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Kurzfassung

Gravitationsgetriebene Naturgefahren wie Steinschlag, Murenabgénge und La-
winen stellen eine ernst zu nehmende Gefahr dar und werden mit der aktuel-
len Entwicklung der Erderwdarmung immer héufiger. Da sich diese Ereignisse oft
nicht verhindern lassen, werden speziell entwickelte Schutzstrukturen an expo-
nierten Stellen aufgebaut, um vor allem Infrastruktur und besiedelte Gebiete zu
schiitzen. Durch die Komplexitdt dieser Naturgefahren und ihrer ausgepragten
Wechselwirkung mit den Schutzstrukturen sind vereinfachte Lastansitze oft nicht
anwendbar. Um die Analyse der Auswirkung des Einschlags auf Schutzstruktu-
ren zu ermoglichen, stellt diese Arbeit eine modulare, partitionierte Simulati-
onsumgebung vor. Diese erlaubt die Kopplung verschiedener numerischer Me-
thoden, indem sie eine passende und effiziente Schnittstelle bereitstellt. Dabei
wird das Hauptaugenmerk auf die Simulation des Einschlags von Steinen in fle-
xible Schutzstrukturen gelegt. Die Steine werden mittels der Diskrete-Elemente-
Methode modelliert und simuliert. AnschlieBend kommt die Finite-Elemente-
Methode zur Anwendung, um die passende Strukturantwort auf die Aufpralllas-
ten zu berechnen.

Flexible Schutzstrukturen sind so konstruiert, dass sie grolle Verformungen er-
lauben. Dadurch entsteht ein langer Bremsweg, der die Dissipation groRer Ener-
gien ermdglicht. Aus diesem Grund finden sich viele verschiedene und komple-
xe Komponenten in der Schutzstruktur wieder. Daraus ergeben sich besondere
Herausforderungen an die Modellierung mittels der Finiten Elemente Methode.
Um reale Szenarien zu simulieren, wird in dieser Arbeit die effiziente Modellie-
rung von Strukturelementen, einschlagenden Objekten und die Integration von
Geldndedaten ausfiihrlich diskutiert.

Als methodischer Kernpunkt dieser Arbeit dient die partitionierte Kopplung ver-
schiedener Methoden. Das Hauptaugenmerk liegt hierbei auf der Kopplung der
Diskrete-Elemente-Methode mit der Finite-Elemente-Methode und ist so mo-
dular entwickelt, dass beliebige Methoden zusammengebracht werden konnen.
Exemplarisch wird das mit der Partikel Finite Elemente Methode und der Ma-
terialpunktmethode demonstriert. Fiir den generischen Einsatz beschreibt diese
Arbeit verschiedene Kopplungsalgorithmen, vergleicht sie und erldutert den Im-
plementierungsprozess. Dabei werden eine schwache Kopplung und eine starke
Kopplung mittels Gauss-Seidel in Kombination mit einer Aitken Methode pri-
sentiert.

Mit der Berechnung mehrerer grofler Steinschlagschutzsysteme schlief3t diese
Arbeit und zeigt durch die Validierung anhand von Feldversuchen in den Schwei-
zer Bergen und Kanada ihr Potenzial. So erlaubt die modulare Kopplungsum-
gebung eine effiziente Analyse von Steineinschlidgen in flexible Schutzstruktu-
ren. Schlussendlich werden weitere Anwendungsmoglichkeiten mit verschiede-
nen Komplexitdten prasentiert, um die generische Einsetzbarkeit auf andere Ge-
biete der Impaktsimulationen aufzuzeigen.






Abstract

Gravity-driven natural hazards, such as rockfalls, debris flow, and avalanches,
represent a severe danger and are becoming more frequent with the current de-
velopment of global warming. Since these events often cannot be prevented,
specially designed protective structures are being built in exposed locations, pri-
marily to protect infrastructure and populated areas. Due to the complexity of
these natural hazards and their pronounced interaction with protective struc-
tures, simplified load approaches are often not applicable. To enable the analysis
of the impact on protective structures, this work presents a modular, partitioned
simulation environment. It allows the coupling of different numerical methods
by providing a suitable and efficient interface. The main focus is on the simula-
tion of the impact of rocks on flexible protective structures. First, the rocks are
modeled and simulated using the discrete element method. The finite element
method is then applied to calculate the appropriate structural response to the
impact loads.

Flexible protective structures are designed to allow large deformations. This re-
sults in a long braking distance, which allows for the dissipation of large energies.
For this reason, many different and complex components are found in the pro-
tective structure, leading to particular challenges for modeling using the finite
element method. In order to simulate real scenarios, the efficient modeling of
structural elements, impacting objects, and the integration of terrain data is dis-
cussed in detail in this dissertation.

The partitioned coupling of different methods serves as the methodological core
of this work. The main focus lies on the coupling of the discrete element method
with the finite element method and is developed in such a modular way that ar-
bitrary methods can be brought together. This is exemplified by the particle fi-
nite element method and the material point method. The dissertation describes
different coupling algorithms, compares them, and explains the implementation
process for generic use. Weak coupling and strong coupling using Gauss-Seidel
in combination with an Aitken method are presented.

The computation of several large rockfall protection systems concludes this work
and demonstrates its potential through validation using field tests in the Swiss
and Canadian mountains. Thus, the modular coupling environment allows effi-
cient rockfall analysis in flexible protection structures. Finally, further applica-
tion possibilities with different complexities are presented to show the generic
applicability to other fields of impact simulations.
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CHAPTER 1

Introduction

Gravity-driven natural hazards such as rockfall, avalanches, or mudflows pose an
extreme danger to people and infrastructure. The current developments in global
warming are leading to increasingly frequent natural disasters. This trend can
also be observed in the number of scientific publications. Figure 1.1* shows the
number of publications since 1975 that deal with the keyword "natural hazard".
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Figure 1.1: Increasing number of scientific publications over time containing
the keyword "natural hazard".

Especially in mountainous areas settlements and roads have to be protected.
If no preventive measures can be taken, suitable protective structures must be
installed. Due to the high energies that gravity-driven natural hazards usually
bring, flexible protection structures are preferred over rigid structures. Flexibility
is achieved using nets and cables, which allows large deformations of the pro-
tective structure. As a result, impacting objects experience a longer braking dis-
tance, resulting in slower braking accelerations. Like other extreme load cases
such as wind [129, 131], avalanches [76, 77], and mudflows [125, 127], where load
cause and structural response are in strong interaction, simple load approaches
are typically not sufficient or work only for limited applications [134]. To support

* The data is obtained from https://app.dimensions.ai/



2 1. Introduction

the engineer in the design process, a combination of experiments and numerical
simulations is recommended. Simulations do not claim to replace experiments
entirely but should be used as an additional tool to support the design process
and supplement costly and complex experiments. They show their strength, es-
pecially in the preliminary design and the investigation of construction details.
Changes such as cable positions and different mesh types can be investigated ef-
ficiently without performing new tests for each change. The experiments should
be equal partners besides the simulations and serve the final validation of de-
signs. Furthermore, in the course of this work, it will be found that material pa-
rameters of the simulation often have to be tuned with the help of experimental
data. For this purpose, this dissertation develops a suitable simulation environ-
ment to analyze the interaction of protective structures and impacting objects
numerically.

With [90, 91] the first investigations of numerical rockfall simulations can be
found. It is learned that underwater anti-submarine nets inspired the design
idea of the protective nets. They deal with experiments and first steps towards
a numerical tool for analyzing rockfalls. [90, 91]’s work is performed in the soft-
ware ECRANS. Shortly after that, [56]’s work is developed, whereby the numerical
modeling of unique ring elements is advanced. Further experiments also take
place, leading to the calibration of simulation results. In [56, 124] the foundation
for the simulation software FARO is laid and eventually further developed. Thus,
one of the first well-functioning numerical tools for the analysis of rockfalls is
created with FARO. It uses the Finite Element Method (FEM) [122] to model the
structure while the impacting object is thereby modeled as a perfect sphere with
an elastic boundary layer for realistic load transfer. There are also references to
modeling arbitrarily shaped, non-spherical objects, but this idea is not explored
further and is not implemented either. Many publications in this field, such as
[20, 43, 83, 116, 117] are produced based on the ABAQUS software from this time
on. Some of them [43] develop new element formulations in ABAQUS and drive
its popularity. The development of new simulation tools does not diminish, and
programs that rely entirely on the Discrete Element Method (DEM) [32] emerge
as a result. The impacting objects are modeled as discrete particles, while the
protective structure itself is composed of many small particles, which exchange
specific forces among themselves and thus act like springs. Following this, PFC
from [10] and GENEROCK from [30] are worth mentioning. Moreover, the YADE
[70, 113] software is frequently used and keeps appearing in recent publications,
such as [39, 95]. It also uses pure DEM to model the impacting objects and the
protection structures [14, 42].

Building on the developments of [56, 124], many publications deal with the sim-
ulation and modeling of rockfall protection systems. [43] develops the so-called
chain-link element, which allows a high-resolution modeling of the nets and
their internal contact nodes. [125] takes up this element formulation to simulate
mudflow protection nets via FSI and thus builds on the work of [127]. However,
the question arises whether the detailed modeling of all possible motion free-
doms of the meshes makes sense. The exact modeling often results in overhead,
especially if the global structural behavior is of interest. To reduce the complex-
ity of structural modeling, [117] introduces a hybrid modeling approach. Here,
the interesting and exposed locations in the Finite Element (FE) mesh are mod-



eled at high resolution, while edge regions are modeled coarsely. Works such as
[37, 83, 100] also address the issue of appropriate structural modeling and use
shells and isotropic plate models. [20, 58] deal in detail with the so-called "bullet
effect". In this context, analytical equations are derived based on energy terms
to analyze the perforation of protective nets. This is accompanied by numerical
simulation in ABAQUS, where the rocks are modeled as polyhedra and the chain-
link elements of [43] are used.

In order to extend the previous work and introduce a new, efficient approach to
analyze the interaction of impacting objects and flexible protective structures,
this work presents the partitioned coupling of different numerical methods. It
brings together different numerical methods by partitioning the actual physics.
This results in the advantage that all simulation participants can be investigated
and implemented separately. Furthermore, the coupling method is formulated
generically so that different methods can be combined. In extreme cases, even
without direct access to the individual computer codes. This is called the cou-
pling of black box codes. Usually, black box coupling is not advisable because
detailed knowledge about all simulation participants is desired. Therefore, no
black box solvers are used in this work, and detailed investigation and further
development in all simulation parts are performed. Although the presented cou-
pling algorithm is kept generic to bring together different numerical methods,
this work focuses on the coupling of DEM and FEM to simulate the impact of
rocks into flexible protective structures.

Besides the advantages of the individual treatment of the simulation participants,
the division of the physics creates challenges. It results in the additional task of
treating the common interface correctly. For this purpose, this dissertation ex-
plains the appropriate interface equations and presents various coupling algo-
rithms. As described in [45], there are several ways to simulate partitioned sys-
tems. Many publications, such as [73, 74, 129, 130, 131] already deal with this
topic in Fluid-Structure Interaction (FSI). Furthermore, a distinction is made be-
tween weak and strong coupling algorithms, with higher complexities in each
case. While for many cases, the weak coupling is sufficient, which exchanges
data once and subsequently advances in time, strong coupling methods have to
be used if the data like initial velocities or masses of the simulation participants
differ strongly from each other. Additionally, the time step size also plays a cru-
cial role. In the course of this work, the ideas of the mentioned publications are
taken up, and a Dirichlet-Neumann [110] coupling algorithm is designed, which
allows the strong coupling for the case of DEM-FEM. It employs a fixed-point
iteration in conjunction with an Aitken relaxation [1]. The effects of these two
weak and strong coupling algorithms on various smaller systems are eventually
investigated to simulate real protective structures. Finally, further validations
and benchmark tests are calculated to test the presented coupling algorithms.
Further developments not only take place on the global coupling level but also
relate to the individual components. Thus, in contrast to [124], this work does
not only use spherical modeling of the impacting objects, but clusters [68] of dis-
crete spheres. This feature allows the approximation of arbitrarily shaped rocks.
Especially for rockfalls with high rotational velocities and non-regular shapes,
the use of perfect spherical shapes quickly reaches its limits. The advantage
over polyhedral geometries, where the impacting object is discretized with sur-
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face elements, is shown in more effective and inexpensive contact algorithms [80,
112] and is discussed in detail throughout this dissertation. Moreover, it differs
from developments such as [10] with PFC and [30] with GENEROCK in that not the
same method (DEM) is used to model the rocks and the structure. The coupling
method of this work allows using the best suitable methods for the respective
simulation participants. As a result, the DEM and the FEM can be efficiently
brought together. While the structure modeling through the FEM represents a
clear advantage, the use of DEM for modeling the structure can be found among
others also in [9, 40, 119].

New approaches are also provided in the field of FEM. It is used to calculate the
appropriate structural response to the DEM contact forces by efficiently solving
dynamic structural problems. Various element formulations and material laws
suitably represent the complex constructions of flexible protection structures in
a numerical model. The formulations of particular interest are described in de-
tail in this dissertation, and alternative modeling options are discussed. Plastic,
hyper-elastic, and elastic material laws are used, and unique element formula-
tions can represent, among others, sliding cable nodes [13] and wrinkling surface
structures [86]. Since the structure is resolved globally, micro-level formulations
are deliberately avoided. For this reason, strain-rate dependent material laws are
not used, which would instead find their application in the impact on rigid struc-
tures. Geometrically non-linear finite element formulations are used to simulate
the large deformations of the flexible protection structures.

In order to subject the coupling method to the final test, field experiments of
large rockfall protection structures are simulated towards the end of the thesis.
Close cooperation with the Swiss company Geobrugg has led to the analysis of
several experiments. Therefore, based on these data, various studies on the ap-
propriate modeling of the impacting objects and the structure can be performed.
Different real protective structures are simulated, and good agreements with the
experimental results are found. The agreement of the simulation with the exper-
iments inspires confidence in the presented coupling methodology.

Conducive to a complete simulation environment, the inclusion of terrain data
into the numerical model is also discussed. Considering the surrounding terrain,
its influence can be included in the simulation. This opens up a wide range of
new application possibilities. For example, possible impact positions and impact
velocities can be determined in this way. Furthermore, the inclusion of terrain
data allows an optimization of the position of the protective structure and the
calculation of possible worst-case scenarios.

The implementation of the presented coupling methodology and all required
components is performed in the open-source multi-physics software Kratos [33,
34, 47]. It is mainly written in C++ [115] and provides a Python [72] interface.
Thus, regarding the aforementioned earlier code developments, this work joins
a long line of innovative developments in the field of numerical simulations of
rockfalls.



Listing of the chapter contents

For better orientation within this work, the content is structured in bullet points
below.

Chapter 2

Chapter 3

introduces the flexible protection structures that are the subject of this the-
sis.

gives a detailed discussion about the background theory of the applied
methods.

Section 3.1 discusses the structural mechanics fundamentals.

Section 3.2 introduces the necessary FEM equations and discusses all applied el-

ement formulations and material laws.

Section 3.3 gives an introduction on the DEM solution procedure and discusses

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Chapter 9

important aspects of the method.

describes the partitioned coupling scheme. It discusses the interface equa-
tions, efficient data handling and transfer, and coupling algorithms. Var-
ious validation cases and benchmark tests follow to test the coupling and
show its performance.

presents two different real-scale experiments and shows the application of
the proposed coupling scheme. This chapter also includes a discussion of
the appropriate modeling of both the impacting object and the structure
itself.

then discusses the inclusion of terrain data in the coupled simulation and
points out its advantages and possible application cases.

shows the possibility to apply the results of this work to other applications.
The car wheel impact on a racetrack protection net and a human head im-
pact on an inflated cushion introduce new application cases for the DEM-
FEM coupling. Additionally, two other particle methods are employed in a
coupled simulation to show the generic application of the herein demon-
strated coupling method.

introduces the software environment and clarifies which developments
have arisen as a direct result of this dissertation.

concludes by summarizing this work and identifies further potential areas
of research.






CHAPTER 2

Flexible Protection Structures

Flexible protective structures represent exceptional designs. Every detail is designed
to allow as much deformation as possible and to absorb the maximum energy. Un-
like rigid structures, such as concrete walls, this creates challenges not only for the
actual construction but also for creating an adequate FE model. The unique de-
signs and modes of action of flexible protective structures are discussed below to
lay the foundation for later discussions concerning numerical models.

Especially in mountainous areas, rock-
falls, debris flows, and avalanches re-
peatedly cause the destruction of in-
frastructure and heavily populated ar-
eas [41, 64, 109, 126, 135]. Since
these events often cannot be pre-
vented, protective structures are in-
stalled at exposed locations. There
are many different types of protec-
tion structures against natural disas-
ters. Flexible nets, as shown in Fig-
ures 2.1 and 2.2a, are used to allow
large deformations and thus extend
the braking distance. The extended
braking distance reduces braking ac-
celeration and allows for a smooth load
transfer which reduces peak loads and
maximum stresses. In the case of
rigid barriers, much higher maximum
transient loads occur because almost

Figure 2.1: Ring net with debris.

no deformation of the structure can take place, and thereby the impacting medium
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(rocks, avalanches, mudflows) is abruptly decelerated. Rigid protection struc-
tures as shown in Figure 2.2b are therefore rather rarely employed.

= < 4 3 ; o3

(a) Flexible mud flow barrier in Switzerland. (b) Rigid mud flow barrier in
Switzerland.

Figure 2.2: Comparison of a flexible and a rigid mud flow barrier in Switzer-
land. The flexible structure has been added approximately 200m
downstream of the rigid barrier.

Flexible protective structures can be further divided into two subcategories. A
distinction is made between active and passive measures. Figure 2.3 demon-
strates the two main categories of flexible protection structures:

¢ Active measures are actively preventing rock detachment. A well known
example is the near-surface net construction in Figure 2.3a. The calcula-
tion of active measures is not part of this dissertation since it is a quasi-
static load for which equivalent load models can be developed. The chal-
lenge is to determine the exact endangered areas in order to protect them
appropriately.

» Passive measures do not prevent the rockfall but protect vulnerable areas,
such as infrastructure and populated areas, from its action. They can be
further classified in self-cleaning and non-self-cleaning [103]. See Figure
2.3c and Figure 2.3b, respectively.

The construction types in Figures 2.3c, 2.3d are called Attenuator barriers and
can be assigned to passive measures. A numerical simulation follows in section
5.2.1. Instead of catching and arresting the impacting rock, they act as a curtain
and guide it to a safe zone. The safe zone can subsequently be easily cleaned, and
the construction normally does not need to be replaced after impact. Attenuator
barriers have been employed for several decades [100] and have been extensively
tested in the field (3, 52, 60, 132].

In general, maximizing the braking distance and maximizing the energy that can
be absorbed, is the goal of the designs. Various elements found in the design of



(c) Kaikoura State Highway, passive. (d) Attenuator experiment after impact. Photo-

graph of the experiment discussed in section
5.2.1.

Figure 2.3: Comparison of active and passive rockfall protection, adapted
from [103]. All photographs are property of Geobrugg
(https://www.geobrugg.com).

the flexible protective structures help absorb as much energy as possible. Con-

cerning the FE modeling of the protective structures, it is convenient to discuss
each element.
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Cable Net

The core of the flexible protection structures is the net itself. As can be seen in
Figure 2.3, it usually consists of rings that are connected or a mesh fence-like net.
These are often combined, as in Figure 2.3b, to create a primary structure and
a secondary net that retains smaller debris. This type of design takes advantage
of the properties of the steel wires within these nets while saving material. [90,
91] mention that these rings were originally used in underwater anti-submarine
structures. The appropriate FE modeling is discussed in section 3.2.7.4.

Cables and Sliding Nodes

One effective way of transferring loads is to avoid compression forces in the sys-
tem. By avoiding buckling problems, smaller cross-sectional areas can be se-
lected. Flexible protective structures primarily use cables to tie the structure to
the rock. The construction of cables allows an increased equivalent Young’s Mod-
ulus and thus advantages in load transfer.

[75] expresses it appropriately: "Cable structures such as suspension bridges, rope-
ways, and suspension roofs are chosen when large spans are bridged with as little
material as possible. [...] In contrast to compression members, very high material
strengths can be fully utilized in tension members. Since thin wires can be pro-
duced with at least four times the strength of thick sectional steel, wire cables are
particularly suitable for tension members."*

In order to allow the largest possible deformations, sliding edge cables are also
installed at the edges of the protective nets. These can be seen in Figure 2.3.
They run along the edges and allow the nets to slide along them, which is only
restricted by friction. This detail requires increased modeling effort and is de-
scribed in section 3.2.7.3.

Structural Energy Dissipation Members

The impact energy can be immense in some cases and must be efficiently re-
moved and absorbed. Energy absorption elements play an important role in this
process. They are installed between the ropes and the anchorages in the rock and
absorb energy via friction and plasticity. Figure 2.4 shows two different variants
of these braking elements. Solid steel cross-sections are bent when the protec-
tive structure is loaded, consuming energy in the process. In order to include
these elements in the numerical simulation, a plastic material law is used and
explained in section 3.2.6.4.

* Freely translated from [75] p. 4.
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(a) Ring elements. (b) Metal sheets.

Figure 2.4: Photographs of the energy dissipation elements, taken in Walen-
stadt, Switzerland.

Anchors and Supports

Additional freedom of movement is brought into the system by suitable support
conditions. Figure 2.5 shows typical connection details to the rock or, as seen
here, into the ground. Clamped supports are not used, as they would create ad-
ditional constraints. The support conditions in Figure 2.5 do not transmit mo-
ments, and the connecting posts can rotate freely around the support.

() Side view. (b) Front view.

Figure 2.5: The columns are not clamped at the foundation and thus do not
transfer moments. As the columns are connected to the rest of the
structure only at the top, truss elements are sufficient to model the
respective load carrying behavior.
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CHAPTER 3

Theoretical Background

In order to lay the foundations for the presented coupling methodology, the under-
lying theories of the FEM and the DEM are explained in this chapter. Even though
the coupling methodology can be applied to different particle methods, this chap-
ter is limited to the detailed description of the DEM, as this is the basis for the rock-
fall simulations. The detailed description of the FEM is preceded by a discussion of
the general equations of structural mechanics. This allows the detailed explana-
tion of the required structural elements, such as trusses, cables, beams, and surface
elements. The notation will be close to the writing from [6, 61].

3.1 Structural Mechanics

The path to the strong form of the structural equilibrium is explained below to bet-
ter explain the derivation of the required structure elements. In the beginning, the
kinematic equations are established, which are used in the following to describe
the reference geometry and the current geometry. This is followed by the derivation
of the strong equilibrium form, which is derived from the momentum balance.
Unfortunately, although the strong form can be found in several textbooks, the
derivation, starting from the momentum balance, is often neglected.

3.1.1 Kinematics

The displacement field u is used to track the deformation of an arbitrary position
Xin the undeformed reference geometry. With the help of the following mapping,
the position vector x in the current geometry can be expressed, depending on the
time 7.

x(H)=X+u(s). 3.1)
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It turns out to be advantageous to represent the position vectors in different
bases. Especially the global Cartesian coordinate system e; and the co- and con-
travariant bases in the current configuration g;, gi and the reference configura-
tion G;,G! are attractive. Following equation 3.2, the respective base vectors are
obtained with the help of the derivative of the position vectors with respect to the
co- and contravariant curvilinear coordinates ¢;, ¢ i

, o ox
x=x'e;=¢;g' =¢'g; —gi=
o0&t
X (3.2)
X=Xle;=¢,G'=¢'6; —Gj= —.
1 él é‘ 12 1 aél

The appropriate transformation of covariant and contravariant bases using the
respective metrics is given in Table 3.1 below.

Deformed Reference
Covariant Base Vectors 8i=8ijg G; =G;;G/
Contravariant Base Vectors | g'=g'/g; G'=GYG;
Covariant Metric 8ij=8i'8 | Gij=Gi Gj
Contravariant Metric gl=g"-g/ | GY=G"G/

Table 3.1: Co- and contravariant base vectors and metrics.

Gy
- x (1) =X+u(r). 81
G
Figure 3.1: Polar Decomposition as described in equation 3.3, adapted from

[6].

Additional tensors are used to simplify the element formulations and material
descriptions. Figure 3.1 visualizes that any reference domain Qg can be trans-
formed into the current geometry Q using the deformation gradient &. One
possibility is to perform the complete deformation in two steps. Here the right
stretch tensor U describes the stretch, and thus a local shape change and the ro-
tation tensor R rotates the geometry afterward. The division of the deformation
gradient into U and R is called polar decomposition [61].
ou

&':@:H—:g-@(ﬂ:l{u (3.3)
X ax ’ '
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For some of the material formulations that follow later in this work, it is helpful
to work with the eigenvalues A? of U. The right Cauchy-Green tensor C is then
calculated, by exploiting the orthonormalig of R* and doing a spectral decom-
position with the help of the eigenvectors n7,
2 : .
c=F"F=0"u=(A) nfon!=C;;6' a6/, 3.4)
The eigenvalues JL’? of U describe the principal stretches [6] and can be calcu-

lated by solving the associated eigenvalue problem’. Instead of the deformation
gradient or principal stretches, various strain measures are also suitable for el-
ement and material formulation. Especially the geometrically non-linear strain
measures, Green-Lagrange E and Euler-Almansi e are used.

