◦ σj} < (1− κi)σi. (6.3.25)

Next, suppose that we are given a sequence of functions σi ∈ K∞, ∀i ∈ [1;N ], satisfying
(6.3.24). Assume we are given any desired precision ε as in Definition 6.3.11. Let us
set εi = σi(r), ∀i ∈ [1;N ], where r ∈ R>0 is chosen such that max

i
{σi(r)} = ε. Then,

we choose internal input quantization parameters ϕij , ∀i, j ∈ [1;N ], such that

max
j∈Ni

{ϕij} < ρ−1
i ((1− κi)εi)−max

j∈Ni

{α−1
j (εj)}. (6.3.26)
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Now, by setting ϑi = max
j∈Ni

{α−1
j (εj) + ϕij}, and combining (6.3.25) and (6.3.26), one

has ∀i ∈ [1;N ]

ρi(ϑi) = ρi(max
j∈Ni

{α−1
j (εj) + ϕij})

≤ ρi(max
j∈Ni

{α−1
j (εj) + max

j∈Ni

{ϕij}) < (1− κi)εi. (6.3.27)

Thus, by (6.3.27), given any pair of parameters (εi, ϑi), one can always find suitable
local parameters ηi to satisfy (6.3.14) (resp. (6.3.19)). Additionally, the selection of
ϑi = max

j∈Ni

{α−1
j (εj) + ϕij} ensures that (6.3.8) is satisfied as well, which concludes the

proof.
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Concrete Subsystems Local Finite Abstractions

Concrete Network Abstract Network

Figure 6.6: Compositional framework for the construction of opacity-preserving finite abstrac-
tions for interconnected switched systems.

Remark 6.3.29. The compositionality result in Theorem 6.3.28 imposes a small-gain
type condition on the concrete network of switched subsystems for the existence of proper
modular finite abstraction, as depicted in Figure 6.6. In particular, under such small-
gain type conditions, one can always find suitable local quantization parameters to con-
struct local finite abstractions. The interconnection of the local finite abstractions can
be used to serve as a finite abstraction for the concrete network satisfying the simula-
tion relation T (Σ) ⪯ε T (Σ̂). Intuitively, the small-gain type condition facilitates the
compositional construction of finite abstractions by certifying a small (weak) interac-
tion of the subsystems which prevents an amplification of the signals across the possible
interconnections.
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Remark 6.3.30. Let us provide a general guideline on the computation of K∞ func-
tions σi, i ∈ [1;N ], that are used in Theorem 6.3.28: (i) in a general case when the
network is consisting of N ≥ 1 subsystems, functions σi, i ∈ [1;N ], can be constructed
numerically by leveraging the algorithm introduced in [45] and the technique presented
in [39, Proposition 8.8], see [158, Chapter 4]; (ii) for the case of having two and three
subsystems in the network, there have been some construction techniques proposed in
[77] and [39, Section 9], respectively; (iii) when the gain functions appeared in (6.3.22)
satisfy γij < id, ∀i, j ∈ [1;N ], then one can always choose σi, i ∈ [1;N ] to be identity
functions.

Note that in this section we presented compositionality results on the construction
of finite abstractions for notions of approximate initial-state and current-state opacity.
One can readily follow the same lines of reasoning to establish similar results for the
notion of approximate infinite-step opacity.

6.3.4 Case Study

Here, we provide an illustrative example to show how one can leverage the proposed
compositional approach to check approximate initial-state opacity of a network of
switched systems based on its finite abstraction.
Consider a network of discrete-time switched systems Σ = (X,X0,XS , P, F, Y, h) as

in Definition 6.3.4, consisting of n subsystems Σi each described by:

Σi :

{
xi(k + 1) = aipi(k)xi(k) + diωi(k) + bipi(k),

yi(k) = cixi(k),
(6.3.28)

where pi(k) ∈ Pi = {1, 2}, ∀k ∈ N, denotes the modes of each subsystem Σi. The
other parameters are as the following: ai1 = 0.05, ai2 = 0.1, bi1 = 0.1, bi2 = 0.15,
di = 0.05, ci = [ci1; . . . ; cin] with ci(i+1) = 1, cij = 0, ∀i ∈ [1;n − 1],∀j ̸= i + 1,
cn1 = cnn = 1, cnj = 0, ∀j ∈ [2;n − 1]. The internal inputs are subject to the
constraints ω1(k) = cn1xn(k) and ωi(k) = c(i−1)ix(i−1)(k), ∀i ∈ [2;n]. For each switched
subsystem, the state set is Xi = X0i = (0, 0.6), ∀i ∈ [1;n], the secret set is XS1 = (0, 0.2],
XS2 = [0.4, 0.6), XSi = (0, 0.6), ∀i ∈ [3;n], the output set is Yi =

∏n
j=1 Yij where

Yi(i+1) = (0, 0.6), Yii = Yij = {0}, ∀i ∈ [1;n − 1], ∀j ̸= i + 1, Ynn = Yn1 = (0, 0.6),
Ynj = {0}, ∀j ∈ [2;n− 1], and internal input set is W1 = Yni, Wi = Y(i−1)i, ∀i ∈ [2;n].
Intuitively, the output of the network is the external output of the last subsystem Σn.
The interconnection topology of the network is depicted in Figure 6.7.
The main goal of this example is to check approximate initial-state opacity of the

concrete network using its finite abstraction. Now, let us construct a finite abstraction
of Σ compositionally with accuracy ε̂ = 0.25 as defined in (6.3.7), which preserves
approximate initial-state opacity. We implement our compositional approach to achieve
this goal.
Consider functions Vipi = |xi− x̂i|, ∀i ∈ [1;n]. It can be readily verified that (6.3.10)

and (6.3.11) are satisfied with αipi = αipi = id, ρipi = 0.05, ∀pi ∈ Pi, κi1 = ai1 = 0.05,
κi2 = ai2 = 0.1. Condition (6.3.13) is satisfied with γipi = id, ∀pi ∈ Pi. Moreover, since
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Figure 6.7: The interconnection topology of the network of discrete-time switched subsystems
Σi.

