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Magnetic resonance fingerprinting (MRF) is highly promising as a quantitative MRI technique due to its accu- 

racy, robustness, and efficiency. Previous studies have found high repeatability and reproducibility of 2D MRF 

acquisitions in the brain. Here, we have extended our investigations to 3D MRF acquisitions covering the whole 

brain using spiral projection k -space trajectories. 

Our travelling head study acquired test/retest data from the brains of 12 healthy volunteers and 8 MRI systems 

(3 systems at 3 T and 5 at 1.5 T, all from a single vendor), using a study design not requiring all subjects to be 

scanned at all sites. The pulse sequence and reconstruction algorithm were the same for all acquisitions. 

After registration of the MRF-derived PD T 1 and T 2 maps to an anatomical atlas, coefficients of variation (CVs) 

were computed to assess test/retest repeatability and inter-site reproducibility in each voxel, while a General 

Linear Model (GLM) was used to determine the voxel-wise variability between all confounders, which included 

test/retest, subject, field strength and site. 

Our analysis demonstrated a high repeatability (CVs 0.7–1.3% for T1, 2.0–7.8% for T 2 , 1.4–2.5% for normalized 

PD) and reproducibility (CVs of 2.0–5.8% for T 1 , 7.4–10.2% for T 2 , 5.2–9.2% for normalized PD) in gray and 

white matter. 

Both repeatability and reproducibility improved when compared to similar experiments using 2D acquisitions. 

Three-dimensional MRF obtains highly repeatable and reproducible estimations of T 1 and T 2 , supporting the 

translation of MRF-based fast quantitative imaging into clinical applications. 
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. Introduction 

Magnetic resonance imaging is one of the most powerful diagnos-

ic techniques due to its versatility and its unparalleled soft tissue con-

rast. The dominant contributors to the MR contrast are longitudinal
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T1) and transverse (T2) relaxation times associated with the underlying

uclear magnetic resonance phenomenon. Variations in these parame-

ers are observed with pathological changes in many diseases. However,

linical evaluation is usually limited to a qualitative assessment of con-

rast, and rarely investigated with tissue relaxivity quantifications. Fast

nd quantitative MRI protocols are desirable for complementing current

iagnostic methods, and for precise monitoring of disease progression

 Tofts, 2003 ). Although a T1 and T2 quantification is possible, clinical

pplications in vivo are limited by the long acquisition times and ques-

ions over repeatability and reproducibility ( Deoni, 2010 ). Increased re-
vember 2020 
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eatability and reproducibility can benefit the patient by ensuring the

verall ‘reliability’ of the imaging procedure, which should reduce false

ositives or negatives. Briefly, repeatability refers to the degree of agree-

ent between experiments repeated at the same location, using the same

easurement procedure and equipment, performed under similar con-

itions, and repeated at separate time points. This differs from repro-

ucibility, which refers to the degree of agreement between the results

f experiments conducted at different locations and with similar but

eparate instruments. 

Novel MRI acquisition and reconstruction techniques promise a fast

nd accurate estimation of relevant quantities, including but not lim-

ted to T1 and T2 relaxation times, also allowing synthesis of conven-

ional MR contrasts ( Warntjes et al., 2008 ). Amongst these emerging

echniques, methods based on transient-state acquisitions, such as MR

ingerprinting (MRF) ( Ma et al., 2013 ), are currently being investigated

n healthy subjects and patient groups. These quantitative techniques

se undersampled k -space trajectories in combination with a variation

f sequence parameters in each TR to elicit unique tissue responses.

arametric maps are subsequently computed by enforcing consistency

ith a physical model, i.e. the Bloch equations that describe MRI signal

ehavior. 

Recent studies have shown a high repeatability of T1 and T2 val-

es with 2D steady-state free precession (SSFP) MR Fingerprinting

 Jiang et al., 2014 ) in the ISMRM/NIST phantom ( Jiang et al., 2017 ), as

ell as in human volunteers ( Buonincontri et al., 2019 ; Körzdörfer et al.,

019 ). These studies found similar repeatability and reproducibility re-

ults despite the different study designs, analysis methods and MR scan-

ers from different vendors. Although the work from ( Körzdörfer et al.,

019 ) focused on 95% confidence intervals in regions of interest and

 Buonincontri et al., 2019 ) performed a voxel-wise analysis focussed on

oefficients of variation, under the assumption of Gaussian distribution

oth obtained comparable results, reporting high repeatability and re-

roducibility. One of the limitations of ( Buonincontri et al., 2019 ) was

hat voxels located at the interface between tissues could include partial

olumes. This was noted especially in the grey matter, perhaps due to

mperfect segmentation and/or registration at the 2 mm spatial resolu-

ion used. 

In this work we aimed to assess repeatability and reproducibility

f new isotropic MRF measurements at an increased spatial resolu-

ion. Recently, the transient-state acquisitions at the basis of MRF have

een extended to three-dimensional sampling of k-space, either as stack-

f-spirals ( Liao et al., 2017 ; Ma et al., 2018 ), 3D spiral projections

 Cao et al., 2019 ) or music-based k -space trajectories ( Ma et al., 2016 ).

hese methods demonstrated improved spatial resolution and diagnos-

ic value, as well as high repeatability ( Ma et al., 2019 ). We acquired

est/re-test 3D MRF data in the human brain at 1.5T and 3T in a trav-

lling head study involving a total of 12 subjects and 8 different MR

canners from a single vendor. 

. Material and methods 

.1. Study design 

The data were acquired on eight separate systems from a single ven-

or (GE Healthcare, Chicago, IL), five operating at 1.5T and three oper-

ting at 3T and with different hardware (RF/gradient coils) and software

elease ( Fig. 1 a). 

The study was approved by the local ethical committee. After in-

ormed consent, twelve healthy human subjects (28–43 years old, 10

ales and 2 females) underwent two identical sessions, including a 3D

SFP MRF. Subjects were removed from the scanner between imaging

essions. For general linear model (GLM) analysis, each subject was

canned in multiple MR scanners with each subject scanned at least in

wo of the 8 systems used (the full study design can be seen in the de-

ign matrix of the GLM, shown in Fig. 2 a). Subjects also received a fast
poiled gradient echo (FSPGR) scan at 3T with the same spatial resolu-

ion as 3D MRF. 