E:%(?TSF—[I)Z%(C—U)Z%(gij_Gij)Gix’Gj' 2
e:%(ﬂ—.‘fﬁ'_T.?/"_l) =§(gij—Gij)gi®gj- 3.6)

Remark: Coaxial Tensors

Following [6]: E, U, C are coaxial tensors. The eigenvectors, they share,
represent the principal stretch directions in the reference configuration.

3.1.2 Momentum Balance

In order to derive the strong form of the structural equilibrium, it is convenient to
start at the linear (translational) momentum L. Then, the relation between mass
and velocity can be described by integrating the current mass density p and the
velocity vector field u over the current domain Q.

L= f pidQ. 3.7)
Q

With reference to Newton’s Second law of motion, the force vector F can be cal-
culated by the material time derivative (¢) = % of L. With the help of Reynolds’
Transport Theorem and the mass continuity expression [61] the material time
derivative is derived by expressing the balance of linear momentum, where the

Nabla operator V calculates the divergence of a tensor V - (»)¥ and J is the deter-
minantd det (s) of the deformation gradient %,

. D ) B D(pu) ) )
L—D—tfﬂpudQ—fQ DI +pa(V-0)dQ (3.8

*RTR=1.
T See Appendix B.
* Divergence of a vector field: V-u= g'%
1
S J = det (), also called Volume Ratio ] = v/ V. The ratio between the current (deformed) volume v and
the reference (undeformed) volume V.
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. 0
sz pii+u (p+p¥a) *dQ:f piidQ =F (3.9)
Q Q

Following [61], the resulting forces F are the sum of the integrated Cauchy trac-
tion vector t and the body forces b, ii is the acceleration vector field,

F:f tdrg+f bdQ:f piidQ. (3.10)
Ty Q Q

Finally the linear momentum balance in equation 3.10 is transformed with the
help of Cauchy’s stress theorem' and the divergence theorem? to Cauchy’s first
equation of motion [61] using the Cauchy stress tensor o,

f V.o +b-piidQ=0. (3.11)
Q

As equation 3.11 holds for an arbitrary domain it can be expressed in its local
form - removing the domain integral,

V.-0+b-pii=0, (3.12)

resulting in the conservation of momentum [8].

In combination with suitable boundary conditions on the Neumann boundary
I'y and the Dirichlet Boundary Ty, equation 3.12 describes the strong form of
the Initial Boundary Value Problem (IBVP)S:

Ty: u = Upre,

I'g: t=tpre, 3.13)
u(t=0)=uo,
u(t=0)=nuy,

Prescribed values are denoted by (¢)pre, while initial values are indicated by (¢)o.

* Mass continuity [61]: pg = pJ, J=JV-u — po=0=J(p+pV-u).

i Cauchy'’s stress theorem [61]: t = o'n, with the normal vector n.

+ Divergence theorem [61]: frg tdl'y = frg ondlg = [ V-0dQ.

S For static cases (time independent) the IBVP reduces to the Boundary Value Problem (BVP) [61].
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3.2 Finite Element Method (FEM)

The following chapter introduces the different material laws and structural ele-
ments used to simulate the flexible protective structures. The derivation of unique
materials and elements is discussed to simplify the independent implementation.
In order to meet the requirements of the large deformations of the protection struc-
tures, completely geometrically non-linear or co-rotating element formulations
are applied. The theoretical background necessary to move from the previous chap-
ter to the final formulations is explained. Afterwards, the principle of virtual work
and the derivation of different system matrices like the stiffness matrix, the mass
matrix, and the damping matrix is discussed. This is followed by an introduction
to possible solution procedures for the structure.

3.2.1 Principle of Virtual Work

To solve the IBVP the FEM is applied using variational principles. Instead of di-
rectly solving equation 3.12%, it is integrated over Q and multiplied with an arbi-
trary test function,

V-0 +b-pii)-6udQ=0. (3.14)
o
Q

This approach is also known as the Galerkin approach [114] and minimizes weighted
residuals. To arrive at the principle of virtual work' the arbitrary test functions
are chosen to be the virtual displacement field 6u, which have to vanish on T';,.
Applying integration by partst and using the gradient of a tensor V ® (s), equa-
tion 3.14 transforms to the weak form of the IBVP,

fﬂ': (V®6u)+pﬁ-6u—b-6ud9—f odu-ndl'y =0. (3.15)
Q Iy

Rearranging equation 3.15 and using the virtual Euler-Almansi strain 5e’ the vir-
tual work 6 W is derived,

5W=fa:6ed9+f pﬁ-&udQ—([ b-6udQ+f tpre-c‘)‘udl"g)zo, (3.16)
Q Q Q Ty

O Wint 6 Wiin O Wext

including the virtual internal work 6 Wy, the virtual external work 6 Wext, as well
as the virtual kinetic work 6 Wiy, .

* An analytical solution for the strong form is only possible in very few cases.

T Also known as the principle of virtual displacements.

* Integration by parts [61]: [ (V-0)-8udQ =~ [y o: (Vosu) dQ+ Jry o6u-ndl,.
S The transformation with the help of the Lie derivative is presented in Appendix A.
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While equation 3.16 describes the virtual work in the spatial description, it is ben-
eficial to express d Wiy in the material description for the following element for-
mulations. It allows the element derivation in a constant frame of reference”,
which simplifies many otherwise cumbersome derivations. Relating to the ma-
terial description the energy conjugated Second Piola-Kirchhoff stress S and the
Green-Lagrange strain E are needed and transformed accordingly by the Piola
transformation?, including the pull-back operation y~! ()f of a contravariant
second order tensor [61],

s=jx o)t =JF leF T, 3.17)

and respectively the pull-back operation y ! (+)? of a covariant second order ten-
sor [61],
E=yx ' =F eZ. (3.18)

The equations 3.17 and 3.18 are finally used to express 6 Wy in the material de-
scription, integrating over the reference domain Qg,

dQ=JdQg

-T -1 7 "
OWint=| o:d6edQ= o:F " OEF JdQgy ,
Q Qo (3.19)

6 Wint =fﬂ S: SEdQy.
0

A similar, but more straight-forward operation is needed to transform 6 Wy, with
the help of the mass continuity condition [61],

po=Jp,dQ=]dQy — dWiin :f pii-dudQ :f poti-dudQy. (3.20)
Q Qo

3.2.2 Discretization in Space

To numerically solve the structural problem, §W must be transformed from a
continuous description into a discrete one. To realize this transformation shape
functions N are applied to describe approximated vector fields Ok by an inter-
polation of the discrete nodal element values. This approach can be used to ap-
proximate any vector field but is here given exemplarily for u interpolating the
discrete nodal values @,

u=u" =N (3.21)

* With objective material tensors, such as E, U, C.
T The Piola Transformation is used to transform stress tensors which (in contrast to strains) include a
transformation of the integration domain [61]: ])fl O
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The usage of N also allows to express the approximated base vectors in equations
3.21in a discrete form,

n 0x"  ON
8 = " A%
ot a¢t
h (3.22)
n 0X ON _
Loooagt o aét

which subsequently enables the derivation of strains and also stresses in the dis-
crete form, following equations 3.5 and 3.6.

Finally equation 3.16 is written in a semi-discrete,
Mii + Fim (@ = lA:“exty (3.23)

with the help of the mass matrix M, the external Fey; and internal forces Fiy, as
well as the discrete nodal displacements and accelerations 1, 1.
As described in [8, 62], linear viscous damping forces are introduced, extending
equation 3.23 to,

Mu + Du + Fip (@) = Fext, (3.24)

employing the damping matrix D and the discrete nodal velocities @i. The system
matrices in equation 3.24 are composed of the respective elemental matrices,
which are described in the following.

Remark: Damping Forces

By comparing equations 3.16 to 3.24, it is evident that the latter pos-
sesses a term which is lacking in the former equation. The new term
represents the Rayleigh damping, which will be explained in more detail
shortly. The Rayleigh damping is defined in terms of a linear combina-
tion of the mass and the stiffness terms. From a theoretical point of view,
the Rayleigh damping terms can be included in a modified equation of
motion and, therefore, be consistently accounted for in the derivation of
equation 3.16. As mentioned in [62], section Elastodynamics and Struc-
tural Dynamics, in addition to the inclusion of the inertial proportional
term of the Rayleigh damping in the equation of motion, the respective
material law needs to be "modified to account for the stiffness propor-
tional effects". Doing so would consistently include the Rayleigh damp-
ing terms in the strong and weak forms of the problem. This theoretical
framework serves as an explanation for the additional Rayleigh damping
terms. However, following the common approach of treating Rayleigh
damping in the literature, in the present work the Rayleigh damping
terms are introduced at the discrete level without the modification of
the stress tensors.
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Internal Forces and Tangent Stiffness Matrix

Remark: Proceeding Notation

In order to keep the notation comprehensible, no further distinction is
made between approximated and exact material tensors in the follow-
ing. The material tensors in the calculation of the element matrices and
vectors are now to be regarded in their discrete form and thus approxi-
mated. The subscripts r, s define nodal degrees of freedom.

The vector of internal element forces Fj,; can be derived directly from the vir-
tual internal work from equation 3.19. In addition to the stresses resulting from
deformations, pre-stresses Sy are considered.

OE
Fine,r = fQ (8+S0): 5—dQp. (3.25)
0 r

Remark: Pre-Stress Application

Appendix H discusses the appropriate choice of the pre-stress Sg with
respect to the practical implementation in the construction process.

Different methods can be used to solve equation 3.24. Most popular is the Newton-
Raphson method for solving non-linear equations. However, it requires the first
derivative of the internal forces. This results in a matrix, which is called the stiff-
ness matrix K.

P —+(S+Sp): ———dQy. 3.26

aa;  oa, T 150 5a,50, 400 3.26)

Equation 3.26 can be broken down further by introducing the strain-energy func-
tional ¥ for hyper-elasticity to express S and the material tangent modulus C,

d(S+Sg) OE 4’E
Krszf =200,
Qo

5. Y _0S oY 3.27)
~ OE’ " OE  OEOE’ '
Finally, the stiffness matrix entries can be expressed as,
K —f C: oF  OF +(S+Sp): R aQ (3.28)
" Jo, T das ony O daraas '

To evaluate equation 3.28, ¥ must be derived for the respective material laws. In
section 3.2.6 this is discussed for some selected material laws.

* K=K holds for conservative force fields Fiy. A conservative force field can be written as the gradient

. . OTT; .
of a scalar-valued potential energy function Iy Fine,r = ﬁi“ Because its curls must be zero, the
0Fint,r 5Fint,x

following holds: oas  ~ onr =0=Krs—Ksr.
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Mass Matrix

The following required structural tensor from equation 3.24 is the mass matrix M.
It scales the accelerations and thus accounts for the inertial forces in the system.
The discrete version of equation 3.20 leads to M,

f poii” -6udQg = sa” f poNTNdQgid Q. (3.29)
Qo Qo

M= f poNTNdQy. (3.30)
Qo

In case of an explicit time integration scheme, M is normally diagonalized, re-
sulting in a lumped mass matrix M;. Different approaches are available to derive
M 1+

* Sum up all entries in each row to the diagonal entry: M; . =¥ M.
N

* Directly lump the mass to the nodes depending on the respective nodal
influence.”

Damping Matrix

Following [8, 62], the structural damping is modeled as a linear viscous damping
force: F; = Di. In contrast to M and K no specific material parameters (like
Young’s Modulus E, Poisson’s Ratio v or the density pg) are available to define the
properties of D. Assuming that the damping is proportional to the stiffness and
the mass, the Rayleigh damping [2] is used to model D,

D=a M+ B4K. (3.31)

The two coefficients a; and §; must be calculated by solving a system of equa-
tions [2, 25], including the circular eigenfrequencies @;, ; and user-defined damp-
ing ratios {j, j,

o]
@)

aq (i
Bal  ¢;]

While a; scales the mass it can be interpreted as an external damping caused by
the surroundings and heavily influences lower eigenfrequencies. In contrast to
the external damping, 84 scales the stiffness and represents the internal damp-
ing caused by the deformation of the structure.

1
@i = (3.32)

1
2|2y

Remark: Rayleigh Damping

While this approach shines through its simplicity, the user must be
aware that this is only an approximation of the true (very complicated)
damping behavior.

* E.g. for a triangle: 1/3 of the total element mass to each element node.
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3.2.3 Solution Strategies - Discretization in Time

The impact of rocks into flexible protection systems is a dynamic process that
cannot be calculated with purely static analysis. The inertias of the structure
and the impacting objects strongly influence the structural behavior. To meet
these requirements, suitable time integrators must be chosen to solve the IBVP
in equation 3.24. With the element matrices presented in section 3.2.2 the IBVP
can be solved with a variety of different approaches, of which the two methods
used in this thesis are shortly introduced in the following.

Explicit Time Integration

The explicit time integration makes use of the diagonal lumped mass matrix M;
and thus avoids the time-consuming solution of a system of equations. The so-
lution of equation 3.24,

{i=M; ! (Fext — Finc —Da1), (3.33)

is simplified to straight-forward scalar operations®. Different schemes are avail-
able to progress in time, which differ in their accuracy and complexity. While the
forward Euler method [114] is first order accurate, the central difference scheme
[8] is second order accurate. More accurate explicit time integration schemes are
available [67] for the price of an increased complexity.

Within this work the central difference scheme will be applied for which a de-
tailed algorithm can be found in [8] and is shortly introduced in Appendix E.1.
To ensure a stable solution and as result prevent an "unbounded growth of the
solution" [8] the choice of a suitable time step Af is paramount. With respect to
[8], At is restricted to the time a sound wave needs to travel through the smallest
element in the domain and can be derived from the maximal circular eigenfre-
quency’L for rate-independent materials,

2
At < .
Omax

(3.34)

Implicit Time Integration

In contrast to the explicit time integration, the implicit time integration solves the
system of equations 3.24 with a Newton-type solution scheme to a given user de-
fined tolerance. While this approach normally allows for a unconditionally stable
solution even with large time steps At, it requires an iterative solution procedure.
The most general method, used within this work for implicit time integration, is
the Generalized-a Method [26]. It proceeds in time by calculating the solution
values, like @, 1, 1 with respect to 3 parameters @, @ r, Bm. Depending on the
choice of these parameters the method is unconditionally stable and can result in
a Newmark, Bossak, or even in an explicit time integration. While [26] presents
a detailed derivation of the method, Appendix E.2 shortly introduces the basic
equations.

* -1 _ -1 _
Ml‘rs_Oforr#s, M[,rr—”Ml,rr
T E.g. for a truss element [124]: At < 1,/p/E
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3.2.4 Transformation of Reference Coordinate System

Most of the material laws introduced in section 3.2.6 refer to physical parame-
ters like the Young’s Modulus E [66], which have normalized units as well as pre-
defined orthogonal material axis for orthotropic material laws. As these quanti-
ties relate to alocal Cartesian coordinate system, the strains E and stresses S must
be transformed to a local Cartesian coordinate system G;*, too and are denoted
by ().

Remark: 1D and 2D Stress States

Since only one and two-dimensional finite elements (without thick-
ness changes) are used in this work, the derivation of three-dimensional
strain and stress tensors is omitted at this point. This procedure allows
a simplified representation of the material tensors and the derivation of
the local reference coordinate systems.

1D

For one-dimensional elements (with no thickness changes), only the first basis
vector is interesting. It points along the element axis and is normalized.

— Gl
G = —. (3.35)
Gy

2D

For two-dimensional elements the out-of-plane vector Gs is calculated from the
cross-product of the two in-plane vectors Gi, G2 and then normalized. The first
base vector Gy keeps its direction but is also normalized. Then a new second
basis vector Gy is calculated so that it is orthogonal to G1 and Ggs, lies in the ele-
ment plane, and has a unit length. Thus a new local reference coordinate system
is created in which now physical parameters can be used. If an orthotropic ma-
terial is used, the direction of one of the principal material axes must generally
be specified. For example, G; can be given, projected onto the structural surface,
and then an orthonormal coordinate system can be created based on it.

- G1xGy

G ~ G3 x Gy
3= ’ =
IG1 x Gz|

Gl=—, G =—"—"<—. (3.36)
YTIGT T 16y %6yl

* Orthonormality: G; = G .
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Strains and Stresses
Finally, following [61], G; is used to transform the strains and stresses and to ex-
press them in the new local Cartesian coordinate system, *,

Eiszkl (Gi'Gk](Gl'cj)=EijT. (3.37)
§ij = gkl (Gf ~Gk) (Gl -Gf) =35,. (3.38)
3.2.5 Voigt Notation

Following [8] the stresses, strains, and tangent material moduli are expressed in
Voigt notation (#) to utilize their symmetry and only the plane stress state which
is of interest for this work.

E=[En Eyy 2F1,)"

§= [5-11 3§22 SIZ]T’

)

_ _ _ (3.39)
_[Gun Cii22 Ciii2
C=|Ca211 Ca222 C2212

Ci211 Ci222 Ci212

Remark: Voigt Tensors

In this work E and S, and € contain the strain, stress, and constitutive®
components in the local Cartesian coordinate system, which is intro-
duced in subsection 3.2.4.

EC:Cijlei®Gj®Gk®Gl :Cijklci®(;j eGFeGl.

The Voigt notation allows to replace the double contraction in 6 Wiy with a single
contraction,

SWint = fQ S: SEdQq = fQ S-6EdQy, (3.40)
0 0

and subsequently simplifies the expressions for Fj,; in equation 3.25 and K in
equation 3.28. See [8, 131] for a derivation of equation 3.39 with the help of static
condensation and its three-dimensional stress state form.

"E=E;jG'eG/ = ;G eG/.
 Holds for an orthonormal base, like (_},-.
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3.2.6 Constitutive Laws

This section introduces and discusses the primary constitutive laws for the sim-
ulations presented. These are linear-elastic isotropic and orthotropic constitu-
tive laws for two-dimensional stress states and non-linear and plastic constitutive
laws for one-dimensional stress states. The simulations of real-world experiments
presented later in this dissertation work with surface elements for the protection
meshes and cable, bar, and beam elements for the remaining components of the
protection structure. As it will be shown, the strain of the surface elements does
not exceed the value of 4.7% since they can often deflect due to their considerable
flexibility. Therefore, the low value of 4.7% justifies linear elastic constitutive laws
for the surface elements. On the other hand, the cables can yield, and the non-
linear constitutive laws allow larger elongation in this case. In addition, a discus-
sion of the appropriate modeling of the compressive slack behavior of the surface
elements and the cables follows. Many of the structural elements to be modeled
cannot support compressive forces. Modeling this behavior is especially challeng-
ing for a two-dimensional stress state.

As mentioned previously, the following constitutive laws are limited to
one-dimensional and two-dimensional plane stress states.

3.2.6.1 Elasticity

An elastic constitutive law which can represent finite strains can be described by
a Helmholtz free-energy function. Following [61], this function for homogeneous
materials is only dependent on the deformation gradient & and is named strain-
energy function. The strain-energy function is subsequently denoted by ¥. The
stresses and tangent material moduli are derived from . As a basis for the fol-
lowing constitutive laws, the second Piola-Kirchhoff stress S and the associated
tangent material modulus C are derived as follows,

oY S v

S=%8" ©T 3~ sEoE

(3.41)

St. Venant-Kirchhoff - Plane Stress

The most common isotropic elastic constitutive law is used for preliminary stud-
ies and can be advantageous for simplifying structural behavior. Itis used, among
other things, for the experiment simulation in section 5.1.1. Equation 3.42 ex-
presses the strain-energy function with the help of the trace operator tr(e) and
the two necessary Lamé parameters Y, =.

I_ 2 2
5 Etr(E) +Ytr(E )
_ Ev Y= E

T a+v(1-2v) T20+v)”

Yoy =
(3.42)

[11
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The tangent material modulus for the plane-stress scenario in Voigt notation Csv
is derived in [131]. The linear elastic behavior allows the expression of S as a
matrix-vector product,

- E

Cgy = 5 , S=CsyE. (3.43)
1-v

0
1 0
1—v

2

Especially in large compressive strain regimes the St. Venant-Kirchhoff material
law shows considerable flaws and develops artificial instabilities and undesired
softening behavior. A detailed discussion of this behavior and its origin is pre-
sented in [105].

Miinsch and Reinhardt - Plane Stress

Many of the protection mesh structures show an anisotropic deformation behav-
ior in experiments. Two independent orthotropic™ directions are tested in these
tensile tests, and the results are documented. To use the tensile test data, an
orthotropic constitutive law is introduced to model the stiffnesses of the two di-
rections. Figure 3.2 depicts the two test directions. They are projected onto the
structural surface before the simulation of rockfall protection meshes and thus
represent the principal directions of the material behavior.

Figure 3.2: Orientation of G; in the wire mesh. Photograph taken in Walen-
stadt, Switzerland. The respective Young's Moduli for each direc-
tion are obtained from tensile tests.

The linear elastic behavior allows the expression of S as a matrix-vector product
of the tangent material modulus Cyg and the strains E [131].

* A subset of anisotropic constitutive laws.
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Ey nyEx 0
Cvr = T———— [VnxEy Ey 0 ’
L-vyyvyx | 7 0 (1-vxyvyx) G (3.44)
V. 4 ~ = ~
B §=¢CugE.

The Shear Modulus G, Young’s Moduli Ey, Ey, as well as the Poisson’s ratios vxy,
vyx must be defined in the local Cartesian coordinate system and can be obtained
from experiments.

3.2.6.2 Tension-Field (TF) Theory

Similar to real membrane structures, the protection mesh structures are not ca-
pable of carrying in-plane compression forces. A solution to model this behav-
ior for one-dimensional structures, like cables, is straightforward as described in
section 3.2.7.2. For the two-dimensional plane-stress state a more sophisticated
but fundamentally similar approach is necessary. Following the derivation in
[86, 87] the Tension-Field (TF) assumes zero-bending stiffness in the membrane.
This assumption results in a sudden out-of plane deformation of the membrane
if compression stresses develop. To model the incapability of the membrane
structure to withstand compression stresses the TF transforms C with respect to
the principal stresses. This results in a new material modulus €', which is rotated
to ignore compression forces. The new stress can be determined via a matrix-
vector product with the current strains for linear elastic material laws.

The result is a compression-free stress state §'.

(a) Ring mesh. (b) Wire mesh.

Figure 3.3: The flexible protection structures can not carry in-plane compres-
sion stresses and rather escape out-of plane if compressed.

The transformation of € is independent of the constitutive law and can be ap-
plied to both constitutive laws introduced in the previous section 3.2.6.1.
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Algorithm 1 Modify stresses and strains for wrinkled membranes, following [86,
87]

1: Solve for principal stresses A* > Eq. 3.45
2: Calculate principal strains E (17)

3. if min(A*) > 0 then

4: Membrane state: taut

5: C, = C

6: S’ = g

7. elseif max (E(A%)) <0 then

8: Membrane state: slack

9: c'=0
10: §S'=
11: else if max (E(A%)) > 0 and min (A*) <0 then
12: Membrane state: wrinkle
132 Usen” of min (1*) to derive ny, > Eq. 3.46
14:  Calculate ¢’ > Eq. 3.47
15: 8§’ =C'Efor linear elasticity.
16: else

17: Calculation failed.

The necessary principal stresses can be obtained by solving the associated eigen-
value problem”,

(s - M#) n =0, (3.45)

containing the eigenvalues A*, the principal stresses, and the corresponding eigen-
vectors n”.

In case algorithm 1 detects a wrinkling membrane state, based on the principal
stresses and strains, the wrinkling direction vector n,, needs to be calculated,

n* (min(2*))yn (mi”(/l#)]o
ny = [mm(/l#) # (min (A7), |. (3.46)
2n (mln(/l#)]on#(mm(/l#))l

Finally the modified constitutive matrix €’ is derived by an operation similar to
subtracting the compression contribution from the original reference material
tangent modulus C [86],

~ T =
@:C—CHT“i—n”’C. (3.47)
n;,C-ny
The implementation of this law is verified by simulating the inflation of a thin
membrane cushion, as discussed in [87]. Good agreement with the results is
obtained and the stress result, for the minimal principal stress is plotted in Fig-
ure 3.4. Clearly, without the TF, unrealistic compression stresses develop in the

membrane.

* The derivation is presented in Appendix B.
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(a) Without the TF: Unfeasible compression (b) Applying the TF: The stresses rearrange in the
stresses develop in the thin membrane cush- membrane, omitting compression stresses.

ion.

Figure 3.4: Simulation of an inflated thin membrane cushion and visualiza-
tion of the minimum principal second Piola-Kirchhoff stress in
N/m?. The problem setup is taken from [87] and good agreement
with the results is obtained.

3.2.6.3 1D Hyper-Elasticity: Ogden and the Transformation to other
Constitutive Laws

Following [6, 65], one of the most general hyper-elastic constitutive laws is the
Ogden law [92]. With the correct values chosen it can easily be transferred to
other constitutive laws, such as St. Venant-Kirchhoff or Neo-Hookean. To pro-
vide the necessary entities for the simulation of various hyper-elastic laws for
one-dimensional structures, such as the cables in the flexible protection struc-
tures, a short summary of the Ogden law and its transformation to other laws is
given.

The strain energy function for the Ogden law reads [6, 65],

ol 5 8)= £ 04 () w g e ) e
i=1 bl

where /l’;" are the eigenvalues® of the right stretch tensor U, as given in equation
3.4. vy, Bo are Ogden material parameters to be defined by the user.

To apply the Ogden law to one-dimensional stress states (truss, cable elements)
the following simplifications are applied:

e v =0, no consideration of the Poisson effect and thus no change of the
cross-section.

J /l’f =Af = % = %, the first principal stretch equals the stretch of the ele-
ment along its axis. & is the one-dimensional deformation gradient, [ rep-
resents the deformed element length, and L the undeformed (reference)
length.