Vipi = Vip+i
, ∀pi, p+i ∈ Pi, Vi(xi, x̂i) = |xi− x̂i| is a common δ-ISS Lyapunov function for

subsystem Σi. Next, given functions κi = 0.1, ρi = 0.06id, αi = id, γ̂i = 1.05id, αi = id
as appeared in Theorem 6.3.24, we have γij < id by (6.3.22), ∀i, j ∈ [1;n]. Hence,
the small-gain condition (6.3.23) is satisfied. Then, by applying Theorem 6.3.28 and
choosing functions σi = id, ∀i ∈ [1;n], such that (6.3.24) holds, we obtain proper pairs of
local parameters (εi, ϑi) = (0.25, 0.25) for all of the transition systems. Accordingly, we
provide a suitable choice of local quantization parameters as ηi = 0.2, ∀i ∈ [1;n], such
that inequality (6.3.14) for each transition system T (Σi) is satisfied. Then, we construct
local finite abstractions T (Σ̂i) = (X̂i, X̂0i , X̂Si , Ûi, Ŵi, F̂i, Ŷi, Ĥi) as in Definition 6.3.21,
where:

X̂i = X̂0i = {0.2, 0.4}, ∀i ∈ [1;n],

X̂Si =


{0.2}, if i = 1
{0.4}, if i = 2
{0.2, 0.4}, otherwise

Ŷi =

{ ∏i
j=1{0} × {0.2, 0.4} ×

∏n
j=i+2{0}, if i ∈ [1;n− 1]

{0.2, 0.4} ×
∏n−1
j=2 {0} × {0.2, 0.4}, otherwise

Ŵi = {0.2, 0.4}, ∀i ∈ [1;n].

Using the result in Theorem 6.3.24, one can verify that Vi(xi, x̂i) = |xi − x̂i| is a local
εi-InitSOPSF from each T (Σi) to its finite abstraction T (Σ̂i). Furthermore, by the
compositionality result in Theorem 6.3.17, we obtain that V = max

i
{Vi(xi, x̂i)} =

max
i

{|xi − x̂i|} is an ε-InitSOPSF from T (Σ) = I(T (Σ1), . . . , T (Σn)) to T (Σ̂) =

Î(T (Σ̂1), . . . , T (Σ̂n)) with ε = max
i
εi = 0.25.

Now, let us verify approximate initial-state opacity for T (Σ) using the network of
finite abstractions T (Σ̂). To do this, we first show an example of a network consisting of
3 transition systems, as shown in Figures 6.8 and 6.9. The three automata in Figure 6.8
represent the finite abstractions of the local transition systems, and the one in Figure 6.9
is the network of finite abstractions. Each circle is labeled by the state (top half) and
the corresponding output (bottom half). Initial states are distinguished by being the
target of a sourceless arrow. The states marked in red represent the secret states. The
symbols on the edges show the switching signals p(k) ∈ {1, 2}3 and internal inputs
coming from other local transition systems. For simplicity of demonstration, we use
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T (Σ̂1):

T (Σ̂2):

T (Σ̂3):

q1
0Y 0

q2
0y0

q1
00Y

q2
00y

q1
Y 0Y

q2
y0y

(2,Y)

(2,Y)

(2,Y)

Figure 6.8: Local finite abstractions of transition systems.

Î(T (Σ̂1), T (Σ̂2), T (Σ̂3)):
[2; 2; 2]

[2; 2; 2]

[2; 2; 2] [2; 2; 2]

z2
00y

z3
00y

z1
00y

z4
00y

z6
00Y

z5
00Y

z7
00Y

z8
00Y

Figure 6.9: Finite abstraction of a network of 3 transition systems.

symbols to represent the state and output vectors, where the states of local transition
systems are denoted by q1 = [0.4], q2 = [0.2], the states of network of transition systems
are denoted by

z1 = [q1; q2; q2], z2 = [q2; q2; q2], z3 = [q2; q1; q2], z4 = [q1; q1; q2],

z5 = [q1; q2; q1], z6 = [q1; q1; q1], z7 = [q2; q2; q1], z8 = [q2; q1; q1],

and the outputs of the corresponding states are represented as y = 0.2 and Y = 0.4 with
the symbols like 00y = [0; 0; 0.2], 00Y = [0; 0; 0.4] representing concatenated output
vectors. One can easily see that Î(T (Σ̂1), T (Σ̂2), T (Σ̂3)) is 0-approximate initial-state
opaque, since for any run starting from any secret state, i.e. z3 and z8, there exists
a run from a non-secret state, i.e. z1 and z6, such that the output trajectories are
exactly the same. Essentially, one can verify that the abstract network holds this
property regardless of the number of systems (i.e. n), due to the homogeneity of
systems Σi and the symmetry of the circular network topology. Thus, one can conclude
that T (Σ̂) = Î(T (Σ̂1), . . . , T (Σ̂n)) is 0-approximate initial-state opaque. Therefore, by
Corollary 6.3.14, we obtain that the original network T (Σ) = I(T (Σ1), . . . , T (Σn)) is
0.5-approximate initial-state opaque.
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6.4 A Barrier Certificate Approach for Interconnected Control
Systems

As presented in Chapter 5, barrier certificates can be leveraged as a useful alternative
approach for the verification of opacity for CPS. Though promising, the computational
complexity of searching for parametric barrier certificates grow in polynomial time [198]
with respect to the dimension of the system, and thus, the approaches proposed in
Chapter 5 can become extremely expensive or even computationally intractable when
dealing with large-scale interconnected control systems. In this section, we present a
modular approach for verifying approximate opacity via the compositional construction
of barrier certificates. This result shows that by employing a small-gain type condi-
tion, the desired augmented barrier certificates for an interconnected system can be
constructed by composing so-called local barrier certificates of subsystems.