.2. MRF acquisition and reconstruction 

We used an acquisition strategy based on 3D spiral projection k -

pace sampling, using the same implementation as described previously

 Gómez et al., 2020 ). This implementation has also been validated for

ccuracy against phantom references and compared to other k -space tra-

ectories ( Gómez et al., 2020 ). Briefly, our MRF acquisition trajectories

ere based on spiral projections ( Cao et al., 2019 ) (see Fig. 1 b). Acquisi-

ion parameters were: FOV = (225 mm) 3 , matrix size = 200 × 200 × 200,

ampling bandwidth = ± 250 kHz, TE/TR kept constant at 0.5/11 ms,

ip angle schedule as in Fig. 1 c. The flip angle schedule was composed

y a ramp (with 70° maximum flip angle), where the low flip angles of

he ascending ramp serve to encode T1 variations due to the inversion

ulse, while the high flip-angles at the end of the ramp mostly encode

or T2 ( Gómez et al., 2019 ). A descending ramp followed the ascend-

ng ramp to achieve a smooth flip-angle pattern. The ascending and de-

cending ramps were followed by a series of pulses with a flip angle of 1.

hese had the aim of collecting further data while allowing for T1 recov-

ry with minimal saturation effects. Our readouts achieved a resolution

f 1.125 mm isotropic in under 10 min acquisition. To achieve SSFP-

ike signal evolution, all the trajectory interleaves were rewound and

ollowed by a spoiler z-gradient achieving 4 𝜋/mm dephasing in z. The

aximum gradient amplitude was 20mT/m and slew rate was 70T/m/s,

llowing the use of the same trajectory with more scanner models. 

MRF maps were obtained by inner-product pattern matching and

he MRF dictionary was computed using the extended phase graphs for-

alism ( Weigel, 2015 ), including global inversion and excitation pulse

fficiencies but without including local B 0 or B 1 effects in the model

 Gómez et al., 2020 ). 

.3. Analysis 

To allow direct comparison with previous results in literature, the

nalysis pipeline matched ( Buonincontri et al., 2019 ). Briefly, the data

ere first pre-processed. The quantitative maps for every test were

rstly co-registered to their respective re-test (step a), secondly all im-

ges were registered to the images acquired at the reference site (3T

ite1, step b). This resulted in within-subject alignment. To align quan-

itative maps to the FSPGR data, we used MRF-derived T1 maps from

he reference site (step c). We obtained all transformation matrices with

igid registration in Statistical Parametric Mapping (SPM 12) Toolbox

 Friston et al., 1994 ; Penny et al., 2007 ). After registration, each sub-

ect’s FSPGR image was warped to match a custom DARTEL atlas ( Goto

t al., 2013 ). Estimated transformations were used warp brain volumes

including MRF maps) from the subject space to the template space.

lignment matrices from steps a, b, c together with DARTEL transforma-

ions were combined. This allowed us to transform the raw data directly

o the DARTEL space avoiding unnecessary interpolation. After applying

aussian smoothing with 6 mm full width half maximum (FWHM), co-

fficients of variation (CVs) were calculated between each voxel in test

nd retest measurements. In addition to CVs, we calculated the signed

nd unsigned test/retest relative differences at each voxel all scanners as

escribed in ( Gracien et al., 2020 ). For each subject, the segmented tis-

ue probability maps were calculated on the SPGR T1w images and used

o extract mean values of parameters in GM, WM, and CSF. To avoid

nterpolations, the quantitative values were read in the native spaces

y transforming the segmentation masks using a nearest neighbor algo-

ithm. To exclude voxels with partial volume effects (PVE) values were

eported averaged on each tissue class, using a threshold of 70% PVE as a

ask per each segmented tissue ( Fig. 2 b). Due to arbitrary receiver gain

nd scaling, relative M 0 values were reported self-normalized (nPD) to

he average value inside the brain mask. 
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Fig. 1. Acquisition. (a) Lists the systems used and their characteristics. The acquisition was made of 56 segments, each sampling 880 interleaves of a 3D spiral 

projection trajectory, shown in (b). For each of the segments the flip angle schedule in (c) was used, preceded by an adiabatic inversion pulse. The flip angle schedule 

was composed by an ascending and descending ramp (with 70° maximum flip angle), followed by a series pulses with a flip angle of 1. Full details of the acquisition 

have been described previously ( Gómez et al., 2020 ). 
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A General Linear Model (GLM) was implemented in SPM as a sec-

ndary sensitive method to characterize the effects from several inde-

endent physical parameters, as detailed in ( Buonincontri et al., 2019 ).

he multiple linear regression model at the basis of GLM is formulated

s follows for each voxel of T1, T2 and nPD: 

 𝑖 = 𝛽0 + 𝛽1 𝑋 𝑖 1 + 𝛽2 𝑋 𝑖 2 + 𝛽3 𝑋 𝑖 3 + …+ 𝛽𝑝 𝑋 𝑖𝑝 + 𝜀 𝑖 (1)

 i is the i th observation of the dependent variable ( i = 1, … n , where n is

he number of observations). X ij is i 
th observation of the j th independent

ariable ( j = 1, …, p , where p is the number of independent variables),

hich represents whether that variable is present in the analysis (X ij = 1)

r unused (X ij = 0). The values 𝛽 j represent parameters to be estimated,

ith 𝛽0 corresponding to the mean value, and 𝜀 i is the variance in the

ata that cannot be explained by the predictors. The values of the 𝛽 j 

aps quantify the influence of the independent variables on the mea-

ured physical parameters, with the same measurement units: T 1 T 2 and

PD at each voxel location ( Buonincontri et al., 2019 ). The covariates

odeled as categorical variables were as follows: acquisition variability

test/retest data), field strength (1.5 T and 3 T), subject, and acquisition

ite ( Fig. 2 a). 

In addition to the GLM where we estimated the biases associated

ith confounders, we also computed voxel-wise reproducibility CVs to

ssess variability. As not all subjects were acquired in all scanners, the

alues from the reproducibility CVs were extracted from four subjects

ho were acquired in all scanners. Additionally, we performed a set of
CC analyses on the 7 subjects scanned at Sites 1–4 (see Supplementary

ables 3–4). 

.4. Data and code availability statement 

In compliance with funder’s policy and institutional ethics approval,

he original parametric maps as well as the corresponding structural

ata for each subject are freely available online ( Buonincontri et al.,

020 ), see 10.5281/ZENODO.3989799 . Scripts to perform the voxel-

ise analyses are freely available ( https://github.com/jk619/test _

etest _ MRF ). 