* Principal stretches.
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#_a# _
c M=Af=1

e F=J=v/V=A= %, with v = 0 the cross area remains constant and the
change in volume is only described by the change in length.

These simplifications allow to express equation 3.48 with respect to the first prin-
cipal stretch,

i Bo.i
‘PO(A#) -y Yoi ((/1#) © —1) =¥ (F). (3.49)
=1 Bo,i
Following [6, 61, 65] the first Piola-Kirchhoff stress tensor P can be derived,
_ oY oY E # Bo1-1 # ,60,2—1)
Pli=—=—=——||A —(A ’ 3.50
H70F T oA T Po1-Poz (( 1) ( 1) (5:50

which can be directly transformed to the second Piola-Kirchhoff stress tensor S,

- m ((Aﬂﬁo,l—Z B (Aﬁ)ﬁo,z—Z). 350

With the reformulation of the strain - principal stretch relation,

- 1[0’ 1((,#)?2 4 .
Ellzi(ﬁ—l):i((ﬂ) —1)—»7L =2 +1, (3.52)

the second Piola-Kirchhoff stress reads,

i} L 1.
Sii=% 1P11=FPH

S11(En) = [(zén +1)Por 2l _(2F 4 1)ﬁ0v2’2‘1], (3.53)

Bo,1—Boz2

and with the help of equation 3.41 the material tangent modulus is expressed,

—E .
Bo1-Bo,z2 (3.54)
[(.50,1 ~2) (2En +1)PO1 22 (B, —2) (2B11 + 1)50_2/2—2] ~

Cinn =

The advantage of the preceding derivation lies in the general structure of equa-
tions 3.53 and 3.54. With the help of the appropriate material parameters, the
stresses and the material tangent moduli for other constitutive laws can be ob-
tained from these equation. The following table 3.2 gives the appropriate values
for the St. Venant-Kirchhoff and the Neo-Hookean law.
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Boa, Boz | Sn Cil
Ogden Arbitrary Equation 3.53 Equation 3.54
St. Venant-Kirchhoff | 4,2 EEq; E
Neo-Hookean 2,0 (EEn1)/ (2En +1) | E/(2E1 +1)°
Table 3.2: Transformation from Ogden to St. Venant-Kirchhoff and Neo-

Hookean.

3.2.6.4 1D: Plasticity - Isotropic Linear Hardening

To dissipate as much energy as possible the support cables of flexible protection
structures often do not connect directly to the ground. Instead, braking elements
are installed, connecting the cables and the foundation, as presented in Figure
2.4. These braking elements are highly ductile and absorb a lot of energy by plas-
tic deformation™ and friction.

Remark: FEM Modeling of Braking Elements

This work models the braking elements as single truss elements, de-
scribed in section 3.2.7.1, combined with a linear isotropic? hardening
plasticity law.

% The simplification of the rather complex hardening behavior to an isotropic hardening rule
assumes the yield surface to dilate instead of translating.

The results of this chapter are close to the content given in [36] and are addition-
ally simplified to a one-dimensional stress state. First, a yield function ® needs to
be postulated (using | « | to express the absolute value of a given scalar). Several
new symbols are needed to be reintroduced at this point: The one-dimensional
yield stress Sy, the hardening modulus Ej,, the internal hardening variable ay,

and the one-dimensional pre-stress S in a local Cartesian coordinate system.

@ (511,50, Sy, @) =1 S11+ S0 | - (Sy + Epary) <. (3.55)

The stress is calculated with respect to the one-dimensional elastic strain Eelastic
only. Consequently, the one-dimensional plastic strain Epjastic needs to be sub-
tracted from the total strain,

Si1= EEelastic =E (Ell - Eplastic) : (3.56)

* The accumulated plastic strain remains after complete unloading.
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Additionally, the plastic multiplier y is introduced to express the flow rule, which
relates the time derivative of the plastic strain to the sign sgn(e) of the current
stress state, if ® =07,

Eplastic =yysgn (511 +SO)- (3.57)

Subsequently, following [36] the Kuhn-Tucker condition and respectively the con-
sistency condition can be expressed,

yy®=0, yyd=0. (3.58)
Finally, with y = dy the plastic multiplier is derived for the case y > of,

Eb;“llsgn(gu + SO)

P=0—7,= E+E, , (3.59)
and the elastic—plastic* tangent modulus Ep,
EE
p= 1, (3.60)
E+ Eh

Depending on whether additional plastic or elastic deformations develop, the
change in the stress state can be calculated using the following Table 3.3.

Elasticity: ® <0 | Plasticity: ® =0
S11=EEn ‘ S =EpEn

Table 3.3: Calculating the current change in stress state.

* @ = 0: The stress state is on the yield surface.
T Extra plastic deformation.
tE p relates to the total strain, whereas Ej, relates to the plastic strain only.
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3.2.7 Finite Element Models

In order to capture the correct deformation behavior of the protection structures,
suitable element formulations must be chosen for the respective structural com-
ponents. This section introduces the most important element formulations and
discusses their real world counterparts. Depending on their load-carrying behav-
ior, truss, cable, plate in membrane action, and beam elements are applied and
shortly introduced. All elements are derived to be completely geometrically non-
linear or use a co-rotating frame if they have rotational degrees of freedom.

3.2.7.1 Truss

In order to allow large deformations, it is typically attempted to transfer forces
via tension and generally normal forces, omitting bending. To this end, most of
the supports of the protective structures contain moment hinges, and cables are
used to span the nets to the rock-face or the ground. For components that only
carry normal forces, modeling with the aid of one-dimensional truss and cable
finite elements is suitable. Depending on the ability to bear compressive forces,
a distinction between truss and cable elements is made. Figure 3.5 shows which
structure parts are modeled in this way.

b T oy T P 1 N

Figure 3.5: Depiction of the application of truss finite elements in the con-
struction of the flexible protection structure. The columns high-
lighted in orange will be modeled with trusses. Entities highlighted
in red will be modeled with cable elements, described in subsec-
tion 3.2.7.2. Photograph taken in Walenstadt, Switzerland.

With respect to Figure 3.5 the columns are modeled with trusses because they
can carry compression forces and are not clamped at the foundation as demon-
strated in Figure 2.5. Cable finite elements, which cannot carry compression
forces, are employed to model the cables and are described in subsection 3.2.7.2.
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A truss element is defined by two nodes n;, n; and has only translational nodal
degrees of freedom. Figure 3.6 depicts the geometric description and the map
from the reference frame to the deformed geometry.

Figure 3.6: Spatial mapping between reference and current configuration,
adapted from [106].

The three-dimensional virtual work equation 3.19 can be simplified to one di-
mension, resulting in the following scalar operation.

5 Winy = fQ (8" + So) 6En1d00 = fQ ($11 + S0) 8E11 A, (3.61)
0 0

B11=05 (12 - L2] /12, (3.62)

Arbitrary material laws can be used to calculate the stresses in equation 3.61,
such as presented in sections 3.2.6.3 and 3.2.6.4.

3.2.7.2 Cable

The cable element plays a crucial role in the modeling of flexible protective struc-
tures, as demonstrated in Figure 3.5. While it can only carry tensile forces, stabil-
ity problems do not arise, resulting in smaller cross-sections and longer spans.
The cables will be modeled by single geometrically non-linear cable finite ele-
ments with two nodes. The formulation is the same as for the truss element pre-
sented in subsection 3.2.7.1 with an additional check for compression stresses:

it §'1+38,<00: Fp=0, K=0, M=M. (3.63)

While the internal forces Fiy, and the stiffness matrix K will be omitted in the
construction of the global system of equations, the mass of the element, repre-
sented by the mass matrix M, needs to be kept in the system. This relates to the
actual behavior of the structure, which will not be supported by a cable under
compression but will still be subjected to the dead load of the element.
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3.2.7.3 Sliding Cable

To allow for large deformations the wire mesh of the protection structures is typ-
ically connected to the carrier ropes by shackles. Instead of fixing the connection
rigidly the shackles are free to move along the carrier rope, only restricted by fric-
tion as depicted in Figures 3.7, 3.8b. Additionally, guide rollers redirect the carrier
ropes, which is shown to the very left of Figure 3.7 and in Figure 3.8a.

Figure 3.7: Sketch of upper rope installation, taken from [51] and adapted
from [103], compare with Figure 3.8a. The blue line depicts the
structural part which is modeled by the sliding cable element.

(a) Edge installation. (b) Upper rope installation.

Figure 3.8: Photographs of the real world model of the sliding cable element,
taken in Walenstadt, Switzerland.

Remark: Alternative Modeling of Sliding Nodes

A variety of different modeling approaches have been tested in the
course of this work, of which the best one is presented in this section.
Alternative models and a comparison are discussed in the Appendix C.

[13, 124] describe a sliding cable element formulation which inherently handles
the sliding of inner nodes and allows the efficient inclusion of friction. The for-
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mulation calculates the strain with respect to the change of the total length of the
element instead of the single line segments and has a constant normal force if no
friction is considered.

Figure 3.9: FEM discretization of sliding cable element, adapted from [103].

Figure 3.9 depicts the discretization of one single element with an arbitrary num-
ber of inner nodes. The real cable is simplified with linear line segments span-
ning between the inner nodes with each length being /; in the deformed config-
uration and L; in the reference configuration. The single line segments lengths
sum up to the total length of the whole element [13, 106],

Myines Nines

=) L, L= L —»EII=0.5(12—L2J/L2. (3.64)
l 1

Finally, the virtual internal work equation is expressed, following [13, 106],
—-AxX1 /L T
-Apilh
-AZ1/

Axj_q 1l —Axil;

Ayi1/li = Ayl

AZi 11— Azl -0, (3.65)

- _
Wint = ZA(SII +38o)

A"fnnodes -1/ lnnodes -1
AJA/”nodes -1 / Tnodes—1
ZNpodes—1 / Tnodes—1

which uses the direction of the resulting internal forces at each internal node and
the reference cross-section A. Equation 3.65 makes use of the discrete coordinate
distance between two internal nodes, e.g. AX; = %1 — X;.

Adapting the approach by [124], the influence of the friction on the internal forces
can be efficiently handled by first calculating the norm || « || of the resulting inner
force at each node || I:‘im, i I and then multiplying it with a given friction value p,

AS11,i =l Bingi I - (3.66)

The additional friction force ASy1 ; is finally included in the total normal force at
n; in the cable, which would be constant along the element without any friction.
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Sliding Cable Net Demonstration

Figure 3.10 demonstrates the structural behavior of a plane cable net spanning
between two sliding cable elements on both sides subjected to gravity. The influ-
ence of the friction can clearly be distinguished, restricting the movement of the
edge nodes.

Lg

Figure 3.10: Plane cable net discretized with cable elements subjected to grav-
ity g for different friction values u on the edge cables. The edge
cables are represented by the sliding cable element formulation.

3.2.7.4 Plate in Membrane Action

As described in [37, 100, 104] plate in membrane action elements are suitable
to approximate the behavior and response of rockfall protection structures. With
respect to the mesh geometry, depicted in Figure 3.11 ahomogenized surface dis-
cretization will be applied using triangular plate in membrane action elements to
model the appropriate structural response for these kind of wire meshes. In com-
bination with a suitable material law" the structural deformation behavior can be
suitably approximated.

Remark: Efficient Modeling

This is in contrast to publications, such as [83, 117] which apply shell el-
ements or even [43] which models each of the connections in the wire
mesh with so-called "chain-link" elements. A more simplified but more
efficient approach is chosen in this work to maximize efficiency and
minimize computational cost while still closely approximating the real-
istic global structural deformation behavior, as will be shown in sections
5.1 and 5.2.

In contrast to the one-dimensional elements, which are presented in the preced-
ing sections, a two-dimensional stress state is observed in the plate in membrane

* Of which the most important ones in this work are presented in the subsections 3.2.6.1 and 3.2.6.2.
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Sliding cable element

Homogenized surface:
Discretized with
plate in membrane action elements

Sliding cable element

Figure 3.11: Discretizing the wire mesh structure with triangular plate in
membrane action finite elements. The homogenization of the
surface still allows for penetration of small particles as will be
shown in section 4.

action elements. To model the realistic deformation behavior of the wire meshes,
compression stresses should be excluded by applying the TF theory, introduced
in subsection 3.2.6.2. Figure 3.12 demonstrates the structural behavior after im-
pact of a single sphere under gravitational loads for both cases: Including and
respectively excluding compression stresses.

Figure 3.12: Plane cable net discretized with triangular plates in membrane
action including sliding cable elements on the edges, adapted
from [102]. A sphere subjected to gravity g impacts the plane. Us-
ing the TF theory, introduced in subsection 3.2.6.2, the unrealistic
compression stresses are excluded and a realistic deformation fig-
ure is obtained.
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Remark: Small Particle Penetration of Homogenized Surface

The coupling approach which will be introduced in chapter 4 handles
the interface in such a way that small particles are still able to penetrate
the wire-mesh but at the same time use the approach of a homogenized
surface structure.

Geometric Shear Stiffness of Pre-Stressed Cable Nets

In order to justify the simplifications of the load-bearing behavior of cable nets
with a homogenized plane structure, it is not sufficient to argue only that both
structures have no bending stiffness. An important aspect is also the consider-
ation of the geometric in-plane shear stiffness. For a plate in membrane action
element, shear stiffness terms are inherent in the element formulation. This is
not the case for a cable element.

However, as soon as a cable net is pre-stressed, additional terms develop in the
tangent stiffness matrix, granting the elements a stiffness against deformations
non-parallel to their axis already in the undeformed configuration.

A more practical explanation can be found in the recoil force of the P — A effect.
Figure 3.13 explains the development of recoil forces P- % in a pre-stressed cable
net, which result in a geometric shear stiffness of the total structure.

TF

Figure 3.13: Visualization of the P — A effect in a pre-stressed cable net. The
notation deviates from this thesis and is chosen to keep the sym-
bols which are used in common literature for the P — A effect. The
background figure of the cable net is extracted from [75].

The special research report on the construction of the roofing of the Olympic
Stadium in Munich [75] deals, among other things, with the question of the geo-
metric shear stiffness of pre-stressed cable nets.
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Two comments are to be quoted here*:

* "Due to the pre-stressing, it [the cable net] acquires a geometric shear stiff-
ness even in the net surface.”

 "Individual forces acting on the edge or within the net surface are distributed
via nodal displacements. The shear stiffness increases with the magnitude
of the pre-stressing.” T

For this reason, a pre-stressed cable net does indeed exhibit a geometric shear
stiffness and thus reinforces the assumption that a simplification per homoge-
nized plane structures is applicable.

3.2.7.5 Co-Rotational Beam

For the simulation of impact on the supporting columns beam elements must
be used instead of truss elements, as they can carry moments and shear forces.
Impact on the columns can result in the destruction of the supporting structure
as shown in Figure 3.14.

(a) Column with plastic damage. (b) Detailed view of the damage zone.

Figure 3.14: Impact on the columns can lead to the destruction of the support-
ing structure. Photographs taken in Walenstadt, Switzerland.

A co-rotating element formulation is used for the beam, which is derived in [7,
71]. The co-rotating element formulation allows to use a linear element formula-
tion to simulate large deformations by describing a co-rotating frame to the finite
element which efficiently handles large rotations. It extracts rigid body move-
ments from the total deformation state. While this approach allows to avoid a
cumbersome derivation of a complete geometrically non-linear element formu-
lation it is restricted to small deformations within the co-rotating frame.

* Freely translated from [75] p. 9.
T Refers to Figure 11 of [75] p. 9.
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3.3 Discrete Element Method (DEM)

To model the impacting objects, this work uses the DEM. The general framework,
including all important features, such as contact detection, contact force calcula-
tion, and appropriate time integration, have already been implemented in KRAT0S
at the beginning of this dissertation. The whole workflow has been adapted in the
coupled simulations, while adjustments and additions to the code had to be done
during the development process. Especially to realize the strong coupling, which
will be presented in section 4, a detailed review of the existing code and major
changes were necessary. Additionally, the idea of using clusters of single spheres to
model arbitrary-shaped objects was extensively investigated. A detailed review of
the DEM theory has been performed, of which the most important aspects will be
discussed in the proceeding section. The findings lay the foundation for the follow-
ing sections about the partitioned coupling scheme.

The DEM is a discrete particle method whose particular strengths lie in efficiently
analyzing the motion and interaction of individual particles. One of its key fea-
tures is the usage of an efficient and fast explicit time integration. The method is
used in many industries, especially when the interaction between granular ma-
terials or rigid objects with large motions and continuous systems is of interest.
Thereby the applications are numerous and range from the thermomechanical
behavior [57] of contact between frictional bodies [21, 35], assessment of strains
in the simulation of shot peening [11, 85], races and balls in ball bearings [4, 15,
118], general tribological systems [69, 78] such as the simulation of rail tracks [53,
54, 89], to more advanced investigations, including fracture due to blast loads
[94] and granular flows [55]. But also production processes such as rotating ma-
chinery [22] for industrial grain distribution systems and the interaction of parti-
cles with fluids [29] can be investigated using the DEM.

The method was first proposed by [32] and has been increasingly used since then.
[80] describes the underlying theories of DEM, while many publications deal with
the detailed analysis of contact formulations. Special mention should be made of
[108], who have done fundamental work on this topic. Building on this, [31, 107,
120] have described improved formulations and contact models, contributing to
the current state of the art. Some of their important findings are part of the dis-
cussion about the appropriate formulation of contact forces and are discussed in
section F. A detailed description of contact search and computation between dis-
crete spherical particles and boundary conditions discretized by finite elements
was presented by [98, 99], which form the basis for the present work. [63] carried
out a detailed study of suitable time integrators, especially concerning the inte-
gration of rotational motion, which is of great importance in the present case.
To model arbitrarily shaped objects while keeping the efficient contact algorithms
for spheres, clusters of single spherical elements are used within this work. This
approach was formulated by [68] and subsequently used by [103, 104] for the
analysis of rockfall events. [104] performs a refinement study, which is presented
in section 5.1.1. This flexible modeling strategy allows simple contact algorithms
without compromising the approximate modeling of irregular rock geometries.
As mentioned earlier, experiments confirm that the rotation of impacting objects
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has a significant effect on the overall behavior of the impact, so the shape of the
rock must be taken into account. For example, disk-shaped rocks typically have
much higher rotational energy than cube-shaped ones.

3.3.1 Solution Procedure

The DEM in this work is penalty based and calculates the current contact forces
with respect to the overlap between the respective contact partners. Therefore,
the matching contact partners must first be found to calculate their overlap. Once
this step is completed, the contact forces can be calculated with the help of suit-
able contact laws. Finally, the forces and the particle inertias are used to solve
the equation of motion and calculate the displacements, velocities, and acceler-
ations.

The basic steps in a DEM simulation are:

Step  Task Section
1. Contact detection 3.3.2
2. Evaluation of contact forces  3.3.3
3. Integration of motion 3.34

Table 3.4: Basic steps of the solution procedure for the DEM.

3.3.2 Contact detection

The contact detection is a crucial part of the overall DEM solution procedure.
[98, 99] discuss the contact detection for spherical elements with other spheres,
vertices, lines, and surfaces in detail. The use of clusters allows to avoid complex
contact algorithms for complicated element geometries as discussed in subsec-
tion 3.3.5. The four remaining operations are described in the following.

Sphere - Sphere

The contact between two spheres i, j, as shown in Figure 3.15a, can be efficiently
handled by comparing their respective radii R;, R; with the distance between
their global center coordinates V;,V i 98],

"Vi_vj ||<Ri+Rj. (3.67)

Sphere - Vertex

Similar to the preceding operation the contact between a sphere and a given ver-
tex can be detected by a scalar comparison including the coordinates of the ver-
tex n; shown in Figure 3.15b,

||Vj—n,- ||<Rj. (3.68)
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(a) Contact between two spherical elements.  (b) Contact between a sphere and a ver-
tex.

Figure 3.15: Contact including vertices.

Sphere - Edge

For the contact detection between spheres and edges the shortest distance r;,
see Figure 3.16a, between the edge and the center of the sphere V; needs to be
calculated. The calculation of r; is given in detail in [98, 99]. As soon as r; is
calculated it is compared to the radius of the sphere to check for contact,

ri <R;. (3.69)

Sphere - Surface

The same operation as for the sphere - edge check has to be applied when check-
ing contact with a surface. The shortest distance r; needs to be calculated by
projecting the sphere’s center on the surface®. As depicted in Figure 3.16b, r; is
used to detect contact with respect to equation 3.69.

(a) Contact between a sphere and an (b) Contact between a sphere and a surface.
edge.

Figure 3.16: Contact including edges and surfaces.

* Detailed descriptions can be found in [98, 99].
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The Double Hierarchy

It is not always clear which of the four preceding contact cases are to be consid-
ered. A sphere can be in contact with a vertex, a line, and a surface at the same
time. To handle this problem efficiently, [99] introduces the Double Hierarchy
method, containing a contact type hierarchy and a distance type hierarchy. A
top-down approach is introduced with the following steps for the contact type
check:

1. Check for contact with surface.

2. Perform an inside-outside test with the finite elements which discretize the
surface.

3. Check for contact with the edges of the intersected finite element.
4. Check for contact with the vertices of the intersected finite element.

5. Based on the preceding operations: Decide if contact is found and with
which geometric entity the sphere intersects.

Subsequently, the distance type hierarchy takes into consideration every newly
found contact by the contact type check and compares its characteristic distance
to the center of the sphere with all previously found contact types. Based on an
efficient distance hierarchy check, introduced in [99], all valid contacts are finally
found and used in the subsequent force evaluation.

3.3.3 Evaluation of Forces

The exact calculation of the contact forces in the DEM requires many geometric
operations and depends on the contact force model used. A detailed discussion
of the contact force calculation is postponed to Appendix F due to its length.

It is important to mention that a Hertz Mindlin Spring Dashpot Model (HM+D)
[31] is used in this work. While the HM+D was developed for perfectly spherical
and rigid particles, it is able to prevent complete penetration of the particle and
its contacting partner with a penalty approach. As the discrete particles are sim-
plified to rigid spheres no internal elasticity or energy dissipation (deformation
of the impacting object) is implicitly considered. The viscous damping part of the
HM+D model additionally enables modeling of the damping effects and loss of
energy at the contact point. If not only the complete penetration should be pre-
vented but the actual correct contact force is of interest the material parameters
need to be calibrated. While contact force models such as Linear Spring Dashpot
Model (LS+D) [108] or Plastic Dissipation Model (PLS(B)) [120] are also conceiv-
able, the HM+D offers the best compromise between accuracy and simplicity of
implementation.
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Remark: Interpretation of DEM Parameters

In the following chapters, it will become apparent that many material
parameters of the particles have to be tuned and vary from case to case.
In this context, the naming of material parameters such as Young’s Mod-
ulus often pretends a physical reference. As with other penalty-based
methods, the penalty factor for the contact force calculation in the DEM
is not always apparent in advance and is calculated from values such as
Young'’s Modulus and the coefficient of restitution of the particles. A de-
tailed description of the contact force calculation is given in Appendix
F.

After the calculation of the contact forces, all interacting forces are assembled to
derive the forces and torques on each particle or boundary element i [98, 99]:

n
Fi=Foysi+Fq;+) Fij, (3.70)
J
T; =Text’i+Tdyi+Z(rC] xFij). 3.71)
J

Table 3.5 explains the symbols which are used in equations 3.70 and 3.71.

Symbol Explanation

i Particle or boundary element.

n,j Total number 7 of contact partners j.

FT Sum of all forces, torques on object i.

Fext, Text External forces, such as gravity loads.

F;, Ty External damping forces.

rlC] Vector connecting the particle center and the contact point.

Fij= ané] + Fttlcj Interaction contact force between contact partners i, j.

Fy, F; Contact force in normal and tangential direction.
n/,t/ Normal and tangential unit vector at contact point.

Table 3.5: Symbols in equations 3.70 and 3.71, adapted from [98, 106]. More
information is available in the Appendix F.

After the successful calculation of all contact forces the DEM proceeds to the in-
tegration of motion.
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3.3.4 Time Integration

The DEM applies an explicit time integration scheme which efficiently advances
in time. Various different methods are available with increasing accuracy. Gen-
erally the forces and torques are calculated with respect to masses m and inertia
tensors I [63, 80],

F = mii, 3.72)

T=1dv+wx (Iw). (3.73)

While ii describes the translational acceleration, @ and & refer to the rotational
velocity and acceleration. Naturally, all tensors represent discrete values in the
DEM.

3.3.4.1 Translational Velocity

The force calculation in equation 3.72 is independent of the reference frame* and
thus the translational motion can be efficiently integrated with the velocity ver-
let (central difference) scheme, which is explained in Appendix E.1. The same
scheme is used in this work to integrate the translational motion of the structural
elements.

3.3.4.2 Rotational Velocity

In contrast to the force calculation, the torque calculation in equation 3.73 re-
lies on the inertia tensor I, which is highly dependent on the choice of reference
frame [63].

The general equation for the inertia tensor can be calculated via Steiner’s theo-
rem': Following equation 3.74, with the identity matrix [ and the distance vector
r connecting an arbitrary material point with the origin of the chosen reference
frame.

I:ftr(rTr)I]—rrT dm. (3.74)

If I in equation 3.74 is evaluated with respect to the principal axes of inertia [63,
84] it results in a diagonal matrix. Then, the diagonal entries describe the eigen-
values of I [80]. In this case r connects an arbitrary material point with the ob-
ject’s barycenter.