6.4.1 Augmented Control Subsystems

As discussed in Chapter 5, the verification of opacity for discrete-time control systems
is achieved by computing barrier certificates defined over a so-called augmented system
as in (5.2.1). Here, let us consider an interconnected system Σ = (X,X0, XS , U, f, Y, h)
composed ofN ∈ N≥1 discrete-time control subsystems Σi = (Xi, X0i , XSi , Ui,Wi, fi, Yi,
hi) as in Definition 6.2.2. We define the augmented system associated with a subsystem
Σi by

Σi × Σi = (Xi ×Xi, X0i ×X0i , XSi ×XSi , Ui × Ui,Wi ×Wi, fi × fi, Yi × Yi, hi × hi).
(6.4.1)

6.4.2 Compositional Construction of Barrier Certificates

In this subsection, we provide a compositional approach for the construction of barrier
certificates to alleviate the computational cost encountered while dealing with large-
scale interconnected systems. Here, we first show that by employing a small-gain type
condition, a barrier certificate B for Σ× Σ as in Proposition 5.3.1 can be constructed
by composing so-called local barrier certificates of subsystems as defined next.

Definition 6.4.1. (Local barrier certificate for verifying opacity) Consider a control
subsystem Σi. A function Bi : Xi ×Xi → R is called a local barrier certificate for the
augmented subsystem Σi × Σi if it satisfies the following conditions

∀(xi, x̂i) ∈ Ri, Bi(xi, x̂i) ≥ αi(||(hi(xi), hi(x̂i))||), (6.4.2)

∀(xi, x̂i) ∈ R0i , Bi(xi, x̂i) ≤ ϵi, (6.4.3)

∀(xi, x̂i) ∈ Rui , Bi(xi, x̂i) > ϵi, (6.4.4)

∀(xi, x̂i) ∈ Ri,∀ui ∈ Ui,∃ûi ∈ Ui, ∀(wi, ŵi) ∈Wi ×Wi,

Bi(fi(xi, ui, wi), fi(x̂i, ûi, ŵi)) ≤ κi(Bi(xi, x̂i)) + γwi(||(wi, ŵi)||), (6.4.5)

where sets R0i and Rui are the projections of sets R0 and Ru on the augmented sub-
system Σi × Σi, and αi, γwi, κi ∈ K∞, κi ≤ id, ϵi, ϵi ∈ R≥0.
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Note that local barrier certificates of subsystems are mainly defined for constructing
an overall barrier certificate for the interconnected system, and they are not useful on
their own to verify opacity property. We now introduce the following lemma which will
be used later in proving our main result.

Lemma 6.4.2. For a, b ∈ R≥0, ∀λ ∈ K∞, we have

a+ b ≤ max{(id + λ)(a), (id + λ−1)(b)}. (6.4.6)

Proof. Define c := λ−1(b), we get the following

a+ b =

{
a+ λ(c) ≤ c+ λ(c) = (id + λ−1)(b) if a ≤ c,

a+ λ(c) < a+ λ(a) = (id + λ)(a) if a > c,

which implies (6.4.6).

For functions αi, γwi, and κi associated with Bi as in Definition 6.4.1, we define,
∀i, j ∈ [1;N ],

γij =

{
(id + λ) ◦ κi if i = j,

(id + λ−1) ◦ γwi ◦ α−1
j if i ̸= j,

(6.4.7)

for some arbitrarily chosen λ ∈ K∞.
Before stating our main compositionality result, we pose the following small-gain

type assumption on the composition of gains γij .

Assumption 6.4.3. Assume functions γij defined in (6.4.7) satisfy the following in-
equality

γi1i2 ◦ γi2i3 ◦ · · · ◦ γiri1 < id, (6.4.8)

∀(i1, . . . , ir) ∈ {1, . . . , N}r, where r ∈ {1, . . . , N}.
Note that by leveraging Theorem 5.2 in [39], the small gain condition in (6.4.8)

implies that there exists ϕi ∈ K∞, ∀i ∈ [1;N ], satisfying

max
j∈[1;N ]

{ϕ−1
i ◦ γij ◦ ϕj} < id. (6.4.9)

The following result shows that a barrier certificate B for the augmented inter-
connected system Σ × Σ can be obtained by composing local barrier certificates Bi
computed for subsystems.

Theorem 6.4.4. Consider an interconnected system Σ = I(Σ1, . . . ,ΣN ),
and the associated augmented system Σ × Σ composed of augmented subsys-
tems Σi × Σi. Assume each Σi × Σi admits a local barrier certificate Bi as
in Definition 6.4.1. Let Assumption 6.4.3 hold, and maxi∈[1;N ]{ϕ−1

i (ϵi)} ≤
maxi∈[1;N ]{ϕ−1

i (ϵi)}. Then, function B : X ×X → R defined as

B(x, x̂) = max
i∈[1;N ]

{ϕ−1
i ◦Bi(xi, x̂i)}, (6.4.10)

is a barrier certificate for Σ× Σ as in Proposition 5.3.1.
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B(f(x, u), f(x̂, û)) = max
i

{ϕ−1
i ◦Bi(fi(xi, ui, wi), fi(x̂i, ûi, wi))}

(6.4.5)

≤ max
i

{
ϕ−1
i

(
κi(Bi(xi, x̂i)) + γwi(||(wi, ŵi)||)

)}
(6.4.6)

≤ max
i

{
ϕ−1
i

(
max{(id + λ)(κi(Bi(xi, x̂i))), (id + λ−1)(γwi(||(wi, ŵi)||))}

)}
= max

i

{
ϕ−1
i

(
max{(id + λ)(κi(Bi(xi, x̂i))), (id + λ−1)(γwi(max

j,j ̸=i
{||(wij , ŵij)||}))}

)}
= max

i

{
ϕ−1
i

(
max{(id + λ)(κi(Bi(xi, x̂i))), (id + λ−1)(γwi(max

j,j ̸=i
{||(yji, ŷji)||}))}

)}
= max

i

{
ϕ−1
i

(
max{(id + λ)(κi(Bi(xi, x̂i))), (id + λ−1)(γwi(max

j,j ̸=i
{||(hji(xj), hji(x̂j))||}))}

)}
≤ max

i

{
ϕ−1
i

(
max{(id + λ)(κi(Bi(xi, x̂i))), (id + λ−1)(γwi(max

j,j ̸=i
{||(hj(xj), hj(x̂j))||}))}

)}
(6.4.2)