. Results 

Representative co-registered MRF images from one subject are

hown in Fig. 3 a, showing fully-quantitative maps with a high anatom-

cal detail. Average values over subjects at each system and site are

eported in Fig. 3 b, as well as comparison with literature ranges in WM

nd GM from a host of different techniques ( Deoni et al., 2005 ; Ma et al.,

018 ; Poon and Henkelman, 1992 ; Whittall et al., 1997 ). Values were

omparable between sites, and within literature ranges. The CSF values

ere more variable than the solid matter compartments across scanners,

nd site 3 had the highest average bias. 

To assess repeatability, coefficients of variation were computed in

ach voxel between test and re-test, for each scanner and subject. The

http://10.5281/ZENODO.3989799
https://github.com/jk619/test_retest_MRF
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Fig. 2. (a) The design matrix of the general linear 

model used to measure biases associated to each con- 

founder. From the matrix it can also be seen that 12 

subjects were scanned twice, each in at least two of 

the 8 systems used for the study, and that 3 systems 

were operating at 3.0T while 5 were 1.5T. The im- 

ages in (b) are the tissue masks obtained by thresh- 

olding the probability maps from the DARTEL tem- 

plate. 
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O  
oxel-wise repeatability CVs at two representative sites are shown in

ig. 4 a, showing uniform variability across the brain at 3T, while at

.5T some structural bias was visible within the CV maps. Tissue-class

veraged CVs associated to each scanner between test and re-test are

eported in Fig. 4 b, showing solid matter repeatability CVs under 2%

or nPD and T1, and 5% for T2, with the exception of site 8 with CV

f T2 around 8%. In addition to the repeatability CVs, the signed and

nsigned relative differences, as well as the ICC analysis are reported in

upplementary Tables 1–4. 

Reproducibility biases were estimated with the GLM. Fig. 5 a shows

he biases associated with field strength and each individual scanner.

he biases associated with field strength on nPD were null due to the

ormalization process, T 1 values globally increased with field, while

he values of T 2 globally decreased with field. Between sites, T1 showed

niform bias both at 1.5T and 3T, with boundaries between tissues dis-

laying higher values, in particular for site 3. Biases in T2 values were
 i  
ostly uniform across the brain in the 1.5T sites, while they displayed

he pattern typical of B1 + effects at 3T ( Ma et al., 2017 ). The nPD bias

patial distribution was consistent with the different receiver coil pro-

les. 

Reproducibility variations were estimated using coefficients of vari-

tion. Fig. 5 b reports the averaged voxel-wise CVs in each com-

artment. Coefficients of variation associated with site were un-

er 10% for T1 and T2 in solid matter compartments at 1.5T

nd 3T. 

. Discussion 

We assessed repeatability and reproducibility of 3D MRF at eight sep-

rate MR imaging systems, which included both 1.5 T and 3 T scanners.

ur study was performed on twelve subjects, and each MR acquisition

ncluded a test and a re-test session with the subject removed from the
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Fig. 3. (a) Representative images from one subject. Each subject had a test-retest assessment at least on a 1.5T and a 3.0T system. Image resolution was 1.125 mm 

isotropic, allowing a high anatomical detail in the quantitative maps. (b) Average values for T1 and T2 for each site in the grey matter, white matter and CSF. 
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canner between sessions. Importantly, our assessment was not limited

o regions of interest, but estimated voxel-wise performance; variabil-

ty was assessed using coefficients of variation and biases using a GLM

nalysis. 

While the biases found by the GLM were similar to those found

n our previous work ( Buonincontri et al., 2019 ), the reproducibility

Vs significantly improved here and the repeatability CVs were im-

roved by a factor of two on average. Three-dimensional acquisitions

ould therefore not only improve upon the anatomical detail, but also

n the precision of the measured parameters. The improvement seen

sing 3D acquisition was at a higher resolution and not at the ex-
ense of scan time, as acquisition time was kept under 10 min. Im-

rovement was also consistent across scanners operating at 1.5T or 3T

eld strength. In addition to showing the differences between the two-

imensional and three-dimensional MRF methods, the data reported

ere builds upon previously-published assessments of reproducibility

rom our group ( Buonincontri et al., 2019 ) and others ( Körzdörfer et al.,

019 ; Ma et al., 2019 ). When directly comparing the CV values obtained,

he results here reported matched or surpassed other quantitative assess-

ents of repeatability and reproducibility in the literature using other

ommon mapping techniques ( Bauer et al., 2010 ; Deoni et al., 2008 ;

andman et al., 2011 ). 



G. Buonincontri, J.W. Kurzawski, J.D. Kaggie et al. NeuroImage 226 (2021) 117573 

Fig. 4. Repeatability assessment. In (a), the localization of the voxel-wise coefficients of variation (CV) is shown in two representative scanners. In (b), the voxel-wise 

CV values from each scanner are reported per tissue class. 
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Importantly, the variability of test-retest and the biases estimated

etween different scanners did not inversely correlate with the num-

er of receivers or field strength. This implies that the scanner with the

ighest SNR or image quality is not necessarily also the best performing

s a quantitative measurement instrument. In addition to accuracy of

he model and reconstruction, several aspects such as repeatable posi-

ioning, adjustments and hardware stability come into play when per-

orming quantitative estimations, which are not usually considered at

his level of detail when designing or using the systems within the nor-

al clinical routine. More sophisticated procedures for positioning or

re-scan, aimed at optimizing quantification in addition to SNR, may

e able to improve upon the current results. Such issues are not lim-

ted to different scanners, but also to hardware and software upgrades
f the same system. In this context, assessing temporal persistence of

ssociated biases would be relevant ( Friedman et al., 2017 ). 