Spherical Elements

Following [63], equation 3.73 can be simplified for a perfect sphere with a com-
pletely symmetric shape, due to the independence of the reference frame,

2
T=1& + o xdw) =1 = ngziD. (3.75)

* Assume a constant mass density p: The mass m is independent of the reference frame.
T Also called: Parallel axis theorem or Huygens-Steiner theorem.
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The constant inertia tensor I allows the use of the same velocity verlet time in-
tegration scheme as for the translational motion. In the algorithm, given in ap-
pendix E.1, the translational terms need to be replaced with rotational terms to
be applicable for the integration of the rotational motion of spherical elements.

Non-Spherical Elements

For non-spherical geometries, as they will be applied when working with clus-
ters of spheres, the inertia tensor I is not constant anymore and a more detailed
analysis is needed. For simplicity the inertia tensor I is typically evaluated in a
body-fixed element reference frame. As a result, I is a diagonal matrix and relates
the torques to the rotations in the body-fixed frame. To enable a time integra-
tion of motion on the global level, multiple steps need to be performed which
are nicely described in [63]:

1

Calculate the diagonal matrix I in the body-fixed element reference frame.

2. Transform the global assembled torques T in the body-fixed element refer-

ence frame.

3. Calculate the local rotational accelerations with equation 3.73.

P

Transform the local rotational accelerations from the body-fixed element
reference frame to the global reference frame.

5. Apply the velocity verlet scheme and update the rotations and rotational
velocities.

3.3.5 Clusters

In contrast to preceding works, such as [37, 83, 117], the rocks will be modeled
with the help of sphere clusters” instead of standard finite element discretized
objects. With regard to the application to rocks, the disadvantageous modeling of
smooth surfaces with clusters can be neglected. As stated in [80], this approach
results in reduced computational time to calculate overlaps and thus to detect
contact. The simple geometry of spheres allows the use of less complex math-
ematical operations compared to other geometric entities, like lines, edges, and
surfaces [88, 112]. The more spheres are used to build the cluster, the smaller this
advantage.

Section 5.1.1 investigates the influence of the number of spheres on the compu-
tational time in Figure 5.17. A detailed discussion and the first mention of sphere
clusters in DEM can be found in [68].

* [80] calls it connected spheres or multi-spheres.
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Various ways to create clusters are available while only one of them is demon-
strated in the following, as it is important to properly calculate the object’s mo-
ment of inertia I and its mass m.

1. Create a Computer-Aided Design (CAD) model of the desired shape as demon-
strated in Figure 3.17a.
2. Create a tetrahedral volume mesh of the CAD model, see Figure 3.17b.

3. Calculate the total mass m of the object and the moment of inertia tensor
I via equation 3.74.

4. Usethe algorithm, described in [17, 18], to create any desired level of sphere
cluster refinement of the provided CAD model, see Figure 3.17c. The cor-
responding online tool-kit can be obtained from [16].
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(a) CAD model of the desired (b) Tetrahedral discretization of the
shaped. CAD model, used to calculate iner-
tia and mass.

(c) Cluster refinements, adapted from [104].

Figure 3.17: Cluster: From CAD model to a variety of different cluster refine-
ments. The clusters are finally used in the simulation to efficiently
detect contact.
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3.3.6 A Brief Note On Chaos

Chaos always occurs when slight deviations from initial values lead to strongly
differing results. Examples for such chaotic systems are a double pendulum, or
the course of a pinball [12]. Especially in non-linear systems, minor changes in
the initial conditions can lead to very different results. Significantly the given
boundary conditions influence the course and can characterize chaotic systems.
An example of this is sharp edges in a DEM simulation. One way to classify these
systems is to investigate their stability [80]. A system is said to be stable if it does
not change too much when the initial values are changed [80]. In the following
chapters about the simulation of rockfall protection systems, the input values,
like impact location, impact velocity, and many more, are constantly varied to
exclude a chaotic system behavior. The rockfall protection simulations benefit
from the low number of particles in the system. A high number of particles and as
a result a high number of possible contact scenarios increases the non-linearity
of the system and thus directly the potential chaotic behavior. The very short
impact times of less than one second also lead to disregarding the so-called but-
terfly effect. Eventually, the simulations in this work were repeated several times
with the same settings to exclude chaotic influences of numerical instabilities.
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CHAPTER 4

Staggered Coupling of DEM and FEM

This chapter represents the core of this dissertation. In order to combine different
numerical computational methods in a partitioned simulation environment, the
interface equation has to be defined first, and suitable coupling algorithms have to
be developed. Intending to couple the DEM and the FEM, the interface equation is
first presented in the following, and afterwards different coupling algorithms are
discussed. Special features of DEM and FEM coupling are discussed, and the pre-
sented weak and strong coupling are introduced. Finally, several small test exam-
ples and benchmark tests are calculated to show the correctness of the coupling. All
necessary steps for the partitioned coupling of the two numerical methods are de-
scribed in detail, and algorithms are explicitly given. Finally, the transfer of data,
i.e. the mapping, and special features of the DEM-FEM coupling are discussed.
The results of this section were published by the author in [106] and are discussed
and reproduced below in the context of this dissertation. Some parts of the follow-
ing text passages are copied directly from [106]" and are therefore to be interpreted
as quotations.

4.1 Structure-Particle Equilibrium

To put the two independent physics, the DEM and the FEM, into an equilibrium
state, the following force equilibrium at the structure needs to be achieved:

Fe (a1 (1,07 (0),u” (1), 0" (1))
Q (4.1)
~For' (us (1,07 (1), 6% (1)) = 0.

Qg represents the structural domain, while I'c of Qg includes all nodes laying on
the coupling interface. P describes the DEM particles. With respect to equa-
tion 4.1, the contact forces F¢ of the particles, which are dependent on their

* Whose main author and copyright owner is the author of this dissertation.
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Qsre
T Fint

Figure 4.1: Domain definition and force equilibrium in DEM and FEM simu-
lation [106].

displacements and velocities, need to be in equilibrium with the internal forces
Fﬁi'r” of the structure. The equilibrium of both, DEM and FEM simulation is
graphically depicted in Figure 4.1.

The basicidea of the proposed partitioned coupling simulation is the interchange
of primary (such as the displacement) and secondary (e.g., forces) interface vari-
ables which are obtained as the solution of the respective components of the sim-
ulation.

4.2 Interface Equations

In the following, the DEM problem is solved independently from the structural
problem. To do so, the displacements and velocities of the structure at the given
time step are transferred to the DEM model and this structure is further seen as
the DEM wall, described by the domain Qp,. It is used to calculate contact forces
with the DEM particles P, which depend on their displacements and velocities
(see Appendix F for contact laws and force calculations). After solving the DEM
problem, the resulting contact forces are transferred to the structural analysis
problem. With the contact forces, seen as external forces, the dynamic structural
problem is solved, resulting in new displacements and velocities on the domain
Qg. This procedure is outlined in Figure 4.2.

Following this, the contact forces F¢ are now dependent on the displacements
and velocities of QO p and not directly of Qg and are defined as the external forces
coming from the DEM:
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Q __ DEM - Particles, P

DEM - contact wall, Qp

Displacement

& Velocity Force

FEM - structure, Qg

Figure 4.2: Transfer of force, displacement, and velocity between different ap-
plications [106].

Fgftvl"c =F¢ [uQD,l"p ) yuQD.rc ) ,uP 6 ,l'lp (l’)) 4.2)

The equilibrium within the structural mechanics problem is given as following:

Qg Qg . ..
Fou ™ —Fypo ™ (us (1), (1), (1)) = 0. 4.3)

After solving both domains, the two interface conditions, for the displacements
and the velocities between both fields, are not fulfilled anymore:

uf0re () —usre (1) =0, .4
aore () —asre (1) = 0. (4.5)
As a result, the contact forces Fo computed within Qp and the contact forces

which would be computed within Qg are not the same anymore, and thus, the
equilibrium expression is not fulfilled:

Fe (u?2re (1), are (1),u® (0,0 (1)

(4.6)
—Fc (usre (1), uTe (1),u (1,0 (1)) =0,

Remark: Small Time Steps

For small time steps, resulting in smaller initial penetration, the tracking
of the interface equilibrium can be negligible. However, the resulting
difference will lead to inaccuracies for ill-conditioned systems and large
time steps and make the solution unstable. To solve this problem, a pos-
sible approach is presented in section 4.5.
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4.3 Mapping

In the previous chapters, the term "mapping" was coined in the context of ex-
changing data. Generally speaking, it is the data exchange at the interface be-
tween arbitrarily different discretization of the same domain and is an indepen-
dent research topic discussed, for example, in [19, 121]. The partitioned coupling
method of two simulation participants makes it necessary to exchange the data
at the interface. A mapper is used to transfer the data from one domain to an-
other. [121] offers a detailed discussion about mappers and mapping algorithms.

Concerning equation 4.4, the displacements at the interface of the two domains
must be equal. If the structure is taken as the sending domain of the displace-
ments, the discrete displacements on the DEM wall domain a9Dre can be ex-
pressed as follows employing a mapping matrix Hg ,

ﬁQDvrC = deﬁQS'FC . 4.7)

The exchange of discrete nodal forces again uses a different mapping matrix H¢ 4,

Q¢ N
Foa'c =Hpgfc. 4.8)

Conservation of Energy at the Interface

Especially when exchanging the forces, the conservation of energy at the inter-
face has to be considered. This results in the following mathematical condition,

copr. Te _ ~0sr. TaQsre
a’ore fip =afsre T fSTe, (4.9)

Equations 4.7 and 4.9 finally result in the energy-conserving mapping matrix for
interface forces,

Qs T

Foa'© =Hgp e (4.10)
If the forces are exchanged by equation 4.8, it is called a consistent or direct map-
ping. On the other hand, a conservative mapping uses equation 4.10 for the ex-
change of forces. With the conservative mapping, the force mapping matrix does
not need to be recalculated and instead is simply the transposed displacement

mapping matrix.
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Mapping Algorithms

Various different mapping algorithms exist of which two are shortly discussed in
the following. Figure 4.3 represents a visualization of the respective algorithms.

* The nearest neighbor mapping, in Figure 4.3a, finds the nearest nodes on
the partner domain and directly exchanges data. The mapping matrices
consist only of 0 and 1. The figure also illustrates why the results of the
nearest neighbor algorithm often oscillate for highly differing meshes. It
is visible that some nodes do not receive any force. Especially when the
source domain is more coarsely refined than the target domain. Even though
the algorithm performs poorly for very different meshes, it is very efficient
and beneficial for conforming meshes.

* The nearest element mapping algorithm, on the other hand, finds the next
element on the partner domain by projecting the position of the current
node onto the partner domain. Using the element shape functions, the
values are then extrapolated to the adjacent discrete nodes. Figure 4.3b
illustrates this behavior.

(a) Nearest neighbor.

(b) Nearest element.

Figure 4.3: Nearest neighbor and nearest element mapping algorithms. The
blue domain represents the origin and the black domain is the
mapping destination.

Remark: Conforming Meshes

The simulations in this dissertation are performed with matching dis-
cretization of the two simulation participants. This simplifies the com-
plicated topic of mapping to the direct data exchange of overlaying
nodes.
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Mesh Dependency

For the specific application of highly flexible cable structures in this study, such
as rockfall protection nets or any other kind of cable-like structures, the DEM
wall condition Qp discretization and the FEM Qg discretization on I'c must ex-
actly coincide (conforming meshes). The respective meshes represent a physical
mesh that must be correctly described to model the exact contact positions. To
demonstrate this behavior, Figure 4.4a visualizes the DEM part of the simulation.
A cable net is modeled and impacted by two spheres. A large sphere finds con-
tact and deforms the boundary while a smaller sphere penetrates an opening. In
addition, Figure 4.4b represents the respective FEM structure which is used to
calculate the adequate structural response.

(a) Discretized Qp. (b) Discretized Qg.

Figure 4.4: Modeling of impact with cable structured boundaries [106]. See
Figure 4.5 for the total simulation results.

If surface elements such as shells or membranes, which do not possess physically
predetermined discrete contact positions, are used within a coupled simulation,
arbitrary meshes can be used. In that case, a mapper [19, 121] will be responsible
for the correct data transfer. Figure 4.5 shows the time course of a coupled simu-
lation in which a tiny particle penetrates the mesh without finding contact while
a large one is intercepted. This is also possible if the structure is modeled with
homogenized surface elements since it is sufficient if the DEM wall represents
the actual contact nodes. Figure 4.6 illustrates this behavior.

(a) t=0.0s (b) t=0.05s (c) t=0.1s

@
@

(] °
(d) t=0.15s (e) t=0.2s
Figure 4.5: A small particle is penetrating and falling through the coarse cable

net. A big particle collides with cable structure and is stopped and
thrown back by the protection structure [106].
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DEM rigid boundary

real geometry

1. (\WAYi
DORRAAZ -
FEM homogenized structural domain

(a) ADEM Wall with physically correct contact nodes and a simplified structural model is created from
the actual geometry.

¢ ‘A visible mesh penetration

(b) Thus, despite the simplified homogeneous structure model, the penetration of small particles can
be modeled.

Figure 4.6: Instead of discretizing both the DEM wall and the structure with in-
dividual cable elements, it is advisable to represent the structure as
ahomogenized surface structure. Furthermore, the presented cou-
pling method allows the model of the two interface parts indepen-
dently thanks to its partitioning. Thus, per DEM wall, all physically
correct contact points can be modeled while a simplified structural
model can be used. The figures are adapted from [102].
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4.4 Staggered Weak Coupling

The fundamental idea of the weak coupling” follows a single exchange of cou-
pling data in each time step. The communication pattern is depicted in Figure 4.7
while the essential steps at each time, including this communication pattern, can
be summarized as follows:

(=

. Solve DEM (results: uP,l'lp,FC).

2. MapJr Contact Forces from DEM to Structure.

3. Solve Structure (results: u®s,u®s, i),

4. Map Displacement and Velocity from Structure to DEM.
5.

Advance in time.

The interface variables are accordingly updated and mapped (see steps 2. and
4.):

Displacements: k+1yQprc P kuQSIC, (4.11)
maj
Velocities: k+1gQpre M2 kuQsre (4.12)
. k+13S2s,r, Map g
Contact forces: TR = “Fe. (4.13)

This algorithm is comparatively easy to implement and typically does not require
deep interaction. Standard DEM and FEM simulation environments provide the
exchange data as an output. Therefore, different software can also be efficiently
applied here. Furthermore, it is shown that the algorithm can be applied if the
time steps do not become too large (see examples in sections 4.6.2 and 4.6.3).
However, the behavior of this procedure can become unstable as soon as the dif-
ferences in stiffness, mass, and velocity between the two physics become very
high. The procedure is then very prone to the time step size used. Yet, decreasing
the time step size will usually lead to inefficient and numerically costly simula-
tions.

* Sometimes also called explicit coupling [131].
T See section 4.3 for a discussion of the mapping.
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Figure 4.7: Staggered weak coupling procedure between DEM and FEM [106].

To gain a deeper understanding of the underlying procedure, this approach is
further detailed in the following Algorithm 2.

Algorithm 2 Weak Coupling

1: Initialize
2: while ¢ < t,,,q do

3:
4
5
6.
7
8
9
10:

14:
15:

if particle_near_wall then
use pre-defined time step
else
use increased time step
Search nearest neighbors and find contact
Calculate F
Time integration of DEM part
Map* Fc on T from Qp to Qg
if forces # 0.0 then
Solve structure (FEM)
Map u,uonI; from Qgto Qp
Update position of Qp and Qg
t=t+At

16: Finalize

> Sec. 3.3.2
> Eq. E5

> Sec. 3.3.4
> Eq. 4.10

> Eq. 4.7
> Eq. 3.1

In this procedure, two additional features will be discussed. They are indepen-
dent of the coupling approach but improve the performance significantly. They
are added within Algorithm 2 and highlighted in the following:

particle_near_wall (line 3 - 6) — Checks if the individual particles are in the
vicinity of the structural model to adjust the time step. A particle moving
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freely in space can be simulated with a time step larger than it would be
required for the simulation of the DEM-FEM interaction.

forces#0.0 (line 11 - 14) - Is an additional check, which is used only to solve
the structure when contact forces are present. This is only valid if the self-
weight of the structure or any other loads (except impact loads) are ne-
glected. Otherwise, a preliminary simulation or a form-finding (see e.g. [38,
131]) of the structure is needed.

4.5 Staggered Strong Coupling

As known from other coupled multi-physics problems, such as Fluid-Structure
Interaction (FSI) [129, 130, 131], the direct, explicit transfer of the interface data
(forces, velocities, displacements) can lead to divergence problems in the stag-
gered simulation. Large contact forces will cause problems due to differences in
velocities, acceleration, and highly different masses on both sides. In contrast to
the weak coupling approach, the strong coupling® adds an additional iteration
loop in each time step, which solves for the equilibrium between both numer-
ical physics. This requires a Gauss-Seidel loop between DEM and FEM, which
might need to be solved multiple times within one time step [44, 45, 73, 110,
131]. This strategy enforces the coupling conditions (equations 4.4 - 4.6) to be
fulfilled. While the convergence is considered to be achieved as soon as the in-
terface residual is below a user-defined tolerance ¢, the residual formulation is
defined by equation 4.14.

The steps of this approach are shown in Figure 4.8 and summarized in the fol-
lowing:

1. Solve DEM (results: uP,llP,FC).

2. MapT Contact Forces from DEM to Structure.

3. Solve Structure (results: uQS,ﬁQS,ﬁQS).

4. Map Displacement and Velocity from Structure to DEM.

5. Calculate interface residual (Equation 4.14).

6. Repeat steps 1-5 until the interface residual reaches a given tolerance.
7. Advance in time.

The weak coupling algorithm, described in the preceding section 4.4, expresses
one single iteration in the strong coupling scheme (step 1. - 4.). The additional
interface loop (step 6., being controlled by the breaking criteria in step 5.) adds
complexity to the solution procedure and significantly increases the computa-
tion costs as the system now needs to be solved multiple times within one time

* In the literature also called implicit coupling [131] or a conventional serial staggered approach within
the context of loose coupling [44, 45, 110].
T See section 4.3 for a discussion of the mapping.
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Figure 4.8: Strong coupling communication diagram [106].

step. However, it allows more accurate results and higher simulation stability. It
can be noted that the number of solving iterations is typically still lower than if
the time step would be reduced to a value where the weak coupling approach
would still be applicable. This is primarily because many coupling iterations are
typically not required throughout the entire simulation but only at specific time
steps. The comparison of the two procedures, including a view on the perfor-
mance, is outlined in section 4.6.

4.5.1 Interface Residual

The residual criteria within the strong coupling loop is defined by:

52|
€= T, (414)
v 'teq

where € is the user-defined breaking tolerance. It is checked after each iteration k
by scaling the norm of the residuum k 2 with the square root of the number of de-
grees of freedom Neq at the interface I'¢ [74]. It is important to note that the inter-
face tolerance should be larger than the convergence tolerances of the respective
individual solvers within the coupled system. Otherwise, the convergence cri-
teria cannot be reached. The residuum can either be obtained by the displace-
ments, the velocities, or the contact forces. By subtracting the current discrete
solutions on the boundary I'; from the previous discrete solutions of step k-1,
the residuum of each variable is noted as follows:
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Displacement residuum: k1“u =kgQsre k_lﬁgs'rv, (4.15)
Velocity residuum: k7‘u = k§Qsre _k=15Qsrc (4.16)
Contact force residuum: ke =Ko — k=1 (4.17)

4.5.2 Convergence Acceleration via Relaxation

Furthermore, large time steps typically lead to large differences in the interface
velocities and displacements, and thus the result can be non-physical large con-
tact forces. If those forces are too high, small time steps can still lead to unsta-
ble simulations, even with the proposed strong coupling algorithm. As a rem-
edy, the transferred data can be gradually applied, also called relaxation, permit-
ting a faster interface convergence. The so-called convergence acceleration (see
also [131]) can be achieved by numerous methods and is discussed in the follow-
ing.

Two different strategies can be chosen for the relaxation: either the relaxation of
the displacements and velocities or the relaxation of the contact forces. The re-
laxation is done with respect to the residual (equations 4.15 - 4.17), respectively:

. L Q _1.Q
Relaxed displacements: kg'iste — k=1g*sre | kaukfu, (4.18)
p rel rel
e ’.\Q n —_ ’.\Q
Relaxed velocities: kgiisre — k=1g"sre o kaukfu, (4.19)
rel rel
Relaxed contact forces: K80 o1 =¥ BC o1 + R b ep (4.20)

Each variable is subsequently updated from the previous solution (step k —1)
using the respective interface residuum scaled by relaxation factor «.

There are different approaches to obtain the scaling factor « (see also [110]). The
relaxation factor can be set to a user-defined constant value, which is very sim-
ple and helps to improve the quality of the simulation. Another approach is to
use the Aitken method” [1]. It optimizes « in every iteration with respect to the
current residuum 7 and the previous residuum k=14

k—l,,_(kf_k—lf]

k-1
‘d/—)
I1*7 — k=172

ko) =- @.21)
respectively, «, = @ (#y), @ = @ (#y), @ = «(#F). The influence of the relax-
ation factor « is studied in the example in section 4.6.4.

In this study, either the displacement and the velocity field or the contact forces
are independently relaxed and subsequently mapped. However, in the case of
displacements and velocities, both residua have to be achieved to ensure that
both solution fields still coincide on both sides. Thus, the resulting residua for
both relaxing procedures are given as follows:

* Appendix D demonstrates the operation of the Aitken method by solving a scalar function.
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Displacement and velocity residuum: k

k k

Contact force residuum: »="7f.

# = abs max(kfu,kru), (4.22)

(4.23)

The interface variables are updated and mapped accordingly (see steps 2. and 4.
in Figure 4.8). The following variables are exchanged within the interface:

Without relaxation:
ma;
Displacements: k+1yQpre TEP kyQsre (4.24)
oy . ma .
Velocities: k1 Qpre TEP kgQsre (4.25)
. k+1 Qs Map g
Contact forces: F ¢ = "Fc. (4.26)
With relaxation:
) map . Q
Displacements: k+1yQpr, "2P K u ', (4.27)
Velocities: k41 gOpre MEP kgllsre, 4.28)
Q ma
Contact forces: R i =P KB ol (4.29)

In summary, both solution strategies are described within Algorithm 3 and Algo-

rithm 4 in pseudo code.

Algorithm 3 Strong Coupling - Relaxed Displacement and Velocity

1: Initialize
2: while ¢ < t,,,q do
3. whilee < |¥#|/,/Tieq do

4 Search nearest neighbors and find contact
5: Calculate kFC
6: Time integration of DEM part
7: Map* FF¢ on T from Qp to Qg
8: Solve structure (FEM)
9: Map ku,kaonT, from Qgto Qp
10: Calculate kfu,k 74
11 Relax Fu,ka
12 Update position of Qp
13: Calculate ¥

14: Update position of Qg
15: t=t+At
16: Finalize

> Eq. 4.14
> Sec. 3.3.2

> Eq. E5
> Sec. 3.3.4

> Eq. 4.10

> Eq. 4.7
> Eq. 4.15,4.16
> Eq. 4.18,4.19

> Eq. 3.1

> Eq. 4.22

> Eq. 3.1
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Algorithm 4 Strong Coupling - Relaxed Force

1: Initialize
2: while ¢ < to,,q do

- whilee < |F#|/ /7ieq do > Eq. 4.14
4 Search nearest neighbors and find contact > Sec. 3.3.2
5: Calculate kFC > Eq. E5
6: Time integration of DEM part > Sec. 3.3.4
7: Map kFC on I from Qp to Qg > Eq. 4.10
8: Calculate krp > Eq. 4.17
9: Relax kﬁc > Eq. 4.20
10: Solve structure (FEM)
11: Map ku,%won T, from QgtoQp > Eq. 4.7
12 Update position of Qp > Eq. 3.1
13: Calculate k# > Eq. 4.23
14: Update position of Qg > Eq. 3.1

15: t=t+At
16: Finalize

Remark: The Coefficient of Restitution (COR)

Large contact forces will result in difficult fulfillment of interface condi-
tions (Equations 4.4 - 4.6). Section 4.5 proposes a remedy for that prob-
lem. One major factor influencing the magnitude of the contact forces is
the DEM particle property COR. This value must be defined by the user
and heavily influences the stability of the coupled simulation (see exam-
ple 4.6.5). The coefficient represents the ratio of initial velocity and final
velocity after impact [80, 98] (see equation E6), and is further discussed
in Appendix E1. Since this coefficient is determined manually for each
simulation, it is essential to be careful when calibrating.

4.6 Systematic Assessment of the DEM-FEM Coupling

This section presents some examples that systematically analyze the difference
between the introduced coupling approaches and their application within the
simulation of relevant industrial applications. The examples show impacting
objects on highly flexible lightweight cable structures, such as protection nets.
These interaction problems typically have numerical stability issues within the
simulations, as the net structures have a low mass, whereas the rocks are typi-
cally heavy. This instability leads to the problem that the forces might become
very large, especially when the first impact occurs. Thus, due to the different
masses, this may lead to convergence problems, especially if the chosen time
step is large, leading to inaccuracies in the simulation.
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e First, a benchmark test is calculated from [98]. In the test in subsection
4.6.1, a spherical particle impacts on a single-span beam and the resulting
contact forces and displacements are compared.

¢ Inthe first academic problem in subsection 4.6.2, a cable structure is mod-
eled to evaluate the influence of different time step values.

* Subsection 4.6.3 subsequently uses a cable structure with a large pre-stress
while also showing the influence of the Coefficient of Restitution (COR) in
order to analyze the influence of larger contact forces on the required time
step.