≤ max
i

{
ϕ−1
i

(
max{(id + λ)(κi(Bi(xi, x̂i))), (id + λ−1)(γwi(max

j,j ̸=i
{α−1

j ◦Bj(xj , x̂j)}))}
)}

(6.4.7)

≤ max
i,j

{
ϕ−1
i ◦ γij ◦Bj(xj , x̂j)

}
≤ max

i,j,k

{
ϕ−1
i ◦ γij ◦ ϕj ◦ ϕ−1

k ◦Bk(xk, x̂k)
}

(6.4.10)

≤ max
i,j

{
ϕ−1
i ◦ γij ◦ ϕj ◦B(x, x̂)

}
(6.4.9)

≤ B(x, x̂). (6.4.11)

Proof. First, by Definition 6.4.1, we have

B(x, x̂) = max
i∈[1;N ]

{ϕ−1
i ◦Bi(xi, x̂i)}

(6.4.3)

≤ max
i∈[1;N ]

{ϕ−1
i (ϵi)},

B(x, x̂) = max
i∈[1;N ]

{ϕ−1
i ◦Bi(xi, x̂i)}

(6.4.4)
> max

i∈[1;N ]
{ϕ−1

i (ϵi)},

which satisfies the first two conditions (5.3.1)-(5.3.2) in Proposition 5.3.1 by taking
ϵ = maxi∈[1;N ]{ϕ−1

i (ϵi)} and ϵ = maxi∈[1;N ]{ϕ−1
i (ϵi)}.

Next, by condition (6.4.5) of Definition 6.4.1, for all (x, x̂) ∈ R and u ∈ U , there exists
û ∈ U such that ∀(wi, ŵi) ∈Wi ×Wi the chain of inequalities in (6.4.11) holds. Recall
that we set wij = yji = hji(xj) in (6.2.2) and (6.2.3). This gives us the identities in lines
4 and 5. The inequality in (6.4.11) satisfies the last condition (5.3.3) in Proposition
5.3.1. Therefore function B defined in (6.4.10) is a barrier certificate for the augmented
interconnected system Σ× Σ.
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Similarly, by applying the compositionality result proposed in Theorem 6.4.4, the
barrier certificate V as in Proposition 5.3.2 for verifying the lack of opacity of an
augmented system Σ × Σ can be computed by composing local barrier certificates Vi
of subsystems as defined below.

Definition 6.4.5. (Local barrier certificates for verifying lack of opacity) Consider a
control subsystem Σi. A function Vi : Xi×Xi → R≥0 is called a local barrier certificate
for the augmented subsystem Σi × Σi if it satisfies the following conditions

∀(xi, x̂i) ∈ Ri, Vi(xi, x̂i) ≥ αi(||(hi(xi), hi(x̂i))||), (6.4.12)

∀(xi, x̂i) ∈ R0i , Vi(xi, x̂i) ≤ 0, (6.4.13)

∀(xi, x̂i) ∈ ∂Ri \ ∂Rui , Vi(xi, x̂i) > 0, (6.4.14)

∀(xi, x̂i) ∈ Ri \ Rui ,∀ui ∈ Ui,∃ûi ∈ Ui, ∀(wi, ŵi) ∈Wi ×Wi,

Vi(fi(xi, wi, ui)) ≤ κi(Vi(xi, x̂i)) + γwi(||(wi, ŵi)||), (6.4.15)

where the sets Ri, R0i, ∂Ri \ ∂Rui and Ri \ Rui are, respectively, the projections of
sets R, R0, ∂R \ ∂Ru and R \Ru on the augmented subsystem Σi × Σi, and αi, γwi,
κi ∈ K∞, κi ≤ id, ϵi, ϵi ∈ R≥0.

Using the results of Theorem 6.4.4, one can construct a barrier certificate V for an
augmented interconnected system Σ × Σ, from the local barrier certificates Vi as in
Definition 6.4.5.

6.4.3 Case Study

For systems with polynomial transition functions and semi-algebraic sets X0i , XSi ,
and Xi, we can use sum-of-squares (SOS) programming to search for polynomial local
barrier certificates. We follow the same strategy as in Section 5.5, and use SOSTOOLS

[138] together with a semidefinite programming solver SeDuMi [179] to compute local
barrier certificates for subsystems in the following case study.
Consider a team of vehicles that are assigned to track a moving target. For the

sake of simplicity, we constrain the target to move in a line, with bounded arbitrary
acceleration. We also assume the vehicles are connected to each other in a line topology,
and the distance between the first vehicle and the target is negligible. An intruder with
δ measurement precision is trying to gain information about the initial position of
the target. It has full knowledge of the system dynamics, but can only observe the
position of the last vehicle in the team. Our aim is to verify whether the system is able
to conceal its secret (defined as the initial position of the target) from the intruder.
Figure 6.10 presents the experimental results of implementing our methodology for a
team of N = 100 vehicles. The evolution of the states for the interconnected system is
governed by {

ξ1(t+ 1) = Aξ1(t) + Cν(t) + ξ2(t)

ξ2(t+ 1) = ν(t) + ξ2(t)
(6.4.16)
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Figure 6.10: Results of simulating a system of 100 vehicles tracking a target. Target (red), and
last vehicle (yellow) trajectories are plotted together with their corresponding
non-secret pairs (blue and green lines). The shaded grey area indicates the region
where the distance from the observed trajectory (yellow) is less than δ = 0.01.
The red dashed line on the x axis indicates the secret set for the target. b) The
local barrier certificates computed for augmented subsystems (dashed lines), and
their max in time, which is a barrier certificate for the interconnected system. c)
The vehicles are connected together in a line topology, where vehicle i receives
the position of i− 1 as internal input. The intruder measures the location of the
yellow vehicle, and tries to uncover the initial location of the target (red vehicle).

where ξ1(t) = [ξ11, . . . , ξ1N ]
T ∈ RN and ξ2(t) = [ξ21, . . . , ξ2N ]

T ∈ RN are the position
and velocity vectors, respectively, and ν(t) ∈ RN contains the external input values
of all the vehicles in the team. Taking xi = [ξ1i, ξ2i]

T , the following set of difference
equations describe the dynamics of each subsystem Σi, ∀i ∈ [1;N ]:

Σi :

xi(t+ 1) =

[
1− a 1

0 1

]
xi(t) + νi(t)

[
0.5

1

]
+wi(t),

yi(t) = [0, . . . ,w(i+1)i(t), 0, . . . , 0]
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where x0(t) is the state of the target at time t. In vector wi(t), we have wi(i−1)(t) =

y(i−1)i(t) =
[
a 0

]
xi−1(t), and all other entries are 0.