The biases from the GLM were still higher at the interfaces between

ifferent tissues than inside individual tissues, and site 3 displayed more

ias than the other sites. The scanner at site 3 is from an older genera-

ion of systems, displaying the most differences with the other systems

n terms of radiofrequency and gradient hardware. Here we did not aim

o perform a system-wise characterization of the gradient hardware, but

sed a single trajectory delay to correct the k-space trajectory. Despite

he absence of reconstruction-related artifacts by visual inspection, a

ull characterization of systems may be useful in future in order to iden-

ify and correct biases associated with specific hardware. Corrections for

hase and B0 distortions are more demanding in non-Cartesian acquisi-
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Fig. 5. Reproducibility assessment. In (a) the local biases ( 𝛽, in ms for T1 and T2, and in% for nPD, as defined in Eq. (1) ) associated with the individual sites or field 

strength, as estimated by the general linear model; in (b) the voxel-wise reproducibility CVs from all scanners of the same field strength is reported by tissue class. 
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a  
ions than in conventional Cartesian scans. In this context, unaccounted

rajectory errors and gradient delays may produce spill-over of signal

etween different areas ( Moussavi et al., 2014 ). It has been shown pre-

iously that these inaccuracies can corrupt images obtained with non-

artesian acquisitions ( Buonincontri et al., 2014 ), as well as impacting

he estimation of quantitative parameters with MRF ( Berzl et al., 2017 ).

ull system characterization may further improve on this point, deliver-

ng higher reproducibility results. 

The performance of the technique in terms of bias and variability

ould be improved by adding a motion correction procedure during the

econstruction of MRF maps. For this, a technique was recently demon-

trated dividing the data into small segments and accounting for sub-

ect’s motion in a post-processing step ( Kurzawski et al., 2020 ). How-

ver, the spatial encoding used here is not suitable for such motion cor-

ection, which requires a specific trajectory order. In addition to bulk

otion, other physiological signals can also corrupt the measurements,

uch as blood flow and respiratory motion with potentially different

ffects at 1.5T and 3T. Future studies acquiring physiological signals

imultaneously to the MRF signals could improve on physiological mo-

ion characterization and reduction. Further, the combination with ad-

anced acceleration techniques and deep learning inference may have

n additional impact on the efficiency of 3D MRF. Recent work in this

omain have included the combination of 3D MRF with deep learning

ethods and parallel imaging ( Chen et al., 2020 ) or compressed sensing

 Golbabaee et al., 2020 ). 

Our acquisition was based on SSFP, which greatly reduces the sensi-

ivity to B0 inhomogeneities ( Jiang et al., 2014 ). However, T2 and nPD

stimates may still suffer from sensitivity to B1 + and B1- respectively, as

hese cannot be easily added to the signal model with the current acqui-
ition schedule ( Buonincontri and Sawiak, 2016 ). As shown by our data,

he quality of T2 maps acquired with 3D sequences improved over pre-

ious 2D MRF. However, T2 reproducibility biases at 3T still displayed

he typical spatial distribution of B1 + associated with the transmit coil,

hereas, nPD showed typical B1- biases associated with the receiver

oil. Methods including an external B1 + map ( Ma et al., 2018 , 2017 )

r including B1 + directly in the MRF model ( Buonincontri et al., 2017 ;

uonincontri and Sawiak, 2016 ; Cloos et al., 2016 ) may improve T2 re-

roducibility, while methods to correct receiver biases may be useful in

orrecting for nPD inconsistencies ( Deshmane et al., 2017 ). 

One limitation of our study was the low number of subjects scanned

t all locations which could be included in our estimates of the repro-

ucibility CVs. This did not allow to perform a full reproducibility anal-

sis based on intraclass correlation coefficient (ICC) ( Giraudeau et al.,

003 ), but only to perform it on a subset of our data. A full ICC analysis

ould provide a better understanding of the variability associated with

ifferent systems ( Friedman et al., 2008 ; Brown et al., 2011 ). Irrespec-

ively of the low number of subjects scanned at all sites, an advantage of

ur approach was the GLM design to assess reproducibility biases. With

uch a design, we were able to include many scanners and subjects from

ifferent centers, enabling the assessment of multiple biases without the

eed of scanning all subjects at all centers. This study design is extend-

ble to larger numbers of sites, with each subject scanned in at least two

f the sites, but with a sufficient overlap in the design matrix to make a

onfident fit of the model. As seen in our study, despite the high repro-

ucibility, different scanner hardware still has a significant impact on

he quantitative values. 

Future studies including more sites with different scanner hardware

nd setup would be an important step towards standardization of mea-
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urements for quantitative MRI in vivo . Our study was limited to a

ingle-vendor assessment. In order to deliver on the promise of fully-

uantitative MRI, multi-vendor studies are required to achieve stan-

ardization of values. Previous studies, such as ( Lee et al., 2019 ), have

ooked into standardization of relaxometry values, finding significant

ifferences between vendors. Recently, the study of magnetization trans-

er effects was performed in order to reduce vendor-related variability

 Teixeira et al., 2020 ) . Although in this study the same reconstruction

ode was used for all scanners, different vendors and software releases

ay implement different k-space filters, which should also be taken into

ccount for standardization ( Friedman et al., 2006 ). 

While here we focused on the brain, several groups are investigating

ther areas of the body, such as chest ( Cruz et al., 2018 ; Hamilton et al.,

017 ; Serrao et al., 2020 ), pelvis ( Chen et al., 2019 ; Kaggie et al., 2019 ;

u et al., 2017 ), breast ( Chen et al., 2019 ) and musculoskeletal system

 Cencini et al., 2019 ; Cloos et al., 2019 ; Lattanzi et al., 2017 ). Despite

equiring further technical sophistications mainly due to motion, chem-

cal shift artifacts and increased B0/B1 inhomogeneities, works in other

ody regions also increasingly find high repeatability ( Chen et al., 2019 ;

loos et al., 2019 ). Despite applications in the body often requiring 2D

cquisitions, however, some anatomical areas, such as the breast, have

enefitted from 3D acquisitions ( Chen et al., 2019 ). Effective quanti-

ative MRI methods in different body regions are being increasingly

emonstrated and characterised, such that they can become clinically

elevant, and be further developed into tools for disease characteriza-

ion. 