* Subsection 4.6.3 investigates the difference between relaxing forces (see
Algorithm 4) and relaxing displacements and velocities (see Algorithm 3).

¢ The proper choice of a relaxation factor is further discussed in the example
of subsection 4.6.4.

* The influence of the COR, which scales the contact forces, is then analyzed
in subsection 4.6.5.

* Subsection 4.6.6 investigates the conservation of energy in the coupled
system with two different DEM parameter sets.

* Finally, a practical application of a rockfall into a cable net, using the herein
explained approaches, is presented in subsection 4.6.7.

All examples apply a Hertz Mindlin Spring Dashpot Model (HM+D) law to cal-
culate the DEM contact forces. A detailed description is given in Appendix F.
Additionally, no structural self-weight is considered in this section, to fully con-
centrate on the coupling method.

4.6.1 Impacton a Single-Span Beam

A benchmark test is performed to verify the coupling algorithm in which a spher-
ical particle impacts a single-span beam. As shown in Figure 4.9, the beam is
hinged on the left and right and is discretized with 60 linear beam elements. Ta-
ble 4.1 shows the input data for the simulation, and the simulation results are
presented in Figure 4.10 and compared with [98]’s results. A time step At of
= 5e —8s is used to resolve the very short contact time of = 0.16ms. While the
analytical solution is given in [82], it can be easily seen that the results match
almost exactly.

k.
ool [ 2[8] | w01 [ end | ot | o]1] |
Particle 7960 2.1582el1l1 | 0.289 | 1.0 0 0,0,0]
Structure | 7960 2.1582ell | 0.289 | - - T

Table 4.1: Simulation data, obtained from [98]. The dimensions of the struc-
ture and the particle are shown in Figure 4.9.
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R=0.01m

} tto =10,0.01,0] m

. L=0.1535m N
1

Figure 4.9: Sketch of the beam impact problem setup, adapted from [98]. The
remaining simulation data is given in Table 4.1.
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time [ms]

Figure 4.10: Visualization of displacement of impacting sphere, displacement
of beam, and contact forces over time. For verification the data is
compared to [98].

4.6.2 Impact on a Compliant Cable: Large Deformations

In this example, a single DEM particle with perfect spherical dimensions impacts
a pre-stressed cable, which is discretized with three finite elements. Here, the
contact point on the structure is known, and thus it can be focused on the per-
formance of the coupling algorithms. The setup of this academic example can
be found in Figure 4.11a. It demonstrates the necessity of a strong coupling algo-
rithm since, for larger time steps, the phenomena of artificial contact loss due to
large initial contact forces occur.

contact force [N]
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Particle Structure
=02 E =1e5-%%
0 Sy outercable = 169773
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(a) Problem setup.

— W

(b) Weak coupling after impact. (c) Strong coupling after impact.

Figure 4.11: Problem setup, including all geometrical and physical input pa-
rameters for the simulation. Results after impact with time step
of At=1e—2s[106].

Within empirical tests, the time step At = 1e — 3s is found to be the highest pos-
sible time step for which the weak coupling algorithm can resolve to an appro-
priate solution. Here, the coefficient of restitution (COR) is set to be 1.0. Implicit
time integration is used for the structure, as the chosen time step is too large for
an appropriate solution with an explicit time integration scheme. Figure 4.11b
and 4.11c show the behavior of the cable after the first contact, for the time step
size of At = 1e—2s. Using the weak coupling approach, a "jump" can be outlined
as shown in Figure 4.11b. Due to the large time step, a greater indentation and
higher velocities occur. Consequently, the interacting force is too large so that the
sphere and cable do not continuously stay in contact during the entire time. This
leads to nonphysical behavior of the coupled problem, as shown in Figure 4.12.
By adding the additional interface loop to solve for the contact force, the conver-
gence of the problem can be achieved for a larger time step of At =1e—2s.
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------- weak coupling Az = 1e-2s
strong coupling At = le-2s

- - - weak coupling At = 1e-3s

displacement [m]

—10

T
0 0.2 0.4 0.6 0.8 1 1.2
time [s]

Figure 4.12: Comparison of weak coupling approach with At = 1e—2s and
At = le — 3s against the strong coupling approach with At =
le — 2s for the vertical displacement of node A (see also Fig-
ure 4.11a) [106].

Interface Convergence

In the following, the time step of the first contact is discussed in detail. It can
be seen (Figure 4.13d) that the contact force is relatively large in the first inner
iteration (coming from the relatively large time step) and decreases within the
interface iteration to a converged solution due to the application of the Aitken re-
laxation, introduced in equation 4.21. The large discrepancy in the contact force
leads to an unstable coupled simulation when using a standard weak coupling al-
gorithm. The same accounts for the deflections of the impacting sphere as shown
in Figure 4.13c.

Figures 4.13a and 4.13b present a visual description of the interface condition in
equation 4.4 and 4.5. It can be seen that the position of Qp and Qg do converge
to a common value, to fulfill the interface displacement/velocity equilibrium.
Exemplarily, the total number of inner iterations for each time step are shown
in Figure 4.14. It shows that the number of inner iterations can vary greatly (be-
tween one, if there is no contact, and nine iterations) within each time step. How-
ever, it can be noted that the number of contact simulations is still lower than if
the time step would be decreased to At = 1e — 3s, which is the limit for which the
weak coupling approach still converges.
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displacement [m]

displacement [m]

inner loop iterations
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2.0 S—p-—0—0—06—0 g8 —6—0 z
—2. , , - =2.0 E
40 A o - -40 3
/) -a- Qg / -4- Qg K
/ /7
-6.0 *A/ Qp A, 2p L —6.0
\ \ 1 \ \ \ - \ \ \ \ \ \ :
1 2 3 4 5 6 7 1 2 3 4 5 6 7
inner loop iterations inner loop iterations
(a) Interface displacement. (b) Interface velocity.
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(c) Displacement of impacting sphere. (d) Contact forces on Qp.
Figure 4.13: Simulation results within one time step over inner coupling itera-
tions [106].
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Figure 4.14: Number of interface iterations per time step, adapted from [106].

[N]

contact force
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4.6.3 Comparison to Position of Rest With Different Time Steps

In this section a setup similar to the previous example (see subsection 4.6.2 and
Figure 4.11a) with an increased pre-stress (Sy = 166%) and a homogeneous

Young's Modulus (E = leQ%) in the cable structure is used with the following

changes for the impacting sphere: R =0.12m and pg = 3.564%.

The result of the transient analysis will be compared to the static solution, con-
sidering the particle weight as an external static force Fy;.

Mgphere
——

4 3 m
Fin= S7Rpre Psphere 98175 (4.30)
Vsphere gravity

The resulting static deflection of node A (see Figure 4.11a) is shown in Figure 4.15.
This comparison proves that the transient analysis approaches the static solution
after a certain time.

Furthermore, the sensitivity of the time step within each coupling algorithm is
also studied in this example. The results of all solutions are presented and com-
pared in Figure 4.15. It shows that the weak coupling approach provides an ac-
curate performance for a time step of At = 1e — 3s, whereas the solution for At
= le—2s is very unstable. It turns out that the result oscillates around the ex-
pected solutions for large time steps.

Finally, the measured solutions for time steps of At = 1e—2sand At = 3e—2s show
that the strong coupling algorithm still allows for good convergence for rather
large time steps. However, by increasing the time steps, the number of interface
iterations subsequently increases, which is shown in Figures 4.16 and 4.17. Espe-
cially when the impact occurs, the large difference in interface velocities leads to
an increased number of interface iterations (see Figure 4.16). The proposed algo-
rithm decreases this difference within the scope of coupled simulations, leading
to a smaller number of iterations.
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0T A —— static displacement
) - - - weak coupling At = le-3s
— N e weak coupling Az = le-2s
= A - - - strong coupling At = le-2s
= B
g —0.27 ‘\‘\ — strong coupling At = 3e-2s
g
3 B
Q
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a
.2
°
-0.4
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time [s]
Figure 4.15: Comparison of weak coupling approach with At = le—2sand At
= le—3s against the strong coupling approach with At = 1e-2s
and At = 3e—2s for the vertical displacements of node A (see also
Figure 4.11a). Furthermore, the static solution of the problem is
provided to show which value the results should approach [106].
Relaxation Variants

The influence if either displacements and velocities or forces are relaxed is exam-
ined in the following. Both options are described in Algorithm 3 and Algorithm 4,
respectively. Comparing Figures 4.17 and 4.16, it can be noted that relaxing the
forces facilitates slightly faster convergence than relaxing displacements and ve-
locities.

In this specific case at hand, clear and marked-off points of load application (im-
pact position) do exist. However, in different cases, such as in the following sub-
section 4.6.7, where a variety of possible impact nodes exist, relaxing displace-
ments and velocities are shown to be the better choice. In those cases, which
appear more frequently, the impacting spheres can rapidly change the impact-
ing position and thus lead to a slow converging force residual.

71
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iterations [—]

iterations [—]

—— strong coupling At = le-2s
------- strong coupling At = 2e-2s
| - - - strong coupling At = 3e-2s

\ \ \ \ 1 \ \ \ \
02 04 06 08 1 1.2 14 16 1.8 2

time [s]

Figure 4.16: Number of interface iterations per time step - relaxed forces,

adapted from [106].

—— strong coupling Az = 1le-2s
------- strong coupling At = 2e-2s
- - - strong coupling At = 3e-2s

time [s]

Figure 4.17: Number of interface iterations per time step - relaxed displace-

ments and velocities, adapted from [106].
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4.6.4 Influence of the Relaxation Factor

In this example, the influence of the relaxation factor « in the case of relaxed
displacements and velocities is investigated by comparing the Aitken relaxation
(see equation 4.21) and a set of constant relaxation factors. For this purpose, the
COR ¢y, is set to 1.0 (which physically describes a perfectly elastic impact on a
rigid obstacle) to neglect the influence of the wall velocity and thus concentrate
solely on the relaxation factor. The same problem setup as in section 4.6.3 is used.

| -« =0.1
—+— =05
_ ] — =10
g — « = Aitken
g 0.2
g .
3
=
&
2
—0.4

time [$]

Figure 4.18: Comparison of displacement of node A, in Figure 4.11a, over time
for different relaxation factors <. With « = 1.0 the simulation
becomes unstable shortly after the first contact is detected. Un-
derrelaxation of @ < 1.0 leads to stable simulations, too. How-
ever, this is more computationally costly than using the optimized
Aitken relaxation factor [106].

As Figure 4.18 shows, a constant relaxation factor can be used as long as it is
smaller than 1.0. « = 1.0 describes a non-relaxed system and does not find a
proper solution for this given example. Manually finding a suitable constant
relaxation factor is cumbersome and is dependent on the system setup. In ad-
dition, it heavily influences the solving time, as Table 4.2 demonstrates. For a
constant « and the Aitken « (see equation 4.21), the comparison is performed
with respect to computation time. It can be noted that although constant relax-
ation factors provide good results, the optimized Aitken relaxation factor facili-
tates faster convergence to the residual.
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relaxation factor « | relative computation time

0.1 100.0 %
0.2 54.1 %
0.5 20.4 %
0.7 28.5%
Aitken 18.7 %

Table 4.2: Comparison of computation time with different relaxations and the
Aitken relaxation [106].

4.6.5 Influence of the Coefficient of Restitution

Appendix E1 discusses the influence of the coefficient of restitution &, with Fig-
ure E3 visualizing the course of the influence of €5 on the contact forces. If €, is
close to 0, the influence of £, becomes larger and larger and finally tends to infin-
ity. To investigate possible consequences for a coupled simulation, &, is varied
in this section and the results are presented in Figure 4.19. It shows, €, directly
influences the contribution of the DEM rigid wall velocity to the contact force.
Current state of the art publications such as [5, 24, 97] express the importance of
the €5, value for impact simulations.

Different ¢, values are used while the time step is kept constant to perform this
case study.

------- weak coupling £, = 0.01
—— weak coupling €, =0.1
- - - weak coupling e, =0.2
—&— strong coupling €, =0.01
—— strong coupling £, = 0.1
—©— strong coupling €;, = 0.2

displacement [m]

\ \ \ \ \ \ \ \ \
0 02 04 06 08 1 1.2 14 16 1.8 2

time [s]

Figure 4.19: Comparison of different £, values [106].
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As visible in Figure 4.19 the interface coupling becomes unstable as soon as €,
reaches a small value. This instability can be overcome by using the strong cou-
pling algorithm presented in section 4.5 and is a result of the increased influence
on the contact force in the system [31], see Figure E3. Additionally, Figure 4.19
describes another important feature: The choice of €; does not influence the fi-
nal damped solution of the structure® but only the maximum transient solution.

Figure 4.20 visualizes the progression of the maximum interface iterations over
the simulation time and indicates the advantages of the proposed coupling algo-
rithm. The large number of iterations at the time of first contact (¢ = 0.25s) calls
for a small time step due to the increased difference in interface velocities. This
can be overcome with the help of additionally introduced interface iterations. As
the simulation proceeds and the initial velocity difference is properly controlled,
fewer iterations are needed to enforce the interface conditions.

10 H

iteration steps [-]

\ \ \ \ \ \ \ \ \ \ 1
0 02 04 06 08 1 1.2 14 16 18 2

time [s]

Figure 4.20: Strong coupling interface iterations for £, = 0.2 [106].

* See "static" in Figure 4.15.



76 4. Staggered Coupling of DEM and FEM

4.6.6 Energy-Conservation

In order to study the evolution of energy in both individual systems and the cou-
pled system, Figure 4.11a’s setup is simulated with the following parameters. A
particle with a radius R = 0.25m is dropped from a height of 0.26m on a cable
structure with a reference cross section A = 0.01m?2. Structural damping is ne-
glected.

k -
Leo ] | E[3E] | vior [ entr | mpior | o[k | ¢[%] |
Particle 2500 le5 0.2 1.0/0.5 | 0.58 - 9.81
Structure | 7850 2.069el11 | 0.3 - - le5 :

Table 4.3: Simulation input data.

The COR ¢, is varied to model both a fully elastic and partially elastic impact.
During the non-perfect elastic impact, energy is "lost"*, which is then referred to
and tracked as damping energy.

* The following Figures, 4.21 and 4.22, show the simulation results for £, =
1.0 and &5 = 0.5, respectively.

e Figures 4.21a and 4.22a represent the path of the impacting particle.

* Figures 4.21b and 4.22b visualize the energy in the DEM simulation and
Figures 4.21c and 4.22c in the FEM simulation.

e Finally, Figures 4.21d and 4.22d show the total energy in the system, which
must remain constant.

It is evident in both figures that the total energy remains constant except for a
minor error, and no additional energy is introduced into the system.

Remark: Derivation of Energy Terms

Appendix G contains the equations necessary to calculate the respective
energy terms.

* Transformed to energy terms that are not apparent in the mechanical DEM system, such as heat, noise,
and other effects, for instance, irreversible deformations in the particle.
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Figure 4.21: Course of the energy over time. Simulation with a COR ¢, = 1.0.
No energy is dissipated by the impact of the sphere.



78 4. Staggered Coupling of DEM and FEM
E 0.00
% —0.05 +
g .
]
g
=, —0.10 —
2 —— Particle Displacement
kS|
\ \ \ T T T T

Energy [J]

Energy [J]

Energy [J]

1
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
time [s]

(a) Displacement of impacting sphere.

200 ——ela
—— damp

= -t
0 —_—

\ \ \ \ \ \ \ \
0.00 0.05 010 015 020 025 030 035 0.40

time [s]

(b) Energy DEM.

- - - total

\ \ \ \ \ \ \ \
0.00 005 010 015 020 025 030 035 0.40

time [s]
(c) Energy FEM.

—— max. error: 0.00321%

0.00 0.05 010 015 020 025 030 035 0.40
time [s]
(d) Energy total system.
Figure 4.22: Course of the energy over time. Simulation with a COR €5, = 0.5.
Some energy is dissipated by the impact of the sphere. The dissi-

pated energy is tracked over time and visualized by the damping
energy in Figure 4.22b.
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4.6.7 Practical Application: Angled Protection Net

One prominent practical application case of highly flexible structures can be found
in mountainous regions. As an alternative to horizontal protection nets, angled
nets can also be spanned over roads to direct impacting objects to a safe spot, as
shown in Figure 4.23a.

(a) Route Chalais-Vercorin, Valais. Pho- (b) Numerical DEM-FEM coupled model.
tograph is  property of  Geobrugg
(https://www.geobrugg.com).

Figure 4.23: Picture of the protection net and the corresponding, simplified
numerical model, including the net as cable structure and two
impacting rocks modeled as single DEM particles. One particle
is chosen to be small enough to penetrate the net, verifying the
correct contact detection [106].

To test the limits of the presented algorithms, in this study, the same system as
shown in Figure 4.23b is modeled without pre-stressing the cable structure, lead-
ing to a very compliant structure (compare Table 4.4). Additionally, a small COR
of £, = 0.2 and a high impact velocity are chosen to introduce even more diffi-
culties due to an increased contact force.

FEM DEM

E 7e5% E 1e5%

A 126e-5m® | Wiy [0.0,-5.54,-5.54] 2
k k

;30 7.85@3m—g3 0o 2.5e3m—g3

So 0 R; [0.21,0.05] m

ag 20 v 0.20

Ba 0 En 0.2

Table 4.4: Properties of FEM and DEM part [106].
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Using a time step of 2e — 4s, the different behaviors after impact are presented in
the following figures 4.24a and 4.24b.

Similar to the example from subsection 4.6.2, the weakly coupled problem expe-
riences too large contact forces and loses contact between the impacting object
and the structure, whereas the strong coupling algorithm manages to keep the
contact for the given time step (see Figure 4.25).

(a) Weak coupling. (b) Strong coupling.

Figure 4.24: Comparison of the weak coupling to the strong coupling ap-
proach with the same time step At =2-1e—4s [106].
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Figure 4.25: Weak vs. strong coupling displacement of center node [106].
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CHAPTER 5

Validation of Simulation Approach

The following chapter shows the application of the theoretical approaches described
so far by applying the element formulations, material laws and the described cou-
pling methodology. Two actual experiments are investigated and simulated. The
selection is made so that the two most important types of protective structures are
discussed. In section 5.1's first experiment, a standardized rock is dropped without
rotation in the direction of gravity onto a flat protective net.

In contrast, an Attenuator protection net is modeled and calculated in section 5.2.
Here, the rock hits a vertically suspended net with a particular rotational velocity.
This resembles a curtain and guides the impacting rocks instead of catching them.
Several studies are conducted during the simulations. Among others, the influ-
ence of the DEM cluster refinement on the accuracy of the results and the required
computation time is investigated in section 5.1.

The results of this chapter were published by the author in [104] and [103] during
the course of this dissertation.

All examples apply a Hertz Mindlin Spring Dashpot Model (HM+D) law to calcu-
late the DEM contact forces. A detailed description is given in Appendix F.

5.1 CTI Frame

The experiment presented here is modeled and simulated to verify the DEM-FEM
coupling methodology and apply it to an actual structure. The simplicity of the
structure construction is an advantage to focus on the coupling and further on the
investigation of the DEM cluster refinement. For this reason, simplified structural
parameters are chosen.

First, a description of the experiment and a discussion of the structural modeling
using the FEM is given. Subsequently, the appropriate modeling of the impact-
ing rock and the corresponding DEM cluster refinement are discussed. Then, the
simulation results are compared with the experimental data.

The results of this section were published by the author in [104] and are discussed
and reproduced below in the context of the dissertation. Some parts of the follow-
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ing text passages are copied directly from [104]" and are therefore to be interpreted
as quotations.

5.1.1 Experiments

The experiment setup is described below. In this work, only the required compar-
ative data will be published, while the remaining data are not publicly accessible
as a property of Geobrugg. A standardized' concrete block is used, with a total
mass of 180kg (the concrete block mass in itself weighs 175kg, the attached wire
rope strap weighs 5k g bringing the total mass of the block to 180kg) and an edge
length of 0.41m impacts a 3.9 x 3.9m% DELTAX® G80/2 [49] (see Figure 5.2) net
which is spanned into a CTI-Frame with rigid boundaries. The rigid boundaries
are, in this case, 5/8” shackles connecting the mesh to the steel frame.

The block is dropped from a height of 2.0/ which results in an impact velocity of
=+v2.0-9.81-2.0= 6.261484%. The tests are laid out to produce a rebound of
the block without failure of any mesh wire.

The same test is repeated twice, whereas (due to different pre-stresses) the initial
sag, as a result of the dead load, varies from 0.05 — 0.10m, labeled with exp_1I
respectively exp_2 hereafter.

Label | exp_1 | exp 2
Initial Sag [m] | 0.05 | 0.10

Three main parameters, displacement, velocities, and forces are obtained from
these tests utilizing a high-speed camera and an internal acceleration measur-
ing device. The high-speed camera records at a resolution of 1280 x 1024 and a
frame rate of 5e2 fps. The acceleration sensor is composed of a built-in triaxial
accelerometer with a range up to 5e2g and a sampling rate of 2e4 Hz and is in-
corporated in the test block. Deflection, this means, the vertical displacement
or sag of the mesh after impact, is measured directly through the analysis of the
videos obtained from the high-speed camera. The block’s velocity is calculated
by following the block’s trajectory over time in the high-speed video, based on
the principle dx/At. The velocity before impact is compared between the com-
puted one, as explained above, and the result from the video analysis, to ensure
the plausibility of the video analysis. Finally, the analysis of the accelerations ob-
tained by the accelerometer yields the force evolution over time.

The repeatability of the tests is deemed to be given. Five tests are carried out in
total. The test block and the drop height are the same for all tests, this means,
the input parameters are kept constant. Three parameters vary slightly, but all
are considered to be in a negligible range. The dimensions of the net panel it-
self vary by +/ —5%. The tensioning force is not directly measurable when in-
stalling the net panel in the test frame. This leads to a variation of the sag of
+/ —5cm. Finally, the material’s tensile strength varies between 1700N/mm?

* Whose main author and copyright owner is the author of this dissertation.
T Swiss Agency for Environment, Forests and Landscape (SAEFL)
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Figure 5.1: Photograph of the testing site in Walenstadt, Switzerland, showing
the CTI-frame [104].

and 2030N/mm?. This could be important when analyzing the breaking load, al-
though this variation is also deemed negligible in the practical application since
the lowest value is always considered. The tensile strength is of minor impor-
tance for this work as no damage in the mesh is observed.

5.1.2 Modeling
5.1.2.1 Structure

Due to the set-up of the experiment and the fine mesh of the used protection net-
ting (see Figure 5.2), a simplification of the net to a closed, homogeneous surface
suggests itself. This assumption simplifies structural modeling and allows the
use of two-dimensional finite elements. Publications such as [83, 117] suggest
a shell element to be used. While the advantages are clarified in these publica-
tion, it would mean an overhead for the underlying experiment. Owing to its
simplified set-up, a plate in membrane action is used. An initial plane geometry
has zero out-of-plane stiffness, carrying only in-plane stresses and omitting ro-
tational nodal degrees of freedom. As a remedy, a minor pre-stress is applied to
the structural model (see Table 5.1) to provide a non-singular stiffness matrix at
the beginning of the simulation. The modeling procedure is visualized in Figure
4.6a.

The Young’s Modulus is calibrated to the given value in Table 5.1 in order to
achieve an initial sag due to dead-load of = 0.05m (see Figure 5.3), as described
in the experimental set-up.
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Figure 5.2: Technical drawing of the DELTAX® G80/2 49, 104].

C

Thickness d [m] 8e—-3
Isotropic Pre-stress §0 [N/mz] [0.01,0.01,0.0]
Density pg [kg/m’] 81.25
Young’s Modulus E [N/m?] 5e7

Poisson’s ratio v [—] 0

Table 5.1: Numerical properties for the structure.

iiiiiﬁi;;“““i“%ﬁ-" Z-DISPLACEMENT
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Figure 5.3: Initial static analysis to obtain equilibrium position for dead-load
[m] (plot scaled by factor x10) [104].
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With respect to the technical data sheets available on [49] the thickness of the
plate in membrane action element is set to 0.008m, whereas the density is de-

rived from the provided mass of 0.65% DELTAX® mesh standard roll:

k k
po = 0.65 m—gzr/o.oos m=81.25 m—i. G.1)

Remark: Simplified Structural Modeling

As described in the experimental set-up in section 5.1.1 the two tests that
are investigated show a rebound of the impacting sphere and no dam-
age. Due to the observed structural response a simple elastic material
model [8] and a Poisson’s ratio of v = 0 is applied. In the course of this
work it is shown that structural models with the right simplifications al-
low a correct assessment of the global behavior. If a detailed analysis of
the deformation behavior and failure behavior of individual structural
elements is to be carried out, more attention must be paid to structural
modeling.

5.1.2.2 Impacting object

In section 3.3.5, the use of particle clusters is explained. This method for model-
ing the real rock geometry will be used in the following. Since no detailed inves-
tigation of the appropriate refinement of DEM clusters for modeling actual rock
geometries has been published so far*, different refinement levels are generated.
Furthermore, their influence on the results and the required computational time
are investigated.

As depicted in Figure 5.4, the standardized experiment object is modeled with
seven different levels of refinement. Ranging from a representation as a single
sphere to a detailed geometrical description with up to 22,232 spheres. Spe-
cial algorithms are needed to create such refined cluster files. Accordingly, the
Sphere-Tree algorithm described in [17, 18] is employed as it is available in an
online toolkit [16].