Matrix AN×N in (6.4.16) represents the effects of internal input, as well as capturing
the constant-acceleration motion of the vehicle i during the time interval (t, t + 1].

Therefore, the entries Aij are defined as Aij =

{
1− a ∀i = j,

a ∀j = i− 1,
and zero else where.

We set the constant a = 0.01 in this example. Matrix CN×N is diagonal with Ci,i =
0.5, ∀i ∈ [1;N ]. The output of the interconnected system is the position of the last
vehicle, i.e., y(t) = [0, . . . , 0, ξ1N (t), 0]

T , N = 100. The state set and initial set are
X = X0 =

∏N
i=1Xi where Xi = X0i = [0, 2]. The secret set for the interconnected

system is set to XS =
∏N
i=1XSi , where XS1 = [0, 0.5], and XSi for all i ∈ [2; 100] is a

singleton containing a random number between [0, 2]. The measurement precision of
the intruder is set to δ = 0.01.

For finding local barrier certificates, we used ϵi = 1, ϵi = 1.5, for all i ∈ [1; 100],
αj(r) = r, κi(r) = a r, and γwi(r) = a r, ∀r ∈ R≥0. With the help of SOSTOOLS [138] and
SeDuMi [179], we computed local barrier certificates together with their corresponding
control policy ûi(xi, x̂i, ui) =

[
0.6 −0.6

]
xi+

[
1.2 −1.2

]
x̂i+ui. One can readily verify

that the small-gain assumption in (6.4.8) holds with γij < id, ∀i, j ∈ [1;N ]. Then, by
applying the results in Theorem 6.4.4, and taking ϕi = id, ∀i ∈ [1;N ], a barrier certifi-
cate for the interconnected system can be obtained as B(x, x̂) = maxi∈[1;N ]{B̂i(xi, x̂i)}.
Figure 6.10(b) shows 10 of the computed local barrier certificates B̂i for subsystems and
the obtained overall barrier certificate B. The existence of the overall barrier certificate
guarantees that for every state sequence of the interconnected system starting from a
secret state, there exists at least another state sequence starting from a non-secret
state such that the two sequences are indistinguishable in the eyes of the intruder with
measurement precision δ. This is shown in Figure 6.10(a), where position sequences
of the first and last vehicles (i.e. ξ1 1 and ξ1 100), are plotted with their corresponding
ξ̂1 1 and ξ̂1 100, starting from non-secret initial states. One can readily see that the
interconnected system is able to conceal its secret from possible intruders.

6.5 Discussion and Future Work

In this chapter, we proposed modular approaches for the verification of opacity for
large-scale interconnected control (switched) systems. In Section 6.2, we proposed a
methodology to compositionally construct opacity-preserving finite abstractions of in-
terconnected discrete-time control systems. An approximate opacity-preserving simu-
lation function is defined to characterize the simulation relation between two networks,
which facilitates the abstraction-based opacity verification process. Then we presented
a compositional approach to construct finite abstractions locally for concrete subsys-
tems under incremental input-to-state stability property. The interconnection of local
finite abstractions forms an abstract network that mimics the behaviors of the concrete
network while preserving approximate opacity via the proposed simulation functions.
Futhermore, we derived a small-gain type condition, under which one can guarantee
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the existence of proper quantization parameters for the construction of finite abstrac-
tions. We further provided a top-down compositional construction framework along
with a detailed quantization parameter design guideline. In Section 6.3, we further
extended the compositional framework in Section 6.2 by enlarging the class of systems
to hybrid ones with switching signals. An algorithm is also provided for the design of
local quantization parameters tailored to networks of switched systems. In Section 6.4,
we proposed an alternative modular approach via the notion of barrier certificates. In-
stead of leveraging abstraction-based techniques, we provided a compositional scheme
for computing barrier certificates, which directly shows opacity of large-scale intercon-
nected systems by finding local barrier certificates for their subsystems of much smaller
and manageable sizes.

In the following, we further discuss some ongoing research topics and open problems
on compositional approaches for opacity verification and synthesis.

Leverage Existing Modular Algorithms In the past decades, despite those opacity-
related modular techniques already mentioned in Section 6.2, there are already nu-
merous different modular verification and synthesis methods developed for other non-
security properties in DES and formal methods literature. For example, in the context
of supervisory control of DES, researchers have proposed many effective modular con-
troller synthesis approaches using, for example, hierarchical interfaces [100, 68], state
tree structures [123, 28], multi-level coordinators [92], and equivalence-based abstrac-
tions [46, 180]. There are also numerous recent works exploring the philosophy of
compositional reasoning in the context of reactive synthesis; see, e.g., [5, 125, 14]. We
believe that many of the aforementioned modular/compositional approaches for non-
security properties can be generalized to incorporate the security constraints, which
deserve deeper and detailed investigations.