. Conclusion 

We have reported the assessment of the test/retest repeatability with

D MRF in the healthy human brain at 1.5 T and 3 T. Three-dimensional

RF with spiral projection k-space trajectory obtained parametric maps

ith high anatomical detail, as well as highly repeatable and repro-

ucible nPD, T1 and T2 values in a short scan time. Repeatability was

mproved by a factor of two for T1 and T2 in GM and also for T2 in

M, when compared to previous studies using similar analysis but 2D

cquisition, and reproducibility CVs were also improved. These repeata-

ility and reproducibility results further encourage investigations of MR

ingerprinting in the view of translating it to clinical applications, es-

ecially for monitoring disease progression, in single or multi-centre

tudies. 

redIT authors 

Guido Buonincontri, Jan Kurzawski, Matteo Cencini, Pedro A

òmez, Rolf F Schulte, Alessandra Retico: Acquisition and recon-

truction methodology, analysis Software; Joshua D Kaggie, Tomasz

atys, Graziella Donatelli, Paolo Cecchi, Nicola Martini, Francesca

rijia : Data acquisition, curation and analysis; Guido Buonincontri,

erdia A Gallagher, Mirco Cosottini, Graziella Donatelli, Domenico

ontanaro, Michela Tosetti: Conceptualization, supervision, funding

cquisition: All authors: Writing- Reviewing and Editing. Jan Kurza-

ski and Guido Buonincontri contributed equally to this work. 

ata and code availability statement 

In compliance with funder’s policy and institutional ethics approval,

he original parametric maps as well as the corresponding structural

ata for each subject are freely available online ( Buonincontri et al.,

020 ), see 10.5281/ZENODO.3989799 . Scripts to perform the voxel-

ise analyses are freely available ( https://github.com/jk619/test _

etest _ MRF ). 

cknowledgements 

This research was funded by the Italian Ministry of Health and

y Tuscany Region under the project ‘Ricerca Finalizzata’, grant no.
R-2016–02361693. Funding from the Tuscany Government under the

roject Q-MRI of the Intervention Program INFN-RT2 172800 (Bando

iovaniSi 2017 - POR FSE 2014–2020). Funding from the EMPIR Pro-

ramme (18HLT05 QUIERO Project) co-financed by the Participating

tates and from the European Union’s Horizon 2020 Research and Inno-

ation Programme. TM, JDK, FAG are supported by the NIHR Cambridge

RC. The views expressed are those of authors and not necessarily those

f the NHS, the NIHR or the Department of Health and Social Care. 

upplementary materials 

Supplementary material associated with this article can be found, in

he online version, at doi:10.1016/j.neuroimage.2020.117573 . 

eferences 

eixeira, A.G., Neji, R.P., Wood, R., Baburamani, T.C., Malik, A.A., Hajnal, S.J., J.

V., 2020. Controlled saturation magnetization transfer for reproducible multiven-

dor variable flip angle T 1 and T 2 mapping. Magn. Reson. Med. 84, 221–236.

doi: 10.1002/mrm.28109 . 

auer, C.M., Jara, H., Killiany, R., 2010. Whole brain quantitative T2 MRI across multiple

scanners with dual echo FSE: applications to AD, MCI, and normal aging. Neuroimage

doi: 10.1016/j.neuroimage.2010.04.255 . 

erzl, M. , Pfeil, A. , Meyer, C. , Campbell-Washburn, A. , Körzdörfer, G. , Nittka, M. ,

Maier, A. , Pfeuffer, J. , 2017. Improved spiral trajectory correction using the gradient

impulse response function (GIRF) with application to MR Fingerprinting. Proceeding

of the 25th ISMRM, 933 . 

rown, G.G., Mathalon, D.H., Stern, H., Ford, J., Mueller, B., Greve, D.N., McCarthy, G.,

Voyvodic, J., Glover, G., Diaz, M., Yetter, E., Ozyurt, I.B., Jorgensen, K.W.,

Wible, C.G., Turner, J.A., Thompson, W.K., Potkin, S.G., 2011. Multisite reliability

of cognitive BOLD data. Neuroimage. doi: 10.1016/j.neuroimage.2010.09.076 . 

uonincontri, G., Biagi, L., Retico, A., Cecchi, P., Cosottini, M., Gallagher, F.A.,

Gómez, P.A., Graves, M.J., McLean, M.A., Riemer, F., Schulte, R.F., Tosetti, M., Za-

ccagna, F., Kaggie, J.D., 2019. Multi-site repeatability and reproducibility of MR

fingerprinting of the healthy brain at 1.5 and 3.0 T. Neuroimage 195, 362–372.

doi: 10.1016/J.NEUROIMAGE.2019.03.047 . 

uonincontri, G., Kurzawski, J., Kaggie, J., Matys, T., Gallagher, F., Cencini, M., Do-

natelli, G., Cecchi, P., Cosottini, M., Martini, N., Frijia, F., Montanaro, D., Gómez, P.A.,

Schulte, R.F., Retico, A., Tosetti, M., 2020. Three dimensional MRF obtains highly re-

peatable and reproducible multi-parametric estimations in the healthy human brain

at 1.5T and 3.0T. 10.5281/ZENODO.3989799 

uonincontri, G., Methner, C., Krieg, T., Carpenter, T.A., Sawiak, S.J., 2014. Tra-

jectory correction for free-breathing radial cine MRI. Magn. Reson. Imaging

doi: 10.1016/j.mri.2014.04.006 . 

uonincontri, G., Sawiak, S.J., 2016. MR fingerprinting with simultaneous B1 estimation.

Magn. Reson. Med. 76, 1127–1135. doi: 10.1002/mrm.26009 . 

uonincontri, G., Schulte, R.F., Cosottini, M., Tosetti, M., 2017. Spiral MR finger-

printing at 7 T with simultaneous B1 estimation. Magn. Reson. Imaging 41, 1–6.

doi: 10.1016/j.mri.2017.04.003 . 

ao, X., Ye, H., Liao, C., Li, Q., He, H., Zhong, J., 2019. Fast 3D brain MR fingerprint-

ing based on multi-axis spiral projection trajectory. Magn. Reson. Med. 82, 289.

doi: 10.1002/mrm.27726 . 

encini, M., Biagi, L., Kaggie, J.D., Schulte, R.F., Tosetti, M., Buonincontri, G., 2019. Mag-

netic resonance fingerprinting with dictionary-based fat and water separation (DBFW

MRF): a multi-component approach. Magn. Reson. Med. doi: 10.1002/mrm.27628 . 

hen, Y., Fang, Z., Hung, S.C., Chang, W.T., Shen, D., Lin, W., 2020. High-resolution

3D MR Fingerprinting using parallel imaging and deep learning. Neuroimage

doi: 10.1016/j.neuroimage.2019.116329 . 

hen, Y., Panda, A., Pahwa, S., Hamilton, J.I., Dastmalchian, S., McGivney, D.F.,

Ma, D., Batesole, J., Seiberlich, N., Griswold, M.A., Plecha, D., Gulani, V., 2019.