* The results and investigations of this chapter have been published by the author in [104].
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c3

cl c2
gww

Figure 5.4: Cluster refinement (1,8,56,296,1280,5408,22232) [104].

The density of the respective cluster is fitted to obtain a total cluster mass of
180kg (see section 5.1.1). Important DEM parameters, such as the coefficient
of restitution €5 [107] and the Young’s Modulus E of the particle, are varied with
respect to Table 5.2 while studying their influence. The range in which E is se-
lected is based on the results of a preliminary study”.

# nr. of spheres | €, | E[N/ m?]
cl 1

c2 8

c3 56 0.5 le5
c4 289

c5 1280

c5_a | 1280 0.2 5e5
cb 5408

c7 | 22232 0.5 led

Table 5.2: Cluster versions, as visualized in Figure 5.4 [104].

5.1.3 Validation

The experiment produced results which are used to validate the proposed cou-
pling algorithm and to investigate the influence of discrete element cluster re-
finement, time step At, coefficient of restitution &;, and the Young’s Modulus E
on the final solution of displacement, velocity and reaction force Fr. Further-
more, it is shown that simplified structural modeling allows an appropriate eval-
uation of the global structural behavior.

Each of the aforementioned clusters, described in Table 5.2, is used in the nu-
merical impact simulations. If not mentioned otherwise a time step value of
At = 1le—5s is used. The results with the label "small At" follow from a simu-
lation with At =1e—6s.

* Comments on the proper choice of the Young's Modulus and its interpretation as a penalty factor can
be found in sections 3.3.3 and 5.2.3.1.
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Although the simulated system setup is more similar to exp_I, the experimental
results for exp_2 are added to the result plots as it represents an experiment with
the same impact velocity and the same mass of the impacting object. Moreover,
the difference in the initial sag is a result of the test setup and can hardly be con-
trolled. Thus, it allows error zones to be added in the result plots to show the
variability of the experimental results.

5.1.3.1 Displacement

The simulated displacement values of the impacting object are compared to the
experimental results. Figure 5.5 demonstrates that the simulation results lie be-
tween the two experimental results. It is noticeable that already with more than
one sphere in the cluster a good agreement with the experimental data can be
seen. To explain this behavior the simulation is visualized at the time of max-
imum displacement in Figures 5.7 - 5.13 (see Figure 5.6 for comparison to the
experiment). Due to the fact, that the contact forces in DEM are calculated with
the help of spring-dash-pot models [31, 98, 107] the single sphere with one large
radius experiences an indentation, which is larger than it is for the clusters with
more smaller spheres. This has additional effects too, which become clear in Fig-
ures 5.14 and 5.15. The single particle has a larger indention (Figure 5.7) and
thus decelerates slower (Figure 5.14). This finally leads to lower contact/reaction
forces and a longer duration of load application, as visualized in Figure 5.15. The
same behavior is observed when decreasing the time step* and consequently can
be concluded to be a problem of the very rough representation of the original ge-
ometry as a single sphere and not the choice of the time step size.

Regarding the remaining refinement levels, a good agreement with the exp_1 is
shown, as the initial sag of the numerical model due to dead-load matches with
the initial sag of the first experiment set-up exp_1I of 0.05m, while the displace-
ments of all simulation results are within the error zone.

* See Figure 5.5, label "c1 small At".
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Figure 5.5: Displacement of impacting objects [104].

Figure 5.6: Maximal deflection, experiment [104].
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Figure 5.7: Maximal deflection, cluster 1 [104].

Figure 5.8: Maximal deflection, cluster 2 [104].

Figure 5.9: Maximal deflection, cluster 3 [104].

Figure 5.10: Maximal deflection, cluster 4 [104].

Figure 5.11: Maximal deflection, cluster 5 [104].
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Figure 5.13: Maximal deflection, cluster 7 [104].
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5.1.3.2 Velocity

Similar to the observations in subsection 5.1.3.1 all cluster refinement levels show
good agreement with the experimental velocity results in Figure 5.14. The excep-
tion is again the single sphere c1 which decelerates more slowly due to its larger
indention (Figure 5.7). Again, the choice of the time step size does not strongly
influence the behavior of c1.

-O-cl %-clsmall At ——c2- c3----c4
---2c¢h ——=c5_a ——Cc6---c¢c7 4 exp_l
exp_2 error zone

velocity [m/s]

&
A

A g

Figure 5.14: Velocity of impacting objects [104].
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5.1.3.3 Force

Lastly, the forces obtained from the numerical simulation are compared to the
experiment results. Figure 5.15 shows the reaction forces in the structure as a
sum over all boundary nodes. A good agreement for all cluster refinements >cl
can be observed for both the force value as well as the contact time. Similar to
the observations in the previous sections, the roughest object representation per-
forms poorly. The maximum force is below the experimentally obtained value,
and the time the object is in contact with the structure is too large. cl, as the
roughest object representation, is a single sphere, poorly representing the cor-
rect object shape.

Concerning the forces, it can also be said that more precise modeling of the exact
object geometry plays a significant role, even if the impact, as in this case, takes
place without rotations.

error zone —x— exp_l ——exp_2--cl <% cl small At
—c2 c3 ----c4 ---cb——c5_a
c6 ---c7

30
Z
4
8
= 20
L
=]
g
9
<
&
10
0@ - T - T @‘__
0.00 0.05 0.10 0.15 0.20 0.25 0.30

time [s]

Figure 5.15: Reaction forces Fg () [104].
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Impulse

Another helpful parameter in comparing simulation results with experiments is
an integration of forces over time. This ignores local differences and puts the
overall behavior into context. By integrating the reaction forces over time, Fig-
ure 5.16 visualizes the comparison of the impulse. Almost all simulation results
are slightly above the experimental results but close to them. For example, clus-
ter version c4 fits excellently, while the coarsest simplification c1 represents the
worst result. Considering the differences between c5 and c5a, the importance of
matching material value tuning can be emphasized again. Good simulation re-
sults can be achieved once suitable material values, and cluster refinements are
found. This tuning is, as already mentioned, a weakness of the method and is due
to the contact force calculation of the DEM. The results of the cluster versions c4
- c6 deviate by a maximum of 7% from the experimental results, and show for the
time course of the reaction forces in Figure 5.15 good agreement with the time
course of the experiment.

——exp_l - - - exp_2 Asimulations
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Ac2 AC3
2.5 RN
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o 2.4
L
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E 2.3
]
2.2 N
T \\\\H‘ T \\\\H‘ \\\\\H‘ \\\\\H‘
100 10! 102 103 104

number of spheres in cluster [-]

Figure 5.16: Total impulse fot Fp (#) dt. Integration of forces in Figure 5.15 over
time.



94 5. Validation of Simulation Approach

5.1.3.4 Results

With respect to the relative computational time for each simulation, shown in
Figure 5.17, the effect of additional particles is negligible under ~ 10% spheres
but increases rapidly for larger number of spheres.
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Figure 5.17: Comparison of relative computational time for different cluster
refinement levels, adapted from [104].

Additionally, considering the results in the section 5.1.3, the cluster version c4
is recommended for usage. It represents the best compromise between accu-
racy and computing effort, while also properly representing the geometry (see
Figure 5.4). It is also expected that the fine representation of the impacting ob-
ject influences the simulation results favorably if the rotation of the object plays
a crucial role*. This feature will come in handy for the experiment in the next
section, in which the impacting rock has an angular impact velocity.

The computational time for the simulation of the cluster c4 is discussed as an
example. A total time of 1,108s = 18.5min with an increased time step of At =
2e—5s for a total simulation time of 0.3s is required. With respect to Figure 5.5,
the cluster leaves the reference axis of origin at = 0.25s, thus the simulation time
could be further reduced by = 17%. The Central Processing Unit (CPU) system
settings for this simulationis an Intel (R) Xeon(R) CPU E5-2623 v4 ©@2.60GHz.
A good agreement can be found with the experimental results regarding the sim-
ulation results. Of course, the influence of the cluster refinement and the appro-
priate choice of material parameters affect the simulation results, but the general
course suggests the correctness of the coupling methodology. With the confi-
dence in the simulation environment gained here, a much more complex pro-
tection structure is investigated in the following section.

* See also [128], where a simplified Attenuator is simulated by using an arbitrary shaped rock object.



5.2. Attenuator Barrier 95

5.2 Attenuator Barrier

After the results of the previous section 5.1 have inspired confidence in the pre-
sented coupling method, a more complex protection structure is investigated and
simulated in this section. So-called Attenuator structures are not installed hori-
zontally or inclined but hang vertically in the gravitational direction. Therefore,
they can be compared simplified with curtains. Their mode of operation also dif-
fers from ordinary protective nets in that they deflect impacting objects instead
of catching them. In the following section, the suitable experiment and the per-
formed measurements are described in detail. Subsequently, the structural model-
ing will be discussed using the element formulations and material laws from the
theory section 3.2. The modeling of the rocks is performed with particle clusters
as in the previous section. However, a study of the cluster refinement is omitted,
and instead, the experiences of the previous section are used. Finally, the usabil-
ity of the coupling method is demonstrated by two different experimental runs and
the corresponding simulations, showing that the simulation results agree very well
with the experimental data.

The results of this section were published by the author in [103] and are discussed
and reproduced below in the context of the dissertation. Some parts of the follow-
ing text passages are copied directly from [103]" and are therefore to be interpreted
as quotations.

5.2.1 Experiments

In 2017 the Swiss company Geobrugg conducted an experimental program to
confirm the effectiveness of a novel SPIDER® mesh [50]. The following section is
a summary of crucial test aspects relevant for numerical replicationT.

5.2.1.1 Test Site

The test site is a near-vertical, approximately 60 high slope situated in a disused
granite quarry in British Columbia, Canada. For this experiment an Attenuator
design with a hanging net and limited slope contact of the net, as shown in Fig-
ure 5.18a, is investigated. The test setup consists of three 8m steel posts set 9m
apart and anchored to the slope with six retention cables, two lateral support ca-
bles, and one top cable penetrating the post heads. The net is attached to the top
cables with shackles in each mesh opening as detailed in Figure 3.7. Three prin-
cipal attenuation zones are investigated by varying the impact, transition, and
collection zones of the high tensile steel wire nets.

5.2.1.2 Site Survey and Rockfall Modeling

Truline Su1rvey3t performed a terrain survey of the site in 2016, which was used
as the basis for rockfall modeling to adapt the Attenuator geometry between the

* Whose main author and copyright owner is the author of this dissertation.
T Refer to [60] for full testing details.
* https:// www.trulinelandsurveyors.com/
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testing series of 2016 and 2017. Chapter 6 demonstrates how such terrain models
may be incorporated into simulations to enhance accuracy and predictive confi-
dence further.

5.2.1.3 Impacting Object

The rocks used for testing are either granite blocks of various characteristic shapes
(such as cubic, angular, and disc-like) or prefabricated concrete blocks with a

special housing in the center for rock motion sensors (see Figure 5.18b). An ex-

cavator then releases the blocks and rocks on top of the slope. The rocks bounces

three to four times on the granite slope before impacting the net.

5.2.1.4 Instrumentation

Experimental instrumentation includes load-cells in all cables, high-speed cam-
eras filming the block’s trajectory from different angles, and rock motion sensors
in the concrete blocks. This section will predominantly focus on the trajectory
path, translational velocity, and rotational velocity experimental data collected.

High Speed Cameras

Analysis of the high-speed camera videos with a sampling rate of 5e2 fps facili-
tates the quantification of the rockfall dynamics. By tracking the block’s position
through time, a translational velocity can be obtained, and the tracking of every
90° rotation of the block serves as an indicative quantification of angular veloc-
ity. In addition, the cameras are located to have a frontal view on the mesh and
a perpendicular view. This also allows to determine in which plane the block is
moving.

Rock Motion Sensors

The rock motion sensors measures the accelerations and rotations of the block
about its three axes for the duration of each test. Comparing the angular ve-
locity obtained from the video analysis and the rock motion sensor shows good
agreement and therefore provides confidence in the translational velocity data
estimated by video analysis.

5.2.1.5 Tests Used for Numerical Validation

The tests used to validate the modeling and simulation use a Geobrugg SPIDER®
$4/130 mesh (described in [50] and visualized in Figure 5.18c). Additional weights
in the form of steel bars are shackled to the bottom of the mesh (see Figure 5.18a)
to increase the inertia and vertically pre-tension of the system and is incorpo-
rated in the simulation with additional point masses. The middle post is slightly
bent after sustaining two rock impacts in previous tests, but the integrity and
function of the system are not compromized.
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The blocks used during the test are

¢ anear-cubic 626 kg concrete block with an initial volume of approximately
0.75 % 0.75 x 0.75m° called T092 and

*a 278k3g granite block with an initial volume of approximately 0.75 x 0.51 x
0.48m> called T089.

Since the blocks are used for several tests and accumulate greater damage after
each run (see Figure 5.18b for T092), the mass before and after each run is the
characterizing measurement (instead of volume).

Critical experimental data pertinent to numerical replication, including transla-
tional and rotational velocity at the time of impact and the rock’s path and mass,
are summarized in subsection 5.2.2.2.

¥ L e B
(a) Additional weight at the bottom of the protection net to ensure a more controlled struc-
tural deformation.

/
(b) Photograph of the impacting (c) Technical drawing of the SPIDER® $4-130, taken
object T092 (some damage can from [50], Dy = 8.6 mm.
be observed). The visible metal

cap covers the housing of the
motion sensors.

Figure 5.18: Experiment setup, adapted from [103].
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5.2.2 Modeling
5.2.2.1 Structure

Figure 5.19 is adapted from [51] and depicts the respective participants in the
simulation, each of which are discussed below.

Standard cable
y .
L -
-

AT Sliding cable

/

Posts

Plate in Membrane |0/
Action

\_/ Point masses

Figure 5.19: Participants in the FEM model, adapted from [51] and taken
from [103].

Due to the small time steps necessary to resolve the impact, an explicit time inte-
gration scheme is selected. The central-difference explicit scheme as described
by [8] is used to conduct the numerical time integration of the structural response
with a time step of At =5e —5s.

Point Masses

The additional weights at the bottom of the protection net, depicted in Figure 5.18a,
are modeled with single point masses (summing to an additional total mass of
Mgdq = 358kg) equally distributed along the lower boundary of the mesh (see
Figure 5.19). Including these masses is critical to properly model the gravita-
tional forces and the additional dynamic inertia.

Sliding Cable Element

Modeling the upper support rope, illustrated in Figure 3.7, demands a sophisti-
cated element formulation, which is discussed in subsection 3.2.7.3. This formu-
lation allows internal nodes to slide along the element, while internal forces are
calculated based on the change of the total length, as discussed in [13, 124]. The
following structural properties, based on construction plans in [51], are applied
in the simulation.
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Young's Modulus E [N/m?] | 1.130e11
Cross area A [m?] 1.645¢ — 4
Density pg [kg/m®] 7.850e3
Friction Coefficient p [—] 0.25

Table 5.3: Structural properties of the sliding cable element, representing the
upper carrier rope [51].

Standard Cable Element

Bracing cables, modeled with standard cable elements, are anchored in the rock
face and connected to strategically selected points on the supports of the protec-
tive structure. As presented in subsection 3.2.7.2, a one-dimensional truss ele-
ment formulation is applied and combined with an additional check for com-
pression stresses in the element. If such stresses are detected, the elemental
stiffness contribution is temporarily eliminated from the global system of equa-
tions. Realistic structural properties are also obtained from construction plans
provided in [51] and listed in the following.

Young’s Modulus E [N/m?] | 1.100e11
Cross area A [m?] 1.160e — 4
Density pg [kg/m’] 7.850e3

Table 5.4: Structural properties of the cable element, representing the bracing
cables [51].

Posts

The posts, which predominantly carry vertical loads to support the protective
structure, are simply supported in the rock face. At the top they are connected
to both the upper support cable as well as the bracing cables (see Figure 3.7). In
accordance with subsection 3.2.7.1, these posts may be suitably modeled as one-
dimensional truss elements (neglecting any initial damaged bending) with the
following data.

Young's Modulus E [N/m?] | 2.100e11
Cross area A [m?] 2.010e-3
Density po [kg/m°] 7.850e3
Table 5.5: Structural properties of the truss element, representing the
posts [51].
Protection net

Due to the set-up of the experiment, similar to the set-up in section 5.1, and
the complex geometry of the SPIDER® net system (see Figure 5.18c), the net is
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idealized as a closed homogeneous surface and is discretized with plane-stress
plate in membrane action finite elements. Publications, such as [83, 117], sug-
gest that shell elements should be used, although they introduce additional com-
plexity and computational expense compared to plates in membrane action ele-
ments. In the interest of efficiency, plate in membrane action elements described
in subsection 3.2.7.4 are employed, which, considering the excellent agreement
achieved with experimental results in section 5.2.3, appear sufficiently accurate
for the present study. The modeling procedure is visualized in Figure 4.6a.

The following properties in Table 5.6, determined from the mesh technical draw-
ing in Figure 5.18c, technical data sheets [50] and proprietary Geobrugg exper-
imental tensile tests, are applied to the plate in membrane action elements for
the simulation.

Thickness d [m] 8.60e—3
Density pg [kg/m>] 5.814e2
Young’s Modulus X Ex | N/ m? 0.23e8
Young's Modulus Y Ey | N/ m? 1.40e8
Shear Modulus G [N/ m?] 0.81e8
Vay -] 0.30

Table 5.6: Structural properties of the plate in membrane action element [50].

Remark: Small Strains

Although the material behavior is in principle non-linear, the large de-
formations are predominantly rigid and accompanied by small strains,
justifying the linear elastic material behavior assumption.
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(a) Simulation. (b) Experiment pho-
tographed just before
impact.

Figure 5.20: Deformation figure after dead-load equilibrium (before impact),
adapted from [103].

By comparing Figure 5.20a and 5.20b a perfect agreement between the reference
computer model and the real structure cannot be achieved as some posts in Fig-
ure 5.20b are already damaged. Additionally, the position and alignment of the
supporting structure are unlikely to match construction plans exactly.

5.2.2.2 Impacting Object

ap
«—

(a) Test object T092 front (b) Test object  (c) Test object T089 front  (d) Test object T089
view. T092 perspec- view. perspective view.
tive view.
Figure 5.21: Cluster of spheres to model impacting objects, adapted
from [103]. ap describes the reference angular orientation.

In contrast to preceding works, such as [83, 124], this simulation follows sub-
section 5.1.2.2 to flexibly model arbitrary objects with discrete spherical element
clusters. The advantage compared to standard finite element discretized objects
is the simplified contact detection between arbitrary boundary objects and sin-
gle spheres contained in the cluster as described by [99]. Figure 5.21 presents the
DEM cluster models used within this simulation, and Figure 5.18b shows the real
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impacting object T092. While the clusters in Figures 5.21a and 5.21b represent
the test object T092, Figures 5.21c and 5.21d show the cluster approximation of
the test object T089. A study on the proper refinement level of such clusters can
be found in the previous section 5.1. Special algorithms are required to create the
refined cluster file, with this section employing the algorithms described in [17,
18] available in an online toolkit [16].

Within this section several DEM particle properties are varied and their influence
on the simulation result is studied, namely the friction, coefficient of restitution,
and Young’s Modulus. Contrasting this, the following physical properties in Table
5.7 are constant throughout all simulation runs.

T092 T089
Figures 5.2laand 5.21b 5.21cand5.21d
Mass [kg] 626 278
Dimension [m°] ~0.75x0.75x0.75 | ~0.75x 0.51 x 0.48
Impact translational
VeloP:':ity horizontal i1, [m/s] 10.01 13.78
Impact translational
velocity vertical ~ [m/s] -12.08 -12.78
(gravity direction) L'ty
Impact rotational velocity w [rad/ s] 22.0 10.0

Table 5.7: Given physical properties of the impacting objects.

Comparing Figure 5.18b and 5.21 it can be observed that the testing objects have
already suffered damage from previous experiments. When comparing the sim-
ulation results with the ones obtained by the experiment in section 5.2.3 this un-
avoidable difference should be considered.

An explicit central-difference scheme as described by [80] is used to conduct the
numerical time integration of the translational velocity of the cluster with a time
step of At = 5e —5s. As presented in [63], a more sophisticated time integra-
tion approach is used to integrate the rotational velocity using quaternions [59],
which is especially critical due to the non-uniform geometry of the impacting
clusters as shown in Figure 5.21.

5.2.3 Validation

The following section presents the simulated Geobrugg 2017 experimental re-
sults to ascertain the practical applicability and accuracy of the aforementioned
numerical modeling approaches and technologies. In the subsequent investiga-
tions, the unknown model parameters are varied to check their influence on the
testrun T092. To validate the results, the test T089 is subsequently simulated with
the best suitable parameters obtained from the investigation of T092, omitting a
new material parameter tuning.
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For clarity, key assumptions and uncertainties discussed in the preceding sec-
tions are summarized below:

* The exact impact location is estimated from video records.

e The model of the protective structure is taken from construction plans.
However, it can be seen from photographs and video recordings that the
actual structure is partially crooked and already shows damage.

¢ The reference angular orientation a p of the impacting object describes the
rotation around the main axis of the impacting object at the time of impact.
It cannot be determined and is therefore included in the following investi-
gation as an unknown variable. This also means that the angular velocities
cannot be absolutely compared. The orientation of a p is visualized in Fig-
ure 5.21a.

Three further DEM specific parameters cannot be taken unambiguously
from the test and have to be varied to study their influence. The particle’s
Young’s Modulus E, coefficient of restitution ¢, and friction up are partly
problem-dependent and their influence is not well-researched with regard
to Attenuator barriers.

e Asvisualized in Figure 5.18b the impacting test object already shows dam-
age, which is neglected in the modeling of the DEM sphere cluster.

The rock trajectory, translational velocities, and the general trends of the angular
velocity are used for comparison with the experiment.

5.2.3.1 Trajectories

The most reliable and functionally-important comparison is the simulated ver-
sus experimental rock trajectory. Attenuator barriers are used to protect exposed
areas such as motorways from falling rocks, therefore, the object’s path is of par-
ticular interest. Figures 5.22 and 5.23 illustrate the influence of the DEM param-
eters for T092 (which are not clearly defined and have to be varied to study their
influence).

T092

The T092 test case is simulated while some specific DEM material parameters are
not pre-determinable. In order to determine their influence on the simulation
results and finally to find the most suitable material combination, one parameter
is continuously varied in the following while the other unknown quantities are
kept constant. Table 5.8 gives information about this procedure and refers to the
respective figures of the trajectories.
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# Figure 5.22a 5.23a 5.22b 5.23b

Coefficient of 0.2-0.6 0.6 0.6 0.6
restitution €5, [—]
Young’s Modulus

B [N/mz] 2eb6 5e5—2eb6 2e6 2eb

Friction fzp -] 04 0.4 0.15-04 | 04

Reference angular | /¢ 146.25 14625 | 0-135

orientation ap [°]

Table 5.8: Parameter study for the simulation of T092. To investigate the in-
fluence of the respective DEM parameters, numerous simulations
have been run and their results are plotted in Figures 5.22 - 5.23.
The table fields with a blue background represent the parameters
that are varied in each case.

Remark: The Young’s Modulus and Other DEM Parameters

While the deformation of the impacting object is not of interest for this
study, the so-called Young’s Modulus E here represents only an algo-
rithmic parameter in the calculation of the DEM contact forces (see Ap-
pendix F). The range of E in this simulation does not represent the phys-
ical properties of concrete but proves to result in the best fitting results.
This can also be observed when the obtained parameters are used to
simulate the test run T089 (see Figure 5.25). Figure 5.23a demonstrates
that E does not heavily influence this kind of simulation. Further studies
show that choosing E to be near the physical value of the Young’s Mod-
ulus of concrete does not influence the simulation result but lead to the
necessity of much smaller times steps. This contradicts the purpose of
this work to offer a fast, efficient, simplified model and simulation of the
Attenuator barriers.

An initial observation is that all variations give excellent agreement with the test
results for T092 and accurately predict the final position of the rock with a max-
imum error of +10%. While varying the reference angular orientation seems to
have the most negligible influence (see Figure 5.23b), the proper choice of a suit-
able friction value strongly influences the simulation, as shown in Figure 5.22b.
This sensitivity is expected as this experiment heavily depends on the rotation of
the impacting object. The variation of the Young’s Modulus in Figure 5.23a, as
well as the variation of the coefficient of restitution in Figure 5.22a, show little
influence, likely since the Attenuator barrier primarily retards via kinetic energy
instead of strain energy.
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Figure 5.22: Visualization of object path T092 for varying input data, adapted
from [103].
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Figure 5.23: Visualization of object path T092 for varying input data, adapted
from [103].
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T092 - Most Suitable Parameter Sets

In the following, only the three best parameter variants for T092 are discussed,
as the quality of the trajectories allows direct conclusions to be drawn about the
correctness of the respective velocities. Therefore, the three optimal parameter
combinations are presented in the following list, and their trajectories are visual-
ized in Figure 5.24 together with the path of a free-falling object to demonstrate
the efficacy of the Attenuator barrier.

Parameter set A B ct

Friction up [-] 0.4 0.4 0.4
Coefficient of restitution £, [-] 0.6 0.6 0.3
Young's Modulus E [N/m?] le6 2e6 | 2e6
Reference angular orientation ap [°] 146.25 | 146.25 45

Table 5.9: Parameters of the most suitable combinations for experiment T092.

The data obtained from the simulations is not only in strong accordance with the
experiment results but also clearly demonstrates the effectiveness of the herein
presented Attenuator barrier.