Distributed Secure-by-Construction Synthesis For large-scale interconnected sys-
tems, the abstract interconnections constitute several relatively smaller local finite
abstractions, as investigated in Section 6.2, that run synchronously. Since the con-
troller synthesis problem for LTL specifications has severe worst-time complexity (dou-
bly exponential), the product of all of the finite components makes the synthesis highly
impractical. Moreover, often it may be impractical to assume that subsystems have
complete knowledge of the states of other subsystems. To model these scenarios, one
can represent the system as a network of finite abstractions where each subsystem
has a separate mission and opacity requirement. Some of the states of neighbouring
local finite abstractions may be shared with other local abstractions. This gives rise
to the distributed reactive synthesis problem [170] where the system consists of sev-
eral independent processes that cooperate based on local information to accomplish a
global specification. Such a setting changes the synthesis problem from a two-player
complete-information game to two-player games of incomplete information [156]. How-
ever, even for safety and reachability objectives (sub-classes of LTL), it is well known
[141, 171] that the distributed synthesis problem is undecidable for general intercon-
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nected systems. There are two directions to achieve decidability: the first is to restrict
the network architecture [141] and the second is the approach of bounded synthesis
[172].
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7.1 Conclusions

The main contribution of this dissertation is the development of theoretical founda-
tions for the secure-by-construction design of cyber-physical systems. We conclude the
dissertation by reviewing the results in the previous chapters.
In Chapter 3, we first reviewed some notions of security in three distinct research

fields of discrete-event systems, control theory, and computer science. Despite the
long history of security and privacy analysis in discrete-event systems and computer
science communities, results on security analysis for cyber-physical systems are very
limited. Based on these limitations, we developed a novel notion of security, called
approximate opacity, which are more applicable to complex cyber-physical systems
with possibly continuous state space. This new concept can be seen as a “robust”
version of opacity by quantitatively characterizing the security guarantee level with
respect to the measurement precision of the intruder. Moreover, in order to provide
a general enough setting for the secure-by-construction synthesis scheme, we unified
various security notions and mission requirements in a common framework, i.e., as a
generalized language-based opacity notion. This allows us to develop cross-disciplinary
theoretical results and leverage existing tools and algorithms from different research
fields.
In Chapter 4, we focused on our proposed notion of approximate opacity and devel-

oped an abstraction-based framework for the verification of opacity for cyber-physical
systems. In particular, we proposed new notions of approximate opacity-preserving sim-
ulation relations to capture the closeness between continuous-space systems and their
finite abstractions (a.k.a symbolic models) in terms of preservation of approximate
opacity. We also developed approaches for constructing opacity-preserving finite ab-
stractions for a class of incrementally stable nonlinear control systems. Apart from this,
we further extended the notion of approximate opacity to stochastic systems. Rather
than providing a binary answer for opacity of stochastic systems (i.e., whether a system
is opaque or not), a new notion of approximate opacity is introduced to quantitatively
evaluate the possibility of a system being secure (i.e., the security level is quantified in a
probabilistic setting). These works make the first step towards abstraction-based formal
verification and synthesis of opacity. The developed abstraction-based scheme bridges
the gap between opacity analysis of finite discrete systems and continuous (stochastic)
control systems.
In Chapter 5, we developed a discretization-free framework as an alternative to the

above abstraction-based method. For the first time, we proposed a deductive approach
to formally verify opacity of continuous-space control systems using barrier certifi-
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cates. Inspired by the duality of safety and reachability properties, a pair of so-called
augmented control barrier certificates were defined for augmented systems that are
constructed as the product of a control system and itself. The existence of the pro-
posed barrier certificates are shown to guarantee the (or the lack of) opacity for general
nonlinear control systems. Although both barrier certificates only serve as sufficient
conditions, they can be utilized in reverse directions in the sense that one ensures ap-
proximate opacity, and the other one shows the lack of approximate opacity of control
systems. We also presented a detailed way to compute polynomial barrier certificates
using SOS programming under certain assumptions on the control systems.

In Chapter 6, modular approaches were proposed to alleviate the computational bur-
den appeared in implementing the results proposed in the previous chapters. Note that
although the abstraction-based approach provided in Chapter 4 and the deductive ap-
proach presented in Chapter 5 are shown to be promising tools, a challenge lies in scaling
the approaches for large-scale systems. A particularly fruitful avenue to provide scala-
bility is the compositional reasoning as discussed in Chapter 6. Here, a large-scale sys-
tem is tackled as an interconnection of smaller subsystems with manageable sizes. We
first presented a modular approach to reduce the computational complexity tailored to
abstraction-based schemes. Instead of treating the interconnection monotonically, our
compositionality result enables us to construct opacity-preserving finite abstractions for
the subsystems individually. A top-down construction framework was presented with
a detailed algorithm as a guideline for the design of quantization parameters. Here,
we proposed compositionality results for both general interconnected control systems
and interconnected switched systems which require different treatments on the state
space discretization processes. Finally, a compositional scheme for the construction of
barrier certificates is also derived based on a small-gain type condition. The proposed
modular approaches are the first ones in the literature to analyze security notions of
large-scale continuous-space systems.

7.2 Future Directions

Next, we touch upon some potential directions related to the secure-by-construction
theme that differ from the parameters of study in this dissertation. We believe that
these directions may provide impetus to research in security-critical system design.

Information-Theoretic Foundations The concept of privacy discussed so-far in this
thesis is binary: either a system leaks information or it does not leak any information.
However, in practice such binary mitigation may not be feasible and may require an
information-theoretic prospective on quantifying and minimizing the amount of infor-
mation leak. Shannon, in his seminal paper [175], coined and popularized the notion
of entropy in measuring information: for a random variable X with values in some
domain X , the entropy of (or the uncertainty about) X, denoted by H(X), is defined
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as

H(X) =
∑
x∈X

P [X = x] log2
1

P [X = x]
.

Shannon proved that H(X) is the only function (modulo scaling) that satisfies the
natural continuity, monotonicity, and choice decomposition (See [175], for more details).
Similarly, for jointly distributed random variables X and Y , the conditional entropy
H(X | Y ), i.e. uncertainty about X given Y , can be defined as

H(X | Y ) =
∑
y∈Y

P [Y = y]H(X | Y = y),

where Y is the domain of Y . These definitions provide us a way to measure the
information loss: ifH(X) is the uncertainty aboutX and ifH(X | Y ) is the uncertainty
about X after Y is revealed, the information loss in this process is I(X;Y ) = H(X)−
H(X | Y ). Smith [177] introduced an alternative notion of entropy called the guessing
entropy G(X) that corresponds to the number of guesses required to infer the value
of X: of course a rational strategy in guessing these values will be to guess them in a
non-increasing sequence of probability, hence G(X) =