Three-dimensional MR fingerprinting for quantitative breast imaging. Radiology.

doi: 10.1148/radiol.2018180836 . 

loos, M.A., Assländer, J., Abbas, B., Fishbaugh, J., Babb, J.S., Gerig, G., Lattanzi, R.,

2019. Rapid radial T1 and T2 mapping of the hip articular cartilage with magnetic

resonance fingerprinting. J. Magn. Reson. Imaging doi: 10.1002/jmri.26615 . 

loos, M.A., Knoll, F., Zhao, T., Block, K.T., Bruno, M., Wiggins, G.C., Sodickson, D.K.,

2016. Multiparametric imaging with heterogeneous radiofrequency fields. Nat. Com-

mun. doi: 10.1038/ncomms12445 . 

ruz, G., Schneider, T., Bruijnen, T., Gaspar, A.S., Botnar, R.M., Prieto, C., 2018. Accel-

erated magnetic resonance fingerprinting using soft-weighted key-hole (MRF-SOHO).

PLoS ONE 13, e0201808. doi: 10.1371/journal.pone.0201808 . 

eoni, S. , 2010. Quantitative relaxometry of the brain. Top. Magn. Reson. Imaging 21,

101 . 

eoni, S.C.L., Peters, T.M., Rutt, B.K., 2005. High-resolution T1 and T2 mapping of the

brain in a clinically acceptable time with DESPOT1 and DESPOT2. Magn. Reson. Med.

doi: 10.1002/mrm.20314 . 

eoni, S.C.L., Williams, S.C.R., Jezzard, P., Suckling, J., Murphy, D.G.M., Jones, D.K.,

2008. Standardized structural magnetic resonance imaging in multicen-

tre studies using quantitative T1 and T2 imaging at 1.5 T. Neuroimage.

doi: 10.1016/j.neuroimage.2007.11.052 . 

http://10.5281/ZENODO.3989799
https://github.com/jk619/test_retest_MRF
https://doi.org/10.1016/j.neuroimage.2020.117573
https://doi.org/10.1002/mrm.28109
https://doi.org/10.1016/j.neuroimage.2010.04.255
http://refhub.elsevier.com/S1053-8119(20)31058-2/sbref0003
http://refhub.elsevier.com/S1053-8119(20)31058-2/sbref0003
http://refhub.elsevier.com/S1053-8119(20)31058-2/sbref0003
http://refhub.elsevier.com/S1053-8119(20)31058-2/sbref0003
http://refhub.elsevier.com/S1053-8119(20)31058-2/sbref0003
http://refhub.elsevier.com/S1053-8119(20)31058-2/sbref0003
http://refhub.elsevier.com/S1053-8119(20)31058-2/sbref0003
http://refhub.elsevier.com/S1053-8119(20)31058-2/sbref0003
http://refhub.elsevier.com/S1053-8119(20)31058-2/sbref0003
https://doi.org/10.1016/j.neuroimage.2010.09.076
https://doi.org/10.1016/J.NEUROIMAGE.2019.03.047
https://doi.org/10.1016/j.mri.2014.04.006
https://doi.org/10.1002/mrm.26009
https://doi.org/10.1016/j.mri.2017.04.003
https://doi.org/10.1002/mrm.27726
https://doi.org/10.1002/mrm.27628
https://doi.org/10.1016/j.neuroimage.2019.116329
https://doi.org/10.1148/radiol.2018180836
https://doi.org/10.1002/jmri.26615
https://doi.org/10.1038/ncomms12445
https://doi.org/10.1371/journal.pone.0201808
http://refhub.elsevier.com/S1053-8119(20)31058-2/sbref0017
http://refhub.elsevier.com/S1053-8119(20)31058-2/sbref0017
https://doi.org/10.1002/mrm.20314
https://doi.org/10.1016/j.neuroimage.2007.11.052


G. Buonincontri, J.W. Kurzawski, J.D. Kaggie et al. NeuroImage 226 (2021) 117573 

D  

 

F  

 

F  

 

F  

 

 

 

F  

 

G  

 

 

G  

 

G  

 

 

G  

 

 

G  

 

 

 

G  

 

 

 

H  

 

J  

 

 

J  

K  

 

 

 

K  

 

 

K  

 

 

 

L  

 

 

 

L  

 

L  

 

L  

 

 

M  

 

M  

M  

 

M  

 

 

M  

 

M  

P  

 

P  

S  

 

 

T  

W  

 

W  

W  

 

Y  

 

 

eshmane, A. , McGivney, D. , Jiang, Y. , Ma, D. , Griswold, M. , 2017. Proton density map-

ping and receiver bias correction for absolute quantification with MR fingerprinting.

In: Proceedings of the 25th ISMRM, 1358 . 

riedman, L., Glover, G.H., Krenz, D., Magnotta, V., 2006. Reducing inter-scanner vari-

ability of activation in a multicenter fMRI study: role of smoothness equalization.

Neuroimage doi: 10.1016/j.neuroimage.2006.03.062 . 

riedman, L., Nixon, M.S., Komogortsev, O.V., 2017. Method to assess the temporal persis-

tence of potential biometric features: application to oculomotor, gait, face and brain

structure databases. PLoS One. doi: 10.1371/journal.pone.0178501 . 

riedman, L., Stern, H., Brown, G.G., Mathalon, D.H., Turner, J., Glover, G.H., Gollub, R.L.,

Lauriello, J., Lim, K.O., Cannon, T., Greve, D.N., Bockholt, H.J., Belger, A., Mueller, B.,

Doty, M.J., He, J., Wells, W., Smyth, P., Pieper, S., Kim, S., Kubicki, M., Vangel, M.,

Potkin, S.G., 2008. Test-retest and between-site reliability in a multicenter fMRI study.

Hum. Brain Mapp. doi: 10.1002/hbm.20440 . 

riston, K.J., Holmes, A.P., Worsley, K.J., Poline, J. ‐.P, Frith, C.D., Frackowiak, R.S.J.,

1994. Statistical parametric maps in functional imaging: a general linear approach.

Hum. Brain Mapp. doi: 10.1002/hbm.460020402 . 

iraudeau, B., Gomez, M.A., Defontaine, M., 2003. Assessing the reproducibility

of quantitative ultrasound parameters with standardized coefficient of varia-

tion or intraclass correlation coefficient: a unique approach. Osteoporos. Int.

doi: 10.1007/s00198-002-1334-7 . 

olbabaee, M., Buonincontri, G., Pirkl, C., Menzel, M., Menze, B., Davies, M., Gomez, P.,

2020. Compressive MRI quantification using convex spatiotemporal priors and deep

auto-encoders. 