Remark: Calculation of Hazard Area - Free Fall

A rock at a height of 12m with an initial vertical velocity in gravity direc-
tion of 12.08m/s (as it is the case for T092) needs,

gravity
——

m 1 m 5
12.00m =12.08— -t + - -9.81— ¢ — t=0.76s, (5.2)
s 2 52

0.76s to reach the ground. In combination with an initial horizontal
velocity of 10.01m/s the rock travels a horizontal distance of 10.01% -
0.76s = 7.6m. This results in a potential hazard area that is approxi-
mately three times as large as for the protective installation as visualized
in Figure 5.24.

T This is the most realistic parameter combination for the rock material for up,e,.



108

5. Validation of Simulation Approach
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Figure 5.24: Visualization of object path T092 and the three optimal parameter

combinations (compare Table 5.9). Additionally, the free fall tra-
jectory is added to demonstrate the correctness of the object path
at the beginning of the simulation and the effectiveness of the At-
tenuator barrier. With the installation of the barrier the hazard
area decreases by approximately 2/3, adapted from [103].
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T089

Subsequently, another experiment is
simulated to validate the previously
found parameter combinations. The
additional experiment uses the object
T089, the data of which are given in Ta-
ble 5.7. The results, which are shown
in Figure 5.25, relate to the simula-
tion of T089 with the parameter set C
of T092 from Table 5.9. It shows that
the experimental results are properly
re-produced without any further need
for parameter investigation. This en-
sures that this parameter set can re-
calculate other scenarios and creates
confidence in the accuracy and ap-
plicability of the study presented here.

—— simulation
experiment
- - - - free fall
0
-2 N .
_4 — N
E .
-
_6 —
_8 |
—10 K
Fy
T —

z [m]

Figure 5.25: Visualization of object path T089
and the parameter set C as
shown in Table 5.9, adapted
from [103].
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5.2.3.2 Angular Velocity

The experimental observations presented in Figure 5.27A illustrate the impact-
ing object angularly decelerating and subsequently accelerating in the oppos-
ing angular direction. Unfortunately, the experimental data do not provide any
information about the predominate rotation axis, the individual rotation com-
ponents of each axis, or the rotational orientation of the specimen at the time
of impact. Nevertheless, it is helpful to compare the general rotation behavior
with the simulation results. Figure 5.27B illustrates that the simulation exhibits
the same rotational trend as the experiment in Figure 5.27A. Additionally, Fig-
ure 5.26A visualizes the angular velocity about one of the principal axes of the
impacting object, which clearly depicts the time in which the deceleration men-
tioned above and subsequent acceleration take place. The same behavior can be
observed in Figure 5.26B, which depicts the general trend of the angular velocity
obtained from the experiment.

rotational velocity [rad/s]

- experiment
T T T T
0 0.5 1 0 0.5 1
time [s] time [s]
(a) Simulation. (b) General trend from experiment.

Figure 5.26: Visualization of angular velocity about one of the main axis of the
impacting object T092, adapted from [103].
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(a) Photographs of the experiment. (b) Simulation.

Figure 5.27: The test object impacts with a certain angular velocity, stops ro-
tating, slides for a short time period and starts rotating in the op-
posite direction subsequently. All figures are adapted from [103].
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5.2.3.3 Translational Velocity

The translational velocity of the three optimal parameter sets (as per subsec-
tion 5.2.3.1) and the experiment are illustrated in Figure 5.28a. It is noticeable
that the deceleration of the impacting rock in the horizontal direction (perpen-
dicular to the protection net) is accurately modeled by the simulation. This is
particularly important for the design of protection structures since the manage-
ment of horizontal momentum is the primary arresting mechanism. Although
experimental results for the vertical (gravity) direction are substantially scattered,
the simulation demonstrates a good agreement with the general trend of the ex-
perimental data.

Precisely as in subsection 5.2.3.1, the velocity components of the simulation and
the experiment of T089 are also compared in the following. Figure 5.28b shows
that these data could also be reproduced with an excellent agreement and thus
allows applicable statements to be made about future rockfall events in Attenua-
tor barriers.
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——velocityy-A ——velocityz - A
------- velocityy - B - velocityz- B
--- velocityy-C - - - velocityz- C

translational velocity [m/s]

time [s]

(a) The three optimal parameter combinations for T092 as shown in Table 5.9.

+ velocity z - experiment - velocity y - experiment
—— velocity z — velocityy

translational velocity [m/s]

time [s]

(b) T089 with parameter set C as shown in Table 5.9.

Figure 5.28: Comparison of translational velocity for both the horizontal di-
rection, z and the vertical in gravity direction, y. All figures are
adapted from [103].
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CHAPTER 6

Inclusion of Terrain Data

So far, only the protective systems have been considered, and the impact positions
and impact velocities have been specified. This procedure is beneficial if the impact
location and velocity are known in advance or can be estimated easily. However,
the exact impact positions and impact velocities are usually not known. Therefore
it is helpful to determine these and analyze possible worst-case scenarios, includ-
ing the surrounding terrain in the simulations. This chapter presents the advan-
tages of this inclusion and shows how to realize it.

6.1 Workflow

The inclusion of terrain data allows the investigation of possible load scenarios.
For example, the optimal position of the protective structure can be determined
in preliminary studies. For this purpose, the DEM simulation without the pro-
tective structure is sufficient since, in this way, the trajectories of the rockfall can
be simulated. The partitioned coupling method in this work additionally allows
to integrate the FEM model of the protective structure into the terrain model and
to cover the overall global model in this way. Figure 6.1 demonstrates the gen-
eral procedure for the modeling. It starts with the production or the pure use of
provided terrain data. These can be generated, for example, via drone images or
laser surveys. Subsequently, the resulting point cloud is then transformed to a
triangulated approximated surface. Following this, the surface can now be used
as rigid boundary conditions in a pure DEM or coupled simulation. For this pur-
pose, the FEM model of the protective structure is included in the terrain model
at the appropriate location, and then the DEM particles or clusters represent-
ing the rocks are included. The further procedure corresponds to the simulation
process presented in the previous chapters. The global model is then used to per-
form rockfall simulations. Figure 6.2 shows an example of the simulation of the
completed model from Figure 6.1. Simple parameters and models are chosen for
demonstration purposes. For example, the particles are perfect spheres, and the
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protective structure is limited to the most necessary components. In addition,
it is easy to see how the inclusion of the terrain data adds value to the overall

simulation.

(a) A point cloud is created (b) The point cloud is used to create a trian-
representing specific terrain gulated surface approximation of the real
coordinates. terrain.

(c) The FEM model of the protection struc-  (d) Finally, the DEM model of the rocks is
ture is included at the appropriate posi- included. The final global model is suc-
tion in the terrain model. cessfully created.

Figure 6.1: Inclusion of terrain data in a coupled simulation. From point cloud
to the final global model.
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(c) t=6.8s
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(e) Net impact - side view, ¢ = 6.8s
Figure 6.2: Triangulated terrain model, showing the downward movement of

the rocks, which are being slowed and stopped by the protection
net [106].
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6.2 Real World Terrain Data

For testing purposes, the Swiss company Geobrugg provided terrain data. These
data are presented in Figure 6.3 and are used to show possible fields of applica-
tion for the inclusion of terrain data.

* Investigation of the Influence of the Rock Shape
Figure 6.3b shows the different trajectories for different rock shapes after
detachment from the rock. The applying engineer can identify possible
danger zones and plan accordingly.

m "E I — test object

'r “H ' ----- flat roc

(a) Terrain Data with model of rock. (b) Visualization the influence of the rock shape
on the trajectories. The test object is used in
section 5.1 and visualized in Figures 5.21a -
5.21b. The flat rock is depicted in Figure 6.4.

Figure 6.3: The terrain data in combination with different shapes of rocks can
be used to investigate the influence of the worst position of dislo-
cation as well as the influence of the shape of the rock, adapted
from [101].

Tracing the Trajectories and Velocities

Figure 6.4 shows the entire path from detachment from the rock to impact
the ground for a given rockfall. The simulation results provide additional
information about the velocities of the rock during the fall. This allows a
detailed study of the environmental influences on the rockfall.

Inclusion in Coupled Simulations

Finally, the terrain model can be included in a coupled DEM-FEM simula-
tion workflow. For example, the attenuator from section 5.2.1 is simulated
in Figure 6.5 including the surrounding terrain. This allows many different
load scenarios to be run, and the protective structure no longer needs to
be studied separately from the terrain.
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Figure 6.4: DEM simulation of an arbitrary rockfall including the terrain data.
Blue dots in the graph indicate the time of contact with the rock
face. A change in velocity is clearly visible at these times. A detailed
study of the environmental influences on the rockfall is possible.
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L T

(b) Zoomed view during the impact.

Figure 6.5: Attenuator barrier from section 5.2.1 included in the terrain.
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CHAPTER 7

Alternative Application Cases

In addition to rockfall and general natural, gravity driven hazardous events, the
herein presented coupling procedure is suitable for a wide range of various appli-
cation cases. For demonstration purposes two such scenarios are presented in the
following:

* Race track protection nets - car wheel impact in section 7.1.1

* Inflated cushion - head impact in section 7.1.2

While proper values for the material parameters, such as Young'’s Modulus, den-
sity, and Poisson'’s ratio have been chosen, no comparison to experiments have been
done. The purpose of the following chapters is simply to present the feasibility of
the various scenarios. Data like impact velocity, location of impact and so on are
chosen arbitrarily and are therefore not mentioned here.

In addition to the alternative use cases for DEM-FEM coupling, the coupling method-
ology of this work can be applied to other particle methods. This is illustrated by
two examples:

* Once, the Particle Finite Element Method (PFEM) is coupled with FEM to
simulate a well-known benchmark Fluid-Structure Interaction (FSI) exam-
plein section 7.2.1.

* In addition, the Material Point Method (MPM) is coupled with the DEM to
simulate the impact of a disruptive object into a continuum with large de-
formations, in section 7.2.2.

Both examples have been developed during this dissertation in cooperation with
collaborators or through thesis supervision.
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7.1 DEM-FEM

While this work focuses on the simulation of rockfall protection systems, many
other possible applications for the coupling of DEM and FEM are conceivable. In
the following, two examples are presented. Since this is only a demonstration of
potential applications, the modeling of exact material values and dimensions is
omitted and, for this reason, not given.

7.1.1 Race Track Protection Nets - Car Wheel Impact

One conceivable application of the coupling of FEM and DEM is the simula-
tion of protection meshes at the edge of race tracks. In the case of a collision
of vehicles, individual parts, such as wheels, can detach from the vehicle and hit
the safety nets with a high translational and rotational velocity. The construc-
tion of such protective nets is similar to that shown in Figure 7.1. A reinforced
concrete foundation supports steel columns between which the protection net is
stretched. Edge cables additionally hold the net in place.

To simulate this impact, potential contact surfaces must be defined as DEM walls.
In the present case, it is the protection net but also the concrete foundation. This
procedure is necessary because, after the impact, the wheel slides down into the
net (Figure 7.2d) and finally finds contact with the concrete foundation (Figure
7.2f). The result is a strong braking of the wheel, as shown in Figure 7.2h.
Steel Columns Wire Mesh

A AT v v v

{ ’,”== -'-=.-.‘
e i) -llllﬂﬂm‘=,l-

Edge Cables

7

AWl Concrete Foundation
1
DEM Cluster

Figure 7.1: Reference setup of race track protection net and the impacting car
wheel. A solid reinforced concrete foundation supports the steel

columns. The wire mesh spans in between the steel columns and
edge cables.



7.1. DEM-FEM 123

{‘; i.)\ Bl

(a) £=0.025s. (b) £ =0.05s.

(c) t=0.075s. (d) t=0.1s.

(e) £=0.125s. (f) t=0.15s.

(g) t=0.35s. (h) £ =0.425s.

Figure 7.2: Impacting car wheel in protection net visualized over time.
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7.1.2 Inflated Cushion - Head Impact

Another application of the presented coupling method is the simulation of an in-
flated cushion. Here, the cushion must be inflated and then withstand the impact
of an object, usually a human head. The modeling and simulation of the infla-
tion process has already been discussed in section 3.2.6.2. The resulting cushion
model, presented in Figure 3.4b, is used in the following to simulate the impact
of a head. This is approximated as usual by particle clusters and then guided into
the cushion at a specified initial velocity. Figure 7.3 presents the reference con-
figuration, while Figure 7.4 shows the impact sequence and the response of the
cushion model. For a detailed view on the structural part, Figure 7.4d removes
the cluster and applies a color scheme for the approximated displacement field.

(@) (b)

Figure 7.3: Reference setup of an impacting human head on inflated cushion.
The cushion has been simulated with plate in membrane action fi-
nite elements, while the head is approximated by a cluster of single
spheres.
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(a) t=0.05s. (b) t=0.1s.

(c) t=0.15s. (d) ¢ = 0.15s. Colored visualization of the fi-
nite element mesh deformation.

(e) t=0.35s. (f) £ =0.485s.

Figure 7.4: Impacting human head on an inflated cushion.
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7.2 Other Particle Methods

The partitioned coupling method of this work can generally be extended to sev-
eral other particle methods. The exchange of data and the sequential solution of
the simulation participants are developed generically, so that only minor changes
or additional conditions have to be introduced to exchange the DEM with other
particle methods. In the following, two examples are presented that are developed
in cooperation with colleagues and students. The examples are only briefly intro-
duced, and the results and thus the possibilities are presented. References to the
respective works are given and allow a detailed discussion of the content of the
respective research topics.

It is explicitly stated here that the following two examples are only conducted in
cooperation and not alone by the author.

7.2.1 PFEM-FEM: FSI

The PFEM was developed initially by [93]. It is a Lagrangian method and thus,
unlike an Eulerian method, tracks material points in space. Unlike DEM, PFEM,
like MPM, is not a mesh-free particle method and is continuum-based. The fluid
volume to be modeled is triangulated, and the discrete mesh nodes subsequently
represent the surrounding fluid, interpreted as particles. The fluid domain is re-
meshed if the mesh has deformed too much, to allow for large deformations. This
is also the main drawback of the method. Especially in three-dimensional space,
the repeated meshing of the fluid domain significantly lowers the performance.
In a master’s thesis, the application of the coupling method to the combination
PFEM-FEM was investigated. The master’s thesis [48] was supervised and sup-
ported by the author of this thesis.

In the following, an example from the supervised master’s thesis is presented to
demonstrate the generic applicability of the coupling method to other particle
methods. A FSI benchmark test is performed in which a dam break against a
flexible wall is simulated in 2D. Figure 7.5 is adapted from [48] and depicts the
simulation setup. The fluid is driven by gravity and impacts the flexible struc-
tural cantilever in the middle of the domain. The coupling method enables the
successful simulation of this FSI problem. A comparison of the results to other
publications is presented in Figure 7.6 and shows good agreement. Additionally,
Figure 7.7 visualizes the time course of the simulation.
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Figure 7.5: Simulation setup, adapted from [48]. Data is originally taken from
[28]. Dimensions are given in meters [m].
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Figure 7.6: Figure adapted from [48]. The result of the horizontal tip displace-
ment of the cantilever used for comparison with other publica-
tions.
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(a) t=0.25s. (b) t =0.40s.

(c) t=0.60s. (d) t=0.70s.

(e) t=0.75s. (f) t=0.90s.

(®) r=1.00s.

Figure 7.7: Time course of the PFEM-FEM FSI simulation. Simulation data are
given in Figure 7.5 and results are presented in Figure 7.6. The re-
sults and figures were produced in [48] and presentation was kindly
allowed by C. E. Flores Flores.



7.2. Other Particle Methods 129

7.2.2 MPM-DEM

The cooperation with colleagues resulted in the further development of the pre-
sented coupling methodology to the application of MPM and DEM, which was
mentioned in [111] for the first time. The present case is unique because two
particle methods are coupled and the FEM is not part of the simulation. The
MPM, as a successor of the Smoothed-Particle Hydrodynamics (SPH) [79], can
represent large deformations by using a combination of the Lagrangian and the
Eulerian formulation. Initially, particles are distributed in a background mesh,
interpreted as material points. They serve as integration points and are updated
in each step. The degrees of freedom are located on the discrete background
nodes, which update the material nodes after the successful system solution and
reset. Further literature is given in [46, 136].

In the following, the results of an impact simulation are shown. The DEM models
the impacting object per cluster, and the MPM models the material that absorbs
the impact. Detailed result data are deliberately not given here, and reference is
made to [111] and further work based on it. The presentation of the results also
serves to investigate potential further research topics. Figure 7.8 visualizes the
simulation setup, while Figure 7.9 shows the results in chronological order.

| _ DEM Cluster
Contact law: HM+D
E:1e6 L
"k
00: 2.5e4m—5;
v:0.2
€n: 0.2
d: 0.3m

lg: 9.81 sﬂz

0.3
0.05
=
(=)
I
w[3

1.0

IMPM Material
Constitutive law: Hencky Plastic
Plane Strain
0.3 E: 661y
L 3.0 b Po 2.363%
v:0.3
d:1.0m
Internal friction angle: 30°

Figure 7.8: Simulation setup for impact of DEM cluster in MPM modeled ma-
terial. Dimensions are given in meters [m].
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(a) t=0.0s. (b) t=0.1s.

(c) t=0.2s. (d) t=0.3s.

(e) t=0.4s. (f) £=0.5s.

(g) t=0.6s. (h) t=0.7s.

(i) £=0.8s. (j) t=1.0s.

Figure 7.9: Impacting DEM cluster in MPM material. Setup data is given in
Figure 7.8.
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CHAPTER 8

Software Implementation

The practical implementation of the presented simulation methodology is pre-
sented below. The modular simulation environment is discussed, and it is ex-
plained how the results of this dissertation can be integrated into the software en-
vironment. In addition, it is delineated which developments in the software en-
vironment have arisen as a direct result of this dissertation. Finally, this chapter
shows the post and preprocessing possibilities.

The presented coupling methodology and all simulations were implemented in
the open-source multi-physics software Kratos*T [33, 34, 47]. Kratos is struc-
tured so that a core provides the basics, such as base classes for elements, nodes,
and geometries. On top of that, there is a layer of different applications that in-
clude different methods like FEM, PFEM, DEM, MPM, and many more. Due to
this modular structure and the open-source character of the software, many dif-
ferent developers can further develop the software in different places. This is also
the definite advantage of the presented coupling methodology. Furthermore, by
the suitable treatment of a common interface, the different applications can be
worked on separately and be coupled afterward partitioned.

* https://www.cimne.com/kratos/
T GitHub repository: https://github.com/KratosMultiphysics/Kratos
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StructuralMechanicsApplication | CableNetApplication ParticleMechanicsApplication

MappingApplication

PfemFluidDynamicsApplication DEMApplication

%

Figure 8.1: Modular overview of the most important KRATOS applications in
this dissertation.

Utilizing a visualization of the most critical components for this dissertation, Fig-
ure 8.1 represents the individual modules:

¢ The StructuralMechanicsApplication includes essential structural elements,
such as trusses, cables, beams, plate in membrane action, and shells. In
addition, essential material laws and appropriate time integrators for the
structure can be found here. In this work, the truss (section 3.2.7.1) and ca-
ble elements (section 3.2.7.2), the beam elements (section 3.2.7.5), and the
plate in membrane action elements (section 3.2.7.4) were implemented.
Also, plasticity laws (section 3.2.6.4) and hyper-elastic material laws (sec-
tion 3.2.6.3) for one-dimensional structural elements were created. Fur-
thermore, implementing a tension-field method (section 3.2.6.2) to account
for wrinkling in membranes is also a result of this dissertation. Finally,
a central-difference explicit time integration scheme (Appendix E.1) and
a higher-order explicit time integration were implemented. In addition,
an updated reference scheme has been implemented to allow the form-
finding of structures carrying only normal forces [131].

* The CableNetApplication is entirely new in the context of this work. It of-
fers space for unusual structural elements and special individual opera-
tions. For example, the sliding cable element (section 3.2.7.3) and its al-
ternative modeling possibilities (Appendix C) can be found here. Further
developments like ring elements [124] and chain-link elements [43] will
find their place here in the future.

* In the DEMApplication, the DEM can be found. It provides different con-
tact laws, time integrators, and particle models. At the beginning of this
work, some adjustments were made to the contact search. Finally, to im-
plement the strong coupling (section 4.5) between DEM and FEM, many
changes in the code were necessary.
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* The ParticleMechanicsApplication allowed the use of the MPM and was not
further developed in the course of this work but only applied, which is pre-
sented in section 7.2.2.

* The PfemFluidDynamicsApplication contains the PFEM. Furthermore, as
preliminary work to the already presented master’s thesis [48], investiga-
tions on the possibility of a coupled simulation were carried out here, fi-
nally implemented in [48]. Section 7.2.1 presents the corresponding re-
sults.

* The MappingApplication allows the execution of mapping operations and
thus represents an essential link in the partitioned coupling environment.
It handles the data exchange at the interface of a partitioned coupled sim-
ulation, as discussed in section 4.3.

Finally, the CoSimulationApplication represents the heart of a partitioned
coupled environment. It handles the communication between the simu-
lation participants and provides convergence accelerators like the Aitken
method. The development of the CoSimulationApplication is described in
[19].

The coupling of different numerical methods was initially done using custom
Python scripts. These control the individual simulation participants via the pro-
vided Python interface, regulate the communication, and exchange data at the
interface. After the CoSimulationApplication was developed and presented in
[19], it was extensively used. Due to its implementation in C++ and the thor-
oughly thought-out generic concept it offered a pleasant alternative to the cus-
tom Python scripts. However, the underlying theory is unchanged, and the cou-
pling methodologies developed in sections 4.4 and 4.5 are applied.

The following three figures show how the modular coupling environment can be
designed:

e Figure 8.2 describes how the rockfall simulations were performed in this
dissertation. The DEM is coupled with the structural mechanic’s applica-
tion in conjunction with the CableNetApplication via the CoSimulationAp-
plication and a suitable mapper.

Figure 8.3 presents the modular implementation of the FSI PFEM-FEM
simulation from section 7.2.1 .

Figure 8.4 shows how the MPM and the DEM are brought together. See
section 7.2.2.

Remark: Modular Representation

Even if the modular combination is shown significantly simplified at this
point, it is pointed out that special operations at the interface are neces-
sary for each coupling combination, which must be implemented in the
program code first.
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CoSimulationApplication

DEMApplication e StructuralMechanicsApplication W

MappingApplication

Figure 8.2: DEM-FEM coupling.

CoSimulationApplication

PfemFluidDynamicsApplication v StructuralMechanicsApplication

T ——

\ " 4 L 4
LS P
| |
MappingApplication

Figure 8.3: PFEM-FEM coupling. The example in section 7.2.1 uses this com-
bination.

CoSimulationApplication

ParticleMechanicsApplication v DEMApplication

Figure 8.4: MPM-DEM coupling. The example in section 7.2.2 uses this com-
bination.
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Pre- and Postprocessing

The system input is made with the help of the pre- and postprocessing software
GiD*. The GiD interface can be connected to the local Kratos code, and all fea-
tures can be directly accessed. The partitioned coupling methodology in this
work can be realized so that the structure is modeled as in Figure 8.5,

NE%FOSGHRBLB P AP P LIAANUE FIN (N @Gy
i kD19 /18

Ve eees e e [EErr)

Figure 8.5: FEM preprocessing of the structural part in GiD.

and subsequently the DEM particles and wall condition as in Figure 8.6. GiD can
then mesh both parts and generate the appropriate Kratos files.

Even though GiD can be used as a postprocessing tool, the postprocessing in this
work is mainly done with ParaView'. ParaView stands out due to many possible
settings and robust performance. Kratos allows the creation of vtk files with
additional settings, which ParaView can read and visualize, as shown in Figure
8.7.

* https://www.gidhome.com/
f https://www.paraview.org/
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Figure 8.6: DEM preprocessing of the particles and the contact wall in GiD.
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Figure 8.7: Postprocessing the simulation data in ParaView.
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CHAPTER 9

Conclusions and Outlook

In this work, a partitioned simulation environment for rockfall analysis in struc-
tures was presented. Different numerical methods can be brought together within
this environment to model the interaction of load and structural response. The
DEM was coupled with the FEM with particular attention to rockfall. The DEM
was used to calculate discrete particles’ motion and contact forces, while the ap-
propriate structural response was then calculated using the FEM.

Considering the highly complex flexible protective structures, many further de-
velopments in the FEM were necessary. Thus, unique structural elements were
implemented, such as sliding cables and special material laws. Among them are
hyper-elastic and plastic material laws for cables and trusses, anisotropic mate-
rial laws for surface elements, and the appropriate treatment of wrinkling. All de-
velopments have been discussed in detail throughout this thesis. Further investi-
gations were also necessary for the DEM. Appropriate contact laws and modeling
of impacting rocks were investigated and are part of this dissertation.

Both methods were subsequently brought together in a partitioned coupling en-
vironment. The appropriate treatment of the common interface and the proper
data exchange had to be investigated. Two coupling algorithms were then devel-
oped and closely examined. A weak coupling was further developed to a strong
coupling based on a fixed point iteration with additional Aitken relaxation. Sev-
eral validation examples were performed and are documented in this disserta-
tion.

Finally, several real-scale experiments in the Swiss and Canadian mountains were
analyzed in cooperation with the Swiss company Geobrugg. The data provided
allowed the validation of the coupling method against actual values. The calcu-
lations are part of this dissertation and show excellent agreement between the
simulations and the experiments, which gives confidence for the analysis of fu-
ture projects.