∑n
i=1 ipi where ⟨p1, p2, . . . , pn⟩

is the sequence of probabilities of elements of X arranged in an non-increasing fashion.
The notion of opacity discussed in this thesis requires that the attacker should de-

duce nothing about all opacity properties of the system from observing the outputs of
the system. However, achieving full opacity may not be possible in general, because
oftentimes systems reveal information depending on the secret properties. To extend
the notion of opacity to quantitative opacity, we can use the quantitative notion of
information leakage. We say that two opacity properties α, α′ are indistinguishable in
Σ, and we write α ≡Σ α′, if for any trace r satisfying α, there exists another trace r′

satisfying α′ such that both r and r′ have analogous observations, i.e. h(r) = h(r′). Let
us generalize the original set of opacity properties from {α,¬α} to α = {α1, . . . , αn}.
In this case, the system Σ is called opaque, if every pair of opacity properties in α
are mutually indistinguishable. Let Q = {Q1, Q2, . . . , Qk} be the quotient space of
O characterized by the indistinguishability relation. Let BQ = ⟨B1, B2, . . . , Bk⟩ be

the sizes of observational equivalence classes from Q; let B =
∑k

i=1Bi. Assuming
uniform distributions on Q, Köpf and Basin [93] characterize expressions for various
information-theoretic measures on information leaks which are given below:

1. Shannon Entropy: SE(Σ, α) = ( 1
B )

∑
1≤i≤k

Bi log2(Bi),

2. Guessing Entropy: GE(Σ, α) = ( 1
2B )

∑
1≤i≤k

B2
i +

1
2 ,

3. Min-Guess Entropy: MG(Σ, α)= min
1≤i≤k

{(Bi + 1)/2}.

This allows us to generalize our opacity requirements in a quantitative fashion. Given
a property φ as a mission requirement, and opacity property tuple α = {α1, . . . , αk},
an entropy bound K and the corresponding entropy criterion κ ∈ {SE,GE,MG},
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the quantitative security-aware verification Σ |= (φ, α) is to decide whether Σ |= φ
and κ(Σ, α) ≤ K. Similarly, the quantitative security-aware synthesis is to design a
supervisor/controller C such that ΣC |= (φ, α).

Quantitative theory of information have been widely used for the verification of se-
curity properties [177, 93, 12, 67] in the context of finite state and software systems.
Moreover, for such systems several restricted classes of synthesis approaches [94, 11,
220, 221, 80, 174, 189] have been proposed that focus on side-channel mitigation tech-
niques by increasing the remaining entropy of secret sets leaked while maintaining the
performance.

Data-Driven Approaches for CPS Security This thesis assumed the access to a model
of the system and proposed security-aware verification and synthesis approaches. Of-
tentimes, a true explicit model of the system is not available or is too large to reason
with formally. Reinforcement learning [181] (RL) is a sampling-based optimization al-
gorithm that computes optimal policies driven by scalar reward signals. Recently, RL
has been extended to work with formal logic [23, 24, 137, 64, 96], and automatic struc-
tures (ω-automata [60, 61] and reward machines [74]) instead of scalar reward signals.
A promising future direction is to extend RL-based synthesis to reason with security
properties of the system.

The controller learned via deep RL will have deep neural networks as the controllers.
Additionally, deep neural networks are often employed in place of cumbersome tabular
controllers to minimize the size of the program logic. In such systems, security veri-
fication need to reason with neural networks along with the system dynamics. There
is a large body of work [71, 1, 60, 151, 119, 203, 96] in verifying control systems with
neural networks using SMT solvers, and will provide a promising avenue of research in
developing security verification and synthesis approaches for CPS with neural networks
based controllers.

Radical advances in inexpensive sensors, wireless technology, and the Internet of
Things (IoT) offer unprecedented opportunities by ubiquitously collecting data at high
detail and at large scale. Utilization of data at these scales, however, poses a major
challenge for verifying or designing CPS, particularly in view of the additional inherent
uncertainty that data-driven signals introduce to systems behavior and their correct-
ness. In fact, this effect has not been rigorously understood to this date, primarily
due to the missing link between data analytics techniques in machine learning/opti-
mization and the underlying physics of CPS. A future research direction is to develop
scalable data-driven approaches for formal verification and synthesis of CPS with un-
known closed form models (a.k.a. black-box systems) with respect to both mission
and security properties. The main novelty is to bypass the model identification phase
and directly verify or synthesize controller for CPS using system behaviors. The main
reasons behind the quest to directly work on system behaviors and bypass the identifi-
cation phase are: i) Identification can introduce approximation errors and have a large
computational complexity; ii) Even when the model is known, formal verification and
synthesis of CPS are computationally challenging.
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Security for Network Multi-Agent CPS This thesis mostly discussed a centralized
setting for CPS security, i.e., a single CPS plant with global secrets against a single
attacker, although the CPS itself may consist of several smaller subsystems. However,
in many modern engineering systems such as connected autonomous vehicles [120],
smart micro-grids [213] and smart cities [25], there may exist no centralized decision-
maker. Instead, each CPS agent interacts and collaborates/competes with each other
via information exchanges over networks to make decisions, which leads to the net-
work multi-agent CPS. There is a large body of works [55, 194, 56, 83, 173, 166] in
synthesizing coordination strategies for network multi-agent CPS for high-level mission
requirements using formal methods. However, the security issue, which is more severe
in multi-agent CPS due to large communications and information exchanges, is rarely
considered. In particular, in multi-agent CPS, each agent may have its own security
considerations that depend on the time-varying configurations of the entire network.
Therefore, how to define formal security notions that are suitable for multi-agent sys-
tems is an important but challenging future direction.
Recently, security and privacy considerations over networks have attracted significant

attentions in the context of distributed state estimations [129, 8], distributed averag-
ing/consensus [130, 58], distributed optimizations [63, 121], and distributed machine
learning [72, 105]. However, those results are mostly developed for distributed com-
puting systems and are not directly applicable for multi-agent CPS with heterogeneous
dynamics. Furthermore, most of the existing security-aware protocols for distributed
systems are designed for specific tasks and there is still a lack of formal methodologies
for security-aware verification and secure-by-construction synthesis of communication
protocols and coordination strategies for network multi-agent CPS. Finally, rather than
a single passive attacker, network CPS may suffer from multiple active malicious attack-
ers. Therefore, one needs to develop effective approaches for characterizing and con-
trolling the evolution of security properties over dynamic networks of multiple players.
A promising future direction is to develop a comprehensive framework for multi-agent
CPS security by extending formal reasoning with multi-player game-theory.