ómez, P.A., Cencini, M., Golbabaee, M., Schulte, R.F., Pirkl, C., Horvath, I., Fallo, G.,

Peretti, L., Tosetti, M., Menze, B.H., Buonincontri, G., 2020. Rapid three-dimensional

multiparametric MRI with quantitative transient-state imaging. Sci. Rep. 10, 13769.

doi: 10.1038/s41598-020-70789-2 . 

ómez, P.A., Molina-Romero, M., Buonincontri, G., Menzel, M.I., Menze, B.H.,

2019. Designing contrasts for rapid, simultaneous parameter quantification and

flow visualization with quantitative transient-state imaging. Sci. Rep. 9, 8468.

doi: 10.1038/s41598-019-44832-w . 

oto, M., Abe, O., Aoki, S., Hayashi, N., Miyati, T., Takao, H., Iwatsubo, T., Yamashita, F.,

Matsuda, H., Mori, H., Kunimatsu, A., Ino, K., Yano, K., Ohtomo, K., 2013. Diffeo-

morphic anatomical registration through Exponentiated lie algebra provides reduced

effect of scanner for cortex volumetry with atlas-based method in healthy subjects.

Neuroradiology. doi: 10.1007/s00234-013-1193-2 . 

racien, R.M., Maiworm, M., Brüche, N., Shrestha, M., Nöth, U., Hattingen, E.,

Wagner, M., Deichmann, R., 2020. How stable is quantitative MRI? – As-

sessment of intra- and inter-scanner-model reproducibility using identical ac-

quisition sequences and data analysis programs. Neuroimage 207, 116364.

doi: 10.1016/j.neuroimage.2019.116364 . 

amilton, J.I., Jiang, Y., Chen, Y., Ma, D., Lo, W.C., Griswold, M., Seiberlich, N., 2017. MR

fingerprinting for rapid quantification of myocardial T1, T2, and proton spin density.

Magn. Reson. Med. doi: 10.1002/mrm.26216 . 

iang, Y., Ma, D., Keenan, K.E., Stupic, K.F., Gulani, V., Griswold, M.A., 2017. Re-

peatability of magnetic resonance fingerprinting T1 and T2 estimates assessed us-

ing the ISMRM/NIST MRI system phantom. Magn. Reson. Med. 78, 1452–1457.

doi: 10.1002/mrm.26509 . 

iang, Y. , Ma, D. , Seiberlich, N. , Gulani, V. , Griswold, M.A. , 2014. MR Fingerprinting

Using Fast Imaging with Steady State Precession (FISP) with Spiral Readout. MRM . 

aggie, J.D., Graves, M.J., Gallagher, F.A., Deen, S., Kessler, D.A., McLean, M.A.,

Buonincontri, G., Schulte, R.F., Addley, H., Sala, E., Brenton, J., 2019. Feasibil-

ity of quantitative magnetic resonance fingerprinting in ovarian tumors for T 1

and T 2 mapping in a PET/MR setting. IEEE Trans. Radiat. Plasma Med. Sci.

doi: 10.1109/trpms.2019.2905366 . 

örzdörfer, G., Kirsch, R., Liu, K., Pfeuffer, J., Hensel, B., Jiang, Y., Ma, D., Gratz, M.,

Bär, P., Bogner, W., Springer, E., Cardoso, P.L., Umutlu, L., Trattnig, S., Griswold, M.,

Gulani, V., Nittka, M., 2019. Reproducibility and repeatability of MR fingerprinting

relaxometry in the human brain. Radiology. doi: 10.1148/radiol.2019182360 . 
urzawski, J.W., Cencini, M., Peretti, L., Gómez, P.A., Schulte, R.F., Donatelli, G., Cosot-

tini, M., Cecchi, P., Costagli, M., Retico, A., Tosetti, M., Buonincontri, G., 2020. Retro-

spective rigid motion correction of three–dimensional magnetic resonance fingerprint-

ing of the human brain. Magn. Reson. Med. 84, 2606–2615. doi: 10.1002/mrm.28301 .

andman, B.A., Huang, A.J., Gifford, A., Vikram, D.S., Lim, I.A.L., Farrell, J.A.D.,

Bogovic, J.A., Hua, J., Chen, M., Jarso, S., Smith, S.A., Joel, S., Mori, S.,

Pekar, J.J., Barker, P.B., Prince, J.L., van Zijl, P.C.M., 2011. Multi-

parametric neuroimaging reproducibility: a 3-T resource study. Neuroimage

doi: 10.1016/j.neuroimage.2010.11.047 . 

attanzi, R., Asslaender, J., Cloos, M., 2017. Rapid proton density, T1 and T2 mapping

for comprehensive hip cartilage evaluation with magnetic resonance fingerprinting.

Skeletal Radiol doi: 10.1007/s00256-017-2691-9 . 

ee, Y., Callaghan, M.F., Acosta-Cabronero, J., Lutti, A., Nagy, Z., 2019. Establishing intra-

and inter-vendor reproducibility of T 1 relaxation time measurements with 3T MRI.

Magn. Reson. Med. doi: 10.1002/mrm.27421 . 

iao, C., Bilgic, B., Manhard, M.K., Zhao, B., Cao, X., Zhong, J., Wald, L.L., Set-

sompop, K., 2017. 3D MR fingerprinting with accelerated stack-of-spirals and

hybrid sliding-window and GRAPPA reconstruction. Neuroimage 162, 13–22.

doi: 10.1016/j.neuroimage.2017.08.030 . 

a, D., Coppo, S., Chen, Y., McGivney, D.F., Jiang, Y., Pahwa, S., Gulani, V., Gris-

wold, M.A., 2017. Slice profile and B1 corrections in 2D magnetic resonance finger-

printing. Magn. Reson. Med. 78, 1781–1789. doi: 10.1002/mrm.26580 . 

a, D., Gulani, V., Seiberlich, N., Liu, K., Sunshine, J.L., Duerk, J.L., Griswold, M.A., 2013.

Magnetic resonance fingerprinting. Nature. doi: 10.1038/nature11971 . 

a, D., Jiang, Y., Chen, Y., McGivney, D., Mehta, B., Gulani, V., Griswold, M., 2018. Fast

3D magnetic resonance fingerprinting for a whole-brain coverage. Magn. Reson. Med.

doi: 10.1002/mrm.26886 . 

a, D., Jones, S.E., Deshmane, A., Sakaie, K., Pierre, E.Y., Larvie, M., McGivney, D., Blüm-

cke, I., Krishnan, B., Lowe, M., Gulani, V., Najm, I., Griswold, M.A., Wang, Z.I., 2019.