Furthermore, the integration of terrain data was investigated, and the resulting
potential for a global simulation solution was discussed in detail. The inclusion
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of terrain data allows the consideration of the surrounding terrain and thus the
analysis of possible worst-case scenarios.

The thesis concludes with a chapter on other possible use cases. There is much
potential in the area of DEM-FEM coupling and the coupling of other numerical
methods. In contrast to extensive rockfall simulations, the impact of a car wheel
into aracetrack barrier net and the impact of a human head into an inflated cush-
ion are presented via DEM-FEM coupling. The generic, modular application of
the presented coupling method allows the combination of many different meth-
ods, finally represented by two examples. The PFEM-FEM coupling shows an
FSI benchmark, and the MPM-DEM coupling presents the impact of a disruptive
object into a continuum with large deformations.

This dissertation lays the foundation for an open-source solution that allows en-
gineers to perform investigations of rockfall protection systems. Actual field tests
should always accompany simulations of such large and complicated structures.
The simulation does not claim to replace experiments but aims to serve as a help-
ful tool and an equal partner to experiments. Since field tests are costly and
time-consuming, simulations help clarify detailed questions in advance. Thus,
different design details can be investigated quickly and efficiently without per-
forming a new test each time. In addition, it became apparent in this work that
the simulations require careful tuning of the material parameters. This tuning
can only be done by performing experiments in advance. Thus, added value is
created by giving the engineer another tool to the experiments. The additional
factor that the software and the developments of this work are freely available
under an open-source license extends the application possibilities.

Now that this work has laid the framework for simulating the interaction of gravi-
tational natural hazards and flexible protective structures, other interesting ques-
tions arise. Thanks to the partitioned coupling method, both the particle meth-
ods and the FEM can be processed and further developed separately and inde-
pendently of each other.

Given is a list of engaging future research topics:

¢ Damage models for the structure and the influence of strain-rate-dependent
material laws.

* Implementation of additional unique structural elements, such as the so-
called chain-link elements [43].

e Structural optimization and sensitivity analysis of the protection nets.

* Optimization of the protective structure’s position in the terrain.
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APPENDIX A

Gradient of Virtual Displacement Field

Proof for,
V®du=de. (A.1)

First the gradient of the virtual displacement field §u is calculated,

Vedu=

D(u) _0(5x) 0X _ _(0x|0X _ 1
Dx  0X 6x_6(0X) ax_‘sgg ' a.2)

To derive the virtual Euler-Almansi strain e the virtual Green Lagrange strain E
is expressed,

(69T5;+ 9%%), (A.3)

1
Se=yOE’ =F TGE  F ! = ‘G’HE (59T9+ gTay) F1
= (FTeF voFF )= (sFF vogF) A
2 2

Remark: Lie Derivative

The concept of pull back, followed by a derivation in a constant reference
frame and the subsequent push forward is called Lie derivative [6, 61].
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APPENDIX B

Eigenvalue Problem: Principal Stresses

Ashortintroduction to solve the eigenvalue problem with respect to principal stresses
and its connection to the Lagrange-multiplier method is discussed in this subsec-
tion.

The principal stresses can be found by applying the Lagrange-multiplier method
[61] to minimize/maximize the normal stresses™:

Minimize the normal stress: n-Sn,

B.1
such that: 1-n-n=0. ®.1)

Adding the function to be minimized and the constraint multiplied with a La-
grangian multiplier A [123] a stationary point of the Lagrangian is derived:

Ly=n-Sn+A(1-n-n), (B.2)

whose derivative must vanish to represent a stationary point:

oLy =l1-n-n=0
on -
(B.3)
0Ly
—= =2(Sn—A1An) =0.
on
Equation B.3 can be rewritten to the well-known eigenvalue problem:
(s-12%)n* =0, (B.4)

containing the eigenvalues A* - the principal stresses - and the corresponding
eigenvectors n”.

* Constraining n to be a unit vector.
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APPENDIX C

Sliding Cable: Alternative Modeling
Approaches

The sliding cable element formulation, discussed in subsection 3.2.7.3, represents
an efficient way of handling the movement of sliding nodes along a given path.
Other approaches are also possible and will be discussed in this section with re-
spect to [102]. Each of the three methods was independently implemented and
tested in Kratos [33, 34, 47]. In the end, the element formulation in subsection
3.2.7.3 proved to be the most robust and effective. Generally, however, the follow-
ing two methods lend themselves to the problem at hand and can be applied to
other problem setups. For this reason, they are discussed here.

C.1 Penalty Method

To realize the sliding with the help of the penalty method, additional terms are
added to the internal energy which represent an energy representation of the dis-
tance [ between an arbitrary node and the edge cable segment. By minimizing
the total internal energy in the FEM solving process the distance [ is minimized
too. With respect to Figure C.1 the distance / can be calculated depending on the
discrete nodal displacements 1 of the points n; as follows:

d=P, (@ -P; (1), r="P3(0)-P; (@),
lrxdl o, @Exd)-xd) (C.)
@)= ———, “@=—--.
Idi d-d

12 is now used to define a functional f which is similar to the energy description

of a single spring element,

1
f@ =@ app, C.2)
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where ap¢ represents the penalty factor which is highly problem dependent. By
adding f to the total energy of the system, the following contributions to the in-
ternal forces Fj,, and the tangential stiffness matrix Ky s can be expressed, while
r, s are two arbitrary degrees of freedom,

of al ?f 821

intr == =Qpf- =, Krs=————=qpf- =————-
intr=5a, P g, ST Sar0ns P o000,

(C.3)

Figure C.1: Visualization of the geometric investigations to determine the dis-
tance [ between an arbitrary node P3 and a line spanned between
P; and Py, adapted from [102].

Verification

A plane cable net, similar to Figure 3.10, is subjected to the impact of a sphere.
For testing purposes the edge cables are discretized with standard cable elements
and the sliding is achieved by applying the penalty method. The final results are
shown in Figure C.2. It can be clearly seen, that there is a gap between the outer
nodes and the edge cable. This is a result of the choice of the penalty factor apy. If
itis chosen wrongly it can either lead to badly conditioned system matrices (a ¢
is too large) or to a bad representation of the distance constraint (apf is too low).
This drawback makes the penalty method inferior to the sliding cable formula-
tion for the problem setup at hand.
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Figure C.2: Impact simulation with standard cable elements on the interior
and along the edges. The sliding is realized via the penalty method.
Adapted from [102].

C.2 Multi Point Constraint (MPC)

In contrast to the penalty approach, the Multi Point Constraint (MPC) approach
aims to exactly reproduce the given constraint instead of approximating it. For
this purpose a slave node and two master nodes are considered and their respec-
tive degrees of freedom are set in a specific relation. To obtain this relation the
following Figure C.3 is used.

Figure C.3: Visualization of the geometric investigations to determine the
movement of an arbitrary node P3 on a line segment spanned be-
tween the nodes P and Py, adapted from [102].

The slave node P3 is only allowed to move along the line between the master
nodes P and P,. The three-dimensional line equation,

d(@ =P, (@) -P; (),

. . . . (C.4)
r(@) =P3 (W) —-Py (@) =¢-d(@),
can be used to express the respective displacement relations with an arbitrary
scalar value ¢,
t=rxldy=ryldy=rzld;. (C.5)
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The further procedure is described below as an example for case dy # 0 and only
the discrete y-displacement 73, whereby case distinctions are necessary depend-
ing on the problem. First the relations between the displacements are expressed,

d d
if de#0— ry:rx-—y A rZ:rx-—Z, (C.6)
dx dx

which allows the expression of the respective master-slave relations with the dis-
crete x-displacement i, y-displacement 7, and z-displacement i,

master master
A _~~
. N N - Yo+ 00 -V1— D
3 =+ 07 -3+ || X5+ a3 -X53- a1 |- AZ A2 Al Al (C.7)
—~~ —~~ — —~ | Xo+ G -X1- 0g
slave master master master. ~ ~
master master

Obviously, equation C.7 is a non-linear constraint and in the following exemplar-
ily linearized, while dy,dy in equation C.8 are considered to be constant and
given by the last time step,

dX:X2+ﬂ2—X1—121, dy=?2+l72—171—l71, (C.8)
L. Y- . X-X% X-X
3 =|Nn-Y3+ 2 1-(X3*X1))+ 3 '(1+¥]+ |72 3 L
~— e dx ~—~ dx
slave master; R masterp ‘
Vel constant weight, weight, C.9)
N dy . dy '
+ a3 - o =
— dx - dx
master3 _  masterg
weights weight,

Finally, after successfully declaring all proper constraints the system stiffness
matrix K must be transformed by K = ATKA, with the help of A containing the
constraint information. In the case of an explicit dynamic simulation, in which
the accelerations are calculated as given in equation 3.33, the residual must be
manipulated to #master = #master + #slaye - Weight.

The complexity of this method and the additional drawbacks shown in Table C.1
make this method again inferior to the sliding edge cable formulation for this
problem.



C.3. Comparison 145

C.3 Comparison

While all three presented methods allow the modeling of sliding nodes the slid-
ing cable element formulation in section 3.2.7.3 proves to be the most efficient
approach. No nearest neighbor search is necessary as the sliding nodes belong to
the edge cable element. The following Table C.1 summarizes these findings and
offers a comparison.

Advantages + Drawbacks -
Efficient handling of friction
Sliding Edge Easy incorporation into FE model
Element Formulation No neighbor search Implementation of new element
Section 3.2.7.3 Edge cable is only 1 element
Constraint exactly enforced
Handling of friction
P:I;;lglg/i[)ftg?d No add. element implementation N;:ﬂ:i);rf:?;ih
Constraint only approximated
Multi Point ] ] Han(.iling of friction
. No add. element implementation Neighbor search
Constraints Constraint exactly enforced Case-by-case analysis necessary
Appendix C.2

Non-linear constraint

Table C.1: Advantages and drawbacks of three different methods to realize
sliding along a given deformable cable element, adapted from
[102].
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APPENDIX D

Scalar Example: Fixed-Point Iteration
with Aitken Relaxation

To demonstrate the operation of the Aitken relaxation method, a scalar equation
is solved below using fixed-point iteration. The equation is chosen based on an
example from the Internet".

Figure D.1 shows that 29 iteration steps are necessary to solve the equation with
an accuracy of 1e—6 using a standard fixed-point iteration. However, if the Aitken
method from equation 4.21 is used to relax the intermediate results of the fixed-
point iteration, the maximum number of iteration steps is reduced to 5.

2-x2_eX=0 —»x:ln(z—xz). D.1)

The solution data for the fixed-point iteration with Aitken relaxation is given in
Table D.1. One can observe the convergence of the Aitken relaxation factor « to
a constant value = 0.61. A small residual is reached already after 5 iterations.

Step x Residual <«

0 0.2 0.4
1 0.5589333185836889  4.7e-1 0.76
2 0.5337871330862051  3.6e-2 0.71
3 0.5372381242767222  5.7e-3 0.61
4 0.5372745099642543  5.9e-5 0.62

5 0.5372744491727965  9.9e-8 0.61

Table D.1: Solution data of fixed-point iteration with Aitken relaxation.

* https://de.wikipedia.org/wiki/Fixpunktiteration
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Figure D.1: Approximating the solution of equation D.1 with an accuracy of
le—6to x =0.537274. The standard fixed-point iteration needs 29
iterations, while only 5 are necessary if the Aitken method is used
to relax the intermediate results.
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APPENDIX E

Time Integration Algorithms

The two most important algorithms for time integration are briefly presented in
the following sections. Finally, the update functions and references to further liter-
ature are given.

E.1 Explicit Time Integration: The Central Difference Method

An explicit time integration scheme is characterized by the fact, that every func-
tion for a given time step contains only derivatives of preceding time steps [8]. To
derive the starting point for the central difference scheme, a Taylor’s expansion of
the displacement is set up and truncated for all terms of order larger than two. In
the following equations, these terms will be called Higher Order Terms (H.O.T.).

1
ut+At:ut+ﬁtAt+zﬁtAt2+M, E.1

1
u ™ a0 Ars C' AR+ HOT (E.2)

al A LA oyt N
(E.3)
— iif= (u”m —2u’ +u[_m) NG

[8] uses this formula to describe the central difference scheme, while [80] takes it
as the starting point to derive the velocity verlet scheme.
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Both describe the same procedure to update the new displacements and veloci-
ties for the next time step £+ At:

Y .V
1. +7 .

2. wl*AT —ul 4 Aralt
3. Update it’*27 with forces and inertias, via equation 3.33.

s +HAL _ At t+At
4. u u + 7 .

E.2 Implicit Time Integration: The Generalized a-Method

The Generalized a-Method was developed by [26] and provides an efficient tool
for solving structural dynamic problems. For completeness, the basic idea is de-
scribed below using two update functions. More detailed information is given in
[26].

Three new parameters @, @ ¢, B are introduced that affect the way time inte-
gration works. They are usec{ to update displacements and velocities based on
current results and new acceleration values [26].

u”“:uf+Amf+At2((——ﬁm)u +Bm u”“) (E.4)

t+At

1 1 t+AL
=ul +Ar (2+am af)u +(E—am+af) + ) (E.5)

The update of the displacements and velocities can be used to re-write equation
3.33 in terms of only the accelerations. The reformulation of the dynamic equi-
librium is then used to solve the system of equations. With the newly obtained
acceleration values the displacements and velocities can be calculated by equa-
tion 3.33.
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APPENDIX F

DEM Contact Force Calculation

The calculation of the DEM contact forces needs several steps. First, geometric op-
erations must be performed, and finally, the contact forces are derived from the
chosen rheological model. A Hertz Mindlin Spring Dashpot Model (HM+D) model
is chosen in this work and introduced in this section. Additionally, an overview of
the necessary geometric operations and a discussion of the proper calculation of
the damping coefficient and its history are given. The subsequent section follows
closely [106], which is inspired by [98], and provides all necessary information to
allow an independent implementation of the contact forces.

A detailed description of the evaluation of forces described in section 3.3.3 is pro-
vided in order to further discuss the necessary quantities in the underlying cou-
pling scheme. As soon as contact is detected, the forces can be evaluated using
various contact laws and rheological models in which the normal indentation

&, its time derivative &, the normal vector n’c] at the contact point, as well as
the increment of tangential displacement As are used [98].

The normal indentation 4, is calculated with respect to equation E1 and is graph-
ically described in Figure E1. Naturally, all tensors represent discrete values in the
DEM.

o =R; +R - h ]——j ! El
V-V n , wit ng . ‘
n ( ) ¢ ||V'—Vi|| EL

In order to obtain As, the tangent unit vector t; ij must be derived by splitting

the velocity at the contact point uC] into normal uC ,, and tangential u ; compo-

nents.
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Figure E1: Calculating the indentation §, = R; + Rj — (V i V,-) ~nij .

First, the contact point velocity is expressed with the aid of the respective ele-

ment velocity u;, element angular velocity w;, and the vector rlC] connecting the

particle center and the contact point.

ag = (@) xxl' +y) - (@ xxt +1;). (F2)
lllcj is subsequently split into the normal and the tangential direction,
Lij o (.1f if) Q] S AN B |
uc,n_(“c ‘ng Jnc , ug,=ug —uag,. (E3)

This allows the expression of As using the tangent unit vector, the element dis-

placement u; and the element rotation vector w;, by projecting ui/ on tlcj . Asis
an incremental value, based on the time step 7.

.. piyn+l c. ii\n i i ﬁij
Asnﬂz(u”'tlcj) _(ulj_th]] , thJz#'
L1
i,
llij :(wj xr£l+u]~)—(wi sz,]+lli].

(F4)

For a Hertz-Mindlin spring dashpot contact model (denominated as HM+D in [31]),
as shown in Figure E2a and Figure E2b, the normal forces F; and tangential
contact forces F; are calculated for the case of two spheres colliding. Equation
E5 applies the normal and tangential stiffness k; and ki, respectively, and the
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oo

a) DEM-DEM, adapted from [98]. (b) DEM-FEM, adapted from [98].

Figure E2: DEM-DEM and DEM-FEM HM+D rheological models, adapted
from [98, 106].

damping coefficients ¢, and c¢; [98], considering the maximum tangential force
restricted to the Coulomb’s friction® limit [31] by the coefficient of friction yp.
The tangential forces are consequently updated from the last time stepT, indi-
cated by the superscript n.

Fn=knbn+ Cn(s'ny

FP = min [F5 v o0, I, ppFal,
FLF = FIL 4 kP IAs" i AF, >0, (E5)

n+1
n+1 n n+la n+l
F,, =Fp, k" +k; T As if AF,<0.
sphere i - sphere j sphere i - wall j
_ 4 | RiR; 4 -
kn h 1-v2 1-v2 Ri+Rj 6" 1-v2 1-v2 Rl6n
3| gt + ¢t 3| -+
i J i J
- 8 RiR; 8G1
ke = EETa] R+R;On Rion
G G
citci [mym;
Cn= 2% mi:_n;j kn 2¢i\/mikn
citci [mym;
cr= 225 mil"'n;jkt 2¢iv/miks
Table E1: Stiffness and damping values for sphere-sphere and sphere-wall
contact [98].

* Dry friction [80].
i Updated from the last iteration for strong coupling.
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The material parameters in Table E1 (Young’s modulus E, particle mass m, shear
modulus G, and Poisson’s ratio v) are typically obtained by calibration from ex-
periments [27].

E1 The Coefficient of Restitution (COR)

As a scaling factor in Table E1 the dashpot coefficient ¢ is frequently expressed
using the normal coefficient of restitution (COR) ¢, as shown in equation E6,

en=—8nT 15, (E6)

£y, relates the initial impact velocity 6',;’ to the final velocity at the end of the con-

tact 5'nf . A maximum of &, = 1.0 will model a perfectly elastic impact whereas
€n = 0.0 models a perfectly plastic impact. Equation E5 demonstrates, that a
smaller € increases the influence of the impact velocity in the contact force cal-
culation [31, 98] and is thus critical for the coupled simulation in this work.
While many publications discuss the derivation of the appropriate €, for rock-
falls, they always consider the impact on a rigid ground. Many aspects influ-
ence the proper ¢, such as the angle of impact, the material of the rock and
the ground, the rock mass, and the impact velocity. [5] gives a literature review
of available scaling methods, and [24] conducts experiments to analyze the cor-
rect €5, including rotational impact. More investigations and experiments are
described in [97, 133]. Although these publications give a detailed explanation
of £, for the impact of rocks on rigid grounds, no discussion about the impact
on flexible, deformable structures is available. Thus ¢;;, as a material parameter,
needs to be tuned for the given problem setup. The simulations of real-world
structures in section 5.1 and 5.2 demonstrate the necessity of the parameter tun-
ing.

E2 The Dashpot Coefficient

To derive the correct dashpot coefficient ¢, a scalar equation of motion needs to
be solved. For demonstration purposes a simple model with a mass m, a linear
spring k, a damping coefficient ¢, and a linear dashpot ¢ (LS+D) is chosen:

. . - [k . k
mép+cdp+kdp=0,+2¢c\| —6p+—08,=0. (E7)
m m

[108] originally derived ¢ for a LS+D model from equation E7 by considering the
contact to end as soon as the indentation is zero (6, = 0). Equation E8 is the
result of this consideration and has been extensively used.

—Ine
c=—n-1 (E8)

Va2 +In%e,
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However, it has been shown by [31, 107, 120] that this idea leads to artificial at-
tracting forces during the contact®. [120] proposes an alternative approach by
calculating 6'nf at the time the accelerations' reach the value zero 6, =0).

For the HM+D model, used in this work, [120]’s approach results in the following
equation for ¢,

1.0
= -1.0, (E9)
¢ \/1.0— (1.0+€p)%-eH

H=¢p-(hi+ép-(hp+éep-(hg3+ep-(hy+epn-(hs

E10
+ep-(he+ep-(hy+ep-(hg+ep-(hg+epn-h10))))))))). (E10)

i |1 2 3 4 5
h; | -6.918798 -16.41105 146.8049 -796.4559  2928.711

Table E2: h; values for equation E10 [120].

i |6 7 8 9 10
h; | -7206.864 1149429 -11342.18 6276.757 -1489.915

Table E3: h; values for equation E10 [120].

A comparison of both approaches is repeated in Table E4, and Figure E3 depicts
the different functions.

Source Condition for contact end
[108] 6 n=0
[31,107,120] 6,=0

Table E4: Conditions for contact end with respect to different sources.

* For frictional cohesionless contact, as used in this work, the normal force must be constrained always
to be =0 [98], since no traction in normal direction is allowed. The contact is purely repulsive.
T And thus the forces.
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- - - ¢=Equation E8
—— ¢ = Equation E9

T T T T T
0 0.1 02 03 04 05 06 07 08 09 1

€n

Figure E3: Damping coefficient ¢ (g5), see [31, 107] for more information.

Additionally, Figure E4 gives a graphical explanation of the two different approaches.
Equation E7 is solved with a given initial velocity, and the results are normalized.
Due to the influence of the damping parameter ¢, the displacement (indentation
of the DEM impact) and the acceleration do not share a common zero-crossing of
the abscissa. With respect to the two different declarations of contact end, given

f

in Table E4, two different velocity values 8,7 result.

Finally, the artifacts resulting from [108]’s contact end condition 6, = 0 can be
observed in Figure E4. If the contact is considered to be ended at the time of

n = 0 the acceleration has already reached a negative value, resulting in non-
physical attracting forces.

1- S

o
3]
|

normalized simulation data
I
o
42} [=}
|

\ \ \

0 01 02 03 04 05 06 07 08 09 1
normalized time

Figure E4: Graphical explanation of the two different contact end conditions,

given in Table E4. The contents of this graph are the results of equa-
tion E7 with a given initial velocity. Figure adapted from [31].
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APPENDIX G

Energy Terms

The most important energy terms* for DEM as well as for FEM are presented below.
The damping energy is not conservative and must be integrated over time. All other
energy terms can be re-evaluated independently at any time. The energy terms for
elastic and inelastic deformations of the DEM particles depend on the contact law
chosen in each case and are expressed here only by their dependencies. An expla-
nation and discussion of the individual DEM symbols can be found in Appendix
F.

FEM
ITEEM, strain :f f S(E) dE dQyo, (G.1)
Qo JE
1 Nelements 1. - _
IIFEM,strainelastic = /;)0 ES :E+Sg:EdQg= Z /;20 (§S+ So|-EdQgp, (G.2)
1 1 Nelements . N
HgEM,kin = -f pow-udQo=- ) a-Mu (G.3)
2Jqy 2
t Mlelements .
HgEM,damp (1) = fo ) u-Duds, (G.4)
Melements =~ .
HEEM,ext = Z (B + Fext) -u, (G.5)
Nelements ~
OpeMextc= ), Fe i, (G.6)
HEEM, total = IIFEM,strain + ITFEM kin + IIFEM,damp G

— (MpEM,ext + TTFEM, ext,c) -

* Neglecting rotational kinetic energy.
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DEM
Nparticles R

1_[DEM,pOt = Z mg- (Xref - f() ’ (G.8)

1 Nparticles A
MpEm kin = 5 Y. ma-u, (G.9)
MpEMm,ela = IIDEM,ela (Fns Fr, 61, AS), (G.10)
MpEM,damp (8) = TEM,damp (& 0,08, 1 1], G.11)
IpEM,total = IIDEM, pot + IIDEM, kin + IIDEM,ela + IIDEM, damp- (G.12)

For the calculation of the DEM gravitational potential energy a reference point
Xief needs to be chosen. It is advisable to place X;qf on position of the unde-
formed geometry of the structure.

Total System

Htotal =TTFEM, strain + ITFEM kin + ITFEM,damp (G.13)

+IpEM,pot + IIDEM, kin + IIDEM, ela + IIDEM,damp — IIFEM, ext-
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APPENDIX H

Pre-Stress Application

Repeatedly pre-stresses are mentioned and taken into account in FEM simulations.
However, the correct consideration of pre-stressing is not straightforward and usu-
ally depends on the practical implementation in the construction process. There-
fore, the topic will be discussed based on an one-dimensional example, where the
pre-stressing of a cable between 2 points without dead weight sag is analyzed.

Two questions, in particular, are worth discussing.
1. To which initial length does the applied pre-stress refer?

Two methods are available for applying pre-stresses.

o In Figure H.1a, the cable is placed between the two supports. While
the cable is not yet fixed to the right support, the pre-stress is applied,
and finally, the cable is attached to the right support.

In this case, the reference length is the planned length between the
supports L.

 In Figure H.1b, the cable is too short and then lengthened before be-
ing attached to the right support. The initial shortening must be cal-
culated so that the elastic deformation Ax causes the planned pre-
stressing.

In this case, the reference length is the length of the short cable /.

The decision, therefore, results in the appropriate choice of the reference
length. In the present work, the case shown in Figure H.1a is chosen. Thus,
the pre-stress can be added to the stress from deformations integrated over
the reference length, i.e., the planned distance of the supports L*.

* See equation 3.25.
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SpA

(a) Reference length: L.

SpA

l L Ax L

1 1
(b) Reference length: 1.

Figure H.1: Considerations on the application of pre-stress and its numerical
implementation.

. Which stress measure is used?

While the Second Piola-Kirchhoff stress refers to the reference geometry,
the Cauchy stress considers the actual geometry. In practice, the appro-
priate pre-stress value is obtained by continuous stressing. Thus, the final
stress state is related to the actual geometry. Although this would justify the
choice of the Cauchy stress tensor, this dissertation works with the Second
Piola-Kirchhoff stress measure for the following reasons:

* No consideration of the change of the cross-section due to longitudi-
nal stresses.

e As discussed in 1., the planned length between the nodes is used as
the reference length for integrating the stress.
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