We shall draw the readers’ and potential researchers’ attention that, security has been
a moving goalpost and more damaging vulnerabilities are yet unknown. The proposed
approaches in this dissertation need to be combined with classical fuzzing-based security
research to uncover previously undiscovered security vulnerabilities. Moreover, most of
the existing results on security analysis for CPS remain mainly theoretical. There is a
great need to develop efficient toolboxes and proof-of-concept benchmarks to evaluate
the practical feasibility of the foundations and algorithms developed for abstracting,
analyzing, or enforcing security properties over complex CPS. In addition to academic
benchmarks, it is important to improve the applicability of theoretical methods to
industrial case studies and real-life applications.
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[12] M. Backes, B. Köpf, and A. Rybalchenko. Automatic discovery and quantification
of information leaks. In 30th IEEE Symposium on Security and Privacy, pages
141–153, 2009.

[13] C. Baier and J. P. Katoen. Principles of model checking. The MIT Press, 2008.

[14] G. Bakirtzis, E. Subrahmanian, and C. H. Fleming. Compositional thinking in
cyberphysical systems theory. Computer, 54(12):50–59, 2021.

[15] G. Barequet and S. Har-Peled. Efficiently approximating the minimum-volume
bounding box of a point set in three dimensions. Journal of Algorithms, 38(1):91–
109, 2001.

[16] F. Basile and G. De Tommasi. An algebraic characterization of language-based
opacity in labeled Petri nets. In 14th International Workshop on Discrete Event
Systems, pages 329–336, 2018.

[17] C. Belta, B. Yordanov, and E. Göl. Formal Methods for Discrete-Time Dynamical
Systems, volume 89. Springer International Publishing, 2017.

[18] B. Bérard, K. Chatterjee, and N. Sznajder. Probabilistic opacity for Markov
decision processes. Information Processing Letters, 115(1):52–59, 2015.

[19] B. Bérard, J. Mullins, and M. Sassolas. Quantifying opacity. Mathematical Struc-
tures in Computer Science, 25(2):361–403, 2015.

[20] D. Bestvater, E. V. Dunn, C. Townsend, and W. Nelson. Satisfaction and wait
time of patients visiting a family practice clinic. Canadian family physician
(Medecin de famille canadien), 34:67–70, 1988.

[21] A. Borri, G. Pola, and M. D. Di Benedetto. Design of symbolic controllers for net-
worked control systems. IEEE Transactions on Automatic Control, 64(3):1034–
1046, 2019.

[22] D. Boskos and D. V. Dimarogonas. Decentralized abstractions for feedback in-
terconnected multi-agent systems. In 54th IEEE Conference on Decision and
Control (CDC), pages 282–287, 2015.

[23] A. Camacho, O. Chen, S. Sanner, and S. A. McIlraith. Non-Markovian rewards
expressed in LTL: guiding search via reward shaping. In Tenth Annual Symposium
on Combinatorial Search, 2017.

[24] A. Camacho, R. T. Icarte, T. Q. Klassen, R. A. Valenzano, and S. A. McIlraith.
LTL and beyond: Formal languages for reward function specification in rein-
forcement learning. In International Joint Conferences on Artificial Intelligence
Organization (IJCAI), volume 19, pages 6065–6073, 2019.

[25] C. G. Cassandras. Smart cities as cyber-physical social systems. Engineering,
2(2):156–158, 2016.

136



BIBLIOGRAPHY

[26] C. G. Cassandras and S. Lafortune. Introduction to discrete event systems, vol-
ume 3. Springer, 2021.

[27] F. Cassez, J. Dubreil, and H. Marchand. Synthesis of opaque systems with static
and dynamic masks. Formal Methods in System Design, 40(1):88–115, 2012.

[28] W. Chao, Y. Gan, Z. Wang, and W. M. Wonham. Modular supervisory con-
trol and coordination of state tree structures. International Journal of Control,
86(1):9–21, 2013.

[29] S. Chédor, C. Morvan, S. Pinchinat, and H. Marchand. Diagnosis and opacity
problems for infinite state systems modeled by recursive tile systems. Discrete
Event Dynamic Systems, 25(1-2):271–294, 2014.

[30] J. Chen, M. Ibrahim, and R. Kumar. Quantification of secrecy in partially ob-
served stochastic discrete event systems. IEEE Trans. Automation Science and
Engineering, 14(1):185–195, 2017.

[31] D. Chistikov, A. S. Murawski, and D. Purser. Asymmetric distances for approxi-
mate differential privacy. In 30th International Conference on Concurrency The-
ory (CONCUR 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.

[32] M. R. Clarkson, B. Finkbeiner, M. Koleini, K. K. Micinski, M. N. Rabe, and
C. Sánchez. Temporal logics for hyperproperties. In Principles of Security and
Trust, pages 265–284, Berlin, Heidelberg, 2014. Springer Berlin Heidelberg.

[33] M. R. Clarkson and F. B. Schneider. Hyperproperties. Journal of Computer
Security, 18(6):1157–1210, 2010.

[34] L. Clavijo and J. Basilio. Empirical studies in the size of diagnosers and veri-
fiers for diagnosability analysis. Discrete Event Dynamic Systems, 27(4):701–739,
2017.

[35] X. Cong, M. P. Fanti, A. M. Mangini, and Z. Li. On-line verification of current-
state opacity by petri nets and integer linear programming. Automatica, 94:205–
213, 2018.

[36] C. Cortes, M. Mohri, and A. Rastogi. Lp distance and equivalence of proba-
bilistic automata. International Journal of Foundations of Computer Science,
18(04):761–779, 2007.

[37] M. Coste. An introduction to semialgebraic geometry, 2000.
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