Development of high-resolution 3D MR fingerprinting for detection and characteriza-

tion of epileptic lesions. J. Magn. Reson. Imaging doi: 10.1002/jmri.26319 . 

a, D., Pierre, E.Y., Jiang, Y., Schluchter, M.D., Setsompop, K., Gulani, V., Griswold, M.A.,

2016. Music-based magnetic resonance fingerprinting to improve patient comfort dur-

ing MRI examinations. Magn. Reson. Med. doi: 10.1002/mrm.25818 . 

oussavi, A., Untenberger, M., Uecker, M., Frahm, J., 2014. Correction of gradient-

induced phase errors in radial MRI. Magn. Reson. Med. doi: 10.1002/mrm.24643 . 

enny, W., Friston, K., Ashburner, J., Kiebel, S., Nichols, T., 2007. Statistical parametric

mapping: the analysis of functional brain images, statistical parametric mapping: the

analysis of functional brain images. 10.1016/B978-0-12-372560-8.X5000-1 

oon, C.S., Henkelman, R.M., 1992. Practical T2 quantitation for clinical applications. J.

Magn. Reson. Imaging doi: 10.1002/jmri.1880020512 . 

errao, E.M., Kessler, D.A., Carmo, B., Beer, L., Brindle, K.M., Buonincontri, G., Gal-

lagher, F.A., Gilbert, F.J., Godfrey, E., Graves, M.J., McLean, M.A., Sala, E.,

Schulte, R.F., Kaggie, J.D., 2020. Magnetic resonance fingerprinting of the pancreas

at 1.5 T and 3.0 T. Sci. Rep. doi: 10.1038/s41598-020-74462-6 . 

ofts, P. , 2003. Quantitative MRI of the Brain: Measuring Changes Caused by Disease,

Wiley. Wiley . 

arntjes, J.B.M., Dahlqvist Leinhard, O., West, J., Lundberg, P., 2008. Rapid magnetic

resonance quantification on the brain: optimization for clinical usage. Magn. Reson.

Med. 60, 320–329. doi: 10.1002/mrm.21635 . 

eigel, M., 2015. Extended phase graphs: dephasing, RF pulses, and echoes – Pure and

simple. J. Magn. Reson. Imaging doi: 10.1002/jmri.24619 . 

hittall, K.P., MacKay, A.L., Graeb, D.A., Nugent, R.A., Li, D.K.B., Paty, D.W., 1997. In

vivo measurement of T2 distributions and water contents in normal human brain.

Magn. Reson. Med. doi: 10.1002/mrm.1910370107 . 

u, A.C., Badve, C., Ponsky, L.E., Pahwa, S., Dastmalchian, S., Rogers, M., Jiang, Y.,

Margevicius, S., Schluchter, M., Tabayoyong, W., Abouassaly, R., McGivney, D., Gris-

wold, M.A., Gulani, V., 2017. Development of a combined Mr fingerprinting and dif-

fusion examination for prostate cancer. Radiology doi: 10.1148/radiol.2017161599 . 

http://refhub.elsevier.com/S1053-8119(20)31058-2/sbref0020
http://refhub.elsevier.com/S1053-8119(20)31058-2/sbref0020
http://refhub.elsevier.com/S1053-8119(20)31058-2/sbref0020
http://refhub.elsevier.com/S1053-8119(20)31058-2/sbref0020
http://refhub.elsevier.com/S1053-8119(20)31058-2/sbref0020
http://refhub.elsevier.com/S1053-8119(20)31058-2/sbref0020
https://doi.org/10.1016/j.neuroimage.2006.03.062
https://doi.org/10.1371/journal.pone.0178501
https://doi.org/10.1002/hbm.20440
https://doi.org/10.1002/hbm.460020402
https://doi.org/10.1007/s00198-002-1334-7
https://doi.org/10.1038/s41598-020-70789-2
https://doi.org/10.1038/s41598-019-44832-w
https://doi.org/10.1007/s00234-013-1193-2
https://doi.org/10.1016/j.neuroimage.2019.116364
https://doi.org/10.1002/mrm.26216
https://doi.org/10.1002/mrm.26509
http://refhub.elsevier.com/S1053-8119(20)31058-2/sbref0033
http://refhub.elsevier.com/S1053-8119(20)31058-2/sbref0033
http://refhub.elsevier.com/S1053-8119(20)31058-2/sbref0033
http://refhub.elsevier.com/S1053-8119(20)31058-2/sbref0033
http://refhub.elsevier.com/S1053-8119(20)31058-2/sbref0033
http://refhub.elsevier.com/S1053-8119(20)31058-2/sbref0033
https://doi.org/10.1109/trpms.2019.2905366
https://doi.org/10.1148/radiol.2019182360
https://doi.org/10.1002/mrm.28301
https://doi.org/10.1016/j.neuroimage.2010.11.047
https://doi.org/10.1007/s00256-017-2691-9
https://doi.org/10.1002/mrm.27421
https://doi.org/10.1016/j.neuroimage.2017.08.030
https://doi.org/10.1002/mrm.26580
https://doi.org/10.1038/nature11971
https://doi.org/10.1002/mrm.26886
https://doi.org/10.1002/jmri.26319
https://doi.org/10.1002/mrm.25818
https://doi.org/10.1002/mrm.24643
https://doi.org/10.1002/jmri.1880020512
https://doi.org/10.1038/s41598-020-74462-6
http://refhub.elsevier.com/S1053-8119(20)31058-2/sbref0050
http://refhub.elsevier.com/S1053-8119(20)31058-2/sbref0050
https://doi.org/10.1002/mrm.21635
https://doi.org/10.1002/jmri.24619
https://doi.org/10.1002/mrm.1910370107
https://doi.org/10.1148/radiol.2017161599

	Three dimensional MRF obtains highly repeatable and reproducible multi-parametric estimations in the healthy human brain at 1.5T and 3T
	1 Introduction
	2 Material and methods
	2.1 Study design
	2.2 MRF acquisition and reconstruction
	2.3 Analysis
	2.4 Data and code availability statement

	3 Results
	4 Discussion
	5 Conclusion
	CredIT authors
	Data and code availability statement
	Acknowledgements
	Supplementary materials
	References


